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PRE- AND POST-SETTLEMENT PROCESSES INFLUENCING THE 

DISTRIBUTION OF BARNACLES ALONG ESTUARINE GRADIENTS 

Jose Gerardo Ferreira Gomes Filho 

ABSTRACT 

Estuaries are the interface between freshwater systems and the sea, with clearly 

recognizable changes in the distribution of organisms along various environmental 

gradients from riverine to fully marine conditions. This thesis studied ecological 

processes affecting the distribution of marine species along estuarine gradients using 

both field and laboratory experiments with barnacles as a tractable model system. 

Elminius modes/us Darwin, Semibalanus balanoides Linneaus, Chthamalus montagui 

Southward are the most common barnacle species found in the intertidal of British 

estuaries. Surveys performed in the Plym and the Yealm Estuaries revealed that E. 

modes/us occurred furthest up estuaries and was dominant along most of their length, 

with the exception of sites closest to the sea; C. montagui had the most restricted degree 

of penetration up-estuary; and S. balanoides occurred at low abundances, with limits of 

penetration located between those of C. montagui and E. modestus. Transplants of adult 

specimens to sites along the marine-to-freshwater gradient revealed that E. modes/us 

was better adapted to environmental conditions found in inner areas of the estuaries than 

C. montagui and S. balanoides. Survival of the latter two species was negatively 

correlated with deposition of silt and decreasing salinity. Laboratory experiments 

showed that, in contrast to the other two species, E. modestus was highly tolerant to 

burial by silt. A comparison of observed distributions along the gradients with 

survivability showed that C. monlagui was able to survive in areas where adults were 

absent, indicating that early life cycle stages were a potential limiting factor to the 

distribution of this species. Examination of patterns of cyprid settlement and 

recruitment to the benthic phase reinforced the suggestion that pre-settlement processes 

contribute to restrictions in the distribution of both C. monlagui and S. balanoides. The 

abundance of these species, post-settlement, was also affected by physico-chemical 

conditions in the upper estuary. Pre-settlement processes did not limit the distribution of 

E. modes/us and post-settlement processes appeared to be more important in limiting its 

abundance at sites closest to the sea. 
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CHAPTER I 

GENERAL INTRODUCTION 

Estuaries are the interface between freshwater systems and the sea with 

recognizable changes in the distribution of species along steep environmental gradients 

from riverine to fully marine conditions (McLusky, 1989; Day et al., 1989). They are 

sites of considerable human settlement and industrial activity and better understanding 

of estuarine ecology is essential for sustainable development of estuaries and the 

adjacent coastal zone (McLusky & Elliot, 2004). 

The majority of work on the distribution of estuarine organisms has been based 

on the study of correlations between observed biological distributions and 

environmental variables. Relatively few studies have used experimental work to 

examine the causes of these patterns of species distribution, and even fewer have 

combined information from surveys, field manipulations and laboratory experiments (e. 

g. Khfaji & Norton, 1979; Leonard et al., 1999; Satumanatpan & Keough, 2001; Ellis et 

al., 2002). This thesis combined surveys, field and laboratory experiments, including 

transplants of individuals, to test explanatory models for patterns of distribution in 

estuaries in order to examine the ecological processes operating along estuarine 

gradients using intertidal barnacles as a tractable model system. 

In the remainder of this introduction, I set the scene for the rest of the thesis by 

reviewing relevant literature. I firstly present the definition of an estuary that informed 

my work and provide a brief overview of the estuarine environment, before considering 

in turn: distribution patterns of marine species in estuaries; explanatory models for 

species diversity and distribution; and gradients influencing hard substratum species. 

The advantages of using barnacles as a model system are then outlined and the 

information on barnacle species inhabiting British estuaries reviewed. The overall 

rationale of the thesis and specific aims and objectives are then presented. 



Chapter 1: General Jntroduction 

1.1. Definition and overview of estuaries 

Estuaries comprise a very diverse group of systems that share the fundamental 

attribute of mixing between fresh water and sea water. Estuaries can vary considerably 

in their geomorphological, physical and biological properties. As a result, numerous 

definitions of estuaries have been suggested and there has been significant debate about 

the effectiveness of these definitions in describing such a heterogeneous group of 

coastal systems (For reviews see Fairbridge, 1980; Kjerfve, 1989; McLusky, 1989; Day 

et al., 1989; Perillo, l995a). The most comprehensive definition, which includes most 

known types of estuaries and mentions their biological component, was provided by 

Perillo (1995): "An estuary is a semi-enclosed coastal body of water that extends to the 

effective limit of tidal influence, within which sea water entering fi"om one or more fi"ee 

connections with the open sea, or any other saline coastal body of water, is significantly 

diluted with fi"eshwater derived fi"om land drainage, and can sustain euryhaline 

biological species fi"om either part or the whole of their life cycle". This definition 

informed the work in my thesis. 

Estuaries are characterized by variability in physico-chemical and biological 

properties, which are mainly dictated by the patterns of water circulation (McLusky & 

Elliot, 2004; Dyer, 1997). Such variability occurs at a range of temporal and spatial 

scales. Horizontal gradients in physico-chemical properties occur from sea to freshwater 

and fluctuate with the tides (Dyer, 1997); interaction between freshwater and seawater 

flow along estuaries can generate stratification in salinity, dissolved oxygen and 

plankton composition (Pritchard 1955; Cameron & Pritchard, 1963; Borsuk et al., 

2001). Over longer time-scales there can be seasonal variations in salinity distribution 

and fluctuation (Attrill & Thomas, 1996), biological occupation of habitats (Reise, 

1985) and sedimentation (Dyer, 1986). Freshwater discharge and tidal fluctuation have 
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the most influence on water circulation, and consequently, on physico-chemical and 

biological variables that affect ecological processes in most estuaries. Although 

mudflats are predominant in most estuaries, several other intertidal and subtidal habitats 

can be found in estuaries, including salt marshes, mussel beds and oyster reefs, rocky 

shores, mangrove forests and other natural habitats along with much artificial hard 

substrata such as docks, jetties and wharfs, buoys and moorings. 

1.2. Distribution of marine species in estuaries 

Patterns of diversity, abundance and distribution of marme species along 

estuarine horizontal gradients have long been recognized (e.g. Remane 1934; Doty & 

Newhouse, 1954). Briefly, marine euryhaline species form the principal biological 

component of estuaries. They colonize most of the length of the estuary and decrease in 

numbers towards the riverine end (Remane 1934; Doty & Newhouse, 1954; Remane & 

Schilieper, 1971; McLusky, 1989). These patterns apply consistently to benthic 

invertebrate (Remane 1934; Remane & Schilieper, 1971; McLusky, 1989; Attrill, 2002) 

and algal (Mathieson & Penniman, 1986; Doty & Newhouse, 1954; Den Hartog, 1971; 

Josselyn & West, 1985; Ketchum, 1983; Mathieson et al., 1981; Wilkinson, 1980) 

species in estuaries. The freshwater component is less predominant and normally 

restricted to the upper reaches of estuaries. 

Although general patterns of marine species distribution exist in estuaries, to 

understand and predict the responses of individual species to estuarine variables 

requires detailed knowledge of their behaviour, physiology and ecology. Several 

physico-chemical and biological factors may account for variation in community 

structure and the distribution of species in estuaries, including the nature of the 

substratum and sediment types (Boyden & Little, 1973; Warwick & Davies, 1977, Elliot 
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& Kingston, 1987; Frusher et al., 1994; Bachelet et al. 1996), salinity regime (Attrill & 

Thomas, 1996); water currents (Boy den & Little, 1973; Elliot & Kingston, 1987), 

bathymetry (Elliot & Kingston, 1987; Bachelet et al., 1996; Watson et al., 2005), 

turbidity and suspended sediment concentrations (Boyden & Little, 1973; Ellis et al., 

2002), food and larval supply larval supply (Satumanatpan & Keough, 2001, Pineda et 

al., 2002) and biological interactions (Reise, 1985; Peterson, 1979; Leonard et al., 

1999). 

The relative importance of physico-chemical and biological variables in causing 

distributional patterns and determining limits of penetration by marine species up 

estuaries depends largely on the specific functional group and habitat to which a 

particular species belongs. For example, epifaunal suspension feeders living on the 

surface of soft bottom habitats are particularly influenced by high loads of suspended 

silt and low hydrodynamics, which are known to affect their feeding mechanisms 

(Barnes, 1989), while infaunal species are more influenced by aspects of the sediment 

such as grain size and organic contents (e.g. Boyden & Little, 1973; Ellis et al., 2002). 

The use of species that belong to a similar functional group and habitat facilitates the 

test of ecological models that describe the mechanisms responsible for distributions of 

organisms in estuaries. Therefore, the present study focuses on epibenthic species, using 

intertidal rocky-shore barnacles as a tractable model for the investigation of factors 

affecting the distribution of species along estuaries. 

1.3. Ecological models for distribution of estuarine epibenthic invertebrates 

Remane (1934), working primarily in the Baltic, proposed a model that 

correlated general patterns of diversity and distribution of species in estuaries with the 

horizontal salinity gradient. According to this model diversity of marine species 
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decreased predictably towards the upper reaches of estuaries. Further research 

demonstrated that, although this model was relevant for estuarine systems with stable 

salinity regimes, such as the Baltic (Segerstrale, 1957; Cognetti & Maltagliati, 2000), it 

has limitations in describing diversity patterns in many estuaries and as a quantitative 

descriptor of estuarine communities (Attrill, 2002). ln non-tidal brackish seas, such as 

the Baltic, salinity clearly determines the range of distribution and colonization 

potential of most species, and the distribution of organisms tends to reflect their salinity 

tolerances (Segerstrale, 1957; Remane & Shilieper, 1971; Bonsdorff & Pearson, 1999; 

Cognetti & Maltagliati, 2000). However, for most estuaries, patterns of water 

circulation are more complex and generate fluctuations in salinity and other physico­

chemical parameters which prevent organisms from occupying their potential range of 

distribution and obscure the correlations between these physico-chemical variables and 

their distributions (Carriker, 1967). 

Any model intending to explain patterns of distribution and abundance of 

populations of marine species must take into consideration the complexity of the life 

cycle of the organisms, which in most cases include a larval pelagic stage before the 

adult benthic phase (Thorson, 1950). Therefore, the relative importance of pre- and 

post-settlement processes need to be contemplated. Much early work on benthic 

ecology focused on the role of post-settlement interactions in shaping marine 

assemblages (e.g. Connell, 1961 a, b; 1970; Paine 1969, 1974; Dayton, 1971; Menge, 

1976; Menge & Sutherland, 1976). Subsequent work has demonstrated, however, that 

models for community structuring based exclusively on these interactions did not fit 

many situations, in which limitations at the recruitment stage were of primary 

importance (Doherty, 1981; Hawkins & Hartnoll, 1982; Underwood & Denley, 1984; 

Caffey, 1985; Connell, 1985; Gaines & Roughgarden, 1985; 1987; Raimondi, 1990; 

Sutherland, 1990). 
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The importance of larval supply as opposed to post-settlement processes has 

been an intense area of research in marine ecology (for reviews see Underwood & 

Denley, 1984; Underwood and Fairweather, !989; Raimondi, 1990; Eckman, 1996; 

Todd, 1998; Underwood & Keough, 2001). Work on intertidal barnacles has been 

particularly important in demonstrating the links between larval supply and benthic 

stages of populations and the importance of larval supply in setting patterns of adult 

distribution and abundance (Hawkins & Hartnoll, 1982; Kendall et al., 1982; 

Underwood & Denley, 1984; Caffey, 1985; Connell, 1985; Gaines & Roughgarden, 

1985; Roughgarden & Iwasa, 1986, Raimondi, 1990; Sutherland, 1990). Syntheses of 

these studies have demonstrated that at high settlement densities populations are mainly 

regulated by post-settlement interactions (competition, predation, interactions with 

physical variables), while at lower levels of settlement/recruitment larval supply is more 

important in regulating assemblage structure (Connell, 1985; Gaines & Roughgarden, 

1985, Booth & Brosnan, 1995; Menge, 2000; Underwood & Keough, 2001). 

1.4. Estuarine gradients affecting the distribution of rocky-shore epibenthos 

Compared to the open coast a reduction in wave action is a common feature of 

estuaries. Gradients in wave action also exist among areas of the open coast and a 

considerable amount of research has been done on the effects of this gradient and on 

comparisons between assemblages inhabiting sheltered and exposed shores (for a 

review see Raffaelli & Hawkins, 1996). The main effects of reduction in wave action on 

epibenthic species are linked to the consequent reductions in water circulation, which 

tend to cause greater deposition of sediment and turbidity of water and influence the 

transport and distribution of larvae and food for suspension feeders. Disturbance due to 

wave action is also reduced in sheltered conditions, reducing the risk of dislodgement. 
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Although the effects of this reduction in wave action present some similarities with 

sheltered locations found on open coasts (Lewis, 1964 ), estuarine habitats also present 

other gradual modifications. Other physico-chemical gradients in estuaries frequently 

exceed the importance of simple reduction in wave action. Two of the most obvious 

gradients of particular importance for epibenthic species being salinity and 

sedimentation. 

Freshwater inflow and seawater intrusion are the main factors controlling 

salinity in estuaries. Consequently, at any given location in an estuary, benthic 

organisms are subjected to considerable salinity fluctuations with both tidal (Milne, 

1938; Bassindale, 1943; Day, 1951; Sanders et al., 1965; Stickle and Denoux, 1976; 

Cawthome, 1979a; Hard wick-Witman et al, 1983) and seasonal periodicity (Bassindale, 

1943; Day, 1951; Sanders et al., 1965; Attrill and Thomas, 1996; Berger, 2006). 

Distinct salinity gradients are present in most estuaries, where the range of salinity 

fluctuations and the persistence of low salinity water are greater at upper estuarine 

regions and decrease towards the sea (Milne, 1938; Sanders et al., 1965). 

Salinity fluctuations and low salinities clearly play an important role in 

determining the distribution of marine organisms in estuaries (Sanders et al., 1965; 

Carriker, 1967; Wolff, 1983; Attrill & Thomas, 1996). Despite this, salinity cannot be 

considered as a factor of universal importance. Tolerance to salinity of any given 

species, and in fact to any potentially limiting environmental factor, does not 

necessarily correspond to observed ranges of distribution. It can be assumed that in 

estuaries, salinity acts by setting broad limits to species distribution, particularly the 

limits of upstream penetration for marine species. However, within the potential area of 

occurrence of a particular species, a range of different factors will probably define the 

exact distribution (see McLusky, 1989; Herman et al., 1999; Little, 2000). Low salinity 

events and salinity fluctuations may be particularly important by interacting with other 
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environmental stresses. In particular, sublethal effects on organisms will affect their 

ability to grow, reproduce and compete by influencing their physiological condition. 

The importance of salinity may also increase during periods of extreme conditions in 

other environmental variables, such as temperature and sedimentation. 

Estuaries are areas where considerable influx and accumulation of sediments can 

take place (Emery & Stevenson, 1957, Van Straaten & Kuenen, 1957, 1958; Postma, 

1967; Meade, 1969). The dynamics of estuarine sediments includes continual processes 

of transport, deposition and resuspension. As a result, turbidity, sediment load and 

silting-up in estuaries exhibit considerable spatial and temporal variation and are 

typically mush greater than on open coasts (Dyer, 1997). High fluxes of suspended 

sediment are known to have adverse effects on epifauna and to affect their distribution 

in estuaries (Levinton & Bambach, 1970; Rhoads and Young, 1970; Aller and Dodge, 

1974, Ellis et al., 2002). Suspension feeders under such conditions may experience 

clogging of the filtering apparatus (Loosanoff, 1962) and many of them display 

mechanisms to cope with particles entering the mantle cavity (Jorgensen, 1966, 1996). 

Hard substrata in estuaries are frequently covered by a layer of deposited sediment 

(Percival, 1929; Day, 1959) which apparently has adverse effects on epibenthic 

organisms (Korringa, 1951; Day and Morgans, 1956; Day, 1959; Carriker, 1961), and 

may cover them completely, acting as a physical barrier to feeding, settlement and 

reproduction (Percival, 1929; Korringa, 1951; Day, 1959; Carriker, 1961). 

1.5. Barnacles as model organisms for experimental estuarine ecology 

Epibenthic organisms constitute an important group in estuaries and include 

species that colonise the upper sediment layer of intertidal flats; reef building organisms 

such as oysters, mussels and some polychaetes; slow-moving species that occur in the 

8 



Chapter 1: General Introduction 

sediment-water interface, such as gastropods, amphipods, isopods and polychaetes; and 

also sessile forms associated with hard substrata, such as barnacles, hydroids and 

bryozoans. Hard substrata are scarce in many estuaries, but whenever present they are 

usually densely colonized. Barnacles are typically the dominant colonizers of hard 

substrata in estuaries and other coastal inlets, and occur on both natural and artificial 

substrata. 

Barnacles used in this study belong to the order Sessilia (Lamarck, 1818) which 

is characterised by the presence of a hard carapace that envelops the segmented body 

and six pairs of thoracic cirri used for gathering food. These species are sessile, 

hermaphrodite and reproduce by internal cross-fertilization. The life-cycle of a barnacle 

comprises six naupliar planktotrophic stages and one non-feeding cypris settlement 

stage (Fig. 1.1 ). 

Some key features of barnacles make them especially useful for ecological 

investigations, and in particular for intertidal ecology. These include the sessile nature 

of their benthic stage; the feasibility of collection and identification of their planktonic 

stages; the practicability of quantifying settlement in the field since newly settled 

cyprids are clearly visible, either on natural substrata or settlement panels; the fact that 

adult populations are conspicuous at mid-low intertidal rocky shores, and therefore, 

accessible during low tide. Due to this tractability, barnacles were successfully used in 

pioneering studies leading to modem experimental ecological approaches in intertidal 

ecology (e.g. Southward & Crisp, 1954; Connell, 1961a, 1961b, 1970). The importance 

of larval supply and recruitment to adult population regulation (e.g. Hawkins & 

Hartnoll, 1982; Caffey, 1985, Connell, 1985; Gaines & Roughgarden, 1985; Gaines et 

al., 1985; Raimondi, 1990, Sutherland, 1990; Minchinton & Scheibling, 1991; 1993; 

Bertness et al., 1992; Miron et al., 1995) and the roles of predation (Paine, 1974; 

Menge, 1976) and competition (Menge & Sutherland, 1987) in structuring communities 
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and determining species distribution m the intertidal, have been successfully 

demonstrated by using barnacles. 

Pelagic phase 

Nauplius 
(stages I to VI) 

••• 0 • -

Cyprid 

Benthic phase 

Copulation 
(Cross-fertilization) 

Larval release 

Fig. 1.1. The life-cycle of a barnacle. 

Settlement 

0 0 
@ /\_=.J 
b Exploratory 

Permanent attachment 
& metamorphosis 

behaviour 

1.6. Barnacle species in British estuaries 

The main barnacle species that occur in British estuaries are Elminius modes/us 

Darwin, Semibalanus balanoides Linneaus, Chthama/us montagui Southward, Balanus 

improvisus Darwin, Balamts crenatus Bruguiere and Vermca stroemia (0. F. Muller) 

(Bassindale, 1964; Southward, 1976). V. stroemia and B. crenatus are subtidal species, 

although the latter is also occasionally found in the intertidal. B. improvisus inhabits sub 

and intertidal zones and is regarded as the barnacle species found furthest away from the 
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sea in estuaries (Foster, 1970). The distribution of this species in estuaries in the UK is 

patchy and subject to processes of population extinctions and re-colonization (Furman 

& Yule, 1991). Stable populations are restricted to large estuaries and this species is not 

common in estuaries in Southwest England (Furman & Yule, 1991). Among these 

species E. modestus, S. balanoides and C. montagui are the ones most commonly found 

on UK estuarine intertidal shores (Crisp, 1958; Southward & Crisp, 1952; 1959; 

Hiscock & Moore, 1986; Dixon, 1986; Moore, 1988; Hiscock, 1986). These three 

species were studied in this thesis (Fig. 1.2). 

Fig. 1.2. Species utilized as model organisms in this thesis: a. E. modestus; b. S. balanoides; c. 
C. montagui (Wall plates: C: carina), R: rostra), L: lateral, Cl: carino-lateral and RI: rostro­
lateral); and d. detail (5 x 5 cm) of the three species co-existing on an estuarine shore, E: E. 
modestus, S: S. balanoides and C: C. montagui. 
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E. modes/us is an Australasian species, distinctively eurythennal and euryhaline, 

and typically found in estuarine and other sheltered marine areas (Southward and Crisp, 

1956; Crisp and Southward, 1959; Bames and Bames, 1961, 1965; Crisp 1958; Foster, 

1971, 1987; Harms, 1999). This species was introduced into British and European 

waters during the 1940s (Crisp, 1958) and since then has spread considerably. This 

species is now common on European coasts, from Shetland to northern Spain (Crisp, 

1958; Crisp & Southward, 1959; Jones, 1961; Hiscock et al., 1978; King et al., 1997). 

There is an extensive literature on the introduction, spread and occurrence of E. 

modes/us on European shores (Bishop, 194 7; Boschma, 1948; Knight-Jones, 1948; 

Stubbings, 1950; Crisp, 1958, 1959, 1960; Crisp & Chipperfield, 1948; Beard, 1957; 

Bishop, 1954; Bishop & Crisp, 1958; Connell, 1955; Crisp & Southward, 1959; Jones, 

1961; Den Hartog, 1953, 1956; Fischer-Piette, 1965; Fischer-Piette & Prenant, 1956, 

1957; Barnes & Stone, 1972; Hiscock et al., 1978; Bames & Bames, 1960a, b, 1961, 

1965, 1966, 1969; Bames et al., 1972; Fischer-Piette & Forest, 1961; Evans, 1968; 

King et al., 1997; Flowerdew, 1984). E. modes/us dominates estuarine intertidal shores 

in many British and European estuaries, where it can extend its distribution up to the 

riverine portions of the estuaries and reaches areas near to the estuarine limits of 

saltwater incursion and tidal influence. E. modes/us has a broad range of vertical 

distribution (Foster, 1971; Crisp et al., 1981 ), occurring from the mean high water of 

neap tides (MHWN) to the subtidal (Foster, 1970). 

S. balanoides is an Arctic-boreal species and is found on both sides of the North 

Atlantic and also on the Pacific coast of North America (Lewis, 1964). In the East 

Atlantic, the South-West of Britain is close to the southern limit of distribution of this 

species, which extends from Spitsbergen in the Arctic to Brittany and north-western 

Spain (Fischer-Piette and Prenant, 1956; Southward and Crisp, 1956; Crisp et al. 1981). 

This species is the major barnacle species found on intertidal shores in Britain, except 
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for some locations in the South-West, where it can be less abundant then chthamalids 

(Lewis, 1964; Crisp & Southward, 1958). S. ba/anoides can survive in estuarine areas, 

but is more common on the open coast (Lewis, 1964; Foster, 1970; Southward, 1976; 

Crisp et al. 1981). It is normally found between MHWN and MLWN, but occasionally 

extends its distribution to lower levels (Lewis, 1964; Foster, 1969, 1970). Its position is 

usually located just below the zone occupied by chthamalid species, although some 

overlap is typically observed (Lewis, 1964). 

C. montagui is a warm-water species that occurs along the east coast of Great 

Britain, extends further South up to Mauritania and is also common in the Western 

Mediterranean (Crisp et al., 1981 ). The distribution of this species is very similar to the 

distribution of C. stel/atus and in Britain the range of distribution of C. montagui and C. 

stellatus almost completely overlap. Despite this similarity in geographical range, it is 

possible to distinguish habitat preferences of C. montagui and C. stellatus that are 

consistent throughout the range of these species. C. montagui occupies upper vertical 

regions within the barnacle distribution zone as a whole (Southward, 1976) and is 

particularly successful in estuarine areas close to the sea; while C. stellatus is not found 

in estuarine areas, being more successful on open coasts exposed to strong wave action 

(Southward, 1976; Crisp et al., 1981 ). In estuaries, C. montagui is usually restricted to 

regions adjacent to the sea, showing less penetration into the estuary than S. balanoides 

and E. modestus (Lewis, 1964; Foster, 1970; Southward, 1976; Crisp et al. 1981 ). 

Chthamalus montagui is most common between mean high water spring tides (MHWS) 

and MHWN (Southward, 1976; Crisp et al., 1981). 

The differing degrees of estuarine penetration of these three species (E. 

modestus > S. balanoides > C. montagui) and the dominance of E. modestus are 

commom features of the distribution of barnacles in British estuaries. Several 

physiological traits that differentiate E. modestus from C. montagui and S. balanoides 

13 



Chapter 1: Genera/Introduction 

may contribute to these patterns, including: 1) higher tolerance to low salinity (Foster, 

1970; Davenport, 1976; Cawthorne, 1979b; Cawthorne & Davenport, 1980) and 

siltation (Crisp, 1958); 2) higher cirral activities (Southward, 1955; Barnes & Barnes, 

1962); 3) higher fecundity and multiple brooding (Crisp & Davies, 1955; Barnes & 

Barnes, 1968); and 4) shorter generation time (Crisp & Davies, 1955; Barnes, 1962, 

1989). Although these have been frequently evoked as being responsible for patterns of 

distribution and abundance of E. modestus in comparison to native species, and also for 

the invasive success of E. modes/us, few studies have attempted to test the ecological 

significance of some of these features in natural habitats (Barnes & Barnes, 1962 

growth at differing shore heights; Moyse & Knight-Jones, 1967, O'Riordan & Murphy, 

2000 reproductive output; Harms & Anger, 1989, Watson et al., 2005 recruitment). 

Therefore it is relevant to unravel the relative importance of some of these physiological 

traits and resulting ecological processess in determining the patterns of distribution of 

these species in estuaries. 

1.7. Key identification features of the studied species 

The identification and separation between E. modestus, C. montagui and S. 

balanoides is relatively easy at all stages of their life-cycle. Adults are easily recognised 

in the field by the number and position of the plates forming their external wall and also 

by their apertures' shape. Catalogues with descriptions of species, keys and notes for 

identification of barnacles can be found in Southward (1963), for species from 

European waters and in Bassindale (1964), for British barnacles. These guides include 

E. modestus, S. balanoides (as Balanus balanoides) and C. stel/atus. Southward (1976) 

separated C. stel/atus into C. stellatus Polli and C. montagui Southward and provided 

descriptions, discussion on the key identification features, as well as revised distribution 
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of these two species. A more updated introductory text on the biology of British 

barnacles, including useful drawings of the external appearence and plate positions of 

all British barnacles can be found in Rainbow (1984). 

E. modestus is the only barnacle in British shores with the wall formed by four 

plates. The limits between these plates are normally well defined in E. modestus and the 

aperture is typically diamond shaped (Fig. 1.2.a). C. montagui and S. balanoides both 

have six plates but the relative positions of these plates and also the shape of their 

apertures differ in these two species. In C. montagui the rostral plate is overlapped by 

the to rostrolateral plates (Fig. l.2.c), while in S. balanoides the rostra) plate is wider 

and extends over the margins of the lateral plates (Fig. l.2.b). Furthermore the aperture 

in C. montagui is kite-shaped and the line formed by the articulations between the terga 

and the scuta is straight and close to the carina) edge, less than one third the distance 

down the rostrum. This latter feature is one of the most important for separation 

between C. montagui and C. stellatus (Southward, 1976). 

Identification of naupliar stages of British barnacles can be made based on Ross 

et all ( 1999), which provided detailed discussion on identification features and two 

identification keys, one for stages II and III of nauplii and one for stages IV, V and VI. 

The most important features used for the separation between species are total length, the 

relative sizes of the dorsal thoracic spine and the abdominal process, the size and 

direction of the frontolateral horns, and also the shield length in stages IV to VI (see 

Ross et al., 1999 for illustrations). C. montagui is readily separated from E. modestus 

and S. balanoides at all stages by observation of the labrum, which is unilobed in C. 

montagui and trilobed in the other two species. Chthamalid nauplii is also smaller than 

those of S. balanoides and E. modestus. Complete descriptions of larval stages, 

including setation formula can be found in Bassindale (1936) for S. balanoides and C. 
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stellatus; Crisp (1962) and Pyefinch (1948) forS. balanoides; Knight-Jones & Waugh 

(1949) for E. modestus; and Burrows et al. 1999 for C. stellatus and C. montagui. 

Identification of cyprids is mainly based on sizes (ex. Power et al, 1999; 

O'Riordan et al., 2001), but the shape of the larvae is also utilized (ex. Jenkins, 2005). 

Identification of chathamalid cyprids can be made by length sizes, C. montagui being 

smaller (350 to 525Jlm) than those of C. stellatus (575 to 750Jlm) (Power et al, 1999; 

O'Riordan et al., 2001). Cyprids of S. balanoides are much bigger, with a minimum 

minimum length of 1 OOOJ.!m (Crisp, 1962; Pyefinch, 1948). The size range of the 

cyprids of E. modestus, is similar to that of the Chthamalids, but larvae can be 

recognised by its transparency, and its pointed anterior and posterior ends (Knight-Jones 

& Waugh, 1949). Chthamalids have distinctively round anterior ends and opaque brown 

colour. Early metamorphosed individuals are difficult to distinguish in the field due to 

its small size and the uncalcified nature of their carapace. Despite this, the species can 

be recognised in the laboratory with the use of an optic microscope, based on the 

number and position of their wall plates, which are similar to the adults. 

1.8. Rationale, overall aims and specific objectives 

Assuming availability of habitat of sufficient quality, two main models could 

explain the distribution of epibenthic organisms along estuarine gradients: 1. larval 

availability and ability to settle at different positions along estuarine gradients; and 2. 

tolerance of post-settlement stages to estuarine environmental conditions and 

consequent ability of this species to survive and establish adult populations. 

In the first model, the origin of larvae that may potentially settle on estuarine 

shores (local production plus larvae transported from the sea or other estuarine area) and 

the predominance of import versus export of larvae from the estuary, which may be 
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influenced by patterns of water circulation and larval behaviour, must be considered. 

Models based on the tolerance of post-settlement stages need to take into account the 

nature of the environmental gradients found in a particular estuary, the potential of 

physico-chemical and ecological factors in causing stresses on organisms and the degree 

of spatial and temporal variability of these factors. 

Possible patterns of horizontal distribution of marine species in estuaries and 

determinant factors of penetration are presented in Fig. 1.3. Availability of larvae may 

be responsible for limitations in settlement and consequently in the occurrence of post­

settlement stages along estuarine gradients (Fig. l.3.a). Alternatively, larvae may be 

present along the whole extension of the estuary, but limitations in settlement may 

restrict distribution (Fig. 1.3.b). It is also possible that larvae exhibit an extensive 

distribution in the estuary, which culminates in settlement along the whole estuary, but 

post-settlement mortality due to environmental factors limits species distribution (Fig. 

1.3.c). In the final scenario, species occur from the entrance up to the riverine limit of 

the estuary, in which case limitations would appear to be absent throughout the life 

cycle ofthe species (Fig. lJ.d). 

17 



I 

Fresh water : 

a 

. 
Fresh water : 

c 

Sea 

Settlement 

I I 

(loloronce lo anvlron- lotion) 
.

1 

Post-seWement survival 

! Actual distnllution 

Estuary Sea 

Settlement 

I 
Post-settlement SUIVM!I 

lOie..ance 1o enWonment.ll hlcton 

I 

Fresh water : 

b 

I 

Fresh water : 

d 

Chapter 1: General Introduction 

Estuary 

Larval availabilitY : 
(larvol = & belo..!ooorl 

Settlement 

Post-settlement survival 

Sea 

I Actual <fslribulion : 
r-·-: 

Estuary Sea 

SetUement 

I 
Post-settlement sUIVMII 

(tolerance lo enW-onmonlol , -., 

Fig. 1.3. Schematic representation of explanatory models for distribution of marine species in 
estuaries. a) larval supply limiting larval settlement and occurrence of post-settlement stages along 
the estuarine gradient; b) settlement-limited distribution; c) post-settlement mortality limiting 
species distribution; and d) distribution along the entire length. 

The overall aim of this thesis is to examine the relative importance of factors 

that affect organisms along estuarine gradients, by testing the influence of larval supply, 

settlement and tolerance of post-settlement stages on patterns of distribution and 

abundance, using intertidal barnacles as model organisms. Mechanisms responsible for 

species dominance on estuarine intertidal rocky shores were also examined by the study 
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of the dominant non-native species Elminius modestus. The principles of two 

explanatory models for the ecological controlling of patterns of distribution of species 

in estuaries were examined. According to the two contrasting models, horizontal 

distribution of species in estuaries are dictated by: 1. tolerance of post-settlement stages 

to environmental conditions; or 2. processes that take place at pre-settlement and 

settlement stages of the life cycle of these species, namely distribution and abundance of 

planktonic larvae across estuaries and settlement on suitable substrata. 

Patterns of distribution of intertidal barnacles in estuaries from the South-West 

UK were examined and surveys performed in two estuaries to provide detailed 

information on variations in the composition and abundance of barnacle populations 

along the marine-to-freshwater gradient (Chapter 2). The specific objectives of Chapter 

2 were identification of the upper limits of penetration of each of the species in estuaries 

and to examine the degree of dominance of E. modestus. 

Explanatory models for the distribution of organisms in estuaries based on the 

tolerance of species to environmental conditions were tested using transplant 

experiments between shores distributed along horizontal estuarine gradients in Chapter 

3. This chapter assessed the relative ability of C. montagui, S. balanoides and E. 

modestus to survive conditions prevailing along horizontal environmental gradients in 

estuaries, to establish the correspondence between actual distributions of adults on the 

shore with the survival of specimens transplanted of each species and to test the 

correlation between survival and selected physico-chemical variables, namely salinity 

and siltation. 

In Chapter 4, the influence of deposition of silt on each of the three species of 

barnacle was examined experimentally. Effects of burying C. montagui, S. balanoides 

and E. modestus by estuarine silt were compared using laboratory experiments, to 
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examine the relative tolerance to burial by estuarine muddy sediment and effects of 

burial on cirral activities on each species. 

Results on the distribution of planktonic larval stages of barnacles along the 

estuarine gradients were not presented in this thesis, and the importance of pre­

settlement processes was indirectly assessed by the study of temporal and spatial 

patterns of settlement. Plankton collections were made, but due to time restrictions 

processing could not be concluded. According to preliminary results, both in the Plym 

and the Yealm: I. the diversity of species in the plankton decreased towards the riverine 

end; 2. All species tended to be more abundant at the mouth of the estuaries than at 

inner areas; 3. E. modestus and the subtidal species V. stroemia were the most abundant 

species, and together with B. perforatus, were the only species detected at all stations 

sampled along the length of the estuaries; 4. C. montagui was absent from samples 

taken at the sites located at the upper reaches of the estuaries, but was present at stations 

located at the seaward half of the estuaries. Although further work is needed for a more 

detailed and accurate description of the patterns of distribution of barnacle larvae in 

these estuaries, these results suggest that E. modestus is probably more abundant and 

dominant at planktonic stages and that larvae of C. montagui and other species may 

have a restricted degree of penetration up-estuary. These may be important for the 

determination of patterns observed at latter stages of development, in which case 

settlement would be influenced and reflect variations on the larval supply. 

The patterns of settlement and recruitment and their influence on the 

distribution of adults were examined in Chapter 5. Settlement, defmed as the attachment 

of a cyprid on experimental surfaces, and recruitment, defined as the survival of a post­

metamorphosed individual to the time of sampling, were assessed in intertidal areas 

located at various distances from the sea along two estuaries, and compared to observed 

distribution of adults. 
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In Chapter 6 a synthesis of results is presented including an evaluation of models 

for distribution of epibenthic marine species in estuaries (Fig. l.l) viewed in the light of 

my results. 
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CHAPTER2 

DISTRIBUTION OF BARNACLES IN ESTUARIES IN SOUTH-WEST 

ENGLAND 

2.1. Introduction 

South-West England is characterized by the occurrence of a series of ria-type 

estuaries distributed along the coasts of Devon and Cornwall (Dewey, 1948; Castaing & 

Guilcher, 1995). The main species of barnacles found in intertidal areas of these 

estuaries are Elminius modestus, Semibalanus balanoides and Chthamalus montagui 

(Little, 1988, 1989; Gill & Mercer, 1989; Rostron, 1987; Horsman, 1986; Moore, 1988; 

Frid, 1989; Dixon, 1986; Hiscock & Moore, 1986). Balanus crenatus, which is 

predominantly a subtidal species, is also found occasionally in intertidal estuarine 

habitats. E. modestus is dominant throughout the intertidal in most of these estuaries. C. 

montagui is typically restricted to lower seaward regions of estuaries, while the 

distribution of S. balanoides and E. modestus extends to mid and upper estuarine areas 

(Crisp et al., 1981; Little, 1988, 1989; Gill & Mercer, 1989; Rostron, 1987; Horsman, 

1986; Moore, 1988; Frid, 1989; Dixon, 1986; Hiscock & Moore, 1986). 

Elminius modestus is an Australasian species typically found in estuarine and 

other sheltered marine areas (Southward & Crisp, 1956; Crisp & Southward, 1959; 

Bames & Bames, 1961, 1965; Crisp. 1958; Foster, 1971, 1987, Harms, 1999). This 

species invaded British and European waters during the World War II, and is now well 

established (Bishop, 1947; Stubbings, 1950; Den Hartog, 1953, 1956; Crisp, 1958; 

Harms, 1999, Lawson et al., 2004). S. balanoides and C. montagui can also occur in 

sheltered areas but are more successful on the open coast (Lewis, 1964; Foster, 1970; 

Southward, 1976). The dominance of E. modestus in British and and other European 

estuaries is probably as a consequence of the interaction of several physiological and 
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reproductive characteristics of this species, which confer advantage over native species 

in estuarine environments (Crisp, 1958; Harms, 1999; Lawson et al., 2004; Watson et 

al., 2005). 

The Yealm and the Plym are small estuaries with considerable extent of 

intertidal rocky shoreline as well as artificial hard substrata such as quays and jetties. 

These systems were chosen as models for the study of processes governing the 

distribution of intertidal barnacles in estuaries, and conclusions derived from this study 

are expected to enlighten our understanding of such processes in rias and estuaries in 

general. Intertidal fauna in these two estuaries have not been extensively investigated 

and information is restricted to a few positions scattered along the estuaries that have 

been examined previously (Cunningham et al., 1984; Cunningham & Hawkins, 1985; 

Hiscock & Moore, 1986). 

Fluctuations in the abundance of Chthamalus stellatus, Chthamalus montagui, 

Semibalanus balanoides and Elminius modestus have been recorded for over forty years 

in an area located near the mouth of the Yealm Estuary (Cellar Beach) (Southward, 

1991). At this location, C. montagui and C. stellatus were the most common species in 

the upper levels of the shore, S. balanoides occurred below Chthamalus species down to 

about ML WN and E. modes/us was common only between ML WN and ML WS 

(Southward, 1991). S. balanoides and C. montagui showed fluctuations in abundance 

mainly related to the local annual sea temperature two years earlier, and at a decadal 

scale, were also correlated with long term climatic fluctuations in temperature. E. 

modestus showed strong annual fluctuations probably due to local availability of larvae 

(Southward, 1991). Although this work revealed detailed aspects of the dynamics of 

barnacle populations at the entrance of the Yealm, patterns of distribution and 

ecological processes in the inner regions of the estuary were not examined. 
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In areas further up the Yealm E. modestus is the dominant intertidal barnacle 

species, and it occurs at much higher levels on the shore (Hiscock & Moore, 1986). E. 

modestus and S. balanoides were previously recorded at lower and middle portions of 

the estuary (Hiscock & Moore, 1986), while C. montagui was found only on the lower 

estuary. All three species occurred at mid-shore positions, but only S. ba/anoides and E. 

modestus were present below mid shore level (Hiscock & Moore, 1986). In the Plym 

Estuary, only sites where conditions approximate to fully-marine, in the lower third of 

the estuary, have been surveyed previously (Hiscock & Moore, 1986); E. modes/us and 

S. ba/anoides were recorded at these sites in the mid and low-shore zones. 

Past surveys did not comprehensively examine the horizontal distribution of 

barnacles in these estuaries. Specifically, they did not locate the upper limits of 

distribution of these species or reveal subtle shifts in the composition of barnacle 

assemblages along the estuarine gradient. Therefore, the objectives of this Chapter were 

to identify patterns of abundance and distribution of intertidal barnacle species along the 

horizontal gradient of the Plym and the Yealm estuaries and to establish the location of 

the upper limits of distribution for each of the species under investigation. This Chapter 

informs the hypothesis testing Chapters (3, 4 and 5) in the reminder of this thesis. 

2.2. Methods 

2.2.1. Study Area 

The Yealm and Plym Estuaries are located near Plymouth in South-West 

England (Fig. 2.1). They are macrotidal (Sm tidal range) rias with low freshwater inflow 

and considerable protection from wave action. The Plym is located within Plymouth 

Sound, which is sheltered by the Plymouth Breakwater. The Yealm Estuary, located to 
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the east of Plymouth SoW1d, is protected by Wembury Reef and by a sandbar at its 

entrance. The coastlines of these estuaries are generally characterized by gentle slopes 

and large expanses of mud flats. In most intertidal areas mud covers the bedrock below 

mid-tide level, but above this level, outcrops of rock, boulders or cobbles occur. 

Artificial substrata are occasionally present as stone embankments and jetty walls, and 

these also contribute to the surfaces available for colonization by barnacles. 

Plymouth 
Breakwater 

N 

+ 10 km 

Figure 2.1. The Yealm and Plym Estuaries. 

2.2.1.1. The Yealm Estuary 

The River Yealm rises on Dartmoor and empties to the east of Plymouth SoW1d. 

The estuary is 6.5 km long, extending from Punslinch Bridge, near Yealmpton, to its 

seaward limit at Wembury Bay (Fig. 2.2). The main creeks present are Newton Creek, 

which extends eastwards for 1.5 km at the lower estuary; and Cofflete Creek, which 

extends for 2 km northwards from Steer Point (Fig. 2.2). Extensive yacht moorings are 
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present in the lower portion of the estuary, from Noss Mayo and Ferry Point up to the 

Heron's Reach area (Fig. 2.2). The predominant hard substrata bordering the Yealm 

Estuary is natural rock. Some narrow jetty walls occur at Newton Creek and Heron's 

Reach; and stone embankments extend on the west border of the Kitley Estate area, 

from Warren Point to near Punslinch (Fig. 2.2). 

comete 
Creek 

Yealm Estuary 

Kitley Estate 

1km 

N 

Yealmpton 

Punslinch 
/ Bridge 

Fig. 2.2. The Yealm Estuary. Position of sites investigated in the survey and names of areas 
cited in the text. 1. Punslinch Bridge; 2. Quay/Kitley Estate; 3. Boat House/Kitley Estate; 4. 
Warren Point; 5. South Creek; 6. South Creek Quay; 7. Steer Point; 8. Hanaford Green; 
9. Shortaflete Creek; 10. Newton Wood North; 11. Newton Wood South; 12. Heron's 
Reach; 13. Madge Point; 14. Ferry Point; 15. Ferry Cottage; 16. Passage House; 17. 
Newton Creek Top; 18. Newton Creek 

2.2.1.2. The Plym Estuary 

The River Plym empties into the Plymouth Sound. The estuarine area extends 

for 5.5 km from Longbridge to its entrance to the sea at Mount Batten Point (Figs. 2.1 

and 2.3). Cattewater, located at the entrance of the Plym Estuary, is an important area 

for commercial docking. Heavy mooring of recreational boats also takes place at this 
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area and extends up to Laira Bridge (Fig. 2.3). Wharfs and jetty walls border the estuary 

from Cattewater to Laira Bridge, foLlowed by stone embankments up to Saltram Point, 

and are replaced by a natural rocky shoreline from Saltram Point towards the riverine 

end of the estuary (Fig. 2.3). 

l 
Longbridge 

19 

Plym Estuary 

N 

Fig. 2.3. The Plym Estuary. Position of sites investigated in the survey and names of areas cited 
in the text. 19. Blaxton Meadow North; 20. Blaxton Meadow South; 21. The Amphitheatre; 
22. Saltram Wood; 23. Saltram Point; 24. Laira Bridge; 25. Yacht Haven Quay; 26. 
Oreston; 27. Mount Batten Centre. 

2.2.2. Surveys 

A total of 18 sites in the Yealm Estuary and 9 sites in the Plym Estuary were 

sampled in autumn 2004 (Fig. 2.2 and 2.3). These sites were located along the length of 

these estuaries encompassing sites with considerable influence of freshwater, at the 

upper limits of the estuarine area, to sites where fully marine conditions prevail. The 
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surveys also included the whole range of barnacle distribution on these estuaries, as 

preliminary surveys indicated that barnacle populations were absent upstream site I, in 

the Yealm and site 19, in the Plym. 

Hard substrata were frequently limited to outcrops of rocks or groups of isolated 

boulders spread along shingle, sand or mud. Surveys were made in areas of the 

intertidal where barnacles were abundant, usually at mid and upper shore levels, as the 

lower shore was mainly mud-flats or bedrock covered by mud. Additional sampling was 

performed on the lower shore level, whenever hard substrata were available. This 

usually occurred at positions away from the riverine end of the estuaries, where the 

accumulation of mud on lower shores was less. 

Surveys were performed using I 0 x I 0 cm quadrats. Ten quadrats were 

photographed at each site or vertical zone within a site. Barnacle species present in the 

photographs were subsequently identified and counted. The relative proportion of adults 

and recently metamorphosed individuals of E. modes/us, S. balanoides and C. montagui 

were calculated for each site sampled. Densities were also calculated and expressed in 

number of individuals per 0.01 m2
• 

2.3. Results 

Elminius modestus was dominant on shores in both the Yealm and Plym. This 

species was the most abundant barnacle at all sites, except at one lower estuarine site in 

the Yealm (site 14, Fig. 2.4 and 2.5) and one in the Plym (site 27, Fig. 2.6 and 2.7). E. 

modestus was the only species for which recently metamorphosed individuals were 

observed in the samples (Fig. 2.8 and 2.9). S. balanoides and C. montagui were all adult 

and apparently more than one year old. The results also indicated differences in the 

distribution of the three species. C. montagui extended towards the riverine end of the 
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estuaries less than the other two species. E. modestus was found along the whole 

extension of both the Plym and the Yealm, while the limit of S. balanoides occurrence 

was between that of the E. modestus and C. montagui. 

Chthamalus montagui was abundant in lower areas of the estuaries (Fig. 2.4 and 

2.6) and was the most abundant species at only one location in the Yealm (site 14, Figs. 

2.4 and 2.5) and one in the Plym (site 27, Figs. 2.6 and 2.7). These sites were both fully 

marine, being located close to the mouth of the estuaries (Fig. 2.5 and 2.7). The 

abundance of S. balanoides was greatest in the middle portions of the estuaries, but was 

only found at extremely low densities in the Plym (Fig. 2.6). B. crenatus was found at 

low abundance in some sites in the lower reaches of both estuaries. Further details on 

the distribution and abundance of these species along the horizontal gradient are 

presented for each estuary below. 

2.3.1. Yealm Estuary 

Along the upper third of the Yealm Estuary, from the tidal limit near Puns! inch 

Bridge (site 1) to the entrance of South Creek (site 6), the barnacle cover was composed 

exclusively of E. modestus (Fig. 2.5). This species occupied considerably higher levels 

of the shore in these areas than at areas located further seawards. The lowest abundance 

of E. modestus was observed at site I (Fig. 2.4), where the lower shore was dominated 

by mud flats and outcrops of rock were restricted to the upper middle shore. 

The middle third of the estuary, from Steer Point (site 7) to Heron's Reach (site 

12), was characterized by the presence of all three species of barnacles (Fig. 2.4 and 

2.5). The upper limit of S. balanoides occurred at Steer Point (site 7). This species 

reached peak abundances at the three sites located immediately seawards from Steer 

Point (sites l 0, 11 and 12; Fig 2.4). C. montagui occurred from the south entrance of the 
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Shortaflete Creek (Newton Wood North, site 10) and at all subsequent seaward sites 

(Fig 2.4 and 2.5). This species was found at higher levels on the shore, just above the 

area populated exclusively by E. modestus and S. balanoides (Fig. 2.5). 

In the lower third of the Y ealm Estuary an increase in the relative abundance of 

C. montagui was observed, whileS. balanoides was less abundant (Fig. 2.4). Elminius 

modestus was the only species recorded at the two sites located in Newton Creek (sites 

17 and 18) (Fig. 2.5). 
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Fig. 2.4. Abundance of adult Elminius modestus, Semibalanus balanoides and Chthamalus 
montagui along the Yealm Estuary (Mean +/- SE). Arrow indicates the direction of the gradient 
from freshwater to the sea. 
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Fig. 2.5. Proportion of Elminius modes/us, Semibalanus balanoides and Chthamalus montagui 
along the Yealm. Proportions representative of lower shore position are indicated by the letter 
(L) where sufficient substratum occurred for more than one tidal height to be surveyed. 

2.3.2. Plym Estuary 

The distribution and abundance of barnacles in the Plym Estuary differed from 

that in the Yealm. S. balanoides generally occurred in lower abundance than in the 

Yealrn, but was found further up the estuary, and individuals were observed at the 

uppermost site (West of Blaxton Meadow, site 19), which also corresponded to the 

upper limit of E. modes/us (Fig. 2.6 and 2.7). Although abundances of S. balanoides 

were much lower in the Plym Estuary, the highest abundance of this species was 
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recorded approximately at the mid point between the lower and upper limits of the 

estuary (Fig. 2.6). Contrary to the pattern observed for S. balanoides, C. montagui 

showed a less extensive distribution in the Plym that in the Yealm (Fig. 2.7). This 

species was absent in the upper and middle thirds of the Plym Estuary and was only 

recorded at the site closest to the sea (Mount Batten Centre, site 27) (Fig. 2. 7). At the 

most seaward sites, in both the Plym and the Y ealm, C. montagui was abundant in the 

higher portion of the intertidal, just above a zone exclusively inhabited by E. modestus 

and S. balanoides (Fig. 2.7). 
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Fig. 2.6. Abundance of adult Elminius modestus, Semiba/anus balanoides and Chthamalus montagui 
along the Plym Estuary (Mean +/- SE). Arrow indicates the direction of the gradient from freshwater 
to the sea. 
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Fig. 2.7. Proportion of Elminius modes/us, Semibalanus balanoides and Chthamalus montagui 
a long the Plym. Proportions representative of lower shore position are indicated by (L) where 
sufficient substratum occurred for more than one tidal height to be surveyed. 

2.3.3. Abundance of recently metamorphosed E. modestus 

Recent settlement was evident for E. modes/us when the survey was made in 

October 2004. Small individuals, which probably settled a few months before the 

surveys, were found at most sites, and settlement occurred along the whole length ofthe 

Yealm (Fig. 2.8). The lowest density of settlers at the Yealm was recorded at the 

uppermost estuarine site (site 1; Fig. 2.8), and the highest at the most marine site (site 

16, Fig. 2. 8). There was no clear pattern of abundance along the horizontal extension of 

the Yealm and densities commonly reached between 10 and 20 ind.cm-2 (Fig. 2.8). In 
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the Plym, settlers were absent in one site (site 20; fig. 2.9) and the highest densities 

were observed in the fust three sites seawards (sites 25, 26 and 27; Fig. 2.9). 
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Fig. 2.8. Abundance of Elminius modestus recently metharnorphosed individuals along 
the Yealm Estuary (Mean+/- SE). 
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Fig. 2.9. Abundance of Elminius modestus recently methamorphosed individuals along the 
Plym Estuary (Mean +/- SE). 
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2.4. Discussion 

The surveys undertaken in the Yealm and Plym Estuaries demonstrate that: l. E. 

modestus was dominant in the intertidal areas of these estuaries; 2. Settlement of E. 

modes/us took place in comparable densities along the horizontal extension of each of 

these estuaries; and 3. E. modes/us was the species that occurred furthest up both 

estuaries, followed by S. ba/anoides and then C. montagui. The surveys also identified 

fine-scale spatial variations in the abundance of each species along the sea-to-freshwater 

gradient. This discussion highlights some aspects of the recorded distributions in 

relation to other estuaries. It also examines the implications of these fmdings for our 

understanding of ecological processes controlling the distribution of barnacles in 

estuaries. 

In both estuaries, E. modes/us was found along the whole extension of the 

estuarine gradient from fully marine conditions, to areas with high freshwater influence. 

S. balanoides extended up to mid portions in the Yealm and a few individuals occurred 

up to the limits of E. modestus penetration in the Plyrn. C. montagui showed a more 

restricted distribution than the other two species. The same relative order of estuarine 

penetration has previously been observed for these species in other estuaries, including 

the Bristol Charmel and Severn Estuary (Boyden et al., 1977; Smith and Little, 1980; 

Mettam, 1994), the Ranee Estuary in France (Little & Mettam, 1994) and several 

estuaries from the South-West of England (e.g. Dart Estuary, Horsman, 1986, Moore, 

1988; Salcombe & Kingsbridge Estuary; Tamar Estuary, Hiscock & Moore, 1986; Looe 

Estuary, Little, 1988; Fa! Estuary, Rostron, 1985; Helford Estuary, Rostron, 1987). 

There is a general tendency of reduction on the number of marine epibenthic 

organisms towards the upper reaches of estuaries (Sanders, et al., 1965; Day, 1967; 

Boesch, 1977; Wilkinson, 1980), but variations in abundance differ among particular 
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species. For example, in the Great Bay Estuary System in New England it was observed 

that while some dominant species such as S. balanoides, Mytilus edulis and Littorina 

littorea decreased in abundance towards the inner estuary, others such as Balanus 

eburneus, Littorina saxatilis and Fucus vesicu/osus var. espiralis increased (Hardwick­

Witman & Mathieson, 1983). Patterns of distribution and abundance of any particular 

species along an estuarine gradient depend on the tolerance of different stages of its life 

cycle to the physical, chemical and biological conditions associated with this gradient. 

Consequently, there are numerous factors that may affect distributions and set limits to 

the penetration of species in estuaries. 

Physical conditions become more variable, and consequently more stressful for 

most marine species, from the seaward to the upper regions of estuaries. Fluctuations in 

salinity, water turbidity, concentrations of dissolved sediment and particulate material, 

and sedimentation tend to increase towards the riverine end of estuaries. In many cases 

environmental extremes are known to determine distribution of estuarine species 

(Kinne, 1970, 1971 ). For example, tolerance to a major environmental variable such as 

salinity clearly sets the ranges of distribution of species in many estuaries where stable 

salinity regimes persist, in which case the salinities at upper limits of species 

penetration coincide with species tolerance limits. 

The predominance of E. modes/us over native barnacle species, as indicated by 

their relative abundances, decreased towards the seaward margins of the estuary. In the 

Plym, not only relative, but also absolute abundance of this species decreased towards 

the sea. Such reductions were expected, as E. modestus favours the more sheltered 

areas, both in its original geographical area in the Southern hemisphere (Moore, 1944; 

Foster, 1978, 1982) and in invaded environments (Fischer-Piette & Prenant, 1956, 1957; 

Fischer-Piette and Forest, 1961; Fischer-Piette, 1965; Crisp, 1958). On wave-exposed 

shores in Britain, E. modes/us is not common and does not displace S. balanoides or C. 
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montagui at any vertical level (Crisp, 1958; Crisp & Southward, 1959; Foster, 1971; 

Southward, 1991 ). At a local level, previous work has shown that E. modes/us was less 

frequent on wave-exposed shores than at more sheltered areas within the Plymouth 

Sound (Burrows, 1988; Hiscock & Moore, 1986); and that at the mouth of the Yealm 

(Cellar Beach), this species was not dominant and was restricted to lower levels of the 

shore (Southward, 1991 ). 

Semiba/anus balanoides and C. montagui are better adapted to life in areas with 

fully marine conditions (Lewis, 1964; Southward, 1976; Crisp et al. 1981) and restricted 

penetration towards the upper regions of the estuaries was expected for these species. In 

the Yealm, S. balanoides occurred up to Steer Point (site 7), a site where the species has 

previously been recorded (Hiscock & Moore, 1986). This position corresponds closely 

with a sharp shift in the prevailing salinity regime, between the mid and the upper third 

of the estuary, from which point much lower salinities and stronger salinity fluctuations 

occur (Data presented in detail in Chapter 3). Salinity, especially salinity fluctuations 

are important for the distribution of species in estuaries (Sanders et al., 1965; Carriker, 

1967; Wolff, 1983; Attrill & Thomas, 1996) and it is possible that the observed limit of 

upper penetration of S. balanoides was related to its inability to cope with low salinity. 

Elminius modestus is notably more tolerant to low salinity and salinity 

fluctuations than S. balanoides and C. montagui (Foster, 1970, Davenport, 1976; 

Cawthorne, 1978; Cawthome & Davenport, 1980). This would help explain why E. 

modes/us occupied areas where the salinity regime appeared stressful, and neither C. 

montagui nor S. ba/anoides, nor indeed any other intertidal barnacle species was found. 

This ability can be illustrated by a similar pattern of distribution observed at Lough 

Hyne, in Ireland, where S. balanoides and C. montagui dominated the shore up to 1991, 

but where more recently E. modestus is dominant (Little et al., 1988, 1992; Lawson et 

al., 2004). Although, in general, salinities in Lough Hyne are close to fully marine, in 
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certain inner sites they are influenced by freshwater inputs and dominance of E. 

modestus is even higher than at other sites and at some locations it is the only species 

present (Lawson et. al., 2004). 

During the surveys in the Yealm and Plym it was common to fmd barnacles 

partially or completely covered by silt. It is possible that interference by silt may lead to 

mortality or sub-lethal detrimental effects in barnacles that affect their distribution in 

estuaries (Day, 1959, Carriker, 1961, Lewis, 1964; Silina, 2002). High siltation occurs 

in intertidal areas in both the Yealm and the Plym and portions of the rocky intertidal 

are commonly covered by a layer of silt. As observed for salinity, siltation levels were 

more stressful in the upper estuarine regions (Data presented in detail in Chapter 3). 

Hence siltation is another variable that may explain low abundances or absence of 

barnacle species observed in certain estuarine sites, fitting a model by which patterns of 

distribution and abundance in estuaries are linked to physiological tolerance of post­

settlement stages to environmental factors. Predictions based on this model and the 

influence of salinity and siltation on survival of E. modes/us, S. balanoides and C. 

montagui in the Yealm and the Plym are assessed in Chapter 3. 

Chthamalus montagui was previously recorded at Madge Point (site 14), but not 

at Heron's Reach (site 7) (Hiscock & Moore, 1986), which indicated that the upstream 

limit of this species was located somewhere between these two positions. The current 

survey confmns this observation and established that this limit is located just south of 

Shortaflete Creek (site 11). In the Plym, C. montagui was also absent away from the 

upper third of the estuary, where the saline regime appears to be more stressful. This 

suggests that salinity may not be a key factor in setting absolute limits of penetration for 

this species. 

An alternative explanation to post-settlement tolerance to physico-chemical and 

biological stresses as causes of the distribution patterns of these three species is that 
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limitations in settlement of larvae occur along the estuarine gradient. Distribution, 

abundance and settlement of larvae are undoubtedly crucial for the success of benthic 

populations and can influence adult patterns of distribution and abundance (Underwood 

& Denley, 1984; Gaines & Roughgarden, 1985; Connell, 1985; Raimondi, 1990, 1991; 

Minchinton & Scheibling, 1991 ). The distribution of S. balanoides and B. glandula in 

the Great Bay Estuary System in New England well illustrates some different 

mechanisms influencing larval supply and settlement in estuaries. While S. balanoides 

settled along the whole estuarine gradient its adult distribution in the estuary was 

restricted by differential post-settlement survival; B. glandula only settled at inner 

regions of the estuary where adults were found (Hardwick-Witman & Mathieson, 1983). 

There are other examples where distributions of barnacle larvae and adults are 

correlated in estuaries. For example, Elminius cover/us showed positive correlations 

between densities of successive stages of development, from cyprids to adults, along the 

sea-to-freshwater gradient in a mangrove dominated estuary (Ross, 2001). Larval 

supply has also been used to explain the distributions of C. montagui and S. balanoides 

in the Severn, where arrival and settlement of larvae would be responsible for the limits 

of penetration of these species (Little & Smith, 1980; Mettam, 1994). Other epibenthic 

groups, such as macroalgae (e.g. Wilkinson, 1980; Hard wick-Witman & Mathieson, 

1983; Zechman & Mathieson, 1985) and decapods (e.g. Dittel & Epifanio, 1990; Palma 

et al., 1999; Paula et al., 2003; Queiroga et al., 2006), also have their distribution 

influenced by availability and settlement of planktonic stages in estuaries. 

Elminius modes/us has a much higher reproductive output than S. balanoides 

and C. montagui, and this is certainly advantageous in estuarine and sheltered areas 

(Watson et al., 2005). The former species reaches reproductive maturity much faster 

than the two native species (Crisp & Davies, 1955) and reproduces almost all year 

round (Knight-Jones, 1948; O'Riordan & Murphy, 2000) by multiple broods (Crisp & 
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Davies, 1955). The role of high larval production, settlement and recruitment in E. 

modestus invasion and domination in sheltered coastal areas has been recently 

demonstrated in Lough Hyne (Watson et al., 2005). The high abundances of individuals 

and the presence of recently metamorphosed individuals along the whole extent of the 

Plym and the Yealm suggest that this species is extremely successful in producing 

larvae that are viable for settlement in these estuaries. 

Settlement patterns of barnacles in the Yealm and the Plym are assessed in 

Chapter 5. The present surveys were not intended to quantify settlement in these 

estuaries and the timing was not appropriate to provide information on settlement of S. 

balanoides (which settles during spring). Dispite this, C. montagui individuals that 

settled during the previous summer were expected to be recognized by their smaller 

sizes (Southward, 1991). Individuals recorded appeared to be relatively old, and hence, 

it is possible that larval availability limits the distributions of these species. S. 

balanoides, appears to be at a disadvantage since it is less fecund than the other two 

species (Southward, 1991 ). Additionally, this species is not as common in the South­

West as in other regions of Britain (Bassindale, 1964; Lewis, 1964; Newman & Ross, 

1976; Crisp et al., 1981) and occurs at lower abundances than the other two species at 

the Plym and the Yealm. Poor local production of larvae is likely to happen both in the 

Plym and the Yealm , in which case, the settlement of S. balanoides would depend on 

dispersal of larvae from non-estuarine areas. 

In the Plym, S. balanoides showed a more extended distribution relative to the 

upper limit of E. modestus occurrence. However, the abundance of this species was 

extremely low. This low abundance may be related to the more sheltered condition of 

the Plym Estuary in comparison to the Yealm. Despite the similarities in physico­

chemical conditions along the estuarine gradient of these estuaries, the position of the 

Plym within the Plymouth Sound represents a more sheltered condition and may limit 

41 



Chapter 2: Distribution of Barnacles in Estuaries 

larval dispersal. In the Plym, C. montagui was limited to the most marine site and as for 

S. balanoides, larval availability may be responsible. Temporal and spatial variability 

on settlement and recruitment in these estuaries are examined in greater detail in 

Chapter 5. 

The results described above highlight the dominance of E. modestus in contrast 

to the relative restricted abundance and penetration of C. montagui and S. balanoides in 

the estuaries studied. The patterns of distribution and abundance of barnacles 

documented here, including the dominance of the alien species E. modestus, could be 

explained by differential: I. availability of larvae and settlement success along the 

estuaries (see Chapter 5); 2. physiological tolerances to environmental factors (see 

Chapters 3 and 4). 
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CHAPTER3 

TOLERANCE OF ADULT BARNACLES TO ESTUARINE CONDITIONS 

3.1. Introduction 

Factors determining the distribution and driving the dynamics of barnacle 

populations may act at different stages of the life-cycle of these organisms, with events 

prior to and at settlement being particularly important (e.g. Hawkins & Hartnoll, 1982; 

Kendall et al., 1982; Caffey, 1985; Gaines & Roughgarden, 1985; Gaines et al. 1985; 

Menge, 2000; Minchinton & Scheibling, 1991 ). Prevailing physical conditions are 

known to be important determinants of the distribution of intertidal barnacles post­

settlement (Connell 1961, 1969a, 1969b, 1970; Foster, 1969, 1971; Menge, 1976; 

Denley and Underwood, 1979; Wethey, 1983, 2001; Menge, 2000, Aveni-Deforge & 

Wethey, 2002). Physiological tolerance and behavioural responses to stresses caused by 

periods of emersion, such as exposure to high temperatures (Foster, 1969), desiccation 

(Barnes & Barnes, 1957; Barnes, Finlayson & Piatigorsky, 1963; Foster, 1971; Wethey, 

1983) and salinity fluctuations (Foster, 1970), have been suggested as factors limiting 

the distribution of barnacle species on rocky shores. The importance of these physical 

factors is frequently amplified in estuaries, where greater spatial and temporal 

variability in physico-chemical conditions occurs in comparison to more stable open 

coast habitats. 

Low salinity and salinity fluctuations are common features of estuaries which 

are particularly important in influencing the distribution of estuarine organisms 

(Sanders et. al, 1965; Carriker, 1976; Wollf, 1983; Attrill & Thomas, 1996). Most 

temperate estuaries have a salinity gradient, where the range of salinity fluctuations and 

the persistence of low salinity water are greater in the upper regions and decrease 
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towards the seaward end of the estuary (Milne, 1938; Sanders et al., 1965). Therefore, 

benthic marine organisms require a degree of tolerance to low salinity as well as 

mechanisms to help cope with salinity fluctuations to be able to live in estuaries. Such 

adaptations are likely to increase in their importance towards the upper regions of 

estuaries, where greater variability and more stressful conditions prevail. 

Another important characteristic of estuaries that exerts considerable influence 

over organisms is that they are depositional environments (Van Straaten and Kuenen, 

1958; Postma, 1967; Meade, 1969). There is a high sediment supply from rivers and sea 

to estuaries which, coupled with water movement, results in turbid water due to high 

concentrations of suspended particulate material (Dyer, 1997). This material tends to be 

deposited, generating high levels of sedimentation. ln estuaries, benthic organisms, 

particularly suspension feeders, are strongly influenced by the detrimental effects of 

high fluxes of suspended sediment and accumulation of silt on both soft (Levinton & 

Bambach, 1970; Rhoads & Young, 1970; Aller & Dodge, 1974) and hard bottoms 

(Percival, 1929; Korringa, 1951; Day & Morgans, 1956; Day, 1959; Carriker, 1961; 

Saiz-Salinas & Urdangarin, 1994). On some occasions layers of silt accumulated on 

intertidal rocky surfaces in estuaries are thick enough to completely cover organisms, as 

observed in areas of the estuaries investigated in this work and elsewhere (Percival, 

1929; Korringa, 1951; Day, 1959; Carriker, 1961). 

Harms (1999) suggested that high rates ofcirral activity by E. modestus, leading 

to more effective feeding, favoured this species in relation to native barnacles and was 

partly responsible for the species successful invasion of Europe. Evidence for this is 

supported by observations that E. modes/us exhibits greater frequency of cirral beat than 

any indigenous species over a broad range of temperatures and geographical 

distributions (Southward, 1955), and has a greater ability to tolerate reduced submersion 

at high tidal shore levels (Bames & Bames, 1962). Advantages of highly effective 
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feeding are obvious, especially in habitats where food resources are scarce or where 

there are limitations in access to food, such as in the intertidal zone. Furthermore, 

greater ability to utilize food would be even more critical in estuarine intertidal habitats 

where feeding activity is restricted by tidal emersion, by submersion in low salinity 

water (Arnold, 1970; Foster, 1970), in response to rapid salinity fluctuations 

(Davenport, 1976; 1985; Cawthorne, 1979b, Wolcott & Wo1cott, 2001) and possibly by 

obstruction due to the accumulation of silt (Day, 1959; Carriker, 1967). 

Alternative explanations for the distribution of the E. modes/us, C. montagui and 

S. balanoides across estuarine gradients are testable by experimental transplantations. 

Two possibilities appear more likely, the first that the ability of adults to tolerate 

environmental conditions restricts the distribution of these species, and the second, that 

limitation to the distribution is imposed by processes that take place at other stages of 

the life cycle of these species. E. modestus has a higher degree of penetration into 

estuaries than S. balanoides and C. montagui. Higher ability to survive in estuarine 

conditions by adult E. modestus in comparison to the other two species would indicate 

that adult tolerance plays an important role in the success of this species in estuaries. 

Failure of S. balanoides and C. montagui to survive when transplanted to areas beyond 

their actual distribution would indicate that these species are unable to inhabit those 

areas due to lack of tolerance to environmental conditions, as predicted by the first 

explanation. In contrast, survival of these species at areas beyond their actual 

distribution would indicate that tolerance of adults to the local conditions does not 

explain their distribution and would point to the alternative explanation. A progressive 

increase or decrease in adult survival of any of the species along the length of the 

estuaries would suggest gradual responses to estuarine stress gradients. Finally, 

correlations between survival and salinity or siltation could indicate the possible 
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influence of these variables on survival, and ultimately, on the distribution of the 

species under investigation. 

Transplant experiments of marine animals along natural gradients have mainly 

focused on the study of genetic differentiation between populations (e.g. Crisp 1964; 

1968; Bergeron & Bourget, 1986; Johannesson et al., 1990; Kautsky et al., 1990; 

Bertness et al., 1991; Bertness & Gaines, 1993; Brind' Amour et al. 2002); and on 

patterns of distribution and other biological attributes across gradients of tidal height 

(e.g. McQuaid, 1981; Petraitis, 1982; Chap man 1986; 1997; Menge, 2000) and wave 

exposure (e.g. Dewolf et al. 1997, Menge, 2000; Bertness et al. 2006). Apart from 

Berger et al. (2006), no other work has utilized transplants to investigate the 

performance of animal species along estuarine horizontal gradients. 

Surveys of the intertidal had been conducted previously (Chapter 2) to assess the 

distribution of C. montagui, S. balanoides and E. modestus along the marine-to­

freshwater gradient of the estuaries under examination. In order to test the ability of 

these species to survive the actual conditions prevailing in the estuaries, the survival of 

C. montagui, S. balanoides and E. modestus, transplanted from a marine location to 

different positions along the marine-to-freshwater gradient of estuaries, was examined. 

The objectives of this study were to investigate the importance of adult tolerance to 

environmental conditions in setting distribution patterns of barnacles in estuaries, and to 

examine the effects of salinity and siltation on the survival of these species. The 

experiments formally tested the hypotheses that: 1. survival of the three species varies 

horizontally in estuaries along the estuarine gradient, being less in more stressful areas 

at the riverine end of the estuaries and greater at more favourable habitats in fully 

marine conditions near the sea; 2. Mortality patterns reflect the observed distribution 

patterns (see Chapter 2), namely E. modes/us is more tolerant of estuarine conditions 

than S. balanoides which in turn survive better than C. montagui; 3. survival limits the 
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boundaries of distribution for the species under investigation, in which case individuals 

transplanted to locations beyond their actual distribution do not survive; 4. salinity 

and/or siltation are correlated with survival of these species of barnacles. 

3.2. Methods 

3.2.1. Study area 

Experiments were performed in the Yealm and Plyrn Estuaries, which are 

sheltered macrotidal rias with low freshwater inflow. Rocks and mudflats are the major 

intertidal habitats present in these estuaries. Artificial substrata are also present as stone 

embankments and jetty walls, and contribute to the surfaces available for colonization. 

A more detailed description of these estuaries is available in the previous chapter of this 

thesis (Chapter 2, pp. 24-27). 

Surveys carried out in the Yealm and the Plym Estuary showed that E. modestus 

has the most extensive distribution in both estuaries (see Chapter 2). This species 

occurred from the mouth ofthe estuaries to the limits of tidal influence (Fig. 3.1). S. 

ba/anoides was present up to mid portions of the Yealm Estuary and was found further 

up the Plym Estuary, where it was recorded near the limit of E. modestus upper 

penetration (Fig. 3.1 ). C. montagui had a more restricted distribution than the other two 

species. The up-estuary limits of distribution of each species in relation to the sites 

utilized for transplantations are presented in Fig. 3.1. The up-estuary limits considered 

here refer to the absolute limits of each species. 
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Yealm Estuary 

1km 

Fig. 3.1. Upper limits of penetration of C. montagui, E. modestus and S. balanoides in the Yealm 
and Plym Estuaries; and sites utilized for transplantations. Capital letters were utilized to designate 
sites in the Yealm, from A (uppermost site) to H (closest site to the sea); and low case letters to 
designate sites in the Plym, from a (uppermost site) to e (closest site to the sea). The geographic 
relationship between estuaries is shown on figure 2. 1. 

3.2.2. Transplant of barnacles along the estuarine gradient 

3.2.2.1 Elminius modestus and Chthamalus montagui 

Pieces of rock (approximately 10 x 15cm) with adult barnacles attached were 

collected at Batten Bay, a protected bay situated within Plymouth Sound (Fig. 3.1). The 

rocks were taken to circulating marine water tanks at the Marine Biological Association 

of UK, in Plymouth, where the composition and density of barnacles attached to the 

rocks were adjusted by killing some individuals with forceps. After this manipulation, 

each rock supported a single species. Individuals were distributed in an area of 8.0 x 8.0 

cm and densities were between 0.5 to 1.5 individuals.cm-2
. Mean number of C. 

montagui per rock piece were 63.0 and for E. modestus 20.4. Photographs were taken to 

record initial numbers of barnacles on each rock. 
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The rock pieces were transplanted on 23 September 2002, ahead of the reduced 

salinity/higher turbidity winter period, to seven sites at approximately equal distances 

from each other along the horizontal axis of the Yealm Estuary (sites designated by 

capital letters: A, B, C, D, E, F, G; Fig. 3.1). A group of rocks was also back­

transplanted to Batten Bay, as a control for the disturbance caused by manipulation. 

Four replicates were used at each site. The sites selected for the experiments 

encompassed a broad range of salinity regimes and are located at or within the 

distributional limits of the barnacle species found previously (Chapter 2). The closest 

site to the sea (site G; Fig. 3.1) displayed fully marine conditions and supported dense 

populations of both species. The uppermost site (site A; Fig. 3.1) was located near the 

limit of tidal excursion in the estuary and only E. modestus was present at this site at 

very low densities. 

The rock pieces were attached to the shore using eyed-screws and cable-ties. 

They were sampled on four occasions, 10, 30, 60 and 120 days after transplant. A 

digital camera was used to record barnacles at these times. Dead individuals were 

recognized by the absence of the opercular valves (or complete absence of an individual 

that was present in a previous photograph). 

3.2.2.2. Semibalanus balanoides 

The survival of S. balanoides was assessed using a second transplant experiment 

starting in August 2003. As in 2002 there were few S. balanoides around due to 

settlement failure. A similar methodology to the experiment described for C. montagui 

and E. modestus was followed. Rocks supporting S. balanoides were transplanted to 

five sites along the gradient from sea to freshwater in both of the Yealm and the Plym 

estuaries (Yealm: A, B, D, F and H; Plym: a, b, c, d and e; Fig. 3.1). Four replicates 

were transplanted to each site and four fragments were also back-transplanted to Batten 
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Bay. The mean number of S. balanoides per rock was 20.0, and survival was assessed 

by sampling at 60, 90 and 120 days after the transplants. 

3.2.3. Physico-chemical variables 

The physico-chemical variables at each site were characterized on four 

occasions. Fluctuation in salinity during spring and neap tidal cycles was measured by 

deployment of loggers (CT Star-Oddi Iceland). Recordings were made over periods of 

fifteen days during spring, summer and winter in order to establish the effects of tidal 

and seasonal variations in salinity. In particular it was of interest to record salinity 

extremes, the range of salinity fluctuation and the duration of exposure to low and high 

salinities during periods of immersion. 

Siltation was estimated at each experimental site using sediment traps. The traps 

consisted of a square of Astroturf mat of I 00 cm2 attached to a plastic base fixed on the 

shore by screws. The Astroturf mat (blades of 2 cm length) was used in an attempt to 

simulate a complex surface able to collect sediment, and provided an index of 

sedimentation allowing comparisons to be made among sites. Sediment collected by the 

Astroturf mat at the end of each sampling period was washed from the traps and dried to 

constant weight. Four traps (replicates) were attached to the shore for fifteen days 

during winter, spring and summer periods. 

3.2.4. Statistical analyses 

3.2.4.1 Assessment of Survival 

Analyses of Variance were carried out using Statistica (version 6.0, Statsoft 

2002). Separate one-way ANOVA's were conducted for each species, with position 
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within the sea-to-freshwater gradient (site) as a fixed factor, to test for differences in the 

percentage of barnacles surviving at the final sampling date ( 120 days after transplant). 

Data were arcsine transformed to (2Arcsinvx) when necessary to obtain homogeneity of 

variance. Post-hoc comparisons were made using SNK test (p > 0.05). 

The median lethal time (time elapsed from the transplant to 50% mortality) was 

calculated graphically for each replicate from plots of the proportion of survival through 

time. Differences between median lethal times were examined using ANOV A (site as 

fixed factor) for each species. Replicates where mortality did not reach 50% after the 

experimental period had the median lethal time scored as 120 days. 

3.2.4.2. Correlations between survival and physical chemical variables 

Correlations between salinity and siltation parameters and survival of each 

species at the experimental sites were examined using Pearson's Correlation. Salinity 

parameters tested included average salinity, minimum salinity, average minimum 

salinity, and average salinity fluctuation. Correlation between survival and average 

siltation were also examined. Bonferroni correction was utilised to compensate the use 

of multiple comparisons made when testing correlation between survival and salinity 

plus siltation. The correction was applied by adjusting the alpha level of the tests to 0.0 l 

(0.05 divided by 5). 

The uppermost site utilized for transplants of E. modestus and C. montagui in 

the Yealm (site A) showed extreme physical conditions compared to the other sites, and 

as a consequence very high mortalities were recorded for both species. In some 

instances, this site alone was responsible for significant correlations when variables 

were analysed for the estuary as a whole. Correlations are therefore presented with and 

without the results from the uppermost site utilized for all experiments (Tables 3.6 and 

3.7). 
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3.3. Results 

3.3.1. Physico-chemical variables 

3.3.1.1 Salinity 

The ranges of salinity were similar along both the Yealm and Plym estuaries. In 

both estuaries a high degree of penetration of saltwater occurred with the tidal cycle and 

salinities close to 30 were recorded even at the upper estuarine sites investigated (Fig. 

3.2). Horizontal salinity gradients in the Yealm and Plym estuaries were characterized 

by gradual and subtle attenuation of the saltwater influence, away from the mouth of the 

estuaries, up to two thirds of the way up each estuary (between sites C and B in the 

Yealm and sites c and b in the Plym), from which point this influence was markedly 

reduced. This is clearly shown by the values of average mean, maximum and minimum 

salinities for the periods of fifteen days sampled (Fig. 3.2) and also of absolute salinities 

during submergence times (Figs. 3.3 and 3.4). This major shift in salinity clearly 

differentiates the two up-estuary sites (A and B in the Yealm; and sites a and b in the 

Plym) from the remaining sites located towards the sea (C, D, E, F, G and H in the 

Yealm; and sites c, d and e in the Plym) in terms of salinity regimes. 

Salinity fluctuations and occurrence of low salinities were much more apparent 

at the two up-estuary sites compared to other sites at all periods investigated (Figs. 3.3 

and 3.4). Salinities below 20 were encountered at all sites (Figs. 3.3 and 3.4), but at 

most of the sites these events were occasional and occurred mainly during spring in the 

Yealm and summer in the Plym. The consistent occurrence of salinities below 20 was 

typical of the two up-estuary sites, indicating that greater stress for marine organisms 

must be found at these sites. 
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Salinity regimes observed at different periods of the year were similar in the 

Yealm and the Plym Estuaries (Figs. 3.2, 3.3 and 3.4). Both estuaries have low 

freshwater input, and this is reflected on the high penetration of saltwater during tidal 

cycles and also throughout the year. 
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Fig. 3.2. Average, mmunum and maximum salinities and salinity fluctuation during 
submergence for the fifteen day periods recorded during winter, spring and summer in the 
Plym and Yealm Estuaries. Each datum point represents the average of the variables from 
all submergence periods recorded. Bars represent standard errors of the mean. Letters 
represent sites (see Fig. 3 . I). 
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Yealm Estuary 
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Fig. 3.3. Absolute values of salinity during submergence recorded at early spring (I I th to 
24th March 2004), spring ( 14th to 28th April 2004) and summer ( 18th July to 1st August 
2004) in the five sites (A, B, D, F, H) utilized for transplantations a long the estuarine 
gradient of the Yealm Estuary. 
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Plym Estuary 
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Fig. 3.4. Absolute values for salinity during submergence recorded at late winter (24th 
February to 8th March 2004, spring 30th to 12th March 2004) and summer (5th to 19th 
August 2004) in the five sites (a, b, c, d, e) utilized for transplantations along the estuarine 
gradient of the Plym Estuary. Letters represent sites (see Fig. 3.1). 
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3.3.1.2. Siltation 

Siltation was high at all sites, except those located near the sea. At the closest 

site to the sea in both the Plym and the Yealm estuaries no silt was collected by the 

traps. Accumulation of silt tended to increase towards the riverine end of the estuaries 

and decreased towards the sea (figs. 3.5 and 3.6), although at both estuaries the mid 

sites (D, in the Yealm; and c in the Plym) showed the highest levels of siltation (figs. 

3.5 and 3.6). 

During the course of the experiments accumulation of sediment over rocks and 

other hard surfaces was also observed, particularly at mid and up-estuary regions. On 

many occasions the layer of sediment was thick enough to cover barnacles completely. 

At these locations removal of deposited sediment often revealed individuals of E. 

modes/us, but not S. balanoides or C. montagui. 
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Fig. 3.5. Mean siltation at experimental sites utilized for transplants of barnacle species along 
the estuarine gradient of the Yealm Estuary. Columns represent mean siltation in four replicated 
sediment traps. Bars represent standard error of the mean. Letters represent s ites (see Fig. 3.1). 
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Fig. 3.6. Mean s iltation at experimental sites utilized for transplants of barnacle species along 
the estuarine gradient of the Plym Estuary. Columns represent mean si ltation in four replicated 
sediment traps. Bars represent standard error of the mean. Letters represent sites (see Fig. 3 .I). 

3.3.2. Survival across estuarine gradients 

3.3.2.1. Proportion of survival 

The survival of all the three barnacle species was affected by the horizontal 

position across the estuarine gradient. Following transplants, C. montagui and S. 

balanoides showed a progression in survivorship along the horizontal axes of the 

estuaries. Individuals of these species generally experienced higher m01talities at upper 

and mid-estuarine sites than at sites near the sea (Fig. 3.7, 3.8 and 3.9). This pattern 

contrasted with that observed for E. modes/us, which showed higher survival at mid-

estuary sites than at low-estuary and fully marine sites (Fig. 3.1 0). 
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Fig. 3.7. Percentage survival of C. montagui transplanted to s ites along the Yealm Estuary~ 
from site A (uppermost site) to site G (closest site to the sea) and at the fully marine source 
site, Batten Bay (control). Each datum point represents the mean +/- SE (n=4). Letters 
represent sites (see Fig. 3.1 ). 
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Fig. 3.8. Percentage survival of S. balanoides transplanted to sites along the Yealm 
Estuary; from site A (uppermost site) to site H (closest site to the sea) and at the fully 
marine source site, Batten Bay (control). Each datum point represents the mean +/- SE 
(n=4). Letters represent sites (see Fig. 3 . I). 
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Fig. 3.9. Percentage survival of S. balanoides transplanted to sites along the Plym Estuary; 
from site a (uppermost site) to site e (closest site to the sea and at the fully marine source 
site, Batten Bay (control). Each datum point represents the mean +/- SE (n=4). Letters 
represent sites (see Fig. 3. 1). 
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Fig. 3. 1 0. Percentage survival of E. modes/us transplanted to sites along the Yealm 
Estuary; from site A (uppermost site) to site G (closest site to the sea) and at the fully 
marine source site, Batten Bay (control). Each datum point represents the mean +/- SE 
(n=4). Letters represent sites (see Fig. 3 .I). 
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After 120 days, C. montagui transplanted to the YeaJrn Estuary showed the 

lowest survival at the two uppermost sites (sites A and B; Fig. 3.1 0). Survival at these 

sites was significantly lower than at the other sites, except for site E. Survival at mid 

estuarine sites was relatively low and no significant differences in survival were 

observed between them. The highest survival of C. montagui was recorded at the most 

seaward site (site G). Survival at the source site was significantly higher than at any of 

the sites located in the estuary. (Fig. 3.11) 

100 

90 5 

80 

70 -~ 60 0 -
"' 4 
.~ 50 
c: 
::::J 40 34 34 en 

234 
30 

20 1 2 
2 3 

10 

0 
A B c D E F G Source site 

Site 

Freshwater I< >I Sea 

Fig. 3.11 . Survival of C. montagui at experimental sites along the Yealm Estuary and at the fully 
marine source/control site (Batten Bay) 120 days after transplants. Bars represent mean 
proportion of survival +/- SE. Letters represent sites (see Fig. 3.1 ). Numbers over columns 
represent treatments (sites) that were not statistically different (homogeneous groups) according 
to ANOV A post-hoc test (SNK test, p > 0.05); e.g. all columns with number I above did not 
differ from each other but differed from columns with numbers 2, 3, 4, etc. 

62 



Chapter 3: Tolerance o[Adults to Estuarine Conditions 

Table 3.1. One-way ANOVA (factor=site) on proportions of survival of C. montagui at 
experimental sites along the Yealm Estuary and at the source site (Batten Bay) 120 after 
transplants. 

Time after Source Df MS F P 
Trans lant 

120 days 
Site 

Error 

7 

23 

4926.6 

253.9 

19.4 < 0.001 

Semibalanus balanoides showed relatively high survival (similar to survival at 

the source site) in some estuarine areas (Fig 3.12). In the Yealm Estuary, mortality was 

extremely high at the three sites furthest from sea. No individuals survived at the 

uppermost site (A) and survival was very low at the next two sites (B and D). Survival 

at the other estuarine sites (F and H) and at the source was significantly higher than at 

the other three sites (A, Band D; Fig. 3.12). 

In the Plym Estuary, very high mortality was observed at the uppermost site (a) 

where no individuals were alive 120 days after transplant. Survival was relatively low at 

mid-estuary (sites b, c and d) and no statistical differences were detected between these 

sites (Fig. 3.12). Survival at the source site was not statistically different from survival 

at the estuarine site closest to the sea (e), but was greater than at all other sites (Fig. 

3.12). 
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Fig. 3 .12. Survival of S. balanoides at experimental sites along the Yealm and Plym Estuaries 
and at the fu lly marine source/control site (Batten Bay) 120 days after transplants. Bars 
represent mean proportion of survival +/- SE. Letters represent sites (see Fig. 3 . I). Numbers 
over columns represent treatments (sites) that were not statistically different (homogeneous 
groups) according to ANOVA post-hoc test (SNK test, p > 0.05). 
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Table 3.2. One-way ANOVA (factor-site) on proportions of survival of S. ba/anoides at 
experimental sites along the Yealm Estuary and at the source site (Batten Bay) 120 days after 
transplants. 

Time after 
Trans lant 

Yealm 

Source 

Site 

Error 

df 

5 

17 

MS 

7147.7 

439.9 

F 

16.3 

p 

< 0.001 

Table 3.3. One-way ANOVA (factor-site) on proportions of survival of S. balanoides at 
experimental sites along the Plym Estuary and at the source site (Batten Bay) 120 days after 
transplants. 

Time after Source df MS F P 
Trans lant 

Ply m 
Site 

Error 

5 

18 

5257.3 

441.3 

11.9 < 0.001 

For E. modes/us, in contrast to C. montagui and S. balanoides, optimum survival 

occurred at the mid-estuarine sites. Apart from the uppermost site (A), where survival 

was significantly lower than at any other site, survival was high at sites within the 

estuary and there were no statistical differences between these sites (Fig. 3.13). Survival 

at the source site was similar to survival at most of the other sites and the only 

significant difference was with site E, in which E. modestus had the highest survival 

(Fig. 3.13). 
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Fig. 3.13 . Survival of E. modest us at experimental sites along the Yealm Estuary and at the fully 
marine source/control site (Batten Bay) 120 days after transplants. Bars represent mean 
proportion of survival +/- SE. Letters represent sites (see Fig. 3.1 ). Numbers over columns 
represent treatments (sites) that were not statistically different (homogeneous groups) according 
to ANOVA post-hoc test (SNK test, p > 0.05). 

Table 3.4 One-way ANOVA (factor=site) on proportions of survival of E. modestus at 
experimental sites along the Yealm Estuary and at the source site (Batten Bay) 120 days after 
transplants. 

Time after Source 
Transplant 

Site 
120 days 

Error 

3.3.2.2. Median lethal times 

df 

7 

24 

MS 

2573.8 

417.4 

F p 

6.17 < 0.001 

Median lethal times obtained for the three species directly corresponded to their 

survival at each site. C. montagui died more quickly at inner and mid-estuary sites than 

at the source site and at the outermost estuarine site (G; Fig. 3.14). S. balanoides 
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showed higher median lethal times at the source site and at mid-estuary sites (Fig. 3.15). 

Elminius modestus differed from the other two species and showed higher median lethal 

times at mid and upper sites. (Fig. 3.14) 
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Fig. 3.14. Mean median lethal time (MLT) of C. montagui and E. modestus at experimental sites 
along the Yealm Estuary after transplants. Points represent mean MLT +/- SE (n=4). Letters 
represent sites (see Fig. 3.1). 

67 



Chapter 3: Tolerance o{Adults to Estuarine Conditions 

Semlbalanus balanoides 
Yealm Estuary 

120 

I 110 
100 

! 90 
80 l 70 

60 
50 
40 

30 • ! • -(/) 
>- 20 ro 

"0 10 ..._... 
Q) 0 
E 

:.;:; A 8 0 F H Source site 

ro Semibalanus balanoides ..c - Plym Estuary Q) 

c 120 
ro 110 
"0 
Q) 100 

! 
:E 

90 

1 
80 
70 

60 

50 I 40 I 
30 • • 
20 
10 
0 

a b c d e Source site 

Site 

Freshwater I Sea 

Fig. 3.15. Mean median lethal time (MLT) of S. balanoides at experimental sites along the 
Yealm and Plym estuaries after transplants. Points represent mean ML T +/- SE (n=4). Letters 
represent sites (see Fig. 3 . I). 
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3.3.3. Correlation between survival and physico-chemical variables 

There were some clear relationships between survival and physico-chemical 

variables. When the innennost site utilized for transplants is excluded from the tests, 

survival of S. balanoides was mainly correlated with siltation; survival of C. montagui 

was correlated with salinity parameters; and survival of E. modestus was not correlated 

with any of these factors. Survival of Semibalanus ba/anoides showed strong negative 

correlations with siltation in both the Yealm and the Plym estuaries (Table 3.6). In the 

Yealm, this species was also negatively correlated with minimum salinity and with 

average salinity fluctuation during submersion. Survival of C. montagui in the Yealm 

was not significantly correlated with siltation but was positively correlated with average 

and minimum salinity (Table 3.7). 

Table 3.6. Pearson Correlation Coefficients (r) for correlation between survival of S. balanoides 
(120 days after transplants) and physico-chemical variables at the Yealm and Plym Estuaries. 
• above critical values at 0.01 alpha level;** above critical values at 0.001 alpha level. 

S. balanoides 
Yealm Estuary1 

S. balanoides 
Yealm Estuary 
(excluding site Ai 
S. balanoides 
Plym Estuary3 

Average 
salinity 

0.5118 

0.6292 

0.4223 

0.0824 
S. balanoides 
Yealm Estuary 
(excluding site a~4 

1n=I9· 2 n=l5· n=20· 4n=16 
' ' ' 

Minimum 
salinity 

0.6345* 

0.5436 

0.5610 

0.4019 

69 

Average Average 
minimum salinity 
salinity fluctuation 

0.5752* -0.6275* 

0.6519* -0.6811 * 

0.4710 -0.4738 

0.1693 -0.1848 

Average 
siltation 

-0.7262** 

-0.7059* 

-0.8296** 

-0.7723** 
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Table 3.7. Pearson Correlation Coefficients (r) for correlation between survival of C. montagui 
and E. modes/us (120 days after transplants) and physico-chemical variables at the Yealm 
Estuary. • above critical values at 0.01 alpha level; •• above critical values at 0.001 alpha level. 

C. moll/agui1 

C. montagui 
(excluding site A)2 

E. modestus3 

E. modestus 

Average 
salinity 

0.5856* 

0.6006* 

0.6854** 

-0.0224 
(excluding site At 

1 n = 27; 2 n = 23; 3 n = 28; 4 n = 24 

3.4. Discussion 

Minimum 
salinity 

0.6936** 

0.5519* 

0.5835* 

0.1203 

Average Average 
minimum salinity 
salinity fluctuation 

0.6626** -0.6652** 

0.5262 -0.5035 

0.6359** -0.5595* 

0.0762 -0.1139 

Average 
siltation 

-0.6248** 

-0.4331 

-0.5433* 

-0.0586 

My data in this chapter provided evidence that: 1. survivorship of C. montagui, 

S. balanoides and E. modes/us varied along the sea-to-freshwater gradient, and while C. 

montagui and S. balanoides tended to survive better in the lower portions of the estuary, 

E. modestus survived more consistently along the length of the estuary and showed 

optimum survival at mid estuary locations; 2. although tolerance to estuarine conditions 

does not explain in full the distributions of these species, it would appear to be partly 

responsible for their success and patterns of distribution; 3. with the exception of E. 

modes/us, there were correlations between the physico-chemical variables and survival. 

S. balanoides showed negative correlations with siltation and with salinity fluctuation, 

while C. montagui was positively correlated with salinity. 
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3.4.1. Survival across estuarine gradients 

Proportions and rates of survival of the three species investigated here varied 

horizontally in estuaries and followed progressions along the estuarine gradient. 

Survival of C. montagui was higher at the marine source site than at any of the sites 

within the estuary. This was expected as the open coast is the primary habitat of C. 

montagui and, although this species favours sheltered and semi-estuarine habitats 

compared to its congener C. stellatus, it is not particularly successful in truly estuarine 

habitats (Southward, 1976; Crisp et al., 1981 ). Considering the estuarine sites alone, C. 

montagui experienced lower survival at the two innermost estuarine sites (A and B) than 

at the remaining sites. These results suggest that conditions experienced along the 

gradient became increasingly severe for C. montagui as locations approached the 

riverine end of the estuary. 

Semibalanus balanoides also showed a general tendency of higher survival 

toward the sea, but conditions experienced within the estuaries were not as detrimental 

as for C. montagui. Although S. balanoides endured high mortalities at inner-estuary 

and also at a mid estuarine sites in the Yealm Estuary (site D), survival at the remaining 

mid and low estuarine areas were comparable to survival at the marine source site. 

These results provide evidence that S. balanoides is better adapted to estuarine 

conditions than C. montagui. 

Elminius modes/us performed best in the mid-estuary and this conforms to the 

observed patterns of abundance and distribution of this species, which is particular 

successful and dominant in estuarine areas than on the open coast (Crisp & Southward, 

1959; Crisp, 1958; Foster, 1971, 1987; Lawson et al., 2004). Survival at the marine site 

and at the most seaward estuarine site was lower than survival at the other sites, and 

Median lethal times were much reduced here. This agrees with the known preference of 
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this species for estuarine areas (Moore, 1944; Fischer-Piette & Prenant, 1956, 1957; 

Fischer-Piette & Forest, 1961; Fischer-Piette, 1965; Crisp, 1958; Foster, 1978, 1982). E. 

modes/us is able to survive in full-salinity clear water and there is no reason to suggest 

that chemical or nutritional limitations to survival exist on exposed shores (Crisp, 

1958). One of the possible explanations for lower survival of E. modestus at the 

seaward sites lies on the fact that this species is known to have less resistance to 

mechanical damage than the other species that are more typical of wave-exposed shores. 

It is possible that this species suffers mortality due to mechanical damage caused either 

by wave action or by biological disturbance in these habitats. Predation, which may be 

more intense on wave-exposed shores than on less diverse estuarine shores, could also 

be responsible for higher mortalities of E. modes/us. These results also agree with the 

observation that near the mouth of the Yealm estuary (Cellar Beach), E. modes/us is an 

ephemeral component of the barnacle cover and is mostly represented by young 

individuals that rarely survived the year following settlement (Southward, 1991). 

3.4.2. Physiological tolerance to estuarine conditions 

Barnacles are osmoconformers and depend on behavioural mechanisms to avoid 

adverse conditions (Foster, 1970; Davenport, 1976). Additionally, as sessile species, 

avoidance of harmful conditions by migration is not possible. Barnacles respond to 

physiologically stressful salinities and other unfavourable conditions by closure of the 

opercular plates, which isolate the mantle cavity and soft body of the individual from 

the external environment (Barnes & Barnes, 1958; Foster, 1969, 1970, 1971 ). The 

success of a barnacle species in a variable environmental where adverse conditions are 

periodically encountered depends on: I. the ability to feed efficiently during reduced 

periods of submergence; and 2. the capacity to avoid unsuitable conditions by closure of 
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the opercular valves; or 3. to tolerate them, when such conditions are persistent. In C. 

montagui, S. balanoides and E. modestus such abilities exist to different degrees and the 

present work provides evidence for the importance of physiological adaptations to the 

successful occupation of estuarine areas. 

Individuals from a mixed C. stellatus/C. montagui population (experiments 

predated the separation of C. stellatus in C. stellatus/C. montagui, Southward, 1976) did 

not restrict contact with water at low salinity and did not prevent dilution of body fluids 

as efficiently as S. balanoides and E. modestus (Foster, 1970). Therefore, although C. 

stellatus/C. montagui restrict their activity in salinities below 25 (Foster, 1970) and are 

probably unaffected by immersion at low salinity for brief periods, specimens would 

experience negative effects when submersed in low salinities for extended periods as 

encountered in the upper reaches of estuaries. At the upper estuarine sites investigated 

here, salinities regularly reach values below 10 and persisted for a considerable 

proportion of the period when the organisms were submersed. C. montagui would 

clearly experience physiological problems in such areas. Firstly, individuals would be 

persistently inactive and retracted within the shell, which implies reduced feeding and 

potentially leads to starvation and metabolic deficits. Secondly, due to the species' 

inability to efficiently isolate the body, individuals would be directly affected and suffer 

dilution of body fluids that could lead to mortality or osmotic shock. 

S. balanoides and E. modestus are more physiologically adapted to cope with 

fluctuating and low salinities than C. montagui. These species are not only more 

effective at avoiding low salinity water, but are also more tolerant and able to maintain 

cirral activity at lower salinities (Foster, 1970; Davenport, 1976). Additionally, these 

species have shown acclimation to salinity in controlled conditions and were able to 

adapt their body to low salinity regimes and keep activity at salinities down to 14 when 

gradually acclimated (Foster, 1970). 
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Although early laboratory experiments using constant salinities suggested 

similar tolerance to low salinities for both S. ba/anoides and E. modestus (Foster, 1970), 

subsequent experiments using fluctuating media demonstrated that E. modes/us was 

more tolerant to fluctuation of salinity and that this species could remain active at lower 

salinity levels (Davenport, 1976; Cawthome, 1979b ). Moreover, these experiments 

showed that S. ba/anoides was sensitive to rates of salinity change, restricting its 

activity at higher salinities when salinity fluctuates at a faster rate (Davenport, 1976; 

Cawthome, 1979b ). Changes in salinity in the Plym and the Yealm occur rapidly and it 

is probable that this factor contributed to extend the period that this species were 

inactive. 

E. modestus remained active at salinities down to 14 in experimental conditions 

and this limit was unaffected by differences in the rates of salinity change (Davenport, 

1976; Cawthorne, 1979b ). This species also had greater physiological tolerance to low 

constant salinity (Foster, 1970). It is obvious that such characteristics would be reflected 

in the performance of E. modes/us in areas where conditions are stressful in terms of 

salinity. In other estuaries, E. modes/us was successful, and in some cases was the only 

barnacle species present, in areas where salinity reaches 0 (Lawson et al., 2004). 

Furthermore, E. modestus apparently feeds more efficiently than the other two species, 

due to a greater frequency of cirral beat (Southward, 1955). This is believed to be one of 

the main adaptations responsible for the successful invasion of European shores by E. 

modestus (Crisp, 1958; Harms, 1999). Results obtained here suggest that this adaptation 

could, in a similar way, be considered to be largely accountable for the extensive 

distribution and dominance of E. modes/us in estuaries. 

Accumulation of silt in intertidal areas was another physical factor potentially 

stressful detected in the estuaries investigated. Deposition of silt on the boulders 

transplanted to the estuaries and on the adjacent areas of the shore was observed on 
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several occasions throughout the experiments. High fluxes of suspended sediment 

(Levinton & Bambach, 1970; Rhoads & Young, 1970; Aller & Dodge, 1974; Ellis et al, 

2002) and deposition of sediment (Lohrer et al., 2004; Delapenna et al., 1998) are 

known to have adverse effects on epifauna and to affect their distribution in estuaries. 

During the transplant experiments presented here the main effect of siltation was the 

deposition of a layer of sediment over the barnacles which acted as a physical barrier to 

cirral activity. Such restriction in cirral activity was an additional limitation to periods 

of feeding, which as discussed before, already exists during submersion in low salinity 

water. Mortality by starvation and accumulation of toxic metabolites within the mantle 

cavity may have resulted from prolonged closure of the opercular plates, particularly in 

S. balanoides and C. montagui. Mortality due to burial by sediment and negative 

impacts of high deposition have previously been reported for barnacles (Menge et al., 

1994; Seapy & Littler 1982; Rao & Sundaram, 1972-74; Silina, 2002), and it is possible 

that part of the mortality observed in the experiment conducted in the Plym and the 

Yealm result from this interference. 

3.4.3. Association between survival and observed distribution in estuaries 

Although C. montagui clearly faced physiological limitations in the upper 

reaches of both estuaries, the tolerance to the environmental conditions reflected in the 

survival of the transplanted adults did not fully explain the observed distribution of this 

species. The horizontal distribution of C. montagui in the Yealm Estuary decreased at 

positions located closer to the sea than positions where conditions appear to be 

physiologically intolerable. This species is found in areas where turbid waters, stretches 

of mud and moderate salinity fluctuations and silt deposition occur in other sheltered 

environments (Boyden et al., 1977; Crisp et al. 1981 ), and the observed survivorship is 
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in accordance with such records. Factors other than tolerance of adults to physico­

chemical conditions are responsible for the limited upstream distribution of C. montagui 

in the Y ealm. 

Semibalanus balanoides extended further than C. montagui both in the Yealm 

and Plym. The upper limit of penetration of S. balanoides in the Yealm was site D. At 

this position and at other sites towards the riverine end of the estuary, survival after 

transplants was very poor. Similarly to that which was observed for C. montagui, 

physico-chemical conditions are probably limiting for S. balanoides in upper estuarine 

regions. At the Plym, this species occur in low abundance but some individuals were 

found near the upper distributional limit of E. modes/us, which represents a more 

extended distribution than observed at the Yealm Estuary. This coincides with the 

occurrence of high survivorship further up estuary in the Plym than in the Yealm. It can 

be inferred that in the Plym suitable conditions for the occurrence of S. balanoides 

extended further up the estuary than in the Yealm. S. balanoides is relatively common 

in estuaries and can be a dominant form in lower and mid estuarine areas where suitable 

conditions are found (Hardwick-Witman & Mathieson, 1983; Little et al., 1988; Little et 

al., 1992). 

Elminius modestus exhibited low levels of survival within the estuary at the 

upper estuarine site (site A). This position coincided with the upper limit of distribution 

of E. modestus, where this species was observed at lower densities than other estuarine 

areas. It was not to a surprise that E. modestus exhibited lower performance at this 

location compared to other estuarine sites. This position constitutes the limit of upper 

penetration of saltwater and a point where specimens may remain completely 

submerged in freshwater throughout the tidal cycle, including low-tide periods when 

freshwater flow is high. It is evident that conditions here were detrimental and 
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responsible for considerable effects on the physiology and performance of all three 

barnacle species investigated. 

As mentioned earlier, in some particular cases, the tolerance to physico-chemical 

conditions did not offer a direct explanation for the observed patterns of distribution. 

Alternative explanations therefore deserve mention. It is possible that the effects of 

other environmental conditions influenced the distribution of these species indirectly 

affecting competition between them. Competition between these three species is known 

to play a role in determining their patterns of distribution on intertidal shores (den 

Hartog, 1953; Crisp, 1958; Southward and Crisp, 1956; Barnes and Barnes, 1965; 

Southward, 1991 ). 

Larval supply may also account for the failure of C. montagui and S. balanoides 

to effectively colonize certain estuarine areas, as suggested for other estuaries (Little & 

Smith, 1980; Mettarn, 1994). Consistent production and supply of larvae for settlement 

are required for the maintenance of sustainable populations. It is possible that the 

maintenance of populations of C. montagui and S. balanoides at mid and upper­

estuarine locations depend on larval production and transport from marine or high saline 

estuarine areas, and that limitations to these processes exist. In contrast E. modestus 

would rely on local production of larvae and processes of larval retention, which 

undoubtedly would represent an advantage over the former species. 

3.4.4. Correlations between survival and physico-chemical variables 

Although correlation between survival and one of the physico-chemical 

variables tested does not imply a causal relationship, it does indicate the potential of 

these variables in influencing distributional patterns and permits some speculations. 

Very strong negative correlation between survival of S. balanoides and siltation was 
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observed both in the Plym and in the Yealm. The other species show no significant 

correlation with this variable. Siltation was not expected to be a problem for E. 

modestus, which is typically found in muddy habitats and appears well adapted to such 

conditions. As discussed previously, the main mechanism by which deposited silt could 

affect these barnacles was by limiting contact with the water column, and consequently 

reducing periods of feeding. This would probably be less detrimental for E. modes/us, 

which has a much higher cirral activity and consequently feeds more efficiently than S. 

balanoides and C. montagui. 

There has been no previous field evidence that suggests a higher tolerance to 

siltation in C. montagui than in S. ba/anoides. Despite this, the higher survival of C. 

montagui in comparison to S. balanoides in muddy areas of the Yealm and the absence 

of any correlation between survival of C. montagui and levels of siltation along this 

estuary suggest that this factor is not as important for this species as it is appears to be 

for S. balanoides. A clear physiological explanation for a higher tolerance to siltation 

and to extended periods of closure in C. montagui than in S. balanoides is not available 

here. Experimental evidence for a higher tolerance to this interference in C. montagui 

was obtained in Chapter 4, where further discussion of physiological mechanisms 

related in this tolerance are made. 

Survival of C. montagui was positively correlated with average and absolute 

minimum salinity observed during submersion times at the experimental sites used for 

transplantations. The only variables associated with the salinity regime that correlated 

with survival of S. balanoides were the average minimum and average salinity 

fluctuation in the Yealm. Among these three species, C. monlagui is less adapted to low 

salinity (Foster, 1970) and it is plausible that the correlations between survival of this 

species and salinity represent a consequence of this physiological disadvantage. The 

tolerance to salinity in S. ba/anoides is close to that of E. modestus, although the former 
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species is more susceptible in fluctuating salinity regimes. The absence of a significant 

correlation between S. ba/anoides and other parameters related to salinity (average and 

absolute minimum salinity) may be due to the relative high tolerance of this species or 

to a stronger influence of other factors such as siltation on the observed mortalities. 

In conclusion, this work demonstrates that E. modestus is more adapted to 

estuarine conditions than S. balanoides and C. montagui, and is more able to cope with 

physico-chemical conditions prevailing across estuarine gradients. It also provided 

evidence that in some situations, notably in the extreme upper reaches of the estuaries, 

physico-chemical conditions prevent the successful occupation of shores by the latter 

two species. 
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CHAPTER4 

EFFECTS OF SEDIMENT BURIAL ON BARNACLES UNDER LABORATORY 

CONDITIONS 

4.1. Introduction 

Sedimentation is an important factor influencing the ecology of benthic 

communities (Ellison, 1998; Edgar & Barrett, 2000; Airoldi, 2003; Airoldi & Hawkins, 

2007). Suspended sediment in the water and deposition of sediment influences a broad 

range of taxa and functional groups in virtually every known type of aquatic habitat. In 

the last few decades levels of sediment reaching the marine environment have been 

increasing due to anthropogenic activity and have become a recognisable threat to 

estuarine and other coastal habitats (Gray, 1997; GESAMP, 1994; Edgar & Barrett, 

2000; Ellis et al., 2000; Norkko et al., 2002; Airoldi, 2003). Reviews on the effects of 

sedimentation are available for habitats as diverse as coral reefs (Dodge & Szmant­

Froelich, 1985; Rogers, 1990; Richmond, 1993), mangroves (Ellison, 1998), seagrasses 

(Vermaat et al., 1997), rocky shores (Airoldi, 2003), !otic systems (Barko et al., 1991; 

Henley et al. 2000) and freshwater streams (Ryan, 1999). Information on the effects of 

sedimentation on biota is crucial, not only to understand ecological processes that 

control communities in habitats naturally influenced by sediments, but also to evaluate 

and predict impacts of particular depositional events or introduction of increased levels 

of sediment. 

Estuaries receive sediments both from the sea and from land via freshwater 

runoff (Guilcher, 1967; Dyer, 1972; Meade, 1969) and are generally areas where 

considerable accumulation of sediment occurs (Postma, 1967; Meade, 1969, 1972; 

Dyer, 1986; 1997; Woodruff et al., 2003). In addition, due to their proximity to urban 

centres, the extensive use of adjacent land and estuarine waters themselves by man, 
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estuaries are regularly exposed to increased levels of or to activities that modify the 

dynamics of sediments. For these reasons estuaries tend to be highly influenced by 

sediments. In estuarine intertidal areas, which are normally characterized by low 

hydrodynamic flow, sediment deposition is common in natural conditions and can 

constitute a persistent influence on organisms living there (Lohrer et al., 2004; 

Delapenna et al., 1998). Regular patterns of deposition with short-term tidal or diurnal 

periodicity can result in accumulation of several centimetres of sediment in some 

estuaries (Dellapenna et al, 1998; Miller et al., 2002; Kniskem & Kuehl, 2003; 

Traykovski et al., 2004). It has long been noticed that hard substrata in estuaries are 

frequently covered by a layer of deposited sediment which on occasions is thick enough 

to bury organisms and have adverse effects on larval settlement and recruits (Percival, 

1929; Korringa, 1951; Day & Morgans, 1956; Day, 1959; Carriker, 1961, Lewis, 1964; 

Silina, 2002). 

Benthic organisms respond both to natural1evels of sedimentation (e.g. Daly and 

Mathieson, 1977; Littler et al., 1983; D'Antonio, 1986; Dellapema et al., 2003; 

Anderson et al., 2004; Lohrer, 2006; Airoldi & Hawkins, 2007) and to increased 

sedimentation caused by human activities (e.g. Peterson et al. 2000; Smith & Kukert, 

1996; Edgar & Barrett, 2000; Norkko, 2002). Epibenthic suspension feeders are 

particularly vulnerable to sedimentation because of their occurrence at the sediment­

water interface, where depositional processes take place, and to the dependence of their 

feeding mechanisms on access to, and the quality of, suspended material in the water 

column. Negative effects of suspended sediment on feeding behaviour and efficiency 

are well documented (e.g. Loosanoff, 1962; Jorgensen, 1966, 1996; Rhoads & Young, 

1970; McFarland & Peddicord, 1980; Bricelj & Malouf, 1984; Bricelj et al, 1984; 

Murphy, 1985; Ellis et al., 2000; Wilber & Clarke, 2001), and there are particular 

mechanisms by which deposited sediment affects epibenthic organisms. These effects 
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are summarized by Airoldi (2003) for hard-bottom organisms and include: 1. 

buriaVsmothering; 2. scour/abrasion by moving sedirnents; and 3. reduced stability and 

availability of substratum for settlement. 

Burial of intertidal organisms by sediment may reduce the availability of light, 

oxygen and nutrients and cause metabolic waste products to accumulate. These 

alterations can be a major factor controlling species distribution and assemblage 

diversity, mainly by causing differential mortality or sublethal negative effects in 

species, which modify patterns of competition and dominance and favour opportunistic 

and sediment tolerant species (Daly & Mathieson, 1977; Littler et al., 1983; D' Antonio, 

1986; Airoldi and Cinelli, 1997; Airoldi; 1998; Ellis, 2000; Cummings et al., 2003). A 

critical issue for organisms exposed to burial by sediment is mobility. Ability to move 

within sediments is clearly advantageous when buried and vertical or horizontal 

migration allows many species to escape (Kranz, 1974; Maurer et al., 1986; 

Chandrasekara & Frid, 1998; Cummings & Trush, 2004; Hinchey et al. 2006). In 

contrast to mobile species, sedentary infaunal and sessile epifaunal species are less 

adapted to survive burial events and their survival is primarily a function of species 

physiological responses to metabolic stress, such as anoxia, hypoxia and starvation 

(Hinchey et al. 2006). 

Barnacles have limited mechanisms to reduce burial when sediments are 

deposited. Individuals that become physically isolated from water by a layer of 

sediment are unable to use their cirri, and consequently, to feed or to establish an 

adequate flow of oxygenated water through the mantle cavity for respiration. Mortality 

due to burial by sediment and negative impacts of high deposition have been reported 

for barnacles (Moore, 1977; Menge, 1994; Seapy & Littler 1982; Daly & Mathieson 

1977; Rao & Sundaram, 1972-74; Silina, 2002), but limited information is available on 

the relative tolerance of species to such processes (Moore, 1977; Barnes, 1999), and the 
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influence of silt deposition on distribution patterns of barnacies due to differential 

mortality remains unknown. 

The overall aim of my work was to test the tolerance to burial by estuarine 

muddy sediment of three barnacle species with differing patterns of distribution in 

estuaries (see Chapter 2). E. modes/us extends along the whole estuarine gradient, 

inhabiting areas where high deposition of silt occurs and is frequently found under 

layers of silt; while S. balanoides and C. montagui are restricted to mid and lower 

regions of estuaries, where substrata are typically sediment-free. Hence patterns of 

distribution and survival of these three species correlate to spatial variation in levels of 

sediment deposition irt estuaries (see Chapter 3; Crisp, 1958; Little and Smith, 1980; 

Mettam, 1994 ). It has been suggested that tolerance of silt deposition may be an 

important factor controlling the distribution and abundance of these and other barnacle 

species in estuaries (Crisp, 1958; Little & Smith, 1980; Mettan1, 1994). In particular, the 

dominance of the invasive species E. modestus in estuarine areas has long been linked 

to its enhanced tolerance to silt deposition compared with native species (Crisp, 1958). 

Considering that the response of barnacles that are experimentally buried by 

estuarine sediment will be related to their tolerance to metabolic stresses, particularly 

stresses related to respiration and feeding, differential responses are expected between 

the species tested here. Metabolic rates, oxygen demands and ability to undertake 

anaerobic respiration vary among barnacle species (Barnes & Barnes, 1959; Barnes et 

al., 1963a; Lopez et al., 2003). It has been suggested that E. modes/us, which has higher 

cirral activity than the native species, is more efficient in acquiring food and tolerating 

periods of inactivity (Harms, 1999). If this is the case, it is predicted that E. modes/us 

would better resist experimental periods of burial by sediment than C. montagui and S. 

balanoides. Such ability would benefit E. modestus in high depositional habitats in 

comparison to native barnacles and would contribute to mechanisms responsible for the 
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dominance of this species in estuaries. This chapter will specifically test the hypotheses 

that: 1. burial by sediment causes increased mortality in barnacles; 2. C. montagui, S. 

balanoides and E. modes/us have different degrees of tolerance to burial by silt, in 

which case these species will show differences in mortality when subjected to similar 

burial periods; and 3. burial causes metabolic deficits in barnacles, leading to increased 

cirral activities following periods when the barnacles were buried. 

4.2. Methods 

4.2.1. Collection and preparation of barnacles and sediment 

Pieces of rock supporting adult E. modes/us, S. balanoides and C. montagui 

were removed from the shores at Mount Batten Bay, in the Plymouth Sound and 

Renney rocks, in Heybrook Bay. These locations support the typical fauna found on 

rocky-shores in South-West England. Sedimentation is low and virtually zero silt 

deposition occurs on these shores. The rocks were cut into pieces of about 8 x 5 cm and 

the density of barnacles attached manipulated so as to leave about 30 individuals of a 

single species on each piece of rock. The position of individual barnacles was recorded 

to assist later assessment of dead and surviving barnacles. Sediment was collected from 

an intertidal area in the upper region of the Yealm Estuary. Sediment was placed in 

plastic bags and kept frozen until used for the experiments. 

Barnacles were placed in 1.5L tanks measuring 17.5cm (length) x 11.5cm 

(width) x 13 cm (height), with running seawater at the Marine Biological Association of 

the UK. All tanks contained three pieces of rock, each piece with one of the species 

under investigation. Barnacles were left to acclimate in these tanks for 7 days before the 

beginning of experiments. 
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4.2.2. Experimental design 

To determine the effects of burial by deposited silt on E. modestus, S. 

balanoides and C. montagui two experiments were performed using a similar 

methodology. In the first, barnacles were buried by silt and left for 10 days. In the 

second, barnacles were submitted to 4 repeated 10 day periods of burial, alternating 

with 48 hour periods free of sediment. 

Three treatments of sediment addition were used: 1. no sediment added (No 

sediment); 2. addition of 50 grams of sediment, which resulted in the deposition of a 

layer 2mm thick, but which left the apertures of the barnacles exposed (Sediment Ll); 3. 

addition of 200 grams of sediment, which formed a layer of 8mm and buried all 

barnacles completely (Sediment L2). Each treatment was replicated in four tanks using 

a complete randomised block design. 

Numbers of dead and live individuals were recorded prior to the addition of 

sediment. Any barnacles that were dead at the start of the experiment were discounted 

from subsequent observations. Sediment was added to tanks according to their 

respective treatments using the following procedure: I. water flow was discontinued; 2. 

sediment was added and water was vigorously mixed (tanks where no sediment was 

added also had their water flow discontinued and water content mixed); 3. sediment was 

allowed to settle; 4. water flow was resumed after sediment had settled completely in all 

tanks; 5. condition of barnacles was checked (buried/not buried) in sediment addition 

treatments. All barnacles were completely covered by sediment in Sediment L2 tanks, 

while in Sediment L I most of the barnacles had free opercula. Individuals covered in 

Sediment Ll tanks had their opercular plates gently freed from sediment with a small 

brush. 
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At the end of each I 0 day period sediment was removed from the tanks by 

suction using a siphon. Water flow was continued to clear the tanks and enable the 

barnacles to remain submerged at all times. As a control, water was also pumped out of 

tanks without sediment. 

4.2.3. Mortality and cirral activity 

In the second experiment, cirral activities were monitored prior to the addition of 

sediment and during the first hour after sediment removals. Activity was recorded after 

addition of food (Liquifry Marine by Interpet Ltd.) as the number of active individuals 

and the frequency of cirral beating in individual barnacles. This was measured by 

counting the number of complete cycles of opening and closing of the valves 

accompanied by protrusion of the cirri within a 30 second period. 

Dead individuals were recognised by the absence of opercular valves, the 

complete absence of an individual that had been alive at the beginning of the 

experiment, or failure to respond to mechanical stimulation of the opercular valves by 

withdrawal of cirri or closure of the opercular plates. 

4.2.4. Statistical analyses 

Differences in survival after a I 0 day period in the first experiment and after 4 

subsequent periods of burials in the second experiment were compared using two-way 

ANOV A with species and sediment treatment both considered as fixed factors. 

Variables were arcsine transformed (Arcsin--Jx) to achieve homocedasticity. For each 

species, Median lethal times (ML T) and the times to I 0% mortality (L10) were 
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estimated graphically for each replicate. Difference in the mean L10 between species 

was tested using a one-way ANOV A, followed by post-hoc SNK tests. 

Differences in the proportion of active individuals between treatments in the 

second experiment were compared using one-way ANOV A. Tests were performed for 

each species separately on data obtained before the initial addition of sediment and after 

each period of burial. Significant differences between treatments indicate a rejection of 

Ho, namely that there were no increases in cirral/feeding activity in barnacles after 

burial periods. The initial data (before the addition of sediment in any of the tanks) 

constituted a control to which subsequent data were compared. To compensate the use 

of multiple ANOV A tests for each species, a Bonferroni correction was applied. The 

existence of differences between groups were only accepted when p < 0.0 I (0.05 

divided by 5). 

4.3. Results 

4.3.1. Effects of 10 day burial by silt 

Semibalanus balanoides and C. montagui were both affected by burial from silt; 

survival after 10 days of burial was significantly lower than in treatments where no 

sediment had been added or where sediment was present, but did not obstruct opercular 

apertures (Fig. 4.1, Table 4.1 ). A strong interaction between species and treatment was 

detected (Table 4.1). In contrast, E. modestus was not affected by burial (Fig. 4.1). 

Survival of this species in burial treatments was slightly lower than at other treatments, 

but values were high (approximately 90% survival) and not statistically different (Fig. 

4.1, Table 4.1). 
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b b b b b 

E. modestus S. balanoides 

b b 

C. montagui 

D No sediment added 
~ Sediment level 1 
• Sediment level 2 

Fig. 4.1. Effect of I 0 day period of burial by silt on survival of E. modestus, S. balanoides and 
C. montagui. Barnacles were exposed to 3 treatments of sediment addition: treatment I. no 
sediment added; treatment 2. 50g.L·1 of sediment added, barnacles were surrounded by sediment 
but have free opercular apertures; and treatment 3, 200g.L·1 of sediment added, barnacles were 
completely covered by sediment. Values are mean ± SE. Each point represents the mean of 4 
replicates. Letters above columns represent homogeneous groups according to ANOV A (SNK 
test, p > 0.05). 

Table 4.1. Two-way ANOVA (factor 1: species, factor 2: sediment treatment) on proportions of 
survival of E. modestus, S. balanoides and C. montagui buried by sediment. 

Source Df MS F P 

Species 2 594.3 8.70 0.001 

Treatment 2 4726.0 69.19 < 0.001 

Interaction 4 649.1 9.50 < 0.001 

Error 27 68.3 
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4.3.2. Effects of successive burials by silt 

Elm in ius modestus showed high tolerance to periods of burial by silt, in contrast 

to S. balanoides and C. montagui, which were both strongly affected by silt deposition. 

A reduction in survival of S. balanoides was noted after the ftrst period of burial and 

further reductions in survival were observed after subsequent burials, which led to 

almost complete mortality at the end of the experiment (Fig. 4.2). Although C. montagui 

was also strongly affected by sediment, it showed a greater ability to survive burial than 

S. balanoides. Substantial mortality of C. montagui was only noted after the second 

burial period (Fig. 4.2) and final survival (Fig. 4.3 and Table 4.2), Median lethal time 

and time to 10% mortality (Fig. 4.4, Fig. 4.5 and Table 4.3) of this species were 

significantly higher than forS. balanoides. 

The presence of deposited sediment at levels that do not obstruct the opercular 

plates did not have any detrimental effects in any of the species tested, as evidenced by 

the absence of significant differences between the ftrst two treatments (I. No sediment 

and 2. Sediment Ll) within, and between species (Fig. 4.3 and Table 4.2). Analyses of 

variance on final survival of the three species also showed a strong interaction between 

species and treatment. E. modestus showed no significant differences between the three 

treatments utilized, while S. ba/anoides and C. montagui showed significantly lower 

survival in the burial treatment. S. balanoides underwent more severe mortality, 

significantly lower, than mortality of C. montagui (Fig. 4.3 and Table 4.2). 
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Fig. 4.2. Effect of repeated periods of burial by silt (indicated by shading) on survival of E. 
modestus, S. balanoides and C. montagui. Three treatments of sediment addition: I. no sediment 
added; 2. SOg.L-1 of sediment added, barnacles were surrounded by sediment but had free 
opercular apertures; and 3. 200g.L-1 of sediment added, barnacles were completely covered by 
sediment. Each burial period lasted for I 0 days and intervals between burials were of 48 hours. 
Values are mean± SE. Each point represents the mean of 4 replicates. 

··O· No Sediment - - Sediment Level 1 ---- Sediment Level 2 
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E. modestus S. balanoides C. montagui 

Fig. 4.3. Survival of E. modestus, S. balanoides and C. montagui after 4 subsequent periods of 
burial (1 0 days each). Barnacles were exposed to 3 treatments of sediment addition: l. no 
sediment added; 2. 50g.L-1 of sediment added, barnacles were surrounded by sediment but have 
free opercular apertures; and 3. 200g.L'1 of sediment added, barnacles were completely covered 
by sediment. Values are mean ± SE. Each point represents the mean of 4 replicates. Letters 
above columns represent homogeneous groups according to ANOV A (SNK test, p > 0.05). 

Table 4.2. Two-way ANOV A (factor I: species, factor 2: sediment treatment) on proportions of 
survival of E. modestus, S. balanoides and C. montagui. 

Source df MS F P 

Species 2 674.5 9.18 < 0.001 

Treatment 2 8631.5 117.47 < 0.001 

Interaction 4 1701.9 23.16 < 0.001 

Error 27 73.5 
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4.3.3. Median lethal time (ML T) and times for 10% mortality 

Survival curves for each replicate for each species were similar (Fig. 4.4). Mean 

ML T and mean L10 calculated from these curves were higher for C. montagui than S. 

balanoides (Fig. 4.4). Survival of E. modestus did not reach values below 50% in any of 

the replicates and only L10 were calculated (Fig. 4.4). Significant differences in L10 were 

detected between all three species according to ANOV A (Table 4.3). E. modestus 

showed the higher values of L10, followed by C. montagui and S. balanoides, 

respectively. 

4.3.4. Cirral activity 

The proportion of active individuals was generally higher in barnacles exposed 

to burial than those in treatments where the opercular plates were free of sediment (Fig. 

4.6). One-way ANOV A showed that cirral activity before addition of sediment was not 

significantly different between treatments for any of the species examined (Tables 4.5, 

4.6 and 4. 7). Comparison of activity after subsequent burial periods showed that in most 

cases the proportion of active individuals was higher in barnacles that underwent burial 

than in those that were not buried (p < 0.0 I). Exceptions occurred in S. balanoides and 

C. montagui after the second period of burial and in C. montagui after the last period of 

burial (Tables 4.5, 4.6 and 4.7). 
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0 10 22 

Days 

34 

E. modestus 

S. balanoides 

C. montagui 

46 

Fig. 4.4. Survival curves of a. E. modestus, b. S. ba/anoides and c. C. montagui for each 
replicate utilized in the treatment of complete burial by silt. Each line represents a replicated 
tank and values are percentage of individuals surviving. Each burial period lasted for l 0 days 
and intervals between burials were of 48 hours. 
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Fig. 4.5. Median lethal times (L50) and time for 10% mortality (L10) for E. modestus, S. 

balanoides and C. montagui during 4 subsequent periods of burial (1 0 days each). Values are 

mean ± SE. n = 4. Letters over columns indicate homogeneous groups according to ANOVA for 

comparison of L10 and numbers for comparison of L50 (SNK test, p > 0.05). * No mortality 

below 50% at the end of the experiment, not included in the ANOV A test. 

Table 4.3. One-way ANOVA (factor=species) on 10% lethal times (L10) of S. balanoides, C. 
montagui and E. modestus exposed to subsequent periods of burial by sediment. 

Source df MS F P 

Species 

Error 

2 

9 

3.26 

0.13 

24.15 < 0.001 

Table 4.4. One-way ANOV A (factor=species) on Median lethal times (L50) of S. ba/anoides and 
C. montagui exposed to subsequent periods of burial by sediment. 

Source df MS F P 

Species 

Error 6 

81.61 

7.02 

94 
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Fig. 4.6. Proportion of cirrally active individuals of a. E. modestus, b. S. balanoides and c. C. 
montagui, before (day 0), after (46 days) and between (10, 22 and 34 days) subsequent burials 
by silt. Barnacles were submitted to 3 treatments of sediment addition: treatment 1. no sediment 
added; treatment 2. SOg.L-1 of sediment added, barnacles were surrounded by sediment but had 
free opercular apertures; and treatment 3. 200g.L-1 of sediment added, barnacles were 
completely covered by sediment. Values are mean ± SE. Each bar represents the mean 
proportion of 4 replicates. Each burial period lasted for 10 days and intervals between burials 
were of 48 hours. D No sediment m Sediment level 1 • Sediment level 2 
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Table 4.5. One-way ANOV As (factor-SEDIMENT TREATMENT) on proportion of active 
individuals of E. modes/us before addition of sediment (day 0); after exposed to one period of 
burial (day I 0); after exposed to two periods of burial (day 22); after exposed to three periods of 
burial (day 34); and after exposed to four periods of burial (day 46). Significant effects (P < 
0.0 I} are in bold. 

Source df MS F p 
Initial {day 0) Treatment 2 12.28 0.77 6.490 

Activity Error 9 15.89 
Mter 1st (day 10) Treatment 2 1243.73 13.71 0.001 
Burial Error 9 90.74 

After 2nd 
(day 22) 

Treatment 2 1380.09 34.98 <0.001 
Burial Error 9 39.45 

After 3rd 
(day 34) Treatment 2 1797.25 43.14 <0.001 

Burial Error 9 41.66 
After 4th (day 46) Treatment 2 6646.68 183.89 <0.001 

burial Error 9 36.14 

Table 4.6. One-way ANOV As (factor-SEDIMENT TREATMENT) on proportion of active 
individuals of S. balanoides before addition of sediment (day 0); after exposed to one period of 
burial (day 10); after exposed to two periods of burial (day 22); after exposed to three periods of 
burial (day 34); and after exposed to four periods of burial (day 46). Significant effects (P < 
0.0 I} are in bold. 

Source df MS F p 
Initial 

(day 0) 
Treatment 2 23.54 1.23 0.336 

Activity Error 9 19.10 
After 1st 

(day 10) 
Treatment 2 2205.36 18.06 <0.001 

Burial Error 9 122.09 
After 2nd 

(day 22) 
Treatment 2 4.88 5.44 0.0283 

Burial Error 9 0.88 
Mter3rd 

(day 34) 
Treatment 2 0.75 14.23 0.002 

Burial Error 8 0.05 
After 4th 

(day 46) 
Treatment 2 9.82 20.06 <0.001 

burial Error 8 0.49 

Table 4.7. One-way ANOVAs (factor-SEDIMENT TREATMENT) on proportion of active 
individuals of C. montagui before addition of sediment (day 0); after exposed to one period of 
burial (day I 0); after exposed to two periods of burial (day 22); after exposed to three periods of 
burial (day 34); and after exposed to four periods of burial (day 46). Significant effects (P < 
0.0 I} are in bold. 

Source df MS F p 

Initial 
(day 0) 

Treatment 2 0.74 0.79 0.484 
Activity Error 9 0.94 
After 1st 

(day 10) 
Treatment 2 2.43 12.79 0.002 

Burial Error 9 0.19 
After 2nd 

(day 22) 
Treatment 2 5.75 4.73 0.039 

Burial Error 9 1.22 
After3rd (day 34) 

Treatment 2 32.39 63.98 <0.001 
Burial Error 9 0.51 

After 4th (day 46) 
Treatment 2 11.94 4.79 0.038 

burial Error 9 2.49 
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4.4. Discussion 

These experiments provided evidence that thin layers of deposited sediment 

have detrimental effects on intertidal barnacles and that differential tolerances to 

sediment deposition exist among barnacle species. E. modestus was not significantly 

affected by sediment and was clearly more tolerant to burial by silt than S. balanoides 

or C. montagui, both of which experienced high mortalities when exposed to single or 

to multiple periods of burial by sediment. C. montagui was more tolerant to burial than 

S. ba/anoides. Ability to withstand burial can be attributed to physiological tolerance to 

conditions imposed by the deposited sediment, rather than to any behavioural 

mechanism of burial escape. Increased cirral activity observed in barnacles of all three 

species after burial periods, indicated that metabolic deficits had probably occurred. The 

results suggest that tolerance to burial by silt benefits E. modestus and contributes to its 

success and dominance in estuarine intertidal areas, and potentially also in other habitats 

where high levels of sediment deposition may occur. 

4.4.1. Behavioural avoidance of burial in barnacles 

Barnacles exposed to 8mm thick sediment layers were completely buried. Cirral 

movements could not prevent deposition of sediment on opercular plates or remove 

sediment after depositions at this level of sedimentation. Partial avoidance of 

smothering by cirral beating has been observed in coral-dwelling barnacles 

(Pyrgomatidae) exposed to low levels of siltation, but this behaviour was ineffective in 

preventing smothering and clogging of the cirri (Fabricius & Wolanski, 2000). 

Patterns of cirral activity were not monitored during deposition of sediment and 

it is not possible to speculate about cirral response to the settling particles in our 
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experiments. Nevertheless, observations of sediment layers and individual conditions 

(buried/not buried) after deposition indicated that specimens were unable to avoid burial 

when the surface of the deposited layers exceeded 2mm or more than their individual 

shell heights. 

The observations made during my experiments suggest that barnacles are 

inefficient at escaping burial, even when compared to other sessile species. Although 

behavioural avoidance to burial by sediment in sessile or relatively sedentary species is 

not common, a few species can escape burial at low levels of deposition by deformation 

or expansion of their body parts. For example, anemones (Anthopleura elegantissima, 

Actinothoe sphyrodeta, Cereus pedunculatus, and others) can resist shallow sand burial 

by extending their column so that the oral disc and tentacles project above the sediment 

surface (Littler et al, 1983; Saiz-Salinas & Urdagarin, 1994; Hiscock, 1983); Sabellaria 

vulgaris, a reef building polychaete is able to emerge from sediment and escape 

depositions of sediment up to 1 cm (Miller, 2002); Mytilus edulis can escape up to 4 cm 

of burial by pulling up its byssus and si phonate bivalves can extend their siphons up to 

new sediment-water interfaces (Kranz, 1974). 

4.4.2. Tolerance to burial by sediment 

Differential physiological tolerances to respiratory stress and starvation were 

probably responsible for the greater survival observed in E. modes/us than in C. 

montagui and in the even more susceptible S. balanoides. Correlation between 

physiological tolerance to anoxia/hypoxia and ability to survive burial by sediment in 

sessile and sedentary intertidal species has been demonstrated previously. For example, 

in laboratory conditions, Hinchey et al. (2006) showed that Crassostrea virginica, 

which is able to undergo anaerobic respiration and withstand anoxia, was tolerant to 
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burial for six days, while Molgu/a manhattensis, a tunicate, intolerant to anoxic 

conditions, was highly susceptible and died by suffocation. Similarly, Marshall & 

McQuaid (1989) showed that the limpet, Siphonaria capensis, which is capable of 

oxyregulation and anaerobic respiration, survived longer periods of burial than Patella 

granularis, which is more dependent on external oxygen supply and is apparently not 

capable of anaerobic respiration. 

Field evidence also suggests that physiological tolerance is important for the 

ability to withstand periods of burial by sediment. For example, the mussel 

Choromytilus meridionalis, which withstands prolonged periods of hypoxia, is 

dominant on rocks associated with sand, while the less tolerant Perna perna occurs at 

higher shore levels, which are not usually influenced by sand deposition (Marshall & 

McQuaid, 1993a). Similarly, S. capensis is a higher shore species than P. granular is 

(Marshall & McQuaid, 1989; 1993b ). Macroalgae are also examples of intertidal rocky 

shore organisms that have vertical zonation patterns correlated with their tolerances and 

physiological adaptations to sediment (Daly & Mathieson, 1977; Seapy & Littler, 1982; 

Taylor & Littler, 1982; Littler et al., 1983; review in Airoldi, 2003). 

Several respiratory adaptations are required for successful life in the intertidal, 

including anaerobic and aerial respiration, and ability to reduce metabolism and 

respiration during periods of stress (Newell, 1973). Although these adaptations are 

primarily related to trade-offs between the supply of respiratory needs and avoidance of 

desiccation, they can provide advantages to help reduce the effects of sediment 

disturbance. Semibalanus balanoides and Chthamalus species undergo anaerobic 

respiration and lower their metabolic rates in anaerobic conditions (Barnes & Barnes, 

1959; Bames et al. 1963a, b). Similar information is not available for E. modestus, but it 

is very likely that this species also undergo anaerobic respiration. It was demonstrated 

recently that S. balanoides, E. modestus and also C. stellatus tend to live in hypoxia for 
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extended periods during submersion, apparently due to the inherent inefficiency of 

bal!momorph ventilation systems (Davenport & Irwin, 2003). During periods of 

emersion, oxygen levels within the mantle cavity of these species are quickly lowered 

and species assume anaerobic or aerial respiration (Bames et al., 1963a). Chthamalus 

montagui is the intertidal species which occupies the highest zones of the shore in 

comparison to any other barnacle on European shores (Crisp et al., 1981 ). This certainly 

requires greater ability to undergo anaerobic respiration. 

In my experiments anaerobic conditions were certainly imposed for buried 

specimens, The oxygen aval!able was limited to that dissolved in interstitial water. 

Interstitial water in sediments has reduced oxygen tension (Andersen & Helder, 1987), 

and even if levels were adequate for aerobic respiration, water would have to be 

pumped into the mantle cavity. Pumping water into the mantle cavity would require 

tergal movements, which are unlikely to have happened without some sediment 

disturbance. It is most probable that renewal or flow of water into the mantle cavity did 

not take place during burial, when the valves remained closed. This may have resulted 

in two main consequences which probably also affect barnacles during periods of burial 

in nature. Firstly, anaerobic respiration would result in the production of toxic 

metabolites, which would tend to accumulate within the mantle cavity and body tissues. 

In barnacles lactic acid, and possibly other toxic metabolites, are produced (Barnes & 

Bames, 1963; Lopez et al., 2003). Secondly, anaerobic respiration utilizes carbohydrate 

reserves and these would be depleted in the absence of feeding. 

Barnacles are very resilient to starvation and S. balanoides, for example, can 

survive under starvation for several months (Barnes, 1962; Bames et al., 1963b ). It is 

improbable that starvation alone was responsible for the mortality observed in our 

experiments, since starved barnacles utilize carbohydrate reserves before switching to 

the use of protein and lipids. Starvation induces a reduction in oxygen demand and 
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continuous closure of the opercular valves (Barnes et al., l963a, b). This leads to the 

establishment of anaerobic conditions and use of anaerobic respiration, which would be 

similar to the effects of forced opercular closure by physical impediments, such as 

deposited sediment. The main difference between these two situations is that individuals 

induced to anaerobiosis due to starvation can respond to the accumulation of toxic 

metabolites by releasing those in the surrounding water, while in buried individuals this 

would not be possible. It is likely that the combination of production and inability to 

excrete metabolic end-products of anaerobic respiration was the ultimate cause of 

mortality during burial. 

Barnes et al (1963a) demonstrated that inS. ba/anoides and Chthamalus species, 

lactic acid accumulated during periods of anoxia are rapidly excreted on return to 

aerobic conditions and that conversion of lactic acid back to carbohydrate is apparently 

low. It can be assumed that feeding during periods when conditions are suitable is 

sufficient to rebuild carbohydrate reserves necessary for survival in these species. In my 

experiments, however, feeding was restricted to periods between burials ( 48 hours 

between 1 0 days burials), and it was probably not sufficient to rebuild reserves 

necessary for anaerobic respiration. Deficits may have accumulated and culminated in 

mortalities observed throughout the successive periods of burial. E. modestus appears to 

be more efficient in acquiring food and accumulating reserves than S. balanoides and C. 

montagui (Southward, 1955; Barnes & Barnes 1962, Harms, 1999). This might have 

had a significant role on the tolerance to periods of burial exhibited by E. modestus. 

Chthamalids have lower oxygen demands and repay oxygen debts acquired during 

anaerobiosis more efficiently than S. balanoides (Barnes & Barnes, 1959; Barnes et al., 

1963a). This may explain the higher lethal times and higher final survival observed in 

C. montagui than in S. balanoides subjected to repeated burials. 
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4.4.3. Role of tolerance to burial in the dominance of E. modestus in 

estuaries 

Regardless of the mechanism by which E. modestus tolerates burial by sediment, 

there is no doubt that this would represent an advantage for this species in situations 

where accumulation of sediment takes place. The accumulation of silt would not 

enhance the performance of E. modestus directly, but the ability to resist periods of 

burial by mud would considerably increase competitive ability of E. modestus compared 

to native species in estuarine areas. In this sense, E. modestus would be ecologically 

similar to "sand-tolerant" species described for rocky shores impacted by sandy 

sediment and which are able to adjust to stress imposed by sediments and be indirectly 

benefited by reduced competition (e.g. Taylor & Littler, 1982: Littler et al. 1983; 

D' Antonio, 1986; Airoldi & Cinelli, 1997). 

Higher tolerance to siltation is one of the characteristics believed to have 

contributed to the successful invasion of British and European estuaries by E. modes/us 

(Crisp, 1958). Several field observations lead to proposals that sediment deposition has 

detrimental effects on the physiology of barnacles and influences their distribution 

(Purchon, 1937; Doochin & Smith, 1951; Crisp, 1958; Naylor, 1971; Daly & Mathieson 

1977; Little & Smith, 1980; Seapy & Littler 1982; Mettarn, 1994; Menge et al., 1994; 

Silina, 2002), but the results presented here provided the first direct experimental 

evidence for the physiological mechanisms involved in this process. 

The impact of mud deposition along the horizontal extension of estuaries 

increases towards the riverine end of estuaries. In the estuaries investigated in this 

study, observations of barnacles (E. modes/us) buried by mud were especially common 

at the upper reaches of the estuaries. Additionally, sediment traps and also boulders 

supporting barnacles transplanted to estuarine locations accumulated sediment, clearly 
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more so at experimental sites located in the upper reaches of the estuaries (see Chapter 

3). This correlates with patterns of distribution and dominance of E. modestus in these 

estuaries. E. modestus is the only species found near the riverine end of the estuaries 

and the predominance of this species relative to S. balanoides and C. montagui 

increases progressively towards these areas (see Chapter 2). Obviously, this observation 

does not imply a causal relationship, but siltation and burial could potentially contribute 

to these patterns. 

Lower levels of the shore tend to be more affected by sedimentation and 

subjected to excessive deposition leading to burial than higher levels on intertidal rocky 

shores (Taylor & Littler, 1982; Littler et al., 1983; Airoldi, 2003). On some occasions 

this may result in deviation from the general model of vertical distribution of intertidal 

assemblages by which upper limits of the shore are set by physical and lower by 

biological factors (Taylor & Littler, 1982; Littler et al, 1983). In a similar way, it is 

possible that in estuarine intertidal areas, especially at inner reaches of estuaries where 

sedimentation tends to be higher, siltation is the major physical factor influencing 

zonation and determining lower limits of species distribution. The results obtained here 

suggest that E. modestus is highly tolerant to accumulation of sediments and may 

benefit from this condition in natural habitats. 
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CHAPTERS 

RECRUITMENT OF BARNACLES IN ESTUARIES 

5.1. Introduction 

Patterns of settlement and recruitment can have considerable influence on 

dynamics of populations and community structure of marine species (Underwood & 

Denley, 1984; Gaines & Roughgarden, 1985; Gaines et al., 1985; Booth & Brosnan, 

1995; Underwood & Keough, 2001; Jenkins, 2005). Recruitment can be defined as the 

survival of juveniles for a period of time after settlement (Connell, 1985). Thus, it is a 

variable defined by the observer to describe the entry of new individuals into a 

population, sometimes to a particular phase (e.g. the adult population). In the case of 

barnacles and other sessile species with pelagic larval stages, recruitment incorporates 

1) settlement, which is the process through which an individual leaves the water column 

and permanently attaches to the substrata; 2) methamorphosis; and 3) initial post­

settlement survival (Connell, 1985; Underwood & Denley, 1984). 

Larval supply is one of the principal components that determines settlement, and 

in many cases, recruitment of marine invertebrates at a particular location (Hawkins & 

Hartnoll, 1982; Gaines et al., 1985; Bingham, 1992; Minchinton & Scheibling, 1993). 

Studies using intertidal barnacles have demonstrated that larval supply can be a major 

determinant of assemblage structure (Underwood & Denley, 1984; Caffey, 1985; 

Connell, 1985; Gaines & Roughgarden, 1985; Roughgarden & Iwasa, 1986; Raimondi, 

1990; Sutherland, 1990). Post-settlement interactions have greater importance when 

settlement occurs at high densities, while larval supply tends to be more influential at 

lower settlement densities (Underwood & Denley, 1984; Caffey, 1985; Connell, 1985; 
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Gaines & Roughgarden, 1985; Roughgarden, 1986, Raimondi, 1990; Sutherland, 1990; 

Menge, 2000). 

Extensive experimental studies on the ecology of intertidal barnacles have 

demonstrated the importance of settlement and recruitment in shaping adult popula:tions. 

This occurs mainly by setting initial densities and distribution of individuals within and 

between shores, and consequently, determining the environmental conditions to which 

individuals are exposed and influencing post-settlement intraspecific and interspecific 

interactions (e.g. Connell 1961 a, 1961 b, 1970; Grosberg, 1982; Hawkins & Hartnoll, 

1982; Underwood & Denley, 1984; Gaines & Roughgarden, 1985; Raimondi, 1990, 

1991; Minchinton & Scheibling, 1991; Bertness et al., 1992; Gaines & Bertness, 1992; 

Jenkins et al, 1999). Therefore, understanding events that cause variations in settlement 

and recruitment of benthic organisms is a crucial step in explaining spatial patterns of 

adult distribution. 

Invertebrate larvae are dispersed both by passtve transport associated with 

hydrodynamic factors, especially at large spatial scales (Hawkins & Hartnoll, 1982; 

Shanks, 1983; Gaines et al., 1985 Bertness et al, 1992, 1996; Hyder et al, 1998, 

Queiroga et al., 2003); or by active transport originated by vertical and horizontal 

movements over small spatial scales (Grosberg, 1982, Raimondi, 1991; Young, 1995); 

or a mixture of both (e.g. Ross, 2001; Queiroga & Blanton, 2005). In estuaries, several 

mechanisms of active transport linked to tidal movements have been shown in barnacles 

and other invertebrates. These can produce patterns of distribution along estuarine 

gradients by controlling the direction of larval transport (seaward or landward) (e.g. 

Bousfield, 1955; Dittel & Epifanio, 1990; Hui & Moyse, 1987; Paula et a!, 2003; 

Queiroga et al., 1998, 2006), which in turn influence settlement. 

Recently the importance of larval supply and initial benthic stages of barnacle 

spectes m determining their distribution along estuarine gradients has been clearly 
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demonstrated in mangrove forests. For example, the density and availability of cyprids 

of Elminius cover/us and Hexaminius popeiana at differing distances from the seaward 

edge of estuaries mirrored settlement patterns, recruitment and adult distributions, with 

post-settlement mortality having little influence (Satumanatpan et al., 1999; 

Satumanatpan & Keough, 2001; Ross, 2001). Alternatively, work on S. balanoides 

revealed that settlement was correlated with larval concentration in the water column, 

but factors affecting early juvenile mortality ultimately determined recruitment and 

distribution of this species (Leonard et al., 1999; Pineda et al., 2002). 

It has long been recognized that E. modestus is particularly successful in 

protected and estuarine areas in its native geographic region of Australasia (Moore, 

1944; Foster, 1978, 1982). This species is invasive in similar habitats in many other 

parts of the world (Fischer-Piette and Prenant, 1956, 1957; Fischer-Piette and Forest, 

1961; Fischer-Piette, 1965; Southward and Crisp, 1956; Beard, 1957; Crisp and 

Southward, 1959; Barnes and Barnes, 1961, 1965; Crisp. 1958; Hiscock et al., 1978; 

King et al, 1997; Harms, 1999; Lawson et al., 2004). One of the main explanations for 

the success of E. modestus in invading and dominating estuarine areas lies in its high 

fecundity (Crisp, 1958; Harms, 1999; Lawson et al., 2004). E. modes/us can produce 

much greater numbers of larvae per brood than any native European barnacle (Crisp & 

Davies, 1955), and produces multiple broods throughout much of the year (Knight­

Jones, 1948; O'Riordan & Murphy, 2000). This is believed to result in high rates of 

settlement and recruitment which facilitate invasions and may ultimately lead to 

dominance (Den Hartog, 1953; Crisp, 1958; Harms, 1999; Lawson et al., 2004). Despite 

this, few studies have focused on settlement and recruitment of E. modes/us (Harms & 

Anger, 1989; Watson et al., 2005). 

In this Chapter, I use estuaries where patterns of distribution and abundance of 

barnacles along the estuarine gradient have been described (Chapter 2), to investigate 
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the role of settlement and recruitment in determining the distribution of marine species 

in estuaries. In addition, this study aims to further our understanding of the mechanisms 

that facilitate successful invasions by E. modes/us and lead to its dominance in 

estuaries. Watson et al. (2005) demonstrated that E. modes/us dominated intertidal 

recruitment at Lough Hyne and suggested that larval retention, which is promoted by 

the extremely sheltered condition of the Lough, played an important role in this 

dominance and on the process of invasion. Further investigations on the initial benthic 

stages of barnacles in estuaries where E. modes/us dominates available surfaces are 

necessary to test the importance of larval retention and settlement, particularly in 

estuaries and other coastal areas with different hydrodynamics to Lough Hyne. 

To achieve the aims described above, I tested the general hypothesis that 

patterns of distribution and abundance of adult barnacles in estuaries are determined by 

patterns of abundance of cyprids and recruitment along the estuarine gradient. 

Specifically, the following hypotheses relative to spatial (positions along the estuarine 

gradient), temporal (within months and years) and between-species variability in 

settlement and recruitment will be tested: l. The relative abundance of cyprids among 

estuarine sites located at differing distances from the sea vary between species, with E. 

modes/us showing a greater relative proportion of cyprids at the mid and upper sites 

than species with a more limited degree of penetration in the estuaries; 2. Recruitment 

of species varies at differential distances from the sea and corresponds to the adult 

pattern of distribution; and 3. There is no modification on the pattern set by settlement 

after a longer period of recruitment (7 months). 
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5.2. Methods 

5.2.1. Recruitment 

Unglazed ceramic tiles (10 x 10 cm) were utilised as substrata for barnacle 

settlement. These identical artificial panels were used to minimize surface heterogeneity 

caused by differing settlement cues related to natural biofilms and previous occupation 

of substrata by conspecifics. Panels were attached at mid-shore intertidal levels. At sites 

where E. modestus, S. balanoides and C. montagui were present, panels were attached 

to vertical areas where adults of the three species occurred. Panels were deployed in 

April 2003 and 2004 at three sites located at different distances from the mouths of the 

Yealm and Plym Estuaries (Fig. 5.1 ). These sites differed in salinity regime and levels 

of sedimentation as described in Chapter 3. Additional sets of tiles remained at each site 

for the entire periods of study (April to November in 2003 and 2004) in each site to 

assess patterns of recruitment over a greater temporal scale (7 months). 

Ten replicate tiles were deployed at each site. Before deployment, tiles were 

seasoned by submergence for 24 hours in running seawater at the Marine Biological 

Association. Tiles were collected and replaced with new tiles every month from May to 

November. Attached post-metamorphosis individuals and cyprids were identified to 

species level and counted on each tile in the laboratory. Post-methamorphosis 

individuals represented recruitment that took place throughout the month, and hence 

incorporate a degree of post-settlement mortality. Counts of cyprids assessed the arrival 

of larvae during the period of submergence that immediately preceded collections. Only 

individuals in the inner area of 8 x 8 cm were analysed in order to minimise edge 

effects. S. balanoides were not observed on any of the tiles. Ba/anus perforatus and 
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Ea/anus crenatus were occasionaly found and are grouped in the analyses and graphics 

presented here. This group is hereby designated as Ea/anus species (Ea/anus spp.). 

Plym Estuary 

Wood 

N \ N 

Cellar 

1km ~oh 
1km 

Fig. 5.1. Location of sites used to assess recruitment (• ) in the Plym (Sal tram Wood, Oreston and 
Mount Batten Centre) and the Yealm (Steer Point, Heron's Reach and Cellar Beach). 

5.2.2. Statistical Analyses 

Variations in monthly recruitment of E. modestus, C. montagui and Ea/anus 

species in each estuary were assessed by separate three-way factorial ANOV A tests 

with year, site and month as factors. Differences in the number of cyprids between sites 

within each estuary were compared using two-way ANOV A with date of collection and 

site as factors. Variations in longer-term recruitment (7 months) between sites and 

species were assessed by ANOV A tests with year, taxon (E. modestus, C. montagui and 

Ba/anus spp.) and sites as factors. Data utilised in all analysis were transformed to 
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square root to achieve requirements of ANOV A tests. Post-hoc tests (SNK test, p > 

0.05) were performed to test for differences between means. 

5.3. Results 

5.3.1. Monthly Recruitment- 30 day panels 

5.3.1.1. Plym Estuary 

Recruitment of C. montagui was not detected at any site in the Plym in 2003 or 

2004. B. perforatus Was observed in August 2003 at Oreston, but only two recruits in 

total were detected on the I 0 panels collected. Spatial (site/distance from the sea) and 

temporal factors (year and month) were all highly significant in explaining variability in 

recruitment of E. modestus (Table 5.1). Recruitment ofthis species varied for each year, 

at each site and for each month (Table 5.1 ). There was a 3-way interaction between 

year, site and month. However, most of the variability was associated with site and 

month as indicated by F values (Table 5.1). 

In 2003, recruitment of E. modestus at Saltram Wood (site located further up 

estuary) was poor on all sampling occasions and was remarkably different from sites 

located in the lower parts of the estuary (Oreston and Mount Batten Centre) (Fig. 5.2). 

Most recruits in Saltram Wood were observed in September, but this was significantly 

less than recruitment peaks at Oreston and Mount Batten Centre. No significant 

differences existed between monthly recruitment of E. modestus at Oreston 

(intermediate site) and Mount Batten Centre (closest site to the sea) throughout the year. 

Recruitment at these two sites occurred from July to October with a peak in September. 

Recruitment of E. modestus at the upper site (Saltram Wood) in 2004 was 

significantly higher than in 2003. The pattern of recruitment at Saltram Wood in 2004 
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was similar to recruitment in the intermediate site (Oreston) (Fig. 5.2) and no significant 

differences were detected between these sites in any of the months sampled. 

Recruitment at these sites took place from July to September, with maximum values in 

August. Recruitment at Oreston in July and August in 2004 was similar to recruitment 

in the same months in 2003. The main difference between years at Oreston was the 

strong peak observed in September 2003, which was not repeated in September 2004 

(Fig. 5.2). 

Recruitment at the Mount Batten Centre was greater in August and October 

2004 than in the corresponding months in 2003 (Fig. 5.2), but there were no significant 

differences between the peaks of recruitment observed in September 2003 and 2004. In 

comparison to recruitment at other sites in 2004, there was a significantly greater 

recruitment at the Mount Batten Centre than at Oreston in September and October; and 

than at Saltram Wood in July, August and October (Fig. 5.2). 

Table 5.1. Three-way ANOV A (factor I: Year, factor 2: Site, factor 3: Month) on density of E. 
modes/us recruits in panels deployed for 30 days in the Plym Estuary in 2003 and 2004. 

Source Df MS F P 

Year 4.11 17.28 < 0.001 

Site 2 11.91 50.05 < 0.001 

Month 6 18.91 79.48 < 0.001 

Year* Site 2 2.33 9.80 < 0.001 

Year* Month 6 2.21 9.27 < 0.001 

Site*Month 12 2.29 9.64 < 0.001 

Year*Site*Month 12 0.70 2.93 < 0.001 

Error 355 0.24 
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Plym Estuary 

2004 Fresh water 

a Saltram Point d 

b Ores ton e 

c Mount Batten Centre f 

Fig. 5.2. Recruitment of E. modestus, C. montagui and Balanus species in the Plym Estuary during 
2003 and 2004. Saltram Wood was the uppermost site and Mount Batten Centre the closest site to 
the sea. Each data point represents the mean often repl icates. Bars represent standard error . 

......, ,...... Elminius modestus - o- Chthama/us montagui ··-0·· Balanus spp. 
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5.3.1.2. Yealm Estuary 

For E. modestus, there was significant interaction between year and site and 

month (Table 5.2). No significant differences occurred between years in corresponding 

months in 2003 and 2004 in the upper site (Steer Point). There were no statistical 

differences between the maximum monthly recruitment observed in each year 

(September in 2003; and August in 2004) (Fig. 5.3). No differences between years 

occurred at the midpoint site (Heron's Reach), except for recruitment in October, which 

was significantly higher in 2004 than in the previous year (Fig. 5.3). 

At the mouth of the Yealm (Cellar Beach) recruitment was very high in 

September 2003 (Fig. 5.3), significantly higher than at any other month in 2003 or 

2004. Apart from this month, recruitment was similar between corresponding months in 

2003 and 2004. Most recruitment was observed from July to October in both years. 

Recruitment in Cellar Beach was higher than in both Heron's Reach and Steer Point 

from August to September in both years. 

Table 5.2. Three-way AN OVA (factor I: Year, factor 2: Site, factor 3: Month) on density of E. 
modes/us recruits in panels deployed for 30 days in the Yealm Estuary in 2003 and 2004. 

Source df MS F P 

Year 0.17 0.42 0.517 

Site 2 24.73 62.69 < 0.001 

Month 6 19.74 50.04 < 0.001 

Year* Site 2 6.59 16.70 < 0.001 

Year*Month 6 3.74 9.47 < 0.001 

Site*Month 12 1.91 4.85 < 0.001 

Year*Site*Month 12 1.53 3.88 < 0.001 

Error 322 0.39 
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Yealm Estuary 
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Fig. 5.3. Recruitment of E. modestus, C. montagui and Ea/anus species in the Yealm Estuary 
during 2003 and 2004. Steer Point was the uppermost site and CeiJar Beach the closest site to the 
sea. Note the different scale used for Cellar Beach. Each data point represents the mean of ten 
replicates. Bars represent standard error. 

-...r- Elminius modest us - o- Chthamalus montagui .. -o.. Balanus spp. 
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For C. montagui there was a significant interaction between year, site and 

month. Apart from recruits observed in Cellar Beach, only one individual of C. 

montagui was found in the Yealm (Heron' s Reach in September 2003) (Fig. 5.3). 

Recruitment of C. montagui in Cellar Beach varied between years and months (Table 

5.3). In 2003, recruitment occurred in August and September; while in 2004, it was only 

detected in August (Fig. 5.3). Recruitment in both months in 2003 was significantly 

higher than in August 2004. 

Table 5.3. Three-way AN OVA (factor 1: Year, factor 2: Site, factor 3: Month) on density of C. 
montagui recruits in panels deployed for 30 days in the Yealm Estuary in 2003 and 2004. 

Source Df MS F P 

Year 1 1.11 79.44 < 0.001 

Site 2 4.63 330.62 < 0.001 

Month 6 2.42 172.48 

Year*Site 2 0.93 66.59 

Year*Month 6 0.68 48.85 

Site*Month 12 2.14 152.85 

Year*Site*Month 12 0.56 39.99 

< 0.001 

< 0.001 

< 0.001 

< 0.001 

< 0.001 

Error 324 0.01 

For recruitment of Balanus spp. there was also a 3-way interaction between 

year, site and month (Table 5.4). Recruitment of this group varied considerably between 

months and reached considerable but differing values in August during both years (Fig. 

5.3). 

Table 5.4. Three-way ANOVA (factor 1: Year, factor 2: Site, factor 3: Month) on density of 
Balanus spp. recruits in panels deployed for 30 days in the Yealm Estuary in 2003 and 2004. 

Source Df MS F P 

Year 1 0.03 2.19 0.139 

Site 2 0.87 57.27 < 0.001 

Month 6 0.48 31 .57 < 0.001 

Year*Site 2 0.03 2.06 0.129 

Year*Month 6 0.05 3.59 0.002 

Site*Month 12 0.44 28.63 < 0.001 

Year*Site*Month 12 0.05 3.38 < 0.001 

Error 324 0.01 
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5.3.2. Cyprids 

5.3.2.1. Plym Estuary 

Cyprids of C. montagui and Balanus species were found in very low numbers in 

the Plym, mainly in August and September (Fig. 5.4 and 5.5.). In 2003, cyprids of 

Balanus species settled at Oreston and the Mount Batten Centre in August (Fig. 5.4). C. 

montagui settled at Mount Batten Centre in August and at all sites in September (Fig. 

5.4). In 2004, cyprids of these two groups were only detected at the site closest to the 

sea (Mount Batten Centre) in August (Fig. 5.4). However numbers of individuals were 

too low to permit formal testing. 

E. modestus cyprids were found in higher numbers than the other barnacle 

species and were detected at all sites, at least on one of the sampled dates, both in 2003 

and 2004 (Fig. 5.4 and 5.5). There was a significant interaction between site and month 

(Table 5.5). In 2003, settlement of cyprids was significantly higher in August and 

September than in the other months. In August, the number of settled cyprids was 

significantly higher in the mid site (Oreston) than in the upper site (Saltram Wood) and 

lower site (Mount Batten Centre) (Fig. 5.4.). In September, higher numbers of cyprids 

were detected in Mount Batten Centre than in the former month, and these densities 

were similar to those at Oreston (Fig. 5.4). 

Table 5.5. Two-way ANOV A (factor I: Site, factor 2: Month) on density of E. modestus cyprids 
in panels in the Plym Estuary in 2003. 

Source Df 

Site 2 

Month 

Site*month 

Error 

6 

12 

178 

MS 

10.75 

18.56 

5.06 

0.25 

116 

F 

43.53 

75.13 

20.50 

p 

<0.001 

< 0.001 

< 0.001 
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Plym Estuary- 2003 
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Fig. 5.4. Density of cyprids Ba/anus species, C. montagui and E. modestus in the Plym Estuary 
in sampling dates in 2003. Saltram Wood was the uppermost site and Mount Batten Centre the 
closest site to the sea. Each data point represents the mean of ten replicates. Bars represent 
standard error. 

Settlement of cyprids of E. modestus was higher at Saltram Wood in 2004 than 

in 2003 . There was a significant interaction between site and month (nwnbers of cyprids 
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at this site were comparable to those in the two lower sites in the July and August 

samples. In September, cyprid numbers at the Mount Batten Centre were significantly 

higher than at any other sampled site or date. 
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Fig. 5.5. Density of cyprids of Balanus species, C. montagui and E. modestus in the Plym for 
sampling dates in 2004. Saltram Wood was the uppermost site and Mount Batten Centre the 
closest site to the sea. Each data point represents the mean of ten replicates. Bars represent 
standard error. 
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Table 5.6. Two-way ANOVA (factor I: Site, factor 2: Month) on density of E. modestus 
cyprids in panels in the Yealm Estuary in 2004. 

Source df MS F P 

Site 2 7.04 9.89 < 0.001 

Month 

Site"'month 

Error 

6 

12 

177 

5.3.2.2. Yealm Estuary 

16.08 

2.41 

0.71 

22.58 

3.38 

< 0.001 

< 0.001 

In 2003, settlement of C. montagui and Balanus species at the mouth of the 

Yealm (Cellar Beach) reached higher values than in the mouth of the Plym either in 

2003 or in 2004 (Fig. 5.6). In contrast to the Plym, cyprids were only found at this site 

and were absent from the sites located in the upper reaches of the estuary (Heron's 

Reach and Steer Point) (Fig. 5.6). In 2004 numbers of cyprids of these groups were 

extremely low at all sites (Fig. 5.6). 

The number of cyprids of E. modestus sampled in the Yealm tended to be lower 

than in the Plym. In 2003, results were different from those obtained in the Plym, where 

the numbers of cyprids of E. modes/us in mid and upper sites were comparable to 

numbers in the site located in the mouth of the estuary; cyprids in the Yealm were more 

abundant in Cellar Beach than at sites located in upper areas of the estuary. On some 

occasions this was the only site where cyprids were found (Fig 5.6). There was a 

significant interaction between site and month (Table 5.7). 

Table 5.7. Two-way ANOVA (factor I: Site, factor 2: Month) on density of E. modestus 
cyprids in panels in the Yealm Estuary in 2003. 

Source df MS F P 

Site 2 0.05 33.99 < 0.001 

Month 

site"'month 

Error 

6 

12 

167 

0.05 

0.03 

0.001 
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40.14 

21.11 
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Yealm Estuary - 2003 
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Fig. 5.6. Densities of cyprids of Balanus species, C. montagui and E. modestus in the Yealm 
Estuary for sampling dates in 2003. Steer Point was the uppermost site and Cellar Beach the closest 
site to the sea. Each datum point represents the mean of ten replicates. Bars represent standard 
error. 

In 2004, the occurrence of E. modestus cyprids was more similar between sites 

(Fig 5.7) than in 2003, and no significant interaction existed between site and months 

(Table 5.8). 
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Yealm Estuary- 2004 
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Estuary for sampl ing dates in 2004. Steer Po int was the uppermost site and Cellar Beach the c losest 
site to the sea. Each data point represents the mean often repl icates. Bars represent standard error. 

Table 5.8. Two-way ANOVA (factor 1: Site, factor 2: Month) on density of E. modestus cyprids 
in panels in the Yealm Estuary in 2004. 

Source df 

Site 2 

Month 

Site*montb 

Error 

6 

12 

157 

MS 

9.04 

7.62 

1.76 

1.11 

121 

F 

8.10 

6.84 

1.58 

p 

< 0.001 

< 0.001 

0.103 
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Chapter 5: Recruitment o[Barnacles in Estuaries 

5.3.1. Cumulative recruitment (7 months) 

5.3.2.1. Plym Estuary 

Patterns of cumulative recruitment over 7 months along the Plym estuary were 

similar between years (Fig. 5.8). Recruitment of C. montagui and Balanus species was 

virtually absent in 2003 and 2004 at all sites (Fig. 5.8). Results of ANOVA tests show 

that there were no significant difference between years, and no interactions between 

year or the other two factors (Taxon and Site) (Table 5.9). Distance from the sea (Site) 

is the factor that accounts for most of the variability in recruitment of E. modestus. 

There were no significant differences in recruitment of E. modestus between Mount 

Batten Centre and Oreston, and at both sites it was significantly greater than at Saltram 

Wood (Fig. 5.8). 

• E. modestus 
D C. montagui 
IWJ other barnacles 

b 
b 

b b 

Saltram Wood Ores ton Mount Batten Centre Saltram Wood Oreston Mount Batten Centre 

2003 - ------ 2004 -------

Fig. 5.8. 7-month recruitment of E. modestus, C. montagui and Balanus species in the Plym 
Estuary in 2003. Saltram Wood was the uppermost site and Mount Batten Centre the closest site 
to the sea. Each column represents the mean of ten replicates. Bars represent standard error. 
Letters above bars represent homogeneous groups according to ANOV A (SNK test, p > 0.05). 
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Table 5.9. Two-way ANOVA (factor 1: Year, factor 2: Site) on 7-month recruitment of 
E. modestus on panels deployed from May to November in the Plym Estuary in 2003 
and 2004. 

Source 

Year 

Site 

Year* Site 

Error 

df 

2 

2 

48 

5.3.2.2. Y ealm Estuary 

MS 

1.05 

7.36 

0.75 

0.63 

F 

1.68 

11.75 

J.l9 

p 

0.201 

< 0.001 

0.312 

As in the Plym, there were no differences between years and no interactions 

between years and other factors (Table 5.1 0). Relative position within the estuarine 

gradient (Site) was the factor explaining variability in recruitment. However, two 

important differences in 7-month recruitment existed between the two estuaries: 1. there 

was recruitment of C. montagui and Balanus species (Cellar Beach) (Fig. 5.9); and 2. the 

pattern of recruitment along the estuary was different, and recruitment at the mouth of the 

Yealm was significantly higher than recruitment at the two upper sites for all species (Fig. 

5.9). 

• E. modestus 9
·
0 D C. montagui 
~ other barnacles 

80 

E 1.0 
0 

d 
~ 60 
0 
vi 
~so 
0 
<0 

~ 4.0 
D 

0 30 

~ 2 0 
:l 

z 1 0 b b 

a 0.0 ..____._L..._ ___________ _ 
Steer Point Heron's Reach Cellar Beach 

------- 2003 --- ----

Steer Point Heron's Reach Cellar Beach 

------- 2004 --- ----

Fig. 5.9. 7-month recruitment of E. modestus, C. montagui and Balanus species in the Yealm 
Estuary in 2003. Saltram Wood was the uppermost site and Mount Batten Centre the closest site 
to the sea. Each column represents the mean of ten replicates. Bars represent standard error. 
Letters above bars represent homogeneous groups according to ANOV A (SNK test, p > 0.05). 
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Table 5.10. Three-way ANOVA (factor 1: Year, factor 2: Species, factor 3: Site) ori 7-month 
recruitment of E. modes/us, C. montagui and Balanus species on panels deployed from May to 
November in the Yealm Estuary in 2003 and 2004. · 

Source df MS F P 

Year 0.10 0.49 0.485 

Species 2 17.60 82.66 <0.001 

Site 2 25.24 118.57 <0.001 

Year*Taxon 2 0.15 0.72 0.488 

Year* Site 2 0.63 2.94 0,056 

Taxon*Site 4 1.25 5.86 < 0.001 

Year*Taxon *Site 4 0.32 1.52 0.199 

Error 132 0.21 

5.4. Discussion 

The results clearly show that E. modestus dominated estuarine intertidal hard 

substrata at the settlement and recruitment stages. E. modest us was the only species with 

large numbers of cyprids and monthly recruitment at the inner sites of the estuaries 

investigated in this study. Recruitment over periods longer than a month (7 months) 

confirmed this dominance. Other barnacle species only recruited at the mouth of 

estuaries, wherer, in the case of C. montagui, comparable levels of recruitment to E. 

modestus were attained. These results highlight the importance of the initial stages in 

setting patterns of distribution of barnacles in estuaries. Patterns of distribution, 

abundance and settlement of larvae along the estuarine gradient are probably the main 

determinants of the observed recruitment patterns. There was temporal and spatial 

variability in settlement and recruitment. Temporal patterns of settlement'throughout the 

year correlated well with the reproductive cycle of the species examined. Variability 

along the estuarine gradient was detected, with greater settlement and recruitment 

occurring at seaward locations and decreasing with increased distance from the sea for 

all species. 
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5.4.1. Settlement and larval supply 

As distinct from the counts of post-methamorphosis individuals, which 

encompassed individuals that arrived throughout the month and survived to the time of 

collection of tiles, cyprid counts represented a snapshot in time, rather than a picture of 

the settlement throughout a particular month. Although this variable did not represent 

settlement intensity during the month, it did allow the comparison of settlement between 

sites at definite moments in time when sites were simultaneously sampled. 

The distribution of cyprids in the estuaries suggests that patterns of recruitment 

are largely determined by settlement. No cyprids of C. montagui and Balanus species, 

or on some occasions very few, were observed at sites located in inner reaches of the 

estuaries. This contrasted with sites located at the mouth of the estuaries where greater 

numbers of cyprids settled. This pattern of settlement coincided with the general pattern 

of distribution of these species in the estuaries, which is characterized by lower 

abundance or absence of these groups in mid and upper reaches of the estuaries. The 

only deviation from this was observed for C. montagui at the midpoint of the Yealm. At 

this position (Heron's Reach) C. montagui was present during the surveys, although no 

evidence of recent settlement was detected. Settlement of C. montagui at this location 

may constitute an occasional event with settlement failure being the norm. In other 

estuaries, settlement and recruitment of this species in the proximity of its uppermost 

limits of occurrence within estuaries, also appears to be irregular. For example, in the 

Ranee estuary, C. montagui populations found in the inner areas of the estuary consisted 

of old and weathered specimens (Little & Mettam, 1994); while in the Severn, 

monitoring of recruitment at transects where adults were found over three successive 

years revealed no settlement or recruitment (Mettam, 1994 ). This indicated that these 

populations are formed by individuals that settled in particular years but where there is 
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no consistent annual input of recruits. This may be the case for populations found in the 

Yealm and also in the Plym, and considering the similarities between these two 

estuaries and others in the region, settlement is possibly a widespread but occasional 

phenomenon in estuaries inhabited by this species. 

Several studies have shown that adult distribution of barnacles can be strongly 

determined by settlement (e.g. Underwood & Denley, 1984; Connell, 1985; Gaines & 

Roughgarden, 1985; Gaines et al., 1985; Raimondi, 1990; Minchinton & Scheibling, 

1991; Jenkins, 2005). The results here highlight the importance of settlement along the 

estuarine gradient. In other estuaries, variations in settlement were also shown to be 

responsible for differences in recruitment along the sea-to-freshwater gradient (Ross & 

Underwood, 1997; Ross, 200 I; Satumanatpan et al., 1999). Across mangrove estuaries 

where density of E. covertus decreased towards the riverine end of the estuaries, 

horizontal settlement patterns were shown to mirror adult distribution, suggesting that 

settlement patterns were the main cause of the observed adult distribution (Ross & 

Underwood, 1997; Ross, 2001; Satumanatpan et al., 1999). 

E. modes/us also showed greater settlement at the mouth of the estuaries than at 

sites located in mid and upper reaches, but this was not a consistent pattern for this 

species. On many of the dates sampled E. modes/us cyprids settled in comparable 

numbers at all sites. This species is found in great abundance from seaward areas up to 

the innermost limits of estuaries. In contrast to the other barnacle species studied here, 

populations within estuaries constitute the main source of competent larvae of E. 

modes/us for settlement. Thus, the occurrence of heavy cyprid settlement in the mid and 

upper reaches of the estuaries was expected. On the other hand, this species is more 

abundant in inner regions than in the seaward limits of estuaries as demonstrated by 

surveys in the estuaries investigated here (see Chapter 2) and by work in other estuaries 

( e,g. Mettam, 1994; Hiscock & Moore, 1986). Particularly in the mouth of Yealm, 
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which is located at a more wave-exposed position outside the Plymouth Sound, E. 

modestus occurs at lower abundances than within the estuary and represents a much 

lower proportion of the total barnacle fauna (Southward, 1991 ). Despite this, settlement 

was heavy at this location and did not reflect adult abundances. It is probable that post­

settlement processes assume a greater importance for E. modestus populations at this 

location, causing reductions at later stages of their development. 

It is only possible to speculate about the pre-settlement processes that 

determined the patterns of settlement observed during the present study. Studies which 

focused on settlement along estuaries or other coastal horizontal gradients, 

demonstrated that patterns of settlement can result from larval supply (e.g. Hawkins & 

Hartnoll, 1982; Gaines et al. 1985; Gaines & Roughgarden, 1985; Gaines & 

Roughgarden, 1987; Ross, 2001; Satumanatpan & Keough, 2001; Jenkins & Hawkins, 

2003) and/or larval behaviour (e.g. Boulsfield, 1955; Raimondi & Keough, 1990; 

Raimondi, 1991; Jenkins, 2005). 

Gaines and colleagues (Gaines et al. 1985; Gaines & Roughgarden, 1985), 

compared cyprid supply at seaward and landward sites on rocky shores and 

demonstrated that differential densities of cyprids reached sites along this gradient due 

to settlement acting as a drain of cyprids and reducing availabilitY of cyprids at more 

landward areas. The same phenomenon was observed controlling the densities of 

cyprids in the water column along the main axis of a mangrove forest for two barnacle 

species (E. cover/us and H. popeina). In the latter, behaviour at settlement, with 

preferential settlement occurring in seaward areas due to cues on substrata intensified 

the drain of cyprids and reduced availability of cyprids in the upper reaches. 

Alternatively, work on Chthamalus species (C. montagui and C. stellatus) clearly 

demonstrated that active substratum selection by larvae can surpass the influence of 

larval supply and generate differential settlement between sheltered and wave-exposed 
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shores even when the supply of larvae is similar (Jenkins, 2005). The estuaries used in 

the present study differ considerably from mangrove forests, where settlement of 

barnacles occurs on the roots and branches of these trees which act as a filter for larvae 

passing along the estuary. Nevertheless it is possible that either preferential settlement 

at lower or upper reaches or differential larval supply along the estuary exist in the 

barnacle species investigated. 

Differential larval supply may be expected, considering that E. modes/us is 

much more abundant than other species in the estuaries. However, the maintenance of 

patterns of larval supply that emerge due to larval production depend greatly on the 

degree of openness of a particular system which is associated with the hydrodynamics 

and degree of exchange of water between the inlet or estuary and the open coast. A 

parallel can be made to patterns observed in Lough Hyne where E. modes/us is also 

dominant at the adult and recruitment stages (Lawson et al. 2004; Watson et al., 2005). 

In this sea lough processes of larval retention have a major contribution to the observed 

patterns. Lough Hyne consists of an inner body of water with very low freshwater input 

linked to the sea by a narrow passage, which results in water being exchanged with the 

sea at low rates. In contrast, the estuaries used in the present study are small rias with 

relative short residence times, Plym 4 days and the Yealm 1.5 days (Uncles et al., 

2002). Observations during fieldwork, revealed that these estuaries tended to drain 

substantially during low tides and in these occasions little water was present at the mid 

and upper reaches. The dominance of E. modes/us in this case, requires a much more 

efficient mechanism of larval retention, or may depend on the production of large 

numbers of larvae, not only within the estuary, but also in other local estuaries and 

sheltered habitats. 

It is also important to notice that in Lough Hyne the dominance of E. modes/us 

occurs without loss of other barnacle species (Lawson et al. 2004). Larvae produced 
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inside the Lough by other species also tend to be retained regardless of their behaviour 

in the water column. In the estuaries studied here other species that are not as abundant 

and fecund as E. modestus, or that lack efficient mechanisms of larval retention, may 

endure severe loss of larvae from the estuary and the supply brought during flood tides 

may not reach the densities necessary for significant settlement on estuarine shorelines. 

This could explain extreme low settlement/recruitment at these areas. 

5.4.2. Post-settlement patterns 

Temporal variations in recruitment within the year occurred, as might be 

expected, considering the reproductive cycle of the species detected, which showed 

peaks during summer. C. montagui, which is a warm-water species, shows peak of 

developing embryos in July and August (Crisp. et al., 1981; Burrows et al., 1992, 1999) 

and previous work in the Plymouth Sound found abundance of early stage larvae 

throughout July to September with peak density in August (Jenkins, 2005). During the 

present study this species recruited mainly in August and September. Although E. 

modestus breeds throughout most of the year, it shows greater fecundity during spring 

and summer in British waters (Crisp & Davies, 1955; Bames & Barnes 1968; 

O'Riordan & Murphy, 2000). This species showed a much more extensive period of 

recruitment (from May to October) than the other species. 

Patterns of recruitment corresponded to patterns of cyprid settlement along the 

estuaries. This indicated that processes occurring during recruitment, such as mortality 

and biological interactions, did not produce considerable changes in patterns determined 

by settlement at the time scales investigated here (monthly and 7 months). As 

mentioned before, these patterns corresponded to general patterns of adult distribution 

of C. montagui and Ha/anus species, but not of E. modes/us. These results provide 
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evidence that two different models can explain the distribution of these species along 

the estuarine gradient. In C. montagui and Balanus spp., post-settlement processes were 

not a strong influence, and settlement, due to variability in larval supply or to larval 

behaviour, controls the distribution of the adults. 

Settlement of E. modestus was much higher than for the other intertidal barnacle 

species at all sites. Post-settlement processes would be expected to have a stronger 

influence on recruits and possibly change initial patterns determined by settlement. 

Differential mortality was expected for E. modes/us along the estuarine gradient. 

Evidence suggests that this species is more successful and able to survive at sheltered 

estuarine habitats than in more wave-exposed conditions (Southward, 1991 ). In the 

transplant experiments performed during this study, this species showed better 

performance in inner estuarine areas than at sites located closer to the sea or outside 

estuaries (see Chapter 3). Despite this, considerable reductions in recruits in the 

seaward, relative to the estuarine sites, were not observed, either over the 30-day or over 

the 7-month periods. It is possible that these periods of time were not sufficient for a 

different pattern to emerge and that regulation takes place over longer time scales. 

Conditions during winter at these locations could be particularly important. As noted by 

Southward (1991) E. modes/us is mostly represented on the mouth of the Yealm by 

young individuals, which do not survive through their first winter after settlement. 

This Chapter demonstrates that E. modestus can dominate barnacle settlement 

and recruitment in estuaries. This species showed greater abundance of cyprids and 

greater subsequent recruitment than the other species. Settlement is a crucial stage 

determining patterns of adult distribution in these estuaries. Post-settlement processes 

are more relevant for E. modestus in the lower reaches of these estuaries where events 

causing winter mortality are the most plausible explanation for the lower abundance of 

adults of this species at the mouth of the estuaries. 
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CHAPTER6 

GENERAL DISCUSSION 

In this discussion, I outline the limitations of my work before considering the 

relative importance of pre- and post-settlement processes in setting patterns of species 

distribution in estuaries. I also revisit the models introduced in the general introduction 

(Fig. 1.3), discuss some of the causes and consequences of E. modestus invasion and 

dominance in estuaries, and suggest further relevant work related to the topics studied in 

this thesis. 

6.1. Limitations of this study 

Semibalanus balanoides was not detected during the work on settlement and 

recruitment (Chapter 5). This species settles during spring, particularly in April and 

May, but shows considerable variability in the onset and duration of settlement between 

years (e.g. Hawkins & Hartnoll, 1982; Southward, 1967; 1980; 1991), with the onset of 

settlement being correlated to phytoplankton blooms (Bames, 1956; 1957, 1962). A 

long-term study in the Yealm Estuary (Southward, 1991) demonstrated that peaks of 

settlement of S. balanoides occur typically in April and that this species exhibits periods 

of decline and years of settlement failure associated with warmer conditions 

(Southward, 1991 ). In the present study panels were deployed on the 4th and 5th of 

April in 2003 and 16th and 1 ih of April in 2004 and should have sampled S. balanoides. 

Hence, colonisation of tiles at times of deployment would have been likely if this 

species was present in any substantial numbers. This species has entered in a phase of 

decline since the beginning of the 1990s (Pannaciulli, 1995) associated with warmer 

local conditions, intensified by the influence of global climate change. Recruitment in 
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recent years has been low around Plymouth (S. J. Hawkins, pers. comm.) and it is 

therefore possible that S. balanoides was not present in sufficient densities to be 

detected. 

It was hoped that the study of planktonic larval stages of E. modes/us and native 

species along the estuarine gradients would provide valuable information on 

mechanisms generating patterns of settlement and distribution in estuaries. Plankton 

collections were made during the period when recruitment was monitored in my study, 

but processing could not be concluded and data have been not included in this thesis, 

but will be incorporated in subsequent publications. Briefly, plankton samples were 

collected every month at each station used for monitoring of recruitment during the 

periods when settlement tiles were deployed. The objectives of the work on plankton 

were to test the hypotheses that the relative abundance of species and ontogenetic stages 

of barnacle larvae differ horizontally along estuarine water masses and that recruitment 

densities correlate with the abundance of late larval stages (cyprids and late nauplii) 

along estuarine gradients. Although the absence of data on the planktonic larval stages 

along the estuarine gradient precludes a conclusive discussion on how pre-settlement 

processes operate, it does not disqualify considerations on how important they are, 

relative to post-settlement processes, in determining distributions. 

6.2. Relative importance of pre and post-settlement processes on the 

distribution of barnacles in estuaries 

My results indicate that both pre- and post-settlement processes influence 

patterns of distribution and abundance of barnacles along estuarine gradients. Post­

settlement processes were probably important in leading to the decrease in abundance of 

E. modes/us at seaward sites and in limiting the distribution of S. ba/anoides towards 
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upper reaches of the estuaries. Limitations on distribution caused by pre-settlement 

processes were especially important in setting the up-estuary limits of C. montagui, but 

also contribute to patterns of reduced abundance forS. ba/anoides. From the patterns of 

distribution and abundance described in Chapter 2, the results from transplant 

experiments along estuarine gradients presented in Chapter 3, the patterns of settlement 

and recruitment investigated in Chapter 5, and the evidence from laboratory 

experiments on the effects of silt from Chapter 4, it is possible to suggest how E. 

modestus, S. balanoides and C. montagui fit within the models proposed in the 

introduction of this thesis (Fig. 1.3). 

Transplant experiments (Chapter 3) demonstrated that C. montagui was able to 

survive at sites beyond its up-estuary limit of distribution, although survival within the 

estuary was lower than at the marine source site. This suggests that pre-settlement 

factors rather than post-settlement tolerance to environmental conditions were 

responsible for setting absolute limits of its penetration up the estuaries investigated 

(Fig. 6.1 a). The poor settlement and recruitment observed for this species within the 

estuaries give additional support to this view. Within its range of distribution in the 

estuaries, this species was influenced by environmental factors, with salinity probably 

having a greater effect than silt deposition (Chapter 3 and 4). 

The distribution and abundance of S. balanoides is known to be affected by low 

levels of settlement in the region (Southward, 1991 ), but despite this, adults occurred 

higher up the estuary than C. montagui. Periods of low recruitment of S. balanoides 

have been linked to climate, with warmer conditions having detrimental effects on 

settlement and abundances of this species (Southward & Crisp, 1952; Barnes & Bames, 

1966; Southward, 1991, Herbert et al., 2004). I suggest that low abundances observed 

for this species in the estuaries examined here follow the trend observed on the open 

coast, which is related to climatic conditions (Southward, 1991; Herbert et al., 2004). In 
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addition, this trend may have been amplified by considerable occupation of substrata by 

E. modes/us in estuaries. Absolute limits of penetration in estuaries are related to the 

tolerance of S. balanoides environmental stresses typical of estuaries, with silt 

deposition being particularly important as evidence from Chapters 3 and 4 suggested 

(Fig. 6.1 b). 

It is clear that larvae of E. modes/us are normally available throughout the 

estuaries, as no limitation to settlement was detected (Chapter 5). It is not certain how 

larvae of this species achieved the necessary abundance and distribution along the 

estuarine gradient to reach the observed levels of settlement. After settlement, 

recruitment of this species tends to mirror its settlement (Chapter 5). However, there 

was evidence that post-settlement limitations occurred at the seaward extremity of the 

distribution range of E. modes/us. Evidence for this comes from the comparison of the 

relationship between settlement and initial recruitment and adult populations (Chapter 

2). Results from surveys performed in this study combined with results from other 

works (Southward, 1991, Pannaciulli, 1995, Hiscock & Moore, 1986) demonstrate that 

populations of E. modes/us show lower abundance at the mouth of the estuaries than at 

inner estuarine areas. Considering that settlement and recruitment (up to 7 months) 

showed similar levels among these sites, limitations probably occur at a later stage in 

the development of the populations at seaward locations. This view was supported by 

results from transplants of adults along the estuaries, which demonstrated that E. 

modes/us survived better at inner areas of the estuaries than at seaward areas or at the 

marine source site (Chapter 3). A model where larval availability is not limiting and 

post-settlement processes become paramount at the seaward limits of distribution of this 

species offers the best explanation for the observed patterns (Fig. 6.1 c). 
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Fig. 6.1. Schematic representation of explanatory models for the distribution of barnacle 
species in estuaries. a) C. montagui; b) S. ba/anoides; and c) E. modestus. Hatched areas 
indicate areas with irregular settlement according to results from Chapter 5. 
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6.3. Dominance of E. modestus and consequences for native speCies 

The invasion and current dominance of E. modestus is a consistent feature of 

many European estuaries (Crisp, 1958; Wolff, 1999; Nehring, 2006). Several of the · 

characteristics of E. modestus believed to have facilitated its invasion of European 

estuaries were discussed in the previous chapters. However, it is convenient to 

synthesize this information in the view of results obtained here. Harms ( 1999) suggested 

that, besides the highly eurythermal and euryhaline larval stages and adults, the major 

attributes responsible for the successful invasion of European waters by E. modestus 

are: 1. the effective utilization of food by high cirral activity (Southward, 1955); 2. the 

high fecundity over much of the year (Crisp & Davies, 1955; Barnes & Bames, 1968); 

and 3. the relative short generation time (Crisp & Davies, 1955). Crisp (1958), had 

previously considered the factors cited above, but also mentioned the observational 

deduction that greater tolerance to high levels of sedimentation and silt deposition 

would also be important. My work in Chapter 4 confirmed the importance of tolerance 

to sedimentation in allowing this species to thrive in estuaries. I believe that the 

considerations made by Crisp (1958) and by Harms (1999) are complementary in 

explaining the invasion potential of E. modestus, and that the features described above 

are also important in explaining the dominance of this species in estuaries. 

My investigations corroborate Harms ( 1999) suggestion that greater 

effectiveness in utilizing food due to higher cirral activity gave E. modestus an 

advantage over native species. Direct effects of low salinities and salinity fluctuations 

on the osmotic balance of specimens was probably responsible for mortality at the most 

severe conditions found at the inner estuarine sites utilized for transplants, especially in 

C. montagui. However, barnacles are able to isolate themselves from adverse conditions 

by closing their opercular plates. The combination of periods of isolation from water, 
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enforced by low salinity, salinity fluctuations and deposition of silt, offered a much 

better explanation for the mortalities observed along the estuarine gradients (Chapter 3). 

Similarly, in my experiments on burial by silt (Chapter 4), which provided a 

demonstration that burial by layers of sediment can strongly affect the survival of these 

barnacles, the greater tolerance of E. modestus can be explained by its ability to 

withstand longer periods of isolation. 

The introduction of a non-native species does not necessarily bring about 

harmful or large effects over native habitats and species (Ruiz et al, 1997; Reise et al., 

2006). However, considering that E. modestus is highly dominant and shows a 

competitive superiority over native species in estuaries, the consequences of its invasion 

prompt concern. This species is not a strong competitor in fully marine conditions 

where it does not displace native species on rocky shores (Southward, 1991 ). However, 

E. modes/us has largely displaced S. balanoides in estuaries, especially in the South­

West. Estuaries are not the primary habitat forS. balanoides, which favours open shores 

(Lewis, 1964; Foster, 1970), and it could be expected that reductions of estuarine 

populations of S. balanoides would not affect this species at a larger scale. However, in 

combination with the effect of warmer weather conditions, the reduction of a previously 

available habitat found in estuaries may become of greater relevance. Estuarine areas 

which may have provided refuge for populations of S. balanoides in the past are now 

largely occupied by E. modestus, and this may have consequences for recruitment of S. 

balanoides to the open coast. 

E. modestus is an important invasive spec1es m European estuaries with 

potential effects on other estuarine biota. My results demonstrate that this species can 

achieve high levels of dominance along most of the estuarine gradient. The greater 

tolerance of post-settlement stages to conditions found at areas away from the seaward 

limits of estuaries, combined with high levels of settlement and early recruitment along 
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the whole estuarine gradient, probably explain this dominance. Post-settlement stages of 

S. ba/anoides and C. montagui were relatively more susceptible to environmental 

conditions experienced in inner areas of estuaries and low settlement and recruitment 

events probably contribute to the limited distribution and abundance of these species. 

6.4. Conclusions and suggestions for further work 

In conclusion this thesis has clearly shown that all species of barnacles 

examined experienced variations in abundance and survivability associated with 

estuarine gradients, E. modestus declining towards the sea and C. montagui and S. 

balanoides declining towards the riverine end of estuaries, and that E. modestus was the 

dominant species in estuaries most probably as a result of enhanced recruitment and 

physiological tolerance to salinity and sedimentation. 

Further work is now required to examine the influence of larval supply on 

patterns of settlement observed in estuaries. This would contribute to our understanding 

of the ecology of the species examined here, including the dominance and invasive 

potential of E. modestus. Further study of the distribution oflarval developmental stages 

along estuarine water masses could elucidate the coupling between local larval 

production and settlement, revealing the degree of openness of estuarine populations. 

Also, assessment of larval vertical and horizontal distributions and their correlation with 

physico-chemical parameters of the water body could help to determine the influence of 

larval behaviour and larval tolerance to salinity and other variables. 

A further interesting outcome of this work was the decline in abundance and 

survival of E. modestus at seaward sites. This may be a result of differences in the 

relative importance of biological interactions such as predation and competition along 

estuarine gradients. More work is required to tease apart the relative importance of these 
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factors and experiments involving predator exclusions and examination of substrata pre­

emption would be particularly useful. 

Finally, the effects of sedimentation, and the mechanisms responsible for 

tolerance to this interference in barnacles, as suggested by my work deserve more 

attention. Further work on this subject using barnacles and other marine species is 

essential, especially taking into consideration that anthropogenic activity is now 

responsible for increasing levels of sedimentation in coastal habitats worldwide 

(Airoldi, 2003). 
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