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Abstract 

Free Radical Activity, Lipid Peroxidation and Antioxidant Status in 

Diabetes Mellitus 

by 

lrena Christine Belka 

The role of free radicals and antioxidants in human disease, particularly cardiovascular 

disease is an area of intensive research. Diabetes mellitus is the most common condition 

associated with increased oxidative stress and accelerated atherosclerosis. Increased levels 

of lipid peroxides and diminished antioxidant vitamin status have been reported in diabetic 

patients and are also implicated in the chronic complications of diabetes. 

The autoxidation and glycoxidation reactions of glucose are sources of free radicals in vitro 

and a preliminary investigation that these reactions may be a source of free radicals in vivo 

was undertaken in patients admitted to hospital with severe hyperglycaemia or diabetic keto­

acidosis. Plasma lipid peroxides were elevated 2-7 fold above the reference range, but 

decreased during the recovery period in these patients. Plasma urate and ascorbate levels 

decreased rapidly, whilst interestingly, a-tocopherol levels /lipid ratios were preserved. 

The study indicated the resilient nature of the antioxidant defences in plasma, although 

further studies are required in order to elucidate fully the role of autoxidation and 

glycoxidation reactions in vivo. 

Insulin resistance and hyperinsulinaemia are also tightly linked with atherogenesis in type II 

diabetes and weight loss in obese subjects plays an important part in the reversal of insulin 

resistance. The safety and efficacy of two weight loss interventions - very low calorie diet 

(VLCD) and intensive conventional dietetic (I CD) therapy - on cardiovascular risk factors 

and indices of oxidative stress were investigated in obese diabetic and non-diabetic subjects. 

The ICD therapy produced modest weight loss in patients with established diabetes with 

transient improvements in diastolic blood pressure and plasma ascorbate, but with a 

reduction in vitamin E I serum lipid ratios. The VLCD produced large and rapid weight loss 

in diabetic and non-diabetic patients with improvements in cardiovascular risk factors, lipid 

peroxides and vitamin E I serum lipid ratios, which were maintained after 12 months. 

Plasma ascorbate concentrations were significantly lower in diabetic patients than non­

diabetic patients on the VLCD, indicating that formulated diets may require higher 

concentrations of vitamin C for diabetic patients and this requires further investigation. The 

VLCD successfully reversed type II diabetes and normalized plasma lipid peroxide levels in 

two newly diagnosed patients. 



Prac.~ mojl}' dedykuj~ dla' moich mdzic6w, Stanis{awyii l(~im.ierza Belki, 

z podzi~kowaniem za .inspiracj~ i :iyczliwosc. 
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1. Introduction 

1.1 Free Radicals 

1.1.1 Historical overview 

The term 'radical' was introduced by Lavoisier in 1789 to designate groups of elements 

which combined with oxygen in acids (Lavoisier 1789 cited by Ihde 1966). The term 

persisted and was used by chemists in the early nineteenth century to signify a group of 

atoms which remained unaltered through a series of reactions. Many attempts were made to 

isolate such compounds, particularly those containing trivalent carbon. In the 1860s, the 

vapour density method for the determination of molecular weights led to a reassessment of 

chemical structures thought to be radicals. Valency theory and the acceptance of the 

quadravalency of the carbon atom resulted in the abandonment of radical theories and their 

abnormal valency requirements (lhde 1966). Thus, Gomberg's discovery in 1900 of the 

triphenylmethyl free radical, the first authenticated free radical, was treated with disbelief 

(Gomberg 1900). In the decades that followed, it was realized that simpler trivalent carbon 

atoms could have a fleeting existence and the presence of free radicals in the gaseous phase 

or in solution was unequivocally established in the period 1900-1930 (lhde 1966). 

In the 1940s, chemists at The British Rubber Producers' Research Association established 

the nature of the free radical reactions responsible for the rancidification of fats and oils 

(Bateman 1954). By the end of the 1960s, free radical technology was the basis of the 

polymer and plastic industry. In biological terms, an interest in free radicals only really 

began in 1968 with the discovery of superoxide dismutase (SOD), an enzyme in aerobic 

cells, whose specific role was the removal of the superoxide anion free radical (McCord and 

Fridovich 1969). The toxic effects of oxygen were well known and this discovery 

developed into the superoxide theory of oxygen toxicity, which stated that the toxic effects 

of oxygen were mediated by the superoxide free radical and that SODs provided an 

important defence against it (Fridovich 1975; Fridovich 1978). Prior to this discovery, 

Gerschman et at. ( 1954) had hypothesized that the damaging effects of oxygen and X -rays 

were attributed to the formation of oxidizing free radicals and Harman ( 1956) had proposed 

that the ageing process was caused by free radical reactions. 
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Today, a free radical is accepted as being either an atom or a molecule, possessing one or 

more unpaired electrons, that is capable of independent existence, the unpaired electron 

being one that is alone in an orbital (Halliwell and Gutteridge 1989). Free radicals are 

formed by the homolytic cleavage of a covalent bond (reaction 1.1 ), in contrast to heterolytic 

fission which produces ions (reaction 1.2). The free radical is represented by a dot ( ·) that 

signifies the unpaired electron. Radicals may also be formed by the transfer of electrons 

from an electron rich donor to an electron acceptor. 

A:B~A·+B· 

A:B~A:-+ B+ or A+ + B:-

(1.1) 

(1.2) 

Radicals may be electrically charged or neutral. Most organic radicals are neutral, but all 

possess addition properties in order to achieve a more stable paired-electron status and are, 

as such, reactive species with short half-lives. The presence of unpaired electrons results in 

a small, permanent, magnetic moment and paramagnetic properties, enabling the direct 

detection of free radicals by electron spin resonance (ESR). Although ESR techniques are 

sensitive, the radicals under investigation are usually short-lived and detection is difficult. 

Such difficulties are overcome by the use of 'spin-traps', compounds which are non-radicals 

and have no ESR signal, but which are reactive towards other radicals forming 'spin­

adducts', which are more persistent and detectable. Typical traps are the nitrones and 

nitroso compounds which form nitroxide spin-adducts (Janzen 1984; Rice-Evans et al. 

1991). Unfortunately, ESR is not directly applicable to the study of free radicals in the 

clinical setting. 

1.1.2 Biological implications 

Molecular oxygen (02), as well as being essential to aerobic life, also imposes toxicity 

(Fridovich 1975; Cadenas 1989). The one electron reduction of 02 from numerous 

biological sources, generates the superoxide anion free radical (02·-). This is a primary 

source of reactive radicals and damaging intermediates, which can result in the oxidation of 

proteins, lipids and deoxyribonucleic acid (DNA), thereby threatening cell integrity. 
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Table 1.1 Reactive oxygen species of biological importance (modified from Pryor 1994). 

Radical Name 

·OH Hydroxyl radical 
RO· Lipid alkoxyl radical 
ROO· Lipid peroxyl radical 
R· Lipid carbon centred radical 
H202 Hydrogen peroxide 
02·- Superoxide anion radical 
102 Singlet oxygen 
Q· d Semiquinone radical 
NO Nitric oxide 
ONO(} Peroxynitrite 
HOCI Hypochlorous acid 

Substrate a 

RHb 
RH 
RH 
02 
- c 

- c 

H20 
02 
- e 

-I 
-8 

Half-life at 3TC 
(seconds) 

10-9 
10-6 
7 
10-8 
minutes 
10-5 
10·6 
Days 
1-10 
0.05-15 

a Substrate chosen as a typical representative of a target molecule of the free radical. 

b RH is a polyunsaturated fatty acid. 

c The reactions of H202 and 02·- are limited by their reactions with enzymes. 

d Q- represents a semiquinone radical as found in cigarette tar. 

e Nitric oxide has several biological targets, e.g., haem proteins and 02·- (Bredt and Snyder 1994). 

I Peroxynitrite is a potent oxidant, mediating numerous reactions (Beckman et al. 1994). 

8 Hypochlorous acid is a powerful oxidant produced by phagocytic cells with potent bactericidal activity. 

The damage caused by reactive radicals to cellular components accumulates with age, has 

been postulated as being a major cause of ageing (Harman 1993; Kristal and Yu 1992) and is 

implicated in numerous degenerative diseases, including coronary heart disease (CHD), 

cancer, cataracts, inflammatory diseases, reperfusion injury and diabetes mellitus (Halliwell 

and Gutteridge 1990a; Kehrer 1993 ). 

A group of related terms have been used in the scientific literature referring to free radicals of 

biological interest. These include oxygen radicals, oxygen derived radicals, oxygen free 

radicals, oxyradicals and the collective terms, reactive oxygen species (ROS) and reactive 

nitrogen species (Halliwell 1996). These terms include singlet oxygen ( 102), hydrogen 

peroxide (H202) and hypochlorous acid (HOCI), which are not themselves free radicals, but 

are oxidizing agents and participate in cellular free radical reactions. The main ROS of 

biological interest are shown in Table 1.1. 
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1.1.3 Endogenous sources 

Free radicals in living organisms originate from both endogenous and exogenous sources. 

A number of cellular sources of 0 2·- and other ROS have been identified: 

1. The mitochondrial electron transport chains are a major source for the production of 

02·- and H 20 2 (Loschen et al. 1971; Boveris and Cadenas 1975). Under normal 

circumstances, the stepwise four electron reduction of 02 results in the production of water, 

coupled with the formation of adenosine triphosphate (ATP). However, the occasional 

'leakage' of electrons directly on to 0 2 results in the production of 02·- (reaction 1.3). The 

formation of this radical should therefore be regarded as a normal by-product of aerobic 

respiration (Fridovich 1989). 

(1.3) 

2. The electron transport chains of the endoplasmic reticulum are also capable of 

producing 0 2·-. Cytochrome P450, a terminal component of electron transport chains 

found in liver endoplasmic reticulum (rnicrosomes), is important for the detoxification of 

xenobiotic compounds and hydroxylation reactions involved in synthesis. These reactions 

require the activation of 0 2 by the transfer of electrons from nicotinamide adenine 

dinucleotide phosphate (NADPH); the occasional leakage of electrons results in the 

formation of 0 2·- (Bast 1986; White 1991). Free radical intermediates are also produced 

during the detoxification of xenobiotics, the main sources being plant phenolics of dietary 

origin, drugs and halogenated compounds found in pesticides and environmental pollutants 

(Stohs 1995). A massive load of xenobiotics, e.g., during carbon tetrachloride (CCl4) 

poisoning, results in the production of the CC1 3• radical, which rapidly promotes lipid 

peroxidation in cellular membranes, causing liver damage (Slater 1982; Comporti 1993). 

3. Phagocytic cells are specialized in the production of 0 2·- and other ROS. Activation of 

these cells produces a sudden rise in 02 consumption (the respiratory burst) and 02·- is 

produced by the one electron reduction of 02. catalysed by a plasma-membrane-bound, 

NADPH-dependent oxidase (Babior et al. 1973; Babior 1987). The 0 2'- produced dismutes 
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to H 20 2, which is utilized by myeloperoxidase to oxidize chloride to HOCl (Weiss 1989). 

Thus, phagocytes produce a battery of oxidants, including 0 2·-, H202, HOCl and also the 

hydroxyl radical (·OH) and nitric oxide (NO) (Marletta et al. 1988; Hurst and Barrette 1989; 

Ramos et al. 1992). The importance of these ROS is accentuated by the genetic disorder 

chronic granulomatous disease, where the inability of the NADPH-oxidase to produce 02·­

results in impaired bactericidal action and persistent infections (Babior 1987). Conversely, 

tissue damage results if such reactive species are not tightly controlled. Consequently, 

chronic infections which result in inflammation and several disease processes, including 

atherosclerosis and type I diabetes are associated with excessive phagocytic activity (Weiss 

1989; Krtincke et al. 1991; Kehrer and Smith 1994; Bottazzo et al. 1985; Foulis et al. 1986). 

4. Certain enzymes are also capable of producing free radical intermediates. For example: 

the synthesis of prostaglandins, leukotrienes and other eicosanoids from arachidonic acid, 

catalysed by cyclo-oxygenase and lipoxygenase enzymes, is a controlled form of lipid 

peroxidation during which peroxyl radical intermediates are formed (Gurr and Harwood 

1991; White 1991); peroxisomes contain the enzymes urate oxidase and D-arnino acid 

oxidase which produce H202 as a by-product (van den Bosch et al. 1992); the enzyme 

xanthine oxidase, present in many tissues, oxidizes hypoxanthine to xanthine then urate with 

the formation of 0 2.- and H202, a reaction widely used for the generation of 0 2·- in vitro 

(Rice-Evans et al. 1991). Levels of xanthine oxidase are normally low in human tissues 

(since the enzyme exists as the dehydrogenase which uses NAD+, not 0 2, as the electron 

acceptor), but can increase during periods of tissue ischaemia, with the potential of 

mediating free radical tissue injury, upon the introduction of 0 2 during reperfusion (McCord 

1985; Granger 1988; Omar et al. 1991; Bulkley 1994). 

S. Oxygen is also activated by the absorption of energy, forming I 0 2 (Khan 1976). 

Excitation can be achieved when pigments absorb light and transfer energy to 0 2 

(photoexcitation), or by chemiexcitation during enzymatic reactions and radical interactions 

(Murphy and Sies 1990). For example, 102 can be formed during the disproportionation of 

lipid peroxyl radicals (section 1.3.3) or during the metabolism of hydroperoxides (Naqui et 
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al. 1986). Although 102 is not a free radical, its reactivity with other biological molecules is 

increased so that it is capable of damaging proteins, lipids and DNA (Foote et al. 1984). 

Singlet oxygen has been implicated in skin photosensitivity,lung oxidant injury and damage 

to the retina by over exposure to bright light (Halliwell and Gutteridge 1989). 

6. Nitric oxide is another endogenously produced free radical, formed during the 

oxidation ofL-arginine to L-citrulline by nitric-oxide synthase enzymes, which serves as an 

important physiological messenger molecule (Noack and Murphy 1991; Prince and Gunson 

1993; Masters 1994; Bredt and Snyder 1994). In the 1980s, several areas of research came 

together revealing the involvement of NO in biological systems. It was first recognized that 

the vascular endothelium synthesized NO, a factor previously known as the endothelium­

derived relaxing factor (EDRF), which mediated the relaxation of smooth muscle cells and 

prevented the aggregation and adhesion of platelets to the endothelium (Furchgott and 

Zawadzki 1980; Palmer et al. 1987; lgnarro et al. 1987; Palmer et al. 1988). It is now 

accepted that NO is produced by a variety of cells, including neuronal, macrophages, 

smooth muscle, platelets and fibroblasts and mediates diverse biological functions, such as 

the regulation of vascular tone and blood pressure, neurotransmission and the bactericidal 

and tumoricidal actions of macrophages (Marletta et al. 1988; Marletta 1989; McCall et al. 

1989; Snyder and Bredt 1992; Moncada and Higgs 1993). 

Besides mediating normal functions, fluctuations in the production of NO have been 

implicated in the pathogenesis of hypertension, septic shock, inflammation and 

atherosclerosis (Moncada and Higgs 1993; Anggard 1994; White et al. 1994 ). The high 

reactivity of NO with 02·- and other radicals (Huie and Padmaja 1993; Darley-Usmar et al. 

1995) are reactions which may have important implications in atherosclerosis, since NO 

appears to possess both antioxidant and pro-oxidant properties (Rubbo et al. 1994). The 

rapid reaction of NO with lipid peroxyl radicals resulted in the formation of stable products 

and demonstrated an inhibitory effect of NO upon lipid peroxidation (Rubbo et al. 1994). 

Similarly, NO was found to exert a protective role towards low-density lipoproteins (LDL) 

against oxidative modification (Jessup et al. 1992; Yates et al. 1992; Hogg et al. l993a). 

However, where both NO and 02·- are formed, e.g., by endothelial cells and macrophages, 
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NO can exert a pro-oxidant effect. The combination of NO and 02·-. produces peroxynitrite 

(ONoo-) (Slough and Zafiriou 1985) and its conjugate acid, peroxynitrous acid (reactions 

1.4 and 1.5), potent oxidants which mediate many reactions (Beckman et al. 1990; Beckman 

et al. 1994). 

NO 

ONoo- + H+ 

ONOOH 

H ONOOH 

( 1.4) 

(1.5) 

(1.6) 

The cytotoxic potential of ONoo- was highlighted by Beckman et al. (1990) who 

demonstrated that the decomposition of ONoo- could produce oxidants with reactivity 

comparable to that of ·OH (reaction 1.6). In fact, ONoo- has been shown to initiate lipid 

peroxidation in liposomes (Radi et al. 199la; Rubbo et al. 1994) and in LDL (Darley-Usmar 

et al. 1992; Hogg et al. 1993b ). Thus, it has been suggested that the formation of ONoo­

may exacerbate atherosclerosis (White et al. 1994). Apart from potentially initiating lipid 

peroxidation and the oxidative modification of LDL, ONoo- can deplete plasma anti­

oxidants, including vitamins E and C (de Groot et al. 1993; Hogg et al. 1993b; Van der Vliet 

et al. 1994 ), oxidize proteins (Radi et al. 1991 b) and bring about the release of copper ions 

from caeruloplasmin, which may then initiate the oxidation of LDL (Swain et al. 1994). 

7. Several transition metal ions qualify as free radicals and are of importance in vivo 

because of their ability to catalyse reactions (Halliwell and Gutteridge 1984). The 

dismutation of 02·-. catalysed by SOD, results in the formation of H202 (reaction 1.7). 

( 1.7) 

Hydrogen peroxide is not a free radical, but is capable of giving rise to the highly reactive 

·OH, especially under the influence of transition metal ions. Hydroxyl radicals can be 

generated through a 02·- driven Fenton reaction, where 02·- reduces ferric ions (Fe3+) to 

ferrous ions (Fe2+) via an intermediate perferryl complex, fe3+ - 02·-H fe2+- 0 2, 

(reaction 1.8) (Halliwell and Gutteridge 1990a). The ferrous ions then act as electron 

donors, rapidly reducing H202 by the Fenton reaction to the hydroxyl ion (OW) and ·OH, 

reaction 1.9 (Koppenol 1993; Goldstein et al. 1993). 
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+ Fe2+ ~ Fe3+ + OH- + ·OH 

(1.8) 

(1.9) 

Consequently, under physiological conditions the interaction of 02·- and H202, in the 

presence of catalytic metal ions, may result in the formation of ·OH. The net reaction (1.10) 

is often called the Haber-Weiss reaction (Haber and Weiss 1934; Walling 1975). 

Fe2+/Cu+ 

+ H202 ~ 02 + OW + ·OH ( 1.10) 

The formation of ·OH, in vivo, may be limited by the supply of catalytic metal ions and 

tissue injury by any mechanism can exacerbate free radical reactions, if metal ions are 

released (Gutteridge 1986; Halliwell and Gutteridge 1990a). 

1.1.4 Exogenous sources 

In addition to the cellular formation of ROS, exogenous sources may increase the free radical 

load. For example, ionizing radiation of the skin can produce free radicals, cigarette smoke 

contains many radicals and oxidizing species and the absorption from the diet of large 

quantities of iron or copper salts, or xenobiotics can increase the endogenous production of 

free radicals (Pryor and Stone 1993; Stohs 1995; Halliwell 1996). 

In summary, it is through the formation of02·-. H202, ONoo- and ·OH in particular, that 

the toxicity of oxygen is mediated (Halliwell 1996). Hydroxyl radicals are highly reactive 

and will attack any molecule in the immediate vicinity, protein, lipid, carbohydrate or nucleic 

acid and are capable of causing indiscriminate cellular damage (Slater 1984a; Slater et al. 

1987; Stadtman 1993; Cadenas 1995). As a consequence of the potential toxic effects of 

oxygen, aerobic organisms have evolved numerous antioxidant defences to limit the 

formation and damage caused by free radicals. These defences act at different stages in free 

radical reactions, e.g., by removing key reactive species, binding metal ions, terminating 

free radical chain reactions and quenching excited molecules. 
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1.2 Antioxidant Defences 

1.2.1 Cellular antioxidants 

At the cellular level, the antioxidant defences operate by: (1) preventing the initial formation 

of radicals, (2) removing the intermediates of oxygen reduction, (3) intercepting radicals 

once they have been formed and (4) repairing or eliminating molecules damaged by free 

radical activity (Fridovich 1989). 

1 . The initial formation of 0 2·- is prevented by cytochrome oxidase, the terminal oxidase 

of the mitochondrial electron transport chain, which carries out the tetravalent reduction of 

0 2, without releasing reactive oxygen intermediates from its active site (Chance et al. 1979). 

Cytochrome oxidase has also been attributed with possessing SOD and peroxidase activity 

(Naqui et al. 1986). 

The transition metal ions, especially iron and copper, are accepted as being involved in the 

formation of free radicals in vivo, by catalysing the decomposition of H202 and organic 

hydroperoxides (Halliwell and Gutteridge 1984). For this reason, metal ions are tightly 

sequestered by proteins, making them unavailable to participate in the generation of free 

radicals. Such proteins are also considered as preventative antioxidants (Frei et al. 1988). 

In extracellular fluids, these proteins form major antioxidant defences (Table 1.3, page 13). 

Intracellularly, iron is bound to ferritin or haemosiderin, or is chelated to various 

constituents (citrate or phosphate esters), to minimize the occurrence of free metal ions 

(Halliwell and Gutteridge 1984). 

2. The removal of key reactive species, 02·-, H202, is achieved by SOD and peroxidase 

enzymes (Table 1.2). The SODs are ubiquitous in aerobic organisms, an indication of how 

widespread the formation of 02·- may be, but differ in structure and metal ions present at 

their active sites. Eukaryotic cells possess a copper and zinc SOD (Cu,Zn SOD), located in 

the cytoplasm and a manganese containing SOD (Mn SOD), within the mitochondrial matrix 

(Fridovich 1995). The SODs provide an important defence against the toxicity of 0 2, by 

catalysing the dismutation of 02·- to H20 2 and 02, (McCord and Fridovich 1969). 
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The H 20 2 generated by the dismutation of 0 2·- and as a by-product of enzymatic reactions 

is removed by catalase and various perox.idases (Chance et al. 1979). Catalase is specific for 

H20 2 and is predominantly located within single-membrane organelles, the peroxisomes, 

which contain H20 2 generating enzymes, such as urate oxidase, glucose oxidase and the 

flavoprotein dehydrogenases involved in the B-oxidation of fatty acids (van den Bosch et al. 

1992; Reddy and Mannaerts 1994). Catalase reduces H202 to H20 and 02, and shares this 

property with other peroxidases (Table 1.2). 

The most important perox.idases are the glutathione peroxidases (GSH-Px), which require 

selenium (Se) as a cofactor and are dependent upon glutathione (y-L-glutamyl-L-cysteinyl­

glycine; GSH) for the supply of reducing equivalents (Stadtman 1991 ). Thus, GSH-Px 

catalyses the reduction of H202 at the expense of GSH, Table 1.2. In addition to H20 2, 

GSH-Px is also capable of reducing organic hydroperoxides, including fatty acid, nucleotide 

and steroid hydroperoxides to the corresponding alcohols (Chance et al. 1979). However, 

fatty acid hydroperoxides must be released from membranes by the action of phospholipase 

A2 before GSH-Px can act; although, a second Se-containing enzyme, phospholipid 

hydroperoxide glutathione peroxidase (PHGSH-Px), has been discovered in mammals 

which has the unique ability of directly reducing lipid hydroperoxides within membranes 

(Ursini et al. 1982; Ursini et al. 1985; Ursini et al. 1991). 

Glutathione peroxidase appears to be more important than catalase for removing H20 2, 

because it is found within the same subcellular locations as SOD. Comparative studies have 

also shown GSH-Px to be more efficient than catalase and SOD under experimental 

conditions of oxidative stress. Any reduction in the activity of GSH-Px rendered cells more 

susceptible to oxidative damage (Toussaint et al. 1993). Glutathione peroxidases are, 

therefore, key enzymes, protecting cells against damage caused by the decomposition of 

H202 and lipid hydroperoxides. 
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Table 1.2 The major cellular antioxidant enzymes. 

Enzyme 

Superoxide Dismutase 
(Cu, Zn-SOD; MnSOD) 

Catalase 

Glutathione Peroxidase 

(GSH-Px) 

Phospholipid Hydroperoxide 
Glutathione Peroxidase 
(PHGSH-Px) 

Glutathione-S-Transferase 
(GST) 

Reaction 

H202 + 2GSH ~ 2H20 + GSSG 

ROOH + 2GSH ~ ROH + H20 + GSSG 

ROOH + 2GSH ~ ROH + H20 + GSSG 

ROOH + 2GSH ~ ROH + H20 + GSSG 

The glutathione-S-transferases (GST), a group of non-Se containing iso-enzymes, have 

numerous functions and are involved with the detoxification of xenobiotics, via conjugation 

with GSH. These enzymes also reduce organic hydroperoxides, including lipid 

hydroperoxides to the corresponding alcohols at the expense of GSH, Table 1.2 (Ahmad 

1995). The GSH-Pxs and GST enzymes are dependent upon GSH for their activity; hence, 

the supply of GSH must be replenished. This is achieved by the action of an NADPH­

dependent enzyme, glutathione reductase, which reduces the oxidized glutathione (GSSG) 

back to GSH, Figure 1.3 (page 18). This enzyme plays an indirect part in cellular 

antioxidant defences. Glutathione also reacts directly with 0 2·-, I0 2 and ·OH and, 

therefore, acts as a water-soluble antioxidant, as well as a physiological reducing agent 

(Meister and Anderson 1983). 

3 • The antioxidant enzymes form an important line of defence by preventing the 

accumulation of 02·- and removing H 202, thereby preventing the formation of ·OH and 

other highly reactive radicals. However, if these reactants escape removal, leading to the 
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formation of other ROS, non-enzymatic, small molecular-weight antioxidants become 

important for the direct scavenging of these initiating I propagating radicals. The major 

water and lipid-soluble antioxidants are listed in Table 1.4 (page 14) and their interactions 

are shown in Figure 1.3 (page 18). 

4 . If ROS, such as ·OH are formed, damage to surrounding molecules is probably 

unavoidable. Thus, the fmal form of defence against free radicals comes from enzymes, 

which repair or eliminate damaged molecules. In healthy cells, damaged DNA bases are 

constantly removed and replaced by repair enzymes, the hydroxylated bases being excreted 

in the urine (Breimer 1991; Demple and Harrison 1994). Damaged proteins are degraded by 

proteases (Davies 1987; Marcillat et al. 1988) and oxidized lipids by the activity of 

phospholipases (Malis et al. 1990; van den Berg et al. 1993). 

1.2.2 Plasma antioxidants 

Plasma functions as a transporter of a wide variety of compounds, especially those of dietary 

origin and cellular metabolism. It is exposed to 02 and oxidants derived from endogenous 

and exogenous sources. By scavenging reactive molecules, plasma serves to protect the 

endothelial lining of the vasculature and its own contents, especially the lipid transporting 

lipoprotein particles (Stocker and Frei 1991). Imbalances resulting in damage to the 

vasculature, or oxidation of the lipoprotein particles, are events of prime importance in the 

aetiology of atherosclerosis (Steinberg et al. 1989). 

The antioxidant defences in plasma differ from the defences found within cells in that they 

lack the antioxidant enzymes SOD, GSH-Px and catalase (Halliwell and Gutteridge 1990b). 

However, a distinct tetrameric Cu,Zn SOD, a glycoprotein with heparin binding affinity, has 

been described which appears to be bound to the endothelial cell surfaces (Marklund 1982; 

Karlsson and Marklund 1987). A Se-dependent GSH-Px, different from the enzyme 

present within erythrocytes, has also been described in human plasma (Maddipati and 

Marnett 1987; Takahashi et al. 1987). 
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Table 1.3 Antioxidant proteins present in plasma (modified from Stocker and Frei 1991 ). 

Protein Function 
(plasma concentration) 

Albumin 
(30-60 gn) 

Transferrin 
(1.2-3.3 g/1) 

Ferritin 

Caeruloplasmin 
(0.18-0.4 g/1) 

Lactoferrin 
(0.2 mg/1) 

Haptoglobin 
(0.5-3.6 g/1) 

Haemopexin 
(0.6-1.0 g/1) 

Albumin transports a wide range of substances, such as fatty acids and 
bilirubin and also has specific binding sites for Cu2+ ions. Albumin 
bound Cu2+ is still redox active and may participate in the generation of 
·OH, which reacts with the protein itself, in a 'site-specific' manner 
(Halliwell 1988). The protein functions as a 'sacrificial antioxidant', 
thereby protecting other important targets and is rapidly replaced. 
Albumin also possesses sulphydryl groups which can react with free 
radicals (Wayner et al. 1987). 

Transferrin binds Fe3+ ions, for transport and delivery to cells, making 
iron unavailable to participate in redox reactions. The protein is only 
20-30% saturated with iron, the excess binding capacity means that no 
free iron is found in plasma (Gutteridge et al. 1981 a). 

The iron-storage protein ferritin is found intracellularly and oxidizes 
Fe2+to Fe3+ (Halliwell and Gutteridge 1984), and mediates transfer to 
transferrin. However, iron can be released from ferritin to promote 
redox reactions (Halliwell and Gutteridge 1986; Thomas et al. 1985). 

This copper-transporting protein, inhibits copper I iron stimulated lipid 
peroxidation and possesses ferroxidase activity, converting Fe2+ to Fe3+ 
(Gutteridge et al. 1980; Gutteridge 1983), which may be incorporated 
back to ferritin or transferrin (Halliwell & Gutteridge 1984). It also 
scavenges 0 2·- (Goldstein et al. 1979a; Samokyszyn et al. 1989). 

Lactoferrin is released from activated neutrophils and has a similar 
function to transferrin by binding Fe3+ ions and making them 
unavailable to participate in redox reactions (Gutteridge et al. 1981 b; 
Bald win et al. 1984; Winterboum 1983; Lonnerdal and Iyer 1995). 

Haptoglobins bind haemoglobin (Hb) and met-Hb, preventing these 
proteins from releasing iron and initiating lipid peroxidation. Similarly, 
haemopexins bind free haem and prevent the release of haem iron. 
However, protein damage by peroxyl radicals may release bound iron 
(Gutteridge 1987; Gutteridge and Smith 1988). 

A major contribution to the extracellular antioxidant defences in plasma comes from the 

proteins that bind metal ions, preventing them from participating in redox reactions and 

generating free radicals (Table 1.3) (Dormandy 1980; Wayner et al. 1985; Wayner et al. 

1987; Halliwell and Gutteridge 1990b). In addition to the proteins, the small molecular­

weight antioxidant molecules listed in, Table 1.4, serve to protect the lipid and water-soluble 

components of plasma, by directly intercepting free radicals. The most important of these 

antioxidants, vitamins A, C and E are the main interest in this thesis. 
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Table 1.4 Non-enzymatic, small molecular-weight antioxidants (from Sies and Stahl 1995). 

Antioxidant 

Lipid-soluble 

RRR -a-Tocopherol 
&-Tocopherol 
all-trans-retinol 
a-Carotene 
B-Carotene 
Lycopene 
Lutein 
Zeaxanthin 
Ubiquinol-10 

Water-soluble 

Ascorbic acid 
Glutathione 
Uric acid 
Bilirubin 

(i) Lipid-soluble antioxidants 

Vitamin£ 

Plasma concentration 

Jlmol/1 

15-40 
3-5 

1.5 - 2.8 
0.05- O.l 
0.3-0.6 
0.5- 1.0 
0.1 - 0.3 
0.1 - 0.2 
0.4- 1.0 

30 - 150 
l- 2 

160-450 
5-20 

The term 'vitamin E' refers to a group of fat-soluble compounds (tocopherols and 

tocotrienols, Figure 1.1), with the biological activity of a-tocopherol (Diplock 1985). The 

most important biologically active form, RRR-a-tocopherol (see Appendix 1 for 

nomenclature and International Units (IU)), is an essential nutrient for all mammalian 

species, required to support reproduction in rodents and prevent deficiency symptoms in 

man, such as reduced erythrocyte lifespan (haemolysis), neuromuscular defects and 

abnormal platelet activity (Diplock 1985; Machlin 1991; Basu and Dickerson 1996). 

The principal function of a-tocopherol is to maintain the integrity of cell membranes by 

preventing the peroxidation of the polyunsaturated fatty acids (PUFAs) (Diplock 1985). The 

tocopherol molecule performs this function as an antioxidant, by donating its phenolic H­

atom to a lipid peroxyl radical (ROO·), thereby terminating the chain reaction of lipid 

peroxidation (reaction 1.11). The resulting tocopheroxyl radical is sufficiently stable to 

prevent the continuation of the free radical chain reaction and can be reduced back to 
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tocopherol by reducing agents. The tocopheroxyl radical can also undergo a second 

oxidation and react with a second ROO· (reaction 1.12), resulting in the formation of a 

tocopheryl quinone (Figure 1.1). Thus, one molecule of a-tocopherol is capable of 

scavenging two lipid peroxyl radicals (Burton and lngold 1981; Liebler and Burr 1995). 

The tocopheryl quinone reacts reversibly to form a hydroquinone, which can be conjugated 

to yield glucuronic acid and the product excreted into bile (Basu and Dickerson 1996). 

a-TOH + ROO· -+ a-TO· + ROOH 

a-TO· + ROO· -+ Inactive products 

( 1.11) 

(1.12) 

Burton and Ingold (1981) established that a-tocopherol was the most efficient biologically 

active form and the most important lipid-soluble antioxidant in plasma, erythrocytes and 

tissues (reviewed by Burton and Traber 1990; van Acker et al. 1993; Traber and Sies 1996). 

In addition to its role as the main lipid-soluble 'chain-breaking' antioxidant, a-tocopherol is 

also capable of scavenging 102 (Kaiser et al. 1990; Fahrenholtz et al. 1974 and Foote et al. 

1974, cited by Traber and Sies 1996) and NO (de Groot et al. 1993). 

In plasma, almost all of the a-tocopherol is located within the lipoprotein particles and is 

strongly correlated with lipid content (Horwitt et al. 1972; Thurnham et al. 1986), with 

approximately one a-tocopherol molecule protecting 200 fatty acids in LDL (Esterbauer et al. 

1991). The regeneration of a-tocopherol is, therefore, an important process and several 

mechanisms may operate to reduce the tocopheroxyl radical, although the precise 

mechanisms have not been established in vivo. The tocopherol molecule is anchored within 

membranes by the phytyl group, with the chroman group positioned towards the membrane 

surface and the aqueous environment. This positioning may enable the molecule to interact 

with aqueous antioxidants. Indeed, ascorbate and GSH were reported to interact with and 

regenerate the tocopheroxyl radical, thereby increasing its efficiency as an antioxidant 

(Packer et al. 1979; McCay 1985; Sa to et al. 1990; Nik.i et al. 1991; In gold et al . 1993; 

Buettner 1993). Similarly, lipid-soluble antioxidants, such as ubiquinol, may reduce the 

tocopheroxyl radical (Maguire et al. 1992), or interact in other ways which synergistically 

inhibit lipid peroxidation, as demonstrated by B-carotene (Palozza and Krinsky 1992a). 
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Figure 1.1 Structures of tocopherols, tocotrienols and the antioxidant action of vitamin E 
(modified from Sies and Stahl / 995). 
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Ubiquinol 

Although a-tocopherol is the most important lipid-soluble antioxidant, membranes also 

contain other antioxidants. The ubiquinols are lipid-soluble compounds which possess 

antioxidant activity (Mellors and Tappell 1966). The predominant form in man is ubiquinol-

10, the reduced form of ubiquinone-10 or coenzyme Q 10, an electron carrier between 

flavoproteins and cytochromes in the respiratory chain, Figure 1.2 (Frei et al. 1990). 

Ubiquinol-10 possesses antioxidant activity and has been reported to scavenge ROO· and 

102 (Frei et al. 1990; Stocker et al. 1991) and possibly regenerates the tocopheroxyl radical 

(Maguire et al. 1992; Frei et al. 1990; Kagan et al. 1990; Kagan et al. 1994). In fact, it 

appears that ubiquinol-10 is more effective than a-tocopherol in protecting LDL against 

oxidation (Stocker et al. 1991 ). However, LDL contains on average only one molecule of 

ubiquinol, therefore, a-tocopherol and ascorbate are the main antioxidants which suppress 

the oxidation of LDL in plasma (lngold et al. 1993). 

Carotenoids 

The carotenoids are a group of approximately 600 photosynthetic plant pigments which also 

possess lipid-soluble antioxidant properties, on account of their characteristic chains of 

conjugated double bonds (Goodwin 1986; Krinsky 1993). Epidemiological evidence 

linking B-carotene (provitamin A) intake with a reduced incidence of cancer (Peto et al. 

1981), led to an explosion in the interest of carotenoids in cardiovascular disease and cancer 

(Gerster 1991; Block et al. 1992). Carotenoids provide protection against ROS, by 

quenching 102 and triplet state sensitizers, such as flavins and porphyrins, and also by 

trapping peroxyl radicals (Palozza and Krinsky 1992b; Krinsky 1993). 

The most prominent carotenoids in the body, B-carotene, a-carotene, lutein and lycopene 

(Figure 1.2) are transported in plasma primarily within the LDL particles. B-Carotene is 

known to be one of the most potent quenchers of I 02 (Foote and Denny 1968; Sundquist et 

al. 1994), especially at low partial pressures of 02, such as those that prevail under 

physiological conditions (Burton and In gold 1984 ). Several other carotenoids are also 
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effective quenchers of 102, lycopene exhibiting the highest activity (Di Mascio et al. 1989; 

Sundquist et al. 1994). The quenching of 102 occurs by energy transfer from 102 to the 

carotenoid, yielding ground state 02 and a triplet state carotenoid molecule, which dissipates 

the energy as heat so that no regeneration of the molecule is necessary. In addition to 

quenching 102, in vitro studies indicate that B-carotene acts as an efficient peroxyl radical 

scavenger, by enabling the covalent addition of peroxyl radicals to the conjugated chain 

(Burton and lngold 1984; Burton 1989). B-Carotene has also been shown to scavenge 

nitrogen dioxide (N02), thiyl (RS·), and sulphonyl (RS02·) radicals (Everett et al. 1996). 

A synergistic interaction between B-carotene and a-tocopherol has also been observed which 

inhibits lipid peroxidation in microsomes (Palozza and Krinsky 1992a) and appears to 

prolong the Jag phase in the oxidation of LDL (Esterbauer et al. 1992). 

Vitamin A 

Vitamin A, is a generic term for the fat-soluble B-ionone ring compounds, which exhibit the 

biological activity of all-trans-retinol, Figure 1.2 (Pitt 1985). Vitamin A from dietary 

sources is stored in the liver esterified to fatty acids, primarily palmitic acid. For release into 

the plasma, vitamin A in the form of retinol, is bound to retinol binding protein (RBP), 

synthesized by the liver, for which zinc and an adequate intake of protein are required. 

Retinol resides within a hydrophobic fold of RBP, protecting it from oxidation during 

transport. Upon secretion into the plasma, RBP is complexed with another protein, 

transthyretin, to prevent loss through glomerular filtration (Olson 1991). 

Retinol has a well defined role in the visual process and is important for cell growth, 

reproduction and maintaining the integrity of epithelial cells (Basu and Dickerson 1996). 

Additionally, retinol has been reported to possess antioxidant activity by scavenging peroxyl 

and thiyl radicals, thereby inhibiting lipid peroxidation (Halevy and Sklan 1987; D' Aquino et 

al. 1989; Hiramatsu and Packer 1990; Tsuchiya et al. 1992). The accumulation of retinol in 

membranes and LDL also resulted in increased resistance to oxidative stress, implying an 

antioxidant role (Ciacco et al. 1993; Livrea and Tesoriere 1994; Livrea et al. 1995). 
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(ii) Water-soluble antioxidants 

Vitamin C 

Vitamin C is an essential micronutrient for only a small number of species, including man 

and other primates, guinea pigs and certain fish, birds and bats. Deficiency results in the 

disease scurvy which can be life threatening (Counsell and Hornig 1981). Vitamin C occurs 

as L-ascorbic acid (AA) and L-dehydroascorbic acid (DHAA), both of which are biologically 

active. 

Ascorbic acid acts as a physiological reducing agent by undergoing reversible oxidation to 

DHAA. At physiological pH, the ascorbate anion predominates. After the loss of one 

electron, the ascorbate free radical intermediate is formed (Bielski and Richter 1975), which 

yields DHAA after the loss of a second electron and proton (Figure 1.4 ). Dehydroascorbic 

acid undergoes irreversible hydrolysis to 2,3 diketogulonic acid, followed by oxidation to 

oxalic acid and threonic acid, which are excreted in the urine. However, intracellularly 

DHAA can be reduced back to AA by GSH, which in turn is linked with glutathione­

reductase activity and the hexose monophosphate shunt pathway (Figure 1.3). The 

reduction ofDHAA also appears to be mediated by DHAA-reductase activity, although no 

specific enzyme has yet been isolated in mammalian cells (Rose and Bode 1992). 

Ascorbic acid has numerous diverse functions on account of its ability to provide enzymes 

with reducing equivalents (Levine 1986). For example, ascorbate acts as a cofactor in the 

biosynthesis of collagen, catecholarnines, carnitine and is involved in the metabolism of 

amino acids, conversion of cholesterol to bile acids and detoxification of xenobiotics (Moser 

and Bendich 1991; Basu and Dickerson 1996). 

The redox properties of AA make the vitamin an excellent antioxidant, capable of scavenging 

a wide range of ROS, including 0 2·-, H20z, ·OH, HOC!, 102, ONoo- and aqueous 

ROO· radicals (Nishikimi 1975; Bodannes and Chan 1979; Cabelli and Bielski 1983; 

Bendich et al. 1986; Kwon and Foote 1988; Frei et al. 1989; Van der Vliet et al. 1994). 
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In studies with human plasma, AA was found to trap all aqueous peroxyl radicals before 

they could initiate lipid peroxidation. Once all the ascorbate had been consumed, the other 

aqueous antioxidants were found to trap only part of the free radicals and lipid peroxidation 

was initiated (Frei et al. 1988; Frei et al. 1989). The order of depletion of antioxidants was 

found to be AA, protein thiols, bilirubin, urate and a-tocopherol (Frei et al. 1989). By 

trapping aqueous radicals, AA protects membranes against peroxidative damage. Ascorbate 

also appears to protect membranes from lipid peroxidation by enhancing the activity of 

a-tocopherol (Sato et al. 1990). It is thought that AA may function to regenerate the 

tocopheroxyl radical (Figures 1.1 and 1.3), thereby increasing the scavenging potential of 

the antioxidant. Such a mechanism has been demonstrated with in vitro studies, but has yet 

to be demonstrated in vivo (McCay 1985). As a result of its scavenging ability, AA 

functions as a primary defence against aqueous radicals in plasma (Frei et al. 1989; Niki et 

al. 1991) and may act synergistically with tocopherols to protect LDL against oxidation (Sato 

et al. 1990; Ingold et al. 1993). 

Ascorbic acid is also known to act as a pro-oxidant by reducing metal ions (e.g., Fe3+ to 

Fe2+), which may then react with peroxides forming ·OH. These reactions have been used 

for the initiation of lipid peroxidation in vitro (Halliwell and Gutteridge 1990a). However, 

as there are effectively no free metal ions in vivo (Gutteridge et al. 1981a) the antioxidant 

properties of AA predominate (Frei 1994). 

Uric acid 

Uric acid originates from dietary sources and is also formed in the body by the oxidation of 

purines, via the intermediates hypoxanthine and xanthine, catalysed by xanthine 

dehydrogenase. At physiological pH, uric acid ionizes to urate (Figure 1.2). It has been 

suggested that the high urate concentrations in human plasma have contributed to the long 

lifespan of man, by acting as an important antioxidant (Ames et al. 1981; Cutler 1984; 

Becker 1993). This proposal has been supported by in vitro experiments which have 

demonstrated the scavenging properties of uric acid towards ·OH, ROO· and 102 (Ames et 

al. 1981) and also guanyl radicals and N02 (Sirnic and Jovanovic 1989). Uric acid was 
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also found to inhibit lipid peroxidation of erythrocyte membranes (Ames et al. 1981) and 

LDL (Sato et al. 1990). Furthermore, uric acid appeared to have a protective role towards 

AA, by acting as a chelating agent and binding metal ions in forms that were poorly reactive 

(Davies et al. 1986). Ascorbate may also enhance the antioxidant ability of urate by 

regenerating the urate radical (Simic and Jovanovic 1989; Maples and Mason 1988). 

Other molecules which may have important free radical scavenging roles include bilirubin 

and a-lipoic acid. Albumin-bound bilirubin appears to function as an important site-specific 

antioxidant by protecting albumin-bound fatty acids against peroxyl radical attack (Stocker et 

al. 1987; Stocker et al. 1990). The reduced form of a-lipoic acid (dihydrolipoic acid, Figure 

1.2), an acyl-group carrier and an essential cofactor in mitochondrial dehydrogenase 

reactions, also scavenges ROS and regenerates other antioxidants by redox cycling, Figure 

1.3 (Suzuki et al. 1994; Packer et al. 1995; Packer et al. 1997). Furthermore, a-lipoic acid 

supplementation has been found to produce several beneficial effects in the treatment of 

diabetes (Nickander et al. 1996; Ziegler et al. 1997). 

In addition to the antioxidants listed in Table 1.4, attention is focussing on other compounds 

of plant origin which have antioxidant properties and which may contribute to human health 

(Aruoma et al. 1996; Kumpulainen and Salonen 1996; Rice-Evans and Miller 1996). The 

flavonoid compounds are a group of over 4000 polyphenolic pigments, ubiquitous in plants, 

which have received much attention (Das 1994; van Acker et al. 1996; Cao et al. 1997). 

These compounds have been found to scavenge free radicals (Husain et al. 1987; Robak and 

Gryglewski 1988; Bors et al. 1994), inhibit lipid peroxidation (Afanas'ev et al. 1989; Yuting 

et al. 1990) and increase the resistance of LDL to oxidation (De Whally et al. 1990; Fuhrman 

1995; Vinson et al. 1995). Hence, diets rich in flavonoids may be protective against CHD 

(Hertog et al. 1993; Hertog et al. 1995; Knekt et al. 1996). One of the most studied 

flavonoids, quercetin (Figurel.2), was also found to inhibit the action of many enzymes, 

including aldose reductase (Varma and Kinoshita 1976). Interest is also increasing in the 

role of other compounds, including the polyphenols found in beverages and the extracts of 

herbs and spices (Graf et al. 1987; Rarnarathnarn et al. 1995; Aruoma et al. 1996). 
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1.3 Lipid Peroxidation 

The possibilities for the formation of free radicals abound in biological systems. However, 

their formation is usually only transient and they are compartmentalized within cells and 

effectively 'insulated' from interaction with other radicals by antioxidants and scavenger 

systems. If cellular damage occurs, or the balance between the formation and removal of 

free radicals is altered, enabling the interaction of different ROS and metal ions, highly 

reactive radicals such as •OH can be formed. The formation of such highly reactive 

molecules can result in damage to any molecule within the immediate vicinity. Attack upon 

lipids can result in lipid peroxidation. 

Lipid peroxidation proceeds by an autocatalytic, non-enzymatic, free radical chain reaction, 

yielding lipid hydroperoxides as the principal products (Farmer et al. 1942; Bateman 1954). 

The effects of lipid peroxidation are highly undesirable and the hydroperoxides produced 

may be subsequently converted into a wide variety of low molecular-weight degradation 

products, which have implications in many fields from food science through to clinical 

medicine (Chan 1987). In common with other free radical reactions, lipid peroxidation can 

be divided into three processes: initiation, propagation and termination (Porter et al. 1995). 

1.3.1 Initiation 

In a peroxide-free lipid system, initiation refers to the initial attack of an unsaturated fatty 

acid (RH), by a free radical (X·), with sufficient reactivity to abstract a hydrogen atom from 

a methylene group (-CH2-), reaction 1.13. 

Initiation: X· + RH ~ R· + XH (1.13) 

The presence of a double bond adjacent to a methylene group causes a weakening of the C-H 

bond, making the removal of the hydrogen easier. As the number of double bonds 

increases, the removal of hydrogen is made even easier. Thus, PUFAs, such as arachidonic 

acid in membranes, are particularly susceptible to free radical attack (Cosgrove et al. 1987). 
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The exact nature of the radicals initiating lipid peroxidation in vivo remains an unresolved 

issue. The superoxide radical is insufficiently reactive to abstract a hydrogen atom and 

under normal conditions would be scavenged by SOD, forming H202. which in turn would 

be scavenged by catalase and GSH-Px. The protonated form of 02·-, the hydroperoxyl 

radical (H02•), is more reactive and can initiate lipid peroxidation in vitro (Bielski et al. 

1983; Aikens and Dix 1991), but at physiological pH dissociates to 02·- (Gutteridge 1995). 

The highly reactive hydroxyl radical is regarded as being responsible for initiating lipid 

peroxidation, because if it is formed in close proximity to a fatty acid molecule, it will readily 

abstract a hydrogen atom (Minotti and Aust 1987a). The decomposition of H202 can also 

result in the production of ·OH (reactions 1.8-1.10). However, studies of lipid peroxidation 

involving the addition of iron salts to isolated membranes, such as microsomes and 

liposomes, have indicated that the importance of ·OH may have been over emphasized. 

Hydroxyl radicals were detected in such systems, but the addition of catalase to remove 

H202 and scavengers for ·OH did not inhibit the peroxidation process (Gutteridge 1982; 

Halliwell and Gutteridge 1984; Minotti and Aust 1987b; Halliwell and Gutteridge 1990a). 

This led to the suggestion that ·OH was not required for peroxidation to proceed and that 

frrst chain initiation in membrane systems was achieved by reactive species other than ·OH, 

such as iron I iron-oxygen complexes (Minotti and Aust 1987a; Halliwell and Gutteridge 

1990a). One possibility that perferryl complexes were responsible for initiation was 

diminished by the finding that other metal ions, such as aluminium and lead, could also 

stimulate lipid peroxidation (Aruoma et al. 1989). However, once peroxidation is 

underway, the metal catalysed decomposition of lipid hydroperoxides can produce radicals 

which are capable of initiating further reactions (reactions 1.17 and 1.18) (Gutteridge 1995). 

In the cellular environment, iron is tightly sequestered in iron complexes such as ferritin and 

haemosiderin and is unavailable to participate in redox reactions, unless it is released in a 

free form, e.g., after cellular damage. It may be the case that membrane-bound iron ions are 

responsible for 'site-specific' formation of free radicals (Halliwell and Gutteridge 1989). 
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The hydroxyl radical is commonly assumed to be the most toxic of oxygen radicals and 

mediator of oxygen toxicity. However, attention is now focussing on the role of other 

compounds which are capable of initiating lipid peroxidation, such as thiyl radicals and 

peroxynitrite (Schi:ineich et al. 1989; Beckman et al. 1990). Indeed, the oxidative chemistry 

of NO and related compounds is an area of intensive research. The combination of 02·- and 

NO results in the formation of peroxynitrite, a strong oxidant capable of producing species 

with reactivity comparable to ·OH (Beckman et al. 1990). Peroxynitrite can be formed in 

vivo and is capable of inducing lipid peroxidation, reactions which do not require the 

presence of transition metal ions (Radi et al. 1991a; Rubbo et al. 1994). 

The addition of singlet oxygen to unsaturated fatty acids may also be responsible for the first 

formed hydroperoxides (Rawls and van Santen 1970). In practice it is difficult to obtain 

fatty acids which are free from peroxides, as even commercially available standards are 

contaminated with traces of peroxides. Thus, even in the absence of initiators, lipid 

peroxidation may proceed with a very slow induction period until the levels of 

hydroperoxides build up (Gunstone 1996). 

1.3.2 Propagation 

Propagation: R • 

R· 

ROO· + RH 

RH + R· 

ROO· 

ROOH + R· 

( 1.14) 

(1.15) 

( 1.16) 

The abstraction of hydrogen from a -CH2- group leaves behind an unpaired electron on the 

carbon (-·CH-). The resulting carbon radical becomes stabilized by molecular 

rearrangement with the formation of a conjugated diene (Figures 1.5 and 1.6, pages 31 and 

32). The reactions of the conjugated dienes depend on the concentration of oxygen. At low 

oxygen concentrations, one conjugated diene may react with another conjugated diene 

(reaction 1.19) or a protein forming a crosslink between two molecules, or abstract a 
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hydrogen from an adjacent fatty acid creating another carbon-centred radical (reaction 1.14). 

Under aerobic conditions, the most likely event is the combination with molecular oxygen, 

forming a peroxyl radical (ROO·), reaction 1.15. The peroxyl radical is capable of 

abstracting a hydrogen atom from an adjacent unsaturated fatty acid, forming a lipid 

hydroperoxide (ROOH) and another lipid radical, thereby propagating the reaction (reaction 

1.16). The propagation reactions form the basis of the chain reaction process characteristic 

of free radical activity and may continue until a termination reaction occurs. 

The lipid hydroperoxides are stable intermediates, but the presence of transition metals, 

especially iron, can catalyse their decomposition via the formation of perferryl complexes, in 

reactions similar to the decomposition of H202 (reaction 1.9). The decomposition leads to 

the production of alkoxyl (RO·) or peroxyl (ROO·) radicals, the overall reactions are shown 

in 1.17 and 1.18. Alkoxyl radicals have very short half-lives (Table 1.1) and will attack 

proteins or lipids, thereby initiating further chain reactions (Halliwell and Gutteridge 1989). 

ROOH + Fe2+-complex --+ Fe3+-complex + OH- + RO· 

ROOH + Fe3+-complex --+ Fe2+-complex + H+ + ROO• 

1.3.3 Termination 

(1.17) 

(1.18) 

Free radical chain reactions are terminated by the combination of two radicals which form a 

non-radical product (reactions 1.19 - 1.23). 

Termination: R· + R· --+ R-R (1.19) 

ROO· + ROO· --+ PRODUCfS ( 1.20) 

ROO• + R· --+ ROOR (1.21) 

R· + AH --+ RH + A· ( 1.22) 

ROO· + AH --+ ROOH + A· (1.23) 
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The chain reactions may also be terminated by antioxidants (AH), primarily vitamin E in 

membranes, which donate hydrogen atoms to the fatty acid radicals, in order to minimize the 

number of propagation cycles (reactions 1.22 and 1.23). The resulting antioxidant free 

radicals form stable intermediates in a biological matrix and can be 'recycled' by other 

molecules. Vitamin Cor glutathione are believed to regenerate the vitamin E radical in vivo 

(McCay 1985). 

The termination reaction between two lipid peroxyl radicals (reaction 1.20) proceeds via the 

formation of an unstable tetroxide (the Russell mechanism, reaction 1.24), which 

decomposes to a ketone with an excited triplet state carbonyl group (3RO), an alcohol and 

oxygen (Russell 1957; Kellogg 1969). The quenching of the excited carbonyl group by 

oxygen results in the formation of I 02, reaction 1.25. Ho ward and Ingold {1968) identified 

102 in the self-reaction of butyl peroxyl radicals, supporting the Russell mechanism of 

termination. 

2 ROO· H ROOOOR ~ 3RO + ROH + 02 ( 1.24) 

( 1.25) 

Chemiluminescence has indicated the presence of 102 in biological systems, where its 

formation was attributed to phagocytosis, photosensitization reactions and lipid peroxidation 

(Foote et al. 1984; Cadenas and Sies 1984; Murphy and Sies 1990). Singlet oxygen will 

readily add to a double bond in an unsaturated fatty acid forming a hydroperoxide. Although 

the reaction does not proceed via the formation of free radical intermediates, the subsequent 

decomposition of the hydroperoxides can produce free radicals (Gunstone 1996). The role 

of lipid hydroperoxides in cellular damage is, therefore, of importance as they are minor 

constituents of membranes and their subsequent decomposition may be the cause of cellular 

lipid peroxidation (Ursini et al. 1991 ). 
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1.3.4 Decomposition of lipid hydroperoxides 

Lipid hydroperoxides may undergo a variety of reactions, including polymerization reactions 

resulting in intermolecular crosslinks, or rearrangement reactions forming cyclic peroxides 

and cyclic endoperoxides Figure 1.6. As shown in reaction 1.17, lipid hydroperoxide 

decomposition can result in the formation of alkoxy1 radicals. These may undergo B­

scission of the carbon-carbon bond adjacent to the hydroperoxide group (Figure 1.5), and 

depending on the position of the peroxide group on the fatty acid chain, a complex mixture 

of secondary products of lipid peroxidation can be formed. In summary, the main volatile 

products include aldehydes such as alkanals, 2 alkenals, 2,4 alkadienals. The major 

aldehydes in biological samples appear to be malondialdehyde (MDA), hexanal and 4-

hydroxynonenal (Zollner et al. 1991 ). Other compounds include hydroxy acids, ketoacids, 

ketones alcohols and hydrocarbons (Esterbauer 1982a; Esterbauer 1982b). 

Several secondary products are themselves reactive and have been shown to react with 

cellular components, 4-hydroxynonenal is cytotoxic and mutagenic (Zollner et al. 1991; 

Esterbauer 1993). Malondialdehyde reacts with amino groups in proteins forming 

fluorescent crosslinks -arninoirninopropene Schiff bases (Dillard and Tappet 1984 ). 

30 



COOH 9 12 

Initiation 

! 
- H• 

*R • 

! 
R 

~ 
• 

! + o, 

R 

oo· 

Propagation RH)! ( AH Tennination 
R• A• 

R 
~ 

Fe')! 
OOH 

Fe3+ 

R 

o• 

Beta-scission 
! 

R H " /\.. /\..'-. / 
V "-=/ 'L-C 

~ 
0 

+OH" 

Linoleic acid 

Hydrogen abstraction 

Carbon-centred radical 

Molecular rearrangement resulting in 
the formation of a conjugated diene 
with UV absorbance at 234nm. 

Oxygen uptake with the formation 
of a peroxyl radical . 

Abstraction of hydrogen from another fatty 
acid (RH) propagating the chain reaction, 
or termination by an antioxidant (AH). 

Lipid hydroperoxide 

Metal catalysed decomposition of the 
hydroperox.ide to the alkoxyl radical, 
which can initiate further free radical 
reactions or undergo cleavage of the 
C-C bond forming an aldehyde and a 
pentyl radical. 

Figure 1.5 Lipid peroxidation of linoleic acid, with the formation of hydroperoxides 
and secondary breakdown products. 
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Figure 1.6 Lipid peroxidation of arachidonic acid (modified from Aruoma and Halliwell 
1991). 

32 



PUFA 

-H• 

Free radicals 

Molecular 
rearrangement 

Lipid peroxides 

Cyclic endoperoxides 

Decomposition 

I 
Excited carbonyls + 02 

Alkanes, alkenes 

Alkanals, e.g., malondialdehyde 

Alkenals, e.g., 4 hydroxynonenal 

1 
Reactions with proteins 

Loss of substrate, GC or HPLC analysis 

ESR, spin trapping 

UV absorbance of conjugated dienes 

02 concentration 

Iodine liberation 
Oxidation of Fe2+ to Fe3+ 
Isoluminoi-Chemiluminescence 

HPLC,GC-MS 
GC-MS of Prostaglandin-like 
compounds (isoprostanes) 

Chemiluminescence 

GC 

TBARS 

lLC, GC-MS, HPLC 

Fluorescence detection of Schiff bases, 
Antibody techniques 
ELlS A 

Figure 1.7 Methods used for the detection and measurement of the different stages of lipid 
peroxidation. ESR, electron spin resonance; GC, gas chromatography; GC-MS, gas 
chromatography-mass spectrometry; HPLC, high performance liquid chromatography; 
TBARS, thiobarbituric acid reactive substances; TLC, thin layer chromatography; UV ultra 
violet; EL/SA, e11zyme linked immunosorbent assay. 
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1.3.5 Measurement of lipid peroxidation 

The detection and measurement of products of lipid peroxidation is the evidence most 

frequently used to provide an indirect indication of free radical activity in human disease. 

Numerous methods, outlined in Figure 1.7, are available for the measurement of the 

different stages of lipid peroxidation (reviewed by Slater 1984b; Rice-Evans et al. 1991; 

Halliwell and Chirico 1993; Gutteridge 1995; Esterbauer 1996; Punchard and Kelly 1996); 

although, no single technique is adequate for all stages of the process in a biological setting. 

The two most frequently used assays, the measurement of conjugated dienes and the 

thiobarbituric acid (TB A) test, are the main interest in this thesis. 

(i) Conjugated dienes 

During lipid peroxidation, a shift in the location of a double bond leading to the formation of 

a conjugated diene is accompanied by an increase in UV absorbance, in the wavelength 

range 230-235nm. In studies of pure lipids, the increase in absorbance provided a good 

indication of the early stages of lipid peroxidation, as demonstrated by the pioneering work 

of Farmer and Sutton (1943). This procedure is still widely used for monitoring the 

oxidation of LDL in vitro (Esterbauer et al. 1991; Esterbauer et al. 1992). 

In biological samples, the presence of numerous substances with UV absorbing properties 

indicated the need for additional techniques. Extraction of the Iipids prior to analysis and 

second derivative spectroscopy have been used to increase the sensitivity for the 

measurement of conjugated dienes in plasma (Recknagel and Glende 1984; Situnayake et al. 

1990). High performance liquid chromatography (HPLC) has also been used to separate the 

conjugated dienes in plasma from interfering compounds (Cawood et al. 1983). The 

extensive studies of Iversen et al. (1984) have demonstrated that in fresh human serum and 

tissue fluids, diene conjugation is predominantly attributed to a single fatty acid, octadeca,9-

cis,11-trans dienoic acid (18:2(9-cis, 11-trans)), which contains no other oxygen than that of 

the carboxyl group (Figure 1.5). The generation of this isomer from linoleic acid (18:2(9-

cis,l2-cis)) is thought to require the interaction of the carbon-centred radical with a protein 

reducing group, such as a thiol residue (Cawood et al. 1983; lversen et al. 1984). 
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There is, however, a degree of uncertainty regarding the origin of the isomer in biological 

fluids. Thompson and Smith ( 1985) measured the concentration of 18:2(9-cis, 11-trans) in 

human and rat blood, after the in vitro initiation of lipid peroxidation by UV irradiation or 

phenylhydrazine treatment, and also in vivo in rats pretreated with bromotrichloromethane or 

phenylhydrazine. Plasma levels of total conjugated dienes were significantly increased in 

both studies, but the levels of the conjugated diene isomer of linoleic acid showed little 

change. It was concluded that this conjugated diene was a poor indicator of free radical 

activity in animal studies. 

The stereospecificity of the 18:2(9-cis, 11-trans) isomer has been the principal reason for 

the doubt concerning its free radical origin. Such specificity would suggest that an 

underlying enzymatic mechanism might be responsible for its formation (lversen et al. 

1984). Indeed, certain bacteria and rumen microorganisms have been reported to generate 

the isomer from linoleic acid (Hughes et al. 1982; Fairbank et al. 1988). Plasma levels in 

humans may, therefore, reflect dietary intake of dairy products (Thompson and Smith 1985; 

Wickens and Dormandy 1988). Although, it may also be possible that a free radical 

mechanism, taking place in a structured membrane system, may result in the formation of a 

stereo specific isomer (lversen et al. 1984; Wickens and Dormandy 1988). 

Despite the doubt surrounding the validity of the 18:2(9-cis, 11-trans) isomer as a marker of 

free radical mediated lipid peroxidation, significant increases in the concentration of the 

isomer were detected in human pathologies associated with increased free radical activity, 

such as paraquat poisoning, which is known to involve the formation of free radicals 

(Yasaka et al. 1981; Crumpet al. 1985; Stohs 1995). Hence, the finding of elevated levels 

of conjugated dienes in the plasma of diabetic patients, added support to the hypothesis that 

free radical activity and oxidative stress are increased in diabetes (Section 1.4.2 and 

Appendix 3). 
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(ii) Tbiobarbituric acid test 

The TBA test is one of the most frequently used methods for the measurement of MDA and 

lipid peroxides in fatty acids, food products, membrane systems, plasma and tissue samples 

(Halliwell and Gutteridge 1990a; Draper and Hadley 1990). The general procedure simply 

involves heating the material under test with TBA in acidic conditions and measuring the 

absorption of the resulting pink chromogen, either spectrophotometrically or 

fluorimetrically. The chromogen, which forms by the condensation of two molecules of 

TBA and one molecule of MDA, absorbs light at 532nm and fluoresces at 553nm 

(Sinnhuber et al. 1958). The adduct was also characterized as having two tautomeric 

isomers (Nair and Turner 1984). 

Malondialdehyde is formed from fatty acids containing at least three double bonds, 

particularly arachidonic acid (McBrien and Slater 1982). Small amounts of free MDA are 

generated during the peroxidation process itself. The remainder arises from the 

decomposition of cyclic endoperoxides during the acid heating stage of the test (Pryor et al. 

1976; Wong et al. 1987). Hence the term 'thiobarbituric acid reactive substances' 

(TBARS), has also been applied to the test (Draper and Hadley 1990). 

Yagi et al. (1968) first applied the TBA reaction for the determination of lipid peroxides in 

serum and numerous techniques are variations of the fluorimetric procedure published by 

Yagi in 1976 (Hackett et al. 1988; Kojima et al. 1990; Conti et al. 1991; Richard et al. 1992; 

Agil et al. 1995). The lack of specificity has been the main criticism of the test, as numerous 

compounds present in biological samples, including carbohydrates, amino acids, unsaturated 

aldehydes and bile pigments react with TBA and could cause interference in spectro­

photometric and fluorimetric procedures (Esterbauer et al. 1982b; Knight et al. 1988; Koj ima 

et al. 1990). For this reason HPLC has been used to separate the real TBA-MDA adduct 

from the contaminants prior to measurement, thereby increasing the specificity of the assay 

(Bird et al. 1983; Wade et al. 1985; Wong et al. 1987; Carbonneau et al. 1991; Lepage et al. 

1991; Young and Trimble 1991 ). However, it must be noted that several carbohydrates, 

including sucrose and deoxyribose when exposed to ·OH radicals, produced by y-radiolysis 
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of water or exposure to iron salts, yielded MDA and produced a true TBA-MDA adduct 

(Halliwell and Gutteridge 1981; Cheeseman et al. 1988). Such conditions are unlikely to 

occur in vivo (Draper and Hadley 1990). 

Although the TBA test for MDA has the advantage of simplicity, some problems still remain. 

The colour developed in the reaction is affected by the reaction temperature and the heating 

time. Hence, the measured MDA value can vary a great deal (Hackett et al. 1988). The 

concentration of MDA in biological samples is, therefore, greatly influenced by the 

conditions employed in the assay. This is reflected by the wide variation in published values 

for the MDA concentration in the plasma of healthy subjects, as indicated in Table 1.5, 

making interlaboratory comparisons difficult. 

The lack of specificity has led to the continued refinement of existing methods in order to 

minimize spectral interferences (Espinosa-Mansilla et al. 1993; Chirico 1994) and optimize 

the reaction conditions (Wade and van Rij 1988; Lepage et al. 1991). Despite the criticisms, 

the TBA test remains a popular assay. Using this assay Sato et al. (1979) were the first to 

report elevated levels of lipid peroxides in the serum of diabetic subjects. 

Table 1.5 Reported values for the MDA concentration in the plasma or serum of healthy 
subjects. 

Reference Method 

Sato et al. 1979 Fb 
Santos et al. 1980 s 
Yasakaetal.1981 F 
Ledwozyw et al. 1986 s 
Wong et al. 1987 HPLC+S 
Young & Trimble 1991 HPLC+F 
Carbonneau et al. 1991 HPLC+S 
Carbonneau et al. 1991 HPLC+S 
Richard et al. 1992 F 

a MDA concentration determined as the MDA-TBA adduct. 

Plasmal 
Serum 

plasma 
plasma 
plasma 
plasma 
plasma 
plasma 
plasma 
serum 
plasma 

MDAconcentration a 
J.Uilol/1 (mean±SD) 

3.74±0.13 
35.1±5.9 
3.74±0.63 
0.94±0.09 
0.60±0.13 
0.59±0.16 
0.429±0.048 
0.454±0.066 
2.51±0.25 

b S = UV Spectrophotometry; F =Fluorimetry; HPLC, High performance liquid chromatography. 
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1.3.6 Consequences of lipid peroxidation 

The susceptibility of membrane lipids to peroxidation is largely influenced by their degree of 

unsaturation. Phospholipids contain a high proportion of PUFAs making cell membranes 

particularly susceptible to free radical attack. The consequences of lipid peroxidation in 

membranes include, decreased membrane fluidity and increased membrane permeability, 

which in turn lead to loss of function, impairment of membrane-bound enzymes and 

eventual rupture and release of contents (Niki et al. 1991 ). The secondary products of lipid 

peroxidation are themselves cytotoxic and capable of altering protein structure and enzyme 

activities (Zollner et al. 1991; Esterbauer 1993). Hence the products of lipid peroxidation, 

whether produced endogenously or ingested with food, are potentially detrimental to human 

health (Kubow 1990; Aruoma and Halliwelll991; Esterbauer 1993). 

There is confusion regarding the role of free radical reactions and lipid peroxidation in 

human toxicology and disease. Free radical activity has been implicated in the process of 

ageing and in numerous disease states, including diabetes mellitus. It is not always easy to 

ascertain whether free radical activity resulting in lipid peroxidation is the cause of the 

disease process or arises as a consequence of the tissue damage. However, lipid 

peroxidation does appear to make a significant contribution to the oxidative modification of 

LDL, a key stage in the development of atherosclerosis and CHD. 

(i) Atherosclerosis 

Serum cholesterol is a major risk factor for CHD and growing evidence indicates that this 

risk is mediated through the major cholesterol carrying lipoprotein, the LDL (Grundy 1995; 

Berliner and Heinecke 1996). Lipid peroxidation of LDL, within the intima of the arterial 

wall, leads to the formation of reactive aldehydes which bind to the apoprotein B-100. 

Modification of this apoprotein triggers the recognition of these particles by the macrophage 

scavenger-receptor, resulting in the unregulated uptake of LDL and subsequent formation of 

foam cells (Goldstein et al. 1979b; Steinberg et al. 1989). As foam cells accumulate, they 

form fatty streaks, the first visible lesions in atherosclerosis. Proliferation of smooth muscle 
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cells leads to the formation of fibrous plaques. If the endothelium is damaged, platelet 

accumulation may lead to thrombosis and vessel occlusion (Ross 1993; Schwartz and 

Valente 1994). 

Several lines of investigation, from both in vitro and in vivo studies, have provided strong 

evidence that oxidative modification of LDL occurs during the development of fatty streaks 

(reviewed by Rice-Evans 1993; Keaney and Frei 1994; Jialal and Devaraj 1996; Reaven and 

Witztum 1996). Briefly, certain cells, including macrophages, smooth muscle cells and 

endothelial cells have been shown to modify LDL, stimulating uptake by the macrophage 

scavenger-receptor, in vitro (Henriksen et al. 1981; Steinbrecher et al. 1984; Leake and 

Rankin 1990) and in vivo (Palinski et al. 1989). The secondary products of lipid 

peroxidation can modify the apoproteins (Steinbrecher 1987), damage the endothelium and 

stimulate the infiltration of monocytes by chemoattraction, promoting plaque progression 

(Quinn et al. 1987). Antibodies to oxidized LDL have been demonstrated in both human and 

animal atherosclerotic lesions, but not in normal arteries (Palinski et al. 1989; Salonen et al. 

1992). The contents of human atherosclerotic lesions were also found to stimulate lipid 

peroxidation (Smith et al. 1992). Furthermore, the extensive studies of Esterbauer et al. 

(1992) have shown that LDL contains a number of endogenous antioxidants and that it is 

only when these have been largely consumed that peroxidation takes place. Consistent with 

this is epidemiological evidence, that in populations with high dietary intakes of fruit and 

vegetables and high plasma levels of antioxidants, particularly vitamin E, the incidence of 

CHD is low (Gey and Puska 1989; Gey et al. 1991; Rimm et al. 1993; Stampfer et al. 1993; 

reviewed by Graziano et al. 1994 ). Recently, a randomized trial of vitamin E 

supplementation, in patients with angiographically confirmed atherosclerosis, has found a 

significant reduction in the risk of myocardial infarction after 1 year of treatment, supporting 

the lipid oxidation theory of atherosclerosis and preventative role of antioxidants in CHD 

(Stephens et al. 1996). A schematic representation of the role of oxidized LDL in 

atherogenesis is shown in Figure 1.8. 
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Figure 1.8 Schematic representation of the role of WL in atherosclerosis (modified from 
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1.4 Diabetes Mellitus 

Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia, secondary to an 

absolute or relative lack of insulin, or resistance to its action, which results in derangements 

in carbohydrate, lipid and protein metabolism. The diagnostic criteria for diabetes have been 

re-examined in recent years and the American Diabetes Association have recommended that 

the fasting plasma glucose level considered to be diagnostic for diabetes be lowered from 7.8 

mmol/1 (World Health Organization 1985) to 7.0 mmol/1 (The Expert Committee on the 

Diagnosis and Classification of Diabetes Mellitus 1997). Clinically, diabetes is subdivided 

into two main categories: insulin-dependent, or type I diabetes and non-insulin-dependent, 

or type II diabetes. Type I diabetes occurs mainly in people below 30 years of age, as a 

result of the autoimmune destruction of the pancreatic B-cells and requires insulin 

replacement by daily injections. Omission of insulin results in diabetic ketoacidosis. Type 

II diabetes is a complex polygenic condition, which involves defects in both insulin secretion 

and insulin action. It is seldom seen in persons below 35 years of age and is often 

associated with obesity. The majority of patients fall into the type II category and are treated 

by diet, or diet and hypoglycaemic drug therapy although some patients require insulin. 

Type I and type II diabetes are distinct conditions, which share a striking propensity to both 

microvascular and macrovascular disease, suggesting a common underlying cause. The 

microvascular complications, retinopathy, neuropathy and nephropathy are accepted to be 

primarily the result of the exposure of the tissues to the chronically elevated glucose levels, 

since the risk of developing complications increases with increasing duration of diabetes 

(Pirart 1978) and also with increasing hyperglycaemia (West 1982). Recently, the Diabetes 

Control and Complications Trial (DCCT, 1993) convincingly demonstrated that improved 

glycaemic control significantly delayed the onset and progression of complications, 

supporting the hypothesis that hyperglycaemia is the cause of microvascular complications in 

type I diabetes. However, the confounding factor is why patients with similar duration and 

degree of glycaemic control, differ markedly in their susceptibility to tissue damage (Raskin 

and Rosenstock 1986). 
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A small proportion (5%) of patients with type I diabetes appear to be particularly susceptible 

to developing microvascular complications, even with mild elevations in plasma glucose, 

whilst approximately 20% never develop severe complications, regardless of glycaemic 

control. The majority of patients, however, have varying degrees of susceptibility to 

complications. Consequently, two main hypotheses have been put forward to explain the 

widespread differences in the occurrence of microvascular complications: the genetic theory, 

which suggests that the microvascular complications are a genetically predetermined part of 

the diabetic syndrome and the metabolic theory, that the complications are solely sequelae of 

the hyperglycaemia (Raskin and Rosenstock 1992). 

The metabolic pathways by which hyperglycaemia leads to tissue damage are areas of 

intensive research and several mechanisms have been proposed. These include: capillary 

basement membrane thickening, non-enzymatic glycosylation of proteins, increased flux 

through the polyol pathway and pseudohypoxia, haemodynamic changes and increased free 

radical activity I oxidative stress (Greene et al. 1987; Crabbe 1987; Baynes 1991; Raskin and 

Rosenstock 1992; Barnett 1993; Williarnson et al. 1993; Wolff 1993; Giug1iano et al. 1996). 

Macrovascular disease, caused by atherosclerosis, is the major complication in diabetes 

accounting for 75% of all deaths (Bierman 1992). Several epidemiological studies have 

shown that the mortality rates from CHD are more than doubled in diabetic subjects 

compared with non-diabetic subjects (Garcia et al. 1974; Uusitupa et al. 1990a; Manson et 

al. 1991a; Stamler et al. 1993). The impact of CHD is greatest in type II diabetics, since 

approximately 80% of patients are in this category, therefore, the majority of deaths are seen 

in this group. However, it is clear that atherosclerosis is also increased in type I diabetes, 

even in the absence of proteinuria and nephropathy (Krolewski et al. 1987). 

Environmental factors appear to be partly responsible for the increased prevalence of CHD, 

as exemplified by Japanese subjects resident in Hawaii. This group had more than double 

the rate of CHD, compared with similar diabetic subjects living in Japan, whilst the 

prevalence of microvascular complications were similar in both groups (Kawate et al. 1979). 
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It appears that atherosclerosis occurs as a result of diabetes compounding other risk factors, 

such as hypertension and hyperlipidaemia. For example, the risk of atherosclerosis at any 

level of serum cholesterol, or in the presence of hypertension, smoking or obesity was 2-6 

fold greater in diabetic subjects compared with non-diabetic subjects (Manson et al. 1991a; 

Stamler et al. 1993). However, even when all of the associated risk factors were taken into 

consideration, their presence could not account for the excessive increase in CHD, which 

was attributed to the diabetes per se (Garcia et al. 1974; Manson et al. 1991a; Stamler et al. 

1993). Hence, other factors specific to diabetes appear to be involved, which result in 

accelerated atherosclerosis. 

A multitude of factors can contribute to atherogenesis and it is unlikely that one factor can 

explain the increase in CHD found in diabetes. In recent years, attention has been turning to 

the role of free radical mediated damage of LDL, a molecule inherent in the formation of 

atherosclerotic lesions and the action of antioxidants in preventing this damage. 

1.4.1 Non-enzymatic glycosylatlon and the formation of free radicals 

One of the best characterized effects of excess blood glucose is the process of non-enzymatic 

glycosylation (the Maillard reaction). Glucose and other reducing sugars react with proteins 

by a non-enzymatic process called glycosylation (glucose only) or glycation (sugars in 

general). The carbonyl group of the sugar binds to a free amino group of a protein, forming 

a reversible adduct (Schiff base), which rearranges over time to form a more stable, but 

reversible, ketoarnine (Amadori product, Figure 1.9). The Amadori products undergo an 

extensive range of reactions, including rearrangement, dehydration and fragmentation 

reactions, forming complex advanced glycation end products (AGEs), which remain 

irreversibly bound to proteins. On stable long-lived proteins, AGEs accumulate with time, 

forming inter- and intramolecular crosslinks and have been implicated in ageing (Lee and 

Cerarni 1992; Monnier 1990). In diabetes, the process of glycosylation occurs at an 

accelerated rate and has been suggested as the common underlying biochemical basis leading 

to microvascular complications (Brownlee et al. 1988; Brownlee 1992; Brownlee 1994). 
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The dominant structures and pathways of AGE formation in vivo have been difficult to 

determine, since a compound may be generated by different routes, from different 

precursors. Three major pathways of the MaiUard reaction, which lead to protein damage, 

have been identified by Monnier et al. (1993) and are summarized below: 

1 . Non-oxidative pathway 
Non-oxidative browning 

Reducing sugar ~ Glycation ~ Deoxyosones ~ and crosslinking 

(e.g., pyrroles) 

2. Glycoxidative pathway 
02 I fragmentation Glycoxidation 

Reducing sugar ~ Glycation --------+ (e.g., CML, pentosidine) 

3 • Autoxidative pathway 

02 I metal ions 

Reducing sugar 

02·-, H202, ·OH 

Ketoaldehyde 
formation 

Lipid I protein oxidation, 

~ fragmentation and 
cross linking 

1 . The Amadori products undergo non-oxidative reactions such as enolization reactions 

(Appendix 2), which can lead to the regeneration of the amine group, whilst the sugar 

undergoes dehydration forming 1, 3 or 4 deoxyosones, Figure 1.9 (Ledl 1990). Similar 

dehydration reactions of the Amadori compounds also lead to the formation of deoxyosones. 

The deoxyosones are Maillard intermediates, which contain highly reactive dicarbonyl 

groups that undergo further cyclization I dehydration reactions forming a variety of AGEs. 

These include numerous heterocyclic ring compounds, such as pyrroles (e.g., pyrraline; 

Figure 1.9), which are formed from 3-deoxyosones and remain irreversibly bound to 

proteins (Ledl 1990). Pyrroles have been detected in serum albumin from diabetic subjects 

using immunological assays (Hayase et al. 1989). 
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2 • Free radical reactions have been observed in the formation of AGEs. Baynes and 

colleagues found that Amadori products were oxidized in the presence of 02 and transition 

metal ions, into carboxymethyllysine (CML) and a highly fluorescent compound called 

'pentosidine' (Ahmed et al. 1986; Grandhee and Monnier 1991; Dyer et al. 1991). 

Carboxymethyllysine was formed by the cleavage of Amadori products in a pathway that 

involved ROS, whilst pentosidine was derived from the inter- and intramolecular 

crosslink.ing of arginine and lysine residues, Figure 1.10 (Sell and Monnier 1989). It was 

postulated that the formation of these AGEs involved free radical mediated reactions, judged 

by the fact that the reactions were inhibited in the absence of 02 or by the addition of SOD, 

catalase, ·OH-scavengers and metal ion chelators (Ahmed et al. 1986; Dyer et al. 1991). 

Several other groups have also reported that Schiff bases I Amadori adducts are sources of 

02·-. in the presence of metal ions, which can then lead to the formation of ·OH, initiating 

further damage to surrounding molecules (Jones et al. 1987; Sakurai and Tsuchiya 1988; 

Mullarkey et al. 1990; Sakurai et al. 1990; Smith and Thornalley 1992; Taniguchi et al. 

1994). The formation of AGEs, by the combination of glycation and oxidation reactions has 

been called 'glycoxidation' and is outlined in Figure 1.9 (Baynes 1991). 

Concentrations of CML and pentosidine were found to be elevated in patients with diabetes, 

compared with age-matched controls and correlated positively with the presence of 

complications (Monnier et al. 1986; Sell and Monnier 1990; Sell et al. 1993). These 

findings suggested that glycoxidation reactions occurred in vivo and could provide an 

indication of oxidative damage to proteins (Baynes 1991 ). However, the formation of CML 

and pentosidine does not appear to be limited to glucose, e.g., CML and pentosidine were 

formed during the reactions of proteins with the pentose-products of ascorbate oxidation 

shown in Figure 1.4 (Dunn et al. 1990; Nagaraj et al. 1991; Monnier et al. 1993); CML was 

also formed during lipid peroxidation reactions in the presence of protein (Fu et al. 1996). 

Thus, CML and pentosidine may be general indicators of oxidative damage in tissues (Fu et 

al. 1996). 
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Glycation of plasma proteins, including LDL apoproteins, is increased in diabetes (Lyons 

1993). Since glycated proteins are sources of ROS, increased glycation of LDL might 

increase the oxidation of the lipid fraction and provide an explanation for the accelerated 

atherosclerosis found in diabetes (Mullarkey et al. 1990). Indeed, oxidation of LDL 

subsequent to glycation has been reported (Hunt et al. 1990; Sakurai et al. 1991; Bucala et 

al. 1993). Similarly, glycoxidative damage has been reported for SOD (Adachi et al. 1992; 

Ookawara et al. 1992; Taniguchi et al. 1994) and collagen (Hicks et al. 1988; Chace et al. 

1991; Fu et al. 1992). Furthermore, glycosylation of intra- or extracellular SOD was 

associated with impaired activity of the enzyme (Arai et al. 1987; Adachi et al. 1992). Since 

levels of glycosylated SOD were found to be higher in diabetic subjects compared with 

controls, it has been suggested that this may also decrease antioxidant defences and 

contribute to vascular complications (Adachi et al. 1991 ). 

3. In addition to glycosylation, glucose is known to undergo another type of reaction 

known as 'autoxidation' (Wolff 1987; Wolff 1997). Glucose, in common with other a.­

hydroxy aldehydes, is able to enolize (Appendix 2) and reduce 0 2 in the presence of 

transition metal ions, under physiological conditions of temperature and pH, yielding 0 2·-, 

H202, ·OH and reactive ketoaldehydes (Figure 1.11) (Wolff et al. 1984; Thornalley et al. 

1984). 

Evidence from in vitro studies suggests that the products of glucose autoxidation are a 

substantial cause of structural damage to proteins exposed to glucose (W olff and Dean 1987; 

Hunt et al. 1988; Chace et al. 1991 ). Similar studies with LDL and erythrocyte membranes 

have shown that glucose initiates lipid peroxidation, by a pathway that involves 0 2·- (Hunt 

et al. 1990; Kawamura et al. 1994; Virgili et al. 1996). The ketoaldehyde products of 

glucose autoxidation were also found to react with proteins, contributing to glycosylation­

related protein modification (Wolff and Dean 1987; Hunt et al. 1988). 
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The reactivity of sugars had been known for sometime, with short chain sugars exhibiting 

greater reactivity than glucose, a reflection of the rate of ring opening (Bunn and Higgins 

1981). It was Wolffs original suggestion that elevated concentrations of monosaccharides 

might be a source of reactive oxidants in diabetes (Wolff et al. 1984; Wolff 1987). Hence, 

hyperglycaemia may lead to an increase in the production of free radicals above normal basal 

levels, constituting a starting point for oxidative stress in diabetic patients (Gillery et al. 

1989; Wolff 1993). 

1.4.2 Oxidative stress and free radical activity in diabetes 

Oxidative stress has been defined as an increase in the pro-oxidant I antioxidant balance, in 

favour of pro-oxidation, leading to potential damage (Sies 1991). Oxidative stress may 

occur due to an increase in the formation of endogenous free radicals which overwhelm 

antioxidant defences and I or inadequate antioxidant scavenging ability, enabling the number 

of free radicals to increase above normal basal levels, or both. A number of antioxidant 

defences appear to be compromised in diabetes and are discussed in the following section 

(1.5) and are shown in Appendix 3. It has been proposed that oxidative stress contributes to 

the pathogenesis of diabetic complications (Wolff 1987; Baynes 1991; Wolff et al. 1991; 

Wolff 1993; Giugliano et al. 1996). This hypothesis is based upon numerous studies, 

summarized in Appendix 3, which have reported elevated markers of free radical activity in 

persons with diabetes. 

Sato et al. ( 1979) first reported increased levels of lipid peroxides in the plasma of diabetic 

subjects. This finding was subsequently confirmed by others who also measured lipid 

peroxides, mainly TBARS, as indirect indicators of free radical activity. In several studies, 

lipid peroxides were elevated in diabetic patients with complications, whilst those without 

complications had levels similar to those of the control groups (Sato et al. 1979; Jennings et 

al. 1987a; Jennings et al. 1991, Mooradian 1991 ). These results suggested that lipid 

peroxides were increased only in subjects with complications. Although, in some studies no 

mention of complications was made (Kaji et al. 1985; Gopaul et al. 1995). However, a 
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number of studies reported that lipid peroxides were significantly increased in diabetic 

patients compared with control subjects, regardless of the presence or absence of 

complications, supporting the view that diabetes is a condition pertaining to oxidative stress 

(Noberasco et al. 1991; Chittar et al. 1994; Gallou et al . 1994a; Part hi ban et al. 1995; 

Sundaram et al. 1996). Elevated levels of lipid peroxides have also been reported in the 

erythrocyte membranes of diabetic subjects (Jain et al. 1989; Rajeswari et al. 1991; 

Parthiban et al. 1995). 

Recent studies, using more specific markers of lipid peroxidation have added further support 

to the hypothesis that oxidative stress is increased in diabetes. A unique series of 

prostaglandin F2-like compounds, known as 'isoprostanes', are formed during the 

autoxidation of arachidonic acid (Morrow et al. 1990; Morrow et al. 1992). The isolation 

and characterization of isoprostanes in plasma, by GC-MS, has provided a specific marker 

for lipid peroxidation in vivo (Morrow and Roberts 1996). Hence, the measurement of 

significantly elevated levels of isoprostanes in the plasma of type IT diabetic patients has 

confirmed that lipid peroxidation is increased in diabetes (Gopaul et al. 1995). Similarly, 

another study using a 'precise' technique for measuring lipid peroxides, based upon the 

oxidation of ferric ions to ferrous ions, has also found elevated levels of lipid peroxides in 

diabetic subjects (Nourooz-Zadeh et al. 1995). Additionally, significantly greater amounts 

of oxidative damage to DNA were reported in the mononuclear cells of type I and type 11 

diabetic patients compared with age-matched controls (Dandona et al. 1996). Furthermore, 

studies measuring the total peroxyl-radical trapping ability of the antioxidants (TRAP) in 

serum, have found significantly lower TRAP values in diabetic patients compared with 

control subjects, revealing that serum from diabetic subjects is more susceptible to lipid 

peroxidation (Asayama et al. 1993; Tsai et al. 1994; Ceriello et al. 1997). A further 

reduction in TRAP levels was also observed in patients with poor glycaemic control 

(Maxwell et al. 1997). These studies have all supported the view that oxidative stress is 

increased in diabetes. 
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Changes in the patterns of antioxidant defences have also been reported in diabetic subjects. 

In general, a reduction in the activity of SOD was found in erythrocytes (Collier et al. 1990; 

Jennings et al. 1991; Sundaram et al. 1996) and leucocytes (Nath et al. 1984 ), indicating that 

there could be a possible increase in the formation of 02·-. In poorly controlled diabetes, 

increased glycosylation of SOD may have been responsible for the decrease in enzyme 

activity (Adachi et al. 1991 ). An increase in the activity of erythrocyte GSH-Px has been 

observed, possibly as an adaptive mechanism against increasing oxidative stress (Kaji et al. 

1985; Sundaram et al. 1996). Similarly, plasma caeruloplasmin levels were also 

significantly elevated in diabetic subjects (MacRury et al. 1993; Cunningham et al. 1995). 

Since caeruloplasmin functions as an 'acute-phase-reactant', elevated levels could be a 

further sign of high levels of oxidative stress. 

Plasma levels of lipid peroxides were found to be significantly greater in diabetic subjects 

with vascular complications compared with subjects without complications (Annstrong et al. 

1992; Collier et al. 1992; Gallou et al. 1993; Chittar et al. 1994; Gallou et al. l994a; 

Parthiban et al. 1995; Sundaram et al. 1996). A progressive increase in plasma TBARS was 

also observed with increasing duration of diabetes and with increasing number of secondary 

complications (Annstrong et al. 1992; Sundaram et al. 1996). Interestingly, diabetic patients 

without vascular complications, but with hypertension, also had higher plasma TBARS than 

normotensive patients; whereas in patients with vascular disease, there were no differences 

between hypertensive and normotensive patients (Gallou et al. 1994a). One study has 

found significantly greater levels of TBARS in diabetic patients with microvascular 

complications, but with no evidence of rnacrovascular disease, compared with non-diabetic 

subjects with macrovascular disease (Belch et al. 1995). From these results it was 

postulated that the increased degree of oxidative stress in patients with microangiopathy may 

promote the development of atherosclerosis. Furthermore, patients with poor glycaemic 

control were also found to have higher levels of lipid peroxides than patients with good 

glycaemic control, in plasma (Noberasco et al. 1991; Annstrong et al. 1992; Griesmacher et 

al. 1995; Sundaram et al. 1996) and in erythrocytes (Jain et al. 1989; Sundaram et al. 1996). 
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It appears that diabetes is a condition associated with increased lipid peroxidation, 

particularly in patients with complications or poor glycaemic control. Plasma lipid 

concentrations may be important determinants of lipid peroxide levels and several studies 

found significant positive correlations between TBARS and cholesterol and triglyceride 

concentrations, indicating the possible importance of substrate availability (Velazquez et al. 

1991; Gallou et al. 1994a; Griesmacher et al. 1995). Others, however, found no 

correlations between TBARS and glycaemic control and plasma lipid levels, suggesting that 

plasma lipid peroxide levels were not simply a function of plasma lipid concentrations or a 

consequence of hyperglycaemia (Gopaul et al. 1995; Nourooz-Zadeh et al. 1995). 

Interpretation of the data from studies of lipid peroxidation in diabetes have been confounded 

by reports that plasma lipid peroxides are also increased in non-diabetic subjects with 

vascular disease (Stringer et al. 1989; Velazquez et al. 1991; MacRury et al. 1993; Belch et 

al. 1995) or hyperlipidaemia (Chirico et al. 1993; Nacitarhan et al. 1995). Hence, the 

increase in plasma lipid peroxides in diabetic patients may simply be an indication of the 

background level of atherosclerosis, which has not yet manifested the clinical symptoms of 

the disease. In this way, the TBAR test has been put forward as a diagnostic tool for the 

early detection of patients at risk from cardiovascular events (Gallou et al. 1994a; 

Griesmacher et al. 1995). 

Despite the numerous studies confllllling the presence of oxidative stress in diabetes, the role 

and origin of oxidative stress is less clear. It is not known whether increased lipid peroxides 

are the cause or the result of the long term complications and the source(s) of free radicals 

has not been established. Interpretation of the role of oxidative stress in the pathogenesis of 

diabetic complications has been made difficult by the fact that once tissue damage has 

occurred oxidative stress may then continue in a self-perpetuating 'vicious circle' (Baynes 

1991). However, several studies have indicated that changes occur at an early stage in 

diabetes and possibly before the development of complications (Asayama et al. 1993; 

Parthiban et al. 1995; Sundaram et al. 1996). 
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In contrast, studies using animals as a models for diabetes have clearly shown a free radical 

involvement in the pathogenesis of diabetes and its complications. The pancreatic B-cells are 

poorly equipped in terms of the antioxidant enzymes, SOD and GSH-Px (Grankvist et al. 

198la; Malaisse et al. 1982), and are destroyed by autoimmune processes mediated by 

cytokines and free radicals (Oberley 1988; Rabinovitch 1992; Nerup et al. 1994). Conse­

quently, the non-obese diabetic (NOD) mouse and the Biobreeding (BB) rat develop type I 

diabetes after the release of ROS, which occurs during macrophage and T-celllymphocyte 

infiltration of the pancreatic islets (Horio et al. 1994; Brenner et al. 1993). Similarly, the 

diabetogenic drugs streptozotocin (STZ) and alloxan selectively destroy the pancreatic B-cells 

by free radical mediated processes (Uchigata et al. 1982). Administration of antioxidants 

prior to the development of diabetes, prevented or reduced the incidence of damage to the 

pancreatic islets, supporting the concept of a free radical involvement (Grankvist et al. 

1981 b; Uchigata et al. 1982; Horio et al. 1994 ). After the onset of diabetes, levels of lipid 

peroxides were found to increase in the plasma and tissues of diabetic rats (Suresh Kumar 

and Menon 1992; Young et al. 1992) and were corrected by insulin treatment or lessened by 

antioxidant therapy (More! and Chisolm 1989; Young et al. 1992). Furthermore, reports 

that antioxidants restored nerve function in diabetic rats have implied a role for ROS in the 

aetiology of the complications (Cameron et al. 1994; Cameron and Cotter 1995; Cotter et al. 

1995). 

In summary, diabetes mellitus is associated with a high prevalence of vascular 

complications, with cardiovascular disease as the leading cause of mortality in the majority 

of patients. Hyperglycaemia has been established as the leading cause of the vascular 

complications (DCCT 1993 ), but the mechanisms by which hyperglycaemia leads to 

vascular disease are not fully understood. Numerous studies have reported elevated levels 

of lipid peroxides in diabetic patients and oxidative stress is thought to be a contributing 

factor to the development of complications, particularly atherosclerosis (Giugliano et al. 

1996). The hypothesis that oxidative stress contributes to the development of diabetic 

complications is an attractive one, because the consequences of hyperglycaemia may be 

modulated by the ability of individuals to withstand oxidative stress and may explain the 
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individual variation in susceptibility to complications (Lyons and Johnson 1994). 

The glycoxidation and autoxidation pathways are potential sources of free radicals in vivo, 

which may potentiate protein damage by increasing crosslinking, fragmentation and the 

formation of AGEs (Hunt and Wolff 1991; Hunt et al. 1993). Since proteins are found in 

close proximity to lipids, the generation of reactive molecules can potentially initiate the 

autocatalytic reactions of lipid peroxidation. Hence, an increase in the production of free 

radicals by these mechanisms has been linked to the development of oxidative stress, 

microvascular complications and atherogenesis in diabetes, and also the ageing process 

(Wolff 1987; Baynes 1991; Wolff et al. 1991; Hunt et al. 1990; Mullarkey et al. 1990; 

Kristal and Yu 1992). 

Numerous in vitro studies have shown that the autoxidation and glycoxidation reactions of 

glucose are sources of ROS, but clear evidence that these reactions occur in vivo and may be 

responsible for the elevated levels of lipid peroxides found in diabetic patients is lacking. 

Thus, the effect of acute episodes of hyperglycaemia on lipid peroxidation and antioxidant 

vitamin levels were investigated as part of this study. 
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1.5 Antioxidant Vitamin Status in Diabetes 

In type I and type II diabetes, alterations in trace element and antioxidant vitamin status are 

found (reviewed by Strain 1992; Mooradian et al. 1994; Thompson and Godin 1995). 

VitaminE 

Studies with experimental animals have found that plasma and tissue levels of vitamin E are 

elevated after the onset of diabetes (Behrens et al. 1984; Pritchard et al. 1986). In clinical 

studies, plasma levels of vitamin E were elevated in both type I and type II diabetic subjects, 

when compared with control subjects (Vatassery et al. 1983; Caye-Vaugien et al. 1990; 

Krempf et al. 1991) and showed an increase with age (Lewis et al. 1973; Martinoli et al. 

1993). However, as plasma lipids tend to be elevated in diabetes, lipid standardized vitamin 

E levels were calculated and found to be normal (Vandewoude et al. 1987; Martinoli et al. 

1993). Several studies have indicated that vitamin E status is deficient in the platelets of 

diabetic persons and may enable an increase in the production of thromboxane A2 and 

increased platelet aggregation (Watanabe 1984; Karpen 1985; Gisinger et al. 1990). 

Dietary supplementation with vitamin E may reduce protein glycation in diabetes. Ceriello et 

al. (199la) observed a significant reduction in glycosylated haemoglobin and in the 

glycosylation of other proteins in type I diabetic subjects, after 2 months of supplementation 

with either 600 or 1200 mg of vitamin E per day; the response was also dose related. 

Modest improvements in glycaemic control, due to increased insulin sensitivity, were also 

reported with supplements of 900 mg daily for 4 months in type II diabetic subjects 

(Paolisso et al. 1993) and in elderly non-diabetic subjects (Paolisso et al. 1994). In contrast, 

Reaven et al. ( 1995) found no evidence of improvements in fasting serum glucose or protein 

glycation in type II diabetic patients given 1600 IU of vitamin E daily for I 0 weeks, but a 

significant increase in LDL vitamin E levels and resistance of LDL to oxidation was 

observed. Parfitt et al. ( 1996) found no change in glycaemic control in type I diabetic 

patients consuming moderate supplements (400 IU (269 mg)) of vitamin E per day for 8 

weeks, nor any reduction in lipid peroxidation; although, a subgroup of patients did show a 

significant enrichment in LDL vitamin E and a subsequent reduction in lipid peroxidation. 
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Reaven et al. ( 1995), suggested that the ability of vitamin E to inhibit protein glycation might 

have been limited to those subjects who had poor diabetic control and higher rates of protein 

glycation. Additionally, vitamin C or a combination of antioxidants might have been 

responsible for the effects on glycation (Dunn et al. 1990; Shoff et al. 1993; Reaven et al. 

1995; Vinson and Howard 1996). However, the duration of supplementation is a likely 

factor, since other studies with longer periods of supplementation have found a reduction in 

glycosylated haemoglobin (Duntas et al. 1996; Jain et al. 1996a). 

Antioxidant supplementation increases the resistance of LDL to oxidation in healthy 

individuals (Dieber-Rotheneder et al. 1991; Jialal and Grundy 1992; Reaven et al. l993a). 

Vitamin E supplements were found to produce similar effects in type I and 11 diabetic 

subjects (Reaven et al. 1995; Fuller et al. 1996). Supplementation with vitamin E was also 

found to decrease platelet aggregation (Colette et al. 1988; Gisinger et al. 1988) and plasma 

lipid peroxide levels in diabetic patients (Jain et al. l996b), thereby providing further anti­

atherogenic protection. Vitamin E supplementation offers potential benefits in the treatment 

of diabetes, but the long term effects of supplementation are unknown at present and cannot 

be recommended in clinical practice (Garg 1996; Gazis et al. 1997). 

Vitamin A 

Serum retinol and RBP concentrations were found to be significantly decreased in children 

and adults with type I diabetes, when compared with non-diabetic control subjects (Basu et 

al. 1989; Krempf et al. 1991; Martinoli et al. 1993). In an earlier study, in type I diabetic 

subjects, reduced plasma retinol concentrations were found, whilst the levels of retinyl esters 

associated with lipoproteins were significantly elevated (W ako et al. 1986). The cause of the 

reduced plasma levels of retinol in diabetes is uncertain. It has been suggested that hepatic 

storage of retinol is increased, whilst the release of retinol by the liver and transport in 

plasma is affected in diabetes (Basu et al. 1989). This theory was supported by Basu et al. 

(1990) and Tuitoek et al. (1996), who reported that plasma levels of retinol and RBP were 

significantly reduced in rats made diabetic with STZ, whilst hepatic stores of the vitamin 

gradually increased after the onset of diabetes. 
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In contrast, a significant increase in plasma retinol concentrations was reported in type II 

diabetic subjects, compared with age-matched controls (Krempf et al. 1991). In a recent 

study, no differences in plasma retinol concentrations were found between type II diabetic 

subjects and control subjects; however, the levels of RBP were significantly higher in the 

diabetic group and highest in those patients receiving insulin therapy (Basualdo et al. 1997). 

Plasma retinol concentrations are regulated by the synthesis and release of RBP by the liver, 

a process that requires zinc and protein (Smith 1980; Olson 1991). Zinc status is altered in 

diabetes (reviewed by Strain 1992; Thompson and Godin 1995) and insulin is also known to 

affect vitamin A metabolism and vice versa (Bowles 1967; Chertow et al. 1987; Chertow et 

al. 1993). Thus, several factors are likely to be involved in altering the plasma retinol 

concentrations, as a direct consequence of the diabetic state. It has been suggested that in 

type I diabetes, insulin deficiency may impair the release of retinol by the liver, causing a 

reduction in the plasma retinol concentrations, whereas hyperinsulinaemia may be 

responsible for the elevation in retinol and RBP observed in type II diabetes (Krempf et al. 

1991; Basualdo et al. 1997). 

There is a lack of data available on the effects of vitamin A supplementation in diabetic 

patients. However, the majority of type II diabetic patients are unlikely to be deficient in 

vitamin A and large doses are known to have toxic effects; thus, the use of vitamin supple­

ments are not justified in diabetes (Mooradian et al. 1994; Garg 1996). Indeed, two recent 

studies have highlighted the need for caution when proceeding with antioxidant 

supplementation therapy: The Alpha Tocopherol Beta Carotene Cancer Prevention Study 

(ATBC (1994)), and the Beta Carotene and Retinol Efficacy Trial (CARET (Omenn et al. 

1996)), were originally designed to test for the possible effects of vitamin E, B-carotene and 

retinol supplementation, on the prevention of lung cancer in high risk groups. In the A TBC 

study, male smokers were randomized to vitamin E (50 mg per day), 6-carotene (20 mg per 

day), vitamin E plus 6-carotene or placebo. In the CARET study, patients received either a 

combination of 30 mg of B-carotene and 25000 IV of retinol per day, or placebo. Both 

studies showed an excessive increase in the incidence of lung cancer in those treated with 
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supplements and no evidence of a beneficial effect of supplementation. As a result, the 

CARET intervention was stopped prematurely. These somewhat alarming results, 

emphasized the need for a greater understanding of the physiological functions of 

antioxidants and their interactions, in both healthy and diseased states, before considering 

the use of antioxidant therapy. 

Vitamin C 

Ascorbic acid status is disrupted in diabetes mellitus (Will and Byers 1996). In animals with 

experimentally induced diabetes, decreases in plasma and tissue AA concentrations have 

been observed (Yew 1983; Schlosser et al. 1987; McLennan et al. 1988; Yue et al. 1989; 

Yue et al. 1990). Alterations in AA status were also found in the diabetes prone BB rat 

before the onset of the disease (Behrens and Madere 1991 ). 

Numerous studies have indicated that in both type I and type II diabetic subjects, plasma 

levels of AA are significantly lower than those of non-diabetic controls (Chaterjee and 

Baneijee 1979; Som et al. 1981; Jennings et al. 1987b; Yue et al. 1990; Sinclair et al. 1991; 

Sinclair et al. 1994; Segbieri et al. 1994). In addition, diabetic subjects with complications 

were found to have significantly lower plasma ascorbate levels than those without 

complications (Sinclair et al. 1991). Similarly, levels of AA were found to be reduced in 

white cells and platelets, suggesting that tissue storage of AA was also impaired in diabetes 

(Chen et al. 1983; Cunningham etal. 1991). However, the findings are not consistent; in 

type I and IT diabetic subjects with high dietary intakes of vitamin C, plasma and white cell 

ascorbate concentrations were found to be similar to those of the control groups (Stankova et 

al. 1984; Schorah et al. 1988; Lysy and Zimmerman 1992). 

Since plasma levels of AA reflect intake, low plasma levels may be indicative of an 

inadequate dietary supply of the vitamin. When this factor was investigated, no significant 

differences were found between the dietary intakes of diabetic and non-diabetic subjects, but 

the plasma concentrations of AA were significantly lower in the diabetic group (Sinclair et al. 

1994). This finding added further support to the theory that disturbances in AA metabolism 
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occurred as a result of the diabetes. 

The exact mechanisms to account for the lowering of AA are uncertain. It has been 

suggested that AA and glucose (and also DHAA), share a common membrane transport 

mechanism, due to the structural similarity between the molecules (Mann and Newton 1975; 

Bigley et al. 1983; Davis et al. 1983). Thus, competition between glucose and AA for the 

carrier may be responsible for the lowering of AA concentrations in plasma and tissues. 

This theory was supported by in vitro studies which showed that the uptake of AA by 

lymphocytes, and DHAA by leucocytes and fibroblasts was inhibited by glucose (Bigley et 

al. 1983; Davis et al. 1983; Stankova et al. 1984; Cunningham 1988). The effect of acute 

hyperglycaemia in vivo, in healthy subjects, also caused an acute decrease in the 

concentration of AA in leucocytes, suggesting that plasma glucose may be an important 

factor inducing the intracellular depletion of AA (Chen et al. 1983;Pecoraro and Chen 1987). 

Yue et al. (1990) and Lysy and Zimmerman (1992) found a negative correlation between 

plasma AA concentrations and glycosylated haemoglobin and reported that tissue depletion 

of AA did occur with increasing hyperglycaemia. However, Som et al. (1981), Jennings et 

al. (1987b), and Sinclair et al. (1991) found no relationship between AA concentrations and 

glycaemic control and concluded that AA levels were not lowered as a direct consequence of 

hyperglycaemia. The in vitro studies have shown that different cell types take up AA and 

DHAA at different rates (Mooradian 1987), suggesting that there may be at least two 

transport mechanisms operating (reviewed by Cunningham 1988; Schorah 1992; Levine et 

al. 1994), one of which is impaired by hyperglycaemia. In cells where the accumulation of 

AA occurs by the uptake of DHAA, followed by reduction to AA, insufficient concentrations 

of cellular reducing agents could impair the uptake of DHAA (Schorah 1992). 

The reduction of DHAA back to AA, to maintain its antioxidant activity, is coupled with 

GSH and glutathione reductase activity, which in turn is dependent upon the production of 

NADPH by the hexose monophosphate shunt pathway (and glucose 6-phosphate 

dehydrogenase activity). In cells where the entry of glucose is not affected by insulin, 
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notably the lens, retina, erythrocytes, glomerulus and peripheral nerve the polyol pathway 

(Figure 1.3, page 18) may be responsible for lowering NADPH levels, increasing the 

NADHINAD+ ratio (Williamson et al. 1993) and, hence, decreasing the cellular reducing 

capacity necessary for the reduction of DHAA in cells. Indeed, low concentrations of GSH 

have been reported in diabetes (Murakami et al. 1989; Costagliola 1990). Similarly in 

muscle, adipose tissue and liver where insufficiencies in the action of insulin result in 

decreased intracellular glucose concentrations, the activity of the hexose monophosphate 

shunt pathway is impaired, resulting in decreased NADPH and GSH levels. Thus, changes 

in cellular redox potentials may underlie the alterations in AA metabolism, since numerous 

cellular processes, including the reduction of DHAA to AA, cellular uptake of DHAA and 

the regeneration of other antioxidants are likely to be affected. 

Urinary excretion of AA was found to correlate negatively with glycosylated haemoglobin, 

suggesting that excessive urinary losses did not occur in diabetic patients with poor 

glycaemic control (Yue et al. 1990). Seghieri et al. (1994) found that renal clearance of AA 

was altered in type I diabetes, but also concluded that urinary losses did not account for the 

reduced serum levels that were observed. 

Ascorbic acid also functions as an important water-soluble antioxidant in plasma (Frei et al. 

1989). A decrease in the concentration of AA, or an increase in the ratio of DHAN AA, may 

be indicative of an increase in the consumption of AA due to oxidative stress. 

Dehydroascorbic acid levels in diabetic subjects have been reported to be significantly higher 

(Chaterjee and Banerjee 1979; Som et al. 1981; Banerjee et al. 1982), significantly lower 

(Sinclair et al. 1994) and similar (Newill et al. 1984; Stankova et al. 1984; Sinclair et al. 

1991) to those found in control subjects. These discrepancies may reflect methodological 

difficulties in assessing the levels of DHAA. Indeed, there is a great deal of variation in the 

published values of DHAA in non-diabetic subjects as well as in diabetic subjects, as 

indicated in Table 1.6. Despite the analytical difficulties in measuring DHAA, the ratio of 

DHANAA was found to be greater in diabetic patients compared with control subjects 

(Jennings et al. 1987b; Sinclair et al. 1991). 

61 



Table 1.6 Plasma levels of ascorbic and dehydroascorbic acid in diabetic and non-diabetic 
subjects. 

Reference Type of Diabetic subj~tli Control sybj~!.;tl! 
Diabetes M DHAA M DHAAa 

Sine lair I & fib 30.4± 19.1 27.6 ± 6.4 68.8 ± 36.0 31.8 ± 4.8 
et al. 1994 (n = 20) (n = 20) 

Sinclair II 55.6 ± 20 30.5 ± 10.8 c 82.9 ± 30.9 28.8 ± 12.6 
et al. 1991 42.1 ± 19.3 31.3 ± 9.9 d (n = 22) 

(n = 20) 

Jennings I & n 42.5 ± 26.2 18.8 ± 7 58± 21 19.2 ± 6.9 
et al. 1987b (n = 38) (n = 20) 

Ne will I& n 32 ± 14 5±8 47 ± 26 7±5 
et al. 1984 (n = 17) (n = 12) 

Banerjee II 17.04 ± 17 40.9 ± 8.5 48.85 ± 9.1 1.7 ± 2.3 
1982 (n =57) (11 = 96) 

Chaterjee & II 9.6 ± 6.2 12.6 ± 2.3 21.6 ± 15.3 0 
Banerjee 1979 (n = 12) 

0dum 1993 58± 14 2.7 ± 2.5 
(11 = 10) 

Nagy and 23.2± 17.3 5.8 ± 2.7 
Degrell 1989 (11 = 10) 

Lunec and 57.7± 19.6 12.0 ± 3.7 
Blake 1985 (n = 20) 

Okamura 1980 55.1 ± 6.6 1.44 ± 1.7 
(11 = 10) 

a Plasma ascorbic (AA) and dehydroascorbic acid (DHAA) concentrations (l.unolll) expressed as mean± SD. 
b I= Type I and It= Type 11 diabetes mellitus. 
c Diabetic patients without microangiopathy. 
d Diabetic patients with microangiopathy. 
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The ratio of DHAAIAA was also significantly higher in diabetic patients with 

microangiopathy compared with diabetic patients without complications, suggesting that 

oxidative stress was greater in diabetic patients with complications (Sinclair et al. 1991). 

Alterations in AA status may affect cholesterol metabolism in diabetes, since AA is involved 

in the activity of cholesterol-7-a-hydroxylase, the rate limiting enzyme regulating the 

conversion of cholesterol to bile acids (Basu and Dickersen 1996). Ascorbate deficient 

guinea-pigs developed hypercholesterolaemia as a result of the impaired activity of the 

enzyme (Ginter and Bobek 1981 ). In man, epidemiological studies have indicated that 

vitamin C is inversely associated with serum cholesterol and correlates positively with high­

density lipoprotein (HDL) cholesterol (Jacques et al. 1987; Simon 1992; Jacques et al. 1994; 

Hallfrisch et al. 1994); although the data are not consistent, probably as a result of the initial 

AA status and other environmental factors. Supplementation with AA was found to produce 

a cholesterol-lowering effect in type 11 diabetic and non-diabetic people whose initial AA 

status was low (Ginter and Bobek 1981), and to elevate HDL cholesterol (Horsey et al. 

1981 ). However, there is no evidence that increased AA intake, above requirements, will 

result in an increase in cholesterol catabolism, which is perhaps why other intervention 

studies have shown no effect on total cholesterol levels (Peterson et al. 1975; Khan and 

Seedarnee 1981; Bishop et al. 1985). 

Ascorbic acid is an essential cofactor in the biosynthesis of collagen. Hence, AA deficiency 

has been implicated in collagen abnormalities leading to the long term complications seen in 

diabetes (McLennan et al. 1988). Supplementation with ascorbate was found to reduce 

vascular fragility (Cox and Butterfield 1975); sorbitol accumulation in erythrocytes, both in 

vitro and in vivo (Vinson et al. 1989; Cunningham 1994 ); decrease the glycation of proteins 

and haemoglobin in vivo (Davie et al. 1992) and reduce blood pressure (Ceriello et al. 

1991 b). Partial restoration of plasma AA levels was also achieved with supplementation 

(Som et al. 1981; Sinclair et al. 1991). However, upon the discontinuation of supplements, 

plasma AA levels were found to decrease rapidly in the diabetic subjects compared to the 

control group (So m et al. 1981 ). 
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Supplementation appears to be of benefit in diabetes, but pro-oxidant properties of AA were 

observed in animal studies (Chen 1981; Young et al. 1992), and megadoses (2 g per day) 

were found to delay the insulin response to a glucose challenge in healthy subjects (Johnston 

and Yen 1994). These studies have emphasized the need for caution, when proceeding with 

the use of large supplements for diabetic patients. 

Uric acid 

Interesting relationships have been reported between serum uric acid and glucose 

concentrations in diabetic subjects (Cook et al. 1986; Olukoga et al. 1991; Whitehead et al. 

1992). Prediabetic subjects were found to have higher serum uric acid levels than non­

diabetic subjects and diabetic patients were found to have lower uric acid levels than non­

diabetic subjects (Herman and Goldbourt 1982; Cook et al. 1986). An increase in serum 

urate was observed with increasing plasma glucose concentrations up to 8 mmoUI. 

Thereafter, as glucose concentrations increased urate concentrations decreased (Cook et al. 

1986; Whitehead et al. 1992). The low serum urate levels appeared to result from increased 

urinary loss induced by the chronic hyperglycaemia and glycosuria (Cook et al. 1986; 

Olukoga et al. 1991 ). This fall in urate concentrations may further weaken antioxidant 

defences in diabetic patients with increasing hyperglycaemia (Whitehead et al. 1992). 
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1.6 Obesity and Type 11 Diabetes 

Obesity is characterized by an excess of body fat and gain in body weight. The body mass 

index (BMI), calculated as weight (kg) I height (m2), is the measure most commonly used to 

classify obesity. Tables of weight relative to height, prepared by The Metropolitan Life 

Insurance Company, have also been used to assess the degree of overweight (Garrow 

1988). The categories of BMI for adults are: 

Ungraded: BMI <20 Underweight 

Grade 0: BMI 20-24.9 Normal/ desirable weight 

Grade 1: BMI 25-29.9 Overweight 

Grade 2: BMI 30-40 Obese 

Grade 3: BMI >40 Severely obese 

The prevalence of obesity is increasing at an alarming rate worldwide (Van Itallie 1994). In 

the UK, the prevalence of obesity increased from 6% to 13% in men and from 8% to 15% in 

women, between 1980 and 1991 (White et al. 1993). In 1991, the Government launched 

The Health of the Nation initiative, one of the aims of which was to reduce the prevalence of 

obesity back to the 1980 levels by the year 2005 (Secretary of State for Health 1991 ). Later 

surveys have shown that the prevalence of obesity has continued to rise, with 13% of men 

and 16% of women classifying as obese in 1993 (Ben nett et al. 1995). If the trends persist, 

it is estimated that 18% of men and 24% of women will be obese by 2005 (Garrow 1996). 

Obesity develops when there is a sustained increase in energy intake, in excess of energy 

expenditure. Although there is a genetic component in the development of obesity, this 

accounts for approximately 25% of the variability between individuals (Livingstone 1996). 

A multitude of other factors, such as socio-economic, psychological and cultural can 

contribute to the development of obesity. However, the interaction between physical 

inactivity and increased fat consumption relative to carbohydrate intake, are probably the key 

environmental factors responsible for the alarming increase in obesity (Prentice and Jebb 

1995). Other studies have also shown that physical inactivity is an important determinant in 

the development of obesity and type IT diabetes (Schulz and Schoeller 1994; Rising et al. 

1994; Manson et al. 1991 b; Helrnrich et al. 1991; Manson et al. 1992). 
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Overweight and obesity are well known risk factors for disease, including dyslipidaemias, 

gall bladder disease, respiratory disease, certain cancers, hypertension and osteoarthritis 

(Garrow 1991; Kanders et al. 1994). The incidence ofCHD is high in obese people (Hubert 

et al. 1983; Jarrett et al. 1982; Manson et al. 1990) and there is also a strong positive 

association between BMI and the development of type II diabetes (Perry et al. 1995). 

Hence, it is estimated that 60-90% of type II diabetic patients in Western countries are obese 

(Harris and Zimmet 1992). 

In addition to the BMI, the distribution of fat has important implications on the development 

of CHD. People with abdominal (central) obesity are at greater risk of death from CHD than 

those in which the distribution of fat is more peripheral. It is now recognized that abdominal 

obesity (indicated by a high waist I hip ratio), is a stronger predictor of total mortality and 

death from CHD than overall obesity, i.e., BMI (Larsson et al. 1984; Lapidus et al. 1984; 

Bengtsson et al. 1993). Furthermore, the majority of type 11 diabetic patients present with 

characteristic abdominal obesity, a feature first recognized by Vague in the 1940s (Vague 

1956). Epidemiological studies subsequently confirmed that individuals with abdominal 

obesity have a high risk of developing type II diabetes (Kalkhoff et al. 1983; Ohlsen et al. 

1985). 

1.6.1 The insulin resistance syndrome 

Abdominal obesity is associated with metabolic aberrations (Kissebah 1982), including 

dyslipidaernia (increased very low density lipoproteins (VLDL) and reduced HDL levels), 

impaired glucose tolerance (IGT), hypertension and insulin resistance. These factors have 

been grouped together and were defined as the metabolic syndrome (syndrome X) or the 

insulin resistance syndrome, by Reaven and Olefsky in the 1980s (Olefsky 1982; Reaven 

1988; DeFronzo and Ferrannini 1991). The syndrome is characterized by three main 

features: visceral accumulation of fat, accompanied by metabolic derangements (in fat and 

carbohydrate metabolism, of which insulin resistance is a key feature) and an endocrine and 

central nervous system aberration (Bjomtorp 1992). 
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Adipocytes in the abdominal region appear to be uniquely equipped in terms of the density of 

hormone receptors, blood flow and nervous innervation, forming a region of adipose tissue 

with high metabolic activity. Enlarged visceral adipocytes have a high turnover of lipids, 

with increased flux of free fatty acids (FFA) into the portal vein. This leads to elevated 

gluconeogenesis, with the risk of hyperglycaemia and stimulates an increase in the 

production of triglycerides by the liver, leading to elevated VLDL and LDL concentrations. 

As FF A levels rise, the response of the liver to insulin is decreased and the hepatic clearance 

of insulin is reduced, increasing systemic insulin levels. Insulin-mediated glucose uptake 

and utilization by muscle is also suppressed as systemic concentrations of FFA increase, 

contributing to peripheral insulin resistance (Randle et al. 1963; Bjomtorp 1992). 

In order to compensate for these and other factors, the requirement for insulin is increased, 

and a state of 'insulin resistance' is induced, whereby higher insulin levels are required to 

metabolize a given glucose load (i.e., a normal amount of insulin would produce an 

subnormal biological response) (Reaven 1988; Beck-Nielsen 1992; Bjomtorp 1992). The 

increased secretion of insulin produces a state of hyperinsulinaemia, defined by elevated 

systemic insulin levels. This can itself lead to insulin resistance, by down regulating insulin 

receptors, thereby perpetuating the insulin resistance syndrome in a 'vicious circle'. Thus 

once established, the exact mechanisms which produce insulin resistance are difficult to 

determine (Bjomtorp 1992). Peripheral obesity may also be associated with insulin 

resistance, but to a lesser extent than abdominal obesity, due to increased insulin secretion 

and less efficient hepatic clearance, as well as a reduced response of target cells to insulin 

(Bjorntorp 1992). Hyperinsulinaemia also stimulates the sympathetic nervous system 

(SNS), in what has been hypothesized as a physiological adaptation to obesity. The increase 

in SNS activity increases thermogenesis, preventing further weight gain in obese subjects, 

by restoring energy balance (Daly and Landsberg 1991). 

The insulin resistance syndrome also encompasses a further endocrine component. Energy 

balance is influenced in the short term by a number of hormones, including thyroid 

hormone, growth hormone, glucocorticoids and adrenaline. The endocrine abnormalities 
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associated with abdominal obesity include disturbances in sex steroid hormones and 

increased levels of glucocorticoids (reviewed by Bjomtorp 1992). Adipocytes in the 

abdominal region also appear more sensitive, than peripheral fats cells, to the action of 

catecholarnines and cortisol. The high lipolytic activity of abdominal fat cells, in response to 

hormone levels, e.g., during stress, can expose the liver to high levels of FFA. Hence, 

endocrine disturbances affect lipolysis, modify fat distribution and induce insulin resistance 

(Bjomtorp 1992). Other hormones which may have a role in insulin resistance include 

leptin, the product of the obesity (ob) gene (Zimmet et al. 1997). 

The primary consequence of abdominal obesity appears to be reduced sensitivity to insulin, 

from which other metabolic disturbances follow. Obesity is, therefore, a state of 

compensated insulin resistance, wherein hyperinsulinaemia counteracts the pathways that 

increase the requirement for insulin, in order to maintain normal plasma glucose 

concentrations. However, if the pancreatic B-cells are unable to produce enough insulin to 

compensate for insulin resistance, then hyperglycaemia increases, resulting in IGT (fasting 

plasma glucose (FPG) 6.1 to < 7.0 mmol/1) and then frank type 11 diabetes (FPG ~ 7.0 

mmolll) (The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus 

1997). Type 11 diabetes, therefore, develops as a result of impaired insulin action and 

insulin secretion, caused by a combination of genetic and environmental factors (Sacks and 

McDonald 1996). Furthermore, different ethnic groups appear to be more susceptible to the 

insulin resistance syndrome. For example, the prevalence of diabetes was found to be 

greater in South Asians resident in the UK, compared with the European population. This 

group showed a striking tendency to central obesity, with the associated metabolic 

disturbances, resulting in higher mortality rates than the European group (McKeigue et al. 

1991 ). Other ethnic groups susceptible to insulin resistance, include the Australian 

Aborigines and the Pima Indians (O'Dea 1991; Lillioja et al. 1993). 

1.6.2 Hyperinsulinaemia and accelerated atherosclerosis 

The ability of hyperinsulinaemia to compensate for insulin resistance is not without 

consequences. Hyperinsulinaemia stimulates the SNS, affecting the heart, vasculature and 
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increasing sodium retention by the kidneys, factors which increase blood pressure (Reaven 

et al. 1996). Hence, the incidence of hypertension is also high in patients with type 1I 

diabetes (40% in men and 53% in women at diagnosis (UK Prospective Diabetes Study 

(UKPDS) 1985)). Hyperinsulinaemia is a hallmark of hypertension, IGT and type 11 

diabetes in the obese population, in all of whom the risk of CHD is increased (W elborn and 

Weame 1979; Fuller et al. 1983; Pyoralli et al. 1985; Fontbonne et al. 1991). Hyperinsulin-

aemia may contribute to the atherogenesis, by increasing arterial wall smooth muscle cell 

proliferation and lipid synthesis, promoting plaque progression (Stout 1990). In addition, 

hyperinsulinaemia has been associated with other atherogenic factors, including elevated 

levels of plasminogen activator inhibitor type 1 (PAI-l), resulting in decreased fibrinolytic 

activity, advancing plaque progression and thrombus formation (Juhan-Vague et al. 1991). 
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Figure 1.12. The insulin resistance syndrome and atherogenesis. LP, lipid peroxidation, FRA, 
free radical activity; OS, oxidative stress; i, increase; J, decrease. 
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Abdominal obesity and the insulin resistance syndrome are associated with multiple risk 

factors for CHD, including hypertension, raised VLDL-triglycerides, decreased HDL­

cholesterol, IGT and hyperinsulinaemia (Reaven 1988). Thus, insulin resistance and 

hyperinsulinaemia are closely interrelated and appear to have a central role in the 

development of atherogenesis in type 11 diabetes (Figure 1.12). However, diabetes per se is 

known to confer an additional risk of developing CHD (Garcia et al. 1914; Stamler et al. 

1993). The additional factors involved in atherogenesis in diabetes have been reviewed by 

Bierman (1992) and include, alterations in coagulation factors, forming a procoagulant state, 

enhanced activity of growth factors and cytokines and protein glycation. 

Recently, attention has focussed on the role of free radical activity in the development of 

atherosclerosis. It is accepted that the oxidation of LDL is a key stage in the development of 

foam cells, although the exact mechanisms which initiate lipid peroxidation and modification 

of the LDL apoproteins are uncertain (Berliner and Heinecke 1996). In diabetes, evidence 

has been accumulating which suggests that circulating LDL is more sensitive to oxidation 

and may already be undergoing oxidative modification prior to entering the arterial wall 

(Babiy et al. 1992; Bowie et al. 1993; Beaudeux et al. 1995). Additionally, the 

susceptibility of LDL to in vitro oxidation from type I diabetic patients with poor glycaemic 

control was increased (Tsai et al. 1994), whilst LDL from patients with well controlled type 

I diabetes was not more susceptible to oxidation (Jenkins et al. 1996). Increased amounts of 

small dense LDL, which is also more readily oxidized have been reported in patients with 

type Il diabetes (Peeples et al. 1989; Selby et al. 1993). These changes arise from 

disturbances in lipid metabolism associated with abdominal obesity, insulin resistance and 

glycation of the apoproteins (Bierman 1992; Reaven et al. 1993b ). 

Elevated levels of lipid peroxides have been found in patients with CHD (Ledwozyw et al. 

1986; Stringer et al. 1989) and diabetes (Appendix 3). Several studies have found that lipid 

peroxides are also increased in persons with hyperlipidaemia, abdominal obesity and IGT 

(Chirico et al. 1993; Van Gaal et al. 1995; Niskanen et al. 1995). Thus, increased free 

radical activity may explain the high incidence of CHD in persons with obesity, IGT and in 
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particular, type ll diabetes, the most common condition associated with increased oxidative 

stress and accelerated atherosclerosis. 

1.6.3 The effect of weight loss 

Obesity and, hence, diet and exercise, are important environmental determinants in the 

pathogenesis of type ll diabetes. Weight loss has been demonstrated as the treatment of 

choice for obese type ll diabetic patients, as it reverses the metabolic syndrome of insulin 

resistance by improving insulin secretion, increasing insulin sensitivity, improving glucose 

tolerance, lipid metabolism and reducing hepatic glucose output (Doar 1975; Hughes et al. 

1984; Henry et al. 1986a). Indeed, weight loss can have a dramatic effect as reported by 

O'Dea (1984); Aborigines who returned to the 'hunter-gatherer' lifestyle for a short period 

(7 weeks), experienced weight loss, with marked improvements in glucose tolerance, 

normalization of plasma lipids and reversal of type ll diabetes. Even caloric restriction or 

modest weight losses(> 6.9-10 kg) are often sufficient to improve glycaemic control with 

long term benefits (Henry et al. 1986b; Freidenberg et al. 1988; Wing et al. 1987a; Rotella et 

al. 1994). One study has found that each 1 kg of weight loss, over the first year after 

diagnosis, was associated with a 3-4 month increase in life expectancy in patients with type 

ll diabetes, whilst a 10 kg weight loss could result in a 35% improvement in life expectancy 

(Lean et al. 1990). 

Unfortunately, weight loss is seldom achieved and poorly sustained with conventional low 

calorie diets (800-1500 kcal/day) (West 1973; UKPDS 1983) and treatment of 

hyperglycaemia with sulphonylurea or insulin is associated with further weight gain 

(UKPDS 1995). Hence, obese diabetic patients have been described as "notoriously 

resistant to treatment" and gastric by-pass surgery has been advocated as the only effective 

long term therapy for subjects with a BMI > 35 (Pories et al. 1995). 

Very low calorie diets (VLCDs) have also been used as an aggressive therapy to produce 

rapid weight loss in obese subjects, whilst preserving vital lean body mass (Wing 1992). 
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The first VLCDs were used in the 1920s, to produce larger and more rapid short-term 

weight loss than low calorie diets, whilst avoiding the dangers of total starvation. Today's 

VLCDs are specifically formulated to provide 400-800 kcaVday, with enriched amounts of 

high quality protein (45-100 glday), a full complement of vitamins, trace elements and fatty 

acids, but not calories. Typical diets are produced in the form of powders to be mixed with 

water, forming soups, milk-shakes or desserts, in order to replace completely normal food 

intake. Such diets are normally administered for 12-16 weeks, as part of medically 

supervised weight loss programmes, producing on average, weight losses of 1-2 kg per 

week or 20 kg over 12 weeks (National Task Force on the Prevention and Treatment of 

Obesity (NTFPTO) 1993; Kanders and Blackburn 1994). 

A number of studies using VLCDs for the treatment of obese type II diabetic subjects have 

been reported (reviewed by Wing 1992; NTFPTO 1993). The short term studies, duration 

of 6 months or less, have shown that significant weight losses were accompanied by marked 

improvements in glycaemic control, blood pressure and serum lipoproteins (Amatruda et al. 

1988; Uusitupa et al. 1990b). Glycaemic control improved dramatically, within 7-10 days 

of starting these diets and required adjustment of hypoglycaemic drug therapy (Henry et al. 

1985; Wing et al. 1987a; Rotella et al. 1994). The long term studies have shown that the 

most favourable results were obtained when VLCDs were combined with behavioural 

therapy (Wadden and Stunkard 1986; Wadden et al. 1989; Wing et al. 1991). Whilst 

VLCDs achieved large weight losses, weight regain was the main problem. After 5 years, 

almost all of the patients had regained all of the weight lost, regardless of which therapy was 

used (Wadden et al. 1989). However, improvements in glycaemic control were sustained 

even after most of the weight loss was regained (Wing et al. 1991 ). 

Research is continuing into the long term effects of VLCDs and since the prevalence of 

obesity is increasing, the use of VLCDs for the treatment of obesity may increase in the 

future. As there have been no reports of the effects of such diets on oxidative stress in 

patients with type II diabetes, this provided the impetus for investigating these factors in this 

thesis. 
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1. 7 Summary and Aims 

Type I and type II diabetes are distinct conditions which share a striking propensity to both 

micro- and macrovascular complications. Macrovascular disease is almost certainly 

multifactorial in its causation. Hyperlipidaemia, hyperglycaemia, hypertension and lipid 

peroxidation have all been implicated in the process and insulin resistance I hyper­

insulinaemia are also tightly linked to atherosclerosis and type II diabetes mellitus. Lipid 

peroxidation, by the action of free radicals, plays a key role in the oxidation of LDL during 

the early stages of atherosclerosis (Steinberg et al. 1989) and the extensive studies of 

Esterbauer et al. ( 1992) have shown that antioxidants are important in preventing this 

oxidative damage. Current research is focussed on the role of free radicals in the patho­

genesis of atherosclerosis and on the important preventative role of dietary antioxidants. 

Free radicals are formed during normal cellular metabolism, their production being 

counterbalanced by the action of antioxidant mechanisms. The formation and removal of 

free radicals is a dynamic process and under normal cellular conditions a low steady state of 

ROS would be reached. Hence, any condition which leads to a disturbance in the pro­

oxidant I antioxidant balance in favour of pro-oxidation, results in oxidative stress with 

potentially damaging consequences, such as lipid peroxidation (Sies 1991). 

Type II diabetes is the most common condition associated with increased oxidative stress 

and accelerated atherosclerosis and it has been proposed that oxidative stress contributes to 

the development of diabetic complications (Wolff 1987; Baynes 1991; Giugliano et al. 

1996). Numerous studies have confirmed the presence of elevated markers of free radical 

activity in persons with type II diabetes, with and without complications, supporting the 

hypothesis that oxidative stress is increased in diabetes (Appendix 3). However, the role 

and origin of oxidative stress is less clear. The detection of markers of oxidative stress, 

such as elevated levels of lipid peroxides, are not sufficient within themselves to implicate 

oxidative stress in the pathogenesis of diabetic complications, since oxidative stress may 

occur secondary to the tissue damage. Thus, initially, it must be shown that oxidative stress 

results in tissue damage, leading to diabetic complications and secondly, that inhibition of 
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oxidative stress, by antioxidant therapy, slows or prevents the disease process (Baynes 

1991). Oxidative stress, in diabetes, may occur as a result of a decrease in antioxidant 

defences due to an inadequate dietary supply or disturbances in the metabolism of vitamins, 

or as a result of an increase in the endogenous formation of free radicals, which overwhelm 

the antioxidant defences, or both. 

The sources of free radicals thought to be responsible for the elevated levels of lipid 

peroxides found in diabetes include: 

• The respiratory burst of phagocytic cells. Increased 02·- production, by 

leucocytes, has been reported in diabetic patients and also in subjects with 

hypertriglyceridaemia (Kitahara et al. 1980; Shah et al. 1983; Hiramatsu and Arimori 

1988), coupled with a reduction in the activity of SOD (Nath et al. 1984). 

• The vascular endothelium and altered prostanoid production. Superoxide 

free radicals may be generated by the endothelium during the activation of cyclo­

oxygenase enzymes, stimulated by hyperglycaemia (Cohen 1993; Tesfamariam 1994), 

or by xanthine oxidase activity during tissue ischaemia and reperfusion (McCord 1985; 

Bulkley 1994). The interaction of 02·- with NO (EDRF) may also lead to the formation 

of ONoo- and other ROS. 

• The polyol pathway and pseudohypoxia. The conversion of glucose to sorbitol 

by aldose reductase consumes NADPH, which is necessary for the reduction of GSSG 

to GSH by glutathione reductase and the recycling of antioxidants, resulting in decreased 

resistance to oxidative stress (Nagasaka et al. 1989). Imbalances in the intracellular ratio 

of NADHINAD+, caused by hyperglycaemia, mimic the effects of true hypoxia (pseudo­

hypoxia) and may lead to an increase in the formation of 02·- (Williamson et al. 1993). 

• Lowering of antioxidant defences. Diabetes may cause a lowering of GSH, 

SOD, catalase and vitamins A and C, enabling free radical production to increase above 

basal levels (Costagliola 1990; Will and Byers 1996; Sundaram et al. 1996). 

• Glycoxidation I autoxidation reactions of glucose (Baynes 1991; Wolff 1993). 
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Numerous in vitro studies have shown that the non-enzymatic autoxidation reactions of 

glucose are sources of ROS, which may potentiate protein damage by increasing 

crosslinking, fragmentation and the formation of AGEs (Hunt and Wolff 1991; Hunt et al. 

1993). Glycated proteins also undergo oxidative reactions with the formation of free radical 

intermediates Since proteins are found in close proximity to lipids, the generation of ROS 

can potentially initiate the autocatalytic reactions of lipid peroxidation (Kawamura et al. 

1994). Consequently in diabetes, hyperglycaemia may enable an increase in the endogenous 

formation of free radicals and constitute a starting point for oxidative stress (Hunt and Wolff 

1991; Wolff et al. 1991; Wolff 1993). Despite confirmation from numerous in vitro studies 

that the autoxidation I glycoxidation reactions of glucose are sources of ROS, clear evidence 

that these reactions occur in vivo is lacking. A preliminary investigation of this hypothesis 

were, therefore, undertaken during the development of the HPLC methodology. The 

effects of acute episodes of hyperglycaemia on lipid peroxidatlon and 

antioxidant vitamin status, in patients with poor glycaemic control and 

diabetic ketoacidosis, were investigated as part of this study. 

Obesity is a major factor in the development of disorders such as CHD and predisposes to 

the development of type II diabetes. Weight reduction, therefore, plays an important part in 

the treatment of obese diabetic patients. Very low calorie diets have been used for the 

treatment of obese subjects and are being increasingly used for the treatment of obese type II 

diabetic patients. The reduction in weight produces improvements in glycaemic control, 

serum cholesterol, triglycerides and other cardiovascular risk factors (Wing 1992). Low 

calorie /low fat diets may affect vitamin A and E intakes with the potential of compromising 

antioxidant protection. The possibility exists that diabetic patients may be under increased 

oxidative stress whilst on a VLCD, as there have been no reports of vitamin status and free 

radical activity in diabetic patients on such diets. This study, therefore, aimed to 

compare the safety and efficacy of a VLCD with a conventional, but 

intensive, weight loss programme. A clinic was set up in order to monitor 

closely diabetic patients in the study. The effects of a VLCD on 

cardiovascular risk factors and indices of oxidative stress were measured. 
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The aims of this study were: 

l. To develop the HPLC methodology to measure: 

i) lipid peroxidation in plasma, using the TBA test and the conjugated-diene 

isomer of linoleic acid, as indirect indicators of free radical activity; 

ii) the plasma concentrations of vitamins A, C and E, as indicators of antioxidant 

status. 

2. Then using these methods to: 

i) investigate the effect of very poor glycaemic control, resulting in ketoacidosis, 

on lipid peroxidation and antioxidant vitamin status; 

ii) study the effects of a VLCD and an intensive weight loss programme, on 

cardiovascular risk factors and indices of oxidative stress in obese subjects and 

assess the effects of improved glycaemic control on free radical activity. 

This thesis is divided into two main sections: section 1, consisting of chapters 2-5 details the 

methods that were developed for the measurement of plasma vitamins A, C, and E and lipid 

peroxidation in plasma (MDA and conjugated dienes); section 2 consisting of chapters 6-7 

details the studies that were carried out on diabetic patients. 
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Chaptters 2-5 

Measurement of Lipid Peroxidation and Antioxidant 
Vitamins in Plasma 



2 Measurement of the Malondialdehyde-Thiobarbituric Acid 

Adduct in Plasma by HPLC 

2.1 Introduction 

In this study, lipid hydroperoxides and MDA in plasma samples were measured by the 

HPLC method ofWong et al. (1987) with fluorimetric detection (Young and Trimble 1991). 

The lipid hydroperoxides were hydrolysed in acidic conditions to yield MDA, heated with 

TBA reagent, the proteins were removed by precipitation and centrifugation and the MDA­

TBA adduct of the resulting extract chromatographed. 

2.2 Equipment 

The HPLC equipment consisted of a series 2 pump and an R-100 chart recorder (Perkin 

Elmer Ltd., Buckinghamshire, UK), a Shimadzu RF-535 fluorescence monitor (Dyson 

Instruments Ltd., Tyne and Wear, UK). A Model 7125 manual injector (Rheodyne, 

Macclesfield, Cheshire, UK), equipped with a 20 Jllloop was used for sample injection. A 

Spherisorb 5 Jlm ODS-2 column, dimensions 25 cm x 0.46 cm, was used as the main 

analytical column, this was preceded by a 5 cm guard column containing 10 Jlm ODS (I ones 

Chromatography, Hengoed, Mid-Glamorgan, UK). A BT3 heating block (Grant 

Instruments Ltd., Cambridge, UK) was used to heat the samples. 

2.3 Chemicals and Reagents 

Orthophosphoric acid (specific gravity 1.7, 85% ), sodium hydroxide, disodium hydrogen 

orthophosphate dihydrate (Na2HP04.2H20), sodium dihydrogen orthophosphate dihydrate 

(NaH2P04.2H20), all A.R. grade were obtained from BDH., Merck Ltd., Poole, Dorset, 

UK. Ethanol (99.7%) was obtained from Hayman Ltd., Witham, Essex, UK. Methanol 

(HPLC grade) was obtained from Rathburn Chemicals Ltd., Walkerburn, Scotland. 

Thiobarbituric acid (TBA) reagent ( 4,6-dihydroxypyrirnidine-2-thiol) and 1,1,3,3-tetra­

ethoxypropane (TEP), purity 97%, were obtained from Sigma Chemical Co., Dorset, UK. 

Distilled water was obtained from the Pharmacy Manufacturing Unit at Torbay Hospital for 

the preparation of all solutions. 
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TEP standard solutions 

Stock solutions of TEP (8.1 mmolll) were prepared by diluting 0.5 ml of the TEP reagent to 

250 ml with ethanol in water (40% v/v). An intermediate standard solution (40.5 Jlmolll), 

was prepared by diluting 0.5 rnl of the TEP stock solution to 100 rnl with water. Working 

standard solutions with concentrations of 0.61, 1.22, 2.43 and 4.86 Jlmolll were prepared 

by diluting 3 ml of the intermediate standard solution to 200, 100, 50 and 25 ml, with water, 

respectively. 

A 0.6% (w/v) solution of TBA, in water, was prepared for each analytical run. Phosphoric 

acid (1.22 moln) was prepared by diluting 14 g of the concentrated acid to 100 ml with 

water. 

Mobile phase 

A phosphate buffer solution (25 mmol/1), pH 6.5, was prepared by dissolving 1.42 g 

Na2HP04.2H20 and 2.66 g NaH2P04.2H20 in 11 of water. The mobile phase was 

prepared by mixing methanol and buffer in a 1: I ratio by volume. The mobile phase was 

degassed with helium for 5 minutes before use and was delivered isocratically with a flow 

rate of l ml/minute. 

Cleaning solution 

A solution of TBA in acid was used to clean the reaction vessels after each analysis. This 

solution was prepared by mixing 300 ml of dilute phosphoric acid ( 10 ml of the concentrated 

acid diluted to ll) with 300 ml of a 0.2% (w/v) solution of TBA. 
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2.4 Sample Preparation 

Venous blood samples for the analysis of TBARS, the conjugated diene isomer of linoleic 

acid and plasma vitamins A, C and E, were collected from healthy, nonfasting volunteers, 

into 10 ml Vacutainer tubes containing ethylenediaminetetraacetic acid ((EDTA) Becton 

Dickinson Ltd., Oxford, UK). After centrifugation at room temperature (1000 x g, for 10 

minutes), the supernatant plasma was removed carefully to avoid contamination with 

platelets and leucocytes and either analysed immediately or aliquoted and frozen at -7o·c. 

The TBA reaction was carried out in glass stoppered tubes by mixing 450 IJ.l of water, 

250 IJ.l of phosphoric acid ( 1.22 molll) and 250 IJ.l of the TBA reagent with 50 IJ.l of either 

the standard, plasma sample or water as a blank. The reaction mixture was heated at 1oo·c 
for exactly 1 hour in a heating block and then kept in ice until the analysis could be 

performed. hnmediately before injection on to the HPLC column, 200 IJ.l of the reaction 

mixture were added to 40 IJ.l of sodium hydroxide ( 1 molll) in a clean glass centrifuge tube, 

360 IJ.l of methanol were added, the sample was vortex mixed and centrifuged at 2500 x g 

for 2 minutes to precipitate the proteins. A 20 !J.l volume of the clear supernatant was then 

injected on to the column for analysis. The samples were analysed in duplicate, two blank 

samples and a series of working standards were included in each analytical run. 

A cleaning procedure was adopted at the end of each analytical run. The columns were 

flushed with methanol/ water in a 6:4 ratio by volume for 20 minutes, followed by pure 

methanol for a further 15 minutes. The glass tubes used for the reaction were washed and 

rinsed with distilled water, filled with the TBA cleaning solution, stoppered and heated for 1 

hour at 10o·c. The tubes were then rinsed with water, refilled with water and heated again 

at 1oo·c for 1 hour. After a final rinse, the tubes were drained and dried. These precautions 

were necessary in order to minimize the risk of contamination in subsequent analyses. 
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2.5 Method Validation 

Detector response 

Fluorimetric detection was carried out at excitation and emission wavelengths of 532 run and 

553 nm respectively. The linearity of the detector response was investigated by preparing 

and analysing a series of TEP standards with concentrations ranging from 0.5 to 10 J.l.IlloUI. 

By diluting the standard with the lowest concentration the minimum detectable amount was 

obtained (Lindsay 1992). 

Precision 

The within batch variation of the method was determined by repeating the analysis on a fresh 

plasma sample, on the same day, under identical conditions. The remainder of the plasma 

was stored in ISO Jll aliquots at -7o·c. Each analytical run contained one sample enabling 

the between batch variation to determined. 

Accuracy 

The analytical recovery was performed by adding TEP standards with concentrations of I, 

2.5 and 50 JlmoVI to quadruple sets of plasma. Plasma was also analysed without the 

addition of standards enabling the percentage of each standard recovered to be calculated. 

Stability 

Fresh plasma samples were obtained and analysed on the day of collection, the remainder 

were stored in 150 Jl] aliquots at -7o·c. Samples were analysed on a monthly basis to give 

an indication of the long term stability. 
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2.6 Results 

Detector response 

A series of standard solutions of TEP were included with every sample batch. Typical 

chromatograms are shown in Figures 2.1 and 2.2. The detector response was linear up to a 

MDA concentration of at least 10 J.lmolll as indicated in Figure 2.3. The assay was sensitive 

to 0.2 J.lmoVI, although no plasma samples with such low concentrations were observed. 

Precision 

The within batch variation, expressed as the coefficient of variation, was 6.3% (n = 10) and 

the between batch variation was 9.9% (n = 10). 

Accuracy 

The addition of I, 2.5 and 5 J.Lmol/1 of MDA, in the form of TEP, to plasma samples 

resulted in mean recoveries of 109%, 102% and 104% (n = 4) respectively. 

Stability 

The MDA concentration in two sets of plasma samples stored at -70'C is shown in Figure 

2.4. The levels of MDA gradually increased in one set of plasma (plasma 2) after 5 months 

of storage and by 9 months the levels of MDA had increased by 28%. In a second set of 

plasma (plasma 1 ), containing a higher initial concentration of MDA, an increase of 8% was 

observed after 9 months of storage, which was still within the precision of the method. 
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D 

Figure 2.1 A typical chromatogram of standard TEP solutions, A, B and C corresponding to 
2.43, 1.22 and 0.61 Jllnolll MDA respectively and a blank sample (D). 

3 . 6 

Figure 2.2 A typical chromatogram of a plasma sample showing the peak corresponding to 
the MDA-TBA adduct (retention time 3.6 min). 
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Figure 2.4 Plasma MDA concentrations (Jlmofll) in two sets of samples stored at -70"C. 
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2. 7 Discussion 

The detennination of MDA by the reaction with TBA remains the most widely used marker 

of lipid peroxidation in biological samples. Several compounds including carbohydrates and 

amino acids have also been found to react with TBA causing interference (Esterbauer et al. 

1982b; Knight et al. 1988). The use of HPLC has enabled the separation of these 

compounds from the true MDA-TBA adduct, thereby increasing the specificity of the assay. 

The detector response was found to be linear up to at least 10 JlmolJl and encompassed the 

concentration range expected in clinical samples. Young and Trimble (1991) reported the 

assay to be linear up to at least 48 JlffiOIJl. 

During the initial attempts at obtaining values for the precision of the method, contamination 

was found to be a frequent problem. This was reflected by a very high between batch 

variation of 25%. Also, the occasional inexplicable high value in plasma samples was 

observed, a finding confirmed by Dr Young (personal communication). 

Several precautions were taken in order to minimize interferences with this assay. These 

included collecting blood samples in tubes containing EDT A and rejecting any samples 

showing signs of haemolysis. The rigorous cleaning procedure of the glassware described 

by Wong et al. (1987) was adopted to minimize the risk of contamination and to maintain the 

level of background interference as low as possible. Since platelets are sources of lipid 

peroxides, care was taken to avoid the 'buffy coat' layer whilst separating the plasma from 

the red cells and aliquoting the samples for analysis. Finally, the purest source of distilled 

water was sought and used for the preparation of all samples and solutions. With these 

precautions, a within batch variation of 6.3% and a between batch variation of 9.9% were 

obtained. These results compared favourably to those of Young and Trimble (1991), who 

reported a within batch variation of 6.2% and a between batch variation of 9%. Acceptable 

values were obtained for the accuracy of method, although poor recovery has been reported 

by some authors (Hackett et al. 1988). 
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The plasma range of MDA in healthy subjects varies markedly according to the method used. 

Simple spectrophotometric or fluorimetric methods have reported generally higher values 

than HPLC based methods (Table 1.5, page 37). Using this method, the plasma MDA 

concentration in 17 healthy subjects, aged between 26 and 67 years, was found to be 1.0 ± 

0.2 Jlmolll (mean± SD). This result was higher than that reported by Wong et al. (1987) 

and Young and Trimble (1991) who reported values of0.6 ± 0.1 JJ.moVI (mean± SD). 

Plasma samples collected in EDT A appeared to be stable for 5 months at -70'C. Young and 

Trimble ( 1991) reported EDT A plasma samples to be stable for I 0 days at 4 'C, 3 weeks at 

-20'C and at least 4 months at -70'C. 

In summary, it was not the purpose of this work to propose critical modifications to the 

preparative procedure of this method, owing to the time limit of this study, but to reproduce 

the conditions described by Wong et al. (1987) and Young and Trimble (1991) and this was 

achieved. The assay, although simple to perform, was found to be subject to contamination 

from a wide variety of sources and required carefully controlled conditions to give 

reproducible results. 
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3. Measurement of the Conjugated Diene Derivative of 

Linoleic Acid in Plasma by HPLC 

3.1 Introduction 

In this study, the conjugated diene isomer of linoleic acid and its molar ratio to linoleic 

acid, in total plasma lipids, were measured by the HPLC method of lversen et al. (1985), 

with the modifications developed at Southmead Hospital, Bristol (Dr. Bolton, personal 

communication). The concentrations of arachidonic acid, linolenic acid, palmitic acid, 

palmitoleic acid, oleic acid and stearic acid were also determined in the samples. 

3.2 Equipment 

The HPLC instrumentation consisted of a series 410 LC pump, an ISS-100 autosampler, 

LC-90 and LC-75 UV spectrophotometric detectors linked in series, an R-100 recorder and 

an LCI-100 laboratory computing integrator, all obtained from Perkin Elmer Ltd., 

Buckinghamshire, UK. Chromatographic separation was performed on a Hypersil 3 J.Lm 

MOS, 15 cm x 0.46 cm, analytical column with a 5 cm guard column containing 5 J.Lm 

ODS, at 3o·c using a column heater (Jones Chromatography, Hengoed, Mid-Glamorgan, 

UK). The handling of samples and solutions was carried out with the use of glass, 

positive-displacement micro-pipettors, Alpha Laboratories, Eastleigh, Hampshire, UK. 

3.3 Chemicals and Reagents 

Arachidonic acid (5,8, 11, 14-eicosatetraenoic acid), linoleic acid (9, 12-octadecadienoic 

acid), linolenic acid (9, 12, 15-octadecatrienoic acid), palmitic acid (hexadecanoic acid), 

palmitoleic acid (9-hexadecenoic acid), oleic acid (9-octadecenoic acid), stearic acid 

(octadecanoic acid), internal standard (cis 11,14-eicosadienoic acid) and butylated 

hydroxytoluene (BHT) were obtained from Sigma Chemical Co., Poole, Dorset, UK. 

Acetonitrile (HPLC grade) and methanol (HPLC grade) were purchased from Rathbum 

Chemicals Ltd., Walkerburn, Scotland. Chloroform, concentrated hydrochloric acid 

(specific gravity 1.18), glacial acetic acid, hexane, sodium hydroxide, anhydrous sodium 

sulphate, all A.R. grade, were obtained from BDH, Merck Ltd., Poole, Dorset, UK. 
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Ethanol (99.7%) was obtained from Hayman Ltd., Witham, Essex, UK. The biological 

isomer (9-cis, 11-trans-octadecadienoic acid) was not commercially available so the 

stereoisomer (9-trans, 11-trans-octadecadienoic acid) was used as the conjugated-diene 

standard. This was kindly provided by Dr.Wickens, Whittington Hospital, London, UK. 

Standard solutions 

All glassware was cleaned with concentrated hydrochloric acid (50% (v/v)) prior to use. 

The following stock solutions were prepared by weighing each fatty acid into a volumetric 

flask and diluting to the appropriate volume with ethanol containing BHT (100 mgll) as an 

antioxidant. Arachidonic acid ( lO mg to 10 rnl), linoleic acid (0.5 g to 50 rnl), linolenic 

acid (0.015 g to 10 rnl), palmitic acid (0.25 g to 50 rnl), palmitoleic acid (0.5 g to 25 rnl), 

oleic acid (0.5 g to 50 ml), stearic acid (0.15 g to 50 rnl), internal standard (0.05 g to 1 Ornl) 

and the conjugated diene standard (0.7 mg to 50 ml). A working standard solution 

containing all the fatty acids was prepared at the time of each analytical run by combining 

the volumes of the stock solutions shown in Table 3.1. The final concentration of each 

fatty acid in the working standard solution is also shown. 

Table 3.1 Concentrations of the fatty acids i11 the stock and working standard solutions. 

Fatty acid stock Volume used for Final fatty acid concentration 
solution working standard in working standard solution 

Arachidonic acid (3280 Jlmolll) 100J!l 328 Jlmolll 

Linoleic acid (35650 J.Lmolll) 50 J!l 1783 Jlmolll 

Linolenic acid (5390 J.Lmolll) lOO J!l 539 Jlmolll 

Palmitic acid (19500 Jlmolll) 250J!l 4875 Jlmon 

Palmitoleic acid (78620 J.Lmolll) 100 Jll 7862 Jlmolll 

Oleic acid (35400 J.Lmoln) 50 Jll 1770 Jlmolll 

Stearic acid ( 10545 J.Lmolll) 300J!l 3163 J.Lmol/1 

Internal standard (16200 J.Lmol/1) 50 Jll 810 Jlmolll 

Total volume in working standard lrnl 
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A 20 ~I portion of this working standard solution was directly chromatographed. The 

stock internal standard solution (16200 ~moVI) was diluted with ethanol in a 1:1 ratio 

before addition to plasma, during the sample preparation. The conjugated diene of linoleic 

acid was not commercially available, therefore, the stereoisomer was used as a standard. It 

was also used as an internal standard to account for losses during the sample preparation 

and was added directly to plasma where it acted as an internal I external standard. 

Mobile phase 

The mobile phase consisted of acetonitrile I water (containing 1.5 mVI glacial acetic acid 

as an ion suppressant) in a 72:28 ratio by volume (v/v). The mobile phase was delivered 

isocratically with a flow rate of 1.5 rnl/minute and degassed continuously with helium, in 

order to prevent baseline drift which was found to occur during the detection of the fatty 

acids at 210 nm. 

3.4 Sample Preparation 

To 250 ~I of plasma in a glass stoppered tube, 250 ~I of the conjugated diene standard 

(50 ~moUI), 25 ~I of eicosadienoic acid internal standard (8100 ~moVI) and 50 ~I BHT 

(100 mg/1 in ethanol) were added. The lipids were extracted from the plasma by the 

addition of 5 rnl of a mixture of chloroform and methanol (2: 1 vlv), the tubes were flushed 

with nitrogen, stoppered and mixed for 10 minutes. The mixture was then filtered and the 

resulting solution evaporated to dryness under a constant stream of nitrogen. In order to 

saponify the Iipids, 500 ~I of methanolic sodium hydroxide (5 g /250 rnl methanol) were 

added, the tubes were flushed with nitrogen and the samples heated at 70"C for 35 

minutes. Three drops of concentrated hydrochloric acid were added to acidify the samples 

and approximately 5 mg of anhydrous sodium sulphate to remove all traces of water, 5 rnl 

of hexane were then added and the tubes were flushed with nitrogen, stoppered and mixed 

for 2 minutes in order to extract the fatty acids. The samples were then centrifuged at 150 

x g for 2 minutes, the hexane layer was removed, evaporated to dryness and the residue 

reconstituted in 250 ~I of mobile phase. A 20 ~I sample was then chromatographed. 
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3.5 Method Validation 

Detector response 

The conjugated dienes and fatty acids were monitored simultaneously using two UV 

detectors linked in series and set at wavelengths of 234 nm and 210 nm respectively. The 

linearity of the detector response was evaluated by preparing and analysing a series of 

standards of each fatty acid and of the conjugated diene. 

Extraction and saponification 

The extraction of lipids from plasma using the chloroform I methanol mixture and 

saponification at 70'C were initially investigated in order to optimize the conditions of the 

sample preparation. The extraction of the lipids was assessed on a fresh plasma sample. 

Internal standards were added to 250 J.Ll aliquots of plasma in glass stoppered tubes, 5 rn1 

of chloroform I methanol (2: 1 vlv) were then added and the tubes flushed with nitrogen. 

The lipids were then extracted from the plasma by mixing for either 1, 3, 5, 10 or 20 

minutes; samples were prepared in triplicate for each extraction time. After filtering and 

drying the extracts under nitrogen, 5 ml of methanolic sodium hydroxide were added and 

the samples heated at 70'C for 30 minutes. The remaining stages were then carried out as 

described previously in the sample preparation. 

The optimum time for saponification and release of free fatty acids at 70'C was also 

investigated. Internal standards were added to 250 J.Ll aliquots of plasma and the lipids 

extracted with chloroform I methanol for 10 minutes under nitrogen. After filtering and 

drying the extracts, 5 rn1 of methanolic sodium hydroxide were added and the extracts 

heated at 70'C for either 20, 25, 30, 35, 40 or 45 minutes. The remaining stages of the 

sample preparation were then carried out and samples were prepared in duplicate for each 

time. 

Precision and stability 

The within batch variation of the method was determined after the extraction and 

saponification times had been decided. A fresh plasma sample was obtained and the 
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analysis repeated on the same day under identical conditions. The remainder of the plasma 

was frozen in 300 Ill aliquots at -70"C. Each analytical run included one aliquot which 

acted as a quality control sample and enabled the between batch variation to be calculated. 

The remainder of the plasma was also analysed over a period of 12 months and the results 

were used to provide an indication of the stability of the fatty acids stored at -70"C. 

Accuracy 

The fatty acid concentration of plasma was determined with and without the addition of 

standard solutions of linoleic, palmitoleic and arachidonic acid with concentrations of 

220, 950 and 66 J.Lmol/1 respectively. This was repeated four times on the same plasma 

and the percentage of each fatty acid recovered was calculated. 

3.6 Results 

A typical chromatogram of a working standard mixture of fatty acids is shown in Figure 

3.1. The order of elution was established by running each pure standard solution singly 

and noting the retention time. A chromatogram of a plasma sample is shown in Figure 3.2. 

The components in the plasma sample were identified by comparing their retention times 

with those in the standard mixture and by calculating and comparing the capacity factors 

of the components in the samples with those in the standard. The capacity factor (k') 

given by, k'= (t-to I to), where t = the retention time of the component and to= the 

retention time of an unretained peak and the ratio of capacity factors k2' I k 1 ', were also 

used for peak identification. Where several fatty acids were chromatographed closely 

together, further confirmation of peak identity was achieved by the addition of small 

amounts of pure standard solutions to the samples. A typical chromatogram of a plasma 

sample showing the main conjugated diene of linoleic acid and the added internal /external 

conjugated diene standard is shown in Figure 3.4. The order of elution was established by 

preparing plasma with and without the addition of the conjugated diene standard and also 

by running the pure standard separately. The conjugated diene standard (9-trans, 11-trans­

octadecadienoic acid) was found to elute after the plasma conjugated die ne (9-cis, 11-trans 

-octadecadienoic acid). 
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Figure 3.1 A typical chromatogram of a standard mixture of Linolenic acid (retention time 7.85 
min), palmitoleic acid (9.25 min), arachidonic acid ( 10.45 min), linoleic acid ( 11.62 min), palmitic 
acid ( 17.57 min), oleic acid (19.12 min), internal standard (22 .0 min) and stearic acid (35.66 min) . 

.. 
·-

Figure 3.2 A typical chromatogram of a plasma sample showing linolenic acid (retention time 
7.89 min), palmitoleic acid (9.28 min), arachidonic acid (1 0.48 min), linoleic acid ( 11 .62 min), 
palmitic acid (17.63 m.in), oleic acid (1 9.19 min), internal standard (22. 1 min) and stearic acid 
(35.96 min). The detection wavelength was 210 nm at 0.01 AUFS. 

91 



A 

B 

t 
START 

Figure 3.3 A typical chromatogram of a plasma sample showing the principal conjugated diene, 
9-cis, 11-trans-octadecadienoic acid (A) and the internal I external conjugated diene standard, 
9-trans, 11 -trans-octadecadienoic acid (B). The detection wavelength was 234 nm at 0.05 AUFS. 
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Detector response 
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Conjugated-diene concentration (J..Lmolll) 

Figure 3.4 Standard curve for the conjugated diene of linoleic acid. 

The detector response was found to be linear to a concentration of at least 80 Jlmol/l for 

the conjugated diene standard as shown in Figure 3.4. The minimum detectable amount 

was the amount of analyte present in a 20 Jll injection volume giving a peak whose height 

was twice that of the baseline noise. This was found to be 1.85 Jlmolll for the conjugated 

diene. For the fatty acids, the detector response was linear up to at least 1600 Jlmol/1 for 

arachidonic acid, 3000 Jlmol/1 for linoleic acid, 3000 Jlmol/1 for linolenic acid, 6300 

Jlmol/1 for oleic acid, 4500 Jlmol/1 for palmitic acid, 8000 Jlmol/1 for palmitoleic acid and 

2500 Jlmolll for stearic acid. 

Extraction and saponification 

Figures 3.5 to 3.8 illustrate the effect of different extraction times using the chloroform 

and methanol mixture (2: 1 v/v) on the recovery of fatty acids from plasma. 
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Figure 3.5 Effect of extraction time on the concentration of linolenic and arachidonic acid 
(mean ±SD) . 

2000 
........ s 
0 

~ 
I: 

1600 0 . ., 
c<S 
b 

~ Linoleic acid c 
0 
0 
c • Oleic acid 0 
0 

1200 "0 ·o 
c<S 
;>-. 
t: 
c<S 
~ 

0 5 10 15 20 25 

Time (minutes) 

Figure 3.6 Effect of extraction time on the concentration of linoleic and oleic acid (mean ± SD ). 
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A large variation in the results was found when extraction times of less than 10 minutes 

were used. The recoveries of palmitoleic acid, palmitic acid and arachidonic acid were 

maximum at 10 minutes, whereas the recoveries of linolenic acid, linoleic acid and oleic 

acid were beginning to decrease at this time. However, minimum variation in the results 

of four fatty acids were observed after 10 minutes and this extraction time was chosen for 

further work. 

After the extraction time had been decided, the optimum time for saponification of the 

fatty acids at 70"C was investigated. The mean results for each time are presented in 

Figures 3.9 to 3.12. A gradual increase in the concentrations of palmitoleic, linolenic, 

linoleic and oleic acids were observed with increasing incubation time at 70"C. Maximum 

concentrations were obtained between 30 and 35 minutes, after this time the 

concentrations gradually declined. An unusual result was obtained for palmitic acid with 

an apparent decrease in concentrations from 25 to 35 minutes which was followed by an 

increase to a maximum value at 45 minutes. The heating time of 35 minutes was chosen 

for all further work as this appeared to be the optimum time for linoleic acid, the main 

fatty acid of interest. 
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Precision 

The coefficient of variation for the within batch variation was found to be 4.3% (n = 5) for 

the conjugated diene of linoleic acid, 6% (n = 5) for linoleic acid, 6% (n = 5) for linolenic 

acid, 6% (n = 5) for palmitoleic acid, 6% (n = 5) for arachidonic acid, 15% (n = 5) for 

palmitic acid, 15% (11 = 5) for oleic acid and 20% (n = 5) for stearic acid. The between 

batch coefficient of variation was 5% (n = 7) for the conjugated diene of linoleic acid, 9% 

(n = 7) for linoleic acid, 12% (n = 7) for linolenic acid, 8% (n = 7) for palmitoleic acid, 7% 

(n = 7) for arachidonic acid, 15% (n = 7) for palmitic acid, 20% (n = 7) for oleic acid, 

25% (n = 7) for stearic acid and 10% (n = 7) for the ratio of the conjugated diene to 

linoleic acid. 

Accuracy 

The addition of 220 JlmoUl of linoleic acid, 950 Jlmol/1 of palmitoleic and 66 Jlmol/1 of 

arachidonic acid to plasma resulted in recoveries of 92%, 92% and 93% (n = 4) 

respectively. 

Stability 

After 12 months of storage at -7o·c an increase of 27% was observed in the concentration 

of the conjugated-diene which corresponded to an increase of 25% in the conjugated-diene 

/linoleic acid ratio. After 18 months of storage the concentration of the conjugated-diene 

had increased by 89% and the ratio had increased by 108%. 

3. 7 Discussion 

Some initial difficulties were encountered with this method. These included large 

variations in the retention times between sample injections, making it very difficult to 

identify the components of the chromatograms. The problem was resolved by the use of a 

column heater and by insulating the heater in order to prevent any changes in temperature. 

Baseline drift also caused considerable interference in the chromatograms, this was largely 

as a result of the very low UV wavelength that was used for detection purposes. 

Interference from the acetonitrile in the mobile phase contributed to this drift, the problem 
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was abolished when acetonitrile from a different manufacturer was used and by 

continuously degassing the mobile phase with helium during the analytical run. 

The extraction conditions of the fatty acids were investigated in order to optimize the 

conditions of the sample preparation and improve the reproducibility of the assay. The 

time of 10 minutes was chosen, even though the recoveries of three fatty acids were 

beginning to decrease, because the smallest variation in the results of arachidonic, linoleic, 

linolenic and palmitoleic acids occurred at this time. The effect of time on the hydrolysis 

and release of free fatty acids at 70"C showed that maximum recovery of the fatty acids 

occurred after 35 minutes, in all fatty acids except for palmitic acid. However, as this fatty 

acid was not one of crucial importance, the experiment was not repeated and 35 minutes 

was used as the heating time for all further work. 

The main drawback was the poor reproducibility of the saturated fatty acids, palmitic, 

stearic and also oleic acid. This was due to the lack of a chromophore in the molecule, 

which would have enabled increased sensitivity during spectrophotometric detection. 

However, the detector response for the fatty acids of main interest, namely linoleic acid 

and its conjugated diene, was higher due to the presence of the unsaturated bonds enabling 

satisfactory reproducibility of these fatty acids. 

In order to enhance the sensitivity of oleic, palmitic and stearic acid a derivatization 

method labelling the fatty acids with 4-bromomethyl 7-methoxy coumarin, using crown 

ether as a catalyst, was attempted (Lam and Grushka 1978; Jtingling and Karnmermeier 

1988). Enhanced sensitivity using fluorescence detection was achieved, however, it 

became very difficult to identify the fatty acids, especially the conjugated diene isomer of 

linoleic acid and so further work on the method was discontinued. 

In conclusion, the quantitative determination of the conjugated diene (9-cis, 11-trans­

octadecadienoic acid) and its molar ratio to linoleic acid was achieved by this method with 

satisfactory reproducibility. 
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4. Measurement of Ascorbic Acid and Dehydroascorbic Acid 

in Plasma by HPLC 

4.1 Introduction 

In this study, an isocratic HPLC method using the mobile phase of De Antonis et al. (1993) 

was developed for the direct measurement of AA and the indirect determination of DHAA in 

plasma. Electrochernical detection was employed for the measurement of AA as this form of 

detection was more selective and offered greater sensitivity than UV detection. Ascorbic 

acid is easily oxidized and electrochernically active, DHAA is not electrochemically active 

and its determination was therefore indirect. Each sample was analysed twice, once for the 

AA content and again after the reduction of DHAA to AA by dithiothreitol, to give the total 

AA content (AA+DHAA). The DHAA concentration was then calculated as the difference 

between the two values. 

4.2 Equipment 

The HPLC instrumentation consisted of a series 410 LC pump, an ISS-100 autosampler, an 

LC-4B amperometric detector and an LCI-100 laboratory computing integrator (Perkin­

Elmer Ltd., Buckinghamshire, UK). The separation was performed on a Spherisorb 5 Jlm 

ODS-1 analytical column, 25 cm x 0.46 cm, with a 5 cm guard column (Jones 

Chromatography, Hengoed, Mid-Glamorgan, UK). The guard column contained 10 Jlm 

ODS and was repacked after 50-100 sample injections. A 20 Jll injection volume was used 

and the optimal potential of the working electrode was found to be +0.725 V. Capped 

polypropylene centrifuge tubes (2 m!) were used for the sample preparation (BDH, Merck 

Ltd., Poole, Dorset, UK). 

4.3 Chemicals and Reagents 

L-Ascorbic acid, EDTA, metaphosphoric acid (MP A), sodium acetate and glacial acetic acid 

(all A.R. grade) were obtained from BDH, Merck Ltd., Poole, Dorset, UK. L­

Dehydroascorbic acid, dithiothreitol (OTT), 3,4 dihydroxybenzylamine hydrobromide 

(DHBA) and sodium octane sulfonate sodium salt were obtained from Sigrna Chemical Co., 
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Dorset, UK. Methanol (HPLC grade) was purchased from Rathburn Chemicals Ltd., 

W alkerburn, Scotland. 

All solutions were prepared with de-ionized water. A IO% solution of MPA, freshly 

prepared, was used to precipitate the plasma proteins. A lO mmoVI DTT solution, for the 

reduction of DHAA to AA, was prepared and stored at 4 ·c for one up to one month. 

Internal standard solutions 

A stock solution of internal standard, DHBA (2 mmoVI), in hydrochloric acid ( 10 mmoVI), 

was prepared and stored at 4·c. A working internal standard solution (80 ~-Lmol/1) was 

prepared by diluting I ml of the stock DHBA solution to 25 ml with lO% MPA. The final 

concentration of the internal standard in the samples, after the sample preparation had been 

completed, was 40 ~LmoVl. 

Ascorbic acid standard solutions 

A 500 l!moVI stock solution of AA, previously dried to constant weight over silica gel in a 

vacuum desiccator, was prepared in 3% MPA. Working standard solutions with 

concentrations of lO, 20 and 30 ~-LmoVI were prepared by diluting 1, 2 and 3 ml of the stock 

solution to 50 ml with 3% MPA respectively. Each solution also contained I ml of the stock 

internal standard, DHBA, with a resulting concentration of 40 l!moVl. All solutions were 

prepared immediately before use and were protected from light at all times. A 20 111 volume 

of each standard was injected on to the column in order to obtain a standard curve for the 

analysis. 

Mobile phase 

The mobile phase was prepared according to the method of De Antonis et al. (1993) by 

dissolving 6.56 g of sodium acetate, 0.216 g of sodium octane sulfonate, 0.034 g of EDT A 

and 52.6 ml of methanol in 850 ml of water. The pH was adjusted to 4.0 with glacial acetic 

acid and the final volume made up to 11. The mobile phase was filtered, sparged with 

helium prior to use and delivered isocratically with a flow rate of 1.2 rnVminute. 
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4.4 Sample Preparation 

Ascorbic acid 

The AA content of plasma was determined by placing a 200 Jll aliquot of plasma into a 2 m! 

centrifuge tube, 200 Jll of water and 400 Jll of the working internal standard solution in 10% 

MPA were then added. The samples were mixed gently by inversion to facilitate protein 

precipitation and then frozen at -70"C. At the time of analysis, the samples were thawed for 

5 minutes at room temperature, centrifuged at 2500 x g for 2 minutes and 20 Jll of the clear 

supernatant was injected on to the column for analysis. 

Dehydroascorbic acid 

The total AA content of the sample (DHAA+AA) was determined by reducing the DHAA 

back to AA with DTT. To 200 Jll of plasma, 200 Jll ofDTT (10 mmolJI) were added and the 

reduction of DHAA allowed to proceed for 6 minutes at room temperature, before the 

addition of 400 Jll of the working internal standard in 10% MPA. The samples were mixed 

and then frozen at -70"C. At the time of analysis the samples were thawed for 5 minutes, 

centrifuged and 20 Jll of the clear supernatant analysed. The DHAA concentration was then 

calculated as the difference between the total AA content (DHAA+AA) and the AA content. 

4.5 Method Validation 

Detector response 

The optimum potential of the working electrode was found by preparing a standard solution 

of AA (20 JlmoUl) and repeating the analysis over a range of detector potentials (+0.5 to 

+0.95 V). The detector was then set at the potential with the maximum response to the 

analyte concentration. The linearity of the detector response was then evaluated at the 

optimum potential by preparing and analysing a series of AA standards ranging from 5 to 80 

JlmolJI, each with an internal standard concentration of 40 JlmolJI. By further diluting the 

standard with the lowest concentration, the minimum detectable amount was obtained. 

Reduction of dehydroascorbic acid to ascorbic acid 

In order to optimize the conditions for the determination of total AA, the effects of the DTT 
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concentration and the reaction time on the reduction of DHAA to AA at room temperature 

were investigated. Dithiothreitol solutions with concentrations of 5 and 10 mmol/l were 

prepared. Fresh plasma was obtained and divided into two sets, one for each DTT 

concentration. Each set was divided into aliquots; DTT was added to each aliquot and the 

reaction allowed to proceed at room temperature in the dark. At intervals of two minutes, the 

working internal standard solution in 10% MPA was added to successive samples in each set 

in order to stop the reaction and stabilize the AA for analysis. 

Precision 

A fresh plasma sample was obtained from a healthy volunteer. Samples were prepared for 

the analysis of AA and DHAA and then frozen and stored at -70'C. The within batch 

precision of the method was determined by thawing and analysing samples on the same day 

under identical conditions. The remaining samples were stored and one sample was 

included in each analytical run enabling the between batch variation to be calculated. 

Accuracy 

The AA concentration of a plasma sample was determined with and without the addition of 

standard AA solutions of either high (30 Jliilolll) or low (8 JliiiOlll) molarity. Quadruple sets 

of samples were analysed and the percentage of each standard recovered was calculated. 

Stability 

The stability of AA, in whole blood and plasma, prior to protein precipitation and 

stabilization in acidic conditions was investigated. Blood from a healthy individual was 

collected into 4 ml EDTA Vacutainer tubes (Becton Dickinson Ltd., Oxford) (n = 14). The 

plasma from one tube was immediately separated and analysed for AA and DHAA content. 

The remaining tubes were divided into two sets: one set was placed in a refrigerator at 4'C 

and the other was kept at room temperature (25'C), both sets were protected from the light. 

At intervals of 1, 2, 3, 4 and 6 hours, one tube of whole blood was removed from each set, 

the plasma was separated and immediately analysed for AA and DHAA content. 
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To assess the stability of ascorbic acid in plasma prior to acidification, a fresh plasma sample 

was obtained and immediately analysed for the content of AA and DHAA. The remainder of 

the plasma was divided into two aliquots, one was kept at 4 oc and the other at room 

temperature (25°C), both were protected from light and analysed for AA and DHAA content 

over a 6 hour period. To establish the effect of long term storage, a fresh plasma sample 

was obtained and immediately analysed for the AA content. The remainder was stored at 

-70°C and analysed on a monthly basis. 

4.6 Results 

Detector response 

The optimum potential for the analysis of AA was found to be +0.725 V and the detector 

was set at this potential. The standard curve for AA is shown in Figure 4.1. The peak 

height ratios of the AA standards to the internal standards were linear to at least 80 JlmoVI. 

The minimum detectable amount was the amount of analyte present in a 20 Jll injection 

volume giving a peak whose height was twice that of the baseline noise; this was found to 

be 74 nmoVl. 

0 20 40 60 80 100 

Ascorbic acid concentration (J..lmolll) 

Figure 4.1 Standard curve for the peak height ratios of ascorbic acid I internal standard 
(DHBA) against concentration. 
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Typical chromatograms of a standard solution and a plasma sample are shown in Figures 4.2 

and 4.3. The order of elution was established by analysing each component separately and 

noting the retention time. The AA peak in a plasma sample was identified from the retention 

time and by 'spiking' the sample with a standard solution of AA. Additionally, plasma 

depleted of AA, by storage at 4•c for 24 hours prior to acid stabilization was also analysed. 

The absence of the AA peak gave further confrrmation of the peak identity and also indicated 

that AA was not eo-eluting with any other compound. Baseline resolution between AA, uric 

acid, DTT and DHBA was achieved and the analysis was completed within 12.5 minutes. 

Reduction of dehydroascorbic acid to ascorbic acid 

During the investigation of the reduction of DHAA to AA in plasma, the effects of 5 and 

lO mmol/1 DTT were examined (Figure 4.4). The DTT solutions were added to plasma in a 

50:50 ratio, so that the final concentrations were 2.5 and 5 mmoln respectively. The 

reduction of DHAA appeared to reach a maximum between 6 and 8 minutes using 5 mmol/1 

DTT. A higher result was obtained with lO mmotn DTT and the reaction reached a 

maximum between 4 and 6 minutes. On the basis of these results, a reaction time of 6 

minutes using 10 mmol/1 DTT was chosen for the reduction of DHAA at room temperature, 

before stabilizing the samples in acid and freezing at -70'C. 
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Figure 4.2. A typical chromatogram of a standard solution of AA (retention time 2.74 min) 
and internal standard DHBA (retention time 10.45 min). 
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the separation of AA (2.73 min) from uric acid (4.87 min), DIT (7.76 min) and DHBA (10.14 
m in). 
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Precision 

The within batch coefficient of variation was 5.5 % (n = 6) for AA and 7.6% (n = 6) for 

DHAA. The between batch coefficient of variation was 6% (n = 5) for AA and 8% ( n = 5) 

forDHAA. 

Accuracy 

The addition of 8 and 30 Jlmol/l of AA to plasma, gave mean recoveries of 91.1% (n = 4) 

and 95.6% (n = 4) respectively. 

Stability 

The concentration of AA in two sets of plasma (1 and 2) stored at -70"C for 6 months is 

shown in Figure 4.5. No decrease in the concentration of AA was observed in set 1. A 

slight decrease, however, was observed in set 2, although this was within the variability of 

the method. 

The stability of AA in whole blood prior to the separation of plasma and addition of 10% 

MP A is shown in Figure 4.6. In whole blood stored at 4 ·c. a decrease of 6% in the total 

AA content was observed after 2 hours. After 6 hours, 66% of the AA had been lost. A 

more rapid decline in the concentrations of AA were observed in whole blood samples kept 

at 25"C, with a 13% decrease after 2 hours and a decrease of 80% after only 4 hours. In 

plasma stored at 4 ·c and 25•c prior to the addition of MP A, the decline in AA content was 

more pronounced over the first hour of storage (Figure 4. 7). After 2 hours, 27% of the AA 

had been lost from plasma kept at 4"C and 43% from plasma kept at 25·c. After 6 hours at 

4·c. 41% of the AA had been lost and at 25·c the decrease in AA approached 80%. In view 

of these results, plasma was separated and stabilized in acid, within 2 hours of the collection 

of blood samples. 
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Figure 4.5 Ascorbic acid concentration in two sets of plasma stored at -7o·c. 
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Figure 4.6 The stability of AA in whole blood samples stored at 4 "C and 25"C prior to the 
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Figure 4.7 The stability of AA in plasma stored at 4"C and 25"C prior to acid stabilization. 
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4. 7 Discussion 

A plethora of HPLC methods exist for the determination of AA (reviewed by Washko et al. 

1992 and Rizzolo and Polesello 1992). The most common forms of HPLC are reverse 

phase, reverse phase with ion-pairing agents and weak anion-exchange with amino bonded 

phases. Problems still remain in current methods: difficulties arise in separating AA from 

other water-soluble components, especially uric acid in plasma samples and there are no 

single step HPLC assays available for the simultaneous detection of a AA and DHAA. 

During the initial investigations of HPLC methods for the determination of AA, several 

methods were tried. The reverse-phase method of Barja de Quiroga et al. ( 1991) with UV 

detection was attempted. This produced an excellent separation of AA from uric acid in 

standard solutions, but the analysis of plasma samples proved problematic. The injection of 

approximately ten successive plasma samples resulted in large changes in retention times and 

the elution of a retained compound which caused further interference in the assay. These 

problems were caused by the precipitation of the ion-pairing agent (tetradecyl trimethyl 

ammonium bromide), in the mobile phase, by the acid in the samples. Similar problems 

were encountered by Liau et al. (1993) using octylamine as an ion-pairing agent. 

Several attempts were made to resolve these problems. Different acids were tried for the 

sample preparation, however, the most commonly used acids, metaphosphoric acid, 

perchloric acid and trichloroacetic acid all caused precipitation. Dilution of the plasma 

samples prior to injection in order to reduce the ionic strength of the acid resulted in 

decreased sensitivity and reproducibility of the assay and highlighted the need for an internal 

standard. Reducing the amount of the ion-pairing agent in the mobile phase from 1 to 0.3 

mmol/1 enabled the resolution of the assay to be maintained, but did not resolve the problem 

of precipitation. Different ion-pairing agents were tried, but the loss of resolution then 

became a problem and precipitation occurred when ion-pairing agents with a similar structure 

to tetradecyl trimethyl ammonium bromide were used. 
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The method of Hatch and Sevanian (1984) using a weak anion-exchange column for the 

separation of AA with UV detection was also attempted. Difficulties arose in achieving a 

good separation of AA from uric acid with this method and in reproducing the 

chromatographic conditions on a daily basis. A within batch precision of 7% and a between 

batch precision of 15% were obtained. Precipitation also occurred upon the addition of 

acetonitrile to the phosphate buffer during the preparation of the mobile phase, creating 

another, albeit minor, problem with this method. The analytical run times approached 25 

minutes and peak broadening occurred. 

The HPLC method of De Antonis et al. ( 1993) using electrochemical detection for the 

determination of vitamin C was also attempted. The use of electrochemical detection resulted 

in increased sensitivity and no problems were encountered with plasma samples prepared 

with 10% MPA. An excellent separation of AA from uric acid was produced, and the 

analysis of plasma depleted of AA produced the finding that the AA peak was not 

contaminated by any other compound. Hence, this method was used for all further work. 

The detector response was linear up to at least 80 JlmoUI and encompassed the AA 

concentration range expected in clinical samples. 

Dihydroxybenzylarnine hydrobromide was found to be a suitable internal standard, without 

causing any interference in the detection of AA. This proved advantageous in terms of the 

reproducibility of the assay. Other workers used tyrosine as an internal standard (Doner and 

Hicks 1981) or isoascorbic acid, a stereoisomer of AA (Lopez-Anaya and Mayersohn 1987; 

Koh et al. 1993). 

High background currents and electrode poisoning have been reported with the use of 

electrochemical detection (Ziegler et al. 1987; Wagner and McGarrity 1991). These 

problems were not encountered in this study. The electrode surfaces were cleaned with 

deionized water after each analytical run and the reference electrodes were stored in 3 moUI 

sodium chloride whilst not in use. 
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Okamura ( 1980) described a spectrophotometric method for the determination of AA and 

DHAA in which DHAA was reduced to AA by a suitable reducing agent. The reaction 

conditions were investigated and the most suitable reducing agent was found to be DTT. 

The conditions for the reduction of DHAA to AA with DTT were dependent upon the pH, 

the DTT concentration and time. The optimum pH was found to be between 6.5 to 8.0 

(Okamura 1980; 0dum 1993). Okamura (1980) also reported that a DTT concentration of 

2.5 mmoVl was sufficient for the reduction of 570 jlmoin of DHAA in plasma, with a 

reaction time of lO minutes at room temperature, without the requirement of a buffer solution 

to maintain the pH of the reaction. 

Since DHAA is electrochemically inactive, direct determination was not possible and DHAA 

was measured indirectly by reduction to AA using DTT as described above. When the DTT 

concentration and reaction time were investigated, it appeared that the reaction was not 

complete at DTT concentrations below 5 mmoin, as depicted in Figure 4.4. The stability 

results showed a rapid decline of AA in plasma not stabilized in acid conditions, therefore, 

the minimum reaction time for the reduction of DHAA to AA was the preferred option. A 

maximum reduction of DHAA was obtained when l 0 mmoin DTT with a reaction time of 6 

minutes were used at physiological pH (7.4). Room temperature was chosen as the reaction 

temperature for convenience. This procedure allowed the total AA content of plasma to be 

measured and enabled the DHAA content to be determined indirectly. Although the 

disadvantage with this method was that a small increase was being measured over a large 

background, the procedure required little additional sample manipulation and electrochemical 

detection provided the sensitivity necessary to measure the increase. 

Direct measurement of DHAA by HPLC, with UV detection at 210 nm, was achieved by 

Rose and Nahrwold (1981). Cammack et al. (1991) also used UV detection for the direct 

measurement of DHAA, whilst simultaneously measuring AA with electrochemical 

detection. However, this form of direct determination lacks sensitivity due to the low UV 

absorptivity of DHAA and is subject to interference at the low wavelengths used for 

detection. Keating and Haddad ( 1982) and Speek et al. ( 1984) were successful in 
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enhancing the sensitivity of DHAA by precolumn derivatization with 1,2-phenylenediamine, 

although problems with the stability of the derivative were experienced. 

The accurate determination of DHAA is difficult due to its instability and this is reflected by 

the discrepancies that exist in the literature concerning the levels found in plasma. The 

DHAA concentration in plasma (mean ± SD) is reported to be: 1.44 ± 1.67 J.LmoVl (n = 10) 

(Okamura 1980), 12.0 ± 3.7 J.LmoVl (n = 20) (Lunec and Blake 1985), 5.8 ± 2.7 J.LmoVl (n 

= 15) (Nagy and Degrell 1989), see also Table 1.6 (page 62). A high concentration (>20 

J.LmoVl) of DHAA has been reported in diseased states: rheumatoid arthritis and diabetes 

(Lunec and Blake 1985; Jennings et al. 1987b; Banerjee 1982). Unfortunately, the optimum 

conditions for the determination of DHAA were developed after the collection of samples for 

the weight loss study had begun. Thus, in these samples only the ascorbic acid content 

could be determined. However, during the method validation DHAA was measured in 

healthy subjects and the concentration was found to be 12.8 ± 8.7 J.LmoVl (mean± SD) (n = 

6) and in diabetic patients 2.72 ± 2.19 J.LmoVl (n = 29). 

There is a lack of published data regarding the stability of AA during sample collection and 

long term storage. In routine laboratory procedures, several hours can elapse between the 

collection of blood samples and sample preparation. Hence in this study, the stability of AA 

in whole blood and plasma prior to acid stabilization was examined, in addition to the effect 

of long term storage of samples at -70'C. 

The results from this study showed a rapid decline in AA content in whole blood after 2 

hours of storage at 4 'C and 25'C. Similar results were observed for plasma with a greater 

initial loss in AA occurring during the first hour. These results were in contrast to those of 

Liau et al. (1993) who showed that AA was stable in whole blood for 4 hours prior to the 

deproteinization of plasma. Schorah et al. (1996) stored whole blood from critically ill 

patients and healthy controls for 4 hours at room temperature prior to the separation of 

plasma and stabilization in MP A. The loss in AA was significantly greater in the critically iU 

group after 4 hours when compared to the control group. The results from these studies 
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suggest that inter-individual differences in the stability of AA in whole blood may occur and 

may be dependent upon the initial concentration of AA or on the levels of other plasma 

components. A recent study has found that AA is stable for 6 hours at 4'C in blood samples 

collected in trisodium citrate for the preparation of plasma, whilst in blood samples collected 

in plain tubes for the preparation of serum, AA was stable for 24 hours (Key et al. 1996). 

These results indicate that the stability of AA is also affected by the conditions used for the 

collection of blood samples. In this study, blood samples were collected in tubes containing 

EDT A and precautions were taken to separate the plasma and stabilize the AA in MP A within 

2 hours of the samples being taken. 

Variability concerning the long term storage of AA in plasma stabilized in acidic conditions is 

also found in the literature. These differences may result from the use of different stabilizing 

media. In summary, AA appeared to be stable for 24 hours at 4'C in 5% MPA (Margolis et 

al. 1990) and methanol containing trichloroacetic acid (Moeslinger et al. 1995), or for 12 

hours at 5'C in 10% MPA (0dum 1993). At -20'C the AA concentration in plasma 

preserved with 10% MPA was found to be stable for 2 weeks (0dum 1993) and 3-4 weeks 

(Lunec and Blake 1985; Moeslinger et al. 1995). Nagy and Degrell (1989) reported that AA 

could be stored for 22 days at -34'C, without decrease, in plasma preserved with 0.2 mmol/1 

MPA and 5 mmoVI EDTA. Margolis and Davis (1988) stored plasma supplemented with 

AA and preserved with DTT and MPA (5%) for extended periods. The results showed that 

AA remained stable for at least 57 weeks at -70'C. The study was extended to cover a 

period of 6 years. Plasma preserved with DTT and MP A showed a decrease in AA of 

approximately 4-7% per year of storage; plasma freeze-dried before storage at -70'C was 

found to be stable for 6 years (Margolis and Duewer 1996). In this study, AA was found 

to be stable for at least 6 months in plasma preserved with 10% MP A at -70'C. 

Ascorbic acid does not appear to be stable at high temperatures. In plasma preserved with 

5% MPA, detectable oxidation of AA had occurred after 5 hours at 25'C (Margolis et al. 

1990). Thus, as a further precaution, samples were removed from the freezer, thawed and 

immediately injected on to the column at the time of analysis in order to minimize losses. 
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In conclusion, the methodology described, offers straight-forward sample preparation for 

the,detemlination of AA and DHAA in plasma, with excellent separation of AA from uric 

acid,DTI and internal standard, with a short analysis time. vhe stability data indicated that 

thNapid separation of plasma and stabilization in acidic conditions is of crucial importance 

in the study of AA status in human subjects. 
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5. Measurement of Retinol and a.-Tocopherol in Plasma by 

HPLC 

5.1 Introduction 

High perfonnance liquid chromatography has enabled straight forward, sensitive, rapid and 

accurate analysis of vitamin A (all-trans retinol) and vitamin E (a-tocopherol) in biological 

samples. An isocratic, reverse phase method, for the simultaneous determination of retinol 

and a-tocopherol with UV detection was used in this study (MacCrehan and Schonberger 

1987). The preparation of plasma samples involved three stages: denaturation of the lipid­

protein associations using absolute ethanol, extraction of the vitamins using an organic 

solvent and solvent exchange, evaporating the extracting solvent and reconstituting the 

vitamins in suitable medium for direct analysis. 

5.2 Equipment 

The HPLC equipment consisted of a Model 501 pump (Millipore, Waters, Hertfordshire, 

UK), a Model9050 variable wavelength UVNIS detector (Varian Associates Ltd., Surrey, 

UK) and a Model 3395 integrator (Hewlett-Packard Ltd., Stockport, Cheshire UK). For 

sample injection, a Model 7010 manual injector (Rheodyne, Macclesfield, Cheshire, UK), 

equipped with a 20 J.Ll loop was used. Chromatographic separation was perfonned on a 

Spherisorb 5 J.1ffi ODS-2 column, 25 cm x 0.46 cm, with a 5 cm guard column containing 10 

J.Lm ODS purchased from Jones Chromatography, Hengoed, Mid-Glamorgan, UK. Other 

equipment included a PU 8625 series UV NIS spectrophotometer (Philips Analytical, 

Cambridge, UK). 

5.3 Chemicals and Reagents 

All-trans retinol, retinol acetate, a-tocopherol and tocopherol acetate were obtained from 

Sigma Chemical Co., Dorset, UK. Ascorbic acid (A.R.) methanol (HPLC grade), ethanol 

(GPR) butan-1-ol (GPR), and hexane (A.R.) were obtained from BDH, Merck Ltd., 

Dorset, UK. 
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Standard solutions 

Stock standard solutions of retinol (28 J.LmoVl) and a-tocopherol (232 J.LmoVl), were 

prepared by dissolving approximately 2 mg of retinol in 250 rnl of ethanol and 10 mg of a­

tocopherol in 100 rnl of ethanol. The exact concentrations of the solutions were determined 

spectrophotometrically, by using the extinction coefficients (E 1% 1 cm) in ethanol. The 

values used at the wavelength maxima were: retinol 1850 at 324 nm and a-tocopherol 75.8 

at 292 nm (Kaplan et al. 1987; MacCrehan and Schtinberger 1987; Catignani and Bieri 

1983). 

Stock solutions of the internal standards, retinol acetate (21 J.LmOVl) and tocopherol acetate 

( 1057 J.LmoVl), were prepared by dissolving 0.7 mg of retinol acetate in lOO ml of ethanol 

and 50 mg of tocopherol acetate in 100 ml of ethanol. All solutions were protected from 

light and stored at 4•c for up to one month. 

A combined working standard solution containing retinol (2.8 J.LmoVl), a-tocopherol (23.2 

J.LmoVl), retinol acetate (2.1 J.LmoVl) and tocopherol acetate (105.7 J.LmoVl) was prepared by 

diluting 5 ml of each stock standard solution to 50 ml, with ethanol containing AA (1 g/1} as 

an antioxidant. A 20 J.Ll sample of this working standard solution was directly injected on to 

the column for analysis. 

A combined solution of the internal standards, retinol acetate (2.1 J.LmoVl) and tocopherol 

acetate (105.7 J.Lmol/1), was prepared by diluting 5 rnl of the stock internal standard solutions 

to 50 rnl with ethanol containing AA (1 g/1). This solution was used for the sample 

preparation. 

Mobile phase 

The mobile phase consisted of water I methanol/ butan-1-ol in the ratio 2.5 I 87.5 I 10 by 

volume. The mobile phase was degassed with helium for 5 minutes before use and then 

delivered isocratically with a flow rate of 1.5 ml/rninute. 
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5.4 Sample Preparation 

All procedures were performed in subdued daylight at room temperature. Frozen plasma 

was thawed and mixed gently to resuspend any material. A 200 IJ.l aliquot of plasma was 

transferred to a glass centrifuge tube and 200 IJ.I of the combined internal standard solution 

were added. The sample was vortex mixed for 15 seconds and 400 IJ.l of hexane were 

added. After mixing for 30 seconds the sample was centrifuged at 1000 x g for 2 minutes. 

The hexane layer was transferred to another glass centrifuge tube and the extraction process 

with hexane repeated twice more. The combined hexane extracts were evaporated to dryness 

under a constant stream of nitrogen and the residue immediately reconstituted in 200 IJ.I of 

ethanol. A 20 IJ.I portion was then directly injected on to the column for analysis. 

5.5 Method Validation 

Detector Response 

The UV detector was programmed to switch wavelengths from 324 nm to 292 nm after 

5.15 minutes, enabling both retinol and a-tocopherol to be measured at their maximum 

wavelengths. The linearity of the detector response was evaluated by preparing and 

analysing a series of retinol and a-tocopherol standards, with each solution containing an 

identical concentration of the corresponding internal standard. Standard curves were 

obtained by plotting the peak height ratios for each analyte to its corresponding internal 

standard, against the analyte concentration. By further diluting the standard with the lowest 

concentration, the minimum detectable amount was obtained. 

Precision 

The within batch variation of the method was determined by obtaining a fresh plasma sample 

and repeating the analysis on the same day under identical conditions. The remainder of the 

plasma was frozen in 250 IJ.I aliquots at -70"C. Each analytical run included one aliquot 

which enabled the between batch variation to be calculated. 
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Accuracy 

The retinol and a-tocopherol concentrations of a plasma sample were determined with and 

without the addition of standard solutions. The volumes of the added solutions were kept 

low, I 0 J.Ll, so as not to cause protein precipitation and the percentage of the standard 

recovered from the plasma was calculated. 

Stability 

A plasma sample was obtained from a healthy volunteer and analysed without delay. The 

remainder was separated into 250 J.Ll aliquots and stored at -7o·c and -2o·c. Samples were 

analysed on a monthly basis. 

5.6 Results 

Figure 5.1 shows a typical chromatogram of the combined working standard solution. All 

standards are clearly resolved from the internal standards and eluted by 11 minutes. The 

order of elution was established by running each standard singly and noting the retention 

time. A chromatogram of a plasma sample is shown in Figure 5.2. The peaks were 

identified by their retention times; further confirmation of peak identity was achieved by 

'spiking the samples with small amounts of standard solutions. 

Figures 5.3 and 5.4 show the standard curves for retinol and a-tocopherol. The peak height 

ratios of the standards to the internal standards were linear to concentrations of at least 12.5 

J.Lmolll for retinol and 220 J.Lmolll for a-tocopherol. The slope of the each graph gave a 

constant, the response factor; by dividing the peak height ratio of the sample by the response 

factor the concentration of the analyte in a plasma sample was calculated. 

The detection limit was the amount of analyte present in a 20 J.Ll injection volume giving a 

peak whose height was twice that of the baseline noise. This was found to be 33 nmolll for 

retinol and 0.96 J.LmoVI for a-tocopherol. 
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Figure 5.1 A typical chromatogram of a standard mixture of retinol (retention time 3.10 min), 
retinol acetate (4.16 min), a-tocopherol (7.74 min) and tocopherol acetate (10.75 min). The 
detector response was set at 0.05 AUFS. The arrow indicates the change in wavelength from 
324 nm to 292 nm. 
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Figure 5.2 A typical chromatogram of a plasma sample showing retinol (3.08 min), retinol 
acetate (4.14 min), a-tocopherol (7.69 min) and tocopherol acetate ( 10.66 min). 
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Figure 5.3 Standard curve for the peak height ratios of retinol I retinol acetate against 
concentration. 
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Figure 5.4 Standard curve for the peak height ratios of a-tocopherol I tocopherol acetate 
against concentration. 
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Precision 

The within batch variation of the method, expressed as the coefficient of variation, was 1 o/o 

(n = lO) for retinol and 3% (n = 10) for a-tocopherol. The between batch variation was 3% 

(n = 8) for retinol and 5% (n = 8) for a-tocopherol. 

Accuracy 

The addition of 1.5 J.Lmolll of retinol to plasma, of known retinol concentration, gave a mean 

recovery value of 94.6% (n = 4) and the addition of 5 J.Lmolll of a-tocopherol resulted in a 

mean recovery of 93% (n = 4). 

Stability 

The results of 12 months of storage of plasma are shown in Figures 5.5 and 5.6. No 

decrease in the concentrations of retinol or a-tocopherol were observed in plasma stored at 

-1o·c. However, a decrease in both the retinol and a-tocopherol concentrations, greater 

than the between batch variation of the method, were observed after 9 months of storage at 

-2o·c. After 12 months of storage at -2o·c the concentration of retinol had decreased by 

9% and the concentration of a-tocopherol had decreased by 22%. 
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Figure 5.5 Plasma retinol concentrations in samples stored at -7o·c and -2o·c for 12 
months. 
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Figure 5.6 Plasma a-tocopherol concentrations in samples stored at -7o·c and -2o·c for 12 
months. 
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5. 7 Discussion 

Greater than 95% of vitamin A in serum is all-trans retinol. Retinol is also transported post 

prandially in the form of retinyl esters, predominantly as retinyl palmitate with smaller 

amounts appearing as retinyl stearate, oleate and linoleate (De Leenheer et al. 1979). More 

than 95% of vitamin E activity is represented by a-tocopherol, the remainder occurs in the 

form of B and y-tocopherol (Catignani and Bieri 1983). The method described, quantifies 

all-trans retinol and a-tocopherol, the predominant forms of vitamins A and E in plasma. 

During the initial investigations of HPLC methods, three reverse phase methods with 

different mobile phases were attempted (Thurnham et al. 1988; Nierenberg and Nann 1992; 

MacCrehan and Schonberger 1987). The best results were obtained with the method of 

MacCrehan and Schonberger ( 1987). The mobile phase was very simple to prepare and 

relatively non-hazardous and this was chosen for further work. The mobile phases of the 

other methods contained more hazardous chemicals, namely tetrahydrofuran and 

chloroform, resulting in solutions which produced offensive odours and made the handling 

of these mobile phases unpleasant. Small adjustments in the composition of the mobile 

phase enabled baseline resolution of all four compounds with an acceptable run time of 11 

minutes. Switching wavelengths from 324 nm to 292 nm, after 5.15 minutes, allowed 

optimum detection of the analytes without any disruption to the chromatographic trace. 

The detector response was found to be linear up to at least 12.5 J.l.molll for retinol and 220 

J.l.molll for a-tocopherol and, therefore, encompassed the range expected in plasma samples 

(1.05-2.8 J.l.mol/1 retinol; 12-42 J.l.moUI a-tocopherol (Teitz 1990)). As proposed by 

Horowitt et al. (1972) and Thumham et al. (1986), the assessment of vitamin E status 

should take into account the lipid status of the individual. Thus, measurements of serum 

cholesterol and triglycerides were also made in the patients studied, in order to provide a full 

assessment of the vitamin status. 
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The between batch coefficients of variation (retinol 3%, a-tocopherol 5%) were found to be 

similar to the values reported by MacCrehan and Schonberger ( 1987) (retinol 4.1 %, a­

tocopherol4.7%) and lower than those reported by Thumham et al. (1988) (retinol 10%, a­

tocopherol 5.3%) and Nierenberg and Nann (1992) (retinol 9.1%, a-tocopherol 6.7%). 

This favourable result reflected the high reproducibility of the assay. 

The detennination of the absolute recoveries of the analytes is made difficult by the fact that 

the vitamins are bound in lipid-protein associations in plasma. The simple addition of an 

exogenous substance is, therefore, not a good marker for the recovery of an endogenous 

substance (MacCrehan and Schonberger 1987). However, the results obtained (94.6% for 

retinol and 93% tocopherol) are satisfactory, but only provide an indication of the accuracy 

of the method. 

The use of two internal standards compensated for any differences in the analytical 

recoveries between the vitamins during the extraction stages of the sample preparation. In 

addition to this, the internal standards also accounted for losses during the sample 

preparation, variations in injection volume and small changes in detector sensitivity. The 

assay was 30 times more sensitive for retinol than for a-tocopherol due to the much higher 

molar absorptivity of retinol. Fluorescence detection would have increased the sensitivity 

for a-tocopherol, but this was not required as the detection limits were much lower than 

levels found in plasma associated with vitamin deficiency. 

Driskell et al. (1985a) reported that there was no trend towards degradation of vitamin A 

stored for 5 to 8 years at -2o·c and that losses during the sample preparation could be 

prevented by the addition of AA to the extracting solvent (Driskell et al. (1985b). Craft et al. 

(1988) also reported no detectable change in retinol and tocopherol concentrations in plasma 

stored at -2o·c for 5 to 15 months and the vitamins were found to be stable for at least 28 

months at -1o·c. The report ofEdmonds and Nierenberg (1993) indicated that retinol and 

a-tocopherol were stable for at least 5 years at -7o·c. 
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The stability data in this study indicated that there was no deterioration in retinol and a­

tocopherol concentrations after 12 months of storage at -70"C, which supported the previous 

findings. However, a decrease in retinol and a-tocopherol concentrations was observed 

after 9 months at -20"C in contrast to the previous reports. 

The effects of exposure to air and light, on the concentrations of retinol and tocopherol, 

during the processing of plasma were investigated by Gross et al. (1995). No significant 

differences between three processing procedures were found, a result which indicated that 

the vitamins would not be adversely affected by 'typical' clinical blood collection and 

processing procedures. The effects of repeated freezing and thawing of plasma samples 

have also shown the vitamins to be stable (Zaman et al. 1993; Hsing et al. 1989). In this 

study, precautions were taken during the collection of blood samples and during the sample 

preparation to ensure that samples were protected from the light at all times. In addition, 

plasma was separated and stored within two hours of the samples being taken, therefore 

changes in the concentrations of the analytes were unlikely. 

In conclusion, the method described enables straight forward, rapid and accurate analysis of 

retinol and a-tocopherol in plasma, with the advantage that samples can be safely stored for 

long periods at -70"C prior to analysis. 
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Chapters 6-7 

Patient Studies 



6. Free Radical Activity and Antioxidant Vitamin Status 

During Diabetic Ketoacidosis and Severe Hyperglycaemia 

6.1 Introduction 

Diabetic ketoacidosis (DKA) occurs when a relative or absolute deficiency of insulin in the 

presence of counter-regulatory hormones, primarily glucagon, but also catecholamines, 

cortisol and growth hormone results in hyperglycaemia, ketonaemia and acidosis. The most 

frequent precipitating factors of DKA are infection, acute illness, omission of insulin 

injections, missed diagnosis and failure to increase the insulin dosage during times of 

infection or other forms of insulin resistance (Elarnin 1993; Fleckman 1993). 

A small number of patients have repeated episodes of DKA where psychological and social 

problems or unstable family environments are the general underlying causes. These patients 

are often described as having 'brittle' diabetes and have poor glycaemic control with frequent 

episodes of DKA (Tattersall et al. 1991). The erratic metabolic control leads to poor 

prognosis and may place patients at increased risk of developing complications (Williams 

and Pickup 1988). 

The autoxidation and glycoxidation reactions of glucose under physiological conditions in 

vitro result in the formation of ketoaldehydes, H 202 and highly reactive oxidants (Hunt et al. 

1993). Consequently, patients with DKA may be under increased oxidative stress as a result 

of hyperglycaemia, since plasma glucose concentrations of the order of 42 ± 22 mmolll, 

reaching 135 mmolll in rare instances have been reported (Fulop and Eder 1989). 

6.2 Aims 

This study was undertaken as a preliminary investigation of the hypothesis that the 

autoxidation I glycoxidation reactions of glucose may be a sources of ROS in vivo. Patients 

with DKA were chosen for the study, since plasma glucose concentrations approximate to 

the levels used in the in vitro investigations and remain elevated over a number of days. The 

acute effects of hyperglycaemia on lipid peroxidation and antioxidant vitamins were studied. 
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6.3 Patients and Methods 

The study was given the approval of the Ethical Committee of the South Devon Health Care 

Trust. Patients with DKA, not necessitating intensive care treatment, were studied. 

Samples were taken at the time of admission to the Casualty Department at Torbay Hospital 

and then on a daily basis during the recovery period, after the patients had been transferred 

to the hospital wards. In order to minimize discomfort and further distress to the patients, 

samples for the study were taken at the same time as the routine blood samples. The patients 

were treated with soluble insulin and appropriate fluid replacement therapy. 

Blood samples were collected into 10 ml Vacutainer tubes containing EDTA (Becton 

Dickinson Ltd., Oxford), for the analysis of TBARS, the conjugated diene isomer of linoleic 

acid and its molar ratio to linoleic acid, together with total plasma fatty acids and plasma 

vitamins A, E and C (AA+DHAA). 

Whole blood was collected into tubes containing separator gel for the analysis of serum 

cholesterol, triglycerides and uric acid. Blood for the analysis of plasma glucose was 

collected in tubes containing sodium fluoride. Total serum cholesterol, triglycerides and uric 

acid were determined using commercially available enzymatic-colorimetric kits, adapted for 

the Hitachi 747 analyser (Boehringer, Mannheim, Germany). Plasma glucose levels were 

measured by a glucose oxidase method. The H202 generated during the analysis was 

measured directly with electrochemical detection, with a platinum electrode, using a Model 

GA-1120 Auto and Stat analyser (Clandon Scientific Ltd. UK). The results for plasma 

bicarbonate, creatinine, urea, arterial blood pH and the presence of ketones were also 

available from the Chemical Pathology Department at Torbay Hospital. 
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6.4 Results 

Six patients were studied. The biochemical characteristics of the patients on admission are 

shown in Table 6.1 and their clinical details are described below: 

Patient 1: a 60 year old female, with type I diabetes, with very unstable diabetic control 

as a result of a psychological upset, was admitted with polyuria and polydipsia. The patient 

was dehydrated, ketotic and acidotic and unable to eat for 48 hours during the recovery 

period. 

Patient 2: an 86 year old male subject, with a 12 year history of type II diabetes, treated 

by diet and glibenclarnide, was admitted to the casualty department with confusion, polyuria, 

vomiting, shingles and upper respiratory tract infection. The patient was only mildly 

dehydrated, ketotic, but not acidotic and was able to eat after 24 hours. 

Patient 3: a 38 year old male subject, severely overweight with a BMI of 45, newly 

diagnosed with type II diabetes and under stress, was admitted to the hospital after 4 weeks 

of polyuria, polydipsia and weight loss with vomiting. The patient was ketotic and acidotic 

and able to eat after 24 hours. 

Patient 4: an 83 year old female, with newly diagnosed type II diabetes, presented with 

polyuria, polydipsia and feeling generally unwell due to difficulties in accepting treatment. 

The patient was ketotic, but not acidotic and was also able to eat on the following day. 

Patient 5: a 38 year old female, with type I diabetes of 10 years duration, was admitted 

with severe oesophagitis and vomiting, which resulted in dehydration and raised plasma 

glucose concentrations, but not full DKA. The patient was monitored over a 3 day period 

and was able to eat small amounts of food 24 hours after admission. 
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Table 6.1 The biochemical characteristics of the patients on admission to hospital on Day 1. 

PATIENT 

1 2 3 4 

Plasma glucose 28.7 38. 1 37.0 37.1 
(3- 5.5 mmoUI) 

Plasma 18 24.0 15 .0 22.0 
bicarbonate 
(22 - 32 mmoUl) 

Arterial blood pH 7.11 NR NR 7.38 
(7 .35 - 7 .45) 

Creatinine 113 167 138 148 
( 44 - 124 JlmoUI) 

Urea 10.9 11.9 11 .6 12.0 
(2.5 - 6.6 mmoUl) 

Ketones ++ + ++ + 
(in whole blood) 

The reference ranges for healthy individuals are shown in brackets. 
NR signifies no result available. 
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Patient 6: at the time of the study, a 43 year old female patient with type I diabetes of 14 

years duration, with early renal impairment (as indicated by the high values of plasma 

creatinine and urea, Table 6.1) and a history of extremely severe episodes of 

hyperglycaemia, without ketosis, was found to have a plasma glucose concentration of 46 

mmolll, a fructosarnine concentration of 1284 mmolll (reference range, 200- 300 mmolll) 

and a glycated haemoglobin concentration >20% (reference range, 4 -7%) during a routine 

visit to the diabetic clinic. The patient had no apparent symptoms of dehydration, polyuria 

or polydipsia and appeared to be feeling in good health. The patient was treated as an 

outpatient and was monitored daily over a 1 week period, whilst improvements in glycaemic 

control were advocated. 

The initial blood samples were collected between the hours of 4 pm and 5 am, upon 

admission of the patients to the casualty department (Day 1). The follow-up samples were 

collected daily, between 9 am and 11 am, during the collection of the routine blood samples 

in order to minimize any discomfort to the patients. All patients were followed up for three 

days, one patient was followed up for four days, one for five days and one for six days. 

The collection of blood samples was more difficult in the older patients, so these individuals 

were monitored for three days only. 

The results are expressed as mean ± SD, unless stated otheiWise. Due to the difficulty in 

obtaining more than six patients for the study, statistical analyses were not performed on the 

data and the results are presented in descriptive terms. Comparisons were made between 

Days 1 and 3 in particular, since all patients were followed up for three days. 

132 



Glucose arul serum lipids 

Plasma glucose concentrations were high on admission and remained elevated during the 

recovery period as shown in Table 6.2 below. Serum triglyceride levels were raised above 

the reference range in patients 1-4, as shown in Table 6.3. By Day 3, the triglyceride levels 

had returned to the reference levels in two of these patients, as a result of the intravenous 

administration of insulin and fluids. Hypertriglyceridaernia was observed in patient 3 on 

Day l. Patient 3 was newly diagnosed and had been poorly controlled for several weeks 

before admission. Serum cholesterol levels were also elevated on admission, but decreased 

gradually during the recovery period as shown in Table 6.4. The overall changes in 

triglyceride and cholesterol levels are shown in Figure 6.1 (page 136). 

Table 6.2 Changes in plasma glucose Levels. 

PATIENT 

1 2 3 4 5 6 Mean±SD 

Glucose 
(rnmol/1) 

DAY 
1 14.2 * 38.1 15.0 13.6 10.8 46.1 23.0 ± 15. 1 

2 20.4 3.6 16.6 24. 1 6.2 8.3 13.2 ± 8.3 

3 10.4 8.1 22.3 25.4 14.0 7.7 14.7 ± 7.5 

4 14.6 24.0 7. 1 

5 28.3 9.7 

Reference range: 3 - 5.5 mmol/1. 

* The plasma glucose concentrations on Day I, in patients I , 3 and 4, differ between Tables 

6.1 and 6.2 as a result of a time delay (of between 0.5-3 hours) between the first samples 

collected immediately on admission and those collected for this study. 
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Table 6.3 Changes in serum triglyceride levels. 

PATIENT 

1 2 3 4 5 6 Median (range) 

Tri(nlycerides 
mmoUI) 

DAY 
1 3.3 2.7 17.3 2.1 l.O 1.8 2.4 (1.6 - 6.8) 

2 1.5 2.0 5.6 2.0 l.O 1.6 1.8 (1.4 - 2.9) 

3 1.4 1.7 5.7 2.2 1.2 0.4 1.5 ( 1.0 - 3.7) 

4 1.5 4.4 0.5 

5 4.2 1.9 

Reference range: 0.8 - 2.0 mmol/1. 

Table 6.4 Changes in serum cholesterol levels. 

PATIENT 

1 2 3 4 5 6 Mean ± SD 

Cholesterol 
(mmol/1) 

DAY 
1 10.0 5.2 l l.l 6.0 3.6 6.4 7.05± 2.9 

2 9.0 4.5 7.6 6.6 3.6 4.7 6.0 ± 2.1 

3 7.9 3.9 8.1 6.5 3.8 4.9 5.8 ± 1.9 

4 7.7 7.2 5.4 

5 6.9 5.9 

Reference range: 3.7 - 6.5 mmol/1. 
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Lipid peroxides and conjugated dienes 

The changes in plasma MDA are shown in Figure 6.2. The levels were markedly raised 

above the reference range in four subjects on Day 1, with patient 3 exhibiting a seven fold 

increase above the reference range found in healthy subjects. During the recovery period, 

the plasma levels of MDA showed a gradual decline in five patients. Interestingly, the 

changes taking place were similar to the pattern observed for the sum of the serum 

triglyceride and cholesterol concentrations shown in Figure 6.1. Further investigations 

revealed that the plasma MDA concentrations were found to correlate positively with serum 

triglyceride levels (r = 0.93), cholesterol levels (r = 0.55) and with the sum of the 

triglyceride and cholesterol levels (r = 0.86, Figure 6.3). 

Figure 6.4 shows the change in MDA concentrations in relation to the change in serum 

lipids. In patients 1 and 3, the MDA I triglyceride + cholesterol ratio remained constant 

despite the large changes in serum lipids that were taking place. In patients 2 and 4, the ratio 

decreased, whereas in patient 5 the ratio had increased by Day 3, whilst the serum lipid 

concentrations remained constant. 
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Figure 6.2 Changes in plasma MDA concentrations during the recovery period. 
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Figure 6.4 Changes in the MDA I triglyceride + cholesterol ratio during the recovery period. 
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Changes in the conjugated diene I linoleic acid ratio are shown in Figure 6.5. The 

conjugated diene ratio was markedly raised above the reference range in patient 3, but 

decreased gradually during the follow-up period. Patient 3 was newly diagnosed and the 

increase in the conjugated diene ratio on Day 1 was possibly due to several weeks of poor 

metabolic control prior to the study. In the remaining patients, the conjugated diene I linoleic 

acid ratio remained stable and within the reference range. The changes observed were 

similar to the changes in the plasma MDA concentrations. 

Positive correlations were also found between conjugated diene concentrations and serum 

triglyceride levels (r = 0.89), cholesterol levels (r = 0.86) and the sum of the triglycerides 

and cholesterol levels (r = 0.96, Figure 6.6). 
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Lipid-soluble antioxidants 

The changes in the lipid-soluble antioxidants, retinol and a-tocopherol, are shown in Figures 

6.7 and 6.8. Plasma retinol concentrations remained constant in three patients, but 

decreased in two patients. In patient 6, the plasma concentrations of retinol were raised 

above the reference range during the follow-up period, a further indication of the mild renal 

impairment in this patient. 

The plasma a-tocopherol concentrations showed a gradual decline during the follow-up 

period in four patients. In contrast, the a-tocopherol I triglyceride + cholesterol ratios 

increased during the follow-up period in four patients, but decreased slightly in two patients, 

as shown in Figure 6.9. The average values on Day 3 (3.4 ± 0.7 J.lmol/1 a-tocopherol/ 

mmollllipid (mean± SD)) were slightly lower than on Day I (3.5 ± 1.1). However, the a­

tocopherol/ triglyceride + cholesterol ratios remained above the level considered to be the 

deficiency threshold ( 1.59 J.lmoVl a-tocopherol/ mmol/1 lipid (Thurnham et al. 1986), 

throughout the recovery period, in all of the patients. 
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Figure 6.7 Plasma retinol concentrations during the recovery period. Reference range 1.05 -
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Figure 6.9 Changes in plasma a-tocopherol I triglyceride + cholesterol ratios (JJ.molll a­
tocopherol I mmol/l lipid). Values below 1.59 J.lmolll a-tocopherol I mmol/1 lipid were 
considered to be indicative of vitamin E deficiency (Thurnham et al. 1986). 

Table 6.5 Plasma DHAA and DHAAIAA ratio in five patients during the recovery period. 

PATIENT 

1 2 3 4 6* Mean±SD 

DHAA (DHAA/AA) 
(~moVI) 

DAY 
1 0.6 (0.009) 2.2 (0.03) 13.5 (0.19) 0 (0) 0 (0) 3.3 ± 5.8 (0.05 ± 0.08) 

2 3. 1 (0.07) 0.6 (0.008) 0.3 (0.01) 9.2 (0.25) 0 (0) 2.6 ± 3.9 (0.07 ± 0. 1) 

3 1.8 (0.04) 2.4 (0.04) 1.5 (0.05) 1.9 (0.06) 2.6 (0.08) 2.0 ± 0.5 (0.05 ± 0.02) 

4 0.3 (0.01) 0 (0) 1.1 (0.04) 

5 6.5 (0.34) 2.0 (0.07) 

The concentration of DHAA in healthy individuals varies from 2.7 ± 2.5 to 31.8 ± 4.8 Jlmolll 
(mean ± SD) (see Table 1.6 page 62). 

* Sample not available for patient 5. 
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Water-soluble antioxidants 

Changes in the concentrations of the main water-soluble antioxidants in plasma, uric acid 

and AA are shown in Figures 6.10 and 6.11. The concentrations of uric acid were increased 

above the reference range in three patients on Day 1. During the recovery period, a gradual 

decline in the levels of uric acid were observed in five patients, with values approaching the 

reference range by Day 3 in three patients. On average, the plasma levels of uric acid had 

been reduced by 37% ± 15% by Day 3. In patient 6, the levels of uric acid remained at the 

upper end of the reference range during the period of observation, whilst in patient 5 the 

levels were below the reference range. 

Similar changes in the concentrations of AA were found. The initial concentrations of AA 

were high, but showed a gradual decline during the recovery period, approaching the lower 

limits of the reference range in two patients by Day 2. By Day 3, plasma ascorbate levels 

had been reduced by an average of 38% ± 15%. Table 6.5 shows the concentration of 

DHAA and its ratio to AA in five patients. Large intra- and inter-patient variability in the 

levels of DHAA and the DHANAA ratio were observed. The concentration of DHAA 

ranged from 0 - 13.5 IJ.mol/1, with an overall mean ± SD of 2.5 ± 3.5 IJ.molll; the 

DHAA/AA ratio ranged from 0- 0.34 (0.06 ± 0.09). These results were similar to the 

ranges found in diabetic subjects with stable glycaemic control (DHAA: 0- 14.7 IJ.molll (2.8 

± 3.1 IJ.mol/1); DHAAIAA ratio: 0- 0.42 (0.09 ± 0.09, n = 29)) and lower than those found 

in a small number of non-diabetic subjects (DHAA: 1.8- 27.21J.molll (12.8 ± 8.7 IJ.mol/1); 

DHANAA ratio 0.06- 0.42 (0.18 ± 0.1, n = 6)) who were monitored during the method 

validation. 

An estimate of plasma TRAP was made by calculation (although plasma thiols were not 

measured) according to the formula (2.0 [vitamin E] +1.3 [uric acid]+ 1.7 [ascorbic acid]) 

(Ceriello et al. 1997). The mean ± SD values obtained on Days l - 3 were: 829 ± 350, 651 

± 227, 538 ± l671J.molll respectively. The range in healthy subjects was reported to be 669 

± 12 IJ.mol/1 (Ceriello et al. 1997). Thus, the calculated TRAP values were elevated on Day 

1 and showed an overall decrease of 34 ± 16%, by Day 3, in the patients studied. 
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6.5 Discussion 

The purpose of this study was to investigate the acute effects of markedly raised plasma 

glucose concentrations on free radical activity in vivo. This was based upon the hypothesis, 

from numerous in vitro studies, that the autoxidation and glycoxidation reactions of glucose 

are sources of ROS. Patients with very poor glycaemic control were monitored over a 

number of days, during the normalization of plasma glucose levels, in order to gain an 

insight into the effect of hyperglycaemia on lipid peroxidation. Patients with DKA were 

chosen as subjects for the study, since the plasma glucose concentrations in these patients 

approximate to the levels used in the in vitro investigations (i.e., 25 mmoUl (Hunt and Wolff 

1991; Hunt et al. 1993)) and remain elevated for a several days. However, due to the large 

metabolic changes that occurred in the patients during the episodes of DKA, it was not 

possible to determine clearly the effects of plasma glucose. Nevertheless, some interesting 

insights into free radical activity during DKA and severe hyperglycaemia have been gained 

from this study. 

Diabetic ketoacidosis represents a very large metabolic disturbance. In the absence of 

insulin, the rates of glycogenolysis and gluconeogenesis are enhanced, raising the serum 

glucose concentrations to levels which cause osmotically driven polyuria and polydipsia. 

The consequent loss of water and electrolytes from the kidneys causes dehydration, which is 

often further exacerbated by vomiting. Due to the lack of insulin, excessive lipolysis results 

in high levels of serum FFAs which are metabolized to the ketoacids, B-hydroxybutyrate and 

acetoacetate. The accumulation of these acids and their dissociation, with the release of 

hydrogen ions, lowers the serum bicarbonate concentration causing metabolic acidosis, 

which if left uncorrected leads to coma and death. 

During the treatment of DKA, insulin therapy causes a fall in plasma FFAs and ketone 

bodies by inhibiting lipolysis and ketogenesis. The therapy is aimed at reversing the 

underlying ketoacidotic state and not, initially, at normalizing the plasma glucose 

concentrations. Consequently, the plasma glucose levels fluctuated, but remained elevated 

during the follow-up period, whilst the serum triglyceride and cholesterol levels, which were 
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markedly raised above the reference range on Day 1, declined steadily during the follow-up 

period as a result of the treatment. Interestingly, hypertriglyceridaemia was observed in 

patient 3 on Day 1. Patient 3 was poorly controlled for several weeks before admission. 

Raised serum triglycerides in this patient were secondary to the uncontrolled diabetes, a 

finding which is not uncommon in patients with DKA (Fulop and Eder 1989). 

As reported in the literature, the main precipitating factors leading to the development of 

DKA, namely infection and treatment errors (Fleckmann 1993) were found in the patients 

studied. Patient 1, classed as having 'brittle' diabetic control, was admitted during an 

unpredictable episode of DKA, the cause was attributed to psychological upset as a result of 

an unstable family environment. In patient 2, an infection was the underlying cause of the 

ketotic episode. Patients 3 and 4 were newly diagnosed, one severely overweight and 

under stress, the other experienced difficulties in accepting treatment which resulted in DKA. 

Patients 5 and 6 were included in the study, because of severe hyperglycaemia, without true 

DKA. Indeed, patient 6 was a unique subject with a history of extremely severe episodes of 

hyperglycaemia without ketosis. 
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Lipid peroxidation 

The concentrations of MDA measured on Day 1, in three patients, were two to four fold 

greater than the range found in healthy individuals and in diabetic patients with stable 

glycaemic control. In one patient, the MDA levels were increased seven fold above the 

range found in healthy individuals. These results were much higher than any results that had 

been previously encountered during the method validation. All of the samples collected from 

each patient were analysed on the same day under identical conditions in order to minimize 

the variation due to the method itself. This factor was not therefore responsible for the 

variation that was observed in the results. 

Initially, it was suspected that interference in the assay may have caused the high results, 

possibly due to the presence of ketone bodies in this group of patients. The addition of 

acetone, 8-hydroxybutyrate or acetoacetate to plasma or blank samples, produced a minimal 

increase in the results, within the variation of the method, indicating that the ketone bodies 

were not causing any interference in the assay nor contributing to the abnormally high 

results. Excessive lipid peroxidation during the acid-heating stage of the TBAR test has 

been reported in samples from patients with hyperlipidaemia (Chirico et al. 1993). This was 

also a possibility in this group of patients due to the high lipid content of the samples, which 

may have amplified lipid peroxidation during the assay, producing artefactually elevated 

results. However, the conjugated dienes were also elevated, especially in patient 3, and 

showed similar changes to the MDA levels, supporting the reliability of the TBAR results. 

Interestingly, as serum concentrations of triglycerides and cholesterol were normalized, 

MDA and conjugated diene levels also declined towards the reference ranges, suggesting that 

the serum lipid peroxide levels were proportional to the serum lipid levels. Positive 

correlations were found between plasma MDA and serum triglyceride (r = 0.93) and 

cholesterol levels (r = 0.55) and also between conjugated dienes and serum triglycerides (r 

= 0.89) and cholesterol (r = 0.86). Thus, it appears that the increase in plasma MDA and 

conjugated diene concentrations was proportional to, and may be explained by the increase 

in serum lipids. 
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One other study has investigated lipid peroxidation in patients with DKA (Faure et al. 1993). 

Samples were collected on two occasions, once during admission to hospital before 

treatment with insulin and again after 14 ± 3 days when stable glycaemic control had been 

reached. The results indicated that TBARS were significantly increased during DKA, but 

after glycaemic improvement the concentrations had approached the reference values. The 

results of this study support this finding. 

During the development of DKA, reduced insulin levels are accompanied by excessive 

lipolysis and release of FF A by adipose tissue. Increases in plasma FF A may, therefore, be 

partly responsible for the increases in MDA and conjugated dienes that were observed, since 

FFA attached to albumin (although a strong antioxidant) may be more susceptible to free 

radical attack than fatty acids within lipoproteins. Reaven ( 1988) showed that the 

progression from non-diabetic through IGT to Type II diabetes was accompanied by a 

progressive increase in circulating FFA. Interestingly, Niskanen et al. (1995) have shown 

that TBARS also increase from non-diabetes to IGT and diabetes. A recent study has shown 

that an infusion of a triglyceride emulsion (lntralipid), in healthy individuals, resulted in an 

increase in plasma FFA levels, which in turn were accompanied by an increase in plasma 

TBARS (Paolisso et al. 1996). Thus, FFA concentrations may have implications on the 

plasma levels of TBARS in diabetic patients, factors which require further investigation. 

Regardless of the pathways by which MDA levels were elevated in these patients, or the 

proportion of MDA to serum lipids, one factor for concern was that plasma MDA 

concentrations were markedly raised above the reference range and in one case seven-fold 

above the average concentration found in healthy subjects. During the breakdown of lipid 

peroxides, a range of end products are produced, which include saturated and unsaturated 

aldehydes and ketone products, some of which are cytotoxic and can cause tissue damage 

(Esterbauer 1993). On Day 1, plasma MDA and conjugated dienes were at their highest 

levels, whilst a-tocopherol I lipid ratios were at their lowest levels in those patients who 

experienced the greatest changes in serum lipids. The accumulation of lipid peroxides and 

their subsequent decomposition has the potential for inducing protein damage in these 
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patients. Furthermore, frequent episodes of ketosis and elevated levels of acetoacetate have 

been put forward as risk factors for the oxidative modification of LDL (Jain et al. 1998). 

Thus, patients with severe hyperglycaemia or DKA were most likely to be at increased risk 

from cellular damage due to oxidative stress, during the large increase in serum lipids and 

the associated increase in lipid peroxides, and also possibly due to the presence of elevated 

acetoacetate levels, prior to their admission to hospital. 

Lipid soluble antioxidants 

Plasma retinol concentrations appeared to be stable during the recovery period. Plasma 

a-tocopherol concentrations were raised on Day 1, but decreased by Day 3. The 

a-tocopherol/lipid ratios were lowered slightly in patients who had the largest increase in 

serum lipids on Day 1, thereafter the ratios increased during the recovery period. However, 

the a-tocopherol I lipid ratios remained above 1.59 J.l.moVl I mmoVI lipid, the value 

considered to indicate vitamin E deficiency (Thurnham et al. 1986), suggesting that the 

patients should not be at increased risk from oxidative stress during the recovery period. 
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Water-soluble antioxitkmts 

The concentrations of the water-soluble antioxidants, uric acid and AA, were found to be 

initially high on admission and showed significant decreases during the recovery period. 

Dehydration, on admission, could have been a contributing factor to the elevated levels and, 

therefore, the fluid replacement therapy could have been responsible for the lowering of the 

water-soluble antioxidants by haemodilution or by improving renal perfusion and increasing 

urinary losses. Also, intracellular volume repletion may have enhanced a redistribution of 

AA into cells, contributing to the gradual decline. Unfortunately, the haematocrit was 

omitted from the sample preparation to account for haemato-concentration related analytical 

errors. However, during the course of the treatment, approximately 6 litres of fluids were 

administered to the patients according to their individual requirements, over a 24-48 hour 

period. After this period of time, patients would normally be rehydrated, but the decline in 

uric acid and, in particular, AA continued after 48 hours suggesting that other factors may 

have been involved. 

Ascorbic acid is a major antioxidant in plasma and the first to be consumed during an 

oxidative insult (Frei et al. 1988). The continued decline in AA observed after 48 hours in 

three patients, may have been as a result of its antioxidant activity. In its antioxidant role, 

AA is oxidized to DHAA. An increase in the ratio DHAA/AA may, therefore, be indicative 

of oxidative stress (Jennings et al. 1987b). Thus, DHAA was measured in order to provide 

further insight into the antioxidant function of AA. 

The DHAA concentration and DHAA/AA ratio were found to increase and decrease, in all of 

the patients, at different times during the follow up period (Table 6.5). A large variation in 

the levels of DHAA were found within and between the patients, but no trends were 

observed. However, when the results from this study were compared with the values 

obtained from diabetic subjects with stable glycaemic control and with non-diabetic subjects, 

who were monitored during the method validation, no differences in the DHAA 

concentration or the DHAA/AA ratio were found. Consequently, the results from this study 

suggested that oxidative stress (assessed by the DHAA/AA ratio) was not increased in 
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patients with DKA. Attempts to compare the results from this study with published studies, 

in order to gain a further insight into the changes in the ratio under different conditions, are 

hindered by the inherent problems associated with the determination of DHAA. These are 

largely due to the instability of DHAA, which has a reported half-life of between 15 - lOO 

minutes (Baker et al. 1983; Bode et al. 1990) and also since DHAA is measured indirectly. 

Consequently, there is wide variation in the reported DHAA values in plasma (Table 1.6, 

page 62). Thus, further evaluation of the DHAN AA ratio, as an indicator of oxidative stress 

is necessary. Measuring the DHAA/AA ratio during a known free radical insult, e.g., 

during smoking, may have provided a clearer indication of the changes in the ratio during 

known oxidative stress and might have proved helpful in interpreting the results from this 

study. Furthermore, simultaneously measuring the ratio of allantoin, the oxidation product 

of uric acid and the allantoin I uric acid ratio -although technically more demanding- may 

have provided an additional marker of oxidative stress, since allantoin and uric acid are 

more stable than DHAA and AA. However, oxidative stress did not appear to increase 

during the recovery period, although, it was difficult to determine from these results whether 

the decline in AA was due to an increase in its consumption as an antioxidant. 

The plasma concentrations of AA also reflect dietary intake. Five patients were able to 

consume food after 24 hours during the recovery period, although intakes were not assessed 

in this study. However, the decline in AA was too rapid to be as a result of a poor 

nutritional supply. Schorah et al. (1996) measured the plasma concentrations of AA and 

DHAA in acutely ill patients requiring intensive care treatment for various reasons, including 

accidental injury, surgery and sepsis. The levels of AA were found to be considerably lower 

in the acutely ill patients compared with healthy controls; the lowest concentrations were 

found in those patients most severely ill. It was suggested that the low concentrations of AA 

occurred as a result of the acute-phase response, involving increased synthesis and release of 

the antioxidant proteins in plasma, which was due to the severity of the illness and not as a 

result of age, dietary intake or treatment differences (Schorah et al. 1996). Thurnham 

(1997) has also recently discussed the association between the rapid reduction in plasma 

ascorbate and the acute-phase response. 
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In summary, multiple factors were probably responsible for the decline in AA observed in 

this study. It is possible that the initial decline, during Days 1 and 2, was due to the effect of 

fluid and insulin therapy, leading to rehydration and possibly increasing cellular uptake of 

AA. The continued decline in AA observed after 48 hours, may have been as a result of its 

antioxidant properties, although it was difficult to determine this from the ratio of 

DHAN AA. Additionally, an acute-phase response as a result of the metabolic trauma of the 

DKA episode may have contributed to the decrease in AA. However, regardless of the 

mechanisms responsible for the reduced levels of AA, the AA levels reached the lower limits 

of the reference range in two patients and were close to those of deficiency (<11 1.1moVI; 

Tietz 1990) in one of the patients studied. Frei et al. ( 1989) have shown that once all of the 

AA in plasma has been consumed, lipid peroxidation increases thereafter. Since on average, 

the plasma urate levels decreased by 37% and the ascorbate levels decreased by 38% by Day 

3 (and also the calculated TRAP values), the potential for patients to be under increased 

oxidative stress during DKA was present. However, despite the lowering of the water­

soluble antioxidant capacity, plasma a-tocopherol/lipid ratios increased during the recovery 

period in the patients with the largest changes in serum lipids, providing adequate lipid­

soluble antioxidant protection, since plasma MDA and conjugated diene levels were at their 

lowest. Furthermore, during the recovery period, plasma glucose levels were still elevated. 

Thus, any increase in oxidative stress due to the presence of glucose was effectively counter­

balanced by the consumption of urate and ascorbate. Other plasma components, such as the 

antioxidant proteins, may have contributed to the preservation of a-tocopherol and protection 

of plasma lipids. Measurement of plasma TRAP values might have provided a useful 

indication of the overall changes in the antioxidant capacity in this study. Nevertheless, the 

results indicated that the plasma antioxidant defences were very robust, during the recovery 

period, in spite of the severe metabolic disturbances that were taking place. 
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Glucose and lipid peroxidation 

The large metabolic changes that were taking place made it difficult to detennine the effects 

of hyperglycaemia on lipid peroxidation in these patients. Further studies, using more 

specific markers of free radical activity, are necessary in order to give a clearer indication of 

presence of the autoxidation and glycoxidation reactions and their effects on levels of 

oxidative stress and lipid peroxidation in vivo. 

The autoxidation and glycoxidation reactions of glucose are separate pathways by which 

glucose may lead to the formation of free radicals in vivo. However, it may be difficult to 

distinguish which pathway contributes more to the generation of ROS during poor glycaemic 

control. The in vitro studies indicate that the relative rates of oxidation of glucose and 

Amadori adducts vary according to the glucose and phosphate buffer concentrations that are 

used. At high concentrations of glucose and phosphate buffer, glucose was found to be the 

primary source of oxidants and AGEs such as CML, whilst at buffer concentrations similar 

to those in vivo, Amadori adducts were the main sources of CML (Wells-Knecht et al. 

1995). Thus, at normal glucose concentrations in vivo, Amadori adducts are probably the 

main sources of ROS and AGEs, whereas at higher glucose concentrations both Amadori 

adducts and glucose are potential sources of glycoxidation products. However, the relative 

contribution of Amadori adduct and glucose concentrations to oxidative stress in vivo may 

be dependent upon other factors such as metal ion availability or other free radical reactions. 

The reactions may also be site-specific and localized in regions with higher levels of 

oxidative stress (Wells-Knecht et al. 1995; Baynes 1996). Indeed, the multifactorial nature 

of oxidative stress was illustrated by patient 6 in this study. Interestingly, patient 6 was 

monitored during an earlier study when levels of glycaemic control were stable. During that 

period of observation, the plasma conjugated diene /linoleic acid ratio was two-fold greater 

than the ratio found in this study. Thus, factors other than glucose concentrations may 

modulate the contribution of glycoxidation and autoxidation reactions to oxidative stress in 

vivo. Numerous other sugars are also precursors of AGEs such as CML. Hence, the 

measurement of CML may be valuable as a general indicator of oxidative damage in studies 

with diabetic patients, since CML is a major product of oxidative modification of glycated 
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proteins, generated by several pathways (Fu et al. 1996; Schleicher et al. 1997). 

A recent study, in patients with type IT diabetes, has shown that after three days of constant 

intravenous glucose and insulin infusion, to maintain glycaemia within the normal range, 

erythrocyte MDA concentrations fell significantly (Peuchant et al. 1997). The decrease in 

MDA levels was attributed to a reduction in the formation of ROS by autoxidation reactions 

as a result of the normalization of plasma glucose concentrations. However, hyperglycaemia 

may induce oxidative stress in erythrocytes in a number of ways. These include: increased 

glycation of SOD, resulting in decreased enzyme activity and increased formation of 02·-; 

increased formation of ROS may cause the release of iron from haemoglobin, causing a 

further increase in oxidative stress (Virgili et al. 1996); the production of 15-hydroxy­

eicosatetraenoic acid (15-HETE) by lipoxygenases is also augmented by hyperglycaemia and 

may be a further source of ROS, since inhibition of lipoxygenases decreases lipid 

peroxidation by 30% in erythrocytes in vitro (Rajeswari et al. 1991). Clearly, more 

sensitive methods for the measurement of free radicals are necessary in order to confirm the 

presence of the autoxidation and glyoxidation reactions in vivo and to establish their 

contribution to the development of oxidative stress in diabetes. Peuchant et al. 1997, did 

however show that normalizing plasma glucose concentrations was beneficial for reducing 

erythrocyte MDA levels. 

The autoxidation and glycoxidation reactions of glucose are dependent upon the presence of 

transition metal ions. Metal ions are also powerful catalysts in other free radical reactions 

such as those of lipid peroxidation. In patients with diabetes, body iron stores appear to be 

associated with blood glucose and insulin concentrations (Tuomainen et al. 1997). 

Furthermore, serum ferritin levels are elevated in diabetic patients with poor glycaemic 

control; disordered iron metabolism may, therefore, be common in diabetes (Cutler 1989; 

Gallou et al. 1994b ). Thus, iron status may be a crucial factor linking autoxidation, 

glycoxidation, and lipid peroxidation reactions in diabetes and future studies may need to 

take this into account. 

154 



6.6 Conclusion 

This study has shown that in patients with DKA and severe hyperglycaemia, large increases 

in serum lipids were accompanied by an increase in plasma lipid peroxides. In particular, 

lipid peroxide levels were markedly elevated and a-tocopherol I lipid ratios decreased in 

those patients with the largest changes in serum lipids. Consequently, the increase in 

peroxidizable substrate and high levels of lipid peroxides may be factors for concern in these 

patients. Patients appear to be at risk from oxidative stress during the metabolic disturbances 

which lead to severe hyperglycaemia and DKA, due to the increase in peroxidizable 

substrate, since the accumulation of products of lipid peroxidation are potentially detrimental 

to human health. 

During the recovery period, the water-soluble antioxidants were declining rapidly in the 

presence of elevated and potentially pro-oxidant glucose concentrations, whilst 

interestingly, the a-tocopherol/ serum lipid ratios increased in the majority of patients and 

markers of lipid peroxidation were stable. Hence, the results indicated the resilient nature of 

the plasma antioxidant defences, during the recovery period, in spite of the severe metabolic 

disturbances that were taking place. 
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7. The Effects of a Very Low Calorie Diet and Intensive 

Conventional Dietetic Therapy on Cardiovascular Risk 

Factors and Indices of Oxidative Stress in Obese Patients 

7.1 Introduction 

Very low calorie diets are used in the treatment of obesity to produce rapid weight loss 

whilst preserving vital lean body mass (reviewed by NTFPTO 1993). Many clinics in 

general practices throughout the UK have used the VLCD 'Lipotrim' for the treatment of 

obesity in non-diabetic and diabetic patients. Patients commencing on the Lipotrim VLCD 

programme are required to attend weekly as part of the programme, in order to monitor 

progress and for compliance with the diet. During the weekly sessions, patients are able to 

meet as a group for support, encouragement and education in the principles of long term 

weight management after weight loss. A clinic was started at Torbay Hospital to in order to 

monitor closely diabetic patients starting the Lipotrim VLCD programme. 

The treatment of newly diagnosed diabetic patients involves dietary advice. Patients 

normally complete a 5 day food record which is sent to the dietician in advance of their visit. 

At the time of their appointment, patients spend 10 to 15 minutes with a dietician. The 

advice offered is tailored to suit the food and nutrient requirement of the individual, with 

emphasis on weight reduction in obese subjects. Three to 4 follow up visits would be 

arranged at 6-8 weekly intervals, the patients would then be referred back to their physicians 

for further treatment. The weekly group support was an important feature of the VLCD 

programme and indicated the need for diabetic patients receiving conventional dietetic advice 

to have the same support available. Thus, a clinic offering conventional, but intensive, 

dietetic advice was set up to run parallel with the Lipotrim clinic, enabling a comparison 

between the two dietary interventions to be made. 

Weight loss in obese type II diabetic subjects produces improvements in cardiovascular risk 

factors and glycaemic control (Henry et al. 1985; Uusitupa et al. 1990b; Wing et al. 1991). 

However, VLCDs or low fat diets may affect fat-soluble vitamin intake with the potential of 
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compromising antioxidant protection, especially in diabetic patients - a group in which 

vitamin status is already altered as a result of the diabetes. Since the prevalence of obesity is 

increasing, the use of VLCDs may increase in the future. As there have been no reports of 

the effects of such diets on oxidative stress in type IT diabetic subjects, this provided the 

impetus for investigating these factors in this study. 

7.2 Aims 

The aims of this study were to assess the safety and efficacy of a VLCD and intensive 

conventional dietetic therapy (I CD), in obese type II diabetic and obese non-diabetic patients, 

on cardiovascular risk factors and indices of oxidative stress, over both short term (0 - 6 

months, during the acute weight loss phase) and long term (12 months, during weight 

maintenance). 

7.3 Patients 

The study was approved by the Ethical Committee of the South Devon Healthcare Trust and 

all subjects gave written voluntary consent after the nature of the study had been explained. 

Obese type IT diabetic patients were recruited from district diabetic clinics and obese non­

diabetic subjects, for the control groups, were recruited by advertisement from the 

community and from general practices by referral from their physicians. The recruitment 

period lasted 10 months during which time 84 individuals attended one of a series of 

discussion groups explaining the two treatment options. The subjects were then allowed to 

select either the VLCD or the ICD therapy in order to maximize compliance. 

Initially, 23 patients were recruited into the VLCD non-diabetic control group, 23 into the 

VLCD diabetic group, 21 into the ICD diabetic group and 17 into the ICD non-diabetic 

control group. Of these patients, 20 subjects failed to attend after the initial discussions, 6 

patients pursued the VLCD for less than 1-2 weeks and 6 patients attended the ICD group 
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for less than 4 weeks. Consequently, 32 individuals were not committed to the study, 

however, their weights were monitored at the end of the study period as a further control 

group. 

The remaining 52 patients who were recruited into the study agreed to attend weekly during 

the acute weight loss phase (0-6 months) and then every l-2 months during the weight 

maintenance phase, for the duration of the study (3 years). Three years was chosen as an 

acceptable time for patients on both dietary regimes to achieve their target weights. During 

the first months of the study, two patients in the VLCD non-diabetic group and one in the 

VLCD diabetic group initially attended the respective ICD groups. These patients' data was 

included in the respective VLCD groups only and baseline was taken as the start of the 

VLCD. Due to the non-compliant subjects, the number of patients recruited into the ICD 

control group was reduced to 5 and their data has been omitted from the main statistical 

analysis. A summary of the final patient groups and their associated medical conditions is 

shown in Table 7.1 and the protocol for the study is outlined in Figure 7.1 (page 164). 

All patients were given a preliminary medical examination in order to screen for any 

condition which might contraindicate dieting for a prolonged period of time. Included in this 

examination were height, weight, waist/hip, blood pressure measurements, chest and heart 

examinations. Blood samples were also taken for the analysis of serum lipids, glucose and 

for hepatic and renal function tests before dieting. For inclusion in the study, subjects were 

between 25 and 70 years of age, had a BMI of 30 or above, or a waist hip ratio > 0.8 

(females), > 1.0 (males). Patients with hypertension, hyperlipidaemia or gout were included 

in the study. Patients with any severe intercurrent illness such as myocardial infarction, 

cerebro-vascular events or a history of eating disorders such as anorexia nervosa were 

excluded from the study. 
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Table 7.1 Characteristics of the patient groups at baseline. 

Group Number MJF Age Medication Medical Conditions 

VLCD 18 6/12 50±9 Analgesics 2 Angina 2 
Non-Diabetic Beta-blocker 2 Arthritis 2 
Subjects Calcium antagonist 2 Hypertension 3 

Diuretic 4 Hypothyroidism 2 
Thyroxine 2 Multiple sclerosis 1 

VLCD 15 7/8 53 ± 6 Beta-blocker 2 Hyperlipidaemia 7 
Diabetic Bezafibrate 1 Hypertension 8 
Subjects Calcium antagonist 2 Myocardial infarction 1 

...... Diuretic 3 V\ 
\0 Insulin 6 

Metformin 2 
Sulphonylurea 5 

ICD 14 3/11 57±8 ACE inhibitor 1 Hyperlipidaemia 6 
Diabetic Beta-blocker 2 Hypertension 7 
Subjects Bezafibrate 1 Hyperthyroidism 1 

Insulin 6 Nephropathy 1 
Metformin 1 
Sulphonylurea 3 
Thyroxine 1 

ICD 5 3/2 59± 11 Beta-blocker 3 Hyperlipidaemia 1 
Non-diabetic Diuretic 1 Hypertension 3 
Subjects 



7.3.1 Very low calorie diet group 

The VLCD, Lipotrim, was used in this study. This was supplied by the Howard 

Foundation Research Ltd. (Downing Park, Station Road, Swaffham, Bulbeck, 

Cambridgeshire, UK) and a weekly supply was purchased by each patient during their visit 

to the hospital. Lipotrim was formulated in accordance with the recommendations of the 

Department of Health and Social Security's Committee on the Medical Aspects of Food 

Policy Report (DHSS 1987). The composition of the diet is listed in Appendix 4. 

Lipotrim was a nutritionally complete formula and was used as a total food replacement in 

the form of a liquid drink or a flapjack. For women, the diet provided a total daily intake of 

405 kcal/day in the form of 3 sachets, or 470 kcal/day if one of the sachets was replaced by a 

flapjack. For men, the diet was provided in the form of 2 sachets providing 540 kcal/day, or 

one sachet and two flapjacks increasing the daily calories to 670 kcal/day. The contents of 

the sachets were mixed with approximately 250 rnl of water, forming a liquid drink, soup or 

mousse and patients were advised to drink 2-4 l of water throughout the day. Beverages 

such as tea or coffee, with no added milk or sugar, were permitted in order to prevent 

symptoms of caffeine withdrawal. However, other beverages, including milk or alcohol 

were not permitted whilst consuming the VLCD. Consequently, a large calorie gap was 

created between energy intake and expenditure, enabling rapid weight loss in all patients. 

Patients on the VLCD developed mild ketosis, as a result of the oxidation of fatty acids 

released from adipose tissue by the liver, which caused a substantial blunting of hunger. 

Patients were required to attend weekly for maximal compliance with the diet and in order to 

monitor progress. Ketosis was used as an index of compliance and urinary ketones were 

measured at each visit using Ketostix (Bayer Diagnostics, Bayer Plc., Basingstoke, UK). 

Diabetic patients commencing on the VLCD were advised to stop taking oral hypoglycaemic 

agents, or to halve their insulin dosage on day one of the diet. Hypotensive and 

hypolipidaemic treatments were adjusted after one month if necessary. Each patient on the 

VLCD set a target for weight loss and received counselling during the period of rapid weight 

loss and during the period of weight maintenance after stopping the VLCD. 
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Group discussions were held weekly, providing additional encouragement and support. 

After stopping the VLCD, patients were warned to expect an initial rapid increase in weight, 

due to the repletion of glycogen stores. In order to keep this initial weight gain to a 

minimum, the patients were provided with a refeeding strategy; a brief outline of this 

strategy is described in Appendix 4. 

Patients who had transferred from the VLCD to weight maintenance diets were encouraged 

to attend the group discussions at least monthly. A video and printed information, 

describing the physiology of weight loss and strategies for the transition from the VLCD to 

low-fat foods, for weight maintenance, were provided as part of the Lipotrim programme for 

educational purposes. Demonstrations of low-fat cooking techniques were also held and 

books containing additional information on weight maintenance strategies were available. 

Repeat courses of the VLCD were available to the patients, if necessary, for the duration of 

the 3 year study. 

The VLCD sessions were conducted by two nurses and took place in parallel with the 

sessions for the ICD group. A physician and a trained counsellor were available to both 

groups. Each session was approximately 1.5-2 hours long and took place in adjoining 

medical-ward day rooms. The sessions took place on a weekly basis for two years and 

thereafter on a monthly basis for the final year. 
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7.3.2 Intensive conventional dietetic therapy group 

The sessions were conducted by two dieticians. Five day food records were used to provide 

information on habitual dietary intake and to enable erratic eating patterns to be identified. 

Each subject set a target weight, completed a 5 day food record and then received individual 

dietetic assessment and advice tailored to their social position, physical activity and nutrient 

requirement. The dietary advice was based on the recommendations of the Nutrition 

Subcommittee of the British Diabetic Association (1992). The emphasis of the dietetic 

advice was to reinforce healthy eating principles by encouraging the patients to eat 

regular meals, increase their intake of fresh fruit and vegetables, lower their fat and sugar 

intake and increase their intake of complex carbohydrates (thereby reducing the daily energy 

intake by approximately 300 kcallday), rather than providing prescriptive dietary therapy and 

low-calorie diets (800-1200 kcallday). Five day food records were completed every 6-8 

weeks and the dieticians were available for consultation each week if the patients required 

further individual advice. Group discussions took place weekly, covering various 

nutritional and behavioural topics. Gentle aerobic exercises were performed to music, for 

30-45 minutes, during the sessions in order to encourage the patients to increase their levels 

of exercise. Additional input to the groups was provided by physiotherapists and a health 

promotion officer, to encourage the patients to adopt more active lifestyles. The sessions 

were held weekly and patients were encouraged to attend for as long as was necessary. 
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7.4 Methods 

The effect of the dietary interventions on anthropometric measurements (weight loss, BMI, 

waist I hip ratios, blood pressure), metabolic factors (serum triglycerides, cholesterol and 

HDL cholesterol), glycaemic control (glucose, fructosarnine), markers of free radical activity 

(MDA and conjugated dienes) and antioxidants (vitamins A, C, E and uric acid) were 

investigated. 

Body weight was recorded at each visit. Blood pressure measurements were taken in the 

sitting position at baseline, 1, 3, 6 and 12 months, using a mercury sphygmomanometer. 

Waist and hip measurements were taken to include the largest circumferences possible at 

baseline 3, 6 and 12 months. 

The patients were asked to stop taking any form of dietary supplements 1-2 weeks before 

commencing on the dietary interventions. Blood samples were taken 2-3 hours post 

prandially, during the weekly visits before commencing on either dietary regime (baseline) 

and then repeated at l, 3, 6 and 12 months. Blood samples were collected into tubes 

containing separator gel for the analysis of serum cholesterol, triglycerides, fructosarnine, 

uric acid and HDL-cholesterol. Blood for the analysis of plasma glucose was collected into 

tubes containing sodium fluoride. The above analyses were performed at the Chemical 

Pathology Department at Torbay Hospital as described previously (section 6.3, page 129). 

High-density lipoprotein cholesterol was measured after phosphoric acid and magnesium ion 

precipitation of chylomicrons, VLDL and LDL, using an enzymatic-colorimetric kit adapted 

for the Hitachi 717 analyser (Boehringer, Mannheim, Germany). Serum fructosamine 

measurement was based upon the reduction with nitroblue tetrazolium, standardized with 

glycosylated polylysine, using a Hitachi 717 analyser. Blood samples were collected into 10 

rnl tubes containing EDTA for the analysis of plasma vitamins A, C, E, MDA the conjugated 

diene isomer of linoleic acid and its molar ratio to linoleic acid. Plasma was separated and 

frozen at -7o·c within two hours of collection for these analyses. An overview of the study 

is shown in Figure 7.1. 
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Patients: Obese type IT diabetic patients and obese non-diabetic subjects with no severe 

intercurrent illnesses other than hyperlipidaemia, hypertension or gout. 

Age: 25 - 70 years 
BMI: > 30 

Waist I hip ratio: > 0.8 Females 
> 1.0 Males 

84 

l 
52 

/~ 
N 

VLCD 

/ ""' 
Dm 

(n = 18) (n = 15) 

ICD 

/ ""' 
N 

(n = 14) 
Dm 

(n = 5) 

Patient self-selection 

of dietary regime 

N - non-diabetic subjects 

Dm- diabetic subjects 

Ho: No difference between diabetic and non-diabetic patients on the VLCD or JCD 
regimes. 

HA: There is a difference between diabetic and non-diabetic patients on the dietary 
regimes. 

Investigations: Baseline, 1, 3, 6 and 12 months. 

Anthropometric: Biochemical: Indices of oxidative stress: 

Weight Glucose Vitamins A, C and E 

BMI Fructosamine Uric acid 

Waist I hip ratio Triglycerides Lipid peroxides 

Blood pressure Cholesterol (HDL) (MDA and conjugated dienes) 

Figure 7.1 Overview of the VLCD and /CD study. 
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Statistical analyses 

The normality of the data were checked by plotting normal scores and by using the Shapiro­

Wilk test (Rees 1995). Triglyceride values were log transformed to improve normality, 

although the actual values are presented in the tables. Differences within and between the 

groups were assessed by analysis of variance. Where the F-test showed a significance, 

further analysis was carried out using the Tukey test and also by using paired and unpaired t 

tests. Correlations were carried out using Pearson's product moment correlation coefficient. 

The results are presented as mean ± SD unless stated otherwise. A p value < 0.05 was 

considered to be significant. Statistical analyses were performed by using Excel 7.0 and 

Minitab 10.51 Xtra software programmes. 
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7.5 Results 

The results presented are the changes during the period of acute weight loss (0-6 months) 

and during the period of weight maintenance (12 month data). 

The patients were not randomized to the two dietary interventions, but chose which treatment 

they would prefer, therefore, a direct comparison between the two treatments in order to 

establish which treatment was the most effective long-term weight loss therapy cannot be 

made. However, by allowing the patients to choose their specific dietary regimes, greater 

patient compliance was ensured. This was of particular importance in the VLCD 

programme, since good patient compliance was necessary in order to ensure that the VLCD 

would be used as a total food replacement; any biochemical changes that were taking place 

would then be clearly established. Consequently, the morale of the patients was high and 

the patient groups were highly motivated at the beginning of the dietary interventions. 

However, due to non-compliance, only 5 patients were recruited into the ICD non-diabetic 

control group and their data has been omitted from the main analysis. 

In the VLCD group, oral hypoglycaemic agents and diuretics were stopped on day one and 

insulin dosage halved in patients requiring insulin therapy and then stopped completely after 

one week. After one month on the VLCD, only one of the six insulin-treated patients 

required insulin as part of their therapy. Anti-hypertensive treatments were discontinued at 

one month in all but one of the diabetic subjects on the VLCD. Three of the insulin treated 

diabetic patients in the ICD group reduced their insulin dosages during the initial six months, 

but no other adjustments in treatments were required. 

The patients were enthusiastic, although initially apprehensive about consuming a total food 

replacement diet. However, after the first 3 days on the VLCD, the majority of the patients 

experienced little difficulty in consuming the diet. The development of mild ketosis 

promoted a feeling of 'well-being' and prevented hunger, whilst rapid weight loss 

encouraged the patients to continue with the diet. Target weights were reached after a 

duration of 4 months on the VLCD ( 18 ± 4 weeks, on average, for the non-diabetic subjects 
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and 16 ± 7 weeks for the diabetic subjects). The VLCD was used by 7 patients for 1-2 

months, to assist in the transition to normal food and for weight maintenance, by using one 

Lipotrim sachet as a substitute for one daily meal. All patients had reverted to normal food 

by 6 months, except for one diabetic patient who remained on the VLCD for a period of 9 

months. 

The attendance rates of the patients in the VLCD groups were high during the acute weight 

loss phase (70-90% ), thereafter the attendance rates declined and were between 45-55% 

during the period of weight maintenance. In contrast, the attendance rates of the patients in 

the ICD group remained stable throughout the study period (50-60%). All patients, 

however, attended their respective review clinics. 

Adverse reactions 

One diabetic patient did not reduce their insulin dosage sufficiently during the first week of 

the VLCD and suffered a severe hypoglycaemic episode. The insulin dosage was lowered 

further as a result of this outcome. One female non-diabetic patient developed alopecia 

whilst on the VLCD and several patients suffered from severe headaches during the first two 

weeks on the VLCD, due to insufficient fluid intake. One female non-diabetic patient 

experienced elevations in hepatic enzymes as a result of rapidly stopping and then restarting 

the VLCD. One diabetic male patient in the ICD group suffered an acute myocardial 

infarction during the first month of the study. In the VLCD groups, one non-diabetic male 

patient and one female diabetic patient suffered acute non-fatal myocardial infarctions after 6 

months. 
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Baseline comparisons 

The groups were well matched at the beginning of the dietary interventions. No significant 

differences were found in anthropometric variables, although diabetic patients in the ICD 

group were lighter (7 kg) than the patients in the two VLCD groups and systolic blood 

pressures were slightly higher (9 mm Hg) in both diabetic groups compared with the non­

diabetic group. As expected, plasma glucose and fructosarnine concentrations were 

significantly higher in the diabetic patients than in the non-diabetic patients (p < 0.001 for all 

comparisons). Interestingly, serum triglyceride, HDL cholesterol levels were similar in all 

of the groups. 

There were no significant differences between the groups in relation to the plasma 

antioxidants, although plasma ascorbate concentrations were slightly lower in the diabetic 

patients. Plasma MDA concentrations were slightly higher in the diabetic patients compared 

with the non-diabetic patients, although the differences were not significant. However, 

plasma MDA concentrations were significantly higher in both diabetic and non-diabetic 

groups compared with a healthy non-obese control group (p < 0.001). 

The number of smokers in the study was small - two patients in the VLCD control group 

and one diabetic patient in the ICD group - and therefore their data was included in the 

main analyses. Two diabetic patients in the VLCD group were newly diagnosed with type II 

diabetes. The duration of diabetes in the remaining patients in both groups was between 5 

and 10 years. 
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7.5.1 Anthropometric measurements 

A summary of the overall changes in anthropometric measurements is shown in Table 7 .2. 

(i) Weight 

The changes in weight in the treatment groups are shown in Table 7.3 and Figure 7.2. 

Rapid weight losses occurred in the two VLCD groups with significant reductions at 1 and 3 

months (p < 0.0001), which were maintained at 6 and 12 months ( p < 0.007). The mean 

weight losses at 1, 3 and 6 months in the VLCD non-diabetic group were 10.5, 20.7 and 

22.4 kg respectively. At the 12 month follow-up, 11 of the patients had regained more than 

5 kg, resulting in a mean net weight loss of 15.5 kg at 12 months. In comparison, lower 

weight losses were achieved by the diabetic patients on the VLCD, with reductions of 9.2, 

15.2, 15.2 kg at 1, 3 and 6 months respectively. The diabetic patients also regained a small 

amount of weight (with only 4 patients regaining more than 5 kg), so that the net loss at 12 

months was 13.5 kg in this group. Thus, the weight loss in the non-diabetic VLCD group 

was significantly greater than in the diabetic VLCD group at 3 months (p = 0.04, Table 7.3). 

One diabetic patient remained on the VLCD for a period of 9 months, losing a remarkable 70 

kg of weight by 12 months. When the data were re-analysed without this patient, the 

significant differences that were found within the diabetic VLCD group remained. 

However, when the two VLCD groups were compared, the non-diabetic patients were found 

to have lost significantly more weight than the diabetic patients at 6 and 12 months (p = 

0.0007 and p = 0.04 respectively, Table 7.3). No other differences in other anthropometric 

measurements or serum biochemistry were found when this patient's data were removed 

from the analyses. 

169 



The mean weight losses in the ICD group were l. 7, 3.4, 3.4 and 2.3 kg at 1, 3, 6, and 12 

months respectively and reached statistical significance at 1, 3 and 6 months (p < 0.02). 

Two patients in the ICD group gained weight during the 12 months of the study and were 

regarded as treatment failures. When the data were re-analysed without these patients, 

significant reductions in weight were found at all of the follow-up times (p < 0.01) and the 

mean weight losses were 2, 4.2, 4.2 and 3.7 kg at 1, 3, 6 and 12 months respectively. 

Comparisons of the two diabetic groups revealed that the diabetic patients had lost signific­

antly more weight on the VLCD than the ICD therapy at 1, 3, 6 and 12 months (Table 7.3). 
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Table 7.2 Changes in anthropometric measurements from baseline to 12 months. 

BMI Baseline 

(kglmZ) 1 month 

3 months 

6 months 

12 months 

Waist Baseline 

(cm) 3 months 

6 months 

12 months 

Waist/ Baseline 

Hip 3 months 

Ratio 6 months 

12 months 

Systolic Baseline 

Blood I month 

Pressure 3 months 

(mm Hg) 6 months 

12 months 

Diastolic Baseline 

Blood 1 month 

Pressure 3 months 

(mm Hg) 6 months 

12 months 

VLCD 
Non-diabetic 

Subjects 
(n = 18) 

38 ± 4 

34 ± 4 

30 ± 4 

30 ± 4 

32 ± 4 

114 ± 13 

95 ± 9 

a 

a 

a 

a 

a 

95 ± 10 a 

100 ± 12 b 

0.94 ± 0.1 

0.86 ± 0.07 c 

0.88 ± 0.05 d 

0.88 ± 0.08 

131 ± 21 

115 ± 14 b 

112 ± 11 b 

120 ± 18 d 

118 ± 17 c 

82 ± 12 

73 ± 11 c 

69 ± 10 b 

68 ± 8 a 

72 ± 9 b 

PATIENT GROUPS 

VLCD 
Diabetic 
Subjects 
(n = 15) 

38 ± 10 

34 ± 9 

32 ± 8 

32 ± 7 

33 ± 9 

119 ± 20 

102 ± 13 

103 ± 14 

104 ± 18 

0.98 ± 0.09 

a 

a 

b 

c 

a 

b 

b 

0.92 ± 0.08 d 

0.93 ± 0.07 

0.93 ± 0.08 d 

140 ± 18 

129 ± 14 d 

134 ± 18 

137 ± 14 

143 ± 19 

77±11 

74 ± 12 

74 ± 11 

78 ± 10 

81 ± 11 

ICD 
Diabetic 
Subjects 
(n = 14) 

36 ± 5 

35 ± 5 

35 ± 6 

35 ± 6 

35 ± 6 

111±11 

109 ± 11 

110 ± 12 

Ill ± 12 

0.91 ± 0.08 

0.93 ± 0.07 

0.91 ± 0.08 

0.92 ± 0.07 

141 ± 20 

139 ± 17 

134 ± 19 

134 ± 17 

138 ± 19 

85 ± 12 

82 ± 11 

78 ± 8 

71 ± 9 

78 ± 10 

Means were significantly different from the baseline values, within the groups: a p < 0.0001; 

bp < 0.001; c p < 0.01; d p < 0.05. 
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Figure 7.2 Changes in weight during the first year of the study. 

Table 7.3 Mean weight losses on the dietary interventions. 

Group 

VLCD Non-
Diabetic 
(n = 18) 

VLCD 
Diabetic 
(n = 15) 

ICD 
Diabetic 
(n = 14) 

Baseline 
Weight 

(kg) 

105 ± 16 

104 ± 24 

97 ± 20 

Weight change at 

I Month 3 Months 6 Months 

-10.5 ± 4 -20.7 ± 7 (I -22.4 ± 7 

-9.2 ± 3 b -15.2±7b -15.2 ± 13 c 

* ( -12.4 ± 7 ) e 

-1.7±2 -3.4 ± 4 -3.4 ± 3 

12 Months 

-15.5 ± 10 

-13.5 ± 17 d 

(- 9.5 ± 6 )! 

-2.3 ± 5 

Minus sign indicates the mean ± SD decrease in the group weights at the follow-up intervals. 

VLCD non-diabetic compared with VLCD diabetic patients: a p = 0.04. 
VLCD diabetic compared with ICD diabetic patients: bp = 0.00001, c p = 0.004, d p = 0.02. 
*The data were re-analysed without one diabetic patient who remained on the VLCD for > 6 
months: VLCD non-diabetic compared with VLCD diabetic patients (n = 14): e p = 0.0007, 
f p = 0.04. 
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(ii) BMI 

The reduction in weight was accompanied by significant reductions in BMI in the two VLCD 

groups at all of the follow-up times (Table 7.2 and Figure 7.3). In the ICD group, 

significant reductions in BMI were observed at 1, 3 and 6 months (p < 0.05). 

The percentage of patients attaining a BMI :::::; 30 reached a maximum at the end of the acute 

weight-loss phase in the VLCD non-diabetic group (67% at 6 months), whereas in the 

VLCD diabetic group 9 of the 15 patients (60%) achieved a BMI:::::; 30 after 12 months 

(Table 7.4). In contrast, only 14% of the ICD diabetic patients achieved a BMI of 30 or 

below at 6 months. When the groups were compared, the reduction in BMI was found to be 

significantly greater in the non-diabetic subjects than in the diabetic subjects on the VLCD at 

3 months (p = 0.05). The reduction in BMI was also significantly greater in the VLCD 

diabetic patients compared with the ICD diabetic patients at all of the follow-up times (p < 

0.02). 

(iii) Waist I hip ratio 

The changes in waist measurements and waist I hip ratios are shown in Figures 7.4 and 7.5. 

Waist circumferences were significantly reduced in the two VLCD groups at all of the follow 

up times (p < 0.001). Waist I hip ratios were significantly reduced in the VLCD non­

diabetic subjects at 3 and 6 months (p < 0.05). In the VLCD diabetic group, significant 

reductions in waist I hip ratios were observed at 3 months and maintained 12 months (p < 

0.05). The reductions in waist and waist I hip measurements were greater in the non­

diabetic subjects on the VLCD than in the diabetic subjects on the VLCD at 3 and 6 months 

(p < 0.04). 

In contrast, no significant changes in waist measurements or waist I hip ratios were observed 

in the ICD group during the 12 months of follow-up. Thus, the diabetic patients on the 

VLCD achieved significantly greater reductions in waist measurements than the diabetic 

patients on the ICD therapy at all of the follow-up times (p < 0.007). 
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Figure 7.3 Changes in BM/ during the firs t year of the study. 

Table 7.4 Percentage of patients achieving a BM/~ 30. 

VLCD Non-Diabetic VLCD-Diabetic I CD-Diabetic 

BM1 ~ 30 ;:::35 ~ 30 ;:::35 ~ 30 ;::: 35 

(%) 

Baseline 0 72 20 47 0 7 

1 ~onth 22 44 40 27 7 7 

3 ~onths 56 17 40 27 7 7 

6 ~ontbs 67 11 47 27 14 7 

12 Months 33 28 60 27 7 7 
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Figure 7.5 Changes in waist I hip ratios. 
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(iv) Blood pressure 

Figures 7.6 and 7. 7 show the changes in blood pressure in the patients groups. Systolic 

blood pressures decreased significantly in the VLCD non-diabetic group during the acute 

weight loss phase and were lowest at 3 months, with a mean reduction of 19 mm Hg at this 

time (p < 0.001). Significant reductions were maintained at 6 and 12 months and systolic 

blood pressures were on average 10 mm Hg lower at the 12 month follow-up compared with 

the baseline values (p < 0.01). In contrast, a significant decrease in systolic blood pressure 

was only observed at 1 month in the diabetic patients on the VLCD, with a mean maximum 

reduction of 10 mm Hg at this time (p <0.05). Thereafter, systolic blood pressures returned 

to baseline values and were on average 3 mm Hg higher at the 12 month follow-up than at 

the start of the VLCD in the diabetic patients. In the ICD group, systolic blood pressures 

remained stable during the 12 months of follow-up and showed no significant changes. 

Diastolic blood pressures also decreased significantly at all of the follow-up times in the non­

diabetic VLCD group (p < 0.01). A maximum average reduction of 13 mm Hg was found 

after 6 months which was maintained at 12 months. No significant reductions in diastolic 

blood pressure were observed during the acute weight loss phase or after 12 months in the 

diabetic patients on the VLCD. In the ICD group, significant reductions in diastolic blood 

pressure were observed at 1, 3 and 6 months, with a mean reduction of 14 mm Hg at 6 

months (p < 0.001). However, at the 12 month follow-up the mean reduction in diastolic 

blood pressure was 8 mm Hg and did not quite reach statistical significance (p = 0.058). 

When the groups were compared, systolic blood pressures were found to be significantly 

lower in the non-diabetic VLCD group at 1, 3, 6 and 12 months (p < 0.009) compared with 

the diabetic VLCD group. Diastolic blood pressures were also lower in the non-diabetic 

VLCD group compared with the diabetic VLCD group at 6 months (p = 0.005) and at 12 

months (p = 0.01). Significantly greater reductions in diastolic blood pressures were also 

observed in the ICD diabetic patients compared with the diabetic patients on the VLCD at 6 

months (p = 0.001) and at 12 months (p = 0.02). 
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Figure 7.7 Changes in diastolic blood pressure. 
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7.5.2 Serum biochemistry 

Table 7.5 summarizes the overall changes in metabolic control during the first year of the 

study. 

(i) Glycaemic control 

Post-prandial plasma glucose concentrations fell from 12.4 ± 3 mmoVI to 8.1 mmoln (p = 

0.0004) after 1 month of VLCD in the diabetic patients. The decrease in plasma glucose was 

accompanied by a significant reduction in serum fructosamine at I month (p < 0.001) which 

was maintained at 3 months (p < 0.05) in this group. Thereafter, serum glucose and 

fructosamine concentrations increased and had returned to baseline values after 6 and 12 

months (Figures 7.8 and 7.9). 

In comparison, plasma glucose concentrations showed a slight increase at 3 months in the 

ICD diabetic group, but serum fructosarnine concentrations remained stable throughout the 

12 months of follow-up (Figures 7.8 and 7.9). Glucose and fructosarnine concentrations 

were similar in the two diabetic groups at baseline, but were significantly lower in the VLCD 

group compared to the ICD group at 1 month (p = 0.03 and p = 0.01 respectively). Indices 

of glycaemic control were strikingly stable in the non-diabetic subjects during the acute 

weight loss phase and weight maintenance (Figures 7.8 and 7.9), and remained significantly 

lower than the diabetic groups at all of the follow-up points (p < 0.005). 

178 



Table 7.5 Summary of the changes in serum biochemistry. 

PATIENT GROUPS 

Plasma Baseline 

Glucose I month 

(mmolll) 3 months 

6 months 

12 months 

Serum Baseline 

Fructosamine 1 month 

(mmolll) 3 months 

6 months 

12 months 

Serum Baseline 

Triglycerides I month 

(mmolll) 3 months 

6 months 

12 months 

Serum Baseline 

Cholesterol I month 

(mmolll) 3 months 

6 months 

12 months 

HDL/Total Baseline 

Cholesterol 1 month 

Ratio 3 months 

6 months 

12 months 

VLCD 

Non-diabetic 

5.1 ± 0.8 

4.7 ± 0.8 

5.0 ± 0.4 

5.0 ± 0.5 

5.0 ± 0.4 

236 ± 11 

231 ± 15 

229 ± 17 

235 ± 19 

232 ± 20 

2.5 (2.1 - 3.7) * 
1.3 ( 1.1 - 1.6) a 

1.5 ( 1.1 - 1.8) a 

1.5 {1.2 - 1.8) a 

1.8 ( 1.5 - 2.1) a 

6.7 ± 1.3 

4.6 ± 1.0 a 

5.6 ± 1.0 d 

6.1 ± 1.1 e 

6.2 ± 1.0 

0.18 ± 0.06 

0.22 ± 0.07 d 

0.21 ± 0.08 e 

0.22 ± 0.07 d 

0.23 ± 0.05 d 

VLCD 

Diabetic 

12.4 ± 4.7 

8.1 ±3. 1 b 

10.6 ± 5.8 

11.2 ± 5.5 

11.7 ± 7.7 

345 ± 81 

274 ± 45 c 

298 ± 69 e 

325 ± 91 

345 ± 94 

2.7 (1.9- 5.8) 

1.5 (1. 1 - 1.8) 

1.6 (1.0 - 2.4) 

1.8 {l.l - 3.4) 

1.8 ( 1.1 - 4.3) 

6.8 ± 1.2 

5.1 ± 1.2 a 

5.7 ± 1.0 d 

5.8 ± 1.1 d 

6.3 ± 1.6 

0.17 ± 0.06 

0.20 ± 0.07 

0.20 ± 0.07 

0.21 ± 0.07 

0.23 ± 0.08 

e 

e 

e 

d 

b 

ICD 

Diabetic 

13.1 ± 5.5 

13.1 ± 7.1 

16.8 ± 8.8 

12.4 ± 5.3 

13.3 ± 5.6 

386 ± 99 

372 ± 118 

384 ± 142 

369 ± 12 1 

380 ± 106 

2.2 (1.5 - 3.7) 

1.9 ( 1.6 - 3.5) 

2.5 (1.7- 3.4) 

2.1 ( 1.8 - 2.5) 

2.3 (1.6- 4.7) 

5.9 ± 1.3 

6.2 ± 1.4 

6.1 ± 1.8 

6.0 ± 1.6 

6.2 ± 1.4 

0.2 1 ± 0.08 

0.20 ± 0.08 

0.21 ± 0.09 

0.19 ± 0.06 

0.21 ± 0.08 

* Median (range). Means were significantly different from the baseline values, within the 

groups: a p < 0.0001 ; bp < 0.0004; c p < 0.001 ; d p < 0.01 ; e p < 0.05 . 
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Figure 7.9 Changes in serum fructosamine. 
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(ii) Serum lipids 

Changes in serum lipids are shown in Figures 7.10 and 7 .ll. Serum triglycerides were 

significantly reduced in the non-diabetic subjects on the VLCD at l and 3 months and the 

improvements were maintained at 6 and 12 months (p < 0.0001). Significant reductions 

were also found in the diabetic patients on the VLCD at l, 3 and 6 months (p < 0.05), but 

the improvements were not sustained at 12 months, although triglyceride levels were on 

average 0.9 mmollllower than at baseline. 

Serum cholesterol levels were significantly reduced at I month in both VLCD groups (p < 

0.0001) and were also significantly lower than the ICD group at this time (p < 0.04). The 

reductions in cholesterol were maintained at 3 and 6 months (Table 7 .5). At 12 months, 

cholesterol levels were on average 0.5 mmolll and 0.4 mmollllower than the baseline levels 

in the non-diabetic and diabetic VLCD patients respectively. In comparison, serum 

triglyceride and cholesterol levels showed no significant changes in the ICD group during 

the 12 months of follow-up. At 12 months, triglyceride levels were on average 0. 7 mmolll 

higher and cholesterol levels were 0.3 mmolll higher than at the start of the study. 

Changes in HDL levels and in the HDL I total cholesterol ratio are shown in Figures 7.12 

and 7.13. High density lipoprotein cholesterol concentrations showed a slight decrease in 

both VLCD groups at l month, but increased thereafter and were significantly higher at 6 

and 12 months in the non-diabetic subjects (p < 0.005) and after 12 months in the diabetic 

subjects (p < 0.001). Significant improvements in the HDL I total cholesterol ratio were 

found in the non-diabetic patients after 1 month and these were maintained at 3, 6 and 12 

months (p < 0.05). A significant increase in the ratio was also found in the VLCD diabetic 

group at 6 months (p < 0.01), which was sustained at 12 months (p < 0.0004). Interest­

ingly, a significant reduction in HDL cholesterol was observed in the ICD group at 6 months 

(p = 0.0 l ), but the HDL I total cholesterol ratios remained stable during the follow-up period 

and were not significantly different from those in the VLCD groups. Positive correlations 

were found between the change in weight and the change in cholesterol at l (p < 0.001) and 

3 months (p < 0.01) and the change in triglycerides at 1, 3 and 6 months (p < 0.01). 
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Figure 7.10 Changes in serum triglycerides. 
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Figure 7.12 Changes in serum HDL cholesterol concentrations. 
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Figure 7.13 Changes in serum HDL I total cholesterol ratios. 
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7 .5.3 Plasma antioxidants 

Table 7.6 summarizes the changes in plasma antioxidants during the 12 months of follow­

up. 

(i) Lipid-soluble antioxidants 

Figures 7.14 - 7.16 show the changes in the lipid-soluble antioxidants in plasma in the 

patient groups during the follow-up period. Plasma retinol concentmtions were significantly 

reduced at 1 month in both VLCD groups (p < 0.02) and remained lower than baseline 

values after 3 months in the non-diabetic subjects (p < 0.03). Plasma a-tocopherol 

concentrations were also significantly reduced in both VLCD groups at I month (p < 0.007) 

and remained below baseline levels at 3 months in the diabetic patients (p < 0.05) and at 6 

and 12 months in the non-diabetic patients (p < 0.03). However, the a-tocopherol I 

triglyceride + cholesterol (lipid) ratios increased gradually in both groups, although the 

differences did not reach statistical significance (Figure 7.16). 

In the ICD group, retinol and a-tocopherol concentrations remained stable throughout the 

follow-up period. However, the a-tocopherol/lipid ratios showed a gradual decline and 

were significantly lower than the baseline values after 12 months (p < 0.05) in this group. 

Plasma a-tocopherol/lipid ratios were also significantly lower in the ICD patients compared 

with the VLCD diabetic patients at 6 months (p < 0.05). No differences in lipid-soluble 

antioxidants were found between the diabetic patients and the non-diabetic patients on the 

VLCD. 
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Table 7.6 Summary of the changes in plasma antioxidants. 

Retinol Baseline 

(flmol/1) I month 

3 months 

6 months 

12 months 

a-Tocopherol Baseline 

(flmolll) I month 

3 months 

6 months 

12 months 

a-Tocopherol/ Baseline 

lipid ratio I month 

(f.Lmol/1/ 3 months 

mmol/1) 6 months 

12 months 

Ascorbic acid Baseline 

(flmol/1) I month 

3 months 

6 months 

12 months 

Uric acid Baseline 

(f.Lmol/1) I month 

3 months 

6 months 

12 months 

VLCD 
Non-diabetic 

1.9 ± 0.4 

1.3 ± 0.3 a 

1.7 ± 0.5 c 

2.0 ± 0.4 

2.0 ± 0.5 

35 ± 11 

22 ± 4 a 

30 ± 12 

29 ± 6 e 

29 ± 6 c 

3.7 ± 1.2 

3.7 ± 0.5 

4.2 ± 1.0 

3.9 ± 0.7 

3.7 ± 0.9 

44 ± 24 

47 ± 16 

37 ± 19 

40 ± 20 

50± 19 

404± 103 

493± 154 e 

392± 75 

352± 55 e 

347± 94 e 

PATIENT GROUPS 

VLCD 
Diabetic 

1.9 ± 0.5 

1.6 ± 0.7 b 

1.8 ± 0.8 

2. 1 ± 0.8 

2.0 ± 0.8 

39 ± 14 

27 ± 9 e 

32 ± 12 d 

34 ± 12 

36 ± 19 

3.6 ± 0.7 

4.0 ± 0.8 

4.0 ± 0.9 

4. 1 ± 0.5 

3.9 ± 1.1 

36 ± 18 

33 ± 17 

39 ± 26 

48 ± 20 

45 ± 22 

365 ± 11 8 

439 ± 105 e 

382± 112 

352 ± 100 

339 ± 81 

Means were significantly different from the baseline values, within the groups: a 

b p < 0.02; c p < 0.03; d p < 0.05; e p < 0.007. 
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ICD 
Diabetic 

2.1 ± 0.6 

2.3 ± 0.8 

2.1 ± 0.6 

2.1 ± 0.6 

2.2 ± 0.6 

32 ± 14 

36 ± 18 

35 ± 23 

30± 14 

32± 13 

3.8 ± 1.2 

3.8 ± 1.0 

3.6 ± 0.8 

3.3 ± 0.9 

3.2 ± 0.6 d 

39 ± 20 

44 ± 14 

52± 20 c 

39 ± 21 

38 ± 19 

316 ± 81 

290 ± 97 

303 ± 98 

310 ±55 

275 ± 74 

p < 0.000 1; 
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Figure 7.14 Changes in plasma retinol concentrations. 
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Figure 7.15 Changes in plasma a-tocopherol concentrations. 
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Figure 7.16 Changes in a-tocopherol I triglyceride + cholesterol ratios. 
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(ii) Water-soluble antioxidants 

Plasma ascorbate concentrations were slightly higher in the non-diabetic group compared 

with the two diabetic groups at baseline (Figure 7 .17). There were no significant changes in 

plasma ascorbate concentrations in the two VLCD groups during the 12 months of follow­

up. However, it was interesting to record that plasma ascorbate concentrations were 

significantly higher in the non-diabetic subjects compared with the diabetic subjects on 

VLCD at 1 month (p = 0.02). The daily intakes were the same in each group at this time, 

i.e. 60 mg per day for women and 80 mg per day for men, whilst consuming the diet. In the 

ICD group, plasma ascorbate concentrations showed a gradual increase reaching significance 

at 3 months (p = 0.03). No correlations between plasma ascorbate concentrations and 

indices of glycaemic control (post-prandial plasma glucose and serum fructosamine) were 

found in the patients studied. 

The changes in serum urate are shown in Figure 7.18. Urate concentrations remained stable 

in the ICD group during the 12 months of follow-up. There were significant increases in 

serum urate concentrations in the non-diabetic and diabetic subjects after one month of 

VLCD (p < 0.007). Thereafter, urate levels gradually returned to baseline values, although 

at 6 and 12 months urate levels were significantly lower than baseline in the non-diabetic 

group (p < 0.007). When the groups were compared, urate levels were found to be 

significantly higher in the two VLCD groups compared with the ICD group at l month (p = 

0.001). 
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Figure 7.17 Changes in plasma ascorbate concentrations. 
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Figure 7.18 Changes in plasma urate concentrations. 
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7.5.4 Plasma lipid peroxides 

Figure 7.19 shows the changes in plasma MDA concentrations during the 12 months of 

follow-up. There were no significant differences between the groups at baseline, although 

plasma MDA concentrations were slightly higher in both of the diabetic groups compared 

with the non-diabetic control group. After 1 month of dieting, plasma MDA levels had 

decreased significantly in both groups on the VLCD (p < 0.004) and were also significantly 

lower than those of the ICD diabetic patients at this time (p < 0.02). The MDA 

concentrations remained lower than the baseline levels throughout the remainder of the 

follow-up period in both VLCD groups and were also significantly lower than the baseline 

levels after 6 months in the non-diabetic group (p = 0.018). After 12 months, plasma MDA 

levels were on average 0.1 Jlmol/llower in the non-diabetic patients and 0.16 JlmoVllower 

in the diabetic patients on the VLCD, although the decreases were not statistically significant. 

In contrast, a gradual increase in MDA levels was observed in the ICD diabetic patients and 

after 12 months plasma MDA levels were on average 0.14 Jlmol/1 higher than the baseline 

values, although the increases were not statistically significant. Furthermore, MDA levels 

were also significantly higher in the ICD group than in the non-diabetic VLCD group at 6 

months (p = 0.018) and after 12 months MDA levels were on average 0.4 Jlmol/1 higher in 

the ICD group than the two VLCD groups (not statistically significant). 

The changes in plasma MDA concentrations in relation to the changes in serum lipids (the 

sum of the triglycerides and cholesterol) are shown in Figure 7.20. At baseline, plasma 

MDA I lipid ratios were higher in the diabetic patients in the ICD group compared with the 

VLCD diabetic group (p = 0.052) and significantly higher than those of the non-diabetic 

group (p = 0.02). Interestingly, despite the large reduction in serum lipids after 1 month of 

the VLCD, the proportion of MDA to serum lipids increased in both VLCD groups and the 

increase was significant in the non-diabetic group (p < 0.008). Thereafter, plasma MDA I 

lipid ratios returned to the baseline levels. In the ICD group, the MDA I lipid ratios remained 

stable, but also remained higher than the VLCD groups. 

190 



3.0 

,......._ -....... 2.5 

0 
E 
::i 

2.0 
'-' 

<( 
1.5 

~ 
~ 

6 l.O 
Cl) 

~ 

i5: 0.5 

0.0 
0 3 6 12 

Time (months) 

Figure 7.19 Changes in plasma MDA concentrations. 

Time (months) 

Figure 7.20 Changes in MDA I triglyceride + cholesterol ratios. 
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The conjugated diene /linoleic acid ratio was measured in 11 patients in each VLCD group, 

but only in 4 patients in the ICD group. The changes in the conjugated diene /linoleic acid 

ratio are shown in Figure 7.22. At baseline, the conjugated diene ratios were higher in the 

diabetic groups compared with the non-diabetic group VLCD group, although the 

differences were not significant. After I month, the ratios decreased in both VLCD groups 

and at 3 months the decrease was significant in the diabetic VLCD group (p < 0.05). In 

comparison, the ratios remained stable in the ICD group and showed a slight worsening at 6 

and 12 months. 

At baseline, plasma MDA levels were significantly higher in the three patients groups 

compared with a healthy non-obese control group (p < 0.001). Furthermore, regardless of 

the initial improvements that were found, plasma MDA levels remained significantly higher 

than those of the healthy control group in all of the patient groups and at all of the follow-up 

times (p < 0.015). However, plasma MDA levels were returned to the reference range in the 

two newly diagnosed patients as a result of the dietary restriction of the VLCD. 

The results indicated that MDA levels were increased in obese non-diabetic patients; thus, 

relationships between MDA levels and other parameters associated with obesity were 

investigated. No correlations between plasma MDA concentrations and weight or BMI were 

found, although weak positive correlations between MDA levels and waist I hip ratios were 

found at 6 and 12 months (r = 0.34 and 0.39, respectively, p < 0.05). Interestingly, no 

correlations were found between plasma MDA levels and age, therefore, no adjustments for 

age were necessary. Correlations between plasma MDA levels and glucose and 

fructosarnine concentrations indicated weak positive associations at 1 month only (r = 0.34, 

r = 0.38, respectively, p < 0.05), when the largest decreases in plasma MDA and glucose 

occurred. 
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Figure 7.21 Changes in the conjugated diene I linoleic acid ratios. 

193 



7.6 Discussion 

Weight loss is recommended for obese patients, especially patients with type II diabetes, in 

order to improve metabolic control, reduce cardiovascular risk factors and lessen the need 

for intensive therapies such as insulin. In particular, weight loss during the first year after 

diagnosis can lead to the reversal of type II diabetes and increase life expectancy (Pories et 

al. 1995; Lean et al. 1990). Modest weight losses in patients with established type II 

diabetes are equally beneficial for producing long-term metabolic improvements (Wing et al. 

1987a; Rotella et al. 1994). However, the increasing prevalence of obesity, worldwide, 

together with the associated increase in type II diabetes and the morbidity and mortality 

which this condition incurs, has increased the urgency for the use of aggressive weight loss 

therapies, such as VLCDs. 

In the 1970s and 80s, concern about the safety of VLCDs arose due to reports of sudden 

deaths on formulated diets, as a result of the poor protein and micronutrient content of some 

of these diets. Concern was also expressed about the losses in lean body mass whilst on 

VLCDs, which has resulted in the reformulation of these diets, so that today's VLCDs are 

regarded as safe when used correctly (DHSS 1987; Wadden et al. 1990; NTFPTO 1993). 

This study has examined the effects of a VLCD and ICD therapy on cardiovascular risk 

factors and indices of oxidative stress in obese type II diabetic and non-diabetic patients, in 

order to provide further information on the safety and efficacy of these weight loss 

strategies. 

Weight loss 

At the recruitment stage of the study, several patients expressed the desire to pursue the 

VLCD therapy, whilst others insisted on recruitment into the ICD groups. As a result, the 

patients were not randornized, but were offered the choice of the VLCD or the ICD therapy 

in order to maximize compliance. The treatments were available for the duration of the 

study. Consequently, the morale of the patients was high at the start of the interventions. 
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The first week of the VLCD was the most difficult stage in this dietary therapy, so that once 

over the initial adjustment to the diet, the majority of the patients experienced little difficulty 

in following the Lipotrim protocol. Thereafter, the rapid weight loss that was experienced 

and the feeling of 'well-being' whilst on the diet, together with the group support, 

encouraged the patients to persevere with the programme. Consequently, the groups 

remained motivated during the acute weight loss phase and compliance with the diet was 

good, as judged by the presence of urinary ketones. The knowledge that the group support 

would be available during the weight maintenance phase of the programme was also 

reassuring for the patients stopping the VLCD. 

As expected, rapid weight loss was experienced by the patients on the VLCD. Both VLCD 

groups lost significantly more weight than the ICD group during the period of acute weight 

loss (0-6 months, p = 0.00001), but also after 12 months (p < 0.02). Interestingly, the non­

diabetic patients lost significantly more weight than the diabetic patients on the VLCD at 3 

months (a mean loss of 20.7 kg in the non-diabetic group at 3 months, compared with a 

mean loss of 15.2 kg in the diabetic group (p = 0.04)). The duration on the diet was slightly 

longer in the non-diabetic group, which might have been responsible for part of this 

difference, although it is possible that behavioural differences between the groups also 

existed towards the diet. Indeed, Wing etal. (l987b) and Amatruda et al. (1988) have 

reported that weight loss in type ll diabetic patients was more difficult than that for non­

diabetic patients. 

Weight losses were slower in the ICD group, which was disheartening for the patients who 

did not reach certain target weights within the time scales that had been set. This resulted in 

the crossover of three patients from the ICD groups to the VLCD groups at an early stage in 

the study. These observations indicated that it would have been better to ignore target 

weights and to encourage the patients to concentrate their efforts on losing weight steadily, 

i.e. 0.25-0.5 kg per week. Indeed, recent guidelines for the management of obesity 

recommend modest weight loss and weight maintenance as the main objectives of weight 

loss strategies, rather than focusing on reaching target weights (SIGN 1996). 
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Despite the slow rate of weight loss, the ICD group did achieve a significant reduction in 

weight at 6 months (3.4 kg, p < 0.02), but this was not maintained at 12 months. At first 

sight, the reduction in weight in our diabetic group appears poor in comparison with other 

behavioural studies. For example, in one study conducted by Wing et al. (1991), type 11 

diabetic patients assigned to a 20 week behavioural programme achieved weight losses of 10 

kg. A second group of diabetic patients consumed a VLCD for 8 weeks as part of the 20 

week behavioural programme and achieved weight losses of 18 kg, which was also slightly 

better than our diabetic group (15 kg). However, the weight loss achieved by our ICD 

diabetic group was similar to that reported by Blonk et al. (1994), i.e., 2.9 kg at 6 months, 

whose comprehensive weight reduction programme was similar to ours. Furthermore, the 

weight losses achieved by our ICD group at 6 (3.4 kg) and 12 months (2.3 kg) were greater 

than those reported in diabetic patients allocated to conventional dietetic programmes, 

indicating the benefit of the ICD intervention. In the study ofBlonk et al. (1994), patients 

receiving conventional treatment comprising of clinic visits at 2 monthly intervals, achieved a 

weight loss of 1.2 kg after 6 months. Similar weight losses were reported by Manning et al. 

(1995) at 12 months (1.2 kg), in diabetic patients attending dietetic clinics at 6 weekly 

intervals. Thus, the modest weight losses observed in our ICD group, in comparison with 

the study of Wing et al. ( 1991) may be accounted for by treatment differences. These results 

indicated that more behavioural strategies would need to be incorporated into our ICD 

treatment in future studies, in order to produce weight losses of 10 kg within 6 months. 

The diabetic patients in our study had a duration of diabetes greater than 5 years, with the 

exception of two newly diagnosed patients, and were patients in whom previous attempts at 

dieting had failed. Thus, the modest weight losses achieved, emphasized the difficulty for 

weight reduction in this group of patients- an observation made by Kelly West in 1973. 

Indeed, two patients in the ICD group gained weight during the fust 6 months of the study 

and required insulin therapy. Interestingly, analysing the data without these patients 

indicated that the significant weight loss that was achieved at 6 months (4.2 kg) was 

maintained at 12 months (3.7 kg, p < 0.01) which was encouraging. 
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During the weight maintenance phase of the VLCD programme, 11 non-diabetic patients and 

4 diabetic patients experienced gradual weight regain, which was greater than 5 kg. Out of 

these patients, 4 non-diabetic and 1 diabetic patient regained more than 10 kg by 12 months. 

Concern about the rapid regain in weight after stopping VLCDs has been raised in the past 

(Wing 1992; NTFPTO 1993). In this study, the importance of the weight maintenance 

phase of the VLCD therapy was emphasized as part of the Lipotrim programme. However, 

once the patients had stopped the VLCD and transferred to maintenance diets, the attendance 

rates declined. Consequently, this factor may have contributed to the failure of these patients 

to maintain their weight losses. It was interesting to note that the non-diabetic patients lost 

more weight than the diabetic patients on the VLCD, but also regained more weight than the 

diabetic group. Thus, despite more difficulties in losing weight, the diabetic patients 

appeared better at maintaining their weight loss than the non-diabetic patients. 

After the 12 month follow-up, 14 non-diabetic patients and 5 diabetic patients, who 

experienced gradual weight regain after stopping the VLCD, attempted to restart the diet. 

Repeat courses of the VLCD were available to patients who required to lose more weight, 

although the patients were informed that second attempts at the VLCD were usually more 

difficult than the first. Out of the 19 patients who attempted to restart the VLCD, only 6 did 

so successfully and 9 patients had more than one failed attempt at restarting the diet. Thus, it 

became apparent that to restart the VLCD a second time was much more difficult than had 

been anticipated. Smith and Wing (1991) have also reported that weight losses were smaller 

in patients attempting repeat courses of VLCDs. This was attributed to behavioral factors 

which resulted in poor patient compliance and diminished adherence to the diets, rather than 

physiological factors. Hence, future studies incorporating VLCDs into weight loss 

programmes may need to consider single courses of VLCDs with greater emphasis on the 

maintenance phase and stricter follow-up of patients after stopping the VLCD. Indeed, the 

weight maintenance phase of all weight loss therapies remains the most challenging area in 

the treatment of obesity. Wing and Greeno (1994) recently proposed that treatment 

programmes incorporating VLCDs should be lengthened and subgroups of patients with 

eating disorders identified and provided with additional support. A more chronic approach 
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to the treatment of obesity was recommended, with continued patient contact as an important 

component of future strategies. 

BM/ 

The rapid weight loss produced by the VLCD resulted in significant reductions in BMI in the 

two VLCD groups at all of the follow-up times (Table 7 .2, page 171 ). The weight loss in 

the ICD group produced only a one unit reduction in BMI between I and 6 months, with 

only 14% of the patients achieving a BMI :5:30. However, this was only transient and by 12 

months only 7% of the patients had maintained their BMI :5: 30. Interestingly, the faster rate 

of weight loss in the non-diabetic patients compared with the diabetic patients on the VLCD 

resulted in a greater proportion of patients achieving a BMI :5: 30 at the end of the acute 

weight loss phase (i.e., 67% of the non-diabetic patients compared with 47% of the diabetic 

patients at 6 months). However, the regain in weight in the non-diabetic subjects by 12 

months resulted in only 33% of the patients maintaining their BMI at 30 or below. In 

contrast, the proportion of diabetic patients with a BMI :5: 30 had increased to 60% by 12 

months. This favourable result provided a further indication that the diabetic patients were 

better at maintaining their weight losses than the non-diabetic patients on the VLCD and that 

a larger proportion of patients were continuing to lose weight after the end of the acute 

weight loss phase. Thus, the VLCD therapy was beneficial in terms of reducing BMI, 

particularly in the diabetic patients by the end of the first year of the study. 

Waist-hip ratios 

The reduction in BMI was accompanied by significant reductions in waist circumferences at 

3, 6 and 12 months in both VLCD groups (Table 7.2) and waist I hip ratios were also 

significantly lower in the diabetic group by 12 months (p < 0.05). In contrast, the weight 

loss produced by the ICD therapy was too small to make any difference to the waist 

measurements or to the waist I hip ratios. 

A recent study has emphasized that waist I hip ratios ~ 0.95 in men and ~ 0.80 in women 
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identify individuals with a BMI ~ 25 and hence at increased risk from cardiovascular disease 

(Han et al. 1995). Despite the significant reductions in waist measurements and waist I hip 

ratios, the waist I hip ratios were still high in men (with a mean of 0.95 in the non-diabetic 

men and 0.97 in the diabetic men at 12 months) and women (with a mean of 0.84 in the non­

diabetic women and 0.88 in the diabetic women) in the VLCD groups. Thus, the high waist 

I hip ratios at 12 months reflected the high BMis and indicated that further weight loss was 

necessary in both VLCD groups in addition to the ICD group. 

Blood pressure 

Large reductions in systolic and diastolic blood pressures were found in the non-diabetic 

patients on the VLCD at all follow-up times (fable 7.2, page 171). A maximum reduction in 

systolic blood pressure of 19 mm Hg was seen at 3 months and diastolic blood pressures 

were reduced by 10 mm Hg at 12 months. Thus, the health benefits in relation to the 

reduced risk of stroke and coronary heart disease were clear, if the reductions were to be 

maintained long-term. Remarkably, systolic blood pressures only showed a significant 

reduction of 10 mm Hg at 1 month in the diabetic patients on the VLCD and diastolic blood 

pressures remained stable throughout the period of observation, although the patients had 

stopped their anti-hypertensive therapies by the first month. Systolic blood pressures 

remained stable in the ICD group, but diastolic blood pressures were lowered significantly 

after 1 month and a reduction of 8 mm Hg was maintained after 12 months. Hence, despite 

the lower weight losses in the ICD group, the intensive conventional dietetic advice offered 

to the patients resulted in significantly greater reductions in diastolic blood pressures than the 

VLCD therapy after 6 and 12 months (p < 0.02). This reduction in diastolic blood pressure 

was possibly related to increased levels of exercise and reduced salt intake in the ICD group, 

although these were not measured and the patients remained on their anti-hypertensive 

medications. 

Previous studies have shown than weight reduction with VLCD therapy reduces blood 

pressure (Wadden and Stunkard 1986; Amatruda et al. 1988). The reduction in blood 
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pressure has been reported to be mediated by the low salt intake of the VLCD, the loss of 

oedema fluid, reduced SNS activity and the weight loss itself. Interestingly, the change in 

weight correlated positively with the change in systolic blood pressure at 1 month (p < 0.05) 

and 3 months (p < 0.01) and with the change in diastolic blood pressure at 1 month (p < 

0.05) in the non-diabetic subjects. A positive correlation between the change in weight and 

the change in diastolic blood pressure was also found in the ICD group at 1 month (p < 

0.05), but no correlations were found in the diabetic patients on the VLCD. Thus, 

hypertension responded to the weight loss in the non-diabetic patients, but not as 

dramatically in the diabetic patients on the VLCD. These differences reflected different 

physiological processes producing hypertension in the two groups. Insulin resistance and 

hyperinsulinaemia probably played a greater role in hypertension in the diabetic patients and 

although insulin sensitivity improved -judged by the fact that the patients had remained off 

their anti-diabetic medication - this was not sufficient to reduce blood pressure in this 

group. Furthermore, despite the large reduction in weight that was achieved by the VLCD 

diabetic group during the first year, the patients were still overweight and borderline obese, 

hence further weight loss and exercise may have been necessary in order to produce a greater 

reduction in blood pressure in this group. 

Glycaemic control 

Post-prandial plasma glucose and fructosamine levels were significantly reduced in the 

diabetic patients on the VLCD at one month (p < 0.001); the levels were also significantly 

lower than those of the ICD group at this time (p < 0.03). The improvements in glycaemic 

control were lost by 6 months when all, but one, of the patients had entered the refeeding 

stage. Thus, the weight loss did not produce long-term benefits in relation to glycaemic 

control in the VLCD diabetic group. However, the patients remained off anti-diabetic 

medication at 6 and 12 months, which suggests that there were improvements in insulin 

sensitivity in this group and the patients were still overweight at I year. In comparison, the 

slower rate of weight loss in the ICD group produced no change in glycaemic control and 

patients were not able to discontinue their medication. 
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The improvement in glycaemic control in the diabetic patients, after I and 3 months of the 

VLCD, occurred as a result of the caloric restriction, which would have decreased hepatic 

glucose output and increased insulin sensitivity (Henry et al. 1985; Henry et al. 1986a; 

Laakso et al. 1988). Interestingly, despite the large reduction in weight and weight 

maintenance at 6 months, this was not enough to prevent glycaemic control from 

deteriorating and returning to baseline levels at 6 and 12 months in the VLCD diabetic group. 

Wing et al. (1991) have reported that long-term improvements in glycaemic control were 

probably the result of restored 6-cell insulin-secretory capacity, which occurred during the 

period of caloric restriction. Long-term improvements in glycaemic control were therefore 

possible in patients who could increase their insulin secretion in response to the increased 

caloric intake after refeeding and could therefore overcome insulin resistance. However, as 

described by Blank et al. (1994) some patients may not be able to maintain glycaemic control 

despite maintaining substantial weight losses, as a result of the diminishing capacity of the 

pancreas to secrete insulin. The patients in our study were still overweight and bordering on 

obese, thus further weight reduction was probably necessary for reducing plasma glucose 

levels further, although the long-term improvements in glycaemic control would ultimately 

be determined by the capacity of pancreas to secrete insulin. 

As expected, the non-diabetic patients on the VLCD showed no change in glycaemic control, 

nevertheless, glycaemic control appeared strikingly stable in comparison with that of the 

diabetic groups (Figures 7.8 and 7.9, page 180). It was also interesting to note that despite 

one month of 'fasting' whilst on the VLCD, plasma glucose concentrations remained 

significantly greater in the diabetic patients compared with the non-diabetic patients, an 

indication of the permanent metabolic disturbance associated with established diabetes. 

However, two patients in our study, who undertook the VLCD treatment were newly 

diagnosed with type ll diabetes. One patient lost a remarkable 54 kg of weight by 6 months, 

from a baseline weight of 144 kg (BMI of 56) and by 12 months the weight loss had reached 

70 kg and the BMI 29. Furthermore, plasma glucose and fructosamine concentrations had 

returned to normal values by 6 months and the improvements were maintained at 12 months. 
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The second patient achieved a weight loss of 14 kg by 3 months, reducing their BMI from 

32 to 26. Plasma glucose and fructosamine concentrations were normalized after 1 month. 

This patient maintained their weight loss at 12 months and glycaemic control remained 

within the normal range. The patients were taken off all anti-diabetic medication at the start 

of the VLCD and throughout the 12 months of follow-up. Thus, these results indicated that 

the rapid weight loss produced by the VLCD and the subsequent weight maintenance 

resulted in the reversal of type ll diabetes in these patients. 

Serum lipids 

Serum triglyceride and cholesterol levels improved significantly after I month in both groups 

on the VLCD and were significantly lower than the ICD group at this time (p < 0.04), 

indicating the benefit of the caloric restriction. These results confirm the findings of 

previous studies using VLCDs (Henry et al. l986b; Uusitupa et al. l990b; Wing et al. 1991) 

The improvements in serum triglycerides were maintained in the non-diabetic patients at 12 

months, but not in the diabetic patients on the VLCD. Although, triglyceride levels were on 

average 0.9 mmollllower at 12 months compared with the baseline levels in the diabetic 

group, indicating some clinical improvement as a result of the sustained weight loss. The 

improvements in serum cholesterol levels were transient in both VLCD groups, so that by 12 

months cholesterol levels had returned to the baseline values. A similar observation was 

found by Wing et al. (1991). 

Interestingly, a lowering in HDL cholesterol concentrations was observed after I month of 

the VLCD in both groups (Figure 7.12, page 183), although this was not significant, but in 

the ICD group a significant reduction in HDL concentrations was found after 6 months (p = 

0.01). A similar observation was reported by Henry et al. (1986b). However, HDL 

cholesterol concentrations increased thereafter and were significantly higher than baseline 

levels after 6 months in the non-diabetic patients on the VLCD and after 12 months in the 

diabetic patients (p < 0.01). The HDL I cholesterol ratios also increased significantly after 1 

month in the non-diabetic patients and after 6 months in the diabetic patients (p < 0.01). 
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These results confirm the view that changes in HDL cholesterol levels occur over a longer 

time and that long-term weight reduction was associated with an increase in HDL I total 

cholesterol ratios in patients with type II diabetes (Uusitupa et al. 1990b; Wing et al. 1991 ). 

Serum cholesterol, triglyceride and HDL I total cholesterol ratios remained stable during the 

12 months of follow-up in the ICD group. Interestingly, there was a positive correlation 

between the change in weight and the change in serum cholesterol at 1 month (p < 0.001) 

and at 3 months (p < 0.01) and also between the change in weight and the change in 

triglyceride levels at 1, 3 and 6 months (p < 0.01) in the VLCD groups. Thus, the lack of a 

reduction in serum triglyceride and cholesterol levels or increase in HDL I cholesterol ratio 

was probably due to the insufficient weight loss in the ICD group. 

Lipid-soluble antioxidnnts 

Retinol 

The baseline data revealed that plasma retinol levels were very similar in the three patient 

groups. Other authors have found raised plasma retinol levels in patients with type II 

diabetes compared with non-diabetic individuals (Krempf et al. 1991 ). However, the non­

diabetic control-group patients in our study were obese individuals and this factor may 

account for these differences. 

During the acute weight loss phase, plasma retinol concentrations showed significant 

decreases after 1 and 3 months on the VLCD in the non-diabetic patients (p < 0.03) and after 

1 month in the diabetic patients (p < 0.02). Upon cessation of the VLCD, the retinol levels 

returned to the baseline values. In comparison, retinol concentrations remained stable in the 

ICD group at all times. However, the plasma values remained within the reference range at 

all times, indicating that there were no adverse effects of the VLCD or ICD therapies on 

retinol levels. 
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a-Tocopherol 

Plasma a-tocopherol and a-tocopherol I lipid ratios were similar in all three groups at 

baseline, supporting an earlier study that showed that a-tocopherol levels were within the 

normal range in diabetic patients (Vandewoude et al. 1987). During the acute weight loss 

phase, plasma a-tocopherol concentrations decreased significantly after l month in both 

VLCD groups (p < 0.007) as a result of the rapid lowering in plasma triglyceride and 

cholesterol levels. Interestingly, a-tocopherol concentrations remained lower than the 

baseline values in the non-diabetic subjects after 6 and 12 months (p < 0.03). In 

comparison, the a-tocopherol concentrations remained stable in the ICD group throughout 

the study. Vitamin E levels were within the plasma reference ranges at all times, indicating 

that there were no adverse effects of either dietary intervention. 

The a-tocopherol/lipid ratios showed a transient rise at 3 months in the VLCD non-diabetic 

group; a similar increase was observed in the VLCD diabetic patients, which was maintained 

after 12 months - although the increases did not reach statistical significance. Thus, the 

VLCD therapy produced a favourable result in terms of increasing the antioxidant protection 

of the serum lipids, especially in the diabetic group. 

In the ICD group, the a-tocopherol/lipid ratios showed a gradual decline after 3 months of 

dietetic advice, which reached statistical significance after 12 months (p < 0.05). The ratios 

remained well above the values indicative of vitamin E deficiency (i.e., 1.59 JJmoUI a­

tocopherol/ mmoUllipid, Thurnham et al. 1986). Thus, the dietetic advice had a long-term 

lowering effect on plasma a-tocopherol concentrations. Although the reduction in a­

tocopherol I lipid ratios did not place the patients at risk from vitamin E deficiency, the 

lowering of serum lipid antioxidant protection was unfavourable, especially in the diabetic 

group, considering that the serum lipid levels were not significantly reduced by the dietetic 

treatment. These results also indicated that reducing serum cholesterol and triglycerides 

concentrations was also important for increasing the serum lipid-soluble antioxidant levels, 

especially in diabetic patients. 
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Water-soluble antioxidants 

Uric acid 

Serum uric acid concentrations showed a significant increase after one month, in both 

groups on the VLCD (p < 0.007). This elevation was transient and after 6 and 12 months 

urate levels had declined and were significantly lower than the baseline values in the non­

diabetic patients (p < 0.007). The increase at I month was possibly due to the excretion of 

excess purine bases associated with the reduction in adipose tissue and lean tissue mass, 

which accompanied the rapid weight loss. Elevated serum ketone levels may have also 

prevented the excretion of urate by the kidneys, thereby raising serum levels. Other studies 

using VLCDs have reported similar transient increases in urate (Kreitzman 1984; Wing et al. 

1991). 

The patients in our study were asymptomatic to this elevation in serum urate, although 

concern has been expressed for patients with a history of gout undertaking a period of 

VLCD (Kanders and Blackburn 1994). However, the Lipotrim protocol indicated that 

patients with a history of gout should be monitored closely and treated prophylactically with 

allopurinol if necessary. 

Ascorbic acid 

Numerous studies have reported reduced plasma levels of ascorbate in diabetic patients (Will 

and Byers 1996). Our baseline data revealed that plasma ascorbate levels were slightly 

lower in the two diabetic groups compared with the non-diabetic group, indicating a possible 

disturbance in ascorbate metabolism, but the differences were not significant. Detailed 

dietary assessments were not available on the three groups, thus, it was not possible to 

comment further on possible differences between the groups at this time. 

Plasma ascorbate levels remained stable in both VLCD groups, during the acute weight loss 

phase and after 12 months. It was interesting to note that after I month on the VLCD, 

plasma ascorbate levels were found to be significantly lower in the diabetic group compared 
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with the non-diabetic group (p = 0.02). Both groups were consuming the VLCD at this time 

and daily intakes were therefore the same in each group. These results support the 

observations made by Sinclair et al. (1994) that plasma ascorbate concentrations are 

significantly lower in diabetic patients consuming similar diets to non-diabetic patients and, 

hence, add support to the hypothesis that the metabolism of vitamin C is altered in diabetes. 

Thus, formulated VLCDs may require greater amounts of vitamin C for diabetic patients. 

Furthermore, plasma ascorbate concentrations showed a steady decline in one newly 

diagnosed diabetic patient, who remained on the VLCD for an extended period. The plasma 

ascorbate levels declined from the baseline value of 48 Jlmol/1 to 34 JlmoVI at 1 month, 13 

JlmoVI at 3 months, 28 Jlmol/1 at 6 months, returning to 67 JlmoUl at 12 months after 

refeeding. Thus, formulated VLCDs may also need to contain greater than the present 

'recommended nutrient intakes' of vitamin C, especially for morbidly obese patients who 

may need to undergo extended periods of supervised VLCD therapy, which are greater than 

the usuall0-12 weeks and this requires further investigation. 

In the ICD group, plasma ascorbate concentrations increased significantly by 3 months (p = 

0.03), indicating a possible increase in the consumption of more fruit and vegetables by this 

group. Armstrong et al. ( 1996) also recently reported a significant increase in plasma 

ascorbate in newly diagnosed patients following 2 months of dietary advice. Hence, dietary 

advice was valuable for increasing plasma ascorbate levels. 

Negative correlations between plasma ascorbate and plasma glucose concentrations have 

been found previously, with the suggestion plasma ascorbate levels may be reduced with 

increasing hyperglycaemia (Yue et al. 1990; Lysy and Zimmerman 1992). In this study, no 

correlations between ascorbate and plasma glucose or fructosamine levels were observed at 

any time. Thus, the reduction in plasma ascorbate observed at I month in the VLCD diabetic 

group did not appear to be associated with glycaemic control, suggesting that other 

mechanisms are responsible for the reduction in plasma ascorbate found in diabetes. 
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Lipid peroxides 

Plasma MDA concentrations were significantly reduced after 1 month in both VLCD groups 

(p < 0.004), but no improvements in lipid peroxide levels were found in the ICD group. 

The conjugated diene /linoleic acid ratios showed similar changes supporting the MDA 

results. The effect of food restriction in rodents has been known for sometime to reduce 

lipid peroxide levels and increase life expectancy, supporting the hypothesis that free radicals 

are involved in the ageing process (Laganiere and Yu 1987; Harman 1993). The results 

from this study showed that caloric restriction can reduce lipid peroxide levels in human 

subjects. Indeed, the VLCD produced a favourable long-term lowering effect on plasma 

lipid peroxide levels and also normalized MDA levels in two newly diagnosed diabetic 

patients. The ICD therapy, however, was not sufficient to produce marked improvements in 

plasma lipid peroxides, indicating that greater dietary restriction was necessary. 

The proportion of MDA to serum lipids increased during the acute weight loss phase and 

was greatest at 1 month in the non-diabetic patients and this coincided with the lowering in 

a-tocopherol levels. The MDA /lipid ratios also increased in the diabetic VLCD group at 1 

month. However, it was encouraging to note that the increase in MDA /lipid ratios was not 

greater in the VLCD diabetic patients compared with the non-diabetic patients at this time. 

This favourable result suggested that despite having significantly lower plasma levels of 

ascorbate at this time, the diabetic patients were not at greater risk from developing oxidative 

stress than the non-diabetic patients. Measurement of the susceptibility of LDL to oxidation 

at 1 month might have provided a further interesting insight into the differences between the 

diabetic and non-diabetic patients at this time and perhaps provided an indication as to 

whether formulated VLCD should contain greater amounts of vitamin E. Thus, further 

studies are warranted in this area. 

It was interesting to note that plasma MDA concentrations in the non-diabetic VLCD group 

were significantly higher than those of a non-obese healthy control group at baseline. 

Furthermore, in spite of the initial improvements in plasma MDA levels, as a result of the 

VLCD, plasma MDA concentrations in the non-diabetic patients remained significantly 
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higher than those of the control group at all times (p < 0.0 15). Serum lipid levels were not 

available on all of the control subjects, therefore it was not possible to compare the MDA I 

lipid ratios, which may have provided a greater insight into the differences between the 

groups. However, the results indicated that lipid peroxidation was increased in obesity. 

Thus, relationships between MDA and other parameters associated with obesity were 

explored. No correlations between plasma MDA levels, weight, age or BMI were found. 

Weak positive correlations between MDA and plasma glucose, fructosamine were only 

found at I month. Thus, plasma glucose concentrations did not appear to have a significant 

association with plasma MDA levels. However, there was a weak positive correlation 

between plasma MDA levels and waist I hip ratios at 6 and 12 months ( r = 0.38, p < 0.05), 

providing an indication that abdominal obesity was associated with alterations in lipid 

peroxides levels. These results supported an earlier view that obesity is associated with 

abnormalities in lipid peroxidation (Van Gaal et al. 1995). The measurement of plasma 

MDA concentrations has been suggested as a tool in the identification of patients at risk from 

cardiovascular disease (Gallou et al. 1994a; Griesmacher et al. 1995). The results from this 

study indicated that caloric restriction was one pathway by which lipid peroxidation could be 

lowered in high risk groups. 
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7. 7 Conclusion 

The intensive conventional dietetic advice offered to type II diabetic patients in this study 

was effective in producing modest weight loss during the first 12 months of the treatment, 

but did not produce greater long-term losses than the VLCD therapy. The weight losses 

achieved by the ICD therapy were not great enough to have a beneficial effect on reducing 

BMI, waist I hip ratios or serum lipid profiles, although significant reductions in diastolic 

blood pressures were achieved. 

The VLCD produced large and rapid weight losses in the non-diabetic and diabetic patients 

and this was accompanied by significant reductions in BMI, and waist I hip ratios, which 

were maintained at one year. Interestingly, the maintenance of the weight loss was greater in 

the diabetic patients than in the non-diabetic patients. The weight loss was strongly 

associated with the reduction in systolic and diastolic blood pressure in the non-diabetic 

patients, but not in the diabetic patients on the VLCD. However, despite the large reduction 

in weight, the patients in the diabetic group remained overweight indicating that further 

weight loss or exercise might have been effective in improving blood pressures in this 

group. 

Rapid reductions in serum triglycerides and cholesterol concentrations were observed in both 

VLCD groups, although the benefits were greater in the non-diabetic patients, since the 

improvements in serum triglycerides were maintained at one year. Despite the rapid weight 

loss, the improvements in HDL cholesterol levels were gradual and the long-term reduction 

in weight in the VLCD groups was associated with significant increases in HDL I total 

cholesterol ratios, particularly in the diabetic group. Thus, the VLCD produced substantial 

improvements in cardiovascular risk factors in both groups which were maintained at 12 

months. The improvements with regard to the reduction in blood pressure and serum lipids, 

were greater in the non-diabetic patients compared with the diabetic patients on the VLCD. 

The VLCD produced a significantly greater improvement in short-term glycaemic control 

than the ICD therapy. Although substantial weight losses were achieved by the diabetic 
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patients on the VLCD, the maintenance of the weight loss at 12 months was not sufficient to 

prevent the deterioration of glycaemic control and the type II diabetes had become 

irreversible. Thus, neither therapy produced a long-term improvement in glycaemic control. 

However, plasma glucose concentrations were normalized and maintained at normal levels 

after 12 months in two newly diagnosed diabetic patients who lost weight rapidly on the 

VLCD. Thus, the rapid weight loss produced by the VLCD was successful in reversing 

type ll diabetes in newly diagnosed patients. The weight loss produced by the ICD therapy 

was slow, indicating that future regimens may need to incorporate additional behavioural 

strategies in order to achieve a faster rate of weight loss for newly diagnosed patients. 

The VLCD produced transient reductions in plasma retinol and a-tocopherol concentrations, 

but did not adversely affect the levels of these vitamins since they remained within the 

normal reference ranges. On the contrary, the proportion of a-tocopherol to serum lipids 

increased as a result of the rapid reduction in serum cholesterol and triglycerides produced 

by the VLCD. The improvements in a-tocopherol/lipid ratios were maintained at one year 

in the diabetic patients largely as a result of the long-term improvement in serum triglyceride 

and cholesterol levels. Thus, lowering serum triglyceride and cholesterol concentrations had 

a positive effect on increasing a-tocopherol/lipid ratios. Intensive conventional dietetic 

advice resulted in a long-term lowering of a-tocopherol/lipid ratios in the diabetic group, 

who exhibited no significant reductions in serum lipid levels. These results indicated the 

importance of reducing serum lipid levels in diabetic patients receiving dietetic advice, in 

order to increase lipid-soluble antioxidant protection. 

Plasma ascorbate concentrations increased in the ICD group, indicating that dietary advice 

was beneficial for increasing plasma water-soluble antioxidant levels. Plasma ascorbate 

concentrations were significantly lower in diabetic patients than non-diabetic patients, whilst 

consuming the VLCD. These results indicated that formulated VLCDs may require higher 

concentrations of ascorbic acid for diabetic patients, particularly for patients who need to 

undergo extended periods of supervised VLCD therapy. 
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Plasma levels of lipid peroxides were significantly reduced in the VLCD groups, with long -

term improvements. Thus, the caloric restriction of the VLCD was beneficial for decreasing 

free radical activity in obese non-diabetic and diabetic patients. Despite the modest weight 

loss in the ICD group, lipid peroxide levels remained stable, indicating that greater caloric 

restriction was necessary in order to reduce free radical activity. The diabetic patients were 

not at greater risk from oxidative stress than non-diabetic patients whilst on the VLCD. 

Thus, the VLCD and ICD therapies were safe for diabetic and non-diabetic patients and 

produced improvements in cardiovascular risk factors and indices of oxidative stress. 
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8. Final Discussion and Conclusions 

Sato et al. (1979) first reported elevated levels of lipid peroxides in the serum from diabetic 

patients. Since then, numerous studies have confirmed their findings and also indicated that 

levels of lipid peroxides are greater in patients with complications (Appendix 3). Despite the 

increased knowledge about free radicals, it is still in debate whether free radicals are 

involved in the development of diabetic complications or arise merely as a consequence of 

the tissue damage. 

The role of hyperglycaemia has been established as the leading cause in the development of 

complications in type I diabetes (DCCT 1993), although the pathways by which hyper­

glycaemia leads to complications are not fully understood. Numerous in vitro studies have 

unequivocally established that glucose is a source of free radicals, however, the role of such 

reactions in the development of oxidative stress in vivo is still under investigation. 

The main problem in the study of free radicals in vivo has been the fact that free radicals are 

very short-lived and hence no direct methods exist for the direct measurement of free radicals 

in the clinical setting. The 'gold standard' technique of ESR is of limited clinical use and 

although other techniques such as nuclear magnetic resonance or GC-MS are available, these 

are limited to specialized laboratories and require a high level of technical expertise. Thus, 

the majority of clinical studies rely on following the 'footprints' of free radical reactions by 

monitoring products of free radical attack on lipids, proteins, carbohydrates or DNA. 

Indeed, this study has shown that the measurement of serum lipid peroxides continues to 

provide a useful indirect indication of free radical activity in vivo. 
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In conclusion, this study has attempted to increase the knowledge surrounding the role of 

hyperglycaemia during the development of oxidative stress in vivo and to investigate the 

safety of VLCD and ICD therapies on cardiovascular risk factors and indices of oxidative 

stress in obese patients during periods of weight loss. 

In summary, the main conclusions are that: 

• Large increases in serum lipids were accompanied by large increases in lipid peroxides in 

patients with severe hyperglycaemia or diabetic ketoacidosis. Patients were, 

therefore, at risk from oxidative stress during the metabolic disturbances which 

culminated in diabetic ketoacidosis. 

• Plasma antioxidant defences were very resilient during the recovery period in patients 

requiring hospitalisation due to episodes of severe hyperglycaemia and ketoacidosis. 

• Very low calorie diet and intensive conventional dietetic therapies were safe for the 

treatment of obesity in diabetic and non-diabetic patients. Diabetic patients were not 

at greater risk from developing oxidative stress than non-diabetic patients whilst on the 

VLCD. 

• Caloric restriction lowers plasma levels of lipid peroxides in obese diabetic and non­

diabetic patients. 

• Plasma ascorbate levels were found to be significantly lower in diabetic patients compared 

with non-diabetic patients consuming the VLCD. Thus, the vitamin C content of 

formulated VLCDs may require adjustment for diabetic patients. 

• Reducing serum lipid levels was beneficial for increasing a-tocopherol/lipid ratios. 
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Further work 

There are many areas for further research in the field of free radical activity in diabetes. The 

role of glycoxidation and autoxidation reactions and their contribution to oxidative stress in 

vivo suggests further evaluation with specific markers of products of these reactions. The 

role of transition metal ions may be a crucial factor linking these reactions with those of lipid 

peroxidation. Future studies could therefore consider measuring metal ion status. 

Additionally, studies focussing on the use of antioxidant supplementation may also involve 

consideration of transition metal ion reducing therapies, since reducing iron levels may also 

have antioxidant benefits. 

It should be remembered that type I and type 11 diabetes are distinct conditions and 

comparative studies may point to different adaptive physiological processes which combat 

oxidative stress in these patients. This may provide a further insight to the development of 

oxidative stress and provide target areas for treatment. Furthermore, monitoring the changes 

in patients with first degree relatives with diabetes and during the transition from non­

diabetic through IGT to frank diabetes mellitus would provide a greater understanding of the 

development of oxidative stress. 

The optimum antioxidant requirements of diabetic and non-diabetic patients may differ, 

especially with regard to vitamin C. As indicated in this study, formulated diets may not 

provide adequate amounts of vitamin C for diabetic patients, especially for newly diagnosed 

and morbidly obese patients who may require long periods of caloric restriction and this 

requires further investigation. Furthermore, studies measuring the resistance of LDL to 

oxidation may provide an insight as to whether antioxidant protection of LDL particles is 

altered in patients consuming VLCDs and thus provide an indication whether patients would 

benefit from higher amounts of vitamin E whilst on a VLCD. Studies comparing lipid 

lowering treatments with those providing antioxidant supplementation could also provide an 

interesting insight for increasing a-tocopherol/lipid ratios in plasma. 
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Appendices 



Appendix 1 Tocopherol Nomenclature 

The naturally occurring stereoisomers of a-tocopherol, formerly known as d-a-tocopherol 

should be designated RRR-a-tocopherol. The totally synthetic a-tocopherol, formerly 

known as dl-a-tocopherol, should be designated all-rac-a-tocopherol. Esters of tocopherols 

should be designated as tocopheryl esters (e.g., a-tocopheryl acetate) (Machlin 1991). 

The IU, which is equivalent to 1 mg all-rac-a-tocopherol acetate is the accepted measure of 

biological activity (Machlin 1991). The weight I IU relationships for different tocopherols 

are shown below. 

Weight I IU relationships of tocopherols. 

Tocopherol (Other name) 

all-rac-a-tocopheryl acetate ( dl-a-tocopheryl acetate) 

all-rac-a-tocopherol (dl-a-tocopherol) 

RRR-a-tocopheryl acetate (d-a-tocopheryl acetate) 

RRR-a-tocopherol (d-a-tocopherol) 

all-rac-a-tocopheryl acid succinate (dl-a-tocopheryl acid succinate) 

RRR-a-tocopheryl acid succinate (d-a-tocopheryl acid succinate) 
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Amount (mg) 

1.0 
1.0 

1.0 
1.0 

1.0 

1.0 

IU 

1.00 
1.10 

1.36 
1.49 

0.89 

1.21 



Appendix2 Enolization 

The process whereby the a-hydrogen atom, attached to the a-carbon (the carbon atom 

adjacent to the carbonyl group), moves to the carbonyl oxygen atom, is known as 

enolization (Pine et al. 1981). Isomeric carbonyl and enol structures are tautomers, 

where the reversible interconversion of the isomers is associated with the actual movement 

of electrons, as well as one or more hydrogen atoms. The reaction reaches an equilibrium, 

indicated by the equilibrium constant for tautomerism (KT) 

H 
I ~o 

-c-c 
I ' 

Carbonyl 

[enol] 
KT=--­

[carbonyl] 

...._ /OH 
/C=C...._ 

Enol 

The position of equilibrium depends upon the molecular structure. Normally the carbonyl 

form is favoured, but structural factors markedly affect KT. e.g., 1,3 dicarbonyl 

compounds exist largely in the enol form at equilibrium. The enhanced stability of the enol 

form in 1,3-dicarbonyl compounds, compared with monocarbonyl compounds, is due to the 

formation of cyclic compounds. 
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Appendix3 Studies of Free Radical Activity in Diabetic Patients 

Reference Subjects Methods a 

Sato et al. 110 Diabetic TBARS+F 
1979 (Type unknown) 

331 Control 

Nishigaki 31 Diabetic TBARS+F 
et al. 1981 (Type unknown 

with complications) 
32 Control 

Kaji et al. 60 Type 11 TBARS +F 
1985 (women) Antioxidants 

71 Control 
(women) 

Jennings 62 Type I & 11 CD+ S 
et al. 1987a (36 no complications 

Collier 
et al. 1988 

Jain 
et al. 1989 

Collier 
et al. 1990 

26 microangiopathy) 
36 Control 

34 Type I (with 
retinopathy) 
35 Control 

21 Type I 
17 Control 

22 Type 11 
(without 
complications) 
15 Control 

CD+HPLC 

Erythrocyte 
TBARS+S 
TLC 

Antioxidants 

Results 

TBARS were significantly higher in the 
plasma of patients with complications 
compared with the control group and to 
those without complications (p < 0.001). 

TBARS were significantly higher in the 
diabetic group than in the control group 
(p < 0.005) and were found to reside 
mainly in the HDL fraction in serum. 

TBARS and GSH-Px, in plasma, were 
significantly higher in the diabetic group 
than in the control group (p < 0.01), 
the presence of complications was not 
specified. Erythrocyte GSH-Px, SOD 
and catalase levels were similar in the 
two groups. 

CDs, in serum, were significantly higher 
in patients with microvascular disease 
compared with diabetics patients without 
complications and controls (p < 0.001). 
There was no difference between 
controls and patients without compl­
ications and no association between 
glycaemic control and CD levels. 

Plasma CDs were significantly reduced 
in diabetic patients with retinopathy 
compared with the controls (p < 0.01). 
No correlation between glycaemic 
control and CD levels was found. 

TBARS were significantly higher in the 
membranes of erythrocytes from diabet­
tic subjects (presence of complications 
was not specified) compared with the 
control subjects (p < 0.05). The degree 
of peroxidation correlated positively 
with the degree of glycaemic control. 

Erythrocyte SOD and plasma thiols were 
significantly lower in diabetic subjects 
compared with controls (p < 0.01). 
Erythrocyte thiols and plasma caerulo­
plasmin levels were similar in the two 
groups. 

Continued ... 

a Methods used for the determination of lipid peroxides, as indirect indicators of free radical activity. 

CD = Conjugated Diene; S = UV Spectrophotometry; F = Fluorimetry; 
HPLC =High performance liquid chromatography; TLC =Thin layer chromatography. 
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Reference 

Jennings 
et al. 1991 

Mooradian 
1991 

Noberasco 
et al. 1991 

Velazquez 
et al. 1991 

Armstrong 
et al. 1992 

Subjects Methods 

15 Type I (with 
retinopathy) 
15 Type I (no 
complications) 
15 Control 

TBARS +S 
CD+S 
Antioxidants 

45 Type II elderly CD + S 
diabetic men 
(22 with and 23 with­
out complications) 
24 Control 

67 Diabetic TBARS 
(20 Type I 
47 Type 11, 
free from 
acute illness) 
40 Control 

18 Type II (with TBARS + F 
macrovascular 
disease) 
20 Non-diabetic 
(with macro­
vascular disease) 
28 Control 

166 Type 11 (with TBARS + F 
complications) 
51 Control 
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Results 

Plasma TBARS were significantly higher 
in patients with retinopathy than controls 
(p < 0.05). COs were raised, but not 
significantly, in both diabetic groups. 
Erythrocyte SOD and plasma thiols were 
significantly decreased in both diabetic 
groups (p < 0.05). No correlations were 
found between COs, TBARS, SOD and 
glycaemic control. 

Serum COs were significantly higher in 
patients with complications compared 
with the controls (p < 0.01). COs in 
patients without complications were 
raised, but not significantly above those 
of the control group. Significant positive 
correlations were found between COs 
and triglyceride and glucose levels. 

Plasma TBARS were almost 2-fold 
higher in diabetic subjects than in the 
controls (p < 0.0 I). Subjects with poor 
glycaemic control had significantly 
higher TBARS than those with good 
glycaemic control (p < 0.02). A 
significant positive correlation was found 
between TBARS and fasting blood 
glucose. 

Both diabetic and non-diabetic subjects 
with macrovascular disease had signific­
antly higher serum TBARS than the 
healthy controls (p < 0.05). Significant 
positive correlations were found between 
TBARS and triglycerides, cholesterol 
and glycaemic control, but no independ­
ent association between these variables 
and TBARS was found upon multiple 
regression analysis. 

Serum TBARS were significantly higher 
in diabetic than non-diabetic subjects 
(p < 0.001). TBAR levels corresponded 
to the prevalence rates of retinopathy 
and also showed a significant positive 
correlation with serum triglycerides 
and indices of glycaemic control. 
TBARS were lowest in patients treated by 
diet alone. 

Continued ... 



Reference Subjects Methods Results 

Collier 12 Type 11 (with CD+HPLC Plasma TBARS and CDs were higher in 
et al. 1992 microalbuminuria TBARS+ both diabetic groups than in the control 

12 Type 11 (without HPLC group (p < 0.05). TBARS were also 
(microalbuminuria) higher in the microalbuminuric group 
12 Control than in the normoalbuminuric group 

(p < 0.05). CDs and TBARS showed no 
correlations with glycaemic control. 

Asayama 30 Type I AOAb Serum AOA was lower in the diabetic 
et al. 1993 Diabetic children Antioxidants group than in the controls (p < 0.001). 

23 Control Serum albumin and transferrin were 
also lower in the diabetic group 
(p < 0.001); caeruloplasmin and ferritin 
levels were unaltered. 

27 Type I TRAPc Serum ascorbate and tocopherol levels 
Diabetic children Antioxidants were higher in the diabetic group than in 
23 Control the controls (p <0.05), but the TRAP was 

lower in the diabetic group (p < 0.001). 

Gallou 57 Type I TBARS+F Plasma TBARS were higher in both dia-
et al. 1993 60 Type 11 betic groups than in the control group 

53 Control (p < 0.001), but no difference between 
Type I & 11 patients was found. Patients 
with complications had higher TBARS 
than those without complications p<0.05. 

MacRury 13 Type II (with TBARS+ CD ratio, TBARS and caeruloplasmin 
et al. 1993 vascular disease) HPLC were significantly increased in subjects 

12 Non-diabetic CD+HPLC with vascular disease, but no difference 
(vascular disease) Antioxidants between diabetic and non-diabetics 
12 Control with vascular disease was found. 

Erythrocyte SOD levels were lower in 
both groups with vascular disease. 

Chittar 117 Type II TBARS +F Plasma TBARS were significantly higher 
et al. 1994 34 Type I in Type I and 11 diabetic patients than in 

30 Control the control subjects. Patients with 
complications had higher TBARS 
than those without complications. 

Gallou 204 Type II (with TBARS+F Plasma TBARS were significantly higher 
et al. 1994a macrovascular in diabetic subjects (with or without 

disease) vascular disease) compared with controls 
107 Control (p <0.0001). Patients with macrovascular 

disease also had significantly higher 
TBARS than those without vascular 
disease (p < 0.0001). TBARS correlated 
positively with total cholesterol. 

Continued ... 

bPreventative antioxidant activity (AOA) was assessed by the ability of serum to inhibit lipid peroxidation of 
brain homogenates (expressed as the percentage inhibition of the production-rate ofTBARS). 

c The total peroxyl-radical trapping antioxidant parameter (TRAP) in serum. 
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Reference 

Belch 
et al. 1995 

Gopaul 
et al. 1995 

Subjects Methods 

19 Type I (with TBARS + S 
microangiopathy) Thiols 
19 Non-diabetic 
(with vascular disease) 
19 Control 

39 Type II 
15 Control 

GC-MSd 
Isoprostanes 

Griesmacher 77 Type I TBARS+F 
et al. 1995 81 Type 11 

62 Control 

Nacitarhan 
et al. 1995 

Nourooz­
Zadeh et al. 
1995 

78 Type 11 TBARS + F 
(with & without 
hyperlipidaemia) 
38 Non-diabetic (with 
(hyperlipidaemia) 
28 Control 

22 Type 11 
Control 
(number 
unknown) 

ROOHe 
TBARS +S 

Results 

Plasma TBARS were higher in diabetic 
(p < 0.01) and non-diabetic subjects with 
vascular disease (p < 0.05) than controls. 
TBARS were also higher in the diabetic 
group than in the non-diabetic group 
with vascular disease (p < 0.05). Plasma 
thiols were lower in both patient groups 
compared with the controls (p < 0.05). 

Plasma levels of Frisoprostanes were 
higher in the diabetic patients compared 
with the control group (p < 0.0001). 
However, the presence of complications 
was not specified. The Frisoprostanes 
did not correlate with fasting plasma 
glucose or glycosylated haemoglobin, 
nor with triglycerides or cholesterol. 

Serum TBARS were significantly higher 
in diabetic patients (with and without 
vascular disease), compared with the 
controls (p < 0.001). Patients with Type 
II diabetes also had higher TBARS than 
patients with Type I diabetes (p < 0.001). 
TBARS were also higher in patients with 
poor glycaemic control, but no correlat­
ion between TBARS and glycaemic 
control was found. 

Serum and urinary TBARS were higher 
in diabetics (with and without hyperlip­
idaemia) than controls (p <0.05). Hyper­
lipidaemic diabetic patients had higher 
serum TBARS than norrnolipidaemic 
diabetic patients (p < 0.02). TBARS 
were also higher in hyperlipidaemic 
non-diabetics than controls (p < 0.0 I). 
No difference was found between the di­
abetic patients regarding complications. 
TBARS correlated significantly with 
serum glucose and cholesterol in the 
hyerlipidaemic diabetic group only. 

Elevated plasma ROOHs were found in 
the diabetic subjects compared with the 
control group (p <0.0005), but TBARS 
were similar in both groups. Higher 
ROOHs were found in patients with, than 
those without, complications. No correl­
ation between ROOHs, glycaemic control 
triglyceride or cholesterol was found. 

Continued ... 

d GC-MS= Gas chromatography- mass spectrometry of prostaglandin F2-like compounds (isoprostanes)­
specific i11 vivo markers of non-enzymatic peroxidation of arachidonic acid. 

e ROOHs were measured by the oxidation of ferrous to ferric ions using xylenol orange as an indicator. 
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Reference Subjects Methods Results 

Dandona 12 Type I 8-0HdG/ 8-0HdG levels in mononuclear cell 
et al. 1996 12 Type 11 DNA were higher in Type I and Type II 

10 Control diabetic patients than in control subjects 
(p < 0.001). However, this might have 
been as a result of increased generation 
of ROS by these cells. 

Sundaram 467 Type 11 TBARS+F TBARS were more than 2 fold higher 
et al. 1996 (with and without Antioxidants in the plasma and erythrocytes of diabe-

complications) tic subjects (regardless of complications) 
180 Control compared with controls (p < 0.001 ), but 

TBARS were also higher in those with 
complications than those without. Plasma 
vitamins C, E and GSH, and erythrocyte 
SOD and catalase, were significantly 
lower in diabetic subjects (regardless of 
complications) than controls, but erythr-
ocyte GSH-Px levels were significantly 
higher in the diabetic group. 

Ceriello 40 Type 11 TRAP Plasma TRAP was lower in the diabetic 
et al. 1997 (without TBARS+F group (p < 0.001) and lowest in those 

complications) Antioxidants patients with poor glycaemic control, 
40 Controls indicating that plasma from patients with 

Type 11 diabetes is more suscesptible to 
lipid peroxidation than plasma from 
healthy subjects. TBARS were higher in 
the diabetic group, but the difference 
disappeared after correction for serum 
lipids. 

Maxwell 49 Type I TRAP Patients with Type I diabetes had signifi-
et al. 1997 69 Type II Antioxidants cantly lower serum TRAP than patients 

with Type 11 diabetes (p < 0.00 l) -this 
was largely attributed to the lower levels 
of uric acid in the Type I diabetic group. 
A strong negative correlation between 
TRAP and glycosylated haemoglobin 
and urate levels was found only in 
patients with Type li diabetes, suggesting 
that poor glycaemic control is associated 
with reduced antioxidant activity in Type 
11 diabetes. 

f 8-Hydroxydeoxy guanosine (8-0HdG) was measured by HPLC as an indicator of oxidative damage to DNA. 
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Appendix 4 The Composition of Lipotrim 

Per serving- Per serving- Per 50 g Flapjack 
Women Men 

38.3 g I sachet 76.6 g I sachet 

kcal 135.0 270.0 200.0 
protein -g 14.0 28.0 14.0 
fat -g 2.7 5.4 11.0 
carbohydrate -g 14.7 29.4 10.0 

Vitamin A -mg 0.3 0.6 0.3 
Vitamin B I -mg 0.5 1.0 0.5 
Vitamin B2-mg 0.6 1.2 0.6 
Vitamin B6 -mg 0.7 1.4 0.7 
Vitamin B 12 -J.Lg 1.0 2.0 1.0 
Vitamin C -mg 20.0 40.0 20.0 
Vitamin 03 -J.Lg 3.0 6.0 3.0 
Vitamin E -mg 3.3 6.6 3.3 
Vitamin K -J.Lg 47.0 94.0 47.0 
Biotin -J.Lg 67.0 134.0 67.0 
Folic acid -J.Lg 133.0 266.0 133.0 
Niacin -mg 6.3 12.6 6.3 
Pantothenic acid-mg 2.3 4.6 2.3 
Calcium-mg 266.7 533.4 266.7 
Chloride -g 0.5 1.0 0.5 
Chromium- J.Lg 42.0 84.0 42.0 
Copper-mg 1.0 2.0 1 .0 
Iodine -J.Lg 50.0 100.0 50.0 
Iron -mg 7.0 14.0 7 .0 
Magnesium -mg 133.3 266.6 133.3 
Manganese -mg 1.3 2.6 1.3 
Molybdenum -J.Lg 83.0 166.0 83.0 
Phosphorous -mg 266.7 533.4 266.7 
Potassium -g 1.17 2.34 1.17 
Selenium -J.Lg 42.0 84.0 42.0 
Sodium -g 0.5 1.0 0.5 
Zinc -mg 5.0 10.0 5.0 

The main ingredients of the Lipotrim products were: 

Sachets: skimmed milk powder, defatted soya flour, soya protein isolate, lecithin, tri­
sodium citrate, dried glucose syrup, thickeners - carrageenan and xanthan gum, vegetable 
fat, monocalcium phosphate, potassium chloride, magnesium oxide, compound vitamins 
and minerals mixture, artificial sweetener - aspartamine, milk protein, colourings, 
flavourings and acidity regulator- potassium phosphate. 

Flapjacks: peanuts, polydextrose, sodium caseinate, vegetable oil, textured soya protein, 
oats, fructose, soya bean flour, isolated soya protein, honey, cellulose, emulsifier- soya 
lecithin, monocalcium phosphate, dipotassium phosphate, flavouring, magnesium oxide, 
compound vitamins and minerals mixture, sea salt and sorbic acid. 
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Lipotrim For Women Lipotrim For Men 

Per 3 servings DRY* Per 2 - 3 servings DRY 
(RN I) (RNI) 

kcal 405.0 - 470.0 ** 540.0- 670.0 ** 
protein -g 42.0-42.0 ** 56.0-56.0 ** 
fat -g 8.1 - 19.4 10.4- 27.4 
carbohydrate -g 39.4- 44.1 39.4- 58.8 

Vitamin A -mg 0.9 0.6 1.2 0.7 
Vitamin B 1 -mg 1.5 0.8 2.0 1.0 
Vitamin B2 -mg 1.8 1.1 2.4 1.3 
Vitamin B6 -mg 2.1 10.0 2.8 1.4 
Vitamin B12 -f.lg 3.0 1.5 4.0 1.5 
Vitamin C -mg 60.0 40.0 80.0 40.0 
Vitamin D3 -f.lg 9.0 10.0 12.0 10.0 
Vitamin E -mg 10.0 1.2 13.2 >4.0 
Vitamin K -J.Lg 141.0 1.0/ kg 188.0 1.0/ kg 
Biotin -J.Lg 201.0 10-200 268.0 10-200 
Folic acid -J.Lg 400.0 200.0 532.0 200.0 
Niacin -mg 19.0 12-13 25.2 16-18 
Pantothenic acid-mg 7.0 3-7 9.2 3-7 

Calcium-mg 800.1 700.0 1066.8 700.0 
Chloride -g 1.5 2.5 2.0 2.5 
Chromium -J.Lg 126.0 >25.0 168.0 >25.0 
Copper -mg 3.0 1.2 4.0 1.2 
Iodine -J.Lg 150.0 140.0 200.0 1.0 
Iron -mg 21.0 8.7 28.0 8.7 
Magnesium -mg 400.0 270.0 533.2 300.0 
Manganese -mg 4.0 >1.4 5.2 >1.4 
Molybdenum -f.lg 249.0 50-400 332.0 50-400 
Phosphorous -mg 800.1 550.0 1066.8 550.0 
Potassium -g 3.5 3.5 4.7 3.5 
Selenium -J.Lg 126.0 60.0 168.0 75.0 
Sodium -g 1.5 1.6 2.0 1.6 
Zinc -mg 15.0 7.0 20.0 9.5 

* In 1991, the Department of Health published new 'dietary reference values' (DRVs), 

replacing the old 'recommended dietary allowances' (RDAs) of 1979. The 'reference 

nutrient intakes' (RNis) -the amount of a nutrient that will be sufficient for almost 

every individual, even those with high needs- are broadly qui valent to the old RDAs. 

** Department of Health and Social Security recommendations (1987). 
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The Lipotrim product was intended for use as a total food replacement. 

For women, the daily intake was in the form of three womens' sachets of Lipotrim (405 

kcal/day) or two sachets and one flapjack (470 kcal/day). 

For men, two mens' sachets of Lipotrim were taken daily (540 kcal/day), or if three meals 

were desired then one sachet and two flapjacks (670 kcal/day). 

The sachets were mixed with approximately 250 rnl of water and patients were advised to 

drink 2-4 I of water throughout the day. Tea and coffee with no added milk or sugar were 

permitted, but other beverages, e.g., milk or alcohol were not permitted whilst on the diet as 

these would prevent the development of the mild ketosis and cause hunger. 

Refeeding Strategy 

The main emphasis of the refeeding strategy was to reintroduce carbohydrates gradually into 

the diet over a period of days in order to prevent carbohydrate loading and return the 

glycogen levels to normal. 

Patients were recommended to consume high protein, low fat and no carbohydrate on the 

fust day of refeeding. Followed by high protein, modest carbohydrate and low fat on the 

second and third days. On the fourth day, modest amounts of complex carbohydrates could 

be introduced into the diet together with high protein and low fat. 

Patients were given a list of the types of foods to consume and those to avoid. 
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