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Abstract 

Mathematical Analysis of Novel Magnetic Recording Heads 

Hazel A. Shute 

As a contribution to increasing the area! density of digital data stored on a mag­
netic recording medium, this thesis provides mathematical analyses of various mag­
netic recording heads. Each of the heads considered here is for use in a perpendicular 
recording system, writing to or reading from a multi-layer medium which includes a 
high magnetic permeability layer between the data storage layer and the substrate. 
The exact two-dimensional analysis is performed in each case by one of two methods: 
either Fourier analysis or conformal mapping. The types of heads analysed include 
conventional styles but particular emphasis is placed on the effects of the novel idea of 
potential grading across the pole pieces. 

Exact head fields are derived for thin film heads with both constant and linearly 
varying pole potentials, single pole heads with linearly and arbitrarily varying pole 
potentials and shielded magnetoresistive heads, all in the presence of a magnetic un­
derlayer. These and other published solutions are used to derive output characteristics 
for perpendicular replay heads, which are compared with published theoretical and 
experimental results where possible. 

The Fourier solutions obtained are in the form of infinite series dependent on at 
least one set of coefficients which are determined by infinite systems of linear equa­
tions. Approximations to the potentials in the head face planes, independent of these 
coefficients, are derived from the exact Fourier solutions. The accuracy of these approx­
imations is demonstrated when they are used to estimate the vertical field components 
and the spectral response functions. 

Heads with graded pole potentials are found to have more localised vertical field 
components than the corresponding constant potential heads. They are also better 
suited for use with thin media for 'in contact' recording. 
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Chapter 1 

Introduction to Magnetic 

Recording 

1.1 Historical Background 

Magnetic materials have been known for well over 2000 years but it was not until the 

nineteenth century that the major scientific discoveries were made. In 1820, Oersted 

made the initial discovery that an electric current produces a magnetic field, which 

stimulated other research in electromagnetism. Ampere found that two currents have 

a mutual magnetic effect, and in 1831 Faraday discovered electromagnetic induction 

[1]. 

The first magnetic sound recording was made by Oberlin Smith in 1888 and the 

first commercial magnetic recording machine, the telegraphone, was invented in 1898 

by Valdemar Poulsen. This was a dictating machine which recorded onto steel wire. 

By the 1920's the steel wire had been replaced by steel tape, then by paper tape 

coated with iron particles. Plastic tape coated with gamma ferric oxide was first used 

as a recording medium in 1935. Floppy disks and tapes are still made with a plastic 
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substrate although alloys are commonly used as the magnetic media. Computer hard 

disk technology has become very sophisticated. For many years aluminium has been 

used as the substrate for these large disks but with the demand for portable computers, 

smaller hard disks based on glass are in production (2]. Glass provides a rigid substrate 

which can be polished to give a very smooth surface onto which the magnetic medium 

is deposited. 

At first, Poulsen's telegraphone used a single electromagnetic pole to record onto the 

wire but later he found that better results were obtained using two offset poles. In the 

1930's recording with 'ring-shaped' heads was established. Apart from miniaturisation 

and improved materials this type of head is still in use in production machines. 

The early machines used analog recording. Today, both analog and digital recording 

techniques are used in different applications. This thesis considers magnetic recording 

and replay heads for computers which, today, store information digitally. 

1.2 Longitudinal and Perpendicular Modes of 

Recording 

Digital information is stored on a magnetic medium by the direction in which the 

magnetic material is magnetised. Two ideal extremes are possible, which are depicted 

in Fig. 1.1. The arrows represent the magnetic vector and the magnetic poles of the 

individual magnetised regions are indicated as + or-. If the direction of the magnetic 

vector is parallel to the plane of the medium, the recording is said to be longitudinal, 

but if the magnetic vector is normal to the plane of the medium, the recording is per­

pendicular. By careful choice of particles and methods used in its production, a medium 

can be given a particular anisotropy, ie. a preferred axis of magnetic orientation. The 
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a) Longitudinal 

111111181 
b) Perpendicular 

Figure 1.1: Diagram of ideal longitudinal and perpendicular magnetic recordings. 

laws of magnetism state that 'like poles repel', therefore in a longitudinal recording 

the magnetic fields due to adjacent magnetic regions of opposite polarity cause a de-

magnetising field, represented by the ellipses in the diagram. These fields due to the 

individual magnetic regions have been observed in practice [3]. The demagnetising field 

prevents sharp transitions between bits of opposite polarity. A mathematically conve-

nient, arctangent form is generally accepted as a good approximation to the shape of 

a longitudinal transition. 

In a perpendicular recording on the sort of medium used for longitudinal recording, 

adjacent oppositely magnetised regions attract each other so that they form a stable low 

potential energy magnetic system, therefore the amount of flux detectable outside the 

medium is much less than for a longitudinal recording. This was the reason for Poulsen's 

improved replay signal when he used the two offset poles. The initial single pole 

recordings were predominantly perpendicular, but the two pole system created mainly 

longitudinal recordings on the unstructured media of the time. Therefore research 

into perpendicular recording systems was very limited until I wasaki, N akamura and 

Ouchi [4] used a medium with an in- built perpendicular anisotropy and placed a layer 

of highly permeable material such as nickel-iron (NiFe) behind the recording layer. 

This 'flux sink' increased the magnitude of the field, of each individual magnetised 

24 



region detectable outside the medium. Using an magnetic underlayer, replay from a 

perpendicular recording is of similar quality to that from a longitudinal recording. The 

perpendicular medium and underlayer, commonly described as a double-layer medium, 

actually consists of several layers of material deposited on the substrate. Typically, 

first there is the underlayer of NiFe onto which is placed a layer of a non-magnetic 

material such as gold or titanium. This gives a good surface for the promotion of a 

perpendicularly oriented magnetic film. Cobalt-chromium alloy (CoCr) forms columnar 

grains about 200A in diameter and was first used as a perpendicular recording medium 

in 1975 [5]. The orientation of the alloy grains can be controlled so that their longest 

axis is normal to the underlayer, thereby maximising the number of grains adjoining 

the surface of the medium. Experiments with this type of medium have resulted in the 

detection of up to 680,000 flux reversals per inch [6] which indicates that the magnetised 

regions are composed of individual CoCr grains. This far exceeds the capabilities of 

magneto-optic recording which is limited by the wavelength of light [7]. Clearly, higher 

bit densities can be stored on a perpendicular medium than a longitudinal one of this 

type. 

The transitions between bits of opposite polarity are stable in a perpendicular 

recording ie. there is virtually no demagnetising field at the transitions. Therefore 

the transitions are much sharper than in the longitudinal case and at high densities a 

perfect step function is considered a good model of the true transition shape [8, 9, 10]. 

1.3 Recording Heads 

High density recording requires recording heads with high intensity, sharply focused 

magnetic fields. The strong magnetic field is needed to ensure that the medium is 

saturated when a bit is written and hence retains the magnetisation. Steep magnetic 
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field gradients are required to prevent adjacent bits being overwritten in error. 

The conventional longitudinal recording head is the ring head which consists of two 

relatively long poles of opposite polarity separated by a narrow gap. With miniaturisa­

tion of all recording systems, the poles of this type of head are becoming shorter. Heads 

with very thin poles, made by vacuum deposition and photo-fabrication, are termed 

thin film heads. Ring heads can also be used in perpendicular recording but in 1977 

Iwasaki and Nakamura [3] proposed a single pole type head for use in perpendicular 

recording which consisted of a read/write pole on the medium side of the underlayer and 

a larger auxilliary pole on the other side. The double-sided nature of this head makes 

it difficult to use in hard disk drives [11]. Ohtsubo [11] proposed a novel trapezoidal 

perpendicular recording head. The design was refined into a laminated rectangular 

head presented in [12]. The constituents of the laminations were varied to produce a 

non-uniform permeability across the head. A single-sided W-shaped head [13] has also 

been proposed. 

Each of the heads mentioned above, when used for reading, is inductive ie. the 

changing magnetic flux as the medium passes close to the head causes an electric 

current to flow through the coils which are wound around the head, obeying Faraday's 

Law. These heads are usually made of alloys of which the most commonly used are 

Molybdenum Permalloy, Alfenol and Sendust [14], which have been chosen for their 

high permeability and low coercivity. Therefore they are easily strongly magnetised. 

In 1971 the magnetoresistive replay head was introduced by Hunt. This is a very thin 

rectangular-shaped film made from alloys such as nickel-iron, nickel-cobalt or cobalt­

iron [14]. The resistivity of these materials varies with the magnetic field applied to 

them. To prevent the field due to adjacent bits on the medium influencing the sensor, 

shields have been added which also increase the sensitivity of the head [15]. 
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1.4 Motivation 

The demand for smaller, faster machines with high storage capacities drives re­

search on information storage systems. Area! data densities have increased steadily 

from the 2000 bits per square inch of the first random access hard disk, the IBM 305 of 

1955 [16, 5]. Several major manufacturers are experimenting with disk drives capable 

of storing 1 gigabit per square inch and it is hoped that a tenfold increase will be 

achieved within "the next five years by employing magnetoresistive replay heads [2]. 

All present production machines employ longitudinal recording on single layer me­

dia. Although some manufacturers are experimenting with vertical recording, the in­

dustry as a whole is unlikely to consider changing to this technology until a significant 

advantage over longitudinal systems has been demonstrated. Perpendicular particulate 

media can support very high bit densities but systems are limited by the capabilities 

of the recording heads. Interference between the output voltages due to adjacent bits 

and head-dependent ouput nulls restrict the range of usable bit densities. Sophisti­

cated decoding techniques, such as the partial-response maximum-likelihood concept, 

are being developed to cope with a certain degree of adjacent bit interference but any 

system can only operate over a limited range of output voltages. Therefore, if the area) 

data density is to increase to its ultimate limit, improved recording heads are needed. 

In order to evaluate the performance of any combination of head and medium in a 

system for high density magnetic recording, it is important to know the shape of the 

head field. The most common approaches for such field calculations are approximate 

numerical techniques such as finite difference, finite element and boundary element 

methods, Fourier analysis and conformal mapping techniques based on the Schwarz­

Christoffel transformation. Each has its merits and limitations. The numerical tech-

niques may most easily handle complicated geometries but can be computationally 
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expensive, reqrnnng artificial boundaries at distances far from the region of interest 

and large numbers of nodes or elements near pole corners, and are restricted to pro­

ducing numerical output. Fourier analysis is the only approach to provide an exact 

explicit analytic solution, although this is in the form of an infinite series and it is 

necessary to calculate certain coefficients and evaluate field integrals, numerically in 

some cases. The expressions provided by Fourier analysis can lead to approximate 

solutions, useful in practice within their ranges of validity, which may show directly 

the dependence of the field upon the parameters of the problem, and can be valuable 

for further calculations such as system outputs. The conformal mapping method can 

be applied to more complicated geometries than Fourier analysis. It can be fast but 

normally requires a numerical iterative technique to find the inverse mapping, for which 

convergence may be a problem. Both of the analytic methods are used in this thesis. 

Conventional heads are designed to provide a constant pole potential. Two such 

heads, each in the presence of an underlayer, are analysed here for the first time: namely 

the thin film head and the shielded magnetoresistive sensor. Heads with varying pole 

potentials are also considered. Exact solutions for thin film heads and single pole 

heads with linearly graded pole potentials and for single pole heads with arbitrary pole 

potential are derived. These and other published solutions are used to derive output 

characteristics and accurate approximations, for perpendicular replay heads. Further 

details are given in Section 2.2. 

Much of this work has either already been published or has been submitted for 

publication. There have also been three conference presentations of the work. Fourier 

analyses of thin film heads and single pole-type heads all in the presence of underlayers 

have been published in [17, 18] and [19]. Comparison of the replay characteristics of all 

the perpendicular recording heads for which analytic head fields have been obtained 
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to date, are made in [20] . Simple approximations to replay characteristics for single 

pole-type heads are given in (21]. The conformal mapping technique has been used in 

the analysis of a shielded magnetoresistive head for perpendicular replay (22]. 

1.5 Summary 

This introducory chapter has covered: 

• The discovery of the magnetic recording technology. 

• The development of double-layer media for perpendicular recording. 

• Improved bit densities on particulate media. 

• Recording head designs. 

• Evaluation of the merits of various numerical and anaytic mathematical methods. 

• A brief description of t he new knowledge gained from this work. 
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Chapter 2 

Introduction to the Theoretical 

Methods 

2.1 Mathematical Methods 

2. 1.1 Introduct ion 

Here the theory behind the relationships used in the analysis of magnetic recording 

heads and their replay characteristics is de,·eloped from t he laws of physics. The math­

ematical methods which are employed in the new analyses, namely the Fourier and the 

conformal mapping methods, are described with specific reference to the classic cases 

of a single pole head and a ring head, respectively. The Fourier method can only be 

applied to simple geometries but it provides analytic solutions which give causal insight 

into the phenomena observed in practical systems. The conformal mapping method , 

although in principle analytic , usually requires numerical inversion of the mapping, 

but it can be applied to more complicated geometries than the Fourier method. This 

chapter concludes wit h a detailed statement o f the new work contained in this thesis . 

30 



2.1.2 Laplace's Equation 

In simple terms, magnetic fields are caused by the movement of charge eit her as 

an electric current flowing t hrough a circuit or within the atoms of magnetic materials 

due to an inbalance in the spins of the electrons. Magnetic poles are considered to be 

the point sources or sinks of a magnetic field . Flux is emitted from a positive pole and 

t he magnetic field strength H at any point r_ in the field , is t he force exerted at that 

point , due to the magnetic flux density B at r_, which acts in the same direction as t he 

flux . Therefore 

H = J.LoJ.LB , 

where J.Lo = the permeabili ty of a vacuum 

and J.L = the permeabili ty of the material at r_, relative to J.Lo· 

Max.well 's equations summarise t he laws of electricity and magnetism: 

where 

and 

E 

p 
'V·E = -

t:o 

'V·B = 0 

is the electric field vector, 

p is the charge density, 

aB 
\1 X E = ---== - - at 

8E . 
\1 X B = J.Loco ot + J.Lol_ 

c:0 is the permittivity of a vacuum, 

J is t he current density. 

(2.1) 

(2.2) 

(2.3) 

Taking equations (2. 3) only, t he fi rst is the continuity equation for magnetism. In 

stat ic models, the second equation red uces to \1 x B = J.Loi . In a region where there 

are no current sources \1 x B = Q. T herefore \1 x H = Q also. Hence, t here is a scalar 

potential function, <p(x, y ,z), such that H = - \l<p. From (2. 1) and t he conti nui ty 
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equation 

(2.4) 

which is Laplace's equation. Therefore the magnetic field H, exterior to a record-

ing head, can be computed from the solution of Laplace's equation for the magnetic 

potential cp . 

2.1.3 The Fourier Method 

2 .1.3.1 Introduction 

The Fourier method was first used in the context of magnetic recording heads by 

Fan [23], who analysed t he field of a single pole head in the presence of an underlayer. 

Except for the new models to be presented in Chapter 3, the Fourier method has been 

applied to: 

• A single pole head with an underlayer [23]. 

• A ring head without an underlayer [24, 25, 26, 27]. 

• A ring head with an underlayer [28]. 

• A symmetrically shielded pole head with an underlayer [29]. 

• A symmetrically shielded MR head without an underlayer [30]. 

In each case, the following modelling ass umptions have been made: 

1. The head is infinitely deep, so that a two-dimensional model is applicable. 

2. The pole pieces have perfectly rectangular corners. 

3. The pole pieces are infinitely hig h. 
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4. The pole pieces are infinitely permeable and therefore each has a constant mag­

netic potential distribution. 

5. The effect on t he field exterior to the pole pieces due to the recording medium, 

other than the possible presence of an underlayer, is negligible. 

6. Where an underlayer is present, it is infinitely permeable and infinitely long. 

Assumption 1 is valid because typically the track width of a pole or ring head is at 

least 10 times the other significant dimensions . However as the areal density of the 

bits of digital information recorded onto disks increases, this assumption is becoming 

less realistic. Assumption 2 results in singularities in the solutions at the corners of the 

pole pieces, although in reality the magnetic material in these regions saturates [31] . In 

general, the pole pieces are much higher than the length of either the gap , in the case 

of a ring head , or the head - underlayer separation for a single pole, hence assumption 

3. The pole pieces are constructed from very high permeability materials, hence as­

sumption 4. Assumption 5 depends on the fact that t he permeability of the recording 

medium is very low compared with that of the pole and the underlayer. Recording 

media are designed in this way so that a strong magnetic field is needed to affect their 

intrinsic magnetic domains . Hence also, they retain the information recorded on them 

for long periods of time unless t hey are further exposed to sufficiently strong mag­

netic fields. Therefore, relat ive to the pole and the underlayer, the permeabili ty of 

the medium is only slightly greater than that of air, which is also only slightly greater 

t han the permeability of a vacuum. The underlayer, which is usually a part of the 

recording medium, is very long compared to the recording head and is made of a very 

high permeabili ty material such as nickel-iron (assumption 6). 
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The Fourier method relies upon dividing t he area exterior to the recording head 

and the underlayer , if one is present, into rectangular regions. In a region between two 

parallel boundaries on each of which the potential is known, Laplace's equat ion can 

be solved by the technique of separation of variables [32], which results in an infinite 

series solution dependent on at least one set of coefficients. The Fourier transform 

method [32] is applicable in a semi-infinite region producing an integral solution which 

depends on an unknown function, say C(k). The sets of coefficients and the unknown 

function are found by matching the solutions and the appropriate derivative at the 

common boundary between the regions, so ensuring that the complete solution is both 

continuous and smooth. C( k) is found in terms of the coefficients which themselves 

are defined by infinite systems of linear algebraic equations. 

The Fourier method is demonstrated here by Fan's solution for a single pole head 

[23] and the models and some of the results for each of the other head configurations 

listed above are given, in coordinate systems and notation consistent with that used in 

this thesis. 

2.1.3.2 The s ingle pole head 

Fig. 2.1 shows Fan 's idealised two-dimensional model of the single pole head with 

an underlayer [23]. A semi-infini te pole of width 2L is perpendicular to and at a 

distance t from an infinitely long, highly permeable underlayer at zero potential. T he 

pole is assumed to have a constant potential V and the negat ive potential pole is 

effectively the reflection of the positive pole, in the underlayer. Due to symmetry it is 

only necessary to solve Laplace 's equation for x ~ 0 and the area is furt her subdiYided 

into two regions, Band Cas shown. The general solut ions to Laplace's equation which 

satisfy the boundary conditions in these two regions are, with the subscript denoting 
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Figure 2.1: The single pole head . 

the region and the superscript P denoting a conventional single pole head, 

p t-y ~ p (mr(t-y)) (n1rx) 
cp8 (x, y) = V-t- + ~En sin t cosh - t - (2.5) 

and 

(2.6) 

Matching the solutions at x = L gives: 

C(k) = 2V kLf tsin(k) kLf t ~BP ( - )n h (mrL) sin(k) 
e 2 + e L..- n 2n 1 cos k2 ( ) 2 . 

7!" k n= l t - n 71" 
(2.7) 

So that in region C 

p 2V P ~ P (n1T" L) P cpc(x,y)=-!0 + LBn2n(-ltcosh - In 
7!" n=l t 

(2.8) 

where 

JP_ ( 00 sin(k) sin (k(t- y) jt) e-k(x- L) / t dk 
n - Jo k2 - ( n1l" )2 . 

(2 .9) 
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Now matching the x derivatives of both solutions at x = L gives 

1r P (m1r L) 00 (mr L) -Bmsinh -- + 'LB~n7r(-1)m+ncosh -- lmn =V(- l)m+lJmo , 
4 t n=l t 

(2.10) 

for m = 1, 2, 3, · · · where 

(2.11) 

which is an infinite set of linear algebraic equations for the coefficients B~ depending on 

the ratio Ljt only. Normalised coefficients, B~' = B~ cosh(m1rLjt)jV, are computed 

by truncating the system of equations to some finite size N x N. Fan gives no fur ther 

information on how he evaluated the constants, in [26] N = 6 was used and in [27] 

systems up to 640 x 640 were solved and extrapolation using library routines [33] was 

used to obtain coefficients correct to 6dp. 

The normalised horizontal Ht = -8cpp j8x and vertical H{ - 8cpP / By field 

components follow by partial differentiation, 

{ 

- L:~=l B!' nt sin ( mr(~-y)) sinh ( n;z) I cosh ( n:L) 

1._ jP + "'oo BP' 2n( - l)n JP 
lft 0 l.Jn= 1 n t n 

(2.12) 

{ 
~ + 2:::~= 1 B:' ~7( cos ( nlf(~-y) ) cosh ( n;z) I cosh ( n:L) 

1..f{P + "'oo_ BP'2n(- l )" J(P 
lft 0 l.Jn- 1 n t n 

O< x < L 
- - (2 .13) 

L S:. x < oo 

where 

(
00 k sin(k) sin (k(t - y) j t) e -k(z-L) / t dk 

Jo k2 - (n1r) 2 
(2.14) 

1
00 ksin(k)cos(k(t - y) j t) -k(x- L) / t 

k2 ( ) 2 e dk . o - n1r 
(2.15) 
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The integrals Imo and Imn are given in closed form by Fan [23], and appear in Appendix 

A, Section A.2.1. Analytic expressions for integrals of the same form as I;:, 1;: and 

x;: are given in (25] and are given in Sections A.3.1, A.3.2 and A.3.3, respectively. 

2.1.3.3 The ring head without an underlayer 

The ring head without an underlayer has also been analysed by Fan [24] under the first 

five assumptions of Section 2.1.3.1. The idealised two-dimensional model is shown in 

Fig. 2.2, in the more generalised form adopted here. 

POLE 
cp = -V 

REGION C 

REGION 
A 

G = 2g 

POLE 
cp = + V 

Figure 2.2: Ring head without an underlayer. 

The semi-infinitely long and high pole pieces at constant potentials +V and -V 

are separated by a gap of width G = 2g. T he area exterior to the head is divided into 

two regions A and Cas shown, and due to the symmetry of the model about the centre 

of the gap , Laplace's equation is solved for x 2 0 only. 

In a practical system, the recording medium would pass through reg1on C only, 

where, wit h the superscript R denoting a ring head without a n underlayer , 

R 2V R ~ R n R 
t.p (x ,y) = -/0 + L An2n( - 1) In 

7r n=l 

y 2 0 (2.16) 
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and 

(2.17) 

The normalised coefficients A!' = A!/V satisfy the infinite set of linear algebraic 

equations 

00 

~AR' ..L ""AR'mr(-1)m+nJ = (-1)m+lJ 4 m ' ~ n mn mO 
n=l 

(2.18) 

for m = 1, 2, 3, · · · with Imn and Imo defined by (2.11). Coefficients correct to 6dp. 

have been obtained by Wilton [27] which are consistent with those evaluated in [26] 

but which exceed the values given in [25] and [24]. 

The normalised horizontal and vertical field components in region C follow by the 

partial differentiation of (2 .16) so that 

= _2_ (arctan (g + x) + arctan (g- x))- f A~' 2n(-1tK~ (2 .19) 
rrg Y Y n=l 9 

(2 .20) 

where 

roo k sin( k) sin ( kx 1 g) e -kyf 9 dk 
lo k2- (nrr)2 

(2.21) 

(
00 k sin(k) cos (kx/ g) e-kyfg dk, 

lo P - (nr.)2 
(2.22) 

and the first terms of (2.19) and (2 .20) are -2K: frrg and 21: frrg respectively. I!;, 

J!; and K:; are of the same form as If: (2 .9), Jf: (2.14) and K~ (2.15) respectiYely, 

with (t- y) f t replaced by xfg and (x - L)ft replaced by y fg, closed form expressions 

are listed in Sections A.3.1, A.3.2 and A.3.3 respectively. The similarities between the 
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fields of a single pole with an underlayer and a ring head without an underlayer have 

been discussed in [27] . 

2.1.3.4 The ring head with an underlayer 

The ring head with an underlayer has been analysed in [28], under the assumptions of 

Section 2.1.3 .1. The idealised two-dimensional model is shown in Fig. 2.3 . The pole 

pieces at constant potentials +V and - V are separated by a semi-infinite gap of width 

G = 2g and are at a distance t from the underlayer at zero potential. The area exterior 

to the pole pieces and the underlayer is divided into two regions A and C as shown. 

In a practical system, the recording medium would pass through region C only where, 

U N DERLAYER cp = O 

I 
I REGIO N C 

--4-
POLE REGIO N POLE 
~ = -V A ~ = +V 

G =2g 

Figure 2. 3: Ring head with an underlayer. 

wi th the superscript RU denoting a ring head with an underlayer, 

(2.23) 

a nd 

]RV = ( 00 sin(k) sin(kx jg) sinh (k(t - y )jg) dk . 
n lo k2 - (nrr) 2 sinh (kt fg) 

(2.24) 
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The normalised coefficients A!U' = A!u fV, which depend on gf t, satisfy the infinite 

set of linear algebraic equations: 

00 

~ARU' + ~ ARU'mr(-1)m+n JRU = {- 1)m+l JRU 4 m L_- n mn mO 
n = l 

m= 1, 2, 3, · · · (2.25) 

where 

{2.26) 

Hence, the normalised horizontal and vertical field components for 0 ~ y ~ t are 

given by 

(2 .27) 

and 

(2.28) 

where 

KRU = { 00 ksin(k)cos(kxfg) sinh{k{t- y) fg) dk 
n Jo k 2 - {mr)2 sinh{kt/g) 

{2.29) 

and 

J:u = (00 k sin{k) sin(kxfg) cosh (k(t - y)fg) dk. 
lo k2- (mr)2 sinh(ktfg) 

{2.30) 

Closed form expressions have not been obtained for the integrals J:!,~, I/:u , J/:u and 

K/:u. As t ---+ oo, each of these integrals approaches the corresponding integral for the 

ring head without an underlayer , eg. limt ..... oo 1:;-u = I/: {2.17). Numerical integration 

of I:!,~ [33] in the evaluation of the coefficients via equn. (2.25) limits the size of the 

system which can be used . Coefficients believed correct to 4dp. have been obtained 

using a system of 40 linear equations [28]. 
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2.1.3.5 The symmetrically shielded pole head 

Wilton and Mapps [29] have analysed the symmetrically shielded pole head in the 

presence of an underlayer, under the assumptions listed in Section 2.1.3.1. Each shield 

is assumed to be both semi-infinitely high and long and to be infinitely deep. The 

potential across each shield is assumed to be constant at a V. In later work , for Chapter 

4, it has been found that for semi-infinitely long shields a = 0. For this head geometry, 

it is possible to divide the area exterior to the pole , shields and the underlayer in 

two ways, so that two equivalent solutions can be obtained. However, both of these 

solutions require two sets of Fourier coefficients unlike each of the solutions g1ven m 

the previous three subsections , where only one set of coefficients is needed. 

The idealised two-dimensional model for the first solution is shown in Fig. 2.4. The 

SHIEL D 
~ = aV 

U N DERLAYER <P = 0 

POLE 
~ =V 

2 L 

SHIELD 
v:> = a V 

Figure 2.4: Symmetrically shielded pole head - Solu tion I. 

semi-infinite pole of width 2£ , a t consta nt potential 1', is separated from each shield at 

constant potential a V by a gap of width G = 2g. The faces of the pole and both shields 

lie in t he same plane, which is parallel to , and at a distance t from, t he underlayer a t 

zero potential. For Solu tion I , the non-conducting a rea is di vided into two regions A 
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and C, as shown where, with the superscript I denoting Solution I, 

where 

V(G+(a-l}(:c-L)) + "()() AI . (mr(:c - L- g)) en7r!J/9 
G L..n= l n stn g 

+" 00 BI ((n- H•r(:c-L-g)) (n- H~ry/g 
L..n=l n cos g e L ~ X ~ L + G, y ~ 0 

(1 - a) 2
: L 0 + aV (~) 

+ E:=l A~4n( - 1)n+l Ln + 2::'=1 B~4 (n - ~) ( -1)nMn 

0 ~ X < 00 1 0 ~ y ~ t 

(2.31) 

f oo sin(k) cos(kx fg) sin(k(L + g)fg) sinh(k(t - y)fg) dk (
2

.
32

) 

lo k2 - (mr)2 sinh(kt/g) 

(
00 cos(k) cos(kxfg) cos(k(L + g) fg) sinh(k(t- y) fg) dk . (

2
.
33

) 
Jo k2-((n-~)1r)2 sinh(ktfg) 

The normalised coefficients, A~ = A!../ V and B! = B!,..jV , which depend on the ratios 

Lfg and gj t , satisfy the two coupled infinite systems of linear algebraic equations 

~A~+ f A~'2n1r( - 1)m+n lmn + f B~'2 ( n - ~) 1r{ - 1)m+n+l Kmn 
n = l n = l 

= {- 1)m+l(a - 1)lmo (2.34) 

f A~' 2n1r ( - 1)m+n+t Knm +~B.!: + f B~'2 ( n - ~) 1r( - 1)m+n Lmn 
n =l n = l 

= (- 1)m(a - l)Kom + ag{-l)m 
2 

(2.35) 

27rt (m - t) 

both for m = 1, 2, 3, · · · where, 

= coth - dk 1
00 ksin

2
(k)sin

2
(k(L + g) / g) ( kt ) 

o [k2-(m1r)2][k2 -(n7r)2] g 
(2.36) 

Kmn 
= ( 00 k sin(k) cos(k) sin(k( L + g) / g) cos(k(L + g) / g) (kt ) (

2
.
37

) 
) 0 [k2-(m1r)2][k2-((n - ~)7r)2] coth g dk 
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and 

(2.38) 

The normalised field components are obtained from (2.31) by partial differentiation so 

that the vertical field component in region C is given by 

2 a ~ r'4n n +l (1 - a) - No+ -+ 0 An - (-1) Nn 
g1r t n = l g 

(2 .39) 

where 

Nn = { 00 k sin(k) cos(kx jg)sin(k(L + g) / g) cosh(k(t - y)Jg) dk 
lo k2- (n1r)2 sinh(ktjg) (

2
.40) 

and 

Pn = f oo k cos(k) cos(kxjg) cos(k(: + g) fg) cosh(k(t - y) jg) dk . 
lo k2 _ ((n _ ~)1r) sinh(kt jg) 

(2.41) 

The division of the non-conducting area into three regions A, B and C, for the 

second solution, is shown in Fig. 2.5. For this model, the recording medium passes 

through all three regions so that , with the superscript II denoting Solution II, 

V(t - y) + '\'OO CH · (mr(t-y) ) h (n.,.:z: ) 
t L.Jn= l n Sill t COS t 

2V( JII + a QII) + '\'oo_ Cll2n( - 1)ncosh (n.,.L) JII 
.,. 0 0 L.J n - l n t n 

a:V(t-y) + '\'00 D II · (n.,.(t-y) ) - n11"xjt 
t L.Jn=l n Sl n t e 

43 

0 ~ X ~ £ , 0 ~ y ~ t 

L ~ X ~ L + G, y ~ t 

X ~ L + G, 0 ~ y ~ t 

(2.42) 



where 

SHIELD 
cp = a V 

UNDERLAYER cp = 0 

POLE 
cp =V 

2 L 

SHIELD 
cp = a V 

Figure 2.5: Symmetrically shielded pole head - Solution II. 

JII = n 

l oo sin(k) sin(k(t- y) jt) sinh(k(L + G- x) j t) dk 
o k2 - (mr)2 sinh(kG/ t) 

Q;( = 
hoo sin(k) sin(k(t - y) j t) sinh(k(x - L) / t) dk. 
o k2 - (mr) 2 sinh(kG/ t) 

(2.43 ) 

(2.44) 

T he normalised coefficients C II' = C 11 cosh(m1r Ljt )/V and D II' = D Il e-m..-(L+G)ftjV 
l m m m m ' 

which depend on t he ratios Ljt and Gjt , satisfy the two coupled infinite systems of 

linear equations 

71" , (m71" L) 
4c,!;l tanh - t -

00 00 

+ L C!I'n11" ( - l)m+n J~~ + L D~I'n7r( - l )m+n+l.Mmn 
n= l n= ! 

(2.45) 

00 

L C!1' n7r( - 1 )m+n+l 'vlmn 
n=l 

00 

+ ~ DU' + ~ D II' n11"( - l)m+nJll 4 m L...- n mn 
n =! 

(2.46) 

both for m = 1, 2, 3, · · ·, where 

(2.47) 
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l oo ksin
2
(k) h (kG) dk 

:-:-:---,---~-----:---:-=COSeC - . 
o [k2- (m7!")2][k2 - (nr.-)2] t 

(2.48) 

The normalised vertical field component, obtained by partial differentiation of 

(2.42), for Solution II is: 

2.(KII + aRII) + "oo cn'2n( - 1)nKII 1rt 0 0 L-1 n t n 

+ "oo D II' 2n ( -1 )n R II 
L-1 n t n L ~ X ~ L + G, 

~+ "oo flii' ~ (n1r(t-y)) - n1r(z- L- G) j t 
t L..n=l n t cos t e X 2: L + G, 

O ~ y ~ t 

(2.49) 

where 

KII = { 00 ksin(k)cos(k(t- y)Jt)sinh(k(L +G - x)/t) dk 
n lo k2 - (nr.)2 sinh(kG/t) 

(2.50) 

and 

R 11 _ { 00 k sin(k) cos(k(t- y)ft) sinh(k(x - L)/t) 
n - lo k2 - (nr.)2 sinh(kGjt) dk · (2 .51) 

Closed form expressions for the integrals which occur in both of the solutions for 

the symmetrically shielded pole head have not yet been derived. When the area ex-

terior to the pole, shields a nd the underlayer is divided as shown in Fig. 2.5 (Solu-

tion II) , as the gap length increases the geometry approaches that of a single pole 

head . Hence, lim9 _,00 I!;,1n = Imn where Imn is giYen for a single pole head by (2. 11) 
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and lim9 -.00 Mmn = 0. Similarly for the potential and the vertical field compo­

nent, lim9 ..... 00 !nil = 1:: (2.9) and lim9 ..... 00 Qn = 0, lim9 ..... 00 K;1 = K:: (2.15) and 

lim9 -.00 R,. = 0. Numerical integration [33] of lmn, Kmn, and Lmn (equns. (2 .36) 

- (2.38)) for Solution I, and of I;!n and Mmn ( equns. (2.47) and (2.48)) for Solution 

II, limit the size of the sys tems of equations it is possible to solve for the coefficients. 

In [29] a system of total size 40 x 40 for Solution I and of size 80 x 80 for Solution II 

was used . For Solution II, the recording medium passes through all three regions but 

for Solution I it lies in region C only. Close to the boundaries between the regions, 

relatively large numbers of terms in the series are necessary for convergence. There­

fore, computationally, Solution I is preferable to Solution II. Solution II is useful for 

comparison with other models which are divided in the same way, and for deriving 

approximations , as will be discussed in Chapter 3. 

2.1.4 The Conformal Mapping Method 

Conformal mapping methods have been used to obtain the exact head fields of 

idealised two-dimensional models of magnetic recording heads including: 

• Gapped planes [34, 35, 36]. 

• Symmetric ring heads without underlayers [34, 35, 37, 38, 36]. 

• Symmetric ring heads with underlayers [37, 39]. 

• Symmetric thin film heads without underlayers [40, 41, 36]. 

• Single pole heads wit h underlayers [42 , 43] 

• Symmetrically shielded, infinitely t hin magnetoresistive sensors [44] . 

• Infinitely t hin single pole heads with underlayers [45]. 
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• Asymmetric thin film heads without underlayers [41]. 

• Finite height, symmetric thin film heads without underlayers (46] . 

• Asymmetric ring heads without underlayers (47, 48]. 

• Asymmetric ring heads with underlayers (49]. 

• Symmetric and asymmetric polygonal thin film heads (50]. 

The modelling assumptions made in most cases are the same as those given in 

Section 2.1.3.1 except for assumption 2 which is not applicable to the analyses of the 

asymmetric ring and thin film heads. Assumption 3 does not apply to (46] or (50]. 

This method of analysis makes use of the fact that the real and imaginary parts 

of a complex analytic function satisfy Laplace's equation [32]. Under a conformal 

mapping, harmonic functions remain harmonic and constant potential boundary con-

ditions transform 'directly' . Therefore, by conformally transforming the problem onto 

a simple region of the complex plane where all the boundary conditions are defined, 

the solution in the complex w-plane is readily deduced. For all the examples quoted 

above, the area exterior to either the full or the semi-head and the underlayer, if one 

is present, is mapped to the entire upper half of the complex plane, by means of the 

Schwarz-Christoffel transformation [51, 32] . This maps any polygon in the complex 

z- plane onto the complex w-plane, so that the boundary of the polygon lies along the 

real axis of w-plane. For a polygon with internal angles o:, /3, /, · · · at vertices A, B, 

C, · · · respectively, mapping to the points a , b, c, · · · on the real axis in the w-plane, 

the transformation is given by 

dz _ S( )a/1r- l( b){3 j1r - l( )..,;-.. - 1 -- w-a w - w - e ... 
dw 

(2.52) 
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where S is a scaling and rotating constant . On integration, a further constant of 

translation z0 is obtained. Any convenient vertex may be mapped to ±oo, and does 

not appear in the transformation. A further two points on the w-plane may be fixed 

at convenient values according to the problem. The coordinates of the other points 

on the w-plane real axis corresponding to the remaining vertices of the polygon in the 

z-plane are found by either comparing the solutions in the two planes or by residue 

methods [32] . This may result in a system of non-linear equations which must be solved 

numerically [33]. 

When the area in the z-plane exterior to the head and underlayer, if one is present , 

maps to t he entire upper half of t he complex w-plane so that the potential along v = 0 

is completely defined, the solution to Laplace's equation may either be deduced by 

observation or it can be derived using the complex Poisson integral [32], 

i Joo 1 + pw _ 
F(w) = ; - oo (1 + p2)(w- p) c,o(p) dp (2.53) 

where F( w) is the complex potential function , whose real and imaginary parts define 

the potential and the flux: respectively, and cp(p) is the known potential along the real 

axis , in thew-plane. From the Cauchy-Riemann equations, it can be shown that [32] 

H _ iH = _ dF(w) I dz . 
z Y dw dw (2.54) 

Therefore the transformation must be inverted in order to evaluate the field compo-

nents. Except in very simple cases, the inversion requires numerical treatment . 

The study by Weslmijze [35] includes a solution for the ring head without an un-

derlayer which is used here to demonstrate the method. The dimensions are scaled and 

the order of the poles is reversed from that used by Westmijze to be consistent with 
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the Fourier solution of Section 2.1.3.3. 

2.1.4.1 The ring head without an underlayer 

Fig. 2.6 shows the idealised model, as described in Section 2.1.2.3, in the z-plane. Using 

the Schwarz-Christoffel transformation, the points A, B, C, D and E in the z-plane are 

mapped to A' , B' , C' , D' and E', respectively, in the complex w-plane, as shown in 

Fig. 2.7. C and D are treated as a single vertex with interior angle of 0°, occuring at 

z = ( - g/ 2, -oo ). 

A 

POLE 
cp = - V 

c 

lE 
I 

I 

4 x 
I 

I 

IQ 

POLE 
cp = + V 

Figure 2.6: Ring head without an underlayer in the z-plane. 

V 

1 
B' 

u 
) 

1 

A' C 'O' 

Figure 2. 7: T he complex w-plane. 

E' 

Under the condi t ions for a Schwarz-Christoffel transformation , A. and E are mapped 

tow = -oo and w = + oo respectively and the positions of B' and C' D' are chosen as 

the convenient points w = 0 and w = 1, respectively. T herefore the mapping function 

IS 

dz fo 
-=5-- . 
dw w - 1 

(2.55) 
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Integrating gives 

(2.56) 

Applying the method of residues at the open vertex CD, where there is a jump in the 

z-plane, gives S = ig( rr, and equating the solutions at B and B' where z = - g and 

w = 0, gives z0 = 0. 

The complex potential function, as defined above, which satisfies Laplace's equation 

with the boundary condition cp( u , 0) = -V for u :::; 1 and cp( u, 0) = 0 for u > 1 is 

Hence, 

.V 
F(w) = t - ln(w - 1). 

7r 

dF(w) 
dw 

. V 
- t ---:-----:-
- 1r(w - 1) ' 

so that the field components a re given by 

(2.57) 

(2.58) 

(2.59) 

Therefore it is necessary to solve equn. (2.56) explicitly for specific values of z. Clearly, 

t his requires numerical treatment. Due to the limited computing facilities of the time, 

Westmijze investigated the solution along the boundary A- E only, where JW is easily 

evaluated. More recent solutions [38] and [36] have used the Newton-Raphson method 

[51], 

to ob ta in the field components in the region of inte rest. For \\ estmijze's solut ion 

J(w ) is given by rearranging equn . (2.56) so that the full expression equals zero and 

J'(w) = dz/ dw as given by equn . (2.55). Accurate initia l values w0 must be chosen 
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m order that the Newton-Raphson method will converge. Curland and Judy [38] 

substituted for win terms of F(w) into both f(w) and f'(w) of their solution to obtain 

a single expression for the quotient in equn. (2.60); the Karlqvist approximations 

(see Section 2.1.4.2) provided suitable starting values for the inversion process. A 

later solution by Yang and Huang [36] mapped the entire head to the complex plane 

and employed a slotted plane solution, which, due to its simplicity, could be inverted 

analytically, to provide the initial values for the Newton-Raphson iterations. 

Details of other solutions by this method are omitted here as they give no further 

insight into the method or into the fields of the individual heads without numerical 

evaluation. 

2.1.4.2 The Karlqvist approximations 

Exact conformal mapping solutions were used by Karlqvist [37] to assess the accuracy of 

his approximations. He compared the exact potential across the straight line joining the 

gap edge corners of symmetric ring heads of several types with a linear approximation 

to the potential. The configurations which he considered included: 

1. Assuming t he pole pieces were infinitely high with internal angles of 90° when 

the medium had infinite permeability. This is equivalent to later analyses for 

symmetric ring heads in the presence of an underlayer, as shown in Fig. 2.3; 

2. As in case 1 but with internal angles of 0° , making the head infinitely thin; 

3. As in case 1 but with the relative permeability of t he medium assumed to be 

unity, as has been assumed for later analyses of ring heads without underlayers , 

as shown in Fig. 2.2, 

and other more general specifications for the medium. His results showed that a linear 

approximation to the true potential ac ross the gap was most accurate for case 3 and 
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least appropriate for case 1. Applying t he linear approximation in case 3, the potential 

at any point outside the head was computed using the well-known solution for the half 

plane [52]: 

y Joo cp(u,O) 
cp( X 1 Y) = - 2 ( ) 2 du · 

7r - oo y + U - X 
(2.61) 

Hence, the following approximate horizontal and vertical field components were ob-

tained , for the present coordinate system: 

and 

V ( (g +x) (g -x)) H.,(x,y) ~- 1rg arctan - y- + arctan - y-

V (y2 + (g + X )2) 
Hy(x ,y) ~ - ln 2 ( )2 · 

27rg y + g - X 

2 

-1.5 _, - ..5 0 0..5 2 

x/g 

y/g = 0.1 (E) 

YL9.= 0:1_~ ­

)i"g == Q.~ {El 
n:= o.3_{!Q_ 

Y!9. := ...Q.~ .ID.. 
y/g_::_Q~Jt0. 

Yia:::: .. 9.:!.(Q_ 
y/_g_= 0.7 (& 

y/g = .9:~ (E)_ 

yfg_..::_0.9 .llil. 

(2.62) 

(2.63) 

Figure 2.8: The Karlqvist approximation (K-curves) and the exact (E-curves) horizon­
tal field component for a ring head without an underlayer, g = 0.5. 

Karlqvist demonstrated that these approximations provided acceptable results at 

distances from t he head of y > 0.5g as shown in Figs . 2.8 and 2.9. Here the negative of 

the horizontal fie ld is plotted which corresponds to a reversed polarity of the poles and 

follows the convention for this head . So because of their comparative simplicity, they 
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1..5 
y/g = 0.1 (Ej 
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Figure 2.9: The Karlqvist approximation (K-curves) and the exact (E-curves) vertical 
field component for a ring head without an underlayer, g = 0.5. 

have formed the basis of much of the later analytic work. But for present day systems, 

where the head - medium separation is very small, they are not suffic iently accurate. 

The Karlqvist approximations are t he leading terms of the exact field components 

equns. (2 .19) and (2.20) derived by Baird [25] from Fan's Fourier solution [23]. 

2.1.5 The R eciprocity Theorem 

The reciprocity theorem provides a method of calculating the output from a par-

ticular head , reading a known magnetisation pattern on the recording medium, if the 

field of the read head is also known. This is easier than directly calculating the flux due 

to the medium which threads the head coils and is the standard method of evaluating 

outpu t. The theorem is derived from the properties of electricity and magnetism. Here 

the derivat ion is specifically tailored to perpendicular replay where the magnetisation 

on the medium is assumed to have a vertical component only although the theorem 

can be extended to apply to the general case. 

If two coils , cl and c2, in separate electric circuits , are placed close to each other 

but do not actually connect, passing a current through one coil will induce a current 

in the other. This is because the energised coil exhibits a magnetic field , whose flux 
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threads through the other coil. The roles of the two coils are interchangeable. The 

fiux, </>, threading through one coil depends on the current, i, passing through the other 

coil so that [53] 

and (2.64) 

where Lm is the mutual inductance, a constant for a particular pair of coils. 

A recording head is wound with a coil C1 , and the magnetisation on the recording 

medium can be considered to be a varying solenoidal electric current i 2 in a coil C2 . 

For perpendicular recording, the medium has a vertical anisotropy and so is assumed 

to be affected by, and to affect , the vertical component of the head field only. 

m edium travel ling at velocity v 

d 

( ) 
x -vt 

head face plane 

Figure 2.10: The coordinate systems for the head and the medium. 

Fig. 2.10 shows the coordinate systems for the head and for the magnetic medium 

of thickness o and track width w (into the page) , a t a distance d from the head face 

plane, which moves across the head at velocity v. The fiux though a small cross section 

of the medium, oy oz, caused by the current i 1 is 

(2 .65) 

where tto is t he permeabili ty of a vacuum as assumed for t he medium (Section 2.1.3). 
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At x' on the medium, the small component of equivalent current 5i 2 due to a small 

length of the medium ox' associated with they component of the magnetisation My( x') 

lS 

(2.66) 

(2.67) 

The total flux threading the head coil is given by integrating over the entire volume of 

the medium: 

1-Lo (w/2 (dH (oo 
tP1 = ~ lz=-w/

2 
}y=d l :r:=-oo My(x-x )Hy(x, y)dxdydz. (2.68) 

If the track width w of the medium is assumed to be large compared with its other 

dimensions, as in the case of two-dimensional models then , dropping the subscripts, 

/-LoW (dH ( oo 
tjJ = -t-. }y=d l :r:=-oo lHy(x - x) Hy(x , y) dx dy . (2.69) 

The out put voltage for an inductive head depends on t he rate of change of flux 

threading through it so that 

(2. 70) 

In a magnetoresistive head, the resistance of the sensor depends on t he magnitude of 

t he flux from t he medium, which can be measured by passing a current across t he 

sensor . T herefore, for a deep head, reading from a pe rpendicular medium , t he outp ut 
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voltage is 

(2. 71) 

2.2 Introduction to the New Applications 

Perpendicular recording has been shown to be capable of achieving optimum bit density 

magnetic recording both theoretically [54] and experimentally [6]. The aim of the 

work presented here is to extend the knowledge of perpendicular recording systems 

in particular, and therefore all of the new analyses are for heads in the presence of a 

highly permeable underlayer. 

In Chapter 3, the Fourier method is first applied to the conventional thin film head, 

with pole pieces at constant potentials. Previous solutions for thin film heads without 

underlayers have been obtained by a boundary element method [55], the finite difference 

method [56] and conform a! mapping [41, 36]. When an underlayer is present, a finite 

difference solution has been given in [56] and the Fourier solution has been derived 

independently and published almost simultaneously in [57]. Approximations to either 

the magnetic potential or the field components in the head face plane at y = 0, from 

which approximate integral solutions can be obtained, have been suggested by several 

authors. For the case of no underlayer, approximations to the potential are given in 

[58] and [59], and approximations to the horizontal field component at y = 0 are given 

in [60, 61, 62]. In [60] and [61] a finite difference method has been used to obtain the 

horizontal field component at y = 0 and then a simple model has been fitted to the 

numerical results. The same method can be applied when an underlayer is present, but 

the approximation has not been published. Yeh [63] gives an explicit approximation 

to the potential at y = 0, derived from the Karlqvist approximation to the horizontal 

field component for a ring head which will be discussed further in Section 3.1.4. 
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The field components for the thin film head have peaks due to the outer edges of 

the pole pieces which, although they are of lesser magnitude than the peaks due to the 

gap edges of the pole pieces, could influence the medium during the writing process. 

As the whole of the vertical field component is convolved with the magnetisation on 

the medium when evaluating perpendicular output via the reciprocity theorem, the 

outer peaks always influence the replay characteristics, and in Chapter 4 this effect is 

shown to limit the upper usable frequency of the head. In order to reduce the effect 

of the pole edges, a linear potential distribution, rising from zero at the outer edges 

to maximum magnitudes at the gap edges is applied and shown to give better results. 

Mallinson [64] states that the true potential distribution across the poles of a thin film 

head is not constant and that a linear distribution is probably a better approximation. 

Due to the beneficial effect of the linear potential poles on the field components of 

a thin film head, the Fourier method is used to analyse a single pole head with a linear 

potential rising from zero at one edge to a maximum at the other edge. The method 

is also generalised to apply to single pole heads of arbitrary pole potential and several 

potential distributions are investigated. 

Each of the exact solutions is in the form of an infinite series dependent on at least 

one set of coefficients which must be computed by the solution of a truncated, infinite 

system of linear algebraic equations. Single term approximations to the potential in the 

head face plane, independent of the coefficients, are derived from the exact solutions 

to evaluate approximations to the head field components, for each head configuration. 

These approximations are shown to give good results, especially close to the head face 

plane, where Karlqvist-type approximations, obtained by taking the leading term only 

of each of the field components, are least accurate. 

New conformal mapping solutions are derived for idealised 2-dimensional models 
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of infinitely thin magnetoresistive (MR) elements both symmetrically and asymmetri­

cally placed between shields of semi-infinite width. The pole is permitted to be recessed 

and an underlayer is assumed present. By allowing the shield - underlayer distance 

to increase, the case of no underlayer may also be modelled. Previous analyses of 

non-recessed shielded heads for longitudinal recording, include an approximation for 

_the horizontal field component based on the superposition of two simple Karlqvist ring 

head approximations [65], generalised in [66] to the asymmetric case. Transmission 

line models have been considered in [67] and [68]. In [44] a conformal mapping so­

lution was developed for an infinitely thin, non-recessed head symmetrically placed 

between shields of finite width with no underlayer present. Recent purely numerical 

finite element and boundary element analyses include [69, 70, 71, 72]. The effect of 

pole recession was briefly considered in [73] using an approximate Fourier/Karlqvist 

solution and in [74] using a large scale resistive paper model. An exact solution for the 

symmetric case in the presence of an underlayer, using Fourier analysis was given in 

[29], and whilst in principle this approach would extend to the asymmetric problem, 

the calulations would seem to become rather complicated. 

The effects of varying the individual head parameters are investigated. Heads with 

graded pole potentials are shown to have locally stronger vertical field components, 

close to the head face. 

In Chapter 4, the reciprocity theorem is invoked to provide the output character­

istics for each of the heads considered in Chapter 3 and also for the ring head and 

the symmetrically shielded pole head both in the presence of an underlayer, for which 

the head fields are given in [28] and [29] respectively and have been summarised in 

Sections 2.1.3.4 and 2.1.3.5 respectively. The output characteristics computed are: the 

spectral response function and the phase thereof, linear dibit shift and roll-off. Each 

58 



measure is defined and its method of evaluation is explained within the appropriate 

section of the chapter. Since the analysis of ring heads for longitudinal recording [24] 

until this work, the only exact analytic spectral response function published has been 

for a parallel plate head without an underlayer [75]. Other theoretical studies of the 

replay process have provided either purely numerical results, which give no causal in­

sight, or approximations to the response functions which often fail to predict certain 

phenomena observed in practice. These approximations include: 

1. The assumption of a simple form for the potential in the pole face plane [65, 76, 

77, 63, 78, 62] 

2. Superposition or extension of known exact or approximate results [75, 79, 66, 64]. 

3. The assumption of duality between a ring head for longitudinal recording and a 

single pole with an underlayer [8]. 

Here, the effects of varying the individual head parameters are investigated. Com­

parisons are made between the results for each of the different head configurations, and 

also with other published theoretical results. Where possible, the underlying modelling 

assumptions are justified by reference to published experimental data. 

Finally, in Chapter 5, recommendations for optimising the achievable bit density, 

given the present state of knowledge, and for further investigation are made. 

2.3 Summary 

This chapter has covered: 

• The derivation of Laplace's equation for the magnetic potential. 

• The modelling assumptions. 
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• An outline of the Fourier method, applied to a single pole head with an under­

layer. 

• A brief list of the other previously published Fourier results. 

• An outline of the conformal mapping method, applied to a ring head without an 

underlayer. 

• A review of the previously published analyses by conformal mapping. 

• The derivation of the reciprocity theorem. 

• Details of the new work and its relation to previously published analyses. 
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Chapter 3 

Head Fields 

3.1 Fourier Analysis 

3.1.1 The Thin Film Head 

3.1.1.1 The general model 

Fig. 3.1 shows t he idealised model of a symmetric t hin film head . Semi-infinitely high 

UNDERLAYER cp = 0 

I I 
REGION REGION t 1 

REGION 
1 

~: I B c 
/ / 

POLE POLE 
/ 

cp =f(x) cp=-f( I X I) . 
/ 

/ ~ 

/ / ! G = 2g 
I 

/ 2L / 

Figure 3.1: The thin fi lm head. 

poles each of width , 2L , at po tentials + f(x) and - f( jx j), are separated by a gap of 

widt h , G = 2g, and are perpendicular to and at a distance , t , from the infinitely long 

underlayer , at zero potential. Laplace 's equation need only be solved for x ~ 0 where 
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the area exterior to the pole and the underlayer is divided into three regions A , B and 

C as shown. All of the assumptions listed in Section 2.1.3.1. apply to the constant 

pole potential case, but for the thin film head with linearly varying pole potentials, 

assumption 4 is modified to: the pole potential is known and is invariant in the vertical 

direction. Here results applicable to thin film heads with either constant or linearly 

varying pole potentials are denoted by the superscript T F while those specific to a 

particular case are indicated by the use of C or L, corresponding to the constant or 

linear cases respectively. 

3.1.1.2 Constant potential poles 

For the thin film head with constant potential poles, f( x) = V in the general model. 

In region A, the general solution of Laplace's equation which satisfies the condi tions: 

cp~F(x , y) = -cp~F( -x,y), and cp~F is bounded as y----+ - oo , 

(3.1) 

IS 

{
00 

( kx) ( k( t - y)) cp~F(x, y) = lo A(k) sinh -t sin t dk. (3.2) 

In region B the harmonic series 2:::;:'=1 sin (mr(t- y) f t) [B~enn/t + D~e-mrz/t) satisfies 

cpc (x, 0) = cpc (x, t) = 0 so that by adding the particular solution which takes the 

correct values at y = 0 and at y = t , the full solution 
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is obtained. In region C the integral 

(3.4) 

satisfies the conditions: 

lim cp~F(x, y) = 0 and cp'{/ is bounded as y----..} -oo. (3 .5) 
:1:--<00 

The coefficients B~ and D~ and the functions A( k) and C( k) are to be determined. 

Matching the potential functions at x = g where 

cp~(g,y) = { V 

cp~(g , y) 

and taking a sine transform 

-00 < y ~ 0 

F.[J(y)] =/_too sin(k(t- y)/t)f(y)dy 

(3.6) 

(3.7) 

enables A.(k) to be expressed in terms of the coefficients B~ and D~ so that (3 .2) 

becomes 

where 

QTF = r= sin(k) sin(k(t- y)jt) sinh(kx jt) d 
n Jo k 2 - (nn-)2 sinh(kg/ t) k · 

(3.9) 
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Similarly matching the potentials at x = g + 2£, 

cpg(g + 2£, y) = { V 

cp~(g + 2£, y) 

-oo < y ~ 0 
(3.10) 

and taking a sine transform (3. 7) leads to 

(3.11) 

where 

JTF = ('10 sin(k) sin(k(t - y)jt) e-k(:c-g-2£)/t dk 
n Jo k2 - (mr-)2 

(3.12) 

and is given in closed form in Section A.3·.1. 

The coefficients are determined by matching the x-derivatives of the appropriate 

potentials over the common boundaries at x = g and at x = g + 2£, and employing 

the orthogonality properties of the functions sin(m7i(t - y)ft), where m is an integer, 

over the range 0 ~ y ~ t . At x = g this gives 

t f oo A(k)k sin (k (t- y)) cosh (kg) sin ( m7r (t - y)) dk dy 
j y=O jk=O t t t 

= ftfn1rsin(n1r(t~y)) [B~emrgft_D~e-mrgft ] dy . 
Jo n=l 

(3.13) 

Similarly at x = g + 2£, 

t f oo - C(k)ksin (k(t - y)) e- k(g+2L)ftsin (m1r(t - y)) dkdy 
}y=O l~.:=o t t 

= lot~ n7r sin ( n7r ( t ~ y)) [ B~ emr(g+2L)/ t - D~ e-mr(g+2L)ft] dy . (3.14) 
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This leads to the two coupled infinite systems of linear simultaneous equations 

00 

+ L( -1)m+n+lmr(B~ emrgft + D~ e-mrgft ] J:!:~ 
n=l 

(3.15) 

00 

+ 2:(- 1)m+nmr[B~emr(g+2L)/t + D~ e-mr(g+2L)f t ] Imn 

n=l 

(3.16) 

for m = 1, 2, 3, · · · in each case, where 

TF ('xo k sin2 (k) 
Imn = Jo [k2 _ (m1r)2 ][k2 _ (n1r)2] coth(kg jt) dk (3.17) 

and Imn is given in Section .-\ .2.1. The normalised coefficients B~ jV and D~ jV depend 

on the ratios gj t and L jt only. It is neccessary to restrict each system of equations 

(3 .15) and (3.16) to some finite size N to obtain a solution and it is computat ionally 

convenient to define scaled normalised coefficients B C' = se emr(g+2L)/t jV and ne' = n n n 

D~ e- mrgft /V which satisfy the 2N x 2N system of the general form: 

(3.18) 
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Here 

-{ 7r/4 m = n 
ATF = ( - 1 )m+n+In1r I,'!:~ m,n 

0 m =f. n 

+{ 
7re- 2m7fL/t / 4 m = n 

A~:..+N = ( - 1 )m+n+ln7re-2n7fL/ t I;;.~ 

0 m =f. n 

-{ 
1re- 2m7(L jt /4 m = n 

ATF ( - 1 )m+nn1re-2mrLjt Imn m+N,n = 
0 m =f. n 

+{ 
7r /4 m = n 

ATF ( - 1)m+nn1rimn (3.19) m+N,n+N = 
0 m =f. n 

form, n = 1, 2,·· · ,N 

(3.20) 

be = (- 1)miTF 
m mO and (3.21) 

for m = 1, 2, · · · , N and I:!:~ and I mn are given by (3.17) and (A.6) respectively. No 

analytic expression for I:!:~ has yet been derived, t herefore numerical integration [33] 

1s necessary. 

Various known solutions are special Limiting cases of the solut ion deri ved here an d 

may be used to verify the correctness of this solut ion. These limiting cases are con-

sistent wi th the observation that the integral I mn which occurs in the equations (3 .16) 

for t he coeffi cients here, also occurs in the equations for the coefficients for the single 

pole head (2. 10) and for the ring head without an underlayer (2.18). Q~F (3 .9) is of 

the same form as Q~1 (2.44) which occurs in the equations defining the coeffi cients 

for Solution II of a shielded pole head , with ( x - L) replace by x and G replaced by 
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g. If the width 2L of the pole pieces increases, the geometry approaches that of the 

idealised model of a ring head with a highly permeable underlayer [28] given in Section 

2.1.3.4. The integral I~~ (3.17) is the same as the integral 1:;,~ (2.26) which occurs in 

the equations defining the coefficients for a ring head with an underlayer except that 

the roles of g and t are reversed. If the coordinate origin is moved to (g + L, 0), at the 

centre of the pole at potential + V, as the gap length g increases, the geometry becomes 

that of the single pole [23] as given in Section 2.1.3.2. The integral J~F (3.12) is the 

same as 1:: (2.9) except that here x - L is replaced by x - 2L - g which is consistent 

with the change in origin described. Also limg--+oo ~~~ = Imn so that equns. (3.15) 

and (3.16) yield t he same single set of coefficients as (2 .10) does for the conventional 

single pole head . Finally, if the origin is moved to (g + 2L, t ), above the o uter edge 

I 

IMAGE I IMAGE 
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cp =+V I cp = -V 
I 

I I' 

cp =0 PLANE I t 

' 
y 

I ~x 4 x t 

I 

PO LE I POLE 
cp = +V I 

I 
cp =-V 

I 

I 

Figure 3.2: Equivalence of a thin film head having constant potential poles with a ring 
head without an underlayer. 

of the pole at potential +V, and the axes are rotated through 90° clockwise the new 

coordinate system (X, Y) where X = t - y and Y = x - 2L - g shown in Fig. 3.2 is 

obtained. Image poles are shown reflected in the y = t ( <p = 0) plane. As the width 

2L of the pole pieces increases, the geometry in regions B and C becomes that of a 

ring head without an underlayer [24] for which the solution is given in Section 2. 1.3.3, 

but here the gap width is 2t. For each of these three cases, the present solution and 
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the equations satisfied by the Fourier coefficients do reduce to the established solutions 

quoted. 

The first six coefficients for the solutions for thin film heads of various dimensions 

are tabulated in Appendix B. Table B.1 shows the first six coefficients, B~' and D~' 

computed for N = 40 with a fixed ratio L/t = 0.5 for a range of gf t values. As gf t 

increases the correspondence with a single pole head requires that both B~' and D~' , 

scaled by the factor (1 + e-2n.,.-Lft) should approach the equivalent coefficients B?;' for 

a single pole head. For comparison, the scaled coefficients for gf t = 16 and the pole 

head coefficients for L/t = 0.5 computed from an N = 40 system via equn. (2.10) 

are also shown in Table B.l, verifying the expected correspondence . This equivalence 

may also be used to assess the accuracy of the coefficients computed for the thin film 

head with constant potential poles. For a single pole head , the integrals appearing in 

the equations for the coefficients may be evaluated analytically (Section 2.3.1) which 

permits larger values of N to be considered . Computation with values of N up to 640 

together with an extrapolation technique gives the pole head coefficients shown in the 

last column of Table B.l which are believed to be correct to the accuracy shown. The 

N = 40 single pole head values are seen to be correct to within one figure in the fourth 

decimal place and hence t his is the expected accuracy of all of the coefficients shown 

in Table B.1 and of the coefficients in the other tables in Section B .1. 

Table B.2 gives the coefficients for a fixed gap, gf t = 0.5 , and a range of pole widths . 

As the pole width increases the correspondence wit h a ring head without an underlayer 

discussed previously requires that t he B~' coefficients approach those for a ri ng head , 

which are independent of the ring gap [27], and t hat the D~' coefficients remain fini te. 

The ring head coeffi cients computed from a n N = 40 system and extrapolated values 

which are claimed [27] to be correct to six decimal places are also shown in Ta ble B.2. 
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This conhrms both the stated correspondence and the estimated accuracy of the new 

coefficients computed with N = 40. The final correspondence is with a ring head with 

an underlayer as Lj t increases. This requires that t he B~' coefficients remain finite 

and that the D~' coefficients approach those given in [28] with the roles of g and t 

reversed. The appropriate coefficients for a ring head with an underlayer for gjt = 2.0 

are given in Table B.2, also computed from an N = 40 system, and are seen to be the 

same as those for Ljt = 2.0, confirming the equivalence. 

As the head - underlayer separation t increases the Fourier coefficients get larger 

and consequently the resulting series for the field components will converge more slowly. 

Typical coefficients for gf L = 1.0 as t increases are given in Table B.3. 

The horizontal and vertical field components are given by - 8cpc / 8x( x, y) and 

-8cpc j8y(x,y) respectively, so that normalised by Vjt and in terms of the scaled 

coefficients, 

_ !R - "'eo 2n( - l)"[Bc'e-2mrL/t+Dc'] D ,.. 0 0n=l n n ~Ln 

E:=l mrsin(mr(t - y) j t) 

(3 .22) 
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and 

1 + L::=l mrcos(mr(t - y)Jt) 

. [B~' emr(z-g- 2L)/ t + D~' e-mr(z - g)/t] g ~ X ~ g + 2L 

(3.23) 

where 

Rn 
100 k sin(k) sin(k(t - y)Jt) cosh(kx f t) dk 

o k2 - (mr) 2 sinh(kgj t) 
(3.24) 

JTF 
n 

100 ksin(k)sin(k(t - y)Jt) e-k(z-g- 2L)/tdk, 
o k2 - (mr)2 

(3 .25) 

STF 
n 

100 k sin(k) cos(k(t - y)Jt) sinh(k:z:/t) 

o k2 - (mr)2 sinh(kg f t) 
dk (3 .26) 

and 

}(TF = 100 ksin(k)cos(k(t - y) Jt) - k(z - g-2L)/tdk 
n k2 ( )2 e · o - nrr 

(3 .27) 

Closed forms for J'!:F and K~F are given in Sections A.3.2 and A.3.3 respectively. An-

aly tic expressions have not yet been obtained for R., and S~F . The integrals occurring 

in the field components correspond to integrals appearing in othe r solutions as is the 

case for the potential fun ction. Figs . 3.3 and 3.4 show the horizontal and vertical field 

components respectively, normalised by Vjt, a t various heights be tween the head face 

plane at y = 0 and the underlayer at y j t = 1.0. The negative of the horizontal field 

has been plotted to conform to convention as in the case of the ring head in Section 
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Figure 3.3: Horizontal field component for a thin film head with constant potential 
poles, gf t = Lf t = 0.5. 
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Figure 3.4: Vertical field component for a thin film head with constant potential poles , 
gf t = L ft = 0.5. 

2.1.4.2. 

Both field components have peaks which increase in magnitude and decrease in 

width towards the head face plane. Close to the head t he peaks become bimodal. The 

horizontal component has a peak and undershoots corresponding to the gap and t he 

outer edges of the pole pieces respectively. The vertical field component , which is of 

greater interest for perpendicular recording, has two peaks of opposite sign cor res pond-

ing to the two pole pieces. 
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3.1.1.3 Linearly varying potential poles 

For the thin film head with linearly varying pole potentials, f( x) = V(2L + g- x )/2L 

in the general model shown in Fig. 3.1. The boundary conditions given for the constant 

potential case in regions A and C (equns . (3.1) and (3 .5) respectively) apply here also, 

so that the general solutions to Laplace's equation in these two regions are also the 

same as for the constant pole potential thin film head, and are given by equns. (3.2) and 

(3.4) . In region B the particular solution which satisfies the true boundary conditions 

at y = 0 and y = t and complements the general solution when cp(x,O) = cp(x,t) = 0 

is linear in both x and y. Therefore, with the subscript denoting the region, 

cp~(x,y) = V(t - y)(g+2L-x)+ f sin (m/t- y)) [B~ennft + D~e-mrzft] . (3.28) 
2tL n=l t 

Matching the appropriate potentials at x = g, where t he pole has potential V, as in the 

constant potential case, and taking the sine transform ( equn. (3. 7)), provides the same 

relationship between the functions A( k) and the coefficients B~ and D~ here, as found 

for the thin film head with constant pole potentials. Hence the potential in region A 

for the case of linearly varying pole potentials is given by equn. (3.8). Matching t he 

correct potentials at x = g + 2L, where the pole potential is zero, 

cp~(g + 2L, y) = { O 

<p~(g + 2L, y) 

- oo < y ~ 0 
(3.29) 

and taking the sine transform (3. 7) leads to 

00 

cp~(x,y) = L 2n( - lt [B~emr(g+2L)/ t + D~e-mr(g+2L)/t] J~F (3.30) 
n=l 
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where J!F is given by equn. (3.12) . 

Matching the x-derivatives of the appropriate potentials over t heir common bound-

aries and employing the properties of orthogonal functions as described for t he constant 

potential case leads to t he two coupled infinite systems of linear equations for the eo-

efficients: 

00 

+ L( - 1)m+n+lmr [B~emrg/t + D~e-mrgft] !~~ 
n = l 

(3.31) 

00 

+ L( -1)m+nmr [B~emr(g+2L)/ t + D~e-mr(g+2L)/t] lmn 
n=l 

(3.32) 

where I!,~ and Imn are given by equns. (3 .17) and (2.11) respectively. 

As for the constant pole potential thin film head, it is convenient to define scaled 

coefficients EL' = BLemr(g+2L)f t j \f and DL' = DLe - mrgft j \1 Restricting each system n n n n · 

of equations to some finite size N , and writing the equations in the matrix form, 

[ ATF]~L = ~L the 2N x 2N matrix [ATF] is the same as in the constant pole potential 

case, equn. (3.19) but here'££ and the right-hand side vector , ~£ , are given by 

(3 .33) 

and (3.34) 

for m = 1, 2, · · · , N , where I~~ is defined by equn. (3.17) . 

Here , no comparisons with other solutions in limiting cases are appropriate. The 
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first six coefficients for thin film heads with linearly varymg pole potentials which 

correspond to those given for t he constant pole potential case , a re given in Tables B.4 

- B.6. 

The horizontal and vertical field components , normalised by V/ t, which follow by 

the partial differentiation of the potential funct ion, in terms of the scaled coefficients 

a re, 

_!R _ ~oo_ 2n( - l)n [BL'e-2mrL/t + DL'] Rn .,. 0 L...m-1 n n 

t-y 

TL 

g :S X :S g + 2£ 

y :S t ) 

(3.35) 

and 

g+;f-x + L:~=l mrcos (mr(t~y)) [B~'eM(x-g- 2L)f t -r- D~' e -n.,.(x-g)f t ] 

t L 
\i HY(x ,y) = g :S x :S g + 2£ 

y :S t 

(3.36) 

where Rn , JJF , S~F and J(~F are the same integrals that occur 1n the solution for 

the t hin fi lm head with constant potential poles a nd are given by eq uns. (3.2-!) -

7-1 



(3.27), respectively. Figs. 3.5 and 3.6 show the normalised, horizontal and vertical 

-1 +-----.--r--~--r--+--r----r--r-----.---, 
-u -2 -u _, -.s o o.s u 2 1.5 

~ 

Figure 3.5: Horizontal field component for a thin film head with linearly varying po­
tential poles, gf t = Ljt = 0.5. 

field components respectively, at various heights between the head face plane at y = 0 

and the underlayer at yj t = 1.0. The horizontal field exhibits three peaks of which the 

one corresponding to the gap between the pole pieces is of greater magnitude than each 

of the pair of peaks corresponding to the pole pieces . Close to the head the central 

peak becomes bimodal. The vertical component has a pair of equal magnitude peaks of 

opposite sign corresponding to the gap edges and close to the head undershoots occur 

due to the outer edges of the poles. 

2.5 

2 

j 1.5 

~ D..5 

0 

] -.5 

1 -1 

- 1.5 

-2 

-2.5 
-1.5 -2 - u _, -.s 0 

~ 
0.5 

yJl = 0.1 

YL1 = _Q.~_ 
Yf'_ ~ Q.~-

u 1.5 

Figure 3.6: \ ertical field component for a thin film head wit h linearly varying potential 
poles , gjt = Ljt = 0.5. 

75 



3.1.2 The Single Pole with Linearly Varying Pole Potential 

T he idealised 2-dimensional, general model of a single pole recording head is shown 

in Fig. 3.7. All of the assum ptions of Section 2.1.3 .1 apply here except for the fourth 

which is modified to accommodate the non-constant pole potential, as described in 

Section 3.1.1.1. A semi-infinite pole of width 2L is perpendicular to and at a distance 

REGION 
A 

UNDERLAYER rp=O 

REGION 
B 

tp = f(-<) 

2L 

ARBITRARY 
POTENTIAL 

POLE 

REGION 
c 

Figure 3.7: T he general model for a single pole head. 

t from an infinite plane at zero potential. Here, the pole potential is assumed to 

vary linearly from zero at the left-hand edge to +V at the right-hand edge, giving 

f(x) = V(x + L) j2L , with a= 0 and {3 = 1 in Fig. 3.7. For this pole potential there 

is no line of symmetry in the system therefore, in order to solve Laplace's equation 

for the magnetic potential exterior to the pole and the underlayer, it is necessary to 

subdivide this a rea into the three regions A, B and C shown in Fig. 3.7. 

T he general solution of Laplace's equation in region A which is zero at y = t and 

which has the correct behaviour as x -t -oo may be expressed as the Fourier integral 

(3.37) 

where t he superscript LP denotes a single pole head with linearly varying pole poten-
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tial. In region B the series 

!f'~P(x,y) = V(t ~ y) (x ;L L) +~sin ( mr(t ~ y)) [s~P cosh (n:x) + D~P sinh (n:x)] 
(3.38) 

takes the correct values at y = 0 and y = t . The solution for the single pole head with 

linearly varying pole potential depends on two sets of coefficients, unlike the solution 

for the conventional single pole for which there is only one set of coefficients. In region 

C the integral 

(3.39) 

is appropriate. The coefficients B~P and D~P and the functions A( k) and C ( k) need 

to be determined. 

Matching the potential at x = - L 

-oo < y ~ 0 
(3.40) 

and taking a Fourier sine transform in y (equn . (3.7)) enables A(k) to be expressed in 

terms of B~P and D~P to give 

LP ~ n [ LP (mrL) LP (mrL)] p 
!p A ( x , y) = ~ 2n( -1) Bn cosh -t- - D n sinh -t- 1 n (3.41) 

where 

JP = (
00 sin(k) sin(k(t - y) j t) e - k( JxJ - L)f t dk 

n Jo k2-(mr)2 
(3.42) 

which is the same integral as that which occurs in the solution for the conventional 

constant potential single pole (2 .9), although here it is defined for X < 0 also. J!: 
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appears in closed form in Section A.3 .1. Similarly, matching the potential at x = L 

- oo < y :S 0 
(3.43) 

and taking a Fourier sine transform in y leads to 

The coefficients B~P and D*P are found by matching the x-derivatives of the ap-

propriate potential representations at the two boundaries 0 :S y :::; t for x = ± L and 

using the orthogonali ty property of the functions sin( m1r( t - y) / t) over 0 :S y ~ t , 

where m is an integer. This initially results in the two coupled infinite systems of 

linear simultaneous equations: 

i [B;P sinh (m;£)+ n;P cosh (m;£) J 

+ ~( - l)m+nn7r [s~P cosh (n:L) + D~P sinh (n:L)] Imn 

= V( - l)m Lm~7rL- Imo] (3.45) 

i [s~P sinh (m;£)- n;P cosh (m;£)] 
+ ~(- l)m+nn7r [s~P cosh (n:L) - D~Psinh (n:L)] Imn 

= V( - l)m+l t 
4m27r L 

(3.46) 

for m = 1, 2, 3, · · · in each case, where Imn is as given for the conventional single pole 

head in equn. (2.9) . However it is clear that either by adding or by subtracting these 

systems , they uncouple to give equations for the B~P or D~P alone. The Fourier coef-

fic ients may be evaluated by restricting each of the uncoupled infinite systems to some 
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finite size N . Computationally it is convenient to solve for the scaled normalised eo-

efficients Bf:t = B!;t cosh(nrrL/t)JV and Df;.,P' = D~P sinh(nrrLJt)JV which depend 

on the ratio Ljt only. Each set of coefficients satisfies an N x N system of equations , 

{ 

rrtanh(mrrL/t) / 4 
ALPa = (-l)m+nnrrf + mn mn 

0 

form,n = 1,2, ·· · , N , and 

bLP8 = (- l)m+l Imo 
m 2 ' 

f _ LP' or m- 1, 2, · ··,N. For the Dm , 

LP8 _ BLP' xm - m 

{ 

rr coth(mrr Ljt) / 4 
A~~D = ( - 1 )m+nnrr Imn + 

0 

for m , n = 1, 2, · · · , N , and 

for m = 1, 2, ···,N. 

m =n 

(3 .47) 

m = n 

(3.48) 

Table B.7 in Appendix B shows the first six coefficients B~P' and D~P' for a range of 

Ljt values. T hese coefficients are based on solving systems of N up to 640 together with 

an extrapolation technique [33] and are believed to be correct to the number of figures 

given. The coefficients get larger as Lj t decreases, showing that as the pole- underlayer 

distance increases the resulting series for the magnetic field will converge more slowly. 

The scaled normalised coeffi cients for the single pole with constant potential satisfy 
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equn. (2.10) which is the same as equn. (3.47) with a factor of 2 omitted from the 

right-hand side and hence the constant potential pole coefficients are twice the B~P' 

for the single pole with linearly varying pole potential. As L jt increases there is a 

correspondence in region C between the conventional pole solution given in Section 

2.1.3.2 and the one given here which requires that the D*P' coefficients approach half 

of those for the constant potential pole. Computation with very large values of Ljt 

confirms this; results when Ljt =50 for both the constant (f(x) =V) and the linearly 

varying potential cases are included in Table B. 7. 

The field components , found by the partial differentiation of the potential, nor-

malised by V jt and in terms of the scaled coefficients are: 

"oo 2n(- l)n [BLP' _ DLP'] JP 
L...n=l n n n - 00 < X ~ -L 

+ D~P' cosh ( n7z) / sinh ( n:L)] 

!JP + "oo 2n(- l)n [BLP' + DLP'] JP ,. 0 L...n= l n n n L ~ x < oo 

(3.49) 
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and 

"oo 2n(-l)n [BLP'- DLP'] KP L...n=l n n n - 00 < X ::; -L 

~:LL + I::=l mr cos ( n""(:-y)) [ B~P' cosh ( n;~) I cosh ( n~L) 

+ D~P' sinh ( n;~) I sinh ( n~L)] 

!KP + "oo 2n(-l)n [sLP' + DLP'] KP 
"" 0 L...n=l n n n 

(3.50) 

where J!: and K! are the same integrals that occur in the solution for the conventional 

single pole head except that here they are defined in terms of lxl to apply for x < 0 also. 

They are given in closed form in Sections A.3.2 and A .3.3 respectively. Figs. 3.8 and 3.9 

y/t = 0.1 

YL1 =.Q·~-
~ 0.5 Yll =: Q~ -
i YLi.=: 0.7--

] o+-~~~~-0~.~~---~~=C~~====~=-
"i 

1 -· 
- 1 +--..r---r---r--"-T--+--.------r--~---.--, 

-2..5 -2 -~ -1 -..5 0 0.5 ~ 2 2..5 

11/l 

Figure 3.8: Horizontal field component for a single pole head with linearly varymg 
potential poles , Lj t = 0.5. 

show the normalised , horizontal and vertical field components respectively, at various 

heights between the head face plane at y = 0 and the underlayer at y / t = 1.0. The 

horizontal component has two unequal peaks of opposite sign. The peak corresponding 

to the pole is broader and of greater magnitude than the peak due to the right-hand 

pole edge. The vertical component has a single peak corresponding to the right-hand 
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2 y/t = 0.1 

YL1 = _Q.~_ 

~ 1.5 y/!_ ~ Q.~ -

~ YLi_~ 0.7--

> YL!.::..Q:~---

1 ·:+----~H---
-.5+--.---r--r--.--4-~r--r--~~~ 

-2.5 - 2 -1.5 -1 -.5 0 0.5 ,..., 
Figure 3.9: Vertical field component for a single pole head with linearly varying poten­
tial poles , Ljt = 0.5. 

pole edge and close to the head an undershoot occurs due to t he zero potential pole 

corner. 

3.1.3 The Single Pole with Arbitrary Pole Potential 

The idealised 2-dimensional model is shown in Fig. 3. 7, and has been desribed in 

Section 3.1.2. Here no assumptions are made about the potential distribution across 

t he pole except that it is a function of x only and takes the values a V and BV, where 

a and {3 are arbitrary real numbers , at the left - and right-hand edges, res pectively. 

The general solutions of Laplace's equation for the magnetic potential in regions 

A and C are the same as those given for the single pole with linearly varying pole 

potential, equns . (3.37) and (3.39), respectively. In region B the general solutions 

of Laplace 's equation for both the constant and the linearly varying pole potential 

cases are obtained by solving for zero boundary condtions at y = 0 and at y = t 

and then adding the particular solution which satisfies the true boundary conditions , 

'PB(x,y) = f(x)(t - y) j t , which is only a solution of Laplace 's equation when f(x) 

is either a constant or a linear function of x. For single pole heads with arbi trary 

pole potentials , f( x) must be expressed in terms of either trigonometric or hyberbolic 
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functions which satisfy Laplace's equation. 

Any function of x can be expanded as a Fourier senes so that the normalised 

magnetic potential of the pole may be written as 

f(x) a0 
00 

(Nrrx) (Nrrx) V = - + L aN cos -- + bN sin -- , 
2 N=L p p 

(3.51) 

by extending the function to make it periodic over the interval - p :::; x :::; p with p 2:: L, 

while retaining its original definition over the interval of interest. The choice of period 

is purely arbitrary but on evaluation, the series converges to f(x) / V more rapidly if the 

extended function is continuous. Therefore a general solution of Laplace's equation in 

region B, which satisfies the boundary conditions cp~P(x,O) = f(x) and cp~P(x,t) = 0 

can be written as 

~ [ (Nrrx) b . (Nrrx) ] [sinh(Nrr(t - y)/p)l +V ~ aN cos -- + N sm -- . h( N / ) 
N=L p p sm rrt p 

+ ;sin ( nrr (t ~ y)) [ B;:P cosh (n;x) + n::P sinh (n;x) J (3.52) 

where the superscript AP denotes a single pole with an arbitrary pole potential distri-

bution . Here the choice p = 2L is made and f(x) is assumed to be symmetric about 

x = L, to ensure a continuous periodic extension of f ( x) . Hence 

f(2L + x) -2L ::S x ::S- L 

J (X) extended = J (X) - L :::; X :::; L (3.53) 

f(2L - X) L :::; X :::; 2L . 

This choice also provides the best convergence properties of several periods tested , 
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and it results in the simplification of the Fourier series representations of some of the 

functions considered. When f ( x) is odd aN = 0 and when f( x) is even bN = 0, for 

N 2: 1. 

The particular potential distributions which are considered here are 

1. Linear: 

a= 0, {3= 1. 

f(x) = x + L = ~ ~ 4 sin (N7r) sin (N7rx) 
V 2L 2 + f:1 (N1r)2 2 2L 

2. Quadratic: 

3. Cubic: 

f(x ) 
V 

f( x) 
V 

4. Cosine-squared: 

a= 0, {3 = 1 . 

(x ~ L) 2 

~ + %;
1 
(N~)2 [sin ( ~7r) sin ( ~~x) 

+COS ( ~'Tr) COS (~~X)] . 

a = 0, {3= 1. 

a=f3 = 0. 
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(3.54) 

(3.55) 

(3.56) 

(3 .57) 

(3.58) 

(3.59) 

(3.60) 



(3.61) 

Determination of the functions A( k) and C( k) appearing in the solutions of La place's 

equation in regions A and C respectively, and of the coeffi cients B~P and D~P, is 

achieved in the same way as described for the thin film heads and the single pole 

with linearly varying pole potential. Matching the poten tials at x = - L and taking a 

Fourier sine transform (equn. (3.7)) gives A(k) in terms of B~P and D~P so that in 

region A: 

2 V { a0 
( a0

) 

00 

[ ( N rr) ( N rr)] } --;- 2To + a - 2 Uo + J;
1 

aN cos 2 - bNsin 2 1/N 

00 

[ (nrrL) P . (nrrL)] + E 2n(-lt B:P cosh - t - - D~ smh - t - 1: , (3 .62) 

where 

1/N = Nrrs coth(Nrrs )TN - UN, s = t / 2L, (3.63) 

JP 
n 

100 sin(k) sin(k(t - y) / t) e-k( lzi-L )/t dk 
o k2- (nrr)2 

(3 .64) 

TN 
hoo sin(k) sin(k(t- y) / t) e-k( lz i-L)/ t dk 
o k2+(Nrrs)2 

(3.65) 

UN 
100 k cos(k) sin(k(t - y) / t) e-k(lzi - L )/ t dk . 
o k2 + ( N rr s )2 

(3.66) 

Closed forms for each of these integrals are given in Sections A.3 .1, A.3.4 and A.3 .5 

respect ively. Similarly, matching at x = L gives C( k) in terms of Bn and Dn so that 

in region C: 
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00 

[ (mr L) P . (mr £)] +]; 2n( -lt B~P cosh -t- + D~ smh -t- 1: (3.67) 

with TJN , 1:, TN and UN given in equns. (3.63) - (3.66). 

Matching expressions for ocpAP I ox at X = - L and at X = L and taking a sine 

transform (equn. (3.7)) in each case provides the two coupled, infini te systems of 

linear equations for the coefficients: 

1r [ (m1r L) (m1r L)] + 4" B~P sinh -t- - D!P cosh -t-

(3.68) 

and 

oo [ (n;r£) (n1rL)] ]; n1r( -l)m+n s:P cosh - t - + D~P sinh - t - lmn 

;r [ (m;r£) (m;r£)] + 4 B~P sinh -t- + D!P cosh -t-

[ (N;r) ( N7i)] } + aNCOS 2 + bNsin 2 UmN , (3.69) 

where, with s = t / 2£, 

= N;rscoth(N;rs)NmN- PmN , (3. 70) 

Ns 
(3.71 ) 
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(
00 ksin2 (k) 

lo [k2 - (m1r")2 l[k2 - (mr-)2] dk ' 
(3 .72) 

r 00 :----:-----::k ...,.,si:-:n 2-,--:(::-k.:.._) --:-:-:-:---:- dk 
lo [k2- (m11-)2] (k2 + (N1rs)2] 

(3.73) 

and 

PmN = {00 k
2 

sin(k) cos(k) dk 
lo (k2 - (m7r)2 ][k2+(N7rs)2] · 

(3 .74) 

Analytic expressions for Imn, NmN and PmN are given in Sections A.2 .1, A.2.2 and 

A.2.3 respectively. 

These two systems of equations can be uncoupled by either addition or subtraction 

to give two infinite systems of linear simultaneous equations . It is convenient to de-

fine scaled coefficients B!P' = B!P cosh(m1rL j t) j V and D!P' = D!P sinh(m1r£jt) / V 

which satisfy matrix equations of the form [AAPh_AP = QAP where for the B!P' 

and 

{ 

7rtanh(m7rL/ t) / 4 
( -1)m+nn7rlmn + 

0 

b .4P8 (-l)mt l { ao N + (a + f3 - ao) p 
m 2 ~ 2 ~ 

m=n 

(3 .75) 

for m , n = 1, 2, 3, · · · with (JmN, TmN given by equns. (3. 70) and (3.71) respectively, 
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and for the n~r 

m=n 
AAPv 

m,n 

and 

b~tv ( -1)m+l {(~;a) Pmo 

+ %;
1 

bN [umN sin ( ~~) - TmN cos ( ~~)] } (3. 76) 

for m, n = 1, 2, 3, · · · with UmN , TmN given by equns. (3.70) and (3.71) respectively. 

Approximate coefficients B;P' and D~P' are computed by truncating each system 

to some finite size. Clearly, the right-hand side series in both sets of equations can be 

simplified to the sum of two separate series, one for N even and the other for N odd, 

thereby increasing the speed of computation. If f( x) is an odd function each term in 

the right-hand series of the equations for the B:,P' is indentically zero, and if f( x) is 

even, the right-hand side series in equn . (3. 76) is eliminated. The Fourier series for a 

constant potential J( x) = V is simply the constant , V, so that a = ~ = 1 in the general 

model. Hence when aN = bN = 0 for N > 0, equn. (3 .75) simplifies to equn . (2.10) and 

equn. (3.76) has the solution ~APo = Q, confirming the consistency of these equations . 

For a linear pole potential, rising from zero at the left-hand pole edge to a maximum 

of V at the right-hand edge , a = 0 and {3 = 1 in the general model. Due to the form of 

the Fourier expansion chosen for f(x) , aN= 0 for N > 0 so that equn . (3 .75) reduces 

to the system of equations for the B~t' derived by the earlier analysis of a single pole 

with linearly varying pole potential, equn. (3 .47). However , t he coeffi cients evaluated 
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from (3.76) are not the same as the D~P' obtained using (3.48). 

The first six coefficients for each of the pole potential distributions listed above 

are shown in Table B.8 for a pole where Lft = 0.5 each computed using systems of 

equations of size N = 320. For all except the cosine-squared potential distribution , 

which is expressed exactly in 2 Fourier terms , 200 terms of the Fourier expansion were 

used in the evaluation of the coefficients. The analytic forms of the integrals NmN and 

PmN appearing in equns. (3.75) and (3 .76) are functions of the exponential integral E1 

(A.2) which is evaluated via the summation of a truncated infinite series . Hence the 

large number of these integrals involved in b~t8 and b~tD makes computation of the 

coefficients expensive. 

The accuracy of the coefficients provided in Table B .8 can be assessed by comparison 

of the B:!P' computed for a linear pole potential with the B~P' computed using equn. 

(3.4 7). When the system of equations used is of size N = 320 in both cases, coefficients 

which agree to at least 6dp. are obtained. The B~P' coefficients computed using 

N = 320 and those evaluated using N = 640 and an extrapolation technique [33], 

which are believed correct to 6dp. , are also shown in Table B.8. These two sets of 

coefficients computed via (3.47) agree to within 1 figure in t he fifth decimal place, 

hence this is the expected accuracy of the B:!P' and D~P' coefficients in the table. 

The magnitudes of the first six coefficients do not form a non-increasing sequence in 

all cases. This occurs for small n only and as n increases further both t he B:!P' and the 

D~P' decrease in magnitude. In the limit , as n --+ oo jB:;P' j --+ 0 and J n~P' J --t 0 

which is a neccessary condition for the series representation of the potential fun ction 

to converge. 

The generalised field components , normalised by V/ t , in terms of t he scaled coeffi-
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cients , are given by: 

~ { T Vo + (a - T) Wo 

+ L.'N=1 [aN cos ( ~,.) - bN sin ( ~,.)] lTN} 

+ "'oo 2n{ - l)n [BAP' - DAP'] JP L..n=l n n n -oo < x :S -L 

- L.:=l mrsin (mr (t:y)) [B~P' sinh (n;") / cosh (n:L) 

+ D~P' cosh ( n;z) / sinh ( n~L)] 

~ { T Vo + (f3 - 02°) Wo 

+ L.'N=1 [aN cos ( ~,.) + bN sin ( ~,.)] lTN} 

L :S x < oo 

(3 .77) 

where 

lTN = N1rs coth(N1r s) VN - W N, s = t / 2L , (3. 78) 

JP = looo k sin( k) sin( k( t - y )/ t ) e - k(i -=1- L )f t dk , 
(3. 79) n o k2 -(n1r)2 

VN = looo k sin(k) sin (k(t - y) j t ) e - k(l z i-L)/ t dk , 
(3 .80) 

o k2 + (N1rs) 2 

WN = 100 k
2 

cos( k ) sin(k( t - y) j t) e - k(i z i- L )/ t dk , 
(3.81) 

o k2 + ( N 1r s )2 
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and 

where 

and 

~ { a2o Xo + (a - a2o) Yo 

+ 2:N=l [aN COS(~"")- bNsin (~")] TN} 

+ 2::=1 2n( -l)n [B~P' - D~P'] K! 

a2° + 2:N'=t Nrrs [aN cos ( ~l:~:) + bN sin ( ~l:~:)] 

· [cosh ( n><1tiy)) j sinh ( mr s)] 

-00 <X~ -L 

y ~ t 

+ 2::=1 nrrcos (nrr(t~y)) [B~P' cosh (n;z) /cosh (n~L) 

+ D~P' sinh ( n;z) j sinh ( n~L)] 

~{¥Xo + (,e- ¥) Yo 

+ LN=l [aN cos ( ~,..) + bN sin ( ~,..)] rN} 

+ '1\'00 2n(-l)n [BAP' + DAP'] KP 
L,n=1 n n n L ~x<oo 

(3 .82) 

(3.83) 

KP = 100 k sin(k) cos(k(t -y) j t) - k( lzi-L)f tdk 
(3.84) n o k2 - ( nn-)2 e ' 

XN = 100 ksin(k) cos(k(t- y) j t) e-k( izi-L)f t dk , 
(3 .85) 

o k2 +(Nrrs)2 

}·N = {00 k
2 

cos(k) cos(k(t- y) j t) e-k( izi- L)f t dk . 
lo k2 + (Nrrs)2 (3.86) 
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For N = 0, the integral V0 in the expression for H1P could also be written as Jt, so 

that V0 and Jf: are both given in closed form in Section A.3.2. vV0 is given analytically 

in Section A.3.6. Similarly in t he expression for H:P , X0 = Kt, and Kt and K/: 

are both given in Section A.3.3. The closed form of Y0 is given in Section A.3.7 . The 

other integrals , VN and WN of the x-component and XN and YN appearing in the 

y: component have not yet been expressed in closed form. 

Evaluating the field components for the linear pole potential via (3 . 77) and (3 .82) 

gives identical results to those obtained using (3.49) and (3.50) , which do not depend on 

a Fourier representation of f( x ) , respectively. T his gives confidence in the correctness 

of the approach and the computations presented here. 

o.s 

yft = 0.1 

~=_Q.~­

)11, =:. Q.~­
~=: 0.7 __ 

YL1_:: 0~---

-U+-----.---~-----r----r---~----~ 
-u -1 - ..5 0 0..5 

x,A 

Figure 3.10: Horizontal field component for a single pole head with quadratic pole 
potential, Ljt = 0.5. 

The normalised , horizontal and vertical field components for single poles with 

quadratic, cubic and cosine-squared pole potentials, all for L/ t = 0.5, are shown m 

Figs. 3.10 - 3.15 at various heights between t he head and t he underlayer. 

For the quadratic and t he cubic pole potentials, as the potential becomes less uni -

form the negati ve peak of the horizontal component becomes narrower and increases 

in magnitude, while t he positive peak becomes broader. In t he vertical component , 

the widths of the peaks also decrease with devia tio n from a constant potential, but the 
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Figure 3.11: Vertical field component for a single pole head with quadratic pole poten­
tial, Lft = 0.5. 
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Figure 3.12: Horizontal field component for a single pole head with cubic pole potential, 
Ljt = 0.5. 

magnitudes of the peaks do not increase steadily. Similarly, the undershoots become 

broader and their depths reduce slightly with increasing non-uniformity of the pole 

potentiaL 

For a cosine-squared pole potential, close to the pole, both components have narrow, 

high magnitude peaks. The peak in the vertical component is of greater magnitude 

than the peaks in the horizontal component and the presence of undershoots in t he 

vert ical component, corresponding to the outer edges of the pole , indicates that the 

vert ical field gradient is higher than the gradient of the horizontal component. 
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Figure 3.13: Vertical field component for a single pole head with cubic pole potential, 
Ljt = 0.5. 
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Figure 3.14: Horizontal fie ld component for a single pole head with cosine-squared pole 
pot ential , Lf t = 0.5. 

3.1.4 Approximations 

3.1.4.1 Introduction 

T he Karlqvis t approximations (Section 2. 1.4.2) were de rived by assuming the po-

tential drop across the gap of a ring head without a n underlayer , in the head face plane, 

is linear. Across the poles t he potent ial is constant a t ± \!, t herefore using t he Poisson 

integral (2.61) , t he potential at a ny point in the pla ne y ~ 0 can be approximated . 

With such a simple approximation to the potent ial in t he gap , t he integral may be 

perfomed analyt ically to give rela tively simple explicit formulae for t he potential and 

the field components eve rywhere else. However, in the case of an underlayer being 
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Figure 3.15: Vertical field component for a single pole head with cosine-squared pole 
potential, Lft = 0.5. 

present, the Poisson integral (2.61) is not valid, and here the appropriate integral [37] 

lS 

( ) 1 . (rry) loo <p(u, 0) d <p X y = - Slll - U 
' 2t t -oocosh((u-x)rr/ t)-cos(rryf t) ' 

(3.87) 

for 0 < y :::; t, which reduces to the Poisson integral as t ---7 oo. This integral IS 

normally sufficiently complicated for numerical integration to be neccessary. 

Only the Fourier solutions for the conventional single pole head with an under-

layer (Section 2.1.3.2) and for the classic ring head without an underlayer (Section 

2.1.3.3) can be evaluated without at Least some numerical integration. A good analytic 

approximation to <p(x, 0) permits accurate estimation of cp(x , y) using equn. (3.87) , 

whjch requires only one numerical integration per field point in comparison with a 

large number generally needed for the full exact solution. For the field components , 

(3.87) may be differentiated prior to the integration. 

Clearly, using the best possible approximation to the potential in the head face 

plane in the integral (3.87), produces the most accurate results . Here good approxi-

mations to the potential at y = 0 are derived from the exact Fourier solutions for: thin 

fi lm heads with both constant and linearly varying pole potentials , single pole heads 

with various pole potentials and the symmetrically shielded pole , all in the presence 
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of an underlayer. No Fourier coefficients need be known, which further reduces the 

computational difficulty. 

These approximations are used to compute approximate field components for each 

type of head. Both the horizontal and the vertical field components are considered for 

the thin film heads , but for the single pole-type heads which are designed specifically 

ior perpendicular recording, examples are provided for the vertical component only, 

although results of similar accuracy can be obtained for the horizontal component 

also. 

3.1.4.2 The thin film head 

T he leading terms of the potential function at y = 0 for a t hin film head with 

constant potential poles, from equns. (3.8), (3 .3) and (3.11) provide t he approximation 

to the normalised potential which is marked by the additional superscript a 

2Q5F j -rr O~x~g 
cpaC(x,O) 

g ~ X ~ g + 2L V 1 (3 .88) 

2/'[F j -rr g + 2L ~X< 00 

where, Q5F at y = 0, evaluated using contour integration [80], is 

{
00 sin2(k) sinh(kx / t) dk 

lo k2 sinh(kg/ t) 

1rX g oo n(l - e-2mrtfg) . (n-rrx ) - +- 2:( - 1) Sill -
2g 2-rr t n = l n 2 g 

(3.89) 

and J;[F , integrated explicitly at y = 0 [81], is 
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(3.90) 

where x* = (x- g- 2L)/t. 

A single term approximation to QfF is derived from a Pade approximation [82] of 

the form a/ (k2 + b) to sinh(kx/ t) / sinh(kgf t) . The form of the Pade approximation is 

chosen as the graph of the ratio of sinh terms has an approximate ' bell-shape,. Hence 

(3.91) 

which can be integrated exactly [81] to give, with the superscript a denoting an ap-

proximation: 

(3.92) 

Yeh [63] has provided the only other published analytic approximation to the po-

tential in the head face plane, for the constant potential t hin film head in the presence 

of an underlayer. It assumes a linear potential drop across the gap and for x > g + 2L 

it is based on the equivalence, as L increases , with a ring head without an underlayer 

discussed in Section 3.1.1.2 and illustrated in Fig. 3.2. For small t and x 2: g + 2L a 

Taylor series expansion of cpR(x, 0) about the line y = t , together wit h the Karlqvis t 

approximation for the H .. field of a ring head gives: 

x f g 

1 g :.::; X :.::; g + 2L (3.93) 

2arctan(t/ (x - g- 2L)) /1r g + 2L :.=:; x < oo. 

It is not clear why the leading term in t he well-known Fourier solution for the potential 

of a ring head (2.16) was not taken to give directly an approximation to cpc(x, 0) for 
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x 2: g + 2L, thus avoiding the additional approximation inherent in a t runcated Taylor 

senes. 
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Figure 3.16: Approximations to the normalised magnetic potential at y = 0, for a thin 
film head with constant pole potential , when g = L = 0.5 and t = 0.25. 
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Figure 3. 17: Approximations to t he normalised magnetic potential at y = 0, for a thin 
fi lm head wit h constant pole potential, when g = L = 0.5 and t = 1.0. 

Figs. 3.16 and 3.17 show a comparison of the exact potential at y = 0 with Yeh's 

approximation (3.93) and with the approximation proposed here (3.88) , for g = L = 0.5 

and the underlayer at t = 0.25 and t = 1.0 respectively. In the gap region 0 :S x :S g 

both 2QrF j1r (the exact leading term) and 2Q~TF j 1r ( the approximate leading term) 

are shown although they are almost indistinguishable . For t = 0.25 the leading term is 

seen to be a very good approximation to the full exact solution. Yeh's approximation is 

reasonable for x 2: g + 2L but the linear approximation in the gap 0 :S x :S g is seen to 
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be poor. As the pole- underlayer separation increases, the present approximation does 

deterioriate, but it remains significantly better than Yeh 's approximation , particularly 

beyond t he pole edge. 
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Figure 3. 18: Comparison of the exact horizontal field (E-curves) for a thin film head 
with constant potential poles, with the leading term approximation (A-curves) and the 
Yeh approximation (Y-curves) , g = L = 0.5 and t = 0.25. 
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Figure 3.19: Comparison of t he exact vertical field (E-curves) for a thin film head with 
constant potential poles, with the leading term approximation (A-curves) and the Yeh 
approximation (Y-curves), g = L = 0.5 and t = 0.25. 

Fort= 0.25 the corresponding field components are shown in Figs. 3.18 and 3.19 . 

In the gap the approximate leading term 2Q~T F / rr is used. The leading term alone 

of the Fourier solut ion results in a very good approximation to the exact solu t ion 

everywhere. For the horizontal fie ld close to each pole the approximatio n of [63] fails 

to predict the peak at the inner edge of the pole and significantly underestimates the 
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peak at the outer edge of the pole. This is similar to the problem with the Karlqvist 

approximation to the horizontal component in the case of a ring head without an 

underlayer shown in Fig. 2.8. For the vertical field , approximation <paYeh is better but 

underestimates the peaks and the field gradients at the pole edges. Figs . 3.20 and 3.21 

show similar results for the underlayer at t = 1.0. At the same relative distances from 

the poles, approximation <paYeh performs better than when t = 0.25 because, as can 

be seen in Fig. 3.17 the correct gap potential is more nearly linear. As g / t increases 

the horizontal field in the gap is less well predicted close to the poles using <p0 c, but 

<pac is always an improvement over <paYeh_ However, the vertical field continues to be 

accurately approximated using <pac. 
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)( 

Figure 3.20: Comparison of the exact horizontal field (£-curves) for a thin fi lm head 
with constant potential poles , with the leading term approximation (A-curves ) and the 
Yeh approximation (Y-curves) , g = L = 0.5 and t = 1.0. 

For the case where the pole potential varies linearly, t he leading term of t he potential 

for 0 :::; x :::; g is the same as that for the constant pole potential case, hence the 

same approximate leading term in region .4. , 2Q~F /rr, may be applied here also. For 

x 2: g + 2£ the leadjng term is zero. There are no other published a pproximations to 

the potential at y = 0 for this head geomet ry. Figs . 3.22 and 3.23 show comparisons 

o f t he leading term approximation with the exact magnetic potential at y = 0, for 
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Figure 3.21: Comparison of the exact vertical field (E-curves) for a thin film head with 
constant potential poles, with the leading term approximation (A-curves) and the Yeh 
approximation (Y-curves), g = L = 0.5 and t = 1.0. 

g = L = 0.5 and t he underlayer at t = 0.25 and t = 1.0 respectively. 
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Figure 3.22: Approximations to the normalised magnetic potential at y = 0, for a thin 
film head with linearly varying pole potential, when g = L = 0.5 and t = 0.25. 

Here, as in the constant pole potential case, the approximation improves as the 

head- underlayer separation decreases. The term 2Q~F Jrr approximates the potential 

at y = 0 in region A less accurately for a linear pole potential t han it does for the 

constant pole potential thin film head. 

The corresponding horizontal and vert ical field components when t = 1.0, are shown 

in Figs. 3.24 and 3.25 respectively. In each case the exact leading term '2Q~F / rr has 

been used. The accu racy of the approximation is very similar to that obtained in the 
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Figure 3.23: Approximations to the normalised magnetic potential at y = 0, for a thin 
fi lm head with linearly varying pole potential, when g = L = 0.5 and t = 1.0. 
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Figure 3.24: Comparison of the exact horizontal field (E-curves) with the leading term 
approximation (A-curves) for a thin film head with linearly varying pole potential , 
g = L = 0.5 and t = 1.0. 

constant pole potential case. 

3 .1.4.3 The single pole head 

No published approximations to the potential in the pole face plane for a conven-

tional constant potential single pole head are known of in the literature. Here, t he 

leading terms of the magnetic potenti al from the exact Fourier solution given in (2.5) 

102 



2.2 

2 

Ul 

i l6 
CO: \A i u 

OA 
]J ~~ 

0.2 

0~--------------~--~~~~~ 
- .2 

-A+--.--.--.--,--,--,--,--,--.--. 
0 0.2:5 0~ O.?ll \.25 1.5 us 2 2.2$ 2..5 

l0 

yJl = 0.1 (E) 

~ = _Q.1J&. 
~ =:. Q~ (E)_ 

YL=: o.sJ& 
YL1.=~~--(Q_ 
y/.t::= __ Q._~ __ @ __ 

Figure 3.25: Comparison of the exact vertical field (E-curves) with the leading term 
approximation (A-curves) for a thin film head with linearly varying pole potential, 
g = L = 0.5 and t = 1.0. 

and (2.8) are taken, so that 

where I[ is given exactly by equn. (3.90) with x* = (x- L) j t. 
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Figure 3.26: Approximations to the normalised magnetic potentials at y = 0, for 
conventional single pole heads with constant pole potential , when Lj t = 0.5 (1-c urves) 
and Ljt = 0.125 (2-curves). 

Fig. 3.26 shows a companson of the approximation <paP( x, 0) / V with the exacl 

potential for two pole dimensions , Lj t = 0.5 and L/ t = 0.125. For Ljt = 0.125 the 

approximation is seen to be reasonable and it improves as L/ t increases . 
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Figure 3.27: Comparison of the exact vertical fie ld (E-curves) with the new approxi­
mation (A-curves), Szczech 's approximation with adjusted pole width (S'-curves) and 
Szczech 's approximation with the exact pole width (S-curves) for a conventional single 
pole head , Ljt = 0.5. 

Approximations to t he field components at y = 0 have been given by Szczech et 

al. in [83].These approximations were derived from a conformal mapping solution and 

fitted to experiment al results from a large scale model. A better fit to t he experi-

mental results was obtained by using a pole width 1.035% greater than the measured 

dimension in the approximation . T his semi-empirical approximation to the vertical 

field component is : 

(3.95) 

( 
2LC t ) 

z+2LCo lxl2 L' 

Formulae for the coefficients C 1 _ 4 are given in [83]. (3.95) has been evaluated using both 

t he exact (L' = L) and the adjusted pole widt h (L' = 1.035£) , and is shown in Fig. 3.27 

with the new approximation and the exact vert ica l field component , a ll for L/ t = 

0.5. At each height shown, t he Szczech approximation significantly underestimates 

the t heore tical vertical field alt hough using the adj usted pole width does give slightly 

better results. 'The new approximation is ve ry accura te. 

T he same strategy can be applied to a single pole with linearly \'arying pole pa ten-
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tial. Taking the leading terms of the magnetic potential obtained in Section 3.1.2, at 

y = 0, the approximation 

<paLP(x, 0) 
V 

0 -00 < X ::; - L 

(x + L) /2L -L ::; x ::; L 

2!{ /-rr L ::; x < oo 

where I{ is given by equn. (3.90) with x• = (x- L) f t. 

(3.96) 

Approximations to the potential in the pole face plane can also be derived from the 

solution for the single pole head with arbitrary pole potential given in Section 3.1.3. 

Clearly it is desirable to eliminate the need to compute the dimension dependent Fourier 

coefficients, B~P' and D~P'. Taking the leading terms only ie. those involving T0 and 

U0 , in equns. (3.62) and (3 .67) gives a less accurate approximation to the potential 

at y = 0 for a single pole with linearly varying pole potential than that defined by 

(3 .96). When only the series involving the coefficients s:P and D~P is omitted from 

each of equns. (3.62) and (3.67) an excellent approximation is obtained. This second 

approximation, in the general form for an arbitrary pole potential, is 

~ { a2° To + (a - T) Uo 

+ LN=l [aN cos ( ~1r) - bNsin (~1r)] 'IN} -oo < x ::; - L 

f(x) 

(3.97) 

where 'IN is given by (3 .63) and TN and UN are given by (3.65) and (3 .66) respectively 

and the closed forms are given in Sections A.3.4 and A.3.5 respectively. 
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Figure 3.28: Approximations to the normalised magnetic potentials at y = 0, for 
single pole heads with Linearly varying pole potential, when L/ t = 0.5 (1-curves) and 
L/ t = 0.125 (2-curves). 

Fig. 3.28 compares both approximations with the exact potential at y = 0 for 

a single pole with Linear pole potential distribution. Clearly cpa.AP is a much better 

approximation t han cpaLP, for x > L, but it is computationally more expensive. For 

x < - L, the approximation cpa.4.P overestimates the potential so that , as the magnitude 

of the potential in region A is small, approximating the potential by zero, as in cpaLP , 

provides a simplification, cpgA P , with Little loss of accuracy. 
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Figure 3.29: Comparison of t he exact vertical field (E-curves) with the a pproximations 
(LP-curves ) and (AP-curves) for a single pole head wit h linear pole potential , L/ t = 0.5. 

The corresponding app roximate vertical field components are shown in F ig. 3.29. 

T he accuracy of the approximation to the po tential in a particular region (as defined in 
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Fig. 3. 7) strongly influences the accuracy of the field component estimate in the same 

region. Hence both approxim ations are good in region B but using t.paAP provides the 

better approximation in regions B and C. The approximation via t.paL P underestimates 

t he magnitude of the peak when yj t = 0.1 and overestimates the peaks fart her from 

the pole. It also predicts that the peaks occur slightly too far from the pole edge. In 

region A, using t.paLP gives only marginally less accurate results than using t.paA P which 

is computationally much mo re expensive. 
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Figure 3.30: Comparison of t.paA P ( AP-curves) and t.pgAP (AD-curves) for a single pole 
head with linear pole potential, Lj t = 0.5. 

F ig . 3.30 shows the effect of simplifying t.pa AP by approximating the potential in 

region A by zero. For x 2 0 the difference is negligible. For x < 0, t he simplified 

approximation is marginally less accurate than t.paAP , underestimating t he magnitude 

o f the vert ical field component where t.paAP overestimates it. 

For single poles with potential distribut ions othe r than linear o r constant, it ts 

interesting to note that if it were possible to solve Laplace 's equation in regiOn B 

without expressing the pole potential distribution f( x ) as a Fourier series the leading 

term of t he potential in region A would be zero if a = 0 o r it would be the same as 

that fo r a constant potential pole if a = 1. The same leading terms would occur in 

regio n C depending whether {3 = 0 or {3 = 1. Therefo re the approximation giYen in 
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(3.96) can be generalised to: 

2a { arctan (;.)- z4' ln [1 + (z2
• f]} I 7r - oo < x ~ -L 

cpaGP(x, 0) 
V f(x) 

where x• = ( jx j - L )j t. 
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(3 .98) 

Figure 3.31: ApproximatiOns to the normalised magnetic potentials at y = 0, for single 
pole heads with quadratic pole potential, Ljt = 0.5. 
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Figure 3.32: Approximations to the normalised magne tic potentia ls a t y = 0, fo r single 
pole heads with cubic pole potent ial Lj t = 0.5. 

Figs. 3.31 a nd 3.32 compare t he constant potent ial leading te rm cpaG P (3.98 ) and 

cpaA.P (3 .97) wit h the ex act potent ial at y = 0 for single pole heads with quadratic and 
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cubic potential distributions , when L/ t = 0.5 , as defined in Section 3.1.3, respectively. 

For these pole potentials where a = 0 and j3 = 1 the accuracy of both <paAP and <paGP 

decrease slightly as the potential in region B becomes less uniform but <paAP remains 

considerably more accurate then <paGP for x > L . 

2 
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Y/!.:= .9.~__(~). 

YL1_':'_.9.:~_1.E1 ... 

~~~ 
vA=Q~_m 

Figure 3.33: Comparison of the exact ver t ical field (E-curves) for a single pole with 
quadratic pole potential with the approximat ions (AP-curves) and (GP-curves), L/ t = 
0.5. 
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Figure 3.34: Comparison of t he exact vertical field (E-curves) for a single pole with 
cubic pole potential with t he approximations (AP-curves) and (GP-curves), L/ t = 0.5. 

T he corresponding vertical fie ld components are shown in Figs. 3.33 and 3.34. In 

each case , t he approximation via <paAP is extremely accurate , showing greatest error for 

y / t = 0.5 in region C. As the average potential across t he pole (given by a0 / 2 for each 

case) decreases t he accuracy of the ap proximation obtained by using cpaGP increases in 
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region A. For the cubic pole potential, the approximation from cpaAP overestimates the 

peak at yjt = 0.1 but underestimates the maxima farther from the pole; the opposite 

is true for the linear pole potential. The simplified approximation , cpgAP ( ie . taking the 

potential as zero for x < - L ), for each of the quadratic and the cubic pole potentials , 

is only marginally less accurate than cpaAP, as is the case of the linear pole potential 

(Fig. 3.30) . 

For the single pole with a cosine-squared potential distribution, a = {3 = 0 so that 

In this case, cpaGP = cpgAP. 

~ ::: 
!o.7 
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cos2 (-rrx j 2L) -L::; x ::; L 
(3.99) 

0 elsewhere. 

Exact 

0 0.5 

x,lt 

Figure 3.35: Approximations to the normalised magnetic po tentials at y = 0, for single 
pole heads with cosine-squared pole potential, Ljt = 0.5. 

Fig. 3.35 compares both approximations with the exact potential at y = 0 for a 

single pole head with cosine-squared pole potential. The approximation c.pa AP overes-

timates the potential in regions A and C by about a factor of 2. Hence adopting the 

alternative approximation, cpaGP given by (3.99) , can be expected to provide results of 

similar accuracy to cpa AP when employed in further calculat ions. 

Both approximations have been used to estimate the vertical field component when 
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Figure 3.36: Comparison of the exact vertical field (E-curves) for a single pole with 
cosine-squared pole potential with the approximations (AP-curves) and (GP-curves), 
Ljt = 0.5. 

Ljt = 0.5 and are shown in Fig. 3.36. As expected, there is little difference in accuracy 

between the two approximations. Both approximations require the numerical evalua-

tion of one integral per field point. When r.paGP is used the computation is over a finite 

interval but using r.paAP the integral has infinite limits . 

3.1.4.4 The symmetrically shielded pole head 

No approximation to t he potential in the head face p lane was considered in [29]. 

From the two solutions given in Section 2.1.3.5 two different leading term approxima-

tions to the potent ial at y = 0 are possible. In each case the exact potential is taken 

over the pole and the shield faces so that when a = 0 

(3.100) 

0 L + G S:.x<oo. 

From Solution I (2.31) where y = 0 is the boundary between regions rl and C, the 

leading term from either r.p}(x,O) or from r.pp(x,O) is linear so t hat 

L + G -x 

G 
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From Solution II (2.42) the approximation 

is ob tained where 

'Pa I! 2 
- - - J ll 

V - 7r o 

loll = ( 00 sin
2(k) sinh(k( L + G - x )jt) dk 

lo k2 sinh(kG j t) 

(3. 102) 

(3.103) 

which is of the same form as Q'6F (3.89) and hence can be integrated exactly or closely 

approximated as in (3.92) . In both cases xis replaced by (L + G - x) and g is replaced 

G. 

0.9 
~ i 0.8 

lo.7 
i 0.6 

~·o.s 

l :~ 
~ 0.2 
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Figure 3.37: Approximations to the normalised magnetic potentials at y 
symmetrically shielded pole heads , when Lj t = gf t = 0.5. 

0, for 

Figs . 3.37 and 3.38 compare both of these approximations wi t h the exact poten t ial 

a t y = 0, across the gap only. In Fig . 3.37 where L/ t = gf t = 0.5 Approximation 

II ('Pall) is seen to be more accurate than the linear Approxima tion I. In Fig. 3.38 

L/ t = 0.125 and gft = 0. 15 so that t he the head - underlayer sepa rat ion has e ffectively 

increased by a factor o f 4 over the case shown in Fig. 3.37 and the pole - shield gap has 

also increased by 20%. For these dimensions Approximation II is only sligh t ly more 

accurate than the linear approximation. This is in agreement with the results give n in 
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Figure 3.38: Approximations to the normalised magnetic potentials at y 

symmetrically shielded pole heads when Ljt = 0. 125 and gft = 0. 15. 
0, for 

[29]. T here the leading term of the vertical field component via Solution I (2.39) was 

taken as an approximation to the vertical field component. Substituting cpa 1(x, 0) into 

(3.87) and differen tiating with respect to y provides t he same approximation to t he 

vertical field component. The accuracy of t he approximation was found to improve as 

gf t decreased. 

3.2 Conformal Mapping 

3.2.1 The Symmetrically Shielded Magnetoresistive Head 

A 

SHIELD 
f{J =0 

UNDER LAYER f/J = 0 

H 

G 

c 

G = 2 

E 

SHIELD 
f{J =0 

MR POLE f/J = V 

G 

Figure 3.39: Idealised symmetrically shielded a nd recessed ri'!R sensor in the z-plane. 
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Fig. 3.39 shows the idealised 2-dimensional model of a symmetrically shielded 

magnetoresistive (MR) sensor. All of the assumptions listed in Section 2.1.3.1 apply 

to this model. MR sensors are very thin compared with the length of their shields 

and therefore here they are assumed to be infinitely thin. This modelling assumption 

has previously been applied in [44]. An infinitely thin MR pole is placed a distance 

G from each of two shields and is recessed a distance r from the shield faces. The 

shields at zero potential, are assumed to extend to infinity in the negative y direction , 

be infinitely wide and semi-infinitely long and are separated from the underlayer by a 

distance t. The magnetic potential satisfies Laplace's equation in the region exterior 

to the pole, shields and the underlayer in the complex z-plane (z = x + iy). 

-p - 1 - a a 1 
I I I I 

H' A' B' C' 0' E' F' G' H' 

Figure 3.40: The complex w-plane in the symmetric case . 

The Schwarz-Christoffel transformation which conformally maps this region to t he 

upper half of the complex w-plane with points A-H shown in Fig. 3.39 mapping to A'-

H' respectively, as shown in Fig. 3.40 , is defined by 

dz S 5 w(w2 - 1)~ 
dw (w2 -a2 )(w2 - (P) 

(3.104) 

where the superscri pt S denotes the symmetric case. The pole tip D ( z = -ir) maps 

to the origin w = 0 and due to symmetry the shield corners B and F ( z = :r=G) map to 

w = =j= l respectively. The points a and {3 in the w-plane , and the constants 55 and zg 

(appearing in (3.105) below) are determined by matching boundary values. The point 

H on the underlayer surface in the z- plane (z = it) which maps to the point at infinity 
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in thew-plane does not occur in (3 .104). Integrating [81] gives 

z = ss {v1- o:2 arctan [ y'w2 - 1] + ..jf32- 1ln [v'w2- 1- ..jf32 - 1]} + zs . 
/32 - o:2 v'1- o:2 2 v'w2 - 1 + y',B2 - 1 ° 

(3 .105) 

The constant ss is found by matching the geometries of the two planes. There is 

~jump at the point z = ( G / 2, - oo) which corresponds to w = a so that applying the 

method of residues [32, Section 8.2.5] 

1
0 1.,.. o:v'o:2- 1 

dz = S
5
i ( 2 ,82) d(). 

g 0 2o: Q -

Similarly at w = ,B 

gtvmg 

ss = -2G(,B2 - o:2) 

1rv'1 - o:2 

respectively, from which it follows that 

and 

(3.106) 

(3.107) 

(3.108) 

(3.109) 

Evaluating (3. 105) at w = 1 a nd w = 0 where z = -ir and z = G respectively gives 

zg = G + it (3.110) 

and 

2G [ it l t [i - v',B
2-ll G + i( t + r) = - arc tan G ,82 + - ln . , .J/32 . 

7l" v' - 1 7l" t , - 1 
(3.111) 
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Hence 

2G [tv'w2
- 1] t [v'w2 

- 1 - {} ] 
z = G + it - - arctan G-r9 - - ln 

71" 71" v'w2 - 1 + 19 
(3.112) 

where {} = .jf32 - 1 satisfies 

ln -- + - arctan - - 1T"r - t71" = 0 [
i - ?J l 2G [ it ] . 
i + {} t G11 

(3.113) 

which simplifies to the real equation 

[
t - G'l9 ] [ 1] G ln t + G19 + 2t arctan a + 1T"T = 0 . (3. 114) 

Then{3 = v 1+ '19 2 , a= J 1 -(G'19 j t) 2 , and 5 5 = -219(G2 + t2)/ (1T"t). The solu tion 

of (3.114), which dep ends only on the ratio Gjt , is easily found by, say, the Newton-

Raphson method (2.60) using an initial value w 0 < 1/ r . 

For this solution with arctan evaluated as 

1 (1 +ip) arctan(p) = --:- In --.-
2t 1 - tp 

(3.115) 

(as is required in the FORTRAN language which does not support a complex: arctan 

function) and with v'w2 - 1 evaluated as .;:w-=-lv'UJ+1, consideration of the bra nch 

cuts requires that 71" be added to the principal value given by the logarithmic evaluation 

of the a rctan term in (3.112) for all points with Re(w) < 0, ex:cept those on the real 

axis such that -a< H.e(w) < 0. This ensures that (3. 112) is valid for a ll w such that 

Im( w) 2: 0, i.e . the upper half plane and the real axis. 

In t he upper half of the complex w-plane the real part of the complex magnetos ta tic 
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potential function 

(3.116) 

t akes the value V on t he real axis for IRe( w ) I < a and zero elsewhere on t his axis . 

This gives 

and t he normalised field components , which follow from (2.54) , a re t hen 

2a(w2
- {3 2

) 

S5 1iw.../w2 - 1 

(3 .117) 

(3.118) 

For a given point z = x + iy in t he z- plane, the corresponding point w required in 

(3.118) may be found from (3.105) in a small number of Newton-Raphson iterations, 

given a suitable starting value. 
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}11 =:. Q~ ­
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Y.:1.:: ..Q:.~ .. -

F igure 3.41: Horizontal field component for a symmet rically shielded , non-recessed , 
infini tely thin MR sensor , Gj t = 0.375 . 

Typical horizontal and vertical field components, normalised by V f t , for a symmet-

rically shielded , non- recessed pole with Gf t = 0. 375, a t various heights be tween the 

MR pole at y f t = 0 and the uuderlayer at y f t = l , a re presented in Figs. 3.-!1 and 3.-!2 

respectively. T hese res ults have been confirmed by compa rison with the field compo-
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Figure 3.42: Vertical field component for a symmetrically shielded, non-recessed, in­
finitely thin MR sensor, Gf t = 0.375. 

nents of a very thin symmetrically shielded pole also of gap size 0.375t , obtained by 

the Fourier method [29]. A pair of peaks of equal magnitude but opposite sign occurs 

in the horizontal component corresponding to the two gaps. In the vertical component 

a single peak occurs and close to the head there are undershoots which correpond to 

the shield corners. 

3.2.2 The Asymmetrically Shielded Magnetoresistive Head 

UNDERLAYER cp = 0 
/ / / / / / / / / / / / / / / / / . 

A 

SHIELD 
cp = 0 

H 

c E 

SHIELD 
cp = 0 

MR POLE cp = V 

Figure 3.43: Idealised asymmetrically shielded and recessed MR senso r in t he z- plane. 

Here the magnetic field of an asymmetrically shielded MR sensor is analysed. 

Fig. 3.43 shows the idealised 2-D geometry under considerat ion . .-\ll of the modelling 
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assumptions adopted in the previous section apply here also except that now the dis-

tances from the pole to the right and left-hand shields are G1 and G2 respectively. 

-P -8 -y 1 
I I I I I 

H' A' 8' C' 0' E' F' G' H' 
Figure 3.4£1: The complex w-plane in the asymmetric case. 

The Schwarz-Christoffel t ransformation which conformally maps this region onto 

the upper half complex w-plane with points A-H shown in Fig. 3.43 mapping to A'-H' 

respectively, shown in Fig. 3.44, is defined by 

dz SAw(w - 1) t(w + 6)t 

dw (w- a)(w2
- {3 2 )(w + 1) 

(3.119) 

where the superscript A denotes the asymmet ric case. As in the symmetric case, t he 

pole tip D ( z = - ir ) maps to the origin w = 0, t he right- hand shield corner F ( z = GI) 

maps to w = 1 and t he point H on the underlayer surface in the z-plane which maps 

to t he point at infinity in thew-plane does not occur in (3. 119). Due to the lack of 

symmetry there are four points a 1 {3 , -~ and - 6 in the w-plane 1 as well as the constants 

SA and z0
4 (appearing in (3.120) below) to be determined by matching boundary values. 

Integration of (3.119) [81] gi ves 

z A.arctan [2(a - 1)(a + 6) + (2a + 6 - l) (w - a)] 

2j (l - a)(a + 6)w• 

+B arctan 
[
2(1 - 1)(1- 6) + (6 - l - 2/)(w +1)] 

2j (l + 1)(6 -1 )w · 

[

2({3 - 1)({3 + 6) + (2{3 - 6 - 1)(w - .(3) -L 2j (6 - 1)({3 - 6) w• l 
+C ln w -{3 
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[
2((3 + 1)((3 - o) + (o- 1- 2(3)(w + (3) + 2J((3 + 1)((3- 5) w•l 

+D ln (3 w+ 

(3.120) 

where 

w· = JW-=-1 Jw + 0, (3.121) 

A = 
SAaJ(l - a)(a + o) 

(3.122) 
((32 - a2)(a + I) 

B 
SA1J(l + l)(o -1) 

(3.123) = ((32 _ 12)( I + a) 

c = 
-SAJ((3- 1)((3 + 5) 

(3. 124) 
2((3 - a)((3 + 1) 

D 
- sAJ(f3 + 1)((3- 5) 

(3.125) 
2((3 + a)((3 -1) 

In (3 .120) and t he subsequent analysis it is assumed that the function arctan(p) of 

a complex argument pis evaluated as (3.115) in which case taking the principal values 

of t he logarithm and the square root functions ensures (3.120) holds for Im(w) > 0. On 

the real w-ax.is further investigation of t he branch cuts of these functions is necessary. 

Matching the points w =a, - 1, (3 and -(3 with the jumps in the boundary in the 

z- plane at E , C, G and A by t he method of residues , as described for the symmetric 

case in Section 3.2.1 , gives res pectively, 

- G1 
A=-

' 7r 

-G2 
8 =-

7r 
, C = !__ 

' 7r 

t 
D--- . 

7r 
(3.126) 

It is now clear tha t S·--1. is a real negative constant . Evaluating (3 .120) at w = 1 and 
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w = -5 and using (3.126), both give 

A 1 2t ( ) z0 = -( G1 - G2)- - ln 1 + 5 . 
2 7r 

(3.127) 

Here care must be taken in selecting the correct values for the arctan functions , i.e. 

-1r / 2 in both cases for w = 1 and + 1r / 2 in both cases for w = -5. Also, due to a 

branch cut, the value of the first ln term in (3.120) just above the real a..xis at w = 1 

differs by 27ri from its value exactly at w = 1. The limiting value is required. 

The final relation is obtained by evaluating (3 .120) at the pole tip and using (3.126) 

and (3 .127) to give 

- - arctan - - arctan G1 [ a5 - a - 25 l G2 [ 1 - 10 - 25 l 
7r 2i-/5j(l - a)( a + 5) 7r 2i-/5j(l + 1)(5 -1) 

+ ~ ln [,8 - ,85 + 25- 2i:j(,B - 1)(,8 + 5) ] 

t [{3 - {35- 25 + 2i.J6j(f3 + 1)({3- 5)] + - ln 
7r {3 

+ ~(G1 + G2 ) -
2
t ln(1 + 5) + ir = 0 . 

2 7r 
(3.128) 

Due tow = 0 lying on a branch cut , evaluating the second arctan term via t he principal 

value of the In function requires the limiting value to be taken rather than the direct 

w = 0 value i.e. arctan[ ]- 1r has been taken in deriving (3 .128). 

Once a, {3, 1 and 5 have been determined, the transformation is given by (3 .120), 

using (3.126), the constant of integration, zt, is given by (3. 127) and the constant SA , 

required for (3. 119) but not now for (3 .120) , is given by any of (3 .122) - (3. 125), using 

(3.126). Four suitable non-linear equat ions to be solved for a, {3 , 1 and 5 are (3.128) 

and three equations ob tained from (3 .122) - (3.125) and (3 .126) by eliminating 5 '1 . 
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These are: 

2a({3 + I)V(l- a)( a+ h) Gt 

(a+ !)(a+ f3)V(f3- 1)({3 +h) 
= -t' (3.129) 

21({3- a)J(l + 1)(8 -1) G2 

(a+ 1)({3 -!)V(f3- 1)({3 +h) 
= -t ' (3.130) 

({3- a)({3 + !)V(f3 + 1)({3 - h) 
1 . 

({3 + a )({3 - 1) J ({3 - 1 )({3 + h) 
- (3 .131) 

Further analysis of equation (3.128) reveals it to be purely complex and that it may 

be written in the form 

(3.132) 

where, 

191 
ab"- a- 28 

= 
2.f6J(l- a)(a + h) ' 

(3.133) 

{}2 
1 -18- 28 

= ' 2.f6J(l + i)(h" -I) 
(3.134) 

193 = 
[ 2v'6 j(!l - 1 )(il + 5) l 

arctan {3 _ {3h" + 28 
(3.135) 

{}4 
[ 2J6 j(!l + I )(il - 5) l 

= 7r- arctan 
{38- {3 + 28 

(3.136) 

The four equations (3.129) - (3.132) may be conveniently solved by a suitable library 

routine eg. C05r BF in [33], the values of a, {3, 1 and 5 only depending on the ratios 

Gtf t , Gdt and r j t . 

Whilst the above also holds for a pole symmetrically placed between the shields, the 
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transformation is not the same as that given in Section 3.2.1. Substituting 1 = a, 5 = 1 

and G1 = Gin (3.122) and (3.126) provides the same relationship between SA and the 

parameters a and (3 as given for S5 in (3.108). Taking G2 = G also in (3.127) gives 

zt = - 2t ln(2) which is independent of the gap width unlike the symmetric mapping 

for which zg = G +it. 

The magnetostatic potential function in the upper half w-plane which takes the 

value V on the real w-axis for -~ < Re( w) < a and zero elsewhere on this axis is 

Re(FA(w)) where 

(3.137) 

Therefore using the relationship (2.54) leads to 

- (a + l )(w2 - (32) 

- 1rSAw~Jw + 5 . 
(3.138) 

For a given p oint z = x + iy in the z-plane, the corresponding point w required in 

(3.138) may be found from (3.120) in a small number of Newton-Raphson iterations. 

For most of the examples included in this thesis, setting w = - (3 + 0.002i has provided 

a suitable start ing value for the Newton-Raphson method for x < - G2 and y j t ~ 0.1. 

Each successfully inver ted point can be used as the sta rting value for the next , provided 

t hat t he two points are sufficiently close together . Inver ti ng t he transformation a long 

y = 0 requires very small steps between evaluations in order to provide the necessary 

accura te st arting values. The mapping is particularly crowded near t he corners of the 

shields and close to t he pole tip . Starting the inversion with w = b + 0.002i where 

b = - (3 truncated to 2s f. at z = ( - G2 + 0. 1, 0) has been successful. 

By t he design of t he mapping, 0 < a < l , l < (3 < oo, 0 < 1 < 5 < (3 . As a or 

1 ap proaches zero, or as {3 approaches 1, crowding of the transformation makes con-
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vergence of the Newton-Raphson method more difficult , and so very accurate starting 

values are required. In computing the field components , the constant SA appears in 

the denominator of equn. (3.138) , giving greatest accuracy when SA is large, if a fixed 

tolerance is applied when inverting the mapping by the Newton-Raphson method. 

Tables B.9, B.10 and B.ll show some typical constants as G1 , t and r vary, re-

spectively, while all other dimensions are held constant . Where results are given for a 

symmetric head, these have been obtained from the asymmetric solution with 5 = 1 

and 1 = a so that z~ jt = -0.441271, independent of GI/ t , using the definition given 

in equn. (3 .127). As the ratio between t he left and right-hand gap widths Gd G1 

increases, the spread of 1, 5 and {3 increases and the magnitude of SA increases. As 

the head - underlayer separation increases (3 and I SA I increase rapidly. Recessing the 

pole consistently reduces the magnit udes of all the constants except (3 and S A; a and 

1 are particularly affected. Therefore this method is more easily applied when both 

G2 2: G1 and Gd t .:S 1 and the pole recession is not extreme. 
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Figure 3.45: Horizontal field component for a non-recessed , infinitely t hin MR sensor, 
GJ/t = 0.25 and Gd t = 0.5. 

Figs . 3.45 and 3...1:6 show typical normalised, horizontal and vertical field compo-

nents for an asymmetrically shielded, non-recessed MR sensor where G2/G1 = 2. Peaks 

corresponding to t he gaps occur in the horizontal component. The narrower peak which 
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Figure 3.46: Vertical field component for an asymmetrically shielded, non-recessed, 
infinitely thin MR sensor, G1/t = 0.25 and G2 /t = 0.5. 

corresponds to t he narrower gap has the greater maximum magnitude. Hence t he zero 

of the horizontal component and t he maximum of the vert ical component occur at 

x < 0, which corresponds here to the wider gap . The gradient of the vertical field 

component is greater on the narrower gap side than on the wider gap side, hence the 

undershoot, which occurs close to and on this side of the head, is deeper and narrower 

than the one on the other side. 

3.3 Discussion 

3.3.1 Head - Underlayer Interaction 

The head - underlayer interaction is such that for a head of fixed dimensions, its 

separation from the underlayer can have a strong influence on t he head field. Figs . 3.4 7 

- 3.49 provide examples of the effect of varying the head - underlayer separation for the 

constant potential thin film head , t he single pole head with a linear pole potential and 

the asymmetrically shielded MR sensor. For each head the vertical field component 

for different head - underlayer separations is given a t the same physical height from 

t he head , as in practice the head - medium separation is kept as small as possible , 
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irrespective of the medium thickness. As t decreases, the degree of head - underlayer 

interaction increases which improves the vertical field strength, but as the distance from 

the head face remains constant , the vertical field is sampled at increasing distances 

relative to t . In each case as t decreases the magnitude of the peaks increases, and the 

gradient of the field over the trailing edge of the pole becomes steeper. The rate of 

increase depends on the head geometry and the potential distribution across the pole. 

t = 0.25 

t = 0.5 -----
t = t.O 

t = 20 

0~----~----~-----,,-----,-----, 
0 0~ 2 2..5 

X 

Figure 3.47: Variation in the vertical field components at y = 0.1 for constant potential 
thin film heads with head - underlayer separation, L = g = 0.5. 

For the constant potential t hin fi lm head, t he peak vertical fie ld over the trailing 

edge of the head at y = 0.1, increases more than that at the gap edge as t decreases. The 

peak over the gap edge when gf t = Ljt = 2 is 156% higher than when gft = L j t = 0.25 

while the corresponding increase in the peak over the trailing edge is 330%. Therefore 

when the head - underlayer spacing is small, recording would occur at t he trailing edge 

of the head. Unless the head was very narrow, overwriting of adjacent bit cells by the 

field over the other pole could be a problem. 

For the single pole head with a linear pole potential, the peak vertical field when 

Lj t = 2 is 186% higher than when Ljt = 0.25. The depth of the undershoot decreases 

with decreasing t so reducing the overall width of the peak. Similar results can be 

expected for single pole heads with other potential distributions . 
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Figure 3.48: Variation in the vertical field components at y = 0.1 for linear potential 
single pole heads with head - underlayer separation, L = 0.5. 
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Figure 3.49: Variation in the vertical field components at y = 0.1 for asymmetrically 
shielded, non-recessed, infinitely thin MR sensors with head - underlayer separation 
G1 = 0.25, G2 = 0.5. 

The position of the underlayer has less effect on a shielded i\IR sensor. Fig. 3...19 

shows the vertical field component at y = 0. 1 for asymmetrically shielded l\IR sensors 

where G2/G 1 = 2 for four head - underlayer separations. 'The peak when G 2 /t = 2 

is only 47% higher than the maximum when G2 /t = 0.25. The magnitude of the 

undershoots also decline as t decreases so that the gradient only increases slightly. 
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3.3.2 The Effect of Pole Potential Grading 

3.3.2.1 Thin film heads 
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Figure 3.50: Comparison of t he vertical field component for thin film heads with con­
stant (C-curves) and linear (L-curves) potential poles , gft = Lj t = 0.5. 

Fig. 3.50 shows the vertical field components of t hin film heads with constant and 

linear pole potentials when gft = Lf t = 0.5 at three heights close to the head face 

plane. In both cases the magrutude of the largest peak and the maximum gradient 

increase as y / t decreases. The secondary peaks close to and above the out er edges of 

t he head with constant potential poles could result in recording taking place at the 

t railing edge of the head instead of at the gap edge, in a sufficiently sensitive system. 

These secondary peaks are replaced by relatively small negative undershoots in the 

linear pole potential head . For y f t < 0.25 , the magnitude of the peak over t he leading 

edge of the right hand pole is greater with a linear pole potential than for a conventional 

constant pole potential. At yj t = 0.05 , the maximum vertical field above the leading 

edge of the right-hand pole wit h a linearly varying potential increases by 24% over the 

equivalent maximum value for a pole with a constant potential and by 78% over t he the 

maximum value above the trailing edge, t he second peak, of a constant pole potential 

head. The maximum gradient as the field falls from its peak value in the linear pole 
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potential case, increses by 28% over the maximum gradient as the field falls from the 

second peak for the constant pole potential head . At y f t = 0.15 , the corresponding 

increases are 10%, 33% and 26%. 

The resultant of the horizontal and t he vertical field components in the linear pole 

potential case is more localised than the equivalent constant pole potential field; it is 

concentrated close to the gap edges, where it is both of higher magnitude and more 

vertically inclined. Fig. 3.51 shows the magnetic fields for constant and linearly varying 

pole potentials , in terms of field vectors . Each arrow represents the field at its midpoint 

and all magnitudes are normalised by the largest magnitude for the head with the linear 

pole potential. Using a linear potential grading across the poles should provide a more 

efficient system for ' in contact , recording. 
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F igure 3.51: Comparison of the magnetic fields of th.in film heads with constant and 
linearly varying pole potentials, gf t = 0.5 , Ljt = 0.5. 

3.3.2.2 Single pole heads 

Fig. 3.52 shows the normalised vertical field components at y jt = 0. 1, for single 

pole heads with various pole potential distributions , all with Lf t = 0.5. Each of 

the new potential distributions has the advantage that even at this relat ively small 

distance from the pole face their vert ical field component is not bimodal , unlike that 
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Figure 3.52: Variation in the vertical field components at yjt = 0.1 wtth pole potential 
grading for single pole heads , Ljt = 0.5. 

of the conventional constant potential pole. Also their peaks are higher and narrower 

than the peak of the constant potential pole. The peak for the cosine-squared potential 

distribution is 76% higher than the maximum vertical field of the constant potential 

single pole at yjt = 0.1 when Ljt = 0.5. For the asymmetric distributions , the greater 

the degree of asymmetry, the narrower the peak and broader the undershoots become. 
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Figure 3.53: Variation of the maximum vertical field with L / t for single pole heads 
with linear (L-curves) and constant ( C-curves) pole pot entials . 

T he variation in the verti cal field wit h Ljt , for single pole heads with both linear 

and constant pole potentia.ls, at several relative positio ns, yj t , is summarised in F igs. 

3.53 - 3.55. Fig. 3.53 shows the variation in maximum field strength . Close to the 

pole at y ( t = 0.05, the increase possible with a Linear \·ariation in pole potential varies 
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from 10% for Ljt = 2 to 75% for a narrow pole with Ljt = 0.125. Fig. 3.54 shows 
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Figure 3.54: Variation of the maximum vertical field gradient wit h Lj t for single pole 
heads with linear ( L-curves) and constant ( C-curves) pole potentials. 

the variation in t he maximum vert ical field gradient as Ljt varies . T his a lways occurs 

just past the trailing edge of the pole. Only for yjt :s; 0.15 is t here an appreciable 

increase in gradient with a linear potential pole, but this can be as large as 108% for 

a narrow pole with Ljt = 0.125 at yj t = 0.05. Fig. 3.55 shows the variation in pulse 

5..5 • y/t = 0.05 (l) 

t 4~ o YL1 = _Q.OSJ.Cl 
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-· 
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Figure 3.55: Variation of the vert ical field pulse width with Ljt for single pole heads 
with linear (L-curves) a nd constant (C-curves) pole potentials. 

widt h, defined here as t he width of the field a t 50% its maximum value. The pulse 

widt hs for both t he linear and constant potential poles vary approximately li nearly 

with Lj t , at least for Lj t not too small, but those linear ra tes are different , with the 

constant potent ial pulse wid t h decreasing fas ter as L/ t decreases. T he linear potential 
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pole value is always smaller. At y jt = 0.05 for example, for Lj t = 2 the linear potential 

pulse width is 19% of t he constant potential pole value rising to 39% for Lf t = 0.125. 

As in the case of the linear thin film head, the field of the single pole head with a 

linear pole potential is more localised than that of the corresponding constant potential 

head. Here, close to the maximum potential pole edge, the field for the linear potential 

p_ole is of greater magnitude and more vertically orientated than that of the constant 

potential pole. This is shown in Fig. 3.56. 
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Figure 3.56: Comparison of t he magnetic fields of single pole heads with constant and 
linearly varying pole potentials , Ljt = 0.5 . 

Greater advantages are obtained by usmg the other asymmetric pole potentials 

considered here. For each of the varing potential distributions tested , the field is more 

localised than in the constant potential case. Consequently, further from the pole face, 

t he peaks , although still narrower, are lower than t hose of the constant potential pole. 

The essential requirement is for the recording layer to be as close as possible to the 

pole . 

The average potential across a pole with a cosine-squared potential d istribution , 

reaching a maximum p otential V, is half that of a pole, of the same dimensions , with 

constant potential V. However the improvement in the magnitude of the head field , 

close to the pole face , cannot be achieved by red ucing the width of a conventional single 
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pole by half. Fig. 3.57 compares the vertical field component at yjt = 0. 1 for a single 
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Figure 3.57: Vertical field component for a single pole head with a cosine-squared 
pole potential compared w1th those for thinner poles with constant potential, aU at 
yjt = 0.1. 

pole with a cosine-squared pole potential, with those for constant potent ial poles of 

half and a quarter t he width. Clearly, Ljt for the constant potential pole would need 

to be very small to raise the peak to the height of that produced by the cosine-squared 

potential pole with Lft = 0.5 especially as the constant potential vertical head field 

never exhibits undershoots. 
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Figure 3.58: Vertical field component for a single pole head wit h a cosine-squared 
pole potent ial , Lj t = 0.5: (C-cur ves) and a symmetrically shielded pole , Lj t = 0.125, 
g;t = 0. 15, (S-cu rves) . 

The shape of the vert icai fidd component for a single pole with cosine-squared 

potential is very similar to that of a symmet rically shielded pole head [29 ~ . Fig. 3.58 
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shows the vertical field component of a cosine-squared potential single pole head with 

Lft = 0.5 and of a symmetrically shielded pole head with dimensions Lft = 0. 125 

and gf t = 0.15, both normalised by Vf t. Close to the pole face at y f t = 0.1, they 

have almost identical maxima under t he pole centre, and their undershoots of similar 

magnitude both occur at lxlft = 0.47. 

_ These results have practical significance in two particular respects. First , the mag­

netic potential distribution across a practical pole is unlikely to be uniform. During 

manufacture, oxidation or other chemical modification to the outer surfaces of the pole 

may occur, or combining layers of different materials may affect the immediate mi­

crostructure of t he pole . Saturation near the pole corners and other effects at high 

frequency such as may be caused by eddy currents, can also result in a non-uniform 

distribution of magnetisation across the pole. These t heoretical results may help to 

explain the behaviour of such poles in practice. Secondly, these results suggest that 

it may be possible to construct a single pole head with the optimum properties for a 

particular system. 

3.3.3 The Effects of Asymmetry and Pole Recession for a 

Shielded M R Sensor 

Figs . 3.59 and 3.60 show the horizontal and vertical field components at y f t = 0.1 , 

when Gdt is fixed at 0.5 as Gtft varies from 0.5 to 0.0625. As expected , the widths 

of the peaks of both field components reduce as the total gap width decreases. The 

magnitude of the positive peak for each component does not increase indefinitely with 

increasing asymmet ry, the maximum peak magnitude occurring at a different ratio 

of G2/G1 for each component. The magnitudes of the left-h and undershoot of the 

vertical component and the negative peak of the horizontal compone nt both decrease 
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Figure 3.60: Comparison of the vertical field components, a t y j t = 0. 1, for shielded , 
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G2 /t = 0.5. 

wit h increasing asym met ry, over t he range of gap ratios tes ted . A maximum right-hand 

undershoot in t he vert ical field occurs for G2/G 1 ~ 4. 

As the head - underlayer separation increases , the magnitude of the vertical field 

com ponent decreases slight ly and rapid ly approaches t hat obtained when t here is no 

underlayer present. For the case where g2/ g1 = 2. the ve rtical component changes by 

less than 4% from the no underlayer case if l > -l:g1 . The position of t he peak appears 

to be vi rt ually independent of t . T he horizonta l com ponent is also almost unaffected . 

Recession of the pole has a detrimental effect on t he magnitude of bot h the vertical 

135 



\8 

\6 

\..4 

~ 1.2 

i :~ 
j 0.4 

D 
- .6 

- .8 

-1+--.---.--~~~4---r--.--.--,--~ 
-1 -.8 - .6 0 D.2 0.4 0.6 0.8 

x/t 

rtl = 0 

rtl.::. O.Q!._ 

rz'\_=_~,_-

Figure 3.61: Variation in the horizontal field component with pole recession for a 
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Figure 3.62: Variat ion in the vertical field component with pole recession for a shielded, 
non-recessed , infinitely thin MR sensor , G1 j t = 0.25 , Gdt = 0.5, when yjt = 0. 1. 

and horizontal fie ld components . This is demonst rated in Figs. 3.61 and 3.62 where 

for G 1/t = 0.25 and G2 /t = 0.5, the fie lds fo r poles with recessions r f t = 0.01 and O. l 

a re compared wit h the fie ld of a head with a non- recessed pole. Experimental and 

approximate results for a longitudinal system [74], [84] are consistent wit h t hese results. 

Although recessing the pole increases t he distance to t he recording medium, the 

effect is less disadvantageo us than moving the medium away from the head by the 

same a mount. Figs. 3.63 and 3.64 show the x and y field components. respecti\·ely, 

for a non- recessed head and a head with the pole recessed by r; t = O. l. In both cases 

t he head - underlayer separation is the same. ell t = IJ. 25. G2d = U. 5 and the fie ld 
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Figure 3.63: Companson of t he horizontal field components of shielded , recessed and 
non-recessed , infinitely thin MR sensors, both computed 0.2t from the pole tip , G 1 jt = 
0.25, G2/t = 0.5. 
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Figure 3.64: Comparison of the vertical field components of shielded, recessed and non­
recessed , infinitely thin MR sensors , both computed 0.2t from the pole tip , G 1/t = 0.25, 

G2/t = 0.5. 

is computed 0.2t from the pole tip. The peaks and undershoots of both components 

are of greater magnitude for the head with a recessed pole , which also gives narrower 

peaks. 

3.4 Summary 

This chapter has discussed: 

• The deri\·at ion of head fie ld components. by F'ourier analysis. for 
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1. Thin film heads with constant and linearly varying pole potentials. 

2. Single pole heads with linear pole potential. 

3. Single pole heads with arbitrary pole potential. 

• Approximation to the potential at y = 0 for each of the heads listed above as 

well as for a symmetrically shielded single pole head. 

• The derivation, by conformal rnappmg, of head field components for shielded, 

infinitely thin magnetoresistive sensors, both symmetrically and asymmetrically 

shielded, and both recessed and non-recesessed. 

• Typical results in relation to the various geometric factors . 
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Chapter 4 

Output Characteristics 

4.1 Spectral Response Functions and their Ap-

proximations 

4.1.1 Introduction 

For an inductive head , the spectral response function is defined as the Fourier 

transform of t he appropriate component of the head field in the head face plane ie. 

( 4.1) 

where H(x, 0) is either H.,(x, 0) of Hy(x, 0). T his function provides information about 

t he replay limitations of a particula r head. 

For a head in the presence of an underlayer at y = t , if the potential in the head 

face plane at y = 0 is known then applying a Fourier transform to Laplace's equation 

for the magnetic potential in the region 0 ~ y ~ t leads to 

( -!. 2) 
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where 

( 4.3) 

By differentiating ( 4.2) with respect to y it can be shown that 

( 4.4) 

This leads to 

Jl ( ) = Jl ( O)cosh(~(t- y)) 
Y ~,y Y ~~ cosh(~t) · ( 4.5) 

T he magnetisation on a medium with perpendicular an~sotropy is assumed to have 

a vertical component only. The magnitude of the magnetisation is a waveform and any 

periodic wave can be expressed as a Fourier series . Taking the case of a single sine 

wave and using the notation of Section 2.1.5, 

where~ = 27l' / A is the wavenumber of a magnetisation with wavelength A and Mr is the 

remanent magnetisation of the medium. Therefore, by invoking the reciprocity theorem 

(2. 70), the output voltage of an inductive head due to a sinusoidal magnetisation on 

the medium of thickness 5 at a distance d from the head face plane, can be evaluated 

as 

e1n(x) = AirCln~ [cos(~x)Re [ld+6 Hy(~,y)dy] - sin(~x)Im [ldH Hy(~ , y)dyll 
( 4.7) 

where Cl" is a constant for a particular inductive head. The relationship given in equn . 
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( 4.5) leads to 

. [sinh(K(t - d))- sinh(K(t- d- 5))] 
cosh(Kt) · 

( 4.8) 

For the case of no underlayer 

m =e~< 1 -e . li [
sinh(K(t- d))- sinh(K(t - d - 5))] _ d( -...6) 

t -+oo cosh( Kt) 
( 4.9) 

So that for an inductive head without an underlayer the instantaneous output voltage 

can be expressed in terms of the spectral response function Hy(K , 0), a spacing loss 

e-~<d, and a medium thickness loss (1 - e-...6). However , for a head in the presence 

of an underlayer the terms do not completely separate. In this case the head field 

depends on the distance, t , to the underlayer and hence so does the spectral response 

function. The ratio of sinh and cosh terms in equn. ( 4.8) has no zeros for K, d, 5, t > 0 

and t 2: d + 5 therefore any output nulls are due to t he zeros of the spectral response 

function. 

Clearly, a replay head cannot be used over a range of frequencies which includes 

a null. In general asymmetric replay heads do not exhibit spectral response nulls but 

mos t symmetric ones do. Null free responses have been reported in [85j and [47J for 

geometries not considered here. 

The spectral res ponse function of a symmetric perpendicular replay head is eit her 

entirely real or entirely imaginary depending whether the vertical head field component 

is even or odd respectively. By convention, this function is plotted in decibels and 

therefore magnitudes only are quoted. For asymmetric heads the amplitude of the 
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response depends on the resultant of both components and is given by 

( 4.10) 

A similar analysis for an MR head, in the presence of an underlayer, relates the 

output voltage to its spectral response function by 

eMR(x) [ ~ ~ l [ sinh("'(t- d)]- sinh("'(t- d- 6)]] 
MrCMR ex sin("'x)Re(lf'("', O)]+cos("'x )Im(lf'( "', 0)] sinh("'t) 

(4.11) 

where cMR is a constant for a particular magnetorestitive head . This relationship 

differs from ( 4.8) in the sign of the imaginary term and here the Fourier t ransform of 

the vertical head field component is replaced by If'("', 0) coth("'t) . l Therefore noting 

( 4.4 ), it is convenient to define the MR spectral response function as Hy ( "'' 0) I"' so that 

the magnitude of this function relates to the output voltage in an analogous manner 

to the inductive case. 

Approximations to spectral response functions can be obtained by using the ap-

proximations to the potential in the head face plane introduced .in Section 3.1.4. Some 

of these approximations can be expressed in closed form . An approximate spectral 

response function for a conventional ring head wi thout an underlayer was derived by 

Liibeck (86]. This result, which can also be obtained by taking the Fourier t ransform 

of Karlqvist 's approximation to HAx, 0) (2.62), is: 

HaR 
:z: 

V 
(4.12 ) 

which has zeros for"' = n1rl g ie. GI A. = n for n = 1, 2, 3, · · ·. The true first null for 

the conventional ring head occurs when G I A = 0.88 due to the non-lineari ty of the 
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potential across the gap. Armed with this scaling factor for the first null, the Liibeck 

approximation is still in use. The approximations derived here are not of such a simple 

form as ( 4.12), but in general they approximate the appropriate true spectral response 

function more accurately than ( 4.12) does for the ring head. 

The information lost by considering only the magnitude of the spectral response 

function is retained by examining its phase, ie. the resultant direction of the real and 

imaginary parts of the output voltage. A phase change by 1r radians is equivalent to a 

reversal of polarity of the magnetisation replayed [87]. From ( 4.8) and ( 4.11) it is clear 

that the phase angle <}( "') is given by 

(4.13) 

for an inductive head and in the case of an MR head by 

(4.14) 

For symmetric replay heads abrupt phase changes by 1r radians occur at transi-

tion frequencies corresponding to the zeros of their spectral response functions . The 

interaction of the real and imaginary components of the spectral response functions 

for asymmetric heads results in continuous changes of phase over t he entire range of 

transition frequencies. Clearly, approximations to t he phase can be obtained from 

t he approximations to the spectral response fun ctions whose accuracy determines the 

quality of the approxi mate phase spect ra obtained . 

143 



4.1.2 The Ring Head with an Underlayer 

For the ring head with an underlayer, taking the Fourier transform of (2.28) eval-

uated at y = 0 leads to 

( 4.15) 

where the coefficients A~u' are given by (2.25). Apart from the coth(~t) term and the 

coefficients which depend on gft , t his function is the same as the spectral response 

funct ion for a ring head without an underlayer [24]. The function coth(~t) has no 

zeros, therefore the difference in the positions of nulls in the two heads is due entirely 

to the coefficients. The coth(~t) te rm influences the magnjtude of t he response; for the 

conventional ring head H~(~ , 0) -----+ 1 as ~ -----+ 0, but when an underlayer is present 

H!"u (~, 0) is unbounded as~-----+ 0. These features are shown in Fig. 4.1. 
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Figure 4.1: Spectral response functi on for a ring head with gf t = 0.5, and without an 
underlayer present. 
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4.1.3 The Thin Film Heads with Constant and Linearly Vary-

ing Pole Potentials 

4 .1.3.1 Constant potential poles 

The spectral response function for the thin film head with constant potential poles 

~as been derived using (4.4) and the potential functions given in (3 .8), (3.3) and (3.11), 

all evaluated at y = 0: 

{ 

0 [ 1 00 (1 - e-2mrtf g) "'92] 
2 coth("'t) sm("'9) - + L [( )2 ( )2]-"'9 n=l "'9 - n'Tr n'Trt 

where en = e- 2mrL/ t, 

TF { 00 sin2(k) t . 
Sin = Jo [P _ (n1r)2 ] [k2 + ("'t)2 ] [ksm ("'(9 + 2L)) + "'tcos ("'(9 + 2L))] dk, 

(4.17) 

(4.18) 

and B~' and D~' are the normalised constant potential Fourier coefficient s calculated 

as in (3.19)-(3.21). Closed form expressions for SJ~F and Sln have not yet been 

obtained. 

True nulls in the spectral response function occur when sin(K9) ~ 0. [t is clear 

from ( 4.16) that the exact null positions are influenced not only by the series which is 

independent of the Fourier coefficients , but also by terms dependent on the full head 

width, 2(9 + 2L) . The series dependent on the Fourier coefficients , B~' and D~' , has 
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only a minor effect. Like the ring head without an underlayer , at long wavelength, 

the spectral response function of a conventional thin film head approaches unity. The 
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Figure 4.2: Variation in the position of the first spectral response null, and the preced­
ing minima, with pole I gap ratio, for constant potential thin film heads, gl t = 0.5. 

variation in the position of the first null with L I g for the constant potential thin 

film head without an underlayer has been approximated by Lindholm [75]. When an 

underlayer is present a similar pattern is obtained. Fig. 4.2 shows the variation in 

first true null position with Ll g when gl t = 0.5 for thin film heads with constant pole 

potentials . Abrupt changes in first true null position occur. This is due to the presence 

- .6 

- .8 

l/g = 0.8 

~0.825 

-IT-----~----~---r--~---r------~ 
0.5 l25 

~ width I wavelength 

Figure 4.3: Spectral response functions for const ant potential thin fi lm heads , Ll g = 

0.8 and Ll g = 0.825, gl t = 0.5. 

or absence of initial m1mma . F ig. 4.3 shows the spect ral response funct ions for a 
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constant potential t hin film head when Lf g = 0.8 and L/ g = 0.825, with gft = 0.5 in 

both cases. When Lfg = 0.8 t he first null occurs at 2gf >.. = 0.71 but when Lfg = 0.825 

the response does not quite drop to zero at 2g/ >.. = 0. 74 so a minimum rather than 

a true null occurs for this wavelength and the first null can be seen at 2gf >.. = 1.04. 

For Lf g :S 0.82 there is no initial minimum, but in general when the pole to gap ratio 

exceeds this value there will be at least one minimum at a longer wavelengt h than the 

firs t null , which is deep enough to limit replay. 

A good approximation which requires the evaluation of only one numerical integral 

per wavenumber can be obtained by substitut ing the leading term approximation to 

the potential in the head face plane cpac(x , 0) into (4.4). This results in the omission 

of t he final series term of ( 4.16) . The Fourier transform of the leading term of the 

potential functi on in region A can be expressed analyt ically but alt hough the integral 

J;[F which occurs in leading term in region C can be written in closed form (3.90), its 

Fourier transform requires numerical evaluat ion. 

In (63], the approximation to t he potential at y = 0 given in (3.93) was used to 

derive an analyt ic approximate spectral response function. The approximate spectral 

response function for a head with relat ively wide poles, LJ g = 3.32 when t f g = 2.4, was 

compared with experimental results, corrected for spacing and thickness losses. Good 

agreement was found. Fig. 4.4 compares Yeh's approximate spectral response function 

with the approximation derived here and the exact theoretical function. A minimum 

occurs at a longer wavelength than does the first null for the constant potential head. 

As Lf g increases, the number of minima preceding the first null also increases , and these 

have been observed in practice (63]. The interaction betwee n the various terms in ( 4.16) 

also causes internuU minima. The experimental fi rst minimum occurred at 2g f >.. :::::: 

0.208. Yeh's approximation has its first minimum at 2g f >.. = 0.21 , while the exact 
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Figure 4.4: Exact and approximate spectral response functions (A-curve: the present 
approximation and Y-curve: the Yeh approximation ) for constant potential thin film 
heads , L/ g = 3.32, gf t = 0.5. 

theoretical spectral response function and it approximation both have their first minima 

at 2g/ ).. = 0.23 to 2dp. A second minimum in the experimental results is shown in [63], 

but although Yeh 's app roximation predicts the position very accurately, it has a null at 

this wavelength , not a minimum. Both the exact theoretical spectral response function 

and its approximation predict the second minimum. The experimental results which 

Yeh compares with his approximation have been corrected for spacing and thickness 

losses, but no reference is made to the constant MrC 1n which also affects the magnitude 

of the output as given in ( 4.8) . This constant might account for t he difference in 

magnitude between Yeh's approximation which closely fits the experimental results 

and that of the exact theoretical spectral response. 

Fig. 4.5 compares the exact and approximate spectral response functions for a 

constant potential thin film head where Ljg = 1.2 and gf t = 0.5. The approximation 

proposed here and denoted A in Fig. 4.5 predicts the minima and the nulls qui te 

accurately. Yeh 's approximation predicts a much deeper initial minimum and two 

nulls either side of a peak at all t he other minima; the gap nulls are predicted with 

reasonable accuracy. 
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Figure 4.5: Exact and approximate spectral response functions (A-curve: t he present 
approximation and Y-curve: the Yeh approximation) for a thin film head with constant 
pole potentials , Lfg = 1.2, gf t = 0.5. 

4.1.3.2 Linearly varying potential poles 

The spectral response function for the thin film head with linearly varying pole 

potential is very similar to (4.16) except t hat the terms (2K. j rr)SJlF - cos (K.(g + 2£)) 

are replaced by 

(4.19) 

and the normalised coefficient s B~' and D~' are replaced by t he linear potential pole 

coefficients B~' and D~' evaluated as in Section 3.1.1.3. Hence for a t hin film head 

wit h linearly varying potential poles, where terms dependent on the full head width 

occur in the series involving the coefficients only, the full head width has less influence. 

The spectral response fu nction for a linearly varying potent ial t hin film head depends 

on the pole width , 2£, and t he gap plus one pole width , 2(g + L ), in addition to the 

gap widt h and the full head wid th, on which the response of a constant potential thin 

film head depends. This results in a pattern of minima and peaks fo r a linearly varying 

pole po tential thin film head which is more complex t han for the comparable constant 

potential head . o minima precede t he first null in t he linearly varying pole potential 

case as can be seen in Fig. 4.7. Hence abrupt changes in the first null position do not 
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occur when the poles have linearly varying potentials . 
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Figure 4.6: Variation in the position of the first spectral response null with pole I gap 
ratio, for thin film heads with linear pole potentials, 9 It = 0.5. 

Here t he position of t he first null, shown in Fig. 4.6 oscillates with decreasing 

amplitude as Ll 9 increases to its limiting ·value of 291).. = 0.86 , when 9l t = 0.5, 

which is the position of the first null for a ring head with an underlayer when 9l t = 

0.5. Mallinson [64] has suggested a similar behaviour when no underlayer is present , 

where the limiting value is that of the conventional ring head of longitudinal recording , 

29 I).. = 0.88. The zero potential outer edges of the poles cause severe reduction in 

response at long wavelengt hs and H:("', 0) -----+ 0 as "' -----+ 0. 

Here the app roximate spectral response function obtained by using <paL ( x, 0) (de-

fined in Section 3.1.4.2) in ( 4.4) is fully analytic as the approximation to t he potential 

at y = 0 for x 2:: 9 + 2£ is zero in this case. Hence 

{ 

0 [ 1 "'92 00 1 - e-2mr t/ g l 
2 coth("'t) sm("'9) - + - L (( )2 ( )2) 

"'9 r. t n= l n "'9 - nr. 

1 0 } - "' L [cos ("'(9 + L)) sm("'L)] . ( 4.20) 

Fig. -! .7 compares the exact and approximate spect ral response functions for a linear 

potential thin film head where Ll g = 1. 2 and 9l t = 0.5. The approximation here is not 
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Figure 4. 7: Exact and approximate spectral response functions for a thin film head 
with linearly varying pole potentials, Ll g = 1.2, gl t = 0.5. 

as accurate as the corresponcling constant potential approximation. The approximation 

is good only up to the exact first null as it overes timates the frequencies at which nulls 

occur, particularly t hat for the first null. 

4.1.3.3 Special cases 
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Figure 4 .8: Spectral response functions for thin film heads with constant and linearly 
varying pole potentia ls, L I g = 1.0, g It = 0.5. 

When the head widt h equals the gap width some simplification of the spect ral response 

fun ctions occurs. Fig. 4.8 shows the spectral response functions for both thin film head 

types when L = g . For both pole potential distributions the response has two series of 

peaks separated by one series of nulls and one series of minima . T he accuracy of each 
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of the approximations to the constant potential thin film head for these dimensions is 

very similar to t hat shown in Fig. 4.5. For the head with linearly varying potential 

poles the approximation is much more accurate in this case. Here the first null position 

is overestimated by only 6% and the higher set of peaks are predicted quite accurately 

while the lower peaks at 2g/ .X :::::: n for n = 1, 2, 3, · · · are almost non-existent. 

Another special case is when g = 2L; the response functions can be expressed 

m terms of the gap width o nly. Fig. 4.9 shows the response function for both pole 
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Figure 4.9: Spectral response functions for thin film head with cons tant and linearly 
varying pole potentials, Ljg = 0.5,g j t = 0.5. 

potential distributions when g = 2£. Here each function has three series of peaks 

separated by two sets of nulls and one set of minima. o minimum occurs for the 

constant potential head at a longer wavelength than the firs t null. Neit her of the 

approximations , fo r the constant potential thin film head with t hese dimensions , is 

as accurate as it is for larger Ljt. Yeh 1s approximation can be expected to become 

less accurate as Lj t decreases as his ap proximation to t he potent ial at y = 0 (3.93) 

also deteriorates in t hese circumstances. The approximation to the spectral response 

function for t he linear potential t hin film head for these dimensions predicts lhe null 

positions with a maximum error of 2% but t he magnitudes of all the peaks are less 

accurate than in t he general case shown in Fig . 4.7. 
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4.1.4 The Single Pole Heads with Constant and Linearly 

Varying Pole Potential 

4.1.4.1 Constant pole potential 

T he spectral response function for a single pole head with constant pole potential 

is t he Fourier transform of (2 .13): 

where 

( 4.22) 

and 

( 4.23) 

Si and Ei are defined in Section A.l. As "' -----+ 0 this function is unbounded. 

Fan [23] evaluates a similar integral for the flu..x through a perpendicular head due 

to a magnetised medium adjacent to the pole by including the integration through 

the depth of the medium as in (2.71). However , he only appears to calculate the 

contribution from region B , directly underneath t he pole, and there seems to be a 

slight error in his result ([23], equn.(ll)). the factor cosh(mr ) should be 2cos(rrL / >.) . 

Computation of the null positions for a constant potential single pole confirms the 

accuracy of results given in [88],[89] and comparisons with practical measurements 

[88],[90] validate the modelling assumptions made for t his head configuration. 
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The approximate spectral response function , derived using cpaP (3.94), 

JjaP ( K. 0) [ 2K ] 11 V , = 2coth(x:t) sin(KL) +-:;SI! (4.24) 

where 

(4 .25) 

and It is given in closed form in (A.14), has not yet been expressed in closed form. 

The semi-empirical approximate vertical field component at y = 0 given in [83] can 

also be used to estimate the spectral response function for a conventional single pole 

head . Hence 

H~5 (K , 0) 
H11(0, 0) { 

L' ( 4L
2
G ) 

2 r CJ + 2C2 
2 

2 cos(Kx)dx lo 4L 4 - x 

hoc ( 2LC1 ) } + cos(Kx)dx . 
L' x + 2LGo 

( 4.26) 

Formulae for the coefficients C1 _ 4 are given in [83] and to improve the approximation, 

the pole width is extended to L' = 1.035£ as suggested by Szczech. 
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Figure 4.10: Exact and approximate spectral response functions for a constant potent ial 
single pole head L/ t = 0.5. H:P / I' and H:5 / ll a re denoted P and S res pectively. 

Fig. 4.10 shows the exact a nd both approximations to t he spect ral res ponse of a 
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constant potential pole when Lf t = 0.5. Hy(O, 0), normalised by V, in ( 4.26) has been 

calculated using the exact vertical field component, given by (2.13). For Lf t = 0.5 , 

nulls in the spectral reponse function occur at 2Lj).. = 0.71, 1.69, 2.69, 3.68 · · ·. The 

approximation Ji~P has zeros at 2L/).. = 0.67, 1.63, 2.62, 3.61, · · ·, while the approx-

imation Ji;s obtained from Szczech's vertical field component is more accurate, hav-

ing zeros at 2L/ ).. = 0. 70 , 1.68, 2.67, 3.65 , · · ·. If instead, the pole width is not ad-

justed in ~s , ie. L' = L is used , less accurate results are obtained with zeros at 

2Lf ).. = 0.76, 1.80, 2.82, 3.84 · · ·. As Lf t increases, the Fourier coefficients in the ex-

act response decrease in magnitude so that Ji;P becomes more accurate. Ji~s can be 

expected to give results of similar accuracy to those shown in Fig. 4.10 provided that 

Lf t s; 1.25 as recommended for the use of the Szczech field equations. Both of these 

approximations require some numerical integration and for H~5 the coefficients C1_ 4 

must also be computed. 

4.1.4 .2 Linearly varying pole potential 

The spectral response of a single pole head with linearly varying pole potent ial has 

real and imaginary parts. The real component is half of H:("', 0), given in (4 .21 ), due 

to the fact that B~P' = B:' / 2 and 

00 

n( - 1 t D LP' { [ (mr L) ] } + ~ (mr-)2 + (:t)2 sin("'£) 2mr
2 

coth - t- + S Kn - cos("'£) [2"'t7r - ( ] 

( 4.27) 

with S Kn and (given by ( 4.22) and ( 4.23) respectively. T his function is unbounded as 

"' -----+ 0. T he real and imaginary parts of t he spectral response function for a single pole 
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Figure 4.11: Real and imaginary parts of the spectral response function for a single 
pole head with linearly varying pole potential, Ljt = 0.5. 

with linearly varying pole potential are shown separately on a linear vertical scale in 

Fig. 4.11 . At low frequency the imaginary component is unity while the real component 

increases without bound as K. ----+ 0. At high frequency both contributions oscillate 

with decreasing amplitude as /'i. ----+ oo, the imaginary component having the larger 

amplitude . These spectral response function components are approximately out of 

phase by one quarter of their common oscillation wavelength , zeros of one corresponding 

to peaks of the other. Therefore the amplitude of the response has no zeros. For smaller 

Lj t these functions have the same characteristics , with the imaginary component being 

even more dominant and from lower frequencies. Fig. 4.12 shows the phase spectrum for 

1t r - r-
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], n/4 I I I 
__ j I I 
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-3n/4 Linear 

Constant _, -----
0 1 2 J " Pole width I wavelength 

Figure <1.12: Phase spectra for single pole heads with linear and consta nt pole pa ten· 
tials, L/ t = 0.5. 
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a single pole head with linear pole potential in comparison wit h t hat for a conventional 

constant potential pole, both when L/ t = 0.5. 

The approximate spectral response function obtained by substitut ing t he leading 

terms of the potential at y = 0 into ( 4.4) is 

where Sici is given by ( 4.25) a nd 

SY = l oo Ici sin( KX) dx ( 4 .29) 

wi t h Ici given by (2.9 ). Another approximation can be derived from the solution for a 

single pole head with arbitrary pole potential and therefore both approxim ations to the 

spectral response function in the linear potential case are discussed in Section 4.1. 5. 

4.1.5 The Arbitrarily Varying Potential Single Pole Head. 

4 .1.5.1 C on t ributions from regions A and C 

For the single pole heads with arbitrarily varying pole potential, the spect ral re-

spouse funct ion is derived from <pAP(x , 0) using ( 4.4). <p .. tP (x , 0) is given by equns . 

(3 .62) and (3.67) in regions A and C respectively, and by the exact pole potential , 

f( x) , in region B. For t he analysis, t he potential across the pole is assumed to be 

expressed as a Fourier series symmetric about x = L with period 4L, so that the con-

tributions to the real and imaginary par ts of <pAP , normalised by V, from regions A 
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and Care: 

+(a+ ,B- a0 ) [cos(KL )SN - sin(KL)SR] 

+ j;; 2mr( -1)" B~P' [cos(KL)Ss:- sin(KL)sr,;] 

- ( cos(KL)SWN- sin(KL)SXN) l} (4.30) 

and 

Im [(<P1p+v<P~p) J 2t{ [ J = -; ({3 - a) sin(KL)SN + cos(KL)SR 

+ f 2mr( -l)"D~P' [sin(KL)ss: + cos(KL)Sr,;] 

+ %;, 2bN sin ( ~ ") [ ~N coth(~N) (sin( KL )SUN + cos( KL )SVN ) 

- (sin(KL)SWN + cos(KL)SXN) l} (4.31) 

where ~N = Nrrt / 2£, s:P' and D~P' are the normalised Fourier coefficients calculated 

as in (3.75) and (3.76), a and {3 are the proportions of the maximum potential at the 

leading and trailing edges respectively which depend on <p~P(x , 0) , 

( 4.32) 
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and 

{4.33) 

All of the other integrals can be expressed analytically and are defined and given in 

closed form in Section A.4. Although SS~ and STt result from taking the Fourier 

transform of I~ {2.9), here the integration with respect to x has been performed first . 

For SI~, which occurs in the spectral response functions of the single pole heads with 

constant and linearly varying pole potential, the integration with respect t o k has been 

accomplished analytically, leaving the integration with respect to x to be achieved 

numerically. 

To obtain an approximation to the spectral response function , it is only neccessary 

to approximate the potential at y = 0 for lx l > L as the exact potential across the 

pole is known and need not be expressed as a Fourier series in deriving its Fourier 

transform. The two approximations considered here result from substituting cpaAP 

{3.97) and cpaGP {3.98) independently into ( 4.2) . The approximation to the Fourier 

transform of cpAP( x, 0) in regions A and C, when cpaA P is used , omits the series including 

the B~P' and the D~P' in {4.30) and {4.31) respectively. When cpaGP is used , the 

contributions from regions A and C are 

( 4.34) 

where SI6 and SY, which both requue partial numerical evaluation, are given by 

{ 4.25) and ( 4.29) respectively. 

cp~P(~, 0) depends on the particular potential across the pole. The results for the 

four examples considered in Chapter 3 are given below. Single poles with at least one 

non-zero potential pole edge have unbounded spectral response functions as ~ -t 0. 
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4.1.5.2 Linear potential pole 

cp~P(K, O) _ 1 { . ( L) . [sin(KL) ( L)]} ---=----'---'- - - sIn 1\: - t - cos 1\: 
V K KL 

(4.35) 

The form of the spectral response funct ion gtven here differs from that in Section 

4.1.4.2 but numerical results have confirmed the equivalence and the accuracy of both 

expresswns. 
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Figure 4.13: Exact and approximate spectral response functions for a linear potential 
single pole head , L i t = 0.5 . H~AP JV and Ji~LP JV are denoted AP and LP respectively. 

Fig. 4.13 shows the exact and the two approximations to the spectral response 

fu nction for a single pole head with a linear pole potential when L j t = 0.5. Although 

t he spectral response fun ction has no zeros, deep minima occur at .X ~ 2L, which in 

practice would limit the use of the head. The approximation Ji~AP I V is more accurate 

and faster to com pute (using library routines [33]) t han H~LP I V. H; AP requires t he 

numerical evaluation of one integral over an infinite inte rval but H~LP involves two 

numerical integrals over a fini te range. It seems t hat the convergence of the integrator 

used for H~LP is slower t han that for Ji;AP possibly due to t he oscillatory nature of 

t he functions involved . Evaluation of Ji~LP is 2.5 t imes slower t han t he evalua t ion of 

H;AP using 150 terms , a relat ive error o f 10- 2 and an absolute e rror of 10- 6 . 
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4.1.5.3 Quadratic potential pole 

10 
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( 4.36) 

Figure 4.14: Exact and approximate spectral response fun ctions for a quadratic po­
tential single pole head, Ljt = 0.5 . H~AP / V and Jl:GP /V are denoted AP and GP 
respectively. 

Fig. 4.14 shows the exact and the two approximations to the spectral response 

function for a single pole head with a quadratic pole potential when Ljt = 0.5. The 

minima which occur at >. ::::::: 2L are much shallower in this case than when the pole 

potential is linear . The approximation Jl:AP j V is very accurate but H~GP / V still 

provides a good estimate of the spectral response function and as more terms are needed 

for the convergence of Jl:AP here than in t he linear potential case , t he difference in 

computing time is less. Using the error bounds given in Section 4.1.5.2, the processing 

time has been found to increase according to 

time = 0.0596 Nl.79
. ( 4.37) 
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Hence, s:GP is slower to compute than Jj~AP) unless more than 248 terms are needed 

for t he convergence of t he latter. The phase spectrum is shown in Fig. 4.17. 

4 .1.5.4 Cubic potential pole 

Fig. 4. 15 shows the exact and the two approximations to the spectral response function 

10 
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~imatio.!!_AP_ 

~ir!)~n_Gf 
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0.01 0.1 

Pole width / wavelength 

Figure 4.15: Exact and approximate spectral response functions for a cubic potential 
single pole head , Ljt = 0.5. H:AP / V and s:cp /T.l a re denoted AP and GP respec­
tively. 

for a single pole head with a cubic pole potential when Lj t = 0.5. For this pole 

potential the minima in the spectral response function are almost eliminated. Here 

as in the linear and quadratic potential cases, H~AP /V is very accurate but a good 

estimate is given by the simpler H:GP /V. The phase spectrum is shown in Fig. 4.17. 

4 .1.5.5 Cosine-squared potent ial pole 

(-L39) 
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and the spectral response function has real terms only. Here both pole edges have zero 

potential causing a bounded response as "- -----+ 0. 

5 

-25 

Exact 

~atfonAP_ 

~-Gf 

i' 
I\ f\ 
I 

I 

I I 
I 

-~+---~~~~~--~-r~~~---+-+~ 
0.01 0.1 4 

Pole width I wavelength 

Figure 4.16: Exact and approximate spectral response functions for a cosine-squared 
potential single pole head , Lj t = 0.5. Jl:AP / V and H~GP / V are denoted AP and GP 
respectively. 

Fig. 4.16 shows the exact and the two approximations to the spectral r~sponse 

function for a single pole head with a cosine-squared pole potential when Lj t = 0.5. 

T he first null occurs at 2L/ A ~ 1.98, a significantly higher frequency than that for a 

conventional constant potential pole head which occurs at 2L/ A ~ 0.71 for Ljt = 0.5. 
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Figure 4.17: Phase spect ra for single pole heads wit h quadratic cubic and cosme­
squared pole potent ials, Lj t = 0.5. 

For this pole potential , evaluation of the exact spectral response is computationally 

less expensive than in the quadratic and cubic potential cases. as here t he Fourier series 
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for the potential is trivial. As a= {3 = 0, Jl;GP = ~ coth(~t)cp~P(~ , 0) , which can be 

evaluated on a calculator, and is only marginally less accurate than ff:AP jV. 

Fig. 4.17 shows the phase spectra for single pole heads with quadratic, cubic and 

cosine-squared pole potentials, each when L/ t = 0.5. In the non-symmetric cases, as 

the pole potential becomes less uniform, the phase variation with frequency becomes 

more linear and therefore more easily accommodated during the decoding of the replay 

signal. The phase for the cosine-squared pole potential has the typical form for a 

symmetric head with an even field function. 

4.1.6 The Inductive Symmetrically Shielded Pole Head 

The spectral response function for a symmetrically shielded pole head can be 

derived in two ways from t he two solutions quoted in Section 2.1.3 .5 but here due to 

its computational simplicity, the exact function is derived only from Solution I. Taking 

the Fourier transform of cp 1(x , 0) (2.31) gives: 

h( ) 
{ 

sin( ~g) sin ( ~( L + g)) 
2 cot ~t 

~g 

~ 1, ( )n+l r~g sin(~g)sin (~(L +g)) l 
+ L; An 2mr - 1 ( )2 ( )? 

n=l ~g - nrr -

(4.40) 

where A~' and B~' are the normalised Fourier coeffi cients calculated as in (2.34) a nd 

(2.35) res pectively. 

The first null in the spectral response for a symmetrically shielded pole ( 4.40) occurs 

when sin(~(L g))~ 0 so t hat 2(L + g ) / A. ~ 1. In general, the interference between 
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pole- and gap-width effects causes three series of peaks and nulls , the relative size of 

each peak and the spacing of t he nulls depending on the ratio L /g. Fig. 4.18 shows the 

spectral response for Ljt = 0.125 and gjt = 0.15. As,. ----+ 0 Jlyr(,., 0)----+ 2(g + L) j t. 

10 

~+-----r-~~~~~rr--~~~~~ 
0.1 1 5 

Pole + one gap width / wavelength 

Figure 4.18: Spectral response function for a symmetrically shielded pole head, Lj g = 

0.833, g / t = 0.15 . 

When L = g the spectral response function simplifies to: 

~AI'2 (- )n [ 2K.gsin2(K.g) l 
+ 6 n mr 1 ( )2 ( )2 

n=l l'i.9 - ntr 

~ I' ( 1) n [ K.g cos(2"'9) l } + ~ Bn 2 n- 2 tr( -1) (K.g)2 _ [(n _ t )rr j2 (4.41) 

and only two sets of peaks and one set of nulls occur. 

Fig. 4.19 shows the spectral response function for a shielded pole with Ljt = 0.1 25 

as in Fig. 4.18 but here 9j t = 0.125 also. True nulls occur due to the cos(K-9) term in 

(4.41) but are shifted slightly from l'i.9 = (n- ~)tr for n = 1, 2,3, ... by the a~· series. 

i\I inima occur because sin2(,..9) is zero in the leading term and in the .4.~' series when 

"'9 = ntr for n = 1, 2, 3, · · · but the B~' series is not zero for these values of '"'9· These 

minima are a lso shifted slightly from "'9 = ntr by the B~' series. 
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Figure 4.19: Spectral response funct ion for a symmetrically shielded pole head, L / g = 

1.0, gj t = 0.125. 
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Figure 4.20 : Spectral response function for a symmetrically shielded pole head, Ljg = 

0.02, gj t = 0.5. 

The spectral response function of a very thin symmetrically shielded pole exhibits 

minima but no true nulls over usable wavebands. Fig. 4.20 shows the spectral response 

function for a shielded pole with an underlayer where L/g = 0.02 and gj t = 0.5. 

No true null occurs for 2g/ A < 25, therefore no phase change occurs over the band 

width depicted . However, the minimum at 2g/ A = 0.96 would be sufficient to limit 

replay. This phenomenon is discussed with particular reference to magnetoresistive 

heads, which are very thin , in Section 4.1. 7. 

Taking the leading term only of c.p 1(x , 0) to compute an approximation to the spec-

t ral response function , H; 1, leads to the elimination of both series terms from ( 4.40) 
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so that nulls are predicted to occur when 2(L +g)/ ). = n and also when 2g/ ). = n 

both for n = 1, 2, 3, · · ·. A more accurate approximation is obtained by substituting 

the leading terms of cp II(x, 0) (2.42) into ( 4.2) to get 

HQ II 
y 

V 

+- - dk 4 42 
41l:thoo sin

2
(k) [ cos(ll:L) cos(ll:(L + G)l } 

1r o k [P + (ll:t)2] tanh(kG/ t) sinh(kG/ t) .( · ) 

This approximation requires numerical integration and therefore is less convenient to 

evaluate t han the exact response excep t that no Fourier coefficients are required. 
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Figure 4.21: Exact and approximate spectral response functiOns for a symmetrically 
shielded pole head , Lfg = 0.833,g/ t = 0.15 . H~ 1/ V and Ji~n;v are denoted I and II 
respectively. 

Fig. 4.21 compares both approximations and the exact spectral response function 

for a symmetrically shielded pole head with Lfg = 0.833 and gft = 0.15. For these 

head dimensions , where gf t is small , H; II f \1 is only a Li t tle more accurate than H; r; v. 

Both approximations , in t his very general case, predict only one set of the peaks and 

nulls reliably. As gf t increases the accuracy of H;r; v declines. When L = g, as 

shown in Fig. 4.22, H; u / V correctly predicts minima not nulls at 2( L + 9 ) / ). ~ 2n for 

n = 1, 2, 3, · · ·. The positions of the mimina a nd the magnitudes of t he peaks are also 
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Figure 4.22: Exact and approximate spectral response functions fo r a symmetrically 
shielded pole head, L fg = l.O,gjt = 0.125. H~ 1/V and H~ 1/V are denoted I and II 
respectively. 

predicted slightly more accurately by H: n / V , even though g j t = 0.125 in this exam-

ple. Similar results are ob tained for a very thin pole. Again , H:n;v predicts minima 

where H: 1 /V predicts nulls. Potter [65] derived expressions for the flux entering a 

symmetrically shielded magnetoresistive head by assuming a Karlqvist-type linear po-

tential drop across both gaps at y = 0, due to a sinusoidal magnetisation on a t hick 

medium, wit hout an underlayer. The zeros of his expression depend only on t he two 

terms sin(~g) and sin(~(L + g)) as also happens in Jl; 1/V wi th an underlayer present. 

Hence his approximation also predicts true nulls for 2(£ + g) / A = n , for n = 1, 2, 3, · · · . 

4.1. 7 Shielded Magnetoresistive Heads 

For perpendicular magnetoresistive, the spectral response function is evaulated 

using cp( ~, 0) coth(~t) , as discussed in Section 4.1.1. The spectral response functions 

for shielded, infinitely thin magne toresistive heads have been obtained numerically 

usmg: 

(·L43) 
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and 

Im _Y =coth(Kt) cpA(x,O) sin(Kx ) dx , [jjA] /G1 

K - G1 

where cpA(x , 0) is the real part of (3.137) . 
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Figure 4.23: Variation in the spectral response functions of shielded , non-recessed, 
infinitely t hin MR sensors with asymmetry, Gd t = 0.5. 

In Section 4.1.6 it has been shown t hat the spectral response of a very thin sym-

metrically shielded pole exhibits minima but no true nulls over a wide range of wave-

lengths. This model similarly predicts no t rue nulls over the range of usable wave-

lengths . Fig . 4.23 shows the variation in spectral response with asymmetry for non-

recessed poles . In each case the left-hand gap remains fixed at G 2 / t = 0.5. Clearly, 

the positions of the deeper minima depend on G2 / G 1 a nd the average gradien t of the 

spectral response decreases as the shields a re brought closer together. Lindholm [55] 

has used a boundary element method to compute the spectral response of a symmet-

rically shielded 1R sensor wit h finite height and length . T he shields are assumed to 

be only twice as long as the gap width and only twice as high as the sensor itself. The 

fin ite dimensions of the shields result in the spect ral response tending to zero at very 

long wavelengths . Here, with semi-infinite shields, the spect ral response appears to be 

unbounded as the wavelength increases . l n [30], the spect ral res ponse function. for an 

.\ IR sensor reading from a single layer medium, has been defi ned as ti.:j}(ti., 0) and hence 
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the spectra obtained there approach zero as ,;, ---. 0. 
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Figure 4.24: Comparison between t he spectral response functions oi symmetrically 
and asymmet rically shielded, non-recessed, infinitely thin MR sensors with the same 
inter-shield separation , (G1 + G2 )/ t = 0.75 . 

Fig. 4.24 shows the spectral response functions for three shielded MR sensors with 

the same inter-shield distance, (G1 + G2 )/ t = 0.75, one with a symmetrically placed 

pole and the other two with gap ratios G2 / G1 = 2 a nd G2/G 1 = 4, respectively. 

As the asymmetry of the head increases , the magnitude of the spectral response at 

long wavelengths marginally decreases but the main difference lies in the posi tions of 

some of t he minima. Minima occur at wavelengths corresponding approximately to 

multiples of the gapwidths. So, in F ig. 4.24, for the symmetric case, minima occur at 

G1 j>.t ~ 1,2, 3, .. ·. When G2 / G1 = 2, the deeper minima occur where both Gif>.t ~ 

2, 4, ... and G2/>.t ~ 1, 2, ... , but only slight dips occur at G1 j>.t ::::: 1,3, ... as there 

is a detectable signal from the left- hand side of the head . Similarly when GdG 1 = 4, 

t he first deep minimum occurs where both Gd >.t ::::: 1 and Gtf ,\t ::::: 4. As a result 

of this, the first deep minimum for an asymmetrically sh ielded l\IR sensor occurs at 

a higher frequency than for a symmetrically shielded head with the same inter-shield 

dimension. Schwarz and Decker [661 have replayed a sinusoidal magnetisation recorded 

on a medium without an underlayer , through a shielded MR head and have found no 

nulls or minima over the range of wavelengths that they tested. :; ulls were expected 
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due to the use of the Potter [65] approximations which were derived assuming a linear 

potential drop across the gaps at y = 0, as in HY1 (see Section 4.1.6), but without an 

underlayer. They attribute the lack of nulls to practical asymmetry in their head and 

give a gap ratio of 1.5 as possible within the tolerance of the head fabrication . For a 

symmetric head, minima but not nulls are predicted within the waveband tested, as 

stated above, but if the gap ratio was 1.5, the first minimum would not occur until 

( G1 + G2 )/ .A ;:::::: 4.9 which is higher than the highest frequency detected by Schwarz and 

Decker. 
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rzt:: 0.03_ 
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Figure 4. 25: The effect of pole recession on t he spectral response function of a shielded, 
infinitely t hin MR sensor, G1 j t = 0.25, Gdt = 0.5. 

Recessing the pole causes degradation of t he spectral response of all shielded MR 

sensors. Fig. 4.25 shows the result of recessing an asymmetrically shielded MR sensor 

where G1 j t = 0.25, and G2/t = 0.5. Recession causes the minima to deepen and the 

rate of decline of the spectral response to increase so that if t he pole is recessed suffi-

ciently, true nulls occur within the frequency range depicted. The degree of recession 

necessary to cause true nulls depends only on the gap widths. For the example shown 

in Fig. 4.25 true nulls occur within the range of wavelengths shown for r Jt > 0.02. 

For the head with a non-recessed pole, the interactions between both gap wid ths and 

the inter-shield separation distance results in minima rat her than t rue nulls. When 
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the pole is recessed , both 'inclined' gaps become effectively wider than the perpendic-

ular distance from pole to shield. Therefore the sum of the two gap widths exceeds 

the inter-shield separation so that true nulls occur at longer wavelengths than in a 

non-recessed head. Symmetrically shielded poles suffer slightly worse than their equiv-

alent asymmetric heads , due to the presence of deep minima only in the spectra of the 

non-recessed , symmetric heads. 
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Figure 4.26: Variat ion in t he phase of t he spectral response of shielded , non-recessed, 
infinitely t hin MR sensors with asymmet ry, Gdt = 0.5. 

The spectral response of a symmetrically shielded MR sensor has an even component 

only. Therefore the phase changes abru ptly by 1i radians, at the same frequencies which 

cause true nulls in t he spectral response. Hence, for a non-recessed, symmetrically 

shielded pole no phase change would be detectable at t he wavelengths used in practice. 

An asymmetrically shielded i\lR sensor has both odd and even spectral response 

components and therefore the phase changes continuously over t he full range of fre-

quencies where no nulls occur in the spectral response, and t here are abrupt changes 

in the phase where true nulls are found. Fig. 4.26 shows t he variation in phase with 

asymmetry. T he left-hand gap remains fixed at Gd t = 0.5 while Gi f t varies from 0.25 

to 0.0625. For Gi f t = 0.5 the phase is zero over the entire range of wavelengths show n. 

As t he degree of asymmetry increases the a mpli tude a nd the period of the oscillat ions 

172 



" 
3ft/4 

I "/Z 

ft/4 
"W' 

t 0 

~ 
-n/4 

- rr/Z 

-m/4 

-ft 
0 

I ,, ,, ,, ,, ,, ,, 

•I r----"'~• 
'I I I-- I 

:1 I ' 
d I I 

'I I I 
I\) I 
I I , __ , 

,_/ 

' ' ' 

I 
7, r-./ ,,--I 

I I' 

l 
I: 
I, ,, 

-:::'/ 

2 3 4 5 8 7 8 9 ~ 

Head- underlayer separation/ wavelength 

rt1 = 0 

21-=. 0.03_ 

rft_=_~,_-

Figure 4.27: The effect of pole recession on the phase of the spectral response of a 
shielded, infinitely thin MR sensor , G1 jt = 0.25, Gd t = 0.5. 

m creases. 

Recessing the pole causes t he phase to oscillate with greater amplitude and more 

irregularly at long magnetisation wavelengths than for the head with a non-recessed 

pole of the same dimensions. This effect is summarised in Fig. <1.27 where G1 j t = 0.25, 

G2/t = 0.5 and t he recession of t he sensor varies from r jt = 0 to r j t = 0.1. 

4.2 Square Wave Output 

4.2.1 Linear Dibit Shift 

Ideal magnetisa t ion transit ions are assumed to be recorded on perp endicular media 

so t hat 

{ 

- 1\Ir x' < 0 
Aiy(x') = ' 

+ Afr X > 0. 

(4.45) 

T herefore for a n ind uctive perpendicular replay head , by reciprocity (2.70) the nor-

malised output voltage due to a single transit ion is 

(4..!6) 
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which leads to 

( 4.47) 

The corresponding normalised output voltage due to a single transition read by an MR 

sensor IS 

eMR(x) ! :r {oo 
MrCMR = - 00 [c,o(x, d) - c,o(x , d + 8)] dx + l:r [c,o(x, d + o) - c,o(x, d)] dx. ( 4.48) 

Linear dibit shift is caused by the interference of the fields of two adjacent magneti-

sation transitions (a dibit) during replay. It is assumed that it is valid to superpose 

the ouput due to the individual transitions [91] so that for a pair of ideal transitions 

situated a distance b apart on the medium, 

-Jv[r X
1 < 0 

( 4.49) 

the output voltage is given by 

e dibit(x) = e(x ) - e( x - b). ( 4.50) 

Therefore for an inductive head the dibit output is 

e l n ( x) 
~:~In = 2[c,o(x , d + 0)- cp(x, d) - cp(x - b, d + 0) + cp(x - b, d) j (4.51) 

which produces output amplitude peaks corresponding to t he transitions , while for an 
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MR head 

( 4.52) 

for which zero crossings are expected at the transitions. 

For all the inductive heads, analysed using the Fourier method, the dibit shift has 

been computed exactly. For the shielded MR heads, analysed using the conformal 

mapping method, it is difficult to calculate the potential for extreme values of x, where 

crowding in the transformation occurs. In these cases the exact potential is obtained 

at discrete intervals of 10-4 over the range [ -2G2 , 2G2] (as G2 2: G1 in all examples 

considered here) . Linear interpolation is employed within the range and outside this 

interval the potential is assumed to drop off exponentially in accordance with solutions 

of Laplace's equation. 

Linear dibit shift is a problem of pulse crowding. The superposition of the individual 

responses causes a shift in the position of the replayed transitions which can lead to 

errors in decoding as each transition is expected to occur within a cell of a particular 

length. This shift is measured as the difference between the bit cell length replayed 

and that recorded, as a percentage of the recorded bit length ie. (T - b) / b where T 

is the distance between the replayed transitions. Clearly substituting from (4.2) into 

( 4.51) allows the approximations to c,o( x, 0) to be used to provide good estimates of the 

dibit shift. 

The simple dibit is only a representative example. Other combinations of bit pat-

terns often cause greater shifts t han the dibit. Worst case pat te rns depend on the 

coding method employed and therefore, in general, are not considered here. The nu-

merical results are discussed in Section 4.3.2. 
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4.2.2 The Roll-off Curve 

The spectral response function relates to output due to a sinusoidal magnetisation 

on the medium which allows comparison of different head configurations. In practice 

the magnetisation on a medium with perpendicular anisotropy is more closely approx-

imated by a square wave. The roll-off curve is the peak ou tput voltage due to a square 

wave magnetisation as a function of bit density. This type of response curve can be 

obtained experimentally for perpendicular heads , notably Fig. 5 of [8]. 

There are two ways of calculating the square wave output . Pulse superposition 

of ideal transitions ( 4.45) as described in Section 4.2.1 can be extended so that for a 

periodic rectangular magnetisation of wavelength A 

( 4.53) 

Alternatively a square wave magnetisation of wavelength A = 26 can be represented by 

the Fourier sine series 

M5Q(x) = 
4

Mr f 1 
sin [(2n - 1)7rX] 

Y 7r n = l (2n - 1) b 
(4 .54) 

For a pure sinusoidal magnetisat ion with wavenumber K, the output for a perpendicular 

inductive head is given in equn. ( 4.8) while for an MR sensor also in the presence of an 

underlayer it is given by (4 .11). Hence, by superposing the output forK = (2n - 1)1r j b 

for n = 1, 2, 3, · · · using equn . (4.54), the square wave output may be computed in 

either case. Good estimate roll-off curves can be obtained by using t he approximations 

to c.p(x , 0) in these computations in the same way as described for the approximate 

spectral response functions. 

Interference be tween the adjacent bits , as the bit length decreases, a ffects the am-
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plitude of the output voltage. The bit density at which the amplitude reduces to half 

that due to an isolated t ransition is termed the D50 density. Clearly, replay cannot be 

achieved if the amplitude of the signal is too small for detection . Numerical results are 

discussed in Section 4.3.3. 

4.3 Discussion 

4.3.1 Spectral Response Functions 

4.3.1.1 The effects due to the geometric factors 

HEAD DOMINANT CONTRIBUTORY 
FACTOR FACTORS 

Ring g 

Constant thin film g g + 2£ 

Linear t hin film g g + L , g + 2£, L 

Single pole L 

Symmetrically 
shielded pole L + g g 

Table 4.1: Geometric parameters responsible for spectral response nulls and minima. 

N ulls in the spectral response function for a symmetric read head arise from 

non-zero gap and pole widt hs. Table 4.1 summarises the geometric parameters which 

cause nulls or minima in t he spectral response functions of the heads considered in this 

t hesis, which a re evident from t he expressions given in this chapter. T he dominant 

factor causes t he major nulls , and in particular t he first null , while t he contributory 

factor( s) cause other series of nulls or minima. It has already been shown (in Sections 

4.1.6 and 4.1.7) that minima not true nulls occur over usable frequencies for very thin 

shielded pole heads. 

T he head- underlaye r separation affects the spectral response Ill two ways. s t 
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mcreases from zero the coth( Kt) term of ( 4.4) decreases to 1, and so influences the 

magnitude of the response, which increases as t decreases , for given head dimensions . 

The Fourier coefficients , which occur in all the exact spectral response functions given 

in this chapter, depend on the ratios L/ t or gft or combinations of both and the 

magnitudes of these coefficicients influence the positions of the nulls and minima. For 

example, in the case of the ring head both with and without an underlayer shown in 

Fig. 4.1. The presence of the underlayer causes a slight shift in null posit ions towards 

longer wavelengths and increases the magnitude of the response , especially at long 

wavelengths . Fig. 4.28 demonstrates the effect of head- underlayer separation on the 
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Figure 4.28: Variation in first spectral response null with head - underlayer separation. 

position of t he first null for various head configurations . For the shielded pole head 

and the t hin film head the particular cases when pole and gap widths are equal have 

been chosen for ease of illustration. 

For a ring head with an underlayer, as t decreases so t he frequency at which t he 

first null occurs decreases. Using a conformal mapping, Bert ram and Lindholm [92] 

obtained the same change in the first null position for a ring head without an underlayer 

as a function of head- medium separation when the medium permeability was assumed 

to be infinite. A similar effect can be seen for the linear thin film head. 
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The cosine-squared pole and the constant potential thin film head with L = g have 

first null positions which vary by only 4% over the range of underlayer separations 

shown. For the cosine-squared pole this is due to the lack of interaction between the 

pole edge and the underlayer , but for the constant potential thin film head, variation 

in t affects the potential in the gap as well as beyond the poles. When L =/= g for a 

constant thin film head the first null position is still only slightly influenced by t . 

For a relatively wide, shielded pole w1th L/ g constant, as t decreases the pole -

shield interaction diminishes so t hat t he first null occurs at similar wavelengths to 

those for a corresponding conventional single pole. For gf t ~ 0.25 the coefficients A~ 

and B~ in ( 4.40) are almost independent of t [29] and coth( xt) ----+ 1 as t increases 

so that the position of the first null with respect to t is bounded. Similarly, head 

to underlayer separation has been found to have almost no influence on the spectral 

response function for a shielded IR sensor when t > G2 . This is corroborated by the 

results published for an MR sensor without an underlayer [30] where the null posit ions 

shown appear to be the same as those obtained here for t > G2 . 
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Figure 4.29: Spectral res ponse funct ions for single pole heads with linear , quadratic 
and cu bic potentials , L/ t = 0.5, the symmetrically shielded , pole head L/ t = 0.001 
and infini tely t hin MR sensor, gf t = 0.5. 

Heads wit h asy mmetric potentials and very t hin shielded pole heads including i\IR 

sensors , have no true nulls in their spectral respo nse 0\·er the range of usable frequen-
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c1es. Fig. 4.29 compares the spectral response of single poles with linear, quadratic and 

cubic pole potentials, each with Lft = 0.5, and of symmetrically shielded poles, both 

inductive and magnetoresistive with gft = 0.5. The inductive shielded pole is very 

thin with Lft = 0.001, hence the positions of the minima for these shielded heads are 

virtually identical. The magnitude of the inductive shielded pole head remains higher 

_than that of the MR sensor at high frequencies, but the spectral response function is 

independent of the efficiency of the head. The output voltage from a magnetoresis­

tive head would be greater than that from a geometrically identical, inductive head. 

The spectral response function of the linear potential pole head is both flatter at long 

wavelengths and has its first minimum at higher frequency than either the thin sym­

metrically shielded pole or the symmetrically shielded MR sensor, both of whose gap 

widths equal the pole width of the linear potential single pole head. But the phase 

of the shielded pole is constant across the frequency range depicted, whereas that of 

the linear potential pole varies continuously. The positions of the minima for the 

linear and quadratic potential single poles vary less with t than do the nulls of the 

constant potential pole, but do still tend towards shorter wavelengths as t decreases. 

For example, when Lft = 2.0 the first minimum in the linear potential case occurs at 

2£/ >. = 1.14, while for L/t = 0.5 this minimum occurs at 2£/ >. = 1.12, both correct to 

2dp. The corresponding minima for the quadratic potential pole occur at 2£/).. = 1.49 

and 2£/ >. = 1.35 respectively. Minima in the response for the cubic potential pole are 

insignificant for L/t :::0: 0.5. As t-> oo these models are inappropriate. 

Fig. 4.30 compares the spectral response function of a single pole head with a 

cosine-squared potential with that of a conventional constant potential single pole of 

half the width. The first null in the case of the cosine-squared potential occurs at a 

frequency 41% higher than that for the thinner conventional single pole. Due to the 
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Figure 4.30: Comparison of the spectral response functions of single poles heads with 
constant potential, Lj t = 0.25, and with a cosine-squared potential , Ljt = 0.5. 

similarity between the vertical field components of a cosine-squared potential single 

pole head when Ljt = 0.5 and a symmetrically shielded pole head when Ljt = 0. 125 

and gjt = 0.15, demonstrated in Fig. 3.58, the readback characteristics for these two 

heads are very similar also. This is confirmed by their spectral response functions 

shown in Fig. 4.31 , where close correspondence can be seen up to the second null. But 

for t j ).. > 2 the shielded pole experiences more nulls than the cosine-squared potential 

pole. 
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Figure 4.31: Spectral res ponse functions for a cosine-squared polential single pole, 
Ljt = 0.5, and a symmetrically shielded pole, Ljt = 0.125 , gjt = 0. 15. 
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4.3.1.2 Comparison with experimental results 

Experimental output results for a single pole head with a graded pole potential are 

given in [12]. The published result is a normalised roll-off curve which is compared with 

the spectral response function of a ring head without an underlayer. The gap width 

for the ring head is 1.2 times the width of the graded potential pole. It is claimed that 

this ring head result is equivalent to the spectral response for a conventional constant 

potential pole, of the same dimensions as the tested graded potential pole head. 

The potential grading across the pole was achieved by using a sequence of lami­

nations with varying chemical compositions. A constant maximum potential extends 

from the leading edge across 5/ 9.2 of the pole width, from where the potential decreases 

to zero at the trailing edge . The form of the recorded transitions is not specified, but 

as the medium used was of CoCr alloy with an underlayer (discussed in Section 1.2) 

an almost perfect square wave is likely, especially at high frequencies. The head -

medium spacing has not been given explicitly, so it has been neccessary to assume 

this dimension . Accurate computation of the roll-off curve, under these circumstances, 

would provide no greater accuracy than the spectral response function . A comparison 

between the roll-off curve and the spectral response function, for a constant potential 

single pole head, is made in Section 4.3.3.1. From ( -1.54), it is clear that the spectral 

response function can be evaluated significantly faster than the roll-off curve. 

The details of the laminations used in the construction of t he head and the roll-off 

curve are reproduced here in Fig. 4.32. The total pole width is given as 9.2J.Lm and a 

head - underlayer separation of 0.45J.Lm has been assumed , based on the given medium 

thickness of 0.2J.Lm. Two possible pole potential distributions have been considered for 

this head. 
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Figure 4.32: Details of t he laminations used in the construct ion of the graded potential 

pole and its observed wavelength response (solid line) plo tted with t he t heoretical 
spectral response of a ring head, g = 5.5, (dotted line) . Figs . 3(a) and 4 of [1 2] 
respectively. 

1. Constant- linear: 

J( x) 
V 

- L ::; X ::; 0.08L 

{ 

1 

(L - x )j0.92L 0.08 L ::; x::; L 

2. Contant-cosine-squared: 

J( x) { 1 

V = cos2 (7rx / 2L) 

(4.55) 

( 4.56) 

The spect ral response functions for both of these potential distributions are shown 

m Fig. 4.33, with t he ring head result given in [12] a nd the exact spectral response 

for a constant potential single pole head. Each result has been normaljsed by its own 

magnitude at a frequency of 1. For each of t he single pole-type heads , dimensions 

o f L = 4.6 and t = 0.45 have been used and fo r the ring head g = 5.5 has been 

ta ken. There is a clear discrepancy between the responses o f t he co nstant potential 

pole and t he ring head of these dimensions. The fi rst null for t his ring head occu rs 

at a frequency of 123 kHz ( if the dimensions are in J.Lm and the disc drive operates at 
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Figure 4.33: Spectral response fun ctions for single pole heads with constant, constant­
linear and constant-cosine-squared pole potentials, L = 4.6, t = 0.45 , and for a ring 
head without an underlayer, g = 5.5. 

300 rpm) which is 18% lower than the frequency at which the first null occurs for the 

constant potential single pole with L/ t = 10.2. A ring head with a semi-gap width of 

4.6 has its first null a t a frequency only 3.4% lower than the conventional single pole 

considered he re. Apart from the difference in t he magnitude of the response, inherent 

in plotting t he spectral response function instead of the roll-off curve, the results for 

the constant-cosine-squared potential closely match t hose shown in Fig. 4 of [12]. The 

minima in the response for this potent ial appear to occur at slightly higher frequencies 

than those obtained experimentally. The response for constant-linear potential is not 

such a good fi t. 

The first minimum in the resp onse for the experimental head appears to occur at a 

simila r frequency to t hat of a conventional single pole head with the same rat io of L/ t. 

Unless the magnitud e of the response of the graded potential head falls significantly 

less rapidly than that of the conventional single pole head, Little advantage would be 

gai ned b_v using this particular potential distribution across t he pole. 
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4.3.2 Linear Dibit Shift 

4.3.2.1 Introduction 

If an inductive perpendicular head reads a single ideal transition of the form given 

in ( 4.45) from a very thin medium, 5 -t 0, by reciprocity 

(4.57) 

The shape of the replay pulse is the same as that of the vertical head field . For a 

0..35 

-~+---r-~--~--~--r-~--~--~~ 
-1..5 -1 -~ 0 M 1..5 2 ~ 3 

xfl 

Li1ecr (1) 

Constant_(1l_ 

~_eqr _(:t} - . 

~ntm_ 

Figure 4.34: Output voltage of two ideal transitions for single pole heads with linear 
and constant pole potentials , Ljt = 0.5 , bj t = 1.25, oft = 0. 1, (1) djt = 0.1 , (2) 
djt = 0.25. 

medium with finite thickness , the shape of the head field component is also evident in 

the replay pulse shape. Hence a head with a broad vertical field shape will experience 

greater linear dibit shift than one with a narrow single peak. Fig. 4.34 shows the 

normalised output voltage due to a perfect dibit of bit length bj t = 1.25 read from a 

thin medium, o,'t = 0.1 , by single pole heads of length Lj t = 0.5, with both constant 

and linear pole potentials. This bit lengt h corresponds to about 200 ,000 flux reversals 

per inch for a pole of width O.lJ.Lm. The figure illust rates the bimodal nature of each 

output peak for a conventional constant potential single pole, when the medium is close 
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to the pole face at djt = 0.1. Interference between the pulses from the adjacent bits 

is noticeable although the bit length is relatively large. The amplitude of the output 

voltage is greater from the linear potential pole than from the conventional head, even 

when the medium is moved further from the pole face at djt = 0.25. 

4.3.2.2 The effects due to medium position and thickness 

The spacing and thickness loss terms which occur in the output voltage expressions 

for inductive ( 4.8) and magnetoresistive ( 4.11) perpendicular replay heads as ratios of 

hyperbolic functions, both increase in magnitude as d ---t 0 and 5 -t t. The highest 

output voltages can be achieved using thick media for in contact recording, but the 

linear dibit shift may be adversely affected by such media. Figs . 4.35 and 4.36 demon-
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Figure 4.35 : Peak shift of two ideal transitions for a constant potential single pole 
head , Lj t = 0.5. 

strate how medium thickness and separat ion from the head face pla ne affect t he linear 

dibit shift for single pole heads with constant a nd linear pole potent ials respectively. 

The constant potential single pole head has a bimodal vert ical field component , close 

to the p ole face plane. Hence , reducing the head - medium separat ion from djt = 0.25 

to djt = 0. 1, for a thin medium with oft = 0.1 , causes an increase in the dibit shift. 

For t his head , increasing the thickness of the medium from 5 = 0.1 to 5 = 0.65 while 
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Figure 4.36: Peak shift of two ideal transitions for a linear potential single pole head , 
Ljt = 0.5. 

djt remains fixed at 0.25, reduces the dibit shift for Ljb < 0.5 . Combinations of thick 

media fairly close to the pole face or thinner media further from the head produce 

similar results in this case. For each combination of djt and 5/t, the linear paten-
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Figure 4.37: Peak shift of two ideal transitions for single pole heads wit h constant , 
cubic and cosine-squared pole potentials, Ljt = 0.5. 

t ial single pole head produces less linear dibit shift than the corresponding constant 

potential pole. This is because its vertical field component has a single narrow peak. 

The wors t shift shown for the linear potential pole is 92% at Lj b = 0.8 while for each 

of the examples gi,·en for the constant potential pole, shifts o f oYer 100% occur fo r 

Ljb < 0.6. Clearly, increasing eit her the medium thicknes o r its separation from the 

pole face is detrimental to the dibit shift for the linear potential si ngle pole head. Sim-
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ilar results are obtained for other heads whose vertical field components have localised 

single peaks as can be seen in Fig. 4.37. Here dibit shift results are shown for single 

poles with constant, cubic and cosine-squared potentials , reading from a thin medium, 

6 = 0.1, situated at df t = 0.1 and dft = 0.25. T he shifts for both t he cubic and the 

cosine-squared potentials are better than those for a linear potential. The increase in 

head - medium separation is not as detrimental for the cosine-squared potential pole 

as for the poles with t he asymmetric potentials analysed here . 

4.3.2.3 The effects due to head geometry 

100 

80 

~ 
60 -

~ 40 

~ 20 

0 

-20 
0.1 1 2 

Semi-pole width/ bit eel length 

Constant pole 

Cosine-s~ red -..P.2!E!.. 

t,n_egr ~! _ _ __ _ 

Ouac?rotic_~_ --­

Cli?!~~---·-·---
~.~.~.~ ............ . 
R' _!Jg_ _____ ..................... __ 

Constant thin fim 

Li1ear thin film 

Figure 4.38: Linear dibit shift for each of the inductive heads considered here, gf t = 0. 5 
and Lft = 0.5. 

Fig. 4.38 compares the linear shift for each of the inductive heads considered in 

this thesis , reading an ideal dibit from a tl:Un medium , of t = 0. 1, situated close to the 

head face at df t = 0.1. For ease of comparison , Lfg = 1 for the t hin film heads and 

the shielded pole head . T he shielded pole and the thin film heads , of these dimensions, 

suffer simila r magnitude dibi t shifts to the ring head and constant potent ial pole. For 

all of t hese heads dibit shift is more limiting than fi rst null position when readback is 

from a medium so close to the head , unless complex decoding procedures a re employed . 

For t he constant potential t hin film head , the exam ple given in Fig. -1.38 is probably 
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the best that can be expected because the vertical component of the head field has 

peaks which occur close to the outer edges of the pole pieces so that interference 

between adjacent bits can be expected to increase if L/g increases . Bloomberg [93] 

also concluded that zero crossing shift is a major problem for the thin film head. 

The linear, quadratic, cu hie and cosine-squared potential single poles suffer less 

dibit shift than any of the more conventional inductive heads of comparable dimensions , 

particularly when used for ' in contact ' replay from thin media. As the first . null for a 

single pole with a cosine-squared pole potential occurs at 2L/). = Lfb = 1.98, dibit shift 

is the limiting factor for this head also. Present day practical systems can accommodate 

shifts of about 20%. At this level, the single pole with a cosine-squared potential offers 

an order of magnit ude improvement in replay bit density over the conventional single 

pole head , when reading from a thin medium situated close to the pole face . 

The dependence of the linear dibit shift on the geomet ric parameters of shielded, 

infinitely thin MR sensors is demonstrated in Figs . 4.39 - 4.41. In Figs . 4.39 and 

4.41 the recording medium is 0.25t thick , situated O.lt from the shield face plane and 

G2/t = 0.5, while in Fig. 4.40 d = 0.2G2 and 5 = 0.5C2 . Linear dibi t shift has been 

calculated using zero crossing detection. 
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Figure 4.39 : Variation in the linear dibit shift of shielded , no n-recessed , infini tely thin 
.VIR sensors with asymmetry, Gdt = 0.5 , d/ t = 0.1, of t = 0.25. 
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Fig. 4.39 demonstrates the effect of increasing the asymmetry of the head. The ratio 

of the gap widths G2/G1 varies from 1 to 8. As the degree of asymmetry increases 

the dibit shift decreases for a fixed left-hand gap width : bit cell length ratio. This is 

due to the reduced width of the head field peak as the inter-shield spacing decreases. 

For a fixed inter-shield separation, placing the pole asymmetrically between the shields 

marginally increases the dibit shift . For two heads both with (G1 + G2 )/ t = 0.75, one 

with the pole placed centrally, and the other with G2/G1 = 2, the dibit shifts for a bit 

cell length of bj t = 2.5 are 13% and 13.5%, respectively. 

l...eft-tn-ld gq:> width I bit cell length 

Figure 4.40: Variation in the linear dibit shift of shielded, non-recessed , infinitely thin 
MR sensors with head- underlayer separation, G1 = 0.25, G2 = 0.5, d = 0.1, 5 = 0.25. 

F ig. 4.40 shows the variation in dibit shift with head - underlayer separation. T he 

gap rat io is fixed at G2/G 1 = 2. As the head- underlayer separat ion increases , the dibit 

shift decreases , clearly approaching a minimum which corresponds to the no underlayer 

case. That the presence of an underlayer increases dibit shift was also concluded in 

[69] . 

Recessing the ~IR sensor causes increased dibit shift , as shown in Fig. -!.41 , where 

GdG 1 = 2. The percentage increase in the shift caused by recessing the sensor depends 

on t he severity of t he dibit shift t hat occurs when t he same dibit is read by a head with 

a non-recessed pole. For the example shown in Fig. ~ . -11 , where (G1 - G2) / t = 0.75 , 
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Figure 4.41: Variation in the linear dibit shift of shielded , infinitely thin MR sensors 
with pole recession, G1f t = 0.25, G2ft = 0.5, df t = 0.1 , oft= 0.25. 

df t = 0.1 and of t = 0.25 , when a non-recessed head is used to read a dibit of bit 

cell length of bf t = 2.5, a shift of 13.5% occurs , but if the sensor is moved back into 

the gap so that r f t = 0.1, a shift of 14.3% occurs in reading the same dibit from 

the same medium; this is an increase of 5.9%. If a second pair of heads for which 

(G1 + G2 )f t = 1.0, one with a non-recessed pole and the other with a pole recession of 

r f t = 0.1, both read the same dibit from the same medium as used for the first pair 

of heads, the shifts which occur are 18.0% and 19.2% respectively, so that here the 

increase in shift is 6.7%. 

4.3.2 .4 Comparison with experimental results 

Experimental output results for a W-shaped head reading from a double- layer 

medium have been published in [94]. This head , which is described in (13], has a 

single pole extending from a W -shaped core. Exact dimensions for the core pieces are 

not given but it is indicated t hat the cores and the gaps be tween them are very la rge 

compared to the pole width. T he relevant dimensions given in [94] a re: L = O.l 5fLm 

a nd o = 0. 15fLm. For a ring head , used in the same series of experiments, d = O. lfLm; 

this head - medium separation has been assumed to apply in the case of the \V-shaped 
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head also. D50 is defined in practical terms in the paper , as the bit density at which 

the output voltage drops to half that obtained from a bit density of 1000 bits per inch. 

The code read in this experiment was a continuous string of ' llO's in MFM code. 

This is the worst pattern for this code [94]. For this method, '1's are coded by either 

a positive or a negative magnetisation on the medium while single 'O's produce no 

magnetisation. Clocking t ransitions occur between successive 'O's. Bit cells of several 

different lengths occur in this code which makes it particularly sensititive to linear bit 

shift [1]. 

0 0 

fo5 
t 0 

] 

1-5 
- I 

-I -5 0 05 1.5 2 

x 
Figure 4.42: Output voltage from a constant potential single pole head, L 0.15, 
t = 0.25, reading ' 110' pattern, MFM code, b = 0.508, d = 0.1, 5 = 0.15. 

In est imating this output theoretically, it has been neccessary to assume that a 

single pole with constant pole potential, with no spacing layer between the medium 

and the underlayer , is a suitable model. Fig. 4.42 shows output voltage obtained when 

b = 0.508f..Lm, which corresponds to the 50,000 bits per inch depicted in [94] . The 

theoretical output waveform is similar to that shown in Fig. 1 of [94], and reproduced 

here in Fig. 4.43 . The theoretical peaks appear to be slight ly broader than t hose in 

the published picture. 

In this case, the linear bit shift has been evaluated for two consecutive ' 1's, by 

companng the corresponding difference in peak ou tput positions with the known bit 
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Figure 4.43: Experimental output waveform (a), peak shift and roll-off as published in 
F igs. 1 and 2 of [94]. 
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Figure 4.44: Linear bit shift in two consecutive (1's occurring in a string of ( llO's, MFM 
code, read by a constant potential single pole head, L/ t = 0.6 , d/ t = 0.1 , 5/ t = 0.15. 

cell length. Fig . 4.44 shows the linear bit shift as a function of the ratio between the 

bit density, D , and D50 . T hese results are very similar to those given in Fig. 2 of [94] 

(Fig. 4.43 here). 

The experimental shift results ap pear to be zero for D / D50 :S 0.6. The linear bit 

shift obtained here , and shown in Fig. 4.44 , is about 10% for D / D5o = 0.6. As the bit 

density increases further , the theoretical shift does not rise as quickly as the observed 

shift , so that at D/ D50 ::::::: 1. 1 both res ul ts are the same. Bit shifts for a ring head 

reading the same code pattern from a single layer medium are also given in [94]. The 

gap width of the ring head used was the same as the pole width of the pole-type head. 
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The shifts measured for the ring head as a function of its D50 are greater than those 

of the pole- type head. The theoretical shifts for a single pole head obtained here, are 

consistently lower than those shown for a ring head in [94]. 

4.3.3 The Roll-off Curve 

4.3.3.1 Comparison with spectral response function 

/'\ \ 
I \ 
I \ 
I \ 
I \ , 

' r ~ \ I 
~ l 

0+-------~--~~--r-~~~----~~ 
0.1 2 

Pole width / wavelength 

Spectra response fl.nction 

Rol-off _{)) ______ _ 

8~~ {21 - - - - - - - -

Figure 4.45: Comparison between the spectral response function and roll-off curves 
for a constant potential single pole head, Lf t = 0.5, 8ft = 0.1 , (1) dft = 0.1, (2) 
df t = 0.25. 

Fig. 4.45 shows t he spectral response fun ction for a single pole head with constant 

potential when Lf t = 0.5 and the roll-off curves for the same head reading a perfect 

square wave from a thin medium at two different separations from the head . T hese 

roll-off curves are based on only 20 computed values each and have been plotted using 

an interpolation routine. Each curve has been normalised by its own magnitude at 

2L/ A = 0. 1. The minima of both roll-off curves occur at very similar frequencies to 

those of the nulls in the spectral response funct ion. Yiinima not nulls occur in the 

roll-off curve. Although the out put due to the fundamental wavelength is zero, that 

due to the other harmonics of the square wave is not. 
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4.3.3.2 The effects of medium thickness and position 

Throughout this section, single pole-type heads are used to demonstrate the effects 

that the position and t he thickness of the medium have on roll-off curves in perpen-

dicular replay. 
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Figure 4.46: Roll-off curves for single p ole heads with constant and linear pole poten­

t ials , L/ t = 0.5, o = 0.1 , ( 1) d/ t = 0.1, (2) d/ t = 0.25. 
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Figure 4.47: Roll-off c urves for single pole heads with constant and linear pole poten­

tials, L/ t = 0.5, (1) 5 = 0.65, d/ t = 0.25 , (2) 5/ t = 0.4, d/ t = 0.5 . 

F igs . (4.46) a nd (4.47) show t he roll-off curves for single pole heads when L/ t = 0.5, 

with constant and linear pole potentials , for various head - medium spacings and media 

t hicknesses. Greater output voltages a re obtained fro m thicke r media. Reducing the 

head - medium separation also increases t he magnitude t he output voltage. These 

effects are typical for perpe ndicula r recording heads due to the spacing and thickness 
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loss term. The magnitude of the vertical field component at the appropriate distance 

from the head face plane also influences the output voltage. The vertical field of the 

linear potential single pole head is more localised than that of the constant potential 

single pole, resulting in greater output from the linear potential pole for 2£/ A < 0.95 , 

except at low frequencies in cases where either dj t or of t is large. 
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Figure 4 .48: Roll-off curves for single pole heads with constant , cosine-squared and 
cubic pole potentials , L jt = 0.5, 6 = 0.1, (1) dj t = 0. 1, (2) dj t = 0.25. 

Fig. 4.48 compares the roll-off curves for single pole heads with cosine-squared 

and cubic pole potentials , each when Ljt = 0.5, with the corresponding res ults for 

a constant potential single pole. Two cases are shown: t he medium has t he same 

t hickness, 6/ t = 0. 1, for both , while results for two different head - medium separations, 

djt = 0. 1 and dj t = 0.25, are depicted . T hese results are consistent wit h the spect ral 

response functions for each of these heads. 

Fig. 4.49 summarizes the effects of head - medium separat ion on the magnitude of 

the peak output voltage for single pole heads wi t h const ant , cosine-squared and cubi c 

pole potentials, each when Lj t = 0.5, reading perfect square waves from a t hin medium 

for which 6ft = 0.1. A high D50 value is desirable as replay systems can only operate 

over a limi ted range of out put voltages. Single pole heads with either cosine-squared 

or cubic pole potentials have higher D50 values than those with constant potentials , 
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Figure 4.49: Variation in D50 with pole- medium separation for single pole heads with 
constant , cosine-squared and cubic pole potentials, L/ t = 0.5, 5 = 0.1. 

over the range of head - medium separations shown. Results for heads with linear and 

quadratic pole potentials can be expected to lie between those for the constant and the 

cubic potential poles. 

4.3.3.3 Shielded, infinitely thin MR sensors 
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Figure 4.50: Roll-off curves for symmetrically and asymmet rically shielded, non­
recessed, infinitely thin MR sensors, G2/t = 0.5, d/ t = 0.1, 5/t = 0.25. 

Fig. 4.50 shows roll-off curves for heads with symmetrically and asymmetrically shielded, 

non-recessed sensors. The left-hand gap remains fixed at G2 / t = 0.5 while Gt f t varies 

from 0.5 to 0.0625. The magnitude of the maximum output due to a square wave of 

long wavelengt h recorded on the medium falls as the head asymmet ry increases , but 
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for shorter wavelengths the converse is t rue. As the inter-shield separation decreases 

the slight peak due to pulse crowding shifts towards shorter wavelengths , and becomes 

less pronounced . 
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Figure 4.51: Roll-off curves for symmetrically and asymmetrically shielded, non­
recessed, infini tely thin MR sensors, (G1 + G2 )/ t = 0.75, dj t = 0.1, 5/ t = 0.25. 

In Fig . 4.51 the roll-off curves for MR sensors with the same inter-shield separa-

t ion (G1 + G2 )/ t = 0.75 but differing gap rat ios GdG1 = 1, 2, 4 are compared. The 

differences are such that, in practice, the usable waveband of a head of fixed overall 

dimensions would be unaltered by the asymmetric placement of the MR sensor. 

Head - underlayer separation has only a slight effect on the roll-off curve. When 

the underlayer is close to the head ( t ::; 2G2 ) the height of the roll-off curve marginally 

exceeds that of the no underlayer case for most wavelengths . For all head- underlayer 

separations greater than 4G2 the roll-off curves effectively do not change. In [69] greater 

differences between the roll-off curves of heads with and wit hout underlayers present 

were ob tained. In particular , it was found that the magnitude of the roll-off curve 

when an underlayer was present , was only greater than that for the same head without 

an underlayer , over a short range of long wavelengths. 

Recessing the l\IR sensor has a strong influence on t he roll-off curve . Fig. -1 .52 

shows how the maximum output amplitude drops with recession of the pole when 
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Figure 4.52: T he effect of pole recession on roll-off curves for a shielded, infinitely thin 
MR sensor, Gtft = 0.25, Gd t = 0.5, df t = 0. 1, of t = 0.25. 

G1/t = 0.25, Gdt = 0.5 and r f t = 0, 0.01, 0.1. This loss of output amplitude is mainly 

due to the increase in sensor - medium separation, but it is less t han t he loss t hat 

would occur if the medium itself were moved away from a non-recessed head by t he 

same distance. 

4.3.4 Comparison with Experimental Results 
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Figure 4.53: Roll-off curve for a constant potential single pole head reading a sequence 
of ' llO's, MFM code , L = 0.15, t = 0.25 , d = 0. 1, 5 = 0. 15 . 

The experimental roll-off curve for the system described in Sectio n 4: .3.2.4 is also 

shown in Fig. 4.43 . The published curve was obtained by replaying a sequence o f ' llO's 

in iVIFl\[ code. The same pattern of ideal transitions has been used to determine the 
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theoretical roll-off curve shown in Fig. 4.53. As for the linear bit shift, it has been 

neccessary to assume the head - medium spacing, and the definition for D50 given in 

[94]. The curve is plotted on axes with the same scales as Fig. 2 of [94], where there 

appears to be no reduction in peak output voltage for D /D50 < 0.2. The rate of increase 

in the voltage reduction as the bit density increases is much greater in the experimental 

curve than for the theoretical one shown here. Experimentally, the putput voltage is 

reduced to less than -30 dB for D /D 50 = 1.4. The exact cause of these discrepancies 

is unknown. Four possible reasons are: 

1. The assumed head - medium separation may be incorrect. 

2. The transitions on the medium would not have been perfectly rectangular, espe­

cially at long wavelengths. 

3. The single pole head is not a suitable model for the W-shaped head used in the 

experiments. 

4. The experimental error tolerances could be greater at high and at low output 

voltages than for the intermediate responses. 

4.4 Summary 

This chapter has discussed: 

• The derivation of the exact spectral response function for: 

1. Ring heads. 

2. Thin film heads with constant or linearly varying potential poles. 

3. Single pole heads with linear or arbitrarily varying pole potentials. 

4. Symmetrically shieded single pole heads. 
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5. Shielded, recessed and non-recessed, infinitely thin MR sensors. 

all in the presence of an underlayer. 

• The derivation of approximations to the spectral response functions whose accu­

racy has been demonstrated. 

• The definitions of linear dibit shift and the roll-off curve. 

• Numerical results which have been presented. 

• Comparisons with published theoretical and experimental results. 
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Chapter 5 

Conclusions 

5.1 Mathematical Methods 

New mathematical analyses have been carried out for some existing magnetic 

recording heads and also for some novel graded potential heads. The published litera­

ture only reports one such head which has been built. The new potential distributions 

for single pole heads, which have been investigated here, result in improved character­

istics over that experimental head. Mathematical analyses prior to head construction 

can reduce development time and cost. Two particular analytical approaches have 

been used in this thesis. 

Exact two-dimensional head fields have been derived by the Fourier method for thin 

film heads with constant and linearly varying pole potentials, and for single pole heads 

with linearly and arbitrarily varying potential poles. For these solutions, as the head 

- underlayer separation increases, the magnitudes of the Fourier coefficients increase. 

Hence, the number of terms required for convergence of the solutions increases with 

t, especially near the boundaries between the different regions defined for a particular 

case. The number of sets of Fourier coefficients, for a particular solution, depends on 
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the minimum number of rectangular regions into which it is possible to subdivide the 

total area exterior to the head and the under layer. The number of terms involving these 

coefficients required to achieve convergence of the solution, depends on the positions 

of the chosen boundaries as well as the magnitudes of the coefficients. 

The conformal mapping method has been used to derive exact two-dimensional 

head fields for symmetrically and asymmetrically shielded, recessed and non-recessed 

infinitely thin MR sensors. This method can be applied to more complicated geometries 

than the Fourier method. In general, the complexity of the solution rises with the 

number of vertices in the head geometry. Crowding of the indiviual points in certain 

areas of the transformation are inevitable, as the mapping is non-linear. In the crowded 

areas, very accurate initial values are needed for the successful convergence of the 

inversion routine. Crowding, in the transformations defined here, has been found to 

increase as the head - underlayer separation decreases relative to the other dimensions 

of the head. 

Therefore, the two analytic methods are complementary. The Fourier method is 

best suited to simple geornetries and, in most cases, when an underlayer is present, to 

small head - underlayer separations. The analytic results obtained can lead to single 

term approximations. Conformal mappings of the form used here are more easily 

implemented when the head - underlayer separation is large. The results are usually 

computationally less expensive than those from the Fourier method but are purely 

numerical. 

5.2 The Effects of Pole Potential Grading 

For conventional heads which are assumed to have constant pole potentials, the 

only way to increase the frequency at which the first null in the spectral response 
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occurs, and to reduce linear dibit shift is to minimise the relevant dimensions of the 

head. Graded pole potentials offer the benefits of extended frequency ranges to the 

first output null, or even complete elimination of nulls, as well as substantially reducing 

linear dibit shifts. Hence it is expected that higher area! bit densities will be achieved 

in the future by the prudent use of potential grading. 

Each of the pole potential gradings considered here have at least one zero potential 

edge. Heads with these potentials have been shown to have locally higher and narrower 

peaks in their vertical field components close to the head. Hence such heads produce 

less linear dibit shift than the corresponding conventional heads. Linear dibit shift has 

been shown to be the limiting factor for conventional heads. For replay, when the head 

is almost in contact with the medium, higher output voltages are also obtained from 

heads with graded pole potentials. 

Heads with asymmetrically graded pole potentials have no nulls in their spectral 

response function. Deep minima indicate that the out put voltage would be too low, 

relative to the peak, for detection. The degree of asymmetry affects the depth of the 

minima. For a cubic potential across a single pole head, the minima are very shallow 

and would be unlikely to be more limiting than the general reduction in output voltage 

at high bit densities for this head. 

When the pole potential is asymmetric, the phase of the spectral response function 

varies continuously over the entire range of frequencies. For the single pole with a 

cubic potential, the phase is almost linear. Heads with symmetric pole potentials have 

spectral response functions with abrupt phase changes by 1r radians at the frequencies 

which cause nulls. Increasing the bandwidth of these heads, other than by reducing 

the pole or the gap widths, can be achieved by suitably grading the potential of the 

pole pieces. The cosine-squared potential distribution across a single pole head has 
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been shown to offer as increase in bandwidth to the first null of over 177%, compared 

with the conventional, constant potential single pole head, when Lft = 0.5. 

The cosine-squared potential distribution across a single pole head has been shown 

to have a head field which is very similar to that of a particular symmetrically shielded 

pole head. This suggests that any desired field distribution may be achieved by careful 

grading of the potential across a single pole head. 

The accuracy with which the theoretical models predict the output characteristics 

of experimental heads gives further confidence in the methods used and the results 

obtained. 

5.3 Head- Underlayer Separation 

In general, reducing the head-underlayer separation increases the peak magnitudes 

and the gradients of the head field components, although optimum dimension ratios 

have been found for the constant potential single pole head and for a symmetrically 

shielded pole head. 

Over the range of dimension ratios tested for a shielded MR sensor, the position 

of the underlayer has little influence. The ratios between the sensor width and the 

gap widths, as well as the ratio of each of these dimensions with the pole- underlayer 

separation, t, affect the peak magnitude of the field. Here Lft = 0 for all t > 0 but 

in a practical system the small sensor width results in Lft remaining small unless 'in 

contact' recording with very thin media is achieved. This does not mean that the 

underlayer is unneccessary, its original purpose, of enhancing the detectable field of 

the medium, still remains. 
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5.4 Shielded Heads 

Asymmetry in shielded pole heads is almost inevitable. Very slight accidental asym­

metry will have little observable effect on the response of a shielded pole head. Very 

thin symmetrically shielded pole heads, whether inductive or magnetoresistive, have 

minima not nulls in their spectral response functions, over the usable range of frequen­

cies. Therefore no phase change occurs either. This makes shielded magnetoresistive 

heads particularly suitable for replay. 

5.5 Future Work 

Shielded MR sensors with recessed and non-recessed poles have been analysed. 

The same model may be used to investigate the effects when the pole protudes from 

the shield face plane. 

Increasing the asymmetry from a linear potential to a cubic potential across a single 

pole head reduces the depth of the minima in the spectral response function and lessens 

linear dibit shift. It would be interesting to test the effects of other potential distri­

butions applied to the poles of thin film heads and to the shields of magnetoresistive 

heads. It is suspected that, with the correct choice of pole potential, the complex sets 

of nulls in the spectral response of the thin film heads can be eliminated. Similarly, 

the finite length of the shields of an MR sensor have not been taken into account here. 

Grading the potential across the shields could enhance the vertical head field compo­

nent above the sensor, while preventing undesirable peaks above the outer edges of the 

shields. 

The possibilities for potential grading in longitudinal recording heads have not 

yet been explored. The models for the particular heads with graded potential poles 
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presented here, are not applicable when the underlayer is removed. In real heads the 

corners of the pole pieces and the shields are not perfectly rectangular. The effects due 

to micro-rounded corners can be investigated using the conformal mapping method. 

Other head configurations exist which have not been analysed, for example the MR 

sensor, shielded on one side only, and the magnetoresistive head with a soft magnetic 

adjacent layer. The former is a special case of the shielded MR sensor analysed here, 

but crowding in the transformation would limit the use of the existing model. For the 

latter, the biasing layer is magnetised by the field from the current in the MR sensor. 

In modelling such a structure the biasing layer must be taken into account since it acts 

as another pole and changes the overall head field. As new head geometries are in­

troduced, there will be a need for further accurate mathematical analyses. The future 

development of magnetic recording heads may also be motivated by the mathematical 

analyses of novel head geometries. Experimental work is already planned, at the U ni­

versity of Plymouth, to verify the results of the new analyses, especially those for the 

graded potential single pole heads. 
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Appendix A 

Analytic Integral Results 

A .l Special functions 

Many of the integrals quoted in Chapters 2, 3 and 4 can be expressed in closed form. 

Where integrals of t he same form occur in the analysis of different head geometries, 

general results are given. Substitutions for the specific cases are given in Section A.3.8. 

Some of these analytic results depend on the complex exponential integral Ei, and other 

functions related to it as well as on the elementary transcendental functions. These 

special functions are defined as [95]: 

Ei(z) = - E1 ( -z ) (A .l) 

and 

/

(X) e- t CXl ( -1 t z n 
E1(z) = - dt =-1- ln(z)- L 

1 z t n - 1 nn. 
(A .2) 

where 1 is Euler 's constant . 

Ei(z ) = Ei(z)- i-rr. (A.3) 
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The sine and cosine integral are 

and 

Si( X) = rr: sin( t) dt 
lo t 

Ci(x) =- {oo cos( t) dt 
Jz t 

respectively, which can be evaluated using library routines [33]. 

(A.4) 

(A.5) 

A.2 Integrals arising in the evaluation of the eo-

efficients 

A.2.1 l mn 

(A .6) 

vVhen n = 0, Imo (A.7) 

m = n 
else Imn (A.8) 

m =/:- n , 

which differs in sign from the res ult given in [23] when m =/:- n. 
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A.2 .2 NmN 

{
00 ksin2(k) 

NmN = la [k2- (m7r)2 l[k2 + (N7rs)2J dk. (A.9) 

= 4 [(m1r)2 ~ (N1rs)2 ] { 2ln ( :s) + 2Ci(2m7r) 

(e- 2N,.~Ei(2N1rs) + e2N,.~Ei(-2N7rs)) } . (A.lO) 

For t he single pole head with arbitrary pole potential, s = t j2L. 

A.2.3 PmN 

= ( 00 k sin(k) cos(k) dk 
la [k2 -(m7r)2 J[k2+(N7r5)2J · 

(A.ll) 

= 4 [(m1r)2 ~ (N1rs)2] { 2m1rSi(2m1r) 

For the single pole head with arbitrary pole potential , s = t j 2L. 

A.3 Integrals arising in expressions for the poten -

tial and fie ld components 

A .3 .1 In 

(A.L3) 
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Io = 1 [PI ((r-q)2 +p') 
2r 2 n (r + q)2 + p2 

(r+q) (r-q)] +(r + q) arctan -p- - (r- q) arctan -p- (A.l4) 

Jn = -
1
-Re[e-aEi(a)- eaEi( -a)- e-bEi(b) + ebEi( -b)] 4mr 

+~e-mrpfr( -lt sin (mrq) 
2n r (A.l5) 

for 0 < qfr < 1, where 

n1l" 
a = - [p- (r + q)i] 

r 
and 

n1l" 
b = -[p- (r- q)i]. 

r 
(A.l6) 

This result differs in the sign of two terms from that given in [25]. 

A.3.2 Jn 

J -100 ksin(k)sin(kq/ r) -kpfr k 
n - k2 ( )2 e d . o - n1r (A.l7) 

When n = 0, }0 = Hn (:: : ~~ ~ :~:)] (A.l8) 

else ln = ~Re [eaE1(a) + e-aE1 ( -a)- ebE1(b) - e-bE 1 ( - b)] + S (A .l9) 

where a and bare given by (A .l6) and 

q < 0 

as given in [25]. 
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A.3.3 Kn 

K = 100 ksin(k)cos(kq j r) -kp/r dk 
n k2 ( )2 e . o - n1r 

(A.20) 

When n = 0, K0 = ~ [arctan (r; q) + arctan (r; q)] (A.21) 

else Kn = ~Irn [eaE1(a ) + e-aE1( - a) + ebE1(b) + e-bE1( -b)] + T (A.22) 

where a and b are given by ( A.16) and 

q < 0. 

as given in [25]. 

where 

and 

TN = {00 sin(k) sin(k( t - y) ft\-k(lzi-L)/t dk 
Jo k2 + (N1rs)2 

= - 1
-Irn [eli1 E1 (J.L1) - e - Jll E1 (- J.L t) - elil E1 (J.L2) + e-li2 Et (- J.L2 )] (A .23) 

4N7rs 

N [(
t +(t-y) .(lxi- L) ) ] J.L1 = 1rS +t~~~ 

t t 
(A.24) 

(A.25) 

When N = 0, T0 = ! 0 as given in Section A.3.1 with p = lxl - L, q = t- y and r = t. 
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A.3.5 UN 

UN= ( 00 k cos(k) sin(k(t- y)jt) e-k(izi-L)/t dk 
lo k2 +(N1rs)2 

( A.26) 

[1 1 ( 2(t - y)(ixi- L) ) 
o = 2 arctan (lx l - £)2 + y(2t- y) (A .27) 

(A.28) 

where J.L 1 and J.L2 are given by equns. (A.24) and (A.25) respectively. 

A.3.6 vVo 

Wo = hoo cos(k)sin(k(t-y)jt)e-k(izi-L) ftdk (A .29) 

= t [ 2t- y y l 
2 (lx i - L)2 +(2t-y)2 ( ixi- L)2+y2 

(A.30) 

A.3.7 Yo 

Yo = hoo cos(k) cos(k(t- y) j t )e-k(i:r:i-L)/t dk (A.31) 

= t( ixi-L) [ 1 1 l 
2 (lxl - L)2 + (2t- y)2 + (lxl - £)2 + y2 

(A.32) 

A.3.8 The specific cases 

The results given in Sections A.3.1 , A.3.2 , A.3.3 apply in the following cases. 

For all the single pole-type heads , in I!, J! and K! , 

p =X-L, q = t - y , and r = t . (A.33) 
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For a ring head without an underlayer in I/: , 1/: and K/:, 

p = y, q = x, and r =g. ( A.34) 

For t he t hin film heads in ~F, J~F and K~F 

p =X- L - g, q = t - y , and r = t . (A.35) 

A.4 Integrals arising in the spectral response func-

tions 

A.4.1 S!vf 

Slvf = 
looo sin

2
(k) 

K.t dk 
0 k2 [k2 + (K.t)2] 

(A.36) 

= ~ [2"'t + e-
2
'd - 1] . (A.37) 

4 ( K.t )2 

A.4.2 SN 

SN = ( 00 sin( k) cos( k) dk 
Jo k2 + ("-t)2 

(A .38) 

A.4.3 SR 

SR = "'t ( 00 sin(k) cos(k) dk 
Jo k[k2 -r ("'t )2 ] 

(A.39) 
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(A.40) 

A.4.4 

STP 
n = 

1eo sin2(k) 
K-t o [k2- (mr-)2J[k2 + (K-t)2] dk (A.41) 

= 
" [ e_,., - I l 
4 ( mr-)2 + (K-t )2 ' n f. O · (A.42) 

A.4.5 

= reo k sin2(k) 
lo [k2 + e~][k2 + (K-t)2] dk (A.43) 

= 4 [( K-t)~- e~ J [2ln (~) + e-2eNEi(2~N) + e2eNEi( -2eN) 

(A.44) 

A.4.6 SVN 

S~v (A.45) 

A.4. 1 srvN 

= reo k2 sin(k)cos(k) 
lo [k2 + ~~][k2 + (K-t)21 dk (A.47) 
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'(A.49) 

(A.50) 



Appendix B 

Tables of Coefficients / Constants 

B .1 Thin film heads 

Scaled Pole head Pole head 

gft 0.125 0.5 2.0 8.0 16.0 16.0 Lft = 0.5 Lft = 0.5 

N = 40 Extrapolated 

se' 
I -0.0871 -0.0866 -0.0863 -0.0863 -0.0863 -0.0900 -0.0900 -0.090097 

BC' 
2 0.0296 0.0293 0.0292 0.0292 0.0292 0.0292 0.0292 0.029305 

se' 
3 -0.0155 -0.0153 -0.0153 -0.0153 -0.0153 -0.0153 -0.0153 -0.015317 

ac' 
4 0.0098 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.009635 

ac' 
5 -0.0068 -0.0067 -0.0067 -0.0067 -0.0067 -0.0067 -0.0067 -0.006711 

BC' 
6 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.004989 

vc' 
I -0.4417 -0.2101 -0.0997 -0.0871 -0.0865 ·0.0902 

ne• 
2 0.1637 0.0625 0.0328 0.0294 0.0292 0.0293 

vc' 
3 -0.0851 -0.0309 -0.0170 -0.0154 -0.0153 -0.0153 

ne' 
4 0.0520 0.0188 0.0106 0.0097 0.0096 0.0096 

ne' 
5 -0.0351 -0.0128 -0.0073 -0.0067 -0.0067 -0.0067 

DC' 
6 0.0253 0.0094 0.0054 0.0050 0.0050 0.0050 

Table 8.1: Coefficients a~· and D~' for thin film heads with poles at constant potential, 

L/t = 0.5. 
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Ring head Ring head Ring head 

Ljt 0.03125 0.125 0.5 2.0 no underlayer no undcrlayer with underlayer 

N = 40 Extrapolated gft = 2.0, N = 40 

se' 
1 -0.0996 -0.0922 -0.0866 -0.0861 -0.0861 -0.086157 

se' 
2 0.0360 0.0321 0.0293 0.0291 0.0291 0.029150 

BC' 
3 -0.0196 -0.0171 -0.0153 -0.0152 -0.0152 -0.015254 

BC' 
4 0.0126 0.0108 0.0096 0.0095 0.0095 0.009593 

se' 
5 -0.0090 -0.0076 -0.0067 -0.0066 -0.0066 -0.006680 

BC' 
6 0.0068 0.0057 0.0050 0.0049 0.0049 0.004965 

DC' 
1 -0.2099 -0.2096 -0.2101 -0.2102 -0.2103 

DC' 
2 0.0648 0.0633 0.0625 0.0625 0.0625 

DC' 
3 -0.0326 -0.0315 -0.0309 -0.0309 -0.0309 

DC' 
4 0.0201 0.0192 0.0188 0.0188 0.0188 

DC' 
5 -0.0138 -0.0131 -0.0128 -0.0128 -0.0128 

DC' 
6 0.0102 0.0096 0.0094 0.0094 0.0094 

Table B.2: Coefficients B~' and D~' for thin film heads with poles at constant potential, 
gjt = 0.5. 

218 



t 0.125 1.0 4.0 16.0 

BC' 
I -0.0861 -0.0866 -0.0990 -0.1262 

BC' 
2 0.0291 0.0293 0.0355 0.0503 

BC' 
3 -0.0152 -0.0153 -0.0192 -0.0290 

BC' 
4 0.0095 0.0096 0.0123 0.0194 

BC' 
5 -0.0066 -0.0067 -0.0087 -0.0142 

BC' 
6 0.0049 0.0050 0.0065 0.0109 

DC' 
I -0.0896 -0.2101 -0.4229 -0.4931 

DC' 
2 0.0300 0.0625 0.1623 0.2406 

DC' 
3 -0.0156 -0.0309 -0.0850 -0.1518 

DC' 
4 0.0098 0.0188 0.0520 0.1067 

DC' 
5 -0.0068 -0.0128 -0.0351 -0.0797 

DC' 
6 0.0051 0.0094 0.0254 0.0619 

Table B.3: Coefficients B~' and D~' for thin film heads with poles at constant potential, 
g/L = 1.0. 
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gft 0.125 0.5 2.0 8.0 16.0 

BL' 
1 0.1084 0.1089 0.1091 0.1092 0.1092 

BL' 
2 -0.0291 -0.0293 -0.0294 -0.0294 -0.0294 

BL' 
3 0.0137 0.0138 0.0139 0.0139 0.0139 

BL' 
4 -0.0081 -0.0082 -0.0082 -0.0082 -0.0082 

BL' 
5 0.0054 0.0054 0.0055 0.0055 0.0055 

BL' 
6 -0.0039 -0.0039 -0.0039 -0.0039 -0.0039 

DL' 
1 -0.5009 -0.3112 -0.2088 -0.1963 -0.1956 

DL' 
2 0.1841 0.0962 0.0622 0.0588 0.0587 

Df -0.0956 -0.0442 -0.0308 -0.0293 -0.0292 

DL' 
4 0.0584 0.0267 0.0188 0.0179 0.0178 

DL' 
5 -0.039<1 -0.0181 -0.0128 -0.0122 -0.0122 

Du 
6 0.0284 0.0132 0.0094 0.0089 0.0089 

Table B.4: Coefficients B~' and D~' for thin film heads with linearly varying pole 
potentials, L/t = 0.5. 
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Ljt 0.03125 0.125 0.5 2.0 

BL' 
1 1.6428 0.4208 0.1089 0.0274 

BL' 
2 -0.4180 -0.1098 -0.0293 -0.0074 

BL' 
3 0.1890 0.0507 0.0138 0.0035 

BL' 
4 -0.1080 -0.0295 -0.0082 -0.0021 

BL' 
5 0.0702 0.0194 0.0054 0.0014 

BL' 
6 -0.0493 -0.0139 -0.0039 -0.0010 

DL' 
1 -1.8387 -0.6171 -0.3112 -0.2354 

DL' 
2 0.4822 0.1718 0.0962 0.0695 

DL' 
3 -0.2218 -0.0818 -0.0442 -0.0342 

DL' 
4 0.1285 0.0486 0.0267 0.0208 

DL' 
5 -0.0843 -0.0325 -0.0181 -0.0141 

DL' 
6 0.0599 0.0235 0.0132 0.0103 

Table B.5: Coefficients B~' and D~' for thin film heads with linearly varying pole 
potentials, gjt = 0.5. 
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t 0.125 l.O 4.0 16.0 

EL' 
1 0.0137 0.1089 0.4163 1.6283 

EL' 
2 -0.0037 -0.0293 -0.1076 -0.4100 

EL' 
3 0.0018 0.0138 0.0493 0.1836 

EL' 
4 -0.0100 -0.0082 -0.0285 -0.1041 

EL' 
5 0.0007 0.0054 0.0187 0.0672 

EL' 
6 -0.0005 -0.0039 -0.0133 -0.0470 

DL' 
1 -0.1033 -0.3112 -0.7513 -1.9669 

Du 
2 0.0337 0.0906 0.2498 0.5821 

DL' 
3 -0.0174 -0.0442 -0.1275 -0.2976 

DL' 
4 0.0108 0.0267 0.0775 0.1876 

DL' 
5 -0.0075 -0.0181 -0.0521 -0.1318 

Du 
6 0.0056 0.0132 0.0376 0.0988 

Table B.6: Coefficients E~' and D~' for thin film heads with linearly varying pole 
potentials, gj L = 1.0. 
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B.2 Single pole heads 

Constant 

Lft 0.125 0.25 0.5 1.0 2.0 50 50 

BLP' 
I -0.064657 -0.052681 -0.045049 -0.043163 -0.043079 -0.043079 -0.086157 

BLP' 
2 0.018400 0.015477 0.014653 0.014577 0.014575 0.014575 0.029150 

BLP' 
3 -0.008797 -0.007857 -0.007658 -0.007628 -0.007627 -0.007627 -0.015254 

BLP' 
4 0.005299 0.004916 0.004817 0.004797 0.004796 0.004796 0.009593 

BLP' 
5 -0.003621 -0.003423 -0.003356 -0.003341 -0.003340 -0.003340 -0.006680 

BLP' 
6 0.002671 0.002546 0.002495 0.002483 0.002483 0.002483 0.004965 

DLP' 
I -0.254826 -0.205421 -0.145825 -0.097735 -0.070503 -0.044176 

DLP' 
2 0.100366 0.069302 0.044008 0.029416 0.021998 0.014872 

DLP' 
3 -0.054119 -0.034508 -0.021582 -0.014656 -0.011143 -0.007768 

DLP' 
4 0.033787 0.020791 0.013061 0.008964 0.006881 0.004880 

DLP' 
5 -0.023094 -0.014022 -0.008867 -0.006129 -0.004735 -0.003396 

DLP' 
6 0.016811 0.010173 0.006470 0.004496 0.003490 0.002523 

Table B. 7: Coefficients B~P' and D~P' for single pole heads with linearly varying pole 
potentials. 
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Linear Linear 

'PB(x,O) Linear Quadratic Cubic Cosine- BLP' 
n 

BLP' 
n 

squared N=320 corr. to 6dp. 

BAP' 
I -0.04505 -0.00189 0.01969 -0.12193 -0.04505 -0.045049 

BAP' 
2 0.01465 -0.00025 -0.00771 0.03445 0.01465 0.014653 

BAP' 
3 -0.00766 -0.00042 0.00319 -0.01287 -0.00766 -0.007658 

BAP' 
4 0.00482 0.00068 -0.00138 0.00550 0.00482 0.004817 

BAP' 
5 -0.00335 -0.00074 0.00057 -0.00253 -0.00335 -0.003356 

BAP' 
6 0.00249 0.00072 -0.00017 0.00118 0.00249 0.002495 

flAP' 
I 0.04003 0.04003 0.04496 -0.14582 -0.145825 

flAP' 
2 -0.00647 -0.00647 -0.01021 0.04400 0.044008 

flAP' 
3 0.00093 0.00093 0.00332 -0.02158 -0.021582 

flAP' 
4 0.00039 0.00039 -0.00119 0.01306 0.013061 

flAP' 
5 -0.00076 -0.00076 0.00035 -0.00886 -0.008867 

flAP' 
6 0.00084 0.00084 0.00003 0.00647 0.006470 

Table B.8: Coefficients B;P' and D~P' for single pole heads with various pole poten­
tials, L(t = 0.5. 
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B.3 Shielded, infinitely thin MR sensors 

G1 a {3 I 8 SA ZA 
0 

0.5 0.593636 1.894831 0.593636 1.0 -1.280774 -0.441271 

0.25 0.579534 3.178338 0.920963 1.599118 -2.102338 -0.733081 

0.125 0.583152 5.456887 1.490165 2.653571 -3.585123 -1.012372 

0.0625 0.590413 9.262212 2.426713 4.404794 -6.072661 -1.292910 

Table 8.9: Schwarz-Christoffel mapping constants for shielded, infinitely thin MR 
sensors where G2 = 0.5, t = 1 and r = 0. 

t a {3 I 8 SA ZA 
0 

1 0.579534 3.178338 0.920963 1.599118 -2.102338 -0.733081 

2 0.569728 6.135041 0.917552 1.671889 -7.892897 -1.376321 

4 0.567153 12.156259 0.916591 1.692733 -31.037872 -2.647432 

8 0.566501 24.255204 0.916343 1.698136 -123.613129 -5.180072 

Table 8.10: Schwarz-Christoffel mapping constants for shielded, infinitely thin MR 
sensors where G1 = 0.25, G2 = 0.5 and r = 0. 

r a {3 I 8 SA ZA 
0 

0 0.579534 3.178338 0.920963 1.599118 -2.102338 -0.733081 

0.01 0.560295 3.208590 0.901076 1.598002 -2.126556 -0.732808 

0.1 0.392090 3.341347 0.691780 1.525901 -2.243159 -0.714890 

1.0 0.007387 2.866324 0.014773 1.012951 -1.948830 -0.570381 

Table 8.11: Schwarz-Christoffel mapping constants for shielded, infinitely thin i'v[R 
sensors where G1 = 0.25, G2 = 0.5 and t = 1. 
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Glossary 

a Prefix to a superscript: an approximation. 

aG P Superscript: an approximation generalised to an arbitrary potential. 

A Subscript: region A. 

A Superscript: asymmetrically shielded MR sensor. 

A Angstrom unit. 

AP Superscript: arbitrary potential single pole . 

b Bit cell length. 

B Subscript: region B. 

B Magnetic flux density. 

C Subscript: region C. 

C Superscript: constant potential thin film head. 

C Real constant. 

d Head - medium separation. 

D 5o Bit density at which output voltage is half that for isolated transition. 

e Voltage. 

g Semi-gap width. 

G Full gap width. 

H Magnetic field strength. 

H., Horizontal field component. 

Hy Vertical field component. 

Hy Fourier transform of Hy. 

In Superscript: inductive. 
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l 

L 

L 

LP 

MR 

p 

r 

R 

RU 

s 

s 

t 

TF 

V 

V 

w 

zo 

a,(3,-y,5 

(3 

Eo 

Current density. 

Semi-pole thickness. 

Superscript: linear pole potential thin film head. 

Mutual inductance. 

Superscript: linear potential single pole head. 

Remanent magnetisation. 

Magnetoresistive (also as superscript). 

Superscript: constant potential single pole head. 

Pole recession. 

Superscript: ring head without an underlayer. 

Superscript: ring head with an underlayer. 

Complex constant. 

Superscript: derived by Szczech et al. 

Head - underlayer separation, time in Section 2.1.5. 

Superscript: thin film head. 

Velocity. 

Maximum pole potential. 

Track width. 

Position on medium relative to coordinates of the head. 

Complex constant. 

Proportion of the maximum potential at the leading pole edge. 

Real constants in the complex w-plane. 

Proportion of the maximum potential at the trailing pole edge. 

Permittivity of a vacuum. 

Medium thickness. 
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I' 

'Euler's! .constant, 

,,. Wav:enurriber;. 

Wavelength. 

Permeability: of. a rriat(:rial, relative to p.0 , 

Permeaoiliiy of,a vacuum, 

. Flux~ 

l\llagnetic potential. 

Fourier ,transform of ip. 

Phase angle. 
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