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Abstract 

lchthyophthiriasis in fish: genetic variation in 
resistance to infection, 

Graham Maurice Clayton, RSc., Dip. Ed. 

The frequency and severity of fish diseases is; increasingly, being reported as a limiting factor 

in the future development of aquaculture. The control of fish disease is largely perfonned in 

retrospect through curative chemotherapy. However, the development of resistant strains of 

fish· places the:emphasis on preventative, rather than the curative, control of disease. 

The freshwater parasite Jcthyophthirius multifiliis causes the disease known as 

ichthyophthiriasis or white spot. Losses of fish due to this parasite are believed to total·over one 

million dollars per annum worldwide. The objective of this study was to examine the genetics of 

resistance to /. multifiliis, 

Comparisons were made between four stocks of the tropical livebearing fish Xiphophorus 

maculatus. One of these stocks, the blue platyfish, was found to be less susceptible to white 

spot than the yellow comet tail, red or red wag tail platyfish, Comparisons with four other 

tropical spades of fish found significant differences between X. maculatus, X. variatus, Ameca 

splendens and 1/yodon xanthusi in levels of susceptibility. A. splendens was the most 

susceptible species, with the blue platy (X. maculatus) and sunset platy (X. variatus) forming the 

most resistant group. All the remaining stocks and species formed an intermediate group. 

Examination of resistance to white spot infection in four scale types of related common carp 

( Cyprinus auratus) also found variation in resistance, with the fully scaled carp being the most 

resistant phenotype (scattered mirror, linear mirror and leather carp being similar in infection 

level). 

More detailed analysis of the genetics of disease resistance was performed with heritability 

determinations in stocks of A. splendens, X. maculatus (yellow comet tail) and X. maculatus 

(Vera Cruz). The highest heritability value, based on sire components only, was that for Vera 

Cruz platyfish of 0.75, with a value of 0.23 for X. maculatus (yellow comet tail) and 0.00 for A. 

splendens. A breeding programme was· also performed between X. maculatus (red platy) and 

X. variatus (sunset platy) to evaluate the presence of any·heterosis. Such was observed, with a 

heterosis value, based on actual parasite counts, of 16.2%. 

Several factors of the infection process are also discussed, especially the fluctuating yearly 

trends in infection levels and parasite strain differences. Finally, the future potential of genetic 

manipulation of fish stocks for increased disease resistance is discussed in the light of this 

study. 11 is considered that a useful foundation has been laid for the further development of this 

approach to disease prevention in aquaculture. 



Chapter 1 

Introduction. 

1.1. Problems in the future development of aquaculture. 

The development of the aquaculture industry has often been compared to the 

development that took place over past years in the animal production industry. 

Perhaps the most common analogy is that drawn between aquaculture and the 

more recent developments of this century, in the poultry industry (Herman, 

1970; Gratzek, 1983). Gjedrem (1975) suggested that the future 

competitiveness of fish farming, compared to other animal production, 

depended upon six factors; i) food conversion rates; ii) food costs and the 

amount available; iii) composition of the ration used; iv) frequency of fish 

diseases and how effectively they can be cured; v) price of products and their 

marketing; vi) productivity of the animals. Indeed, these six points also·form a 

good summary of the current research areas in aquaculture. Gjedrem ( 1975, 

1983) discussed the possible extent of genetic gain, as defined by Falconer 

( 1981), for the five traits which he considered as of greatest importance to the 

development of fish farming, namely; i) growth rate from hatching to harvesting; 

ii) food conversion; iii) viability and resistance to disease; iv) carcass quality; v) 

age at sexual maturity. Kirpichnikov (1971 b) presented a very similar list of 

principal aims to be accomplished in future fish selection programmes. The 

problems with fish disease have, increasingly, been reported as limiting to the 

full exploitation offish farming (Herman, 1970; Meyer & Hoffman, 1976; Price & 

Bone, 1985; Ocvirk, 1987). This investigation is concerned solely with the area 

of disease resistance in fish and its' contribution to a more productive and 

efficient aquacultural industry. 
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1.2. Fish disease in aquaculture. 

lt is not suprising that fish disease epizootics, whilst not unknown {AIIison & 

Kelley, 1963; Meyer & Hoffman, 1976) are relatively uncommon in wild stocks of 

fish. However, when fish are farmed they are placed into a much more 

demanding environment {Herman, 1970). They are crowded, handled and 

l~rgely dependant upon the farmer for their food ration. As a consequence 

disease is much more prevalent and the consequences of that disease often 

much more drastic. The cost of disease to the farmer can be huge, not only in 

terms of lost stock, but also in terms of treatment and reduced food conversion 

of healthy stock {Ocvirk & Bravnicar, 1984, 1987). 

Brown & Gratzek { 1980) estimated the on-farm value of cultured freshwater 

species in the USA alone to be $200-300 million. Further figures for the value 

of cultured species are sparse. Much of the information available on this 

subject relates to wild populations which are exported as ornamental species. 

Such figures, however, are useful as an indication of the impact of disease upon 

undomesticated stocks. Conroy et a/ {1981) quote 1973 exportation values of 

ornamental species to the USA as $832,519, $438,557 and $68,448 for 

Colombia, Peru and Venezuela respectively. In 1972 the USA retail trade in 

ornamental fish alone was estimated as $250 million. {Conroy, 1975), and 

imports into the USA of ornamental species from worldwide sources in 1973 

amounted to $8;853,430 {Conroy et a/, 1981 ). 

The impact that fish disease can have on these figures can be difficult to 

estimate. Klontz { 1985) reports estimates of 1 0-30% of production cost is lost 

through disease. Conroy { 1975) and Conroy et a/ { 1981) gave a figure for total 

losses of ornamental fish, from all causes, prior to exportation from Peru as 

55.2%. This amounts to $242,083 for fish exported in 1973 from Peru, to the 

USA alone. Similar figures for Colombia {Vasquez, 1974) indicate up to 

$499,511 {ie. 60%) is lost through death of fish prior to exportation to the USA. 

Shepherd {1987) suggested a reduction in return on investment from 39% to 

21% might occur from a recurring furunculosis problem, over the two year 

production cycle on a 250 metric ton salmon farm. This is equivalent to a 

£70,000 reduction in pre-tax profits. 
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To date there are more than twenty cutaneous and systemic bacterial 

diseases , more than thirty viral diseases and more than one hundred external 

and internal parasitic diseases of commercially important fish species (EIIis, 

1987). These diseases can result in a reduced fitness, and hence productivity 

of stock, lost sales, the cost of :purchasing chemotherapeutants, or, in severe 

cases, the cost of replacing the complete stock. liherefore, there is an urgent 

need to improve the control of fish disease in aquaculture in order to increase 

the efficiency and viability of fish farms. 

McGregor (1963) reviewed the literature on fish parasites and diseases from 

330 B.C. - 1923 A.D. The study of disease in the culture of fish is, therefore, a 

very old science. However, much of the early study was purely descriptive of 

the disease symptoms. Where the causative agent could be observed, which 

usually meant the parasite, then taxonomical studies were performed. In the 

last decade of the 191h Century bacterial diseases were first described. 

Extensive problems in the early 1900's lead to the commission by the British 

Government of the Furunculosis Committee in 1930. The committee, which 

existed for five years, did much to further the study of many diseases, and not 

just furunculosis. This, perhaps, paved the way for the future explosive growth 

in fish farming in the 1960's and 1970's, To-day there are many fish 

pathologists, and an increasing number of courses which include some fish 

pathology training. Associations such as the European Association of Fish 

Pathologists exist and at least one journal is entirely devoted to fish pathology 

(ie. Journal of Fish Disease). Much money, time and effort now goes into the 

more effective and efficient control of fish disease. 

1.3. Control of fish disease. 

The control of fish disease has many facets and can be divided into four 

catagories; i) improved husbandry; ii) chemotherapy; iii) vaccination; iv) 

breeding for resistance. 
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1.3.1. Improved husbandry. 

Improving the husbandry practices has two distinct advantages. The first is to 

at least assist in the control of a disease outbreak by providing the optimum 

conditions for the fish to recover. In addition, future outbreaks and transmission 

of disease to other ponds can be prevented. Munro & Fijan (1981) reviewed the 

techniques in controlling and preventing disease on fish farms. Water quality 

and condition is perhaps the prime concern. Often a drop in water quality can 

be the trigger for a disease outbreak. The introduction of further pathogens can 

also be stopped by attention to the foodstuffs, quarantine procedure, water 

supply and fish/egg sources. In addition disinfection and sterilization 

procedures are important in control and prevention. Improved husbandry is, 

therefore, very simple in many ways, but is also often overlooked, resulting in 

recurring and spreading disease outbreaks. 

1.3.2. Chemotherapy. 

Chemotherapy is, undoubtably, the major method of control of fish disease. 

There is an enormous range of chemotherapeutants available, and the list 

grows continually, as new and more effective drugs are developed. The 

addition of natural and semi-synthetic antibiotics to this list merely serves to 

provide a multitude of possible cures for a disease. Herman (1970), Herwig 

(1979), Snieszko (1978), Gratzek (1983), and Austin (1984, 1985) provide 

summaries of the common antimicrobials (ie. chemotherapeutants and 

antibiotics) in use. Reichenbach-Kiinke & Elkan (1965) and Meyer and Hoffman 

( 1976) provide two of the perhaps more well-known and generally more 

available discussions of the treatment of fish disease. The number of such 

textbooks has however grown dramatically over the past few years ( e.g, 

Snieszko & Axelrod, 1971; Snieszko, 1980; Palmer & McArdle, 1982; Roberts, 

1978, 1982; Post, 1983). 

There are several problems in the use of chemotherapy to control disease 

outbreaks (Meyer & Hoffman, 1976). In some cases the size of the water body 

and price of the drug can make cost prohibitive (Leteux & Meyer, 1972). The 
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action of many chemotherapeutants is also affected by the level of organic 

material present (AIIison, 1953). In addition, the widespread use of 

chemotherapeutants can lead to the production of strains of pathogens which 

are resistant to chemotherapy, especially among the bacteria (e.g. Herman, 

1970; Aoki et a/, 1981; Davies, 1981; Sabath, 1982). For this reason 

prophylactic treatment with a single antimicrobial is eventually self-defeating . 

The chemotherapeutant has also to be administered and this may present 

problems if injection is necessary. Many chemotherapeutants are also not 

without their secondary effects. Cross (1972) found that methylene blue 

adversely affected feeding habits and formalin is known to cause gill filament 

damage (Leteux & Meyer, 1972). 

The use of medically important agents may also have dangerous 

consequences if resistant pathogens arose (Austin, 1985). Such resistance 

could well be passed onto human pathogens, with obvious consequences. 

Connected with this point is the problem of chemotherapeutants being 

discharged into river systems, where they can be mixed with the discharge from 

sewerage treatment works. Such pollution can also be hazardous to general 

river life and water supplies (Austin, 1985). Possible health hazards to the user, 

and shelf-life/stability of the antimicrobial, are further important considerations. 

Finally, antimicrobials take some time to be excreted from a fish's body and this 

depends upon species, temperature and antimicrobial. Such residues can be a 

health hazard if these fish are to be sold for the table (Gratzek, 1983 ; Austin, 

1985). 

1.3.3. Vaccination. 

The development of vaccines over the recent years provides a more promising 

method of control of fish disease (Gratzek, 1983). The emphasis here is more 

on prevention, rather than cure. Again there are problems with administration 

and cost, but many of the problems of chemotherapy do not exist. Pollution, 

withdrawal periods for sale of treated fish and the development of resistance 

are not of concern when vaccines are used. However, the efficiency of the 
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vaccine, the species it can be used with and the effect of temperature upon its' 

effectiveness are all important variables. Field trials of vaccines are therefore 

often unsuccessful in demonstrating: their efficiency (Baudin Laurencin & 

Tangtrongpiros, 1980; Smith et at, 1980; Michel, 1982). As a consequence only 

three vaccines are commercially available in the UK, all of which are for 

bacterial pathogens; Vibrio anguillarum, which causes the disease vibriosis; 

Aeromonas salmonicida, which causes the disease furunculosis; Yersinia 

ruckeri, which causes the disease enteric redmouth. Several experimental 

vaccines are under development, with again a heavy bias towards bacterial 

diseases. Very few vaccines · for parasitic diseases are even at the 

developmental stage. 

lt is likely to be some time before any of the experimental vaccines are 

commercially available, principally due to the stringent tests required by law. 

Essentially this takes three stages. Firstly, the vaccine must be shown to work 

in vitro. This is followed by in vivo tests on laboratory animals. Finally, field 

trials are required to demonstrate that the vaccine will be effective under farm 

conditions. This whole process has to be repeated for every species of fish the 

vaccine is to licensed for use with on a farm. Widespread use of vaccines for 

·.::-;;·;;.. •· -maii"y of the common diseases is, therefore, some timefoff. Indeed, Ell is ( 1987) 

argued that the 'easy' vaccines have now been developed for fish. Further 

progress rests on future developments in the analysis of the vaccination 

process. 

1.3.4. Breeding for resistance. 

The remaining method for the control of fish disease is the development of 

resistant strains through selective breeding. Again the emphasis is more on 

prevention rather than cure. By improving the gene pool of future populations, 

the possibility of disease outbreaks can be reduced, since; 

"A clinically manifest disease only results when proper combination of the 
genotype of the victim, and the genotype of the pathogen, where one is 
necessary, are properly synchronized with the environment." Gowen (1952). 

The existence of natural resistance to infection has been known for some time 
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(Wolf, 1954; Snieszko, 1957, 1958; Bauer, 1971). At a meeting of the F.A.O. 

Ad Hoc Working Party on Genetic Selection and the Conservation of Genetic 

Resources of Fish in 1972 the development of resistant strains was 

recommended. The earliest work along these lines was probably that by 

Embody & Hayford (1925) and Hayford & Embody (1930), where brook trout 

were used. Price (1985) recently reviewed the work done on the genetics of 

fish disease. 

Several diseases have been used in studies on variation in 

resistance/susceptibility: -bacterial kidney disease (Suzumoto et a/, 1977), blue 

sac disease (Ayles, 1974), channel catfish virus (Plumb et a/, 1975), 

Chilodone/la cyprini infection (Ocvirk, 1987), dropsy (Schaperclaus, 1953, 

1954; Bauer, 1971; Kirpichnikov & Factorovitch, 1972; Kirpichnikov, 1971 b, 

1973; Kirpichnikov et a/, 1979), enteric redmouth (Knittel, 1981 ), epidermal 

epithelioma (Hines et a/, 1974), fish pox (Hines et a/, 1974), furunculosis 

(Embody & Hayford, 1925; Davis; 1946; Wolf, 1954; Snieszko, 1957; Snieszko 

et a/, 1959; Ehlinger, 1977; Ferguson & Rice, 1980), gas bubble disease 

(Cramer & Mclntyre, 1976), Gyrodactylus infection (Suzuki & Yamaguchi, 

1980; Madhavi & Anderson, 1985), lchthyobodo necator infection (Ocvirk, 

1987), infectious haemopoietic necrosis (Amend & Nelson,. 1977;· Mclntyre & 

Amend, 1978), red spot disease (Schaperclaus, 1953), salmonid blood spot 

(Liewllyn, 1980), ulcer disease (Wolf, 1954; Snieszko et a/, 1959), vibriosis 

(Gjedrem & Aulstad, 1974; Smoker, 1981; Refstie, 1982), viral haemorrhagic 

septicaemia (Ord et a/, 1976) and white spot (Bone, 1983; Price & Bone, 1985). 

Certain selection programmes have increased the level of resistance to a 

pathogen, but the resistance is never absolute. Price (1985) commented that 

this may well be due to the fact that resistance is often measured on a scale 

several steps removed from the process of infection. Mortality over a given 

period of time is an oft used scale of resistance, as is the categorisation of fish 

into infected and not infected groups. This, unfortunate necessity, is usually the 

result of being unable to record infection levels in/on the fish. In some disease 

investigations, insufficient knowledge of the epidemiology of the disease has 

7 



precluded controlled experimental infections. Kirpichnikov et a/ (1979) also 

stressed that there is often an inability to exclude the possibility of death from 

other causes. However, Gordon (1953), Purdom (1974) and Ellis (1987) 

commented that, although not much advancement has been made in selective 

breeding for disease resistance in fish, the effective use of this approach in 

many other forms of agriculture suggests it is a worthwhile approach. Woo 

(1987) also saw selective breeding as a viable approach to protection against 

infection by pathogenic parasites in fish. 

To allow such an approach several criteria need to be fulfilled. Ideally, 

occurrence of the disease on a fish would be measured on a continuous scale, 

to enable the level of resistance to be measured. This permits changes to be 

made in resistance more easily and facilitates genetic analysis. The pathogen 

used must preferably, therefore, be one where the etiology has been thoroughly 

examined. This will facilitate the controlled exposure of fish to the pathogen 

and accurate assessment of the infection level. The extent of genetic control of 

resistance must then be determined, so that a suitable approach of exploiting 

the genetic variation present can be derived. 

1.4. lcthyophthirius multifiliis. 

The freshwater parasite /. multifiliis causes the disease known as white spot, 

ichthyophthiriasis or 'ich'. lt is a suitable candidate to use as a pathogen, in a 

study on the genetics of disease resistance, since it fills all the criteria above. 

The extent of the losses, both in terms of stock and finance, due to /. multifiliis 

has been considered as equal to the losses from all other fish parasites 

combined (Hines & Spira, 1973a; Antychowicz et a/, 1982). Migala ( 1971) 

regarded it as the most dangerous parasite in the culture of carp. In 1961 /. 

multifiliis was believed to have cost $1,000,000 worldwide (Rahawy, cited in 

Allison, 1968). Herman et a/ (1959), Reichenbach-Kiinke & Elkan (1965), 

Nigrelli et a/ (1976) and Goven et a/ (1980a) also considered it as a parasite 

which caused great economic losses. The etiology has been extensively 

studied resulting in a deep knowledge cif the life cycle. Controlled infections are 
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possible and evaluation of the infection level is a simple matter of counting the 

mature parasites on the host. Discussion of the parasite in this introduction will 

be divided into two parts; i) "fhe etiology and epidemiology of ichthyophthiriasis 

and ii) The control and treatment of ichthyophthiriasis. 

1.4.1. The etiology and epidemiology of ichthyophthiriasis. 

I. multifiliis was well known in the Middle Ages (Nigrelli et at, 1976), but Dashu 

& Lien-Siang (1960) claim that the earliest description of /. multifiliis is to be 

found in a book, edited by Su-shih, sometime during the Sung Dynasty (A.D. 

964-1126). Following this, the next known description is that of Hilgend6rf & 

Paulicki ( 1869), from fish kept in the Zoological gardens of Hamburg, Germany. 

However, it was Fouquet ( 1876) who suggested the name of lcthyophthirius 

multifiliis. Two early synonyms for /. multifiliis were Chromatophagus 

parasiticus (Kerbert, 1884) and lchthyophthirius cryptostomus (Zacharias, 

1892a, 1892b), but these rapidly fell out of use. According to the revised 

classification of the Protozoa (Levine et a/, 1980), /. multifiliis is now classified 

as; 

Phylum 
Class 
Sub~class 
Order 
Sub-order 
Genus 
Species 

: Ciliophora 
: Oligohymenophora 
: Hymenostomata 
: Hymenostomatida 
: Ophryoglenina 
: lchthyophthirius 
: multifiliis 

The life cycle is a simple, direct one. Mature parasites, known as 

trophozoites, leave the host (Figure 1) and, after a short free-swimming period, 

when they are known as trophonts, they settle upon a suitable substrata. Here 

a proteinacous cyst wall is secreted and the parasite undergoes numerous 

divisions (Figure 2). After a period of time, dependent upon water temperature, 

the cyst ruptures and free-swimming daughter cells are released (Figure 3). 

The number released per cyst is generally below 1000 (Maclennan, 1935a, 

1935b; Butcher, 1943; Reichenbach-Kiinke & Elkan, 1965; Beckert, 1975; 

Nigrelli et at, 1976; Ewing et a/, 1982, 1983, 1986; McCallum, 1985; Mclay, 

1985), although figures of upto 2000 have been reported (Prytherch, 1924; 
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Butcher, 1941: Meyer, 1974). Initially these daughter cells are spherical in 

shape (18"40 llm in diameter, Maclennan, 1937, 1942; Mclay, 1985) and are 

known as tomites. lihese tomites rapidly. become elongated (length of 

10~451J.m, Maclennan, 1935b, 1936, 1937; Hines & Spira, 1973a; Meyer, 1974; 

Nigrelli et a/, 1976; McCallum, 1982; Mclay, 1985), from which point they are 

known as theronts (Figure 4). These swim in rapid, jerking movements and 

infect fish by burrowing into the skin, fin and gill tissue. 

lt is not known whether the parasite favours any particular site(s) on the host. 

Butcher (1941) reports that the parasite is to be found on any unsealed portion 

of the fish, although in a later report (Butcher, 1947) brown and rainbow trout 

were reported as infected over the body, head, eyes, fins, opercula and gills. 

Interestingly, the gills were reported as harbouring comparatively few parasites. 

Meyer (1974) reported that Golden shiner minnows (Notemigonus crysoleucas) 

seldom possess parasites on the body, but frequently harbour heavy infections 

on the gills. Parker (1965) examined /. multifiliis burdens upon goldfish 

( Cyprinus auratus), where only 0.3% of parasites on the fish were to be found 

on the gills or in the buccal cavity. The body and caudal fin carried 86.8% of the 

total parasite burden, but since these two regions also make up the majority of 

possible parasite attachment sites the significance of such a high percentage 

cannot be commented upon. Lucky ( 1970) examined 1 0 Silurus glanis 

specimens infected with /. multifiliis. Of the 130-165 parasites, 39.8% were on 

the lower part of the head and abdomen; 24% were on the lower part of the 

back, anal fin and lower part of the caudal fin; 27% were on the upper part of 

the body and head; and 14.5% were on the upper back and caudal fin. Hence, 

greater numbers were present on the more anterior, ventral surfaces. Kozel 

( 1976), reporting on the examination of 16 blackstripe topminnows (Fundulus 

notatus ), found more I. multifiliis on the caudal fin, head and upper body 

surface of its host. Hines & Spira (1973b) also commented that there appears 

to be more parasites on the dorsal surface of C. carpio. McCallum (1985) 

though, found no evidence that the density of parasites differed significantly on 

different parts of the body surface in the black molly (Poecilia latipinna ). 
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The trophozoites, as they are now known, remain on the host until mature and 

the cycle is then complete. This stage of the parasite on the host is the source 

of the common name of white spot disease. As the trophozoite grows it 

becomes visable to the naked eye as a white spot (Figure 5), upto 1 mm in 

diameter (MacLennan, 1935b; Butcher, 1943; Wagner, 1960; Meyer, 1974; 

Nigrelli et a/, 1976). Each trophozoite. arises from one theront, although there is 

a body of opinion that more than one parasite may be present in one 'white 

spot' (e.g: Stiles, 1893; Neresheimer, 1908; Prytherch, 1924; Roughley, 1933; 

Suzuki, 1935; Schaperclaus, 1941; Seeker, 1 942; Reichenbach-Kiinke & Elkan, 

1965; Nigrelli et a/, 1 976; Chapman, 1984), Butcher (1941) and Lucky (1970), 

however, examined several hundred trophozoites and were unable to support . 
this theory, as were Haas (1933) and MacLennan (1935a). Later, Butcher 

(1943) did find an average of six parasites per 'white spot', but did not favour 

the idea of division of the parasite having occurred on the host. 

The duration of the life cycle is dependant upon water temperature (Suzuki, 

1935; MacLennan, 1937, 1942; Wolf, 1938; Butcher, 1941.. 1943, 1947; 

Schaperclaus, 1954; Herman, 1958; Bauer, 1961; Cross, 1972; Cross & 

Hursey, 1973; van Duijn, 1973; Canella & Rocchi-Canella, 1976). At 27nC the 

complete cycle takes about 5 days, whilst at 1 0"C the life cycle can be in excess 

of 5 weeks. Wagner ( 1960), Nigrelli et a/ ( 1976) and Ewing et a/ ( 1986) also 

report that the number of theronts produced per cyst increases with 

temperature. 

This simple life cycle has often been thought of as incomplete. No sexual 

stage is known (Haas, 1933) and there is a sizeable body of opinion that some 

form of dormant stage exists. Outbreaks of the disease have been known to 

occur in the aquarium, at this Polytechnic, when no new fish or live food had 

been introduced for several weeks previous. (The aquarium is run on a closed 

recirculation system and hence no water changes had been recently performed 

either.) Butcher (1943) is the only person to have tackled these variations in the 

standard life cycle in any great detail. Following rupture of the cyst, and the 

release of theronts, Butcher (1943) records that some of the theronts may settle 

11 



and divide again. He was unable to :determine, though; whether the theronts 

which emerged following this second division were able to infect fish, The 

existence of latent infections has been reported by Schaperclaus (1933, 1954) 

and Johnson (1961), but a latent stage has not been identified. 

Parker ( 1965) and 1-:loughton ( 1987) present a comprehensive review of the 

published literature on /. multifiliis, which will not be duplicated here. Most of 

the early work was on structure and the life cycle of the parasite (Stiles, 1893; 

Haas, 1933; Maclennan, 1935a, 1935b, 1936, 1937; Mugard, 1949; 

Schaperclaus, 1954; Wagner, 1960; Canella & Rocchi-Canella, 1976; Ewing et 

a/, 1985; Ewing & Kocan, 1986, 1987). In the mid-1960's the addition of the 

electron-microscope added a further body of papers on the ultrastructure of /. 

multifiliis (Mosevitch, 1965; Roque et a/, 1967; Lom & Corliss, 1971; Hauser, 

1972, 1973; Crilley & Buckelew, 1977; Chapman & Kern, 1983; Ewing et a/, 

1983, 1985; Chapman, 1984; McCartney et a/, 1985; Ewing & Kocan, 1986, 

1987). Throughout all this period there has consistently been reports, which 

were of a purely descriptive nature, of epizootics of this disease (Butcher, 1941, 

1947; Mallie, 1946; Elser, 1955; Johnson; 1961; Allison & Kelley, 1963; 

Hoffman, 1967; Pozo & Roman, 1969; Lahav & Sarig, 1973; Kennedy, 1·974; 

Khalifa et a/, 1983; Wahli & Meier, 1987). These reports include both wild and 

cultivated populations of fish. 

I. multifiliis is world wide in its' distribution, from tropical to sub-artic climates 

(Hoffman & Bauer, 1971). Houghton (1987) cites thirty-six separate papers on 

reports of /. multifiliis from seventeen different countries; Australia, China, 

Czechoslovakia, Great Britian, Finland, France, Greece, India, Iraq, Israel, 

Poland, South Africa, Spain, Switzerland, Uganda, USA and the USSR. lhis is 

by no means an exhaustive list, e.g. I. multifi/iis has been reported from 

Venezuela {Conroy & Vasquez, 1976; Bermudez, 1980; Conroy et a/, 

1981 .1982). The parasite is a purely freshwater organism and infects most 

freshwater species of fish. Houghton (1987) lists the following as examples of 

species in which epizootics have been reported; the barbel (Barbus barbus ), 

brown trout (Sa/mo trutta ), carp (Cyprinus carpio ), channel catfish (lctalurus 
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punctatus), rainbow trout ( S. gairdneri ), salmon ( S. sa far), shad (fJorosoma 

cepedianum & D. petenense ), Tilapia species, and yellow perch (Perca 

fluvens). Numerous other species have also been reported, andi itis perhaps 

more interesting that not every species, or individual present, is always infected 

(Butcher, 1941; Elser, 1955; Lahav & Sarig, 1973; Conroy & Vasquez, 1976; 

Baker & Crites, 1976; Kozel, 1976; Calenius, 1980; Li & Desser, 1985; Whali & 

Meier, 1985). Nigrelli et a/, (1976) stated that some fish always have a few 

individuals of I. multifiliis present, whilst some species are highly susceptible to 

infection. Bauer (1953) and Meyer (1974) though commented that all pond fish 

are susceptible to ichthyophthiriasis. 

Dickerson et a/ ( 1981) observed erratic and low infections, but these were 

attributed to poor estimation of theront numbers. Reichenbach-Kiinke & Elkan 

( 1965) suggested that variation in levels of infection is possibly due to the 

differences in powers of resistance of the fish. McCallum (1982) also reported 

variation in host susceptibility and suggested genetic differences, and factors 

.such as stress, as possible explanations. Butcher (1947) reports percentage 

losses of brown and rainbow trout in an ichthyophthiriasis epizootic. Over two 

seasons 63.75% of brown trout and 76.8% of rainbow trout were lost, possibly 

indicating some difference in susceptibility between these two fish species. 

Following the F.A.O. (1972) suggestion of the development of disease resistant 

strains of fish, Bone (1983) and Price & Bone (1985) studied the genetical 

variation in resistance to I. multifiliis. Significant differences between families in 

resistance to white spot were found in the one stock of Platyfish (X. maculatus, 

red wagtail) examined. Maternal effects accounted for 95% of the variation in 

resistance of these viviparous fish. lt is not known whether this is the case in 

other stocks of fish, or whether this is peculiar to viviparous fish. 

Subasinghe (1986) found juvenile Oreochromis mossambicus to be highly 

susceptible compared to older specimens, indicating a definite age dependency 

on susceptibility. Butcher (1947) also noted an increased susceptibility in brown 

and rainbow trout fry compared to yearlings. Kozel (1976), using length as an 

indicator of age, found more severe infestations in younger fish. In addition, 
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Pickering & Christie (1980) recorded a definite sexual, difference in the 

incidence and severity of infection in the brown trout, Sa/mo trutta. Male fish 

were more frequently infected than immature fish of either sex, or mature 

female fish. 

Herman et al (1959), Paperna (1972) and Nigrelli et a/ (1976) suggested the 

possibility of physiological races and species of /. multifiliis, which could account 

for some of the variation in levels of infection reported. "this view was endorsed 

by Schi:i.perclaus (1954), Amlacher (1961), Reichenbach-Kiinke & Elkan (1965) 

and Hines & Spira p 973b). Other authors have also, obliquely, referred to the 

possible existence of strains, and sub-species, of /. multifiliis (Ciemens & 

Sneed, 1958; Ghadially, 1964a; Alien & Avault, 1970; Cross, 1972). 

Subasinghe & Sommerville (1985) investigated the possible differences 

between two strains of /. multifiliis, which originated from distinctly different 

climates. No differences were observed in the reproductive capabilities of the 

two strains, but how far reaching this similarity extends was unknown. Hines & 

Spira (1973b) found no difference in virulence or pathogenicity in two isolates, 

although these arose from similar sources. The question of the existence of 

races and sub-species of /. multifiliis remains, therefore, unanswered. 

1.4.2. The control and treatment of ichthyophthiriasis. 

This is an area upon which much work has been published. Stiles (1893) was 

the first to suggest a chemical for the control of /. multifiliis outbreaks. This 

made use of the fact that /. multifiliis is a purely freshwater organism and the 

addition of sodium chloride would control a disease outbreak. The success was 

limited though. Other treatments which have been shown to work, with varying 

levels of success, are ; acriflavine, amphrolium, atabine, chloramine T, copper 

sulphate, enheptin, formalin, ironidizole, malachite green, mepacrine 

hydrochloride, mercurochrome, methylene blue, metronidazole, neguvon, 

nifuripirinol, potassium permanganate, praziqantel, pyridylmercuric acetate, 

quinine, silver nitrate, tramisol and trypan blue. The most effective are formalin, 

malachite green and methylene blue and most commercially available 
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formulations for controlling ichthyophthiriasis tend to be a combination of these 

three chemicals. None of these formulations affect parasites which are present 

as trophozoites on the host (Antychowicz, 1977; Antychowicz ~t a/, 1982). 

Indeed, only one chemical, mercurous acetate, has been clearly shown to aflect 

trophozoites. This was first reported in China by Dashu & Lien-Siang (1960). 

Nousias (1987) is the only person known to have tested this claim outside 

China. Concentrations as low as 0,25 ppm killed 100% of the parasites in situ 

following a 3h treatment. However, it is strongly recommended that mercury 

compounds are not used on fish destined for consumption, even at such low 

concentrations. Hoffman & Meyer (1974) cite three cases where trophozoites 

were killed with brilliant green or basic violet, but there has never been any 

confirmation of this by other workers. A satisfactory chemotherapeutant which 

acts against trophozoites is, therefore, still lacking. lihe continued search for 

more efficient chemicals in controlling ichthyophthiriasis is evidence of the 

unsatisfactory chemotherapeutic solution to the treatment of the disease, in all 

but individual aquarium situations. 

Other, management techniques, have also been tried, to control and prevent 

disease outbreaks. Rychlicki (1968) raised the pH, using quicklime, from 

7.0-7.5 to 8.5-8.9. Wagner (1960) also recorded the effect of extreme pH on 

the parasite. Increasing the water flow, to flush away parasites as they leave 

the host has also been attempted (Prytherch, 1924; Barthelemy, 1926; 

Maclennan, 1935b; Wolf, 1938; Allison, 1953; Bauer, 1958; Hickling, 1962; 

Conrad & Wyatt, 1970; Hoffman, 1970). Increasing the temperature may have 

some beneficial effects (AIIison, 1957; Ghadially, 1964b; Reichenbach-Kiinke & 

Elkan, 1965; van Ol:ljin, 1973; Meyer, 1974; Leibovitz, 1980), but this is only of 

any real practical use for fish in aquaria. Electrotherapy was unsuccessfully 

tried (Farley & Heckman, 1980) and Gratzek et a/ (1983) investigated the use of 

ultra-violet light. This reduced levels of ichthyophthiriasis outbreaks from 82.8% 

to 1.3%. However, this method still has several disadvantages. In many cases 

cost would be prohibitive, and efficiency is greatest only in closed recirculation 

systems. X-rays have also been reported to affect the development of the 

parasite (Schrader, 1949), but no detailed study has been performed. Wahli et 
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a/·(1985) reported that increasing the level of ascorbic acid in the diet increased 

the survival of rainbow trout following /. multifiliis infection. 

Bauer (1;953, 1955, 1961 ), Becker:t & Allison (1964), Hines & Spira (1973a; 

1974) and McCallum (1986) demonstrated that fish could acquire immunity to 

infection with /. multifiliis. Subsequently, there has been an increasing interest 

in developing a vaccine against ichthyophthiriasis (Goven et a/, 1980a, 1980b, 

1981; Wolf & Markiv, 1982; Dickerson et a/, 1984; Houghton & Matthews, 1986; 

Hoi.Jghton, 1987). The use of Tetrahymena species was advocated (Dickerson 

et a/, 1984), since this ciliate is easily cultured, facilitating vaccine production. 

However, it now appears that there is no cross-reactivity between Tetrahymena 

and /. multifiliis vaccines (Houghton, 1987) resulting in the need for a new 

approach. 

1.5. Aims and objectives of this study. 

Given the problems with chemotherapeutic and other methods of control of 

white spot disease, the most promising control methods appear to be in 

prevention, rather than cure. This also has the advantage of producing 

healthier fish, which grow better than their counterparts who were able to be 

cured in a disease outbreak. Work on the genetics of resistance to white spot is 

severely lacking. In this study the principal aim was to perform a detailed study 

of the levels of genetic variation to ichthyophthiriasis. Inter- and intra-specific 

comparisons were undertaken in a variety of ways and genetic variation 

assessed. Attempts were made to determine the best approach by which 

resistance to I. multifiliis infection could be. improved. 
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Figure 1 Trophont stage of lcthyophthirius multifiliis. 
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Figure 2 Cyst of Jcthyophthirius multifiliis in early divid ing phase. 
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Figure 3 lcthyophthirius multifiliis cyst rupturing to release tomites. 
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Figure 4 Theront stage of lcthyophthirius multifiliis. 
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Figure 5 Oreochromis mossambicus infected with lcthyophthirius multifiliis. 
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Chapter 2 

Fish stocks and maintenar~ce. 

A description of each of the species of fish used is provided below, along with 

a colour plate. The method used to obtain these colour plates is described 

initially and species descriptions follow. Where the species has been used by 

other workers in genetic studies a discussion is also included. lihe general 

maintenance and culture of these species is then the subject of the third and 

final part of this chapter. 

2.1. Live Fish Photography. 

Live fish were photographed in a 200mm x 50mm x 200mm cm tank which 

had a dividing piece of glass across its long axis. A thin layer of aquarium 

gravel covered the base. Fish were caught from their tanks and placed into a 

small perspex tank (2.4/) containing fresh de-chlorinated water. From here the 

fish were transferred to another small perspex tank. This was carried out three 

times to wash the fish of any detritus in the water, since such particles clearly 

showed up on any photographs taken. Water in the actual photographic tank 

was siphoned off from a clean, but mature aquarium through a plug of filter wool 

in the siphon tube to remove any dirt particles. This water was allowed to stand 

in the photographic tank for at least 24 h to permit any air bubbles on the glass 

to disperse. 

The fish to be photographed was placed between the front glass of the tank 

and the glass divider. If necessary a small amount of anaesthetic was added to 

reduce the activity of the fish and facilitate photography. If necessary, the glass 

partition could be moved forward to reduce the swimming area of the fish. 

Illumination was provided on one side by means of an angle poise lamp for the 

purposes of focussing. 
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A Nikon FM2 camera was used fitted with a micro-Nikkor 105mm lens and a 

Hoya polarizing filte~. Flash lighting was provided via a Vivitar 283 flash 'gun 

used off-camera. For some photographs a light sensitive thyristor which fitted 

onto the camera's hot-shoe was used. This thyristor was set on the closest 

photographic range. However, in later sessions a Vivitar Varipower module was 

used in the place of the light sensitive thyristor. This enabled the full power of 

the flash to be utilized facilitating higher F stops and a greater depth of field. 

ASA 100 film was used for prints and ASA 50 film for transparencies. When the 

lighting was controlled by the light sensitive thyristor the shutter speed was 

1 1125th with F stops of 8 and 11 being used without polarizing filter and F2.5 

and F4 ·with polarizing filter. For best results, however, the full power of the 

flash unit, obtained by using the Varipower unit, enabled a shutter speed of 

1 1125th at F11 with the polarizing filter. The flash was held in a retort stand 

20cm above the tank and directed down at an angle of slightly greater than 45". 

2.2. Fish stocks. 

2.2.1. Tropical species. 

Several varieties of platyfish were maintained. This species was first 

described by Gunther in 1866 as Platypoecilus maculatus. Since then it has 

also been known as Poeci/ia maculata, but is now now well established as 

Xiphophorus maculatus. X. maculatus has been widely used in genetic studies 

since the early 1920's. A wide range of areas has been studied, but especially 

those of sex determination (e.g. Kallman, 1984), melanomas (e.g. Anders & 

Anders, 1978) and oncogenes (e.g. Anders et a/, 1984). One other species of 

Xiphophorus (Xiphophorus variatus) was used for experimentation, as well as 

two species of goodeid. 

The first five of the varieties below were obtained as fish imported from 

commercial fish farms in Singapore. Such fish are bred for their colouration and 

are produced primarily for the hobbyist aquarist trade. A sixth variety and 

another species used were obtained from private collectors, the name of whom 

is given for each species. Each of the platyfish strains bred true with respect to 
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body colour and, where specified, tail spot pattern. The species and strains 

were: 

1. X. maculatus (red platy) -This strain has a red body colouration throughollt 

(Figure 6). King (1975) notes that the red patterning has several components, 

controlled by different alleles. The fish used here had a red body (Br), red 

dorsal fin (Or), red anal fin (Ar) and red caudal fin (Tr). Since this was a pure 

breeding strain it is assumed that the genes at these loci were homozygous. 

King (1975) also mentions a gene locus 'R' which controls the red background 

colour. How King regards this as distinct from the above gene loci is uncertain 

since he refers to a section on domesticated stocks for further discussion of the 

'R' allele. However, in this section King makes much of the ruby throat (Rt) 

allele, but does not discuss the 'R' allele. Norton (1967) also refers to the 'R' 

allele as causing the red body colour. The red dorsal (Or) allele is also. 

mentioned, but the red body (Br), red anal fin (Ar) and red caudal fin (Tr) are 

ommitted. Despite this confusion it remains that these fish were pure breeding 

for body colour. On the whole no tail spot patterning was seen in this strain, but 

occasionally individuals with one spot on the caudal peduncle (pO) would be 

seen. 

2. X. maculatus (red wagtail platy) - Originally derived by introgressive 

hybridization with X. helleri (the swordtail fish) (Gordon, 1946) the extensor 

genes (E) of X. helleri interact with the comet tail (Pc0) genes of X. maculatus 

to produce black colouring on all fins (Figure 7). The wagtail pattern is here 

expressed on a red body colouration (Br - see discussion under red platy 

above). This strain always bred true for body colour and the wagtail pattern. 

This is the same strain, although a different stock, to that used by Bone ( 1983) 

in estimating a heritability value for resistance to lcthyophthirius multifiliis. 

3. X. maculatus (blue platy) - As the name suggests this fish has a blue/green 
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body colouration and this strain also possessed the so-called 'Mickey-mouse' 

tail spot pattern (Figure 8). This comprises of a large central· dark spot or moon 

on the posterior caudal peduncle, with a smaller dark spot above and below. 

This tail spot pattern can be produced by the homozygous moon complete 

genotype (PMcpMc) or the heterozygote moon and twin spot genotype (PMPT). 

Since this tail spot pattern did not hold true in all the offspring produced, the 

latter is more likely. Indeed, individuals with only a moon tail or twin spot 

pattern were produced. The body colouration of blue/green did however breed 

true, as did the red dorsal colouration (Or). Norton (1 967) described this blue 

irridescence gene as dominant. Since no non-blue/green offspring were 

produced this gene must be present in the homozygous dominant state. 

4. X. maculatus (yellow comet tail platy) - This fish has a yellow body 

colouration that is also sometimes described as lemon or golden (Figure 9). 

King (1 975) lists few alleles for yellow body colouration. Yellow caudal 

peduncle (CPy) is the only one to be seen in these fish. In addition the red 

dorsal (Or) allele was present. 

Black pigmentation along the body of the fish is normally produced by the 

stipple gene. Gordon ( 1 927) showed that the absence of the stipple 

melanophores is due to the autosomal recessive gene st. Hence stst 

individuals appear golden or yellow. However, Norton (1 967) states that this 

golden colour is dominant to white or 'ghost' body colouration. Here Norton 

(1967) is referring to the golden variety, described by Gordon (1927,1931). The 

description there of a clear transparent yellow fish, slightly tinged with pale 

orange, greenish blue eyes and a dorsal fin flushed with red, is a close 

resemblance of the strain used here. In 1 951 though Gordon stated that he 

found no experimental evidence for the g allele being dominant to white or 

'ghost' body colouration. If some evidence had come to light since 1951 Norton 
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(.1967) does not mention it. King ( 1975) also comments that no cross has been 

performed to test whether g and stare alleles or separate gene loci. 

The yellow/golden colouration described 'here is very pale (Figure 9) and as 

such is likely to be the stst genotype rather ,than the presence of any CPy allele 

for yellow caudal peduncle, which gives a definite deep yellow colouration. 

Alternatively, it could, be the gg variety of Garden (1927, 1931 ). Again, the effect 

of such genes could be influenced by modifying genes or a gene-environment 

interaction. However, body colouration did breed true throughout. 

The tail spot pattern here is actually present on the extreme upper and lower 

rays of the caudal fin. Black lines running parallel to the dorsal and ventral 

edges of the caudal fin taper posteriorly to give the comet appearance, 

controlled by the pCo allele for tail spot patterning. This tail pattern bred true, 

suggesting a pCopCo population. 

5. X. variatus (sunset platy) -When young these fish look very much like the X. 

maculatus (red platy) above. On becoming adult though the front half of the 

body becomes a lighter yellow colour whilst the rear half and caudal fin remains 

a red colour (Figure 10). Norton (1967) describes these fish as marigold 

platies. 17he differences between sunset and marigold platies are given as; the 

colour of the young fry (grey in sunset platies and yellow in marigold platies) 

and the presence of faint black stripes or markings (present in sunset platies 

and absent in marigold platies). The Federation of British Aquarists (F.B.A.S.), 

however, has recognised descriptions of marigold and sunset platies. Whilst 

both types possess a red caudal fin, the F.B.A.S. recognises that the dorsal fin 

is red in sunset platies and yellow in marigold platies. The F.B.A.S. standards, 

therefore, clearly recognise the fish here as sunset platies. Confusion does 

exist, though, and since these fish were purchased as sunset platies that is the 
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name which will be used to describe this strain, bearing in mind the description 

above and Figure 1 0. In the majority of these fish no tail spot pattern was 

exhibited. Some did display the twin spot (PT), one spot (pO) or dot (PD) 

patterns though. 

6. X. maculatus (Vera Cruz) -These fish are referred to as the Vera Cruz platy 

since they originate from an area of eastern Mexico arourid the Vera Cruz lake. 

The stocks maintained here were obtained from I. Dibble, who authenticated 

their origin. The two sexes are dimorphic (Figure 11 ), the male having a 

predominately black body, with the black colouration tapering from covering the 

whole body, from a line between the base of the anal and dorsal fins, to a point 

at the eye. This pigmentation is controlled by the nigra (N) gene, which is 

common among wild platyfish (King, 1975). The female is more drab in 

appearance, having a light olive green body, which is similar to the ground 

colour of the male. Both sexes possess the comet tail markings (Pc0) and the 

female has an additional black posterior edge to her anal fin. Females 

additionally show faint, short, vertical bars on the body, especially when young. 

These may be due to the stripe sided gene (Sr) or the faint expression of the N 

allele in the females. 

7. Ameca splendens (Miller & Fitzsimons, 1971) comes from western Mexico 

and is a goodeid species. The generic name is derived from the fishes original 

collection locality - the Rio Ameca. The genus is represented only by this one 

species, which was originally imported into the U.K. on the 19.10.72 from R.R. 

Miller (Dawes, 1979), and consisted of six pairs of fish. Only four of these pairs 

survived, from which a large population was derived and disseminated 

throughout the U.K. Our fish were obtained in 1983 from John Dawes and have 

been maintained as a large closed population since then. A large population of 

these fish is now maintained at this laboratory. Figure 12 shows a young adult 
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female A. splendens, Male fish can be identified by the bright yellow on the 

outer edge of their caudal fin and a modified anal fin. 

8. 1/yodon xanthusi is another representative of the Goodeidae,first described 

by Hubbs and Turner in 1939. In the past /, xanthusi has been known as 

Characodon furcidens and Balsadichthys xanthusi. These fish were also 

obtained from John Dawes, who originally obtained them from lvan Dibble. /. 

xanthusi is very similar in body shape to A. splendens, but is slightly ,longer and 

slimmer ·{Figure 13). The female is similar to the male yet lacks much of the 

yellow colouring. The anal fin and ventral surface of the male are yellow with 

the dorsal fin black against the body and yellow above. The caudal fin is yellow 

speckled with black. The male anal fin is also modified as in A. splendens. 

9. Oreochromis mossambicus was commonly used for maintenance of I. 

multifiliis at 24°C. This mouthbrooding cichlid species is a prolific breeder and 

therefore, supplies were generally plentiful. These fish were originally obtained 

from the Institute of Aquaculture at the University of Stirling. 

2.2.2. Coldwater species 

1. Common carp { Cyprinus carpio) have been used in genetic studies for many 

years. The genetics of scale pattern determination was first described in 1928 

by Rudzinski {Kirpichnikov, 1981). Many subsequent studies made it possible 

to identify two pairs of autosomal, unlinked genes, S and N. Kirpichnikov { 1981:) 

and Tave {1986), amongst others, have summarized the present understanding 

of genetic control of scale pattern in carp. The possible genotypes and 

phenotypes are shown in Table 1. The S allele is dominant over the s allele 

and the dominant N allele is lethal in the homozygous state. The lethal effect of 

the NN genotype results in the death of embryos at hatching, or soon after their 

emergence {Kirpichnikov, 1981 ). 
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Fully scaled carp possess a complete covering of small ·scales (Figure 14). 

Scattered mirror carp have a reduced number of enlarged scales, which are 

scattered over the whole body of the fish (Figure 15). Linear mirror carp are 

very similar to scattered carp, with the exception that the scales show some 

definite distribution along the lateral line (Figure 16). Leather carp possess very 

few scales. Those present are the enlarged mirror type and are to be found 

predominately along the dorsal and ventral surfaces (Figure 17). 

The pleiotropic ·effect of the two pairs of genes has been examined by many 

workers. Kirpichnikov (1981) summarizes the morphological and physiological 

characters examined. In addition scattered and leather carp have been 

compared for their resistance to dropsy, a complicated kidney disorder, with 

scattered carp appearing more resistant (Merla, 1959; Kirpitschnikov and 

Faktorovitsch, 1969). The decreased fitness of carp with the N allele is 

common throughout. The S gene locus also has a pleiotropic effect, but one 

which is less pronounced. lt has been shown though that in the presence of the 

N allele the action of the S allele is generally increased. 

Fish used here were obtained from the Hampshire Carp Hatcheries. They were 

brought in as young fry (4-6 weeks) and were known not to have been exposed 

to I. multifiliis. The fry were produced from two crosses which involved only one 

female, a scattered mirror carp. Crossing this with a male linear mirror carp 

yielded scattered mirror, linear mirror and leather carp in approximately equal 

proportions. This is an interesting ratio since theoretically crossing scattered 

mirror and linear mirror carp should yield either 50% fully scaled and 50% linear 

mirror carp, or 25% of each scale type (Table 2). Furthermore, adverse 

conditions tend to favour the fully scaled phenotype compared to the leather 

carp (Kirpichnikov, 1945). 
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The fully scaled fry were obtained by crossing the female scattered mirror carp 

with a fully scaled male. Since the fry were all fully scaled the genotypes of the 

parents and offspring are known, because.only one cross of a fully scaled and a 

scattered mirror carp produces 100% fully scaled fry (Table 2). Hence the fully 

scaled fry must be genotype Ssnn, the fully scaled male parent SSnn and the 

scattered mirror female parent ssnn. Since this same female crossed with a 

linear mirror carp produced three of the four scale types then we can also 

deduce the genotypes of the other fish. Since fully scaled carp were not seen 

at all in this group, but scattered mirror and leather carp were, it is more likely 

that the offspring should have yielded 25% of each scale type (Table 2). This 

would suggest that the male, linear mirror carp parent was genetically SsNn and 

that the offspring were; fully scaled, Ssnn; scattered mirror, ssnn; linear mirror, 

SsNn; leather, ssNn. 

The absence of the fully scaled Ssnn fry suggests two possibilities. These fish 

may have died due to some other lethal gene combination in their genotype. 

Alternatively these fish may be present in the population, but some 

environmental effect, other gene effect or gene-environment effect has 

transformed them phenotypically into another scale pattern or patterns. 

However, the three phenotypes present were approximately equal in number, 

suggesting that fully scaled carp were never viable. The reason for this deficit 

in fully scaled carp remains unresolved. This unfortunate situation is principally 

due to the fact that the few carp hatcheries in the country (compared to trout 

hatcheries) do not breed for all four scale patterns. Indeed this was the only 

source that could be found for each scale type from known crosses. 

2. Goldfish, Carrasus auratus, were used for parasite maintenance at 16°C 

when insufficient carp (C. carpio ) were available. These were bought in from 

wholesalers and retailers and were used primarily because of their low cost 

compared to other available fish. 
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2.3. Maintenance of. fish. 

2.3.1. Aquaria. 

Fish were kept in glass aquaria {495mm x 670mm x 235mm), in perspex 

aquaria {455mm x 255mm x 255mm) or plastic tubs {760mm x 440mm x 

330mm). The base was lightly covered with gravel which contained added 

limestone chips to stabilise the pH. Filtration was performed by polyfoam filters, 

except for the plastic tubs where Eheim external power filters were used. 

2.3.2. Plant cover. 

Plant cover was provided in the form of Java moss { Vesicularia dubyana). 

This plant grows well in low light conditions, does not need to be rooted to the 

basal medium and provides good protection for fry. lt could easily be removed 

during cleaning of aquaria and would grow well under the fluorescent room 

lighting. This was the only light provided in addition to natural sunlight, which 

entered the room only on one side. 

2.3.3. Feeding. 

Fish were fed principally on Tetramin Staple Food diet. However, this was 

supplemented with live tubifex worms, Artemia nauplii, white worms, frozen 

gamma-irradiated daphnia, frozen gamma-irradiated mysid shrimps, peas and 

Promin {a high protein pelleted food). This variety was to ensure good 

condition, good growth rate and to facilitate breeding. The tubifex worms were 

bought into the laboratory every two weeks and kept under running coldwater. 

These were repeatedly flushed and not used for at least three days to ensure all 

detritus was removed. 
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2.3.4. Water quality. 

To maintain constant and low environmental variance water quality was 

monitored in all the tanks at regular intervals. Temperature and pH were 

checked most often. Temperature was kept to 23.5-24.5°C and pH to 7.0-7.8. 

Adjustments in pH were made by performing water changes. Nitrite, nitrate, 

ammonia, hardness and copper were also monitored, but less frequently. 

lihese measurements were only taken if the fish appeared sluggish or when 

infections were performed. A Pye Unicam PW 9418 pH electrode was used to 

measure pH and water hardness was measured with Aquadur test strips. 

Nitrite, nitrate, ammonia and copper content were each determined with a Hach 

Camlab test kit. 

Every 7-14 days each tank had a 30% water change. This water was 

siphoned from the gravel to remove detritus and replaced with water which had 

been standing and aerated for at least 12h, but more commonly for more than 

24h, to allow dissolved chlorine to dissipate. Any algae was removed from the 

tank sides with a brush and the sponges of the polyfoam filters were washed in 

clean water the following day. Covers of the tanks were periodically cleaned to 

maintain adequate lighting levels from above. 
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Figure 6 Xiphophorus maculatus (red platy) . 
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Figure 7 Xiphophorus maculatus (red wagtail platy). 
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Figure 8 Xiphophorus maculatus (blue platy) . 
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Figure 9 Xiphophorus maculatus (yellow comet tail platy). 
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Figure 10 Xiphophorus variatus (sunset platy) . 
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Figure 11 Xiphophorus maculatus (Vera Cruz platy). 
Above, male. Below, female. 
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Figure 12 Ameca splendens. 
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Figure 13 1/yodon xanthusi. 
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Table 1 Scale pattern genotypes and phenotypes of common carp ('Cyprinus 
carpio). · 

Genotype. Phenotype. 

SSnn Fully scaled carp. 

Ssnn Fully scaled carp. 

ssnn Scattered mirror carp. 

SSNn Linear mirror carp. 

SsNn Linear mirror carp. 

ssNn Leather carp. 

SSNN Non-viable. 

SsNN Non-viable. 

ssNN Non -viable. 
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Figure 14 Fully scaled carp ( Cyprinus carpio) . 
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Figure 15 Scattered mirror carp ( Cyprinus carpio). 
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Figure 16 Linear mirror carp ( Cyprinus carpio) . 
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Figure 17 Leather carp (Cyprinus carpio) . 
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Parental 
phenotype 

Seal. x seal. 

Seal. x seal. 

Seal. x seal. 

Seal. x scat. 

Seal. x scat. 

SeaL x lln. 

Seal. x lln. 

Seal. x lln. 

Seal. x lln. 

Seal. x lth. 

Seal. xHh. 

Scat. x scat. 

Scat. x lln. 

Scat. x lin. 

Scat. x lth. 

Lln. x lln. 

Lln. x lln .. 

Lln. x lln. 

Lln. X lth. 

Lln. X lth. 

Lth. X lth. 

Table 2 Expected offspring produced from all possible 
scale pattern crosses of common carp 

(Cyprinus carpio ).1 

Parental SSnn Ssnn ssnn SSNn SsNn 
aenotype Scaled Scaled Scattered Linear Linear: 

· ssNn I 
Leather Un-viable 

SSnn x SSnn· 100 

Ssnn x Ssnn 25 50 25 

SSnn x-Ssnn. so so 
' 

SSnn x ssnn 100 

Ssnn x ssnn 50 50 

SSnn x SSNn 50 50 

SSnn X SsNn 25 25 25 25 

Ssnn x SSNn 2S 25 25 25 

Ssnn x SsNn 12;5 25 12.5 12.5 25 12.5 

SSnn x ssNn 50 50 

Ssnn x ssNn 25 25 25 25 

ssnn x ssnn 100 

. ssnn x,SSNn 50 50 

' 

ssnn x SsNn 25 25 25 25 

s.snn x ssNn 50 50 

SSNn x SSNn 2.5 so 25 

SsNn x SsNn 6.25 12.5 6.25 12..S 2S 12..S 2S 

SSNn x SsNn 12..5 12.5 2.5 2.5 25 

SSNn x ssNn 25 50 25 

SsNn x ssNn 12.5 12.5 25 25 25 

ssNn x ssNn 25 50 25 

1Scal. = Fully scaled carp; Scat. = Scattered mirror carp; Lin. Linear mirror carp; lth. 
Leather carp. 

46 



Chapter 3 

Prel_iminary studies. 

3.1. Introduction and aims. 

In attempting to observe the genetics of susceptibility to lcthyophthirius 

multifiliis the extent of several components needs to be determined. Genetic 

variation may exist both in the fish stocks under investigation and in the parasite 

population. The variation can also be confounded by other factors. The various 

species described in chapter 2 come in differing shapes and sizes. Even on one 

fish there are different surfaces 1:1pon which the parasite may rest : the fins and 

the body surface. l:he level of exposure to the parasite must be standardised, 

since variation in exposure will result in variations in infection levels which are 

not genetically related. As in any study of this nature, it is also a requirement 

that infections performed at different times can. be compared. The aim of these 

initial control studies is, therefore, to answer the following questions; 

1. How can infection levels on different size/shaped fish be compared ? 

2. What is the best exposure level to ensure that a suitable ·number of parasites 

can be counted accurately ? 

3. Do infections repeated over a period of time give similar results ? 

4. Is there any evidence for the presence of tank effects ? 
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3.2. lcthyophthirius multifiliis. 

3.2.1. Parasite maintenance. 

/. multifi/iis was obtained on recently imported. tropical fish species, or from a 

fish farm inSouth Devon. Infected fish were placed in a 455mm x 255mm x 

255mm perspex aquarium, filtered by a polyfoam filter and with a thin layer of 

aquarium gravel on the base. Tropical' strains of the parasite were kept at 

24.0± LOOC and temperate strains were kept at 16.0± l.0°C. All aquaria were 

shielded from direct sunlight. Between 2 and 1 0 infected fish were placed in a 

recently assembled aquarium, with an equal number of previously uninfected 

fish. At 24°C this was mainly comprised of Oreochromis mossambicus, 

although other surplus fish were occasionally used, notably Xiphophorus 

maculatus. At 16°C common carp ( Cyprinus carpio) and common goldfish 

( Cyprinus auratus) were used to passage the parasite. 

Infections were generally allowed to occur naturally in the passage tank, 

unless the parasite density on the fish was low. In the latter case fish, infected 

with mature parasites, were placed in a 180mm x 115mm x 115mm aquaria to 

concentrate the theronts produced. The parasites were allowed to leave the 

host and then the fish was removed. When microscopic examination proved 

that theronts were being released, previously unexposed fish were then added 

to the 180mm x 115mm x 115mm tank for upto Sh. After this time all the 

contents of the 180mm x 115mm x 115mm tank were emptied back into the 

main passage tank. 

Temperature in the passage tank was maintained at 24.0± l.Q<>C and 

continually monitored, by way of a digital thermometer attached to the outside of 

the aquarium. Water changes were performed every two weeks, but only when 

the parasite was known to be developing upon the host. One possible problem 

with infected fish is the development of secondary infections, but these were 

very rarely observed and only ever consisted of opportunistic fungal pathogens. 

Four 455mm x 255mm x 255mm aquaria were set aside from all other aquaria 

for passage of the tropical parasite isolates, with two other such tanks being 
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used for the temperate parasite isolates. Infected fish were rotated among 

these tanks so that each~ passage aquaria could be completely cleaned at 

approximately 3 month intervals. 

3.2.2. Parasite collection. 

I. multifiliis was collected for controlled infections by placing several heavily 

infected fish into a 500ml beaker, containing 300ml of filtered aquarium water, 

for 25-30 minutes. Mature parasites were quite freely dislodged from the host by 

body movements of the fish whilst in close proximity. This process could be 

aided by the addition of a little aeration to the beaker to cause water turbulence. 

Parasites were never collected by mechanical means, such as body scrapes. 

lihe mature trophozoites thus obtained were incubated at 24.0± l.O"C, in the 

case of the tropical parasite strains, or 16.0± l.O"C, in the case of the temperate 

parasite strains. 

3.2.3. Determination of parasite concentration. 

A Sedgewick-Rafter counting cell (S-R cell) was used to evaluate theront 

concentrations. The S-R cell has a volume of 1 ml, divided into 1,000 squares, 

arranged in 50 columns of 20 squares, each square having a volume of 1 111. To 

determine the accuracy of theront concentration estimation, using the S-R cell, 

repeated counts were made from a single. batch of incubated parasite. Two 

replicate counts on each sample were made. Each count consisted of the sum 

of five columns of the S-R cell, or 100 squares (i.e. 0.1 ml). This procedure was 

repeated on fifteen 1 ml samples. Therefore, in total, theronts in 3ml of water, 

taken from a total sample of 15ml of water, were counted. 

A total of 438 theronts were counted, suggesting an overall theront 

concentration of 146 theronts per ml for the 3ml in which theronts were counted. 

An analysis of variancewas performed to, 

a. Determine whether the two replicate counts for each sample differed 

significantly, and 
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b. To determine whether tl:le fifteen ,1 ml samples differed significantly. 

In both cases F-tests were not significant at the 10% level (a. F= l.l64114:591' b. 

F=0.864114A51 ). Hence, the two replicate counts were not significantly different 

and the fifteen 1ml samples were not significantly different. In determining 

theront concentrations, then, the sum of five columns of the S-R cell (i.e. 0.1 ml) 

is sufficient. Such a sampling procedure will not be significantly different to 

sampling 3ml. 

3.2.4. Infection protocol. 

Fish, which were to be infected with /. multifiliis, were allowed at least 24h to 

acclimatise to the 455mm x 255mm x 255mm infection tank. Total water 

changes, using dechlorinated water, had been carried out in these aquaria 24h 

prior to the introduction of fish. A thin covering of gravel, a polyfoam filter and a 

small amount of plant cover (Java moss, Vesicularia dubyana) were provided in 

each aquarium. /. multifiliis was collected and theront concentrations 

determined as above. Fish were infected in opaque SOOml beakers with a 

known number and concentration of theronts for 30 minutes. During this time 

infection occurs (McCallum, 1982). The contents of the beaker were then all 

returned to the aquarium in which the fish had been acclimatised. Water quality 

parameters were determined at this point, as they also were upon termination of 

the experiment, when the parasite reached maturity upon the host. 

3.2.5. Infection level determination. 

Since Bone (1983) had previously shown distributions of trophozoites on the 

left and right side of host fish to be not significantly different, only the left side of 

the fish was chosen for assessing infection levels. The time at which such 

levels were determined depended upon water temperature, but was the point at 

which the parasite had almost reached maturity on the host. At 24"C this was at 

3 days after infection, but at l9"C it was at 6 days and at 16°C 10 days after 

infection. Fish were lightly anaesthetised with benzocaine (ethyl 

p-aminobenzoate). To ensure accurate counting the body was divided into the 
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areas shown in Figure 18. Evaluation of infection levels was performed! under a 

binocular microscope (magnification x7 - x45). Initial· investigations established 

the accuracy of such a procedure by repeated counts on several fishes. Body 

area was measured using a method adapted from Webb (1970). Body 

circumference was measured at 0.5 cm intervals by using lengths of cotton 

thread. From these measurements a flat area could be derived, equivalent to 

that of the body area of the fish. This area was evaluated using a program, 

written in BASIC, on a BBC microcomputer (Appendix A). In addition to this, 

dorsal, caudal and anal fins were laid flat on paper and drawn around with a 

marker pen. These marked areas were then evaluated using a Calcomp 

digitizer linked to a Prime computer. This data was transferred to the BBC 

microcomputer via the file transfer program Kermit and was then analysed 

alongside the body area data above (see Appendix A). 

3.3. Data analysis. 

Data analysis provides some problems when large numbers of factors are 

involved, e.g. time of experiment, temperature of experiment, surface area of 

the fish. A complete data set for such an experiment would be orthogonai, i.e. 

the inclusion of a term A in the analysis will have the same reduction in residual 

variance, whether or not term B is already in the analysis (the reverse also 

being true). Hence, the sum of squares would be independent of the order of 

analysis in the anova table : 

L (Sum of squares due to temperature of the eJ.periment + 

· · · + Stim of squares due to swface area) = 

L, (Sum of squares due to swface area + 

· · · + Sum of squares due to temperature of the experiment). 

Data sets are not always strictly orthogonal, with the result that analysis of the 

effects in a single analysis of variance table would differ, depending upon the 

order in which those effects were entered into the anova table. Non-
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orthogonality is due to at least one correlation between two, or more, of the 

factors involved in the experimental procedure. For example, such correlations 

could be due to the cor~elation between a tank and its temperature. Hence, 

variation due to temperature is due to variation between tanks, resulting in non­

orthogonality between these two variables. 

Upon advice from a statistician, it was decided that the best, conservative 

approach, to this problem was a series of anova tables to determine the sums 

of squares of each effect in turn, given all other effects. For example, the sums 

of squares for variation due to surface area differences could be determined 

given effects due to time of the experiment, temperature of the experiment and 

sex of the fish. In this way the minimum variation attributable to each factor 

would be determined, any correlated variation already being explained in the 

variation due to all other factors. One consequence of such a method of 

analysis is that correlation among factors gives rise to an effect known as 

aliasing (Baker & Nelder, 1978). For example, if several tanks of fish are 

compared, where each tank is at a different temperature, then the factor of tank 

also explains variation due to the factor of temperature. 

The analysis was performed upon a Prime computer using version 3.77 (1985) 

of the Generalised Linear Interactive Modelling (GUM) package produced by 

the Royal Statistical Society. Where applicable, pairwise comparisons were 

performed using a t-test of difference between two levels of the same 

parameter. Like all t-tests, this was computed from the division of the difference 

in the means of estimated values by the standard errorof that difference. 

3.4. Ameca splendens: variation in infection level with dose. 

3.4.1. Experimental procedure. 

To determine an appropriate parasite exposure level a series of experiments 

were performed, exposing A. sp/endens to four different concentrations of I. 

multifi/iis : 2,000 theronts per fish (40 theronts per ml), 3,000 theronts per fish 

(60 theronts per ml), 6,000 theronts per fish (120 theronts per ml) and 12,000 
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theronts per fish (240 theronts per ml). Infections were performed as in section 

3.2.4 above. Only a single isolate (isolate A, Appendix B) was used in this 

investigation. Between 17 and 28 fish were infected at each concentration. 

1t is possible that the size of the surface area over which infection could occur 

may result in a significant amount .of variation in infection levels, e.g. smaller 

fish may have relatively more parasites than larger fish, or vice versa. 

Therefore, the surface area of 35 specimens of A. splendens was determined 

(see section 3.2.5). Linear regressions of total and standard length on surface 

area were performed. Where surface area was not directly measured, it was 

then estimated, as the mean of the values computed from standard and total 

lengths. 

3.4.2. Results. 

Nine tanks of A. splendens were infected : 2 at 2,000 theronts per fish (20 

fish), 2 at 3,000 theronts per fish (20 fish), 3 at 6,000 theronts per fish (28 fish) 

and 2 at 12,000 theronts per fish (17 fish). Where surface area was directly 

measured it averaged 3.73±0.97 cm2. Standard lengths measured 3.2±0.4 cm 

and total lengths measured 3.5 ±0.4 cm. Linear regressions of standard and 

total length with surface area were both highly significant (P<O.OOl). 

Relationships were ; 

Stuface area (cm2) = 2.13 S.L. (cm)-3.35 

Swface area (cm2) = 1.95 T .L. (cm)- 3.51 

Computations of surface area values from length measurements produced an 

overall average surface area of 3.43±0.88 cm 2• 

Infections were carried out at five different points in time over a 2 month 

period. Temperatures during these infections ranged from 22.7 to 25.2°C (mean 

=24.0± l.O"C). Infection levels, for each tank and dose, are given in Table 3. 

Infection levels varied from 88 trophozoites to 712 trophozoites on a single fish. 

Mean infection levels rose from 158.4 trophozoites per fish, at 2,000 theronts 

per fish, to 457.0 trophozoites per fish, at 6,000 theronts per fish. Figure 19 
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shows the increased infection levels with parasite dose. At high infection levels, 

of over approximately 400 trophozoites per fish, evaluation .of the number of 

parasites became more difficult, as ,the trophozoites clumped together in 'grape­

like' fashion. Hence, at high infection levels, of upto 12,000 theronts per fish, 

mean infection levels apparently fell to 349.0 trophozoites per fish. 

Analysis of the infection levels was pertormed using the GUM package on a 

Prime computer (Table 4). Variation due to temperature was not significant 

(P>0.10) over the recorded range (22.7- 25.2°C). The variation due to the time 

of the experiment, surtace area of the fish and dosage of the parasite were, 

however, all significant at the 0.1% level. The five points in time covered a 

period of 62 days and, therefore, temporal variation in infection levels was seen 

over a 2 month period. Infections occurred at intervals of 7, 2'1, 10 and 24 days. 

The relationship between surtace area and infection level was one of a factor of 

0.17 ±0.03, implying that a unit increase in surtace area is only accompanied by 

a 17% increase in infection level. Hence, larger fish have ·relatively less 

parasites than smaller fish, when area is taken into account. 

The significant variation due to dose of the parasite is the major point of 

interest in this investigation. This variation had a much larger mean square 

value (5.557) than the other three variables (area mean square = 1.078, time 

mean square = 0.449, temperature mean square = 0.009). All pairwise 

comparisons of infection levels by dose were aliased;2 except for the 2,000 vs 

3,000 theronts per fish comparisons. This was highly significant 

(t= 12.803, P<O,OOI). Therefore, increasing parasite exposure concentrations, 

upto 6,000 theronts per fish, produced a significant increase in infection levels 

above which accurate counting becomes impossible due to the clustering of 

trophozoites. 

2See section 3.3 for a discussion on,aliasing 
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3.5. Ameca splendens : variation in, infection levels between . 

tanks. 

3.5.1. Introduction. 

In comparing different populations of fish for their susceptibility to /. multifiliis 

one is presented with two possible modes of experimentation. In the first the 

populations are all maintained within the same environment (i.e. tank) and in 

the second the populations are maintained in similar, but separate, 

environments (i.e. tanks). These two approaches both possess advantages 

and disadvantages, which are fundamental to all conclusions derived from such 

experiments. In the first instance· the populations of fish are subjected to 

identical environmental conditions and, therefore, there can be no between 

population environmental variation. Nevertheless, under such conditions social 

interactions between populations are to be expected. Even a physical barrier, 

such as netting, between populations of fish cannot remove such interactions 

with certainty. The occurrence of visual, hormonal and even electrical social 

interaction between fish is well known. The alternative of keeping each 

population in separate, yet similar, environments has but one disadvantage. 

This is commonly known as the tank effect and is the variation attributable to 

the uniqueness of each particular aquarium. The extent of this variation may or 

may not be significant but must be evaluated if the maintenance of each 

population in separate aquaria is to be considered. 

3.5.2. Experimental procedure. 

To determine the extent of any tank effects four identical aquaria were set up, 

each containing 10 A. splendens. Infections, using a dose of 2,000 theronts per 

fish, were performed as above, using only a single batch of parasite which was 

all derived from a single parasite isolate (isolate G, Appendix B). On the third 

day the experiment was terminated, with infection levels and surface areas of 

each fish being determined. An analysis was then performed using the GUM 

package on a Prime computer (see section 3.3). 
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3.5.3. Results. 

The mean surface area of fish in each of the four aquaria was very similar -

2.71, 2.88, 2.71 and 2.61 cm2• Temperatures were constant throughout the 

experimental period (25.2 ±0.2°C), The b?lance of the sexes was heavily 

skewed towards females, with a male to female ratio of 1 : 5. Males harboured 

256.5 ±71.0 trophozoites per fish, whilst female fish harboured 259.7 ±65:6 

trophozoites per fish. Parasite burdens varied overall from 115 to 441 

trophozoites per fish. The tank mean infection levels were 268.1 ±72.1, 

205.6±70.6, 286.9±45.2 and 275.8±45.8 trophozoites per fish, 

The series of analysis of variance tables produced by the GUM package are 

to be found in Table 5. The effects of surface area, sex of the fish and tank 

effect were all included in the analysis. Temperature was not incl.uded, since it 

was constant, with a maximum range, among all the four tanks, of only 0.5"C. 

The variation due to the sex of the fish was not significant (P>O.lO), therefore 

negating the possibility of any effect due to the high imbalance of the male : 

female ratio. lihe variation due to the surface area of the fish was the strongest 

effect (F1 ~, 341 =43.765, P <0:001,) upon infection level. Hence, the relatively large 

range of 2.82 cm2 in surface area provided a significant source of variation in 

parasite burden. 

The tank effectwas the main point of interest here. This effect was significant 

at the 0.1% level (F13.341 = 13.397). Closer examination of this variation, using 

pairwise comparisons, clearly shows that only one tank was responsible for this 

significant effect. The tank with a mean infection level of 205.6±70.6 

trophozoites per fish was significantly different (P < 0.001) from the other three 

tanks (mean = 276.9±54.4 trophozoites per fish), which formed a homogeneous 

group (P>O.lO). Thus, although tank effects are perhaps minimal, there is 

always the possibility that, in occasional tanks, the tank environment may 

influence infection level despite attempts to minimise such environmental 

variance. 
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3.6. Discussion. 

Tihis investigation clearly shows that the observed variation in /. multifiliis 

infection levels is composed of four components : variation due to time, 

variation due to surface area, variation due to tank effects and variation due to 

exposure level. Variation in exposure levels of /. multifiliis contained the major 

part (mean squares = 5.557, Table 4), of the total explained variance. Four 

infection levels of 2,000, 3,000, 6,000 and 12,000 theronts per fish were used. 

Infection levels rose from 158.4±55.6 trophozoites per fish at 2,000 theronts per 

fish, through 266.6±62.7 trophozoites per fish at 3,000 theronts per fish, to 

457.0± 126.4 trophozoites per fish at 6,000 theronts per fish. The reason for the 

drop in infection levels at 12,000 theronts per fish to 349.0±71.9 trophozoites per 

fish is, undoubtably, due to the clustering of parasites. At such high exposure 

levels the large numbers of parasites gather together in 'grape-like' bunches. 

Hence, infection levels could not be quantified with the an acceptable degree of 

accuracy. The lower infection level of the 12,000 theronts per fish infections is, 

therefore, quite probably due to the underestimation of infection levels by the 

omission of hidden trophozoites. Observations suggested that the accuracy of 

quantification was hindered in such a way when parasite levels exceeded 400 

trophozoites per fish. Indeed the level of infection at 12,000 theronts per fish (a 

mean of 349 trophozoites per fish) is perhaps a better estimation. Maximum 

infection levels recorded at each dose level were : 2,000 theronts per fish - 256 

trophozoites per fish, 3,000 theronts per fish - 396 trophozoites per fish, 6,000 

theronts per fish- 712 trophozoites per fish and 12,000 theronts per fish- 514 

trophozoites per fish. Based on the criteria that infection levels obtained should 

fall below 350 trophozoites per fish, a standardised infection level of 2,000 

theronts per fish is suggested for future investigations. 

The significant amounts of variation due to surface area, in the two infection 

studies here, occurred over total ranges of 4.41 cm2 and 2.82 cm2• Since the 

effect of surface area was significant within one species here, the requirement 

that it should be included in further analyses is essential. If different species 

and sizes of fish are to be compared, for their susceptibility to I. multifiliis 
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infection, it is vital that incorrect conclusions are not drawn due to the use of 

different sized and· shaped species. 

The variation due to the time of the experiment is significant (P<O.OOI}, 

although why this is so is unclear. The experiments occurred over a period of 2 

months at 7, 21, 10 and 24 days intervals, Temporal variation was significant 

even at the infections 7 days apart (P<O.OOI'). Infections first occurred in early 

May and were completed by early July. Although an explanation for such 

variatior:l is not clear, it is obvious that one needs to be aware of this variation 

and incorporate it into an analysis of susceptibility to /. multifiliis. Variation due 

to temperature was not significant (P>O.IO} in the parasite dose study and the 

variation in temperature was low (24.0± l.0°C, mean squares = 0.009). 

Temperature will continue to be monitored in future experiments, however, to 

ensure stable environmental conditions remain. 

Although significant variation was found for tank effects, this was all 

attributable to one tank out of the four examined. The mean infection level for 

this tank was 205.6±70.6 trophozoites per fish, compared to values of 

268.1±72.1, 286.9±45.2 and 275.8±45.8 trophozoites per fish for the other three 

tanks. Tank effects, therefore, whilst not widespread, were present. This is 

another important factor to consider when discussing infection levels of /. 

multifiliis. The experimental method of separate tanks for each group of fish is 

still the preferred method, though, since alternative approaches are more likely 

to provide other, more complex, problems. 

Having determined an appropriate exposure level and the significance of other 

factors involved in the infection process, it is now possible to observe the 

variation in susceptibility to I. multifiliis due to genetically controlled factors. 

This will be persued in several ways throughout the rest ofthis study. 
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Figure 18 Division of body surface area into ten different sections 
to aid assessment of infection levels. 

I 
I 
I 
I 
I ()) 
I 
I 
I 
I 

8 
I 
I 
I 
I 
I 
I 
I 
I 
I 

tD 

@ 

59 



Table 3 Parasite burdens on Ameca splendens exposed 
to four concentrations of lcthyophthirius multifiliis. 

Infection level (Trophozoites per fish) . 

Date. Tank. Dose. 

11/ 6/ 85 196.7 ± 51.4 158.4 ± 55.6 
2,000 theronts/ fish. 

5/7/85 120.1 ± 25.1 

1/6/85 250.1 ± 65.6 266.6 ± 62.7 
3,000 theronts/fish. 

1/6/85 283.2 ± 58.3 

11/5/85 557.1 ± 106.7 457.0 ± 126.4 

6,000 theronts/fish. 11/5/85 457.7 ± 91.0 

5/7/85 345.2 ± 79.0 

4/5/85 357.2 ± 91.3 349.0 ± 71.9 
12,000 theronts/ fish. 

4/5/85 341.7 ± 54.1 
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Figure 19 Increasing lcthyophthirius multifiliis burdens on 
Ameca splendens with increasing exposure 

levels. 
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Table 4 Analysis of variance tables for each of the variables 
in infections of Ameca sp/endens with four doses 

of lcthyophthirius multifiliis. 2 

Source of 
variation. 

Effects due to area, 
temperature and time. 
Effects due to dose. 
Residual. 

Total. 

Effects due to dose, 
temperature and time. 
Effects due to area. 
Residual. 

Total . 

Effects due to dose, 
area and time. 
Effects due to temperature. 
Residual. 

Total. 

Effects due to dose, 
area and temperature. 
Effects due to time. 
Residual. 

Total. 

d.f. Sum of Mean F 
Squares. Squares. 

6 12.091 2.015 59.41 

1 5.557 5.557 163.82 
77 2.612 0.034 

84 20.260 

6 16.570 2.762 81 .41 

1 1.078 1.078 31.78 
77 2.612 0.034 

84 20.260 

6 17.639 2.940 87.79 

1 0.009 0.009 0.269 
77 2.612 0.034 

84 20.260 

5 16.750 3.350 98.76 

2 0.898 0.449 13.24 
77 2.612 0.034 

84 20.260 

The level of P<O.IO is included to highlight results which @re 
bordering on being significant at the 5fo l evel and may benefit 
from increased sample si ze in future work. 

2Significance levels : P < 0.10 - • ; P < 0.05 - ** ; P < 0.01 - ••• ; P < 0.001 - ••••. 
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Table 5 Analysis of variance tables for each of the variables 
in four identical infections of Ameca splendens with 

/cthyophthirius multifiliis to determine the extent of tank effects. 3 

Source of d.f. Sum of Mean F p 
variation. Squares. Squares. 

Effects due to area 2 1.009 0.504 17.177 •••• 
and sex. 
Effects due to tank. 3 1.180 0.393 13.397 **** 
Residual. 34 0.999 0.029 

Total. 39 3.188 

Effects due to area 4 2.151 0.538 18.309 **** 
and tank. 
Effects due to sex. 1 0.038 0.038 1.307 NS 
Residual. 34 0.999 0.029 

Total. 39 3.188 

Effects due to sex 4 0.904 0.226 7.695 **** 
and tank. 
Effects due to area. 1 1.285 1.285 43.765 • ••• 
Residual. 34 0.999 0.029 

Total. 39 3.188 

3Significance levels as in Table 4. 
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Chapt~r 4 

Inter- and intr:a- specific variation to 
ichthy.ophthiriasis. 

4.1. Introduction and aims. 

To evaluate the level of any variation in resistance to parasitic infection several 

species and strains were exposed to lcthyophthirius multifiliis. The infection 

procedure was kept constant throughout and environmental variance was kept 

to a minimum. Hence, it would be expected that any inter- or intra- specific 

differences would be due to genetic variation. 

This genetic variation, however, may be composed of variation on the part of 

the fish host and variation due to the use of several isolates of parasite. There 

appears to be a limited period of time over which an isolate can be kept through 

serial passage in the laboratory. Being a ciliate, freeze storage of recognised 

strains of the parasite is not possible at the present time. In addition, the 

parasite population dies out after a period of time, despite the addition of 

previously unexposed hosts. This has been found by other workers (Houghton, 

1987; Matthews & Matthews pers. comm.; and Wahli & Schmitt, pers. comm.) 

as well as in this study. This problem means that any long-term experiment 

necessitates the use of more than one isolate of parasite. 
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4.2. Methods. 

4.2.1. Experimental protocol. 

Infections were carried out, as detailed in chapter 3, at a dose of 2000 theronts 

per fish and concentration of 40 theronts per ml. A tank of ten A. splendens 

was always infected to facilitate comparisons. Water quality was measured 

prior to and upon termination ofthe experiment •. on the third day. 

lt was attempted to use as few a number of parasite isolates as was practical. 

However, strains of parasite only last a finite period of time in the laboratory and 

from time to time a fresh stock of parasite had to be obtained. Several 

management rules were followed on this point. Batches of parasite were never 

maintained together in the laboratory. For these experiments batches of I. 

multifiliis were always obtained from recently imported tropical species of fish. 

Maintenance periods for each batch of parasite were recorded and hence the 

batch code for each infection is known. Appendix B lists the maintenance 

periods and codes for each batch. 

4.2.2. Within species between strains comparisons. 

Several strains of Xiphophorus maculatus were compared for their resistance 

to infection. These strains, which are described in more detail in chapter 2, 

were the yellow comet tail platy, the red platy, the red wagtail platy and the blue 

platy. All of these strains were domesticated strains, imported from Singapore 

and obtained from local retail outlets. 

Fish were only obtained which were known not to have been infected with /. 

multifiliis whilst in Britain. The fish were regularly checked at the importers for a 

period of two weeks after importation. If no disease outbreak had occurred 

during this time the fish were then used in the laboratory. A further precaution 

was taken in that these fish were not used for infection but were first bred. The 

offspring produced provided both greater numbers of fish and fish which were 

known to have never been in contact with /. multifiliis from birth. As a 
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consequence of this, the extent of any possible maternal effects, as reported by 

Bone (1983) and Price & Bone (1985), will have been greatly reduced. 

4.2.3. Between species comparisons. 

Each of the strains of X. maculatus above were compared with three other 

species. The most closely related species was Xiphophorus variatus (the 

sunset platy). 1/yodon xanthusi, a goodeid species, closely related to Ameca 

splendens, was also included. Infection procedures were the same as those in 

the section above. 

4.2.4. Method of analysis. 

The analysis was performed upon a Prime computer using the Generalised 

Linear Interactive Modelling (GLIM) package (see chapter 3, section 3.3). 

Factors included were of time of the experiment, temperature of experiment, 

surface area of the fish, sex of the fish, isolate otthe parasite and strain/species 

of fish. The data set here is not strictly orthogonal, with the result that analysis 

of the effects in a single analysis of variance table would differ, depending upon 

the order in which those effects were entered into the anova table. The reason 

for this non-orthogonality is that there is at least one correlation between two, or 

more, of the factors involved in the experimental procedure. Such correlations 

are likely to be due to the use of different parasite isolates at different times, the 

use of different strains I species of fish at different times, and, hence, the use of 

different parasite isolates on different strains I species of fish. These 

correlations of time, parasite isolate and strain I species of fish used are 

unavoidable practical problems. 

4.3. Results. 

Water quality parameters showed minimal variation (temperature 

=24.l±l.0°C, pH=7.4±0.2). The surface area values for the strains and species 

of fish used varied considerably, from 1.54 cm2 to 11.10 cm2 (overall 

mean=4.94±2.05 cm2). A. splendens had the lowest mean surface area of 
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3.36± 1.0 cm 2, with X. maculatus (yellow comet tail platy) having the largest 

surface area of 7.36±0,80 cm2. 17he distributions of the sexes among all strains I 

species of fish was of .the ratio 1 :1.8 for males : females. 

Infection levels were seen to fluctuate with the time of year at which the 

experiment was performed (Figure 20). However, the relative infection levels of 

strains and species remained constant at different times of infection, with the 

exception of A. sp/endens relative to X. maculatus (red platy). These two 

species were infected simultaneously on three occasions, the third occasion 

involving a different parasite isolate (isolate H) to the previous two occasions 

(isolate G). A. splendens harboured less parasites than X. maculatus (red 

platy), except for the infection using parasite isolate H. Infections were of a 

similar magnitude for both infections with parasite isolate G : A. splendens, time 

1 - 38.0± 14.4 trophozoites per fish, time 2 - 21.3±6.7 trophozoites per fish ; X. 

maculatus (red platy), time 1 - 48.0±4.1 trophozoites per fish, time 2- 55.4± 13.1 

trophozoites per fish. On the third occasion of infection, with parasite isolate H, 

two tanks of X. maculatus (red platy) and a single tank of A. splendens were 

infected. Infection levels were, A. splendens 267.8 ± 131.0 trophozoites per fish, 

X. maculatus (red platy) 112.7±47.0 and 135.1 ± 12.2 trophozoites per fish. 

Hence, infection levels were higher and, with this parasite isolate, A. splendens 

now harboured more parasites than X. maculatus (red platy). 

Infections were first attempted for this study in mid-September, but either 

produced no mature parasites on exposed hosts or insufficient theronts were 

produced to even attempt infections, until the first half of December. Two 

isolates of parasite (isolates C and D, Appendix B) were kept over this period, 

but neither produced any successful experimental infections. These isolates 

were kept for 52 and 14 days respectively. The third isolate used, isolate E, 

was kept for 36 days and produced 2 successful and 2 unsuccessful infections 

on A. splendens and /. xanthusi. This parasite isolate was, however, lost on the 

last day of December. Parasite isolate F was obtained the same day from 

recently imported fish, but this isolate was never kept for more than a single 

passage. Isolate G, however, obtained on the 131h Janl:lary, survived in the 

67 



laboratory to~ 15,1 days, In this time the vast majority (65%) of the infections 

reported below were performed. Infection levels were below 120 trophozoites 

for all strains and species, until mid-April, after which infection levels rose as 

high as 441 trophozoites. A subsequent single unsuccessful infection was 

followed by the loss of this isolate in mid-June. lhe isolate of parasite that 

followed was kept for 160 days, but during most of this time was producing only 

very small .numbers of therorits. On two occasions it was considered that this 

parasite isolate had been lost, only for it to reappear several days later. Two 

unsuccessful and two successful infections were achieved, in late July and late 

September. When successful, infection levels were in the range of 37 to 588 

trophozoites per fish (mean= 130.9±93.0 trophozoites per fish). This parasite 

isolate was theri lost by the 261h November and no further infections were 

performed for this investigation. Overall A. splendens was infected with 

parasite isolates E, G and H, whilst /. xanthusi was infected with isolates E and 

H and X. maculatus (red platy) and X. variatus (sunset platy) were infected with 

isolates G and H. All other strains and species of fish were only ever infected 

with a single parasite isolate. 

Taking mean infection levels for species and strains, irrespective of any of the 

above temporal effects and not taking into account the different sizes of surface 

area, then differences in infection levels can be seen. The highest infection 

levels were found on A. splendens, with a mean of 134.7 trophozoites per fish. 

This group also has the largest standard deviation, of 111.9 trophozoites per 

fish, and coefficient of variation, 88.3%. Two platyfish species had the lowest 

counts : 38.9±25.4 trophozoites per fish for X. maculatus (blue platy) and 

39.6± 18.3 trophozoites per fish for X. variatus (sunset platy). The coefficient of 

variation for X. variatus (sunset platy) was 46.3% and was the lowest such 

coefficient recorded. The four strains of X. maculatus had coefficients of 

variation from 50.2 to 65.3%. /. xanthusi had a higher coefficient of variation of 

77.5%. lhere are, therefore, higher coefficients of variation in stocks which 

have been directly derived from the wild, i.e. A. splendens and /. xanthusi. 'The 

ordering of the mean total parasite count data from least to most resistant is as 

follows: A. splendens, X. maculatus (red platy), /. xanthusi, X. macu/atus (red 
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wagtail platy), X. maculatus (.yellow comet tail platy), X. variatus (sunset platy) 

and X. maculatus (blue platy). To determine the significance of the differences 

between the strains I species of fish and to include effects due to the size of the 

fish and time of the experiment, however, requires an analysis of variance to be 

performed. 

4.3.1. Analysis of the results. 

One of the fundamental assumptions of analysis of variance is that the 

variance is independent of the mean. One indication of this is to plot the 

residual values (i.e. the difference between actual and estimated values) 

against the estimated values, where a random distribution should be obtained if 

the variance is independent of the mean. Figure 21 shows that for 

untransformed data a non-random distribution was obtained via this 'method. A 

square root transformation produced a better distribution, but a natural 

logarithmic transformation produced the most random distribution. Therefore, in 

all the analysis below logarithmic data was used. 

Analysis of major effects was not possible in the case of variation due to 

different isolates, since only a single isolate was ever used at any particular 

time. Hence the isolate covariate is also explained by the time covariate. Such 

dependence among covariates gives rise to the effect known as aliasing (Baker 

& Nelder, 1978). The data hereare said to be extrinsically aliased since the 

sample data does not contain sufficient information to estimate all parameters. 

Variation due to sex of the fish was not significant (P>O.IO) (Table 6). All other 

effects were significant i.e. variation due to time of the experiment, (P<O.OOI), 

variation due to temperature of the experiment (P < 0:05), variation due to 

surface area of the fish, (P < 0.00 I) and variation due to the strain/species of 

fish, (P<O.OOl). 

The variation with time occurred over a period of 294 days. Maximum 

infection levels, which were usually on A splendens, varied from a low of 67 

trophozoites per fish, in late February and mid-March, to a high of 558 

trophozoites per fish, in late September. The large variation in this effect 
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therefore stresses the importance of incorporating the time of the experiment 

into the analysis. 

The significance of temperature effects is suprising, given the small amount of 

variation in temperature (24.1 ± 1.0°C). The analysis used individual tank 

temperatures and, therefore, temperature and tank effects are synonymous. 

This will be discussed below in more detail. 

The significance of the variatiol') in surface area values stres~es": · the 

importance of incorporating a measure of fish size in the analysis of infection 

levels. The slope of the relationship between surface area and parasite burden, 

given all other factors, was estimated by the GLIM package as 0.14±0.02. lhis 

slope is significantly different from zero (P<O.OOl). Surface areas varied 

considerably (1.54 to 11.10 cm2) and, therefore, one can only be certain of 

differences in resistance, of different sized species of fish, when area is taken 

into account. Even within species a 1 00% increase in surface area is coupled 

to a 14% increase in infection levels. Hence, the inclusion of surface area is 

important, even when only a single species is involved. 

Given the significant variation due to different strains I species of fish pairwise 

comparisons using t values were performed, (Table 7). As a consequence, the 

various strains/species used here can be divided into three distinct groups 

(Figure 23). The first, most susceptible group, consists solely of A. splendens, 

where infection levels were recorded as 134.7 ± Ill. 9 trophozoites per fish. The 

differences between A. splendens and the other strains/species were always 

significant at the 5% level. The second group was comprised of /. xanthusi, X. 

maculatus (red platy), X. maculatus (yellow comet tail platy) and X. maculatus 

(red wagtail platy). Here infection levels were recorded as 71.2±55.2, 

89.0±44.7, 50.2±28.3 and 67.0±37.5 trophozoites per fish respectively. Again 

differences between this and the other two groups were significant at the 5% 

level. The third and final group is comprised of X. maculatus (blue platy) and X. 

variatus (sunset platy). lhis group was highly significantly different from all 

others, (P<O.OOl), with recorded infection levels of 38.9±25.4 and 39.6± 18.3 
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trophozoites per fish respectively. Significant intra- and inter- specific variation 

in resistance to /. multifiliis infections was therefore observed. 

lt is also possible to analyse interaction terms between covariates. Analysis of 

major effects determines whether infection levels differ at the different levels of 

that factor. Interaction analysis, however, determines whether changes in 

another factor affects all the levels of the major factor in a similar manner. 

Three interaction terms were analysed; species-temperature interactions, 

species-isolate interactions and isolate-temperature interactions. Figure 22 

show's that these, non-orthogonal interaction terms, had only a minimal effect 

upon the relationship of variances and means, which remained random. 

The analysis of species-temperature effects was significant at the 0.1% level. 

The GUM package estimated the slopes of the regression line, for parasite 

burden and temperature, for each species. For A. sp/endens, I. xanthusi, X. 

maculatus (red wagtail platy) and X. variatus (sunset platy) these were not 

significantly different from zero (P>O. LO). The slopes of the lines for the red and 

blue X. maculatus strains were significantly different from zero at the 0.1% level, 

whilst that for the yellow comet tail X. maculatus was significant at the 5% level. 

Slopes for the yellow comet tail and red X. maculatus strains were positive 

(0.41 ±0.19 and 0.64±0.09 respectively), but not significantly different from each 

other (P>O.IO). The slope of the line for the blue X. maculatus strain, however 

was negative (- 1.42±0.34) and highly significantly different from the 

regressions for yellow comet tail and red X. maculatus (P < 0.001). This is 

interesting since temperatures were relatively constant (24.1 ± l.OOC) throughout 

the course of the experiment. Hence, the strains I species of fish used here 

respond, in different ways, to even small temperature changes. The division of 

the strains I species of fish into three distinct groups does not appear to have 

any pattern, e.g. strain or species groups. Some doubt must, therefore, be 

expressed about the significance of this interaction analysis. 

Species-isolate interactions were also significant at the 0.1% level, although 

insufficient information from the infection ~o~ocol; _ · prevented many 
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comparisons. lt will be recalled that only A. splendens, I. xanthusi, X. 

maculatus (red platy) and X. variatus (sunset platy) were infected with more 

than a single parasite isolate (page 68). The only possible comparison which 

proved to be significant was that for X. maculatus (red platy) and A. splendens 

P < 0:001. Species-isolate effects for the other species were not significant 

(P>O.lO). This effect was noticeable when the experiments were being 

performed. In the majority of cases A. splendens was the species which carried 

the highest parasite burdens. The one exception t9 this was the infections with 

A. splendens and X. maculatus (red platy). These two species were infected, at 

the same time, on three occasions. Apart from time, the, only difference was the 

isolate of parasite used, both species of fish being derived from identical stocks 

at each time. On one of these occasions the X. maculatus (red platy) had a 

higher parasite burden than A. splendens. A species-isolate interaction 

between X. maculatus (red platy) and parasite isolates G and H was, therefore, 

suspected, and was confirmed in the above analysis. 

Isolate-temperature effects were found to be not significant at the 1 0% level. 

4.4. Discussion. 

In any study on disease resistance there are many factors to consider. Indeed 

a measure of the effectiveness of such studies is how successfully the effect of 

these factors can be isolated and quantified. The aim of this study was to 

evaluate several strains and species of fish for their resistance to I. multifiliis. 

An experimental approach was adopted whereby the effects of several 

environmental variables could be evaluated. Hence, fish were subjected to 

identical conditions in terms of water source, filtration, position within the 

laboratory etc. 

Any host-parasite relationship is, however, far more complex than this. A 

hypothesis was proposed that one or more of the following may affect the 

infection level of I. multifiliis on its' host : size of the fish, sex of the fish, 

strain/species of fish and isolate of parasite. Taking into account these effects, 

the role of genetic variation of the host and genetic variation of the parasite can 
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be discussed. The extent of these and environmental factors are discussed, in 

turn, below. 

Time ofthe experiment. 

Variation due to the time of year the experiment was performed was highly 

significant (P <0.001). Indeed this effect stood out when the experiments were 

being conducted. Reasons for this effect are unclear, although a plot of 

infection levels against time shows an interesting trend (Figure 20). For all 

species, no infections were successful in the early part of the year until mid­

March. Infection levels obtained were then constant until early June, when 

infection levels rose by about 300%. Following this, infections were not 

successful until mid-August, and then only for a short period. Little can be said 

about September and early October, since no infections were attempted, but 

infections were successfully performed by late October. Successful infections 

had also been performed in December of the previous year, with infection levels 

of August, October and December being intermediate between the peak of early 

June and the plateau of mid-March to late May. 

What is most interesting about this trend is that it follows that found in the wild 

(Wagner, 1960 ; Meyer, 1974). The usual reasoning behind this annual cycle is 

that low temperatures in winter preclude any outbreaks of ichthyophthiriasis. 

When temperatures rise in March/April, however, outbreaks occur reaching a 

peak in early summer (Butcher, 1941 ; Wagner, 1960; Meyer, 1974; Lahav & 

Sarig, 1973). Throughout the main part of the summer months I. multifiliis·is not 

often recorded despite the higher temperatures, since it is now argued that the 

fish are in a much improved state of health compared to their late over-wintering 

state. In addition, the majority of fish are now immune to infection following 

earlier infections. Reasons for the later resurgence of outbreaks in the autumn 

are unclear, but the phenomenon has been recorded (Butcher, 1941 ; van 

Duijn, 1973 ; Lahav & Sarig, 1973). 

Here temperatures were relatively constant (24.1 ± 1.00C) and certainly did not 

vary annually to the same extent that they do in ponds/rivers, lt is suggested, 
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therefore, that temperature is not the major factor controlling this annual cycle of 

infections, as once thought. Quite what might control this annual cycle is 

unclear and further discussion wilL be held over until Chapter 8. 

Temperature of experiment. 

lt has already been stated that temperatures were constant throughout and, 

therefore, it is perhaps suprising that, with a temperature range of 21.9- 25,5°C, 

effects were significant. However, given that temperatures differed between 

tanks, but not within tanks, then temperature is also a measure of tank effects. 

Rather than each tank being coded by a number, each tank is effectively coded 

by its' temperature, The reasons for tank effects are numerous and varied. 

Other water quality parameters, besides temperature, were also stable, 

suggesting something more subtle, such as ambient lighting levels, : is the 

cause. 

One way to negate tank effects is to place more than one species in each 

tank. Ideally all seven strains/species of fish would have been infected within 

the same tank. Variation due to tank effects would then have been zero, but in 

such a situation species interactions are extremely likely. Individuals of A. 

splendens, especially the males, have been known to harass other, smaller 

species. The establishment of such a dominance hierarchy in a mixed species 

tank could well influence infection levels, through increased stress in 

submissive fish and through damaged tissue during hierarchical disputes. The 

approach used here was, therefore, considered the optimum approach, with the 

benefit that tank effects could be quantified and accounted for in strain/species 

comparisons. 

Size of fish. 

Often the comparisons made between different species of fish are done on the 

basis of length. This does not take into account though the fact that fish may 

differ in body shape. For example, here A. splendens and /. xanthusi are 

slender fish, whilst the xiphophorid fish used are more rounded in body shape. 
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Therefore, differences in size are more realistically compared when in the form 

of surface area on which the parasite may attach. 

The hypothesis that larger fish harbour more parasites was found to be true. 

Adoubling, of surface area though does not imply a doubling of parasite burden, 

but an increase of 14±2%. Hence, smaller fish are relatively more susceptible. 

lt is, therefore, not valid to compare infection levels of I. multifiliis on different 

species, or to compare juvenile and adult fish, unless size, preferably in terms 

of surface area, is taken into consideration. No previous work by other authors 

has been found, where infection levels were recorded over more than a very 

small fraction of the body and where surface area was also recorded. 

Therefore, the comparison of previous reports where I. multifi/iis levels were 

determined, but surface area was not, is quite subjective, 

Sex of fish. 

Differences due to the sex of the fish were not significant. This suggests that 

any genetic control of resistance is not linked to genes which also control sex 

determination. Pickering & Christie (1980) examined brown trout, during the 

period of the spawning season. Sexually mature male fish were found to be 

more heavily infected with I. multifiliis, Scyphida, Gyrodactylus and Saprolegnia 

than either mature female of immature fish. Pickering & Christie suggest 

several reasons for this sexual difference, including the reduced production of 

mucous by male fish during spawning. The situation with brown trout differs 

markedly from the situation with the species used here, in that brown trout have 

a clear reproductive period with associated genetically controlled physiological 

changes. The species used here, however, breed throughout the year and 

show no obvious similar physiological changes. 

Isolate of parasite. 

lt was not possible to compare the four tropical strains of parasite used here, 

whilst also taking into account variation due to all other factors. This is 

undoubtably due to the fact that no two isolates were used at any one time. 
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Hence, the .parasite isolate data is correlated with the time of the experiment 

data. In this experiment isolates were only replaced when the previous isolate 

had died out, to prevent possible cross-contamination of isolates. Therefore, 
are · 

the data ··-termed extrinsically aliased, since the variation due to the time of the 

experiment also explains variation due to different isolates of the parasite. lt is 

not possible then to comment upon variation due to different tropical isolates of 

the parasite. 

Analysis of isolate-temperature interaction terms, however, was possible, but 

was not significant (P>O.lO) .. This suggests that the isolates used here perform 

in a similar manner over the somewhat narrow temperature range encountered 

(3.6°C). Nevertheless, the effect of such a narrow temperature range in itself 

was significant, as discussed above. 

Strains/species of fish. 

The principal aim of this study was to assess the extent of inter- and intra­

specific variation in resistance to ichthyophthiriasis. The division of the 

strains/species used here into three significantly different groups clearly 

demonstrated the presence of inter- and intra- specific differences. Between 

species differences were recorded between each of the four species used (i.e. 

A. splendens, I. xanthusi, X. maculatus and X. variatus). Within species 

differences were less widespread, with three of the four strains of X. maculatus 

differing from the fourth. 

One might summise that A. splendens was the most susceptible species since 

it is one of the two wild types used, as opposed to the domesticated strains of 

X. maculatus, In support of this, the most resistant group was comprised purely 

of the domesticated species X. maculatus (blue platy) and X. variatus (sunset 

platy). Outbreaks of ichthyophthiriasis are more common in the confined 

environs of captivity than in the wild. Hence, intentionally or unintentionally, 

some degree of selection for resistance is exercised in the domestication 

process (Doyle, 1983). Stahl (1983) examined 37 enzyme loci on 1,643 tissue 

samples from natural and hatchery populations of atlantic salmon. Samples 
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from hatchery stocks had a significantly lower .amount of genetic variability than 

natural populatior:~s, indicating a loss of genetic variation through domestication.· 

Gall (1983), in summarizing a symposium open discussion on fish genetics, 

commented that many had argued that hatchery propagation had resulted in a 

loss of genetic variation. Although not a direct measure of genetic variation, it is 

interesting to note that coefficients of variation were also lowest for the 

domesticated platies. Selection for resistance to I. multifiliis is, therefore, likely 

to have occurred on the fish farms in Singapore, from where these 

domesticated platy fish strains were imported. 

The two species-interaction terms examined here were also significant. The 

species-temperature interactions, when analysed in detail, provided two 

significantly different groups. The slopes of the relationship between 

temperature and infection level for the yellow comet tail, red and blue strains of 

X. maculatus were 0.41±0.19, 0.64±0.09 and -1.42±0.34 respectively. These 

slopes were all significantly different from zero (P <0,05), but those for the 

remaining species were not (P > 0.10). The two slopes for the yellow comet tail 

and red X. maculatus strains were not significantly different from each other 

(P>0.10), but were significantly different from the blue X. maculatus strain 

(?<0.001). lt is thought unlikely that such a small variation in temperature could 

be responsible for such an effect. 

Moav ( 1976) recognised five major groups of genotype-environment 

interactions : 1. genotype-pond interactions, 2. genotype-season interactions, 3. 

genotype-age interactions, 4. genotype-husbandry system interactions, and 5. 

genotype~competition interactions. Examples of these are cited by Moav ( 1976) 

and further reports of genotype-environment interactions have been produced 

since this time (see, for example, Wohlfarth et a/, 1983). A species­

environment interaction does appear to be present here and this must be borne 

in mind when attempting genetical improvement of stock in a variety of 

environmental situations. 

The significant species-isolate interactions for X. maculatus (red platy) 
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confirmed,expectations, since some variation in infection levels in this stock had 

been noticed prio~ to analysis of the data. Such variations may well reflect 

variation in the parasite. The significance of this effect highlights some of the 

difficulties in transferring the results obtained here to the general aquaculture 

situation. Such problems will be discussed further in the final discussion 

chapter. The absence of species-isolate interactions in other species is partly 

due to the use of only one isolate of parasite with a species precluding such 

species-isolate interaction comparisons. 

lhe approach used here provides no detail of the type of difference between 

strains/species of fish, except to say that it is present and is considered to be 

due .to genetical effects. The nature of this genetic variation is now the subject 

of the following chapters. 
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Figure 20 Variation in infection levels of lcthyophthirius multifiliis 
on exposed fish during the period late 1985 to the end ·of 
1986. All fish were exposed to the parasite in a similar 

manner and at the same dosage level. The use of different 
parasite isolates is marked. 
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Figure 21 Plots of residual values against fitted values after 
analysis for total lcthyophthirius multifiliis burden on Xiphophorus 

maculatus (Strains :red platy, red wagtail platy, yellow 
comet tail platy and blue platy), Xiphophorus variatus 

(sunset platy), 1/yodon xanthusi and Ameca splendens. 
a. Untransformed data, b. Square root transformed data, 

c. Natural logarithmic transformed data. 
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Figure 22 Plots of residual values against fitted values after 
interaction term analysis using natural logarithmic transformed data 
for total lcthyophthirius multifiliis burden on Xiphophorus maculatus 

(Strains : red platy, red wagtail platy, yellow comet tail platy 
and blue platy), Xiphophorus variatus (sunset platy), 

1/yodon xanthusi and Ameca splendens. a. Species-temperature 
interactions, b. Species-isolate interactions, c. Isolate-temperature 

interactions. 
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Table 6 Analysis of variance tables for each of the variables 
in infections of Xiphophorus maculatus (red platy, red wagtail 

platy, yellow comet tai l platy and blue platy), Xiphophorus variatus 
(sunset platy), Ameca splendens and 1/yodon xanthusi 

with lcthyophthirius multifiliis. 4 

Source of d.f. Sum of Mean F P 
variation. Squares. Squares. 

Effects due to sex, area, 11 88.9 8.1 49.6 **** 
strains/species, isolate and 
tern perature. 
Effects due to time. 8 121.9 15.2 93.6 **** 
Residual. 255 41.5 0.2 

Total. 274 252.3 

Effects due to time, area, 18 210.8 11.7 71.9 **** 
strains/species, isolate and 
temperature. 
Effects due to sex. 1 0.03 0.03 0.2 NS 
Residual. 255 41.5 0.2 

Total. 274 252.3 

Effects due to time, sex, 18 204.6 11.4 69.9 **** 
strains/species, isolate and 
temperature. 
Effects due to area. 1 6.2 6.2 38.1 **** 
Residual. 255 41.5 0.2 

Total. 274 252.3 

Effects due to time, sex, 13 192.7 14.8 91.1 **** 
area, isolate and temperature. 
Effects due to strains/species 6 18.0 3.0 18.5 **** 
Strain/species - isolate 3 8.3 2.8 17.0 **** 
interactions. 
Strain/species - temperature 6 11.5 1.9 11 .8 **** 
interactions. 

Residual. 255 41.5 0.2 

Total . 274 252.3 

4Significance levels as in Table 4. 
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Table 6 continued ... 

Source of d. f. Sum of Mean F p 
variation. Squares. Squares. 

Effects due to time, sex, 19 210.8 11 .1 67.6 **** 
area, strains/species and 
temperature. 
Effects due to isolate. 1 Extrinsically aliased. 

Isolate - temperature 2 0.2 0.1 0.5 NS 
interactions. 

Residual. 255 41.5 0.2 

Total. 274 252.3 

Effects due to time, sex, 18 209.9 11.7 71.6 **** 
area, strains/species and isolate. 
Effects due to temperature. 1 0.9 0.9 5.3 *** 
Residual. 255 41 .5 0.2 

Total. 274 252.3 

Significance levels as in Table 4. 
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Figure 23 Inter- and intra- specific differences in resistance to 
ichthyophthiriasis following analysis of all factors. Values 
are displayed on a relative scale of increasing resistance, 

relative to Ameca splendens with a resistance of zero. 
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Chapter 5 

Between genotype comparisons: the common carp, 
Cyprinus carpio. 

5.1. Introduction and aims. 

The pleiotropic effect of the scale pattern genes and the genetics of the carp 

used in this study were discussed in chapter 2. The main points from that 

discussion are re-iterated here. lihe genetics of scale pattern determination in 

carp was first described in 1928 by Rudzinski (Kirpichnikov, 1981). Two pairs of 

autosomal, unlinked genes control scale pattern cover in carp. Four scale 

pattern types exist; fully scaled, scattered mirror, linear mirror and leather carp 

(see Figures 14 to 17). lhe two gene pairs are denoted by Sand N, with the 

dominant homozygous NN state being lethal. These genes have been shown 

to have a pleiotropic effect on several morphological and physiological 

characters, including two cases of disease resistance. lhe decreased fitness of 

N allele carp is common throughout these studies. The S locus also has a 

pleiotropic effect, but one which is less pronounced. Several studies have 

shown that in the presence of the N allele the action of the s· allele is gre?ttly 

increased (Kirpichnikov, 1981 ). 

lt is the aim of this investigation to evaluate the resistance of known genotypes 

of the four scale patterns of common carp to infection by lcthyophthirius 

multifiliis. These four scale types will differ only at their S and N loci, all other 

loci being equally distributed in the population. Hence, differences between 

scale types can be attributed to these loci. Furthermore, common carp are a 

species of commercial interest and hence any differences in resistance found 

here have direct implications for aquaculture. 
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5.2. Materials -and methods~ 

5.2.,1. Experimental design. 

In an attempt ,to make the results from this investigation applicable to a wide 

range of environmental situations a nested experimental design was used 

(Figure 24). Two 'strains' of parasite were used. Other parts of this study used 

different isolates of parasite, which were all obtained from recently imported 

tropical fish. This investigation however, used several batches of parasite from 

British coldwater fish as well as several batches from tropical species imported 

from Singapore. Hence 'strains' of parasite from different continents could be 

compared. The British 'strain' was termed the temperate strain and the 'strain' 

imported from Singapore the tropical strain. The temperate strain was 

pass aged at 14-16°C and the tropical strain at 23-25°C. 

In comparing carp of each of the four scale pattern phenotypes it is important 

to be certain that all genes, except the S and N genes for scale pattern, are 

randomly distributed throughout the four groups, Hence, an ideal situation is to 

use the progeny from a single batch of eggs which, when raised, produces all 

four phenotypes. Some difficulty was experienced in obtaining. such a group of 

full-sibs, since it is not considered economically worthwhile to produce fully 

scaled carp and leather carp, due to a lack of demand for such fish. The vast 

majority of carp farms in the U.K. therefore only produce scattered mirror and 

linear mirror carp. The carp used here were obtained from Hampshire Carp 

Hatcheries as 4•6 week old fry. These fish were obtained as two half-sib 

groups. The common maternal fish was a scattered mirror carp. Crossing this 

with. a linear mirror carp produced clearly recognisable scattered mirror, linear 

mirror and leather carp in roughly equal proportions. In theory fully scaled carp 

should also be produced from this cross (Table 2), but raising these fry proved 

the suppliers prediction of all scale types except fully scaled to be correct. 

Hence genotypes were deduced to be : scattered mirror carp - ssnn, linear 

mirror carp - SsNn, and leather carp - ssNn. To obtain some fully scaled carp 

fry the same female, scattered mirror carp was crossed with a male, fully scaled 
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carp. The offspring from this cross were 1 00% fully scaled carp and hence 

(Table 2) were of the genotype Ssnn. The fry were raised on a 3,000 gallon 

closed recirculation system within the Polytechnic. Initially the fry were fed 

freshly hatched Artemia nauplii, but these were .gradually replaced with trout 

pellets of appropriate size as the fish grew. 

For each scale type of carp experiments were performed at three different 

temperatures ; 24"C, 1 9"C and 16"C (Figure 24 ). ·Carp were acclimatised to 

these temperatures for a minimum period of one month. However, the fish had 

usually been acclimatized .for a period of time much greater than this. Fish, of 

all scale types, measured 3.8±0.7cm in total length and 2.9±0.5cm in standard 

length. 

Within each temperature each of the four scale types of common carp were 

infected, with either the tropical or the temperate strain of the parasite. The 

exception was at 19"C where, due to lack of numbers of fish, the linear mirror 

carp were not infected. At 16"C 47 fish were infected, at 19"C 88 fish were 

infected and at 24"C 82 fish were infected. The carp were 42 - 56 weeks old 

when infected with /. multifiliis. 

To determine the extent of any tank effects replicate infections were performed 

on three occasions. Fully scaled carp were used for these replicate procedures, 

since greater numbers of this scale type were available. On each occasion two 

tanks of ten fish were infected with the same batch of theronts, from the same 

parasite strain and at the same temperature. One replicate was performed at 

each temperature, with the tropical parasite strain being used at 24"C and 16"C 

and the temperate parasite strain being used at 19"C. Preliminary experiments 

suggested that carp were more resistant than A. splendens and that 4000 

theronts per carp would produce levels of infection on the fish suitable for 

analysis. Infections were carried out therefore using 4000 theronts per fish (80 

theronts per ml) and the response was measured as in chapter 3. Water quality 

was monitored prior to and upon termination of the experiment. 
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5.2.2. Analysis. 

The Generalised Linear Interactive Modelling package (GUM) was used on a 

Prime computer to analyse the parasite burdens on the .fish. Factors included in 

this analysis were time of the experiment, temperature of the experiment, 

surface area of the fish, strain of parasite, and scale pattern phenotype. The 

analysis is based on the assumption that the variance and the means are 

independent. This is equivalent to the residual and fitted values being 

independent. In the case of the zero values occurring in the data setthe normal 

practice of taking the logarithmic value of (y+ I) was performed on all counts. 

5.3. Results. 

A total of 217 fish were successfully infected with /. multifiliis (106 fully scaled 

carp, 46 scattered mirror carp, 31 linear mirror carp and 34 leather carp). The 

surface areas over which infection levels were counted were very similar for 

each scale type : fully scaled carp 4.02± 1.50 cm2 , scattered mirror carp, 

3.77± 1.4'1 cm2, linear mirror carp, 4.16± 1.90 cm 2 and leather carp, 3.33± l.l4 

cm 2. Total counts of parasite burdens per fish ranged from 0 to 329 (mean 

=25.2±47.3). Irrespective of parasite strain and temperature of the experiment, 

mean parasite burdens were : fully scaled carp 13.44±26.55 trophozoites per 

fish, scattered mirror carp 35.98±61.71 trophozoites per fish, linear mirror carp 

26.13 ±40.45 trophozoites per fish, and leather carp 46.40±68.20 trophozoites per 

fish. These values are broken down further for each parasite strain and 

temperature in Table 8. On the three occasions when replicate infections were 

performed, on fully scaled carp, tank effects were not observed (t-tests, 

P>O.LO). 

The infections occurred at six different points in time, over a period of some 

four months. Seven infections, in addition to these, were unsuccessful. Carp 

from the latter infections exhibited no parasites, in the majority of cases, and 

less than five parasites in the few remaining cases. The data from these 

experiments was not utilized in the analysis and these fish were not used for 

any re-infections. Out of the six successful infections, fully scaled carp were 
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infected at each time, scattered mirror carp at five of the six times and linear 

mirror and leather carp at four of the six times. Each scale pattern phenotype 

was separately infected on at least one occasion with each of the parasite 

strains. In three of the six successful infections, both strains of parasite were 

used (on different groups of fish), to facilitate .parasite strain comparisons. Of 

the 217 fish which were successfully infected, 13.1 were infected with the 

tropical strain of /. multifiliis and 86 were infected with the temperate strain of /. 

multifiliis. Parasite burdens on all scale pattern phenotypes and at all 

temperatures ranged from 0 to 179 for the tropical parasite strain infections and 

from 0 to 329 for the temperate parasite strain infections. At each of the three 

temperature regimes temperatures were relatively constant over the course of 

the experiment (16.01 ±0.81 °C, 19.34±0.37 °C, 23.85± 1.07 °C). 

5.3.1. Analysis. 

Figure 25 shows plots of residual values against fitted values for 

untransformed, square root transformed and logarithmic transformed data. 

From the clearly non-random distribution of untransformed data there is a 

progression to a random distribution in the case of the logarithmic transformed 

data. Hence, logarithmic transformed data fulfils the assumptions of analysis of 

variance and is the data set used in the following analysis, which is shown in 

Table 9. 

Taking major effects first of all, only parasite strain effects are not significant. 

Effects due to temperature are significant at the 5% level, whilst all other effects 

are significant at the 0.1% level (i.e. surface area, time of experiment and scale 

type). Although carp with larger surface areas harboured more parasites, the 

relationship was not a direct one, i.e. a doubling of surface area does not imply 

a doubling of the parasite burden. The GUM package estimated that a 100% 

increase in surface area would be accompanied by a 30±5% increase in 

infection level. This relationship was significant (P < 0.001) and covered the 

range in surface areas from 1.20 to 9.30 cm2 • Therefore, this stresses the need 

to separate this variation when determining the variation in resistance to./. 

multifiliis infection in stocks of fish. 
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Only a single parasite isolate was used .for each strain of parasite (strains K 

and L, Appendix B). Differences in the infectivity of the two strains were not 

significant(P>O.lO), but temporal variation in infection levels was seen for both 

strains of the parasite (Figure 27). Infections were attempted during April .five 

times, but were unsuccessful. During May however the majority (64%) of fish 

were infected and the highest infection levels for both parasite strains were 

recorded (temperate strain, 329 trophozoites per fish, tropical strain 179 

trophozoites per fish). Following this another unsuccessful infection occurred. 

The next infection occurred in the second half of June, with infection levels of 

upto 58 trophozoites per fish. Following this insufficient theronts precluded 

infection attempts until early August. Here a single unsuccessful infection was 

followed by a successful infection, but only with infection levels of upto 13 

trophozoites per fish. No further infections were attempted after this time, 

despite the strains remaining in passage at a low level for a further 64 and 121 

days for strains K and L respectively. 

Further analysis of the scale type effects, using pairwise comparisons, 

demonstrates that the four scale patterns can be divided into two groups; (a) 

fully scaled carp and (b) scattered mirror, linear mirror and leather carp. The 

difference between these two groups is significant at the 0.1% level. The first of 

these groups has a mean infection level of 13.44±25.55 trophozoites per fish, 

whilst the second group has a mean infection level of 36.41 ±58.84 trophozoites 

per fish. Hence significant between genotype differences were observed with 

fully scaled carp being more resistant than the other three genotypes. 

Three interaction terms were also analysed; scale type-parasite strain effects, 

scale type-temperature effects and parasite strain-temperature effects. Due to 

the data not being strictly orthogonal this had a slight, but not marked, effect 

upon the distributions of residual vs fitted value plots (Figure 26). These 

interaction terms provide some very interesting significant effects. Fully scaled, 

scattered mirror and leather carp all responded to the two parasite strains in a 

similar manner (P<O.lO), but linear mirror carp differed from the other three 

scale types at the 0.1% level. Figure 28 shows this response to each parasite 
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strain for all of the four scale pattern phenotypes. lt can be seen that for each 

scale type, except linear mirror carp, infection levels were higher for the 

temperate strain than the tropical parasite strain. However, the data for the 

linear mirror carp is composed of the smallest number of points, and those for 

the temperate strain only number seven, from a single tank of infected fish. 

Therefore, this apparent difference in the case of linear mirror carp is quite 

possibly due to insufficient data. The significance of this effect should therefore 

be treated with caution. 

With respect to scale-temperature interactions, pairwise comparisons were not 

significant (P>O.LO}, in every case except for that between fully scaled carp and 

scattered mirror carp (P < 0.05}. Figure 29 shows the relationship between 

temperature and infection level for each scale type of C. carpio. lt can be seen 

that there is a greater reduction in infection levels with increasing temperature 

for fully scaled carp than there is for scattered mirror carp. Hence, the 

difference between the two scale types is greater at higher temperatures. 

Whilst the variation in infection levels due to the use of different parasite 

strains was not significant, the two parasite strains did differ in their responses 

to changing temperature (P < 0.1 0}. Figure 30 shows the change in infection 

levels with temperature for each parasite strain. lt will be recalled that there are 

131 data points for the tropical parasite strain and 86 data points for the 

temperate parasite strain. T:he two distributions are distinctly different. Infection 

levels increase with increasing temperature for the tropical parasite strain, whilst 

they decrease with increasing temperatures for the temperate parasite strain. 

Infection levels also increased to higher levels with the temperate parasite strain 

(maximum = 329 trophozoites per fish) compared to the tropical parasite strain 

(maximum = 179 trophozoites per fish). The range of temperatures over which 

data was recorded was 9.8°C for the tropical parasite strain and 5.9°C for the 

temperate parasite strain. Parasite strains therefore do differ in their behaviour 

at different temperatures. 
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5.4. Discussion. 

In the previous chapter the presence of genetic variation between species and 

between strains within species; for resistance to I. multifiliis infections was 

established. A similar approach was taken here, but the experimental design 

was such that a ·lot more detailed information was obtained. The·common carp, 

C. carpio, was chosen, since this is a species which is cultured throughout the 

world and which has been the subject of many genetical studies. In order that 

the conclusions of this study would be applicable to a wide variety of 

environmental situations two 'strains' of parasite and three temperature regimes 

were employed. 

Once again, effects due to the time at which the experiment was performed 

were quite marked. A plot of infection levels against time, for successful and 

unsuccessful infections, shows this annual distribution (Figure 27). lhis annual 

distribution is far more complex than that of the previous chapter, since 

infections here also occurred at three different temperatures. However, when 

similar temperature regimes were used for both parasite strains at the same 

point in time, infection levels followed the same trend. Although data was 

recorded only over a period of four months the distribution again matches with 

that found in natural ponds. Infections w~re unsuccessful during April, but 

during May large infection levels (upto 329 trophozoites per fish) were recorded. 

By late June insufficient parasite was available to even attempt infections. Early 

August saw infections once more, but only at a low level (upto 13 trophozoites 

per fish). Following this the parasite could only be passaged at very low levels 

until the two strains were lost in early October and December. This interesting 

annual distribution will be discussed further in the final chapter. 

The range of temperatures used here was much greater than previous, being 

approximately 1 oac. Significant variation due to temperature was 

demonstrated. it can be seen from Figure 30 that infection levels increased 

with temperature for the tropical parasite strain. A similar effect was seen for 

within and between species comparisons in the previous chapter. The point 

was made there that temperatures also encode within them tank effects. On 
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three occasions here more than one tank of fully scaled carp were infected 

simultaneously and at the same temperature and with the same parasite strain. 

Such tanks did not differ (Hest,P>O.lO), suggesting that tank effects here were 

minimal, at least for fully scaled carp at each of the three temperatures and for 

each parasite strain. Counts of parasites on fish were quite low at lower 

temperatures for the tropical parasite strain (16°C, 9.38±10.90 trophozoites per 

fish, 19°C, 17.13±32.70 trophozoites per fish, 24°C, 14.45±32.48 trophozoites 

per fish). This has the consequence that in colder climates there is less 

variation in infection levels, thus reducing the selection differential which would 

be obtainable in any selection programme. However, for the temperate parasite 

strain the opposite is true - 16°C, no infections; 19°C, 63.12±70.25 trophozoites 

per fish, 24°C, 4.48 ±3.46 trophozoites per fish. Hence, the level of infection at a 

particular temperature depends upon which parasite strain caused the infection. 

Similarly, the effect of a changing temperature may promote or inhibit an /. 

multifiliis epizootic, depending upon the parasite strain present. 

The range of surface area values here (1.2- 9.3 cm2) was similar to that in the 

previous chapter ( 1 .5 - 11 .1 cm2) and once again larger fish were found to 

harbour relatively less parasites. Young carp grow quickly and, therefore, in a 

disease study such as this, it is essential to determine the surface area of the 

infected fish in every infection. 

The most interesting points of this investigation are the comparisons of 

different scale types and the comparison of different parasite strains. Fully 

scaled carp were found to differ from the other three scale types, which formed 

a homologous group. Scale pattern genotypes for the four scale types were; 

fully scaled carp, Ssnn; scattered mirror carp, ssnn; linear mirror carp, SsNn; 

and leather carp, ssNn. The t statistic, used to determine the statistical 

significance of differences among scale types, showed that there was no 

significant difference among the three genotypes ssnn, SsNn and ssNn. One 

comparison made by other workers (Probst, 1953; Chan May-Tchien, 1969; 

Kirpichnikov, 1981) is to observe the differences between the two groups of 

carp with Nn and nn genotypes. Here this amounts to comparing linear mirror 
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and leather ca~p with fully scaled and scattered mirror carp. Similarly Ss fish 

can be compared with ss fish by observir:~g the differences between fully scaled 

and linear mirror carp, as one group,' and. scattered mirror and leather carp, as 

the second group. Such comparisons are not meaningful here though since 

fully scaled carp were found to differ significantly from the other three scale 

pattern phenotypes, which formed an homologous group. 

lt is widely accepted that the Nallele has the action of reducing fitness in carp 

(Kirpichnikov et a/, 1937). Probst (1953) suggested that the N gene is 

associated with a defect in the development of the mesenchyme. Kirpichnikov 

(1981) considered theN allele to represent a large mutation, probably involving 

a chromosomal rearrangement and deletion of a small part of the chromosome. 

The action of the S allele is less well documented, but the homozygous 

dominant state is considered to have been the ancestral type (Kirpichnikov, 

1981 ). The mutation of the S allele to the s allele then resulted in the 

appearance of mirror carp, with a reduced fitness (Kirpichnikov, 1981). Hence, 

it can be said that the presence of the N allele reduces fitness, whilst the S 

allele promotes fitness. 

The ranking of the four scale types from most to least resistant is as follows : 

fully scaled carp (Ssnn), 13.44±26.55 trophozoites per fish; linear mirror carp 

(SsNn), 26.13±40.45 trophozoites per fish; scattered mirror carp (ssnn) 

35.98±6l.71 trophozoites per fish; and leather carp (ssNn) 46.40±68.20 

trophozoites per fish. Hence it can be seen that the results here agree with the 

notion of the S allele promoting resistance and the N allele reducing resistance. 

An explanation of why the Ssnn genotype is significantly more resistant than the 

group of SsNn, ssn and ssNn genotypes, requires the hypothesis that the action 

of the S allele is greater in the absence of the N allele. Kirpichnikov ( 1981) 

however states that in the presence of the N allele the action of the S allele is 

stronger. lihe action upon the reduction of all the fins is cited as an example, 

but the explanation of the detail of this is confusing (leather and linear mirror 

carp genotypes are only referred to as s,N and S,N respectively) and the 

original references are written in Russian. 
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Analysis of scale type-parasite strain interactions demonstrated highly 

significant differences between linear mirror carp and the other scale types. 

However, it was pointed out that this significance was quite likely to be due to 

the lack of data for linear mirror carp infected with the temperate parasite strain 

(only a single tank of seven fish were infected). Fully scaled carp differed only 

from scattered mirror carp in terms of scale type-temperature interactions; but 

fully scaled carp were not significantly different from either linear mirror or 

leather carp. Therefore, there is some degree of similarity between the 

response of fully scaled carp, linear mirror and leather carp with respect to 

changing temperatures and different strains of parasite. However, whilst the 

pattern of response to these parameters is similar, the level at which that 

response is occurring is different, as shown by the significant scale type 

differences. 

Differences between Nn and nn fish are, according to Kirpichnikov (1981 ), 

more apparent under unfavourable conditions. The apparent similarity of 

scattered mirror carp (ssnn) with linear mirror carp (SsNn) and leather carp 

(ssNn) here could, therefore, be due to favourable conditions being present for 

all scale types. Such favourable conditions include water quality and stocking 

levels. Here water quality was kept at an optimum level and stocking densities 

maintained as low as possible. lt must be borne in mind that under different 

conditions further differences between scale types may become apparent. 

The consequences of fully scaled carp being the most resistant group 

depends upon where those carp are being cultured. In general fully scaled carp 

are not cultured as edible fish since mirror carp have fewer scales, making food 

preparation easier. Kirpichnikov (1981) states that leather carp are not 

produced in the U.S.S.R., the F.R.G., the G.D.R. and a number of other 

countries. Enquiries around the U.K., in order to obtain the fish used here, 

showed that production is predominately of scattered mirror carp, except for 

ornamental purposes. Production in Israel is apparently of scattered mirror carp 

also (Hines & Spira, 1973b). 
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Finally, it was interesting that effects due to parasite strains were not 

significant. lihere has been some discussion for a number of years as to 

whether different strains of /. multifiliis exist. The two parasite strains here 

arose from different continents and whilst comparisons of infection levels for the 

two parasite strains were not significant, their responses to changing 

temperatures were significantly different. There are two possible explanations 

for this; i. genotype-environment differences between strains exist, or ii. the 

difference in response is a reflection of the temperature to which the parasite 

strain was acclimated. In an attempt to determine which of these two 

explanations was correct it was repeatedly attempted to acclimatise the 

temperate strain from 16"C to 24"C and the tropical strain from 24"C to 16°C. 

This was initially attempted as a one step process and then, later, as a two step 

process. Should a similar effect still be present with the strains in a reversed 

mode of passage then parasite strain-temperature interactions were likely to be 

due to different acclimation temperatures. 

However, in the majority of cases strains of parasite could not be moved to a 

different temperature regime for more than a single passage. Indeed, the few 

infections which survived more than one passage at the new temperature 

produced only a very small number of theronts and soon died out. One can 

only assume therefore, that each parasite strain is adapted to its acclimation 

temperature and will not tolerate deviations of 8"C from this. Further 

information in support of this is that 'granular' areas were often seen on fish 

infected at the opposite extreme of temperature to the parasites acclimation 

temperature (i.e. 24"C for the temperate strain and 16"C for the tropical strain). 

Nothing conclusive can be said about these 'granular' areas, but they have the 

appearance and distribution of previous parasite locations. The area was not 

open to the exterior, as if the parasite had left the host, but was covered over 

and the contents suggested debris left from the remains of a parasite. 

Presumably some host response or environmental factor had resulted in the 

parasites demise and degradation. Further work, attempting to acclimatise the 

parasite to different temperatures in smaller steps, is required before discussing 

this matter in greater depth. 
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lt is proposed therefore that parasite strain differences do exist, although 

conclusive proof is still· lacking. The response to temperature changes from the 

parasites norm is interesting in that one recommended treatment for 

ichthyophthiriasis is to increase the .temperature. For the temperate strain of 

parasite used here increasing the temperature to over 26°C would eradicate the 

parasite, Figure 30. Such an action would, therefore, reduce the number of 

theronts produced in successive parasite cycles and also possibly promote the 

destruction of parasites in situ on the host. The latter point merits further 

investigation since only one chemical, mercurous acetate, is known to have any 

effect on /. multifiliis parasites in situ (Dashu & Lien-Siang, 1960; Nousias, 

1987) and its' use on food fish is questionable. However, raising the 

temperature for infections with the tropical parasite strain would only serve to 

increase infection levels, Figure 30. This is perhaps the reason for the debate 

over the effectiveness of increased temperature upon the control of 

ichthyophthiriasis. 

In summary then, genetic differences do exist between different carp scale 

phenotypes and possibly between strains of parasite. However, the most 

resistant scale type (fully scaled) is not the most commonly cultured scale type. 

Environmental conditions have been shown to affect resistance to 

ichthyophthiriasis, in terms of temperature. Hence differences between scale 

types will be more apparent in particular climates. Should scale types be 

improved further then the techniques of selection and/or hybridization must be 

employed. The effectiveness of such approaches in increasing resistance to 

ichthyophthiriasis will be investigated in the next two chapters. 
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Figure 25 Plots of residual values vs fitted values after 
analysis for the parasite burdens of lcthyophthirius multifiliis 
on the four scale types of common carp ( Cyprinus carpio). 
a. Untransformed data, b. Square root transformed data, 

c. Natural logarithmic transformed data. 

b 
10 

. : . . . . 5 . . 
. . . . . . . . . .. . 

~ 
.~; .. . . .. . 
~ .... 7Jt ... -

..::-

fli ... t - )·· .I .. . 
tU : r,•C.·.,. •,-
::l ~~·····. 

. ~ . 
't:l 0 .. 
. .. '~«1.-, :-. ; 'r. 
Ill 
Q) 

••. ¥ .... 

c:: ' ·. t "=' . . . 
-5 . . 

-100 -10 

fli -tU 
::l 
'0 .... 
Ill 
Q) 

c:: 

c 

-so 0 50 100 

Fitted values. 

2 • • • # 

: ·, ••• ,;...& ••• 
• ·.:. t~- •• • • • • • 
.,; •• ""! ....... .,· .. 

0 • • ••••• _,.. ~- •• •• ; • . ' ~,,··.'-·..::.·. ,. .. . . 
'"·· ... : ·:. ·: ..... ' ~ . . . .. '" ' .. . -2 

150 

-4+-----~----~----~ 
0 2 4 6 

Fitted values. 

-5 0 5 10 15 

Fitted values. 

101 



Table 9 Analysis of variance tables for each of the variables 
in Jcthyophthirius multifiliis infections ofthe four scale types of 

common carp, Cyprinus carpio. 6 

Source of d. f. Sum of Mean F p 
variation. Squares. Squares. 

Effects due to area, scale 6 137.4 22.9 21.7 ........ 
type, parasite strain and 
temperature. 
Effects due to time. 5 91,,8 18.4 17.4 •••• 
Residual. 205 216.6 1.1 

Total. 216 445.8 

Effects due to time, scale 10 188.9 18.9 17.9 **** 
type, parasite strain and 
temperature. 
Effects due to area. 1 40.3 40.3 38.1 •••• 
Residual. 205 216.6 1 .1 

17otal. 216 445.8 

Effects due to area, time, 8 194.5 24.3 23.0 •••• 
parasite strain and 
temperature. 
Effects due to scale type. 3 34.7 11.6 10.9 **** 

Scale - parasite strain 3 23.2 7.7 7.3 ***• 
interactions. 
Scale - temperature 3 5.7 1.9 1.8 NS 
interactions. 

Residual. 205 216.6 1.1 

Total. 216 445.8 

Effects due to area, time, 10 226.5 22.6 21.4 •••• 
scale type and temperature. 
Effects due to parasite 2.7 2.7 2.5 NS 
strain. 

Parasite strain 4.0 4.0 3.8 • 

- temperature interactions. 
Residual. 205 216.6 1.1 

Total. 216 445.8 

6Significance levels as in Table 4. 
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Table 9 continued ... 

Source of d.f. Sum of Mean F p 
variation. Squares, Squares. 

Effects due to area, time, 10 222.8 22.3 21.1 **** 
scale type and parasite 
strain. 
Effects due to temperature. 1 6.4 6.4 6.1 •• 
Residual. 205 216.6 1.1 

Total. 216 445.8 

Significance levels as in Table 4. 
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Figure 26 Plots of residual values vs fitted values (log transformed 
data) after analysis of interaction effects of parasite burdens 
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Figure 30 The relationship between temperature and 
infection level for each strain of lcthyophthirius multifiliis. 
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6.1. Introduction. 

Chapter 6 

Heritability estimation. 

lihe observed phenotypic variance (Vp) of a trait can be partitioned into its 

causal ·components thus; 

Vp=VA+V0 +V1+VE 

where; VP = phenotypic variance, VA =.additive variance, V0 = dominance 

variance, V1 = interaction variance terms, V£ = environmental variance. 

Heritability (h2 ) is the ratio of additive variance to phenotypic variance of a trait 

(VA/Vp). Additive variance is the sum of the effect of each allele that contributes 

to the production of the phenotype, across all additive loci. Additive variance in 

a population does not depend upon specific allele interactions or combinations, 

and therefore is not disrupted during meiosis. Since additive variance is 

transmitted from one generation to the next, heritability is a useful quantity, 

allowing one to predict the following generations. For this reason, if the value of 

h2 is large, then it is worthwhile attempting to exploit the genetic variation 

through selection methods. Indeed, additive variance is considered by many as 

the greatest genetic resource available for stock improvement (Gall, 1983). The 

response (R) to selection is simply the product of the heritability value (h2) and 

the selection differential ( S ) , where S is the size of the difference between the 

selected population and the population average. Heritability values lie between. 

0 and 1.0, and hence the greater the heritability value the larger the response 

( R ) to selection. 

There have been many studies in aquaculture which have determined 

heritability values for a variety of traits. Gjedrem (1983) and Tave (1986) have 

perhaps the best summary tables of such studies to date. These studies 
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predominately concentrate on reproductive, morphological and other productive 

phenotypes. Studies involving fish pathogens are relatively few. Tolerance to 

Vibrio anguil/arum in atlantic salmon has a heritability value of 0.11 ±0.06 

(Gjedrem & Aulstad, 1974). In chum salmon Smoker (1981) obtained a 

heritability value of 0.5±0.6 for resistance to Vibrio anguillarum. Mclntyre & 

Amend (1978) looked at resistance to IHN virus in sockeye salmon. Values of 

112 varied between 0.27±2;6 and 0.38±5.1. Bone (1983) found a heritability of 

zero for resistance to lcthyophthirius multifiliis in one strain of platyfish 

(Xiphophorus maculatus, red wagtail). 

Since the calculation of 112 involves VP, then it also involves VEt since VE is a 

component of VP" Several studies have shown that different environments 

change h2, e.g. the heritability for hatching time was found to be 0 when rainbow 

trout eggs were hatched in incubators, but 0.23 when hatched in troughs 

(Mclntyre & Blanc, 1973). Heritability values can thus only act as a guideline in 

a different environment to that in which it was measured. Moav & Wohlfarth 

(1976), for example, found a 112 "" 0 for increased growth rate in an Israeli strain 

of Cyprinus carpio. As a result, many have concluded that it is impossible to 

improve productivity in common carp culture via selection, since little, or no, 

additive variance exists for increased growth rate. Smfsek (1979), however, 

found heritabilities of 0.49, 0.15, 0.25 and 0.21 for body weight at 1, 2, 3 and 4 

years respectively in a Czechoslavakian population of carp. 

6.2. Determination of heritability. 

There are six methods of determining 11 2, (Tave, 1986); full-sib analysis, half­

sib analysis, parent-offspring analysis, mid-parent-offspring analysis, diallele 

analysis and realized h2 determination. The choice of analysis is determined by 

factors such as the numbers and types of relative available. Cattle breeding, for 

example, only produces a few offspring per female, but generally, large 

numbers of cows are mated. On the whole, however, Falconer (1981) suggests 

the use of the half-sib or regression of offspring on father methods, since the 

covariance in these two methods is least likely to be augmented by an 

environmental component. 
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The half-sib analysis is perhaps the most useful approach. with fish. lt draws a 

reasonable compromise between accuracy, amount of information obtainable 

and practicality. A number of males (sires) are each mated to several females 

(dams), the males and females being randomly chosen and assigned to each 

other. A number of offspring are then produced per dam and these provide the 

data in the form of a population of full-sibs and a population of half-sibs. 

Backer (.1975) describes the model for such a design and also the 

computation of the component parts. 

Yk=ll +a..+A . .+e .. " 
1) t" I 1-'rj I)IE.. 

where Yiik is the record of the !(lh progeny of the /h dam, mated to the lh 

sire; 11 is the common mean; a.; is the effect of the lh sire; ~ii is the effect of the 

/h dam, mated to the lh sire; and eiik is the uncontrolled environmental and 

genetic deviations attributed to the individuals. 

An analysis of covariance is performed. The phenotypic variance can thus be 

partitioned into differences between the progeny of different males (the between 

sire component, cr~ ), differences between progeny mated to the same male 

(the between dam within sires component, cr~) and differences between 

individual offspring of the same female (the within progenies component, cr~v ). 

The form of the analysis is therefore; 
Source d.f. Mean Composition 

square of mean square 

Between sires. s-1 MS5 
' ' ' = O"iv+kl<JD+kJ<JS 

Between dams d-s MS0 
within sires. 

Within progenies. n-d MSw 

where; 

s = number of sires, 
d = total number of dams, 
n =total number of progeny, 

and, for equal numbers of dams per sire and progeny per dam, 

k1 = k2 = number of progeny per dam, 
k3 = number of progeny per sire. 
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From this it can be seen how each component can be calculated from the 

mean square values using the figures k1_3• lihis, however, only applies to· a 

balanced design~ For unequal numbers of offspring per dam and dams per sire 

Dickerson (1959), Turner & Young (1969) and Seeker (1975) have derived 

methods of estimating.kp k2, k3, cr~. cr; and ~w· 

In terms of variance and covariance cr~. cr; and a:v can be partitioned as below; 

Sires: 

Dams: 

Progenies: 

Total: 

Sires+Dams: 

cr~ =Cov(HS) 

cr; =Cov(FsrCov(HS) 

O'~v =Vp-Cov(FS) 
., ') , .., 

crr=crs+cri)+0"\1,= V P 

O'~+cr; =COV(FS) 

where, Cov(FS) = covariance of full sibs and Cov(HS) = covariance of half sibs. 

Hence, Seeker (1975) demonstrated how h~, h; and ~~~+g can be deduced; 

1 2 
1 2(<JS+O'v) I I l 1 I 

hs+o= (VA +-Vv+-V M +-V AD+-Vvv+-V AAA +2VM)/Vp cri 2 2 4 8 4 

Above V1 has been separated into its components to show where dominance 

interactions, in particular, are present. Maternal variation W.w) is an important 

element in the life of some animals. 

Calculation of the standard error of each of these estimates is described by 

Turner & Young (1969) and Seeker (1975). 

8Heritability measured among sires, heritability measured among dams and heritability 
measured among sires and dams, respectively 
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6.3. Design of experiments and methodology. 

Heritability studies were performed using a half"sib analysis approach. The 

species used were X. maculatus (blue platy), X. maculatus (red wag ~tail platy), 

X. macUiatus (yellow comet tail platy), X. maculatus (Vera Cruz platy) and 

Ameca splendens. For each species five tanks were set up, each containing 

one male and four virgin females. None of these fish had ever been exposed to 

I. multifiliis previously. Plant cover ( Vesicularia dubyana) was provided and 

the fish left to breed. Young from each female were isolated in a small perspex 

tank (2.4 I). Diet was initially fresh Artemia nauplii, followed by the addition of 

ground Promin pellets and ground Tetramin flakes. Water changes were 

performed regularly and fry were moved to 23.2 I tanks as they grew. When 

adult (approximately 1 year old) these offspring were then exposed to /. 

· multifiliis. Infections were performed, as previously, using a dose of 2000 

theronts per fish. Infection levels, which were counted after 3 days, were 

measured on an area basis (see chapter 3). An initial analysis was performed 

using the Generalised Linear Interactive Modelling package (GLIM) on a Prime 

computer (see chapter 3). For natural logarithmic transformations on data 

which included zero values the normal practice of using (y+ I) was used. 

Following this, estimates of heritability were computed by the above method on 

a .BBC microcomputer (Appendix C). 

6.4. Results. 

Only one X. maculatus (red wag tail) female produced any fry, although in a 

sizeable number. A similar situation prevailed with X.· maculatus (blue platy), 

where only one female produced three fry. An estimate of h2 could, therefore, 

not be obtained from these stocks. 

The offspring produced and used in experiments for X. maculatus (yellow 

comet tail), X. maculatus (Vera Cruz) and A. splendens are shown in Tables 10, 

11 and 12 respectively. The two X. maculatus stocks were infected at two 

separate points in time, whereas all A. splendens infections occurred 

simultaneously. In the case of X. maculatus (Vera Cruz) the two infections 
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occurred 9 days apart in late May, with 38 fish being infected on the first 

occasion and 51 fish infected on the second occasion. lihe two X. maculatus 

(yellow comet tail) infections occurred 18 days apart in late September (34 fish) 

and mid October (26 fish). A. sp/endens were infected in mid January (42 fish) 

only. For each stock of fish only a single parasite isolate was used, but these 

were not the same across stocks, X. maculatus (yellow comet tail) was infected 

with parasite isolate H, X. maculatus (Vera Cruz) with isolate P and A. 

splendens with isolate M (Appendix B). Mean ages at infection were 44.8± 1.2 

weeks for X. maculatus (yellow comet tail), 58.0±3.3 weeks for X. maculatus 

(Vera Cruz) and 54.7±2.3 weeks for A. splendens. 

Whilst the numbers of broods are not ideal, (7 broods were infected for X. 

maculatus, yellow comet tail, 9 broods were infected for X. maculatus, Vera 

Cruz, and 8 broods were infected for A. splendens), sufficient data was 
are 

obtained to enable an estimation of h2 to be made. The infection data to be 

found in Tables 13, 14 and 15, with water quality parameters for these 

infections in Table 16. 

For A. splendens nitrite and ammonia levels were monitored, twice daily, 

throughout the experiment. Those shown in Table 16 are for pre- and post­

experiment only. When levels of nitrite exceeded O.lmg/1 or ammonia exceeded 

I.Omg/1, partial water changes were performed, provided it was at least 18h after 

the initial infection. The temperatures used in the analysis were the mean 

temperatures of each tank throughout the experiment. These varied little : X. 

maculatus (yellow comet tail) 2l.8±0.2°C, X. maculatus (Vera Cruz) 25.2±0.3°C 

and A. splendens 24,8±0.4°C. 

The X. macu/atus (Vera Cruz) were the smallest (2.29±0.79 cm 2) of the three 

stocks examined, with X. maculatus (yellow comet tail) and A. splendens being 

of similar size (6.11 ± 1.40 and 5.68± 1.59 cm2 respectively). The male : female 

ratios of all offspring infected were 1 : 1.1 for X. maculatus (yellow comet tail), 1 

: 1,3 for X. maculatus (Vera Cruz) and 1 : 1.8 for A. splendens. Parasite 

burdens averaged 186.03±38.06 and 305.30± 123.80 trophozoites per fish on the 
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two occasions that X. maculatus (yellow comet tail) were infected. Such figures 

for X. maculatus (Vera Cruz) infections were 7.11 ±6.34 and 124.76±61.02 

trophozoites per fish. Infection levels on A sp/endens averaged 16.90±6.52 

trophozoites per fish for all offspring .infected. Mean infection levels for each of 

the broods and each of the sires are shown in Tables 13 to 15. 

6.4.1. Analysis of data. 

The total counts of /. multifiliis on each fish were analysed initially using the 

Generalised Linear Interactive Modelling Package (GUM) on a Prime computer. 

Factors included in this analysis were the surface area of the fish, the sex ofthe 

infected fish, the temperature of the water during infection and, except for A. 

splendens infections, the time of the experiment. Natural logarithmic 

transformed data was used to remove the correlations of means with variance 

found in untransformed data for each of the three stocks of fish (Figures 31 to 

33). 

The series of anova tables produced are shown in Tables 17 to 1,9_ The time 

at which the experiment was performed was not applicable to A. splendens, but 

provided a significant amount of variation for both X. maculatus (yellow comet 

tail) (infections at 18 days apart, P<0:001) and X. maculatus (Vera Cruz) 

(infections at 9 days apart, P < 0.00 I). The effect of variation due to temperature 

was not significant for any of the three stocks. As mentioned in the subsection 

above however, the variation in temperature was small (maximum standard 

deviation = 0.42°C). The significance of variation due to the sex of the infected 

fish and variation due to the surface area of that fish varied between the three 

stocks of fish. Variation due to area did not form a significant amount of the 

variation in the case of X. maculatus (Vera Cruz) and A. splendens (P>O.IO), 

but such variation was significant (P<0.05) for X. macu/atus (yellow comet tail). 

lt will be recalled that surface area values for the three species were 2.29±0.79, 

5.68±1.59 and 6.11±1.40 cm2 respectively. The relationship between surface 

area and infection levels for X. maculatus (yellow comet tail) was not a direct 

proportional one, but involved a factor of 0.10±0.04. Hence, for X. maculatus 
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(yellow comet tail), increasing size of fish by 100% produced a 10% relative 

increase in parasite burden~ 

The sex of the infected fish had a significant effect in the case of X. maculatus 

(Vera Cruz) (P<O.lO) and A. splendens (P<0.05), but such variation was not 

significant (P>O.lO) for X. maculatus (yellow comet tail). Infection levels on 

males and females were 226.1 ± 108.7 and 247.9± 100.7 trophozoites per fish for 

X. maculatus (yellow comet tail), 85.3±82.0 and 66.5±68.2 trophozoites per fish 

for X. maculati.Js (Vera Cruz) and 20.4±6.3 and 15.0±5.9 trophozoites per fish 

for A. splendens. Hence, in both the significant cases the male fish harboured 

more parasites than female fish. lt should also be mentioned that variation due 

to sex was the only significant factor for A. sp/endens (Table 19). 

6.4.2. Estimation of variance components and heritability. 

The data, from each of the experiments here, falls into an unbalanced 

hierarchical design. With unequal numbers of dams per sire and progeny per 

dam the coefficients k1_3 are determined, as mentioned above, differently; 

k 3 

where; 

n .. -~.Ljnt 
""-'• n .. 

L; Ljn~ L; I1n~ 
n. n 
I. 

"s 

~ "2 
'-· '· n ---.. n 

n .. =total number of progeny, 
n;. = number of progeny per sire, 
n;j =number of progeny per dam, 
n, = degrees of freedom associated with sires, 
nd = degrees of freedom associated with dams. 
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Seeker ( 1975) commented that the· standard errors and confidence limits of 

heritability estimates have not been.deterrnined for unbalanced designs. Turner 

& Young (1969), tlaough, do describe the computation of standard error for such 

heritability estimations. This was based upon the conservative approximation of 

Dickerson (1959). The approximate standard errors are; 

1. For h~. 

where, 

2. For h~. 

where, 

where, 

48 cr(h2)==-, 
cr:; 

__ 12 [MS~ MS~] 
8-V- -+-

2 nd no 
kl 

and 11
0 

is the degrees of freedom associated with the offspring. 

Given the above computation a BASIC program was written (Appendix C) and 

the infection data was analysed on a BBC microcomputer. Three analyses 

were performed. The total count data and its natural logarithm were used in the 

analyses, but, since the factors of time of the experiment, surface area of the 

fish and sex of the infected fish had been shown to have varying significant 

effects on infection levels, another analysis was also performed. In this analysis 
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the fitted, or modelled, values of the GUM analysis were used, These values, 

therefore, had effects due to time, surface area and sex removed, and provided 

a more accurate heritability estimation, since variation present will be due solely 

to differences between full and half-sib groups. 

Anova tables are shown in Tables 20 to 22. These tables also show the 

percentage of the mean square accounted for by each level of the analysis of 

variance. lt can be seen that in each case the distribution of mean squares is 

very different between the total count analysis and the modelled values 

analysis. The variance components and heritability values were estimated and 

are shown in Table 23. For X. maculatus (Vera Cruz) and A. splendens s·ome 

values of cr~ and cr~ were computed which were less than zero. This, somewhat 

contradictory, situation of a negative variance component can be explained in 

terms of the significance of such a component. Tietjen & Moore (1968) 

describe a method of testing the significance of variance components, from an 

unbalanced design, by calculating the inverse of a matrix, whose elements 

include the coefficients of the variance components (here k1_3). The 

approximate F-test data is shown in Table 24. As can be seen, the degrees of 

freedom for the cr~ F-ratios are low, which is the combined result of the low 

numbers of sires used and the poor breeding performance of those sires. The 

degrees of freedom for cr; are greatly influenced by the numbers of females 

which produced offspring, which was also low here. Therefore due to the 

reasons above and the conservative nature of this F approximation, values 

were not significantly different from zero, at the 1 0% level, for all variance 

components except cr~. Furthermore, none of the negative variance 

components were significantly different from zero, thus clarifying this apparent 

anomaly. 

The effect of using logarithmic transformed data and the GUM analysis upon 

heritability estimation can be clearly seen from Table 23. In each case, and 

especially with A. splendens, the heritability estimates differ, demonstrating that 

these factors can certainly mask the extent of additive variation in the 

population. The heritability values obtained using the modelled data are the 
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most precise estimates here with h~ being 0.75 ± l.lO, 0.23± 1:04 and 0.00± 1.05 

for X. maculatus (Vera Cruz), X. maculatus (yellow comet tail) and A. splendens 

respectively. Equivalent values of~~~ were l.l3±0.93, 0.92± 1.06 and 1.54±1.40. 

Hence, it ·can be seen that~~~ was greater than ~~~for each stock of fish. Only in 

the case of ~~~ for A. splendens was a negative, and therefore zero, heritability 

value obtained. In the remaining cases, therefore, additive variance was found 

to be present, providing good potential for the improvement of resistance to /, 

multifiliis infection. 

6.5. Discussion. 

The only other study where heritability has been estimated .for resistance to I. 

multifiliis is that of Bone (1983) where a red wagtail stock of X. maculatus was 

used. The value of cr~ was nega,tive and effectively zero. This was assumed by 

Bone, but testing of cr~ by the above method of Tietjen & Moore (1968), showed 

that cr~ is not statistically different from zero, F=0.03012.6.0J• P>O.IO. Hence, this 

implies 11~=0.00± 1.04. Bone (1983) did not proceed with a ~~~ calculation, but 

re-working of the data presents a figure of 5.61 ± 1.80. Again testing of cr~ was 

not performed, but such a calculation shows that cr~ is significant, 

F= 146.7516•1241 , P < 0.00 l. A natural logarithmic transformation of total parasite 

counts does not alter the significance of cr~ or cr~ and produces heritability 

estimations of 0.00± 1.01 and 5.28± 1.75 for ~~~ and ~~~ respectively. In Bone's 

case the between dams mean square accounted for 95% of the total variation. 

Here such values were much lower being 29.9% for X. maculatus (Vera Cruz), 

33.8% for X. maculatus (yellow comet tail) and 42.9% for A. splendens, (based 

on the anova of GLIM modelled values). 

In discussing the heritability values of Bone (1983) and those found here, one 

is presented with the problem of the significance of the variance components. 1t 

is not infrequently that heritability studies, based on an unbalanced design, are 

published (Tietjen & Moore, 1968). Commonly, the significance of variance 

components is not tested, since F-approximation tests are considered to be 

very conservative. An exception to this, is the body of work published on a 
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collection of Norwegian trout stocks that were investigated by a large group of 

workers (e.g. Gunnes & Gjedrem, 1978, 1981'). 

rhe maximum value of h2 is theoretically 1 .0. The value of h~ for X. 

maculatus (Vera Cruz), however, was 1.13±0.93 and h~ for A. splendens was 

1.54± 1.40. Heritability values greater than 1.0 have been reported elsewhere 

(see reviews by Gjedrem, 1983, and Tave, 1986). Durborow et a/ (1985) 

obtained a heritability of 1.7±0.1 for channel catfish fry mortality at 1.1 ppm 0 2. 

In the majority of such cases, including the one cited, the estimation of 

heritability was by a method which also included V 0 and/or V M· From the 

division of each heritability estimation into the variance components involved 

(see page 112), it can be seen that h~ exceeds h~ by 

V0+~V AA+~V AD+~V00+~V AAA+4vM, Only two of these terms involve additive 

variance alone; and therefore the difference between h~ and h~ estimates is 

principally due to dominance (V0 ) and maternal (V M) variance. Differences in 

dam and sire heritability estimations have been recorded in several studies 

(Gunnes & Gjedrem, 1978 ; Refstie & Steine, 1978). Such differences were 

present here in each of the three stocks, but especially in the case of A. 

splendens, where only h~ is greater than zero. In addition, since it was always 

h~ which exceeded 1.0, it appears that non-additive genetic variation is' the 

reason for such high heritability estimations and V M· 

lt is difficult to accurately separate maternal and dominance components. 

Maternal effects are often only associated with young offspring. For example, 

Chevassus (1976) found a maternal effect in early growth of rainbow trout, but 

this effect disappeared after about 2 months. However, the offspring used here 

were quite mature (44.8 to 58.0 weeks - the typical life expectancy is 

approximately 102 weeks). Bones study ( 1983) of X. maculatus (red wagtail) 

used fish of of a similar age (46-54 weeks). Ayles (1974) calculated m, the 

magnitude of the sire variance relative to the dam variance component, as a 

function of the total variance, Calculation of such figures gives 0.10 for X. 

maculatus (Vera Cruz), 0.17 for X. maculatus (yellow comet tail), 0.34 for A. 

splendens and 0.88 for the X. maculatus (red wag tail) of Bone (1983). 
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Although the value of 0,88 for the X. maculatus (red wag tail) of Bone (1983) is 

much larger than the other figures it must be .borne in mind that this is based on 

unmodelled data, and will therefore include the,confounding effects of size, time 

and sex. 

All of these species are livebearing fish, which actively nourish their young in 

development. In xiphophorid fish there is no change in dry weight of embryos 

during gestation (Wourms, 1981). Scrimshaw (1945) estimated that this .is due 

to a 30-40°/o contribution from the mother, to maintain the weight of the 

developing embryo. However, the nourishment of developing A. splendens fry 

is even greater. During development in the mother an A. splendens embryo 

increases some 8,430% in dry weight (Wourms, 1981). This is achieved via the 

nutritive trophotaeniae (Turner, 1937), which is almost equivalent to the 

mammalian placenta in function. This then is one possible source of maternal 

variation, by protection conferred on the offspring, by the mother, through the 

nourishment which takes place. In this study, the maternal effects of A. 

splendens were approximately three or four times those found in the X. 

maculatus stocks. 

The standard errors of the heritability estimations appear to be quite 

substantial (0.93 - 1.40). This is undoubtably due to the fact that the 

conservative approximation of Dickerson ( 1959) had to be used because of the 

unbalanced nature of the data and the limited number of dams and sires. 

Standard errors in the literature are also often quite high. Reagan ( 1979) 

obtained heritabilities of 0.92 ± 1.08 for 30-day weight and 1.22± 1.11 for 30-day 

length in channel catfish. Smoker (1981) obtained heritabilities for the number 

of days between spawning and emergence in two strains of chum salmon : 

Kilches river 0:0 ± l.l and Whiskey river o,8 ± l.l. However, the heritabilities here 

include the highest yet recorded for disease resistance in fish. Mclntyre & 

Amend (1978) observed the resistance to IHN virus in sockeye salmon. 

Heritability values of 0.27±2.6 to 0.38±5.1 were obtained. Smoker (1981) 

determined the heritability for tolerance to Vibrio anguillarum in chum salmon as 

0.5±0:6. The heritability for the same trait in atlantic salmon has been estimated 
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as 0.11 ±0:06 (Gjedrem & Aulstad, 1974). The value of h~ for X. maculatus (Vera 

Cruz) here was 0,75 ±l.fO and therefore exceeds the heritability values of other 

fish disease studies and has a similar standard error to other recorded 

heritability estimates. Tave (1!986) stated that when h2 > 0.25 exploitation of 

the population via selection methods is quite effective. at producing change. 

There are, then, good possibilities for the selection for increased resistance to 1. 

multifiliis infection. The presence of a zero h; for A. splendens though stresses 

the need to determine heritability values for commercially farmed species. 
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Table 10 Xiphophorus maculatus (yellow comet tail) fry produced and infected 
in the heritability half-sib analysis. 

Age at infection Number Date of 
Dam. (weeks). infected. birth. 

A 45.7 1 22/11/85 

B 46.0 1 20/11/85 
Sire I c ---- 0 ----

D ---- 0 ----
A 45.9 8 21/11/85 

B ---- 0 ----
Sire II c ---- 0 ----

D ---- 0 ----
A 43.5 & 45.8 20 21-22/11/85 

B ---- 0 ----
Sire Ill c ---- 0 ----

D ---- 0 ----
A 43.7 9 20/11/85 

B 43.3 & 45.6 16 22-24/11/85 
Sire IV 

21/11/85 c 43.6 5 

D ---- 0 ----
A ---- 0 ----
B ---- 0 ----

Sire V c ---- 0 ----
D ---- 0 ----
A ---- 0 ----
B ---- 0 ----

Sire VI c ---- 0 ----
D ---- 0 ----
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Table 11 Xiphophorus maculatus (Vera Cruz) fry produced and infected 
in the heritability half-sib analysis. 

Age at infection Number Date of 
Dam. (weeks). infected. birth. 

A 63.4 6 18-21/2/87 

B 56.4 3 9/4/87 
Sire I 

13-15/4/87 c ---- 0 

D ---- 0 ----
A 57.0 & 64.1 21 14/2/87 

B 54.6 & 55.9 19 22/4/87 
Sire II 

24-27/4/87 c 54.0 4 

D ---- 0 30-31/3/87 

A 61.0 10 23-25/3/87 

B 59.0 6 1-4/4/87 
Sire Ill 

17/3/87 c ---- 0 

D ---- 0 12/4/87 

A 56.6 & 58.0 9 8/4/87 

B 56.0 11 21/4/87 
Sire· IV 

27-29/4/87 c ---- 0 

D ---- 0 ----

A ---- 0 ----
B ---- 0 ----

Sire V c ---- 0 ----
D ---- 0 ----
A ---- 0 ----
B ---- 0 ----

Sire VI c ---- 0 ----
D ---- 0 ----
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Sire I 

Sire II 

Sire Ill 

Sire IV 

Sire V 

Sire VI 

Table 12 Ameca splendens fry produced and infected 
in the heritability half-sib analysis. 

Age at infection Number 
Darn. (weeks). infected. 

A 56.9 9 

B ---- 0 

c ---- 0 

D ---- 0 

A 51.3 8 

B ---- 0 

c ---- 0 

D ---- 0 

A 55.9 6 

B 58.0 6 

c ---- 0 

D ---- 0 

A 54.1 2 

B 51.7 8 

c ---- 0 

D ---- 0 

A 55.3 1 

B 54.3 2 

c ---- 0 

D ---- 0 

A ---- 0 

B ---- 0 

c ---- 0 

D ---- 0 
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Date of 
birth. 

11/12/86 

21/10/86 

----

----
19/01/87 

23/09/86 

----
----

10/11/86 

03/12/86 

26/02/87 

----
31/12/86 

16/01/87 

05/01/87 

----
22/12/86 

30/12/86 

13/11/86 

----
23/09/86 

----
----

----
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Figure 31 Plots of residual against fitted values after the 
GUM analysis for total lcthyophthirius multifiliis burden on 

Xiphophorus maculatus (yellow comet tail) a. Untransformed data, 
b. Natural logarithmic transformed data. 
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Figure 32 Plots of residual against fitted values after the 
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GLIM analysis for total lcthyophthirius multifiliis burden on 
Xiphophorus maculatus (Vera Cruz) a. Untransformed data, 

b. Natural logarithmic transformed data. 
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Figure 33 Plots of residual against fitted values after the GUM 
analysis for total lcthyophthirius multifiliis burden on Ameca 

splendens a. Untransformed data, b. Natural logarithmic 
transformed data. 
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Table 17 Analysis of variance tables for each of the variables in the 
heritability determination infections of Xiphophorus maculatus 

(yellow comet tail). Natural log transformed data. B 

Source of d.f. Sum of Mean F P 
variation Squares Squares 

Effects due to time of the 3 3.050 1.017 11.640 **** 

experiment, sex and temperature. 
Effects due to area. 1 0.546 0.546 6.252 •• 
Residual. 55 4.803 0.087 

Total 59 8.399 

Effects due to area, 3 1.268 0.423 4.840 ••• 
sex and temperature. 
Effects due to time of 2.328 2.328 26.658 **** 

of the experiment. 
Residual. 55 4.803 0.087 

Total 59 8.399 

Effects due to area, time 3 3.592 1.197 13.711 •••• 
of·the experiment and temperature. 
Effects due to sex. 1 0.004 0.004 0.046 NS 
Residual. 55 4.803 0.087 

Total 59 8.399 

Effects due to area, time 3 3.447 1.149 13.157 **** 
of the experiment and sex. 
Effects due to temperature. 1 0.149 0.149 1.706 NS 
Residual. 55 4.803 0.087 

Total 59 8.399 

8Significance levels as in Table 4. 

133 



Table 18 Analysis of variance tables for each of the variables in the 
heritability determination infections of Xiphophorus maculatus 

(Vera Cruz). Natural log (y+ 1) transformed data.9 

Source of d.f. Sum of Mean F P 
variation Squares Squares 

Effects due to time of the 3 190.140 63.380 155.761 **** 
experiment, sex and temperature. 
Effects due to area. 1 0.980 0.980 2.408 NS 
Residual. 84 34.180 0.407 

Total 88 225.300 

Effects due to area, 3 157.150 52.383 128.736 **** 
sex and temperature. 
Effects due to time of 1 33.970 33.970 83.484 **** 

of the experiment. 
Residual. 84 34.180 0.407 

Total 88 225.300 

Effects due to area, time 3 189.970 63.323 155.622 **** 

of the experiment and temperature. 
Effects due to sex. 1 1.150 1.150 2.826 " 
Residual. 84 34.180 0.407 

Total 88 225.300 

Effects due to area, time 3 190.540 63.513 156.090 **** 
of the experiment and sex. 
Effects due to temperature. 1 0.580 0.580 1.425 NS 
Residual. 84 34.180 0.407 

Total 88 225.300 

9Significance levels as in Table 4. 
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Table 19 Analysis of variance tables for each of the variables in the 
heritability determination infections of Ameca splendens. 

Natural log transformed data.1 O 

Source of d.f. Sum of Mean F P 
variation Squares Squares 

Effects due to sex and 2 
temperature. 
Effects due to area. 1 
Residual. 38 

Total 41 

Effects due to area and 2 
temperature. 
Effects due to sex. 1 
Residual. 38 

Total 41 

Effects due to area and 2 
sex. 
Effects due to temperature. 1 
Residual. 38 

Total 41 

10Significance levels as in Table 4. 
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1.214 

0.006 
5.714 
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0.298 
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Table 23 Sire and dam variance components and heritability 
estimations for Xiphophorus maculatus {yellow comet 

tail platy), X. maculatus (Vera Cruz) 
and Ameca splendens. 11 

Total count Ln(Total count) Modelled values 
Component. analysis. analysis. analysis. 

X . maculatus 
yellow comet tail 

0'= 2069.72 0.0126 0.0038 
O'z 

D 3089.92•• 0.0421•• 0.0151•• 

h.~ 0.67 ± 1.19 0.32 ± 1.12 0.23 ± 1.04 

h.z 
D 1.01 ± 1.06 1.08 ± 1.10 0.92 ± 1.06 

fl.~+D 0.84 ± 0.77 0.70 ± 0.68 0.58 ± 0.62 

X. maculatus 
Vera cruz 

0'= - 764.08 0 .0644 0.4536 

0'~ 3151.62···· 1.2377•••• 0.6857•••• 

n: -0.53 ± 0.95 0.08 ± 0.98 0.75 ± 1.10 

hz 
D 2.19 ± 1.24 1.56 ± 1.07 1.13 ± 0.93 

h~+O 0.83 ± 0.69 0.82 ± 0.70 0 .94 ± 0.78 

A. ·splendens 

0'2 
' 

2.32 0 .0091 -Q.0040 
• z 
O'o -2.59 -0.0067 0.0118• 

hz s 0.22 ± 0.70 0.21 ± 0.73 -0.53 ± 1.05 

fLZ 
D -0.24 ± 0.89 - 0.16 ± 0.91 1.54 ± 1.40 

fl.~+ D -0.01 ± 0.32 0.03 ± 0.32 0.51 

11Significance levels as in Table 4. 
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Chapter 7 

Evidence for heterosis in resistance to 
lcthyophthirius multifiliis. 

7 .1. Introduction and aims. 

When little or no additive genetic variance (V A) is present low or zero 

heritability values are obtained. In this situation selection is very likely to yield 

no gains. However, one component of the total phenotypic variance still 

remains which may allow genetical improvements to be made, that of genotypic 

variance due to dominance deviations (V 0 ). This can be exploited via 

hybridization, which may produce heterosis in offspring, i.e. offspring which 

exceed either parent in the quality of a specific trait. 

Hybridization can produce both useful and unusable offspring from any 

population. The reason why hybridization is so hit-or-miss lies in the fact that it 

exploits V 0 , which is produced by the interaction of alleles at each locus. 

Dominance variance will, therefore, vary with genotype and is disrupted during 

meiosis. Consequently, dominance variance is not carried across generations, 

as with additive variance. The aim in any hybridization study, then, is to 

determine which two parental stocks, when hybridized, produce the desired 

offspring. The cross between parental stocks can then be repeated whenever 

such offspring are required (assuming inbred parental lines are used). 

In the past there have been numerous reports of successful, and 

unsuccessful, hybridization programmes in the literature. The vast majority of 

these concentrate upon directly related economic traits, such as food 

conversion ratios, dressing percentage and size. Some have dealt with disease 

though. For example, Plumb et a/ (1975) found heterosis in resistance to 

channel catfish virus disease. However, many of these 'disease' studies deal 
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more with percentage ·survival rather than with a controlled specific disease 

outbreak. 

In this study it was intended to look specifically for any .evidence of heterosis in 

resistance to I. multifiliis under controlled infection procedures. 

7.2. Hybrid production. 

From the work of chapter 4 it was decided to perform crosses between the red 

platy fish (X. maculatus) and the sunset platy fish (X. variatus). These two 

stocks were the two which were separated the most, in terms of resistance to /. 

niultifiliis, and which were also known to easily hybridize, which were breeding 

consistently. Reciprocal crosses between the two stocks were made and pure 

lines also maintained. Each breeding group involved four males and six virgin 

females. These ten fish were placed in a well planted 455mm x 255mm x 

255mm aquarium, which was checked periodically for fry. Fry were removed 

and placed in 2.4 I tanks, where they were fed newly hatched Artemia nauplii. 

Progressively this diet was also supplemented with crushed Tetramin flakes, 

Promin pellets and Tubifex worms. As the fry grew they were moved onto a 

455mm x 255mm x 255mm aquarium and then a 495mm x 670mm x 235mm 

aquarium. 

A few problems were encountered in breeding the fish. The F1 hybrid fry were 

produced in abundance, with space being the limiting factor in rearing the 

offspring. The pure parental stocks bred less prolifically. However, sufficient 

numbers were obtained to enable infections to be carried out. The differences 

in fecundity became more pronounced in the next generation. For the second 

generation each F 1 population was allowed to breed within its own group. 

Therefore, pure stocks and F1 x F1 fish, for each reciprocal hybrid, were 

produced. Very few pure stock fry were obtained in the second generation and 

differences also started to appear between the reciprocal hybrid stocks. Large 

numbers of X. variatus (sunset.platy) male x X. maculatus (red platy) female fry 

were produced. However, the reverse cross F2 fry, whilst obtained in some 

number, were not as numerous. F, fry were not exposed to I. multifiliis since 

there was insufficient time to raise them to maturity and to also infect them. 
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7 .3. Infection protocol. 

Infections were 1pertormed at three points in time {5/12/87, 15/12187 and 

30/12/87). On the .first two occasions the two pure strains, the two reciprocal 

hybrids and Ameca splendens were infected. On the third occasion the pure X. 

maculatus {red platy) stock, the X. maculatus {red platy) male x X. variatus 

{sunset platy) female stock and A. splendens were infected. l'he reciprocal 

crosses act effectively as replicates, but could also give information on hybrid 

differences. Fish were allowed at least 24h to acclimatise to the infection tank. 

len fish were infected per tank, with the exception of A. sp/endens on the first 

occasion when only eight fish were infected. Ages at infection were : X. 

maculatus {red platy) 49.9 - 52.4 weeks, X. variatus {sunset platy) 46.7 - 47.1 

weeks, X. maculatus male x X. variatus female 50.1 - 56.1 weeks, and X. 

maculatus female x X. variatus male, 51.7- 52.6 weeks. The A. sp/endens fish 

were taken from a large population which were allowed to continually randomly 

reproduce. Ages at infection were, therefore, not quantified, but were estimated 

as approximately 52 weeks. 

Infections were carried out as in chapter 3 at a dosage of 2000 theronts per 

fish {40 theronts per ml). A. splendens were also infected simultaneously to 

enable further comparisons to be made. Water quality was monitored prior to 

and upon termination of the experiment. All fish had never been exposed to I. 

multifiliis before and, in this investigation, only one isolate of parasite {isolate J) 

was used. 

7.4. Results. 

A total of 78 fish were successfully infected : 20 X. maculatus {red platy), 10 X. 

variatus {sunset platy), 20 X. maculatus male x X. variatus female hybrids, 10 X. 

maculatus female x X. variatus male hybrids and 18 A. splendens. Infections 

were unsuccessful on one occasion (15/12187), with very few {<5) trophozoites 

per fish. Such fish were not used in any further experiments. The use of fish in 

this manner prevented further replicates of every genotype. Water quality was 

constant throughout the infections {temperature 23.7±l.5°C; pH 7.5±0.1; nitrite 

0.01 ±0.005 mg/1; nitrate 4.2±0.7 mg/1, ammonia 0.3±0.1 mg/1). 
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Surface area values varied from 2.58 to 7.49 cm 1 (mean = 4.58 ± 1.02 cm 2). 

A. splendens was noticeably much smaller in surface area (3.34±0.47 cm 2) than 

any of the other species I hybrids used here. X. variatus (sunset.platy) was the 

larger of the two parental species : X. maculatus (red platy) 4.68±0.78 cm2, X. 

variatus (sunset platy) 5.10±0.40 cm1. The two hybrids were of a similar size to 

X. variafus (sunset platy) : X. macufatUS male X X. variafUS female, 5.03±0.88 

cm2, X. maculatus female x X. variatus male, 5.18± 1.04 cm 2• Female fish were 

significantly larger in surface area (4.81 ±1.01 cm2) than male fish (3.94±0.72 

cm2, P<0:001). Hence, determination of surface area is important since this 

sexual difference in surface area may have otherwise have suggested a sexual 

difference in infection levels. 

Results were analysed, as in chapter 3, using the Generalised Linear 

Interactive Modelling Package (GUM) on a Prime computer. A model was fitted 

which took into account the following factors : time of the experiment, water 

temperature, sex of the fish, surface area of the fish and species of fish upon 

which the infection was recorded. When untransformed or square root 

transformed data were analysed plots of residual values against fitted values 

produced divergent distributions (Figure 34a and 34b). Analysis of variance 

requires such a distribution, which is an indication of the independence of the 

variance and the mean, to be random. A logarithmic transformation of total 

counts of parasites upon each fish produced such a random distribution (Figure 

34c). The series of anova tables from this analysis are presented in Table 25. 

The temperatures encountered here were 22.1 - 23.2"C for the first set of 

infections and 25.2 - 25.8"C for the second set of successful infections. The 

total temperature range of 3. 7uc had no significant effect upon infection level 

(P>O.lO). 

Infection levels for the two sexes (all species and hybrids combined) were : 

males 117.8±118.2 trophozoites per fish, females 88.1±69.6 trophozoites per 

fish. These values were not significantly different (P>O.IO) given variation due 

to all other factors. The effect of surface area was significant however 
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(P <0.05). The GUM package estimated that the relationship between surface 

area and infection level~ given all other factors; was a factor of 0.18±0.09. 

Hence, as suggested earlier, the extent of the surface area over which the 

infection is recorded is vitally important. . 

Significant differences occurred between the two times at which successful 

infections were performed (P<O.Ol). Mean parasite burdens for the two times 

were 57.0±36.5 and 158:6± 103.6 trophozoites per fish. The first set of infections 

occurred in early December, whilst the second infections occurred in late 

December to early January. In addition to time effects, the difference in the two 

quoted mean infection levels is due to the fact that all species and hybrids were 

infected on the first occasion, but on the second occasion only A. sp/endens, X. 

maculatus (red platy) and X. maculatus male x X. variatus female fish were 

infected. A. sp/endens and X. maculatus (red platy) were the two most 

susceptible species and, hence, the infection levels on the second occasion will 

be higher, since these two species formed two-thirds of fish infected, as 

opposed to two-fifths of the fish infected on the first occasion. 

Taking all the above factors into consideration, variation between species was 

significant (P<O.OOl). Ordering of the species from least to most resistant was 

as follows; A. splendens, X. maculatus (red platy), X. variatus (sunset platy.), X. 

xiphophorus variatus hybrids (Figure 35). The two reciprocal hybrids did not 

differ significantly ( X. maculatus male x X. variatus female 46.0±24.5 

trophozoites per fish, X. maculatus female x X. variatus male 27.2±6.9 

trophozoites per fish, P>O.lO), whilst the X. maculatus (red platy) and X. 

variatus (sunset platy) were significantly different at the 5% level ( 125.8±76.7 

trophozoites per fish and 49.0±25.9 trophozoites per fish respectively). The two 

hybrid stocks differed from X. variatus (sunset platy) at the 1% level and all 

other pairwise comparisons were significant at the 0.1% level. Infection levels 

of /. multifiliis on the hybrids were only 42% of the mean parental level, 

demonstrating distinct heterosis. lt is possible to calculate H, the degree of 

heterosis (Tave, 1986). This is simply the difference between the reciprocal F1 

and parental populations, expressed as a percentage of the parental level. 
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llsing the actual parasite counts a value of 16.2% is obtained here. Species­

temperature interactions were not evident (P>O.LO), suggesting that all species 

reacted in a similar manner over the temperature ranges of 3.7°C present here. 

7.5. Discussion. 

The effects of five factors upon infection levels were evaluated. The male : 

female ratio was 1 : 2], but variation due to sexual differences was not 

significant (P >0.10). The temperature range encountered was 3. 7°C and this 

had no significant effect upon the infection level (P>O.IO). 

Variation due to surface area was significant (P<0.05). Female fish were 

significantly (P<O.OOL) larger (4.81±1.01 cm 2 ) than male fish (3.94±0.72 cm 2). 

Species differences in surface area were also seen. A. splendens was the 

smallest of the species used (3.34±0.47 cm2), whilst X. variatus (sunset platy) 

and its hybrids were the largest fish (5.03-5,18±0:40-1.04 cm 2). The 

importance of evaluating the surface area over which the infection occurred is 

therefore stressed. The experimental protocol here permitted variation in these 

factors to be treated separately. Hence, species were compared, given 

variation due to differences in surface area, etc. 

Time effects were also significant (P<0.01), despite the two infections only 

occurring twenty five days apart. The reason for this effect is unclear, since 

infection procedures were identical on each occasion. The same parasite 

isolate was used and parasite collection, incubation and exposure were 

identical. However, as mentioned previously, different strains I hybrids were 

infected at each time. Temporal variation will be discussed further in the final 

chapter. 

Variation due to species was highly significant (P<0.001). A. splendens was 

the most susceptible species, followed by X. maculatus (red platy) and X. 

variatus (sunset platy). Pairwise comparisons showed that these species were 

all significantly different (P < 0.05) from each other. Mean infection levels were 

183.2 , 125.8 and 49.0 trophozoites per species respectively.5 Heterosis was 

5Values are directly measured·means, irrespective otsurface area, etc. 
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distinctly observed in both of the reciprocal hybrids : X. maculatus male x X. 

variatus female, 46.0 trophozoites per fish, X. maculatus female x X. variatus 

male, 27.2 trophozoites per fish. Although these two hybrids differed 

significantly from both parental species and A. splendens (P < 0.01) they were 

not significantly different from each other (P > 0.10). 

This heterosis to ichthyophthiriasis is significant in that it is the first case of 

such heterosis reported. lt also confirms the genetic role of resistance to I. 

multifiliis infection. The usefulness of hybridization, however, is limited in that it 

can only be guaranteed for crossing the two parental stocks used. On the other 

hand, hybridization has the advantages of being much easier and less time 

consuming, than performing a within population selection program. This is 

especially important to the third world countries, where demands and limitations 

are much more acute. 

The tropical species of fish were used here as model species, due to their 

short generation times and ease of handling in the laboratory. Since positive 

heterosis was obtained, the next stage would be to repeat this preliminary work 

on a commercial species, such as rainbow trout ( Sa/mo gairdnen) or the 

common carp ( Cyprinus carpio). Sovenyi et at (1988) recently reported 

heterosis in resistance to Aeromonas salmonicida infection in carp hybrids, 

between an inbred Hungarian race of carp and a coloured race of Japanese 

carp. The results from this study and that of Sovenyi et at ( 1988) suggest, 

therefore, that the scope for genetic gain in commercial species does exist. 
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Figure 34 Plots of residual values against fitted values after analysis 
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Table 25 Analysis of variance tables for each of the variables in 
lcthyophthirius multifiliis infections of pure Xiphophorus maculatus 

(red platy), pure Xiphophorus variatus (sunset platy), the two 
reciprocal hybrids of these species, and Ameca splendens.13 

Source of d.f. Sum of Mean F p 
variation. Squares. Squares. 

Effects due to time, species, 7 43.1 6.2 30.6 **** 
temperature and sex. 
Effects due to area. 1 0.9 0.9 4.6 ** 
Residual. 69 13.9 0.2 

Total . 77 57.9 

Effects due to area, time, 7 43.6 6.2 30.9 **** 
species and temperature. 
Effects due to sex. 1 0.4 0.4 2.1 NS 
Residual. 69 13.9 0.2 

Total. 77 57.9 

Effects due to area, time, 4 25.1 6.3 31.2 **** 
temperature and sex. 
Effects due to species. 4 18.9 4.7 23.4 **** 

Species - temperature 1 0.05 0.05 0.25 N~ 
interactions. 

Residual. 69 13.9 0.2 

Total . 77 57.9 

Effects due to area, time, 7 43.6 6.2 30.9 **** 
species and sex. 
Effects due to temperature. 1 0.4 0.4 2.1 NS 
Residual. 69 13.9 0.2 

Total . 77 57.9 

Effects due to area, species, 7 42.5 6.1 30.2 •••• 
temperature and sex. 
Effects due to time. 1 1.5 1.5 7.3 *** 
Residual. 69 13.9 0.2 

Total. 77 57.9 

13Significance levels as in Table 4. 
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Figure 35 Variation in resistance to ichthyophthiriasis between 
Xiphophorus maculatus (red platy), Xiphophorus variatus (sunset 
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Chapter 8 

A discussion of the genetics of susceptibility 
to lcthyophthirius multifiliis infection in fish. 

8.1. Introduction. 

In the introductory chapter of this work the impact of disease upon aquaculture 

production was discussed, as were the available methods of prevention and 

cure of disease. lt was stated that prevention, especially through genetical 

approaches, may be preferable to curing diseases as they occur. The following 

chapters then assessed various genetical aspects of susceptibility to 

ichthyophthiriasis. 

In these studies several variables were incorporated into the analysis. Some 

variables were unique to each particular study, whilst some were common 

throughout. Table 26 shows a summary of the significance of each variable 

throughout the studies here. 

8.2. Variation with time of the experiment. 

The level of infection was found to fluctuate, in all of the studies, with the time 

of year at which infection occurred. This was even evident in the Xiphophorus 

maculatus yellow comet tail heritability study, where infections were only 

separated by 9 days. Infections were performed at various points throughout 

the year, over a three year period (Figure 36). The infections of Ameca 

splendens, with four parasite exposure doses, in chapter 3, occurred throughout 

May, June and early July. In the species I strains of fish comparisons infection 

levels rose from mid"February to a peak in late April. Much narrower peaks 

occurred in July, late September I early October and November. In the between 

genotype infections of carp (Cyprinus carpio) infections were unsuccessful 
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during April, but sizeable :infection levels were obtained during May. Following 

this, infections were only successful in mid-June and early August. Therefore, 

there appears to be a conglomeration of successful infections in the spring 

period, with occasional isolated peaks occurring after this time (Figure 36). 

The three heritability studies involved infections at isolated points throughout 

the year, rather than a series of infections covering several months. Out of the 

three species the highest infection levels, of 84 to 597 trophozoites on a single 

fish, were found on the X. maculatus yellow comet tail. These infections 

occured in late September and mid-October. On X. maculatus Vera cruz 

infection levels of upto 246 trophozoites were obtained on fish infected in late 

May. The A. splendens infections, on the other hand, only realised infection 

levels of upto 30 trophozoites from infections which occured in mid-January. 

The heterosis study involved infections in December, with higher infection levels 

at the end of the month (449 trophozoites) than at the start of the month (136 

trophozoites). 

The three years of data shown in Figure 36have been pooled together and is 

shown in Figure 37. lt should be noted that the two large peaks of September 

and October occur very close together, in late September and early October. 

Hence, these two bars of the histogram can, and should, be treated as one, 

since the first two-thirds of September and the second half of October provided 

no successful infections. 

Meyer (1970) reported seasonal outbreaks in Trichodina, I. multifiliis, 

Plistophora, Costia, Gyrodactylus, Dactylogyrus, Cleidodiscus and Lernaea 

over the 1963 - 1968 period. Overall greatest incidence of disease occured in 

April ( 19.4% of all reported disease outbreaks), with the period of March to July 

inclusive covering 72.1% of all disease outbreaks. More specifically, April was 

also the month with the greatest number of ichthyophthiriasis outbreaks 

(20. 7%). January to April inclusive encompassed 72.4% of /. multifiliis 

outbreaks. The remaining 27.6% of /. multifiliis outbreaks were spread overthe 

8 months of May to December, with two minor peaks of 8.6% each in May and 
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November accounting for most of these outbreaks. This annual cycle for /. 

multililiis is constructed from the data;presented by Meyer (1970) in Figure 38. 

When interpreting Figures 37 and 38 it must be remembered that the former 

includes data over 3 years and the latter data from 5 years of records. The data 

are also presented .in a slightly different format - maximum infection level vs. 

percentage of ichthyophthiriasis outbreaks. However, both studies give an 

indication orthe fluctuations in the extent of ichthyophthiriasis over the year. 

A very similar situation was, therefore, reported by Meyer ( 1970) to that found 

here. Major incidence and severity of the disease occurs in April. High 

incidence of the disease in the early part of the year is coupled to a low level of 

severity in September-October and December is coupled to a low level of 

incidence. However, the discussion here of the reasons for such an annual 

distribution cannot be similar to Meyer ( 1970) who argued that climbing water 

temperatures were responsible for the high incidence of /. multifiliis in the early 

part of the year. This was also coupled to increased handling stress, 

particularly in April. The much lower incidence levels later in the year were 

explained by low water temperatures retarding the parasite growth. Another 

possible cause is that the majority of fish had received an infection of /. multifiliis 

and their immunity was now building up, thus reducing the incidence of 

ichthyophthiriasis. In this study, though, temperatures were relatively constant, 

with a typical standard deviation of 1.0°C .. In addition, there was no particular 

point in the year when handling stresses will have been greater and all 

infections occurred upon fish which had never been infected with /. multitlliis 

before. A similar temporal variation to the one found here was reported by 

Yamaguchi et a/ (1980), where the humoral response of trout (Sa/mo gairdnert) 

was found to depend upon season, even when temperature was kept constant. 

Maclennan (1935b) also recorded seasonal variations in the incidence of 

ichthyophthiriasis, as did Parker (1965), Migala (1971) and Lahav & Sarig 

(1973). An explanation of this effect was not provided, nor is one apparent in 

this study. 
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lt is unclear whether the annual variation here is due. to fluctuations in the host 

or the parasite. There is some subjective evidence that fluctuations within the 

parasite are involved, since periods of low or ho infection can be linked to 

periods of difficulty or failure in maintenance of the parasite stocks. Rowever, 

this does not rule out the possibility of annual fluctuations within the host also. 

Further investigation of this relationship is required to permit a greate~ 

discussion of a most interesting phenomenon. For the purposes of further 

discussion in this chapter it is important to remember that this temporal effect 

was incorporated into the analysis model, and is, therefore, not a confounding 

issue. 

8.3. Temperature and tank effects. 

In five of the seven analyses where temperature was included, the effect was 

not significant (P > 0.10). The two studies where temperature did form a 

significant amount of the variation are, for the between genotype investigation, 

using carp (C. carpio), and the strain I species of fish comparisons. In the carp 

investigation three temperature regimes were used ( 16, 19 and 24°C), resulting 

in a large range of temperatures being covered and the significant differences 

observed are therefore not suprising. The variation in temperature in the 

species I strains of fish experiments was much less (24.1 ± l.OOC) however. 

In the tank effect experiment four identical infections were performed using A. 

sp/endens. Sfgnificant (P < 0.001) variation was observed due to tank effects -

the uniqueness of each aquarium. Closer examination, however, using pairwise 

comparisons, demonstrated. that only one tank differed from the other three 

tanks, which formed an homologous group. 

The reason for discussing temperature and tank effects together is that the 

two are inseparably linked. In the tank effect experiment each tank was 

assigned an identification number. Temperatures were recorded for each tank 

in the other studies. Hence, a tank could be identified by either an assigned 

number, or its' temperature. The two values do not distinguish any other 

difference than between aquaria. lt therefore follows, that the two effects are 
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synonymous. A temperature effect which is not significant also implies the 

absence of any tank effects. A significant temperature effect, on the other 

hand, suggests the presence of a tank effect, of which temperature may, or may 

not, be implicated in the cause. The important point, though, is that ,the tank 

effect was taken into account in the analysis model. The variance due to tank 

effect was, therefore, partitioned off from the variance of interest. 

8.4. Sex and surface area effects. 

These two sources of variation are discussed together, not because they are 

synonymous, but because there is a suggestion of some connection between 

the two effects. Variation due to surface area was significant (P < 0.10) in every 

study except the heritability determinations of X. maculatus (Vera Cruz) and A. 

splendens. On the other hand, variation due to sex was not significant (P > 0.10) 

in every study except the same two heritability investigations. Indeed, a further 

point of interest is that variation due to sex was not significant in the A. 

sp/endens tank effect investigation, yet it was significant in the A. splendens 

heritability determination study. 

1t has been suggested that stress can affect a fish~s resistance to infection 

(Snieszko, 1974; Wedemeyer & Wood, 1974; Wedemeyer et a/, 1976). lt is 

also known that population density influences the age and weight at sexual 

maturity (Kallman & Borkoski, 1978). The A. splendens for the tank effect 

experiment came form a large, random breeding population kept in the 

Polytechnic aquarium. Here the density of fish is higher than in the heritability 

study, where individual broods were reared separately. lt is not unreasonable 

then to propose that stress levels were higher in the Polytechnic aquarium 

derived fish, than in the heritability determination fish and also that a similar 

relationship may have occurred in the other stocks of fish. Since larger fish are, 

generally, able to adapt to stress better, in the presence of stress, surface area 

(or size) is a significant factor in the susceptibility to /. multifiliis infection. When 

stress due to high population densities is removed, the role of sexual 

differences then appears to come into play. 
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Houghton & Matthews: (1986) found that elevated levels of 

adrenocorticotrophic hormones in fish populations, such as those which occur 

during stress, could lower resistance to disease, and• in .particular 

ichthyophthiriasis. Hence, there appears to be a correlation between stress, 

such as that brought about through stocking levels, and disease resistance. 

8.5. Parasite strain, parasite isolate and parasite exposure 
levels. 

In the between genotype study on carp two different strains of /. multifiliis were 

used. One of these strains arose from fish imported from Singapore, whilst the 

other was obtained from a Devonshire fish farm. The analysis did not find any 

significant difference in the relative infection levels of these two parasite strains. 

However, with respect to changing temperatures the two strains did differ. The 

level of infection rose with increasing temperature for the tropical parasite strain, 

whilst it decreased with increasing temperature for the temperate parasite 

strain. The point was made that this effect illustrates that higher infection levels 

occurred at temperatures which were closer to the parasite strains' acclimation 

temperature. The lack of success in attempting to reverse the passage 

temperature for each strain was taken as evidence for differences between the 

adaptation of the two strains. Nigrelli et a/ (1 976) report similar results when 

attempting to culture mature tropical /. multifiliis at 4°C. Parasites did not divide 

beyond the eight cell stage and all parasites died within 9 days. Subasinghe & 

Sommerville (1 985) found no difference in the reproductive capabilities of two 

strains of /. multifiliis from "two distinctly different geographic localities". 

However, no mention is made of the infective capabilities of the two parasite 

strains. 

Such a strain difference would explain other observed phenomena. In 

particular, there is some debate about the effectiveness of increased 

temperature in controlling ichthyophthiriasis (Ghadially, 1964b; Cross, 1 972; 

Richards, 1 977; Leibovitz, 1980). Sometimes such an action cures the disease, 

yet sometimes it only serves to enhance the situation. Conclusive evidence of 

strain differences is still required therefore. 
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Or:~e approach which would yield much useft:JI information would be to transfer 

fish to different temperatures at several' intervals after initial infection. 

Observations upon ·the infection levels would determine the extent and 

significance of temperature changes upon infection. Performed with both 

parasite strains this would present more information concerning the different 

parasite-strain temperature responses. 

The extent of differences in parasite isolate were even more difficult to 

determine conclusively, due to extrinsic aliasing within the data set. However, 

species-parasite isolate interaction terms did provide some information. A. 

sp/endens and X. maculatus (red platy) were infected on two occasions, but 

with different parasite isolates. On one occasion A. splendens was the most 

susceptible fish, whilst on the second occasion the reverse was true. Hence, 

the relative infection levels on the two species appeared to depend upon the 

parasite isolate used. 

The effect of increasing the exposure level to the parasite upon infection level 

was also significant. Exposure levels of 2000 3000, 6,000 and 12000 theronts 

per fish were used. These are relatively low levels since an individual cyst may 

produce upto 2000 theronts (Prytherch, 1924 ; Butcher, 1941 ; Meyer, 1974). 

The number of theronts produced per cyst does appear to vary considerably 

though. Hence, the use of theronts to standardise the exposure levels is vitally 

important since 6 cysts per fish could well yield 2000 or 12000 theronts. 

The relevance of parasite strain and parasite isolate differences to aquaculture 

is clear. lt has already been mentioned that relative susceptibilities of fish 

species can reverse with parasite isolate changes. Therefore, if resistant 

strains of fish were established there is a possibility that such fish would be very 

susceptible to infection in a different environment. lhis effect is reminiscent of 

resistance to bacterial strains, which is the result of different antigen sites or 

protein structures. Thus resistance to one bacterial strain does not necessarily 

confer resistance to all bacterial strains of the same species. lt would be 

interesting to see what an extensive immunogenetic study on susceptibility to I. 

multifiliis would produce. 
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Perhaps, above ·all, the results discussed in this section stress the need to 

establish recognised strains of /. multifiliis for research purposes. At present 

this is precluded' by the problems of freeze storage of ciliates. Further work in 

this area would be a milestone in unravelling the complexities of I. multifiliis 

infection dynamics. 

8.6. Fish strain I species I genotype differences. 

Initially approaches were made to evaluate the presence of any within and 

between species differences in susceptibility to I. multifiliis infection. Such 

differences were found within X. maculatus and between this species and X. 

variatus, A. splendens and llyodon xanthusi. Between genotype differences in 

the carp, between four recognised scale pattern types, provided clear evidence 

of within species between genotype variation in susceptibility. Fully scaled carp 

were found to be more resistant than any of the three mirror scale types of carp. 

Further to this, within population studies attempted to quantify the extent of 

additive variance, which could be exploited via selection. These studies 

adequately demonstrated that there is considerable variation in heritability 

values, but with some promisingly high values being recorded {0.75 for X. 

maculatus, Vera Cruz). Between population studies also demonstrated distinct 

heterosis in susceptibility for X. maculatus {red platy) x X. variatus {sunset platy) 

hybrids. Infection levels of /. multifiliis in hybrids were only 42% of the mean 

parental value. 

The aim of this study was to assess the extent of genetic variation in 

susceptibility to ichthyophthiriasis. This has been suggested in the past {e.g. 

Parker, 1965; McCallum, 1982, 1986; Mclay, 1985), but never examined in 

detail. Recently llyassov { 1987) presented a review of the genetic principles of 

disease resistance in fish. Clearly genetic variation in susceptibility exists and 

the way is now open to persue such work further. Although differences in' 

susceptibility were established here the molecular nature of these differences 

was not investigated. Madhavi & Anderson ( 1985) identified resistant and 

susceptible guppy fish (Poecilia reticulata) to infection with Gyrodactylus 
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bullatarudis, but were also unable to explain the mechanism of resistance. 

However, cellular responses were suggested. · Wahli et a/ (l985, 1986) found 

evidence that increased ascorbic acid levels promoted protection against /. 

multifiliis, but were again unable to explain the mechanism for protection. In the 

between genotype study of carp here mention was made that the resistance of 

fully scaled carp may be due to the physical integrity of the scale covering or to 

some other fundamental molecular difference. Further comparisons were 

suggested there, to yield more information on this matter. 

Since the presence of genetic variation has been demonstrated and a suitable 

method of analysing the data determined, another approach would be to 

evaluate the number of genes involved. This can be obtained by performing a 

diallele cross analysis. Such an analysis provides a large amount of 

information, including estimates of maternal, additive and dominance variance. 

To obtain so much detail, however, requires many crosses to be performed, 

with resulting practical problems, particularly of space. A full diallele cross 

involves replicated, reciprocal crosses between several populations. Hence, a 

diallele study using 6 populations of fish would produce 36 broods for each 

replicate. Due to practical problems several modifications of the diallele study 

have been derived, e.g. the replicated non-reciprocal study. 

The carp study here also highlighted the importance of gene-environment 

interactions. Indeed, the point was made that if carp were not reared under 

ideal conditions the differences between the four scale types may have been 

greater. The possible extent of gene-environment interactions are endless, yet 

it is through studies such as this that an awareness of particular interactions can 

be developed. Such an awareness is essential if the aquaculture industry is to 

realise the extent and limitations of genetically selected disease resistant 

stocks. A clear understanding of these boundaries by all concerned (i.e. 

geneticists and fish farmers) will provide firm ground upon which genetic 

potential for increased disease resistance can be realised. 

In summary, then, there is good potential, for increased resistance to 
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ichthyophthiriasis in fish stocks, through either selection or hybridization. There 

is, perhaps understandably, some retiscence to support such approaches on a 

commercial scale. In general, benefits are not normally immediate, nor are they 

gaurenteed. This initial study has proven that further work is likely ,to be 

beneficial. In the short-term benefits could be reaped from hybridization 

programs, whilst, on a long-term basis, selection would provide more secure 

benefits. lt is strongly recommended, therefore, that a pilot program be 

commenced using commercially important species, such as trout and salmon. 

Such an investment would promote a more competitive industry, from reduced 

losses and treatment costs, and also a healthier, and therefore better, product. 
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Table 26 Summary table of each of the variables 
in the analyses of this study .14 

F., 
(d .f.) Comments 

Time of experiment. 

Ameca splendens dose experiment. 1.3.24 ii:;7) 63 days. 

Species/strains differences. 93.63 ,&:;;5) 294 days. 

Carp experiment. 17 . .38 ,;:;05) 122 days. 

X . maculatus yellow comet tail h 1 26.66 i~;;5) 18 days. 

X . maculatus Vera Cruz h 1 83.48 i;;;.J 9 days. 

Hybrid experiment. 7.30 i;;69] 25 days. 

Temperature. 

Ameca splendens dose experiment. 0.27 i1~771 24.0 ± 1.o•c 

Species/strain differences. 5.30 ,;;;55) 24.1 ± 1.o•c 

Carp experiment. 6.06 ,;:205) 20.5 ± 3.2•c 

X. maculatus yellow comet tail h 1 
1. 71 i·~55) 21.8 ± o .2•c 

X. maculatus Vera Cruz h 1 1.42 [.~114) 25.2 ± o.J•c 

A. spLendens h 1 0.84 i•~Ja) 24.8 ± 0.4•C 

Hybrid experiment. 2.10 l1~69) 23.7 ± 1.5•c 

Tank effect. 

Ameca splendens dose experiment. 13.40 i;:;.l 4 identical tanks infected. 

Sex (Male : Female nu~bers} 

Ameca spLendens tank effect 
1..31 r.~J•) 1 : 5 experiment. 

Species/strains differences. 0.18 (~h5) 1 : 1.8 

X . macu.Latus yellow comet tail h 1 0.05 i•s.55} 1 : 1.1 

X . maculatus Vera Cruz h 1 2.83 iu4) 1 : 1.3 

A. spLendens h' 6.1.3 i;,Ja) 1 : 1.8 

Hybrid experiment. 2.10 r.s 691 1 : 2 .7 

14P =probability value [see Table 4] and d.f. =degrees of freedom. 
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Table 26 continued ... 

F' (et .{ .) Comments 

Surface area. 

A me ea spLendens 31.78 j;:;7] 3.43 ± 0.88 cm• 

Ameca spLendens tank effect 
experiment. 43.76 j;:j.l 2.73 ± 0 .69 cm• 

Species/strains differences. 38.10 [;:;;,] 4.94 ± 2.05 cm• 

Carp experiment. 38.14 [;:;;~,] 3.88 ± 1.51 cm• 

X. macuLatus yellow c omet tail h 1 6.25 j;,,J 6.11 ± 1.40 cm• 

X. macuLatus Vera Cruz h. 1 2.41 r~·.u ) 2 .29 ± 0.79 cm• 

A. splendens h • 0 . 04 i1~la] 5.68 ± 1.59 cm• 

Hybrid experiment. 4.60 (;,119) 4.58 ± 1.02 cm• 

Parasite strain. 

Carp experiment. 2.55 l~~05) 2 strains used. 

Parasite isolate. 

Species/strains differences. Extrinsically 4 tropical parasite 
aliased. isolates u,sed . 

Parasite exposure level. 

Ameca spLendens dose experiment. 163.82 F:;71 
2000, 3000, 6000 and 12000 

theronts per fish used . 

Strain I species of fish. 

Species/strains differences. 18.50 (;:;;,] B strains I species used. 

Hybrid experiment. 23 .45 ;;:&91 3 species & 2 hybrids used . 

Genotype (carp scale patterns) 

Carp experiment. 10.95 r;·;~,1 4 scale types of carp used. 
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Figure 38 Annual variance in occurence of ichthyophthiriasis, 
(redrawn from data of Meyer, 1970). 
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Apperndix A 

Suite of fi~e BASIC progr~ammes for evaluation of fish 
body surface area measurements. 

A.1 



. . 
A.1. BBC BASIC :progr:amme for the entering of body 

circumferance measurements. 

A.2 



lOREM PROGRAMME a - B.ENTER 
20REM ENTERING OF NO .. OF DATA VALUES, SL; TL & 

ACTUAL DATA VALUES FOR BODY CIRCUMFERANCE 
AREAS 

300NERROR PRINTERL: PRINTERR: END 
40MODE7 
SOCLOSE£0 
60DIM DV(200) 
70*. 
SOINPUT"ENTER FILENAME IN WHICH TO STORE DATA " 

FILE$ 
90C=OPENOUT(FILE$) 

lOOPRINT' I 

llOINPUT"Enter no. of data values "N 
120INPUT"Enter SL "SL 
130INPUT"Enter TL "TL 
140FOR X% =1 TO N 
lSOPRINT"Enter data value ";X% 
160INPUTDV(X%) 
170NEXT 
180CLS 
190PRINT"N = ";N 
200PRINT''SL = '';SL 
210PRINT"TL = "; TL 
220FOR X%=1 TO N 
230PRINTDV(X%) 
240NEXT 
250PRINT"Q FOR QUIT" :PRINT"R FOR RE-ENTER DATA": 

PRINT"S FOR SAVE DATA AND CONTINUE" 
260REPEAT 
270A$=GET$ 
280UNTIL INSTR("QRSqrs" ,A$) 
290IF A$="Q" OR A$="q" CLOSE£0:PROCEND 
300IF A$="R" OR A$=" r" GOTO 10.0 
310IF A$="S" OR A$="s" PROCWRITE:CLS:GOTO 100 
320END 
330 
340DEFPROCWRITE 
350PRINT£C,N,SL,TL 
360FOR X%=1 TO N 
370PRINT£C, DV(X%) 
380NEXT 
390ENDPROC 
400 
410DEFPROCEND 
420*.2 
430REPEAT:PRINT"CONTINUE OR DELETE FILES C/D ?": 

A$=GET$:UNTIL A$="C" OR A$="c" OR A$="D" 
OR A$="d" 

440IF A$="D" OR A$="d" THEN CLS:*DR.2:*.:END 
450CHAIN"FFAREAD" 

A.3 



460ENDPROC 

A.4 



A.2. BBC BASIC ,programme to read data for fin areas 

transferred from Prime mainframe comp1:1ter via the file 

transfer protocol, Kermit. 

A.S 



10REM PROGRAMME b - NAME = 'FFAREAD' 
20REM READS FIN DATA TRANSFERRED FROM 

PRIME MAINFRAME. 
30CLOSE£0 
400NERROR .CLOSE£0 :PR·INT"CHAINING FBAREAD": 

CHAIN"FBAREAD" 
SOMODEO 
60*. 
70INPUT"ENTER FILENAME FOR FIN DATA FILE 

TRANSFERRED FROM PRIME "FILE$ 
80D=OPENUP(FILE$) 
90A=OPENOUT ("FA. OUT"); 

100DIM S$(lO),A(l5) 
110N%=1:S%=1:F%=3:Z%=13 
120FOR X%=1 TO F% 
130PROCREAD 
140PROCSAVES 
150NEXT 
160FOR X%=1 TO 3 
170PRINT£A,S$(X%) 
180PRINTS$(X%) 
190NEXT 
200FOR X%=1 TO Z% 
210PROCREAD 
220PROCSAVES 
230NEXT 
240PROCCALC 
250PROCWRITE 
260PROCREAD 
270PROCSAVES 
280IF LEF.T$ (S$ (S%-1), 4) ="FISH" THEN N%=1: Z%=12: 

S%=5:PROCMOVE:GOTO 200 
290IF LEFT$(S$(S%-1),4)<>"FISH" THEN 

S$(1)=S$(S%-1) :PRINT£A,"**********": 
PRINT"**********":PROCCLR:PROCCLRS: 
F%=2:Z%=13:S%=2:N%=1:GOTO 120 

300CLOSE£0 
310END 
320 
330DEFPROCREAD 
340REPEAT 
350I=BGET£D 
360IF I<>13 A$=A$+CHR$(I) 
370UNTIL I=13 
380ENDPROC 
390 
400DEFPROCSAVES 
410IF LEFT$(A$,1)="+" THEN L=LEN(A$): 

A$=RIGHT$(A$,L-1) :A(N%)=VAL(A$): 
N%=N%+1:GOT0430 

420IF LEFT$(A$,1)<>"+" THEN S$(S%)=A$:S%=S%+1 
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.430A$="" 
440ENDPROC 
450 
460DEFPROCCLR 
470A$="" 
480FOR Q%=1 TO 1'5 
490A.(Q%) =0 
500NEXT 
510ENDPROC 
520 
530DEFPROCCALC 
540TDF=O:TCF=O:TAF=O:MDF=O:MCF=O:MAF=O:SDD=O: 

SDC=O:SDA=O 
550FOR X%=1 TO 3 
560TDF=TDF+A(X%) 
570TCF=TCF+A(X%+3) 
580TAF=TAF+A(X%+6) 
590NEXT 
600MDF=TDF/3 
610MCF=TCF/3 
620MAF=TAF/3 
630FOR X%=1 TO 3 
640SDD=SQR((A(X%)-MDF)*(A(X%)-MDF)/2)+SDD 
650SDC=SQR( (A(X%+3) -MCF) * (A(X%+3) -MCF) /2) +SDC 
660SDA=SQR( (A(X%+6) -MAF) * (A(X%+6) -MAF) /2) +SDA 
670NEXT 
680ENDPROC 
690 
700DEFPROCWRITE 
710PRINT£A,S$(4),MDF,MCF,MAF,SDD,SDC,SDA 
720PRINTS$(4) :PRINTMDF:PRINTMCF:PRINTMAF: 

PRINTSDD:PRINTSDC:PRINTSDA 
730ENDPROC 
740 
750DEFPROCCLRS 
760FOR X%=2 TO 10 
770S$(X%)="" 
780NEXT 
790ENDPROC 
800 
810DEFPROCMOVE 
820IF LEFT$(S$(8),4)="FISH" THEN S$(4)=8$(8) 
830PROCCLR 
840ENDPROC 

A.7 



A.3. Optional BBC BASIC programme to add extra data values 

to those already entered, if re·quired. 
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lOREM OPTIONAL PROGRAMME - B.ADD 
20REM USED TO ADD DATA TO A PREVIOUSLY CREATED 
30REM FILE IF DATA ENTRY SESSION NOT COMPLETED. 
40CLOSE£0 
50DIMD(15) 
60B=OPENUP ( 11 B. 81287 11

) 

70REPEAT 
80INPUT£B,N,SL,TL 
90PRINT 11 N = 11 ;N; 11 SL = 11 ;SL; 11 TL = 11 ;TL 

lOOFOR I=l TO N 
110INPUT£B,A 
120PRINTA 
130NEXT I 
140UNTIL EOF£B='-1 
150PRINT 11 END OF FILE - ENTER MORE DATA Y/N? 11 

160REPEAT 
170A$=GET$ 
180UNT,IL A$= 11 Y11 OR A$= 11 N11 

190IF A$= 11 N11 END 
200INPUT 11 ENTER NUMBER OF VALUES 11 N 
210INPUT 11 ENTER SL 11 SL 
220INPUT 11 ENTER TL 11 TL 
230FOR L=l TO N 
240·INPUT 11 ENTER DATE VALUE 11 D (L) 
250NEXT 
260PRINT''N = '';N:PRINT''SL = '';SL:PRINT''TL = '';TL 
270FOR L=l TO N:PRINTD(L) :NEXT 
280REPEAT 
290PRINT 11 RETYPE - R 11 

300PRINT 11 SAVE --- S 11 

310A$=GET$ 
320UNTIL A$= 11 8 11 OR A$= 11 R 11 

330PRINT£B,N,SL,TL 
340FOR I=l TO N 
350PRINT£B,D(I) 
360NEXT 
370PRINT 11 ENTER MORE DATA ? 11 

380GOT0160 
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A.4. BBC BASIC programme to read' body measurements, 

perform calculations and store results. 
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10REM PROGRAMME c - FBAREAD 
20REM READS BODY DATA AND PERFORMS CALCULATIONS. 
30CLOSE£0 
40MODE7 
50DNE=99999 
60*. 
70INPUT"ENTER NAME OF FILE CONTAINING BODY 

DATA "BFILE$ 
BOPROCGETNO 
90DIM NUMB(Y%) :DIM SLEN(Y%) :DIM TLEN(Y%): 

DIM D(Y%,20) :DIM RECT(Y%,20): 
DIM TRI(Y%,20) 

100PROCGETBODY 
110PROCWRITE 
120PROCEND 
130END 
140 
150DEFPROCGETNO 
160Y%=1 
17 OA=OPENUP ("FA. OUT" ) 
180REM GET SPP. DATE AND TANK n 
190FOR S%=1 TO 3 
200INPUT£A,A$ 
210NEXT 
220REM GET NEXT STRING AND SEE IF END OF TANK *'s 

OR NEXT FISH 
230INPUT£A,A$ 
240IF A$="**********" GOTO 190 ELSE GOTO 260 
250REM GET MEAN AND SD VALUES FOR CF, DF, AND AF 
260FOR X%=1 TO 6 
270INPUT£A,T 
280NEXT 
290Y%=Y%+1 
300E=EOF£A 
310IF ·E=O THEN GOT0220 
320CLOSE£0 
330ENDPROC 
340 
350DEFPROCGETBODY 
360Y%=1:NUMB(0)=1 
370B=OPENUP(BFILE$) 
380INPUT£B;NUMB(Y%) 
390INPUT£B,SLEN(Y%) 
400INPUT£B,TLEN(Y%) 
410LET cN=SLEN(Y%)/0.5 
420IF CN<>NUMB(Y%) THEN EXTRA%=1 ELSE EXTRA%=0 
430IF EXTRA%=1 AND CN>NUMB(Y%) THEN EXTRA%=2 
440IF EXTRA%=1 THEN LESS=SLEN(Y%)-

( (NUMB(Y%) -1) *0.5) 
450IF EXTRA%=2 THEN PLUS=SLEN(Y%)­

( (NUMB (Y%)) *0. 5) 
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4 60FOR S%. = 1 TO NUMB.(Y%) 
470INPUT£B,D(Y%,S%) 
480NEXT 
490IF EXTRA%=2 THEN D(Y%,NUMB(Y%))= 

D (Y%, NUMB (Y%) -1) 
500PROCCALCAREAS.: PROCNUMBRESET 
510E=EOF£B:IF E=O Y%=Y%+1:GOTO 380 
520CLOSE£0 
530ENDPROC 
540 
550DEFPROCCALCAREAS 
560 DIST=0.5 
570FOR S% = 0 TO NUMB(Y%)-1 
580 PROCAREAS 
590NEXT 
600· IF EXTRA%=2 THEN S%=NUMB (Y%) :DIST=PLUS: 

D (Y%, S%+1)=D·(Y%, S%) :PROCAREAS 
610 IF EXTRA%=1 THEN DIST=LESS:S%=NUMB(Y%)-1: 

PROCAREAS 
620ENDPROC 
630 
640DEFPROCAREAS 
650LET LONGER=O :LET SHORTER=O. 
660IF D(Y%,.S%)>=D(Y%,S%+1) THEN 

SHORTER=D(Y%,8%+1) 
670IF D(Y%,.S%)>=D(Y%,S%+1) THEN LONGER=D(Y%,8%) 
680IF D(Y%,S%)<D(Y%,S%+1) THEN SHORTER=D(Y%,8%) 
690IF D(Y%,S%)<D(Y%,S%+1) THEN LONGER=D(Y%,8%+1) 
700REM *** AREA RECTANGLE FIRST *** 
710LET RECT(Y%,S%)=SHORTER*DIST 
720REM *** AREA TRIANGLE NEXT *** 
730LET TRI(Y%,S%)=(LONGER-SHORTER)*(DIST/2) 
740ENDPROC 
750 
760DEFPROCWRITE 
770C=OPENOUT ("FA. OUT2") 
780FOR X%=1-TO Y% 
790PRlNTNUMB(X%) :PRINTSLEN(X%) :PRINTTLEN(X%) 
800PRINT£C,NUMB(X%),SLEN(X%),TLEN(X%) 
810PRlNTO:PRINT£C,O 
820FOR S%=1 TO NUMB (X%) 
830PRlNTD(X%,S%);" ";RECT(X%,8%-1);" 

TRI(X%,8%-1) 

11 • 
I 

840PRINT£C, D (X%, S%) I RECT (X%, S.%-1) I TRI (X%, S%-1) 
850NEXT 
860PRINTDNE 
870PRINT£C,DNE 
880NEXT 
890ENDPROC 
900DEFPROCEND 
910CHAIN"P.AREAS" 
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920ENDPROC 
930 
940DEFPROCNUMBRESET 
950IF EXTRA%=2 THEN NUMB·(Y%),=NUMB (Y%) +1 
960ENDPROC 
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A.5. BBC BASIC programme to produce a print-out of 

calculated surface area values and standard deviations. 
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10REM PROGRAMME d - P.AREAS 
20REM PRlNTS OUT DATA SHEETS OF CALCULATED 

AREAS AND SDI s . 
30MODE7 
40CLOSE£0 
5 OA=OPENUP ( "FA . OUT" ) 
60B=OPENUP ("FA.OUT2") 
70PROCGET1 
80PROCGET2 
90PROCPRINTAREAS 

100PROCDECIDENEXT 
110GOT090 
120END 
130 
140DEFPROCGET1 
150INPUT£A,SP$,D$,T$,F$ 
160ENDPROC 
170 
180DEFPROCGET2 
190INPUT£A,MD,MC,MA,SD,SC,SA 
2001NPUT£B,N,SL,TL 
210LET CN=SL/0.5 
220ENDPROC 
230 
240DEFPROCPRINTAREAS 
250VDU2 
260PRINT' I 

270PRINT;STRING$(12," ");"Tank ";T$; 
" Fish number : "; F$ 

280PRINT;STRING$(12," ");"Species : ";SP$ 
290PRINT;STRING$ (12," ");"Date : ";D$ 
300PRINT;STRING$(12," ");"Total length= ";TL; 

" Standard length = " ; SL 
310@%=&20305 
320 PRINT' I I 

330PRINT"Distance";STRING$(6," ");"Body"; 
STRING$(10," ");"Area";STRING$(6," "); 
"Area";STRING$(3," ");"Area"; 
STRING$ (4'," "); "Culmulative" 

340PRINT;STRING$(2," ");"from";STRING$(4," "); 
"circumferance";STRING$(2," ");"rectangle"; 
STRING$(1," ");"triangle";STRING$(1," "); 
"sector";STRING$(4," ");"area" 

350PRINT;" snout" 
360PRINT" (cm) " 
370PRINT' :TT=O:L=0.5 
380PRINTSTRING$(2," ");"O";STRING$(7," ");"0" 
390Y%=0 
400INPUT£B,D 
410REPEAT 
420INPUT£B,D 
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430IF 0=99999.000 GOTO 480 
440INPUT£B 1 R1 T 
450TT=TT+R+T 
4 60PRINT" " ; L; STRING$ (7 I " ") ; 0; STRING$ ( 8 I " ") ; 

R;STRING$ (5 1 " ")•;T;STRING$ {3 1 " ") ;R+T; 
STRING$(6 1 " ");TT 

470L=L+O.S.:IF L>SL. L=SL 
480REM 
490UNTIL 0=99999.000 
SOOPRINT 1 I I 

SlOPRINT"Area dorsal fin = ";MD;" 
520PRINT"Area caudal fin = ";MC;" 

SO= ";SO 
SO= ";SC 

530PRINT"Area anal fin 
540@%=&20409 

= ";MA;" SO= ";SA 

550PRINT 111 :PRINT" Body surface area of one 
s.i:de = "; (TT/2) 

560PRINT" Total fin area= ";MD+MC+MA 
570PRINT 11 :PRINT"Total surface area="; 

(TT/2)+MD+MC+MA 
580VDU3 
590ENDPROC 
600 
6100EFPROCDECIOENEXT 
620El=EOF£A:E2=EOF£B 
630IF El=-1 OR E2=-l THEN PROCEND 
640INPUT£A1 A$ 
650IF LEFT$(A$,4)="FISH" F$=A$:PROCGET2 
660IF LEFT$(A$ 1 4)="****" PROCGETl:PROCGET2 
670ENDPROC 
680 
6900EFPROCEND 
700VDU3 
710PRINT"FA.OUT ----- EOF£ = ";El 
720PRlNT"FA.OUT2 
730CLOSE£0 
740END 
750ENDPROC 

EOF£ = ";E2 
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Appendix B 
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8.1. Isolates and strains oflcthyophthirius mu/tifiliis used in all 

experiments of this study. 

Dates Nu m be~ 
Isolate St~aln kept days kept Comments 

T~opical A 18.2.8:1 - 8.8.8:1 171 In iate~ staces few expe~lmento 
perfo~med 

T~oplcal B 7.8.8:1 ? Isolate nave~ manaaed one passaae 

T~oplcal c 13.9.8:1-4.11.8:1 :12 No succeuful expe~imento with 
this-isolate 

' 

T~opical D 11.11.8:1- 2:1.11.8:1 14 No successful experiments with 
this Isolate 

T~apical B 25.11.85 - 31.12.85 38 

T~oplcal p 31.12.8:1 ? Isolate nave~ manaaed one passaae-

T~aplcal G 13.1.88- 13.8.88 1:11 When lost some cysts did not develop 
and othe~s produced small tho~onts 

Tropical H 19.6.88-28.11.88 180 
Occasionally p~oduced very low numbera 

of therants. twice thauaht uolate 
last and then reappea~ed 

Tempe~ate I I 0.3.87 - 30.4.87 51 Levels af pa~aslte ve~y Jaw In 
panaae 

T~oplcal J 28.11.88 - 27.3.87 121 

Tempe~ate K 30.4.87 - 8.10.87 182 

T~opical L 27.3.87 - 4.12.87 2:12 

Tropical lol 27.11.87-10.2.88 78 In later staaes very few theronts 
p~oduced 

Tropical N 11.2.88- 24.3.88 41 

T~apical 0 7.4.88 - 1:1.5.88 38 

Tropical p 1:1,:1.88 - 28.:1.88 73 This Isolate ke.ft by anathe~ worker 
sJmultaneouoly an aloa loot simultaneously 

Tropical Q 14.8.88- 10.7.88 28 Never used In experiments- never 
produced larae number:. or lheronts 

Tropical R 18.8.88- 8.7.88 22 Never used In experiments - never 
p~oduced le~&• numbers or theronto 

Tropical s 18.6.88- 10.7.88 22 Never used ln experiments - never 
produced laree numbers or theronts 
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Appendix C 
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C .. 1. Computer programme for heritability analysis and 

estimation, writte.n in BASIC for a model B BBC 

micr:ocomputer. 
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1•0REM******************************************* 
20REM***** HERIT.ASILITYANOVA AND ESTIMATE***** 
30REM***** 
40REM***** 
50REM***** 
60REM***** 

CALCULATION FROM 'MANUAL OF 
QUANTITATIVE GENETICS by W.A. 

BECKER (1975) 
THIS VERSION DATED 5.2.88 

••••• 
• •••• 
••••• 
••••• 

70REM***** ALSO INCLUDES CALCULATIONS FROM ***** 
80REM***** 
90REM***** 

100REM***** 
110REM***** 

'QUANTITATIVE GENETICS lN SHEEP ***** 
BREEDING' by H.N. TURNER & ***** 

S.S.Y. YOUNG (1969) ***** 
@COPYRIGHT G.M. CLAYTON (1989) ***** 

120REM******************************************* 
l30MODE7;@%=10 
140*DR.2 
150PRINT''''''' :PRINT"Enter new data (N) or load 

old data (L)":REPEAT:A$=GET$:UNTIL A$="N" 
OR A$="L";IF A$="N" PROCGETDATA ELSE 
PROCRETDATA 

160PROCsquareroot:PROCANOVA:PROCHERITABILITY: 
PROCDICKERSON1959:PROCDISPLAY:PROCINVM:END 

170 
180DEFPROCGETDATA; INPUT"How many males ", NMALES%; 

DIM NFEMALES (NMALES.%) :FOR X%=1 TO NMALES%; 
PRINT'; "How many females for male number "; 
X%; INPUT""NFEMALES (X%) :NEXT X% 

190INPUT"What is the maximum number of offspring 
for any female ",,NOFFSPRING%: CLS: LET 
TFEMALES%=0:FOR X%=1 TO NMALES%;TFEMALES%= 
TFEMALES%+NFEMALES(X%) :NEXT X% 

200DIM offspring(TFEMALES%,NOFFSPRING%) :CLS:TF%=0 
210FOR NM%=1 TO NMALES%:NF%=NFEMALES(NM%) :Q%=0: 

FOR X%=(TF%+1) TO (TF%+NF%) :Q%=Q%+1:PRINT 
"Enter data for male ";NM%;" with female "; 
Q%;NOFF%=0:REPEAT;NOFF%=NOFF%+1:INPUT"" 
offspring(X%,NOFF%) :UNTIL offspring(X%, 
NOFF%)=999 OR NOFF%>=NOFi'SPRING% 

220NEXT X%:TF%=TF%+NF%:NEXT NM% 
230PRINT"Save data on disc Y/N, ?";REPEAT:A$=GET$: 

UNTIL A$="Y" OR A$="N":IF A$="N" ENDPROC 
240INPUT"Enter filename "filename$:IF LEN 

filename$>7 filename$=LEFT$(filename$,7) 
250datafile=OPENOUT(filename$) :PRINT£datafile, 

NMALES%,TFEMALES%,NOFFSPRlNG% 
260FOR X%=1 TO TFEMALES%:FOR Y%=1 TO NOFFSPRING%; 

PRINT£datafile, offspring:(X%, Y%) ; NEXTY%; NEXT 
X%:FORX%=1 TO NMALES%:PRINT£datafile, 
NFEMALES (X%) ; NEXTX% 

270CLOSE£datafile:ENDPROC 
280DEFPROCANOVA:REM SUM AND SUM OF SQUARES FIRST 
290CLS:TF%=0:NOFF%=1:MOFF%=0:TLN%=0:DIM 

SUM(TFEMALES%,2),FENOFF(TFEMALES%), 
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MNOFF (NMALES%) 
300FOR NM%=1 TO NMALES% :NF%=NFEMALES.(NM%): 

FOR X%=·(TF%+1) TO (TF%+NF%) :StiM=O:SS=O: 
REPEAT 

310IF offspring(X%,NOFF%)<>999 SUM=SUM+offspring 
(X%,NOFF%) :MOFF%=MOFF%+1 

320IF offspring(X%,NOFF%)<>999 SS=SS+(offspring 
(X%,NOFF%)*offspring(X%,NOFF%)):IF NOFF%< 

NOFFSPRING% NOFF%=NOFF%+1:GOTO 31:0 
330UNTIL (NOFF%=NOFFSPRING%) OR (offspring(X%, 

NOFF%)=999) :IF NOFF%<=NOFFSPRING% AND 
offspring{X%,NOFF%)=999 NOB'F%=NOFF%-1 

340SUM(X%,1)=SUM:SUM(X%,2)=SS:FENOFF(X%)=NOFF%: 
TLN%::::iTLN%+NOFF%:NOFF%=1:NEXT X%:TF%=TF%+ 
NF% :MNOB'B' (NM%) =MOFF% :MOFB'%=0•:NEXT NM% 

350REM Compute grand total of Y and Y squared 
360Y1=0:Y2=0:FOR X%=1. TO TB'EMALES%:Yl=Y1+ 

SUM(X%,1) :Y2=Y2+SUM(X%,2) :NEXT X% 
37.0REM Compute Correction Term 
380CT=(Y1*Y1)/TLN% 
390REM Calculate between sires SS and MS 
400TF%=0:TY2S=O:FOR NM%=1 TO NMALES%:NF%= 

NFEMALES(NM%) :SUM=O:FOR X%=(TF%+1) 
TO (TF%+NF%) :SUM=SUM+SUM(X%,1) :NEXT 
X%: TY2S= ((SUM* SUM) /MNOFF (NM%)) +TY2S: 
TF%=TF%+NF%:NEXT NM%:SSBS=TY2S-CT: 
MSBS=SSBS/(NMALES%-1) 

410REM Calculate between dams SS and MS 
420TY2D=O:TY2P=O:FOR X%=1 TO TFEMALES%:TY2D 

=TY2D+((SUM(X%,1)*SUM(X%,1))/FENOFF(X%)): 
TY2P=TY2P+SUM(X%,2) :NEXT X%:SSBD=TY2D­
TY2S:MSBD=SSBD/(TFEMALES%-NMALES%) 

430REM Calculate between progeny within dams 
SS and MS 

440SSBP=Y2-TY2D:MSBP=SSBP/(TLN%-TFEMALES%): 
ENDPROC 

450DEB'PROCDISPLAY:J$="":PRINT''"Do you want a 
print-out Y/N ?":REPEAT:J$=GET$:UNTIL 
J$="Y" OR J$="N":CLS:IF J$="Y"VDU2 

460@%=&20809:PRINT STRING$(24," ");filename$: 
PRINT' "Analysis of variance.": PRINTSRTF$: 
PRINT'''"Source of variation";SPC17;"d.f."; 
SP.C14; "SS" ;SPC12; "MS" 

470PRINT'"Between Sires";SPC21;NMALES%-l;SPC2; 
SSBS;SPC2;MSBS:PRINT'"Between Dams, 
within Sires";SPC8;TFEMALES%-NMALES%;SPC2; 
SSBD;SPC2;MSBD:PRINT'"Between Progeny, 
within Dams";SPC6;TLN%-TFEMALES%;SPC2; 
SSBP;SPC2;MSBP 

480GAP$=STRI:NG$(9," ") :PRINT'"Estimates from 
Backer (1975), Turner & Young (1969) and 
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Dickerson (1959)'' 
490PRINT''GAP$;"Kl:::: ";Kl:·PRINTGAP$;"K2 i:::: ";K2: 

PRINTGAP$·; "K3 = ";K3 :•PRINT' :PRINTGAP$; "Ow 
= ";W2 :PRINTGAP$; "Od = ";D2 :PRINTGAP$; "Os 
= n;S2:PRINT' :PRINTGAP$;"hs = n;H2S;" S.E. 
= ";SEH2S:PRlNTGAP$;"hd = ";H2D;" S.E. = "; 
SEH2D:PRINTGAP$;"hsd = ";H2SD;" S.E. = "; 
SEH2SD 

500PRINT' :VDU3 :ENDPROC 
510DEFPROCHERITABILITY:REM HERITABILITY 

CALCULATIONS ACCORDING TO BECKER (1975) 
520REM Calculate Kl 
530K=O·: TF%=0: Kl=O 
540FOR NM%=1 TO NMALES% :NF%=NFEMALES (NM%) :K=O: 

FOR X%=(TF%+1) TO (NF%+TF%) :K=K+(FENOFF 
(X%)*FENOFF(X%)) :NEXT X%:Kl=Kl+(K/MNOFF 
(NM%)) :TF%=TF%+NF%:NEXT NM%:PS=Kl:Kl= 
(TLN%-Kl)/(TFEMALES%-NMALES%) 

550REM Calculate K2 
560K=O:K2=0 
570FOR X%=1 TO TFEMALES%:K=K+(FENOFF(X%)*FENOFF 

(X%)):NEXT X%:K=K/TLN%:K=PS-K:K2=K/ 
(NMALES%-1) 

580REM Ca:l.culate K3 
590K=O:K3=0 
600FOR X%=1 TO NMALES%:K=K+(MNOFF(X%)*MNOFF 

(X%)) :NEXT X%:K3=(TLN%-(K/TLN%))/ 
(NMALES%-1) 

610REM Calculate ow, od, os,op 
620W2=MSBP:D2=(MSBD-MSBP)/Kl:S2=(MSBS-MSBP­

((K2/Kl)*(MSBD-MSBP)))/K3:VP=S2+D2+W2 
630REM Calcu:l.ate SE's of s2 d2 and w2 
640SES2=(MSBS"'2)/(NMALES%-1+2) :SES2=SES2+ 

((MSBD"'2)/((TFEMALES%-NMALES%)+2)): 
SES2=SES2*(2/(K3"'2)) :SES2=SQR(SES2) 

650REM Calculate Heritabilities 
660H2S=(4*S2)/(VP) :H2D=(4*D2)/(VP) :H2SD= 

(2*(S2i-D2))/.(VP) :ENDPROC 
670DEFPROCRETDATA:REM OBTAINS DATA FROM 

ALREADY CREATED FILE 
680PRINT'' :*. 
690PRINT' : INPUT"Enter filename of data file " 

filename$:IF LEN filename$>7 filename$= 
LEFT$(filename$,7) 

700datafile=OPENUP(filename$) :INPUT£datafile, 
NMALES%,TFEMALES%,NOFFSPRING%:DIMoffspring 
(TFEMALES%,NOFFSPRING%),NFEMALES(NMALES%) 

710FOR X%=1 TO TFEMALES%:FOR Y%=1 TO NOFFSPRING%: 
INPUT£datafile,offspring(X%,Y%) :NEXTY%:NEXT 
X%:FORX%=1 TO NMALES%:INPUT£datafile, 
NFEMALES(X%) :NEXTX%:CLOSE£datafile:ENDPROC 
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720DEFPROCDICKERSON1959 
730REM ESTIMATES OF SE'S FOR HERITABILITIES 

TAKEN FROM p111 OF TURNER & YOUNG 
740REM (1969) "GENETICS IN SHEEP BREEDING", 

ACCORDING TO ESTIMATION BY 
750REM biCKERSON (1959) . 
760DK1=K2;DK2=K3;DK3=K1 
770A=SQR{ (2/ (DK2"'2)) * ( ( (MSBS"2)./ (NMALES%-1)) 

+((MSBD"'2)/(TFEMALES%-NMALES%)))) :B=SQR 
((2/(DK3"'2))*(((MSBD"'2)/(TFEMALES%­
NMALES%))+((MSBP"'2)/(TLN%-TFEMALES%)))); 
C= (-1* (DK1/DK2)) * ((B"2)- ( (2* (MSBP"'2)) I 
((DK3"'2)*(TLN%-TFEMALES%)))) 

780REM CALCULATE HERITABILITY SE's 
790SEH2S=SQR( (4*A) /VP) :SEH2D=SQR( (4*B) /VP.): 

SEH2SD=((:A"'2)+(B"'2)+(C*2)) :IF SEH2SD<O 
THEN SEH2SD=O:ENDPROC:REM CANNOT SQR 
-ve NUMBER. 

800SEH2SD=SQR((2*SQR(SEH2SD))/VP) ;ENDPROC 
810DEFPROCsquareroot:SRTF$=STRING$(30," "): 

PRINT'"Do wish to perform 
1 A square root transformation. 
2 A Ln transformation. 
3 A Log transformation. 
4 No transformation." 

820REPEAT:SR$=GET$;UNTIL SR$="1" OR SR$="2" OR 
SR$="3" OR SR$="4";IF SR$="4" ENDPROC 

830 IF SR$="1" GOTO 860 
840 IF SR$="2" GOTO 880 
850 IF SR$="3" GOTO 900 
860FOR X%=1 TO TFEMALES%;FOR Y%=1 TO NOFFSPRING%; 

IF offspring(X%,Y%)<> 999 AND offspring 
(X%,Y%)<> 0 THEN offspring(X%,Y%)= 
SQR(offspring(X%,Y%)) 

870NEXT :NEXT :·SRTF$="Square root transformed 
data" ; ENDPROC 

880IF SR$<>"2" STOP ELSE FOR X%=1 TO TFEMALES%; 
FOR Y%=1 TO NOFFSPRING%:IF offspring 
(X%,Y%)<>999 AND offspring(X%,Y%)<> 0 
THEN offspring(X%,Y%)=LN(offspring(X%,Y%)) 

890NEXT:NEXT:SRTF$="Ln transformed data":ENDPROC 
900IF SR$<>"3" STOP ELSE FOR X%=1 TO TFEMALES%; 

FOR Y%=1 TO NOFFSPRING%:IF offspring(X%,Y%) 
<> 999 AND offspring(X%,Y%)<> 0 THEN 
offspring(X%,Yi)=LOG(offspring(X%,Y%)): 

910 
920 
930 

NEXT:NEXT:SRTF$="Log transformed data": 
ENDPROC 

940*************************** 
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950DEFPROCINVM 
960M=3 
970REM FINDS. INVERSE OF 4x4 MATRIX 
980@%=&20406 
990DIM -I(~, M) , M (M, M) , MS (M) , g2_ (M) , C (M, M) , 

Num•(M-1), Denom•(M-1), F (M-1) 
1000FOR X=1 ·TO M:I(X,X)=1:NEXT 
1010FOR X=l TO 3:M(3,X)=1:NEXT 
1020M(1,1)=K3:M(2,l:)=K2:M(2,2)=K1 
1030C (1, 1) =K3 :C.(2, 1) =K2 :C (2, 2) =K1: 

FOR X=1 TO 3:C(3,X)=1:NEXT 
1040MS(1)=MSBS:MS(2)=MSBD:MS(3)=MSBP 
1050PROCD· 
1060A$=GET$ 
1070FOR S=1 TO M 
1080FOR X=1 TO M: IF M·(S, X) <0 PROCMINUS (X) 
1090NEXT 
1100FOR T=1 TO M 
1110IF S=T GOTO 1150 
1120IF M(S,T)>O F=M(S,S)/M(S,T) ELSE GOTO 1140 
1130PROCCALC(T,S) 
1140CLS:PROCD 
1150NEXT T 
1160NEXT S 
1170PROCONE 
1180CLS:PROCD 
1190PROCF 
1200PROCEND :.ENDPROC 
1210DEFPROCD:FOR Y=1 TO M:FOR X=1 TO M: 

PRINTI(X,Y);" ";:NEXT:PRINT:NEXT: 
PRINT'' :FOR Y=1 TO M:FOR X=1 TO M: 
PRINTM·(X, Y) ; " "; :NEXT: PRINT: NEXT: 
ENDPROC 

1220DEFPROCMINUS(Z) 
1230FOR Q=1 TO M:M(Q,Z)=M(Q,Z)*-1:I(Q,Z)= 

I(Q,Z)*-1:NEXT 
1240ENDPROC 
1250DEFPROCCALC(Z,Q) 
1260FOR X=l TO M:M(X,Z)=M(X,Z)*F:I(X,Z)= 

I(X,Z)*F:NEXT 
1270FOR X=1 TO M:I(X,Z)=I(X,Z)-I(X,Q): 

M(X,Z)=M(X,Z)-M(X,Q) :NEXT 
1280FOR Y=1 TO M:FOR X=1 TO M:IF M(X,Y) 

<0.000001 AND M(X,Y)>O M(X,Y)=O 
1290IF I(X,Y)<0.000001 AND I(X,Y)>O I(X,Y)=O 
1300NEXT:NEXT 
1310ENDPROC 
1320DEFPROCONE 
1330FOR Y=1 TO M 
1340F=M(Y,Y) 
1350FOR X=1 TO M 
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l!360M'(X,·Y) =Mi(X, .Y) /F: I (X, Y) =I (X, Y) /F 
1370NEXT:NEXT:ENDPROC 
1380DEFPROCEND 
1390PRINT"DO YOU WANT A PRINT OUT Y/N": 

P$=.GET$ :IF P$="Y" CLS :VDU2•:PROCD: 
PRINT'' :PROCFP:VDU3:END 

1400END 
14l!OENDPROC 
1420DEFPROCF 
1430FOR X=1 TO M:FORY=1 TO M:g2(X}=(I(Y,X) 

*MS(Y))+g2(X) :NEXT:NEXT 
1440FOR X=1 TO M-1 
1450Num(X} =MS(X) 
1460FOR Y=X+1 TO M 
1470Denom(X)=Denom(X)+(g2(Y)*C(Y,X)) :NEXT Y 
1480F'(X) =Num (X) /Denom (X) 
1490NEXT X 
1500ENDPROC 
1510DEFPROCFP:PROCdenomdf:PRINT 
"Num Denom F df(N) df(D) P" 
1520PRINTNum (1) ; " "; Denom (1) ; " "; F (1); 

" "; (NMALES%-1) ; " "; DDFS2: PRINTNum (2) ; 
" "; Denom (2) ; " "; F (2) ; " "; (TFEMALES%­
NMALES%);" ";DDFD2 

1530ENDPROC 
1540 
1550DEFPROCdenomdf 
1560DDFS2=((K3*I(2,1)*MSBD)A2/(TFEMALES%-NMALES%)) 
1570DDFS2=DDFS2+((K3*I(3,1)*MSBP)A2/ 

(TLN%-TFEMALES%)) 
1580DDFS2=(Denom(1)A2)/DDFS2 
1590DDFD2=((K1*I(3,2)*MSBP)A2/(TLN%-TFEMALES%)) 
1600DDFD2=(MSBPA2)/DDFD2 
1610ENDPROC 

A.26 



Appendix D 

A.27 



D. t. List of publications and. conference papers given as a 
result of this study. 

Clayton, G.M. & Price, D.J. (1987) Genetic variation to lchthyophthirius 

multifi/iis infections. European Association of Fish Pathologists Third 

International Conference, Bergen; Norway, August 31 5 '-September 3rd. 

Clayton, G. M. & Price, D.J. (1987) lchthyophthirius ,multifiliis infection in carp 

( Cyprinus carpio L.): genetic variation in susceptibility. Aquaculture Europe 

International Conference and Exhibition, Amsterdam, Holland, June 

2nd_5th. 

Clayton, G.M. & Price, D.J. ( 1988) lchthyophthirius multifiliis: standardization 

of the infection-response model in Ameca splendens (Miller & Fitzsimons). 

Journal of Fish Diseases, 11, 371-377. 

Clayton, G.M. & Price, D.J. (1988) lnterspecific and intraspecific variation in 

resistance to white spot in telost fish. Population Genetics Group, London, 

January sth_8th. 

Clayton, G,M. & Price, D.J. (1987) Pleiotropic effects of scale pattern genes in 

common carp: susceptibility to lchtyophthirius multifiliis infection. Genetical 

Society, London, November 13th.14th. 

Clayton, G.M. & Price, D.J. (1987) Standardization of infection and response 

to white spot (lchthyophthirius multifiliis) in fish. Fisheries Society of the 

British Isles Immunology Symposium, Plymouth Polytechnic, July 

2Qth_24th. 

Clayton, G.M. & Price, D.J. (1987) Standardization of infection and response 

to white spot, lchthyophthirius multifiliis. Journal of Fish Biology, 31 

(Supplement A), 241-242. 

A.28 


