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Analysis of Dynamic Magnetic 
Resonance Breast Images 

Abstract 
Francesco de Pasquale 

Dynamic Magnetic Resonance Imaging is a non-invasive technique that provides an 
image sequence based on dynamic information for locating lesions and investigating their 
structures. 

In this thesis we develop new methodology for analysing dynamic Magnetic Resonance 
image sequences of the breast. This methodology comprises an image restoration step 
that reduces random distortions affecting the data and an image classification step that 
identifies normal, benign or malignant tumoral tissues. 

In the first part of this thesis we present a non-parametric and a parametric 
approach for image restoration and classification. Both methods are developed within 
the Bayesian framework. A prior distribution modelling both spatial homogeneity and 
temporal continuity between neighbouring image pixels is employed. Statistical inference 
is performed by means of a Metropolis-Hastings algorithm with a specially chosen proposal 
distribution that out-performs other algorithms of the same family. We also provide novel 
procedures for estimating the hyper-parameters of the prior models and the normalizing 
constant so making the Bayesian methodology automatic. 

In the second part of this thesis we present new methodology for image classification 
based on deformable templates of a prototype shape. Our approach uses higher level 
knowledge about the tumour structure than the spatia-temporal prior distribution of our 
Bayesian methodology. The prototype shape is deformed to identify the structure of the 
malignant tumoral tissue by minimizing a novel objective function over the parameters of a 
set of non-affine transformations. Since these transformations can destroy the connectivity 
of the shape, we develop a new filter that restores connectivity without smoothing the 
shape. 

The restoration and classification results obtained from a small sample of image 
sequences are very encouraging. In order to validate these results on a larger sample, 
in the last part of the thesis we present a user friendly software package that implements 
our methodology. 
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Chapter 1 

Introduction 

1.1 Aims and outline of the thesis 

The aim of the work presented in this thesis is to develop a new integrated methodology 

for analyzing dynamic Magnetic Resonance images (dMRI) of the breast. Our objective 

is to improve the diagnostic capability of this technique for locating breast tumours and 

investigating their structure. The dMRI analysis consists of two steps, an image restoration 

step followed by an image classification step. First, we try to minimize the distortions 

affecting the data. Then we classify every pixel of the breast as belonging to one of the 

following three classes: normal, tumoral benign or tumoral malignant tissue. 

The study presented in this thesis comprises two main parts. In the first part a 

Bayesian methodology is presented. In this framework a non-parametric and a parametric 

approach are developed for image restoration. In the non-parametric approach this task 

is performed without adopting any model for the signal temporal evolution at each 

pixel. On the other hand, in the parametric approach a specific model is adopted for 

the signal temporal evolution. The parameters of this model are estimated and based 

on these estimates the restored sequence can be obtained. Image classification is then 

based on attributes acquired from the image restoration step. In the non-parametric 
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approach these attributes are calcUlated from the restored dMRI sequences, while in 

the parametric approach the attributes are some parameters of the adopted temporal 

model. In these methods statistical inference is performed by means of Markov chain 

Monte Carlo algorithms. In particular, we present a Metropolis-Hastings algorithm with 

a specially chosen proposal distribution that performs better than more commonly used 

proposals. Furthermore, we present a method to identify tumoral regions inside the breast 

and we also provide procedures for hyper-parameter estimation. These make the Bayesian 

rnethodology aUtomatic. Most of the work described in the first part of this thesis is 

summarized in de Pasquale et al. (2003). 

In the second part of this thesis we present a new algorithm based on deformable 

templates for image segmentation and classification. Whilst in the Bayesian methodology 

the prior distributions model spatial homogeneity and temporal continuity between 

neighbouring pixels, in this approach we assume 'a priori' knowledge about the tumour 

contour. This is represented by a prototype shape. Our algorithm deforms this Shape by 

means of parametric non-affine transformations and the lesion contour is reconstructed 

by minimizing a newly developed objective function that depends mi the transformation 

parameters. We show reconstructions obtained from synthetic and real data. 

The thesis is structured as follows. In the rest of this chapter we present a general 

discussion about dynamic Magnetic Resonance Imaging of the breast. This is followed by 

an overview of Bayesian image analysis; image classification techniques and defmmable 

template models. In Chapter 2 we briefly introduce the physical basis of Magnetic 

Resonance Imaging and describe the acquired data and experimental set-up. 

In Chapter 3 we describe our Bayesian methodology for image restoration. We begin by 

presenting a method for identifying a tumoral region iliside the breast. In this way, we can 

restrict our analysis to this region thus reducing considerably the computational burden 
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of our procedure. Next, we describe our non-parametric and parametric approaches for 

image restoration. We present the restoration that we obtain together with a comparison 

of our method with a three dimensional Wavelet based filter. Chapter 3 ends with a brief 

discussion of our restoration results. 

In Chapter 4 the Bayesian image classification procedure is presented. We compare 

classification results obtained from non-parametric and parametric attributes with the 

results previously obtained by physicians. We then make comparisons with the 

classifications achieved from a standard hierarchical clustering method. The last section 

of this chapter is dedicated to a brief discussion of the results. 

In Chapter 5 the deformable template based method is introduced. First, we describe how 

a prototype shape is chosen. We then introduce the parametric non-affine deformation 

model. Since deformations from this model can sometimes destroy the connectivity of the 

prototype shape, we developed a new filter that restores connectivity without smoothing 

the shape. Next, we investigate the richness of the space of shapes that the non-affine 

deformation model can generate and we discuss our novel objective function. For tllis, we 

modify our new filter to identify the interior of a shape. Subsequently, we describe a new 

matching algorithm and present the results obtained by applying this algorithm to real 

and synthetic data. In the last section of this chapter we summarize the results obtained 

with our deformable template based method. 

Chapter 6 contains a brief description of the software package, called BAnDITS, that we 

have developed, together with some details of its implementation. 

Finally, in Chapter 7 an overall discussion of the work of this thesis is presented, together 

with plans for the future work. 
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1.2 Dynamic Magnetic Resonance Imaging of the breast 

Breast cancer is the second largest cause of cancer mortality in women today with 

380000 deaths registered worldwide in 2000 (Ferlay et al., 2001). More than a million 

patients are diagnosed with this disease every year and approximately 10% of women 

will develop it during the course of their lives (Hayton et al., 1999). In order to 

reduce the rate of mortality due to breast cancer, it is very important to locate the 

lesions at a very early stage and to investigate their structure to plan specific and 

swift clinical interventions. Different techniques such as X-ray mammography, biopsy 

(transcutaneous, core and needle) and thermography are well known to be effective 

for diagnosing breast cancer. Despite their diagnostic capability there is room for 

considerable improvement: currently more than one operation in two is performed 

to remove a lesion that turns out to be benign; 8-25% of cancers are missed and 

70-80% of biopsies turn out to be benign (Hayton et al., 1996). Accordingly, the 

results of the current diagnostic techniques are generally not very specific. To overcome 

these shortcomings, in the last ten years new imaging modalities complementary to X­

ray mammography have been introduced. These include Ultrasonography (2D, 3D and 

various types of Doppler imaging), Positron Emission Tomography (PET), Single Photon 

Computed Tomography (SPECT) and contrast enhanced or dynamic Magnetic Resonance 

Imaging {dMRI). Nowadays, these imaging teclmiques play a crucial role in screening 

breast cancer. In fact, radiologists and technicians base their diagnosis mainly on the 

analysis of the acquired images. Thus, image processing is a key step in the decision 

making procedure. 

Among these techniques, X-ray mammography is most appropriate for general 

screening {Highnam and Brady, 1999). Its main advantage over other imaging moclalities 



1.2 Dynamic Magnetic Resonance Imaging of the breast 5 

(such as dMRI) is that it is cheaper and quicker. In fact, a single image is acquired 

(not a sequence as in dMRI). Despite this advantage, X-ray mammography has three 

fundamental drawbacks: it is projective, it has a limited applicability and it cannot image 

the dynamics of the tumour. In fact, to reduce the radiation dosage that the patient 

receives, the breasts are tightly compressed between parallel plates while the mammogram 

is taken. Therefore, the most that a single mammogram can show is the integral of non­

adipose tissue in the direction of the X-ray beam. It follows that localization of a lesion 

or a microcalcification is inherently poorer than might be hoped for with truly three­

dimensional imaging. In addition, mammographic screening is limited in application 

to women over 50 years of age since its benefit for younger women has not yet been 

demonstrated. The major reason is that before involution the breast contains a great 

deal of glandular tissue that is radio-opaque. At involution tlus tissue changes to fat 

which is transradiant. Whenever they are used, mammograms provide an image of breast 

anatomy. However, malignant cancers are characterized more by their dynamic behaviour. 

To nourish its growth, a tumour sprouts a network of new blood vessels and this causes an 

increase in the local blood supply (angiogenesis), wllich mammography cannot show. For 

these limitations it is very important to develop new imaging techniques complementary 

to X-ray mammography, particularly for younger women and especially for those known 

from epidemiological studies to be at high risk of developing breast cancer. 

Amongst the techniques developed in the last ten years, dMRI seems one of the most 

promising. In contrast to X-ray based techniques, with dMRI the patient absorbs energy 

of ten orders of magnitude smaller (1021 v for X-ray compared to 109v for MRI, where 

v is the radiation frequency). In addition, the breast can be imaged in 3-D or 2-D and 

dynamic information about angiogenesis can be collected. The new information provided 

by dMRI appears to be very pronlising in the following situations (Heywang-Kobrunner 
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and Beck, 1995) : 

• severe scarring after surgery with or without radiation therapy 

• exclusion or early detection of malignancy around/behind silicon implants 

• evaluation of implant integrity 

• dense breast 

• pre-operative examinations for breast conserving surgery 

• patients with occult primary breast carcinoma 

• monitoring of high risk patients (inherited mutation of the BRCA1 or BRCA2 genes). 

dMRJ consists of the acquisition of a sequence of MR images of a given section of the breast 

after the injection of a contrast agent into the blood stream. Usually a gadolinium salt 

(Gd-DTPA) is used as a contrast agent (Heywang et al., 1986). The Gd-DTPA distributes 

itself in the intra-vascular or interstitial spaces of the breast. The consequent enhancement 

that occurs within malignancies is believed to be due to a variable combination of increased 

vascularity, increased permeability and/or increased interstitial space in malignant tumors 

compared with benign ones. The local concentration of the contrast agent modifies the 

MR image intensities and different breast tumoral tissues show a typical uptake pattern 

over the time (Hayton et al., 1999). In Fig.l.l the typical uptake patterns for the tumoral 

tissues are shown. Important features of these patterns are the speed of initial intensity 

variation and the presence of a final decrease. In fact, these features can be connected to 

contrast agent wash-in and wash-out properties. Because the vast majority (around 98%) 

of invasive malignancies enhance, dMRI is a highly specific technique unlike other form of 

mammography. 
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Figure 1.1: Typical dMRI uptake patterns for tumouml breast tissue pixels. The curve showing 
a clear maximum is often associated with malignant lesions. The other two curves are mostly 
associated with benign lesions. a. u. stands for arbitmry units. 

The following features are usually taken into account for the interpretation of dMRI 

images: 

• presence of enhancement 

• amount of the enhancement 

• speed of enhancement and washout 

• morphology of an enhanced region. 

In particular, the lesion morphology (irregularly shaped, well circumscribed, lobulated, 

oval or round lesions) represents very important information for classifying tumours, as 

shown in Fig. 1.2. In this figure we report some of the morphological features taken into 
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account and morphological diagnostic criteria by Szabo et al. (2003). 
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Figure 1.2: (a) Some of the most common morphological signs for breast lesions. The lesion 
morphology represents very important information for classifying tumours (Heywang-Kobnmner, 
1995). (b) As an example we report some of the morphological features taken into account by Szab6 
et al. (2003) in classifying these kinds of lesions. 

Furthermore, in some lesions an internal structure may be visible and diagnostically 

useful. T his structure can represent two different patho-physiological conditions of the 

t umoral t issue, that in the following we will indicate for simplicity as malignant and 

benign tumoral tissues. Hence, to localize t he lesion, to highlight its morphology and to 
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investigate its structure are the main goals of breast image analysis. These tasks can be 

better achieved by using the specific information about contrast agent uptake properties 

provided by dMRI data. 

There has been much research about the analysis of dMRI data. Important references 

are Kuhl et al. (1999), Mussurakis et al. (1997, 1998) and Gribbestad et al. (1992), 

although these authors make no attempt to remove either deterministic distortions due to 

patient movement during the image acquisition or random distortions affecting the data. 

Hayton et al. (1999) and Krishnan et al. (1999) present methodology to correct for breast 

motion, while Hayton et al. (1996) use a pharmacokinetic model for the acquired signals 

to localize tumours. The '3TP method' of Weinstein et al. (1999) uses three images of the 

sequence to identify certain pathophysiological features. 

There is now a huge literature concerned with removing random distortions from 

images. Good reviews of the most popular techniques such as Wavelets, Splines and 

linear filters are given by Abramovich et al. (2000). A seminal reference for the Bayesian 

approach that we adopt is Geman and Geman (1984). 

1.3 Bayesian image analysis 

Bayesian image analysis makes use of explicit probability models to incorporate general 

and scene-specific prior knowledge into the processing of images. It provides a unified 

framework within which many different image analysis tasks can be considered (Winkler, 

1995). In tllis approach two types of information can be taken into account: empirical data 

and prior knowledge. The former is the dataset that we acquired from our experiment, 

while the latter represents the information that is available about the data before the 

experiment is performed. Hence, there are two sources of uncertainty or randomness that 

are considered in this framework. In fact, the empirical data are a degraded version of 
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ideal data and the prior knowledge is usually incomplete. 

One of the main features of the Bayesian approach is to exploit the available prior 

knowledge. This allows us to reduce efficiently the distortions that usually affect image 

data. Since both the restoration and classification methods presented in Chapter 3 and 4 

are developed within the Bayesian framework, in the following we describe this approach 

in detail. Two key ingredients are the image data model and the prior model. 

1.3.1 Image data model 

In order to describe the Bayesian paradigm we need to introduce some notation. We 

denote by y and x the acquired and 'true' images respectively. In this thesis every m x m 

image will be indicated by an array such that x = (xs)sES and y = (Ys)sES where S is a 

square lattice whose points represent the image pixels so that ISI = m2 = n. 

Formally, distortions affecting the acquired data y can be either deterministic or 

random, so that the most general relationship between y and x can be represented as: 

y = B(x) + € 

where B is a 'Blur operator' and E is a random variable. In general B is highly non­

invertible and represents deterministic distortions, while E represents additive random 

noise. Our aim is to recover the 'true' image x from the acquired y. The basic idea of 

the Bayesian approach is that the images y and x are realizations of random variables 

Y and X. This allows us to define probability distributions on them. Based on these 

distributions different estimators of the 'true' image can be adopted. The first ingredient 

of this approach is the distribution p (ylx), called the image data model which represents 

the likelihood of observing y given the 'true' image x. For simplicity, we assume that the 

random variables Y1, ... ,Yn are conditionally independent and that each Y; has the same 

density function f (y;lx;). In this way, the conditional density of y given xis: 
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n 

p (yjx) = IT f (Yilxi). (1.1) 
i=l 

The model for p (yjx) depends on the imaging modality and the experimental set-

up, and suitable models in our case are Gaussian, Rayleigh and Rice distributions. In 

Section 3.2.1 the image data model adopted in this study will be described in detail. 

1.3.2 Prior model 

As mentioned before, a fw1damental role in the Bayesian approach is played by the prior 

distribution that models our 'a priori' knowledge about the true image to be estimated. 

This information can be quantified probabilistically by assuming that the 'true' image 

is a realization of a Markov Random Field with specified probability distribution p (x). 

This distribution assigns high values to configurations x in agreement with our 'a priori' 

beliefs. Since p (x) does not depend on the data, it can be defined before data acquisition 

and there are many different choices that can be made for it. In the simplest case we can 

adopt a model in which all the pixel values are assumed independent: 

n 

p(x) =IT P. (xs), 
•=I 

where P8 is set of probability distributions. In the most complicated case we can assume 

that every X 8 depends on all the other pixel values Xj, j f s. These situations correspond 

respectively to point-wise or global knowledge about the spatial structure of x. Because 

the algorithms used in practice have a computational cost related to the complexity of 

the adopted prior model, we need to find a good compromise between these two extreme 

cases. We will now see how to achieve this balance by discussing Markov Random Fields 

in detail. 
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1.3.3 Markov Random Fields 

To define Markov Random Fields (MRF) we need to formalise the notion of neighbourhood. 

The set { 8( i) : 8( i) ~ S} indexed by i E S is said to be a neighbourhood system if i ~ 8( i) 

and i E 8(j) ~ j E 8{i) for all i,j E S. In this case 8(i) is said to be the set of 

neighbouring pixels of pixel i. In this thesis we are interested in neighbourhood systems 

such that: 

8('i) = {j: j E Sand 1 ::;11 i- j 11 2
::; d}, 

where d 2: 1 and 11 i - j 11 is the Euclidean distance between the centres of pixels i and j. 

Depending on the value of d, the neighbourhood system is said to be first 01·de1· (d = 1) 

or second order (d = 2), and in this study we will use these two types of neighbourhood 

system. A subset c of S is defined to be clique if any two different pixels in c are always 

neighbours. We denote with C the set of all cliques. Given a neighbourhood system 8, the 

prior distribution p (x) of an image x is a Markov Random Field if: 

{1.2) 

In this way we have reduced the dependence of x8 to just the variables Xr corresponding 

to the neighbourhood of s. 

Accordingly to the Ha.mmersley-Clifford theorem (Winkler, 1995), we can always 

represent a strictly positive MRF in terms of a Gibbs distribution: 

( ) 
exp { -H(x)} 

p X -
- I:xEX exp {-H(x)}' 

(1.3) 

where X is the set of possible images and the energy function H(x) = I:cEC Uc(xc), in 

which Uc is a clique potential that only depends on the variables Xr with r E c. In (1.3) the 

denominator is a normalizing coustant called the partition fw1ction; often the normalizing 
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constant is denoted by Z. In this way, a MRF is completely determined by the energy 

function H. A commonly used family of prior distributions was suggested by Geman and 

McClure (1987). Good reviews of different models that can be adopted are given by Gilks 

et al. (1996), Besag (1989) and Winkler (1995). 

1.3.4 Bayesian inference 

Once the data model p (y[x) and the prior distribution p (x) are defined Bayesian inference 

about the 'true' image x given the acquired data y is based on the posterior distribution 

p (x[y). According to Bayes theorem we have: 

( I ) 
_ p(y[x)p(x) 

p X y - p(y) ' (1.4) 

where p (y[x) is the image data model and p (x) is the prior distribution. Since we are 

interested in (1.4) as a function of x, p (y) is constant and we can write: 

p(x[y) ex p(y[x)p(x). (1.5) 

Based on the posterior distribution, different estimators for the 'true' image can be 

adopted. In particular, we now describe the Maximum A Posteriori (MAP), Minimum 

Mean Square (MMS) and Marginal Posterior Mode (MPM) estimators. An image 

configuration x is called the: 

• MAP estimator if it maximises p(x[y): 

x = argmaxp(x[y), 
xEX 

• MMS estimator if it is the mean value of the image under p (x[y): 

X= L x p (x[y) = Ep(xiy) [X] 
xEX 
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• MPM estimator if for every pixel i, Xi is a marginal posterior mode; that is, Xi 

maximises the marginal posterior probability of Xi given the data y: 

where X-i= (x1 , ... , Xi-1, Xi+1, .. . , Xn). 

Each of these estimators minimises a particular loss functions; see Winkler (1995) for 

further details. In this work we adopted MAP and MMS estimator depending on t he 

part icular analysis task involved. 

1.3 .5 Markov chain Monte Carlo s imulations 

If each Xs can take any of g possible gray levels then lXI = gn , since ISI = n; for example 

if n = 256 x 256 (this is t he usual size of Magnetic Resonance images) and g = 256 

then lXI = (10)157826 which is huge. Accordingly, for typical images it is impossible to 

explore the whole state space to find the MAP or MMS estimator. In addition, since 

the variables are not independent it is not feasible to calculate the normalizing constant 

of the prior distribution analytically. T his is why we need Markov chain Monte Carlo 

(MCMC) simulations. The basic idea is that we can draw samples from a very complicated 

probability distribution by running an irreducible and aperiodic Ma.rkov Chain having that 

distribut ion as stationary distribution (Gilks et al., 1996). Using the values that the chain 

takes, we can then obtain good approximations of the MAP or t he MMS estimators. We 

now illustrate two particular Markov Chains: the Metropolis-Hastings (Metropolis et al., 

1953) and Simulated Annealing (Geman and Geman, 1984) algorithms. 

Metropolis-Hastings algorithm 

In order to estimate E n [f (X )], the expected value of a function f of x under a 

distribution of interest 1r such as the posterior, a Monte Carlo approach is to draw samples 
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{xt , t = 1, ... , N} from 1r and then to make the approximation: 

1 N 
E1r [J (X)]~ N L f(xt) · 

t=l 

15 

If the samples are independent, the law of large nwnbers ensures that t hjs approximation 

can be made as accurate as desired by increasing the sample size N. However, t he samples 

{xt} need not necessarily be independent. They can be generated by any process which 

draws samples throughout the support of 1r in correct proport ions. One way of doing this 

is by using a Markov chrun that has 1r as st ationary distribution. An example of such an 

MCMC procedure is supplied by the Metropolis-Hastings (M-H) algorithm. 

The M-H algorithm is composed of two steps, the proposal and acceptance: 

• Proposal: at each timet a candidate x ' for the next state xt+l is sampled from a 

proposal distribution Q (xlxt); 

• Acceptance: the candidate x' is then accepted with probability: 

t . , _ . { 7r (x') Q (xtlx') } 
a(x,x)-mm 1,7r(xL) Q(x'lxt). (1.6) 

If t he candidate point is accepted then x t+l = x 1
; otherwise the chain does not move 

Since a depends only the ratio : i::~, knowledge of any normalising constant that appears 

in the definition of 1r is not reqwred. Different forms of proposal distribution can be 

adopted such as Gaussian and uniform (see Gilks et al., 1996). Some iterations are 

required for a Markov chain to converge to equilibrium. In Section 3.2.3 we describe 

how we designed Q in order to improve the convergence of the algorit hm. In practice 

all the estimations are performed using realizations that are produced after convergence 

has been judged to occur, with the earlier realizations of the chain being discarded. The 
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transient phase of the chain before convergence is known as burn-in. After a sufficiently 

long burn-in, Jet's say M iterations, a good approximation of the MMS estimator is given 

by: 
1 N 

x.~ N-M L X t, 
t=M+l 

where N is usually large. In our work, we implemented a single component M-H algorithm. 

In fact , instead of updating the whole image at once it is often more convenient and 

computationally efficient to divide x into components such as pixels and t hen to update 

them one by one. Hence, an iteration of the algorithm comprises n updating steps. Let 

x! denote t he value of pixel i after it has been updated during iteration t. At step i of 

iteration t + 1, the M-H algorithm updates Xi as follows. A candidate x~ is generated from 

the proposal distribut ion Qi(x~lxL x~i) where x~i = { xt+I, ... , xi~}, x~+ I ... , xq, the 

components 1, . . . , i- 1 having already been updated. Thus the ith proposal distribution 

Qi Cl ·,·) generates a candidate only for the ith component of x and may depend on the 

current values. The candidate is accepted with probability a (xL x~ii xi) where: 

where 7r(xiiX-i) is the fu ll conditional distribution of Xi given .'t-i· If xi is accepted, then 

t+ 1 - I. tl . t+ I - t Th . . t h d t t . f xi -xi, o 1erw1se xi -xi. e remammg components are no c ange a s ep t o · 

iteration t + 1. 

Important issues in MCMC methodology are the sweep order, the burn-in length, the 

starting values of the chain and the number of chains to be used. These are discussed in 

detail in Gilks et al. (1996) for example. In this thesis we used a single long chain the 

length of which was determined by monitoring the spatial mean. The starting value of the 

chain was set to be an image of random numbers drawn from a uniform distribution in 

the range of the data. We adopted a systematic sweep order. Finally, we set the burn-in 
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to be t he fi rst half of the chain. 

Simulated Annealing 

In order to obtain a good approximation to the MAP estimator the simulated annealing 

algorithm is often employed. The idea is that instead of using a homogeneous Markov 

chain to sample from the posterior distribut ion p(x!y) ex exp{-H (x)}, we run an 

inhomogeneous chain by changing the taTget probability distribut ion at each iteration 

t to: 

[ 
H (x) ] 

PT(t) (x!y) ex exp - T(t) (1.7) 

where T(t) > 0 is a parameter called the temperature at iteration t that tends to zero as 

t --t oo. If T(t) --t 0 very slowly, the distribution (1.7) becomes concentrated on the NIAP 

estimate so ensuring that the algorithm eventually yields a global minimum of H (x). In 

fact, Geman and Geman (1984) established that if the temperature schedule is logarithmic, 

i.e. T(t) = C/ log(1 +t), the result ing Markov chain samples the MAP estimate with 

probability one. In practice, the theoretical value of C required to guarantee convergence 

is unknown and we cannot rw1 the algorithm for an infinite time. Also, if T(t) converges 

to zero too rapidly, the Markov Chain may get stuck in a local maximum. Hence the 

choice of a suitable temperature schedule is very important and various schedules have 

been studied in the literature. Some examples are the straight line, geometric, reciprocal 

and logarithmic schedules. These are discussed in more detail in Stander and Silverman 

(1994) a nd Hurn and Jennison (1995) for example. 

Once the temperatm e schedule has been fixed , the simulated annealing algorithm 

proceeds as follows: 

• at iteration t and temperature T(t), a particular single component M-H updating 

step with fixed acceptance probability of 1 is performed. This is a Gibbs sampler 
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type step; see Geman and Geman (1984). In particular, at pixel i, x~ is chosen with 

probability: 

where 

in which xa(i) represents the elements of x~i at the neighbours of pixel 1. . Note 

that the calculation of Z-r(t) involves t he summation of only g terms and hence is 

computationally inexpensive. 

• Once an iteration is completed , the temperature is decreased according to the chosen 

schedule. 

1.4 Image Classification 

Image classification is the process of organizing images into semantic categories. In our 

context, classification involves labelling every pixel of the acquired images as belonging to 

one of a number of possible categories or classes. A good classification method is such that 

pixels classified in the same category have similar values and form a connected region, while 

neighbouring pixels that are in different categories have dissimilar values. Classification 

is very important in every image-based research area in order to summarize the large 

amount of informat ion collected and represent clearly the results obtained . In part icular , 

in this thesis we study t he problem of classifying pixels of the acquired images into three 

classes that represent three different breast t issues: normal, benign and malignant tumoral 

tissue. The number of classes is chosen in accordance with the opinion of radiologists. 

The data that we use to classify the pixels are indicated as 'class attributes' d and will be 
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described in Section 4.1. These class attributes take into account some characteristics of 

the temporal evolution of the signal at every pixel. Hence, based on d, every pixel will be 

given a label k E {1, ... , K} , where K = 3. For this we developed a methodology based 

on the K-means clustering algorithm followed by the Iterated Conditional Mode (ICM) 

algorithm. Our methodology does not require any training set and so we may refer to it 

as unsupervised classification. 

1.4.1 K-means clustering algorithm 

There are several variants of the K-means clustering algorithm, but most of them are 

based on an iterative scheme that operates over a fixed number J( of clusters or classes. 

Each iteration involves two steps: 

• for each cluster a centroid, which is the mean value of the objects in that class is 

found; 

• each object is assigned to the class whose centroid is nearest. 

The goal of the algorithm is to divide the objects into K clusters such that some metric 

relative to the cluster centroids is minimized. Various metrics that can be minimized 

include: 

• maximum distance for any object to its cluster centroid; 

• sum of the average distance to the centroids over all clusters; 

• sum of the variance over all clusters; 

• total distance between all objects and t heir cluster centroids. 

From initial estimates of cluster centroids, every object is assigned to the cluster 

characterized by the closest centroid. When all objects have been assigned, the cluster 
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centroids are recalculated. These steps are repeated unt il the clusters no longer change. 

The metric to minimize and the choice of a distance measure determine the shape of 

the final clusters. Different distance measures can be adopted such as the £ 1 'Manhattan' 

distance or the L2 Euclidean distance. In particular , in our context in whlch we consider 

the classification of pixels, we adopted the following distance based criterion: 

~ t~~~J< (xi- Mkf v - l (xi- f.l-k )} , 

where Xi represents the value of pixel ·i, f.i-I , f.J-2, ... , f.i-K are the estimates of cluster centroids, 

and V is the variance-covariance matrix averaged over the clusters. In this way, at each 

iteration the classification corresponds to the smallest total distance between all image 

pixels and their cluster cent roids. More formally the algori thm can be described wit h t he 

fo llowing four steps (Glasbey and Horgan, 1995): 

1. Obtain an init ial estimate of f.J-1 , f.J-2, .. . , f.l-1< and let V be t he ident ity matrix. 

2. Assign every image pixel to a cluster based on the adopted metric. 

3. Re-estimate f.i-k as the mean of pixels assigned to cluster k and V as the variance­

covariance matrix averaged over clusters . 

4. Repeat steps 2 and 3 until no change in t he clusters is observed. 

1.4.2 The Iterative Conditional Mode algorithm 

T he ICM algorithm was discussed by Besag (1986). We present this algori thm here in the 

way that it will be used later in the context of classification. From initial estimates of 

class means and variances a first image classification is produced. Tills initial classification 

could be provided by the K-means clustering algorithm. Next, mean pixel values are 

evaluated in each category and then the image is re-classified, pixel-by-pixel by optimizing 
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a function that takes into account both the category means and the current classification 

of neighbouring pixels. This process is iterated. 

We now describe the ICM algorithm in detail for our classification application. Let k 

be a classified image and let kf be the class of pixel i at iteration t. The ICM algorithm 

attempts to approximate the MAP estimator of the posterior distribut ion p(k ld ). The 

idea is that at each pixel i the conditional posterior p (kiiLi, d) is maximised. ICM 

effectively corresponds to Simulated Annealing with a temperature schedule such that 

T(t) = 0 (instantaneous freezing) . In fact, at each iteration t of ICM, we choose kf to 

maximise: 

p ( kflk~i• d) = ~ p ( dilk;) p ( kflka(i)) , 

where p (dilki) represents the attribute model, p ( kflka(i)) is the conditional prior model 

and Z is the normalizing constant which needs to be estimated in our fully Bayesian 

approach. In Section 4.3 we present a method for estimating Z . Since p(kld) never 

decreases during the algorithm, convergence is guaranteed. However, unlike the theoretical 

version of Simulated Annealing, convergence may be to a local minimum, so the choice of 

the initial point is crucial in the ICM algorithm. The whole procedure is carried out for 

a given nwnber of iterations or until convergence occurs. In practice five or ten iterations 

are sufficient. 

1.5 Deformable template models 

Templates are geometrical models based on shape that are useful for high level image 

analysis tasks such as image segmentation, object recognition, object tracking and 

computer vision. Given a degraded image of a scene, the challenge is to locate and 

recognize one or more objects present in it. Since deterministic and random distortions 

affecting the data can make this task extremely difficult, it can be useful to exploit 
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information about the shapes of t he objects that are likely to be present in the scene, 

whenever this is available. This information can be represented by means of geometrical 

models or templates. The range of application of these models is extremely wide. In 

particular, they play a key role in many biological and medical applications where 

often objects under investigation can be classified only by their shape. Early research 

on deformable template models concentrated mainly on rigid shape matching. In this 

approach the deformed shape is obtained by applying simple affine transformations (Chin 

and Dyer, 1986) to an initial template. The object of interest present in the scene can then 

be recovered using correlation based matching. In this early stage the introduction of the 

Hough transform (Hough, 1962) represented an important step. T he classical Hough 

transform is a technique which can be used to isolate features of a particular shape 

such as lines, circles and ellipses within an image. These features must be specified in 

a parametric form. The generalized Hough transform (Ballard, 1981) can be employed in 

applications where a simple analytic description of the feature is not possible. Basically, 

the Hough method transforms points in the spatial feature space into a parameter space. 

The specified shape is then detected by finding t he peaks in this space. The advantage of 

this method is that it is relatively insensitive to noise and occlusions1. The disadvantages 

are its limited applicability due to the high computat ional complexity when the number 

of parameters needed to describe the shape is large and the rigidness of the associated 

model. In fact, a rigid model is not able to recover a shape which differs from the 

template by t ransformations other than translations, rotations or scalings, the so called 

affine transformations. Complete surveys on different variants of the Hough Transform 

technique and its application can be found in Illingworth and Ki tter (1988) and Leavears 

1 Geometrically, a n occlusion is caused by t he motion of an object that leads another object to be hidden 
(occluded ). If t he observer is moving in a static environment, occlusions corresponds to discont inuities 
in the perceived motion and depth . In an image sequence occlusion corresponds to a sudden lack of an 
expected object feature from one frame to the next. 



1.5 Deformable template models 23 

et al. (1993). 

Successive studies concentrated on templates able to deform themselves to fit the data 

by transformations that are more complex than affine. These models can be divided in 

two classes: 

1. free form models; 

2. parametric deformable models. 

We now discuss each class in turn. 

1.5.1 Free form models 

Free form models, also called active contours, do not take into account the global structure 

of the template. The template can be any arbitrary shape as long as some regularization 

constraints such as smoothness and continuity are satisfied. This shape can be deformed 

to match salient image features such as lines and edges using potential fields produced by 

these features. Active contours were first proposed by Kass et al. (1988) and Terzopoulos 

et al. (1988). In this approach an energy rrunimizing contour, represented by a spline, is 

driven by a mixture of three forces: 

• an internal spline force that enforces t he smoothness; 

• an image force which attracts the spline to the desired feature; 

• an external constraint force. 

Each force creates its own potential and the spline iteratively adjusts its position and 

shape until it reaches a minimum of the potential. The active contom approach has been 

successfully applied to edge and subject contour detection, stereo matching and image 

segmentation (Cohen and Cohen, 1993, Lemarie and Levine, 1993, Yuille et al. , 1992). A 

good review of free form deformable templates is given by Jain et al. (1996) . 
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1.5.2 Parametric deformable models 

Parametric deformable models are able to encode a specific characteristic shape and its 

variation. They are assumed when some 'a priori' information about the shape is available. 

These models can be divided into: 

• analytical models, where the shape can be characterized by a collection of 

parameterized curves; 

• prototype models, where a prototype is assumed and it is deformed by a parametric 

mapping. 

In the first case the template is represented by a set of curves that are uniquely described by 

some parameters. In t llis way, the specific analytical form incorporates the prior knowledge 

about the shape of the objects under analysis. The parametric shape of the template can 

be changed by varying the parameter values. A potential energy field is defined based 

on the image features and the current template and the shape evolves to minimize this 

energy by updating the parameters. In t llis framework Grenander et al. (1993) formulated 

a global pattern-theoretic model of shape. This consists of: 

• a space of generators such as pixels, polygons, vertices and edges which are the basic 

building blocks of the structure; 

• a connector graph which describes the interaction between generators; 

• bonding relations which apply geometric constraints so that t he resulting 

configurations are meaningful; 

• a transformation group which produces new structures by mapping one generator 

into another. 
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In general, tills approach can be represented as the composit ion of a model template and a 

parametric statistical mapping. The former describes the overall architecture of the shape 

and the latter governs the random variations in the building blocks of the shape. These 

factors together should be able to control the desired global and local geometry of the 

shape class. 

Some other examples of parametric templates are given by elliptic Fourier descriptors, 

moment invar·iants based models and eigenshapes models (see Hurn, 1998, Baumberg and 

Hogg, 1995, Haddadnia et al., 2001 , for example) . 

In general, the applicability of parametric deformable models is somewhat limited 

because t he shapes under investigation must be well defined so that they can be represented 

by a set of curves characterized by a small number of parameters. Depending on the 

application this is not always achievable. 

These problems can be overcome with a prototype model in which a prototype template 

is deformed by a parametric mapping. An objective function based on the image features 

and the edge of the template is defined and the mapping parameters are then iteratively 

updated in order to minimize this function. The prototype template can be eit her 

specified by means of expert advice, for example a sketch drawn from a physician, or 

obtained from training samples. The chosen parametric statistical mapping reflects the 

particular deformations a llowed in the application domain. Some typical deformations 

are represented by rubber sheet deformations based on a trigonometric basis, thin plate 

splines, Kriging (Dryden, 1998) or Wavelets (Abramovich et al. , 2000). 

We should emphasize that recovering the shape of one or more objects from noisy 

images by using prototype models consists of more than removing the noise from the 

data. It provides a t ransformation of the template which gives a structural understanding 

of the picture. In other words, the t ransformation allows us to identify characteristic 
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features of the true object in the image by making comparisons with those of the template. 

For example, this approach could lead us to determine objectively landmarks and their 

geometric parameters in the object. In medical applications we may be able to identify or 

even classify pathologies. 

In the framework of deformable template models, t he Bayesian approach plays an 

important role, as it always does when prior knowledge of a process is avai lable that needs 

to be combined with acquired data to make statistical inference about the parameters of 

the process. The prior distribut ion typically represents knowledge about the objects in a 

particular scene and the image data model represents the joint probability distribution of 

the acquired data conditional on the objects present in the scene. These two ingredients are 

combined to obtain the posterior distribution t hat represents t he probability of observing 

a particular deformed template given the acquired data. Inference about the parameters 

of t he mapping are then obtained from the posterior distribution. T he MAP and MMS 

estimators are often adopted to estimate the optimal deformation of the template. 



Chapter 2 

The Data 

In this chapter we describe the data analysed in this thesis. In Section 2.1 we introduce 

briefly the physical principles of Nuclear Magnetic Resonance and Magnetic Resonance 

Imaging. In Section 2.2 we describe the experimental set-up and the actual data motivating 

the methodology that we developed. 

2.1 The physics of Magnetic Resonance Images 

Magnetic Resonance Imaging (MRI) is a non-invasive technique that can produce high 

resolut ion images of slices of living t issues. This technique is based on the principle of 

Nuclear Magnetic Resonance (NMR) which describes the interaction of radio waves with 

atomic nuclei that have particular values of a property called spin. Such nuclei are called 

para.magnetic1 . This principle allows us to probe objects with radio waves. In particular, 

we can obtain physical information by collecting the signal that is emitted when the 

spins that have been excited by radio waves release energy upon ' relaxing' back to the 

equilibrium state. In fact, nuclear energy levels are quant ized with the consequence t hat 

to induce a transition from one energy state to another, the exact amount of energy 

corresponding to the difference between t he two states must be absorbed by the nucleus. 

1 Paramagnetic nuclei have an odd number of electrons in t he outer electron shells. 
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In NMR the nucleus absorbs this energy from radio waves. Since t he radio wave energy is 

proport ional to its frequency, we can cause t ransitions between two states of a particular 

nuclear species by set t ing the radio wave frequency to the corresponding energy gap. 

2.1.1 Nuclear M agnetic R esonance principles 

The most widely used isotope in MRI is the Hydrogen (Hl) atom since its high abundance 

in living tissue yields high MR signals. T he nucleus of this atom can exist in two different 

energy levels that coincide in the absence of a static magnetic field. However, if a static 

magnetic field Eo is switched on, t hese energy levels split and are characterized by an 

energy gap. If we now apply a radio frequency pulse corresponding exactly to this energy 

gap, we induce t ransitions between t he two energy levels. Once the radio frequency is 

swi tched off the nuclei lose coherence and relax back to their original state emitting 

energy. T he emitted energy gives rise to the acquired NMR signal. This process can 

be described classically in t he following way. When we place a sample of paramagnetic 

nuclei in the magnetic field, the magnetic moments of each nucleus sum together to 

produce the net magnetization lv! . When Eo is switched on, M revolves or precesses 

around it at a particular frequency, known as the precession frequency that depends on 

the applied magnetic field. We say that the nuclei resonate with this frequency and hence 

speak of Nuclear Magnetic Resonance. The radio frequency pulse can be represented as a 

different magnetic field E 1 perpendicular to E0 . Hence when the radio frequency pulse is 

on, M tends to precess also around E 1 with the result that the magnetization axis now 

forms an angle a, called the flip angle, with Eo. The value of a is proport ional to the 

time of application of this radio frequency pulse. When the radio frequency pulse E 1 is 

switched off, M gradually relaxes to realign with Eo and energy is emitted. At this stage 

the NMR signal is collected. T his signal depends on the projected components of the 
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magnetization on the axis of the plane perpendicular to Bo and on the radio frequency 

pulse. The technique that we have described is used to detect nuclei wit hout any spatia l 

discrimination; t hat is t he acquired NMR signal depends on all nuclei whose energy levels 

are separated by a gap corresponding to t he frequency of the radio wave applied . This 

is the basis of NMR spectroscopy. We now describe how we can extend this technique 

to NMR imaging, in which the acquired signal depends on the spatial coordinates of the 

nuclei. 

2.1.2 Magnetic Resonance Imaging 

In order to have a MR image we need to discriminate between signals t hat depend on 

different magnetization coordinates ( x, y, z ). Let us assume that the static magnetic field 

Bo is oriented along the z axis so that the MR signals will depend on the (x, y) components 

of M. T he idea behind MRI is to generate signals in which different spat ial locations 

produce cont ributions at different frequencies ru1d phases. This is achieved through the 

use of linear variations in t he strength of t he magnetic field Bo in the x , y and z directions 

with t he result that the precession frequency becomes a function of space. This spatial 

information is encoded into the signal using gradients by meru1s of t hree sepru·ate processes: 

slice select ion, frequency encoding and phase encoding. T hese are presented graphically 

in Fig. 2.1. We will now describe each step briefly. 

Imaging a slice of the object under invest igat ion requires a method to excite nuclei 

only wit hin that slice. To do tllis, in the slice selection step , a linear gradient along the 

z axis is applied to Bo so that the precession frequency var ies along z . In this way, if we 

apply a radio frequency pulse containing just a small range of frequencies, only nuclei in 

t he slice corresponding to t hese frequencies will be excited. 

Further spatial information is embedded into t he signal during the frequency encoding 
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step by applying a linear gradient along t he x axis as the signal is acquired. This causes 

nuclei with different x coordinates to precess at different frequencies, and thus to produce 

signals t hat have different frequencies when collected. 

Finally, in the phase encoding step, spatial information in t he y direction is embedded 

in the signal by reading it on I< separate occasions under slightly different condit ions. On 

the kth occasion a linear gradient in t he y direction is employed in between the application 

of the z and x gradients at time tk. This causes the frequency of t he spins to change 

temporarily according to the y coordinate and results in a corresponding change of t he 

phase in the y direction. The time tk varies on each application so that a different amount 

of phase is encoded at each y coordinate. T his step completes the coding of the spatial 

information in t he acquired signal. 

A complete overview of MRI techniques is given in Stuart and Young (1988). In MRI 

different choices of radio frequency pulses and gradients can be adopted depending on the 

particular application. The particular paradigm adopted for acquiring the image is usually 

called the MRI sequence. In dynamic MRI studies a Fast Low Angle SHot (FLASH) is 

usually employed (Matthaei et al., 1992). In this sequence the flip angle a is small in order 

to reduce the acquisit ion time. Unfor tunately this leads to noisy image sequences. 

2. 2 The analysed dataset 

The data analyzed in this project were acquired at the Radiology department of the 

'Istituto Regina Elena' in Rome and consist of a dMRI sequence. In t llis thesis, we 

consider a typical dMRI sequence of 20 images of 256 x 256 pixels. The spatial and 

temporal resolution are approximately 1 mm2 and 15 seconds respectively and the slice 

thickness is 5 mm. The images are acquired by a Siemens Magnetom MR tomograph 

operating at 1.5 Tesla. In Fig. 2.2 we show the acquired image sequence in lexkographical 
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Figure 2.1: MRJ spatial encoding. Slice selection: a gradient is applied along the z axis to the 

static magnetic field Bo so that for a particular value of the frequency only spins lying on a plane 
(gray) will be selected. Frequency encoding: a second gradient {blue) is applied along the x axis so 

that spin frequencies vary in the x direction. Phase encoding: a gradient is applied on the y axis 

(green) inducing a change of phase in this direction. 
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order. T he first image of t he sequence is acquired irnmecliately after the cont rast agent 

injection. T he image intensity depends on the gadolinium concentration and in Fig. 2.3 we 

can observe the signal increase over t ime between the first two images of the series. This 

increase is significant within the Region Of Interest (ROI) indicated by the box. As will 

be described in Section 3.1, we chose to apply our Bayesian methodology within this ROI 

because a preliminary step of our analysis, presented in Section 3.1, will reveal significant 

temporal signal variations inside this region. In the reported dMRI sequence we note a 

fast increase of intensities within the region corresponding to the selected ROI in the first 

three images of the sequence. The following images are characterized by relatively small 

intensity variations. T llis behaviour reflects the typical uptake pattern of the contrast 

agent described in Section 1.2 and shown in Fig. 1.1. This consists of a very fast signal 

increase followed by either a plateau or a low signal decrease. This behaviour can be 

observed in Fig. 2.4(a) where the temporal pattern for a given pixel within t he ROI is 

shown. In particular, from t llis figure the steep uptake observed during t he first three 

images and the slow decrease during t hose that follow are evident. 

Two main sources of distortions affect the acquired data set: deterministic distortions 

due to the patient movements during image acquisition and random distortions due to 

the experimental set-up. The method used to reduce the deterministic distortions due to 

patient movements will not be described in this work . In the following, we will show the 

data after deterministic distort ions have been minimized. 

In Fig. 2.4(a) the random distort ions affecting the data are evident. Since the 

classification task is based on t he temporal evolution of the signal, it is important to 

minimize the effect of these random fluctuations. In Fig. 2.4(b) we report the last image 

of the sequence for the ROI. Again we note that this image is clearly affected by random 

distortions that potentially reduce the diagnostic capability of dMRI. 
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F igure 2.2: The acquired dMRI sequence. The sequence is shown in lexicographical order, i.e. 

the top left frame is the first image of the sequence acquired immediately after the contrast agent 

injection. The bottom right frame is the last image of the sequence. 
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(a) (b) 

Figure 2.3: Two images from the acquired dMRI sequence: (a) first image of the sequence acquired 

immediately after the contrast agent injection; {b) second image of the sequence acquired 15 seconds 
after the contrast agent injection. The ROI is indicated by a box. 
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Figure 2.4: (a) A typical time pattern for a pixel within the ROI. Random distortions make the 
classification of ROI pixels from their temporal evolution extremely difficult. {b) The selected ROI 

in the last image of the sequence. The random distortions reduce the capability of this technique to 
investigate the internal structure of the lesion. 



Chapter 3 

Bayesian Image Restoration 

In this chapter we present a parametric and a non-parametric Bayesian approach for the 

image restoration task, together with a novel solution to the problem of estimating the 

model hyper-parameters and a modified version of the Metropolis Hastings algorithm. 

We will begin by introducing some further notation: let Yi = {y; ( 1) , ... , y; (T)} 

represent the observed temporal intensity profile at pixel i, where i = 1, ... , n, and let 

y = (YI, ... , Yr) be all the observed data, that is a sequence of T images. Our values 

of n and T, as mentioned in Section 2.2 are 256 x 256 and 20 respectively. Similarly, 

let x = (xi, ... , xr) be the true, but unobserved image sequence to be estimated. In 

order to reduce considerably the computational burden, our Bayesian analysis will not be 

performed on the entire images of the sequence but on a selected ROI from them consisting 

of a few thousand pixels. 

This chapter is structured as follows. In Section3.1 we describe how the ROI is selected 

and how we use an hypothesis test based approach to locate the tumoral region. Then the 

non-parametric approach is introduced in Section 3.2, while in Section 3.3 the parametric 

method is presented. Finally, in Section 3.4 the results of the tumoral region location 

procedure are given and the image restorations obtained with both methods are shown 

and compared. 
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3.1 Region Oflnterest selection and tumoral region location 

In this thesis we assume that there is only one lesion in the breast. If this is not the 

case both the image restoration and classification procedures have to be repeated for the 

additional lesions that may be present. 

The very first step of our dMRI analysis is to identify a ROI within the breast where a 

'significant' increase of the contrast agent concentration is observed. In order to find this 

region from the acquired image sequence y, we start by calculating the 'mean difference 

image' m, the i'h pixel of which is given by: 

1 T 
1'11i = T- 1 L {y;(t)- y;(1)}' 

t=2 

(3.1) 

where y;(t) is the image acquired at time t and t = 1, ... , T. By subtracting y(l) from 

every image of the sequence we reduce considerably the dependency of m on the anatomical 

features of breast. In fact, since y(1) is acquired immediately after the Gd-DTPA injection, 

the contrast agent concentration in it is still so low that the signal at every pixel will 

depend only on the MR parameters of the tissue in that location before the contrast 

agent injection. The image m is an important parameter in this kind of analysis because 

nowadays physicians base their diagnosis on it. In Fig. 3.l(a) we report m. We note the 

presence of a bright region where the high signal value is due to the increased concentration 

of the gadolinium salt. In this patient we can clearly identify a lesion. In fact, physicians 

identify the tumoral lesion location by extracting the contour of the bright region within 

m; we present the results of this procedure in Section 4.4. 

Based on m, a ROI containing the identified bright region can be drawn by the 

radiologist. In Fig. 3.1(a) we show a typical ROI (yellow box) superimposed on m. In the 

following, our analysis will be focused on the pixels in this ROI. In this way, the number of 
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(a) (b) 

Figure 3.1: (a) The 'mean difference image' m and the selected ROI (yellow) . Here we note how 
dependency on the anatomical features of the breast has been considerably reduced and contrast 

agent uptake highlighted. The bright area inside the ROI corresponds to a tumoral region. {b) The 

image m in the selected ROI with the reference region 'R (yellow) superimposed. The region 'R 
comprises healthy tissue surrounding the lesion. 
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pixels to be analyzed decreases from approximately one million to a few thousand (usually 

the size of the ROI is about 50 x 50 pixels). This obviously makes our procedures faster. 

The next step is to locate more precisely the lesion within the ROI. To do this we 

implemented an hypothesis testing procedure. First, a reference region R within the ROI 

is selected by the user. This represents a region where the user is confident that there 

is no significant glucose uptake. In Fig. 3.l(b) we show a typical R within the ROI of 

Fig. 3.1(a). This region should comprise healthy tissue surrounding the tumour. In order 

to reduce variability, R is selected in the same breast where the lesion has been identified. 

Next, the distribution of pixel values within R is estimated. Because of the shape of this 

distribution, shown later in Fig. 3.5, we decided to fit tllis empirical distribution with a 

Gaussian model the mean and the standard deviation of which have to be estimated. As 

these parameters are well estimated, it is sufficient for our purposes to assume that they 

are known; we will denote them by /-LR and aR. In tlJ.is way we are now able to perform 

an hypothesis test over the pixels within the ROI. In particular the hypotheses at pixel i 

are: 

Ho: pixel i is non-tumoral 

H 1: pixel i is tumoral, 

so that the test statistic will be: 

where z, is such that P (Z S z,) = 1- a, in which Z ~ N(O, 1). The probability of Type 

I error or significance level is approximately a. The basic idea behind this test is that 

tumoral pixels are characterized by a distribution that is different from N(/-LR, ah). In 
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particular, since we expect the mean value of tumoral pixels over time to be considerably 

greater than /1-R, we used a one-tail test. Pixels for which Ho is rejected in favour of H1 

will be classified as tumoral. In the following, we will refer to the set of tumoral pixels as 

the tumoral region which we will denote I. We will discuss results of this hypothesis test 

procedure in Section 3.4. 

3.2 A non-parametric approach for image restoration 

The Bayesian estimation of the true image inteusities is performed at each pixel within 

the ROI shown for example in Fig. 2.4(b) for the last image of the sequence. Tllis is 

done without adopting a parametric temporal model for the image intensity evolution. 

Following the Bayesian paradigm, we now introduce the image data model, the prior 

model and the adopted estimator based on the posterior distribution. 

3.2.1 Image data model 

Since we assume that deterministic degradations due to patient movements during the 

image acquisition have already been reduced, the acquired image sequence y will be related 

to x by: 

y;(t)=x;(t)+ti(t), i=1, ... ,n, t=l, ... ,T (3.2) 

where the errors Ei (t) are assumed to be independently distributed. The time unit is 

the time interval between two consecutive images, although in the figures we report the 

corresponding seconds. For an MR image acquired in absolute value the distribution of 

E; (t) in the background, i.e. a region of very low signal intensity outside the imaged part 

of the body, is known to be a Rayleigh with variance s2 (Henkelman, 1985 and Sijbers et 

al., 1999). In regions of high signal, the distribution of Ei (t) can be well approximated 
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by a Gaussian with variance a 2 = 4
; 7T s2 (de Pasquale et al., 2000). The value of s2 

can estimated very accurately in the background of the image. In this way, from the 

estimate of s2 we can obtain a 2 so that in the following this will be considered a known 

parameter. We experimented with both distributions and, since no significant differences 

were obtained, we adopted the Gaussian distribution for computational simplicity. 

3.2.2 Prior model 

Our 'a priori' distribution for the true images models both the continuity of the temporal 

evolution at each spatial location and the presence of homogenous spatial regions, 

separated by discontinuity lines, within every image of the sequence. To achieve this, 

we relate stochastically in a separate way the differences between image intensities at 

contiguous times at each pixel and the differences between neighbouring pixels in space at 

each time. We do this by merulS of the following factorized Markov Random Field model: 

P (x) oc Q exp [ -/35 <~>V. {x; (t)- Xj (t)}] x 

ITexp [-tJt L Vi{xi(t') -x;(t")}l, 
i=l <t't"> 

(3.3) 

where Vj is the prior potential in space or time, l E { s, t}, < ij > indicates second order 

neighbour pixels in space, < t't" > indicates first order neighbour pixels in time, tJt is the 

smoothing hyper-parruneter in space or time. The prior distribution (3.3) is a pair-wise 

interaction model characterized by the prior potentials V. and Vt. In particular, we take: 

Vj (z) = -Iog{pl (z)}, (3.4) 
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where pz is the distribution of grey level differences in x (Sebastiani and Godtliebsen, 

1997). We model PI (z) as: 

(3.5) 

where lit, lE {s, t}, are two further hyper-parameters to be estimated. The meaning of 81 

will be discussed in Section 3.2.4. With t!J.is choice we have: 

(3.6) 

Model (3.6) penalizes differences depending on their amplitudes compared to the 

parameter 81. In order to illustrate this effect in Fig. 3.2 we report the behaviour of 

V.(lly8 ) corresponding to two different values of .58 (.58 = 10 and .58 = 30, since the range 

that we adopted later for the optimization of this parameter is [10, 100]. For a given 

value of .58 the differences between neighbouring values are penalized depending on their 

amplitudes. In particular, the larger the absolute value of lly5 the higher the penalty V8 • 

As we can see from Fig. 3.2, increasing the value of .58 leads to a lower penalty for any 

given differences lly8 • Therefore, informally increasing .58 increases the range of differences 

that are allowed under the prior, thus we can say that .55 controls the amplitude of the 

discontinuities to be preserved. Other choices for Vi have been proposed in literature 

with similar behaviour (Ki.insch, 1994). The key feature of our approach is to define Vi 

through PI by (3.4), as this allows us to propose a successful procedure for estimating 81. 

Among the different models we tried for PI (z), the one in (3.5) leads to the most reliable 

hyper-parameter estimation results. 

3.2.3 Estimation 

As we mentioned in Section 1.3.4, in the Bayesian approach different estimators for the 

true images can be adopted. At this stage we choose the MMS estimator because it 
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Figure 3.2: The behaviour of the prior potential V,(Ay,) corresponding to different values of 
5,: 08 = 10 {blue line) and 08 = 30 (red line}. The value of o, controls the amplitude of the 
discontinuities to be preserved. 
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can be obtained without solving an optimization problem. In order to obtain a good 

approximation to the MMS estimator we used a specially tailored single component M-H 

algorithm with a proposal function based on the data distribution. In particular, Q is taken 

to be a normal distribution with expected value Yi(t) and variance equal to the estimated 

value of a 2 . In order to compare this proposal function with other choices, namely a 

uniform independence proposal and a random walk with Gaussian proposal optimized 

with respect to its variance, we performed a simulation study. We assumed as true image 

sequence real MR images characterized by a low level of noise. Then we generated a 

noisy dataset by adding Gaussian noise to this image sequence. Finally, we restored this 

image using the different M-H algorithms that we considered. To estimate the speed 

of convergence of these algorithms we plot the Mean Square Error (MSE) between the 

true image and the current approximation of the posterior mean as a function of MCMC 

iteration number. In Fig. 3.3 we show tllis comparison for the three proposal distributions 

that we considered. As we can see from this figure, our algorithm reaches convergence 

much earlier than the other two. We observed the same behaviour for different levels of 

noise and for other types of original images. We also remark that an update of the proposed 

algorithm is computationally less expensive than an update of the other algorithms. This is 

because the acceptance probability of the proposed algorithm has a contribution from only 

the prior, whereas the acceptance probability of the other algorithms has a contribution 

from both the prior and the likelihood. 

The starting point of the algorithm is an image of random numbers drawn from a 

uniform distribution in the range of y and the pixel sweeping order is systematic. We 

approximate x as the mean of the last half of the Markov chain sequence of images, the 

length of which is determined by monitoring the spatial mean. 
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Figure 3.3: MSE comparisons between Metropolis algorithms with different proposals: optimal 
Gaussian random walk {dashed line), uniform independence proposal {dotted line) and Gaussian 

independence proposal with measured pixel image intensity as proposal mean and the estimated value 

of a 2 as proposal variance (continuous line). Each iteration on the horizontal axis corresponds to 
a full update of the ROI. The vertical axis represents the MSE between the true image and the 
current estimate of the posterior mean. 
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3.2.4 Hyper-parameter estimation 

One of the advantages of our Bayesian methodology is that the hyper-parameters are 

estimated automatically. We now describe this important step. All the hyper-parameters 

({38 , f3t, c58 , c5t) play an important role in our procedure. The parameters {38 and f3t represent 

the weights of the spatial and temporal prior potentials with respect to the image data 

model potential. Thus, inappropriate values of these parameters can lead to either over­

smoothed or very noisy restorations. The parameters c55 and c5t are also very important 

because they control the amplitude of the discontinuities that will be preserved during 

the restoration. Since these discontinuities identify the location of the tumorallesion and 

characterize its structure, it is crucial to estimate the c5t accurately. 

We begin by estimating c5s and c5t. Our estimation procedure is based on minimizing 

the difference between PI (t..yt), the empirical distribution of observed image differences, 

and PI (t..yt), the associated theoretical distribution. The quantity t..yl represents all the 

spatial or temporal intensity differences in neighbouring pixels of the observed sequence 

y (Sebastiani and Godtliebsen, 1997). From (3.2) we have that t..y1 = t..x1 + t..Et, from 

which it follows that: 

(3.7) 

where ® indicates the convolution integral. Since we assumed that €1 belongs to a 

Gaussian distribution, it follows that PI (t..Et) is aN (0, 2a2). Based on PI (t..xt) from (3.5) 

and PI (t..€1), PI (t..yt) can be computed by performing the convolution (3.7) numerically. 

Finally, to estimate 81 we minimize the sum of the absolute values of the differences between 

PI ( t..yt) and PI ( t..yt) over parameter 81. 

We adopted a different criterion to obtain f3s and f3t· These hyper-parameters are 

estimated by minimizing the discrepancy between a theoretical x} distribution and the 
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empirical distribution of the values in the set: 

I: - {;. {y; (t)- i:;(t;.B •• .Bt)} 2 

I- L., 2 ' 
t=l (T 

Here i:; (t; .Bs • .Bt) represents the estimated image at pixels in 'I for a given choice of .Bs 

and .Bt· The rationale behind this criterion is that the distance between the empirical 

distribution of the values in I:z and the theoretical x} distribution decreases as i:; (t; .Bs, .Bt) 

becomes closer to true value x;(t). In order to reduce the computational time, we adopted 

the following scheme to minimize the discrepancy under consideration: 

1. an initial point (.B~, .BP) and an incremental pass ( t::...B., t::...Bt) are fixed using our 

experience of suitable values of these parameters for the type of images under 

investigation. 

2. The values (.B~ + l!t:..B.) are calculated where I! E { -1, 0, 1 }. The value of the three 

.B. points that minimizes the discrepancy between x} and the distribution of I:z is 

chosen as .BI. 

3. Analogously, (.BP ± t:..Bt) are calculated and the value of the three .Bt points 

minimizing the discrepancy between x} and the distribution of I:r is chosen as 

.Bl-

4. Steps 1 and 2 are repeated until one of the minimizing points (.B~, .Bt) is chosen for 

the second time. 

We compared the parameter estimates produced by this scheme with those yielded 

by an exhaustive search over a fine grid of parameter values. No substantial differences 

emerged. 
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3.3 A parametric approach for image restoration 

As an alternative to the non-parametric approach we now investigate a different restoration 

method in which a parametric temporal model for the true image intensity profile at each 

pixel is adopted. The parameters of this model are estimated by the Bayesian approach and 

some of them are used as attributes in the subsequent image classification step described 

in Chapter 4. We now discuss the image data model, the prior model and the adopted 

estimator for these model parameters. 

3.3.1 Image data model 

As we stated in Section 1.2, the injection of the contrast agent gd-DTPA gives rise to a 

significant increase in the MR signal received from regions characterized by high blood 

vascularization. A mathematical model describing the MR signal variation over time is 

very important for performing quantitative analyses of the contrast agent concentration. 

Unfortunately, the complexity of the physics behind dynamic MR images prohibits the 

use of a completely detailed model. Among the few suitable models described in the 

literature, a pharmacokinetic model, initially proposed by Tofts and Kermode (1991) for 

MRI measurements on the blood-brain barrier, has proved very important. This model 

has since been developed for use with dMRI sequences; see Brix et al., (1991). Their 

model is compartmental, with the blood plasma being approximated as one compartment 

and the extracellular space of the tissue being a peripheral compartment. Hayton et al. 

(1996) solve the resulting pharmacokinetic equations using the Laplace Transform in such 

a way that different injection modalities can be taken into account. The parametric model 

that we present has a very similar behaviour to the solution presented by Hayton et al. 

(1996) when an instantaneous injection of the contrast agent is considered. In particular, 

we assume that x; (t) takes the functional form x; (t) = fo, (t), where the temporal model 
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fe, (t) is given by: 

fo, (t) = 
{ 

~M; -I;) I;+ 1 -" ( 1) / } [1- exp { -/::;. (t- 1) /T;}] - exp -L.l p; - T; 

M-F.-( ) M· -l ' t -p· 
! '1-p; • 

in which 9; = (I;,M;,F';,p;,T;) represents the parameter vector for pixel i, () 
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(01, ... , 9n) is the sequence of parameter vectors for the n pixels, and /::;. = 15 seconds is 

the temporal interval between two subsequent images so that the units ofT; are seconds. 

These parameters are illustrated in Fig. 3.4. 

Combining the parametric model with the Gaussian noise distribution, we obtain the 

following image data model: 

- 1 n T [- {y; (t)- f(), (t) }2] 
p (YI9 ) - 2 nT/2 IT IT exp 2u2 · 

(21fCT ) i= 1 t= 1 

3.3.2 Prior model 

The 'a priori' model adopted is similar to the one adopted for the non-parametric approach. 

In fact, for each parameter we take into account spatial continuity and the presence of 

different structures in the image. Among the different types of dependent models with 

which we experimented, the one that performs best is 

p (9) = Pl,M,F (I, M, F) X Pp,T (p, T) 

where: 

P1,M,F (I, M, F) ex exp [ -{31 <~log { 1 + (I;~ Ij r + ( M;{J~fMj r + ( F; ~ Fj r} l 
Pp (p, T) ex exp [ -{32 <t=> log { 1 + (Pi~ Pi r + ci ~ Tj r} l (3.8) 

where< ij >indicates second order neighbours in space and f3t, !J2, 61, fJM,fJF, {JP and 6r 

are the hyper-parameters. 
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Figure 3.4: Meaning of the pammeters 6 = (I, M, F, p, T) of the pammetric tempoml model for the 
contrast agent uptake. Two pammetric time patterns are shown: 6 = (200, 1400,900, 6.5, 15) (solid 
curve with dots) and 6 = (200, 1400,900, 6.5, 60) (dashed curve). The solid and dashed curves 
coincide after p. The dots indicate the acquired tempoml points t = 1, ... , 20 where one time unit 
is 15 seconds. The units of r are seconds. 

3.3.3 Estimation 

In order to minimize the variability between the non-parametric and parametric 

restorations, in this section we adopt the MMS estimator as used in Section 3.2 to estimate 

(). In this way, restoration from the two methods can be compared consistently. To 

obtain the MMS estimator we adopt the Metropolis-Hastings algorithm with uniform 

proposal. In fact, in this case we cannot use the modified proposal introduced for the 

non-parametric case in Section 3.2.3. Furthermore, since we do not have any knowledge 
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about the distribution of these model parameters a uniform proposal seems the most 

sensible choice. The parameter ranges for the uniform proposals are defined as follows. 

The ranges for I and Fare the same as those of y(l) and y(T) respectively. The range for 

M corresponds to the minimum and maximum values of the whole measured image data 

while the range for p is [2, T- 2]. The range for T is D. [0.2, T /3]. The MMS estimator is 

again approximated as the mean of the last half of the Markov chain sequence of images, 

the length of which is determined by monitoring the spatial mean of the parameters. 

3.3.4 Hyper-parameter estimation 

In (3.8) there are seven hyper-parameters (f31,{32,6/,6M,IiF,Iip,6r)· To estimate 61 and 6F 

we use the procedure described in Section 3.2.4 by considering the empirical distribution 

of the pixel-wise differences calculated from y(l) and y(T). For 6M, 6p and 6r, we first 

estimate the images M, p and r with fJ1 = fJ2 = 0; these correspond to likelihood 

based estimates. The values of these three parameters are then set equal to the standard 

deviation of the empirical distribution of the pixel-wise differences for these images (Glad 

and Sebastiani, 1995). We cannot use the procedure described in Section 3.2.4 because 

the relationship between M, p and T and the observed image sequence does not follow 

a simple additive model. For the hyper-parameters fJ1 and fJ2 we follow the approach 

described in Section 3.2.4. 
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3.4 Results 

3.4.1 Non-parametric approach 

In this section we present the results of the hypothesis test based procedure, the hyper­

parameter estimation and the consequent restorations. In Fig. 3.5 we compare the 

x10..,. 
6~----------~----.-----,-----~----~ 

Figure 3.5: Comparison between the empirical {histogram) and estimated {red line) distributions 
of pixel values within 'Tl. We note a good agreement between these two distributions. 

empirical distribution of pixel values within R (histogram) and the estimated Gaussian 

distribution (red line). We note a good agreement between them, so just ifying the 

normality assumption. In Fig. 3.6 we show the results of the hypothesis test corresponding 

to different values of the significance level a. With a = 0.50 we have that 64% of pixels 

within the ROI are classified tumoral. This percentage reduces to 28% and 21% with 

a = 0.10 and a = 0.01 respectively. Therefore, even adopting a very low significance 

level for the test, we obtain a large percentage of tumoral pixels within the selected ROI. 
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Furthermore, they all belong to a connected region. 

(a) (b) (c) 

Figme 3.6: Results of the hypothesis test corresponding to different significance levels: (a) a = 0.10 
(b), a= 0.01 (c) and a= 0.001. In this binaTy image the bright pixels are tumoral. We note that 

even with a significance level of 0.01 we still obtain a considerable number of tumoral pixels. 

To assess the effectiveness of the procedmes for hyper-parameter estimation we show in 

Fig. 3.7(a) a comparison between PI (b.yt) for the optimal8t and the empiTical distribution 

f:>t ( b.yt) for both space and time. We note a very good agreement between the empirical 

and theoretical distributions. 

To illustrate the results of the adopted criterion for choosing f3s and f3t, we present 

in Fig. 3. 7(b) a comparison between the theoretical x} distribut ion and the empirical 

distribution of I::I for the optimal {35 and f3t· Again, from this figme we note a good 

agreement between them. The range used in the optimization procedure and the optimal 

values are reported in Table 3.1. 

Range Optimal value 
8s [10, 100] 50 
8t [10, 100] 20 
f3s Not fixed 35 
f3t Not fixed 70 

Table 3.1: Hyper-parameter optimization ranges and the optimal values obtained. 

Now using the optimized hyper-parameter values reported in Table 3.1, we restored 
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Figme 3.7: (a) Comparison between PI (llyl) for the optimal8t (continuous line) and the empirical 

distribution Pl (llyt) (dotted line} for both space and time. (b) Comparison between the theoretical 

x} density (continuous line) and the empirical distribution of Ez for the optimal f3s and f3t 

(histogram) for a possible tumoral region I. 
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the image sequence. The MMS estimator for the last image of the sequence corresponding 

to the ROI is shown in Fig. 3.8(b) with the original image being shown in Fig. 3.8(a). In 

this figure we also show the restoration results obtained for two other patients. In all these 

restorations we note that the random distortions have been successfully reduced, while the 

edges of the underlying structure have been preserved, so highlighting information about 

the tumour morphology. 

In order to compare our procedure with a common image restoration method, in 

Fig. 3.9 we show the restoration obtained by means of a Wavelet based method. In 

particular, we obtained this result by adopting the Fast Wavelet Transform (FWT) 

algorithm (Mallat, 1989) for Wavelet decomposition and reconstruction. We tested 

different Wavelet families and in this figure we report the best result that we obtained. 

This restoration corresponds to the choice of Symlets Wavelets of order 8 (see Abramovich 

et al., 2000). In fact, we used three dimensional Symlets, obtained as the tensor product 

of three one-dimensional Wavelets (first along time, then along row axis and finally along 

column axis), to restore the images. Following the approach of Donoho and Johnstone 

(1994, 1995) the significant Wavelet coefficients in the reconstruction were extracted by 

thresholding, i.e. the coefficients are set to zero if their absolute value is below a certain 

threshold level. We set this threshold level using the same criterion as for the estimation of 

the hyper-parameters f3s and f3t described in Section 3.2.4. The restoration in Fig. 3.9 was 

obtained using the estimated optimal value of this threshold level. From the comparison 

between the Wavelet and Bayesian restorations shown in Fig. 3.8(b) we note that the 

former is more noisy. 

In order to illustrate the restoration effect over time we show in Fig. 3.10 the 

comparison between the temporal pattern of two pixels within I before and after the 

restoration. Here, we note again that the random distortions have been considerably 
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(a) (b) 

(c) (d) 

(e) (f) 

Figm e 3.8: Non-parametric restorations. Comparison between the ROI before (left) and after 

(right) restoration for three different patients. Here we note how the restoration procedure redttces 

the rondom distortions affecting the data and highlights the internal structure of the lesion. In all 

these cases the last image of the acquired seqttence has been shown. 
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Figure 3.9: The restoration obtained using a BD Wavelet filter. 

reduced allowing us to recognize the typical pattern in Fig. 3.10(a) of benign and in 

Fig. 3.10(b) of malignant tumoral t issues shown in Fig. 1.1. 

3.4.2 Parametric approach 

In Fig. 3.11 we show our estimates of the attributes T and M- F in the t umoral region I. 

As we can see some structures have become evident. In particular , radiologists involved 

in this research advise that these ring shaped structures are common in these kinds of 

tumours. In Fig. 3.12 we show the results of the parametric image restoration procedure 

for the last image of the sequence in the selected ROI. The restored sequence has been 

obtained substituting t he estimated values of the parameters in the parametric model. 

This result is very similar to the one obtained from the non-parametric approach shown 

in Fig. 3.8(b). To assess further the validity of the parametric approach and to compare 

it with the non-parametric one, we consider the t ime patterns from the acquired and 

restored images at two different pixels within I. Fig. 3.13(a) shows an example where the 

parametric approach provides a better fit than the non-parametric one. This occurs in 

most of the pixels within the tumoral region, and may lead us to prefer t he parametric 

model. In Fig. 3.13(b) a different sit uation is presented. Here the data may provide 
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Figure 3.10: The temporal pattern before (dotted line) and after (continous line) the non­

parametric restoration procedure for two pixels within the tumoral region I. In particular the 
restored patterns in (a) and (b) resemble the expected pattern shown in Fig. 1. 1 for malignant and 

benign tumoral tissue respectively. 

evidence for a t ime pattern of a different kind than t hat allowed by the parametric model. 

In cases like this the parametric model may be too rigid and unable to describe the t rue 

temporal evolut ion properly. Overall, our choice of restoration method should be based 

on the interpretation of classification results by radiologists. Finally, in contrast to other 

methods, one of t he main advantages of the Bayesian approach is that it can provide us 

not only point estimates but also credibility intervals for t he parameters. This may be 

useful in fwt her steps of the analysis, such as inter-patient surveys. As an example, in 

Fig. 3.14 we present the MMS estimator and the associated 95% credibility intervals for a 

cent ral row of the parameter T shown in Fig. 3.11. 
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'T M-F 

Figm e 3.11: Images of the estimated attributes T and M- F from the parametric approach in the 

tumoral region I. 

Figme 3.12: Parametric restomtion. As in Fig. 3.8 we show the last image of the sequence. This 
restomtion is very similar to the non-parametric one shown in Fig. 3. 8. 

3.5 Conclusions 

A disadvantage of MCMC methods for analysing image sequences is the high 

computational time that they require due to t he typically large number of iterations 

needed to reach convergence. In om case, since the dMRI sequence consists of 20 images 

of 256 x 256 pixels, it is impossible to perform the analysis on the whole data set in the 

t ime t hat is typically available for these kinds of studies. In fact , to make om approach 

appealing we need the results in a few minutes. For this reason, the first step of identifying 
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Figure 3.13: Comparisons between the acquired image intensity time profiles {line with dots) and 

the restored profile from the non-pammetric {dashed line) and the pammetric {continuous line) 
approach. The profiles in (a) and {b) correspond to different pixels. One time unit is 15 seconds. 

the tumoral region I within the breast is very important in reducing the computational 

burden. The results show t hat our hypothesis test based method gives us a small reliable 

region even if we choose a very low significance level such as 1%. Restricting attention 

to a small t umora l region reduces the number of pixels analysed from approximately a 

million to few thousands. 

To speed up further our procedure we developed a single component M-H algorit hm 

with specially chosen proposal function based on the data distribution. In particular, the 

proposal is taken to be normal with expected value equal to the acquired data and variance 

set to the value estimated from the image intensity in the background , as explained 

in Section 3.2.2. Comparisons of the performance of the M-H algorithm with different 

proposals, namely t he optimal Gaussian random walk, a uniform independence proposal 

and our proposal, show how our algorithm reaches convergence earlier than the others. 
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Figure 3.14: Point estimates and 95% credibility intervals for a central row of the parameter T 

shown in Fig. 9.11 

Another issue addressed in this chapter is the estimation of the hyper-parameters of 

the prior models. We propose criteria to estimate these parameters making our procedure 

automatic. In this way our methods can be used by non-experts to analyse large samples 

of patients, thus providing a validation for the developed techniques. 

Bot h non-parametric and parametric image restorations show that t he estimated 

hyper-parameter values are reliable. In fact, in the restored image sequences random 

distortions have been successfu lly reduced while the w1derlying structures have been 

preserved. The restorations obtained using the two approaches seem similar. However , 

the temporal patterns obtained from the two methods show some differences. In some 

cases the non-parametric approach provides a biased estimate of t he temporal evolution, 

while in other cases the parametric approach seems too rigid and unable to describe the 

temporal evolution properly. Our analysis will be mainly focused within the identified 
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tumoral region I where the parametric approach seems generally to perform better. 

Finally we remark that one of the advantages of adopting a Bayesian approach 

compared to other methods is that it can provide not only point estimates but also 

credibility intervals. In this chapter, we show the 95% point-wise credibility interval for 

a central row of the ROI for the attribute T of the parametric model. This information 

could be useful in further steps of our analysis such as inter-patients surveys. 



Chapter 4 

Bayesian Image Classification 

In this chapter we describe our Bayesian image classification step. This step is based on 

the restored dMRI sequence and the method that we developed is motivated by the work 

of Sebastiani and S0rbye (2002). The classification is based on a few attributes describing 

the relevant features of the image intensity time pattern for each pixel. Initially, we 

tested different choices for these attributes, for both the non-parametric and parametric 

approach; the results that we present are obtained by adopting those that performed 

best. In particular, from the non-parametric approach, we adopted the areas A and 

B shown in Fig. 4.1. These areas quantify gadolinium wash-in and wash-out and are 

easily calculated from the smoothed temporal patterns. We chose to adopt integral-based 

attributes because they are more robust than attributes defined as the difference between 

two points of the temporal pattern of the signal. Furthermore, they include all the acquired 

temporal information for every pixel. From the parametric approach we use the parameters 

T and !11- F, as these again quantify accurately gadolinium wash-in and wash-out. For 

comparable values of !11- I, A increases with T. However, although we could calculate A 

from the estimated temporal model, doing so would result in less spatial regularity than 

using T for which we adopt a spatial prior model. 

Let di = (di,i, ... ,dm,i) be a vector containing the m attributes at pixel i. In our 
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case we take m = 2. The classification procedure can be represented by a mapping of 

every pixel i to a class k; E {1, 2, ... , K} where K is the number of classes considered. 

The value of K can be chosen by the radiologist. If the classification is performed within 

a selected ROI, we set K = 3, corresponding to normal, benign and malignant tumoral 

tissues. Alternatively, if the procedure is applied within the tumoral region I described 

in Section 3.2.4, we set K = 2 corresponding to benign and malignant tumoral tissues. 

In this study we restrict our classification procedure within I. Thus our procedure tries 

to identify different physiopathological conditions of the tumoral tissues. Following the 
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Figure 4.1: Classification attributes for a given pixel are taken to be the areas A and B. 

scheme of Chapter 3, in Section 4.1 and 4.2 we introduce the attribute and the prior model, 

while in Section 4.3 we describe how the estimation is performed. Finally, in Section 4.4 

the classification results obtained from both the non-parametric and parametric attributes 

are shown. These results are compared with those currently available to radiologists for 

locating the lesion and with the classification obtained from a standard hierarchical cluster 

analysis. 
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4.1 Attribute model 

The j'h attribute for the k'h class is assumed to follow a Gaussian distribution with 

expected value Cj,k and variance Vj,k· The attributes are assumed to be conditionally 

independent with the result that the distribution of d = ( d1, ... , dm) given the 

classification vector k = (k1, ... , kn) is: 

n m 

p( d/k, c, V) = IT IT (21r Vj,k.) -l/
2 exp {- ( dj,i - Cj,ky / (2Vj,k,)} , 

i=l j=l 

V k = (VJ,k, ... , Vm,k) are the attribute means and variances for tissue class k. These 

vectors are assumed unknown and will be estimated at the same time as k. 

4.2 Prior model 

Our prior assumption about the classified image is that neighbouring pixels are more likely 

to belong to the same class than to different classes. Hence we adopt the Potts model 

(Potts, 1952): 

where the hyper-parameter f3 has to be estimated and Z!J is the unknown normalizing 

constant. 

4.3 Estimation 

Inference about k, c, V and f3 is based on their joint posterior distribution. By using 

Bayes theorem and the reasonable simplifying 

assumptions that P(d/k,c,V,/3) = P(d/k,c,V) and that P(k/{J,c,V) = P(k//3), we 

obtain P(k,c,V,/3/d) <X P(d/k,c,V)P(k/fJ)P(c,V,/3), where P(c,V,/3) is the prior 
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distribution on c, V and {3. Since we do not have any knowledge about the distribution of 

these parameters, here we assume a uniform prior in a suitable range. As we now adopt 

a fully Bayesian approach (Besag, 1989), we need to estimate Z[J up to a proportionality 

constant for a range of values of {3. Since Z[J = Lk exp ( -f3Uk), as we mentioned in 

Section 1.4.5, exact calculation is not feasible due to the high number [(n of configurations 

involved. However, we proceed by noting that: 

8 log ZiJ 
8{3 

(4.1) 

where EP(klfJ) [Uk] is the expected value of the energy function Uk under P (klf3). Then, 

by integrating (4.1) with respect to {3 we obtain: 

i,{J I 

log (Z{J) -log (Z[J0 ) = - EP(klfJ') [Uk] d{3, 
fJo 

for some fixed value f3o. We approximate EP(klfJ') [Uk] using the M-H algorithm for a 

finite number of values of {3' and calculate the integral numerically using Simpson's rule. 

Related approaches for approximating the normalizing constant can be found in Gelman 

and Meng (1998) and Green and Richardson (2002). 

Our chosen estimator is the MAP estimator, the classification image corresponding to 

the maximum of the posterior distribution. The MAP estimator is discussed in detail in 

Section 1.4.4 and 1.4.5. To decrease the computational burden we obtain an approximation 

of the :tvlAP estimator by using the Iterative Conditional Mode (ICM) algorithm presented 

in Besag (1986) a11d outlined in Section 1.5.2. As the ICM algorithm is a local optimization 

procedure, it depends on its starting point. We chose the K-means clustering algorithm 

output as the starting point. This algorithm is discussed by Glasbey and Horgan (1995) 

and outlined in Section 1.5.1. The initial point for the K-means clustering algorithm is a 

classification image based on the modes of the histogram of one of the class attributes. 
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4.4 Results 

In Fig. 4.2 we show the non-parametric classification attributes A and B within I. 

Structures resembling a 'C' and a 'U' seem to appear in this figure. Although these 

structmes are not clearly defined, the information in the A and B images will lead the 

classification procedure towards a meaningful structure as we will now see. In order to 

(a) (b) 

Figure 4.2: Non-parometric classification attributes A in (a) and B in (b). Structures resembling 
a 'C' and a 'U' seem to appear in (a) and (b) respectively. 

assess the performance of the methodology that we developed, we begin by considering 

the results obtained using two existing techniques. First, in Fig. 4.3(a) we show the result 

that is obtained using the method current ly employed by radiologists. This method is 

based on the mean difference image m introduced in equation (3.1) and only identifies 

the location of the lesion. The lesion location, obtained by extracting the contom of the 

bright region within m shown in Fig. 3.l (b), is superimposed in red on t he last image of 

the sequences. 

An analysis of the temporal patterns of pixels inside this red area confirmed that it 

corresponds to a tumoral region. Hence, this method can provide a clear indication of the 

tumoral lesion location although it provides no information about tumom morphology. 

ext, we consider the image classification obtained by applying a standard statistical 
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(a) (b) 

(c) (d) 

Figure 4.3: (a) The lesion location obtained from the method currently employed by mdiologists 
based on the mean difference image m. {b) Hiemrchical cltiStering classification. The two clusters 
are identified by red and green. This classification is very speckled and no internal structure is 
evident. {c) Non-parametric classification. A structure resembling a 'C' appears clearly indicating 
a necrotic region (green} surrounded by a more active region {red}. (d) Pammetric classification. 
A ring shaped structure clearly appears. Similar considemtions to (c) about the morphology of the 
tumour apply. 
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method to the raw dataset. This is because we did not want this procedure to be 

influenced by the Bayesian restoration step. The adopted technique is a hierarchical 

clustering method (Krzanowski, 1990). In order for the results not to be biased by the 

choice of classification attributes, we used as data the whole temporal pattern, i.e. all 

twenty temporal values at every pixel. Among the different choices that we considered, we 

obtained the best result using the Mahalanobis distance matrix and the 'furthest' linkage 

criterion. Since the classification was performed within the tumoral region I, the number 

of clusters was fixed to two. In Fig. 4.3(b) we show the clusters that we produced. As 

we can see, the classification is very speckled and no internal structure of the tumour is 

evident. 

To illustrate the improvements that can result from our Bayesian methods, the 

classification image based on the non-parametric attributes A and B is shown in Fig. 4.3(c). 

In particular, this result has been obtained by classifying the pixels within region I into 

two classes: benign (red) and malignant (green) tumoral tissues. We note the presence of 

a 'C' structure that is frequently present in these kinds of tumours (Heywang-Kobrunner 

and Beck, 1995). Radiologists have advised us that this structure is consistent with the 

presence of a necrotic region at the centre of the tumour caused by the tumoral growth 

mechanism. 

In Fig. 4.3(d) we show the classification based on the attributes T and M- F obtained 

from the parametric approach. Very similar results were achieved by using the parameters 

p and !11- F. We note the presence of a ring structure, again compatible with the tumoral 

nourishment mechanism. 

In addition, in order to check the temporal pattern of the pixels belonging to the 

two classes, we averaged the temporal evolution of the signal over the classified regions 

for the classification image obtained from the non-parametric attributes. In Fig. 4.4 we 
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show these mean temporal patterns for the two classes. We note that they resemble 

the patterns discussed in Section 1.2. Almost identical curves were obtained from the 

parametric classification presented in Fig. 4.3(d). The above results further validate the 

success of the whole procedure for investigating the internal structures of the lesion. 
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Figure 4.4: The mean temporal patterns over the two classes. We note a good agreement with the 
characteristic patterns for malignant and benign tumoral tissues shown in Fig. 1.1. 

4.5 Conclusions 

The classification of tissues inside a tumoral lesion is very important both to understand 

the way in which the lesion is growing and to plan different medical interventions. It must 

be stressed that dMRI can provide information about the tumour morphology before 

any medical intervention and hence before the tumour is removed. The method that 

radiologists currently use to analyse these sequences can provide an indication of the 

tumour location, but no information about the internal structure of the tumour can 

be gathered. In order to show the improvement obtained by our methodology we first 
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performed image classification using a hierarchical clustering method. This was applied 

to the raw data using as pixel attributes the whole temporal pattern. In this way, the 

results were not biased by our image restoration and our choice of classification attributes. 

The classification obtained clearly shows that such a procedure is not able to identify any 

structure within the lesion. This is due to the noise that affects the data. Our Bayesian 

classification, in which the image sequence has been previously restored, prior knowledge 

has been modelled and attributes have been chosen carefully, seems very promising in both 

the non-parametric and parametric case. In fact, our results show a clear improvement 

over those currently available: not only do the tumoral regions identified by our method 

and the technique currently used by radiologist coincide, but also an underlying internal 

lesion structure becomes evident from our classification image. This indicates that our 

procedure seems to be able to discriminate between different pathological conditions of 

the tumoral tissues. This result is very important from a clinical point of view. At this 

stage we are not able to say whether the non-parametric or parametric approach produces 

the more reliable estimate of the lesion structure. Our experience is that the results 

obtained from the two methods are similar and both structures have been judged to be 

reliable by radiologists. A further indication that the classification images are accurate, 

at this stage, can be obtained by considering the mean temporal patterns inside the two 

classes identified within the lesion. As an example, we show these mean patterns for 

the non-parametric classification. We note that they resemble very closely the expected 

theoretical patterns shown in Fig 1.1. 



Chapter 5 

Deformable Template Models 

In this chapter we present an image classification method that, unlike the Bayesian 

procedure introduced in Chapter 4, takes into account the spatial structure of the lesion. In 

fact, as we mentioned in Section 1.2, tumour morphology can be a very useful classification 

criterion. The approach that we shall develop will exploit knowledge about the shape of 

lesions that radiologists often have before acquiring the data. Examples of such shape 

information are given in Fig. 1.2. In our Bayesian classification methodology the spatial 

structure of the lesion is taken into account by prior distributions modelling spatial 

homogeneity and temporal continuity between neighbouring pixels of the image sequence. 

These models try to minimize random distortions affecting the data while preserving the 

edges that characterize the tumour contour. No high level priors modelling the actual 

shape of the lesion were adopted in the Bayesian methodology. However, in the approach 

described in this chapter knowledge about the shape of the tumour is taken into account 

by means of deformable template models. 

Our new procedure is based on the classification attributes introduced in Chapter 4, 

restricted to a previously identified region 'I, such as the one discussed in Section 3.1 

and shown in Fig. 3.6(c). In this way, our task will be to identify the border separating 

the malignant and benign tumoral classes within the lesion. We assume that the border 
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separating these classes is a simply connected line so that it can be represented as a shape 

in a binary image. The pixels inside (outside) this shape will be classified as malignant 

(benign) twnoral tissue. Throughout this chapter for simplicity we refer to the malignant 

tumoral tissue as a lesion, so that by the lesion contour we mean the border separating 

the two classes. In this way, reconstructing the lesion contour is equivalent to obtaining a 

classification image. 

The basic idea is that we start from a template in the form of an image that represents 

our knowledge about the lesion shape. We then deform this template using parametric 

tnmsformations to produce an image that matches the lesion contour. This image is 

obtained by minimizing an objective function that depends on the parameters of the 

deformation. Hence, our matching algorithm consists of the following three steps: 

1. introducing a prototype template; 

2. deforming the prototype by using a set of parametric transformations; 

3. minimizing an objective function over the set of parametric transformations in order 

to match the deformed template to the lesion contour. 

In Section 5.1 we describe our choice of prototype template. In Section 5.2 we derive 

the parametric transformation model and discuss the meaning of its parameters. In 

Section. 5.3, we investigate the richness of our deformation models by means of a simulation 

study. In Section 5.4 we introduce the objective function, while in Section 5.5 we present 

full details of our matching algorithm. In Section 5.6 we present our results. These were 

obtained from a simulation study in which we investigated the potential of our algorithm 

by applying it to several datasets with different Signal to Noise Ratios (SNR). We also 

applied our methodology to our real dataset with success. 
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5.1 The prototype template 

The prototype template is a binary image that represents our prior knowledge about 

the shape of the lesion. Tllis can be obtained from a training set as in the 'Eigenshapes 

models' discussed by Baumberg and Hogg (1995), or it can be drawn by expert radiologists. 

As mentioned in Section 1.5, a prototype template that can be deformed by parametric 

mappings has the advantage over a parameterized template that many different shapes 

can be very easily included in the analysis. Furthermore, depending on how accurate 

our prior knowledge about the tumour shape is, detailed or coarse information about the 

contour separating the two classes can be modelled. For example, if for a particular lesion 

we do not have any specific information about the shape, we can take the contour of the 

tumoral region I as the prototype template and allow large deformations in the matching 

procedure. On the other hand, if we know that the lesion under investigation resembles a 

particular shape, we can specify the shape and allow only very small deformations during 

the analysis. An important feature of this approach is that the distance between the 

estimated final shape and the prototype template can be quantified by the parameters of 

the deformation and this information can be very useful from a clinical point of view. In 

fact, if the prototype image represents a particular pathology, this distance can represent 

how accurately the lesion can be classified as belonging to that pathology. 

Since the prototype represents the initial shape of the matchlng algorithm, it plays 

a very important role. Our 'a priori' knowledge about the tumoral shape consists of the 

lesion contour, size and location withln the breast. At this stage, we assume that the lesion 

border is obtained from an expert radiologist who draws the contour that he expects to 

find for the kind of tumours under study. This contour is shown as the whlte 'C' shape 

in Fig. 5.1(a). The size and location of the lesion are roughly estimated by means of the 
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tumoral region 'I shown in Fig. 3.6(c). These estimates are used to scale and shift the 

prototype. We now describe how this step is performed. Initially the contour of region 'I is 

extracted and its centroid is calculated. Since we assume that the centroids of the tumoral 

region and lesion are the same, we translate the prototype in such a way that these two 

centroids coincide. Once the prototype is centred, we perform the scaling. In order to 

estimate the scaling factors we adopted a method based on the best fitting ellipses for the 

contour of 'I and the shifted prototype. In particular, the ellipses are obtained by matching 

the moments of these shapes. This step is described in detail in Appendix A. In Fig. 5.l(a) 

we show the best fitting ellipses superimposed on the 'I contour and the prototype template 

before translation. In order to scale the prototype, the lengths of the major and minor 

axes of the ellipses are calculated. Now, the prototype is scaled along the horizontal and 

vertical axis by factors given by the ratio of the lengths of the two major and minor axes 

respectively. Since the tumoral region contour does not contain any information about the 

lesion orientation, we do not apply any rotation to the prototype at this stage. Rotation 

of the prototype, as will become clear in Section 5.2, can be approximately obtained 

by combining different transformations given by the adopted deformation model. The 

shifted and scaled prototype template (red) is shown in Fig. 5.1(b) with the 'I contour. 

Throughout our study we will use the 'C' shape as prototype contour and translate and 

scale it in the way we have described. This translated and scaled prototype will be the 

initial point for our matching algorithm and will be denoted by To. 

5.2 The deformation model 

Once the translated and scaled prototype To has been obtained it will be deformed by 

using a set of non-affine transformations. We now describe these transformations. An 

intuitive idea of the effect of these non-affine deformations can be provided by employing 
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(a.) (b) 

Figure 5.1: {a) The white 'C' shape is the contour supplied by the mdiologist. The contour of 
region I is also shown in white. The best fitting ellipses (green) are superimposed on those contours. 
{b) The contour supplied by the mdiologist is shifted and scaled to obtain the prototype template 

To which is superimposed {red) on the I contour. 

a rubber sheet representation. We can assume that the template is drawn on a planar 

rubber sheet with fixed boundaries lying in the unit squareS = [0, 1]2 and that this sheet 

can be deformed by locally stretching, squeezing and twisting the interior. As the rubber 

sheet deforms, the template on it changes shape. Such non-affine transformat ions can be 

described by a continuous mapping K of S into itself: 

1C (x, y) r-+ (x, y) + U(x, y), (5.1) 

where U(x,y) = (U1(x,y),U2(x,y)) is a parametric transformation. To specify U(x,y) 

we can represent the rubber sheet deformation by a partial different ial equation that in 

physics represents the movements of a membrane subject to the application of a force f 

at a given point (x, y) : 

£} (U) = f, (5.2) 

where 
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If we adopt the following boundary conditions of mixed type for (5.2): 

U1 (O,y) = U1 (l,y) = 0; U2 (x,O) = U2 (x,1) = 0 
ut (x,O) =ut (x, 1) = O; u; (O,y) = u; (l,y) = o, 

76 

(5.3) 

the borders are mapped into themselves in such a way that abrupt transformations 

are avoided near them. To find the solution of (5.2) subject to the boundary 

conditions (5.3) is straightforward. In fact, if we know the Green's function G (x, y; ~. 17) = 
( G1 (x, y; ~, '1/) , G2 (x, y; ~. ry)) that satisfies both partial differential equations: 

82Gi 82Gi 
8x2 + 8y2 =o(x-Oo(y-ry), i = 1, 2 (5.4) 

where o is the Dirac delta distribution and (~,'I/) E S, and the boundary conditions (5.3), 

then U(x, y) can be calculated by: 

U(x, y) = ll G (x, y; ~. ry) ® f(~, ry)~dry, (5.5) 

where multiplication ® and integration are applied component-wise. Now, it can be 

shown that G can be expressed in terms of the eigenvalues Anm and eigenvectors 

Wnm = ('1/l~m• '1/J~m) of £ 2 through the bilinear formula as (Butkov, 1968): 

G( .c ) = ~ ~ Wnm(~,T/) ®1/Jnm (x,y) 
x,y,.,,11 w w A , 

n=l m=l nm 

(5.6) 

where summation is applied component-wise. With the boundary conditions (5.3), Wnm 

represent an orthonormal basis, the components of which are given by: 

'1/J~m(x,y) = 2sin(mrx)cos(m7ry) 

'1/J~m (x, y) = 2 cos (m1rx) sin (n1ry) (5.7) 

both of which have associated eigenvalues Anm = -21r2(n2 + m 2). Substituting (5.7) into 

(5.6), we obtain: 

00 00 1 
G 1 (x,y;~.T/) = 2: 2: 2 ( 2 2 ) [-sin(mr~)cos(m7rry)]2sin(mrx)cos(m7ry) 

n=l m=l 1T n +m 
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00 00 1 
G2 (x,y;~,71) = 2:2: 2 ( 2 2 ) [-cos(m7r~)sin(mrry)J2cos(m7rx)sin(mry). 

n=I m=l 7r n +m 
(5.8) 

We now assume that f is an impulsive force at a point (!', () E S, the components of 

which can be represented by: 

. 1 
J'(x,y) = -b"(x- "f)b"(y- (), i = 1, 2, 

a 
(5.9) 

F 
where a = A, in which F represents the tension in the membrane and A the external load 

per unit area. Substituting (5.9) into (5.5), we have: 

1 
U(x, y) = - G(x, y; "f, (); 

a 

so from (5.6) we obtain 

CXl CXl 1 
Ua;e (x, y) = 2: 2: 2 ( 2 + 2) e11111 ® 'I/J 11111 (x, y), 

n=l m=l a7r n m 
(5.10) 

where e is a set containing all the parameters e71m and enm = (e;m, £~111 ) is a vector of 

deformation parameters with components given by: 

e~111 ("/, () =-sin (n7r"() cos (m1r() 

e;,m ("', () = - cos ( m7r"() sin ( n1r() . 

By varying the application point ("1, () of the force f these deformation parameters will 

range in [-1, 1]2. Clearly the form of the deformation parameters derives from the 

particular choice of f. Different choices of the force lead to different forms and hence 

ranges for enm (see Amit et al., 1991 and Jain et al., 1996). In order to widen the class of 

deformations that we consider, we shall assume that e~,m and e~m can take any value in 

[-1, 1]2 independently of each other. 
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The parameter a plays an important role in our deformation models. This parameter 

can be thought of as a scaling factor as it controls the amplitude of the deformation. The 

physical interpretation is that for a given value of the external load A, a is proportional 

to the membrane tension F. If F increases, the membrane becomes more rigid so that 

the same load produces smaller deformations in every point of the membrane. Once the 

values of Enm and a are fixed, the transformation is uniquely determined. 

In our implementation, because only a finite number of terms in the infinite series (5.10) 

can be used, the deformation field is approximated by: 

N M 1 
Ue (x, Y) = L L 2 ( 2 + 2) Enm ® .,Pnm(x, y), 

n=l m=l Q7r n m 
(5.11) 

where e = (a;c;N,M), and c. 

By setting the number of components N and M to large values it is possible to 

obtain very complex deformations. However, in this study we keep N and !vi small 

because we do not want to generate shapes that are very different from the prototype 

template. In addition, if we increase the number of components, the number of deformation 

parameters increases. Thus, the computational burden associated with the optimization 

of the objective function, that will be introduced in Section 5.4, becomes too onerous. 

For these reasons, we set N = 1\1 = 1. For notational simplicity we henceforth write 

Returning to (5.1), we can now define the mapping operator as: 

Ke(x, y) = (x, y) + u8 (x, y). 

For a binary image Xo with pixel centres indexed by (x,y), we shall let X 1 = KeXo be 

the image that results from transforming each pixel of Xo by Ke. 

We now show the deformation of S for different choices of e. To do this, we generated 
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Figure 5.2: The reference grid R drawn on S = [0, 1]2 

a binary image R representing a reference grid drawn on S , as shown in Fig. 5.2. In 

Fig. 5.3 we show deformat ions of R corresponding to different values of the scaling factor 

and the deformation parameters. The images in Fig. 5.3(a), (b) and (c) show the effect of 

varying c2 when c1 is a fixed small value, namely c1 = 0.2, while the images in Fig. 5.3(d) , 

(e) and (f) are obtained using the same three values of c2 and a fixed large value of £ 1 , 

namely £ 1 = 0.9. These six images show the deformations corresponding to a small value 

of a, namely a = 0.4. For the remaining images of Fig. 5.3 we used the same values of 

e but a large value of a, namely a = 0.7. We note that for fixed a t he sign and the 

absolute value of the deformation parameters correspond respectively to the orientation 

and intensity of the bending along the x axis for c1 and t hey axis for £ 2 . We can also see 

that the larger the value of a, the smaller is the deformation amplitude. 

The pixel placed in the centre of the deformation field at the point (0.5,0.5) is not 

affected by any deformation as it is always mapped into itself. This means t hat if a pixel 

of the template border is at the centre during the matching a lgorithm, it will never move 

again. In order to avoid having a pixel of the shape stuck in the centre of the deformation 

field we decided to shift the template after every deformat ion by re-centring its centroid. 

Now that we have specified the operator IC, we are able to describe the multi-resolution 
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(a): a = 0.4, E = (0.2, 0.2) (b): Q = 0.4, E = (0.2, 0.9) (c): a= 0.4, E = (0.2, - 0.9) 

(d): Q = 0.4, E = (0.9, 0.2) (e): a= 0.4, E = (0.9, 0.9) (c): a= 0.4, E = (0.9, -0.9) 

(f): Q = 0.7 E = (0.2, 0.2) (g): Q = 0.7 E = (0.2, 0.9) (h): Q = 0.7 E = (0.2, -0.9) 

(i): Q = 0.7, E = (0.9,0.2) (1): Q = 0.7, E = (0.9,0.9) (m) : a= 0.7, E = (0.9, -0.9) 

Figure 5.3: The effect on the reference grid R shown in Fig. 5.2 of varying the scaling factor a 
and deformation pammeters e of the mapping K-e in which e = (a; e). 
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approach for deforming the template. The basic idea is that, in order to widen the 

richness of the space of shapes that can be reached by the algorithm, instead of using one 

single deformation, we compose different transformations with different scaling factors. 

In particular, a increases as the algorithm proceeds. The idea is to refine the shape 

at successive steps using transformations that become smaller but finer. To formalize 

this composition of transformations, we begin by introducing the scaling parameters 

( a(ll, ... , a(R)) with a(i) > a(i-1), i = 2, ... , R, the set { e} of deformations, and the 

number of times ( r1, ... , r n) that the deformation is applied at each scale. Then our 

composition of trarlSformations applied to the prototype To is given by: 

R ri 

Tcom =IT IT K:0 (;,nTo, 
i=l j=l 

(5. 12) 

where e(i,j) = ( a(i); e(i,j)) in which e(i,j) is a articular element of the set { e} of 

deformations. In the matching algorithm that we will describe in Section 5.5 we will 

choose e(i,j) in an optimal way. 

We now discuss 'suitable' ranges for the deformation parameters. The range [-1, 1] of 

e, as we said earlier, is determined by the choice of the force given in (5.9). Since we want 

every point of S to be mapped within the unit square, the minimum value of a can be 

obtained by requiring that the maximum deformation in both directions will never leave 

the unit square. We discuss this for the x direction; an analogous treatment applies for 

they direction. First of all, we consider a point (x,y) very close to the border (O,y). We 

require that this point will be mapped within S, so that applying the maximum negative 

deformation in the x direction must yield a non-negative transformed point. From (5.11) 

and the assumption that N =M= 1, the maximum negative deformation corresponding 

to £ 1 = -1 must satisfy: 

1 . 
x- -

2 
sm (nx) cos (ny) ~ 0. 

an 
(5.13) 
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Since x is small we approximate sin (1rx) by 1rx, and in order to have the biggest 

deformation we set cos (1ry) = 1. With these simplifications (5.13) becomes: 

X - .!._ = X (1 - -1 ) ~ 0 
a7r a7r 

1 
from which it follows that a> - ~ 0.32. 

-1f 

Analogously, if we take a point close to the border (1, y) we require that the biggest 

positive deformation corresponding to c1 = 1 will not map this point beyond the border 

so that: 

x + ~ sin ( 1rX) COS ( 1ry) :";"; 1. 
a7r 

(5.14) 

Now, since xis very close to 1, we can approximate sin(1rx) by 1r(1- x) and as before 

in order to have the biggest deformation we take cos (1ry) = 1. Hence, (5.14) becomes: 

1r(l-x) 
X+ 2 :";"; 1, 

a7r 

leading again to the same constraint a ~ .!. ~ 0.32. Now, because of the discretization 
7r 

of the mapping we will assume the value 0.4 for the minimum of a. The maximum value 

of a can be obtained by requiring that the maximum deformation is greater than the 

distance between two adjacent pixels. This happens when __.!:.__
2 

> 
1 

because the pixel 
cm 50 

grids that we use are typically of size 50 x 50. In this way, if a > 5~ ~ 5 every point of S 
7r 

will be mapped into itself and no effect of the deformation will be visible. Typically the 

size 50 x 50 for this kind of study is sufficiently large but if a larger support needs to be 

considered then the maximum value of a will be increased. In conclusion, we adopted the 

range [0.4, 5] for the scale parameter a. 

In order to illustrate the effect of composing the deformations, in Fig. 5.4 we show, as 

an example, the deformation obtained by setting R = 3, (a (I), a<2l, a<3l) = (0.4, 1.5, 3), 

r 1 = r2 = r3 = 1 and adopting random choices for the deformation parameters c(i,j) in 
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(5.12). We note that very complex deformations can be achieved by our mult iresolut ion 

model. These can include approximations of rotations. 

Figure 5.4: An example of a deformation obtained as a composition of three transformations 

corresponding to ( a(l), a<2), a<3l) = (0.4, 1.5, 3) with random choices for the deformation 
parameters g (i ,j). 

Now that the deformation field has been introduced , we can investigate the effect of 

these deformations on the prototype template To shown in Fig. 5.1 (b) . 

5.2.1 Filters to recover the connectivity 

Although t he operator K preserves the connectivity of the template on a continuous space, 

it may not always do so on a discrete space such as the space of image pixels. Because 

of the assumptions stated in Section 5.1 and the definition of the objective function that 

wi ll be given in Section 5.4, to perform our analysis we need a simply connected template. 

In our model the range of e has been set in such a way that connectivity is lost for 

only a few extreme deformations. When this happens the connectivity may be recovered 

by means of standard morphological operations described in the following (see Soille, 

1999). However, these standard morphological operators have the tendency to smooth the 

original shape, and so to overcome this drawback we developed a new filter to recover the 

shape connectivity. Of course, we could reduce the number of deformations generating 
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unconnected shapes by re-defining the image on a finer pixel grid. However, it must be 

noted that increasing the number of pixels to be analyzed can make the computational 

burden of the whole procedure too onerous. A good compromise is therefore to consider 

a reasonable pixel grid (in our case 50 x 50 pixels) and to recover template connectivity 

whenever is lost. To show an example where connectivity is lost, we report in Fig 5.5(a) 

a single deformation of To corresponding to 9 = (0.4; 1, -1). This represents one of the 

most extreme transformations that can be obtained by a single deformation, since a is set 

to its minimum value and the absolute values of the deformation parameters are at their 

maxima. In order to recover a simply connected shape, first we apply a morphological 

Bridge transformation. This transformation connects pixels previously unconnected. In 

Appendix B.2 we present the detail of this morphological operation and its implementation. 

In Fig. 5.5(b) we show the output of the morphological Bridge transformation. We note 

that although the shape is now connected, it is not simply cmmected. In fact, the Bridge 

filter connects the borders every time the distance between them is less than two pixels 

so making narrow shapes multiply connected. One way to restore simple connectivity is 

to fill the internal holes and then to apply the morphological Skeletonisation. We supply 

details about this morphological operation in Appendix B.l. The result of this filling and 

Skeletonisation procedure is shown in Fig. 5.5(c). This shape is now simply connected. 

However, if we compare this shape with the original one in Fig. 5.5(a), we note that the 

former is smoother than the latter. Some detailed information about the border has been 

lost. This is undesirable since, as we discussed in Section 1.2, the roughness of the border 

is an important morphological sign for classifying tumours. Therefore, in order to obtain 

a more satisfactory connected shape we developed a new filter. This filter recovers the 

external border of the shape created by the morphological Bridge. We are interested in 

the external border because, due to the geometry of the problem, the artifacts created 
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(a) (b) 

(c) (d) 

Figure 5.5: (a) An unconnected shape obtained by applying an extreme tmnsformation to To. (b) 
The output of the morphological Bridge filter. The shape is now connected but not simply connected. 

(c) The output of the morphological hole-filling and Skeletonisation filters. This shape is smoother 
than the one shown in (a). Some information about the contour detail has been lost. (d) The result 

of applying the new Ext filter. The shape is simply connected and resembles more the one shown 

in (a). No information about the contour roughness has been lost. 
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by this morphological transformation are very likely to be in the interior of the template. 

Our new filter can be described as follows: 

1. following a fixed sweeping scheme, all the image pixels are visited until a shape pixel 

is found. This starting shape pixel becomes the current pixel and forms the first 

pixel of the filtered shape. 

2. The second order neighbours of the current pixel are considered following a particular 

visiting scheme. The first shape pixel that has not yet been visited is selected. The 

current pixel becomes the old pixel and the selected pixel becomes the current pixel. 

The current pixel is added to the pixel of the filtered shape. The visiting scheme 

depends on the curvature of the shape at the current pixel and this is estimated by 

the relative location of the current and old pixel. Some visiting schemes are reported 

in Fig. 5.6. For the starting pixel of Step 1 a fixed visiting scheme is assumed. 

3. Step 2 is repeated until the current pixel is a neighbour of the starting pixel. This 

always happens since the shape obtained by applying the Bridge filter is connected 

and the direction (in our case anticlockwise) is maintained throughout the algorithm. 

old 7 old 7 6 

2 cur 6 cur 5 

3 4 5 2 3 4 

3 2 
f---

4 cur old 

5 6 7 

Figure 5.6: Visiting scheme for neighbouring pixels. The visiting order depends on the local 

curvature, estimated by the relative position of the current pixel (cur} and the old pixel (old}. 

Three examples are shoum in this figure. The first visiting scheme is the one adopted for the 

starting pixel, except old would be replaced by 8. 
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In the following we indicate this new filter as the Ext filter. The result of this filter will 

always be the same when it is applied after the Bridge filter, provided that the starting 

shape pixel is one of the pixels of the outer border. In Fig. 5.5(d) we show the shape 

recovered by this filter. We note that our Ext filter has preserved the features of the border 

of the original shape shown in Fig. 5.5(a) much better than the previous morphology based 

approach shown in Fig. 5.5(c). The Ext filter is also as fast as the morphological operations 

(typically 1.6 x w-2 sec per reconstruction), and is implemented in one step instead of 

two. 

5.3 The richness of the deformation model 

In this section we present a simulation study to investigate the richness of the space 

of shapes generated by the deformation model (5.12). We investigate how versatile our 

deformation model is in reaching a particular shape (that we call the 'true' shape in the 

following) obtained independently of the deformation model itself. In addition, we want to 

compare the general model that uses a composition of deformations with the one that uses 

a single deformation (R = 1, TJ = 1). In order to test these two models on a reasonable 

approximation of the real lesion shape, we decided to extract the lesion contour from 

the classification image shown in Fig. 5.7. This image represents the classification result 

within I obtained with the non-parametric Bayesian classification using only the attributes 

A = (A;). These attributes contain information about the contrast agent wash-in that is 

one of the main features for discriminating between malignant and benign tumoral tissues. 

At this stage of our study the matching algorithm is based on one classification attribute 

but in the future we will extend this approach to cope with more attributes. In Fig. 5.7 

the green region represents the pixels classified as malignant tumoral tissue. As we said 

earlier, in the following we will refer to this region as the lesion. In order to extract from 
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Figure 5. 7: Non-parametric Bayesian classification of Chapter 4 obtained using only the attributes 
A within the tumoral region I superimposed on the last image of the sequence. The green and red 

regions represent the malignant and benign tumoral tissues respectively. 

this image a simply connected shape approximating the lesion border, we first applied a 

morphological Closure (see Soille, 1998) to the green region of this figure; the result is 

shown in Fig. 5.8(a). We then extracted the border of this region. This contour, shown 

in Fig. 5.8(b), is assumed to represent the 'true' shape to be reconstructed. 

As we have mentioned earlier, in our procedure the deformation is driven by the 

minimization over the deformation parameters of a particular objective function. In this 

section we want to investigate the richness of the deformation model and we do not want 

this study to be influenced by the effect of the particular choice made for the objective 

function. In this case, since the true shape is known, we adopt an objective function that 

depends on the quality of the matching between the 'true' and reconstructed shape. In 

particular, the objective function will be the number of mismatched pixels between the 

interior of the 'true' and the reconstructed shape. With this choice of objective function 

any difference between the 'true' and reconstructed shape will depend exclusively on the 

inability of the model to generate the 'true' shape starting from To. In Fig.5.9(a) we show 
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(a) (b) 

Figure 5.8: (a) The malignant tumoral region after the morphological Closure operation. (b) The 
border of the malignant tumoml region that will be taken as the 'true' shape to be reconstructed in 
thi.s simulation. 

the reconstruction obtained by using a single deformation model. The final shape is closer 

to the 'true' shape t han To, but we note a number of mismatched pixels. In particular, 

we obtained this result using the minimum of a, namely a= 0.4. This value corresponds 

to the largest deformation amplitude. We also explored the whole set { e}. The value 

of t he objective function for this reconstruction was 76 mismatched pixels. Since the size 

of the interior of the 'true' shape is llO pixels, we obtained a result of 70% mismatched 

pixels. If instead we apply a composition of deformation, we may obtain a more accurate 

reconstruction such as the one shown in Fig. 5.9(b). For this reconstruction we set R = 47 

and ( aP>, o<2), ... , o<47)) = (0.4, 0.5 , ... , 5) and at each scale the transformation was 

applied until there were no further changes. The agreement between the reconstructed 

and 'true' shape is now very good as the finer deformat ion scales have refined the final 

shape. The value of the objective function has reduced to 23 (20%) mismatched pixels. We 

therefore use a composite deformation of exactly this type in the optimization algorithm 

described in Section 5.5. 
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(a) (b) 

Figure 5.9: (a) Comparison between the 'true' shape {red) and its reconstruction (green) obtained 
using a single deformation model. (b) Comparison between between the 'true' shape {red) and its 
reconstruction (green) obtained using a composition of deformations. 

5.4 The objective function 

In this section we introduce the objective function that drives the template deformation in 

the matching algorithm. In fact, in order to reconstruct the lesion contour, this function 

is minimized over the deformation parameters. 

As in the Bayesian classification approach, our matching procedure is based on the 

classification attributes. In particular, in this study we adopted the attributes A described 

in Chapter 4. Among the different choices of the objective function that we investigated, 

the one that performed best is given by: 

V = f3VedgeiJ + Vte.st, (5.15) 

where Vedgu is a penalty based on the edge of the current shape, vteiJt is a penalty based on 

a local hypothesis test and {3 > 0 is a scaling parameter. We now describe VeJ.ge .. and vte/Jt 

in detail. In order to do this we need to introduce some notation. First, for a given shape 

T we define the interior I(T) to be the set of pixels inside it. These pixels are coloured 

in red in Fig. 5.10(a). On the other hand, the exterior E(T) is defined to be all the pixels 



5.4 The objective function 91 

in the smallest rectangular region containing T excluding the pixels that comprise the 

contour ofT and I(T). These pixels are shown in green in Fig. 5.10(a). Given I(T) and 

(a) (b) 

Figure 5.10: {a) The interior I(T) (red) and the exterior E(T) (green) of the shape T shoum in 
black. (b) The internal edge eage(I(T)) {red} and the external edge eage(E(T)) (green). 

E(T), we define the internal edge edge (I (T)) and the external edge edge (E (T)) to be the 

second order neighbours of the contour ofT that belong to I(T) and E(T) respectively. 

The pixel sets edge (I (T)) and edge (E (T)) are shown in red and green respectively in 

Fig. 5.10(b). We also define J.i.r(T) 1 J.kB(T), O'r(T) and O'E(T) to be the means and the standard 

deviations of the classification attributes A in I(T) and E(T). We are now able to define 

the edge penalty Vedges(T) as: 

V. ( ) 
_ Lieedge(r(T)) { Ai - J.l.r(T)} 

2 
Lieedge(E(T)) { Ai - J.i.E(T)} 

2 

edges T - 2 + 2 (5.16) 
20'I(T) 2<:TE(T) 

Note that (5.16) is based on a GaUBsian model for the distributions of the classification 

attributes A inside and outside the lesion T. As our algorithm proceeds, T varies with 

the results that the parameters J.i.r(T), J.i.s(T), O'r(T) and O's(T) of these distributions are 

updated. 

The rationale behind (5.16) is that the sum of the squared differences between the 

attribute values at internal (external) edge pixels and J.i.r(T) (J.kB(T)) should be minimized 

----- --
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when the lesion contour is estimated correctly. We can think of the lesion contour as being 

driven by its internal and external edges, with both these edges playing an important role. 

In fact, if we use only the first term in (5.16) we may obtain an estimate of the contour that 

is completely inside the lesion. We may also be unable to discriminate between different 

contours inside the lesion which have comparably low values of the objective function. 

However, if we also include the second term in (5.16) such problems should not arise 

because for such contours this term is large. Therefore, the external edge 'pulls' the contour 

towards the outside. Analogous considerations apply if we were to use only the second 

term in (5.16) when defining V.dges(T). In the penalty model (5.16) the summation is over 

edge (I (T)) and edge (E (T)) instead of I(T) and E(T) because in this way Vedges(T) is 

more sensitive to small changes in the lesion contour. However, we base the calculation 

of the means and standard deviations on the whole of the interior I(T) and the exterior 

E(T). This causes the estimate of these parameters and hence the matching algorithm 

itself to be more robust to outliers in the random noise. 

We now describe in detail how we estimate the interior region I(T). In fact, this task 

can be very difficult when dealing with shapes T the contours of which are very rough 

such as some of the shapes that can be generated by the deformation model (5.12). For 

this reason, we developed a new method based essentially on the idea behind the Ext filter 

presented in Section 5.2.1. The idea is that to recover successfully the internal region 

of a shape we must visit the shape pixels in a fixed order that takes into account the 

local curvature of the shape. As in the case of the Ext filter, the algorithm proceeds 

in an anticlockwise orientation estimating the local curvature from the coordinates of 

the current and old shape pixel. The method works as follows. Every shape pixel is 

considered according to the visiting scheme presented in Fig. 5.6. From pixel ( i, j) the 

algorithm moves along the i'h row, going to the left or to the right depending on the local 
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Figure 5.11: Two cases in which the orientation and the curvature estimated from the current 
(cur) and old (old} pixels are not sufficient to find the internal pixels of the shape. The pixels 
that are wrongly identified as internal are indicated by an X. The internal points found using the 

current, old and following pixel (fol) are indicated by a black dot. 

curvature, and includes in I(T) every pixel until another shape pixel (i,j*) is met. In 

other words, all the pixels ( i, j') with j* < j' < j or j < j' < j* are included in I (T). If in 

the i'h row there is just one shape pixel, no pixel is added to I(T). This scheme identifies 

the internal pixels correctly except in the case of the two neighbourhood configurations 

shown in Fig. 5.11. As we can see from this figure, the orientation and the estimated 

local curvature are not sufficient for identifying the interior in these two configurations. In 

fact, without modification the above scheme would add pixels to I(T), labelled X in the 

figure, that are outside the shape. In these cases, to identify the internal pixels correctly 

we need also to take into account the 'following' (labelled fol) shape pixel, and not just 

the current and previous ones (labelled cur and old respectively). In tllis way, considering 

the configuration of the previous, current and following pixels, would lead us correctly to 

include in I(T) only the pixel above or below the current one (indicated by a black spot). 

We now describe the second penalty term Viest introduced in (5.15). Since the tumour 

is characterized by two homogenous regions separated by a discontinuity line that identifies 

the lesion contour, the idea is to attract the contour estimate towards this discontinuity by 

means of an hypothesis test that checks whether each pixel of the current shape contour 
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marks the discontinuity. For each shape pixel i the test is conducted using the values 

of the attribute image A at the pixels N (i, r) and N (i, E) identified by the internal and 

external unit normal vectors centred at i. Then Viest takes into account the number of 

shape pixels n(T) that are identified by the test as marking the discontinuity in this way: 

n{T) 
Viest = 1 - N(T), 

where N(T) is the total number of pixels that comprise the shape contom. Let us now 

define the test procedure. We test the null hypothesis Ho that between N (i, r) and N (i, E) 

there is no discontinuity (i.e these pixels belong to the same region) against the alternative 

hypothesis H1 that between N (i, r) and N (i, E) there is a discontinuity (i.e. these pixels 

do not belong to the same region). An assumption behind our test is that ttr(T)> ttE{T)> 

ar{T) and aE{T) represent good estimates of the parameters of the distributions of A within 

I and E. For notational simplicity, we now suppress the dependence on T. If there is no 

edge between N (i, r) and N (i, E) we assume that either AN(i,I) - AN(i,E) "' N (0, 2af) 

or AN(i,I) - AN(i,E) "' N (0, 2a~). If instead there is an edge, we can assume that 

AN(i,I)- AN(i,E) "'N (t~r- tiE> a¥+ a~). 
Thus, to test these hypotheses we adopted the following test statistic: 

W 
-- AN(i,I) - AN(i,E) 

Jaf. +a~ (5.17) 

Since we assume for the simulated data that the values of the classification attribute are 

higher inside the lesion than outside, we have that AN{i,I) 2 AN(i,E) and so we adopt a 

one-tailed test: reject Ho if W 2 w. We choose w by considering the power of the test: 

P (Ho is rejected IHI is true) = P ( W 2 wiW "'N (;;f.-::~, 1)) . 
In particular, let us require power A when tlr -tiE = 8 > 0. That is, we require 

Jaf. +a~ 
P (W 2 wiW ...... N (8, 1)) = A. Hence, P (W- 8 2 w- 81W- 8 ...... N (0, 1)) = A, so that 
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1- <I> (w- o) =>.,or w = 0 +<I>-1(1- >.),where <I> is the cumulative distribution function 

of a standard normal variable. 

An upper bound on the probability of Type I error can be found as follows: 

P (Ho is rejectediHo is true)= 1- ~ {<I> ( ~J1 + :0 +<I> ( ~J1 + :0}' 
assuming that under Ho the probability that both pixels belong to I (or E) is!· Elementary 

calculus leads us to the bound: 

P (Ho is rejectediHo is true) ::; 1- <I>(w), 

with equality holding when ar = aE. Hence, an upper bound for the probability of Type I 

error is 1 - <I> { o + q,- 1 (1 - >.)}. In our simulation study a conservative value of o is 1.5. 

Thus, for power >. = 0.7, we can set w = 1. This choice leads to an upper bound for the 

probability of Type I error of 0.16, whlch is acceptable. With real data we do not know 'a 

priori' that values of the classification attribute are higher inside the lesion than outside. 

Accordingly, with real data we must modify (5.17) taking into account the absolute value 

of the difference between the attribute values. 

We remark that Viest takes values in [0, 1]. In particular, the larger the number of 

shape pixels identified by the test as marking the discontinuity, the smaller is the value of 

Viest. with zero being reached when n(T) = N(T). Since Vedges is not guaranteed to lie 

in [0, 1] we may need to scale it so that it will assume comparable values to \'lest in the 

objective function V. To do this, for every dataset we first run the matching procedure 

with V = V.,dges· Then, by using the maximum value M of Vedges obtained during this 
1 

initial phase, we scale V.,dges by setting {3 = M in (5.15). We also note here that the whole 

objective function (5.15) is bounded below by zero. 

As mentioned above, the objective function V defined in (5.15) gave the best quality 
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lesion estimates. We experimented using just one of the terms Vedges and Viest, but in 

both cases inferior estimates were obtained. 

5.5 The matching algorithm 

In this section we present details of the matching algorithm. In particular, we describe 

the initial version of the algorithm and the final modification of it that improved the 

performance in terms of stopping time and quality of the lesion estimate. 

As explained in Section 5.2, the minimum and maximum possible values of et are set to 

0.4 and 5 respectively. We decided to adopt the whole range [0.4, 5] for et and set R = 47 

yielding the parameter sequence (et(!), et<2l, ... , et(R)) = (0.4, 0.5, ... , 5). At each iteration 

j of scale et<i), the current shape is deformed over the set of deformation parameters { e:} 

and the deformation parameters corresponding to the deformed shape that minimizes the 

objective function are called e;(i,j). If e;(i,j) is different from zero the whole process is 

repeated. The number of iterations that result in a deformed shape that corresponds to a 

lower minimum of the objective function is denoted by r;. We note that r; < oo because 

the number of possible new shapes that can be generated at each scale is finite, there being 

a limited number of possible simply connected shapes defined on our pixel grid. 

When no further reduction of the objective function occurs, we increase i so changing 

the scale to et(i+J) and repeat the above process until all the scales have been considered. 

It turns out that often the algorithm stopped (in the sense that no further reduction of 

the objective function is achieved) before the last value of the scale parameter. 

The matching algorithm is represented schematically by the flow chart shown in 

Fig. 5.12. Whenever a shape is deformed, its connectivity is checked. If the deformed 

shape is not simply connected the Bridge filter and the Ext filter are applied in sequence 

as described in Section 5.2.1. 
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Figure 5.12: A flowchart representing the matching algorithm. 
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As will be described in the next section, this version of the algorithm showed some 

limitations. In fact, this version seems not able to perform local deformations of the 

shape in the sense that it cannot transform just some parts of the shape, leaving the rest 

unchanged. Often a parameter choice leading to a shape reconstruction that was optimal 

apart from a few mismatched pixels far from the lesion was refused in favour of a worse 

reconstruction with more mismatched pixels closer to the lesion. In order to overcome this 

limitation, we decided to modify the algorithm as follows: at the end of every iteration 

the hypothesis test described in Section 5.4 is performed on the updated current shape. 

Then, shape pixels that are identified by the test as marking the discontinuity are 'locked', 

i.e. these pixels cannot be moved during the next iteration. In this way, deformations at 

the next step will be applied only to the remaining 'unlocked' pixels of the shape. Since 

the test is repeated at the end of every iteration and is based on both the current optimal 

shape and corresponding estimates of J-tr, J-I.E, ar and aE, locked pixels at a given step can be 

unlocked at the following step. In fact, if at the end of an iteration no pixels are identified 

as marking the discontinuity, none will be locked at the following step and this part of 

the procedure remains the same as before. The advantage of the modified algorithm is 

that it can now perform both local and global deformations whilst the original version 

was restricted to global deformations. Furthermore, as we will illustrate in the following 

section, the modified version of the algorithm can sometimes produce reliable results much 

faster. 

5.6 Results 

In this section we present results obtained using both synthetic and real data. In the first 

case, we simulate the classification attribute image A in order to investigate the potential 

of the objective function with a known true lesion. In the second case, we use A obtained 
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from the non-parametric Bayesian classification described in Section 4. 

5.6.1 Synthetic data 

In this study we produced two types of simulated data. Both of them are obtained by filling 

the interior and the exterior of a given 'true' shape with values sampled from two Gaussian 

distributions with known parameters JLr, JLE, a 1 and aE. By varying these parameters 

we can investigate the performance of our matching algorithm on data characterized by 

different values of the Signal to Noise Ratio (SNR) 1. 

The difference between the two types of data lies in the choice of the true shape. In 

the first type, the true shape is obtained by applying the deformation model (5.12) to 

the prototype template To shown in Fig. 5.1. In this way, the true shape is generated 

by deforming the contour that is the initial shape for the matching algorithm. This step 

is performed by using the same deformations employed in the algorithm. This largely 

reduces the difficulty of the reconstruction task. However, the second type of synthetic 

data is characterized instead by a shape that has been obtained independently from the 

deformation model (5.12) and the prototype template To. In this case the reconstruction 

task is more difficult. In both cases the initial shape of the matching algorithm is To. 

Case 1 

In Fig. 5.13 we show the true shape obtained from To after applying a deformation 

with parameters R = 2, r 1 = r2 = 1, c/1) = 0.7, c;(l,l} = ( -0.9, 0.4), a(2) = 0.9 

and c:(2,l} = ( -0.9, 0.4). In this case the data are generated by filling the interior and 

exterior regions I and E with values drawn from N (6, (0.5) 2 ) and N (2, (0.5)2 ) distributions 

1The SNR is a measure of signal strength relative to background noise. The ratio is usually measured 
in decibels {dB). If the signal strength is V,, and the noise level is Vn, then the SNR in decibels is given 
by SNR = 20 log(V,/Vn)· In this study we considered as signal strength V, the difference between the 
means of A inside and outside the lesion Jl.I- Jl.E and as noise level Vn the standard deviation of the noise 
distribution. 
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Figure 5.13: Jrue shape obtained by applying deformation {5.12} to the prototype template To. 

respectively. The resulting data. are shown in Fig. 5.14(a.). The background region has 

been selected in such a. way that it is typically large enough to contain all the shapes 

that will be generated during the algorithm. AB we can see from the high contrast of 

the image, this dataset is characterized by a. high SNR, namely 20 log( 4/0.5) ~ 18 dB, 

and so reconstructing the lesion contour should be an easy task. In fact, a.s we can see 

in Fig 5.14(b) in which the reconstructed (green) and the true (red) lesion contour are 

shown, we obtained an excellent agreement between them. 

(a) (b) 

Figure 5.14: (a) Data generoted from the true shape shown in Fig. 5.13 by filling its interior and 
exterior with values drown from N (6, {0.5)2) and N (2, (0.5}2) distributions respectively. {b) The 
reconstructed (green} and true (red) lesion contour. 



5.6 Results 101 

Case 1 Estimated value Estimated value 
based on the true shape based on reconstruction 

SNR=18 dB Region I /.LI 5.97 5.91 
CTJ 0.51 0.63 

Region E /.LE 2.00 2.03 
CTE 0.49 0.64 

Table 5.1: Estimates of the distribution parometers based on the true and reconstructed shape 
from the data shown in Fig. 5.14(a). 

We need to specify that in all the datasets simulated in this study, the shape pixels 

themselves are assigned values sampled from a N (ME, er~) distribution, i.e. shape pixels 

are assumed to belong to the exterior of the shape. As a consequence of this, the objective 

function is not able to discriminate between the true lesion contour and its internal edge. 

This is due to the fact that in theory the contour should be infinitely narrow but in reality 

it has a finite size and its pixels belong either to the internal or external region. We made 

the arbitrary choice to assign edge pixels to the external region. Therefore, green pixels in 

Fig 5.14(a) that belong to the internal edge of the true contour should not be considered as 

misclassified. This leads to a percentage of 99% of contour pixels estimated correctly. In 

Table 5.1 we report the estimates of p,1, /.LE, cri and erE based on the true and reconstructed 

shape. We note a very good agreement between them. 

We tested the performance of the algorithm with many different noise realizations 

generated in the same way. We always obtained very good reconstructions comparable to 

the one shown. 

Case 2 

We now investigate the performance of the algorithm with a more difficult task. We 

use the same true shape shown in Fig. 5.13 but generate data in such a way that the 

SNR is three times smaller. In particular, the data are generated by sampling from 
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Case2 Estimated value Estimated value 
based on the true shape based on reconstruction 

SNR= 6 dB Region I 1-tr 2.98 2.91 
ur 0.52 0.61 

Region E J.tB 1.99 2.02 
(JB 0.49 0.51 

Table 5.2: Estimates of the distribution pammeters based on the true and reconstructed shape 
from the data shown in Fig. 5.15{a). 

N(3, (0.5)2) and N(2, (0.5)2) distributions for the interior and exterior of the true shape 

so that SNR = 20log(1/0.5) = 6 dB. In Fig 5.15(a) the simulated dataset is shown. 

Despite the low value of the SNR, we note from Fig. 5.15(a) a good agreement between 

the reconstructed (green) and true (red) lesion contour. In this case 81% of the contour 

(a) (b) 

Figure 5.15: {a) Data genemted from the true shape shown in Fig. 5.19 by filling its interior and 
exterior with values drown from N (3, (0.5) 2) and N (2, (0.5)2) distributions respectively. (b) The 
reconstructed (green} and true {red} lesion contour. 

pixels are estimated correctly. Furthermore, if we compare the estimates for the parameters 

based on the reconstructed and true shape, reported in Table 5.2, we note that even if 

the SNR is very low we still obtain a very good agreement between them. Again different 

noise realizations lead to similar results. 
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Case 2 Estimated value Estimated value 
based on the true shape based on reconstruction 

SNR=6dB Region I Jti 2.98 2.91 
O"J 0.52 0.61 

Region E JtE 1.99 2.02 
O"E 0.49 0.51 

Table 5.2: Estimates of the distribution parameters based on the true and reconstructed shape 

from the data shown in Fig. 5.15{a). 

N(3, (0.5)2) and N(2, (0.5)2) distributions for the interior and exterior of the true shape 

so that SNR = 201og(1/0.5) = 6 dB. In Fig 5.15(a) the simulated dataset is shown. 

Despite the low value of the SNR, we note from Fig. 5.15{a) a good agreement between 

the reconstructed (green) and true (red) lesion contour. In this case 81% of the contour 
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Figure 5.15: (a) Data generated from the true shape shown in Fig. 5.13 by filling its interior and 
exterior with values drawn from N (3, (0.5) 2 ) and N (2, (0.5)2 ) distributions respectively. {b) The 

reconstructed (green) and true {red) lesion contour. 

pixels are estimated correctly. Furthermore, if we compare the estimates for the parameters 

based on the reconstructed and true shape, reported in Table 5.2, we note that even if 

the SNR is very low we still obtain a very good agreement between them. Again different 

noise realizations lead to similar results. 
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Case 3 

We now show the results obtained with the second type of simulated d ata. Here the 

t rue shape is the one introduced in Section 5.3 and shown again in Fig. 5.16. As before 

we genera ted a dataset by filling the interior and the exterior with values drawn from 

a Gaussian distribution with t he same parameters t hat we used in Case 1. In this way, 

we can compare the results with t hose obtained before. In Fig. 5.17 we show data with 

Figure 5.16: The second true shape. This shape is introduced in Section 5.3. 

SNR = 18 dB and the reconstructed (green) and true (red) lesion contours. In t his case 

89% of contour pixels are still identified correctly despite the low SNR. Unlike with the first 

shape, some of the misclassified pixels are not very close to the t rue contour. T llis shows 

a limitation of the algorithm: it is not able to modify the shape contour locally wit hout 

increasing t he value of t he objective function. Every shape deformation t hat attracts t he 

misclassified pixels towards the true contour seems inevitably to move correctly identified 

pixels leading to an increase in t he objective function. This is reflected in Table 5.3 in 

which t he comparison between the estimates of the distribut ion parameters based on the 

true and reconstructed shape are reported. We note that we obtained good estimates of 

J.lE and O"E , while t he estimate of the other parameters are clearly more affected by t he 
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(a) (b) 

Figure 5.17: (a) Data generated from the true shape shown in Fig. 5.16 by filling its interior and 
exterior with values drawn from N (6, (0.5)2) and N (2, (0.5)2) distributions respectively. (b) The 
reconstructed (green} and true (red} lesion contour. 

Case3 Estimated value Estimated value 
based on the true shape based on reconstruction 

SNR= 18 dB Region I J.Lr 5.88 5.05 
O"r 0.49 1.65 

Region E /-lE 1.99 2.01 
O"E 0.51 0.60 

Table 5.3: Estimates of the distribution parameters based on the true and reconstructed shape 
from the data shown in Fig. 5.17(a). 

misclassified pixels. 

Case4 

In order to improve the results shown in Fig. 5.17(b), we modified our matching algorithm. 

The new version, that locks pi.xels identified as marking the discontinuity as described in 

Section 5.5, tries to overcome the limitation seen in Case 3. We do not present results 

for the first type of simulated data because they were almost identical to the ones already 

shown. In Fig.5.18 we show the reconstruction of the data.set of F ig. 5.17(a) obtained 

with the new version of the algorithm. In this case, the percentage of correctly identified 

contour pixels has increased to 93% from 89%. This reconstruction is preferable to the 
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Figure 5.18: The reconstructed (green} and true (red) lesion contour obtained by applying the 
modified algorithm to the data shown in Fig 5.17{a}. 

Case4 Estimated value Estimated value 
based on the true shape based on reconstruction 

SNR= 18 dB Region I J.tr 5.88 5.74 
ur 0.49 0.83 

Region E J.I.B 1.99 2.03 
UE 0.51 0.64 

Table 5.4: Estimates of the distribution parameters based on the true and reconstructed shape 
obtained by the modified algorithm for the data shown in Fig. 5.17{a). 

one shown in Fig. 5.17(b) not only because this percentage is larger, but also because the 

misclassified pixels are closer to the real contour. In Table 5.4 we report the estimated 

values of the parameters. Comparing these estimates with those given in Table 5.3, we 

note that the estimates of J.tr and u1 have greatly improved. In addition, the reconstruction 

was obtained much faster than before. In Fig. 5.19 we compare the values (blue line) of the 

objective function after each iteration of the original and modified matching algorithms. 

We also show the value of the scaling parameter at each deformation (red line). From 

Fig. 5.19(a) we see that 69 iterations of the original algorithm are needed to reacll a 

minimum of the objective function, and this happens when a<32) = 3.5. Instead, the new 

version stops after four iterations and uses just one value of the scaling parameter, namely 
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Figure 5.19: The value of the objective function after each iteration of the matching algorithm 
{blue curve, left hand axis} and the value of the scaling parameter used for each deformation (red 

curve, right hand axis} for (a) the original and {b) the modified algorithms. The modified algorithm 
attains a lower minimum of the objective function after considerably fewer iterations. 
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a(l) = 0.4. Furthermore, we note that this minimum of the objective function is lower, 

namely 0.046 compared with 0.138. As an example in Fig. 5.20 we show the four steps 

of our modified matching algorithm that lead to the reconstruction of Fig. 5.18. In this 

figure the locked (red) and unlocked (green) pixels at each iteration of the algorithm are 

reported. We note that in the final optimal shape all the pixels passed the hypothesis test 

and so are locked. 

Figure 5.20: The locked {red} and unlocked (green) pixels at each itemtion of the modified algorithm 
applied to the data shown in Fig. 5.17{ a) and leading to the reconstruction shown in Fig. 5.18. 

Case5 

Since the performance of the algorithm observed so far seems very encouraging, we decided 

to test our procedure with data characterized by a lower SNR. In Fig. 5.21 we display a 

dataset with SNR= 6 dB (obtained as described in Case 2) , together with the lesion 

reconstruction obtained using the modified algorithm. In this case 63% of the contour 

pixels are correctly identified and the reconstructed contour still matches the lesion contour 

sufficiently well. Moreover, we note from Table 5.5 that good estimates of the parameters 

have been obtained. As in the previous cases we repeated the analysis with different 

noise realizations generated in the same way. We observed that the matching algorithm 
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(b) 

Figure 5.21: (a) Data generated from the true shape shown in Fig. 5.16 by filling its interior and 

exterior with values drawn from N (3, (0.5)2 ) and N (2, (0.5)2 ) distributions respectively. {b) The 

reconstructed (green) and true (red) lesion contour. 

Case5 Estimated value Estimated value 
based on the true shape based on reconstruction 

SNR= 3 dB Region I J..Lr 2.87 2.74 
CTr 0.47 0.64 

Region E J..I.E 2.00 1.98 
CTE 0.49 0.50 

Table 5.5: Estimates of the distribution parameters based on the true and reconstructed lesion 

obtained by applying the modified algorithm to the data shown in Fig. 5.21(a). 

produced reliable reconstructions despite the low SNR of the data. 

Case6 

EncoW'aged by the results obtained with very low SNR datasets, we decided to test the 

algorithm on an extreme case: we adopted the true shape shown in Fig. 5.16 and drew 

interior and exterior values from N (2.5, (0.5)2) and N (2, (0.5)2) distributions respectively. 

This dataset and the corresponding reconstruction are shown in Fig. 5.22. Although the 

SNR of this dataset is 0 dB, we can see from this figW'e that the reconstruction is still 

close to the true lesion. We obtained 53% of correctly identified contour pixels and the 

estimates of the parameters reported in Table 5.6 are close to the true values. This shows 
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how powerful the modified algorithm is in reconstructing the lesion contour even with 

extremely noisy data. 

(a) (b) 

Figure 5.22: (a) Data generoted from the true shape shown in Fig. 5.16 by filling its interior and 
exterior with values drown from N (2.5, (0.5)2) and N (2, (0.5)2 ) distributions respectively. {b) The 
reconstructed (green} and true {red} lesion contour. 

The simulation study has been very important in assessing the potential of the 

procedure. It allowed us to determine the best performing objective function and to 

set the parameters such as {3 and won which the matching procedure depends. Now that 

we tuned properly our matching algorithm we can test it on real data. 

5.6.2 Real data 

In this section we show the results obtained using real data consisting of the classification 

attributes described in Section 4. In particular, we use the attributes A obtained from 
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Case6 Estimated value Estimated value 
based on the true shape based on reconstruction 

SNR=O dB Region I Jl.I 2.44 2.42 
O'I 0.49 0.48 

Region E JLE 1.99 2.01 
O'E 0.48 0.49 

Table 5.6: Estimates of the distribution parameters based on the true and reconstructed lesion 
obtained by applying the modified algorithm to the data shown in Fig. 5. 22( a). 

the non-parametric approach shown in Fig. 4.2 within the tumoral region I. As we 

described in Section 5.1, the prototype template To is obtained in such a way that it 

has approximately the same size as I. Now, because of the definition of E(T), during 

the matching procedure some pixels of this region may fall outside I. For this reason, we 

need to consider a region larger than the tumoral region. The dimension of this region 

has been fixed at 50 x 50 pixels because this represents a support typically large enough 

to include all the shapes generated in the matching procedure. The values of the pixels of 

this support that do not belong to I have been assigned at random. We now discuss how 

this is done. Initially, a small region within I that corresponds to benign tumoral tissue 

is selected by radiologists. This region is shown in red in Fig. 5.23(a). Then the range 

of attribute values inside this region is found and pixels outside I are assigned values 

drawn from a uniform distribution in this range. A different approach could be to adopt 

a normal distribution for these attribute values and then estimate its parameters Jl.E and 

O'E keeping them fixed in the matching procedure. In this way the lesion reconstruction 

would depend only on Jl.I and a1 . We did not choose this approach because we think that 

the small size of the supervised region within I could lead to very biased estimates of Jl.E 

and CTE. In general, given that E(T) represents the smallest rectangular region containing 

T and the template is typically inside the tumoral region, there will always be a smaller 

proportion of simulated values compared to real ones in E(T). Because of this, simulated 
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values should not substantially affect the lesion reconstruction. In Fig. 5.23(b) we display 

the full dataset, that is the classification attribute within I together with the simulated 

data outside I. The modified version of the algorithm was applied to this dataset and 

(a) (b) 

Figure 5.23: {a) The classifiootion attributes A obtained in Section 4.4 restricted to the tumoral 
region I , together with the reference region corresponding to benign tumoral tissue selected by the 
radiologist {red). {b) The final dataset. The values of the pixels outside I are uniformly distributed 
over the same range as the values in in the benign tumoral region 

in Fig.5.24 we show the reconstructed lesion superimposed in yellow on the data. In this 

case, since we do not know the 'true' lesion contour we cannot estimate the accuracy of 

this reconstruction. However, we may validate this result using the feedback of expert 

radiologists who can judge the reliability of the reconstructed lesion. We have shown our 

result to such radiologists who judged the reconstruction to be reliable. 

5.7 Conclusions 

In this chapter we presented an approach based on deformable templates to classify the 

pixels of the tumoral lesion. Our method exploits available 'a priori' knowledge about 

the spatial structure of the lesion contour. This is represented by means of a prototype 

shape. First, we derived and discussed a deformation model that we use to transform this 
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Figure 5.24: The final lesion reconstruction (yellow) 8Uperimposed to the data. 

shape. Then, we stuctied the richness of the space of shapes generated by this model. The 

results show that the deformation model is sufficiently versatile to reach shapes typical 

in this kind of study. Since shapes corresponcting to 'extreme' deformations can lose 

simple connectivity, we developed a new filter to recover this important shape feature. By 

comparing our results with those obtained using standard morphological filters, we found 

that our reconstructions generally preserve more information about the spatial structure 

of the contour. 

A new algorithm based on the deformation model and a specially designed objective 

function was developed to reconstruct the lesion from the classification attributes. In 

addition, we modified our new filter to identify the interior of a given shape. We tested our 

algorithm on synthetic and real data. The synthetic data are based on a shape obtained 

from the classification method of Section 4. In this way this shape reflects a realistic 

contour for these kinds of tumour. We showed that the proposed algorithm performs well 

even with extremely noisy datasets. This may be very important since the classification 

attributes depend on the number of acquired images of the sequence, and so if we decrease 

this number, these attributes may become more noisy. Reducing the number of a~uired 

images will make the overall acquisition time shorter and this will lead to many advantages 
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from a clinical point of view such as: 

• less time spent by the patient in the tomograph; 

• more time available to analyse more patients; 

• lower cost for each analysis. 

The results obtained from the real dataset cannot be assessed accurately since we do not 

know the true lesion contour and we do not have any results from histological analysis yet. 

The radiologists involved in our study judge the classification results reliable. However, we 

want to stress that this is a preliminary result that must be confirmed by future work. It is 

our intention, as we explain in detail in Section 7, to extend our methodology to use more 

than one classification attribute and to adopt a Bayesian approach for the optimization of 

the objective function. To identify the prototype shape more accurately, we plan to involve 

doctors in analysing a large number of patients using the software BanDITS described in 

Section 6. In this way, we will build a library of prototype templates based on classification 

results from a large sample. 



Chapter 6 

BAnDITS: a Software Package for 
the Analysis of dMRI Sequences 

At this stage of our investigation feedback from radiologists is crucial to validate the 

restoration and classification results. In fact, we think that a clear confirmation of the 

validity of our results could only come from a survey conducted on a large sample of 

patients. Furthermore, a large scale survey could provide us with a library of suitable 

prototype templates for the deformable template classification approach presented in 

Chapter 5. In order to involve more doctors in our research, since they are non-expert in 

Bayesian analysis we developed a software package that implements the methods described 

in this thesis. We called this software BAnDITS (Bayesian Analysis of Dynamic Images 

for Tumour Studies). BAnDITS has a user friendly interface and does not require any 

knowledge of the underlying methodology. In this chapter we describe briefly the main 

features of this software. In Fig. 6.1 we show the BAnDITS opening screen. As we can 

see a series of pop-up menus allows the user to choose between many different operations. 

These can be grouped into four main categories: 

• dMRI sequence import; 

• image visualization; 
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Figure 6.1: BAnDITS opening screen. A series of pop-up menus allows the user to perform 
different operations. 
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• image restoration; 

• image classification. 

We now discuss some details of each category. 

dMRI sequence import 

BAnDITS is able to import dMRI sequences directly from the tomograph. The original 

DICOM data are converted into a format more appropriate for the analyses, namely a 

MATLAB .mat format. For every new patient the images are stored in a folder, the location 

and the name of which can be chosen by the user. 

Image visualization 

Once a patient has been selected, the user can visualize the original and restored dMRI 

sequence, the original and restored ROI sequence, the current classification attributes and 

classification image. Moreover, a reference image can be selected (such as the classification 

image, an image of the restored sequence or the classification attributes) and the temporal 

evolution of pixels within that image can be analyzed. This helps the user to interpret 

both the restoration and classification results. 

Image restoration 

First, a ROI for the chosen patient is selected. We can either select a new ROI and perform 

the hypothesis test to find the tu moral region I, or choose a previously selected ROI where 

the complete dMRI analysis has already been performed. In this case the user may want 

to repeat the image restoration and classification steps using a different approach in order 

to compare the new results with those previously obtained. This step is shown in Fig.6.2. 
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The ability to select different ROis within the same breast allows us to analyse patients 

!.J 

• 
Figure 6.2: The ROI selection step. For each patient different ROis can be selected. In this way 
more than one lesion in the same breast can be analysed. 

with more than one lesion. Once I is identified the image restoration step, either using 

the non-parametric or parametric approach, can be performed. This step includes the 

automatic estimation of the hyper-parameters. 

Image classification 

The image classification step can be performed using either the parametric or the non­

parametric classification attributes. As we show in Fig. 6.3, once the classification image 

is obtained, it can be validated by checking the temporal evolution of the classified pixels. 
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Figure 6.3: ClasB"ification results. The classification image has been obtained selecting the initial 

point and the two classification attributes. 

BAnDITS has been developed in a MATLAB environment by building and linking 

FORTRAN and C++ subroutines to the main MATLAB program. The graphical interface is built 

in MATLAB, while the heavy computations such as the MCMC algorithms are implemented 

in FORTRAN or C++. The whole package is compiled as a stand-alone executable. This 

means that it can be installed on any machine independent of the operating system or 

whether or not MATLAB is installed. In fact , once compiled the stand-alone executable 

contains all the necessary graphlcal and computational libraries. 
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Chapter 7 

Discussion and Future Work 

In this thesis we present a novel Bayesian methodology and a deformable template based 

approach for analysing dMRl breast images. The analysis of these images consists of 

two tasks: image restoration and image classification. Since one of the disadvantages of 

Bayesian methods is their heavy computational burden we address this issue by proposing a 

method to restrict our analyses to a smaller region of the breast (called the tumoral region) 

and by developing a specially tailored Metropolis-Hastings algorithm. The identification 

of the tumoral region considerably reduces the number of pixels to be analyzed, while our 

modified version of the Metropolis-Hastings algorithm with its special proposal distribution 

shows higher speed of convergence than algorithms of the same family with more commonly 

used proposals. In this way, the overall time for analysing a typical dMRl sequence is 

reduced to no more than two minutes using a PC with a 2.6 GHz Pentium 4 processor 

and 256 MB of RAM. 

The problem of estimating hyper-parameters of the prior models has been addressed by 

presenting criteria to obtain them. Hence, our Bayesian methodology becomes automatic, 

apart from the selection of the ROI and the reference region for the hypothesis test by the 

user. 

For the image restoration task we developed a non-parametric and a parametric 
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approach and we compared the results obtained with the two methods. The image 

restorations yielded by both methods show that the effect of random distortions are 

successfully reduced while important information such as the structure of the lesion is 

preserved. The images of the restored sequences obtained with the two methods seem very 

similar. However, some differences in the temporal patterns are evident. In particular, the 

parametric approach sometimes seems to be too rigid and so unable to model the temporal 

evolution properly. On the other hand the non-parametric approach can produce biased 

reconstructions. From our analysis the parametric approach seems to perform better 

within the twnoral region, although this result must be confirmed by a study on a larger 

number of patients. 

The classification results obtained by adopting non-parametric and parametric 

attributes are very similar. These classification images have been judged reliable by expert 

radiologists. However, we can only compare the two methods precisely by conducting a 

broader study on a larger sample of patients. All our results indicate that our new approach 

is more informative than the standard method previously adopted by physicians. In fact, 

with our methodology not only is the location of the lesion correctly identified, but also its 

internal structure becomes evident. This internal structure is not visible from the results 

obtained from the standard method and knowledge of it can yield important medical 

information. Most of the above Bayesian methodology is summarized in de Pasquale et 

al. (2003). 

In the first part of the work the adopted prior models take into account the temporal 

continuity and spatial homogeneity between neighbouring pixels. Since the spatial 

structure of the lesion contour plays an important role in the analysis of dMRl sequences, in 

the second part of this thesis we developed a method in which higher level prior information 

about the actual shape of the lesion is taken into account. This method is based on 
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parametric prototype deformable templates. In this approach an assumed prototype shape 

is deformed by parametric non-affine transformations. An objective function that depends 

on the parameters of the transformation is minimized to reconstruct the lesion contour. 

We defined the appropriate non-affine transformations and developed a multiresolution 

deformation model based on these. Then we investigated the richness of the space of 

shapes generated by this deformation model. This model seemed to be sufficiently versatile 

to reach shapes that are characteristic for these studies. We implemented a matching 

algorithm based on the deformation model and developed a novel objective function. We 

tested our procedure on synthetic data with a variety of SNRs. The results show that our 

matching algorithm performs well in reconstructing the lesion contour even with extreme 

low SNRs. The simulation study was very important as it helped us to assess the objective 

function and the performance of the algorithm. Using the version of the algorithm that 

performed best with simulated data, we analyzed a real data set. In this case we cmmot of 

course judge the lesion reconstruction as we did for simulated data since we do not know 

the true lesion contour. However, the shape reconstruction that we obtained was judged 

to be reasonable by radiologists. 

As part of the development of our deformable template based approach we proposed 

a new filter that restores the c01mectivity without smoothing the shape. In addition, we 

modified our filter to identify the interior of a given shape. 

There are many aspects of this work which we plan to develop further. 

For the Bayesian methodology, discussed in Chapters 3 and 4, future work would 

involve the generalization of the methodology to deal with three-dimensional dMRI 

sequences. In addition, the integration of the models and methods used in the restoration 

and classification steps would be studied. It would also be important to validate the 

restoration and classification results by means of a study on a large sample of patients. 
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We aim to do this by giving our software package BAnDITS to a team of physicians who 

could test the methodology that we have developed on such a large sample. This would 

further validate our procedure and show its limitations, leading us to prefer one approach 

over another. 

For the template based matching procedure discussed in Chapter 5, further work 

would involve extending the algorithm to use more than one classification attribute to 

reconstruct the lesion contour. We would also plan to validate the algorithm using the 

study on a large sample of patients, as mentioned above. This would allow us also to build 

a library of prototype templates. From this survey a database of template prototypes 

for the lesion shapes could also become available for the template based matching 

procedure. Furthermore, the procedure could be cast into a Bayesian framework by 

assigning probability models to the deformation parameters and performing the objective 

function optimization by means of MCMC methods such as simulated annealing. 



Appendix A 

Estimating the Best Fitting Ellipse 
of a Shape from its Moments 

In Section 5.1 we describe how the prototype template is initially scaled to have roughly 

the same size as the lesion. This step is based on the estimates of the best fitting ellipses 

for the tumoral region contour and the prototype template. We describe here how these 

ellipses are obtained using a procedure based on the definition of the moments of a shape 

(Hu, 1962). The basic assumption is that the best fitting ellipse and the considered shape 

share the same moments. Hence, we begin by estimating the moments of the shape. Then, 

based on these estimates the parameters of the ellipse can be calculated. First of all, let us 

introduce an ellipse with centroid (xo, Yo) at the origin. Let us begin by assuming that the 

angle () between the major axis of the ellipse and the x axis is zero. In this way the ellipse 
x2 y2 

can be thought of as not rotated. This ellipse can be either represented as: 2 + 2 = 1, 
a b 

where a and b are the length of the major and minor semiaxis respectively or, using a 

parametric representation, as: 
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x acost 

y bsin t, (A. I) 

where t E [0, 27T). 

We now consider the problem of estimating the parameters of a generic rotated ellipse 

(a, b, xo, yo, 0) from its moments. 

First of all, we need to introduce the moments of a generic shapeS. The (p, q)th order 

moment of S is defined as: 

(A.2) 

The collection of moments ttpq can provide useful features of S. In particular: 

• ttoo measures the area of the shape; 

• t£20 measures the spread of the shape in the x direction; 

• t£02 measures the spread of the shape in the y direction. 

) (
ttlO' ttot). Moreover, the centroid of S can be found from these moments as (xo, Yo = 
ttoo ttoo 

Using this we can translate S so that its new centroid is at the origin. 

Since the moments of a shape contain important information about some of its 

characteristic features, they may be excellent parameters to use to estimate the best 

fitting ellipse. Assuming that this ellipse has the same moments as S means that these 

shapes will share some important features such as area and spread along the axes. From 

this assumption it is easy to estimate the parameters of the ellipse. In fact, if we substitute 

the parametric representation of the ellipse (A.l) in (A.2) we have: 
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We now obtain the length of the major and minor semiaxes a and b as: 

a = G)~(:!~) k 
b = (~)~ (:~~)k (A.3) 

This analysis can be extended to the case where the ellipse is rotated by an angle B. In 

this case expressions for the rotated first and second order moments in terms of B and the 

previous first and second order moments can be found. The resulting equations can be 

solved for a, band B. 

In our study we do not estimate B because rotations are not considered in the first affine 

transformation based stage of our matching algorithm. For the lesion contour and the 

prototype template we first calculate the second order moments using (A.2) and then we 

estimate the major and minor semiaxis of the best fitting ellipses using (A.3). The ratios 

between the corresponding axes of these best fitting ellipses are calculated, so yielding 

scaling factors for the prototype template. Finally, the centroids of the two shapes are 

made to coincide. 



Appendix B 

Morphological Operations 

B.l Skeletonisation 

In many fields of image analysis such as pattern recognition and shape analysis, methods 

for extracting some object features such as contours are needed. Among many different 

approaches one of the most popular is to use mathematical morphology to transform 

the object into a set of idealised thin lines which condense the information about the 

object while preserving its homotopy (for a definition of homotopy see Soille, 1999). The 

corresponding morphological transformations are called Skeletonisations or medial axis 

transformations. Several formal definitions of the skeleton are available for continuous 

space. Some of these are based on grass-fire or wavefront propagations, distance functions, 

maximal disks or minimal paths, and lead to the same thin lines. The extension of these 

skeleton definitions from continuous to discrete space is not straightforward, with different 

methods leading to different discrete skeletons. In this appendix we describe a particular 

Skeletonisation for a binary image based on homotopic thinnings. We refer the reader to 

Soille (1998) for a complete review. 
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Homotopic Thinnings 

The Skeletonisation that we adopt is based on morphological transformations called 

Homotopic Thinnings. We chose this set of transformations because the resulting skeletons 

preserve important features of the original shape such as simple cOimectivity. In order to 

explain the details of our Skeletonisation we need to introduce the Hit or Miss transform 

and the Thinning transform. 

The basic idea behind the Hit or Miss transform consists of extracting image pixels 

of a binary image that have a particular neighbouring configuration. The neighbouring 

configuration is described in terms of two disjoint sets. The first set represents the 

configuration of neighbouring pixels that have the value one in the binary image. The 

second set represents the configuration of zero valued pixels. These two sets form a 

composite structuring element B = (BJ. B2). The origin of B is the central pixel. An 

example of a composite structuring element is shown in Fig. B.l. Each pixel of the image 

is visited in turn and the following question is posed: 'Does the composite structuring 

element with origin at this pixel fit the image?'. If the answer is affirmative, the visited 

pixel is given the value one. In the following, a Hit or Miss transformation of a set X by 

a composite structuring element B will be indicated by H MTa(X). 

Now that we introduced the Hit or Miss transformation we are able to define the 

Thinning transform. A particular Thinning transform in which homotopic1 composite 

structuring elements are used is called Homotopic Thinning. 

The Thinning transform consists of removing shape pixels having a particular 

configuration. This is achieved by subtracting the Hit or Miss transform from the original 

image. Hence, the Thinning of a binary image is denoted by X oB and defined as the set 

1 A composite structuring element is said to be homotopic if the number of its black and white connected 
components is not modified when modifying the state of its origin. 
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difference: 

XoB=X\HMTa(X). (B.l ) 

Finally, the skeleton is obtained by Thinning the image by a series of homotopic 

composite structuring elements and their rotations tmtil stability is reached, i.e. the input 

set has been reduced to a set of thinned lines. The T hinnings are performed according to 

a sequence based on all rotations of the homotopic composite structuring elements. This 

process is called sequential thinning and is denoted by Q. We have t herefore t he following 

formula for the sequential thinning of a set X by the n rotations fh B , 82B, ... , OnB of the 

homotopic structuring elements: 

In fact , the set XQB is t he skeleton of X under the chosen composite structuring element B. 

A different skeleton is obtained for different choices of t he homotopic composite structuring 

element. In particular, in this study to obtain eight-connected skeletons we adopted the 

two composite structuring elements shown in Fig. B.l and their four rotations. In this 

:-r--, 

If 
Fig me B.l: The composite structuring elements B adopted to obtain eight connected skeletons. 
The origin is the central pixel. The white and black pixels represent the sets B 1 and B2 respectively. 

figure B 1 and B2 are the sets of white and black pixels respectively. 

Because the Skeletonisation is repeated as many times as the shape deformations in 

our matching algorithm, it can be thought of as part of the deformation itself and so it 

is vital to implement this transformation in a very fast way in order not to slow down 

the procedure. To apply the sequence of homotopic thinnings to every shape pixel of the 
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image is very expensive from a computational point of view. A more efficient way to 

implement this transformation is to generate a Look Up Table that contains the result 

of the Skeletonisation for every possible neighbouring configuration. In other words, we 

give a stack number to every possible neighbouring configuration which becomes the input 

address of the Look Up Table. Hence the adopted Skeletonisation proceeds by visiting 

each shape pixel. The neighbouring configuration and its corresponding stack number are 

identified and the value of the skeletonized shape pixel is then immediately given by the 

Look Up Table. To associate a stack number to a neighbouring configuration is fairly 

simple. In fact, it is sufficient to adopt a fixed visiting order to the neighbouring pixels, 

so that the configuration becomes a pattern, and then assign a stack number to every 

possible pattern. In Fig. B.2 we show the visiting order of the neighbouring pixels. For 

x3 x2 X, 

x. X Xo 

x. X. X, 

Figure B.2: The visiting order for neighbouring pixels. For every shape pixel X the corresponding 

pattern is (Xo, X 1, X 2 , X3 , X4 , X5 , X 6 , X7 ). We note that we have 28 = 256 possible patterns. 

every shape pixel X the corresponding pattern is (Xo, X1, X2, X a, X4, X5, Xo, X1 ). We 

note that we have 28 = 256 possible patterns. As example in Fig B.3 we show the effect 

of Skeletonisation on a particular shape. As we can see from this figure the original shape 

has been reduced to a set of idealised thin lines. We note that the skeleton is simply 

connected. 
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Original shape Skeletonized shape 

Figure B.3: The effect of Skeletonisation. The original shape has been reduced to idealised thin 

lines pr-eserving simple connectivity. 

B.2 Bridge transformation 

As we mentioned in Section 5.2.1, some extreme deformations of our model do not 

preserve the connectivity of the shape. In our approach this characteristic of the shape is 

fundamental. Hence, in order to recover shape connectivity we employed the morphological 

Bridge t ransformation. This transformation is able to connect neighbouring shape pixels 

previously unconnected. Following the notation introduced in Section B.1, we have that 

the Bridge transformation changes X into X' according to: 

X'= X U (Pt U P2 U .. · U PG), 

where 

p l = X 2 n X 6 n (X3 u x,, u Xs) n (Xo u X 1 u X1) n P Q 

p2 XonX4 n (X1 ux2 uX3) n (Xs ux6 uX1) nPQ 

p3 = Xo nx6 nx1 n (X2 ux3 uX4) 

p4 = X on X 2 n X1 n (X4 u Xs u X5) 

Ps X2 n X4 n X3 n (Xo u x6 u X1) 
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in which 

(B.2) 

where 

£1 = x n ~n~nx2n~n~nxs n~ n x1 

£2 x n xo n X1n x2n~ n~ n ~ n ~ n x1 

£3 x n Xo nx 1 nx2 nX3 nx4 nXs nx6 nx1 

£4 = x n Xo n x1 nx2nX3n X4 n X s nx6 n x 1. 

There are 119 cases in which the Bridge transformat ion changes 0 into 1 so connecting 

previously w1connected pixels. As an example we show in Fig. B.4 the effect of the Bridge 

t ransformation. As we can see, in the final image previously unconnected shape pixel have 

been connected by this t ransformat ion. The drawback of this morphological operation is 

Original s hape Bridged shape 

Figm e B.4: The effect of the Bridge transformation. Previously unconnected shape pixels have 

been connected. 

that it tends to make narrow shapes mult iple connected. In fact , when the edges of the 
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