
IMAGE ANALYSIS AND PRENATAL SCREENING

by

JIAN'AN LUAN

A thesis submitted to the University of Plymouth

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Mathematics and Statistics

Faculty of Technology

August 1998

I REfERENCE ONLY I
·Item No.

Date 2 4 SE P 1998 ,.r

Abstract

~-

IMAGE ANALYSIS AND PRENATAL SCREENING

ITAN'ANLUAN

Information obtained from ultrasound images of fetal heads is often used to screen for

various types of physical abnormality. In particular, at around 16 to 23 weeks' gestation

two-dimensional cross-sections are examined to assess whether a fetus is affected by Neural

Tube Defects, a class of disorders that includes Spina Bifida. Unfortunately, ul~rasound

images are of relatively poor quality and considerable expertise is required to extract

meaningful information from them. Developing an ultrasound image recognition method

that does not rely upon an experienced sonographer is of interest. In the course of this

work we review standard statistical image analysis techniques, and explain why they are not

appropriate for the ultrasound image data that we have. A new iterative method for edge

detection based on a kernel function is developed and discussed. We then consider ways of

improving existing techniques that have been applied to ultrasound Images.

Storvik (1994)'s algorithm is based on the minimisation of a certain energy function by

simulated annealing. We apply a cascade type blocking method to speed up this

minimisation and to improve the performance of the algorithm when the noise level is high.

Kass, Witkin and Terzopoulos (1988)'s method is based on an active contour or 'snake'

which is deformed in such a way as to minimise a certain energy function. We suggest

modifications to this energy function and use simulated annealing plus iterated conditional

modes to perform the associated minimisation. We demonstrate the effectiveness of the

new edge detection method, and of the improvements to the existing techniques by means

of simulation studies.

Contents

Abstract

Contents

List of tables arid illustrations

Acknowledgement

Author's declaration

1 Introduction

11

V

VIII

IX

1

1.1 What is the problem? ... ,., l

1.2 Initial idea ... 3

1.3 Traditional image restoration methods , , ... , , 6

1.3 .1 Filters .. 8

1.3.2 Bayesian approach ... IQ

l.3.3 Gibbs sampler and Markov chain Monte Carlo , , lS

1.3.4 Optimisation techniques: simulated annealing and iterated conditional

modes .. 2·1

U.S Reconstruction experiment for the-noisy image z shown in Figure 1.3 24

1.4 Structure of the thesis ... , .. ,., 28

2 Object recognition using simulate() annealing

and ICM with cascade-type blocking 32

2.1 IntrodUction , , .. 32

2.2 Storvik's approach lind object recognition ... 36

2.3 A cascade-type blocking approach and simulated annealing 39

ii

2.4 Simulation study ... 48

2. 5 Application to real data ... 65

2.6 Discussion ... 67

3 Edge detection using kernel functions 69

3. 1 Definition of the kernel function .. 69

3.2 The kernel function ... 72

3.3 The kernel shape detection algorithm .. 76

3.4 A simulation study .. 80

3.5 Modification of the kernel function and refinement of the algorithm 83

3. 6 Application to real data ... 90

3. 7 Discussion about the use of the kernel algorithm for detecting shapes defined

only by their edges .. 94

3. 8 Shape detection using kernel algorithm .. 97

3.8.1 Theidea .. 99

3.8.2 Description of the kernel algorithm applied to shape detection I 02

3.8.3 An attenuated detection function for very noisy images 106

3.8.4 A simulation study ... 112

3.8.5 Simulation study comparing the performance of the modified kernel algorithm

with that ofthe cascade based simulated annealing algorithm study ll7

3.8.6 Application to real data .. ll8

3. 9 Further works ... 120

4 Study of the effect of the kernel parameters 123

4.1 lntroduction .. 123

4.2 The effect of the kernel parameters .. 125

4.3 A probability study .. l33

4.4 Conclusion .. l40

iii

5 Active contour models: the snake model 141

5.1 The description of the active contour model ofKass, Witkin and Terzopoulas (1988)

... 142

5.2 The behaviour of the snake model.. ... 149

5. 3 Discussion about snake models ... 154

5.3.1 Dynamic programming active contour model ... 155

5.3.2 Balloon model ... 158

5. 4 Simulated annealing and ICM applied to the snake model... 159

5.5 Simulation study: comparison between the kernel algorithm, the snake algorithm and

the simulated annealing plus ICM algorithm .. 164

5.6 Conclusions .. 168

Conclusions and suggestions for further work

References

IV

169

171

LIST OF TABLES AND ILLUSTRATIONS

Tables

2.1 Results of applying algorithms with and without cascade and with different cascade

temperature schedules to a noisy image ... 61

2.2 Results of a simulation study for comparing algorithms with and without cascade 63

2.3 Results of a simulation study of edge blocking visiting schedules 64

3.1 Numerical summary of the error made by the estimate using peanut shaped kernel. .. 82

3.2 Numerical summary of the error made by the estimate using banana shaped kemel...85

3.3 Numerical summary of the error made by the estimate using dynamic parametert9 ... 86

3.4 Numerical summary of the error made by the estimate using dynamic parameterst9,

u 1 and u 2 .. 90

3.5 Result of the simulation study for the kernel function algorithm 95

3. 6 Errors for images with different noise levels and blurring bands Ill

3. 7 Results of simulation study for the adjust kernel algorithm 114

3. 8 Results of simulation study for comparing the performance of algorithms 118

5.1 Final energies of the estimates obtained from the snake algorithm and the simulated

annealing plus ICM algorithm .. 163

5.2 Numerical summary of the number of differing pixels from different algorithms 166

5.3 Mean of difference between algorithms .. 167

Figures

I.J Two ultrasound images of cross-section of fetal heads ... 3

1.2 Ultrasound image of a cross-section of a fetal head and results of applying filters4

1.3 Schematic representation of a recording and display system 7

1.4 Part of a pixel grid showing the neighbourhood systems .. I I

1.5 The possible pixel cliques .. 12

1.6 Reconstruction experiment for a noisy image ... 25

1.7 Bar plot of the final energies .. 27

1.8 Ultrasound image of a human ovarian cyst... .. 29

V

2.1 Storvik's potential function v; (x) of the gradient function 37

2.2 Illustration of legal blocks in part of a shape .. 42

2.3 Three cascade temperature schedules47

2.4 A binary image of head shape and its noisy version corrupted by N(0, 1)49

2. 5 Edge estimate by using the three stages cascade based algorithm 50

2.6 Estimated edge and smoothed estimated edge together with the true edge 52

2.7 Plot ofthe value ofthe energy function against update number for Figure 2.5 53

2.8 Edge estimate by using the non-cascade algorithm ... 55

2.9 Plot of the value of the energy function against update number for Figure 2.8 56

2.10 Result of employing the monotonically decreasing linear temperature schedule 57

2.11 Plot ofthe value ofthe energy function against update number for Figure 2.10 58

2.12 Result of employing the cascade stage linear temperature schedule 59

2.13 Plot of the value of the energy function against update number for Figure 2.12 60

2.14 Bar plots of the energies and number of differing pixels ... 62

2. 15 Estimated edge of the human ovarian cyst in ultrasound image 66

3.1 Ultrasound image of a cross-section of a fetal head ... 70

3.2 An example of a kernel function .. 74

3.3 Four kernel functions with different parameters ... 75

3.4 The choice of candidate points .. 79

3.5 The search procedure .. 80

3.6 A simulation study performed on a binary image of an ellipse 81

3.7 The choice of the kernel function in relation to the underlying shape 83

3.8 Estimate using banana shaped kernel function .. 84

3.9 Estimate using banana shaped kernel function and dynamic parameter () 86

3.10 An example of the effect of the parameters .. 88

3.11 Estimate using dynamic parameters (), a 1 and a 2 •........•.•••..•....•........•.••.•......•••.• 89

3.12 Extracted edge in two real examples .. 92, 93

3.13 A binary image of head shape and its noisy version corrupted by N(0, t) 98

3.14 Illustration ofthe break point detection method in 1-D ... 99

3. 15 Illustration of the change point detection method for noisy function in 1-D I 0 I

3. 16 Illustration of the detection function D .. 1 03

3. 17 Five detectors ... 1 03

vi

3.18 Estimate from noisy image shown in Figure 3.13 ... 105

3. 19 A noisy image corrupted by N(0, 3) and the estimated edge 105

3.20 Illustration ofthe blurring detection function in 1-D ... 107

3.21 Estimate from noisy image shown in Figure 3.19 by using blurring technique 109

3.22 Estimates from noisy image shown in Figure 3.13 by using blurring technique 110

3.23 A binary image of an ellipse used for simulation study ... 112

3. 24 Error plot for ten simulations against the width of blurring band 115

3. 25 Estimated edge of the human ovarian cyst ... 119

3.26 A duck image .. l20

3.27 Examples of the bent kernel function ... 122

4 .I A circle image ... 124

4.2 Boxplots of the number of differing pixels for the different noise levels 126

4.3 Boxplots of the standard number of differing pixels for the different radii of the

true circles ... 126

4.4 Boxplots of the number of differing pix.els for different values of u 0 129

4. 5 Boxplots of the number of differing pixels for different values of u 1 .•..•..•••••.•...•. 129

4. 6 Boxplots of the number of differing pixels for different values of u 2•..•.........• 131

4. 7 Boxplots of the number of differing pixels for different values of u 2••........ 131

4. 8 Plots of the probabilities of correct detection for different values of K and u 0 13 5

4.9 Plots ofthe probabilities of correct detection for different values of K and u 1 137

4.10 Plots of the probabilities of correct detection for different values of K and u 2 ... 139

5.1 The results obtained by applying the snake algorithm to the ultrasound image of a

fetal head shown in Figure 3.1 ... 151

5.2 The results obtained by calculating the edge energy using the smoothed version of

the ultrasound head image ... 153

5.3 Results from the simulated annealing plus ICM algorithm 162

5.4 An ellipse shape defined by an edge that is two pixels thick and used for a simulation

study ... 165

vii

ACKNOWLEDGEMENT

I am deeply indebted to Dr Julian Stander for his kindly direction, encouragement,
assistance and advice. I am particularly grateful to him for his patience in reading through
and commenting so helpfully on earlier versions of this manuscript. My sincere thanks also
go to Dr David Wright for bouncing ideas about edge detection off me, and for his unfailing
interest, help and encouragement.

I also thank Dr David Graham and Dr David Wilton for their help with some of the
mathematics.

My special thanks go to my wife Wenting for her love, and to her, my parents and my
brothers for their encouragement and invaluable support throughout my studies.

Finally, I would like to thank the School of Mathematics and Statistics for providing a good
environment for research and the University of Plymouth for financial support.

viii

AUTHOR'S DECLARATION

At no time during the registration for degree of Doctor of Philosophy has the author been
registered for any other University award.

This study was financed with the aid of a studentship from the University of Plymouth.

A programme of advanced study was undertaken, which included a short course on
Computer-Intensive Methods in Statistics organised by the University of Glasgow in 1996,
an Introduction to Markov Chain Monte Carlo Methods organised by the Royal Statistical
Society in 1996, and a course on Teaching Skills for Graduate Teaching Assistants
organised by the University of Plymouth in 1997.

Presentations and publications:

Luan, J., Stander, J. and Wright, D. (1996) The Detection of Shape in Ultrasound Images.
Poster in the Royal Statistical Society International Conference, Surrey.

Luan, J., Stander, J. and Wright, D. (1998) On shape detection in noisy images with
particular reference to ultrasonography. Accepted for publication in Statistics and
Computing.

Conferences attended:

The Royal Statistical Society International Conference, Surrey, UK, 4-6 September 1996.

The Art and Science ofBayesian Image Analysis International Conference, Leeds, UK, 30
June- 2 July 1997.

~(c-.'c-- L t.Lc.-----
Signed

o[5epl~~IJe.r Jq q g
Date .. .

ix

Chapter 1

Introduction

1.1 What is tile problem?

In medicine, information on the shape and size of certain organs is sometimes of great

interest to clinicians. Such information is often obtained by means of ultrasound imaging,

X-ray, X-ray computer tomography (CT), magnetic resonance imaging (MRI) and positron

emission tomography (PET), for example.

Neural tube defects (NTD) is a class of disorders that includes spina bifida, a maJor

physical handicap. Spina bifida refers to a developmental defect of the spinal column in

which the arches of one or more of the spinal vertebrae have failed to fuse together so that

the spine is 'bifid'. The incidence of this condition is approximately I in I ,000 births. The

legs of a spina bifida child may be paralysed so that he/she has to rely on crutches and

callipers or a wheelchair for getting around. Associated brain damage may affect his/her

appearance and speech markedly. Intellectual impairment coupled with the severity of

the physical handicap gives rise to problems connected with the child's education and

later may limit opportunities for further education and employment. A very good reference

to spina bifida and its effects on children, families and society is Anderson and Spain (1977).

Screening is the identification of individuals who may be affected by a certain disease or

anomaly. Screening for NTD is routinely undertaken at 15-23 weeks of gestation. By

definition, screening is not a diagnostic procedure, but one whose results must be confirmed

by an additional investigation. Accordingly, a screen-positive result changes an individual

from being classified as healthy into one requiring further examination. One method of

screening for NTD is biochemical in nature and is based on the level of alpha-fetoprotein in

the blood; see Brock and Sutcliffe (1972) and the UK Collaborative Study on Alpha­

fetoprotein in Relation to Neural Tube Defects (1977). The associated test takes place

between 16-18 weeks of gestation.

Another method of screening is based on an ultrasound examination of the fetus. The

cross-sectional shape of the fetal head in an affected case is often similar to that of a lemon,

whereas in a normal case it tends to be roughly ellipsoidaL When the fetal head is lemon

shaped, the lemon sign is said to be present. Figure I . I shows ultrasound images of two

fetal heads viewed from above. The front of the head is towards the right and the right side

of the head is towards the bottom of the image. The image in panel (a) is from a normal

fetal head and is roughly ellipsoidal, whilst that in panel (b) is from a fetus affected by NTD

and exhibits the lemon sign.

2

(a) (b)

Figure 1.1 Ultrasound images of two fetal heads when viewed from

above: (a) a nonnal head and (b) a head showing the lemon sign

(Nicolaides et al., 1986).

The lemon sign is considered to be the earliest and most easily recognisable marker of spina

bifida. Accordingly, ultrasonographic examination, which is also used to provide an

accurate estimate of gestation age, provides another good discriminator for spina bifida at

16-23 weeks of gestation. For more details, see Nicolaides, Campbell , Gabbe and

Guidetti (1986) . In practice, decisions about whether to classify an individual as screen

positive for NTD are based not only on biochemical marks and the cross-sectional shape of

the fetal head, but also on other information obtained during the ultrasound examination and

on maternal history.

1.2 Initial idea

Because ultrasonography is a cheap, quick, direct and probably safe screening method, it is

considered by some to be the best early method for the detection of NTD; see

3

Nicolaides et al. (1986). However, it is well known that ultrasound images are of relatively

poor quality. Multiplicative and additive high frequency noise, distortions in regions that

are adjacent to the transducer, blmTing of spatial information perpendicular to the direction

of sonic wave propagation, and speckle noise are typical image degradation in ultrasound

unagmg.

0

"'

0 ...

0 10 20 30 40 50 60
(a)

0 10 20 30 40 50 60
(b)

~2J91
(iJ li3 - -

~
0 10 20 30 40 50 60

(c)

Figure 1.2 (a) A real ultrasound image of a feta l head. (b) Result from Prewitt's

filter and (c) result from the Canny fi lter.

A typical example of an u ltrasound image of a fetal head is shown in Figure 1.2(a). This

image has been converted to digital fom1at for further image analysis. Such a digital image

is made up of picture elements or pixels . These are the smallest component of an image.

4

Associated with every pixel is a numerical value that indicates the grey-level at that pixel.

In order to reduce the dark area in the original ultrasound image we have chosen to present

and work with its inverse version in which black becomes white, white becomes black and

intermediate grey-levels are mapped accordingly. We can see that in this ultrasound image

the right and left sides of the cross-section of the fetal head are almost obliterated. Hence,

successful ultrasound screening for spina bifida requires experienced sonographers. There

is, however, much inter- and intra- operator variability even when the sonographers are

experienced, as Roberts, Hibbard, Roberts, Evans, Laurence and Robertson (I 983) discuss.

For these reasons, the development of an ultrasound screening recognition method that does

not rely upon an experienced sonographer is of interest and many scientists including

statisticians have recently begun research into this. Karaman, Kutay and Bozdagi (1995)

propose an adaptive smoothing filter to reduce speckle noise. Matsopoulos and

Mars hall (1994) and Thomas, Peters 11 and Jeanty (1991) try to locate automatically the

fetal head or the fetal femur using mathematical morphology. Kass, Witkin and

Terzopoulos (1988) present an active contour algorithm, known as the snake algorithm, for

finding an optimal contour in a neighbourhood of an initial guess of the solution. A contour

is a closed curve that represents the outline of the cross-section of an object. Although

Kass et al.'s model is not applied to ultrasound images in their paper, it can be used as a

method for edge detection in ultrasound images. Cohen (I 991) and Chalana, Winter Ill,

Cyr, Haynor and Kim (I 996) use the snake model for ultrasound images. Storvik (I 994)

applies an approach based on the minimisation of an energy function by means of simulated

annealing to find ventricle boundaries in ultrasound images. This simulated annealing

methodology was developed in a traditional image analysis context by Geman and

Geman (1984). We will discuss other related work in later chapters.

5

If we can extract the edge of the cross-section of the fetal head and thus its shape directly

from an ultrasound image, then we need a discrimination method to classify the head as

either lemon shaped (possibly affected) or ellipsoidal (possibly unaffected). Wright, Stander

and Nicolaides (1997) present a methodology, based on non-parametric density estimation,

for performing such a discrimination from images of shapes.

1.3 Traditional image restoration met/rml-.

In this section, traditional image restoration methods will be briefly reviewed. These

methods exist because a degraded version of an image is usually observed.

Often a simple model is adopted for the degradation process. Let n be the number of

pixels in the true but unknown image x and let X;, i = I, ... , n, be the grey-level at pixel i

so that x=(x1 , .•• ,x,). Let the data z=(z1> ... ,z") be a degraded version of x that we

observe. Then a simple model connecting z with x is

where the noise 6; at pixel i is distributed according to a N(O,K) distribution and

61> ... , 6 n are independent.

If X; E {0, 1}, the image x can be thought of as being a binary image (black and white),

while if X; E { 0, I, ... , g- I} for g > 2, the image x can be thought of as having g grey

levels, where often g = 256.

6

* Inputx Scanning
system

N(O, 0.25)

Display
system

Output z

Figure 1.3 Schematic representation of the recording and display system, where the

true scene is an image that comprises 50 x 50 pixels and has g = 3 grey levels.

Figure 1.3 shows in schematic fonn a recording and display system. The true input

image x • is shown on the left of the figure. This image comprises 50 x 50 pixels and has

g = 3 grey levels: black (with corresponding value 2), grey (with correspond ing value 1)

and white (with con·esponding value 0). The input is recorded by some form of scanner.

This information is then transfetTed to a display system, but this transfer has degradation

associated with it. Here we assume that this degradation takes the form of the addition of

independent N(0, 0.52
) noise at each pixel. The output from the display system is a noisy

image z , as shown on the right of Figure 1.3. We will consider this image again in a

7

reconstruction experiment m Section 1.3.5. One task of image analysis IS to find an

estimate x of the true image x • by attempting to remove the noise from z .

1.3.1 Filters

Image filters, such as those summarised in Chapter 3 and 4 of Glasbey and Horgan (1995),

are often used in an attempt to remove the noise from z .

Thresholding is a method that first classifies all pixels and then divides an image into regions

or categories, which hopefully correspond to different parts of object or different objects.

Smoothing filters attempt to enhance an image by applying transformations based on groups

ofpixels. A median filter, for example, smooths an image by replacing each pixel value with

the median of the values in a specified local region about that pixel, while a Gaussian filter

smooths an image by replacing each pixel value with a Gaussian weighted mean of the

values at nearby pixels.

Let /;,J denote the pixel values in an m x m image, where (i,J) denotes the pixel located

at row index i and column index j, and let gi.J denote the value at pixel (i,J) after a filter

has been applied. Then the output at pixel (i ,J) from the median smoothing filter of size

(2s+l)x(2s+l) is

g;.J = median{/;+k,J+I : k, I= -s, ... ,s}, for i,j =(I+ s), ... ,(m- s).

8

The weights that define a Gaussian filter are specified in terms of a Gaussian probability

density function:

I { k
2

+ f
2

} wk,1=--exp- ,fork,/=-[3cr], ... ,[3cr],
21rcr 2 2cr 2

where [a] means the integer part of a . If we let s = [3cr], then the output from the

Gaussian smoothing filter of size (2s +I} x (2s+ I) is

s s

g,,j = L :Lwk_,/,+k.j+l fori,J=(l+s), ... ,(m-s).
k=-s 1=-s

The thresholding and smoothing methods can reduce nOise levels in some images so

emphasising objects or object edges. However, these methods usually only work well for

images corrupted by low levels of noise. In our experience they do not perform well for

ultrasound images.

Moreover, most edge detection filters are not very helpful for edge detection in ultrasound

images because of the special nature of the degradation process as described in Section 1.2.

We have applied the Laplacian filter (Giasbey and Horgan, I995, p. 58), the range

filter (ibidem, p. 85), Prewitt's filter (ibidem, p. 87), the Canny filter (ibidem, p. 89) and the

thinning filter (ibidem, pp. I39-140) with little success. Figures 1.2(b) and (c) present the

results of applying Prewitt's filter and the Canny filter; similar outcomes were obtained

when other filters were applied. Rohling, Gee and Berman (1996) discuss problems

associated with using the Canny filter on ultrasound images.

Morphology is an approach to image analysis that is based on the assumption that an image

consists of structures that may be handled by set theory. Erosion, dilation, opening and

closing are the four basic morphological operations and they are most often used for binary

9

Images. Morphological operations can be thought of as being filters and are often

successfully applied to images with low levels of degradation. The opening and closing

operators are often used for smoothing in binary images. It is sometimes useful to apply

morphological operators to smooth the binary results obtained from edge detection

algorithms. For more details of morphological techniques, see Chapter 5 of Glasbey and

Horgan (1995). Examples of applying morphological methods to ultrasound images are

presented by Matsopoulos and Marshall (I 994) and Thomas, Peters II and Jeanty (1991).

1.3.2 Bayesian approach

The Bayesian approach to image analysis can be traced back to Geman and Geman (1984)

and Besag (1986). A commonly held belief about images is that they are locally

homogeneous, that is, 'nearby' pixels are expected to take similar values. We formalise the

notion of'nearby' by introducing the concept of neighbourhood.

Let S = { 1, ... , n} represent the pixels of an image x . The set { 0(/): b(i) ~ s} indexed by

i E S is said to be a neighbourhood system if i ~ b(i) and i E b(J) <:::> j E b(i) for all

i and j E S. In this case b(i) is thought of as the set of neighbouring pixels of pixel i.

Here we are interested in a neighbourhood system with b{i)s of the form

where d 2': I and lli - Jll is Euclidean distance between the centres of the two pixels i and j.

Note that pixels at or near the boundaries have fewer neighbours than interior ones. When

d = I the above neighbourhood system is said to be first-order, that is, the first-order

10

neighbours of a pixel are its four adjacent horizontal and vertical pixels (with appropriate

modifications at the boundaries). When d = 2 the neighbourhood system is said to be

second-order, that is, the second-order neighbours of a pixel are its eight adjacent

horizontal, vertical and diagonal pixels (with appropriate modifications at the boundaries).

Figure 1.4 illustrates both the first-order neighbourhood system (in the top left corner) and

the second-order neighbourhood system (in the bottom right corner).

Given a neighbourhood system a subset c of S is called a clique if any two different

elements of c are always neighbours. We use e to denote the set of all cliques. In

Figure 1.5 we illustrate all the possible cliques corresponding to the neighbourhood systems

illustrated in Figure 1.4.

0 0 o :o :o
....

First-order o :o :o
O ~:t .. t~ o o ~ o ~ o : ·-:-:.;-· : : :

. . . .

O :o :o a : ... ;:::~::: .
: : - : ~~.·?' :

... ·- .. --~- .. . -... -~ . - ... --.- -.. .. -~ ~ -·~ ... ~ .. -. - ~-~ :·· ..
o :o :o Second-order

. . .. ····························· ··············•.... • • # ,

o \o :o ·· \ \·e

Figure 1.4 Part of a pixel grid showing the neighbou rhood systems (Stander, 1992).

11

r:;;l
L::::J

[ili]
[!!!]

[j]
[!]

First-order

Second-order

(and rotations)

Figure 1.5 The possible pixel cliques in the first-order and second-order

neighbourhood systems (Stander, 1992).

It is now possible to construct a prior distribution p(x) on the set of all images as a Gibbs

distribution:

P(X = x) = p(x) = _!_exp{-l:Vc(x)} z cee
(1.1)

where 2 is a normalising constant, and the family {Vc(x), C E e} is referred to as a

potential and is such that each clique potential Vc (x) only depends on those X; with i E c .

The term l:Vc(x) is called the energy fimction. The probability distribution (1. 1) is a
CE~

12

Markov random field with respect to the neighbourhood system { O(i): O(i) c s} . This

means that for all images x that belong to state space X the conditional probability

An example of a prior distribution of the form specified by (1.1) is

p(x) oc exp[-Pl~?.,(jx.- x,l) + Dt/"'{lx, -x11)}] (1.2)

where L indicates summation over first-order neighbours, and L indicates summation
[iJI Q.n

over second-order diagonal neighbours. The function ljJ a.r (u) belongs to the general family

suggested by Geman and McCiure (1987), indexed by two parameters a> 0 and y > 0.

The parameters 13 and D satisfY 13 > 0 and D <:: 0.

From knowledge of the noise distribution, we can write down the likelihood t(zJx) of the

observed image z given the true scene x , for example, the likelihood takes the form

l(zJx) = •12 exp --L(z1 - X1) •
I { I " 2}

(2mc) 2K i=l

(1.3)

Bayes theorem then provides the posterior distribution of an image x given the observed z :

p(xJz) oc t(zJx) p(x). (1.4)

13

With the prior given by (1.2) and the likelihood given by (1.3), the posterior distribution

p(xlz} is a Gibbs distribution based on the same neighbourhood system. We shall write

p(xlz} oc exp{-U(x)}

where U(x) is the (posterior) energy function taking the form:

We may think of p as a smoothing parameter (or smoothness constant). The value of the

parameter D is usually chosen in the interval (0, 1] so that the contribution to the energy

from diagonal neighbours is not greater than that from first order neighbours. Often D is

I
taken to be J2 in order to reduce rotational variability; see Silverman, Jennison, Stander

and Brown(1990). If we set D=O, the diagonal neighbours do not contribute to the

energy, and so, when D = 0 we refer to U as the first-order energy model, otherwise we

refer to it as the second-order energy model.

Finding the maximum a posteriori (MAP) estimate is one method of making inference

about x . The MAP estimate corresponds to the global minimum of the energy function

U(x) over all images x . If the smoothing parameter p = 0, then the second term of (I. 5)

makes no contribution to U and the minimising image is the one in which the value of the

grey level at pixel i is closest to its record z;. We call this reconstruction the maximum

likelihood estimate (MLE). On the other hand, if P is very large, the contribution to U of

the first term in (1.5) is unimportant and so the minimising image is such that the value at

every pixel is the same. The parameter p can be chosen by eye so as to give a

reconstruction that appears good. Further discussion about methods for estimating p when

14

the true scene comprises only two colours (binary image) is presented in Chapter 3 of

Stand er (1992). Thompson, Brown, Kay and Titterington (1991) present a study of

methods of choosing the smoothing parameter for general grey level images. The fully

Bayesian approach assumes that the prior parameter f3 is from a hyperprior, and updates f3

as well as the image x. This approach was considered in the image analysis context by

Heikkinen and Hogmander (1994) working with biogeographic data and later by

Weir (1997) and Higdon, Bowsher, Johnson, Turkington, Gilland and Jaszczak (1997)

working with SPECT data.

1.3.3 Gibbs sampler and Markov clrain Monte Carlo

If the image x comprises n pixels and if each pixel can take one grey level from g possible

values, then the size of the state space X is g" . However, even when there are g = 2 grey

levels and n = I 0 x I 0 pixels, the size of X is still 2 100 > 1.26 x I 030
, with the consequence

that it is impossible in practice to search over all the images to find the global minimum of

the energy function U . Simulated annealing and iterated conditional modes (ICM) are two

optimisation methods that have been applied in statistical image analysis since they were

proposed in the 1980's. In this section we introduce the Gibbs sampler and Markov chain

Monte Carlo methods. We then describe these related optimisation techniques in next

section.

The Gibbs sampler was first used in the image analysis context by Geman and

Geman (1984). We now describe the Gibbs sampler in detail.

15

Suppose we wish to generate a sample from a multivariate distribution

but cannot do so directly. Let n(x;lx51;) denote the conditional density for the component

x; , given the values of the other components x 51;, where S \ i = {J: j E S and j ;t i} . The

Gibbs sampler algorithm proceeds as follows. First select arbitrary starting values

x(o) = (x~o), ... , x~o)) . Then successively draw random samples from the conditional

distribution n(X; lx 51;), i = I, ... , n, according to the following scheme:

(I)
XI from n(X1 1x~}

xPl
2 from n(I (1) (o) (o)) x2 x1 ,x3 , ... ,x,

(I)
x3 from n{ I (I) (1) (o) (o)} x3 x1 ,x2 ,x4 , ... ,x,

ThtscompetesatransttiOn om x - x1 , ... ,x, to x - x1 , ... ,x, . ewt re er . I . . fr (o) - ((o) (o)) (1) - ((I) (I)) W '11 fi

to the n updates that take x(o) to x(ll as an iteration. This cycle of updating one

component at a time is repeated many times producing a sequence x(o), x(ll, ... ,x(1), ... ,

which are realisations of a Markov chain, with transition probability from x(1
) to x(I+I)

given by

(
(1) (1+1)) _ 0· ((1+1)

1

(1+1) (1) . . , ·) px ,X - i'l'X; Xj ,X1 ,j<l, >I.
i=1

16

The methodology of constructing a Markov chain to generate samples from a complicated

distribution 1r, often known up to a constant of proportionality, is referred to as Markov

chain Monte Carlo (MCMC). There exists other algorithms that are based on the MCMC

principle, such as the Metropolis algorithm and Metropolis-Hastings algorithm proposed by

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) and Hastings (1970). For a

general introduction to MCMC, see Gilks, Richardson and Spiegelhalter (1995).

MCMC methods have been used extensively in statistical physics over the last forty years, in

spatial statistics over the last twenty years and in Bayesian image analysis over the last

decade. Recently the literature on this topic has increased rapidly; see Gelman and

Rubin (1992), Geyer (1992), Besag and Green (1993), Smith and Roberts (1993), Besag,

Green, Higdon and Mengerson (1995), Robert (1995), Green (1995) and Cowles and

Carlin (1996) for important contributions. Brooks (1998) provides a tutorial review of

some of the most common areas of research in MCMC. Frigessi, Martinelli and

Stander (1997) give bounds on the convergence time of the Gibbs sampler used in certain

Bayesian image reconstruction situations that are of order n logn, where n is the number of

pixels. Gibbs (1998) provides bounds of order n 2
, but with a proportionality constant that

is easy to compute.

The basic idea behind Markov chain Monte Carlo is that if it is impossible to find a way to

simulate independent realisations of some complicated distribution 1t(x) , it is almost as

useful to simulate dependent realisations, say x(
1
), x(2), . .. , to form an irreducible aperiodic

Markov chain having 1t(x) as its stationary distribution. The Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970) provides such a chain. Because of the

17

dependence, we need larger samples than would be required if independent sampling were

possible.

We now present the Metropolis-Hastings algorithm and the Metropolis algorithm.

Metropolis-Hastings algorithm:

Given current state x(') , obtain the next state x(t+l) by means of the following two

steps:

Step 1 Sample a candidate point x' from a proposal distribution q(x/x(')}

Step 2 With probability

(1.6)

set

x(t+l) = x' (acceptance),

else set

(rejection).

Note that since 1r only appears in the ratio n(x')/n{x('l), knowledge of the normalising

constant is not required.

18

Metropolis algorithm:

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm with a

symmetric proposal: q(xlx(t)) "'q(xl•l lx). This means that the probability in (1.6)

reduces to

The Gibbs sampler which we have described above is a single-site updating version of the

Metropolis-Hastings algorithm with proposal distribution at the ilh site of the form

7r(xl xl'·'l)
q(xllx(t,i)) = 7r{xllx('·'l) = ', S\,

I S\1 f ((t,i)) d 1

7r x 1, Xsv X 1

where

r(t.i) = (x(t+l) xl•) 1· < i I> i)
• J , I , ' - ,

x~l denotes all the components of xl'·'l except the ilh, and we suppose that the candidate

state X1 differs from x''·'l only in the ilh component. Note that we are only updating the

ilh component x~ = x~~) with the result that

(I) (I I) (1 (1,1)) 7r X = 7r X1, Xsv = 7f Xi> X511

~(x''·'l) _ ~(xl'·'l xl'·'l) = ~(xl'·'l xl)
i'- -

1
" i , S\i '" i ' S\i ·

Using the above formula for the Metropolis-Hastings algorithm, we find that the acceptance

probability for the Gibbs sampler at the ilh site is given by

19

=mm I,

=I.

S . h h G"bb I d"d I- ((t+l) (1+1) I (t) (t)) . o,w1t t e 1 ssamperacan 1 atestate x- x 1 , ••. ,x;_1 ,x;,X;+1, ... ,x. 1snever

rejected.

In image analysis the Gibbs sampler is used to produce a sequence of dependent images

from the posterior distribution p(xlz}. The Gibbs sampler starts from an initial image (MLE

estimate, for example) and then repeats the following procedure many times: visit each pixel

in turn and replace the current value by one sampled from the conditional distribution of the

value at that pixel given the current values at all the other pixels and the observed data. At

the ion pixel, the above conditional distribution is denoted p(X; lx 51;, z), and for the

posterior distribution defined in Section 1.3.2 it can be shown that

20

where apl denotes the first-order (horizontal and vertical) neighbours of pixel i and 8\2
)

denotes the second-order (diagonal) neighbours.

1.3.4 Optimi.mtion techniques: simulated annealing ami iterated conditional mode . .,

Simulated annealing as described by Geman and Geman (I 984) and the iterated conditional

modes (ICM) algorithm as proposed by Besag (1986) have been employed in an attempt to

minimise the energy function U(x) over l. Both simulated annealing and ICM are

iterative algorithms, with simulated annealing usually being based on the Gibbs sampler.

Simulated annealing was considered by Kirkpatrick, Gellat and Vecchi (1983) and later

introduced to the imaging context by Geman and Geman (1984). It has ever since been the

subject of an enormous literature; see, for example, Laarhoven and Aarts (1987) and

Winkler (1995). Among recent contributions relevant to our work are Stander and

Silverman (1994) and Hum and Jennison (1995).

The idea of the simulated annealing algorithm is that instead of using a Markov chain to

sample from the posterior distribution p(xlz) oc exp{ -U(x)}, we use a Markov chain to

sample from a probability distribution defined by

{
U(x)} p,(x) oc exp -----;;- ,

where I is the update number, T, > 0 is the temperature at the I lh iteration, and T, ~ 0 as

I ~ oo. In theory, provided T, ~ 0 very slowly, the simulated annealing algorithm should

21

reach the global minimum of U(x), that is, the image corresponding to the MAP estimate

should result; see Hajek (1988) for details and Geman and Geman (I 984) who provide a

formal proof of convergence in the image analysis case. Because r
1

has to tend to zero

very slowly, in practice the method is computationally very expensive.

The way in which r 1 tends to zero is known as the temperature schedule. Geman and

Geman (I 984) suggest a temperature schedule that is of the form

c
01 = log(l+t)'

where C is a constant independent of I . If C is big, a large number of iterations are

required for r 1 to approach zero. Geman and Geman (1984) give a value of C that

guarantees that realisation of the associated (inhomogeneous) Markov chain will eventually

tend to the MAP estimate. As this value is so big that an enormous number of iterations is

required for r 1 to approach zero, Geman and Gem an (1984) actually used smaller values in

their restorations.

Stander and Silverman (1994) considered several other temperature schedules. These

schedules are defined in terms of the finite total number of iterations T, the temperature I

for the first update and the temperature I for the last update. The values of I and I are

chosen to give reasonable results. The details of these schedules are:

• Straight line schedule

1- I
'~ = T -1 (t -1) +I

22

• Geometric schedule

~(;) (t-1)/(T-1)

• Reciprocal schedule

/f(T- !)
(IT-/)+(/ - l)t

• Logarithmic schedule

lf{log(T+ l)-log2}

{ 11 og(T + I) - f I og 2} + (/ - 1) I og(t + I) '

see Stander (1992) and Stander and Silverman (1994) for more details of these temperature

schedules and the choice of values off and I.

The ICM method can be thought of as simulated annealing at zero temperature. At each

update of ICM an image is produced that does not increase U(x), whereas in simulated

annealing, an image that increases U(x) may be produced. The ICM algorithm starts from

an initial image (MLE estimate, for example) and then repeats the following procedure: visit

each pixel in turn and replace the current value by one that provides the minimum value

of U(x) or the maximum of p(xlz). The ICM procedure stops when no further decreases

in the energy function occur. The resulting image corresponds to a local minimum of the

energy function. The ICM method is computationally inexpensive, usually requiring less

then I 0 iterations for convergence (see Besag, 1989, for example).

We have seen that the above Bayesian approach to image analysis is based on the posterior

distribution p(xlz) oc exp{-U{x)} where U(x) is given by (1.5). The restoration is often

23

taken to be the image that maximises p(xlz), or equivalently minimises U(x), and can be

found (at least approximately) by means of simulated annealing and ICM. The above

Bayesian approach is essentially a smoothing method, and so does not work well when

applied to ultrasound image of fetal heads, such as the one shown in Figure 1.2(a) as it

tends to smooth away the details that remain.

1.3.5 Recom.-truction experiment for the noisy image z .~lrown in Figure 1.3

In this section we present the results of an experiment that is designed to demonstrate the

above Bayesian approach. Our aim is to restore the true image x • from the noisy image z

shown in Figure 1.3.

In panel (a) of Figure 1.6 the MLE is displayed. The image presented in panel (b) of

Figure 1.6 is obtained by applying Gaussian smoothing with a= I to z and then rounding

the resulting value at each pixel to the nearest value in {o, I, 2}. The image in panel (c) is

obtained in an analogous way using median smoothing with s = 1 . These images look

better than the original observed image- the output z shown in Figure 1.3, but are still

poor. There are 459 (18.36%), 214 (8.56%) and 127 (5.08%) misclassified pixels,

respectively, for the three estimates shown in panels (a), (b) and (c).

24

: ·.-: ... :; ·. ·; .. :::: .~;.:

8
M

,.,
~8
~ "' W N

8
N

0

..

I ...

Figure 1.6

(a)

-. } -...
(c)

(e)

2

ICM Iterations
(g)

Reconstruction

. -- ..

3

experiment

0
0 g

,.,
~~
WN

0

8
N

for the

0

..
.......... -.......

.
••

I ··. -:•.. ':
(b)

(d)

(I)

5 10 15 20

Simulated annealing Iterations followed by ICM
(h)

noisy image z shown In Figure 1.3 .

Estimates obtained by using (a) maximum likelihood (MLE), (b) the Gaussian smoothing

filter, (c) the median smoothing filter, (d) the ICM algorithm, (e) the simulated annealing

algorithm, and (f) the simulated annealing followed by ICM algorithm. Panel (g) presents a

graph of the energy function plotted against iteration number for [CM algorithm. Panel (h)

presents a simi lar plot for the simulated annealing fo llowed by ICM algorithm.

25

We then applied the Bayesian approach to the n01sy image z with known vanance

"= 0.25. We took a= 0.1, fJ = 15 and r = 2, and considered the first-order energy

model (I .4) by setting D = 0. The ICM algorithm requires just three iterations for

convergence (no pixels are changed on the final iteration) and yields the reconstruction

shown in panel (d) with 67 (2.68%) misclassified pixels. There were 426 pixels that

changed their grey levels after the first iteration, and 26 pixels after the second.

Figure 1.6(e) presents the result from the simulated annealing algorithm after twenty

iterations, where the logarithmic temperature schedule with f = 0.9 and I= 0.1 was

employed. Twenty iterations seem to be enough to obtain a satisfactory result in this simple

example. In this estimate, there are 51 (2.04%) misclassified pixels. Finally, we applied the

ICM algorithm to the result shown in panel (e) that was obtained from the simulated

annealing algorithm. Four iterations ofiCM were required for convergence, and there were

15 pixels that changed their grey levels after the first iteration, one pixel after the second,

and one pixel after the third. The result is presented in panel (t) and there are 52 (2.08%)

misclassified pixels. Note that this final ICM stage has provided additional smoothing. The

graphs presented in panels (g) and (h) are plots of the energy function (1.5) against iteration

number for the ICM algorithm and the simulated annealing followed by ICM algorithm. In

the panel (h) the broken vertical line marks the end of simulated annealing and beginning of

ICM, whereas the broken horizontal line marks the final energy produced by the ICM

algorithm only. From these energy plots we see that simulated annealing allows increases in

energy whereas ICM does not.

26

>.
e>
Q)
c
w

0
0
0
(")

0
0
0
N

0
0
0 ..-

0

3343.17

MLE Gaussian Median True ICM SA SA+ICM

Figure l. 7 Bar plot of the final energies of the results from six image reconstruction

methods together with the energy of the true image x •. The energies are sorted into

descending order and the values of the energies are printed on the top of each bar.

We see that the simulated annealing algorithm, the ICM algorithm and the simulated

annealing followed by ICM algorithm provide better reconstructions of the true image x •

from the noisy image z than were obtained by applying Gaussian and median smoothing.

Both x • and z are presented in Figure 1.3 .

Figure I . 7 presents the energ1es of the results obtained by usmg max1mum likelihood

(MLE), the Gaussian smoothing filter, the median smoothing filter, ICM, simulated

annealing (SA), and simulated annealing followed by ICM (SA+ICM), together with the

27

energy of the true image x •. The energies are sorted into descending order and the values

of the energies are printed on the top of each bar.

The energy of the true image x • is 1754.40. From Figure I. 7 we see that the maximum

likelihood estimate (MLE) has the highest energy (3343.17). The Gaussian and the median

smoothing filters considerably reduce the energy to 2113.22 and 2028.38, respectively.

These energies are close to the energy of the true image. The energies of the results

obtained by using ICM, simulated annealing and simulated annealing followed by ICM are

lower than the energy of the true image. The simulated annealing algorithm produces an

estimate whose energy (1727.63) is lower than that of ICM (1743.24). The result shows

that the simulated annealing algorithm allows escapes from local minima of the energy.

Simulated annealing followed by ICM yields the image that has the lowest energy (1711.27)

in this example.

1.4 Structure of the thesis

We consider ways of improving existing techniques that have been applied to ultrasound

images and we develop and discuss a new iterative method for edge detection. We

demonstrate the effectiveness of the new edge detection method, and of the improvements

to the existing techniques by means of simulation studies.

In Chapter 2 we implement and improve the edge detection method of Storvik (1994) for

fitting an object contour to an ultrasound image by using simulated annealing. Our

28

improvement is based on a cascade-type blocking method (Jubb and Jennison, 1991; Hum

and Jennison, 1995) that substantially speeds up and improves the performance of the

algorithm. The approach proposed in Chapter 2 can be used to detect shape in images

where the data are a corrupted version of the shape itself, such as the ultrasound image of a

hwnan ovarian cyst shown in Figure 1.8. In this type of image, the shape is defmed by its

edge and pixels inside and outside the shape have different records. Two simulation

studies are performed based on such an image of a head shape. One is designed to

compare the perforn1ance of the cascade-based algorithm with that of the direct simulated

a1mealing algorithm. The other aims to investigate whether there is a significant difference

due to the order in which edge pixels are visited.

Figure 1.8 Ultrasound image of a human ovarian cyst.

29

The ultrasound image of a fetal head shown in Figure 1.1 is a different type of image in that

the shape is defined by a thin outline of pixels with records that are different from those at

pixels inside and outside the shape. The approach presented in Chapter 2 does not work

well on this type of image. In Chapter 3, an algorithm for extracting the head edge and thus

the head shape from such ultrasound images is proposed. This algorithm is based on a

specially designed kernel function. The algorithm not only provides input for the

discrimination algorithm of Wright et al. (1997) but also allows automatic fetal head

measurements to be made as described in Chalana et al. (1996) and Matsopoulos and

Marshal) (1994). In Sections 3.4 and 3.5 of Chapter 3, simulation studies based on an edge

defined image of an ellipse are carried out in order to test the kernel algorithm we

developed.

The kernel algorithm is modified in Section 3. 8 to detect shape in images where the data are

a corrupted version of the shape itself Although this type of shape may be detected by the

method described in Chapter 2, the kernel algorithm is considerably less complicated and

computationally expensive. We conduct simulation studies based on the image of a head

shape and an image of an ellipse in order to compare the performance of the algorithm

described in Chapter 2 and the algorithm we develop in Section 3.8.

A simulation study based on an edge defined circular image is performed in Chapter 4 in

order to study the effect of the parameters used in the definition of the kernel function.

Finally, in Chapter 5 we introduce and discuss the snake model proposed by

Kass et al. (1988). The associated energy function is modified in order to improve the

original snake methodology. We also discuss how the simulated annealing and ICM

30

algorithms can be used to minimise the modified energy function. We run a simulation

study based on a shape that is defined by an edge that is two pixels thick to compare the

performance of the kernel algorithm, snake algorithm and simulated annealing plus ICM

algorithm.

All our work is motivated by two real ultrasound images. One of these, the ultrasound

image of a fetal head shown in Figure 1.2(a), is considered in Chapter 3, where the

proposed kernel algorithm is applied to it, and in Chapter 5 where the snake methodology

and associated improvements are used. The other image, an ultrasound image of a human

ovarian cyst shown in Figure 1.8, is considered in Chapter 2, where Storvik's algorithm and

associated improvements are applied to it, and in Chapter 3, where the modified kernel

algorithm is employed. We are grateful to Dr P. Dubbins and Dr T. Reynolds for having

supplied these original photographs.

All the approaches described in this thesis have been implemented in S-Pius for Windows

Version 3.3 Release I.

31

Chapter 2

Object Recognition Using Simulated Annealing

and ICM with Cascade-type Blocking

2.1 Introcluction

Many papers have developed algorithms for object recognition in recent years.

Kass, Witkin and Terzopoulos (1988) present a non-Bayesian active contour model called

'snake' as a general method for edge detection and motion tracking. A snake is an energy­

minimising contour that is guided by external constraint forces and influenced by image

forces that pull it toward image features such as edges and lines. Snakes are very useful

creatures; there are many applications in computer vision in which they are employed, such

as the problems of detecting edges, lines and contours. We will discuss the details of the

snake model in Chapter 5.

32

Canny (1986) presents a gradient edge filter method. This local algorithm is a very simple

method for edge detection but it is not able to handle complex problems such as those

involving highly degraded deformable shapes. Friedland and Adam (1989), and Friedland

and Rosenfeld (1992) use a low-level energy function to force smoothness of the edge and

sharpness between the object and the background, and a high-level energy function to

compare the entire boundary with a library of known compact objects. Mardia and

Qian (1995) build up a Bayesian approach to compact object recognition but their method

also depends on a library of known objects.

The deformable template model ofGrenander, Chow and Keenan (1990) is based upon the

deformation of a template to find an optimum fit to the object. The template is a closed

polygon with fixed number of sides of variable length representing the outline of a typical

object. Grenander and Miller (1994) generalise this to a variable number of objects and use

jump-diffusion sampling to explore the state space of deformations. Helterbrand, Cressie

and Davidson (1994)' s work is quite similar to the template and snake models. The main

difference is that the objects are defined by boundaries that are one pixel thick. Qian,

Titterington and Chapman (1996) employ a Bayesian framework for the problem of

identifying the irregular boundary of a magnetic domain in a thin multilayer film, using data

in the form of an electron micrograph. They use the ICM procedure and find initialisation

an especially difficult problem, which they resolve by means of a template-like modelling

approach. Qian et al. (1996) use a star shaped polygon and their prior distribution is based

on the smoothness properties of this shape. A star shaped object is one in which every

point of the edge is visible from an interior point. Hum and Rue (1997) combine the

template and marked point process approaches to handle scenes containing variable

numbers of objects of different types. Pievatolo and Green (1998) describe a statistical

model that allows polygons with any number of sides. Both Hurn and Rue (1997) and

33

Pievatolo and Green (1997) use reversible jump Markov chain Monte Carlo algorithms

introduced by Green (1994, 1995); see also Richard son and Green (1997). All the work in

the above papers is built upon the Bayesian approach for object recognition. These authors

have shown that a Bayesian approach provides a successful method for finding the outline

or contour of an underlying object.

Storvik (1994) presents an approach for edge detection that is applicable when the pixels

inside and outside an object take different records. His procedure is reminiscent of the

snake algorithm suggested by Kass et al. (1988) and adapted by Chalana, Linker, Haynor

and Kim (1996) in a recent application to echocardiography. Teles de Figueiredo and

Leitao (1992) also used a Bayesian approach to estimate ventricular edges in angiographic

images and this paper is related to the work of Friedland and Adam (1989). Storvik's

method is somewhat related to a shape analysis approach to compact object recognition

discussed by Fried land and Rosenfeld (1992) and Mardia and Qian (1995).

This chapter builds upon Storvik (1994)'s approach for single object recognition from

ultrasound images. The main algorithm employed by Storvik (1994) is simulated annealing.

This makes Storvik's method very computationally intensive. In this chapter we shall

assume that the true grey-levels of pixels inside and outside the contour of the object are

different. We present a modification of Storvik's approach based on the cascade-type

blocking algorithm discussed by Hum and Jennison (1995) that considerably reduces the

computation required. Part of this work has been accepted for publication; see Luan,

Stander and Wright (1998).

34

Our approach has associated with it the following features:

• It works for images comprising a single object.

• It operates on edge pixels and their first and second order neighbours.

• Gaussian distributions are assumed for the grey levels inside and outside the object, the

parameters of these distributions being estimated at the beginning of the algorithm.

• A threshold convex 'hull initial configuration is defined at the beginning of the algorithm.

• The main optimisation method used is simulated annealing.

• The ICM algorithm is applied to the contour obtained from simulated annealing.

• The algorithm we describe below can be applied to detect any single shape when the

pixels inside and outside the object take different records, whereas the algorithms given

in Friedland and Rosenfeld (1992} and Mardia and Qian (1995} apply to any star-shaped

object.

Stoi¥ik (1994}'s algorithm is based on an energy function. This energy function, together

with other details of the algorithm; is briefly reviewed in Section 2.2. In Section 2.3 we

present a slightly different form of the energy function and introduce our cascade-type

blocking modification. Some details of the computer implementation of the resulting

approach are given in Section 2.4. In Section 2.5 we present an example of detecting

underlying shape in a real ultrasound image. We finish with a discussion in Section 2.6.

35

2.2 Storvik'.~ approacll ami object recognition

Due to noise and/or blur, the observed image z differs from the true but unknown image.

As mentioned in Section 1.3.4, many approaches that are applied in image analysis such as

ICM and simulated annealing are based on the minimisation of an energy function U(x),

where x is a possible configuration such as an image or contoliL Storvik (1994) uses

simulated annealing to minimise his energy function and he presents good results for two

examples, one based on an ultrasound image of the left ventricle and the other baseci on a

Magnetic Resonance image of the human brain. We will describe Storvik (1994)'s

approach in this section.

Due to computational considerations, Storvik (1994) describes contours in terms of nodes,

rather than in terms of image pixels. The nodes give the co"ordinates of points on the

contour in a clockwise direction. In Storvik's approach, x denotes a contour which has a

polygon representation x = (d1, d2 , •. ,dN), where each node d; on the contour is given by

its co-ordinates and N is the number of nodes and may be stochastic. The energy function

U(x) takes the form

(2.1)

where the three components u1(x}, u2 (x) and u3 (x} will be described shortly, and a1 , a 2

and a 3 are the weights for the three components.

The first component u1(x) is the energy related to the smoothness ofthe contour x:

()
(length of the outline of the shape defined by x) 2

111 X =
area of shape defined by x

36

The second energy component u2 (x) is the gradient operator for recognising edges in the

vertical direction:

where L indicates summation over all nodes on the contour x, and the potential function

vi (x) is given by

{

-(zo - z.),
V;(x)=l(segment(d;.d;+1)horizontal)x _ 1_ '

l + zo z.

if zo > z.

otherwise

where !(-) is the indicator function; e and o are the tWo pixels adjacent to the horizontal

segment (d;. di+l) inside and outside the contour, and z. and z o are the observed values at

pixel e and o .

·1

Figure 2.1 Storvik's potential function V;(x) of the gradient operator function 112

which is employed only in the vertical direction when edge pixel e and outside plxel o

are adjacent to horizontal sengment (d;, di+l). It takes a strange form.

37

Figure 2.1 shows a plot of the gradient operator v; (x) as a function of Z
0

- z., when the

edge pixel e and outside pixel o are adjacent to horizontal segment (dP d,+1). It has a

strange form when Z
0

- z. :<> 0. Moreover, in general applications it is impossible to know

which direction is more important, and so we believe that we should consider both the

vertical and horizontal directions in the gradient operator.

The third component u3(x) is defined as the negative ofthe logarithm ofthe likelihood:

where f(zlx) is the likelihood of observed data z given x. In this case, the likelihood is

chosen to measure the difference of the grey-levels inside and outside the shape:

f(zlx) = []J~(zi)· OJ2(zi) •
}ES J•S

where S. is the set of pixels inside the shape defined by contour x, z 1 is the observed value

of z at pixel j, and f is a N{J.t,, cr 2
) density, i = I, 2 .

The weight a 3 of u3(x) in Storvik's energy function (2.1) is unnecessary. We can let

a 3 == I so the energy function can be a simple form

(2.2)

Storvik's method needs sufficient nodes to achieve the necessary accuracy, but it is not clear

how ·to choose the number of nodes. Storvik (1994) minimises his energy function by

means of the stochastic simulated annealing algorithm. Storvik (1994) employs ail

enormous number (up to 100,000,000) of simulated annealing updates in his attempt to

38

minimise U(x). The reason for this is that each simulated annealing update makes only

small changes to the current configuration. Hence a badly placed initial configuration

requires an enormous number of these small changes before it can estimate well the true

edge. Qian et al. (1996) experienced similar problems. In the next section, we modify the

form of the energy function and develop this method based on the cascade algorithm

discussed by Hum and Jennison (1995).

2.3 A ca.<1cade-type blocking approach and simulated annealing

ln this section we propose using the cascade algorithm in order to reduce the number of

simulated annealing updates needed by Storvik's algorithm. The cascade algorithm was

first introduced by Jubb and Jennison (1991) and developed further by Hum and

1 ennison (1995). It has similarities with the renormalisation approach of Gidas (1989).

We introduce our cascade-type blocking approach by means of an example. A 28 x 28

pixel image can be divided up into 2 6 x 26 blocks of 4 x 4 pixels. Starting from an initial

configuration x0 , a simulated annealing run can be used to find a configuration x1 that

approximately minimises the original energy function U, given in (2.2), over edges that are

restricted to lie along the boundaries of the 4 x 4 coarser blocks. In this way large changes

in x0 can be effected relatively quickly. Next 2 7 x 2 7 blocks comprising 2 x 2 pixels are

considered. The configuration x1 from the previous simulated annealing run can be used as

the initial configuration for a simulated annealing run that finds a configuration x2 that

approximately minimises the original energy function U over edges that are restricted to lie

39

along the boundaries of the 2 x 2 blocks. Finally, the configuration x2 can be used as the

initial configuration for a simulated annealing run that attempts to minimise U over

unrestricted edges.

The advantage of the cascade-type blocking algorithm is that the individual restricted

optimisations, which allow large changes in the edge to be made, can be performed

relatively quickly. The result of this is that even when programming overheads are

considered the total time for the cascade-type blocking approach is usually less than the

time required to minimise U directly. Hurn and Jennison (1995) consider other blocking

choices including blocks that are defined adaptively according to the data. Since the

standard blocking approach already offers us considerable advantages, we do not consider

such sophistication here.

The energy of any configuration at any blocking level is defined to be the energy calculated

on the original resolution using the original unaveraged grey levels.

We define the object contour in terms of edge pixels. Also, we re-define the gradient

energy function u 2 (x) so that the gradient operator for recognising edges is considered in

both the vertical and horizontal directions:

112 (x) = L LVeo(x),
• 0

where the first sum is over all edge pixels and the second sum is over all exterior first-order

neighbours of the edge pixel e . We construct the gradient potential function as

V." (x) = -lz" - z. I which means that the greater is the difference between the records at

two adjacent pixels separated by part of the edge, the more negative is the contribution to

the energy U .

40

Our algorithm proceeds as follows. First, we propose a configuration as the initial contour,

and we call this current contour x. We then record the length of the contour, its edge

pixels and its interior and exterior, where edge pixels are included in the interior. We

suppose here that each pixel is a unit square so that the area of the object is the number of

interior pixels and the length of the contour is the number of edge pixel sides which are

adjacent to an exterior pixel. The means p 1 and p 2 and the common variance a 2 of the

Gaussian distributions that define the likelihood are estimated at the beginning of the

process, by taking jJ 1 to be the mean of the records at pixels in a chosen clear interior

region, p2 to be the mean of the records at pixels in a chosen clear exterior region, and &2

to be the unbiased pooled variance based on the records in these two areas:

•
2

(n1 - t) x (variance of chosen interior)+ (n2 - t) x (variance of chosen exterior)
a = . ' ,I + 112 - 2

where n1 and 112 are the number of pixels m the chosen interior and exterior area

respectively.

We now give a description of the sampling procedure employed at each cascade stage. For

this we need to state what we mean by an edge block and by a legal block. A block is called

an edge block if it is part of the shape and ifit is touched by an edge. A legal block is one

of the edge blocks that can be removed from the shape, or one of the external first order

blocks to the edge blocks that can be added to the shape without destroying the closed

nature ofthe edge. 'fhe idea of legal blocks is illustrated in Figure 2.2.

41

I
I I I I I

----~---,--- ---r- --r- --r -- --------- -
1 I 1 I I
I I I I I
I I I I I I

- --- ---- ~--- ---r---r---r -- ---- ~-----

1 I I I
I I

I I - - -,- ---,--- -----~---
1

1
I _ __ L ___ ___ _

-----'----
1

Figure 2.2 Legal blocks in part of a shape S shaded grey. Each square represents

a block. The numbered blocks are not legal blocks since, if edge blocks I or 2 were

removed from S or if blocks 3 or 4 were added to S , the edge would no longer be

closed. The remaining edge blocks and their external first order neighbours are legal

blocks.

In each stage of the cascade algorithm a fixed number of sweeps of the stochastic simulated

annealing is performed, where a sweep is defined as an updating of all the edge blocks

defined by the current configuration at the beginning of the sweep. The deterministic

monotonically decreasing ICM algorithm of Besag {1986) is performed at the end of each

cascade stage.

For both simulated annealing and ICM, we adopt the most common pixel updating schedule

in which each edge pixel is considered in turn in a fixed order. Alternatively, each edge

42

pixd could be considered at random in simulated annealing. The drawback of fixed order

updating is that certain effects may occur because the next search pixel always follows the

same pixel, while the drawback of random updating is that we cannot balance ihe visiting

times to each pixel in a finite number of iterations. The updating schedule can also be

defined for our problem as following: all edge blocks are recorded and randomly re-ordered

at the start of every sweep, each edge block is then visited according to this random order in

the sweep. However, in the simulation study presented in Section 2.4, we found out that

there was no significant difference between fixed order updating and random order

updating.

Let x be the current estimate of the edge, let

let no .. stages be the number of blocking stages of the cascade algorithm and let

no. sweeps be the number of sweeps of simulated annealing in each stage. We now

describe the proposed algorithm for obtaining an estimate of the configuration that

minimises U(x).

Find an initial contour and set x equal to it

For stage= l, .. ,,no .stages

Start of simulated annealing

For sweep=l, ... ,no.sweeps

Let N,woep be the number of edge blocks in x

Label the edge blocks I, ... , N sweep

43

For b=l, ... ,Nsw~p

Set .the temperature 1

Find the number nb of legal blocks contiguous to block b and label

these blocks 1, ... ,nb

Let the new configurations obtained by removing or adding the legal

biocks as appropriate be x;, x~, ... , x~

Sample one of the configurations x;,x~, ... ,x~, x with probabilities

proportional to p, (x;),p, (x~), ... , p, (x~.), p, (x)

Set x to the sampled configuration

End for

End of one sweep

End for

End of simulated annealing part, of one cascade1blocking stage

Start of'ICM

Let Nicm be the number of edge blocks in x

Label the edge blocks I, ... , Nicm

Set change= 0

For b = l, ... ,Nicm

Find the number nb of legal blocks contiguous to block b and label these

blocks l, ... ,nb

:Let the new configurations obtained by removing or adding the legal blocks

Calculate the energy u(x;), u(x;), ... , u(x;.), U(X)

Set x to be the new current configuration with the lowest energy

44

If there has been a change in x, then change= change+ 1

End for

If change>O, then go to the start ofiCM

End ofiCM

End of one cascade blocking stage

End for

End of algorithm

We shall discuss how the initial contour is found in Section 2.4. Convergence is guaranteed

for ICM and this occurs when change= 0.

In the sampling part of the above algorithm, we set the candidate configuration x; to be the

"" new current x with probability a; and retain the current x with probability 1- L;a;,
i=l

where

p,(x;)
a - ------'--'----"'------

; - nb

p,(x)+ L;p,(x;)
j=l

Note that the unknown normalising constant for p, is not required for the calculation

45

For direct simulated annealing, the temperature sequence r, is chosen according to the

straight line schedule (see Stander and Silverman, 1994, for example) as we described in

Section 1.3.4:

1- I ' = -(t-1)+1
I T-1 '

(2.3)

where t is the update number, T is the total number of iterations for simulated annealing,

and I and l are the starting and ending temperatures respectively. The other temperature

schedules described in Chapter 1 can also be applied to the cascade algorithm, but the

results are almost the same. Hum and Jennison (1995) consider similar schedules that

sometimes offer an advantage when used with cascade. We now propose three temperature

schedules derived from the linear schedule for the cascade based algorithm.

• Monotonically decreasing schedule

The update number t is increased through all blocking stages of the cascade except the

ICM parts. We define I and I only once at the beginning of the whole procedure. In

this case, the total number T of iterations for simulated annealing is estimated as

no .stages

T;:ono.sweepsxN0 x Lzs-l
.r=l

where N 0 is the number of edge blocks in the initial configuration for the first stage.

There are two possible temperature situations at the end of the procedure: the procedure

stops before it reaches I, or the procedure reaches l before stopping. We do not mind

the former situation, but for the later situation, we suggest that the procedure is kept

running at the lowest temperature I until it stops. An example of the resulting

temperature schedule for three blocking stages is shown in Figure 2.3(a).

46

Figure 2.3

0 2000

0 2000

0 2000

I First s1llge I

4000 6000
Update number

(a)

4000 6000
Update number

(b)

4000 6000
update number

(c)

6000 10000

8000 10000

8000 10000

Third stage

Cascade temperature schedules, (a) Monotonically decreasing linear

schedule. (b) Independent linear schedule. (c) Cascade stage linear schedule.

47

• Independent schedule

For each blocking stage of the cascade, the temperature starts from the same I and ends

at the same I . An example of the resulting temperature schedule for three blocking

stages is shown in Figure 2.3(b).

• Cascade stage schedule

The third linear temperature schedule for the cascade blocking algorithm that we shall

consider is similar to the second, but the first temperature Is for sth blocking stage of

the cascade decreases as the stage s increases, i.e., 1 1 > 12 >- · ·> lno.stages. For

example, we can take ls+1 = .!. Is. An example of the resulting temperature schedule for
2

three blocking stages is shown in Figure 2.3(c).

In the next section we present the results of a simulation study designed to illustrate the

above algorithm.

2.4 Simulation Stutly

This simulation study is based on the head shape shown in Figure 2.4(a), which is one of the

head shapes considered by Wright, Stander and Nicolaides (1997). This original image

comprises I 00 x I 00 pixels and is a binary image; black pixels (interior) correspond to the

numerical value I, whereas white pixels (exterior) correspond to 0. The simulated data,

48

obtained by adding independent N(0, 1) notse to the original tmage, ts presented m

Figure 2.4(b).

0 20 40 60 60 100 0 20 40 60 80 100

(a) (b)

Figure 2.4 (a) The known head shape. This 100 x 100 binary image displays one

of the heads considered by Wright et al. (1997). (b) TI1e simulated data obtained by

adding independent N(0,1) noise to the image (a).

We apply the cascade algorithm described above with three blocking stages to the image

presented in Figure 2.4(b) in order to estimate the edge of the shape. The number of

sweeps of simulated annealing is taken to be ten at each blocking stage. In our experience,

ten sweeps of simulated annealing at each cascade blocking stage are often sufficient to

obtain good quality results. The weight a 1 and a 2 of the components that contribute to

the energy function (2.2) are chosen to be 8 and 0.01 respectively. We set f = 2 and

l = 0.1 and use the independent cascade linear temperature schedule.

49

(a) (b)

0 20 40 60 eo 100 0 20 40 60 eo 100

(c) (d)

Figure 2.5 (a) The initial contour obtained by first thresholding the record averaged
over the sixteen pixels of each block and then finding the convex hull. (b) The result of
the first cascade stage on the 25 x 25 grid. (c) The result of the second cascade stage
on the 50 x 50 grid using the edge found in (b) as starting point. (d) The result of the
final cascade stage on the original 1 00 x 1 00 grid using the edge found in (c) as
starting point.

50

The first stage of the cascade is performed on a 25 x 25 grid. Each block of this grid

comprises 4 x 4 original pixels. Figure 2.5(a) shows the initial contour obtained by first

thresholding the record averaged over the sixteen pixels of each block using the interrneans

algorithm discussed by Glasbey and Horgan (1995), pp. 97-98, and then finding the convex

hull of the resulting data using the chull function of S-Pius. The intermeans method

worked well here, but is not always guaranteed to do so. Other thresholding methods are

discussed in Glasbey and Horgan (1995). This contour obtained above serves as the initial

contour of our cascade algorithm. The original 100 x 100 record z is used in the

evaluation of the energy function U throughout the algorithm. Figure 2.5(b) is the result of

simulated annealing followed by ICM for the first cascade stage on the 25 x 25 grid. The

second cascade stage is performed on a 50 x 50 grid, each block of which comprises 2 x 2

original pixels. The initial contour for this cascade stage is the one that resulted from the

first cascade stage and that is shown in Figure 2.5(b). Figure 2.5(c) presents the result of

the second cascade stage on the 50 x 50 grid. The final cascade stage is performed on the

original 1 00 x 100 grid with the initial contour obtained from the second cascade stage

shown in Figure 2.5(c). Figure 2.5(d) is the result of simulated annealing followed by ICM

for the final cascade stage on the original grid.

The final result produced by the above cascade algorithm may be considered a little too

rough. Indeed, Figure 2.6(a), which presents the true shape (darker line) together with the

contour produced by the cascade algorithm, confirms this. A smoother result could be

obtained by re-running the algorithm with different weights. Alternatively, and more

pragmatically, we smooth the edge shown in Figure 2.5(d) by using a median smoothing

operator. The method is based on the shape S defined by edge. A pixel defined to be part

51

of S has its definition changed if it has more than five first- and second-order neighbours

defined to be outside S ; a similar treatment is given to pixels defined to be outside S .

Once these changes have been made, the smoothed edge is defined as the boundary of the

modified S . The result of this smoothing procedure is presented in Figure 2.6(b) together

with the true edge (darker line). The number of pixels that differ between the true shape

and the estimated shape reduced from 160 before smoothing to 152.

0 20 40 60 MO 100 0 20 40 60 80 100

(a) (b)

Figure 2.6 (a) The edge produced by the cascade procedure together with the tme

edge (darker line). (b) The result after applying a median smoothing operator to (a)

together with the true edge (darker line).

We see that a good estimate has been obtained from the highly degraded image shown in

Figure 2.4(b) .

52

The whole procedure with smoothing took 4349 seconds DOS-time on a Pentium 7SMHz

PC. Figure 2. 7 presents a plot of the value of the energy function U against update number

as the algorithm proceeds. The unbroken vertical lines mark the stages of the cascade

algorithm, whereas the broken vertical lines mark the beginning of each ICM phase. The

plot clearly shows that simulated annealing allows increases in U, whereas ICM does not.

As we would expect, there is an increase in energy due to smoothing.

0 1000 2000 3000 4000 5000 6000

Update number

I First stage I Second stage Third stage ~moothing

Figure 2. 7 The value of the energy function U against update number for the three

stages of the cascade algorithm followed by smoothing. TI1e unbroken vertical lines

mark the stages of the cascade algorithm, whereas the broken vertical lines mark the

beginning oflCM.

In order to compare our cascade-type blocking algorithm with the direct simulated

annealing approach, we applied the non-cascade simulated annealing algorithm to the noisy

53

image shown in Figure 2.4(b). We used the contour shown in Figure 2.5(a) as the initial

contour. Since this contour was obtained using blocking, it may be considered to be a

generous starting point for the direct simulated annealing approach. We set a 1 and a 2 to

be the same values as used above. The temperature schedule is the straight line schedule.

The values of f and I are unchanged. The number of sweeps of simulated annealing was

set to thirty, the total number of sweeps of simulated annealing employed in the cascade­

type blocking algorithm. The ICM algorithm followed by median smoothing was again

applied at the end of the algorithm.

Figure 2.8(a) presents the result obtained by using the non-cascade simulated annealing

algorithm. Figure 2.8(b) presents the true contour (darker line) together with the contour

produced by the direct procedure. The median smoothing operator is employed to the

rough contour and the result of this smoothing operation is presented in Figure 2.8(c)

together with the true edge (darker line). This whole procedure with smoothing took 6761

seconds DOS-time on a Pentium 75MHz PC, which is about 1.5 times as much computing

time as the three stages cascade algorithm.

Figure 2.9 presents a plot of the value of the energy function U against update number as

the algorithm proceeds. The broken vertical line marks the beginning of ICM, whereas the

unbroken vertical line indicates the start of smoothing. The lower horizontal line (long and

short dashes) marks the final energy produced by the above cascade algorithm before

smoothing, while the higher horizontal line (long dashes) marks the corresponding energy

after smoothing. The final energies of the two methods are quite different: 14202 for the

three stages cascade algorithm with smoothing and 14244 for the non-cascade algorithm

with smoothing, while their lowest energies are 14185 and 14223 respectively.

54

0 20 40 60 60 100

(a}

0 20 40 60 80 100 0 20 40 60 80 100

(b) (c)

Figure 2.8 (a) Edge estimate obtained by using the non-cascade simulated anneal ing

algorithm. (b) The edge produced by the d irect procedure together with the true edge

(darker line). (c) The result of applying a median smoothing operator to the edge

produced by the direct procedure together with the true edge (darker line).

55

iil
~

0
0 .,.
;!:

0

~
=>
>-

~ 0 c 0 w "' ;!:

0

"' N
;!:

8
N

;!:

0 2000 4000 6000

Update number

' -,-
' --------~-------

'
BODO

Figure 1.9 The value of the energy function U against update number for the direct

simulated annealing algorithm followed by ICM and smoothing. l11e broken vertical

line marks the beginning of ICM, whereas the unbroken vertical line indicates the start

of smoothing. The lower horiwntal line (long and short dashes) marks the final energy

produced by the above cascade algorithm before smoothing, while the higher horizontal

line (long dashes) marks the corresponding energy after smoothing.

10000

Even with several thousand more updates the direct simulated annealing approach does not

achieve a minimum as low as the cascade algorithm. Moreover, the direct simulated

annealing approach takes about 1.5 times as much computing time as the cascade algorithm.

The number of pixels that differ between the true shape and the estimated shape has risen

from 152 to 175 (from 160 to 189 before smoothing). We remark that the resulting edge

56

estimates are quite similar, with the one from the non-cascade algorithm being slightly less

good than the one from the cascade algorithm; see Figure 2.6(b) and Figure 2.8(c).

In the above cascade simulation, we employed the independent linear temperature schedule

for the three cascade stages. Another two cascade temperature schedules, the

monotonically decreasing linear schedule and the cascade stage linear schedule, were

introduced in Section 2.3 . These three cascade schedules are illustrated in Figure 2 .3 . In

order to compare the three cascade temperature schedules, we re-ran the cascade algorithm

with the other two schedules on the same noisy image shown in Figure 2.4(b).

0 20 40 60 80 100 0 20 40 60 80 100

(a) (b)

Figure 2.10 Results of employing the monotonically decreasing linear temperature

schedule in the cascade algorithm. (a) The edge produced by the cascade procedure

together with the true edge (darker line). (b) The result of applying a median smoothing

operator to the edge produced by the cascade procedure together witJ1 ilie true edge

(darker line).

57

Figure 2. 1 O(a) presents the result of employing the monotonically decreasing linear

temperature schedule in the cascade algorithm (without median smoothing). Figure 2.1 O(b)

shows the result of applying a median filter to this edge estimate. The number of pixels that

differ between the true shape and the estimated shape is 160 (175 before smoothing) .

Figure 2.11 presents a plot of the value of the energy function U against update number.

The final energy is 14 194 and its lowest energy is 14179.

-----~--

1

0 1000 2000 3000

Update number

I First stage I Second stage

4000

Third stage

I - ,-

5000 6000

~moothing

Figure 2.11 The value of the energy fi.mction U against update number for the three stages

of the cascade algorithm with the monoton.icaJly decreasing linear temperature schedule

followed by smoothing. The unbroken vertical lines mark the stages of the cascade algorithm,

whereas the broken vertical lines mark the beginning of ICM. The lower horizontal line (long

and short dashes) marks the fina l energy produced by the cascade algoritlun with the

independent linear temperature schedule before smoothing, while the higher horizontal line

(long dashes) marks the corresponding energy after smoothing.

58

Figure 2.12(a) presents the result of employing the cascade stage linear temperature

schedule in the cascade algorithm (without median smoothing). Figure 2.12(b) shows the

result of applying a median filter to this edge estimate. The number of pixels that differ

between the true shape and the estimated shape is 169 (179 before smoothing). Figure 2.13

presents a plot of the value of the energy function U against update number. The final

energy is 14197 and its lowest energy is 14182.

0
N

0 20 40 60 80 100 0 20 40 60 80 100

(a) (b)

Figure 2.12 Results of employing the cascade stage linear temperature schedule in the

cascade algoritlun. (a) The edge produced by the cascade procedure together with the

true edge (darker line). (b) The result of applying a median smoothing operator to the

edge produced by the cascade procedure together with the true edge (darker line).

59

::::>
>-
e>
"' c:
w

0

"'
;!

8
;!

0

"' "' ;!

0
0

"' ;!

0

"'

0 1000 2000 3000 4000 5000

Update number

I F1rst stage I Second stage Third stage ~moothing

Figure 2.13 The value of the energy function U against update number for the three

stages of the cascade algorithm with the cascade stage linear temperature schedule

followed by smoothing. The unbroken vertical lines mark the stages of the cascade

algorithm, whereas the broken vertica l lines mark the beginning of ICM. The lower

horizontal line (long and short dashes) marks the final energy produced by the cascade

algorithm with the independent linear temperature schedule before smoothing, while the

higher horizontal line (long dashes) marks the corresponding energy after smoothing.

For ease of companson m Table 2.1 we present the results of applying the cascade

algorithm with the three cascade temperature schedules and of applying the non-cascade

algorithm. By the number of differing pixels we mean the number of pixels that differ

between the true shape and the estimated shape. In Figure 2.14 we display these results by

means of bar plots.

60

Table 2.1 Results of applying the cascade algorithm with the three cascade linear

temperature schedules and of applying the non-cascade algorithm on the noisy image shown

in Figure 2.4(b)

Cascade Before smoothing After smoothing
Algorithm Temperature Number of Number of

schedule Energy Differing pixels Energy Differing pixels

Independent 14185 160 14202 152

Cascade Monotonically 14179 175 14194 160
decreasing

Cascade stage 14182 179 14197 169

Non-cascade 14223 189 14244 175

We can see that the final energy before smoothing and after smoothing obtained when using

the monotonically decreasing and the cascade stage temperature schedules are lower than

the corresponding energy obtained when using the independent temperature schedule. Even

so, the independent temperature method gives us a little smoother result. There is not much

difference between the final energies in the cascade algorithm in this example. One message

from these results is that the lowest energy edge does not necessarily correspond to the best

edge. We have found this result to be especially true for images that have been degraded by

high levels of noise.

The result of applying the non-cascade algorithm is slightly less good than the results of

applying the cascade algorithms in this example. The edge that results from the non-

cascade algorithm has much higher energy than those that result from the cascade

algorithms. We remark that the resulting edge estimates are quite similar; see

Figures 2.6(b), 2.8(c), 2.10(b) and 2.12(b).

61

0
0
M
<;t

0
l{)

N
<;t

>- 0 e> 0
Q) N
c <;t
w

0
l{)
.­
<;t

0
0 .-
<;t
.--

before smoothing

after smoothing

Cascade-1 Cascade-M Cascade-C Non-Cascade

Algorithms

(/)

Qj
X ·c._
Cl
c

-~

:::::
i5
0
Q)
.0
E
::l
z

0
0
N

0
CO .--

0
CD .--

0
<;t
.--

0
N

0
0 .--

before smoothing

after smoothing

Cascade-1 Cascade-M Cascade-C Non-Cascade

Algorithms

Figure 2.14 Bar plots of the energies and number of differing pixels before and after

smoothing using four different a lgorithms. Cascade-[= cascade with independent linear

schedule, Cascade-M = cascade with monotonically decreasing linear schedule, Cascade­

C = cascade with cascade stage linear schedule.

In order to make a wide comparison of the performance of the cascade-based algorithm

with that of the direct simulated annealing algorithm, we conducted a simulation study

based on the original image shown in Figure 2.4(a). Our data were obtained by adding

independent Gaussian noise to the image. For each of three different noise variances

K = 0.5, 1.0 and 2.0, we applied both the cascade-based algorithm with independent linear

temperature schedule and the direct simulated annealing algorithm to 100 noisy images.

The mean and the standard deviation (sd) of the number of pixels that differ between the

62

true shape and the estimated shape over realisations of the noise process are recorded in

Table 2.2.

Table 2.2 Results of the simulation study to compare the cascade-based

algorithm with the direct simulated annealing algorithm

Cascade Direct
mean sd mean sd

vanance K (pixels) (pixels) (pixels) (pixels) p-value

0.5 101.9 15.2 100.7 17.0 0.41

1.0 182.4 24.4 204.3 30.3 0.00

2.0 275.1 43.0 341.7 71.3 0.00

Table 2.2 suggests that for the case K = 0.5 there is little difference in the performance of

the algorithms. To check this we tested Ho: f..lcascade = Jldirect against HI: f..lcaseade * f..ldireet

using a paired /-test, where f..l'"''"de and f..ld;,.,, are the mean number of pixels that differ

between the true shape and the estimated shape for the cascade-based algorithm and the

direct simulated annealing algorithm; we did not reject H0 • As K increases the quality of

the performance of the cascade-based algorithm decreases less rapidly than that of the direct

simulated annealing; the p-value of a paired /-test of H 0 : f..lcascade 2': J.ldirect against

H 0 : f..lcnscade <f../ direct is essentially zero for both K = 1.0 and K = 2.0. Hence the use of the

cascade-based method leads to a significant increase in the performance of the algorithm

when the noise level is high. Moreover, we found that the cascade-based algorithm is about

1.5 times faster than the direct simulated annealing approach.

In order to see whether there is a significant difference between the fixed and the random

edge blocking visiting schedule described in Section 2.3, we conducted a simulation study

based on the cascade algorithm and the original image shown in Figure 2.4(a). Sixteen

63

noisy images were obtained by adding independent standard Gaussian noise to that image.

We performed the simulated annealing procedure (with ICM and smoothing) on these

images using both fixed and random visiting schedules. The number of pixels that differ

between the true shape and the estimated shape over realisations of the noise process is

listed in Table 2.3. The mean number of differing pixels is 191 for the fixed and 186 for the

random visiting schedule. The p-value of a paired /-test of H 0 : f-lnxe<J = Prandom against

H,: f-lnxe<J o;e f-lrandom is 0.4327, where f-lrJXed and f-lrandom are the mean number of pixels that

differ between the true shape and the estimated shape for fixed and random visiting

schedules respectively. Hence there is no statistically significant difference between the

fixed and random visiting schedules.

Table 2.3 The number of pixels that differ between the true shape

and the estimated shape over realisations of the noise process in 16

noisy images for fixed and random edge block visiting schedule

Sample Fixed Random Sample Fixed Random

I 170 186 9 211 198

2 251 263 10 140 159

3 238 180 11 219 185

4 159 130 12 179 212

5 175 197 13 188 177

6 178 152 14 161 156

7 183 200 IS 239 191

8 163 187 16 196 188

Mean 191 186

SD 29.6 32.4

64

2.5 Application to real clata

In this section we apply the cascade based simulated annealing algorithm and the non­

cascade simulatec:l annealing algorithm to the real ultrasound image of a human ovarian cyst

that is presented in Figure 1.8.

Figure 2.1 5(a) presents this real ultrasound image of a human ovarian cyst together with an

initial contour. The cyst can be defined by its edge and pixels inside and outside the cyst

have different records. We took a 1 = 8 and a 2 = 0.01, and we set f = 2 and I= 0.1, We

considered a three stage cascade procedure with the monotonically decreasing linear

temperature schedule followed by smoothing. The number of sweeps of simulated

alinealing was taken to be ten at each blocking stage. The initial contour shown in panel (a)

is obtained by first thresholding the record averaged over the sixteen pixels of each block

using the· intermeans algorithm and then finding the convex hull of the resulting data using

the chull function of S-Plus. The white line in panel (b) is the final estimate of the outline

of the shape by the three stage cascade based algorithm.

In order to make a comparison with the non-cascade algorithm, we applied the direct

simulated annealing algorithm to the ultrasound image using the same values of parameters

and starting from the same initial contour. The number of sweeps was set to thirty. The

result is presented in panel (b) of Figure 2.1'5 by means of the black line. We see that the

results obtained from these two algorithms are almost the same. However, the non-cascade

procedure took 5639 seconds DOS-time on a Pentium 75MHz PC and the final energy

·65

is 51325, whereas the cascade procedure took onJy 3721 seconds DOS-time and the final

energy is 51268.

0 50 100 150 0 50 100 150

(a) (b)

Figure 2.15 (a) A real ultrasound image of a human ovarian cyst together with the

initial contour. (b) Estimate of the cyst shape produced by a three stage cascade

procedure (white outl ine) together with the estimate produced by the direct simulated

annealing algorithm (black outline).

The cascade based algorithm seems well able to define the edge of the underlying shape in

the ultrasound image. In Section 3.8 of the next chapter, we present the result of applying

another algorithm to this ultrasound image. That algorithm is a modified version of the

kernel algoritlun that we present in the initial sections of Chapter 3.

66

We believe that the algorithms presented in this chapter and in Chapter 3 would work well

on the ultrasound image of the left ventricle presented in Storvik (1994); we have, however,

been unable to obtain Storvik's data.

2.6 Discussion

We have suggested a cascade-based modification for increasing the speed of an algorithm

proposed by Storvik (1994) suitable for edge detection when the shape is defined by its

edge and pixels inside and outside the shape have different records. We have illustrated by

means of a simulated example that the use of the cascade-based method leads to a

considerable increase in the speed of the algorithm. Three different temperature schedules

for the cascade based simulated annealing algorithm have been considered and the results

(see Table 2.1) tell us that the monotonically decreasing cascade temperature schedule can

lead to the edge with the lowest energy. However, in our simulation the independent

cascade temperature schedule leads to an edge whose associated shape has the lowest

number of differing pixels, although the final energy of the edge is a little higher than that

obtained by using the monotonically decreasing schedule. We have also applied our

algorithm to real data with success.

From Table 2.2 we may conclude that the cascade based method leads to a significant

increase in the performance of the algorithm when the noise level is high.

This algorithm would not work well for the real ultrasound fetal head image given in

Figure 1.2(a) because the grey-levels of pixels inside and outside the head shape seem to

67

have very similar distributions. In fact, the algorithm described in this chapter seems to

work well only for solid shapes such as the one presented in Figure 2.4(a). Even if we set

u 3 (x) = 0, that is, we disregard the likelihood term, the algorithm does not work well since

the smoothness energy 111(x) and the gradient operator 112 (x) do not satisfactorily detect

the edge.

Another problem that the image given in Figure 1.2(a) presents is the obliteration of the

edge of the head in certain regions caused by high levels of degradation. The kernel

algorithm that we present in the next chapter enables us to overcome this problem and to

produce an acceptable estimate of the edge.

68

Chapter 3

Edge Detection Using Kernel Functions

3.1 Definition of tlte kernel function

In this chapter we consider images that consist of a single object whose shape is defined

only by its edge; in other words, we consider images that comprise a closed curve degraded

by noise. An example of such an image is shown in Figure 3 .I (This image was also shown

in Figure 1.2(a)). In Figure 3 .I the head shape is defined by a thin outline of pixels with

records that are different from those pixels that lie inside and outside the shape. The

records at these interior and exterior pixels are, however, similar. Much degradation is

present in Figure 3 .I, and this has almost obliterated part of the outline. Accordingly,

standard edge detection algorithms such as the Prewitt and Canny filters are not able to

detect the head edge. In Chapter I we reported that the results from both the Prewitt filter

and the Canny filter are poor; see Figure 1.2. In addition, such algorithms often yield

69

many artefactual edges elsewhere in the image; see Qian, Titterington and Chapman (1996)

for another example of this.

0
tO

0
l()

0
"<t

0
C'") •

0
N

0
r-

0

0 10 20 30 40 50 60

Figure 3.1 The ultrasound image of a cross-section of a fetal head.

The approach described in Chapter 2 does not consider objects of this type; see the

discussion at the end of that chapter. A shape that is defined only by its edge presents

special problems because the edge can be almost lost by high levels of degradation in

ceriain regions, as can be seen in Figure 3. 1. Accordingly, for a degraded closed curve

image, such as an ultrasound fetal head shape, we need a special method to estimate the

edge of the shape.

70

Recently, several authors have worked on similar problems. These include Bowtell and

Patefield (1997) who develop techniques for fitting circular functional relationships, and

Pursey and Taylor (1995) who present a method for edge detection called route tracing

based on finding and following the perimeter of a shape. Pursey and Taylor (1995) apply

their methods with considerable success to complicated digital images of fungal spores.

Their images are not, however, subjected to high levels of degradation. Van

Lieshout (1995) discusses the use of the generalised Hough Transform in object

recognition; see also Illingworth and Kittler (1988) for a survey of the Hough transform.

Rue and Husby (1997) use deformable templates and destructive deformation fields to

identify partly destroyed human melanoma cancer cells with good results. Other authors

have used methods based on mathematical morphology (see, for example, Glasbey and

Horgan, 199 5) for extracting measurements from ultrasound images. These include

Thomas, Peters 11 and Jeanty (1991) who measure the femur length and Matsopoulos and

Marshal! (1994) who measure the fetal head.

In this chapter we present a new algorithm for the detection of connected shapes in noisy

images such as the one shown in Figure 3 .I. The algorithm is based on a specially designed

kernel function that iteratively identifies the outline pixels of the head. Once the outline

pixels have been found, the shape is defined to be these pixels together with the pixels inside

the outline.

Our kernel function algorithm is a type of greedy algorithm as it chooses the most 'outline

like' pixel at each step. It is somewhat reminiscent of the iterative algorithm to track roads

in satellite images presented by Geman and Jedynak (I 996). The images analysed by these

authors are far more complicated than those that we consider, although the level of

71

degradation is far less. Our task is conceptually much simpler than that addressed by

Geman and Jedynak (1996) and our algorithm is, accordingly, much less complicated.

This chapter is organised as follows. In Section 3.2, we describe the kernel function, and in

Section 3.3, we define the kernel algorithm used in edge detection. A simulation study that

aims to illustrate features of the proposed algorithm is presented in Section 3.4. In

Section 3.5, a modification to the kernel algorithm is discussed and we show that this

modification improves the performance of the kernel algorithm. In Section 3.6 we apply the

kernel algorithm to two real ultrasound images. Section 3. 7 summarises our findings about

the use of the kernel algorithm for detecting shapes defined only by their edge. In

Section 3.8, we present a related kernel algorithm to detect the closed boundary of an

object in a noisy image, where the pixels inside and outside the edge have grey levels with

different distributions. We illustrate this kernel algorithm on a real ultrasound image by

detecting the shape of the human ovarian cyst shown in Figure 1.8. Finally, in Section 3.9

we make some suggestions for further work.

3.2 Tire kernel function

Let us suppose that the recorded image z compnses (2m +I} x (2m +I} pixels: for the

image shown in Figure 3.1, m= 30. We think of this image as part of a plane defined in

two dimensions and we define the co-ordinates from -m to m on both axes, so that every

integer co-ordinate in the interval (-m, m}, say (x, y), corresponds to one pixel. For

example, let m= 30 , then the point (12, 25} corresponds to the row 43 = (30 + I + 12) and

72

column 56= (30 + 1 + 25) of the image. In this way there is a one-to-one correspondence

between points and pixels. We write z(x,y) for the value taken by the image at pixel eo-

ordinate (x,y). These values are represented by grey-levels in Figure 3.1.

In the following we will define the kernel function centred at point (x0 , y 0) . Let () be the

angle through which the kernel is allowed to rotate in order to find its best alignment with

the edge of the shape. Then a new (x',y') co-ordinate system centred at the point

(x
0
,y

0
) in the old (x, y) co-ordinate system and rotated through an angle () is defined as

x' = (x- x0)cos0- (y- Yo) sin()

y' = (x- x0) sin 0+ (y- y 0)cos0.

We define the kernel function at pixel co-ordinate (x, y) , centred at pixel co-ordinate

(x
0

, y
0

) and rotated through an angle () anticlockwise, to be

(3 .1)

where C is an arbitrary constant, where

and where a
0

, a
1

and a 2 > 0. Up to a normalising constant, the kernel function is a

product of a marginal density in the x' direction and a conditional density in the y'

direction. Both densities have mean zero. The variance of the conditional density increases

as lx'l increases.

73

An example of the kernel function K{(x,y); (x0 ,y0), 0} is shown in Figure 3.2 by means

of a contour plot, where the kernel is centred at pixel co-ordinate (x
0

, y
0

) = (o, o) with

rotation 0 = 0, and the values of the parameters are chosen as u 0 = 1 , u 1 = 5 and u
2

= 5.

The kernel function shown in Figure 3.2 will be the one used to detect the fetal head shape

from Figure 3. 1. Figure 3. 2 enables the size of the kernel to be compared with the image

giveninFigure3.1 forwhich -30S:x:<S:30 and -30S:y:<S:30.

0

I[)

0

I[)

'

0
~

'

-10 -5 0 5 10

Figure 3.2 An example of a kernel function centred at pixel co-ordinate

(X0 , Yo) = (0, 0) with rotation 0 = 0. Contours are drawn at 10%, 50% and

90% of the maximum height. The values of the parameters are u
0

= I ,

u 1 = 5 and u 2 = 5. The scales on the axes refer to pixels.

The idea of this is that such a kernel function will be able to capture the curvature of the

shape. Other kernel definitions may be appropriate for detecting different types of shapes.

74

The kernel function was designed intuitively to enable the algorithm to look forward

towards new edge pixels, so bridging any apparent gaps. Other kernel definitions may be

appropriate for detecting different types of shapes.

0,-----------------, ..,

0

0

0

~L-----------------~

0

0

(a)

·30 -20 ·10 0 10 20 30
(c)

(b)

(~)

·30 -20 ·10 0 10 20 30
(d)

Figure 3.3 Four kernels functions with different parameters:

(a) u 0 = I (low), u 1 = I 0 (high) and u 2 = 20 (high) causing a narrow, long kernel;

(b) u 0 = 2 (high), u 1 = 10 (high) and u 2 = 20 (high) causing a wide, long kernel;

(c) u 0 = I (low), u 1 = 4 (low) and u 2 = 20 (high) causing a narrow, short kernel;

(d) u 0 = 1 (low), u 1 = l 0 (high) and Cf 2 = l 0 (low) causing a less curved kernel than (a).

The scales on the axes refer to pixels.

75

In our algorithm the kernel function shown in Figure 3.2 is allowed to be centred at any

pixel co-ordinate and rotated through an angle (). In the formula for

K{(x,y); (xo,Yo), o} ' there are three parameters CT 0' CT I and CT 2 > 0 th(ltaffect the shape

of the ke~nel function: a 0 controls mainly the width of K, while a 1 controls mainly its

length and CT 2 mainly its curvature, The effects of varying CT 0 , CT 1 and CT 2 are illustrated in

Figure 3.3 where we present some examples of kernel functions with different parameter

values. The choice of the kernel function is discussed further in Section 3. 5 and in

Chapter 4.

3.3 Tire kernel shape detection algorithm

Our kernel shape detection algorithm is based on the convolution j ofthe image z with

the kernel function K{(x,y); (x0 ,y0), B} defined as

J{(x0 ,y0),B} = LK{(x,y); (x0 ,y0), B}z(x,y)
pixel

CO·Ordinates
(x.y)

(3.2)

where z(x,y) is the grey level at the pixel co-ordinate (x,y), and the sum is over all pixel

co-ordinatesin the region {(-m, m) x (-m, m)}.

The maxtmum of j over rotation () gives a· measure of how 'edge like' the piJ<el

corresponding to the co-ordinates (x0 , y 0) is, The idea of the edge detection algorithm is

to use this measure to trace out the outline pixei by pixel (point by point). We do this in a

clockwise direction,

76

The main steps of the edge detection algorithm are as follows:

I. The user selects a starting edge pixel (point) where the outline is obvious and chooses a

suitable starting angle for the kernel function centred at this point so that it lines up with

any visible edge.

2. Call this point the current point, mark it as an outline point ·and record the rotation angle

as o·.

3. At each candidate point (some of the neighbours of the ·current point, as discussed

below), find the value of f over the set {o'- 28, o' -0, o', o· + 0, o· + 2o} of

rotation angles, where the fixed rotation parameter o > 0 is chosen by the user.

4. IdentifY the candidate point and rotation angle that correspond to the maximum of the

values of f found in step 3.

5, Go to step 2, until the starting point becomes a candidate point, so closing up the

outline.

6. Stop.

For all the ultrasound head images with which we have experience step 1 has always been

possible. For all these images the above algorithm stopped. When the algorithm stops, a

closed outline of pixels results. The estimate of the shape is then defined to be all pixels on

and inside the outiine. Of course, the algorithm is not guaranteed to stop, but it would not

be hard to modifY it so that termination was ensured. This could be done, for example, by

increasing the grey level at the starting pixel to such an extent as to force the kernel function

to draw the edge back to thllt pixel. We do not discuss ·this further here, but in

77

Section 3. 7 we describe the results of a simulation study designed to illustrate how much

noise the kernel algorithm can tolerate before failing to stop.

The values of the kernel parameters u 0 , u 1 and u 2 , and the rotation parameter c5 of the

kernel were chosen here by experience. In the next chapter, we will explore the effect of

the kernel parameters by means of a simulation study. This study will help us to know weii

the effect of the parameters and so enable us to choose appropriate values for thent

We also need to specify the nile that chooses the candidate points over which the kernel

function is to be optimised. In normal human fetuses, the head shape when viewed from

above tends to be roughly ellipsoidal, whereas in fetuses affected by Neural Tube Defects

the head is approximately lemon shaped. This is discussed more fully in Chapters I and 2.

Accordingly, the normal and affected fetal head shapes are of quite different nature, the

former having convexities and the latter having both convexities and concavities. However,

in both cases a regular pattern for searching the candidate points can be defined when the

centre of the image lies within the shape of interest and all parts of the edge are visible from

the centre.

We now present the rule according to which the candidate points are chosen. Suppose that

we look for the next point in a clockwise direction. If a first or second order neighbour of

the current point lies on the clockwise side of a line drawn from the centre of the image

(assumed to be inside the head shape) through the current point, we say this point is a

candidate point. Hence, the next point will always be one of the neighbours shown in

Figure 3.4, where the symbol • represents the current point and the symbols o represent

candidate points from which the next point is selected. We need only consider eight

different sets of possible candidate points corresponding to the position of the current poirtt.

76

Figure 3.4 The choice of candidate points when searching takes place ih a clockwise

direction. The symbol • represents the current point, while the symbol o represents

the candidate points from which the next point is selected.

In our algorithm the-edge is traced out iteratively by selecting the next edge pixel as the one

from a set of candidate edge pixels that maximises the convolution f of the specially

designed kernel function K with the image z. At each candidate edge pixel the kernel

function is allowed to rotate in order to find its best alignment with the edge of the head.

This is illustrated in Figure 3.5. Figure 3.S(a) shows the contours of kernel functions at

every candidate pixel without rotation, while Figure 3.S(b) shows the contours at one

candidate pixel with rotations ±0.027t .

79

(a) (b)

Figure 3.5 The search procedure: (a) kernel contours at candidate points without

rotation; (b) kernel contours at one candidate point with rotation. The symbol • represents

the current point.

In the next section we present a simulation study that not only illustrates our algorithm, but

also suggests the modifications to the kernel function and the refinements to the algorithm

that will be djscussed in Section 3.5.

3.4 A simulation study

The true binary image, which comprises 61 x 61 pixels and is an ellipse, is presented in

Figure 3.6(a). The outline is intended to represent a cross-section of a fetal skull. The

80

records of the image take the value 1 at the black edge pixels and the value 0 at the

remaining white pixels. Figure 3.6(b) shows a noisy image obtained by adding

independent N(0, 1) noise to the original true image shown in Figure 3.6(a), and represents

the simulated data to which our algorithm is applied.

0

"'
0

"'
0 ..
0
M

0
N

~

0

0

"'
0

"'
0 ..

{a)

0 10 20 30 40 50 60
{c)

{b)

.. ·.

0 10 20 30 40 50 60

{d)

Figure 3.6 (a) The original 61 x 61 binary pixel image. (b) The data obtained by adding

independent N(0, 1) noise to the original image. (c) The estimate of the outline obtained

by the proposed algorithm. (d) The difference between the original shape and the

estimated shape. Black pixels are inside the original shape but outside the estimated shape,

while grey pixels are outside the original shape but inside the estimated shape. The black

pixel indicated by the white box in (b) has a large effect on the detected outline.

81

The estimate of the edge obtained by the proposed algorithm is shown in black in

Figure 3.6(c). The kernel that was used had O" 0 =I, 0" 1 = 4 and O" 2 = 20 and is shown in

Figure 3.3(c). The rotation parameter r5 was set to 0.027r. Figure 3.6(d) illustrates the

difference between the true shape and the estimated shape; black pixels are inside the

original shape but outside the estimated shape, while grey pixels are outside the original

shape but inside the estimated shape.

The proposed algorithm has performed well, except that in the estimated shape there is a

protuberance on the lower right. This is caused by the large effect of the black pixel

indicated by the white box in Figure 3.6(b). In Section 3.5 we present a modification to the

kernel function that reduces the sensitivity of the algorithm to such outlying records.

Table 3.1 gives a numerical summary of the errors made by the estimate. Note that edge

pixels are thought of as part of the shape.

Table 3.1 Numerical summary of the error made by the estimate

Estimate shape

True shape pixel present pixel absent Total

pixel present 965 14 979

pixel absent 47 2695 2742

Total 1012 2709 3721

82

3.5 Modification of the kernel f unction and refinement of the algorithm

The shape of the kernel function can of course be chosen to suit the application. In our

experience with simulation studies such as those presented in Section 3.4, the 'peanut' or

'bowtie' shaped kernel function shown in Figure 3.2 generally performed well, but could be

affected by isolated pixels with outlying records. Such behaviour was illustrated in

Figure 3 .6(c), where a substantial deviation of the outline was brought about by the black

pixel indicated by the white box in Figure 3.6(b). In this case the kernel function causes the

algorithm to look too far ahead and to be deviated by this outlying record.

I '
I \

,~-~~---·~-,
I I

I I

I

I
I

I

I

I

' ~:.___ - -_____ - ----- Skull

(a) (b)

I
I

I

Figure 3. 7 The choice of the kernel function in relation to the underlying shape. (a) The

original 'peanut' shaped kernel function. (b) The modified ' banana ' shaped kernel

function. The banana kernel follows the curvature of the skull better than the peanut

kernel.

83

A 'banana' shaped kernel function sometimes turns out to be more suitable for human fetal

head shape detection as it follows more closely the curvature of the skull cross-section.

This is illustrated in Figure 3.7.

The banana shaped kernel function can be obtained by cutting off the parts of the peanut

shaped kernel that bulge away from the centre of the image.

I

I •

0 10 20 30 40 50 60 0 10 20

(a)

..

30

..... -

40

(b)

.•

50 60

Figure 3.8 (a) The estimate of the outline obtained by applying the proposed algorithm

with the banana shaped kernel function to the data in Figure 3.6(b). The white box

indicates the black pixel that caused problems when the peanut shaped kernel function was

employed. (b) The difference between the original shape and the estimated shape. The

colour code of Figure 3.6(d) is employed.

84

We applied the banana shaped kernel function with the same parameter values as before to

the image data in Figure 3.6(b}. The estimated outline is shown in Figure 3.8(a). This

estimate seems not to have been affected by the black pixel indicated by the white box.

Figure 3.8(b) illustrates the difference between the true shape and the estimated shape. A

comparison of Figure 3.8(b) with Figure 3.6(d) shows that the banana shaped kernel

function has led to a substantial improvement in the performance of the algorithm. The

numerical comparison between the true and estimated shapes is given in Table 3.2.

Table 3.2 Numerical summary of the error made by the estimate

when the banana shaped kernel function is applied

Estimate shape

True shape pixel present pixel absent Total

pixel present 964 15 979

pixel absent 9 2733 2742

Total 973 2748 3721

In the above experiments, the angles over which the function f is maximised at each

candidate point are restricted to the discrete set of rotation angles

(rl - 2t5, (/ - t5, e', e' + t5, e' + 2t5) , where e· is the current angle of the kernel

function, and the parameters a 0 , a 1 and a 2 are all fixed. We now consider allowing the

rotation angle of the kernel to vary in a continuous interval (e· - 6, e· + 6) for some

fixed 6 > 0; we now refer to e as a dynamic parameter. We keep a 0 = I, a 1 = 4 and

a 2 = 20, we let 6 = O.ln, and we use the banana shaped kernel function. We employ the

optimize function of S-Plus to perform the search over e. Figure 3.9 is the estimated

85

shape, and the numerical comparison between the true shape and estimated shape is given

in Table 3.3. Comparing Figure 3.9(b) with Figure 3.8(b) and Table 3.3 with Table 3.2, we

see that optimising over B does not lead to a better result in this simulation study.

0
ID

5l

0 ...

0
M

0
N

~

0

• ..
..

• J

I
•

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) (b)

Figure 3.9 (a) The estimate of the outline obtained by applying the proposed algorithm

with the banana shaped kernel function and dynamic parameter

e E (e· - O.ln, e· + O.ln) to the data in Figure 3.6(b). (b) The difference between the

original shape and the estimated shape. The colour code of Figure 3.6(d) is employed.

Table 3.3 Numerical summary of the error made by the estimate

when the banana shaped kernel function and dynamic parameter e
are applied

Estimate shape

True shape pixel present pixel absent Total

pixel present 958 21 979

pixel absent 7 2735 2742

Total 965 2756 3721

86

Another possible refinement is to allow all the parameters (), a 0 , a 1 and a 2 to vary

continuously in suitable continuous intervals, and to optimise over these parameters at each

pixel. Because the shape and hence volume of the kernel function will change as these

parameters change, we need to standardise the convolution in order that legitimate

comparisons may be made; we set

where f(x0 , y 0) is the value of f at (x0 , y 0), and the sum is over all pixels.

For our purposes, we assume that (), a 0 , a 1 and a 2 are all dynamic parameters, with

() E(B' -0.17!", ()' +0.171"), CT 0 E(O.i, !), a 1 E(l, 10) and a 2 E(l, 40). We use the S-

Plus function nlminb to optimise the kernel function over (), a 0 , a 1 and a 2 • The result

obtained by applying the proposed algorithm to the image shown in Figure 3.6(b) is very

poor. We terminated the programme when the detected edge began to go far away from

the true shape. The reason for this behaviour is that the length and the width of the kernel

function may not be chosen suitably by the optimisation routine. For example, if the kernel

is so short or narrow that it only covers a few pixels, the standardised convolution may be

very high at a point whose immediate neighbours have quite high grey levels, even though it

does not lie on the edge. In other words, the optimisation routine may prefer a small kernel

function with large support that detects an uninteresting local effect to a big kernel function

that detects the edge. There is a similar problem if the kernel function is too long or too

wide. To illustrate this, Figure 3.10 shows part of an edge defined image with kernel

87

contours added to pixel 1 and pixel 2, where pixel 1 is on the edge but pixel 2 is not. In

Figure 3.1 0(a) kernel functions with parameters a-0 = 0.5, a-1 = 3 and a-2 = 20 have been

added and the standard convolution value f std is 0.1023 at point 1 and 0.0232 at point 2,

whereas in Figure 3.1 O(b) kernel functions with parameters a-0 = 0.4, a-1 = 1.5 and

a- 2 = 20 are shown and the standard value f std is 0.0909 at point 1 and 0.1134 at point 2.

The incorrect pixel was identified in this case because we obtain the biggest value of f std at

point 2 in Figure 3.1 O(b).

~ ~
' .

(a)

BR1
I ~ " " I

•

(b)

Figure 3.10 Example of the effect of the parameters. (a) Contours with parameters

a-0 = 0.5 , a- 1 = 3 and a- 2 = 20 . f std is 0.1023 at point 1 and 0.0232 at point 2.

(b) Contours with parameters a-0 = 0.4, a- 1 = 1.5 and a- 2 = 20. f std is 0.0909 at point I

and 0.1134 at point 2. The maximum value of f std is therefore obtained at the incorrect

point 2 in (b).

88

- ...
~
•

I

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) (b)

Figure 3.11 (a) The estimate of the outline obtained by applying the proposed algorithm

with the banana shaped kernel function and dynamic parameters

e E(tl-O.ln-, e· +O.ln-) ' a, E(3, 10) and 0" 2 E(5, 40), and fixed parameter

a 0 = 1 to the data in Figure 3.6(b). (b) The difference between the original shape and the

estimated shape. The colour code of Figure 3.6(d) is employed.

If we fix the width of the kernel by letting 0" 0 = 1 ' and let e E (e· - O.ln-' e· + O.ln-) '

a 1 E (3, 1 0) and a 2 E (5, 40) be dynamic, we obtain the result shown in Figure 3.11 after

19832 seconds DOS-time on a Pentium 75MHz PC, while the non-dynamic algorithm that

leads to Figure 3.8 took 706 seconds only. The numerical comparison between the true

and estimated shapes is given in Table 3.4. Although this time the program works and

gives a very acceptable solution, Table 3.4 shows that the performance is still poor in

comparison with Table 3.1, 3.2 and 3.3. Hence, in practice we need to ensure that the

parameters and parameter intervals used do not lead to kernel functions that have too large

8 9

or too small a support. Our experience suggests that we should choose the parameters CT 0 ,

CT 1 and CT 2 so that at the centre the width of the kernel contour at 90% of the maximum

height should cover about S-7 pixels and the length should cover about 15-25 pixels.

Table 3.4 Numerical summary of the error made by the estimate

when the banana shaped kernel function and dynamic parameters

fJ, CT 1 and CT 2 are applied

Estimate shape

True shape pixel present pixel absent Total

pixel present 953 26 979

pixel absent IS 2727 2742

Total 968 2753 3721

Neither of these dynamic variations produced any noticeable improvement in results, despite

a massive increase in computational burden. Maximising f over CT 0 , CT 1 and CT 2 can lead

to meaningless results ifthe range of these parameters is not restricted.

In Section 3.7 we will discuss further the effect of varying the parameters.

3.6 Application to real tlata

First we applied the proposed algorithm to the original ultrasound image of a cross-section

of a fetal head shown in Figure 3.1. We used the peanut shaped kernel function shown in

Figure 3 .2, which has the parameter values CT 0 = 1 , CT 1 = 5, CT 2 = 5, and we set

90

o = 0.02JT . The resulting outline of the cross-section of the fetal head using the peanut

kernel is shown in Figure 3.12(a). The procedure took 753 seconds DOS-time on a

Pentium 75MHz PC. The algorithm seems to work well.

We repeated the above estimation procedure using the banana shaped kernel function and

the same parameter values. The result is shown in Figure 3.12(b). We found that the

estimated edge on the right of the shape differs a little in Figure 3 .12(b) and in

Figure 3.12(a). Of course, this difference may or may not be relevant from a medical point

of view.

In this example, the peanut shaped kernel function works well. We can also use the peanut

shaped kernel function for the detection of an affected head shape that shows the lemon

sign. Figure 3.12(c) is the digitised version of the ultrasound image shown in Figure l.l(b).

This image comprises I 08 x 98 pixels and there are 256 grey levels. The lemon sign is

clear visible. Indeed it was known that the fetus was affected with open spina bifida. We

applied the proposed algorithm to this image with the peanut shaped kernel function with

parameters a- 0 = 1.3, a- 1 = 6 and a- 2 = I 0, and with o = 0.02JT . The starting point is

taken to be the lower edge point at the right side of the image, where the image is not

complete. The result is shown in Figure 3.12(d) where the white line represents the

extracted outline of the head shape. The outline is cut off at its right side because the

original image is not complete there. The lemon sign is obviously present in Figure 3.12(d).

91

I

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) (b)

0 20 40 60 eo 100 0 20 40 60 eo 100

(c) (d)

Figure 3.12 Two real examples. (a) Ultrasound image of a cross-section of a fetal head

with extracted edge using the peanut shaped kernel function . (b) Ultrasound image of a

cross-section of a fetal head with extracted edge using the banana shaped kernel function.

(c) Digitised version of a cross-section of a fetal head with open spina bifida showing the

lemon sign. The original ultrasound image is shown in Figure l.l(b). (d) The image (c)

with extracted edge (white li11e) using the peanut shaped kernel function.

92

0 20 40 60 80 100 0 20 40 60 80 100

(e) (f)

Figure 3.12 (Continued) Noisy images together with the extracted edges (white lines)

obtained by the kernel algorithm. The data were obtained by adding independent

(e)N(o, 1002
) and (f)N(o, 1502

) noise to the already noisy ultrasound image shown

in Figure 3.12(c).

A large difference between Figure 3. 12(a) and Figure 3.12(c) is that the edge is quite well

defined in Figure 3.12(c) whereas it is not in Figure 3.12(a). It would be an interesting

experiment to add noise to the already noisy Figure 3 .12(c) so as to make the edge much

less clear, and then to run the algorithm. We obtained two images by adding independent

N(o, 1002
) and N(o, 1502

) to the real ultrasound image respectively. Panels (e) and (f)

of Figure 3.12 present the result. We see that the resulting images do not resemble an

ultrasound image, but they do look like Figure 3.12(a) in the sense that there are pa1is of

the edge that seem to the human eye almost completely obliterated. The proposed

93

algorithm was applied to these images with the same kernel, same rotation angle and the

same starting point as were used for Figure 3.12(d). The extracted outline of the head

shape is expressed by the white lines. The lemon sign is obviously present in both results.

The kernel algorithm seems to work well on a large number of ultrasound images of cross­

section of fetal heads. For these images the performance was reasonably robust to the

choice of parameters.

3. 7 Discus.'iion about tire use of tire kernel algorithm for detecting shape ... defined only

by their edge,.,

In the previous sections, we have described a kernel function based algorithm for detecting

the edge of a closed curve from a noisy image such as an ultrasound image of a cross­

section of a fetal head. In a simulation study we have seen that this algorithm gave a very

good fit to a true ellipse corrupted by the addition of independent standard Gaussian noise;

see Figures 3.6 and 3.8.

Our approach was implemented in several ways using peanut or banana shaped kernels with

fixed or dynamic parameters. The results are shown in Figure 3.6(c) (peanut kernel with

fixed parameters), Figure 3.8(a) (banana kernel with fixed parameters), Figure 3.9(a)

(banana kernel with one dynamic parameter), and Figure 3.11 (a) (banana kernel with three

dynamic parameters). Comparing these results we find that the banana shaped kernel is

more suitable for the ellipse. Because the kernel function can change its shape greatly in

order to cover pixels with high records, the dynamic parameters and associated parameter

intervals should be chosen with care. Because Figures 3.12(a) and (b) look very similar, we

94

cannot say which lcind of kernel is more suitable for fetal head shape detection from these

two figures.

In order to assess the performance of the kernel function algorithm, we conducted a

simulation study based on the original image shown in Figure 3.6(a). Our data were

obtained by adding independent N(0, K) noise to that image. We judged the algorithm to

have failed to stop if the resulting edge was not closed, or if the number of pixels in the

resulting edge exceeded 1.5 times the number of pixels in the true edge so that the resulting

edge was wandering around the image. For each of three different noise variances

K = 0.25 , 0. 5 and 1.0, we applied the peanut shaped kernel function algorithm to 100 noisy

images. The starting pixel was selected at random from among all the known edge pixels.

The mean and the standard deviation (sd) of the number of pixels that differ between the

true shape and the estimated shape over realisations of the noise process for which the

algorithm stopped are recorded in Table 3. 5. Also presented in Table 3. 5 is the number of

times the algorithm failed to stop due to the resulting edge not being closed or due to the

maximum number of edge pixels being exceeded.

Table 3.5 Results of the simulation study for the kernel function algorithm

Algorithm stops Algorithm fai ls to stop
Variance K Measure of error Occasions U1at resulting Occasions that maximum

mean (pixels) sd (pixels) edge is not closed number of pixels is exceeded

0.25 37 21.0 4 5

0.50 81 49.6 7 23

1.00 120 72.0 9 52

sd=standard deviation

95

Table 3.5 shows that the performance of the algorithm is consistently good for K = 0.25 .

As K increases the quality of the performance decreases. Although the results seem

disappointing for K = 1, it should be remembered that the edge is just one pixel thick with

the consequence that the edge detection problem is a very hard one.

96

3.8 Slrape tletection using kernel algoritlrm

We discussed the work of many authors on object recognition in Chapter 2; see in particular

Section 2.1. The models used by these authors can be placed into a number of categories.

The first category corresponds to traditional Bayesian type models as proposed in the

imaging context by Geman and Geman (1984) and further discussed by Besag (1989). The

second category corresponds to template models as used by Grenander, Chow and

Keenan (1990). The template model is still Bayesian, but is based on the deformation of a

special designed polygon. The third category corresponds to non-Bayesian models. The

'snakes' or active contour model, proposed by Kass, Witkin and Terzopoulos (1988), is a

non-Bayesian model that uses the minimisation of a specially designed energy function to

cause a deformable contour to change its shape with the aim of wrapping itself around the

edge of the object. Kass, Witkin and Terzopoulos (1988) describe in detail an algorithm to

perform this minimisation. We will discuss the snake model in Chapter 5. In Chapter 2 we

mainly introduced Storvik (1994)'s model which we fitted using the cascade algorithm.

Storvik (1994)'s approach is based on the minimisation of an energy function, and can

sometimes be given a Bayesian interpretation.

In the previous sections of this chapter, a kernel method was introduced to detect in an

image a single shape defined in terms of its edge with pixels inside and outside the edge

having grey levels with the same or similar distributions; an example of such an image is

given in Figure 3. I. In this section, the kernel algorithm is modified to detect in an image

the closed boundary of an object, where the pixels inside and outside the edge have grey

levels with different distributions. An example of such image data is given in

97

Figure 3 .13(b). This is a simulated image obtained by adding independent N(0, 1) nmse

to the true image shown in Figure 3 .13(a). The images in Figure 3.13 were also shown in

Figure 2.4. We will show that the kernel method can be adapted to identify the boundary

of an object in a noisy image. After this, we present the result of applying the adapted

algorithm to the real ultrasound image shown in Figure 1.8.

0 20 40 60 80 100 0 20 40 60 80 100

{a) {b)

Figure 3.13 (a) The known head shape. This 100 x 100 binary image displays one of

the heads analysed by Wright et al. (1997). (b) The simulated data obtained by adding

independent N(0, 1) noise to the image (a).

98

3.8.1 Tlte idea

Let us begin by considering a simple break detection problem in one dimension. Figure 3.14

presents a way of identifying the break point in a step function that uses a detection

function D.

Z(X)
bl-------'

a

(a)

X

C(x)

D(x)

X

(b)

X

(c)

Figure 3.14 Illustration of the break point detection method in one dimension. (a) The

step function Z{x) has a break at an unknown point x'. (b) The detection function

D(x) has two parts- a negative part and a positive part, each with the same area 1/2.

(c) The convolution C(x) of the detection function D(x) with the step function Z(x).

This indicates a break in z(x) at x'.

99

Let Z(x) be a step function with a break at an unknown point x·:

where a< b. The function Z(x) is presented in Figure 3.14(a). A standard break

detection algorithm would take a function D(x) such as that shown in Figure 3 .14(b),

where the two shaded parts above and under the x- axis have the same area 1/2 and would

convolve D(x) with the step function Z(x) to obtain the convolution C(x) presented in

Figure 3. 14(c). At points far away from the break point x· the value ofthe convolution is

zero. At points near to the break point, the value of the convolution becomes negative and

at the break point x· the minimum value -(b- a)/2 of the convolution is attained. This

process is a sort of gradient operator. It identifies the break point as being the place where

the maximum absolute value of the convolution occurs.

The sallle method could be used to estimate the change point for a much less smooth

function, such as the function shown in Figure 3.lS(a). This function was obtained by

adding independent lv':(O, 0.3 2
) noise to the function Z(x) shown in Figure 3.14(a); we set

a = 0.5 and b = 1.8, artd divide the x- axis into 200 points. Convolving the detection

function D(x) shown in Figure 3.14(b) with the noisy function Z(x), we obtain the

convolution C(x) presented in Figure 3.1 S(b). Around the change point £ the maximum

absolute value of the convolution occurs. The estimated change point may differ from the

exact break point because of noise.

100

Z(x)

a·
I

(a)

C(x)

X

(b)

Figure 3.15 lllustr~tion of.the change point detection method for a noisy function in one

dimension. (a) The step function Z(x) shown ·in Figure 3.14(a) has been corrupted by

independent N(o, 0.32
) noise; we set a = 05 and h = [8, and we divided the x -axis into

200 points. (b) The convolution C(x) of the detection function D(x) with the noisy

function z(x).. This indicates a break in z(x) aromi.d x·.

The .form of the detection function used in this one dimensional case suggests to us how we

should adapt the kernel function introduced in Section 3.2 to detect object boundaries in

images such as Figure 3.B(b).

101

3.8.2 De.~cription of the kernel algorithm applied to shape detection

Now we apply the above idea to the shape recognition problem in two dimensions. We

shall assume that in the true image the whole shape is present; such a true image is shown in

Figure 3.13(a). Such images exhibit a large change in grey levels at their edge. What we

need to do is to find a detection function to estimate the changes in the true image from a

noisy version of it.

Let us consider the kernel K{(x,y); (x0 ,y0), e}. Let us assume that the centre (x 0 ,y0) of

this kernel lies on the edge of an object, as shown in Figure 3. 16. The line BB' is the major

axis of the kernel. We suppose that pixels inside the true object have higher grey level

values than those outside the true object. If the angle of BB' with respect to the horizontal

is selected appropriately, and if the part of the kernel outside the object is multiplied by -1,

the absolute value of the sum of the product of the resulting function with the image grey

levels will reach its maximum around the edge point (x0 ,y0) along the line AA'

perpendicular to BB' through the point (x0 ,y0) . Accordingly, the kernel detection

function D{(x,y); (x 0 ,y0),e} is defmed as

D{(x ,y); (x 0 ,y0),e} = K{(x ,y); (x 0 ,y0), 8} x G{{ x,y); (x0 ,y0),8}, (3.3)

where 8 is the angle of rotation of the kernel, that is, the angle of rotation of BB' , and

G { (x, y); (x0 , Yo), 8} is a marking function which takes the value -1 outside BB' and +I

inside BB'.

102

A'
\

outs~~ (low values)
edge

insi~ (high values)

\

\

\
A

Figure 3.16 The detection function D .. The kernel function K is illustrated by

the contours, while the marking function G is shown by using+ and-.

outside (low values) \
A

Figure 3.17 Five detectors. The highest absolute value is yielded by detector I.

103

Figure 3.17 shows how the detection function works. In Figure 3. I7, detector I is located

just on edge and the sum of its product with the image grey levels gives the value

high -low; detector II is located completely outside the shape, and leads to the value

low -low = 0 ; detector Ill is located completely inside the shape and leads to the value

high- high = 0; detector IV overlaps the object much less than detector I and leads to the

value (..!..high + ..!_low) - low = ..!_(high - low) ; detector V has the wrong rotation angle
2 2 2

(
I . 2) (2 . I) 1 and leads to the value - htgh + -low - - htgh +-low = -- (high -low) . Of all five
3 3 3 3 3

detectors, detector I leads to the highest absolute value of the sum of its product with the

image grey levels, as we would hope.

The shape detection now proceeds exactly as described in Section 3.2 and 3.3 except that

the kernel function K is replaced by the detection function D.

We apply the modified kernel method to the object recognition problem shown in

Figure 3.13. In Chapter 2 we applied Storvik (I 994)' s algorithm to this problem. The

noise level in image Figure 3.13(b) is K =I. The true edge (dark line) and its estimate by

the modified kernel method are presented in Figure 3 .IS. The parameters of the kernel

were chosen as a 0 = 4, a 1 = I 0 and a 2 = 7 . The error for this estimation procedure

(number of differing pixels between the true shape and the estimated shape) is I47, which is

better than the error of I60 (I 52 after median smoothing) for the best estimate we obtained

by searching over the two parameters of the energy function of Storvik's algorithm; this

estimate was shown in Figure 2.6. The modified kernel method yielded an estimate with a

smoother outline than the estimate produced by Storvik's algorithm at less computational

expense.

104

0 20 40 60 80 100

Figure 3.18 The edge produced by the modified kernel method together with the

true edge (darker line).

0 20 40 60 80 100 0 20 40 60 80

{a) {b)

100

Figure 3.1 9 (a) The noisy image together with the edge (white line) estimated by the

modified kernel algori thm. The noisy image is obtained by adding independent

N(O, 3) noise to the true image shown in Figure 3.13(a). (b) The edge produced by the

modified kernel procedure together with the true edge (darker line).

105

The detection function defined by (3.3) works well for images with relatively low levels of

noise essentially because the large change in grey level at the edge of the image in the true

image still remains in the noisy version. However, in a very noisy image, this change

becomes much harder to identiry and at some parts the edge may even be destroyed. For

example, the image shown in Figure3.19(a) is obtained from Figure3.13(a) by adding

independent N(0, 3) noise. Some parts of the edge seem to have been completely

destroyed by the high level of noise. The shape detected by the modified kernel method is

presented in Figure 3. 19(a) by the white line; we set u 0 = 3 , u 1 = I 0 and u 2 = 6 to obtain

the best estimate with an error of 236 pixels. From this figure we see that the estimated

edge is attracted to regions where there is a large change in grey level, with the result that

the deformable area cannot be restored properly. Figure 3.19(b) presents the true

shape (darker line) together with the contour produced by the modified kernel algorithm;

the result is rough.

3.8.3 An attenuated lletection.functionfor very noisy images

It may help if we reduce the contribution to the convolution from points that are close to

the centre of the modified kernel. We can achieve this by adjusting the marking function

G{(x,y); (x0 ,y0),e}. We shall say that the resulting detection function has been attenuated

and we shall refer to the associated procedure as the attenuation technique. The idea behind

the attenuated detection function is illustrated in one dimension in Figure 3.20; an analogous

idea applies in the two dimensional case. Figure 3.20(a) is the kernel function k(x) centred

106

at x = x0 . The original marking function g(x) is a step function from -I to I and is

presented in panel (b). The detection function obtained from the product k(x)g(x) is

shown in (c). At the centre of the detection function shown in panel (c), there is a big jump

from negative to positive, and this makes the detection function very sensitive to changes in

the data. A false break may be estimated by the detection function shown in (c) if high

noise causes a large change at a non-change point.

k(x) g(x) k(x)g(x)

X IXQ X X
I
I
I
I
I

-1

(a) (b) (c)

g(x)
I

k(x)g(x)
I I

' I I I

I: I
I

' I

lll-c!t Jlln+d

11~ X X

I: I
;J : I

-1 I: I
(d) (e)

Figure 3.20 Illustration of the attenuated detection function in one dimension.

107

One· way to overcome this problem is for the centre of detection function to vary

continuously from negative to positive. In order to obtain such a detection function, we re-

define the marking function. Instead of using the step function in Figure 3.20(c), we use a

continuous function such as the one shown in Figure 3.20(d) in which the function g(x)

increases from -1 to 1 continuously in the interval [x0 - d, x0 + d] :

g(x) ==
X-X0

d
ifx0 -d:::; x < x0 +d,

ifx ~ x0 +d.

The attenuated detection function is then obtained by k(x)g(x) as shown in Figure 3.20(e).

With such an attenuated detection function, values of Z immediately adjacent to x0

contribute less to the value of the convolution at ;t0 , whereas values a little further away

provide the main contribution. This means that the detection of false change points may be

avoided.

We now work with the co-ordinates introduced in Section 3.2. Accordingly, d == 1 means

that a band of Width two pixeis is put through the centre of the kernel detector along the

major axis BB' of the kernel. We now apply this technique with d == 1 to the image

shown in FigureJ.19(a). We use the same values for the parameters as used for the

estimate in Figure 3. 19. The estimated sh11pe is presented in Figure 3 .21. A smooth and

reasonable estimate is obtained. This estimate is much better than the one shown in

Figure 3.19 obtained using the original detection function. The number of differing pixels

for the current estimate is 178, while it Was 236 for the estimate without using the

attenuation technique. This example, along with other experience that we have, tells us

108

that the attenuation technique plays an essential role in shape detection using the kernel

algorithm when the image is corrupted by high levels of noise.

0 20 40 60 80 100 0 20 40 60 80 100

{a) {b)

Figure 3.21 (a) The noisy image presented in Figure 3. 19 together wi th the estimated

edge (white line) detected using the attenuated detection function. (b) The estimated

edge together with the true edge (darker line).

This attenuation technique can a lso be applied to images with low noise levels but the

results are generally not better than those obtained without using the attenuated detection

function. For example, we now apply the attenuation technique with cl = 1 and cl = 2 to

the noisy image shown in Figure 3. 13(b) that is corrupted by independent N(O, 1) noise.

By searching over the kernel parameters, we found that the parameters a 0 = 3, a 1 = I 0

and a 2 = 6 give the best results for these values of cl ; these are presented in Figure 3.22.

The numbers of differing pixels in these estimates are 183 and 182 for cl = 1 and cl = 2 ,

109

respectively, while it is 147 in the best estimate without using the attenuation technique

shown in Figure 3 .18. These errors tell us that the attenuation technique does not work

well when the image is corrupted by independent N(0, 1) noise. However, if we compare

the estimates in Figure 3.22 with the estimate in Figure 3 . 18, we can see that the attenuation

technique leads to a more smooth estimate. The same phenomenon occurred in the estimate

presented in Figure 3.21 compared with the estimate presented in Figure 3.20.

Accordingly, the attenuation technique can lead to smoother estimates.

0 20 40 60 80 100 0 20 40 60 80 100

(a) (b)

Figure 3.22 (a) The edge produced using the attenuated detection function with d = 1 ,

together with the true edge (darker line). (b) The edge produced using the attenuated

detection function with d = 2 , together with the true edge (darker line).

llO

Table 3.6 presents the errors for our estimation procedure for different noise levels K and

different values of d . The true image is the head shape shown in Figure 3.13(a). There is

just one simulation for every noise level and value of d . This table indicates that the noise

level K determines whether or not the attenuation technique should be employed: when

K ~ 1.5 the attenuation technique is not needed for shape detection, but may be useful for

smoothing purposes; when K > 1.5 , the attenuation technique can improve the accuracy of

the estimate. Some interesting points arise from this table. An almost stable estimate can

be obtained when d :::: 10 in the 100 x I 00 grid. When the attenuation technique does lead

to an improved estimate, better results are obtained using higher values of d . In

Section 3.8.4 we present a more thorough investigation of the performance of the algorithm

for different K and d . This investigation led to similar conclusions.

Table 3.6 Errors (number of differing pixels between the estimated

shape and the true shape) for various values of K and d

d Noise level K

1.0 1.5 2.0 3.0

0 147 161 210 236

1 183 244 158 178

2 182 243 148 179

3 200 238 152 180

4 197 240 157 180

10 197 240 147 179

15 198 240 147 179

25 198 239 147 179

50 198 239 147 179

111

3.8.4 A simulatiou study

In order to assess the performance of the modified kernel algorithm, a simulation study was

conducted based on the original image shown in Figure 3.23. The ellipse shown in

Figure 3.23 is the same shape as the ellipse shown in Figure 3.6(a) where it is presented by

means of a one pixel thick edge.

10 20 30 •o 50 so

Figure 3.23 A binary image of an ellipse used for our simulation study.

Our data were obtained by adding independent N(0, K) noise to the original image. We

used the stopping rule described in Section 3.7, that is, the algorithm was stopped as

having failed if the resulting edge was not closed, or if the number of pixels in the resulting

edge exceeded 1.5 times the number of pixels in the true edge so that the resulting edge

was wandering around the image. For each level of four different noise variances K,

112

namely K = 0.5, 1.0, 2.0 and 3.0, and for each of six different values of d , namely

d = 0, 1, 2, 5, 10 and 20 , we applied the adjusted kernel algorithm to 10 noisy images. For

each of the four different noise levels, the kernel parameters were chosen by experience.

The starting pixel was randomJy selected from the true edge points and it was fixed in one

simulation in order to investigate the effect of d .

Table 3.7 records the results of the simulation study. The numbers of pixels that differ

between the true shape and the estimated shape for each simulation are listed if the

algorithm stopped successfully; the symbol - is used if the algorithm failed. Also

presented in Table 3. 7 is the mean and standard deviation (sd) of the errors for each value

of d . The mean provides an estimate of the error rate for each pair of K and d .

When K = 0.5, no failures occur and the mean and standard deviation for each value of d is

calculated using all ten simulations. Table 3. 7 shows that the performance of the algorithm

is consistently good for K = 0.5 and d = 0 .

In Figure 3.24(a) error is plotted against d for each of the ten simulations with K = 0.5 .

Each line represents one simulation. It is obvious that the lowest error always occurs when

d = 0 , and the error becomes stable as d increases.

113

Table 3. 7 Results of the simulation study for the adjust kernel algorithm

Variance d Simulations

1 2 3 4 5 6 7 8 9 10 Mean* sd
0 23 23 26 25 25 14 17 27 22 25 22.7 4.14

1 38 37 33 26 36 36 29 46 42 43 36.6 6.19

0.5 2 45 36 30 29 41 38 32 46 35 39 37. 1 5.86

5 47 41 29 43 44 35 32 48 29 41 38.9 7.14

10 46 41 33 44 44 35 36 58 35 42 41.4 7.40

20 46 41 34 44 45 35 36 58 35 42 41.6 7.32

0 - 58 97 75 99 - 47 77 49 64 70.8 19.96

I 76 68 99 90 66 132 71 73 69 75 76.4 11.78

1.0 2 81 74 86 81 65 128 63 66 71 71 72.1 8.01

5 86 75 82 78 55 130 58 66 73 75 70.3 9.65

10 86 75 94 80 57 146 57 69 72 75 72.4 12.05

20 86 76 94 80 58 146 57 69 72 75 72.6 11.95

0 - - 171 - - - 161 11 6 - - - -

1 86 140 83 88 1l2 137 142 107 186 94 109.9 24.27

2.0 2 84 90 63 88 113 146 140 113 - 94 103.4 27.05

5 84 90 70 88 109 147 144 114 - 95 104.6 26.60

10 84 90 70 88 109 147 145 109 - 95 104.1 26.62

20 84 90 70 88 109 147 145 109 - 95 l04.1 26.62

0 - - - - - - - - - - - -

1 - 138 129 71 - 182 132 - - 116 - -

3.0 2 - 145 137 74 - 166 133 - - l\0 - -

5 - 141 128 74 - 146 132 - - 138 - -

10 - 142 125 74 - - 132 - - 136 - -

20 - 142 125 74 - - 132 - - 136 - -

Notes:

1. For each simulation number we use the same realisation of the noise process.

2. Result - means the algorithm failed to stop due to the resulting edge not being closed

or due to the maximum number of pixels being exceeded.

3 . * For K = 0.5 , the mean and standard deviation are calculated by using the results from

all ten simulations. For K = 1.0 , the mean and standard deviation are calculated by using

the results from all simulations except the first and sixth. For K = 2.0 , the mean and

standard deviation are calculated by using the results from all simulations except the

ninth. For K = 2.0 with d = 0 and for K = 3.0 , no mean and standard deviation are

calculated because of too many fai lures.

11 4

5
t:

"'

0

"' ~

0
0
~

0

"'

0

g
"'

p
0 5 10 15 20

d

(a)

0

"' ~

0
0
~

0

"'

0

0 5 10 15 20
d

(b)

Figure 3.24 Error plot for ten simulations against d = 0, I, 2, 5, 10 and 20. The

dots indicates values of d . (a) K = 0.5 , (b) K = 1.0

When K = 1.0 , failure occurs for the first and sixth simulation when d = 0 . Among the

other simulations, the best estimate was usually obtained when d = 0 . The means and

standard deviations for K = 1.0 and for each value of d are calculated from all simulations

except the first and sixth. The standard deviation of the results for d = 0 is higher than that

of the results for the other values of d .

In Figure 3 .24(b) error is plotted against d for each of the ten simulations with K = 1.0 .

Each line indicates one simulation. Note that the first point is not plotted for the first and

sixth simulations because the algorithm failed. From these plots we see that the lowest

115

error sometimes occurs when d = 0 and sometimes for other values of d . We note that the

results tend to stabilise as d increases.

When K = 2.0 and d = 0 , fai lure occurs for all but three simulations. When d > 0 good

estimates are obtained except for the ninth simulation. For each value of d > 0 , we

calculated the mean and standard deviation across all simulations except the ninth. Clearly

the use of the attenuated detection function is important here. As d increases the results

seem to be quite stable.

When K = 3.0 and d = 0 , fai lure occurs for all simulations. For the second, third, fourth,

seventh and tenth simulation, estimates are obtained when d > 0 . Although most of these

results are not good, it does appear that the attenuation technique allows estimates to be

obtained sometimes for images corrupted by high levels of noise. Because there are many

failures we have not calculated means and standard deviations for this level of noise.

Obvious conclusions can, however, be drawn from the numbers themselves, that is, the use

of the attenuation technique is important here, and as d increases the results seem to be

quite stable. Although there are many fai lures for K = 3.0, it should be remembered that the

true shape is a binary image so that the resulting shape detection problem is very hard with

this level of noise.

Table 3 .7 suggests the same interesting result as Table 3.6: it seems that an almost stable

estimate can be obtained for d ~ 1 0 in the 61 x 6 1 grid, and better results can be obtained

with d > 2 if the attenuation technique can improve the estimate.

116

Accordingly, the conclusions from this simulation study are:

• As the variance K increases the quality of performance decreases;

• For less noisy images, such as those obtained when K = 0.5, the attenuation technique is

not needed;

• For more noisy image, such as those obtained when K ~ 1, the attenuation technique can

improve the estimate;

• When applying the attenuation technique with the modified kernel algorithm to identify a

shape in a very noisy image, a high value can be assigned to d and the quality of

performance seems robust to the choice of d .

3.8.5 Simulation study comparing tlte performance of the modified kernel algorithm

with that of tlte cascade based simulated annealing algorithm

In this section we present a small simulation study to compare the performance of the

modified kernel algorithm with that of the cascade based simulated annealing algorithm that

we described in Chapter 2. Our simulation study is still based on the binary image of an

ellipse shown in Figure 3.23 and the data were obtained by adding independent N(0, K)

noise, with K = 0.5, 1.0, 2.0 and 3.0 , to the original binary image. Following the results from

the simulation study in Section 3 .8.4, we chose d = 0 when K = 0.5 and d = 5 when

K = 1.0 , K = 2.0 and K = 3.0 . For each value of K , ten noisy images were considered. We

applied both the modified kernel algorithm and the cascade based simulated annealing

algorithm (CSA) to each image. For the modified kernel algorithm six failures occurred in

the simulations when K = 3.0 .

117

Table 3.8 Results of the simulation study for comparing the performance of the

modified kernel algorithm with that of the cascade based simulated annealing

annealing algorithm

K

0.5 1.0 2.0 3.0
Kernel CSA Kernel CSA Kernel CSA Kernel CSA
25 34 62 66 72 104 - 131
29 25 55 58 57 62 - 158
25 34 64 61 71 78 105 110
25 25 71 56 55 100 128 70
28 25 67 59 124 51 - 97

Simulation 45 30 60 57 166 138 - 141
44 37 61 69 10 I 127 161 128
37 42 72 76 59 61 - 107
28 38 70 63 77 110 - 91
30 33 66 69 91 122 117 85

Mean 31.6 32.3 64.8 63.4 87.3 95.3 127.8 111.8
sd 7.7 6.0 5.4 6.5 35.1 30.6 24. 1 27.4
p-value 0.79 0.54 0.25 -
sd=standard deviation

Table 3.8 presents the results of the simulation study. The numbers of pixels that differ

between the true shape and the estimated shape for each simulation are listed. The results

of a paired !-test were that there is no significant difference between the two algorithms

when K = 0.5, 1.0 , and 2.0. These results confirm that the modified kernel algorithm works

well when K ~ 2 , but often fai ls when K > 2 . The procedures for both algorithms took

almost the same computer time, but the kernel algorithm is considerably less complicated.

3.8.6 Application to real data

We now apply the algorithm described above to the ultrasound image of a human ovarian

cyst shown in Figure 1.8 to which we applied the direct and the cascade based simulated

118

annealing algorithms successfully and we obtained the estimated edge of the underlying

shape in Chapter 2; see Figure 2.15.

We chose the parameters CY 0 = 3 , CY 1 = 5, CY 2 = 3 and d = 1 that gave the best result as

shown in Figure 3.25 by the white line. The result obtained by using the cascade based

simulated annealing algorithm as shown in Figure 2. 15(b) is presented in this figure by the

black line for comparison. We see that the two estimates are quite similar. We mention

here that the procedure took 3684 seconds DOS-time which is almost the same as that of

the cascade based algorithm that we applied to the same image in Section 2.5 of Chapter 2,

whereas the direct simulated annealing approach took about 1.5 times as much computing

time.

0
lO

0
0
....-

0
lO

0

0 50 100 150

Figure 3.25 A real example. The original ultrasound image of a human ovarian cyst

is shown in Figure 1.8. The white line is the estimate of the underlying shape, while

the black line is the outline obtained in Chapter 2 by using the cascade based simulated

annealing algorithm.

119

3.9 Further works

The kernel algorithm that we have discussed in this chapter is designed to detect edges of a

shape that has an interior point from which every point of the edge is directly visible. For

an arbitrary shape, such as the picture of a duck body presented in Pievatolo and

Green (1998) and shown here in Figure 3.26, the above algorithm will not work properly.

We are grateful to Dr A. Pievatolo and Professor P. I. Green for having sent us this binary

1mage.

0

"'

g

0 ..
0
M

0
N

~

0

0 10 20 30 40 50 60

Figure 3.26 64 x 64 test image (Pievatolo and Green, 1998).

Pievatolo and Green (1998) add independent normal n01se to the duck image and then

estimate the outline by fitting a polygon with any number of sides. In order to do this they

derive a new probabilistic model for the generation of a polygon in a compact subset of 91 2

1 2 0

and use this model as a prior distribution in a Bayesian approach. Simulations from the

prior and posterior distributions are carried out through the reversible jump Markov chain

Monte Carlo algorithm proposed by Green (1995). The authors demonstrate that the

results obtained from this approach are very much better than those obtained by pixel-based

methods.

As a first step to making the kernel algorithm work on the duck image we extend the

original set of candidate points described in Section 3. 3 and presented in Figure 3 .4 to

include any one of the first and second order neighbours of the current edge point. To

prevent the edge from retracing its steps, we exclude points that have been chosen in the

last few steps from the set of candidate points. This modiftcation is easy to implement but a

new problem arises.

Around the beak and neck of the duck the direction of the outline changes suddenly often

by angles around 7r . Accordingly, we applied the dynamic angle version of the kernel
2

algorithm with () E (() * - & , () * + &) , where ()* is the current angle of the kernel function .

We let & = 7r so as to allow the kernel function to change angle in a very wide range.
2

Simulation results show that these modifications can cause the kernel to wander off in

completely the wrong direction so leading to a meaningless shape.

What we now suggest is modifying the kernel function itself The original kernel

function(3 .1) has a straight line as axis of symmetry; see Figure3 .3 and3 .17. We can

change its shape by bending the axis of symmetry through an angle tjJ at its centre so

enabling the kernel function to match better the edge of the shape. Figure 3.27 shows four

12 1

examples of the bent kernel functions. In Figure 3.27 we indicate the position of the inside

and outside of the shape near the point at which the kernel bends. The algorithm would

then proceed by optimising over ~ as well as the other parameters. We hope to develop

this method in the near future.

outside

outside

inside
outside

inside
outside

Figure 3.27 Examples of the bent kernel function .

122

Chapter 4

Study of the effect of the kernel parameters

4.1 Introduction

The kernel function K{(x,y); (x0 ,y0) , B} introduced in Chapter 3 is defined in terms of

three parameters, er 0 , er 1 and er 2 : er 0 controls mainly the width of the kernel, while er 1

controls mainly its length and er 2 mainly its curvature. This is illustrated in Figure 3 .3, for

example. Therefore, edge detection using the kernel function method depends upon the

choice of the values of these parameters.

ln Section 3.5, we have discussed several variations of the algorithm described in

Section 3.3. For example in steps 3 and 4 instead of maximising the convolution f over ()

in the discrete set of rotation angles (e· - 28, e· - 8, e·' (). + 8, e· + 28) ' where e· is the

current angle of the kernel, we maximised it over B in the continuous interval

123

(o• - &, o• +c) for some fixed & > 0 . We also allowed the shape of a standardised kernel

to vary at each point by maximising f over the parameters u 0 , u 1 and u 2 as well as () .

Neither of these variations produced any noticeable improvement in results.

In this chapter we aim to illustrate the effect of the kernel parameters. For simplicity, we

take our true image to be a circle in a 61 x 61 grid and add Gaussian noise to it. Figure 4.1

is a binary image comprising 61 x 61 pixels showing the outline of a circle centred at

(31, 31) with radius 16. The records of the image take the value one at the black outline

pixels and the value zero at the remaining white pixels.

0
<0

0
Ll)

0
'<t

0
M

0
N

0

0

0 10 20 30 40 50 60

Figure 4.1 The original binary pixel image, a circle centred at (31,31) with radius 16.

In the following parts of this chapter, we think of this image as occupying part of the plane

with co-ordinates from -3 0 to 3 0 on both axes, so that every integer co-ordinate

124

corresponds to one pixel; see Section 3.2 for details. In these kernel co-ordinates, the

radius of the circle in the image presented in Figure 4 .1 remains at 16.

In Section 4.2, we apply the kernel algorithm to detect the circles such as the one shown in

Figure 4 . 1 from their noisy images. We discuss how the error of the estimate obtained

depends on the parameters er 0 , er 1 and er 2 . Then in Section 4.3 we present a probability

study about edge pixel detection.

4.2 The effect of the kernel parameters

We now apply the kernel algorithm to detect the circle from noisy images. We will use the

number of pixels that differ between the true shape and the estimated shape as our measure

of the error of the estimate. For example, the number of differing pixels in the estimate in

Figure 3 .6 is the total number ofblack and grey pixels in Figure 3.6(d) .

Before we discuss the effect of the kernel parameters, we begin by studying the effect of

different noise levels and circular radii .

We added independent Gaussian noise with variance K = 0.0 I , 0.09, 0.25, 0.36 and 0.50 to

the image shown in Figure 4.1. For every noise level, we simulated 20 realisations of the

noise process. For each realisation we performed the estimation by applying the peanut

kernel function with parameters er 0 = I , er 1 = 4 and er 2 = 20 , and with the discrete set of

rotation angles. The initial point was always chosen randomly from the true edge pixels.

125

0
0
<0

0
0

"'
en
Qj
X 0 ·a. 0 ..,.
"' c ·c
,:! 0 '6 0

0 M

Qj
D
E 0
::> 0 z N

0

~

0

0.01 0.09 0.25 0 36 0.50

K

Figure 4.2 Boxplots of the number of differing pixels for the djfferent noise levels

added to the true image of a circle with ramus 16. The dashed line links the medians of

the five data sets, each of whkh is obtained from 20 realisations of the noise process.

The kemel parameters were chosen as O" 0 = 1 , O" 1 = 4 and O" 2 = 20 .

0
0 ..,.

"' -.;
.!$
Q.

"" c:

~
8
M

-ti
'o
ll

.D
0 E

" 0
c: N

-o

~ a -o
§ 0

(/) ~

0

10 12 14 16 18

radius of true circle

,..,
I

20

I

---· ---1
22 24

Figure 4.3 Boxplots of the standardised number of ruffering pixels for the different

radii of the true circle. The dashed line links the medians of the eight data sets, each of

which is obtruned from 20 realisations of the noise process. The kemel parameters

were chosen as O" 0 = I , O" 1 = 4 and O" 2 = 20, and the noisy images are obtained by

adding independent N(O, 0.36) noise.

126

Boxplots of the number of differing pixels for each no1se level K are presented in

Figure 4.2. The dashed line in the figure links the medians of the five data sets each of

which is obtained from 20 realisations of the noise process. It is not difficult to understand

that the lower the noise level, the lower and the more stable the number of differing pixels

of the estimate.

In order to understand the relationship between the curvature of the edge curve and the

parameters, we applied the peanut kernel function with O" 0 = I , O" 1 = 4 and O" 2 = 20 to

images based on circles with radii 10, 12, 14, 16, 18, 20, 22 and 24. We added independent

N(O, 0.36) noise to the original images, and twenty realisations of the noise process were

used for each radius. Because the circles have different areas, we standardised the number

of differing pixels according to the circle with radius 16:

standardised number of differing pixels = number of differing pixels x (~ l
2

radm;J

Figure 4.3 presents boxplots of the number of differing pixels for different radii . The

dashed line links the medians of the standardised numbers of differing pixels for each radius.

It seems that the parameters we used in these simulations are not suitable for too small or

too large radii in the 61 x 61 pixel image. For smaller circles, such as those with radius 10

or 12, the medians of the standardised number of differing pixels are much higher than those

with radius 16, 18, 20 or 22. This indicates that the kernel is too big for smaller circles.

For bigger circles with radius 24, the median of the standardised number of differing pixels

is higher than those with radius 16, 18, 20 or 22. For circles with radii 20 and 22, the

standardised numbers of differing pixels show higher variation than for other radii although

the medians are lower. This indicates that the kernel is too small for bigger circles. For the

127

parameters u 0 = 1 , u 1 = 4 and u 2 = 20 , the minimum error occurs when the radius of the

true circle is 16 or 18.

Now we study the effect of the parameters of the kernel function on the estimate of the

circle with radius 16. The peanut kernel function was used and independent N(0, 0.5) noise

was added.

Figure 4. 4 presents boxplots of the number of differing pixels for the following values of the

parameter u 0 : 0.3, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0 and 5.0. The dashed line links the medians of

the eight data sets, each of which is obtained by 20 simulations as before. The other two

kernel parameters were chosen as u 1 = 4 and u 2 = 20 . The minimum error in Figure 4.4

seems to occur for values of u 0 around 1.0 to 1.5. We have already explained that the

parameter u 0 controls mainly the width of the kernel. If a kernel is very narrow relative to

the true shape, it may not be able to take into account sufficient edge information to detect

true edge pixels. On the other hand, if a kernel is too wide relative to the true shape, it may

take into account too much information from non-edge pixels. Hence, if the parameter u 0

takes a very low value such as 0.3, then the kernel is too narrow with the result that it is

easily attracted by pixels that are not on the edge but that have a high grey-level. If the

parameter u 0 takes a very high value, say 5.0, then the kernel covers lots of pixels that are

not useful for detecting local edge pixels but whose values may substantially affect the

result.

128

0
0
0

"'
Ill 0 Qj 0
X I{) ·a. ~

Ol
c
·~
lt:
'6 0

0
0
0

Q;
~

.0
E
::J
z

0
0
I{)

0

I, T
:\11 -I I

<....L. I - - ,.,. - - = - ~ - - -=- - -~- - -~- - -~ - -~ -

0.3 0.7 1.0 1.5 2.0 2.5 3.0 5.0

Figure 4.4 Boxplots for clifferent values of the parameter CY 0 . The dashed Une links the

medians of the eight data sets, each of which is obtained from 20 realisations of the noise

process. The other two kernel parameters were chosen as CY 1 = 4 and CY 2 = 20 , and the

noisy images are obtained by adding independent N(O, 0.5) noise .

.....,
0
0
0

"'
Ill 0

~ 0
I{) ·a. ~

,..,..., I
11

I I
Ol
c

~
I

I
I

'6 0

0
0
0

(i;
~ I

I

I I
.0
E
::J
z

0
0
I{)

0

I L....l.._,

I
I

I -
- ~ --- ~ -=----~-- --=

0.7 1.0 2.0 4.0 7 0 10.0

Figure 4.5 Boxplots for clifferent values of the parameter CY 1 . The dashed line links the

medians of the six data sets, each of which is obtained from 20 realisations of the noise

process. The other two kernel parameters were chosen as CY 0 = I and CY 2 = 20 , and the

noisy images are obtained by adding independent N(O, 0.5) noise.

129

Figure 4. 5 presents boxplots of the number of differing pixels for the following values of the

parameter o- 1 : 0.7, 1.0, 2.0, 4.0, 7.0 and 10. The dashed line links the medians of the six

data sets, each of which is obtained by 20 simulations as before. The other two kernel

parameters were chosen as a- 0 = 1 and a- 2 = 20 . We see that poor performance results

from very low and very high values of the parameter a- 1 . We have already explained that

the parameter a- 1 controls mainly the length of the kernel. So reasons similar to those

presented in the discussion of Figure 4.4 apply here. If a kernel is very short relative to the

true shape, it covers only a very short part of edge with the result that it may not be able to

take into account sufficient edge information to detect true edge pixels. On the other hand,

if a kernel is very long relative to the true shape, there may be no edge pixels covered by the

two ends of kernel with the result that the kernel takes into account too much information

that comes from non-edge pixels. Hence, if the parameter u 1 takes a very low value such

as 0. 7, then the kernel is too short with the result that it is easily attracted by pixels that are

not on the edge but that have a high grey-level. If the parameter a- 1 takes a very high

value, say I 0, then the kernel is very long and so covers lots of pixels that are not useful for

detecting local edge pixels but whose values may substantially affect the result.

Figure 4. 6 presents boxplots of the number of differing pixels for the following values of the

parameter a- 2 : 5, 10, 15, 20, 25 and 30. The dashed)jne links the medians of the six data

sets each of which is obtained by 20 simulations as before. The other two kernel parameters

were chosen as u 0 = I and a- 1 = 4 .

130

0
0
0
N

en 0 Qj 0
-~ "' 0. ~

Ol
c

~
iJ 0

0
0
0

Q; ~

.D
E
:J z

0
0

"'

0

,..,....,
I

...,.,
I

1------~----=---~ ---1
5 10 15 20 25 30

Figure 4.6 Boxplots for different values of the parameter CJ 2 . The dashed line links the

meilians of the six data sets, each of wruch is obtained from 20 realisations of the noise

process. The other two kernel parameters were chosen as CJ 0 = 1 and CJ 1 = 4 , and the

noisy images are obtained by adding independent N(0, 0.5) noise.

0
0
0
N

en 0 Qj 0
X "' ·a. ~

Ol
c

~
iJ 0

0
0
0

Q;
~

.D
E
:J z

0
0

"'

0

,..,....,
I

- ,..,...., ,..,...., . -

EE----~---m- - - _._ - --~ ---~

5 10 15 20 25 30

Figure 4. 7 Box plots for different values of the parameter CJ 2 . The dashed line links the

medians of the six data sets, each of which is obtained from 20 realisations of the noise

process. The other two kernel parameters were chosen as CJ 0 = 1 and CJ 1 = 1 , and the

noisy images are obtained by adding independent N(O, 0.5) noise.

13 1

Figure 4.6 illustrates the dependence of the algorithm on the parameter a 2 ; we see that

values of a 2 between 1 0 and 20 give us the minimum number of differing pixels. If the

value of a 2 is too small or too big, the result is poor. We know that the parameter a 2

controls mainly the curvature of the kernel. A small value of a 2 means that the kernel is

too straight for it to follow the curvature of the circle with the result that less useful

information is used in the calculation of the convolution. A big value of a 2 means that the

kernel is too curved for it to follow the curvature of the circle again w ith the result that less

useful information is used.

We see from Figure 4.6 that the variances of the number of differing pixels are high for all

the values of a 2 we choose. This suggests that the values selected for the parameter a 0

and a 1 may be inappropriate. From Figure 4.5 we see that the value a 1 = 1 gives us

consistently good estimates when a 0 = 1 and a 2 = 20 . So now we fix a 0 = 1 and

a 1 = 1, and repeat the simulation study that led to Figure 4.6. Figure 4.7 presents boxplots

of the result. The medians for the different values of a 2 are almost the same in Figure 4.6

(a 1 = 4) and Figure 4. 7 (a 1 = 1). However, the results when a 1 = 1 are much less

variable than those where a 1 = 4 for all selected values of the parameter a 2 . This

suggests that setting a 1 = 4 leads to a kernel that is too long for the circle with radius 16 in

the 61 x 61 array, while setting a 1 = 1 leads to a very good choice of kernel. In fact, this

agrees with Figure 4. 5 in the sense that less variation is associated with a 1 = 1 than with

a 1 = 4 .

132

From Figures 4.4 to 4 . 7 we see that the parameters er 0 and er 1 , that control mainly the

width and the length of the kernel respectively, are the key parameters in the kernel

algorithm. A good choice of the parameter er 2 that controls the curvature of the kernel can

reduce the error and its variability when the other two parameters er 0 and er 1 are chosen

inappropriately; see Figure 4 .6 for this. Jf the other two parameters er 0 and er 1 are chosen

appropriately, there is not a large difference in the numbers of differing pixels for a very

wide range of values of er 2 ; see Figure 4 .7. Figure 4 .6 and Figure 4 .7 tells us that the

performance of the kernel algorithm is relatively robust to the choice of the parameter er 2 .

4.3 A probability study

In the prevtous section we discussed the effect of the kernel parameters. There, we

measured the errors by the number of pixels that differ between the true shape and the

estimated shape. Here we present a further study about the parameters based on a different

measure of the quality of the estimated shape.

In this section we will study the probabilities that successive true edge pixels are found

correctly, given that the initial pixel is a true edge pixel. We will estimate these probabilities

by means of a simulation study in which we randomise over both realisations of the noise

process and initial edge pixels.

The true shape is the one presented in Figure 4.1. We apply the kernel algorithm described

in Chapter 3 to a noisy image derived from Figure 4.1 and focus attention on the detection

133

of the first 20 edge pixels. One hundred simulations were performed for each fixed set of

kernel parameters in order to estimate the probability of correctly detecting the ; lh

estimated edge pixel. For example, if the ; lh edge pixel is correctly detected n times, then

the probability that it is correctly detected is estimated as n/1 00 . In order to help us

understand what kind of kernel is suitable for different noise levels, we considered four

different values of K : 0.1, 0. 5, I and 2.

Each simulation consists of generating a new noisy image from the true circle image, and

estimating its edges by means of the kernel algorithm starting from an edge pixel randomly

selected from among the true edge pixels. The initial kernel rotation angle is chosen to fit

the circle according to the position of the starting point. Since our circle has been

discretized according to a 61 x 61 grid, some parts of it look very different from others.

This can be seen clearly in Figure 4.1 where the horizontal and vertical segments have a

different form from the remainder of the discretized circle. In order to reduce any possible

bias caused by this discretization effect, the initial edge pixel for the kernel algorithm is

randomly selected from among the true edge pixels.

Figure 4.8 presents estimates of the probability of correct detection for the first 20 edge

pixels for different values of K and a 0 ; the other parameters are fixed as a 1 = 4 and

a 2 = 20 . The values of a 0 considered are 1.0, 1.5, 2.0, 2.5, 3.0 and 5.0. For each plot,

one hundred different realisations of the noise process are employed.

134

~~ ~ ~ ~

,.... :c . \ : : : : ci _g 0 ,,.,
11 0

'. ·\ . -· : \ : ' : "' a..

~1J. .., \, ..
"' 1::.

\

'"'
.. I

' .><: 8 : \
; : \ /· . ..

I

:
" " " " "

,.
" "

~~ ~ ~ ~

Ln :O : : 0 _g :
11 0

\ -· : : "' a.. .'\ C.lj 1\ \

g.~ : '· : \ .· : \/'.· ' .·, : '· . ,·,_, ·,_ ,· :
'

..
-""o ' \

' " : ; : ; ; ;

: : : : :
" "' "

,.
"' "

,. ,, ,.
"

~= = ~ =
:c. : ~ ~ -

[a.: : : : :
~1J . .. ' ·._!\,·, ' .. . : ..-:: t: 0 ··.···/\ 8; I ~ ' ... , \

: .
' \.

: : :
"

,.
"

,. ,. .. ,.
"

,.

~~ = ~ =
N :g. : : : .o •
11 0 "'-· : : : : a. a..

~1J. '. ,., : /· . : : : .><: 1:: .
0 \ u ; :: :: : \ .· • . :: :: ..
: : : :

p'i~el
,,

"'
,,

" pl~el "
,.

pl~el
,.

p~el "
,.

pixel pixel

CJ' o = 1.0 CJ' o = 1.5 CJ' o = 2.0 CJ' o = 2.5 CJ' o = 3.0 CJ' o = 5.0

Figure 4.8 Estimates of the probability of correct detection for the first twenty edge pixels for different values of K and a 0 ; the other two kernel parameters

are fixed as CJ 1 = 4 and CJ 2 = 20 . For each plot, 100 different realisations of the noise process are employed with a randomly chosen starting point on the

true circle edge.

135

Figure 4.8 indicates that choosing u 0 from 1.5 to 2.0 with u 1 = 4 and u 2 = 20 g1ves

higher estimated probabilities of correct detection for the first 20 edge pixels for K = 0.1 to

K = 2 . When u 0 = 1, the estimated probabilities of correct detection decrease rapidly to a

very low level. This tells us that the kernel is too narrow to cover enough useful edge

information. Because the initial kernel rotation angle is chosen in an optimal way, the

estimated probabilities for the first few detected pixels are high even though the kernel is

too narrow. When u 0 = 5, we see that the estimated probabilities of correct detection

remain stable, although at a very low level. The reason for this is that the kernel is so wide

that useless information is covered in the calculation of the convolution. Because the kernel

is so wide, the rotation of the kernel almost loses its function in the kernel algorithm, and

the probability remains low from the start. The conclusions presented in Section 4.1 from

Figure 4.4 are confirmed by this probability study.

We now repeat the above study, but this time we fix u 0 = 1 and u 2 = 20 and take different

values for u 1, namely 0.3, 0.7, 1 .0, 2.0, 4.0 and 7.0. The results are presented in

Figure 4 .9. It can be seen that when K = 0.1 and K = 0.5 , higher and stable probabilities are

obtained by choosing u 1 between 0. 7 and 1, and when K = I and K = 2 by choosing u 1

between 1 and 2. When u 1 is chosen very high, the probability decreases rapidly to a very

low level, while when u 1 is chosen very low the probability remains stable but at a low

level.

136

Since the kernel parameter cr1 controls mainly the length of the kernel, Figure 4.9 tells us

that when the kernel is too long (er 1 too high), much useless pixel information is involved

with the result that the probabilities decrease rapidly. The initial probabilities are higher

because the initial kernel rotation angle is chosen in an optimal way so that the kernel lies

along the true edge for the detection of the initial pixels. When the kernel is too short (er 1

too low), only a little of the local information is used with the result that the probabilities

remain low from the beginning. Another useful message from Figure 4. 9 is that the higher

the level of noise added to the true circle shape, the higher the value of er 1 (the longer the

kernel) that is needed. However, there is a limit to the length of the kernel that should be

used.

Parameter er 2 controls mainly the curvature of the kernel; see Section 3.1. We saw in

Section 4.1 that er 2 can be used to adjust the error when the other two parameters er 0 and

er 1 are chosen inappropriately. We now repeat the above study, but this time we fix

er 0 = 1 and er 1 = 1 and take different values for er 2 , namely 5, 10, 15, 20, 25 and 30. The

values er 0 = 1 and er 1 = 1 have previously led to good results from a wide range of er 2 .

The results are presented in Figure 4.1 0. All the probability plots are stable and the

different values of parameter er 2 do not significantly affect the estimated probabilities of the

correct detection. Figure 4.10 confirms the conclusions obtained from Figure 4.7 in last

section.

138

~ r-------------~ :
: : :

: :
:

; ;

: ,__ ____ ,--------',
"

: : ,,
" "

= ~---------~
: ,_ _________ ____,

~~
L()~ - : : o.o "
u E.., I '·'' .· , \/'-' : ,.,, ' I "'C..o ' .•.
§:~ .. \1 '•

, ·,I

.= g 0
: :

u; ; ;

: : :
" "

,,
" " " "

,,
"

,.

~= ~ ~ : :

~~ = : :
~ K: :
8:o / ". 1\,· '

, • ,
.' \ , , .= ~ : ' .. : ' .. ,

0 u ; ; ; ;

: : : :
"' "

,,
"

~: : : :

N~ : : : :
~ [: :
8:o \

~ ~ : ' : : : \ .·.
0 ' 1\ , \ ,.,

' '
, ..

u; ; ; ; ; ;

: : :
p\~el " " " "

,, .. " " " "
,,

pixel pixel pixel pixel pixel

(} 2 = 5 (} 2 = 10 (} 2 = 15 (} 2 = 20 (} 2 = 25 (} 2 = 30

Figure 4.10 Estimates of the probability of correct detection for the first twenty edge pixels for different values of 'K and a 2 ; the other two kernel

parameters are fixed as a 0 = 1 and a 1 = 1 . For each plot, 100 different realisations of the noise process are employed with a randomly chosen

starting point on the true circle edge.

1 39

4.4 Conclusion

From our error study and probability study, we conclude that in the kernel algorithm the

kernel parameters () 0 and () 1 play the most important role, whereas the main function of

the kernel parameter () 2 is to reduce the error and its variability when () 0 and () 1 are

chosen inappropriately. When () 0 and () 1 are selected appropriately, the performance of

the algorithm is relatively robust to the choice of the kernel parameter () 2 .

1 40

Chapter 5

Active Contour Models: The Snake Model

The energy minimising active contour model, better known as the snake model, proposed by

Kass, Witkin and Terzopoulos (1988), is a contour model for detecting edges in images.

Since Kass et al. (1988), the snake model has been referenced in the literature on edge

detection many times.

In this chapter, we introduce and discuss the snake model. In Section 5.1 we present a

description of the snake energy function and the numerical algorithm used to minimise it. In

Section 5.2 the snake model is applied to the ultrasound head image shown in Figure 1.2(a)

and Figure 3 .1. We also discuss the behaviour of the snake algorithm and then modify the

energy function. In Section 5.3 we introduce two algorithms: the dynamic programming

algorithm proposed by Amini, Weymouth and Jain (1990) and the balloon model proposed

by Cohen (1991) and Coben and Cohen (1993) . These two approaches aim to improve the

original snake methodology. In Section 5.4 we present a simulated annealing plus ICM

141

algorithm to minimise the snake energy. In Section 5.5 we discuss the results of a

simulation study designed to compare the kernel algorithm introduced in Chapter 3 with the

snake algorithm and the simulated annealing plus ICM snake algorithm. Finally, a short

summary is given in Section 5.6.

5.1 The description of the active contour model of Kass, Wit kin ami Terzopoulos (1988)

Kass et al. (1988) simplify the edge detection problem by reducing it to energy

minimisation. The total energy Us of an active contour S with parametric representation

v(s) =(x(s),y(s)), sE [O, l] , is defined as the sum of an internal energy and an external

energy:

(5 .1)

The internal energy

(5 .2)

represents the force that constrains the curve to be smooth, where v'(s) and v"(s) are the

first and second derivatives of v(s) , and a(s) and /3(s) are weights.

The external energy comprises two parts

U ext { v(~)} = U con { v(s)} + U ,mage { v(~)} , (5.3)

where

U con { v(s)} = ciP(s)- Ql (5.4)

142

is an external constraint energy that represents tbe energy of a spring connected between a

point P(s) on the snake contour v(s) and some fixed point Q inside or outside the

contour, and c is a constant. The constraint energy pulls the contour towards Q .

The image energy

(5 .5)

represents the forces derived from the image which constrain the curve to take the shape of

certain features present in the image. The image energy U image is expressed as a weighted

combination of three energy functionals that attract the snake to edge features: the line

energy U1ine = !(x,y) causes the snake to be attracted either by higher or lower grey levels

in the image I depending on the sign of the weight w 1 ; when w 2 > 0 , the edge energy

U edge = - IV!(x,yt causes the snake to be attracted to pixels at which the image gradient is

large; the termination energy Utcrm is the curvature of the level contours in a smoothed

version of the image, and thus when w3 ~ 0 causes the contour to be attracted towards line

terminations.

The snake approach uses a technique called energy minimisation that causes it to change

shape in order to minimise Us. Kass et al. (1988) present an energy minimisation

procedure, and the mathematics behind it in detail in the appendix to their paper.

From now on we shall assume that a(s) =a and fJ(s) = fJ . From (5 .1) and (5.2) we have

143

us = f~ uint { v(s)} + u ext { v(s)} ds

(5 .6)

where

dx(s) dy(s) d 2 x(s) d 2 y(s)
x = x(s) y = y(s) x 1 = -- y 1 = -- x 11 = y 11 = . ' ' ds ' ds ' ds2

' ds2

We now want to minimise the energy function Us. Let

f(x ,y, X 1
,)1

1
' X

11,y") = ~ (x 1 2 + y'2
) + ~ (x" 2 +)' 11 2

) + uext (x,y)' (5 .7)

and consider

Us = J~ f(x,y, X 1,y', x",y")ds.

Let .X and y be the optimising functions and consider a small perturbation

x(s) = x(s) + A7J(s)

y(s) = Y(s) + 8p(s)

where A, 8 E 91 . We constrain 1J(s) and p(s) so that

17(0) = 77(1) = 77'(0) = 1}
1(1) = 0,

p(o) = p(1) = p'(o) = p'(1) = o.

Now think of U as a function of A and 8 :

(5 .8)

(5 .9)

(5 .10)

(5 .11)

(5 .12)

U(A ,8) = f~ J(x + A1J, y + 8p, x' + A17 1
, y~ + 8p', x" + A1J", y~~ + 8p11)ds (5 .13)

We want the minimum to occur when A= 8 = 0 , that is, we require

144

(oU) = f[_(OJ) +17·(0J) +ry"(_!f_) Jds = O (5 .14)
OA ..l=8=0 O T'\. a ..l=O=O a 1

..l=o=O a 11

..l=O=O

and

(oU) = f [p(Oj) + p'(Of) + p"(_!f_)]ds = o
OO l=8=0 O ry ..l=8=0 ry ' ..l=o=O 0!" l =O=O

Note that the partial derivatives in the above two functions are calculated at the optimising

functions x and y .

By condition (5.11) and by integration by parts, we have

I (OJ) I d (OJ)
f o 17' a' l=O=O ds =-f o 17 ds a' ..l=8=0 ds

(5 .15)

and

" _'<!_ ds = - ·- _'<~_ ds I (;¥) I d
2

(;¥)

fo 17 a " l=a=O f o 17 ds2 a" A=D=O .
(5 .16)

Hence, from (5 .14),

(au) 11(0J) d (Of) d
2

(Of) J - = l - --- +- -- ds =O
OA l=O=O O a).=8=0 ds a 1

..l=o=O ds
2 a " ..l=o=O

(5 .17)

This holds for all ry(s) such that 7~0) = ~l) = ry'(O) = 17'(1) = 0 .

We now prove that

(Of) d (OJ) d
2 (Of) J(s) = - -- - +- - = 0

a ..l=o=O ds a ' l =o=O ds
2 a" l =8 =0

Suppose that there is a point 4 such that J(4) > 0. By continuity, J(s) > 0 must bold for a

range of values [4o, 41] say including 4. Now take the function 17 to be such that

145

This means that

1J{s) >0 whens E [~0 , 4\],

1J(s) = 0 WhenS ~r~O> ~l].

s; 7J(s)1(s)ds > 0 .

This is a contradiction since we know from (5 .17) that s; 7J{ s)1(s) ds = 0 holds for any

function 7J(s) that satisfies (5 .11). Hence there is no point ~ such that 1(~) > 0. A similar

argument gives that there is no point ~ such that 1(~) < 0. Hence, we conclude that

.!(s) = 0 , that is

(iJf) - !!_(!L) + £(!L) = 0 .
a A.=8=0 ds a' A.=8=0 ds2 a" A.=8=0

(5 .18)

A . .l . h (8U) 0 . suru ar argument Wit - = g1ves 88 A.=8=0

(5 .19)

Accordingly, from (5 .7), (5.18) and (5 .19), we have

(5.20)

(5.21)

Equations (5 .20) and (5 .21) are independent Euler-Lagrange equations; see Synge and

Griffith (1959) for a definition of the Euler-Lagrange equation.

146

Since in practice the contour v(s) = (x(s) ,y(s)) is defined at a finite number of points

v1 = (x1,y1),i = 1, ... , n , equations (5 .20) and (5 .21) have to hold at all these points. Now

(5.22)

and

(5 .23)

where h ---+ 0. Let Fx(i) equal the right side of (5 .22) and Fy{i) equal the right side

of (5.23).

For our application, we consider a closed curve defined by the points

v1 = (x1 ,y 1) , i = 0, .. . , n , by linking v0 and v" : v0 = V
11

• For easy of notation let v _1 = V
11

_ 1 ,

V
11

+ 1 = v1 and v ll+ 2 = v2 . At the point (xi-112 ,y1_112) , that is the midpoint between points

(x1_ 1 , y1_ 1) and (x1 , y 1) , we may approximate

dxl ~ change inx _ X1 - X1_ 1 _ (_)
~ - - n x . x . 1 .

ds xi-1,
2

change in s 1 I n ' ,_

Hence

change in -~x-5 ~''"" :I.,_,.,
~ =

change ins lln

Similarly

147

. d2 x ~
d 2 x

d3x
changem -

2 ds2 2

ds x, x,_.
~ =

ds3 change ins 1 I n x,_,,

and finally

h . d3x
d 3x d 3x

d 4x
c angem -

3 ds3 ds3

ds XI +Il l -'1- 112
~ =

ds·4 change ins 1 In x,

From (5 .22) and the above calculations we obtain

(5 .24)

as the discretized version of equation (5.20), and, similarly,

FAi) - an 2 (yi+l - 2y; + y,_,) + ,Bn4 (Y;+2 - 4yi+l + 6y; - 4y;_1 + y;_2) = 0, i = I, ... , n

(5 .25)

as the discretized version of equation (5 .21). Equations (5 .24) and (5 .25) can be written in

matrix form as

{

Ax + Fx(x ,y) = 0

Ay+ Fy{x ,y) = 0

where A is a pentadiagonal banded matrix, x and y are position vectors:

x, y,

x2 y2
x = y=

x, Y,

and F x and F Y denote the vectors of forces at these points v; , i = 1, ... , n :

148

(5.26)

(5.27)

F.(l)
F.(2) F..(x,y) = : ,

Fx (n)

Equations (5 .26) and (5 .27) can be solved by an iterative algorithm - Euler's method; see

Burden and Faires (1989), pp. 225-232. Let (x0
, /) be an initial contour, then Euler' s

method proceeds iteratively by letting

(5.28)

(5.29)

for t = I, 2, .. . , where y is a constant. As t ~ oo, the contours (x 1
, y 1

) tend to a contour

that corresponds to a local minimum of Us. According to our experience, if the image

compnses m1 x m2 pixels the value of r can be chosen in quite a wide range between

~ m1 x m2 and m1 x m2 . We remark that Burden and Faires (1989) work with h = _!_
r

which they refer to as the step size.

5.2 The behaviour of the snake model

The snake algorithm that we have just discussed is somewhat different from traditional

statistical image analysis methods, such as those presented by Geman and Geman (1984),

Besag (L 986), and others. The snake model originates from mathematical physics where

the forces, energy and method for solving the Euler-Lagrange equation were introduced.

1 49

Since the energy function is not concave, the snake algorithm finds a local minimum of the

energy function. Finding the global minimum of the energy does not necessarily have a

meaning (see Cohen and Cohen, 1993). For example, if (x m, y m) is a point of the plane

where U ext has a global minimum, the constant curve v(s) = (xm,Ym) is a global minimum

for the energy with periodic boundary conditions.

Kass et al. (1988) did not present details of the convergence properties of their snake

algorithm. Instead, they stopped iterating when the difference between two successive

contours becomes sufficiently small; that is, given a fixed c > 0 , if

11

~(1 1-1)2 (1 1-1)2 L X; - X; + Y; - Y; < G
i= l

(5 .30)

then stop iterating and define the final contour (x,y) to be (x1
, /) .

For the ultrasound fetal head image shown in Figures 3.1 and 1.2(a), we detected the head

shape well using the kernel algorithm described in Chapter 3. We felt that the result

obtained was especially good since part of the head outline had almost been completely

obliterated. Figure 5. 1 illustrates the results that we obtained by applying the snake

algorithm of Kass et al. (1988) to this ultrasound image. Note that in this chapter the grey

levels of this ultrasound image are standardized. The weights a(s) and fJ(s) of the

derivatives in (5 .2) were taken to be constant. In the external energy (5.3), we used only

the image energy term, and in the image energy term (5.5) we did not need the termination

term uterm because our problem is to find a closed shape without line terminations.

150

0
<D

g

0
V

g

0

"'
0
~

0

0
<D

g

0
V

g

0

"'
~

0

0 10 20

(a)

30 40

(c)

50 60

(b)

0 10 20 30 40 50 60

(d)

Figure 5.1 The results obtained by applying the snake a lgorithm to the ultrasound

image of a feta l head. (a) An initial contour. This provides a poor fit to the head

shape at its left and right sides. (b) The fina l contour obtained from the initial

contour (a). (c) Another initial contour. This is much closer to the shape of a head.

(d) The final contour obtained from the initial contour (c).

Figure 5.1(a) presents an initial contour for the snake algorithm. This contour was placed

by hand on the points where the outline is obvious. We supposed that we did not have

knowledge about the true shape so that we just gave straight lines for the left and right

sides where the outline has almost been obliterated. We experimented with various

parameters in the snake model defined by (5.1) to (5 .5), and found that the best result was

obtained by using a = 1x 10-6
, /3 = 0, w1 =-1, w2 =2 and y= 100 . This result is

151

shown in Figure 5.1 (b). The algorithm was terminated when the stopping condition (5.30)

was met with & = 0.01. We see that the snake algorithm performs well but the left and

right sides of the head shape are not recovered. The reason for this is that the initial

contour is not close enough to the true edge of the head shape with the result that the

contour is not attracted by it.

Because we really do have knowledge about the head shape, we can pick an initial contour

that fits better at the left and right sides of the image in the hope that this contour will lead

to a better fit in these regions. The contour shown in Figure 5.l(c) is the initial contour

that is thought to be closer to the edge of the head shape than the previous initial contour.

The result of applying the snake algorithm using the san1e parameter values as before is

shown in panel (d) of Figure 5.1. We see that the contour almost remains at its starting

position at the left and right sides due to the lack of edge information in these two parts.

Overall the result seems very good.

The original energy term in (5.5) is defined as V edge= -l'VI(x,y)l 2
and is designed so that

the snake is attracted to pixels at which the image gradient is large. However, in noisy

images there may be many pixels at which the gradient is large but which do not

correspond to real edges. In order to overcome this problem, we may use a smoothed

version of the image in the definition of U edge. A similar idea was applied by

Ca1my (1986) in the Canny filter, which is really the Prewitt filter applied to a smoothed

version of the image; see Glasbey and Horgan (1995). Let I, be the smoothed version of

the image I. We now define the edge energy to be uedge = -IVI,(x,yW.

We now re-implement the snake algorithm using this definition of the edge energy in (5.5)

with Is equal to the median smoothed version of the fetal head image. The median

152

smoothing operator replaces the grey level at each pixel with the median of the grey levels

at pixels in a (2m+ 1) x (2m+ 1) centred on the original pixel, where m is a positive

integer. Glasbey and Horgan (1995) presents details of the median smoothing operator,

and other smoothing operators. The choice of m depends on the size of image; taking

m= 1 is appropriate for our requirement of reducing the effect of noise on the gradient,

whilst not losing too much edge information. Figure 5.2(a) and (b) present the results

obtained starting from the initial contour shown in Figure 5.1(a) and (c), respectively. For

the purpose of comparison, the results shown in Figure 5.1 (b) and (d) are also presented in

Figw·e 5.2 by the dashed line.

~

~

0 ...

g

0
N

~

• J I

0

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) (b)

Figure 5.2 Results obtained by calculating the edge energy using the smoothed

version of the head image. (a) Starting from the initial contour shown in Figure 5.1 (a).

(b) Starting from the initial contour shown in Figure 5.1 (c). The dashed line

corresponds to the contours shown in panels (b) and (d) ofFigure 5.1 .

153

The results obtained using the two different definitions of Uedge are very similar. It does

seem, however, that a slightly smoother contour is obtained when U edge is based on the

median smoothed image.

From Figure 5.2 we may draw the same conclusion as before, that the result obtained from

a good initial contour is better than that obtained from a less good initial contour. From

these and other experiments we believe that the choice of the initial contour is very

important in the snake algorithm as proposed by Kass et al. (1988). In order to obtain a

good final contour, the initial contour should be as close as possible to the shape, or to

what we believe that the shape should be.

In Kass et al. (1988) there is no discussion about the choice of the snake parameters. In

our experience, a good choice of parameters is essential for a good final contour. High

values of fJ cause the contour to shrink rapidly to a point. High values of a cause the

contour to become a very elliptic shape no matter how the initial contour is defined.

Generally, if there is a lack of edge information, the shape will shrink on itself.

5.3 Discussio11 about s11ake models

Since Kass et al. (1988), many different implementations of snake models or similar active

contour models have been proposed in an attempt to solve some of the shortcomings of the

154

original snake model or to provide better models. In this section, we introduce two

approaches: the dynamic programming active contour model and the balloon model.

5.3.1 Dynamic programming active contour model

Suppose there are n points on the contour. If each of these points is allowed to take only

M possible positions in the plane corresponding to the centre ofpixels, then the number of

possible contours is finite. In this situation, we could find the contour that corresponds to

the global minimum of the energy function by exhaustive enumeration. However, this is

impossible in practice because of the huge associated computation cost. A practical

method for finding the minimising contour based on dynamic programming is given by

Amini, Weymouth and Jain (1990). These authors also discuss how dynamic

programming additionally allows hard constraints to be enforced on the behaviour of the

solution.

The following is a brief description of the dynamic programming approach presented by

Amini et al. (1990).

First, the derivatives in (5.2) are discretized to obtain

Uino(v;)=~(an 2 1v; -vi-11
2

+Pn
4 1v;+ 1 -2v; +v;_1n, i=l, ... ,n.

This enables the integral in (5.1) to be discretized as

155

n

Us= Us(vl' v2 , ... , v,) = L {uint (v;) + u ••• (v;)}
i=l

If we let

then the problem becomes minimising a function of the form

"
Us(v 1 ,v2 , ••• ,v.)= LV;(v;_1 , v;, vi+1).

(5.31)
i=-1

Unfortunately, dynamic programming cannot be applied directly to this minimisation

problem because of the restrictions imposed by having a closed curve, namely v0 = v, and

v,+
1

= v
1

• To overcome this Amini et al. (1990) slightly modify the above minimisation to

that of minimising a function of the form

n-1

U(vro v2 , ... , v,) = L U;(v;_ 1, V;, vi+ I).
i-=2

(5.32)

This is an unrestricted minimisation over (v1,v2 , ••• ,v,) and so standard dynamic

programming can be applied. A closed curve is obtained by joining v 1 to v •.

Therefore what we want is to find (v;, v~ , ... , v;) such that

(v;, v~, ... , v;) = arg min U(vl' v2 , ••• , v,).
Vt,Vl , ... ,V11

Throughout we exclude self-intersecting contours.

To solve this minimisation problem, a sequence of functions of two variables is generated:

156

(5.33)

(5.34)

(5.35)

(5.36)

where each point v; can take on M possible values. At stage i , for each of the M x M

possible pairs of (vi+l, v;+J, find the value of the point v; that minimises

and record s;(vi+i' v;+ 2). The minimum value of the energy function can now be found

to be

The minimising point { v;, v;, ... , v~) = arg m in U(vi' v2, ... , v") can be found by working
\'t,V2 , ... ,VII

backwards. First find {v;_p v;) such that

(v;_1, v;) = argmins._2(vn-P v.).
¥ 11 _ 1 , v,

Then from s._2 { v~-P v~) find v;_2 that makes (5.36) hold, and so on. Finally, from

s1(v;, v;) find v; that makes (5.33) hold.

The above procedure leads to a global minimum of U. However, in practice M is very

large with the result that the above minimisation procedure is not computationally feasible.

157

Accordingly, Amini et al. (1990) restrict their minimisations so that v;, for example, takes

positions in the set comprising the current position of v; and its eight first and second

order neighbouring pixels. Clearly, this restriction will lead to a local minimum of U

since the complete space is not explored. Because of this the whole procedure outlined

above is repeated a number of times until the value of U no longer falls. Each repetition is

referred to as an iteration by Amini et al. (1990). Convergence is guaranteed since the total

energy of the contour is reduced (or remains the same) at each iteration.

Although the above dynamic programmmg approach ensures the convergence of the

energy minimisation process, it requires large storage requirements. For example, for the

case when m possible choices are allowed for each point V;, then the time complexity for

each iteration of the algorithm is o(nm3
), and the storage requirement is o(nm 2

) memory

elements.

5.3.2 Balloo11 model

Cohen (1991) and Cohen and Cohen (1993) present an improved active contour model that

they call the balloon model. In the snake model, F(v)=-(Fx(x,y),Fr(x,y)f from the

Euler-Lagrange equations (5.26) and (5.27) can be thought of as an external force applied

to the curve. Let V P(v) = (F, (x,y), Fy{x,y) r. In order to find "good" edge points and to

ensure a connected contour, Cohen (1991) introduced an external constraint force that

inflates or deflates the snake. The new force defined by Cohen (1991) is

158

'VP
F(v) = k,n(s)- k IIVPII

where n(s) is the balloon force, that is the normal unitary vector to the curve at point v(s),

and k, is the amplitude of this added force. The parameters k1 and k are chosen to be of

the same order, which is smaller than the size of a pixel, and k is slightly larger than k 1 so

an edge point can stop the inflation force. If the sign of k1 or the orientation of the curve is

changed, the first term ofF will deflate the contour instead of inflating it, or vice versa.

We believe that the dynamic programming algorithm and the balloon model can improve

the original snake model. It would be of interest to compare the behaviour of the dynamic

progran1ming algorithm or the balloon model with that of the original snake model in our

case, although we have not done this.

In the next section, we will use simulated annealing and ICM to minimise the energy

function employed by the snake model. We will compare the results obtained with those

presented in Section 5.2.

5.4 Simulated amzealilzg a11d !CM applied to the s11ake model

We now consider the use of simulated annealing and ICM for minimising the energy

function employed by the snake model. If we use simulated annealing and ICM to

minimise the energy, we do not need to solve the Euler-Lagrange equations (5.26)

and (5.27). Simulated annealing allows jumps out of local minima of the energy function

to be made whereas under ICM (applied after simulated annealing) the energy only

159

decreases; see Chapter I and Chapter 2 for more details about simulated annealing and

ICM methods.

In our application of simulated annealing, the logarithmic temperature schedule

if { log(T + 1)- log2}
r==-,--.,-----:-'-------,.-.,--------'.,--------,---,-

' {/log(T + I) - f log 2} + (! - 1) log(t + 1)

was employed with temperature f for the first update, temperature I for the last update,

and the finite total number of iterations T. See Section 1.3.4 for more details of

temperature schedules m simulated annealing as discussed by Stander and

Silverman (1994).

At each iteration of simulated annealing, one point chosen in turn from the contour points

is allowed to change its position to a number of candidate points or remain in its current

position. The candidate points for a selected point are those first and second order

neighbours to which a move may be made without destroying the nature of the shape. For

example, if a move to a neighbouring point results in the contour intersecting itself, the

neighbouring point is not counted as a candidate point.

Suppose there are nb candidate points for the selected point b. Let S be the current

contour and let the candidate contours obtained by moving b to one of the associated

candidate points be SP S2 , ••• , s... Simulated annealing samples one of the contours

where P,, (S) is the distribution of contourS with temperature r, at iteration t:

P,, (s)~exp(- ~~).

160

The sampled contour is then set to be the current contour S. Note that p, is defined up to
I

a constant of proportionality known as a nommlising constant, which, because of the size

and complexity of the set of all contours, is unknown in practice. Fortunately, we do not

need to know the normalising constant for sampling because it cancels out in the

probabilities proportional to Pr, {S1), Pr, (S2), ... , Pr, (s ••), Pr, {S}.

A sweep comprises visiting all the contour points in turn. If the number of sweeps that

have been performed exceeds a given number, we stop the simulated annealing algorithm,

and apply ICM.

ICM is an algorithm that does not increase the energy. Instead of sampling one contour

from S1 , S 2 , ... , s. , S, the ICM algorithm chooses the new contour to be the one that has •

the lowest energy. We now briefly describe the details of our implementation of ICM.

Suppose there are nb candidate points for the selected point b and S is the current

contour. Let the candidate contours obtained by moving b to one of its candidate points be

Sl'S2 , ... ,S •. Calculate the energies Us, Us, ... , Us , Us andchoosethecontourwith
b I 2 fib

the lowest energy as the new current S. If there is no change between two successive

sweeps, ICM has converged. Because ICM never increases the energy, it is guaranteed to

converge to a local minimum of the energy in a finite number of sweeps.

We now use simulated annealing and ICM to minimise the energy function we used in

Section 5.2. The edge energy function is calculated using the median smoothed version of

the image. For simulated annealing we set T = 900, f = 2 and I= 0.1.

In Figure 5.3 we present the results obtained by applying the simulated annealing plus ICM

algorithm to the head image using the initial contours shown in Figure 5.1 (a) and (c),

161

respectively. In Figure 5.3 the dashed line represents the result obtained from the snake

algorithm as shown in Figure 5.2. The fmal contour in panel (a) is much better than the

one shown in Figure 5.2(a), especially on the left and right sides, whereas the final contour

in panel (b) is almost same as the one shown in Figure 5.2(b) although a little rougher.

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) (b)

Figure 5.3 Results from the simulated annealing plus ICM algorithm. (a) Starting

from the initial contour shown in Figure 5. l(a). (b) Starting from the initial contour

shown in Figure 5.1(c). The outlines presented by the dashed line are the results

obtained from the snake algorithm as shown in Figure 5.2.

We also perfatmed the simulated annealing plus ICM algorithm with uedge = - IVI(x,yf'

where I is the original unsmoothed image. The results appear slightly rougher than those

obtained by with uedge = - ivis(x, yf.

162

It is of interest to compare the energy of the final contour obtained by the algorithm

suggested by Kass et al. (1988) with the energy of the final contour obtained by simulated

annealing plus ICM. Table 5. 1 gives the initial and final energies based on the results that

have led to Figures 5.2 and 5.3 for both algorithms and both initial contours.

Table 5.1 Final energies for the algorithm due to Kass et al. (1988) and

the simulated annealing plus ICM algorithm based on the results that led to

Figures 5.2 and 5.3

Initial contour (energy)
Algorithm Figure 5.1 (a) Figure 5.1(c)

(-0.6840) (-2.2482)

Kass et al. (1988) -38.0290 -36.9765

Simulated annealing + ICM -97.8373 -98.1155

From Figure 5.3(a) and Table 5. 1, we see that the algorithm due to Kass et al. (1988)

applied to the initial contour presented in Figure 5.1 (a) led to a worse result with higher

final energy than simulated annealing plus ICM. From Figure 5.3(b) and Table 5.1, we see

that the algorithm due to Kass et al. (1988) applied to the initial contour presented in

Figure 5. l (c) led to a smoother result but with higher final energy than simulated annealing

plus ICM. We have already said that the initial contour presented in Figure 5.1(a) fits

badly at its left and right sides, while lhe initial contour presented in Figure 5.1 (c) provides

a better fit.

For both initial contours the simulated annealing plus ICM algorithm produces a final

contour with energy lower than that of the final contour produced by the algorithm due to

Kass et al. (1988). The simulated annealing plus ICM algorithm is able to make larger

16 3

changes to the initial contour shown in Figure 5.1(a) than the algorithm due to

Kass et al. (1988), leading to a possibly better final contour.

5.5 Simulation study: comparison between the kernel algorithm, the snake algorithm

and the simulated annealing plus /CM algorithm

The most important difference between the snake model and the kernel method defined in

Chapter 3 is that a closed curve always results from the former algorithm, but cannot be

guaranteed when applying the latter algorithm if the shape is defined by a thin edge only. In

order to compare the algorithms in a simulation study, we consider a shape which is

defined by an edge that is two pixels thick. The original image is shown in Figure 5.4(a). It

is almost the same as the image shown in Figure 3 .6(a) except that the edge is a little

thicker.

For our simulation study we generated noisy images by adding independent Gaussian noise

N(0, K) to the true image shown in Figure 5.4(a). For the kernel algorithm, the starting

point was selected randomly from the outer true edge and we set a- 0 = 1, a- 1 = 4 and

a-2 = 20 according to experience and the study into the effect of the kernel parameters

presented in Chapter 4. For the snake algorithm and the simulated annealing plus ICM

algorithm, the initial contour was chosen to be very close to the outline of the true shape in

order to reduce the effect of higb noise level and to avoid meaningless shapes resulting.

This initial contour is shown by dashed line in Figure 5.4(b). The parameters for the snake

algorithm were set to be a = 10-6
, f3 = 10-5

, w 1 = - 1, w 2 = 2, w 3 = 0 and y = 100 by

experience. The parameters for the simulated annealing plus ICM algorithm were a = 0.1 ,

f3 = 0.1 , w 1 = - 1 , w 2 = 2 , w 3 = 0 , f = 2, I = 0.1, T = 600 , and a logarithmic temperature

164

schedule was employed. For both the original snake and the simulated annealing plus ICM

algorithms, a and f3 were selected in order to optimise the results. The reason for the

difference in parameters is connected to the poor performance of the original snake

algorithm as far as minimising the energy Us is concerned. For both the snake and the

simulated annealing plus ICM algorithms, the edge energy function is calculated using the

median smoothed version of the image.

0 10 20 30 40 50 60 0 1 0 20 30 40 50 60

(a) (b)

Figure 5.4 (a) A shape defined by an edge that is two pixels thick. (b) The initial

contour (dashed line) and the outline (solid line) ofthe true shape shown in (a).

For the purpose of comparison, all three algorithms were applied to each noisy image. We

simulated 10 noisy images for four noise levels K = 0.25, 0.5, 1.0 and 2.0 . The mean and

standard deviation of the number of pixels that differ between the true shape and the

165

estimated shape are presented in Table 5.2 for the three algorithms and for the four

different noise levels. When the kernel algorithm was employed, the algorithm failed to

produce a closed curve on one occasion when K = 1 , and on two occasions when K = 2 .

Table 5.2 Mean (standard deviation) of the number of pixels that differ

between the true shape and the estimated shape obtained by the kernel,

snake and simulated annealing (SA) plus ICM algorithms

Variance Size of Algorithm
K sample Kernel Snake SA +I CM

0.25 10 25.2 (3 .61) 25.3 (8.00) 30.1 (6.10)

0.50 10 33 .6 (4.38) 36.9 (10.68) 35.6 (7 .04)

1.00 9 37.0 (8 .03) 42.9 (7.30) 37.2 (3.35)

2.00 8 36.6 (9.49) 64.0 (6.48) 35.6 (6.55)

From Table 5.2, it seems that there is no real difference among the three algorithms

when K is small, but for higher values of K the results of the snake algorithm seem worse

than those of the other two algorithms. In order to test if there is a significant difference

between any two algorithms, a paired t-test was employed. The means of the difference

between the algmithms are presented in Table 5.3, and the symbol * is used to indicate that

there is a statistically significant difference (p < 0.05) between the two algorithms

considered. When K = 0.25, the perforn1ance of the simulated annealing plus ICM

algorithm is significantly worse than that of the kernel algorithm (p = 0.0069, one-tailed

test). When K = 1.0 , the performance of the snake algorithm is significantly worse than

that of the simulated annealing plus ICM algorithm (p = 0.0293 , one-tai led test). When

K = 2.0, the performance of the snake algorithm is significantly worse than that of the

166

kernel algorithm and the simulated annealing plus ICM algorithm (p < 0.00005, one-tailed

test).

Table 5.3 Mean (standard deviation) of difference. The symbol * is used to

indicate that there is a statistically significant difference (p < 0.05) between the

two algorithms considered

Variance Size of Between algoritluns
K sample Snake-Kernel (SA +I CM)-Kernel (SA+ICM)-Snake

0.25 10 0.1 (7.64) 4.9 (5.09)* 4.8 (9.92)

0.50 10 3.3 (10.36) 2.0 (7.67) -1.3 (8.81)

1.00 9 5.9 (11.42) 0.2 (8.64) -5.7 (7.71)*

2.00 8 27.4 (7.73)* -1.0 (8.05) -28.4 (3.85)*

In the above implementation, the initial contour is very close to the outline of the true

shape. If the initial contour is far away from the true shape, a worse result is obtained from

the snake algorithm. This is particularly the case for high value of K.

We finish by remarking that even when the edge of the true shape is two pixels thick, the

kernel algorithm failed to produce a closed curve on three occasions. However, for these

cases the value of K was relatively high, K = 1 and K = 2 .

167

5.6 Couclusions

Our general conclusions from the above analyses are

• A smoother contour usually results when U edge in the snake model is calculated using

the smoothed version of image.

• Lower energy does not necessarily mean a better estimate.

• In order to obtain an accurate estimate using the algorithm due to Kass et al. (1988), the

initial contour must be very well chosen.

• If we lack edge information but have a good initial contour, then the algori thm due to

Kass et al. (1988) may give a final contour that is better than that obtained by the

simulated annealing plus ICM algorithm. On the other hand, if we lack edge

information and we are unable to supply a good initial contour, the simulated annealing

plus ICM algorithm wi ll leads to a result that generally has lower energy than that

obtained by the algorithm due to Kass et al. (1988).

• The kernel algorithm introduced in Chapter 3 usually perfom1s well provided it

produces a closed curve. However, for higher noise levels and thinner edges, there is a

risk that the algorithm will fail to produce a closed curve.

We feel that it would also be interesting to compare the behaviour of the dynamic

programming alg01ithm with that of the simulated annealing plus ICM algorithm. We

would also like to work with the balloon models. We hope to perform this research in the

near future.

1 6 8

Conclusions and Suggestions for Further Work

In this thesis we have introduced, developed and discussed statistical image analysis

techniques which can be applied to data from medical ultrasound images. We have worked

with two types of image: in the first a degraded outline of the shape is visible, whilst in the

second the data are a corrupted version of the shape itself In Chapter 2 we considered the

algorithm proposed by Storvik (1994) for images of the second type and concluded by

means of simulation studies that the algorithm can be speeded up and its performance

improved by using a cascade based simulated annealing approach. The kernel function

algorithm developed and discussed in Chapter 3 and Chapter 4 al lows the outline of shape

in images of the first type to be recovered when parts of it are almost completely obliterated

by noise. Other algorithms often do not allow such outlines to be identified and tend to be

more complicated. In Chapter 5 we showed that the ' snake' methodology applied to

images of the first type is very sensitive to the initial estimate of the shape to be detected if

the original fitting algorithm is used, but that this sensitivity is less marked if simulated

annealing followed by ICM is employed.

There are several aspects of the work in this thesis which could be further developed. We

now know that it is possible to run the kernel algorithm and the modified kernel algorithm

much more quickly by using the same values of the kernel function or the detection function

at all candidate points each time we attempt to identify a new edge pixel. We also hope to

169

re-code all the programs in C++ . This would provide us with a better idea about the

possibilities for reaJ time detection, an issue which is of interest to clinicians.

Other suggestions for further work include developing the kernel algorithm by using the

bent kernel function; see Section 3. 9 for more details. In fact the kernel algorithm does not

work weJI on highly degraded images of the first type with a thin edge, and the modified

kernel algorithm performs badly on the duck image of Pievatolo and Green (1998)

presented in Figure 3.26. Further simulation studies aimed at investigating the interaction

of the kernel parameters a- 0 , a- 1 and a- 2 , by fixing one parameter and allowing the other

two parameters to change together, should be performed. We also plan to adapt the snake

methodology so that it can be applied successfully to images of the second type. So far we

have detected shapes in these images by means of our modified version of Storvik' s

algorithm and the modified kernel algorithm.

170

References

Amini, A. A., Weymouth, T. E. and Jain, R. C. (1990) Using dynamic programming for

solving variational problems in vision. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-12, 855-867.

Anderson, E. M. and Spain, B. (1977) The Child with Spina Bifida. Methuen, London.

Besag, J. E. (1986) On the statistical analysis of dirty pictures (with discussion). Journal

of the Royal Statistical Society B, 48, 259-302.

Besag, J. E. (1989) Digital image processing towards Bayesian image analysis. Journal of

Applied Statistics, 16, 395-407.

Besag, J. E. and Green, P. J. (1993) Spatial statistics and Bayesian computation. Journal

of the Royal Statistical Society B, 55, 25-38.

Besag, J. E., Green, P. J., Higdon, D. and Mengersen, K. L. (1995) Bayesian computation

and stochastic systems. Statistical Science, 10, 3-66.

Bowtell, P. and Patefield, M. (1997) The circular functional relationship. Research Report,

Department of Applied Statistics, The University of Reading.

171

Brock, D. J. H. and Sutcliffe, R. G. (1972) Alpha-fetoprotein in the antenatal diagnosis of

anencephaly and spina bifida. Lancet, 2, 197-199.

Brooks, S. P. (1998) Markov chain Monte Carlo method and its application. The

Statistician, 47, 69-100.

Burden, R. L. and Faires, J. D. (1989) Numerical Analysis (Fourth edition). PWS-KENT,

Boston.

Canny, J. (I 986) A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-8, 679-698.

Chalana, V., Linker, D. T., Haynor, D. R. and Kim, Y. M. (1996) A multiple active

contour model for cardiac boundary detection on echocardiographic sequences. IEEE

Transactions on Medicallmaging, MI-15, 290-298.

Chalana, V., Winter Ill, T. C., Cyr, D. R., Haynor, D. R. and Kim, Y. M. (1996)

Automatic fetal head measurements from sonographic images. Academic Radiology, 3,

628-635.

Cohen, L. D. (1991) Note on active contour models and balloons. Computer Vision,

Graphics and Image Processing: Image Understanding, 53, 211-218.

Cohen, L. D. and Cohen, I. (1993) Finite-element methods for active contour models and

balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-15, 1131-1147.

172

Cowles, M. K. and Carlin, B. P. (1996) Markov chain Monte Carlo convergence

diagnostics: a comparative review. Journal of the American Statistical Association, 91,

883-904.

Friedland, N. and Ad am, D. (1989) Automatic ventricular cavity boundary detection from

sequential ultrasound images using simulated annealing. IEEE Transactions on Medical

Imaging, MI-8, 344-353.

Friedland, N. S. and Rosenfeld, A (1992) Compact object recognition using energy­

function-based optimization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-14, 770-777.

Frigessi, A., Martinelli, F. and Stander, J. (1997) Computational complexity of Markov

chain Monte Carlo methods for finite Markov random fields. Biometrika, 84, 1-18.

Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple

sequences. Statistical Science, 7, 457-472.

Geman, D. and Jedynak, B. (1996) An active testing model for tracking roads in satellite

Images. IEEE Transactiom on Pattern Analysis and Machine Intelligence, PAMI-18,

1-14.

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-6, 721-741.

Geman, S. and McClure, D. E. (1987) Statistical methods for tomographic image

reconstruction. In: Bulletin of the International Statistical Institute, 52(Book 4), 5-21.

173

Geyer, C. J. (1992) Practical Markov chain Monte Carlo. Statistical Science, 7, 473-511.

Gibbs, A. (1998) Bounding convergence time of the Gibbs sampler in Bayesian image

restoration. Research report, Department of Statistics, University of Toronto, Canada.

Gidas, B. (1989) A renormalisation group approach to image processing problems. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-11, 164-180.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996) Markov Chain Monte Carlo in

Practice. Chapman & Hall, London.

Glasbey, C. A. and Horgan, G. W. (1995) Image Analysis for the Biological Sciences.

Wiley, Chichester.

Green, P. J. (1994) Contribution to the discussion of 'representations of knowledge in

complex systems' (By Grenander, U. and Miller, M. 1.). Journal of the Royal Statistical

Society B, 56, 589-590.

Green, P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82, 711-732.

Grenander, U., Chow, Y. and Keenan, D. M. (1990) Hand~: A Pattern Theoretic Study of

Biological Shapes. Spring-Verlag, New York.

Grenander, U. and Miller, M. I. (1994) Representations of knowledge in complex systems

(with discussion). Journal of the Royal Statistical Society B, 56, 549-603.

Hajek, B. (1988) Cooling schedules for optimal annealing. Mathematics of Operation

Research, 13, 311-329.

174

Hastings, W. K, (1970) Monte Carlo sampling methods using Mwkov chains and their

applications. Biometrika, 57, 97-109,

Heikkinen, J. and Hogmander, H. (1994) Fully Bayesian approach to image restoration

with an application in biogeography. Applied Statistics, 43; 569-582.

Helterbrand, J. .E>., Cressie, N, and Davidson, J. L. (1994) A statistical approach to

identifying closed object boundaries in images. Adliailces in Applied Probability, 26, 831-

854.

Higdon, D. M., Bowsher, J. E., Johnson, V. E., Turkington, T. G., Gilland, D. R. and

Jaszczak, R. J. (1997) Fully Bayesian estimation of Gibbs hypefparameters for emission

computed tomography data. IEEE Transactions onMedica/1maging, Ml-16, 516-526.

Hurn, M, A. and Jennison, C. (1995) A study of simulated annealing and a revised cascade

algorithm for image-reconstruction. Statistics and Computing, 5, 175-190.

Hurn, M. A. and Rue, H. (1997) High-level image pnors m confocal nucroscopy

applications. In: Proceedings in the Ar.t and Science of Bayesian Image Analysis (eds

Mardia, K. V., Gill, C. A. and Aykroyd, R. G.), pp. 36-43. Leeds University Press.

Illingworth, J. and Kittler, J. (1988) A survey of the Hough transform. Computer Vision,

Graphics, and Image Processing, 44, 87-116.

Jubb, M. and Jennison, C. (1991) Aggregation and refinement in binary image restoration,

In: Spatial Statistics and Imaging (ed. Possolo, A.), pp. 150~162. Institute of

Mathematical Sciences Lecture Notes, Hayward, CA.

175

Karaman, M, Kutay, M. A. and Bozdagi, G. (1995) An adaptive speckle suppression filter

for medical ultrasonic imaging. IEEE Transactions on Medical Imaging, MI-14, 283-292.

Kass, M., Witkin, A. and Terzopoulos, D. (1988) Snakes: active contour models.

International Journal of Computer Vision, 1, 321-331.

Kirkpatrick, S., Gellat, C. and Vecchi, M. {1983) Optimization by simulated annealing.

Science, 22, 671-680.

Laarhoven, P. J. M. and Aarts, E. H. L. (1987) Simulated Annealing: Theory and

Applications. D. Reidel, Dordrecht.

van Lieshout, M. N. M. (1995) Stochastic Geometry Models in Image Analysis and

Spatial Statistics. CWI Tract, Amsterdam,

Luan, J., Stllnder, J. and Wright, D. (1998) On shape detection in n01sy 1mages with

particular reference to ultrasonography. Accepted for publication in Statistics and

Computing.

Mardia, K. V. and Qian, W. (1995) Bayesian method for compact object recognition from

noisy images. In: Complex Stocha~tic System and Engineering (ed. Titterington, D. M.),

pp, 155-166. Clarendon Press, Oxford.

Matsopoulos, G. K. and Marshall, S. (1994) Use of morphological image processmg

techniques for the measurement of a fetal head from ultrasound images. Pattern

Recognition, 27, 1317-1324.

176

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953) Equations

of state calculations by fast computing machines. The Journal of Chemical Physics, 21,

1087-1092.

Nicolaides, K. H., Campbell, S., Gabbe, S. G. and Guidetti, R. (1986) Ultrasound

screening for spina bifida: cranial and cerebellar signs. Lancet, 2, 72-74.

Pievatolo, A. and Green, P. J. (1998) Boundary detection through dynamic polygons.

Journal of the Royal Statistical Society B, 60, 609-626.

Pursey, G. J. and Taylor, P. C. (1995) Route tracing: a new method for edge detection.

Technical Report 95/5, Department of Applied Statistics, The University of Reading.

Qian, W., Titterington, D. M. and Chapman, J. N. (1996) An image analysis problem in

electron microscopy. Journal of the American Statistical Association, 91, 944-952.

Richardson, S. and Green, P. J. (1997) On Bayesian analysis of mixtures with an unknown

number of components (with discussion). Journal of the Royal Statistical Society B, 59,

731-792.

Roberts, C. 1., Hibbard, B. M., Roberts, E. E., Evans, K. T., Laurence, K. M. and

Robertson, I. B. (1983) Diagnostic effectiveness of ultrasound detection of neural tube

defect-the South Wales experience of 2509 scans (1977-1982) in high-risk mothers.

Lancet, 2, 1068-1069.

Robert, C. P. (1995) Convergence control methods for Markov chain Monte Carlo

algorithms. Statistical Science, I 0, 231-253.

177

Rohling, R. N., Gee, A H. and Berman; L (1996) Three-dimensional spatial compounding

ofultrasound images. Medical Image Analysis, I, 177-193.

Rue, H. and Husby, 0. (1997) Identification of partly destroyed objects using deformable

templates. Research Report, Department of Mathematical Sciences, Norwegian University

of Science and Technology, Norway.

Silverman, B. W., Jennison, C., Stander, 1. and Brown, T. C. (1990) The specification of

edge penalties for regular and irregular pixel images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-12, I 017-1024.

Smith, A F. M. and Roberts, G. 0. (1993) Bayesian computation via the Gibbs sampler

and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society

B, 55,3-23.

Stander, 1. (1992) Some topics in statistical image analysis. PhD thesis, University of Bath,

UK.

Stander, 1. and Silverman, B. W. (1994) Temperature schedules for simulated annealing.

Statistics and Computing, 4, 21-32.

StorVik, G. (1994) A Bayesian approach to dynamic contour through stochastic sampling

and simulated annealing. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-16, 976-986.

Synge, 1. L. and Griffith, B. A (1959) Principles of Mechanics (Third edition), McGraw­

Hill Book Company, Tokyo.

178

Teles de Figueiredo, M. and Leitao, J. M. N. (1992) Bayesian estimation of ventrical

contours in angiographic image. IEEE Transactions on Medical Imaging, MI-11, 416-

429.

Thomas, J. G., Peters 11, R. A. and Jeanty, P. (1991) Automatic segmentation of

ultrasound images usmg morphological operators. IEEE Transactions on Medical

Imaging, MI-10, 180-186,

Thompson, A. M., Brown, J. C., Kay, J. W. and Titterington, D. M. (1991) A study of

methods of choosing the smoothing parameter in image restoration by regularization. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-13, 326-339.

UK Collaborative Study on Alpha-fetoprotein in Relation to Neural Tube Defects. (1977)

Maternal serum-alpha~fetoprotein measurement in antenatal screening for anencephaly and

spina bifida in early pregnancy. Lancet, 1, 1323-1332.

Weir, I. S. (1997) Fully Bayesian reconstructions from single-photon emission computed

tomography data, .Journal of the American Statistical Association, 92, 49-60.

Winkler, G. (1995) Image Analysis, Random Fields and Dynamic Monte Carlo Methods:

a Mathematical Introduction, Springer-Verlag, Berlin.

Wright, D., Stander, 1. and Nicolaides, K. H. (1997) Non-parametric density estimation

and discrimination from images of shapes. Applied Statistics, 46, 365-380.

179

This copy of the the.~is has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without the mithor's prior
consent.

------------~~~~~~ -----,---

