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Analysis of Dynamic Magnetic
Resonance Breast Images

Abstract
Francesce de Pasquale

Dynamic Magnetic Resonance Imaging is a non-invasive technique that provides an
image sequence based on dynamic infermation for locating lesions and investigating their
structures.

In this thesis we develop new methodology for analysing dynamic Magnetic Resonance
image sequences of the breast. This methodology comprises an image restoration step
that reduces random distortions affecting the data and an image classification step that
identifies normal, benign or malignant tumoral tissues.

In the first part of this thesis we present a non-parametric and a parametric
approach for image restoration and classification. Both methods are developed within
the Bayesian framework. A prior distribution modelling both spatial homogeneity and
temporal continuity between neighbouring image pixels is employed. Statistical inference
is performed by means of a Metropolis-Hastings algorithm with a specially chosen proposal
distribution that out-performs other algorithms of the same family. We also provide novel
procedures for estimating the hyper-parameters of the prior models and the normalizing
constant so making the Bayesian methodology automatic.

In the second part of this thesis we present new methodology for image classification
based on deformable templates of a prototype shape. Qur approach uses higher level
knowledge about the tumour structure than the spatio-temporal prior distribution of our
Bayesian methodology. The prototype shape is deformed to identify the structure of the
malignant tumoral tissue by minimizing a novel objective function over the parameters of a
set of non-affine transformations. Since these transformations can destroy the connectivity
of the shape, we develop a new filter that restores connectivity without smoothing the
shape.

The restoration and classification results obtained from a small sample of image
sequences are very encouraging. In order to validate these results on a larger sample,
in the last part of the thesis we present a user friendly software package that implements
our methodology.
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Chapter 1

Introduction

1.1  Aims and outline of the thesis

The aim of the work presented in this thesis is to develop a new integrated methodology
for analyzing dynamic Magnetic Resonance images (AMRI) of the breast. Our objective
is to improve the diagnostic capability of this technique for locating breast tumours and
investigating their structure. The dMRI analysis consists of two steps, an image restoration
step followed by an image classification step. First, we try to minimize the distortions
affecting the data. Then we classify every pixel of the breast as belonging to one of the
following three classes: normal, tumoral benign or tumoral malignant tissue.

The study presented in this thesis comprises two main parts. In the first part a
Bayesian methodology is presented. In this framework a non-parametric and a parametric
approach are developed for image restoration. In the non-parametric approach this task
is performed without adopting any model for the signal temporal evolution at each
pixel. On the other hand, in the parametric approach a specific model is adopted for
the signal temporal evolution. The parameters of this model are estimated and based
on these estimates the restored sequence can be obtained. Image classification is then

based on attributes acquired from the image restoration step. In the non-parametric
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approach these attributes are calcilated from the restored dMRI sequences, while in
the parametric approach the attributes are some parameters of the adopted temporal
model. In these methods statistical inference is performed by means of Markov chain
Monte Carlo algorithms. In particular, we present a Metropolis-Hastings algorithm with
a specially chosen proposal distribution that performs better than more commonly used
proposals. Furthermore, we present a method to identify tumoral regions inside the breast
and we also provide procedures for hyper-parameter estimation. These make the Bayesian
methodology automatic. Most of the work described in the first part of this thesis is
summarized in de Pasquale et el. (2003).

In the second part of this thesis we present a new algorithm based on deformable
templates for image segmentation and classification. Whilst in the Bayesian metliodology
the prior distributions model spatial homogeneity and temporal continuity between
neighbouring pixels, in this approach we assume ‘a priori’ knowledge about the tumour
contour. This is represented by a prototype shape. Our algorithm deforms this shape by
means of parametric non-affine transformations and the lesion contour is reconstructed
by minimizing a newly developed objective function that depends oii tlie transformation
parameters. We show reconstructions obtained from synthetic and real data.

The thesis is structured as follows. In the rest of this chapter we present a general
discussion about dynamic Magnetic Resonance Imaging of the breast. This is followed by
an overview of Bayesian image analysis; imnage classification techniques and deformable
template models. In Chapter 2 we briefly introduce the physical basis of Magnetic
Resonance Imaging and describe the acquired data and experimental set-up.

In Chapter 3 we describe our Bayesian methodology for image restoration. We begin by
presenting a method for identifying a tumoral region iniside the breast. In this way, we can

restrict our analysis to this region thus reducing considerably the computational burden
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of our procedure. Next, we describe our non-parametric and parametric approaches for
image restoration. We present the restoration that we obtain together with a comparison
of our method with a three dimensional Wavelet based filter. Chapter 3 ends with a brief
discussion of our restoration results.

In Chapter 4 the Bayesian image classification procedure is presented. We compare
classification results obtained from non-parametric and parametric attributes with the
results previously obtained by physicians. We then make comparisons with the
classifications achieved from a standard hierarchical clustering method. The last section
of this chapter is dedicated to a brief discussion of the results.

In Chapter 5 the deformable template based method is introduced. First, we describe how
a prototype shape is chosen. We then introduce the parametric non-affine deformation
model. Since deformations from this model can sometimes destroy the connectivity of the
prototype shape, we developed a new filter that restores connectivity without smoothing
the shape. Next, we investigate the richness of the space of shapes that the non-affine
deformation model can generate and we discuss our novel objective function. For this, we
modify our new filter to identify the interior of a shape. Subsequently, we describe a new
matching algorithm and present the results obtained by applying this algorithm to real
and synthetic data. In the last section of this chapter we summarize the results obtained
with our deformable template based method.

Chapter 6 contains a brief description of the software package, called BAnDITS, that we
have developed, together with some details of its implementation.

Finally, in Chapter 7 an overall discussion of the work of this thesis is presented, together

with plans for the future work.
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1.2 Dynamic Magnetic Resonance Imaging of the breast

Breast cancer is the second largest cause of cancer mortality in women today with
380000 deaths registered worldwide in 2000 (Ferlay et al., 2001). More than a million
patients are diagnosed with this disease every year and approximately 10% of women
will develop it during the course of their lives (Hayton et al, 1999). In order to
reduce the rate of mortality due to breast cancer, it is very important to locate the
lesions at a very early stage and to investigate their structure to plan specific and
swift clinical interventions. Different techniques such as X-ray mammography, biopsy
(transcutaneous, core and needle) and thermography are well known to be effective
for diagnosing breast cancer. Despite their diagnostic capability there is room for
considerable improvement: currently more than one operation in two is performed
to remove a lesion that turns out to be benign; 8-25% of cancers are missed and
70-80% of biopsies turn out to be benign {Hayton et al, 1996). Accordingly, the
results of the current diagnostic techniques are generally not very specific. To overcome
these shortcomings, in the last ten years new imaging modalities complementary to X-
ray mammography have been introduced. These include Ultrasonography (2D, 3D and
various types of Doppler imaging), Positron Emission Tomography (PET), Single Photon
Computed Tomography (SPECT) and contrast enhanced or dynamic Magnetic Resonance
Imaging (dMRI). Nowadays, these imaging techniques play a crucial role in screening
breast cancer. In fact, radiologists and technicians base their diagnosis mainly on the
analysis of the acquired images. Thus, image processing is a key step in the decision
making procedure.

Among these techniques, X-ray mammography is most appropriate for general

screening (Highnam and Brady, 1999). Its main advantage over other imaging modalities
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(such as dMRI) is that it is cheaper and quicker. In fact, a single image is acquired
(not a sequence as in dMRI). Despite this advantage, X-ray mammography has three
fundamental drawbacks: it is projective, it has a limited applicability and it cannot image
the dynamics of the tumour. In fact, to reduce the radiation dosage that the patient
receives, the breasts are tightly compressed between parallel plates while the mammogram
is taken. Therefore, the most that a single mammogram can show is the integral of non-
adipose tissue in the direction of the X-ray beam. It follows that localization of a lesion
or a microcalcification is inherently poorer than might be hoped for with truly three-
dimensional imaging. In addition, mammographic screening is limited in application
to women over 50 years of age since its benefit for younger women has not yet been
demonstrated. The major reason is that before involution the breast contains a great
deal of glandular tissue that is radio-opague. At involution this tissue changes to fat
which is transradiant. Whenever they are used, mammograms provide an image of breast
anatomy. However, malignant cancers are characterized more by their dynamic behaviour.
To nourish its growth, a tumour sprouts a network of new blood vessels and this causes an
increase in the local blood supply (angiogenesis), which mammography cannot show. For
these limitations it is very important to develop new imaging techniques complementary
to X-ray mammography, particularly for younger women and especially for those known
from epidemiological studies to be at high risk of developing breast cancer.

Amongst the techniques developed in the last ten years, dMRI seems one of the most
promising. In contrast to X-ray based techniques, with dMRI the patient absorbs energy
of ten orders of magnitude smaller (102! for X-ray compared to 10% for MRI, where
v is the radiation frequency). In addition, the breast can be imaged in 3-D or 2-D and
dynamic information about angiogenesis can be collected. The new information provided

by dMRI appears to be very promising in the following situations (Heywang-Kobrunner
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and Beck, 1995) :

e severe scarring after surgery with or without radiation therapy

e exclusion or early detection of malignancy around/behind silicon implants
o cvaluation of implant integrity

o dense breast

s pre-operative examinations for breast conserving surgery

e patients with occult primary breast carcinoma

» monitoring of high risk patients (inherited mutation of the BRCA1 or BRCA2 genes).

dMRI consists of the acquisition of a sequence of MR. images of a given section of the breast
after the injection of a contrast agent into the blood stream. Usually a gadolinium salt
(Gd-DTPA) is used as a contrast agent (Heywang et al., 1986). The Gd-DTPA distributes
itself in the intra-vascular or interstitial spaces of the breast. The consequent enhancement
that occurs within malignancies is believed to be due to a variable combination of increased
vascularity, increased permeability and/or increased interstitial space in malignant tumors
compared with benign ones. The local concentration of the contrast agent modifies the
MR image intensities and different breast tumoral tissues show a typical uptake pattern
over the time (Hayton ef al., 1999). In Fig.1.1 the typical uptake patterns for the tumoral
tissues are shown. Important features of these patterns are the speed of initial intensity
variation and the presence of a final decrease. In fact, these features can be connected to
contrast agent wash-in and wash-out properties. Because the vast majority (around 98%)
of invasive malignancies enhance, dMRI is a highly specific technique unlike other form of

mammography.
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Figure 1.1: Typical dMRI uptake patierns for tumoural breast tissue pizels. The curve showing
a clear mazimum is often associated with melignant lesions. The other two curves are mostly
associated with benign lesions. a.u. stands for arbitrary units.

The following features are usually taken into account for the interpretation of dMRI

images:
e presence of enhancement
e amount of the enhancement
e speed of enhancement and washout
o morphology of an enhanced region.

In particular, the lesion morphology (irregularly shaped, well circumscribed, lobulated,
oval or round lesions) represents very important information for classifying tumours, as

shown in Fig. 1.2. In this figure we report some of the morphological features taken into
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investigate its structure are the main goals of breast image analysis. These tasks can be
better achieved by using the specific information about contrast agent uptake properties
provided by dMRI data.

There has been much research about the analysis of dMRI data. Important references
are Kuhl et al. (1999), Mussurakis et al. (1997, 1998) and Gribbestad et al. (1992),
although these authors make no attempt to remove either deterministic distortions cue to
patient movement during the image acquisition or random distortions affecting the data.
Hayton et al. (1999) and Krishnan et al. (1999) present methodology to correct for breast
motion, while Hayton et al. (1996) use a pharmacokinetic model for the acquired signals
to localize tumours. The ‘3TP method’ of Weinstein et al. (1999) uses three images of the
sequence to identify certain pathophysiological features.

There is now a huge literature concerned with removing random distortions from
images. Good reviews of the most popular techniques such as Wavelets, Splines and
linear filters are given by Abramovich et al. (2000). A seminal reference for the Bayesian

approach that we adopt is Geman and Geman (1984).
1.3 Bayesian image analysis

Bayesian image analysis makes use of explicit probability models to incorporate general
and scene-specific prior knowledge into the processing of images. It provides a unified
framework within which many different image analysis tasks can be considered (Winkler,
1995). In this approach two types of information can be taken into account: empirical data
and prior knowledge. The former is the dataset that we acquired from our experiment,
while the latter represents the information that is available about the data before the
experiment is performed. Hence, there are two sources of uncertainty or randomness that

are considered in this framework. In fact, the empirical data are a degraded version of
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ideal data and the prior knowledge is usually incomplete.

One of the main features of the Bayesian approach is to exploit the available prior
knowledge. This allows us to reduce efficiently the distortions that usually affect image
data. Since both the restoration and classification methods presented in Chapter 3 and 4
are developed within the Bayesian framework, in the following we describe this approach

in detail. Two key ingredients are the image data model and the prior model.

1.3.1 Image data model

In order to describe the Bayesian paradigm we need to introduce some notation. We
denote by y and x the acquired and ‘true’ images respectively. In this thesis every m x m
image will be indicated by an array such that x = (z5)scs and y = (ys)ses where S is a
square lattice whose points represent the image pixels so that |S| = m? = n.

Formally, distortions affecting the acquired data y can be either deterministic or

random, so that the most general relationship between y and x can be represented as:
y=B(x)+e

where B is a ‘Blur operator’ and € is a random variable. In general B is highly non-
invertible and represents deterministic distortions, while € represents additive random
noise. Our aim is to recover the ‘true’ image x from the acquired y. The basic idea of
the Bayesian approach is that the images y and x are realizations of random variables
Y and X. This allows us to define probability distributions on them. Based on these
distributions different estimators of the ‘true’ image can be adopted. The first ingredient
of this approach is the distribution p{y|x), called the image data model which represents
the likelihood of observing y given the ‘true’ image x. For simplicity, we assume that the
random variables Y;,...,Y,, are conditionally independent and that each Y; has the same

density function f (y;|z;). In this way, the conditional density of y given x is:
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p(ylx) = [] f (wilz:). (1.1)
i=1

The model for p(y|x) depends on the imaging modality and the experimental set-
up, and suitable models in our case are Gaussian, Rayleigh and Rice distributions. In

Section 3.2.1 the image data model adopted in this study will be described in detail.
1.3.2 Prior model

As mentioned before, a fundamental role in the Bayesian approach is played by the prior
distribution that models our ‘a priori’ knowledge about the true image to be estimated.
This information can be quantified probabilistically by assuming that the ‘true’ image
is a realization of a Markov Random Field with specified probability distribution p (x).
This distribution assigns high values to configurations x in agreement with our ‘a priori’
beliefs. Since p(x) does not depend on the data, it can be defined before data acquisition
and there are many different choices that can be made for it. In the simplest case we can

adopt a model in which all the pixel values are assumed independent:
n
p(x)= HP_;(&:S),
s=1
where P; is set of probability distributions. In the most complicated case we can assume
that every X, depends on all the other pixel values X, j # s. These situations correspond
respectively to point-wise or global knowledge about the spatial structure of x. Because
the algorithms used in practice have a computational cost related to the complexity of
the adopted prior model, we need to find a good compromise between these two extreme

cases. We will now see how to achieve this balance by discussing Markov Random Fields

in detail.
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1.3.3 Markov Random Fields

To define Markov Random Fields (MRF) we need to formalise the notion of neighbourhood.
The set {8(z) : (i) C S} indexed by i € S is said to be a neighbourhood system if ¢ ¢ 3(i)
and 7 € 0(j) & j € 0(i) for all ,5 € S. In this case &) is said to be the set of
neighbouring pixels of pixel i. In this thesis we are interested in neighbourhood systems

such that:
a6 ={j:jeSand 1< i-j|?<d},

where d > 1 and || ¢ — 7 || is the Euclidean distance between the centres of pixels ¢ and j.
Depending on the value of d, the neighbourhood system is said to be first order (d = 1)
or second order (d = 2), and in this study we will use these two types of neighbourhood
system. A subset ¢ of S is defined to be cligue if any two different pixels in ¢ are always
neighbours. We denote with C the set of all cliques. Given a neighbourhood system 3, the

prior distribution p(x) of an image x is a Markov Random Field if:

p (zs|Tr, T # 8) = p(2s]|zr, 7 € 3(3)). (1.2)

In this way we have reduced the dependence of z,; to just the variables =, corresponding
to the neighbourhood of s.
Accordingly to the Hammersley-Clifford theorem (Winkler, 1995), we can always

represent a strictly positive MRF in terms of a Gibbs distribution:

__on{-H(x)
P e b (~H () -9

where X is the set of possible images and the energy function H(x) = 3 .cc Uc(xc), in
which U is a clique potential that only depends on the variables =, with r € ¢. In (1.3) the

denominator is a normalizing constant called the partition function; often the normalizing
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constant is denoted by Z. In this way, a MRF is completely determined by the energy
function H. A commonly used family of prior distributions was suggested by Geman and
McClure (1987). Good reviews of different models that can be adopted are given by Gilks

et al. (1996), Besag (1989) and Winkler (1995).
1.3.4 Bayesian inference

Once the data model p (y|x) and the prior distribution p (x) are defined Bayesian inference
about the ‘true’ image x given the acquired data y is based on the posterior distribution
p (x}y). According to Bayes theorem we have:

p(ylx)p(x)
ply) (14)

where p (y|x) is the image data model and p(x) is the prior distribution. Since we are

p(xly) =

interested in (1.4) as a function of x, p(y) is constant and we can write:

p(xly) o p(ylx) p(x). (1.5)

Based on the posterior distribution, different estimators for the ‘true’ image can be
adopted. In particular, we now describe the Maximum A Posteriori (MAP), Minimum
Mean Square (MMS) and Marginal Posterior Mode (MPM) estimators. An image

configuration X is called the:
e MAP estimator if it maximises p (x|y):

X = arg ?Ea{%cp(xm ,

e MMS estimator if it is the mean value of the image under p (x|y):

%= xp(xly) = Epxy) [X]

XEAX



































































Chapter 3

Bayesian Image Restoration

In this chapter we present a parametric and a non-parametric Bayesian approach for the
image restoration task, together with a novel solution to the problem of estimating the
model hyper-parameters and a modified version of the Metropolis Hastings algorithm.

We will begin by introducing some further notation: let y; = {y:i(1),...,% (T)}
represent the observed temporal intensity profile at pixel ¢, where ¢ = 1,...,n, and let
y = (¥1,...,yT1) be all the observed data, that is a sequence of T' images. Our values
of n and T, as mentioned in Section 2.2 are 256 x 256 and 20 respectively. Similarly,
let x = (x1,...,%x7) be the true, but unobserved image sequence to be estimated. In
order to reduce considerably the computational burden, our Bayesian analysis will not be
performed on the entire images of the sequence but on a selected ROI from them consisting
of a few thousand pixels.

This chapter is structured as follows. In Section 3.1 we describe how the ROI is selected
and how we use an hypothesis test based approach to locate the tumoral region. Then the
non-parametric approach is introduced in Section 3.2, while in Section 3.3 the parametric
method is presented. Finally, in Section 3.4 the results of the tumoral region location

procedure are given and the image restorations obtained with both methods are shown

and compared.
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3.1 Region Of Interest selection and tumoral region location

In this thesis we assume that there is only one lesion in the breast. If this is not the
case both the image restoration and classification procedures have to be repeated for the
additional lesions that may be present.

The very first step of our dMRI analysis is to identify a ROI within the breast where a
‘significant’ increase of the contrast agent concentration is observed. In order to find this
region from the acquired image sequence y, we start by calculating the ‘mean difference

image’ m, the i*" pixel of which is given by:

T

m= oy 3 ) - w(0), (1)
where y;(t) is the image acquired at time ¢ and ¢ = 1,...,T. By subtracting y(1) from
every image of the sequence we reduce considerably the dependency of m on the anatomical
features of breast. In fact, since y(1) is acquired immediately after the Gd-DTPA injection,
the contrast agent concentration in it is still so low that the signal at every pixel will
depend only on the MR parameters of the tissue in that location before the contrast
agent injection. The image m is an important parameter in this kind of analysis because
nowadays physicians base their diagnosis on it. In Fig. 3.1(a) we report m. We note the
presence of a bright region where the high signal value is due to the increased concentration
of the gadolinium salt. In this patient we can clearly identify a lesion. In fact, physicians
identify the tumoral lesion location by extracting the contour of the bright region within

m; we present the results of this procedure in Section 4.4.
Based on m, a ROI containing the identified bright region can be drawn by the
radiologist. In Fig. 3.1(a) we show a typical ROI (yellow box) superimposed on m. In the

following, our analysis will be focused on the pixels in this ROI. In this way, the number of
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pixels to be analyzed decreases from approximately one million to a few thousand {usually
the size of the ROI is about 50 x 50 pixels). This obviously makes our procedures faster.

The next step is to locate more precisely the lesion within the ROIL. To do this we
implemented an hypothesis testing procedure. First, a reference region R within the ROI
is selected by the user. This represents a region where the user is confident that there
is no significant glucose uptake. In Fig. 3.1(b) we show a typical R within the ROI of
Fig. 3.1(a). This region should comprise healthy tissue surrounding the tumour. In order
to reduce variability, R is selected in the same breast where the lesion has been identified.
Next, the distribution of pixel values within R is estimated. Because of the shape of this
distribution, shown later in Fig. 3.5, we decided to fit this empirical distribution with a
Gaussian model the mean and the standard deviation of which have to be estimated. As
these parameters are well estimated, it is sufficient for our purposes to assume that they
are known; we will denote them by pg and og. In this way we are now able to perform
an hypothesis test over the pixels within the ROI. In particular the hypotheses at pixel

are:

Hp: pixel ¢ is non-tumoral

H;: pixel i is tumoral,

so that the test statistic will be:

Hy: Mi—pr
OR

Hi: —-—A/Il lalis >
IR

< 2y
Za

where z, is such that P (Z < z,) = 1 — @, in which Z ~ N(0,1). The probability of Type
I error or significance level is approximately a. The basic idea behind this test is that

tumoral pixels are characterized by a distribution that is different from N(ug,0%). In
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particular, since we expect the mean value of tumoral pixels over time to be considerably
greater than ug, we used a one-tail test. Pixels for which Hy is rejected in favour of H,
will be classified as tumoral. In the following, we will refer to the set of tumoral pixels as
the tumoral region which we will denote Z. We will discuss results of this hypothesis test

procedure in Section 3.4.
3.2 A non-parametric approach for image restoration

The Bayesian estimation of the true image intensities is performed at each pixel within
the ROI shown for example in Fig. 2.4(b) for the last image of the sequence. This is
done without adopting a parametric temporal model for the image intensity evolution.
Following the Bayesian paradigm, we now introduce the image data model, the prior

model and the adopted estimator based on the posterior distribution.
3.2.1 Image data model

Since we assume that deterministic degradations due to patient movements during the
image acquisition have already been reduced, the acquired image sequence y will be related

to x by:

y(®)=zi({t)+e(t), i=1,...,n, t=1,...,T (3.2)

where the errors ¢; (t) are assumed to be independently distributed. The time unit is
the time interval between two consecutive images, although in the figures we report the
corresponding seconds. For an MR image acquired in absolute value the distribution of
¢; (t) in the background, i.e. a region of very low signal intensity outside the imaged part
of the body, is known to be a Rayleigh with variance s (Henkelman, 1985 and Sijbers et

al.,, 1999). In regions of high signal, the distribution of €; (f) can be well approximated
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by a Gaussian with variance o2 = 4 ; T g2 (de Pasquale et al., 2000). The value of 52

can estimated very accurately in the background of the image. In this way, from the

estimate of s we can obtain o2 so that in the following this will be considered a known
parameter. We experimented with both distributions and, since no significant differences

were obtained, we adopted the Gaussian distribution for computational simplicity.
3.2.2 Prior model

Our ‘a priori’ distribution for the true images models both the continuity of the temporal
evolution at each spatial location and the presence of homogenous spatial regions,
separated by discontinuity lines, within every image of the sequence. To achieve this,
we relate stochastically in a separate way the differences between image intensities at
contiguous times at each pixel and the differences between neighbouring pixels in space at
each time. We do this by means of the following factorized Markov Random Field model:

r B
P(x) o JJexp |-8s Y Ve{wi(t) —z; (t)}} X
t=1

<ig>

ﬁ exp |[-B > Vi{m(t) —= (t”)}] , (3.3)

i=1 | <>
where V] is the prior potential in space or time, [ € {s,t}, < ij > indicates second order
neighbour pixels in space, < &'t > indicates first order neighbour pixels in time, 3 is the
smoothing hyper-parameter in space or time. The prior distribution (3.3) is a pair-wise

interaction model characterized by the prior potentials V; and V;. In particular, we take:

Vi(z) = —log {pi ()}, (3.4)
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where p; is the distribution of grey level differences in x (Sebastiani and Godtliebsen,

o (2) o {1 + (%)2}_1, (3.5)

where d;, [ € {s,t}, are two further hyper-parameters to be estimated. The meaning of 4

1997). We model p (z) as:

will be discussed in Section 3.2.4. With this choice we have:

Vi(z) = log {1 + (5%)2} . (3.6)

Model (3.6) penalizes differences depending on their amplitudes compared to the
parameter d;. In order to illustrate this effect in Fig. 3.2 we report the behaviour of
Vs(Ays) corresponding to two different values of &5 (6; = 10 and J, = 30, since the range
that we adopted later for the optimization of this parameter is [10,100]. For a given
value of §; the differences between neighbouring values are penalized depending on their
amplitudes. In particular, the larger the absclute value of Ay, the higher the penalty V;.
As we can see from Fig. 3.2, increasing the value of §; leads to a lower penalty for any
given differences Ay,. Therefore, informally increasing §, increases the range of differences
that are allowed under the prior, thus we can say that d; controls the amplitude of the
discontinuities to be preserved. Other choices for V; have been proposed in literature
with similar behaviour (Kiinsch, 1994). The key feature of our approach is to define V,
through p; by (3.4), as this allows us to propose a successful procedure for estimating d;.
Among the different models we tried for p; (z), the one in (3.5) leads to the most reliable

hyper-parameter estimation results.
3.2.3 Estimation

As we mentioned in Section 1.3.4, in the Bayesian approach different estimators for the

true images can be adopted. At this stage we choose the MMS estimator because it
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can be obtained without solving an optimization problem. In order to obtain a good
approximation to the MMS estimator we used a specially tailored single component M-H
algorithm with a proposal function based on the data distribution. In particular, @ is taken
to be a normal distribution with expected value y;(¢) and variance equal to the estimated
value of o2, In order to compare this proposal function with other choices, namely a
uniform independence proposal and a random walk with Gaussian proposal optimized
with respect to its variance, we performed a simulation study. We assumed as true image
sequence real MR images characterized by a low level of noise. Then we generated a
noisy dataset by adding Gaussian noise to this image sequence. Finally, we restored this
image wsing the different M-H algorithms that we considered. To estimate the speed
of convergence of these algorithms we plot the Mean Square Error (MSE) between the
true image and the current approximation of the posterior mean as a function of MCMC
iteration number. In Fig. 3.3 we show this comparison for the three proposal distributions
that we considered. As we can see from this figure, our algorithm reaches convergence
much earlier than the other two. We observed the same behaviour for different levels of
noise and for other types of original images. We also remark that an update of the proposed
algorithm is computationally less expensive than an update of the other algorithms. This is
because the acceptance probability of the proposed algorithm has a contribution from only
the prior, whereas the acceptance probability of the other algorithms has a contribution
from both the prior and the likelihood.

The starting point of the algorithm is an image of random numbers drawn from a
uniform distribution in the range of y and the pixel sweeping order is systematic. We
approximate X as the mean of the last half of the Markov chain sequence of images, the

length of which is determined by monitoring the spatial mean.
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Figure 3.3: MSE comparisons between Metropolis algorithms with different proposals: optimal
Gaussian random walk (dashed line), uniform independence proposal (dotied line) end Gaussian
independence proposal with measured pizel image intensity as proposal mean and the estimated value
of a® as proposal variance (continuous line). Each iteration on the horizontal azis corresponds to
a full update of the ROI. The verlical azis represents the MSE between the true image and the
current estimate of the posterior mean.
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3.2.4 Hyper-parameter estimation

One of the advantages of our Bayesian methodology is that the hyper-parameters are
estimated automatically. We now describe this important step. All the hyper-parameters
(Bs, B¢, 85, 8¢) play an important role in our procedure. The parameters §; and 3, represent
the weights of the spatial and temporal prior potentials with respect to the image data
model potential. Thus, inappropriate values of these parameters can lead to either over-
smoothed or very noisy restorations. The parameters 65 and &; are also very important
because they control the amplitude of the discontinuities that will be preserved during
the restoration. Since these discontinuities identify the location of the tumoral lesion and
characterize its structure, it is crucial to estimate the §; accurately.

We begin by estimating ds and d;. Our estimation procedure is based on minimizing
the difference between p; (Ay;}, the empirical distribution of observed image differences,
and p; (Ay;), the associated theoretical distribution. The quantity Ay; represents all the
spatial or temporal intensity differences in neighbouring pixels of the observed sequence
y (Sebastiani and Godtliebsen, 1997). From (3.2) we have that Ay = Az + Ae, from

which it follows that:

Pt (Ay) = pi (Az)) ® pi (Aer) (3.7)

where & indicates the convolution integral. Since we assumed that ¢ belongs to a
Gaussian distribution, it follows that p; (Ae) is a N (0, 20%). Based on p; (Az;) from (3.5)
and p; (A¢), pr (Ay) can be computed by performing the convolution (3.7) numerically.
Finally, to estimate §; we minimize the sum of the absolute values of the differences between
bt (Ay) and p; (Ay) over parameter 6.

We adopted a different criterion to obtain g; and ;. These hyper-parameters are

estimated by minimizing the discrepancy between a theoretical x3. distribution and the
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empirical distribution of the values in the set:

EF{i{yi(t)—ii(t;ﬁs,m)}{ iez}.
t=1

o2
Here #; (¢; Bs, B;) represents the estimated image at pixels in Z for a given choice of §;
and 3;. The rationale behind this criterion is that the distance between the empirical
distribution of the values in ¥ and the theoretical X%‘ distribution decreases as Z; {t; 53s, Gt)
becomes closer to true value z;(t). In order to reduce the computational time, we adopted

the following scheme to minimize the discrepancy under consideration:

1. an initial point (32,8?) and an incremental pass (Afs, AB;) are fixed using our
experience of suitable values of these parameters for the type of images under

investigation.

2. The values (30 + €AB;) are calculated where £ € {—1,0,1}. The value of the three
Bs points that minimizes the discrepancy between X% and the distribution of £7 is

chosen as (1.

3. Analogously, (8 + Af,) are calculated and the value of the three §; points

minimizing the discrepancy between x% and the distribution of 37 is chosen as

L.

4, Steps 1 and 2 are repeated until one of the minimizing points (BL‘, ﬁt‘“) is chosen for

the second time.

We compared the parameter estimates produced by this scheme with those yielded

by an exhaustive search over a fine grid of parameter values. No substantial differences

emerged.
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3.3 A parametric approach for image restoration

As an alternative to the non-parametric approach we now investigate a different restoration
method in which a parametric temporal model for the true image intensity profile at each
pixel is adopted. The parameters of this mode! are estimated by the Bayesian approach and
some of them are used as attributes in the subsequent image classification step described
in Chapter 4. We now discuss the image data model, the prior model and the adopted

estimator for these model parameters.
3.3.1 Image data model

As we stated in Section 1.2, the injection of the contrast agent gd-DTPA gives rise to a
significant increase in the MR signal received from regions characterized by high blood
vascularization. A mathematical model describing the MR signal variation over time is
very important for performing quantitative analyses of the contrast agent concentration.
Unfortunately, the complexity of the physics behind dynamic MR images prohibits the
use of a completely detailed model. Among the few suitable models described in the
literature, a pharmacokinetic model, initially proposed by Tofts and Kermode (1991) for
MRI measurements on the blood-brain barrier, has proved very important. This model
has since been developed for use with dMRI sequences; see Brix et al, (1991). Their
model is compartmental, with the blood plasma being approximated as one compartment
and the extracellular space of the tissue being a peripheral compartment. Hayton et al.
(1996) solve the resulting pharmacokinetic equations using the Laplace Transform in such
a way that different injection modalities can be taken into account. The parametric model
that we present has a very similar behaviour to the solution presented by Hayton el al.
(1996) when an instantaneous injection of the contrast agent is considered. In particular,

we assume that z; (¢) takes the functional form z; (t} = fg. (t), where the temporal model
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fg, (t) is given by:

(M; — I})
I; 1- ~A{t-1 ; 1<t<p;
 w A P -AC- D/ 1S esn
fo. () =
M~ =K p p<L<T
in which 8; = (I;, M;, Fi,p;, 7;) represents the parameter vector for pixel 7, @ =
(61,-..,8,) is the sequence of parameter vectors for the n pixels, and A = 15 seconds is

the temporal interval between two subsequent images so that the units of 7; are seconds.
These parameters are illustrated in Fig. 3.4.
Combining the parametric model with the Gaussian noise distribution, we obtain the

following image data model:

2
i (t) — fo, (t)
Pi0) = [T [Texp | - o }
i=11=1

3.3.2 Prior model

The ‘a priori’ model adopted is similar to the one adopted for the non-parametric approach.
In fact, for each parameter we take into account spatial continuity and the presence of
different structures in the image. Among the different types of dependent models with

which we experimented, the one that performs best is

P(ﬂ) = PI,M,F‘ (f, M,F) X Pp,-,- (p,'r)

where:
I — I M; — Mj\* [ F;— F}\?
Prar(ILMF) o« exp|-f Zlog{1+( e J) +(5—J—) +(Tl)}
i <ij> I M F
[ i — Py 2 Ti— T4 2
Por (07) o< exp [—B2 Y log 1+(’%) +(%) (3.8)
| <ij> F T

where < ij > indicates second order neighbours in space and 8., B2, 01, ar,0F, dp and 6,

are the hyper-parameters.
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Figure 3.4: Meaning of the parameters @ = (I, M, F,p, 7) of the parametric temporal model for the
contrast agent uptake. Two parametric time patterns are shown: 8 = (200, 1400, 900, 6.5, 15) (solid
curve with dots) and 8 = (200,1400,900,6.5,60) (dashed curve). The solid and dashed curves
coincide after p. The dots indicate the acquired temporal points t = 1,. .., 20 where one time unit
is 15 seconds. The units of T are seconds.

3.3.3 Estimation

In order to minimize the variability between the non-parametric and parametric
restorations, in this section we adopt the MMS estimator as used in Section 3.2 to estimate
6. In this way, restoration from the two methods can be compared consistently. To
obtain the MMS estimator we adopt the Metropolis-Hastings algorithm with uniform
proposal. In fact, in this case we cannot use the modified proposal introduced for the

non-parametric case in Section 3.2.3. Furthermore, since we do not have any knowledge
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about the distribution of these model parameters a uniform proposal seems the most
sensible choice. The parameter ranges for the uniform proposals are defined as follows.
The ranges for I and F are the same as those of y(1) and y(T') respectively. The range for
M corresponds to the minimum and maximum values of the whole measured image data
while the range for p is [2,T — 2]. The range for 7 is A[0.2,7/3]. The MMS estimator is
again approximated as the mean of the last half of the Markov chain sequence of images,

the length of which is determined by monitoring the spatial mean of the parameters.
3.3.4 Hyper-parameter estimation

In (3.8) there are seven hyper-parameters (81, 82,07, 851, 0r, 85, 67). To estimate é; and dp
we use the procedure described in Section 3.2.4 by considering the empirical distribution
of the pixel-wise differences calculated from y(1) and y(T'). For éas, 6, and d;, we first
estimate the images M, p and 7 with 8 = 2 = 0; these correspond to likelihood
based estimates. The values of these three parameters are then set equal to the standard
deviation of the empirical distribution of the pixel-wise differences for these images (Glad
and Sebastiani, 1995). We cannot use the procedure described in Section 3.2.4 because
the relationship between M, p and 7 and the observed image sequence does not follow
a simple additive model. For the hyper-parameters 8; and 3 we follow the approach

described in Section 3.2.4.
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the image sequence. The MMS estimator for the last image of the sequence corresponding
to the ROI is shown in Fig. 3.8(b} with the original image being shown in Fig. 3.8(a). In
this figure we also show the restoration results obtained for two other patients. In all these
restorations we note that the random distortions have been successfully reduced, while the
edges of the underlying structure have been preserved, so highlighting information about
the tumour morphology.

In order to compare our procedure with a common image restoration method, in
Fig. 3.9 we show the restoration obtained by means of a Wavelet based method. In
particular, we obtained this result by adopting the Fast Wavelet Transform (FWT)
algorithm (Mallat, 1989) for Wavelet decomposition and reconstruction. We tested
different Wavelet families and in this figure we report the best result that we obtained.
This restoration corresponds to the choice of Symlets Wavelets of order 8 (see Abramovich
et al., 2000). In fact, we used three dimensional Symlets, obtained as the tensor product
of three one-dimensional Wavelets (first along time, then along row axis and finally along
column axis), to restore the images. Following the approach of Donoho and Johnstone
(1994, 1995) the significant Wavelet coefficients in the reconstruction were extracted by
thresholding, i.e. the coefficients are set to zero if their absolute value is below a certain
threshold level. We set this threshold level using the same criterion as for the estimation of
the hyper-parameters 3, and f; described in Section 3.2.4. The restoration in Fig. 3.9 was
obtained using the estimated optimal value of this threshold level. From the comparison
between the Wavelet and Bayesian restorations shown in Fig. 3.8(b) we note that the
former is more noisy.

In order to illustrate the restoration effect over time we show in Fig. 3.10 the
comparison between the temporal pattern of two pixels within Z before and after the

restoration. Here, we note again that the random distortions have been considerably
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tumoral region Z where the parametric approach seems generally to perform better.
Finally we remark that one of the advantages of adopting a Bayesian approach
compared to other methods is that it can provide not only point estimates but also
credibility intervals. In this chapter, we show the 95% point-wise credibility interval for
a central row of the ROI for the attribute 7 of the parametric model. This information

could be useful in further steps of our analysis such as inter-patients surveys.



Chapter 4

Bayesian Image Classification

In this chapter we describe our Bayesian image classification step. This step is based on
the restored dMRI sequence and the method that we developed is motivated by the work
of Sebastiani and Sgrbye (2002). The classification is based on a few attributes describing
the relevant features of the image intensity time pattern for each pixel. Initially, we
tested different choices for these attributes, for both the non-parametric and parametric
approach; the results that we present are obtained by adopting those that performed
best. In particular, from the non-parametric approach, we adopted the areas A and
B shown in Fig. 4.1. These areas quantify gadolinium wash-in and wash-out and are
easily calculated from the smoothed temporal patterns. We chose to adopt integral-based
attributes because they are more robust than attributes defined as the difference between
two points of the temporal pattern of the signal. Furthermore, they include all the acquired
temporal information for every pixel. From the parametric approach we use the parameters
7 and M — F, as these again quantify accurately gadolinium wash-in and wash-out. For
comparable values of M — I, A increases with 7. However, although we could calculate 4
from the estimated temporal model, doing so would result in less spatial regularity than

using 7 for which we adopt a spatial prior model.

Let di = (di4,...,dms) be a vector containing the m attributes at pixel <. In our
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case we take m = 2. The classification procedure can he represented by a mapping of
every pixel 1 to a class k; € {1,2,..., K} where K is the number of classes considered.
The value of K can be chosen by the radiologist. If the classification is performed within
a selected ROI, we set K = 3, corresponding to normal, benign and malignant tumoral
tissues. Alternatively, if the procedure is applied within the tumoral region Z described
in Section 3.2.4, we set K = 2 corresponding to benign and malignant tumoral tissues.
In this study we restrict our classification procedure within Z. Thus our procedure tries

to identify different physiopathological conditions of the tumoral tissues. Following the
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Figure 4.1: Classification atiributes for a given pizel are taken fo be the areas A and B.

scheme of Chapter 3, in Section 4.1 and 4.2 we introduce the attribute and the prior model,
while in Section 4.3 we describe how the estimation is performed. Finally, in Section 4.4
the classification results obtained from both the non-parametric and parametric attributes
are shown. These results are compared with those currently available to radiologists for
locating the lesion and with the classification obtained from a standard hierarchical cluster

analysis.
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4,1 Attribute model

The 7' attribute for the &** class is assumed to follow a Gaussian distribution with
expected value c¢; and variance V. The attributes are assumed to be conditionally
independent with the result that the distribution of d = (d;,...,d,) given the
classification vector k = (ki,...,k,) is:

n m

p(dlk, ¢, V) = [T T @nV;k) 2 exp {= (djs — es0)2/ (2Vin)}

i=1j=1
where ¢ = (c1,...,cx) and V = (Vy,...,Vg), in which ¢x = (c14,.-.,Cmi) and
Vi = (Viky ..., Vinx) are the attribute means and variances for tissue class k. These

vectors are assurmed unknown and will be estimated at the same time as k.
4.2 Prior model

Our prior assumption about the classified image is that neighbouring pixels are more likely
to belong to the same class than to different classes. Hence we adopt the Potts model
(Potts, 1952):
P (k|8) = ZLGXP(—ﬁUk) = Ziexp (ﬁ >, 5@,@) ,
g A <ij>
where the hyper-parameter § has to be estimated and Zg is the unknown normalizing

constant.
4.3 Estimation

Inference about k,¢,V and § is based on their joint posterior distribution. By using
Bayes theorem and the reasonable simplifying

assumptions that P(d|k,c,V,8) = P(dlk,c, V) and that P (k|3,¢c,V) = P (k|3), we

obtain P (k,¢,V,8|d) « P(d|k,c, V)P (k|3)P(c,V,[), where P(c,V,[) is the prior
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distribution on ¢, V and . Since we do not have any knowledge about the distribution of
these parameters, here we assume a uniform prior in a suitable range. As we now adopt
a fully Bayesian approach (Besag, 1989), we need to estimate Zg up to a proportionality
constant for a range of values of . Since Zg = > exp(—fUy), as we mentioned in
Section 1.4.5, exact calculation is not feasible due to the high number K™ of configurations

involved. However, we proceed by noting that:

dlogZg 1875
a8 Zgop

- Ziﬁuk exp (=AU = —Fpgqm (], (41)
k

where Epyg) [Uk] is the expected value of the energy function Uy under P (k|3). Then,

by integrating (4.1) with respect to 3 we obtain:

8
log (Zg) — log (Zg,) = —/l; Epgqgy [Uk] a8,
0

for some fixed value fo. We approximate Epqy g [Uk| using the M-H algorithm for a
finite number of values of 3 and calculate the integral numerically using Simpson’s rule.
Related approaches for approximating the normalizing constant can be found in Gelman
and Meng (1998) and Green and Richardson (2002).

Our chosen estimator is the MAP estimator, the classification image corresponding to
the maximum of the posterior distribution. The MAP estimator is discussed in detail in
Section 1.4.4 and 1.4.5. To decrease the computational burden we obtain an approximation
of the MAP estimator by using the Iterative Conditional Mode (ICM) algorithm presented
in Besag (1986) and outlined in Section 1.5.2. As the ICM algorithm is a local optimization
procedure, it depends on its starting point. We chose the K-means clustering algorithm
output as the starting point. This algorithm is discussed by Glasbey and Horgan (1995)
and outlined in Section 1.5.1. The initial point for the K-means clustering algorithm is a

classification image based on the modes of the histogram of one of the class attributes.
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method to the raw dataset. This is because we did not want this procedure to be
influenced by the Bayesian restoration step. The adopted technique is a hierarchical
clustering method (Krzanowski, 1990). In order for the results not to be biased by the
choice of classification attributes, we used as data the whole temporal pattern, i.e. all
twenty temporal values at every pixel. Among the different choices that we considered, we
obtained the best result using the Mahalanobis distance matrix and the ‘furthest’ linkage
criterion. Since the classification was performed within the tumoral region Z, the number
of clusters was fixed to two. In Fig. 4.3(b) we show the clusters that we produced. As
we can see, the classification is very speckled and no internal structure of the tumour is
evident.

To illustrate the improvements that can result from our Bayesian methods, the
classification image based on the non-parametric attributes A and B is shown in Fig. 4.3(c).
In particular, this result has been obtained by classifying the pixels within region Z into
two classes: benign (red) and malignant (green) tumoral tissues. We note the presence of
a ‘C’ structure that is frequently present in these kinds of tumours (Heywang-Kobrunner
and Beck, 1995). Radiologists have advised us that this structure is consistent with the
presence of a necrotic region at the centre of the tumour caused by the tumoral growth
mechanism.

In Fig. 4.3(d) we show the classification based on the attributes r and M — F obtained
from the parametric approach. Very similar results were achieved by using the parameters
p and M — F'. We note the presence of a ring structure, again compatible with the tumoral
nourishment mechanism.

In addition, in order to check the temporal pattern of the pixels belonging to the
two classes, we averaged the temporal evolution of the signal over the classified regions

for the classification image obtained from the non-parametric attributes. In Fig. 4.4 we
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show these mean temporal patterns for the two classes. We note that they resemble
the patterns discussed in Section 1.2. Almost identical curves were obtained from the
parametric classification presented in Fig. 4.3(d). The above results further validate the

success of the whole procedure for investigating the internal structures of the lesion.
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Figure 4.4: The mean temporal patterns over the two classes. We note a good agreement with the
characteristic patterns for malignant and benign tumoral tissues shown in Fig. 1.1.

4.5 Conclusions

The classification of tissues inside a tumoral lesion is very important both to understand
the way in which the lesion is growing and to plan different medical interventions. It must
be stressed that dMRI can provide information about the tumour morphology before
any medical intervention and hence before the tumour is removed. The method that
radiologists currently use to analyse these sequences can provide an indication of the
tumour location, but no information about the internal structure of the tumour can

be gathered. In order to show the improvement obtained by our methodology we first
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performed image classification using a hierarchical clustering method. This was applied
to the raw data using as pixel attributes the whole temporal pattern. In this way, the
results were not biased by our image restoration and our choice of classification attributes.
The classification obtained clearly shows that such a procedure is not able to identify any
structure within the lesion. This is due to the noise that affects the data. Our Bayesian
classification, in which the image sequence has been previously restored, prior knowledge
has been modelled and attributes have been chosen carefully, seems very promising in both
the non-parametric and parametric case. In fact, our results show a clear improvement
over those currently available: not only do the tumoral regions identified by our method
and the technique currently used by radiologist coincide, but also an underlying internal
lesion structure becomes evident from our classification image. This indicates that our
procedure seems to be able to discriminate between different pathological conditions of
the tumoral tissues. This result is very important from a clinical point of view. At this
stage we are not able to say whether the non-parametric or parametric approach produces
the more reliable estimate of the lesion structure. Our experience is that the results
obtained from the two methods are similar and both structures have been judged to be
reliable by radiologists. A further indication that the classification images are accurate,
at this stage, can be obtained by considering the mean temporal patterns inside the two
classes identified within the lesion. As an example, we show these mean patterns for
the non-parametric classification. We note that they resemble very closely the expected

theoretical patterns shown in Fig 1.1.



Chapter 5

Deformable Template Models

In this chapter we present an image classification method that, unlike the Bayesian
procedure introduced in Chapter 4, takes into account the spatial structure of the lesion. In
fact, as we mentioned in Section 1.2, tumour morphology can be a very useful classification
criterion. The approach that we shall develop will exploit knowledge about the shape of
lesions that radiologists often have before acquiring the data. Examples of such shape
information are given in Fig. 1.2. In our Bayesian classification methodology the spatial
structure of the lesion is taken into account by prior distributions modelling spatial
homogeneity and temporal continuity between neighbouring pixels of the image sequence.
These models try to minimize random distortions affecting the data while preserving the
edges that characterize the tumour contour. No high level priors modelling the actual
shape of the lesion were adopted in the Bayesian methodology. However, in the approach
described in this chapter knowledge about the shape of the tumour is taken into account
by means of deformable template models.

QOur new procedure is based on the classification attributes introduced in Chapter 4,
restricted to a previously identified region Z, such as the one discussed in Section 3.1
and shown in Fig. 3.6(c). In this way, our task will be to identify the border separating

the malignant and benign tumoral classes within the lesion. We assume that the border
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separating these classes is a simply connected line so that it can be represented as a shape
in a binary image. The pixels inside (outside) this shape will be classified as malignant
{benign) tumoral tissue. Throughout this chapter for simplicity we refer to the malignant
tumoral tissue as a lesion, so that by the lesion contour we mean the border separating
the two classes. In this way, reconstructing the lesion contour is equivalent to obtaining a
classification image.

The basic idea is that we start from a template in the form of an image that represents
our knowledge about the lesion shape. We then deform this template using parametric
transformations to produce an image that matches the lesion contour. This image is
obtained by minimizing an objective function that depends on the parameters of the

deformation. Hence, our matching algorithm consists of the following three steps:

1. introducing a prototype template;
2. deforming the prototype by using a set of parametric transformations;

3. minimizing an objective function over the set of parametric transformations in order

to match the deformed template to the lesion contour.

In Section 5.1 we describe our choice of prototype template. In Section 5.2 we derive
the parametric transformation model and discuss the meaning of its parameters. In
Section. 5.3, we investigate the richness of our deformation models by means of a simulation
study. In Section 5.4 we introduce the objective function, while in Section 5.5 we present
full details of our matching algorithm. In Section 5.6 we present our results. These were
obtained from a simulation study in which we investigated the potential of our algorithm
by applying it to several datasets with different Signal to Noise Ratios (SNR). We also

applied our methodology to our real dataset with success.
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5.1 The prototype template

The prototype template is a binary image that represents our prior knowledge about
the shape of the lesion. This can be obtained from a training set as in the ‘Eigenshapes
models’ discussed by Baumberg and Hogg (1995), or it can be drawn by expert radiologists.
As mentioned in Section 1.5, a prototype template that can be deformed by parametric
mappings has the advantage over a parameterized template that many different shapes
can be very easily included in the analysis. Furthermore, depending on how accurate
our prior knowledge about the tumour shape is, detailed or coarse information about the
contour separating the two classes can be modelled. For example, if for & particular lesion
we do not have any specific information about the shape, we can take the contour of the
tumoral region Z as the prototype template and allow large deformations in the matching
procedure. On the other hand, if we know that the lesion under investigation resembles a
particular shape, we can specify the shape and allow only very small deformations during
the analysis. An important feature of this approach is that the distance between the
estimated final shape and the prototype template can be quantified by the parameters of
the deformation and this information can be very useful from a clinical point of view. In
fact, if the prototype image represents a particular pathology, this distance can represent
how accurately the lesion can be classified as belonging to that pathology.

Since the prototype represents the initial shape of the matching algorithm, it plays
a very important role. Our ‘a priori’ knowledge about the tumoral shape consists of the
lesion contour, size and location within the breast. At this stage, we assume that the lesion
border is obtained from an expert radiologist who draws the contour that he expects to
find for the kind of tumours under study. This contour is shown as the white ‘C’ shape

in Fig. 5.1(a). The size and location of the lesion are roughly estimated by means of the
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tumoral region 7 shown in Fig. 3.6(c). These estimates are used to scale and shift the
prototype. We now describe how this step is performed. Initially the contour of region Z is
extracted and its centroid is calculated. Since we assume that the centroids of the tumoral
region and lesion are the same, we translate the prototype in such a way that these two
centroids coincide. Once the prototype is centred, we perform the scaling. In order to
estimate the scaling factors we adopted a method based on the best fitting ellipses for the
contour of 7 and the shifted prototype. In particular, the ellipses are obtained by matching
the moments of these shapes. This step is described in detail in Appendix A. In Fig. 5.1(a)
we show the best fitting ellipses superimposed on the 7 contour and the prototype template
before translation. In order to scale the prototype, the lengths of the major and minor
axes of the ellipses are calculated. Now, the prototype is scaled along the horizontal and
vertical axis by factors given by the ratio of the lengths of the two major and minor axes
respectively. Since the tumoral region contour does not contain any information about the
lesion orientation, we do not apply any rotation to the prototype at this stage. Rotation
of the prototype, as will become clear in Section 5.2, can be approximately obtained
by combining different transformations given by the adopted deformation model. The
shifted and scaled prototype template (red) is shown in Fig. 5.1(b) with the Z contour.
Throughout our study we will use the ‘C’ shape as prototype contour and translate and
scale it in the way we have described. This translated and scaled prototype will be the

initial point for our matching algorithm and will be denoted by Tp.
5.2 The deformation model

Once the translated and scaled prototype T has been obtained it will be deformed by

using a set of non-affine transformations. We now describe these transformations. An

intuitive idea of the effect of these non-affine deformations can be provided by employing
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If we adopt the following boundary conditions of mixed type for (5.2):

UL,y =U'(1,9)=0; U?(2,0)=U?(z,1) =0
UJ (I,D) = U;} (2“,1) =0, U:g (O’y) = U:E (liy) =0,

(5.3)
the borders are mapped into themselves in such a way that abrupt transformations
are avoided near them. To find the solution of (5.2) subject to the boundary
conditions (5.3) is straightforward. In fact, if we know the Green’s function G (z,y;£,7) =

(G (z,v;€,1),G? (z,y;€,m)) that satisfies both partial differential equations:

9?G? 32G' ,
a 62 :6(3‘-_6)6(:‘/—7})’ 1=1,2 (54)

where 8 is the Dirac delta distribution and (£,7) € S, and the boundary conditions (5.3),

then U(z,y) can be calculated by:

U(z,y) = [01 /OlG (z,y;&m) ® £(€,n)d€dn, (5.5)

where multiplication @ and integration are applied component-wise. Now, it can be
shown that G can be expressed in terms of the eigenvalues Ay, and eigenvectors

Yom = (¥Ln, ¥2,) of £2 through the bilinear formula as (Butkov, 1968):

G (I,y,f, 77 Z Z: ¢nm 5:77)\?,:1’11111 ( ) ’ (56)

n=1m=1

where summation is applied component-wise. With the boundary conditions {(5.3), ¥,

represent an orthonormal basis, the components of which are given by:

Ypm (T,¥) = 2sin(nrz)cos (mmy)
w2, (z,y) = 2cos(mnz)sin(nmy) (6.7)
both of which have associated eigenvalues An,, = —272(n? 4+ m?). Substituting (5.7) into

(5.6), we obtain:

G (z,y;€,m) = Z Z o B (n2 ) [— sin (nw€) cos (mmrn)] 2sin (nwz) cos (mmy)
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G? (z,y;6,m) = Z Z oy +m2 [— cos (mm§) sin (n7n)] 2 cos (mmrz) sin {(nxy) .

n=1m=1
(5.8)
We now assume that f is an impulsive force at a point (v,{) € S, the components of

which can be represented by:

fiwy) = 6@ - i), i=12, (59

F
where a = e in which F represents the tension in the membrane and A the external load

per unit area. Substituting (5.9} into (5.5), we have:

U,1) = - Gla, gm0

so from (5.6) we obtain

(z,y) = ZZ

n=1m=1

a.n-2 n‘Z ) Enm ® ¢nm (1:1 y)) (510)

where € is a set containing all the parameters €, and enm = (eLm,£2,,) is a vector of

deformation parameters with components given by:

el (7,¢) = —sin(nwy) cos (mn()

(1) = — cos(mny) sin (nm()

By varying the application point (v, () of the force f these deformation parameters will
range in [-1,1]%. Clearly the form of the deformation parameters derives from the
particular choice of f. Different choices of the force lead to different forms and hence
ranges for €,,,;, (see Amit et al., 1991 and Jain et al., 1996). In order to widen the class of
deformations that we consider, we shall assume that €, and €2, can take any value in

[~1,1]? independently of each other.
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The parameter o plays an important role in our deformation models. This parameter
can be thought of as a scaling factor as it controls the amplitude of the deformation. The
physical interpretation is that for a given value of the external load A, « is proportional
to the membrane tension F. If F' increases, the membrane becomes more rigid so that
the same load produces smaller deformations in every point of the membrane. Once the
values of e,m and o are fixed, the transformation is uniquely determined.

In our implementation, because only a finite number of terms in the infinite series (5.10)

can be used, the deformation field is approximated by:

N M 1
Ug (z,y) = Z Z m&zm @ Y rm(2,Y), (5.11)

n=1m=1

where © = (a;e; N, M), and €.

By setting the number of components N and M to large values it is possible to
obtain very complex deformations. However, in this study we keep N and M small
because we do not want to generate shapes that are very different from the prototype
template. In addition, if we increase the number of cornponents, the number of deformation
parameters increases. Thus, the computational burden associated with the optimization
of the objective function, that will be introduced in Section 5.4, becomes too onerous.
For these reasons, we set N = M = 1. For notational simplicity we henceforth write
© = (q;€) in which e = (¢!,€?).

Returning to (5.1), we can now define the mapping operator as:

K:@(‘T:y) = (Jt,y) + U(—) (iL‘,y) .

For a binary image Xy with pixel centres indexed by (z,y), we shall let X; = KgXj be
the image that results from transforming each pixel of Xp by Kg.

We now show the deformation of S for different choices of ©. To do this, we generated
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approach for deforming the template. The basic idea is that, in order to widen the
richness of the space of shapes that can be reached by the algorithm, instead of using one
single deformation, we compose different transformations with different scaling factors.
In particular, a increases as the algorithm proceeds. The idea is to refine the shape
at successive steps using transformations that become smaller but finer. To formalize
this composition of transformations, we begin by introducing the scaling parameters
(a(l),...,a(m) with a® > o0-1), i = 2,... R, the set {€} of deformations, and the
number of times (rq,...,7g) that the deformation is applied at each scale. Then our

composition of transformations applied to the prototype Ty is given by:

R r
Teom = || [] Kgen To, (5.12)
i=1j=1
where ©(9) = (a(i); e(i'j)) in which e(7) is a articular element of the set {e} of

deformations. In the matching algorithm that we will describe in Section 5.5 we will
choose (%) in an optimal way.

We now discuss ‘suitable’ ranges for the deformation parameters. The range [—1,1] of
€, as we said earlier, is determined by the choice of the force given in (5.9). Since we want
every point of S to be mapped within the unit square, the minimum value of & can be
obtained by requiring that the maximum deformation in both directions will never leave
the unit square. We discuss this for the 2 direction; an analogous treatment applies for
the y direction. First of all, we consider a point (z,y) very close to the border (0,y). We
require that this point will be mapped within S, so that applying the maximum negative
deformation in the z direction must yield a non-negative transformed point. From (5.11)
and the assumption that N = M = 1, the maximum negative deformation corresponding
to e! = —1 must satisfy:

.
& = —gsin (wx) cos(my) > 0. (5.13)
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Since z is small we approximate sin(wz) by wz, and in order to have the biggest

deformation we set cos (my) = 1. With these simplifications (5.13) becomes:

1
x—i:w(l——) >0
on orm
L 1
from which it follows that a > — ~ 0.32.
w
Analogously, if we take a point close to the border (1,%y) we require that the biggest
positive deformation corresponding to €' = 1 will not map this point beyond the border

so that:

.
T+ —sin (wz) cos (my) < 1. (5.14)

Now, since z is very close to 1, we can approximate sin{nz) by (1 — z) and as before

in order to have the biggest deformation we take cos {wy) = 1. Hence, (5.14) becomes:

m(1—1z)

T+
an?

<1

leading again to the same constraint o > % ~ 0.32. Now, because of the discretization
of the mapping we will assume the value 0.4 for the minimum of o, The maximum value
of & can be obtained by requiring that the maximum deformation is greater than the
distance between two adjacent pixels. This happens when # > % because the pixel
grids that we use are typically of size 50 x 50. In this way, if & > 2" 5 every point of S
will be mapped into itself and no effect of the deformation will be visible. Typically the
size 50 x 50 for this kind of study is sufficiently large but if a larger support needs to be
considered then the maximum value of a will be increased. In conclusion, we adopted the
range (0.4, 5] for the scale parameter a.

In order to illustrate the effect of composing the deformations, in Fig. 5.4 we show, as

an example, the deformation obtained by setting R = 3, (a(l),a(z),a(3)) = (0.4,1.5,3),

r; = r9 = r3 = 1 and adopting random choices for the deformation parameters elid) in
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unconnected shapes by re-defining the image on a finer pixel grid. However, it must be
noted that increasing the number of pixels to be analyzed can make the computational
burden of the whole procedure too onerous. A good compromise is therefore to consider
a reasonable pixel grid (in our case 50 x 50 pixels) and to recover template connectivity
whenever is lost. To show an example where connectivity is lost, we report in Fig 5.5(a)
a single deformation of Ty corresponding to © = (0.4; 1, —1). This represents one of the
most extreme transformations that can be obtained by a single deformation, since « is set
to its minimum value and the absolute values of the deformation parameters are at their
maxima. In order to recover a simply connected shape, first we apply a morphological
Bridge transformation. This transformation connects pixels previously unconnected. In
Appendix B.2 we present the detail of this morphological operation and its implementation.
In Fig. 5.5(b) we show the output of the morphological Bridge transformation. We note
that although the shape is now connected, it is not simply connected. In fact, the Bridge
filter connects the borders every time the distance between them is less than two pixels
so making narrow shapes multiply connected. One way to restore simple connectivity is
to fill the internal holes and then to apply the morphological Skeletonisation. We supply
details about this morphological operation in Appendix B.1. The result of this filling and
Skeletonisation procedure is shown in Fig. 5.5(c). This shape is now simply connected.
However, if we compare this shape with the original one in Fig. 5.5(a), we note that the
former is smoother than the latter. Some detailed information about the border has been
lost. This is undesirable since, as we discussed in Section 1.2, the roughness of the border
is an important morphological sign for classifying tumours. Therefore, in order to obtain
a more satisfactory connected shape we developed a new filter. This filter recovers the
external border of the shape created by the morphological Bridge. We are interested in

the external border because, due to the geometry of the problem, the artifacts created
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by this morphological transformation are very likely to be in the interior of the template.

Our new fiter can be described as follows:

1. following a fixed sweeping scheme, all the image pixels are visited until a shape pixel
is found. This starting shape pixel becomes the current pixel and forms the first

pixel of the filtered shape.

2. The second order neighbours of the current pixel are considered following a particular
visiting scheme. The first shape pixel that has not yet been visited is selected. The
current pixel becomes the old pixel and the selected pixel becomes the current pixel.
The current pixel is added to the pixel of the filtered shape. The visiting scheme
depends on the curvature of the shape at the current pixel and this is estimated by
the relative location of the current and old pixel. Some visiting schemes are reported

in Pig. 5.6. For the starting pixel of Step 1 a fixed visiting scheme is assumed.

3. Step 2 is repeated until the current pixel is a neighbour of the starting pixel. This
always happens since the shape obtained by applying the Bridge filter is connected

and the direction (in our case anticlockwise) is maintained throughout the algorithm.

1 |old| 7 old| 716 3121
7 |cur| 6 1 |cur} 5 4 |cur|old
31415 23 4 51617

Figure 5.6: Visiting scheme for neighbouring pizels. The visiting order depends on the local
curvaiure, estimated by the relative position of the current pizel (cur) and the old pizel (old).
Three ezamples are shown in this figure. The first visiting scheme is the one adopted for the
starting pizel, ezcept old would be replaced by 8.
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In the following we indicate this new filter as the Ext filter. The result of this filter will
always be the same when it is applied after the Bridge filter, provided that the starting
shape pixel is one of the pixels of the outer border. In Fig. 5.5(d) we show the shape
recovered by this filter. We note that our Ext filter has preserved the features of the border
of the original shape shown in Fig. 5.5(a) much better than the previous morphology based
approach shown in Fig. 5.5(c). The Ext filter is also as fast as the morphological operations
(typically 1.6 x 10~2 sec per reconstruction), and is implemented in one step instead of

two.
5.3 The richness of the deformation model

In this section we present a simulation study to investigate the richness of the space
of shapes generated by the deformation model (5.12). We investigate how versatile our
deformation model is in reaching a particular shape (that we call the ‘true’ shape in the
following) obtained independently of the deformation model itself. In addition, we want to
compare the general model that uses a composition of deformations with the one that uses
a single deformation (R = 1, r; = 1). In order to test these two models on a reasonable
approximation of the real lesion shape, we decided to extract the lesion contour from
the classification image shown in Fig. 5.7. This image represents the classification result
within Z obtained with the non-parametric Bayesian classification using only the attributes
A = (A;). These attributes contain information about the contrast agent wash-in that is
one of the main features for discriminating between malignant and benign tumoral tissues.
At this stage of our study the matching algorithm is based on one classification attribute
but in the future we will extend this approach to cope with more attributes. In Fig. 5.7
the green region represents the pixels classified as malignant tumoral tissue. As we said

earlier, in the following we will refer to this region as the lesion. In order to extract from
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when the lesion contour is estimated correctly. We can think of the lesion contour as being
driven by its internal and external edges, with both these edges playing an important role.
In fact, if we use only the first term in (5.16) we may obtain an estimate of the contour that
is completely inside the lesion. We may also be unable to discriminate between different
contours inside the lesion which have comparably low values of the objective function.
However, if we also include the second term in (5.16) such problems should not arise
because for such contours this term is large. Therefore, the external edge ‘pulls’ the contour
towards the outside. Analogous considerations apply if we were to use only the second
term in (5.16) when defining Vegges(T). In the penalty model (5.16) the summation is over
edge (I (T)) and edge (E(T)) instead of I(T) and E(T) because in this way Vegges(T) is
more sensitive to small changes in the lesion contour. However, we base the calculation
of the means and standard deviations on the whole of the interior I(T) and the exterior
E{(T). This causes the estimate of these parameters and hence the matching algorithm
itself to be more robust to outliers in the random noise.

We now describe in detail how we estimate the interior region I(T). In fact, this task
can be very difficult when dealing with shapes T the contours of which are very rough
such as some of the shapes that can be generated by the deformation model (5.12). For
this reason, we developed a new method based essentially on the idea behind the Ext filter
presented in Section 5.2.1. The idea is that to recover successfully the internal region
of a shape we must visit the shape pixels in a fixed order that takes into account the
local curvature of the shape. As in the case of the Ext filter, the algorithm proceeds
in an anticlockwise orientation estimating the local curvature from the coordinates of
the current and old shape pixel. The method works as follows. Every shape pixel is
considered according to the visiting scheme presented in Fig. 5.6. From pixel (,j) the

algorithm moves along the *" row, going to the left or to the right depending on the local
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fol | @ |old

od| @ | fol

ar XX X

Figure 5.11: Two cases in which the orientation and the curvature estimated from the current
(cur) and old (old) pizels are not sufficient to find the internal pizels of the shape. The pizels
that are wrongly identified as internal are indicated by an X. The internal points found using the
current, old and following pizel (fol) are indicated by a black dot.
curvature, and includes in I{T) every pixel until another shape pixel (7,7*)} is met. In
other words, all the pixels (7, j') with j* < j' < j or j < j' < j* are included in I(T). Ifin
the i** row there is just one shape pixel, no pixel is added to I(T). This scheme identifies
the internal pixels correctly except in the case of the two neighbourhood configurations
shown in Fig. 5.11. As we can see from this figure, the orientation and the estimated
local curvature are not sufficient for identifying the interior in these two configurations. In
fact, without modification the above scheme would add pixels to I(T), labelled X in the
figure, that are outside the shape. In these cases, to identify the internal pixels correctly
we need also to take into account the ‘following’ (labelled fol) shape pixel, and not just
the current and previous ones (labelled cur and old respectively). In this way, considering
the configuration of the previous, current and following pixels, would lead us correctly to
include in I{T) only the pixel above or below the current one (indicated by a black spot).
We now describe the second penalty term Vi introduced in (5.15). Since the tumour
is characterized by two homogenous regions separated by a discontinuity line that identifies
the lesion contour, the idea is to attract the contour estimate towards this discontinuity by

means of an hypothesis test that checks whether each pixel of the current shape contour
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marks the discontinuity. For each shape pixel ¢ the test is conducted using the values
of the attribute image A at the pixels NV (¢,1) and A (3,E) identified by the internal and
external unit normal vectors centred at i. Then Vs takes into account the number of

shape pixels n(T) that are identified by the test as marking the discontinuity in this way:

n(T)

‘/test = 1 - N(T)!

where N(T) is the total number of pixels that comprise the shape contour. Let us now
define the test procedure. We test the null hypothesis Hy that between N (i,1) and A (1, E)
there is no discontinuity (i.e these pixels belong to the same region) against the alternative
hypothesis H; that between N (i, 1) and N (7,E) there is a discontinuity (i.e. these pixels
do not belong to the same region). An assumption behind our test is that pyer), g,
oy(t) and og() represent good estimates of the parameters of the distributions of A within
1 and E. For notational simplicity, we now suppress the dependence on T. If there is no
edge between N (i,1) and N (i,E) we assume that either Ay 1) — Angig ~ N(0,20F)
or Ayiny — Anie ~ N(0,203). If instead there is an edge, we can assume that
AnGn) — Antig ~ N (ur — pe, 0} + o).
Thus, to test these hypotheses we adopted the following test statistic:

AN(i,I) - AN(i,E)

\/a%+0§

Since we assume for the simulated data that the values of the classification attribute are

W =

(5.17)

higher inside the lesion than outside, we have that Ay(;1) > Aprig) and so we adopt a

one-tailed test: reject Hp if W > w. We choose w by considering the power of the test:

P (Hy is rejected|H, is true) = P | W > w|W ~ N [ 22—HE 1]},

ML _FE _ § > 0. That is, we require
o? + of

P(W > w|W ~N(5,1)) = A. Hence, P(W =6 >w—8|W —~ &~ N(0,1)) = A, so that

In particular, let us require power A when
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1—-®{w—08)= A orw=24+® (1L —A), where & is the cumulative distribution function
of a standard normal variable.

An upper bound on the probability of Type I error can be found as follows:

1 2 2
P(Holsrejecteleo1strue)—1——{ (\/_ 1+ )+<I>(\/_ 1+ )},

assuming that under Hp the probability that both pixels belong to I (or E) is 5. Elementary

calculus leads us to the bound:
P (Hp is rejected|Hp is true) < 1 — ®(w}),

with equality holding when o1 = o¢. Hence, an upper bound for the probability of Type I
error is 1 — ® {6 + ®~! (1 - \)}. In our simulation study a conservative value of ¢ is 1.5.
Thus, for power A = 0.7, we can set w = 1. This choice leads to an upper bound for the
probability of Type [ error of 0.16, which is acceptable. With real data we do not know ‘a
priori’ that values of the classification attribute are higher inside the lesion than outside.
Accordingly, with real data we must modify (5.17) taking into account the absolute value
of the difference between the attribute values.

We remark that Vs takes values in [0,1]. In particular, the larger the number of
shape pixels identified by the test as marking the discontinuity, the smaller is the value of
Viest; with zero being reached when n(T) = N(T). Since Vegyes is not guaranteed to lie
in [0,1] we may need to scale it so that it will assume comparable values to Vs in the
objective function V. To do this, for every dataset we first run the matching procedure
with V' = Veqges. Then, by using the maximum value M of Vg44es obtained during this
initial phase, we scale Veqges by setting 8 = % in (5.15). We also note here that the whole
objective function (5.15) is bounded below by zero.

As mentioned above, the objective function V defined in (5.15) gave the best quality
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lesion estimates. We experimented using just one of the terms Vegges and Vieq, but in

both cases inferior estimates were obtained.
5.5 The matching algorithm

In this section we present details of the matching algorithm. In particular, we describe
the initial version of the algorithm and the final modification of it that improved the
performance in terms of stopping time and quality of the lesion estimate.

As explained in Section 5.2, the minimum and maximum possible values of a are set to
0.4 and 5 respectively. We decided to adopt the whole range [0.4, 5] for a and set R = 47
yielding the parameter sequence (a(l), o . a(R)) = (0.4,0.5,...,5). At each iteration
j of scale | the current shape is deformed over the set of deformation parameters {€}
and the deformation parameters corresponding to the deformed shape that minimizes the
objective function are called €l*9). If e(i9) is different from zero the whole process is
repeated. The number of iterations that result in a deformed shape that corresponds to a
lower minimum of the objective function is denoted by r;. We note that r; < co because
the number of possible new shapes that can be generated at each scale is finite, there being
a limited number of possible simply connected shapes defined on our pixel grid.

When no further reduction of the objective function occurs, we increase i so changing
the scale to alit1) and repeat the above process until all the scales have been considered.
[t turns out that often the algorithm stopped (in the sense that no further reduction of
the objective function is achieved) before the last value of the scale parameter.

The matching algorithm is represented schematically by the flow chart shown in
Fig. 5.12. Whenever a shape is deformed, its connectivity is checked. If the deformed

shape is not simply connected the Bridge filter and the Ext filter are applied in sequence

as described in Section 5.2.1.
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Figure 5.12: A flowchart representing the matching algorithm.
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As will be described in the next section, this version of the algorithm showed some
limitations. In fact, this version seems not able to perform local deformations of the
shape in the sense that it cannot transform just some parts of the shape, leaving the rest
unchanged. Often a parameter choice leading to a shape reconstruction that was optimal
apart from a few mismatched pixels far from the lesion was refused in favour of a worse
reconstruction with more mismatched pixels closer to the lesion. In order to overcome this
limitation, we decided to modify the algorithm as follows: at the end of every iteration
the hypothesis test described in Section 5.4 is performed on the updated current shape.
Then, shape pixels that are identified by the test as marking the discontinuity are ‘locked’,
i.e. these pixels cannot be moved during the next iteration. In this way, deformations at
the next step will be applied only to the remaining ‘unlocked’ pixels of the shape. Since
the test is repeated at the end of every iteration and is based on both the current optimal
shape and corresponding estimates of pp, ug, o1 and og, locked pixels at a given step can be
unlocked at the following step. In fact, if at the end of an iteration no pixels are identified
as marking the discontinuity, none will be locked at the following step and this part of
the procedure remains the same as before, The advantage of the modified algorithm is
that it can now perform both local and global deformations whilst the original version
was restricted to global deformations. Furthermore, as we will illustrate in the following
section, the modified version of the algorithm can sometimes produce reliable results much

faster.

5.6 Results

In this section we present results obtained using both synthetic and real data. In the first
case, we simulate the classification attribute image A in order to investigate the potential

of the objective function with a known true lesion. In the second case, we use A obtained
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from the non-parametric Bayesian classification described in Section 4.
5.6.1 Synthetic data

In this study we produced two types of simulated data. Both of them are obtained by filling
the interior and the exterior of a given ‘true’ shape with values sampled from two Gaussian
distributions with known parameters pur, pg, or and og. By varying these parameters
we can investigate the performance of our matching algorithm on data characterized by
different values of the Signal to Noise Ratio (SNR)!.

The difference between the two types of data lies in the choice of the true shape. In
the first type, the true shape is obtained by applying the deformation model (5.12) to
the prototype template T shown in Fig. 5.1. In this way, the true shape is generated
by deforming the contour that is the initial shape for the matching algorithm. This step
is performed by using the same deformations employed in the algorithm. This largely
reduces the difficulty of the reconstruction task. However, the second type of synthetic
data is characterized instead by a shape that has been obtained independently from the
deformation model (5.12) and the prototype template Tg. In this case the reconstruction

task is more difficult. In both cases the initial shape of the matching algorithm is Ty.
Case 1

In Fig. 5.13 we show the true shape obtained from T, after applying a deformation
with parameters K = 2, ry = rp = 1, ol = 0.7, LD = (—0.9,0.4), o =09
and &1 = (—0.9,0.4). In this case the data are generated by filling the interior and

exterior regions T and E with values drawn from N (6, (0.5)?) and N (2, (0.5)?) distributions

!The SNR is a measure of signal strength relative to background noise. The ratio is usually measured
in decibels {dB). If the signal strength is Vi, and the noise level is V,, then the SNR in decibels is given
by SNR = 20log(Vs/Va). In this study we considered as signal strength V, the diflerence between the
means of A inside and outside the lesion 1 — pg and as noise level V;, the standard deviation of the noise
distribution.
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Case 1 Estimated value Estimated value
based on the true shape based on reconstruction
SNR=18dB RegionI g 5.97 6.91
o1 0.51 0.63
Region E g 2.00 2.0d
OE 0.49 0.64

Table 5.1: Estimates of the distribution paremelers based on the true and reconstructed shape
from the data shown in Fig. 5.1{(a).

We need to specify that in all the datasets simulated in this study, the shape pixels
themselves are assigned values sampled from a N (ug, 02) distribution, i.e. shape pixels
are assumed to belong to the exterior of the shape. As a consequence of this, the objective
function is not able to discriminate between the true lesion contour and its internal edge.
This is due to the fact that in theory the contour should be infinitely narrow but in reality
it has a finite size and its pixels belong either to the internal or external region. We made
the arbitrary choice to assign edge pixels to the external region. Therefore, green pixels in
Fig 5.14(a) that belong to the internal edge of the true contour should not be considered as
misclassified. This leads to a percentage of 99% of contour pixels estimated correctly. In
Table 5.1 we report the estimates of ur, ug, o1 and og based on the true and reconstructed
shape. We note a very good agreement between them.

We tested the performance of the algorithm with many different noise realizations
generated in the same way. We always obtained very good reconstructions comparable to

the one shown.

Case 2

We now investigate the performance of the algorithm with a more difficult task. We
use the same true shape shown in Fig. 5.13 but generate data in such a way that the

SNR. is three times smaller. In particular, the data are generated by sampling from
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Case 2 Estimated value Estimated value
based on the true shape based on reconstruction
SNR=6 dB Region I 4 2.98 291
o1 0.52 0.61
Region E g 1.99 2.02
OE 0.49 0.51

Table 5.2: Estimates of the distribution parameiers based on the true and reconstructed shape
from the data shown in Fig. 5.15(e).

N(3, (0.5)%) and N(2,(0.5)%) distributions for the interior and exterior of the true shape
so that SNR = 20log(1/0.5) = 6 dB. In Fig 5.15(a) the simulated dataset is shown.
Despite the low value of the SNR, we note from Fig. 5.15(a) a good agreement between

the reconstructed (green) and true (red) lesion contour. In this case 81% of the contour

(b)

Figure 5.15: {a) Data generated from the true shape shown in Fig. 5.13 by filling its interior and
exterior with values drawn from N (3,(0.5)%) and N (2, (0.5)%) distributions respectively. (b) The
reconsiructed (green) and true (red) lesion contour,

pixels are estimated correctly. Furthermore, if we compare the estimates for the parameters
based on the reconstructed and true shape, reported in Table 5.2, we note that even if
the SNR is very low we still obtain a very good agreement between them. Again different

noise realizations lead to similar results.
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Case 6 Estimated value Estimated value
based on the true shape based on reconstruction
SNR=0dB RegionI yup 2.44 2.42
o1 0.49 0.48
Region E g 1.99 2.01
o) 0.48 0.49

Table 5.6: Estimates of the distribution parameters based on the true and reconstructed lesion
obtained by applying the modified algorithm to the data shown in Fig. 5.22(c).

the non-parametric approach shown in Fig. 4.2 within the tumoral region Z. As we
described in Section 5.1, the prototype template Ty is obtained in such a way that it
has approximately the same size as Z. Now, because of the definition of E(T), during
the matching procedure some pixels of this region may fall outside Z. For this reason, we
need to consider a region larger than the tumoral region. The dimension of this region
has been fixed at 50 x 50 pixels because this represents a support typically large enough
to include all the shapes generated in the matching procedure. The values of the pixels of
this support that do not belong to Z have been assigned at random. We now discuss how
this is done. Initially, a small region within Z that corresponds to benign tumoral tissue
is selected by radiologists. This region is shown in red in Fig. 5.23(a). Then the range
of attribute values inside this region is found and pixels outside 7 are assigned values
drawn from a uniform distribution in this range. A different approach could be to adopt
a normal distribution for these attribute values and then estimate its parameters pg and
og keeping them fixed in the matching procedure. In this way the lesion reconstruction
would depend only on g; and or. We did not choose this approach because we think that
the small size of the supervised region within Z could lead to very biased estimates of ug
and og. In general, given that E(T) represents the smallest rectangular region containing
T and the template is typically inside the tumoral region, there will always be a smaller

proportion of simulated values compared to real ones in E(T). Because of this, simulated
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from a clinical point of view such as:
o less time spent by the patient in the tomograph;
e more time available to analyse more patients;
¢ lower cost for each analysis.

The results abtained from the real dataset cannot be assessed accurately since we do not
know the true lesion contour and we do not have any results from histological analysis yet.
The radiologists involved in our study judge the classification results reliable. However, we
want to stress that this is a preliminary result that must be confirmed by future work. It is
our intention, as we explain in detail in Section 7, to extend our methodology to use more
than one classification attribute and to adopt a Bayesian approach for the optimization of
the objective function. To identify the prototype shape more accurately, we plan to involve
doctors in analysing a large number of patients using the software BanDITS described in
Section 6. In this way, we will build a library of prototype templates based on classification

results from a large sample.



Chapter 6

BAnDITS: a Software Package for
the Analysis of dMRI Sequences

At this stage of our investigation feedback from radiologists is crucial to validate the
restoration and classification results. In fact, we think that a clear confirmation of the
validity of our results could only come from a survey conducted on a large sample of
patients. Furthermore, a large scale survey could provide us with a library of suitable
prototype templates for the deformable template classification approach presented in
Chapter 5. In order to involve more doctors in our research, since they are non-expert in
Bayesian analysis we developed a software package that implements the methods described
in this thesis. We called this software BAnDITS (Bayesian Analysis of Dynamic Images
for Tumour Studies). BAnDITS has a user friendly interface and does not require any
knowledge of the underlying methodology. In this chapter we describe briefly the main
features of this software. In Fig. 6.1 we show the BAnDITS opening screen. As we can
see a series of pop-up menus allows the user to choose between many different operations.

These can be grouped into four main categories:

o dMRI sequence import;

e image visualization;
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e image restoration;

e image classification.
We now discuss some details of each category.
dMRI sequence import

BAnDITS is able to import dMRI sequences directly from the tomograph. The original
DICOM data are converted into a format more appropriate for the analyses, namely a
MATLAB .mat format. For every new patient the images are stored in a folder, the location

and the name of which can be chosen by the user.
Image visualization

Once a patient has been selected, the user can visualize the original and restored dMRI
sequence, the original and restored ROI sequence, the current classification attributes and
classification image. Moreover, a reference image can be selected (such as the classification
image, an image of the restored sequence or the classification attributes) and the temporal
evolution of pixels within that image can be analyzed. This helps the user to interpret

both the restoration and classification results.
Image restoration

First, a ROI for the chosen patient is selected. We can either select a new ROI and perform
the hypothesis test to find the tumoral region 7, or choose a previously selected ROI where
the complete dMRI analysis has already been performed. In this case the user may want

to repeat the image restoration and classification steps using a different approach in order

to compare the new results with those previously obtained. This step is shown in Fig.6.2.
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‘The: restoration. and. classification itasks: disciissed..ifv this thesis. including' hyper-

;parameter estimation take;no: more than two minutesion a PC'with a 2.6 GHz Pentium4:

‘processor ‘and' 256 MB'6f RAM..




Chapter 7

Discussion and Future Work

In this thesis we present a novel Bayesian methodology and a deformable template based
approach for analysing dMRI breast images. The analysis of these images consists of
two tasks: image restoration and image classification. Since one of the disadvantages of
Bayesian methods is their heavy computational burden we address this issue by proposing a
method to restrict our analyses to a smaller region of the breast (called the tumoral region)
and by developing a specially tailored Metropolis-Hastings algorithm. The identification
of the tumoral region considerably reduces the number of pixels to be analyzed, while cur
modified version of the Metropolis-Hastings algorithm with its special proposal distribution
shows higher speed of convergence than algorithms of the same family with more commonly
used proposals. In this way, the overall time for analysing a typical dMRI sequence is
reduced to no more than two minutes using a PC with a 2.6 GHz Pentium 4 processor
and 256 MB of RAM.

The problem of estimating hyper-parameters of the prior models has been addressed by
presenting criteria to obtain them. Hence, our Bayesian methodology becomes automatic,
apart from the selection of the ROI and the reference region for the hypothesis test by the

user.

For the image restoration task we developed a non-parametric and a parametric
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approach and we compared the results obtained with the two methods. The image
restorations yielded by both methods show that the effect of random distortions are
successfully reduced while important information such as the structure of the lesion is
preserved. The images of the restored sequences obtained with the two methods seem very
similar. However, some differences in the temporal patterns are evident. In particular, the
parametric approach sometimes seems to be too rigid and so unable to model the temporal
evolution properly. On the other hand the non-parametric approach can produce biased
reconstructions. From our analysis the parametric approach seems to perform better
within the tumoral region, although this result must be confirmed by a study on a larger
number of patients.

The classification results obtained by adopting non-parametric and parametric
attributes are very similar. These classification images have been judged reliable by expert
radiologists. However, we can only compare the two methods precisely by conducting a
broader study on a larger sample of patients. All our results indicate that our new approach
is more informative than the standard method previously adopted by physicians. In fact,
with our methodology not only is the location of the lesion correctly identified, but also its
internal structure becomes evident. This internal structure is not visible from the results
obtained from the standard method and knowledge of it can yield important medical
information. Most of the above Bayesian methodology is summarized in de Pasquale et
al. (2003).

In the first part of the work the adopted prior models take into account the temporal
continuity and spatial homogeneity between neighbouring pixels. Since the spatial
structure of the lesion contour plays an important role in the analysis of dMRI sequences, in
the second part of this thesis we developed a method in which higher level prior information

about the actual shape of the lesion is taken into account. This method is based on



7 Discussion and Future Work 122

parametric prototype deformable templates. In this approach an assumed prototype shape
is deformed by parametric non-affine transformations. An objective function that depends
on the parameters of the transformation is minimized to reconstruct the lesion contour.
We defined the appropriate non-affine transformations and developed a multiresolution
deformation model based on these. Then we investigated the richness of the space of
shapes generated by this deformation model. This model seemed to be sufficiently versatile
to reach shapes that are characteristic for these studies. We implemented a matching
algorithm based on the deformation model and developed a novel objective function. We
tested our procedure on synthetic data with a variety of SNRs. The results show that our
madtching algorithm performs well in reconstructing the lesion contour even with extreme
low SNRs. The simulation study was very important as it helped us to assess the objective
function and the performance of the algorithm. Using the version of the algorithm that
performed best with simulated data, we analyzed a real data set. In this case we cannot of
course judge the lesion reconstruction as we did for simulated data since we do not know
the true lesion contour. However, the shape reconstruction that we obtained was judged
to be reasonable by radiologists.

As part of the development of our deformable template based approach we proposed
a new filter that restores the connectivity without smoothing the shape. In addition, we
modified our filter to identily the interior of a given shape.

There are many aspects of this work which we plan to develop further.

For the Bayesian methodology, discussed in Chapters 3 and 4, future work would
involve the generalization of the methodology to deal with three-dimensional dMRI
sequences. In addition, the integration of the models and methods used in the restoration
and classification steps would be studied. It would also be important to validate the

restoration and classification results by means of a study on a large sample of patients.
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We aim to do this by giving our software package BAnDITS to a team of physicians who
could test the methodology that we have developed on such a large sample. This would
further validate our procedure and show its limitations, leading us to prefer one approach
over another.

For the template based matching procedure discussed in Chapter 5, further work
would involve extending the algorithm to use more than one classification attribute to
reconstruct the lesion contour. We would also plan to validate the algorithm using the
study on a large sample of patients, as mentioned above. This would allow us also to build
a library of prototype templates. From this survey a database of template prototypes
for the lesion shapes could also become available for the template based matching
procedure. Furthermore, the procedure could be cast into a Bayesian framework by
assigning probability models to the deformation parameters and performing the objective

function optimization by means of MCMC methods such as simulated annealing.



Appendix A

Estimating the Best Fitting Ellipse
of a Shape from its Moments

In Section 5.1 we describe how the prototype template is initially scaled to have roughly
the same size as the lesion. This step is based on the estimates of the best fitting ellipses
for the tumoral region contour and the prototype template. We describe here how these
ellipses are obtained using a procedure based on the definition of the moments of a shape
(Hu, 1962). The basic assumption is that the best fitting ellipse and the considered shape
share the same moments. Hence, we begin by estimating the moments of the shape. Then,
based on these estimates the parameters of the ellipse can be calculated. First of all, let us
introduce an ellipse with centroid (zg, yo) at the origin. Let us begin by assuming that the

angle 6 between the major axis of the ellipse and the z axis is zero. In this way the ellipse

2 2
can be thought of as not rotated. This ellipse can be either represented as: 1—2 + z—z =1,
a

where a and b are the length of the major and minor semiaxis respectively or, using a

parametric representation, as:
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T = acost

y = bsint, (A1)

where t € [0, 27).

We now consider the problem of estimating the parameters of a generic rotated ellipse
(a, b, To, yo, @) from its moments.

First of all, we need to introduce the moments of a generic shape S. The (p, ¢)™ order

moment of S is defined as:
Upg = / mpyqdmdy. (A2)
s

The collection of moments pp, can provide useful features of S. In particular:
e 0o measures the area of the shape;
® 190 measures the spread of the shape in the x direction;
e g0 measures the spread of the shape in the y direction.

Moreover, the centroid of S can be found from these moments as (zo,yp) = (%, %).
Using this we can translate S so that its new centroid is at the origin.

Since the moments of a shape contain important information about some of its
characteristic features, they may be excellent parameters to use to estimate the best
fitting ellipse. Assuming that this ellipse has the same moments as S means that these
shapes will share some important features such as area and spread along the axes. From

this assumption it is easy to estimate the parameters of the ellipse. In fact, if we substitute

the parametric representation of the ellipse (A.1) in (A.2) we have:

m
pop = / w2dzdy = 2a3b/ cos® tsin?tdt = Ea:"b
ellipse 0 4
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k)
o2 = / yzd:vdy = 2ab3/ cos? tsin® tdt = Eb3a.
ellipse 0 4

We now obtain the length of the major and minor semiaxes a and b as:
4 K30 :
- @'
m Ho2
4 ;11- 3 %
b (—) (Efﬁ) . (A.3)
w H20

This analysis can be extended to the case where the ellipse is rotated by an angle 6. In

F™

this case expressions for the rotated first and second order moments in terms of # and the
previous first and second order moments can be found. The resulting equations can be
solved for a,b and 6.

In our study we do not estimate # because rotations are not considered in the first affine
transformation based stage of our matching algorithm. For the lesion contour and the
prototype template we first calculate the second order moments using {(A.2) and then we
estimate the major and minor semiaxis of the best fitting ellipses using (A.3). The ratios
between the corresponding axes of these best fitting ellipses are calculated, so yielding
scaling factors for the prototype template. Finally, the centroids of the two shapes are

made to coincide.



Appendix B

Morphological Operations

B.1 Skeletonisation

In many fields of image analysis such as pattern recognition and shape analysis, methods
for extracting some object features such as contours are needed. Among many different
approaches one of the most popular is to use mathematical morphology to transform
the object into a set of idealised thin lines which condense the information about the
object while preserving its homotopy (for a definition of homotopy see Soille, 1999). The
corresponding morphological transformations are called Skeletonisations or medial axis
transformations. Several formal definitions of the skeleton are available for continuous
space. Some of these are based on grass-fire or wavefront propagations, distance functions,
maximal disks or minimal paths, and lead to the same thin lines. The extension of these
skeleton definitions from continuous to discrete space is not straightforward, with different
methods leading to different discrete skeletons. In this appendix we describe a particular
Skeletonisation for a binary image based on homotopic thinnings. We refer the reader to

Soille (1998) for a complete review.
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Homotopic Thinnings

The Skeletonisation that we adopt is based on morphological transformations called
Homotopic Thinnings. We chose this set of transformations because the resulting skeletons
preserve important features of the original shape such as simple connectivity. In order to
explain the details of our Skeletonisation we need to introduce the Hit or Miss transform
and the Thinning transform.

The basic idea behind the Hit or Miss transform consists of extracting image pixels
of a binary image that have a particular neighbouring configuration. The neighbouring
configuration is described in terms of two disjoint sets. The first set represents the
configuration of neighbouring pixels that have the value one in the binary image. The
second set represents the configuration of zero valued pixels. These two sets form a
composite structuring element B = (Bj, Ba). The origin of B is the central pixel. An
example of a composite structuring element is shown in Fig. B.1. Each pixel of the image
is visited in turn and the following question is posed: ‘Does the composite structuring
element with origin at this pixel fit the image?’. If the answer is affirmative, the visited
pixel is given the value one. In the following, a Hit or Miss transformation of a set X by
a composite structuring element B will be indicated by HMTp(X).

Now that we introduced the Hit or Miss transformation we are able to define the

1 composite

Thinning transform. A particular Thinning transform in which homotopic
structuring elements are used is called Homotopic Thinning.
The Thinning transform consists of removing shape pixels having a particular

configuration. This is achieved by subtracting the Hit or Miss transform from the original

image. Hence, the Thinning of a binary image is denoted by X o B and defined as the set

! A composite structuring element is said to be homotopic if the number of its black and white connected
components is not modified when modifying the state of its origin.
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image is very expensive from a computational point of view. A more efficient way to
implement this transformation is to generate a Look Up Table that contains the result
of the Skeletonisation for every possible neighbouring configuration. In other words, we
give a stack number to every possible neighbouring configuration which becomes the input
address of the Look Up Table. Hence the adopted Skeletonisation proceeds by visiting
each shape pixel. The neighbouring configuration and its corresponding stack number are
identified and the value of the skeletonized shape pixel is then immediately given by the
Look Up Table. To associate a stack number to a neighbouring configuration is fairly
simple. In fact, it is sufficient to adopt a fixed visiting order to the neighbouring pixels,
so that the configuration becomes a pattern, and then assign a stack number to every

possible pattern. In Fig. B.2 we show the visiting order of the neighbouring pixels. For

X | X, | X,
X | X | X
X | X | X

Figure B.2: The visiting order for neighbouring pizels. For every shape pizel X the corresponding
pattern is (Xo, X1, Xo, X3, X4, X5, X6, X7). We note that we have 28 = 256 possible patterns.

every shape pixel X the corresponding pattern is (X, X1, X2, X3, X4, X5, X5, X7). We
note that we have 28 = 256 possible patterns. As example in Fig B.3 we show the effect
of Skeletonisation on a particular shape. As we can see from this figure the original shape
has been reduced to a set of idealised thin lines. We note that the skeleton is simply

connected.
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B.2 Bridge transformation

consideredishape-are separated by jiist oné pixel, the B

rl

dge operation will connect them..
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