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Abstract 

~-

IMAGE ANALYSIS AND PRENATAL SCREENING 

ITAN'ANLUAN 

Information obtained from ultrasound images of fetal heads is often used to screen for 

various types of physical abnormality. In particular, at around 16 to 23 weeks' gestation 

two-dimensional cross-sections are examined to assess whether a fetus is affected by Neural 

Tube Defects, a class of disorders that includes Spina Bifida. Unfortunately, ul~rasound 

images are of relatively poor quality and considerable expertise is required to extract 

meaningful information from them. Developing an ultrasound image recognition method 

that does not rely upon an experienced sonographer is of interest. In the course of this 

work we review standard statistical image analysis techniques, and explain why they are not 

appropriate for the ultrasound image data that we have. A new iterative method for edge 

detection based on a kernel function is developed and discussed. We then consider ways of 

improving existing techniques that have been applied to ultrasound Images. 

Storvik (1994)'s algorithm is based on the minimisation of a certain energy function by 

simulated annealing. We apply a cascade type blocking method to speed up this 

minimisation and to improve the performance of the algorithm when the noise level is high. 

Kass, Witkin and Terzopoulos ( 1988)'s method is based on an active contour or 'snake' 

which is deformed in such a way as to minimise a certain energy function. We suggest 

modifications to this energy function and use simulated annealing plus iterated conditional 

modes to perform the associated minimisation. We demonstrate the effectiveness of the 

new edge detection method, and of the improvements to the existing techniques by means 

of simulation studies. 
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Chapter 1 

Introduction 

1.1 What is tile problem? 

In medicine, information on the shape and size of certain organs is sometimes of great 

interest to clinicians. Such information is often obtained by means of ultrasound imaging, 

X-ray, X-ray computer tomography (CT), magnetic resonance imaging (MRI) and positron 

emission tomography (PET), for example. 

Neural tube defects (NTD) is a class of disorders that includes spina bifida, a maJor 

physical handicap. Spina bifida refers to a developmental defect of the spinal column in 

which the arches of one or more of the spinal vertebrae have failed to fuse together so that 

the spine is 'bifid'. The incidence of this condition is approximately I in I ,000 births. The 

legs of a spina bifida child may be paralysed so that he/she has to rely on crutches and 

callipers or a wheelchair for getting around. Associated brain damage may affect his/her 



appearance and speech markedly. Intellectual impairment coupled with the severity of 

the physical handicap gives rise to problems connected with the child's education and 

later may limit opportunities for further education and employment. A very good reference 

to spina bifida and its effects on children, families and society is Anderson and Spain (1977). 

Screening is the identification of individuals who may be affected by a certain disease or 

anomaly. Screening for NTD is routinely undertaken at 15-23 weeks of gestation. By 

definition, screening is not a diagnostic procedure, but one whose results must be confirmed 

by an additional investigation. Accordingly, a screen-positive result changes an individual 

from being classified as healthy into one requiring further examination. One method of 

screening for NTD is biochemical in nature and is based on the level of alpha-fetoprotein in 

the blood; see Brock and Sutcliffe ( 1972) and the UK Collaborative Study on Alpha­

fetoprotein in Relation to Neural Tube Defects ( 1977). The associated test takes place 

between 16-18 weeks of gestation. 

Another method of screening is based on an ultrasound examination of the fetus. The 

cross-sectional shape of the fetal head in an affected case is often similar to that of a lemon, 

whereas in a normal case it tends to be roughly ellipsoidaL When the fetal head is lemon 

shaped, the lemon sign is said to be present. Figure I . I shows ultrasound images of two 

fetal heads viewed from above. The front of the head is towards the right and the right side 

of the head is towards the bottom of the image. The image in panel (a) is from a normal 

fetal head and is roughly ellipsoidal, whilst that in panel (b) is from a fetus affected by NTD 

and exhibits the lemon sign. 
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(a) (b) 

Figure 1.1 Ultrasound images of two fetal heads when viewed from 

above: (a) a nonnal head and (b) a head showing the lemon sign 

(Nicolaides et al., 1986). 

The lemon sign is considered to be the earliest and most easily recognisable marker of spina 

bifida. Accordingly, ultrasonographic examination, which is also used to provide an 

accurate estimate of gestation age, provides another good discriminator for spina bifida at 

16-23 weeks of gestation. For more details, see Nicolaides, Campbell , Gabbe and 

Guidetti ( 1986) . In practice, decisions about whether to classify an individual as screen 

positive for NTD are based not only on biochemical marks and the cross-sectional shape of 

the fetal head, but also on other information obtained during the ultrasound examination and 

on maternal history. 

1.2 Initial idea 

Because ultrasonography is a cheap, quick, direct and probably safe screening method, it is 

considered by some to be the best early method for the detection of NTD; see 
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Nicolaides et al. (1986). However, it is well known that ultrasound images are of relatively 

poor quality. Multiplicative and additive high frequency noise, distortions in regions that 

are adjacent to the transducer, blmTing of spatial information perpendicular to the direction 

of sonic wave propagation, and speckle noise are typical image degradation in ultrasound 

unagmg. 

0 

"' 

0 ... 

0 10 20 30 40 50 60 
(a) 

0 10 20 30 40 50 60 
(b) 

~2J91 
(iJ li3 - -

~ 
0 10 20 30 40 50 60 

(c) 

Figure 1.2 (a) A real ultrasound image of a feta l head. (b) Result from Prewitt's 

filter and (c) result from the Canny fi lter. 

A typical example of an u ltrasound image of a fetal head is shown in Figure 1.2(a). This 

image has been converted to digital fom1at for further image analysis. Such a digital image 

is made up of picture elements or pixels . These are the smallest component of an image. 
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Associated with every pixel is a numerical value that indicates the grey-level at that pixel. 

In order to reduce the dark area in the original ultrasound image we have chosen to present 

and work with its inverse version in which black becomes white, white becomes black and 

intermediate grey-levels are mapped accordingly. We can see that in this ultrasound image 

the right and left sides of the cross-section of the fetal head are almost obliterated. Hence, 

successful ultrasound screening for spina bifida requires experienced sonographers. There 

is, however, much inter- and intra- operator variability even when the sonographers are 

experienced, as Roberts, Hibbard, Roberts, Evans, Laurence and Robertson (I 983) discuss. 

For these reasons, the development of an ultrasound screening recognition method that does 

not rely upon an experienced sonographer is of interest and many scientists including 

statisticians have recently begun research into this. Karaman, Kutay and Bozdagi ( 1995) 

propose an adaptive smoothing filter to reduce speckle noise. Matsopoulos and 

Mars hall ( 1994) and Thomas, Peters 11 and Jeanty (1991) try to locate automatically the 

fetal head or the fetal femur using mathematical morphology. Kass, Witkin and 

Terzopoulos ( 1988) present an active contour algorithm, known as the snake algorithm, for 

finding an optimal contour in a neighbourhood of an initial guess of the solution. A contour 

is a closed curve that represents the outline of the cross-section of an object. Although 

Kass et al.'s model is not applied to ultrasound images in their paper, it can be used as a 

method for edge detection in ultrasound images. Cohen (I 991) and Chalana, Winter Ill, 

Cyr, Haynor and Kim (I 996) use the snake model for ultrasound images. Storvik (I 994) 

applies an approach based on the minimisation of an energy function by means of simulated 

annealing to find ventricle boundaries in ultrasound images. This simulated annealing 

methodology was developed in a traditional image analysis context by Geman and 

Geman ( 1984). We will discuss other related work in later chapters. 
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If we can extract the edge of the cross-section of the fetal head and thus its shape directly 

from an ultrasound image, then we need a discrimination method to classify the head as 

either lemon shaped (possibly affected) or ellipsoidal (possibly unaffected). Wright, Stander 

and Nicolaides (1997) present a methodology, based on non-parametric density estimation, 

for performing such a discrimination from images of shapes. 

1.3 Traditional image restoration met/rml-. 

In this section, traditional image restoration methods will be briefly reviewed. These 

methods exist because a degraded version of an image is usually observed. 

Often a simple model is adopted for the degradation process. Let n be the number of 

pixels in the true but unknown image x and let X;, i = I, ... , n, be the grey-level at pixel i 

so that x=(x1 , .•• ,x,). Let the data z=(z1> ... ,z") be a degraded version of x that we 

observe. Then a simple model connecting z with x is 

where the noise 6; at pixel i is distributed according to a N(O,K) distribution and 

61> ... , 6 n are independent. 

If X; E {0, 1}, the image x can be thought of as being a binary image (black and white), 

while if X; E { 0, I, ... , g- I} for g > 2, the image x can be thought of as having g grey 

levels, where often g = 256. 
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* Inputx Scanning 
system 

N(O, 0.25) 

Display 
system 

Output z 

Figure 1.3 Schematic representation of the recording and display system, where the 

true scene is an image that comprises 50 x 50 pixels and has g = 3 grey levels. 

Figure 1.3 shows in schematic fonn a recording and display system. The true input 

image x • is shown on the left of the figure. This image comprises 50 x 50 pixels and has 

g = 3 grey levels: black (with corresponding value 2), grey (with correspond ing value 1) 

and white (with con·esponding value 0). The input is recorded by some form of scanner. 

This information is then transfetTed to a display system, but this transfer has degradation 

associated with it. Here we assume that this degradation takes the form of the addition of 

independent N( 0, 0.52
) noise at each pixel. The output from the display system is a noisy 

image z , as shown on the right of Figure 1.3. We will consider this image again in a 
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reconstruction experiment m Section 1.3.5. One task of image analysis IS to find an 

estimate x of the true image x • by attempting to remove the noise from z . 

1.3.1 Filters 

Image filters, such as those summarised in Chapter 3 and 4 of Glasbey and Horgan (1995), 

are often used in an attempt to remove the noise from z . 

Thresholding is a method that first classifies all pixels and then divides an image into regions 

or categories, which hopefully correspond to different parts of object or different objects. 

Smoothing filters attempt to enhance an image by applying transformations based on groups 

ofpixels. A median filter, for example, smooths an image by replacing each pixel value with 

the median of the values in a specified local region about that pixel, while a Gaussian filter 

smooths an image by replacing each pixel value with a Gaussian weighted mean of the 

values at nearby pixels. 

Let /;,J denote the pixel values in an m x m image, where (i,J) denotes the pixel located 

at row index i and column index j, and let gi.J denote the value at pixel (i,J) after a filter 

has been applied. Then the output at pixel (i ,J) from the median smoothing filter of size 

(2s+l)x(2s+l) is 

g;.J = median{/;+k,J+I : k, I= -s, ... ,s}, for i,j =(I+ s), ... ,(m- s). 
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The weights that define a Gaussian filter are specified in terms of a Gaussian probability 

density function: 

I { k
2 

+ f
2

} wk,1=--exp- ,fork,/=-[3cr], ... ,[3cr], 
21rcr 2 2cr 2 

where [a] means the integer part of a . If we let s = [ 3cr], then the output from the 

Gaussian smoothing filter of size (2s +I} x (2s+ I) is 

s s 

g,,j = L :Lwk_,/,+k.j+l fori,J=(l+s), ... ,(m-s). 
k=-s 1=-s 

The thresholding and smoothing methods can reduce nOise levels in some images so 

emphasising objects or object edges. However, these methods usually only work well for 

images corrupted by low levels of noise. In our experience they do not perform well for 

ultrasound images. 

Moreover, most edge detection filters are not very helpful for edge detection in ultrasound 

images because of the special nature of the degradation process as described in Section 1.2. 

We have applied the Laplacian filter (Giasbey and Horgan, I995, p. 58), the range 

filter (ibidem, p. 85), Prewitt's filter (ibidem, p. 87), the Canny filter (ibidem, p. 89) and the 

thinning filter (ibidem, pp. I39-140) with little success. Figures 1.2(b) and (c) present the 

results of applying Prewitt's filter and the Canny filter; similar outcomes were obtained 

when other filters were applied. Rohling, Gee and Berman ( 1996) discuss problems 

associated with using the Canny filter on ultrasound images. 

Morphology is an approach to image analysis that is based on the assumption that an image 

consists of structures that may be handled by set theory. Erosion, dilation, opening and 

closing are the four basic morphological operations and they are most often used for binary 
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Images. Morphological operations can be thought of as being filters and are often 

successfully applied to images with low levels of degradation. The opening and closing 

operators are often used for smoothing in binary images. It is sometimes useful to apply 

morphological operators to smooth the binary results obtained from edge detection 

algorithms. For more details of morphological techniques, see Chapter 5 of Glasbey and 

Horgan ( 1995). Examples of applying morphological methods to ultrasound images are 

presented by Matsopoulos and Marshall (I 994) and Thomas, Peters II and Jeanty (1991 ). 

1.3.2 Bayesian approach 

The Bayesian approach to image analysis can be traced back to Geman and Geman (1984) 

and Besag ( 1986). A commonly held belief about images is that they are locally 

homogeneous, that is, 'nearby' pixels are expected to take similar values. We formalise the 

notion of'nearby' by introducing the concept of neighbourhood. 

Let S = { 1, ... , n} represent the pixels of an image x . The set { 0(/): b(i) ~ s} indexed by 

i E S is said to be a neighbourhood system if i ~ b(i) and i E b(J) <:::> j E b(i) for all 

i and j E S. In this case b(i) is thought of as the set of neighbouring pixels of pixel i. 

Here we are interested in a neighbourhood system with b{i)s of the form 

where d 2': I and lli - Jll is Euclidean distance between the centres of the two pixels i and j. 

Note that pixels at or near the boundaries have fewer neighbours than interior ones. When 

d = I the above neighbourhood system is said to be first-order, that is, the first-order 
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neighbours of a pixel are its four adjacent horizontal and vertical pixels (with appropriate 

modifications at the boundaries). When d = 2 the neighbourhood system is said to be 

second-order, that is, the second-order neighbours of a pixel are its eight adjacent 

horizontal, vertical and diagonal pixels (with appropriate modifications at the boundaries). 

Figure 1.4 illustrates both the first-order neighbourhood system (in the top left corner) and 

the second-order neighbourhood system (in the bottom right corner). 

Given a neighbourhood system a subset c of S is called a clique if any two different 

elements of c are always neighbours. We use e to denote the set of all cliques. In 

Figure 1.5 we illustrate all the possible cliques corresponding to the neighbourhood systems 

illustrated in Figure 1.4. 

0 0 o :o :o 
.... . ..... ........... ................. ...... . .......... 

First-order o :o :o 
O ~:t .. t~ o o ~ o ~ o : ·-:-:.;-· : : : . . . . . . . . 

. . . . 

O :o :o a : ... ;:::~::: . 
: : - : ~~.·?' : 

... ·- .. --~- .. . -... -~ . - ... --.- -.. .. -~ ~ -·~ ... ~ .. -. - ~-~ ...... . . . :·· .. 
o :o :o Second-order 

. . .. ····························· ·············· ....•.... ..... • • # , 

o \o :o ·· \ \·e . . . . . . 

Figure 1.4 Part of a pixel grid showing the neighbou rhood systems (Stander, 1992). 
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r:;;l 
L::::J 

[ili] 
[!!!] 

[j] 
[!] 

First-order 

Second-order 

(and rotations) 

Figure 1.5 The possible pixel cliques in the first-order and second-order 

neighbourhood systems (Stander, 1992). 

It is now possible to construct a prior distribution p(x) on the set of all images as a Gibbs 

distribution: 

P(X = x) = p(x) = _!_exp{-l:Vc(x)} z cee 
( 1.1) 

where 2 is a normalising constant, and the family {Vc(x), C E e} is referred to as a 

potential and is such that each clique potential Vc ( x) only depends on those X; with i E c . 

The term l:Vc(x) is called the energy fimction. The probability distribution (1. 1) is a 
CE~ 
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Markov random field with respect to the neighbourhood system { O(i): O(i) c s} . This 

means that for all images x that belong to state space X the conditional probability 

An example of a prior distribution of the form specified by ( 1.1) is 

p(x) oc exp[ -Pl~?.,(jx.- x,l) + Dt/"'{lx, -x11)}] (1.2) 

where L indicates summation over first-order neighbours, and L indicates summation 
[iJI Q.n 

over second-order diagonal neighbours. The function ljJ a.r (u) belongs to the general family 

suggested by Geman and McCiure (1987), indexed by two parameters a> 0 and y > 0. 

The parameters 13 and D satisfY 13 > 0 and D <:: 0. 

From knowledge of the noise distribution, we can write down the likelihood t(zJx) of the 

observed image z given the true scene x , for example, the likelihood takes the form 

l(zJx) = •12 exp --L(z1 - X1) • 
I { I " 2} 

(2mc) 2K i=l 

(1.3) 

Bayes theorem then provides the posterior distribution of an image x given the observed z : 

p(xJz) oc t(zJx) p(x). (1.4) 
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With the prior given by (1.2) and the likelihood given by (1.3), the posterior distribution 

p(xlz} is a Gibbs distribution based on the same neighbourhood system. We shall write 

p(xlz} oc exp{-U(x)} 

where U(x) is the (posterior) energy function taking the form: 

We may think of p as a smoothing parameter (or smoothness constant). The value of the 

parameter D is usually chosen in the interval ( 0, 1] so that the contribution to the energy 

from diagonal neighbours is not greater than that from first order neighbours. Often D is 

I 
taken to be J2 in order to reduce rotational variability; see Silverman, Jennison, Stander 

and Brown(1990). If we set D=O, the diagonal neighbours do not contribute to the 

energy, and so, when D = 0 we refer to U as the first-order energy model, otherwise we 

refer to it as the second-order energy model. 

Finding the maximum a posteriori (MAP) estimate is one method of making inference 

about x . The MAP estimate corresponds to the global minimum of the energy function 

U( x) over all images x . If the smoothing parameter p = 0, then the second term of (I. 5) 

makes no contribution to U and the minimising image is the one in which the value of the 

grey level at pixel i is closest to its record z;. We call this reconstruction the maximum 

likelihood estimate (MLE). On the other hand, if P is very large, the contribution to U of 

the first term in (1.5) is unimportant and so the minimising image is such that the value at 

every pixel is the same. The parameter p can be chosen by eye so as to give a 

reconstruction that appears good. Further discussion about methods for estimating p when 
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the true scene comprises only two colours (binary image) is presented in Chapter 3 of 

Stand er (1992). Thompson, Brown, Kay and Titterington ( 1991) present a study of 

methods of choosing the smoothing parameter for general grey level images. The fully 

Bayesian approach assumes that the prior parameter f3 is from a hyperprior, and updates f3 

as well as the image x. This approach was considered in the image analysis context by 

Heikkinen and Hogmander (1994) working with biogeographic data and later by 

Weir (1997) and Higdon, Bowsher, Johnson, Turkington, Gilland and Jaszczak (1997) 

working with SPECT data. 

1.3.3 Gibbs sampler and Markov clrain Monte Carlo 

If the image x comprises n pixels and if each pixel can take one grey level from g possible 

values, then the size of the state space X is g" . However, even when there are g = 2 grey 

levels and n = I 0 x I 0 pixels, the size of X is still 2 100 > 1.26 x I 030
, with the consequence 

that it is impossible in practice to search over all the images to find the global minimum of 

the energy function U . Simulated annealing and iterated conditional modes (ICM) are two 

optimisation methods that have been applied in statistical image analysis since they were 

proposed in the 1980's. In this section we introduce the Gibbs sampler and Markov chain 

Monte Carlo methods. We then describe these related optimisation techniques in next 

section. 

The Gibbs sampler was first used in the image analysis context by Geman and 

Geman (1984). We now describe the Gibbs sampler in detail. 
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Suppose we wish to generate a sample from a multivariate distribution 

but cannot do so directly. Let n(x;lx51;) denote the conditional density for the component 

x; , given the values of the other components x 51;, where S \ i = {J: j E S and j ;t i} . The 

Gibbs sampler algorithm proceeds as follows. First select arbitrary starting values 

x(o) = ( x~o), ... , x~o)) . Then successively draw random samples from the conditional 

distribution n( X; lx 51;), i = I, ... , n, according to the following scheme: 

(I) 
XI from n( X1 1x~} 

xPl 
2 from n( I (1) (o) (o)) x2 x1 ,x3 , ... ,x, 

(I) 
x3 from n{ I (I) (1) (o) (o)} x3 x1 ,x2 ,x4 , ... ,x, 

ThtscompetesatransttiOn om x - x1 , ... ,x, to x - x1 , ... ,x, . ewt re er . I . . fr (o) - ( (o) (o)) (1) - ( (I) (I)) W '11 fi 

to the n updates that take x(o) to x(ll as an iteration. This cycle of updating one 

component at a time is repeated many times producing a sequence x(o), x(ll, ... ,x(1), ... , 

which are realisations of a Markov chain, with transition probability from x(1
) to x(I+I) 

given by 

( 
(1) (1+1)) _ 0· ( (1+1)

1 

(1+1) (1) . . , ·) px ,X - i'l'X; Xj ,X1 ,j<l, >I. 
i=1 
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The methodology of constructing a Markov chain to generate samples from a complicated 

distribution 1r, often known up to a constant of proportionality, is referred to as Markov 

chain Monte Carlo (MCMC). There exists other algorithms that are based on the MCMC 

principle, such as the Metropolis algorithm and Metropolis-Hastings algorithm proposed by 

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) and Hastings (1970). For a 

general introduction to MCMC, see Gilks, Richardson and Spiegelhalter ( 1995). 

MCMC methods have been used extensively in statistical physics over the last forty years, in 

spatial statistics over the last twenty years and in Bayesian image analysis over the last 

decade. Recently the literature on this topic has increased rapidly; see Gelman and 

Rubin (1992), Geyer (1992), Besag and Green (1993), Smith and Roberts (1993), Besag, 

Green, Higdon and Mengerson (1995), Robert (1995), Green (1995) and Cowles and 

Carlin ( 1996) for important contributions. Brooks ( 1998) provides a tutorial review of 

some of the most common areas of research in MCMC. Frigessi, Martinelli and 

Stander ( 1997) give bounds on the convergence time of the Gibbs sampler used in certain 

Bayesian image reconstruction situations that are of order n logn, where n is the number of 

pixels. Gibbs ( 1998) provides bounds of order n 2 
, but with a proportionality constant that 

is easy to compute. 

The basic idea behind Markov chain Monte Carlo is that if it is impossible to find a way to 

simulate independent realisations of some complicated distribution 1t( x) , it is almost as 

useful to simulate dependent realisations, say x(
1
), x(2), . .. , to form an irreducible aperiodic 

Markov chain having 1t(x) as its stationary distribution. The Metropolis-Hastings 

algorithm (Metropolis et al., 1953; Hastings, 1970) provides such a chain. Because of the 
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dependence, we need larger samples than would be required if independent sampling were 

possible. 

We now present the Metropolis-Hastings algorithm and the Metropolis algorithm. 

Metropolis-Hastings algorithm: 

Given current state x(') , obtain the next state x(t+l) by means of the following two 

steps: 

Step 1 Sample a candidate point x' from a proposal distribution q( x/x(')} 

Step 2 With probability 

(1.6) 

set 

x(t+l) = x' (acceptance), 

else set 

(rejection). 

Note that since 1r only appears in the ratio n(x')/n{x('l), knowledge of the normalising 

constant is not required. 
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Metropolis algorithm: 

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm with a 

symmetric proposal: q( xlx(t)) "'q( xl•l lx). This means that the probability in (1.6) 

reduces to 

The Gibbs sampler which we have described above is a single-site updating version of the 

Metropolis-Hastings algorithm with proposal distribution at the ilh site of the form 

7r(xl xl'·'l) 
q( xllx(t,i)) = 7r{xllx('·'l) = ', S\, 

I S\1 f ( (t,i)) d 1 

7r x 1, Xsv X 1 

where 

r(t.i) = (x(t+l) xl•) 1· < i I> i) 
• J , I , ' - , 

x~l denotes all the components of xl'·'l except the ilh, and we suppose that the candidate 

state X1 differs from x''·'l only in the ilh component. Note that we are only updating the 

ilh component x~ = x~~) with the result that 

( I) ( I I ) ( 1 ( 1,1)) 7r X = 7r X1, Xsv = 7f Xi> X511 

~(x''·'l) _ ~(xl'·'l xl'·'l) = ~(xl'·'l xl ) 
i'- -

1
" i , S\i '" i ' S\i · 

Using the above formula for the Metropolis-Hastings algorithm, we find that the acceptance 

probability for the Gibbs sampler at the ilh site is given by 
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=mm I, 

=I. 

S . h h G"bb I d"d I- ( (t+l) (1+1) I (t) (t)) . o,w1t t e 1 ssamperacan 1 atestate x- x 1 , ••. ,x;_1 ,x;,X;+1, ... ,x. 1snever 

rejected. 

In image analysis the Gibbs sampler is used to produce a sequence of dependent images 

from the posterior distribution p(xlz}. The Gibbs sampler starts from an initial image (MLE 

estimate, for example) and then repeats the following procedure many times: visit each pixel 

in turn and replace the current value by one sampled from the conditional distribution of the 

value at that pixel given the current values at all the other pixels and the observed data. At 

the ion pixel, the above conditional distribution is denoted p( X; lx 51;, z), and for the 

posterior distribution defined in Section 1.3.2 it can be shown that 
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where apl denotes the first-order (horizontal and vertical) neighbours of pixel i and 8\2
) 

denotes the second-order (diagonal) neighbours. 

1.3.4 Optimi.mtion techniques: simulated annealing ami iterated conditional mode . ., 

Simulated annealing as described by Geman and Geman (I 984) and the iterated conditional 

modes (ICM) algorithm as proposed by Besag (1986) have been employed in an attempt to 

minimise the energy function U(x) over l. Both simulated annealing and ICM are 

iterative algorithms, with simulated annealing usually being based on the Gibbs sampler. 

Simulated annealing was considered by Kirkpatrick, Gellat and Vecchi (1983) and later 

introduced to the imaging context by Geman and Geman (1984). It has ever since been the 

subject of an enormous literature; see, for example, Laarhoven and Aarts ( 1987) and 

Winkler ( 1995). Among recent contributions relevant to our work are Stander and 

Silverman ( 1994) and Hum and Jennison ( 1995). 

The idea of the simulated annealing algorithm is that instead of using a Markov chain to 

sample from the posterior distribution p(xlz) oc exp{ -U(x)}, we use a Markov chain to 

sample from a probability distribution defined by 

{ 
U(x)} p,(x) oc exp -----;;- , 

where I is the update number, T, > 0 is the temperature at the I lh iteration, and T, ~ 0 as 

I ~ oo. In theory, provided T, ~ 0 very slowly, the simulated annealing algorithm should 
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reach the global minimum of U(x), that is, the image corresponding to the MAP estimate 

should result; see Hajek (1988) for details and Geman and Geman (I 984) who provide a 

formal proof of convergence in the image analysis case. Because r 
1 

has to tend to zero 

very slowly, in practice the method is computationally very expensive. 

The way in which r 1 tends to zero is known as the temperature schedule. Geman and 

Geman (I 984) suggest a temperature schedule that is of the form 

c 
01 = log(l+t)' 

where C is a constant independent of I . If C is big, a large number of iterations are 

required for r 1 to approach zero. Geman and Geman (1984) give a value of C that 

guarantees that realisation of the associated (inhomogeneous) Markov chain will eventually 

tend to the MAP estimate. As this value is so big that an enormous number of iterations is 

required for r 1 to approach zero, Geman and Gem an ( 1984) actually used smaller values in 

their restorations. 

Stander and Silverman (1994) considered several other temperature schedules. These 

schedules are defined in terms of the finite total number of iterations T, the temperature I 

for the first update and the temperature I for the last update. The values of I and I are 

chosen to give reasonable results. The details of these schedules are: 

• Straight line schedule 

1- I 
'~ = T -1 (t -1) +I 
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• Geometric schedule 

~(;) (t-1)/(T-1) 

• Reciprocal schedule 

/f(T- !) 
(IT-/)+(/ - l)t 

• Logarithmic schedule 

lf{log(T+ l)-log2} 

{ 11 og( T + I) - f I og 2} + (/ - 1) I og( t + I) ' 

see Stander ( 1992) and Stander and Silverman ( 1994) for more details of these temperature 

schedules and the choice of values off and I. 

The ICM method can be thought of as simulated annealing at zero temperature. At each 

update of ICM an image is produced that does not increase U(x), whereas in simulated 

annealing, an image that increases U(x) may be produced. The ICM algorithm starts from 

an initial image (MLE estimate, for example) and then repeats the following procedure: visit 

each pixel in turn and replace the current value by one that provides the minimum value 

of U(x) or the maximum of p(xlz). The ICM procedure stops when no further decreases 

in the energy function occur. The resulting image corresponds to a local minimum of the 

energy function. The ICM method is computationally inexpensive, usually requiring less 

then I 0 iterations for convergence (see Besag, 1989, for example). 

We have seen that the above Bayesian approach to image analysis is based on the posterior 

distribution p(xlz) oc exp{-U{x)} where U(x) is given by (1.5). The restoration is often 
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taken to be the image that maximises p(xlz), or equivalently minimises U(x), and can be 

found (at least approximately) by means of simulated annealing and ICM. The above 

Bayesian approach is essentially a smoothing method, and so does not work well when 

applied to ultrasound image of fetal heads, such as the one shown in Figure 1.2(a) as it 

tends to smooth away the details that remain. 

1.3.5 Recom.-truction experiment for the noisy image z .~lrown in Figure 1.3 

In this section we present the results of an experiment that is designed to demonstrate the 

above Bayesian approach. Our aim is to restore the true image x • from the noisy image z 

shown in Figure 1.3. 

In panel (a) of Figure 1.6 the MLE is displayed. The image presented in panel (b) of 

Figure 1.6 is obtained by applying Gaussian smoothing with a= I to z and then rounding 

the resulting value at each pixel to the nearest value in {o, I, 2}. The image in panel (c) is 

obtained in an analogous way using median smoothing with s = 1 . These images look 

better than the original observed image- the output z shown in Figure 1.3, but are still 

poor. There are 459 (18.36%), 214 (8.56%) and 127 (5.08%) misclassified pixels, 

respectively, for the three estimates shown in panels (a), (b) and (c). 
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noisy image z shown In Figure 1.3 . 

Estimates obtained by using (a) maximum likelihood (MLE), (b) the Gaussian smoothing 

filter, (c) the median smoothing filter, (d) the ICM algorithm, (e) the simulated annealing 

algorithm, and (f) the simulated annealing followed by ICM algorithm. Panel (g) presents a 

graph of the energy function plotted against iteration number for [CM algorithm. Panel (h) 

presents a simi lar plot for the simulated annealing fo llowed by ICM algorithm. 
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We then applied the Bayesian approach to the n01sy image z with known vanance 

"= 0.25. We took a= 0.1, fJ = 15 and r = 2, and considered the first-order energy 

model (I .4) by setting D = 0. The ICM algorithm requires just three iterations for 

convergence (no pixels are changed on the final iteration) and yields the reconstruction 

shown in panel (d) with 67 (2.68%) misclassified pixels. There were 426 pixels that 

changed their grey levels after the first iteration, and 26 pixels after the second. 

Figure 1.6(e) presents the result from the simulated annealing algorithm after twenty 

iterations, where the logarithmic temperature schedule with f = 0.9 and I= 0.1 was 

employed. Twenty iterations seem to be enough to obtain a satisfactory result in this simple 

example. In this estimate, there are 51 (2.04%) misclassified pixels. Finally, we applied the 

ICM algorithm to the result shown in panel (e) that was obtained from the simulated 

annealing algorithm. Four iterations ofiCM were required for convergence, and there were 

15 pixels that changed their grey levels after the first iteration, one pixel after the second, 

and one pixel after the third. The result is presented in panel (t) and there are 52 (2.08%) 

misclassified pixels. Note that this final ICM stage has provided additional smoothing. The 

graphs presented in panels (g) and (h) are plots of the energy function (1.5) against iteration 

number for the ICM algorithm and the simulated annealing followed by ICM algorithm. In 

the panel (h) the broken vertical line marks the end of simulated annealing and beginning of 

ICM, whereas the broken horizontal line marks the final energy produced by the ICM 

algorithm only. From these energy plots we see that simulated annealing allows increases in 

energy whereas ICM does not. 
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Figure l. 7 Bar plot of the final energies of the results from six image reconstruction 

methods together with the energy of the true image x •. The energies are sorted into 

descending order and the values of the energies are printed on the top of each bar. 

We see that the simulated annealing algorithm, the ICM algorithm and the simulated 

annealing followed by ICM algorithm provide better reconstructions of the true image x • 

from the noisy image z than were obtained by applying Gaussian and median smoothing. 

Both x • and z are presented in Figure 1.3 . 

Figure I . 7 presents the energ1es of the results obtained by usmg max1mum likelihood 

(MLE), the Gaussian smoothing filter, the median smoothing filter, ICM, simulated 

annealing (SA), and simulated annealing followed by ICM (SA+ICM), together with the 
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energy of the true image x •. The energies are sorted into descending order and the values 

of the energies are printed on the top of each bar. 

The energy of the true image x • is 1754.40. From Figure I. 7 we see that the maximum 

likelihood estimate (MLE) has the highest energy (3343.17). The Gaussian and the median 

smoothing filters considerably reduce the energy to 2113.22 and 2028.38, respectively. 

These energies are close to the energy of the true image. The energies of the results 

obtained by using ICM, simulated annealing and simulated annealing followed by ICM are 

lower than the energy of the true image. The simulated annealing algorithm produces an 

estimate whose energy (1727.63) is lower than that of ICM (1743.24). The result shows 

that the simulated annealing algorithm allows escapes from local minima of the energy. 

Simulated annealing followed by ICM yields the image that has the lowest energy ( 1711.27) 

in this example. 

1.4 Structure of the thesis 

We consider ways of improving existing techniques that have been applied to ultrasound 

images and we develop and discuss a new iterative method for edge detection. We 

demonstrate the effectiveness of the new edge detection method, and of the improvements 

to the existing techniques by means of simulation studies. 

In Chapter 2 we implement and improve the edge detection method of Storvik ( 1994) for 

fitting an object contour to an ultrasound image by using simulated annealing. Our 
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improvement is based on a cascade-type blocking method (Jubb and Jennison, 1991; Hum 

and Jennison, 1995) that substantially speeds up and improves the performance of the 

algorithm. The approach proposed in Chapter 2 can be used to detect shape in images 

where the data are a corrupted version of the shape itself, such as the ultrasound image of a 

hwnan ovarian cyst shown in Figure 1.8. In this type of image, the shape is defmed by its 

edge and pixels inside and outside the shape have different records. Two simulation 

studies are performed based on such an image of a head shape. One is designed to 

compare the perforn1ance of the cascade-based algorithm with that of the direct simulated 

a1mealing algorithm. The other aims to investigate whether there is a significant difference 

due to the order in which edge pixels are visited. 

Figure 1.8 Ultrasound image of a human ovarian cyst. 
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The ultrasound image of a fetal head shown in Figure 1.1 is a different type of image in that 

the shape is defined by a thin outline of pixels with records that are different from those at 

pixels inside and outside the shape. The approach presented in Chapter 2 does not work 

well on this type of image. In Chapter 3, an algorithm for extracting the head edge and thus 

the head shape from such ultrasound images is proposed. This algorithm is based on a 

specially designed kernel function. The algorithm not only provides input for the 

discrimination algorithm of Wright et al. ( 1997) but also allows automatic fetal head 

measurements to be made as described in Chalana et al. ( 1996) and Matsopoulos and 

Marshal) (1994). In Sections 3.4 and 3.5 of Chapter 3, simulation studies based on an edge 

defined image of an ellipse are carried out in order to test the kernel algorithm we 

developed. 

The kernel algorithm is modified in Section 3. 8 to detect shape in images where the data are 

a corrupted version of the shape itself Although this type of shape may be detected by the 

method described in Chapter 2, the kernel algorithm is considerably less complicated and 

computationally expensive. We conduct simulation studies based on the image of a head 

shape and an image of an ellipse in order to compare the performance of the algorithm 

described in Chapter 2 and the algorithm we develop in Section 3.8. 

A simulation study based on an edge defined circular image is performed in Chapter 4 in 

order to study the effect of the parameters used in the definition of the kernel function. 

Finally, in Chapter 5 we introduce and discuss the snake model proposed by 

Kass et al. (1988). The associated energy function is modified in order to improve the 

original snake methodology. We also discuss how the simulated annealing and ICM 
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algorithms can be used to minimise the modified energy function. We run a simulation 

study based on a shape that is defined by an edge that is two pixels thick to compare the 

performance of the kernel algorithm, snake algorithm and simulated annealing plus ICM 

algorithm. 

All our work is motivated by two real ultrasound images. One of these, the ultrasound 

image of a fetal head shown in Figure 1.2(a), is considered in Chapter 3, where the 

proposed kernel algorithm is applied to it, and in Chapter 5 where the snake methodology 

and associated improvements are used. The other image, an ultrasound image of a human 

ovarian cyst shown in Figure 1.8, is considered in Chapter 2, where Storvik's algorithm and 

associated improvements are applied to it, and in Chapter 3, where the modified kernel 

algorithm is employed. We are grateful to Dr P. Dubbins and Dr T. Reynolds for having 

supplied these original photographs. 

All the approaches described in this thesis have been implemented in S-Pius for Windows 

Version 3.3 Release I. 
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Chapter 2 

Object Recognition Using Simulated Annealing 

and ICM with Cascade-type Blocking 

2.1 Introcluction 

Many papers have developed algorithms for object recognition in recent years. 

Kass, Witkin and Terzopoulos (1988) present a non-Bayesian active contour model called 

'snake' as a general method for edge detection and motion tracking. A snake is an energy­

minimising contour that is guided by external constraint forces and influenced by image 

forces that pull it toward image features such as edges and lines. Snakes are very useful 

creatures; there are many applications in computer vision in which they are employed, such 

as the problems of detecting edges, lines and contours. We will discuss the details of the 

snake model in Chapter 5. 
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Canny ( 1986) presents a gradient edge filter method. This local algorithm is a very simple 

method for edge detection but it is not able to handle complex problems such as those 

involving highly degraded deformable shapes. Friedland and Adam (1989), and Friedland 

and Rosenfeld ( 1992) use a low-level energy function to force smoothness of the edge and 

sharpness between the object and the background, and a high-level energy function to 

compare the entire boundary with a library of known compact objects. Mardia and 

Qian (1995) build up a Bayesian approach to compact object recognition but their method 

also depends on a library of known objects. 

The deformable template model ofGrenander, Chow and Keenan (1990) is based upon the 

deformation of a template to find an optimum fit to the object. The template is a closed 

polygon with fixed number of sides of variable length representing the outline of a typical 

object. Grenander and Miller (1994) generalise this to a variable number of objects and use 

jump-diffusion sampling to explore the state space of deformations. Helterbrand, Cressie 

and Davidson ( 1994 )' s work is quite similar to the template and snake models. The main 

difference is that the objects are defined by boundaries that are one pixel thick. Qian, 

Titterington and Chapman (1996) employ a Bayesian framework for the problem of 

identifying the irregular boundary of a magnetic domain in a thin multilayer film, using data 

in the form of an electron micrograph. They use the ICM procedure and find initialisation 

an especially difficult problem, which they resolve by means of a template-like modelling 

approach. Qian et al. (1996) use a star shaped polygon and their prior distribution is based 

on the smoothness properties of this shape. A star shaped object is one in which every 

point of the edge is visible from an interior point. Hum and Rue ( 1997) combine the 

template and marked point process approaches to handle scenes containing variable 

numbers of objects of different types. Pievatolo and Green ( 1998) describe a statistical 

model that allows polygons with any number of sides. Both Hurn and Rue (1997) and 
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Pievatolo and Green ( 1997) use reversible jump Markov chain Monte Carlo algorithms 

introduced by Green (1994, 1995); see also Richard son and Green (1997). All the work in 

the above papers is built upon the Bayesian approach for object recognition. These authors 

have shown that a Bayesian approach provides a successful method for finding the outline 

or contour of an underlying object. 

Storvik (1994) presents an approach for edge detection that is applicable when the pixels 

inside and outside an object take different records. His procedure is reminiscent of the 

snake algorithm suggested by Kass et al. (1988) and adapted by Chalana, Linker, Haynor 

and Kim (1996) in a recent application to echocardiography. Teles de Figueiredo and 

Leitao (1992) also used a Bayesian approach to estimate ventricular edges in angiographic 

images and this paper is related to the work of Friedland and Adam (1989). Storvik's 

method is somewhat related to a shape analysis approach to compact object recognition 

discussed by Fried land and Rosenfeld ( 1992) and Mardia and Qian (1995). 

This chapter builds upon Storvik (1994)'s approach for single object recognition from 

ultrasound images. The main algorithm employed by Storvik (1994) is simulated annealing. 

This makes Storvik's method very computationally intensive. In this chapter we shall 

assume that the true grey-levels of pixels inside and outside the contour of the object are 

different. We present a modification of Storvik's approach based on the cascade-type 

blocking algorithm discussed by Hum and Jennison (1995) that considerably reduces the 

computation required. Part of this work has been accepted for publication; see Luan, 

Stander and Wright (1998). 
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Our approach has associated with it the following features: 

• It works for images comprising a single object. 

• It operates on edge pixels and their first and second order neighbours. 

• Gaussian distributions are assumed for the grey levels inside and outside the object, the 

parameters of these distributions being estimated at the beginning of the algorithm. 

• A threshold convex 'hull initial configuration is defined at the beginning of the algorithm. 

• The main optimisation method used is simulated annealing. 

• The ICM algorithm is applied to the contour obtained from simulated annealing. 

• The algorithm we describe below can be applied to detect any single shape when the 

pixels inside and outside the object take different records, whereas the algorithms given 

in Friedland and Rosenfeld (1992} and Mardia and Qian (1995} apply to any star-shaped 

object. 

Stoi¥ik (1994}'s algorithm is based on an energy function. This energy function, together 

with other details of the algorithm; is briefly reviewed in Section 2.2. In Section 2.3 we 

present a slightly different form of the energy function and introduce our cascade-type 

blocking modification. Some details of the computer implementation of the resulting 

approach are given in Section 2.4. In Section 2.5 we present an example of detecting 

underlying shape in a real ultrasound image. We finish with a discussion in Section 2.6. 
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2.2 Storvik'.~ approacll ami object recognition 

Due to noise and/or blur, the observed image z differs from the true but unknown image. 

As mentioned in Section 1.3.4, many approaches that are applied in image analysis such as 

ICM and simulated annealing are based on the minimisation of an energy function U(x), 

where x is a possible configuration such as an image or contoliL Storvik ( 1994) uses 

simulated annealing to minimise his energy function and he presents good results for two 

examples, one based on an ultrasound image of the left ventricle and the other baseci on a 

Magnetic Resonance image of the human brain. We will describe Storvik (1994)'s 

approach in this section. 

Due to computational considerations, Storvik (1994) describes contours in terms of nodes, 

rather than in terms of image pixels. The nodes give the co"ordinates of points on the 

contour in a clockwise direction. In Storvik's approach, x denotes a contour which has a 

polygon representation x = (d1, d2 , •. ,dN), where each node d; on the contour is given by 

its co-ordinates and N is the number of nodes and may be stochastic. The energy function 

U(x) takes the form 

(2.1) 

where the three components u1(x}, u2 (x) and u3 (x} will be described shortly, and a1 , a 2 

and a 3 are the weights for the three components. 

The first component u1(x) is the energy related to the smoothness ofthe contour x: 

( ) 
(length of the outline of the shape defined by x) 2 

111 X = 
area of shape defined by x 
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The second energy component u2 (x) is the gradient operator for recognising edges in the 

vertical direction: 

where L indicates summation over all nodes on the contour x, and the potential function 

vi (x) is given by 

{

-(zo - z.), 
V;(x)=l(segment(d;.d;+1)horizontal)x _ 1_ ' 

l + zo z. 

if zo > z. 

otherwise 

where !(-) is the indicator function; e and o are the tWo pixels adjacent to the horizontal 

segment ( d;. di+l) inside and outside the contour, and z. and z o are the observed values at 

pixel e and o . 

·1 

Figure 2.1 Storvik's potential function V;(x) of the gradient operator function 112 

which is employed only in the vertical direction when edge pixel e and outside plxel o 

are adjacent to horizontal sengment ( d;, di+l). It takes a strange form. 
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Figure 2.1 shows a plot of the gradient operator v; (x) as a function of Z
0 

- z., when the 

edge pixel e and outside pixel o are adjacent to horizontal segment ( dP d,+1). It has a 

strange form when Z
0

- z. :<> 0. Moreover, in general applications it is impossible to know 

which direction is more important, and so we believe that we should consider both the 

vertical and horizontal directions in the gradient operator. 

The third component u3(x) is defined as the negative ofthe logarithm ofthe likelihood: 

where f(zlx) is the likelihood of observed data z given x. In this case, the likelihood is 

chosen to measure the difference of the grey-levels inside and outside the shape: 

f(zlx) = []J~(zi)· OJ2(zi) • 
}ES J•S 

where S. is the set of pixels inside the shape defined by contour x, z 1 is the observed value 

of z at pixel j, and f is a N{J.t,, cr 2
) density, i = I, 2 . 

The weight a 3 of u3(x) in Storvik's energy function (2.1) is unnecessary. We can let 

a 3 == I so the energy function can be a simple form 

(2.2) 

Storvik's method needs sufficient nodes to achieve the necessary accuracy, but it is not clear 

how ·to choose the number of nodes. Storvik (1994) minimises his energy function by 

means of the stochastic simulated annealing algorithm. Storvik ( 1994) employs ail 

enormous number (up to 100,000,000) of simulated annealing updates in his attempt to 
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minimise U( x). The reason for this is that each simulated annealing update makes only 

small changes to the current configuration. Hence a badly placed initial configuration 

requires an enormous number of these small changes before it can estimate well the true 

edge. Qian et al. (1996) experienced similar problems. In the next section, we modify the 

form of the energy function and develop this method based on the cascade algorithm 

discussed by Hum and Jennison (1995). 

2.3 A ca.<1cade-type blocking approach and simulated annealing 

ln this section we propose using the cascade algorithm in order to reduce the number of 

simulated annealing updates needed by Storvik's algorithm. The cascade algorithm was 

first introduced by Jubb and Jennison ( 1991) and developed further by Hum and 

1 ennison ( 1995). It has similarities with the renormalisation approach of Gidas ( 1989). 

We introduce our cascade-type blocking approach by means of an example. A 28 x 28 

pixel image can be divided up into 2 6 x 26 blocks of 4 x 4 pixels. Starting from an initial 

configuration x0 , a simulated annealing run can be used to find a configuration x1 that 

approximately minimises the original energy function U, given in (2.2), over edges that are 

restricted to lie along the boundaries of the 4 x 4 coarser blocks. In this way large changes 

in x0 can be effected relatively quickly. Next 2 7 x 2 7 blocks comprising 2 x 2 pixels are 

considered. The configuration x1 from the previous simulated annealing run can be used as 

the initial configuration for a simulated annealing run that finds a configuration x2 that 

approximately minimises the original energy function U over edges that are restricted to lie 
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along the boundaries of the 2 x 2 blocks. Finally, the configuration x2 can be used as the 

initial configuration for a simulated annealing run that attempts to minimise U over 

unrestricted edges. 

The advantage of the cascade-type blocking algorithm is that the individual restricted 

optimisations, which allow large changes in the edge to be made, can be performed 

relatively quickly. The result of this is that even when programming overheads are 

considered the total time for the cascade-type blocking approach is usually less than the 

time required to minimise U directly. Hurn and Jennison ( 1995) consider other blocking 

choices including blocks that are defined adaptively according to the data. Since the 

standard blocking approach already offers us considerable advantages, we do not consider 

such sophistication here. 

The energy of any configuration at any blocking level is defined to be the energy calculated 

on the original resolution using the original unaveraged grey levels. 

We define the object contour in terms of edge pixels. Also, we re-define the gradient 

energy function u 2 ( x) so that the gradient operator for recognising edges is considered in 

both the vertical and horizontal directions: 

112 (x) = L LVeo(x), 
• 0 

where the first sum is over all edge pixels and the second sum is over all exterior first-order 

neighbours of the edge pixel e . We construct the gradient potential function as 

V." ( x) = -lz" - z. I which means that the greater is the difference between the records at 

two adjacent pixels separated by part of the edge, the more negative is the contribution to 

the energy U . 
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Our algorithm proceeds as follows. First, we propose a configuration as the initial contour, 

and we call this current contour x. We then record the length of the contour, its edge 

pixels and its interior and exterior, where edge pixels are included in the interior. We 

suppose here that each pixel is a unit square so that the area of the object is the number of 

interior pixels and the length of the contour is the number of edge pixel sides which are 

adjacent to an exterior pixel. The means p 1 and p 2 and the common variance a 2 of the 

Gaussian distributions that define the likelihood are estimated at the beginning of the 

process, by taking jJ 1 to be the mean of the records at pixels in a chosen clear interior 

region, p2 to be the mean of the records at pixels in a chosen clear exterior region, and &2 

to be the unbiased pooled variance based on the records in these two areas: 

• 
2 

(n1 - t) x (variance of chosen interior)+ (n2 - t) x (variance of chosen exterior) 
a = . ' ,I + 112 - 2 

where n1 and 112 are the number of pixels m the chosen interior and exterior area 

respectively. 

We now give a description of the sampling procedure employed at each cascade stage. For 

this we need to state what we mean by an edge block and by a legal block. A block is called 

an edge block if it is part of the shape and ifit is touched by an edge. A legal block is one 

of the edge blocks that can be removed from the shape, or one of the external first order 

blocks to the edge blocks that can be added to the shape without destroying the closed 

nature ofthe edge. 'fhe idea of legal blocks is illustrated in Figure 2.2. 
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Figure 2.2 Legal blocks in part of a shape S shaded grey. Each square represents 

a block. The numbered blocks are not legal blocks since, if edge blocks I or 2 were 

removed from S or if blocks 3 or 4 were added to S , the edge would no longer be 

closed. The remaining edge blocks and their external first order neighbours are legal 

blocks. 

In each stage of the cascade algorithm a fixed number of sweeps of the stochastic simulated 

annealing is performed, where a sweep is defined as an updating of all the edge blocks 

defined by the current configuration at the beginning of the sweep. The deterministic 

monotonically decreasing ICM algorithm of Besag {1986) is performed at the end of each 

cascade stage. 

For both simulated annealing and ICM, we adopt the most common pixel updating schedule 

in which each edge pixel is considered in turn in a fixed order. Alternatively, each edge 
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pixd could be considered at random in simulated annealing. The drawback of fixed order 

updating is that certain effects may occur because the next search pixel always follows the 

same pixel, while the drawback of random updating is that we cannot balance ihe visiting 

times to each pixel in a finite number of iterations. The updating schedule can also be 

defined for our problem as following: all edge blocks are recorded and randomly re-ordered 

at the start of every sweep, each edge block is then visited according to this random order in 

the sweep. However, in the simulation study presented in Section 2.4, we found out that 

there was no significant difference between fixed order updating and random order 

updating. 

Let x be the current estimate of the edge, let 

let no .. stages be the number of blocking stages of the cascade algorithm and let 

no. sweeps be the number of sweeps of simulated annealing in each stage. We now 

describe the proposed algorithm for obtaining an estimate of the configuration that 

minimises U(x). 

Find an initial contour and set x equal to it 

For stage= l, .. ,,no .stages 

Start of simulated annealing 

For sweep=l, ... ,no.sweeps 

Let N,woep be the number of edge blocks in x 

Label the edge blocks I, ... , N sweep 
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For b=l, ... ,Nsw~p 

Set .the temperature 1 

Find the number nb of legal blocks contiguous to block b and label 

these blocks 1, ... ,nb 

Let the new configurations obtained by removing or adding the legal 

biocks as appropriate be x;, x~, ... , x~ 

Sample one of the configurations x;,x~, ... ,x~, x with probabilities 

proportional to p, (x;),p, (x~ ), ... , p, (x~. ), p, (x) 

Set x to the sampled configuration 

End for 

End of one sweep 

End for 

End of simulated annealing part, of one cascade1blocking stage 

Start of'ICM 

Let Nicm be the number of edge blocks in x 

Label the edge blocks I, ... , Nicm 

Set change= 0 

For b = l, ... ,Nicm 

Find the number nb of legal blocks contiguous to block b and label these 

blocks l, ... ,nb 

:Let the new configurations obtained by removing or adding the legal blocks 

Calculate the energy u( x;), u( x; ), ... , u( x;.), U( X) 

Set x to be the new current configuration with the lowest energy 
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If there has been a change in x, then change= change+ 1 

End for 

If change>O, then go to the start ofiCM 

End ofiCM 

End of one cascade blocking stage 

End for 

End of algorithm 

We shall discuss how the initial contour is found in Section 2.4. Convergence is guaranteed 

for ICM and this occurs when change= 0. 

In the sampling part of the above algorithm, we set the candidate configuration x; to be the 

"" new current x with probability a; and retain the current x with probability 1- L;a;, 
i=l 

where 

p,(x;) 
a - ------'--'----"'------

; - nb 

p,(x)+ L;p,(x;) 
j=l 

Note that the unknown normalising constant for p, is not required for the calculation 
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For direct simulated annealing, the temperature sequence r, is chosen according to the 

straight line schedule (see Stander and Silverman, 1994, for example) as we described in 

Section 1.3.4: 

1- I ' = -(t-1)+1 
I T-1 ' 

(2.3) 

where t is the update number, T is the total number of iterations for simulated annealing, 

and I and l are the starting and ending temperatures respectively. The other temperature 

schedules described in Chapter 1 can also be applied to the cascade algorithm, but the 

results are almost the same. Hum and Jennison (1995) consider similar schedules that 

sometimes offer an advantage when used with cascade. We now propose three temperature 

schedules derived from the linear schedule for the cascade based algorithm. 

• Monotonically decreasing schedule 

The update number t is increased through all blocking stages of the cascade except the 

ICM parts. We define I and I only once at the beginning of the whole procedure. In 

this case, the total number T of iterations for simulated annealing is estimated as 

no .stages 

T;:ono.sweepsxN0 x Lzs-l 
.r=l 

where N 0 is the number of edge blocks in the initial configuration for the first stage. 

There are two possible temperature situations at the end of the procedure: the procedure 

stops before it reaches I, or the procedure reaches l before stopping. We do not mind 

the former situation, but for the later situation, we suggest that the procedure is kept 

running at the lowest temperature I until it stops. An example of the resulting 

temperature schedule for three blocking stages is shown in Figure 2.3(a). 
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Figure 2.3 

0 2000 

0 2000 

0 2000 

I First s1llge I 

4000 6000 
Update number 

(a) 

4000 6000 
Update number 

(b) 

4000 6000 
update number 

(c) 

6000 10000 

8000 10000 

8000 10000 

Third stage 

Cascade temperature schedules, (a) Monotonically decreasing linear 

schedule. (b) Independent linear schedule. (c) Cascade stage linear schedule. 

47 



• Independent schedule 

For each blocking stage of the cascade, the temperature starts from the same I and ends 

at the same I . An example of the resulting temperature schedule for three blocking 

stages is shown in Figure 2.3(b). 

• Cascade stage schedule 

The third linear temperature schedule for the cascade blocking algorithm that we shall 

consider is similar to the second, but the first temperature Is for sth blocking stage of 

the cascade decreases as the stage s increases, i.e., 1 1 > 12 >- · ·> lno.stages. For 

example, we can take ls+1 = .!. Is. An example of the resulting temperature schedule for 
2 

three blocking stages is shown in Figure 2.3(c). 

In the next section we present the results of a simulation study designed to illustrate the 

above algorithm. 

2.4 Simulation Stutly 

This simulation study is based on the head shape shown in Figure 2.4(a), which is one of the 

head shapes considered by Wright, Stander and Nicolaides (1997). This original image 

comprises I 00 x I 00 pixels and is a binary image; black pixels (interior) correspond to the 

numerical value I, whereas white pixels (exterior) correspond to 0. The simulated data, 
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obtained by adding independent N( 0, 1) notse to the original tmage, ts presented m 

Figure 2.4(b ). 

0 20 40 60 60 100 0 20 40 60 80 100 

(a) (b) 

Figure 2.4 (a) The known head shape. This 100 x 100 binary image displays one 

of the heads considered by Wright et al. ( 1997). (b) TI1e simulated data obtained by 

adding independent N( 0,1) noise to the image (a). 

We apply the cascade algorithm described above with three blocking stages to the image 

presented in Figure 2.4(b) in order to estimate the edge of the shape. The number of 

sweeps of simulated annealing is taken to be ten at each blocking stage. In our experience, 

ten sweeps of simulated annealing at each cascade blocking stage are often sufficient to 

obtain good quality results. The weight a 1 and a 2 of the components that contribute to 

the energy function (2.2) are chosen to be 8 and 0.01 respectively. We set f = 2 and 

l = 0.1 and use the independent cascade linear temperature schedule. 
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(a) (b) 

0 20 40 60 eo 100 0 20 40 60 eo 100 

(c) (d) 

Figure 2.5 (a) The initial contour obtained by first thresholding the record averaged 
over the sixteen pixels of each block and then finding the convex hull. (b) The result of 
the first cascade stage on the 25 x 25 grid. (c) The result of the second cascade stage 
on the 50 x 50 grid using the edge found in (b) as starting point. (d) The result of the 
final cascade stage on the original 1 00 x 1 00 grid using the edge found in (c) as 
starting point. 
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The first stage of the cascade is performed on a 25 x 25 grid. Each block of this grid 

comprises 4 x 4 original pixels. Figure 2.5(a) shows the initial contour obtained by first 

thresholding the record averaged over the sixteen pixels of each block using the interrneans 

algorithm discussed by Glasbey and Horgan (1995), pp. 97-98, and then finding the convex 

hull of the resulting data using the chull function of S-Pius. The intermeans method 

worked well here, but is not always guaranteed to do so. Other thresholding methods are 

discussed in Glasbey and Horgan (1995). This contour obtained above serves as the initial 

contour of our cascade algorithm. The original 100 x 100 record z is used in the 

evaluation of the energy function U throughout the algorithm. Figure 2.5(b) is the result of 

simulated annealing followed by ICM for the first cascade stage on the 25 x 25 grid. The 

second cascade stage is performed on a 50 x 50 grid, each block of which comprises 2 x 2 

original pixels. The initial contour for this cascade stage is the one that resulted from the 

first cascade stage and that is shown in Figure 2.5(b). Figure 2.5(c) presents the result of 

the second cascade stage on the 50 x 50 grid. The final cascade stage is performed on the 

original 1 00 x 100 grid with the initial contour obtained from the second cascade stage 

shown in Figure 2.5(c). Figure 2.5(d) is the result of simulated annealing followed by ICM 

for the final cascade stage on the original grid. 

The final result produced by the above cascade algorithm may be considered a little too 

rough. Indeed, Figure 2.6(a), which presents the true shape (darker line) together with the 

contour produced by the cascade algorithm, confirms this. A smoother result could be 

obtained by re-running the algorithm with different weights. Alternatively, and more 

pragmatically, we smooth the edge shown in Figure 2.5(d) by using a median smoothing 

operator. The method is based on the shape S defined by edge. A pixel defined to be part 
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of S has its definition changed if it has more than five first- and second-order neighbours 

defined to be outside S ; a similar treatment is given to pixels defined to be outside S . 

Once these changes have been made, the smoothed edge is defined as the boundary of the 

modified S . The result of this smoothing procedure is presented in Figure 2.6(b) together 

with the true edge (darker line). The number of pixels that differ between the true shape 

and the estimated shape reduced from 160 before smoothing to 152. 

0 20 40 60 MO 100 0 20 40 60 80 100 

(a) (b) 

Figure 2.6 (a) The edge produced by the cascade procedure together with the tme 

edge (darker line). (b) The result after applying a median smoothing operator to (a) 

together with the true edge (darker line). 

We see that a good estimate has been obtained from the highly degraded image shown in 

Figure 2.4(b) . 
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The whole procedure with smoothing took 4349 seconds DOS-time on a Pentium 7SMHz 

PC. Figure 2. 7 presents a plot of the value of the energy function U against update number 

as the algorithm proceeds. The unbroken vertical lines mark the stages of the cascade 

algorithm, whereas the broken vertical lines mark the beginning of each ICM phase. The 

plot clearly shows that simulated annealing allows increases in U, whereas ICM does not. 

As we would expect, there is an increase in energy due to smoothing. 

0 1000 2000 3000 4000 5000 6000 

Update number 

I First stage I Second stage Third stage ~moothing 

Figure 2. 7 The value of the energy function U against update number for the three 

stages of the cascade algorithm followed by smoothing. TI1e unbroken vertical lines 

mark the stages of the cascade algorithm, whereas the broken vertical lines mark the 

beginning oflCM. 

In order to compare our cascade-type blocking algorithm with the direct simulated 

annealing approach, we applied the non-cascade simulated annealing algorithm to the noisy 
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image shown in Figure 2.4(b). We used the contour shown in Figure 2.5(a) as the initial 

contour. Since this contour was obtained using blocking, it may be considered to be a 

generous starting point for the direct simulated annealing approach. We set a 1 and a 2 to 

be the same values as used above. The temperature schedule is the straight line schedule. 

The values of f and I are unchanged. The number of sweeps of simulated annealing was 

set to thirty, the total number of sweeps of simulated annealing employed in the cascade­

type blocking algorithm. The ICM algorithm followed by median smoothing was again 

applied at the end of the algorithm. 

Figure 2.8(a) presents the result obtained by using the non-cascade simulated annealing 

algorithm. Figure 2.8(b) presents the true contour (darker line) together with the contour 

produced by the direct procedure. The median smoothing operator is employed to the 

rough contour and the result of this smoothing operation is presented in Figure 2.8(c) 

together with the true edge (darker line). This whole procedure with smoothing took 6761 

seconds DOS-time on a Pentium 75MHz PC, which is about 1.5 times as much computing 

time as the three stages cascade algorithm. 

Figure 2.9 presents a plot of the value of the energy function U against update number as 

the algorithm proceeds. The broken vertical line marks the beginning of ICM, whereas the 

unbroken vertical line indicates the start of smoothing. The lower horizontal line (long and 

short dashes) marks the final energy produced by the above cascade algorithm before 

smoothing, while the higher horizontal line (long dashes) marks the corresponding energy 

after smoothing. The final energies of the two methods are quite different: 14202 for the 

three stages cascade algorithm with smoothing and 14244 for the non-cascade algorithm 

with smoothing, while their lowest energies are 14185 and 14223 respectively. 
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(b) (c) 

Figure 2.8 (a) Edge estimate obtained by using the non-cascade simulated anneal ing 

algorithm. (b) The edge produced by the d irect procedure together with the true edge 

(darker line). (c) The result of applying a median smoothing operator to the edge 

produced by the direct procedure together with the true edge (darker line). 
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Figure 1.9 The value of the energy function U against update number for the direct 

simulated annealing algorithm followed by ICM and smoothing. l11e broken vertical 

line marks the beginning of ICM, whereas the unbroken vertical line indicates the start 

of smoothing. The lower horiwntal line (long and short dashes) marks the final energy 

produced by the above cascade algorithm before smoothing, while the higher horizontal 

line (long dashes) marks the corresponding energy after smoothing. 

10000 

Even with several thousand more updates the direct simulated annealing approach does not 

achieve a minimum as low as the cascade algorithm. Moreover, the direct simulated 

annealing approach takes about 1.5 times as much computing time as the cascade algorithm. 

The number of pixels that differ between the true shape and the estimated shape has risen 

from 152 to 175 (from 160 to 189 before smoothing). We remark that the resulting edge 
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estimates are quite similar, with the one from the non-cascade algorithm being slightly less 

good than the one from the cascade algorithm; see Figure 2.6(b) and Figure 2.8(c). 

In the above cascade simulation, we employed the independent linear temperature schedule 

for the three cascade stages. Another two cascade temperature schedules, the 

monotonically decreasing linear schedule and the cascade stage linear schedule, were 

introduced in Section 2.3 . These three cascade schedules are illustrated in Figure 2 .3 . In 

order to compare the three cascade temperature schedules, we re-ran the cascade algorithm 

with the other two schedules on the same noisy image shown in Figure 2.4(b ). 

0 20 40 60 80 100 0 20 40 60 80 100 

(a) (b) 

Figure 2.10 Results of employing the monotonically decreasing linear temperature 

schedule in the cascade algorithm. (a) The edge produced by the cascade procedure 

together with the true edge (darker line). (b) The result of applying a median smoothing 

operator to the edge produced by the cascade procedure together witJ1 ilie true edge 

(darker line). 
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Figure 2. 1 O(a) presents the result of employing the monotonically decreasing linear 

temperature schedule in the cascade algorithm (without median smoothing). Figure 2.1 O(b) 

shows the result of applying a median filter to this edge estimate. The number of pixels that 

differ between the true shape and the estimated shape is 160 (175 before smoothing) . 

Figure 2.11 presents a plot of the value of the energy function U against update number. 

The final energy is 14 194 and its lowest energy is 14179. 
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Figure 2.11 The value of the energy fi.mction U against update number for the three stages 

of the cascade algorithm with the monoton.icaJly decreasing linear temperature schedule 

followed by smoothing. The unbroken vertical lines mark the stages of the cascade algorithm, 

whereas the broken vertical lines mark the beginning of ICM. The lower horizontal line (long 

and short dashes) marks the fina l energy produced by the cascade algoritlun with the 

independent linear temperature schedule before smoothing, while the higher horizontal line 

(long dashes) marks the corresponding energy after smoothing. 
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Figure 2.12(a) presents the result of employing the cascade stage linear temperature 

schedule in the cascade algorithm (without median smoothing). Figure 2.12(b) shows the 

result of applying a median filter to this edge estimate. The number of pixels that differ 

between the true shape and the estimated shape is 169 ( 179 before smoothing). Figure 2.13 

presents a plot of the value of the energy function U against update number. The final 

energy is 14197 and its lowest energy is 14182. 
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(a) (b) 

Figure 2.12 Results of employing the cascade stage linear temperature schedule in the 

cascade algoritlun. (a) The edge produced by the cascade procedure together with the 

true edge (darker line). (b) The result of applying a median smoothing operator to the 

edge produced by the cascade procedure together with the true edge (darker line). 
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Figure 2.13 The value of the energy function U against update number for the three 

stages of the cascade algorithm with the cascade stage linear temperature schedule 

followed by smoothing. The unbroken vertical lines mark the stages of the cascade 

algorithm, whereas the broken vertica l lines mark the beginning of ICM. The lower 

horizontal line (long and short dashes) marks the final energy produced by the cascade 

algorithm with the independent linear temperature schedule before smoothing, while the 

higher horizontal line (long dashes) marks the corresponding energy after smoothing. 

For ease of companson m Table 2.1 we present the results of applying the cascade 

algorithm with the three cascade temperature schedules and of applying the non-cascade 

algorithm. By the number of differing pixels we mean the number of pixels that differ 

between the true shape and the estimated shape. In Figure 2.14 we display these results by 

means of bar plots. 
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Table 2.1 Results of applying the cascade algorithm with the three cascade linear 

temperature schedules and of applying the non-cascade algorithm on the noisy image shown 

in Figure 2.4(b) 

Cascade Before smoothing After smoothing 
Algorithm Temperature Number of Number of 

schedule Energy Differing pixels Energy Differing pixels 

Independent 14185 160 14202 152 

Cascade Monotonically 14179 175 14194 160 
decreasing 

Cascade stage 14182 179 14197 169 

Non-cascade 14223 189 14244 175 

We can see that the final energy before smoothing and after smoothing obtained when using 

the monotonically decreasing and the cascade stage temperature schedules are lower than 

the corresponding energy obtained when using the independent temperature schedule. Even 

so, the independent temperature method gives us a little smoother result. There is not much 

difference between the final energies in the cascade algorithm in this example. One message 

from these results is that the lowest energy edge does not necessarily correspond to the best 

edge. We have found this result to be especially true for images that have been degraded by 

high levels of noise. 

The result of applying the non-cascade algorithm is slightly less good than the results of 

applying the cascade algorithms in this example. The edge that results from the non-

cascade algorithm has much higher energy than those that result from the cascade 

algorithms. We remark that the resulting edge estimates are quite similar; see 

Figures 2.6(b), 2.8(c), 2.10(b) and 2.12(b). 
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Figure 2.14 Bar plots of the energies and number of differing pixels before and after 

smoothing using four different a lgorithms. Cascade-[ = cascade with independent linear 

schedule, Cascade-M = cascade with monotonically decreasing linear schedule, Cascade­

C = cascade with cascade stage linear schedule. 

In order to make a wide comparison of the performance of the cascade-based algorithm 

with that of the direct simulated annealing algorithm, we conducted a simulation study 

based on the original image shown in Figure 2.4(a). Our data were obtained by adding 

independent Gaussian noise to the image. For each of three different noise variances 

K = 0.5, 1.0 and 2.0, we applied both the cascade-based algorithm with independent linear 

temperature schedule and the direct simulated annealing algorithm to 100 noisy images. 

The mean and the standard deviation (sd) of the number of pixels that differ between the 
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true shape and the estimated shape over realisations of the noise process are recorded in 

Table 2.2. 

Table 2.2 Results of the simulation study to compare the cascade-based 

algorithm with the direct simulated annealing algorithm 

Cascade Direct 
mean sd mean sd 

vanance K (pixels) (pixels) (pixels) (pixels) p-value 

0.5 101.9 15.2 100.7 17.0 0.41 

1.0 182.4 24.4 204.3 30.3 0.00 

2.0 275.1 43.0 341.7 71.3 0.00 

Table 2.2 suggests that for the case K = 0.5 there is little difference in the performance of 

the algorithms. To check this we tested Ho: f..lcascade = Jldirect against HI: f..lcaseade * f..ldireet 

using a paired /-test, where f..l'"''"de and f..ld;,.,, are the mean number of pixels that differ 

between the true shape and the estimated shape for the cascade-based algorithm and the 

direct simulated annealing algorithm; we did not reject H0 • As K increases the quality of 

the performance of the cascade-based algorithm decreases less rapidly than that of the direct 

simulated annealing; the p-value of a paired /-test of H 0 : f..lcascade 2': J.ldirect against 

H 0 : f..lcnscade <f../ direct is essentially zero for both K = 1.0 and K = 2.0. Hence the use of the 

cascade-based method leads to a significant increase in the performance of the algorithm 

when the noise level is high. Moreover, we found that the cascade-based algorithm is about 

1.5 times faster than the direct simulated annealing approach. 

In order to see whether there is a significant difference between the fixed and the random 

edge blocking visiting schedule described in Section 2.3, we conducted a simulation study 

based on the cascade algorithm and the original image shown in Figure 2.4(a). Sixteen 
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noisy images were obtained by adding independent standard Gaussian noise to that image. 

We performed the simulated annealing procedure (with ICM and smoothing) on these 

images using both fixed and random visiting schedules. The number of pixels that differ 

between the true shape and the estimated shape over realisations of the noise process is 

listed in Table 2.3. The mean number of differing pixels is 191 for the fixed and 186 for the 

random visiting schedule. The p-value of a paired /-test of H 0 : f-lnxe<J = Prandom against 

H,: f-lnxe<J o;e f-lrandom is 0.4327, where f-lrJXed and f-lrandom are the mean number of pixels that 

differ between the true shape and the estimated shape for fixed and random visiting 

schedules respectively. Hence there is no statistically significant difference between the 

fixed and random visiting schedules. 

Table 2.3 The number of pixels that differ between the true shape 

and the estimated shape over realisations of the noise process in 16 

noisy images for fixed and random edge block visiting schedule 

Sample Fixed Random Sample Fixed Random 

I 170 186 9 211 198 

2 251 263 10 140 159 

3 238 180 11 219 185 

4 159 130 12 179 212 

5 175 197 13 188 177 

6 178 152 14 161 156 

7 183 200 IS 239 191 

8 163 187 16 196 188 

Mean 191 186 

SD 29.6 32.4 
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2.5 Application to real clata 

In this section we apply the cascade based simulated annealing algorithm and the non­

cascade simulatec:l annealing algorithm to the real ultrasound image of a human ovarian cyst 

that is presented in Figure 1.8. 

Figure 2.1 5(a) presents this real ultrasound image of a human ovarian cyst together with an 

initial contour. The cyst can be defined by its edge and pixels inside and outside the cyst 

have different records. We took a 1 = 8 and a 2 = 0.01, and we set f = 2 and I= 0.1, We 

considered a three stage cascade procedure with the monotonically decreasing linear 

temperature schedule followed by smoothing. The number of sweeps of simulated 

alinealing was taken to be ten at each blocking stage. The initial contour shown in panel (a) 

is obtained by first thresholding the record averaged over the sixteen pixels of each block 

using the· intermeans algorithm and then finding the convex hull of the resulting data using 

the chull function of S-Plus. The white line in panel (b) is the final estimate of the outline 

of the shape by the three stage cascade based algorithm. 

In order to make a comparison with the non-cascade algorithm, we applied the direct 

simulated annealing algorithm to the ultrasound image using the same values of parameters 

and starting from the same initial contour. The number of sweeps was set to thirty. The 

result is presented in panel (b) of Figure 2.1'5 by means of the black line. We see that the 

results obtained from these two algorithms are almost the same. However, the non-cascade 

procedure took 5639 seconds DOS-time on a Pentium 75MHz PC and the final energy 
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is 51325, whereas the cascade procedure took onJy 3721 seconds DOS-time and the final 

energy is 51268. 

0 50 100 150 0 50 100 150 

(a) (b) 

Figure 2.15 (a) A real ultrasound image of a human ovarian cyst together with the 

initial contour. (b) Estimate of the cyst shape produced by a three stage cascade 

procedure (white outl ine) together with the estimate produced by the direct simulated 

annealing algorithm (black outline). 

The cascade based algorithm seems well able to define the edge of the underlying shape in 

the ultrasound image. In Section 3.8 of the next chapter, we present the result of applying 

another algorithm to this ultrasound image. That algorithm is a modified version of the 

kernel algoritlun that we present in the initial sections of Chapter 3. 
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We believe that the algorithms presented in this chapter and in Chapter 3 would work well 

on the ultrasound image of the left ventricle presented in Storvik ( 1994 ); we have, however, 

been unable to obtain Storvik's data. 

2.6 Discussion 

We have suggested a cascade-based modification for increasing the speed of an algorithm 

proposed by Storvik (1994) suitable for edge detection when the shape is defined by its 

edge and pixels inside and outside the shape have different records. We have illustrated by 

means of a simulated example that the use of the cascade-based method leads to a 

considerable increase in the speed of the algorithm. Three different temperature schedules 

for the cascade based simulated annealing algorithm have been considered and the results 

(see Table 2.1) tell us that the monotonically decreasing cascade temperature schedule can 

lead to the edge with the lowest energy. However, in our simulation the independent 

cascade temperature schedule leads to an edge whose associated shape has the lowest 

number of differing pixels, although the final energy of the edge is a little higher than that 

obtained by using the monotonically decreasing schedule. We have also applied our 

algorithm to real data with success. 

From Table 2.2 we may conclude that the cascade based method leads to a significant 

increase in the performance of the algorithm when the noise level is high. 

This algorithm would not work well for the real ultrasound fetal head image given in 

Figure 1.2(a) because the grey-levels of pixels inside and outside the head shape seem to 
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have very similar distributions. In fact, the algorithm described in this chapter seems to 

work well only for solid shapes such as the one presented in Figure 2.4(a). Even if we set 

u 3 ( x) = 0, that is, we disregard the likelihood term, the algorithm does not work well since 

the smoothness energy 111(x) and the gradient operator 112 (x) do not satisfactorily detect 

the edge. 

Another problem that the image given in Figure 1.2(a) presents is the obliteration of the 

edge of the head in certain regions caused by high levels of degradation. The kernel 

algorithm that we present in the next chapter enables us to overcome this problem and to 

produce an acceptable estimate of the edge. 
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Chapter 3 

Edge Detection Using Kernel Functions 

3.1 Definition of tlte kernel function 

In this chapter we consider images that consist of a single object whose shape is defined 

only by its edge; in other words, we consider images that comprise a closed curve degraded 

by noise. An example of such an image is shown in Figure 3 .I (This image was also shown 

in Figure 1.2(a)). In Figure 3 .I the head shape is defined by a thin outline of pixels with 

records that are different from those pixels that lie inside and outside the shape. The 

records at these interior and exterior pixels are, however, similar. Much degradation is 

present in Figure 3 .I, and this has almost obliterated part of the outline. Accordingly, 

standard edge detection algorithms such as the Prewitt and Canny filters are not able to 

detect the head edge. In Chapter I we reported that the results from both the Prewitt filter 

and the Canny filter are poor; see Figure 1.2. In addition, such algorithms often yield 
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many artefactual edges elsewhere in the image; see Qian, Titterington and Chapman (1996) 

for another example of this. 

0 
tO 

0 
l() 

0 
"<t 

0 
C'") • 

0 
N 

0 
r-

0 

0 10 20 30 40 50 60 

Figure 3.1 The ultrasound image of a cross-section of a fetal head. 

The approach described in Chapter 2 does not consider objects of this type; see the 

discussion at the end of that chapter. A shape that is defined only by its edge presents 

special problems because the edge can be almost lost by high levels of degradation in 

ceriain regions, as can be seen in Figure 3. 1. Accordingly, for a degraded closed curve 

image, such as an ultrasound fetal head shape, we need a special method to estimate the 

edge of the shape. 
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Recently, several authors have worked on similar problems. These include Bowtell and 

Patefield ( 1997) who develop techniques for fitting circular functional relationships, and 

Pursey and Taylor (1995) who present a method for edge detection called route tracing 

based on finding and following the perimeter of a shape. Pursey and Taylor (1995) apply 

their methods with considerable success to complicated digital images of fungal spores. 

Their images are not, however, subjected to high levels of degradation. Van 

Lieshout (1995) discusses the use of the generalised Hough Transform in object 

recognition; see also Illingworth and Kittler (1988) for a survey of the Hough transform. 

Rue and Husby (1997) use deformable templates and destructive deformation fields to 

identify partly destroyed human melanoma cancer cells with good results. Other authors 

have used methods based on mathematical morphology (see, for example, Glasbey and 

Horgan, 199 5) for extracting measurements from ultrasound images. These include 

Thomas, Peters 11 and Jeanty ( 1991) who measure the femur length and Matsopoulos and 

Marshal! (1994) who measure the fetal head. 

In this chapter we present a new algorithm for the detection of connected shapes in noisy 

images such as the one shown in Figure 3 .I. The algorithm is based on a specially designed 

kernel function that iteratively identifies the outline pixels of the head. Once the outline 

pixels have been found, the shape is defined to be these pixels together with the pixels inside 

the outline. 

Our kernel function algorithm is a type of greedy algorithm as it chooses the most 'outline 

like' pixel at each step. It is somewhat reminiscent of the iterative algorithm to track roads 

in satellite images presented by Geman and Jedynak (I 996). The images analysed by these 

authors are far more complicated than those that we consider, although the level of 
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degradation is far less. Our task is conceptually much simpler than that addressed by 

Geman and Jedynak (1996) and our algorithm is, accordingly, much less complicated. 

This chapter is organised as follows. In Section 3.2, we describe the kernel function, and in 

Section 3.3, we define the kernel algorithm used in edge detection. A simulation study that 

aims to illustrate features of the proposed algorithm is presented in Section 3.4. In 

Section 3.5, a modification to the kernel algorithm is discussed and we show that this 

modification improves the performance of the kernel algorithm. In Section 3.6 we apply the 

kernel algorithm to two real ultrasound images. Section 3. 7 summarises our findings about 

the use of the kernel algorithm for detecting shapes defined only by their edge. In 

Section 3.8, we present a related kernel algorithm to detect the closed boundary of an 

object in a noisy image, where the pixels inside and outside the edge have grey levels with 

different distributions. We illustrate this kernel algorithm on a real ultrasound image by 

detecting the shape of the human ovarian cyst shown in Figure 1.8. Finally, in Section 3.9 

we make some suggestions for further work. 

3.2 Tire kernel function 

Let us suppose that the recorded image z compnses (2m +I} x (2m +I} pixels: for the 

image shown in Figure 3.1, m= 30. We think of this image as part of a plane defined in 

two dimensions and we define the co-ordinates from -m to m on both axes, so that every 

integer co-ordinate in the interval (-m, m}, say (x, y), corresponds to one pixel. For 

example, let m= 30 , then the point ( 12, 25} corresponds to the row 43 = ( 30 + I + 12) and 
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column 56= (30 + 1 + 25) of the image. In this way there is a one-to-one correspondence 

between points and pixels. We write z(x,y) for the value taken by the image at pixel eo-

ordinate (x,y). These values are represented by grey-levels in Figure 3.1. 

In the following we will define the kernel function centred at point ( x0 , y 0 ) . Let () be the 

angle through which the kernel is allowed to rotate in order to find its best alignment with 

the edge of the shape. Then a new (x',y') co-ordinate system centred at the point 

(x
0
,y

0
) in the old (x, y) co-ordinate system and rotated through an angle () is defined as 

x' = (x- x0 )cos0- (y- Yo) sin() 

y' = (x- x0 ) sin 0+ (y- y 0 )cos0. 

We define the kernel function at pixel co-ordinate (x, y) , centred at pixel co-ordinate 

( x
0

, y
0

) and rotated through an angle () anticlockwise, to be 

(3 .1) 

where C is an arbitrary constant, where 

and where a 
0

, a 
1 

and a 2 > 0. Up to a normalising constant, the kernel function is a 

product of a marginal density in the x' direction and a conditional density in the y' 

direction. Both densities have mean zero. The variance of the conditional density increases 

as lx'l increases. 
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An example of the kernel function K{(x,y); (x0 ,y0 ), 0} is shown in Figure 3.2 by means 

of a contour plot, where the kernel is centred at pixel co-ordinate (x
0

, y
0

) = (o, o) with 

rotation 0 = 0, and the values of the parameters are chosen as u 0 = 1 , u 1 = 5 and u 
2 

= 5. 

The kernel function shown in Figure 3.2 will be the one used to detect the fetal head shape 

from Figure 3. 1. Figure 3. 2 enables the size of the kernel to be compared with the image 

giveninFigure3.1 forwhich -30S:x:<S:30 and -30S:y:<S:30. 
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Figure 3.2 An example of a kernel function centred at pixel co-ordinate 

( X0 , Yo) = ( 0, 0) with rotation 0 = 0. Contours are drawn at 10%, 50% and 

90% of the maximum height. The values of the parameters are u 
0 

= I , 

u 1 = 5 and u 2 = 5. The scales on the axes refer to pixels. 

The idea of this is that such a kernel function will be able to capture the curvature of the 

shape. Other kernel definitions may be appropriate for detecting different types of shapes. 
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The kernel function was designed intuitively to enable the algorithm to look forward 

towards new edge pixels, so bridging any apparent gaps. Other kernel definitions may be 

appropriate for detecting different types of shapes. 
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Figure 3.3 Four kernels functions with different parameters: 

(a) u 0 = I (low), u 1 = I 0 (high) and u 2 = 20 (high) causing a narrow, long kernel; 

(b) u 0 = 2 (high), u 1 = 10 (high) and u 2 = 20 (high) causing a wide, long kernel; 

(c) u 0 = I (low), u 1 = 4 (low) and u 2 = 20 (high) causing a narrow, short kernel; 

(d) u 0 = 1 (low), u 1 = l 0 (high) and Cf 2 = l 0 (low) causing a less curved kernel than (a). 

The scales on the axes refer to pixels. 
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In our algorithm the kernel function shown in Figure 3.2 is allowed to be centred at any 

pixel co-ordinate and rotated through an angle (). In the formula for 

K{(x,y); (xo,Yo), o} ' there are three parameters CT 0' CT I and CT 2 > 0 th(ltaffect the shape 

of the ke~nel function: a 0 controls mainly the width of K, while a 1 controls mainly its 

length and CT 2 mainly its curvature, The effects of varying CT 0 , CT 1 and CT 2 are illustrated in 

Figure 3.3 where we present some examples of kernel functions with different parameter 

values. The choice of the kernel function is discussed further in Section 3. 5 and in 

Chapter 4. 

3.3 Tire kernel shape detection algorithm 

Our kernel shape detection algorithm is based on the convolution j ofthe image z with 

the kernel function K{(x,y); (x0 ,y0 ), B} defined as 

J{(x0 ,y0 ),B} = LK{(x,y); (x0 ,y0), B}z(x,y) 
pixel 

CO·Ordinates 
(x.y) 

(3.2) 

where z(x,y) is the grey level at the pixel co-ordinate (x,y), and the sum is over all pixel 

co-ordinatesin the region {(-m, m) x (-m, m)}. 

The maxtmum of j over rotation () gives a· measure of how 'edge like' the piJ<el 

corresponding to the co-ordinates ( x0 , y 0 ) is, The idea of the edge detection algorithm is 

to use this measure to trace out the outline pixei by pixel (point by point). We do this in a 

clockwise direction, 
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The main steps of the edge detection algorithm are as follows: 

I. The user selects a starting edge pixel (point) where the outline is obvious and chooses a 

suitable starting angle for the kernel function centred at this point so that it lines up with 

any visible edge. 

2. Call this point the current point, mark it as an outline point ·and record the rotation angle 

as o·. 

3. At each candidate point (some of the neighbours of the ·current point, as discussed 

below), find the value of f over the set {o'- 28, o' -0, o', o· + 0, o· + 2o} of 

rotation angles, where the fixed rotation parameter o > 0 is chosen by the user. 

4. IdentifY the candidate point and rotation angle that correspond to the maximum of the 

values of f found in step 3. 

5, Go to step 2, until the starting point becomes a candidate point, so closing up the 

outline. 

6. Stop. 

For all the ultrasound head images with which we have experience step 1 has always been 

possible. For all these images the above algorithm stopped. When the algorithm stops, a 

closed outline of pixels results. The estimate of the shape is then defined to be all pixels on 

and inside the outiine. Of course, the algorithm is not guaranteed to stop, but it would not 

be hard to modifY it so that termination was ensured. This could be done, for example, by 

increasing the grey level at the starting pixel to such an extent as to force the kernel function 

to draw the edge back to thllt pixel. We do not discuss ·this further here, but in 

77 



Section 3. 7 we describe the results of a simulation study designed to illustrate how much 

noise the kernel algorithm can tolerate before failing to stop. 

The values of the kernel parameters u 0 , u 1 and u 2 , and the rotation parameter c5 of the 

kernel were chosen here by experience. In the next chapter, we will explore the effect of 

the kernel parameters by means of a simulation study. This study will help us to know weii 

the effect of the parameters and so enable us to choose appropriate values for thent 

We also need to specify the nile that chooses the candidate points over which the kernel 

function is to be optimised. In normal human fetuses, the head shape when viewed from 

above tends to be roughly ellipsoidal, whereas in fetuses affected by Neural Tube Defects 

the head is approximately lemon shaped. This is discussed more fully in Chapters I and 2. 

Accordingly, the normal and affected fetal head shapes are of quite different nature, the 

former having convexities and the latter having both convexities and concavities. However, 

in both cases a regular pattern for searching the candidate points can be defined when the 

centre of the image lies within the shape of interest and all parts of the edge are visible from 

the centre. 

We now present the rule according to which the candidate points are chosen. Suppose that 

we look for the next point in a clockwise direction. If a first or second order neighbour of 

the current point lies on the clockwise side of a line drawn from the centre of the image 

(assumed to be inside the head shape) through the current point, we say this point is a 

candidate point. Hence, the next point will always be one of the neighbours shown in 

Figure 3.4, where the symbol • represents the current point and the symbols o represent 

candidate points from which the next point is selected. We need only consider eight 

different sets of possible candidate points corresponding to the position of the current poirtt. 
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Figure 3.4 The choice of candidate points when searching takes place ih a clockwise 

direction. The symbol • represents the current point, while the symbol o represents 

the candidate points from which the next point is selected. 

In our algorithm the-edge is traced out iteratively by selecting the next edge pixel as the one 

from a set of candidate edge pixels that maximises the convolution f of the specially 

designed kernel function K with the image z. At each candidate edge pixel the kernel 

function is allowed to rotate in order to find its best alignment with the edge of the head. 

This is illustrated in Figure 3.5. Figure 3.S(a) shows the contours of kernel functions at 

every candidate pixel without rotation, while Figure 3.S(b) shows the contours at one 

candidate pixel with rotations ±0.027t . 
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(a) (b) 

Figure 3.5 The search procedure: (a) kernel contours at candidate points without 

rotation; (b) kernel contours at one candidate point with rotation. The symbol • represents 

the current point. 

In the next section we present a simulation study that not only illustrates our algorithm, but 

also suggests the modifications to the kernel function and the refinements to the algorithm 

that will be djscussed in Section 3.5. 

3.4 A simulation study 

The true binary image, which comprises 61 x 61 pixels and is an ellipse, is presented in 

Figure 3.6(a). The outline is intended to represent a cross-section of a fetal skull. The 
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records of the image take the value 1 at the black edge pixels and the value 0 at the 

remaining white pixels. Figure 3.6(b) shows a noisy image obtained by adding 

independent N( 0, 1) noise to the original true image shown in Figure 3.6(a), and represents 

the simulated data to which our algorithm is applied. 
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Figure 3.6 (a) The original 61 x 61 binary pixel image. (b) The data obtained by adding 

independent N( 0, 1) noise to the original image. (c) The estimate of the outline obtained 

by the proposed algorithm. (d) The difference between the original shape and the 

estimated shape. Black pixels are inside the original shape but outside the estimated shape, 

while grey pixels are outside the original shape but inside the estimated shape. The black 

pixel indicated by the white box in (b) has a large effect on the detected outline. 
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The estimate of the edge obtained by the proposed algorithm is shown in black in 

Figure 3.6(c). The kernel that was used had O" 0 =I, 0" 1 = 4 and O" 2 = 20 and is shown in 

Figure 3.3(c). The rotation parameter r5 was set to 0.027r. Figure 3.6(d) illustrates the 

difference between the true shape and the estimated shape; black pixels are inside the 

original shape but outside the estimated shape, while grey pixels are outside the original 

shape but inside the estimated shape. 

The proposed algorithm has performed well, except that in the estimated shape there is a 

protuberance on the lower right. This is caused by the large effect of the black pixel 

indicated by the white box in Figure 3.6(b). In Section 3.5 we present a modification to the 

kernel function that reduces the sensitivity of the algorithm to such outlying records. 

Table 3.1 gives a numerical summary of the errors made by the estimate. Note that edge 

pixels are thought of as part of the shape. 

Table 3.1 Numerical summary of the error made by the estimate 

Estimate shape 

True shape pixel present pixel absent Total 

pixel present 965 14 979 

pixel absent 47 2695 2742 

Total 1012 2709 3721 
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3.5 Modification of the kernel f unction and refinement of the algorithm 

The shape of the kernel function can of course be chosen to suit the application. In our 

experience with simulation studies such as those presented in Section 3.4, the 'peanut' or 

'bowtie' shaped kernel function shown in Figure 3.2 generally performed well, but could be 

affected by isolated pixels with outlying records. Such behaviour was illustrated in 

Figure 3 .6(c), where a substantial deviation of the outline was brought about by the black 

pixel indicated by the white box in Figure 3.6(b). In this case the kernel function causes the 

algorithm to look too far ahead and to be deviated by this outlying record. 
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Figure 3. 7 The choice of the kernel function in relation to the underlying shape. (a) The 

original 'peanut' shaped kernel function. (b) The modified ' banana ' shaped kernel 

function. The banana kernel follows the curvature of the skull better than the peanut 

kernel. 
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A 'banana' shaped kernel function sometimes turns out to be more suitable for human fetal 

head shape detection as it follows more closely the curvature of the skull cross-section. 

This is illustrated in Figure 3.7. 

The banana shaped kernel function can be obtained by cutting off the parts of the peanut 

shaped kernel that bulge away from the centre of the image. 
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Figure 3.8 (a) The estimate of the outline obtained by applying the proposed algorithm 

with the banana shaped kernel function to the data in Figure 3.6(b). The white box 

indicates the black pixel that caused problems when the peanut shaped kernel function was 

employed. (b) The difference between the original shape and the estimated shape. The 

colour code of Figure 3.6(d) is employed. 
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We applied the banana shaped kernel function with the same parameter values as before to 

the image data in Figure 3.6(b}. The estimated outline is shown in Figure 3.8(a). This 

estimate seems not to have been affected by the black pixel indicated by the white box. 

Figure 3.8(b) illustrates the difference between the true shape and the estimated shape. A 

comparison of Figure 3.8(b) with Figure 3.6(d) shows that the banana shaped kernel 

function has led to a substantial improvement in the performance of the algorithm. The 

numerical comparison between the true and estimated shapes is given in Table 3.2. 

Table 3.2 Numerical summary of the error made by the estimate 

when the banana shaped kernel function is applied 

Estimate shape 

True shape pixel present pixel absent Total 

pixel present 964 15 979 

pixel absent 9 2733 2742 

Total 973 2748 3721 

In the above experiments, the angles over which the function f is maximised at each 

candidate point are restricted to the discrete set of rotation angles 

( rl - 2t5, (/ - t5, e', e' + t5, e' + 2t5) , where e· is the current angle of the kernel 

function, and the parameters a 0 , a 1 and a 2 are all fixed. We now consider allowing the 

rotation angle of the kernel to vary in a continuous interval ( e· - 6, e· + 6) for some 

fixed 6 > 0; we now refer to e as a dynamic parameter. We keep a 0 = I, a 1 = 4 and 

a 2 = 20, we let 6 = O.ln, and we use the banana shaped kernel function. We employ the 

optimize function of S-Plus to perform the search over e. Figure 3.9 is the estimated 
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shape, and the numerical comparison between the true shape and estimated shape is given 

in Table 3.3. Comparing Figure 3.9(b) with Figure 3.8(b) and Table 3.3 with Table 3.2, we 

see that optimising over B does not lead to a better result in this simulation study. 
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Figure 3.9 (a) The estimate of the outline obtained by applying the proposed algorithm 

with the banana shaped kernel function and dynamic parameter 

e E ( e· - O.ln, e· + O.ln) to the data in Figure 3.6(b). (b) The difference between the 

original shape and the estimated shape. The colour code of Figure 3.6(d) is employed. 

Table 3.3 Numerical summary of the error made by the estimate 

when the banana shaped kernel function and dynamic parameter e 
are applied 

Estimate shape 

True shape pixel present pixel absent Total 

pixel present 958 21 979 

pixel absent 7 2735 2742 

Total 965 2756 3721 
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Another possible refinement is to allow all the parameters (), a 0 , a 1 and a 2 to vary 

continuously in suitable continuous intervals, and to optimise over these parameters at each 

pixel. Because the shape and hence volume of the kernel function will change as these 

parameters change, we need to standardise the convolution in order that legitimate 

comparisons may be made; we set 

where f( x0 , y 0 ) is the value of f at ( x0 , y 0 ), and the sum is over all pixels. 

For our purposes, we assume that (), a 0 , a 1 and a 2 are all dynamic parameters, with 

() E(B' -0.17!", ()' +0.171"), CT 0 E(O.i, !), a 1 E(l, 10) and a 2 E(l, 40). We use the S-

Plus function nlminb to optimise the kernel function over (), a 0 , a 1 and a 2 • The result 

obtained by applying the proposed algorithm to the image shown in Figure 3.6(b) is very 

poor. We terminated the programme when the detected edge began to go far away from 

the true shape. The reason for this behaviour is that the length and the width of the kernel 

function may not be chosen suitably by the optimisation routine. For example, if the kernel 

is so short or narrow that it only covers a few pixels, the standardised convolution may be 

very high at a point whose immediate neighbours have quite high grey levels, even though it 

does not lie on the edge. In other words, the optimisation routine may prefer a small kernel 

function with large support that detects an uninteresting local effect to a big kernel function 

that detects the edge. There is a similar problem if the kernel function is too long or too 

wide. To illustrate this, Figure 3.10 shows part of an edge defined image with kernel 
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contours added to pixel 1 and pixel 2, where pixel 1 is on the edge but pixel 2 is not. In 

Figure 3.1 0( a) kernel functions with parameters a-0 = 0.5, a-1 = 3 and a-2 = 20 have been 

added and the standard convolution value f std is 0.1023 at point 1 and 0.0232 at point 2, 

whereas in Figure 3.1 O(b) kernel functions with parameters a-0 = 0.4, a-1 = 1.5 and 

a- 2 = 20 are shown and the standard value f std is 0.0909 at point 1 and 0.1134 at point 2. 

The incorrect pixel was identified in this case because we obtain the biggest value of f std at 

point 2 in Figure 3.1 O(b ). 

~ ~ 
' . 

(a) 

BR1 
I ~ " " I 

• 

(b) 

Figure 3.10 Example of the effect of the parameters. (a) Contours with parameters 

a-0 = 0.5 , a- 1 = 3 and a- 2 = 20 . f std is 0.1023 at point 1 and 0.0232 at point 2. 

(b) Contours with parameters a-0 = 0.4, a- 1 = 1.5 and a- 2 = 20. f std is 0.0909 at point I 

and 0.1134 at point 2. The maximum value of f std is therefore obtained at the incorrect 

point 2 in (b). 
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Figure 3.11 (a) The estimate of the outline obtained by applying the proposed algorithm 

with the banana shaped kernel function and dynamic parameters 

e E(tl-O.ln-, e· +O.ln-) ' a, E(3, 10) and 0" 2 E(5, 40), and fixed parameter 

a 0 = 1 to the data in Figure 3.6(b). (b) The difference between the original shape and the 

estimated shape. The colour code of Figure 3.6(d) is employed. 

If we fix the width of the kernel by letting 0" 0 = 1 ' and let e E ( e· - O.ln-' e· + O.ln-) ' 

a 1 E (3, 1 0) and a 2 E (5, 40) be dynamic, we obtain the result shown in Figure 3.11 after 

19832 seconds DOS-time on a Pentium 75MHz PC, while the non-dynamic algorithm that 

leads to Figure 3.8 took 706 seconds only. The numerical comparison between the true 

and estimated shapes is given in Table 3.4. Although this time the program works and 

gives a very acceptable solution, Table 3.4 shows that the performance is still poor in 

comparison with Table 3.1, 3.2 and 3.3. Hence, in practice we need to ensure that the 

parameters and parameter intervals used do not lead to kernel functions that have too large 
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or too small a support. Our experience suggests that we should choose the parameters CT 0 , 

CT 1 and CT 2 so that at the centre the width of the kernel contour at 90% of the maximum 

height should cover about S-7 pixels and the length should cover about 15-25 pixels. 

Table 3.4 Numerical summary of the error made by the estimate 

when the banana shaped kernel function and dynamic parameters 

fJ, CT 1 and CT 2 are applied 

Estimate shape 

True shape pixel present pixel absent Total 

pixel present 953 26 979 

pixel absent IS 2727 2742 

Total 968 2753 3721 

Neither of these dynamic variations produced any noticeable improvement in results, despite 

a massive increase in computational burden. Maximising f over CT 0 , CT 1 and CT 2 can lead 

to meaningless results ifthe range of these parameters is not restricted. 

In Section 3.7 we will discuss further the effect of varying the parameters. 

3.6 Application to real tlata 

First we applied the proposed algorithm to the original ultrasound image of a cross-section 

of a fetal head shown in Figure 3.1. We used the peanut shaped kernel function shown in 

Figure 3 .2, which has the parameter values CT 0 = 1 , CT 1 = 5, CT 2 = 5, and we set 
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o = 0.02JT . The resulting outline of the cross-section of the fetal head using the peanut 

kernel is shown in Figure 3.12(a). The procedure took 753 seconds DOS-time on a 

Pentium 75MHz PC. The algorithm seems to work well. 

We repeated the above estimation procedure using the banana shaped kernel function and 

the same parameter values. The result is shown in Figure 3.12(b). We found that the 

estimated edge on the right of the shape differs a little in Figure 3 .12(b) and in 

Figure 3.12(a). Of course, this difference may or may not be relevant from a medical point 

of view. 

In this example, the peanut shaped kernel function works well. We can also use the peanut 

shaped kernel function for the detection of an affected head shape that shows the lemon 

sign. Figure 3.12(c) is the digitised version of the ultrasound image shown in Figure l.l(b). 

This image comprises I 08 x 98 pixels and there are 256 grey levels. The lemon sign is 

clear visible. Indeed it was known that the fetus was affected with open spina bifida. We 

applied the proposed algorithm to this image with the peanut shaped kernel function with 

parameters a- 0 = 1.3, a- 1 = 6 and a- 2 = I 0, and with o = 0.02JT . The starting point is 

taken to be the lower edge point at the right side of the image, where the image is not 

complete. The result is shown in Figure 3.12(d) where the white line represents the 

extracted outline of the head shape. The outline is cut off at its right side because the 

original image is not complete there. The lemon sign is obviously present in Figure 3.12(d). 
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Figure 3.12 Two real examples. (a) Ultrasound image of a cross-section of a fetal head 

with extracted edge using the peanut shaped kernel function . (b) Ultrasound image of a 

cross-section of a fetal head with extracted edge using the banana shaped kernel function. 

(c) Digitised version of a cross-section of a fetal head with open spina bifida showing the 

lemon sign. The original ultrasound image is shown in Figure l.l(b). (d) The image (c) 

with extracted edge (white li11e) using the peanut shaped kernel function. 
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(e) (f) 

Figure 3.12 (Continued) Noisy images together with the extracted edges (white lines) 

obtained by the kernel algorithm. The data were obtained by adding independent 

(e)N(o, 1002
) and (f)N(o, 1502

) noise to the already noisy ultrasound image shown 

in Figure 3.12(c). 

A large difference between Figure 3. 12(a) and Figure 3.12(c) is that the edge is quite well 

defined in Figure 3.12(c) whereas it is not in Figure 3.12(a). It would be an interesting 

experiment to add noise to the already noisy Figure 3 .12( c) so as to make the edge much 

less clear, and then to run the algorithm. We obtained two images by adding independent 

N(o, 1002
) and N(o, 1502

) to the real ultrasound image respectively. Panels (e) and (f) 

of Figure 3.12 present the result. We see that the resulting images do not resemble an 

ultrasound image, but they do look like Figure 3.12(a) in the sense that there are pa1is of 

the edge that seem to the human eye almost completely obliterated. The proposed 
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algorithm was applied to these images with the same kernel, same rotation angle and the 

same starting point as were used for Figure 3.12(d). The extracted outline of the head 

shape is expressed by the white lines. The lemon sign is obviously present in both results. 

The kernel algorithm seems to work well on a large number of ultrasound images of cross­

section of fetal heads. For these images the performance was reasonably robust to the 

choice of parameters. 

3. 7 Discus.'iion about tire use of tire kernel algorithm for detecting shape ... defined only 

by their edge,., 

In the previous sections, we have described a kernel function based algorithm for detecting 

the edge of a closed curve from a noisy image such as an ultrasound image of a cross­

section of a fetal head. In a simulation study we have seen that this algorithm gave a very 

good fit to a true ellipse corrupted by the addition of independent standard Gaussian noise; 

see Figures 3.6 and 3.8. 

Our approach was implemented in several ways using peanut or banana shaped kernels with 

fixed or dynamic parameters. The results are shown in Figure 3.6(c) (peanut kernel with 

fixed parameters), Figure 3.8(a) (banana kernel with fixed parameters), Figure 3.9(a) 

(banana kernel with one dynamic parameter), and Figure 3.11 (a) (banana kernel with three 

dynamic parameters). Comparing these results we find that the banana shaped kernel is 

more suitable for the ellipse. Because the kernel function can change its shape greatly in 

order to cover pixels with high records, the dynamic parameters and associated parameter 

intervals should be chosen with care. Because Figures 3.12(a) and (b) look very similar, we 
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cannot say which lcind of kernel is more suitable for fetal head shape detection from these 

two figures. 

In order to assess the performance of the kernel function algorithm, we conducted a 

simulation study based on the original image shown in Figure 3.6(a). Our data were 

obtained by adding independent N( 0, K) noise to that image. We judged the algorithm to 

have failed to stop if the resulting edge was not closed, or if the number of pixels in the 

resulting edge exceeded 1.5 times the number of pixels in the true edge so that the resulting 

edge was wandering around the image. For each of three different noise variances 

K = 0.25 , 0. 5 and 1.0, we applied the peanut shaped kernel function algorithm to 100 noisy 

images. The starting pixel was selected at random from among all the known edge pixels. 

The mean and the standard deviation (sd) of the number of pixels that differ between the 

true shape and the estimated shape over realisations of the noise process for which the 

algorithm stopped are recorded in Table 3. 5. Also presented in Table 3. 5 is the number of 

times the algorithm failed to stop due to the resulting edge not being closed or due to the 

maximum number of edge pixels being exceeded. 

Table 3.5 Results of the simulation study for the kernel function algorithm 

Algorithm stops Algorithm fai ls to stop 
Variance K Measure of error Occasions U1at resulting Occasions that maximum 

mean (pixels) sd (pixels) edge is not closed number of pixels is exceeded 

0.25 37 21.0 4 5 

0.50 81 49.6 7 23 

1.00 120 72.0 9 52 

sd=standard deviation 
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Table 3.5 shows that the performance of the algorithm is consistently good for K = 0.25 . 

As K increases the quality of the performance decreases. Although the results seem 

disappointing for K = 1, it should be remembered that the edge is just one pixel thick with 

the consequence that the edge detection problem is a very hard one. 

96 



3.8 Slrape tletection using kernel algoritlrm 

We discussed the work of many authors on object recognition in Chapter 2; see in particular 

Section 2.1. The models used by these authors can be placed into a number of categories. 

The first category corresponds to traditional Bayesian type models as proposed in the 

imaging context by Geman and Geman (1984) and further discussed by Besag (1989). The 

second category corresponds to template models as used by Grenander, Chow and 

Keenan (1990). The template model is still Bayesian, but is based on the deformation of a 

special designed polygon. The third category corresponds to non-Bayesian models. The 

'snakes' or active contour model, proposed by Kass, Witkin and Terzopoulos (1988), is a 

non-Bayesian model that uses the minimisation of a specially designed energy function to 

cause a deformable contour to change its shape with the aim of wrapping itself around the 

edge of the object. Kass, Witkin and Terzopoulos ( 1988) describe in detail an algorithm to 

perform this minimisation. We will discuss the snake model in Chapter 5. In Chapter 2 we 

mainly introduced Storvik (1994)'s model which we fitted using the cascade algorithm. 

Storvik (1994)'s approach is based on the minimisation of an energy function, and can 

sometimes be given a Bayesian interpretation. 

In the previous sections of this chapter, a kernel method was introduced to detect in an 

image a single shape defined in terms of its edge with pixels inside and outside the edge 

having grey levels with the same or similar distributions; an example of such an image is 

given in Figure 3. I. In this section, the kernel algorithm is modified to detect in an image 

the closed boundary of an object, where the pixels inside and outside the edge have grey 

levels with different distributions. An example of such image data is given in 
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Figure 3 .13(b ). This is a simulated image obtained by adding independent N( 0, 1) nmse 

to the true image shown in Figure 3 .13( a). The images in Figure 3.13 were also shown in 

Figure 2.4. We will show that the kernel method can be adapted to identify the boundary 

of an object in a noisy image. After this, we present the result of applying the adapted 

algorithm to the real ultrasound image shown in Figure 1.8. 

0 20 40 60 80 100 0 20 40 60 80 100 

{a) {b) 

Figure 3.13 (a) The known head shape. This 100 x 100 binary image displays one of 

the heads analysed by Wright et al. (1997). (b) The simulated data obtained by adding 

independent N( 0, 1) noise to the image (a). 
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3.8.1 Tlte idea 

Let us begin by considering a simple break detection problem in one dimension. Figure 3.14 

presents a way of identifying the break point in a step function that uses a detection 

function D. 

Z(X) 
bl-------' 

a 

(a) 

X 

C(x) 

D(x) 

X 

(b) 

X 

(c) 

Figure 3.14 Illustration of the break point detection method in one dimension. (a) The 

step function Z{x) has a break at an unknown point x'. (b) The detection function 

D(x) has two parts- a negative part and a positive part, each with the same area 1/2. 

(c) The convolution C(x) of the detection function D(x) with the step function Z(x). 

This indicates a break in z(x) at x'. 
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Let Z(x) be a step function with a break at an unknown point x·: 

where a< b. The function Z(x) is presented in Figure 3.14(a). A standard break 

detection algorithm would take a function D( x) such as that shown in Figure 3 .14(b ), 

where the two shaded parts above and under the x- axis have the same area 1/2 and would 

convolve D(x) with the step function Z(x) to obtain the convolution C(x) presented in 

Figure 3. 14(c). At points far away from the break point x· the value ofthe convolution is 

zero. At points near to the break point, the value of the convolution becomes negative and 

at the break point x· the minimum value -(b- a)/2 of the convolution is attained. This 

process is a sort of gradient operator. It identifies the break point as being the place where 

the maximum absolute value of the convolution occurs. 

The sallle method could be used to estimate the change point for a much less smooth 

function, such as the function shown in Figure 3.lS(a). This function was obtained by 

adding independent lv':(O, 0.3 2
) noise to the function Z(x) shown in Figure 3.14(a); we set 

a = 0.5 and b = 1.8, artd divide the x- axis into 200 points. Convolving the detection 

function D(x) shown in Figure 3.14(b) with the noisy function Z(x), we obtain the 

convolution C( x) presented in Figure 3.1 S(b ). Around the change point £ the maximum 

absolute value of the convolution occurs. The estimated change point may differ from the 

exact break point because of noise. 
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Figure 3.15 lllustr~tion of.the change point detection method for a noisy function in one 

dimension. (a) The step function Z(x) shown ·in Figure 3.14(a) has been corrupted by 

independent N(o, 0.32
) noise; we set a = 05 and h = [8, and we divided the x -axis into 

200 points. (b) The convolution C(x) of the detection function D(x) with the noisy 

function z(x).. This indicates a break in z(x) aromi.d x·. 

The .form of the detection function used in this one dimensional case suggests to us how we 

should adapt the kernel function introduced in Section 3.2 to detect object boundaries in 

images such as Figure 3.B(b). 
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3.8.2 De.~cription of the kernel algorithm applied to shape detection 

Now we apply the above idea to the shape recognition problem in two dimensions. We 

shall assume that in the true image the whole shape is present; such a true image is shown in 

Figure 3.13(a). Such images exhibit a large change in grey levels at their edge. What we 

need to do is to find a detection function to estimate the changes in the true image from a 

noisy version of it. 

Let us consider the kernel K{(x,y); (x0 ,y0 ), e}. Let us assume that the centre (x 0 ,y0 ) of 

this kernel lies on the edge of an object, as shown in Figure 3. 16. The line BB' is the major 

axis of the kernel. We suppose that pixels inside the true object have higher grey level 

values than those outside the true object. If the angle of BB' with respect to the horizontal 

is selected appropriately, and if the part of the kernel outside the object is multiplied by -1, 

the absolute value of the sum of the product of the resulting function with the image grey 

levels will reach its maximum around the edge point (x0 ,y0 ) along the line AA' 

perpendicular to BB' through the point (x0 ,y0 ) . Accordingly, the kernel detection 

function D{(x,y); (x 0 ,y0 ),e} is defmed as 

D{(x ,y); (x 0 ,y0),e} = K{(x ,y); (x 0 ,y0 ), 8} x G{{ x,y); (x0 ,y0 ),8}, (3.3) 

where 8 is the angle of rotation of the kernel, that is, the angle of rotation of BB' , and 

G { ( x, y ); ( x0 , Yo ), 8} is a marking function which takes the value -1 outside BB' and +I 

inside BB'. 
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Figure 3.16 The detection function D .. The kernel function K is illustrated by 

the contours, while the marking function G is shown by using+ and-. 

outside (low values) \ 
A 

Figure 3.17 Five detectors. The highest absolute value is yielded by detector I. 
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Figure 3.17 shows how the detection function works. In Figure 3. I7, detector I is located 

just on edge and the sum of its product with the image grey levels gives the value 

high -low; detector II is located completely outside the shape, and leads to the value 

low -low = 0 ; detector Ill is located completely inside the shape and leads to the value 

high- high = 0; detector IV overlaps the object much less than detector I and leads to the 

value (..!..high + ..!_low) - low = ..!_(high - low) ; detector V has the wrong rotation angle 
2 2 2 

(
I . 2 ) (2 . I ) 1 and leads to the value - htgh + -low - - htgh +-low = -- (high -low) . Of all five 
3 3 3 3 3 

detectors, detector I leads to the highest absolute value of the sum of its product with the 

image grey levels, as we would hope. 

The shape detection now proceeds exactly as described in Section 3.2 and 3.3 except that 

the kernel function K is replaced by the detection function D. 

We apply the modified kernel method to the object recognition problem shown in 

Figure 3.13. In Chapter 2 we applied Storvik (I 994)' s algorithm to this problem. The 

noise level in image Figure 3.13(b) is K =I. The true edge (dark line) and its estimate by 

the modified kernel method are presented in Figure 3 .IS. The parameters of the kernel 

were chosen as a 0 = 4, a 1 = I 0 and a 2 = 7 . The error for this estimation procedure 

(number of differing pixels between the true shape and the estimated shape) is I47, which is 

better than the error of I60 (I 52 after median smoothing) for the best estimate we obtained 

by searching over the two parameters of the energy function of Storvik's algorithm; this 

estimate was shown in Figure 2.6. The modified kernel method yielded an estimate with a 

smoother outline than the estimate produced by Storvik's algorithm at less computational 

expense. 
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Figure 3.18 The edge produced by the modified kernel method together with the 

true edge (darker line). 

0 20 40 60 80 100 0 20 40 60 80 

{a) {b) 

100 

Figure 3.1 9 (a) The noisy image together with the edge (white line) estimated by the 

modified kernel algori thm. The noisy image is obtained by adding independent 

N(O, 3) noise to the true image shown in Figure 3.13(a). (b) The edge produced by the 

modified kernel procedure together with the true edge (darker line). 
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The detection function defined by (3.3) works well for images with relatively low levels of 

noise essentially because the large change in grey level at the edge of the image in the true 

image still remains in the noisy version. However, in a very noisy image, this change 

becomes much harder to identiry and at some parts the edge may even be destroyed. For 

example, the image shown in Figure3.19(a) is obtained from Figure3.13(a) by adding 

independent N( 0, 3) noise. Some parts of the edge seem to have been completely 

destroyed by the high level of noise. The shape detected by the modified kernel method is 

presented in Figure 3. 19( a) by the white line; we set u 0 = 3 , u 1 = I 0 and u 2 = 6 to obtain 

the best estimate with an error of 236 pixels. From this figure we see that the estimated 

edge is attracted to regions where there is a large change in grey level, with the result that 

the deformable area cannot be restored properly. Figure 3.19(b) presents the true 

shape (darker line) together with the contour produced by the modified kernel algorithm; 

the result is rough. 

3.8.3 An attenuated lletection.functionfor very noisy images 

It may help if we reduce the contribution to the convolution from points that are close to 

the centre of the modified kernel. We can achieve this by adjusting the marking function 

G{(x,y); (x0 ,y0),e}. We shall say that the resulting detection function has been attenuated 

and we shall refer to the associated procedure as the attenuation technique. The idea behind 

the attenuated detection function is illustrated in one dimension in Figure 3.20; an analogous 

idea applies in the two dimensional case. Figure 3.20(a) is the kernel function k(x) centred 
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at x = x0 . The original marking function g( x) is a step function from -I to I and is 

presented in panel (b). The detection function obtained from the product k(x)g(x) is 

shown in (c). At the centre of the detection function shown in panel (c), there is a big jump 

from negative to positive, and this makes the detection function very sensitive to changes in 

the data. A false break may be estimated by the detection function shown in (c) if high 

noise causes a large change at a non-change point. 

k(x) g(x) k(x)g(x) 

X IXQ X X 
I 
I 
I 
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k(x)g(x) 
I I 

' I I I 

I: I 
I 

' I 

lll-c!t Jlln+d 

11~ X X 

I: I 
;J : I 

-1 I: I 
(d) (e) 

Figure 3.20 Illustration of the attenuated detection function in one dimension. 
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One· way to overcome this problem is for the centre of detection function to vary 

continuously from negative to positive. In order to obtain such a detection function, we re-

define the marking function. Instead of using the step function in Figure 3.20(c), we use a 

continuous function such as the one shown in Figure 3.20(d) in which the function g(x) 

increases from -1 to 1 continuously in the interval [ x0 - d, x0 + d] : 

g(x) == 
X-X0 

d 
ifx0 -d:::; x < x0 +d, 

ifx ~ x0 +d. 

The attenuated detection function is then obtained by k(x)g(x) as shown in Figure 3.20(e). 

With such an attenuated detection function, values of Z immediately adjacent to x0 

contribute less to the value of the convolution at ;t0 , whereas values a little further away 

provide the main contribution. This means that the detection of false change points may be 

avoided. 

We now work with the co-ordinates introduced in Section 3.2. Accordingly, d == 1 means 

that a band of Width two pixeis is put through the centre of the kernel detector along the 

major axis BB' of the kernel. We now apply this technique with d == 1 to the image 

shown in FigureJ.19(a). We use the same values for the parameters as used for the 

estimate in Figure 3. 19. The estimated sh11pe is presented in Figure 3 .21. A smooth and 

reasonable estimate is obtained. This estimate is much better than the one shown in 

Figure 3.19 obtained using the original detection function. The number of differing pixels 

for the current estimate is 178, while it Was 236 for the estimate without using the 

attenuation technique. This example, along with other experience that we have, tells us 
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that the attenuation technique plays an essential role in shape detection using the kernel 

algorithm when the image is corrupted by high levels of noise. 

0 20 40 60 80 100 0 20 40 60 80 100 

{a) {b) 

Figure 3.21 (a) The noisy image presented in Figure 3. 19 together wi th the estimated 

edge (white line) detected using the attenuated detection function. (b) The estimated 

edge together with the true edge (darker line). 

This attenuation technique can a lso be applied to images with low noise levels but the 

results are generally not better than those obtained without using the attenuated detection 

function. For example, we now apply the attenuation technique with cl = 1 and cl = 2 to 

the noisy image shown in Figure 3. 13(b) that is corrupted by independent N(O, 1) noise. 

By searching over the kernel parameters, we found that the parameters a 0 = 3, a 1 = I 0 

and a 2 = 6 give the best results for these values of cl ; these are presented in Figure 3.22. 

The numbers of differing pixels in these estimates are 183 and 182 for cl = 1 and cl = 2 , 

109 



respectively, while it is 147 in the best estimate without using the attenuation technique 

shown in Figure 3 .18. These errors tell us that the attenuation technique does not work 

well when the image is corrupted by independent N( 0, 1) noise. However, if we compare 

the estimates in Figure 3.22 with the estimate in Figure 3 . 18, we can see that the attenuation 

technique leads to a more smooth estimate. The same phenomenon occurred in the estimate 

presented in Figure 3.21 compared with the estimate presented in Figure 3.20. 

Accordingly, the attenuation technique can lead to smoother estimates. 

0 20 40 60 80 100 0 20 40 60 80 100 

(a) (b) 

Figure 3.22 (a) The edge produced using the attenuated detection function with d = 1 , 

together with the true edge (darker line). (b) The edge produced using the attenuated 

detection function with d = 2 , together with the true edge (darker line). 
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Table 3.6 presents the errors for our estimation procedure for different noise levels K and 

different values of d . The true image is the head shape shown in Figure 3.13(a). There is 

just one simulation for every noise level and value of d . This table indicates that the noise 

level K determines whether or not the attenuation technique should be employed: when 

K ~ 1.5 the attenuation technique is not needed for shape detection, but may be useful for 

smoothing purposes; when K > 1.5 , the attenuation technique can improve the accuracy of 

the estimate. Some interesting points arise from this table. An almost stable estimate can 

be obtained when d :::: 10 in the 100 x I 00 grid. When the attenuation technique does lead 

to an improved estimate, better results are obtained using higher values of d . In 

Section 3.8.4 we present a more thorough investigation of the performance of the algorithm 

for different K and d . This investigation led to similar conclusions. 

Table 3.6 Errors (number of differing pixels between the estimated 

shape and the true shape) for various values of K and d 

d Noise level K 

1.0 1.5 2.0 3.0 

0 147 161 210 236 

1 183 244 158 178 

2 182 243 148 179 

3 200 238 152 180 

4 197 240 157 180 

10 197 240 147 179 

15 198 240 147 179 

25 198 239 147 179 

50 198 239 147 179 
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3.8.4 A simulatiou study 

In order to assess the performance of the modified kernel algorithm, a simulation study was 

conducted based on the original image shown in Figure 3.23. The ellipse shown in 

Figure 3.23 is the same shape as the ellipse shown in Figure 3.6(a) where it is presented by 

means of a one pixel thick edge. 

10 20 30 •o 50 so 

Figure 3.23 A binary image of an ellipse used for our simulation study. 

Our data were obtained by adding independent N( 0, K) noise to the original image. We 

used the stopping rule described in Section 3.7, that is, the algorithm was stopped as 

having failed if the resulting edge was not closed, or if the number of pixels in the resulting 

edge exceeded 1.5 times the number of pixels in the true edge so that the resulting edge 

was wandering around the image. For each level of four different noise variances K, 
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namely K = 0.5, 1.0, 2.0 and 3.0, and for each of six different values of d , namely 

d = 0, 1, 2, 5, 10 and 20 , we applied the adjusted kernel algorithm to 10 noisy images. For 

each of the four different noise levels, the kernel parameters were chosen by experience. 

The starting pixel was randomJy selected from the true edge points and it was fixed in one 

simulation in order to investigate the effect of d . 

Table 3.7 records the results of the simulation study. The numbers of pixels that differ 

between the true shape and the estimated shape for each simulation are listed if the 

algorithm stopped successfully; the symbol - is used if the algorithm failed. Also 

presented in Table 3. 7 is the mean and standard deviation (sd) of the errors for each value 

of d . The mean provides an estimate of the error rate for each pair of K and d . 

When K = 0.5, no failures occur and the mean and standard deviation for each value of d is 

calculated using all ten simulations. Table 3. 7 shows that the performance of the algorithm 

is consistently good for K = 0.5 and d = 0 . 

In Figure 3.24(a) error is plotted against d for each of the ten simulations with K = 0.5 . 

Each line represents one simulation. It is obvious that the lowest error always occurs when 

d = 0 , and the error becomes stable as d increases. 
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Table 3. 7 Results of the simulation study for the adjust kernel algorithm 

Variance d Simulations 

1 2 3 4 5 6 7 8 9 10 Mean* sd 
0 23 23 26 25 25 14 17 27 22 25 22.7 4.14 

1 38 37 33 26 36 36 29 46 42 43 36.6 6.19 

0.5 2 45 36 30 29 41 38 32 46 35 39 37. 1 5.86 

5 47 41 29 43 44 35 32 48 29 41 38.9 7.14 

10 46 41 33 44 44 35 36 58 35 42 41.4 7.40 

20 46 41 34 44 45 35 36 58 35 42 41.6 7.32 

0 - 58 97 75 99 - 47 77 49 64 70.8 19.96 

I 76 68 99 90 66 132 71 73 69 75 76.4 11.78 

1.0 2 81 74 86 81 65 128 63 66 71 71 72.1 8.01 

5 86 75 82 78 55 130 58 66 73 75 70.3 9.65 

10 86 75 94 80 57 146 57 69 72 75 72.4 12.05 

20 86 76 94 80 58 146 57 69 72 75 72.6 11.95 

0 - - 171 - - - 161 11 6 - - - -

1 86 140 83 88 1l2 137 142 107 186 94 109.9 24.27 

2.0 2 84 90 63 88 113 146 140 113 - 94 103.4 27.05 

5 84 90 70 88 109 147 144 114 - 95 104.6 26.60 

10 84 90 70 88 109 147 145 109 - 95 104.1 26.62 

20 84 90 70 88 109 147 145 109 - 95 l04.1 26.62 

0 - - - - - - - - - - - -

1 - 138 129 71 - 182 132 - - 116 - -

3.0 2 - 145 137 74 - 166 133 - - l\0 - -

5 - 141 128 74 - 146 132 - - 138 - -

10 - 142 125 74 - - 132 - - 136 - -

20 - 142 125 74 - - 132 - - 136 - -

Notes: 

1. For each simulation number we use the same realisation of the noise process. 

2. Result - means the algorithm failed to stop due to the resulting edge not being closed 

or due to the maximum number of pixels being exceeded. 

3 . * For K = 0.5 , the mean and standard deviation are calculated by using the results from 

all ten simulations. For K = 1.0 , the mean and standard deviation are calculated by using 

the results from all simulations except the first and sixth. For K = 2.0 , the mean and 

standard deviation are calculated by using the results from all simulations except the 

ninth. For K = 2.0 with d = 0 and for K = 3.0 , no mean and standard deviation are 

calculated because of too many fai lures. 
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Figure 3.24 Error plot for ten simulations against d = 0, I, 2, 5, 10 and 20. The 

dots indicates values of d . (a) K = 0.5 , (b) K = 1.0 

When K = 1.0 , failure occurs for the first and sixth simulation when d = 0 . Among the 

other simulations, the best estimate was usually obtained when d = 0 . The means and 

standard deviations for K = 1.0 and for each value of d are calculated from all simulations 

except the first and sixth. The standard deviation of the results for d = 0 is higher than that 

of the results for the other values of d . 

In Figure 3 .24(b) error is plotted against d for each of the ten simulations with K = 1.0 . 

Each line indicates one simulation. Note that the first point is not plotted for the first and 

sixth simulations because the algorithm failed. From these plots we see that the lowest 
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error sometimes occurs when d = 0 and sometimes for other values of d . We note that the 

results tend to stabilise as d increases. 

When K = 2.0 and d = 0 , fai lure occurs for all but three simulations. When d > 0 good 

estimates are obtained except for the ninth simulation. For each value of d > 0 , we 

calculated the mean and standard deviation across all simulations except the ninth. Clearly 

the use of the attenuated detection function is important here. As d increases the results 

seem to be quite stable. 

When K = 3.0 and d = 0 , fai lure occurs for all simulations. For the second, third, fourth, 

seventh and tenth simulation, estimates are obtained when d > 0 . Although most of these 

results are not good, it does appear that the attenuation technique allows estimates to be 

obtained sometimes for images corrupted by high levels of noise. Because there are many 

failures we have not calculated means and standard deviations for this level of noise. 

Obvious conclusions can, however, be drawn from the numbers themselves, that is, the use 

of the attenuation technique is important here, and as d increases the results seem to be 

quite stable. Although there are many fai lures for K = 3.0, it should be remembered that the 

true shape is a binary image so that the resulting shape detection problem is very hard with 

this level of noise. 

Table 3 .7 suggests the same interesting result as Table 3.6: it seems that an almost stable 

estimate can be obtained for d ~ 1 0 in the 61 x 6 1 grid, and better results can be obtained 

with d > 2 if the attenuation technique can improve the estimate. 
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Accordingly, the conclusions from this simulation study are: 

• As the variance K increases the quality of performance decreases; 

• For less noisy images, such as those obtained when K = 0.5, the attenuation technique is 

not needed; 

• For more noisy image, such as those obtained when K ~ 1, the attenuation technique can 

improve the estimate; 

• When applying the attenuation technique with the modified kernel algorithm to identify a 

shape in a very noisy image, a high value can be assigned to d and the quality of 

performance seems robust to the choice of d . 

3.8.5 Simulation study comparing tlte performance of the modified kernel algorithm 

with that of tlte cascade based simulated annealing algorithm 

In this section we present a small simulation study to compare the performance of the 

modified kernel algorithm with that of the cascade based simulated annealing algorithm that 

we described in Chapter 2. Our simulation study is still based on the binary image of an 

ellipse shown in Figure 3.23 and the data were obtained by adding independent N( 0, K) 

noise, with K = 0.5, 1.0, 2.0 and 3.0 , to the original binary image. Following the results from 

the simulation study in Section 3 .8.4, we chose d = 0 when K = 0.5 and d = 5 when 

K = 1.0 , K = 2.0 and K = 3.0 . For each value of K , ten noisy images were considered. We 

applied both the modified kernel algorithm and the cascade based simulated annealing 

algorithm (CSA) to each image. For the modified kernel algorithm six failures occurred in 

the simulations when K = 3.0 . 
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Table 3.8 Results of the simulation study for comparing the performance of the 

modified kernel algorithm with that of the cascade based simulated annealing 

annealing algorithm 

K 

0.5 1.0 2.0 3.0 
Kernel CSA Kernel CSA Kernel CSA Kernel CSA 
25 34 62 66 72 104 - 131 
29 25 55 58 57 62 - 158 
25 34 64 61 71 78 105 110 
25 25 71 56 55 100 128 70 
28 25 67 59 124 51 - 97 

Simulation 45 30 60 57 166 138 - 141 
44 37 61 69 10 I 127 161 128 
37 42 72 76 59 61 - 107 
28 38 70 63 77 110 - 91 
30 33 66 69 91 122 117 85 

Mean 31.6 32.3 64.8 63.4 87.3 95.3 127.8 111.8 
sd 7.7 6.0 5.4 6.5 35.1 30.6 24. 1 27.4 
p-value 0.79 0.54 0.25 -
sd=standard deviation 

Table 3.8 presents the results of the simulation study. The numbers of pixels that differ 

between the true shape and the estimated shape for each simulation are listed. The results 

of a paired !-test were that there is no significant difference between the two algorithms 

when K = 0.5, 1.0 , and 2.0. These results confirm that the modified kernel algorithm works 

well when K ~ 2 , but often fai ls when K > 2 . The procedures for both algorithms took 

almost the same computer time, but the kernel algorithm is considerably less complicated. 

3.8.6 Application to real data 

We now apply the algorithm described above to the ultrasound image of a human ovarian 

cyst shown in Figure 1.8 to which we applied the direct and the cascade based simulated 
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annealing algorithms successfully and we obtained the estimated edge of the underlying 

shape in Chapter 2; see Figure 2.15. 

We chose the parameters CY 0 = 3 , CY 1 = 5, CY 2 = 3 and d = 1 that gave the best result as 

shown in Figure 3.25 by the white line. The result obtained by using the cascade based 

simulated annealing algorithm as shown in Figure 2. 15(b) is presented in this figure by the 

black line for comparison. We see that the two estimates are quite similar. We mention 

here that the procedure took 3684 seconds DOS-time which is almost the same as that of 

the cascade based algorithm that we applied to the same image in Section 2.5 of Chapter 2, 

whereas the direct simulated annealing approach took about 1.5 times as much computing 

time. 

0 
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Figure 3.25 A real example. The original ultrasound image of a human ovarian cyst 

is shown in Figure 1.8. The white line is the estimate of the underlying shape, while 

the black line is the outline obtained in Chapter 2 by using the cascade based simulated 

annealing algorithm. 
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3.9 Further works 

The kernel algorithm that we have discussed in this chapter is designed to detect edges of a 

shape that has an interior point from which every point of the edge is directly visible. For 

an arbitrary shape, such as the picture of a duck body presented in Pievatolo and 

Green ( 1998) and shown here in Figure 3.26, the above algorithm will not work properly. 

We are grateful to Dr A. Pievatolo and Professor P. I. Green for having sent us this binary 

1mage. 
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Figure 3.26 64 x 64 test image (Pievatolo and Green, 1998). 

Pievatolo and Green ( 1998) add independent normal n01se to the duck image and then 

estimate the outline by fitting a polygon with any number of sides. In order to do this they 

derive a new probabilistic model for the generation of a polygon in a compact subset of 91 2 
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and use this model as a prior distribution in a Bayesian approach. Simulations from the 

prior and posterior distributions are carried out through the reversible jump Markov chain 

Monte Carlo algorithm proposed by Green (1995). The authors demonstrate that the 

results obtained from this approach are very much better than those obtained by pixel-based 

methods. 

As a first step to making the kernel algorithm work on the duck image we extend the 

original set of candidate points described in Section 3. 3 and presented in Figure 3 .4 to 

include any one of the first and second order neighbours of the current edge point. To 

prevent the edge from retracing its steps, we exclude points that have been chosen in the 

last few steps from the set of candidate points. This modiftcation is easy to implement but a 

new problem arises. 

Around the beak and neck of the duck the direction of the outline changes suddenly often 

by angles around 7r . Accordingly, we applied the dynamic angle version of the kernel 
2 

algorithm with () E ( () * - & , () * + & ) , where ()* is the current angle of the kernel function . 

We let & = 7r so as to allow the kernel function to change angle in a very wide range. 
2 

Simulation results show that these modifications can cause the kernel to wander off in 

completely the wrong direction so leading to a meaningless shape. 

What we now suggest is modifying the kernel function itself The original kernel 

function(3 .1) has a straight line as axis of symmetry; see Figure3 .3 and3 .17. We can 

change its shape by bending the axis of symmetry through an angle tjJ at its centre so 

enabling the kernel function to match better the edge of the shape. Figure 3.27 shows four 
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examples of the bent kernel functions. In Figure 3.27 we indicate the position of the inside 

and outside of the shape near the point at which the kernel bends. The algorithm would 

then proceed by optimising over ~ as well as the other parameters. We hope to develop 

this method in the near future. 

outside 

outside 

inside 
outside 

inside 
outside 

Figure 3.27 Examples of the bent kernel function . 
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Chapter 4 

Study of the effect of the kernel parameters 

4.1 Introduction 

The kernel function K{(x,y); (x0 ,y0 ) , B} introduced in Chapter 3 is defined in terms of 

three parameters, er 0 , er 1 and er 2 : er 0 controls mainly the width of the kernel, while er 1 

controls mainly its length and er 2 mainly its curvature. This is illustrated in Figure 3 .3, for 

example. Therefore, edge detection using the kernel function method depends upon the 

choice of the values of these parameters. 

ln Section 3.5, we have discussed several variations of the algorithm described in 

Section 3.3. For example in steps 3 and 4 instead of maximising the convolution f over () 

in the discrete set of rotation angles ( e· - 28, e· - 8, e·' (). + 8, e· + 28) ' where e· is the 

current angle of the kernel, we maximised it over B in the continuous interval 
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( o• - &, o• +c) for some fixed & > 0 . We also allowed the shape of a standardised kernel 

to vary at each point by maximising f over the parameters u 0 , u 1 and u 2 as well as () . 

Neither of these variations produced any noticeable improvement in results. 

In this chapter we aim to illustrate the effect of the kernel parameters. For simplicity, we 

take our true image to be a circle in a 61 x 61 grid and add Gaussian noise to it. Figure 4.1 

is a binary image comprising 61 x 61 pixels showing the outline of a circle centred at 

(31, 31) with radius 16. The records of the image take the value one at the black outline 

pixels and the value zero at the remaining white pixels. 
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Figure 4.1 The original binary pixel image, a circle centred at (31,31) with radius 16. 

In the following parts of this chapter, we think of this image as occupying part of the plane 

with co-ordinates from -3 0 to 3 0 on both axes, so that every integer co-ordinate 
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corresponds to one pixel; see Section 3.2 for details. In these kernel co-ordinates, the 

radius of the circle in the image presented in Figure 4 .1 remains at 16. 

In Section 4.2, we apply the kernel algorithm to detect the circles such as the one shown in 

Figure 4 . 1 from their noisy images. We discuss how the error of the estimate obtained 

depends on the parameters er 0 , er 1 and er 2 . Then in Section 4.3 we present a probability 

study about edge pixel detection. 

4.2 The effect of the kernel parameters 

We now apply the kernel algorithm to detect the circle from noisy images. We will use the 

number of pixels that differ between the true shape and the estimated shape as our measure 

of the error of the estimate. For example, the number of differing pixels in the estimate in 

Figure 3 .6 is the total number ofblack and grey pixels in Figure 3.6(d) . 

Before we discuss the effect of the kernel parameters, we begin by studying the effect of 

different noise levels and circular radii . 

We added independent Gaussian noise with variance K = 0.0 I , 0.09, 0.25, 0.36 and 0.50 to 

the image shown in Figure 4.1. For every noise level, we simulated 20 realisations of the 

noise process. For each realisation we performed the estimation by applying the peanut 

kernel function with parameters er 0 = I , er 1 = 4 and er 2 = 20 , and with the discrete set of 

rotation angles. The initial point was always chosen randomly from the true edge pixels. 
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Figure 4.2 Boxplots of the number of differing pixels for the djfferent noise levels 

added to the true image of a circle with ramus 16. The dashed line links the medians of 

the five data sets, each of whkh is obtained from 20 realisations of the noise process. 

The kemel parameters were chosen as O" 0 = 1 , O" 1 = 4 and O" 2 = 20 . 
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Figure 4.3 Boxplots of the standardised number of ruffering pixels for the different 

radii of the true circle. The dashed line links the medians of the eight data sets, each of 

which is obtruned from 20 realisations of the noise process. The kemel parameters 

were chosen as O" 0 = I , O" 1 = 4 and O" 2 = 20, and the noisy images are obtained by 

adding independent N(O, 0.36) noise. 
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Boxplots of the number of differing pixels for each no1se level K are presented in 

Figure 4.2. The dashed line in the figure links the medians of the five data sets each of 

which is obtained from 20 realisations of the noise process. It is not difficult to understand 

that the lower the noise level, the lower and the more stable the number of differing pixels 

of the estimate. 

In order to understand the relationship between the curvature of the edge curve and the 

parameters, we applied the peanut kernel function with O" 0 = I , O" 1 = 4 and O" 2 = 20 to 

images based on circles with radii 10, 12, 14, 16, 18, 20, 22 and 24. We added independent 

N(O, 0.36) noise to the original images, and twenty realisations of the noise process were 

used for each radius. Because the circles have different areas, we standardised the number 

of differing pixels according to the circle with radius 16: 

standardised number of differing pixels = number of differing pixels x (~ l
2 

radm;J 

Figure 4.3 presents boxplots of the number of differing pixels for different radii . The 

dashed line links the medians of the standardised numbers of differing pixels for each radius. 

It seems that the parameters we used in these simulations are not suitable for too small or 

too large radii in the 61 x 61 pixel image. For smaller circles, such as those with radius 10 

or 12, the medians of the standardised number of differing pixels are much higher than those 

with radius 16, 18, 20 or 22. This indicates that the kernel is too big for smaller circles. 

For bigger circles with radius 24, the median of the standardised number of differing pixels 

is higher than those with radius 16, 18, 20 or 22. For circles with radii 20 and 22, the 

standardised numbers of differing pixels show higher variation than for other radii although 

the medians are lower. This indicates that the kernel is too small for bigger circles. For the 
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parameters u 0 = 1 , u 1 = 4 and u 2 = 20 , the minimum error occurs when the radius of the 

true circle is 16 or 18. 

Now we study the effect of the parameters of the kernel function on the estimate of the 

circle with radius 16. The peanut kernel function was used and independent N( 0, 0.5) noise 

was added. 

Figure 4. 4 presents boxplots of the number of differing pixels for the following values of the 

parameter u 0 : 0.3, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0 and 5.0. The dashed line links the medians of 

the eight data sets, each of which is obtained by 20 simulations as before. The other two 

kernel parameters were chosen as u 1 = 4 and u 2 = 20 . The minimum error in Figure 4.4 

seems to occur for values of u 0 around 1.0 to 1.5. We have already explained that the 

parameter u 0 controls mainly the width of the kernel. If a kernel is very narrow relative to 

the true shape, it may not be able to take into account sufficient edge information to detect 

true edge pixels. On the other hand, if a kernel is too wide relative to the true shape, it may 

take into account too much information from non-edge pixels. Hence, if the parameter u 0 

takes a very low value such as 0.3, then the kernel is too narrow with the result that it is 

easily attracted by pixels that are not on the edge but that have a high grey-level. If the 

parameter u 0 takes a very high value, say 5.0, then the kernel covers lots of pixels that are 

not useful for detecting local edge pixels but whose values may substantially affect the 

result. 
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Figure 4.4 Boxplots for clifferent values of the parameter CY 0 . The dashed Une links the 

medians of the eight data sets, each of which is obtained from 20 realisations of the noise 

process. The other two kernel parameters were chosen as CY 1 = 4 and CY 2 = 20 , and the 

noisy images are obtained by adding independent N(O, 0.5) noise . 
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Figure 4.5 Boxplots for clifferent values of the parameter CY 1 . The dashed line links the 

medians of the six data sets, each of which is obtained from 20 realisations of the noise 

process. The other two kernel parameters were chosen as CY 0 = I and CY 2 = 20 , and the 

noisy images are obtained by adding independent N(O, 0.5) noise. 
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Figure 4. 5 presents boxplots of the number of differing pixels for the following values of the 

parameter o- 1 : 0.7, 1.0, 2.0, 4.0, 7.0 and 10. The dashed line links the medians of the six 

data sets, each of which is obtained by 20 simulations as before. The other two kernel 

parameters were chosen as a- 0 = 1 and a- 2 = 20 . We see that poor performance results 

from very low and very high values of the parameter a- 1 . We have already explained that 

the parameter a- 1 controls mainly the length of the kernel. So reasons similar to those 

presented in the discussion of Figure 4.4 apply here. If a kernel is very short relative to the 

true shape, it covers only a very short part of edge with the result that it may not be able to 

take into account sufficient edge information to detect true edge pixels. On the other hand, 

if a kernel is very long relative to the true shape, there may be no edge pixels covered by the 

two ends of kernel with the result that the kernel takes into account too much information 

that comes from non-edge pixels. Hence, if the parameter u 1 takes a very low value such 

as 0. 7, then the kernel is too short with the result that it is easily attracted by pixels that are 

not on the edge but that have a high grey-level. If the parameter a- 1 takes a very high 

value, say I 0, then the kernel is very long and so covers lots of pixels that are not useful for 

detecting local edge pixels but whose values may substantially affect the result. 

Figure 4. 6 presents boxplots of the number of differing pixels for the following values of the 

parameter a- 2 : 5, 10, 15, 20, 25 and 30. The dashed )jne links the medians of the six data 

sets each of which is obtained by 20 simulations as before. The other two kernel parameters 

were chosen as u 0 = I and a- 1 = 4 . 
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Figure 4.6 Boxplots for different values of the parameter CJ 2 . The dashed line links the 

meilians of the six data sets, each of wruch is obtained from 20 realisations of the noise 

process. The other two kernel parameters were chosen as CJ 0 = 1 and CJ 1 = 4 , and the 

noisy images are obtained by adding independent N( 0, 0.5) noise. 
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Figure 4. 7 Box plots for different values of the parameter CJ 2 . The dashed line links the 

medians of the six data sets, each of which is obtained from 20 realisations of the noise 

process. The other two kernel parameters were chosen as CJ 0 = 1 and CJ 1 = 1 , and the 

noisy images are obtained by adding independent N(O, 0.5) noise. 
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Figure 4.6 illustrates the dependence of the algorithm on the parameter a 2 ; we see that 

values of a 2 between 1 0 and 20 give us the minimum number of differing pixels. If the 

value of a 2 is too small or too big, the result is poor. We know that the parameter a 2 

controls mainly the curvature of the kernel. A small value of a 2 means that the kernel is 

too straight for it to follow the curvature of the circle with the result that less useful 

information is used in the calculation of the convolution. A big value of a 2 means that the 

kernel is too curved for it to follow the curvature of the circle again w ith the result that less 

useful information is used. 

We see from Figure 4.6 that the variances of the number of differing pixels are high for all 

the values of a 2 we choose. This suggests that the values selected for the parameter a 0 

and a 1 may be inappropriate. From Figure 4.5 we see that the value a 1 = 1 gives us 

consistently good estimates when a 0 = 1 and a 2 = 20 . So now we fix a 0 = 1 and 

a 1 = 1, and repeat the simulation study that led to Figure 4.6. Figure 4.7 presents boxplots 

of the result. The medians for the different values of a 2 are almost the same in Figure 4.6 

(a 1 = 4) and Figure 4. 7 (a 1 = 1 ). However, the results when a 1 = 1 are much less 

variable than those where a 1 = 4 for all selected values of the parameter a 2 . This 

suggests that setting a 1 = 4 leads to a kernel that is too long for the circle with radius 16 in 

the 61 x 61 array, while setting a 1 = 1 leads to a very good choice of kernel. In fact, this 

agrees with Figure 4. 5 in the sense that less variation is associated with a 1 = 1 than with 

a 1 = 4 . 
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From Figures 4.4 to 4 . 7 we see that the parameters er 0 and er 1 , that control mainly the 

width and the length of the kernel respectively, are the key parameters in the kernel 

algorithm. A good choice of the parameter er 2 that controls the curvature of the kernel can 

reduce the error and its variability when the other two parameters er 0 and er 1 are chosen 

inappropriately; see Figure 4 .6 for this. Jf the other two parameters er 0 and er 1 are chosen 

appropriately, there is not a large difference in the numbers of differing pixels for a very 

wide range of values of er 2 ; see Figure 4 .7. Figure 4 .6 and Figure 4 .7 tells us that the 

performance of the kernel algorithm is relatively robust to the choice of the parameter er 2 . 

4.3 A probability study 

In the prevtous section we discussed the effect of the kernel parameters. There, we 

measured the errors by the number of pixels that differ between the true shape and the 

estimated shape. Here we present a further study about the parameters based on a different 

measure of the quality of the estimated shape. 

In this section we will study the probabilities that successive true edge pixels are found 

correctly, given that the initial pixel is a true edge pixel. We will estimate these probabilities 

by means of a simulation study in which we randomise over both realisations of the noise 

process and initial edge pixels. 

The true shape is the one presented in Figure 4.1. We apply the kernel algorithm described 

in Chapter 3 to a noisy image derived from Figure 4.1 and focus attention on the detection 
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of the first 20 edge pixels. One hundred simulations were performed for each fixed set of 

kernel parameters in order to estimate the probability of correctly detecting the ; lh 

estimated edge pixel. For example, if the ; lh edge pixel is correctly detected n times, then 

the probability that it is correctly detected is estimated as n/1 00 . In order to help us 

understand what kind of kernel is suitable for different noise levels, we considered four 

different values of K : 0.1, 0. 5, I and 2. 

Each simulation consists of generating a new noisy image from the true circle image, and 

estimating its edges by means of the kernel algorithm starting from an edge pixel randomly 

selected from among the true edge pixels. The initial kernel rotation angle is chosen to fit 

the circle according to the position of the starting point. Since our circle has been 

discretized according to a 61 x 61 grid, some parts of it look very different from others. 

This can be seen clearly in Figure 4.1 where the horizontal and vertical segments have a 

different form from the remainder of the discretized circle. In order to reduce any possible 

bias caused by this discretization effect, the initial edge pixel for the kernel algorithm is 

randomly selected from among the true edge pixels. 

Figure 4.8 presents estimates of the probability of correct detection for the first 20 edge 

pixels for different values of K and a 0 ; the other parameters are fixed as a 1 = 4 and 

a 2 = 20 . The values of a 0 considered are 1.0, 1.5, 2.0, 2.5, 3.0 and 5.0. For each plot, 

one hundred different realisations of the noise process are employed. 
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Figure 4.8 Estimates of the probability of correct detection for the first twenty edge pixels for different values of K and a 0 ; the other two kernel parameters 

are fixed as CJ 1 = 4 and CJ 2 = 20 . For each plot, 100 different realisations of the noise process are employed with a randomly chosen starting point on the 

true circle edge. 

135 



Figure 4.8 indicates that choosing u 0 from 1.5 to 2.0 with u 1 = 4 and u 2 = 20 g1ves 

higher estimated probabilities of correct detection for the first 20 edge pixels for K = 0.1 to 

K = 2 . When u 0 = 1, the estimated probabilities of correct detection decrease rapidly to a 

very low level. This tells us that the kernel is too narrow to cover enough useful edge 

information. Because the initial kernel rotation angle is chosen in an optimal way, the 

estimated probabilities for the first few detected pixels are high even though the kernel is 

too narrow. When u 0 = 5, we see that the estimated probabilities of correct detection 

remain stable, although at a very low level. The reason for this is that the kernel is so wide 

that useless information is covered in the calculation of the convolution. Because the kernel 

is so wide, the rotation of the kernel almost loses its function in the kernel algorithm, and 

the probability remains low from the start. The conclusions presented in Section 4.1 from 

Figure 4.4 are confirmed by this probability study. 

We now repeat the above study, but this time we fix u 0 = 1 and u 2 = 20 and take different 

values for u 1, namely 0.3, 0.7, 1 .0, 2.0, 4.0 and 7.0. The results are presented in 

Figure 4 .9. It can be seen that when K = 0.1 and K = 0.5 , higher and stable probabilities are 

obtained by choosing u 1 between 0. 7 and 1, and when K = I and K = 2 by choosing u 1 

between 1 and 2. When u 1 is chosen very high, the probability decreases rapidly to a very 

low level, while when u 1 is chosen very low the probability remains stable but at a low 

level. 

136 





Since the kernel parameter cr1 controls mainly the length of the kernel, Figure 4.9 tells us 

that when the kernel is too long (er 1 too high), much useless pixel information is involved 

with the result that the probabilities decrease rapidly. The initial probabilities are higher 

because the initial kernel rotation angle is chosen in an optimal way so that the kernel lies 

along the true edge for the detection of the initial pixels. When the kernel is too short (er 1 

too low), only a little of the local information is used with the result that the probabilities 

remain low from the beginning. Another useful message from Figure 4. 9 is that the higher 

the level of noise added to the true circle shape, the higher the value of er 1 (the longer the 

kernel) that is needed. However, there is a limit to the length of the kernel that should be 

used. 

Parameter er 2 controls mainly the curvature of the kernel; see Section 3.1. We saw in 

Section 4.1 that er 2 can be used to adjust the error when the other two parameters er 0 and 

er 1 are chosen inappropriately. We now repeat the above study, but this time we fix 

er 0 = 1 and er 1 = 1 and take different values for er 2 , namely 5, 10, 15, 20, 25 and 30. The 

values er 0 = 1 and er 1 = 1 have previously led to good results from a wide range of er 2 . 

The results are presented in Figure 4.1 0. All the probability plots are stable and the 

different values of parameter er 2 do not significantly affect the estimated probabilities of the 

correct detection. Figure 4.10 confirms the conclusions obtained from Figure 4.7 in last 

section. 
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4.4 Conclusion 

From our error study and probability study, we conclude that in the kernel algorithm the 

kernel parameters () 0 and () 1 play the most important role, whereas the main function of 

the kernel parameter () 2 is to reduce the error and its variability when () 0 and () 1 are 

chosen inappropriately. When () 0 and () 1 are selected appropriately, the performance of 

the algorithm is relatively robust to the choice of the kernel parameter () 2 . 
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Chapter 5 

Active Contour Models: The Snake Model 

The energy minimising active contour model, better known as the snake model, proposed by 

Kass, Witkin and Terzopoulos ( 1988), is a contour model for detecting edges in images. 

Since Kass et al. (1988), the snake model has been referenced in the literature on edge 

detection many times. 

In this chapter, we introduce and discuss the snake model. In Section 5.1 we present a 

description of the snake energy function and the numerical algorithm used to minimise it. In 

Section 5.2 the snake model is applied to the ultrasound head image shown in Figure 1.2(a) 

and Figure 3 .1. We also discuss the behaviour of the snake algorithm and then modify the 

energy function. In Section 5.3 we introduce two algorithms: the dynamic programming 

algorithm proposed by Amini, Weymouth and Jain ( 1990) and the balloon model proposed 

by Cohen ( 1991) and Coben and Cohen (1993) . These two approaches aim to improve the 

original snake methodology. In Section 5.4 we present a simulated annealing plus ICM 
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algorithm to minimise the snake energy. In Section 5.5 we discuss the results of a 

simulation study designed to compare the kernel algorithm introduced in Chapter 3 with the 

snake algorithm and the simulated annealing plus ICM snake algorithm. Finally, a short 

summary is given in Section 5.6. 

5.1 The description of the active contour model of Kass, Wit kin ami Terzopoulos (1988) 

Kass et al. ( 1988) simplify the edge detection problem by reducing it to energy 

minimisation. The total energy Us of an active contour S with parametric representation 

v(s) =(x(s),y(s)), sE [O, l] , is defined as the sum of an internal energy and an external 

energy: 

(5 .1) 

The internal energy 

(5 .2) 

represents the force that constrains the curve to be smooth, where v'(s) and v"(s) are the 

first and second derivatives of v( s) , and a( s) and /3( s) are weights. 

The external energy comprises two parts 

U ext { v(~)} = U con { v(s)} + U ,mage { v(~)} , (5.3) 

where 

U con { v(s)} = ciP(s)- Ql (5.4) 
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is an external constraint energy that represents tbe energy of a spring connected between a 

point P(s) on the snake contour v(s) and some fixed point Q inside or outside the 

contour, and c is a constant. The constraint energy pulls the contour towards Q . 

The image energy 

(5 .5) 

represents the forces derived from the image which constrain the curve to take the shape of 

certain features present in the image. The image energy U image is expressed as a weighted 

combination of three energy functionals that attract the snake to edge features: the line 

energy U1ine = !(x,y) causes the snake to be attracted either by higher or lower grey levels 

in the image I depending on the sign of the weight w 1 ; when w 2 > 0 , the edge energy 

U edge = - IV!(x,yt causes the snake to be attracted to pixels at which the image gradient is 

large; the termination energy Utcrm is the curvature of the level contours in a smoothed 

version of the image, and thus when w3 ~ 0 causes the contour to be attracted towards line 

terminations. 

The snake approach uses a technique called energy minimisation that causes it to change 

shape in order to minimise Us. Kass et al. (1988) present an energy minimisation 

procedure, and the mathematics behind it in detail in the appendix to their paper. 

From now on we shall assume that a(s) =a and fJ(s) = fJ . From (5 .1) and (5.2) we have 
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us = f~ uint { v(s)} + u ext { v(s)} ds 

(5 .6) 

where 

dx(s) dy(s) d 2 x(s) d 2 y(s) 
x = x(s) y = y(s) x 1 = -- y 1 = -- x 11 = y 11 = . ' ' ds ' ds ' ds2 

' ds2 

We now want to minimise the energy function Us. Let 

f(x ,y, X 1
,)1

1
' X

11,y") = ~ (x 1 2 + y'2
) + ~ (x" 2 + )' 11 2

) + uext (x,y)' (5 .7) 

and consider 

Us = J~ f(x,y, X 1,y', x",y")ds. 

Let .X and y be the optimising functions and consider a small perturbation 

x(s) = x(s) + A7J(s) 

y(s) = Y(s) + 8p(s) 

where A, 8 E 91 . We constrain 1J(s) and p(s) so that 

17(0) = 77(1) = 77'(0) = 1}
1(1) = 0, 

p(o) = p(1) = p'(o) = p'(1) = o. 

Now think of U as a function of A and 8 : 

(5 .8) 

(5 .9) 

(5 .10) 

(5 .11) 

(5 .12) 

U(A ,8) = f~ J(x + A1J, y + 8p, x' + A17 1
, y~ + 8p', x" + A1J", y~~ + 8p11 )ds (5 .13) 

We want the minimum to occur when A= 8 = 0 , that is, we require 
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(oU) = f[_(OJ) +17·(0J) +ry"(_!f_) Jds = O (5 .14) 
OA ..l=8=0 O T'\. a ..l=O=O a 1 

..l=o=O a 11 

..l=O=O 

and 

( oU) = f [p(Oj) + p'( Of) + p"(_!f_) ]ds = o 
OO l=8=0 O ry ..l=8=0 ry ' ..l=o=O 0!" l =O=O 

Note that the partial derivatives in the above two functions are calculated at the optimising 

functions x and y . 

By condition (5.11) and by integration by parts, we have 

I (OJ) I d (OJ) 
f o 17' a' l=O=O ds =-f o 17 ds a' ..l=8=0 ds 

(5 .15) 

and 

" _'<!_ ds = - ·- _'<~_ ds I ( ;¥ ) I d
2 

( ;¥ ) 

fo 17 a " l=a=O f o 17 ds2 a" A=D=O . 
(5 .16) 

Hence, from (5 .14), 

(au) 11(0J) d (Of) d
2 

( Of) J - = l - --- +- -- ds =O 
OA l=O=O O a ).=8=0 ds a 1 

..l=o=O ds
2 a " ..l=o=O 

(5 .17) 

This holds for all ry(s) such that 7~0) = ~l) = ry'(O) = 17'(1) = 0 . 

We now prove that 

(Of) d ( OJ) d
2 (Of) J(s) = - -- - +- - = 0 

a ..l=o=O ds a ' l =o=O ds
2 a" l =8 =0 

Suppose that there is a point 4 such that J( 4) > 0. By continuity, J(s) > 0 must bold for a 

range of values [ 4o, 41] say including 4. Now take the function 17 to be such that 
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This means that 

1J{s) >0 whens E [~0 , 4\], 

1J(s) = 0 WhenS ~r~O> ~l]. 

s; 7J(s)1(s)ds > 0 . 

This is a contradiction since we know from ( 5 .17) that s; 7J{ s )1( s) ds = 0 holds for any 

function 7J(s) that satisfies (5 .11). Hence there is no point ~ such that 1(~) > 0. A similar 

argument gives that there is no point ~ such that 1( ~) < 0. Hence, we conclude that 

.!(s) = 0 , that is 

(iJf) - !!_(!L) + £(!L) = 0 . 
a A.=8=0 ds a' A.=8=0 ds2 a" A.=8=0 

(5 .18) 

A . .l . h (8U) 0 . suru ar argument Wit - = g1ves 88 A.=8=0 

(5 .19) 

Accordingly, from (5 .7), (5.18) and (5 .19), we have 

(5.20) 

(5.21) 

Equations (5 .20) and (5 .21) are independent Euler-Lagrange equations; see Synge and 

Griffith (1959) for a definition of the Euler-Lagrange equation. 
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Since in practice the contour v(s) = (x(s) ,y(s)) is defined at a finite number of points 

v1 = (x1,y1),i = 1, ... , n , equations (5 .20) and (5 .21) have to hold at all these points. Now 

(5.22) 

and 

(5 .23) 

where h ---+ 0. Let Fx(i) equal the right side of (5 .22) and Fy{i) equal the right side 

of (5.23). 

For our application, we consider a closed curve defined by the points 

v1 = (x1 ,y 1 ) , i = 0, .. . , n , by linking v0 and v" : v0 = V
11

• For easy of notation let v _1 = V
11

_ 1 , 

V
11

+ 1 = v1 and v ll+ 2 = v2 . At the point (xi-112 ,y1_112 ) , that is the midpoint between points 

(x1_ 1 , y1_ 1) and (x1 , y 1 ) , we may approximate 

dxl ~ change inx _ X1 - X1_ 1 _ ( _ ) 
~ - - n x . x . 1 . 

ds xi-1,
2 

change in s 1 I n ' ,_ 

Hence 

change in -~x-5 ~''"" :I.,_,., 
~ = 

change ins lln 

Similarly 
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. d2 x ~ 
d 2 x 

d3x 
changem -

2 ds2 2 

ds x, x,_. 
~ = 

ds3 change ins 1 I n x,_,, 

and finally 

h . d3x 
d 3x d 3x 

d 4x 
c angem -

3 ds3 ds3 

ds XI +Il l -'1- 112 
~ = 

ds·4 change ins 1 In x, 

From (5 .22) and the above calculations we obtain 

(5 .24) 

as the discretized version of equation (5.20), and, similarly, 

FAi) - an 2 (yi+l - 2y; + y,_,) + ,Bn4 (Y;+2 - 4yi+l + 6y; - 4y;_1 + y;_2 ) = 0, i = I, ... , n 

(5 .25) 

as the discretized version of equation (5 .21). Equations (5 .24) and (5 .25) can be written in 

matrix form as 

{

Ax + Fx(x ,y) = 0 

Ay+ Fy{x ,y) = 0 

where A is a pentadiagonal banded matrix, x and y are position vectors: 

x, y, 

x2 y2 
x = y= 

x, Y, 

and F x and F Y denote the vectors of forces at these points v; , i = 1, ... , n : 
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(5.27) 



F.(l) 
F.(2) F..(x,y) = : , 

Fx (n) 

Equations (5 .26) and (5 .27) can be solved by an iterative algorithm - Euler's method; see 

Burden and Faires (1989), pp. 225-232. Let (x0
, / ) be an initial contour, then Euler' s 

method proceeds iteratively by letting 

(5.28) 

(5.29) 

for t = I, 2, .. . , where y is a constant. As t ~ oo, the contours ( x 1 
, y 1

) tend to a contour 

that corresponds to a local minimum of Us. According to our experience, if the image 

compnses m1 x m2 pixels the value of r can be chosen in quite a wide range between 

~ m1 x m2 and m1 x m2 . We remark that Burden and Faires ( 1989) work with h = _!_ 
r 

which they refer to as the step size. 

5.2 The behaviour of the snake model 

The snake algorithm that we have just discussed is somewhat different from traditional 

statistical image analysis methods, such as those presented by Geman and Geman (1984), 

Besag ( L 986), and others. The snake model originates from mathematical physics where 

the forces, energy and method for solving the Euler-Lagrange equation were introduced. 
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Since the energy function is not concave, the snake algorithm finds a local minimum of the 

energy function. Finding the global minimum of the energy does not necessarily have a 

meaning (see Cohen and Cohen, 1993). For example, if ( x m, y m) is a point of the plane 

where U ext has a global minimum, the constant curve v(s) = (xm,Ym ) is a global minimum 

for the energy with periodic boundary conditions. 

Kass et al. (1988) did not present details of the convergence properties of their snake 

algorithm. Instead, they stopped iterating when the difference between two successive 

contours becomes sufficiently small; that is, given a fixed c > 0 , if 

11 

~( 1 1-1)2 ( 1 1-1 )2 L X; - X; + Y; - Y; < G 
i= l 

(5 .30) 

then stop iterating and define the final contour (x,y) to be (x1 
, / ) . 

For the ultrasound fetal head image shown in Figures 3.1 and 1.2(a), we detected the head 

shape well using the kernel algorithm described in Chapter 3. We felt that the result 

obtained was especially good since part of the head outline had almost been completely 

obliterated. Figure 5. 1 illustrates the results that we obtained by applying the snake 

algorithm of Kass et al. ( 1988) to this ultrasound image. Note that in this chapter the grey 

levels of this ultrasound image are standardized. The weights a(s) and fJ(s) of the 

derivatives in (5 .2) were taken to be constant. In the external energy (5.3), we used only 

the image energy term, and in the image energy term (5.5) we did not need the termination 

term uterm because our problem is to find a closed shape without line terminations. 
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Figure 5.1 The results obtained by applying the snake a lgorithm to the ultrasound 

image of a feta l head. (a) An initial contour. This provides a poor fit to the head 

shape at its left and right sides. (b) The fina l contour obtained from the initial 

contour (a). (c) Another initial contour. This is much closer to the shape of a head. 

(d) The final contour obtained from the initial contour (c). 

Figure 5.1(a) presents an initial contour for the snake algorithm. This contour was placed 

by hand on the points where the outline is obvious. We supposed that we did not have 

knowledge about the true shape so that we just gave straight lines for the left and right 

sides where the outline has almost been obliterated. We experimented with various 

parameters in the snake model defined by (5.1) to (5 .5), and found that the best result was 

obtained by using a = 1x 10-6
, /3 = 0, w1 =-1, w2 =2 and y= 100 . This result is 
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shown in Figure 5.1 (b). The algorithm was terminated when the stopping condition (5.30) 

was met with & = 0.01. We see that the snake algorithm performs well but the left and 

right sides of the head shape are not recovered. The reason for this is that the initial 

contour is not close enough to the true edge of the head shape with the result that the 

contour is not attracted by it. 

Because we really do have knowledge about the head shape, we can pick an initial contour 

that fits better at the left and right sides of the image in the hope that this contour will lead 

to a better fit in these regions. The contour shown in Figure 5.l(c) is the initial contour 

that is thought to be closer to the edge of the head shape than the previous initial contour. 

The result of applying the snake algorithm using the san1e parameter values as before is 

shown in panel (d) of Figure 5.1. We see that the contour almost remains at its starting 

position at the left and right sides due to the lack of edge information in these two parts. 

Overall the result seems very good. 

The original energy term in (5.5) is defined as V edge= -l'VI(x,y)l 2 
and is designed so that 

the snake is attracted to pixels at which the image gradient is large. However, in noisy 

images there may be many pixels at which the gradient is large but which do not 

correspond to real edges. In order to overcome this problem, we may use a smoothed 

version of the image in the definition of U edge. A similar idea was applied by 

Ca1my (1986) in the Canny filter, which is really the Prewitt filter applied to a smoothed 

version of the image; see Glasbey and Horgan (1995). Let I, be the smoothed version of 

the image I. We now define the edge energy to be uedge = -IVI,(x,yW. 

We now re-implement the snake algorithm using this definition of the edge energy in (5.5) 

with Is equal to the median smoothed version of the fetal head image. The median 
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smoothing operator replaces the grey level at each pixel with the median of the grey levels 

at pixels in a (2m+ 1) x (2m+ 1) centred on the original pixel, where m is a positive 

integer. Glasbey and Horgan (1995) presents details of the median smoothing operator, 

and other smoothing operators. The choice of m depends on the size of image; taking 

m= 1 is appropriate for our requirement of reducing the effect of noise on the gradient, 

whilst not losing too much edge information. Figure 5.2(a) and (b) present the results 

obtained starting from the initial contour shown in Figure 5.1(a) and (c), respectively. For 

the purpose of comparison, the results shown in Figure 5.1 (b) and (d) are also presented in 

Figw·e 5.2 by the dashed line. 

~ 

~ 

0 ... 

g 

0 
N 

~ 

• J I 

0 

0 10 20 30 40 50 60 0 10 20 30 40 50 60 

(a) (b) 

Figure 5.2 Results obtained by calculating the edge energy using the smoothed 

version of the head image. (a) Starting from the initial contour shown in Figure 5.1 (a). 

(b) Starting from the initial contour shown in Figure 5.1 (c). The dashed line 

corresponds to the contours shown in panels (b) and (d) ofFigure 5.1 . 
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The results obtained using the two different definitions of Uedge are very similar. It does 

seem, however, that a slightly smoother contour is obtained when U edge is based on the 

median smoothed image. 

From Figure 5.2 we may draw the same conclusion as before, that the result obtained from 

a good initial contour is better than that obtained from a less good initial contour. From 

these and other experiments we believe that the choice of the initial contour is very 

important in the snake algorithm as proposed by Kass et al. (1988). In order to obtain a 

good final contour, the initial contour should be as close as possible to the shape, or to 

what we believe that the shape should be. 

In Kass et al. (1988) there is no discussion about the choice of the snake parameters. In 

our experience, a good choice of parameters is essential for a good final contour. High 

values of fJ cause the contour to shrink rapidly to a point. High values of a cause the 

contour to become a very elliptic shape no matter how the initial contour is defined. 

Generally, if there is a lack of edge information, the shape will shrink on itself. 

5.3 Discussio11 about s11ake models 

Since Kass et al. (1988), many different implementations of snake models or similar active 

contour models have been proposed in an attempt to solve some of the shortcomings of the 
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original snake model or to provide better models. In this section, we introduce two 

approaches: the dynamic programming active contour model and the balloon model. 

5.3.1 Dynamic programming active contour model 

Suppose there are n points on the contour. If each of these points is allowed to take only 

M possible positions in the plane corresponding to the centre ofpixels, then the number of 

possible contours is finite. In this situation, we could find the contour that corresponds to 

the global minimum of the energy function by exhaustive enumeration. However, this is 

impossible in practice because of the huge associated computation cost. A practical 

method for finding the minimising contour based on dynamic programming is given by 

Amini, Weymouth and Jain (1990). These authors also discuss how dynamic 

programming additionally allows hard constraints to be enforced on the behaviour of the 

solution. 

The following is a brief description of the dynamic programming approach presented by 

Amini et al. (1990). 

First, the derivatives in (5.2) are discretized to obtain 

Uino(v;)=~(an 2 1v; -vi-11
2 

+Pn
4 1v;+ 1 -2v; +v;_1n, i=l, ... ,n. 

This enables the integral in (5.1) to be discretized as 
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n 

Us= Us(vl' v2 , ... , v,) = L {uint (v;) + u ••• (v; )} 
i=l 

If we let 

then the problem becomes minimising a function of the form 

" 
Us(v 1 ,v2 , ••• ,v.)= LV;(v;_1 , v;, vi+1). 

(5.31) 
i=-1 

Unfortunately, dynamic programming cannot be applied directly to this minimisation 

problem because of the restrictions imposed by having a closed curve, namely v0 = v, and 

v,+
1 

= v
1

• To overcome this Amini et al. (1990) slightly modify the above minimisation to 

that of minimising a function of the form 

n-1 

U(vro v2 , ... , v,) = L U;(v;_ 1, V;, vi+ I). 
i-=2 

(5.32) 

This is an unrestricted minimisation over (v1,v2 , ••• ,v,) and so standard dynamic 

programming can be applied. A closed curve is obtained by joining v 1 to v •. 

Therefore what we want is to find ( v;, v~ , ... , v;) such that 

(v;, v~, ... , v;) = arg min U(vl' v2 , ••• , v,). 
Vt,Vl , ... ,V11 

Throughout we exclude self-intersecting contours. 

To solve this minimisation problem, a sequence of functions of two variables is generated: 
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(5.33) 

(5.34) 

(5.35) 

(5.36) 

where each point v; can take on M possible values. At stage i , for each of the M x M 

possible pairs of (vi+l, v;+J, find the value of the point v; that minimises 

and record s;(vi+i' v;+ 2). The minimum value of the energy function can now be found 

to be 

The minimising point { v;, v;, ... , v~) = arg m in U( vi' v2, ... , v") can be found by working 
\'t,V2 , ... ,VII 

backwards. First find {v;_p v;) such that 

(v;_1, v;) = argmins._2(vn-P v.). 
¥ 11 _ 1 , v, 

Then from s._2 { v~-P v~) find v;_2 that makes (5.36) hold, and so on. Finally, from 

s1(v;, v;) find v; that makes (5.33) hold. 

The above procedure leads to a global minimum of U. However, in practice M is very 

large with the result that the above minimisation procedure is not computationally feasible. 
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Accordingly, Amini et al. (1990) restrict their minimisations so that v;, for example, takes 

positions in the set comprising the current position of v; and its eight first and second 

order neighbouring pixels. Clearly, this restriction will lead to a local minimum of U 

since the complete space is not explored. Because of this the whole procedure outlined 

above is repeated a number of times until the value of U no longer falls. Each repetition is 

referred to as an iteration by Amini et al. (1990). Convergence is guaranteed since the total 

energy of the contour is reduced (or remains the same) at each iteration. 

Although the above dynamic programmmg approach ensures the convergence of the 

energy minimisation process, it requires large storage requirements. For example, for the 

case when m possible choices are allowed for each point V;, then the time complexity for 

each iteration of the algorithm is o(nm3
), and the storage requirement is o(nm 2

) memory 

elements. 

5.3.2 Balloo11 model 

Cohen (1991) and Cohen and Cohen (1993) present an improved active contour model that 

they call the balloon model. In the snake model, F(v)=-(Fx(x,y),Fr(x,y)f from the 

Euler-Lagrange equations (5.26) and (5.27) can be thought of as an external force applied 

to the curve. Let V P(v) = (F, (x,y), Fy{x,y) r. In order to find "good" edge points and to 

ensure a connected contour, Cohen (1991) introduced an external constraint force that 

inflates or deflates the snake. The new force defined by Cohen ( 1991) is 
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'VP 
F(v) = k,n(s)- k IIVPII 

where n(s) is the balloon force, that is the normal unitary vector to the curve at point v(s), 

and k, is the amplitude of this added force. The parameters k1 and k are chosen to be of 

the same order, which is smaller than the size of a pixel, and k is slightly larger than k 1 so 

an edge point can stop the inflation force. If the sign of k1 or the orientation of the curve is 

changed, the first term ofF will deflate the contour instead of inflating it, or vice versa. 

We believe that the dynamic programming algorithm and the balloon model can improve 

the original snake model. It would be of interest to compare the behaviour of the dynamic 

progran1ming algorithm or the balloon model with that of the original snake model in our 

case, although we have not done this. 

In the next section, we will use simulated annealing and ICM to minimise the energy 

function employed by the snake model. We will compare the results obtained with those 

presented in Section 5.2. 

5.4 Simulated amzealilzg a11d !CM applied to the s11ake model 

We now consider the use of simulated annealing and ICM for minimising the energy 

function employed by the snake model. If we use simulated annealing and ICM to 

minimise the energy, we do not need to solve the Euler-Lagrange equations (5.26) 

and (5.27). Simulated annealing allows jumps out of local minima of the energy function 

to be made whereas under ICM (applied after simulated annealing) the energy only 
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decreases; see Chapter I and Chapter 2 for more details about simulated annealing and 

ICM methods. 

In our application of simulated annealing, the logarithmic temperature schedule 

if { log(T + 1)- log2} 
r==-,--.,-----:-'-------,.-.,--------'.,--------,---,-

' {/log( T + I) - f log 2} + (! - 1) log(t + 1) 

was employed with temperature f for the first update, temperature I for the last update, 

and the finite total number of iterations T. See Section 1.3.4 for more details of 

temperature schedules m simulated annealing as discussed by Stander and 

Silverman (1994). 

At each iteration of simulated annealing, one point chosen in turn from the contour points 

is allowed to change its position to a number of candidate points or remain in its current 

position. The candidate points for a selected point are those first and second order 

neighbours to which a move may be made without destroying the nature of the shape. For 

example, if a move to a neighbouring point results in the contour intersecting itself, the 

neighbouring point is not counted as a candidate point. 

Suppose there are nb candidate points for the selected point b. Let S be the current 

contour and let the candidate contours obtained by moving b to one of the associated 

candidate points be SP S2 , ••• , s... Simulated annealing samples one of the contours 

where P,, (S) is the distribution of contourS with temperature r, at iteration t: 

P,, (s)~exp(- ~~). 
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The sampled contour is then set to be the current contour S. Note that p, is defined up to 
I 

a constant of proportionality known as a nommlising constant, which, because of the size 

and complexity of the set of all contours, is unknown in practice. Fortunately, we do not 

need to know the normalising constant for sampling because it cancels out in the 

probabilities proportional to Pr, {S1 ), Pr, (S2 ), ... , Pr, ( s •• ), Pr, {S}. 

A sweep comprises visiting all the contour points in turn. If the number of sweeps that 

have been performed exceeds a given number, we stop the simulated annealing algorithm, 

and apply ICM. 

ICM is an algorithm that does not increase the energy. Instead of sampling one contour 

from S1 , S 2 , ... , s. , S, the ICM algorithm chooses the new contour to be the one that has • 

the lowest energy. We now briefly describe the details of our implementation of ICM. 

Suppose there are nb candidate points for the selected point b and S is the current 

contour. Let the candidate contours obtained by moving b to one of its candidate points be 

Sl'S2 , ... ,S •. Calculate the energies Us, Us, ... , Us , Us andchoosethecontourwith 
b I 2 fib 

the lowest energy as the new current S. If there is no change between two successive 

sweeps, ICM has converged. Because ICM never increases the energy, it is guaranteed to 

converge to a local minimum of the energy in a finite number of sweeps. 

We now use simulated annealing and ICM to minimise the energy function we used in 

Section 5.2. The edge energy function is calculated using the median smoothed version of 

the image. For simulated annealing we set T = 900, f = 2 and I= 0.1. 

In Figure 5.3 we present the results obtained by applying the simulated annealing plus ICM 

algorithm to the head image using the initial contours shown in Figure 5.1 (a) and (c), 
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respectively. In Figure 5.3 the dashed line represents the result obtained from the snake 

algorithm as shown in Figure 5.2. The fmal contour in panel (a) is much better than the 

one shown in Figure 5.2(a), especially on the left and right sides, whereas the final contour 

in panel (b) is almost same as the one shown in Figure 5.2(b) although a little rougher. 

0 10 20 30 40 50 60 0 10 20 30 40 50 60 

(a) (b) 

Figure 5.3 Results from the simulated annealing plus ICM algorithm. (a) Starting 

from the initial contour shown in Figure 5. l(a). (b) Starting from the initial contour 

shown in Figure 5.1(c). The outlines presented by the dashed line are the results 

obtained from the snake algorithm as shown in Figure 5.2. 

We also perfatmed the simulated annealing plus ICM algorithm with uedge = - IVI(x,yf' 

where I is the original unsmoothed image. The results appear slightly rougher than those 

obtained by with uedge = - ivis(x, yf. 
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It is of interest to compare the energy of the final contour obtained by the algorithm 

suggested by Kass et al. (1988) with the energy of the final contour obtained by simulated 

annealing plus ICM. Table 5. 1 gives the initial and final energies based on the results that 

have led to Figures 5.2 and 5.3 for both algorithms and both initial contours. 

Table 5.1 Final energies for the algorithm due to Kass et al. (1988) and 

the simulated annealing plus ICM algorithm based on the results that led to 

Figures 5.2 and 5.3 

Initial contour (energy) 
Algorithm Figure 5.1 (a) Figure 5.1(c) 

(-0.6840) (-2.2482) 

Kass et al. (1988) -38.0290 -36.9765 

Simulated annealing + ICM -97.8373 -98.1155 

From Figure 5.3(a) and Table 5. 1, we see that the algorithm due to Kass et al. (1988) 

applied to the initial contour presented in Figure 5.1 (a) led to a worse result with higher 

final energy than simulated annealing plus ICM. From Figure 5.3(b) and Table 5.1, we see 

that the algorithm due to Kass et al. (1988) applied to the initial contour presented in 

Figure 5. l (c) led to a smoother result but with higher final energy than simulated annealing 

plus ICM. We have already said that the initial contour presented in Figure 5.1(a) fits 

badly at its left and right sides, while lhe initial contour presented in Figure 5.1 (c) provides 

a better fit. 

For both initial contours the simulated annealing plus ICM algorithm produces a final 

contour with energy lower than that of the final contour produced by the algorithm due to 

Kass et al. (1988). The simulated annealing plus ICM algorithm is able to make larger 
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changes to the initial contour shown in Figure 5.1(a) than the algorithm due to 

Kass et al. (1988), leading to a possibly better final contour. 

5.5 Simulation study: comparison between the kernel algorithm, the snake algorithm 

and the simulated annealing plus /CM algorithm 

The most important difference between the snake model and the kernel method defined in 

Chapter 3 is that a closed curve always results from the former algorithm, but cannot be 

guaranteed when applying the latter algorithm if the shape is defined by a thin edge only. In 

order to compare the algorithms in a simulation study, we consider a shape which is 

defined by an edge that is two pixels thick. The original image is shown in Figure 5.4(a). It 

is almost the same as the image shown in Figure 3 .6(a) except that the edge is a little 

thicker. 

For our simulation study we generated noisy images by adding independent Gaussian noise 

N( 0, K) to the true image shown in Figure 5.4(a). For the kernel algorithm, the starting 

point was selected randomly from the outer true edge and we set a- 0 = 1, a- 1 = 4 and 

a-2 = 20 according to experience and the study into the effect of the kernel parameters 

presented in Chapter 4. For the snake algorithm and the simulated annealing plus ICM 

algorithm, the initial contour was chosen to be very close to the outline of the true shape in 

order to reduce the effect of higb noise level and to avoid meaningless shapes resulting. 

This initial contour is shown by dashed line in Figure 5.4(b). The parameters for the snake 

algorithm were set to be a = 10-6
, f3 = 10-5

, w 1 = - 1, w 2 = 2, w 3 = 0 and y = 100 by 

experience. The parameters for the simulated annealing plus ICM algorithm were a = 0.1 , 

f3 = 0.1 , w 1 = - 1 , w 2 = 2 , w 3 = 0 , f = 2, I = 0.1, T = 600 , and a logarithmic temperature 
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schedule was employed. For both the original snake and the simulated annealing plus ICM 

algorithms, a and f3 were selected in order to optimise the results. The reason for the 

difference in parameters is connected to the poor performance of the original snake 

algorithm as far as minimising the energy Us is concerned. For both the snake and the 

simulated annealing plus ICM algorithms, the edge energy function is calculated using the 

median smoothed version of the image. 

0 10 20 30 40 50 60 0 1 0 20 30 40 50 60 

(a) (b) 

Figure 5.4 (a) A shape defined by an edge that is two pixels thick. (b) The initial 

contour (dashed line) and the outline (solid line) ofthe true shape shown in (a). 

For the purpose of comparison, all three algorithms were applied to each noisy image. We 

simulated 10 noisy images for four noise levels K = 0.25, 0.5, 1.0 and 2.0 . The mean and 

standard deviation of the number of pixels that differ between the true shape and the 
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estimated shape are presented in Table 5.2 for the three algorithms and for the four 

different noise levels. When the kernel algorithm was employed, the algorithm failed to 

produce a closed curve on one occasion when K = 1 , and on two occasions when K = 2 . 

Table 5.2 Mean (standard deviation) of the number of pixels that differ 

between the true shape and the estimated shape obtained by the kernel, 

snake and simulated annealing (SA) plus ICM algorithms 

Variance Size of Algorithm 
K sample Kernel Snake SA +I CM 

0.25 10 25.2 (3 .61) 25.3 ( 8.00) 30.1 (6.10) 

0.50 10 33 .6 (4.38) 36.9 (10.68) 35.6 (7 .04) 

1.00 9 37.0 (8 .03) 42.9 ( 7.30) 37.2 (3.35) 

2.00 8 36.6 (9.49) 64.0 ( 6.48) 35.6 (6.55) 

From Table 5.2, it seems that there is no real difference among the three algorithms 

when K is small, but for higher values of K the results of the snake algorithm seem worse 

than those of the other two algorithms. In order to test if there is a significant difference 

between any two algorithms, a paired t-test was employed. The means of the difference 

between the algmithms are presented in Table 5.3, and the symbol * is used to indicate that 

there is a statistically significant difference (p < 0.05) between the two algorithms 

considered. When K = 0.25, the perforn1ance of the simulated annealing plus ICM 

algorithm is significantly worse than that of the kernel algorithm (p = 0.0069, one-tailed 

test). When K = 1.0 , the performance of the snake algorithm is significantly worse than 

that of the simulated annealing plus ICM algorithm (p = 0.0293 , one-tai led test). When 

K = 2.0, the performance of the snake algorithm is significantly worse than that of the 
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kernel algorithm and the simulated annealing plus ICM algorithm ( p < 0.00005, one-tailed 

test). 

Table 5.3 Mean (standard deviation) of difference. The symbol * is used to 

indicate that there is a statistically significant difference (p < 0.05) between the 

two algorithms considered 

Variance Size of Between algoritluns 
K sample Snake-Kernel (SA +I CM)-Kernel (SA+ICM)-Snake 

0.25 10 0.1 ( 7.64) 4.9 (5.09)* 4.8 (9.92) 

0.50 10 3.3 (10.36) 2.0 (7.67) -1.3 (8.81) 

1.00 9 5.9 (11.42) 0.2 (8.64) -5.7 (7.71)* 

2.00 8 27.4 ( 7.73)* -1.0 (8.05) -28.4 (3.85)* 

In the above implementation, the initial contour is very close to the outline of the true 

shape. If the initial contour is far away from the true shape, a worse result is obtained from 

the snake algorithm. This is particularly the case for high value of K. 

We finish by remarking that even when the edge of the true shape is two pixels thick, the 

kernel algorithm failed to produce a closed curve on three occasions. However, for these 

cases the value of K was relatively high, K = 1 and K = 2 . 
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5.6 Couclusions 

Our general conclusions from the above analyses are 

• A smoother contour usually results when U edge in the snake model is calculated using 

the smoothed version of image. 

• Lower energy does not necessarily mean a better estimate. 

• In order to obtain an accurate estimate using the algorithm due to Kass et al. (1988), the 

initial contour must be very well chosen. 

• If we lack edge information but have a good initial contour, then the algori thm due to 

Kass et al. (1988) may give a final contour that is better than that obtained by the 

simulated annealing plus ICM algorithm. On the other hand, if we lack edge 

information and we are unable to supply a good initial contour, the simulated annealing 

plus ICM algorithm wi ll leads to a result that generally has lower energy than that 

obtained by the algorithm due to Kass et al. (1988). 

• The kernel algorithm introduced in Chapter 3 usually perfom1s well provided it 

produces a closed curve. However, for higher noise levels and thinner edges, there is a 

risk that the algorithm will fail to produce a closed curve. 

We feel that it would also be interesting to compare the behaviour of the dynamic 

programming alg01ithm with that of the simulated annealing plus ICM algorithm. We 

would also like to work with the balloon models. We hope to perform this research in the 

near future. 

1 6 8 



Conclusions and Suggestions for Further Work 

In this thesis we have introduced, developed and discussed statistical image analysis 

techniques which can be applied to data from medical ultrasound images. We have worked 

with two types of image: in the first a degraded outline of the shape is visible, whilst in the 

second the data are a corrupted version of the shape itself In Chapter 2 we considered the 

algorithm proposed by Storvik ( 1994) for images of the second type and concluded by 

means of simulation studies that the algorithm can be speeded up and its performance 

improved by using a cascade based simulated annealing approach. The kernel function 

algorithm developed and discussed in Chapter 3 and Chapter 4 al lows the outline of shape 

in images of the first type to be recovered when parts of it are almost completely obliterated 

by noise. Other algorithms often do not allow such outlines to be identified and tend to be 

more complicated. In Chapter 5 we showed that the ' snake' methodology applied to 

images of the first type is very sensitive to the initial estimate of the shape to be detected if 

the original fitting algorithm is used, but that this sensitivity is less marked if simulated 

annealing followed by ICM is employed. 

There are several aspects of the work in this thesis which could be further developed. We 

now know that it is possible to run the kernel algorithm and the modified kernel algorithm 

much more quickly by using the same values of the kernel function or the detection function 

at all candidate points each time we attempt to identify a new edge pixel. We also hope to 
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re-code all the programs in C++ . This would provide us with a better idea about the 

possibilities for reaJ time detection, an issue which is of interest to clinicians. 

Other suggestions for further work include developing the kernel algorithm by using the 

bent kernel function; see Section 3. 9 for more details. In fact the kernel algorithm does not 

work weJI on highly degraded images of the first type with a thin edge, and the modified 

kernel algorithm performs badly on the duck image of Pievatolo and Green ( 1998) 

presented in Figure 3.26. Further simulation studies aimed at investigating the interaction 

of the kernel parameters a- 0 , a- 1 and a- 2 , by fixing one parameter and allowing the other 

two parameters to change together, should be performed. We also plan to adapt the snake 

methodology so that it can be applied successfully to images of the second type. So far we 

have detected shapes in these images by means of our modified version of Storvik' s 

algorithm and the modified kernel algorithm. 
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