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The Physiological and Molecular Characteristics of Chemically Induced Abiotic Stress 
Resistant Mutants of Cauliflower (Brassica oleracea var. botrytis) 

Fazal Hadi 
Abstract 
N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methyleurea (NMU) induced mutants and 
control plants had been maintained in in-vitro condition for 3 years by continuous sub­
culturing and screened 2 generations for resistant mutants selection. In this study hlghly 
resistant mutants were regenerated and assessed by leaf discs assay for drought, salt and frost 
resistance to confirm the persistence of mutation over generations of subculture. Assessment 
was carried out using mannitol (drought stress), NaCl (salt stress) and freezing (frost stress). 
Cold-acclimated and non-acclimated leaves were assessed for frost resistance. Results 
confirmed the persistence of mutations in clones with enhanced tolerance levels to stresses 
over control plants. Response of individual mutants was different for each of the stresses, 
some mutants were resistant to two stresses whilst others demonstrated multiple resistance and 
no one mutant was resistant to a single stress. Acclimation at 4 °C appeared good enough to 
increase frost resistance compared to non-acclimation. Acclimation also tended to emphasis 
the difference between mutants and some mutants (K18 & K19) showed highly significant 
increase in frost resistance at -6 °C compared to control. Responses of in-vitro and in-vivo 
plants within a clone were correlated. 

Molecular and biochemical analysis was carried out with objectives (1) To investigate the 
presence of CBF/DREB 1 and COR15 genes in cauliflower (2) To investigate whether the 
induced resistance can be attributed to the expression of these genes and proline level. The 
clones (mutants and control) were analyzed under cold acclimation (4 °C) and non-acclimation 
(22 °C). Total RNA was isolated after 3 h, 6 h, 24 hand 14 d acclimation. Proteins and free 
proline were isolated after 14 d acclimation. Under non-acclimation, RNA, protein and proline 
isolated once at end of experiment. cDNA was produced using RT-PCR, with specific primers 
the gene was detected only in acclimated clones and no PCR product appeared under non­
acclimation. The PCR product was isolated, sequenced, and compared the nucleotides and 
deduced amino acid sequences with other plants. Very high resemblance (- 91 %) with 
Brassica species (BnCBF5/DREBJ, BrDREBI and BjDREBJ B) were found and confirmed the 
first reporting of the transcription factor BoCBFIDREBJ in cauliflower. This resemblance was 
reduced to 67% when compared to other plants, confirms that this sequence is conserved in 
Brassica. The transcript level increased up to 24 h acclimation and then declined. The response 
of the mutants was different, some showed PCR product at 3 h while others only after 6 hand 
24 h acclimation. Through SDS-PAGE and Western blotting, the COR15a protein was 
detected with specific antibodies obtained from MSU (USA), and the blots appeared in all 
clones under cold acclimation correlated with frost resistance but under non-acclimation the 
COR15a constitutively expressed only in 3 mutants with increased frost resistance that 
confirms the persistence of mutation. 

The genotypes showed positive correlation between BoCBFIDREBJ expression and frost 
resistance and tllis correlation was significant after 24 h and 14 d cold acclimation. The 
highest R2 value was found between BoCBFIDREBJ expression at 14 d and EC% at -6 °C 
(93 .43% of variation accounted for) followed by BoCBFIDREBJ expression at 24 hand EC% 
at -6 °C (82.57%). The proline level under acclimation increased about 8 times compared to 
non-acclimation and demonstrated positive and significant correlation with BoCBFIDREBI 
expression. Proline also showed positive and significant correlation with frost resistance under 
cold acclimation but very weak under non-acclimation. The effect of cold acclimation on 
proline and total protein was evaluated and negative correlation was found to be non 
significant between free proline and total protein content in clones. 

ii 



List of Contents 

Contents page 

Copyright statement .................................... ...... .. .... ................ ..... ..... ... .. ....... ............. i 

Abstract ... ......... .... .... ..... ... .... ...... .. .... ....... .... ....... ...... .. ..... .. .... ..... .. .. ... .... .. .... ..... ... .... . ii 

List of Contents .... ...... .................. ..... ... .. ...... .... .............. .... ........ .............. .. .... ...... .... iii 

List of Figures .. .......................... .... ..... .... ... ......... .. ...... .. ......... ...... .... ..... .... .... .... ... .. viii 

List of tables .......................... ............. ... .. ....... ........... .. .... ...... ...... ............ .. .. .. .......... xi 

Dedication ...... .............. ........... .......... ..... ... .... .... ..... .... .. ..... ...... ... ............................ xii 

Acknowledgements ...... .............. .................................. ...... ..... .. ..................... ........ xiii 

Declaration .... ..... ....... ........... ... ... ... .......... .......... .. ....... .. ... ... ..... ....... ..... ...... .. .. ... ..... xiv 

Presentations (Oral) ...... ............ ..... ..... ...... .... .......... ..... .. ... ... ......... .. ..... .... ..... ........... xv 

Courses and trainings attended ........ ... .. .... .. ... ... ... ..... .............. .................... .... ....... ... xv 

Postgraduate skills attended ... .. ................ .............. .. ..... .. ....... .. ....... ....... ... ......... ...... xv 

Conferences, workshops, seminars and public lectures attended .... ... .......... ....... ........ xvi 

Professional membership ........... ......... ..... ... .. .. ..... ..... ... ........ ........ ... .. ....... ... .... .... ... xvii 

Research Publications ............ ......... ..... ............. .... ... ........ ...... .... .. ... ..... ..... .. .. ......... xvii 

List of Abbreviations .. ...... .. ............ ... ... .. .... .. ....... .. ... ............... .. ... ....... ... ....... ...... ... xix 

Chapter 1: General Introduction and Literature Review ... .... ............. ..... 1 

1.1. The Cauliflower (Brassica oleracea var.botrytis L.) plant.. .. ....... .. .. .. .. .. ... ........ ... .. 1 

1.2 Plant tissue culture .... .. ... ...... ........ ..... ... .... .. .. .................... .......... ....... .... ... ....... .. ... 6 

1.2.1 Ex plants Source .. ... ... ... .. ....... .......... ...... .. ......... ..... ... ..... .. .. ...... ... ........ ..... ..... . 6 

1.2.2 Cell suspension and callus cultures: .... .... ............ .......... ................. ..... .... ........ ? 

1.2.3 Pathways of Cultured Cells and Tissues .. .. .... .... .. .. ........ ........ ....... ........ .... .... .. . ? 

1.2.4 Regeneration and organogenesis .. ........... ......... ... ... .. ... ...... ...... ........ ......... ...... 7 

1.2.5 Somatic embryogenesis .......................... ... ........ ... .. ... .. ... ......... .. ......... ........... 8 

1.2.6 Process of micro-propagation ...... ... ... .. ..... ......... .. .................. .. ... ......... .... ..... 12 

1.3 Mutation .. .... .. ......... .... ... ... ............... .................................. .... .......... .......... ... .... 13 

1.4 Abiotic stresses ...... ...... .......... ...... ....... .......... ......... ...... ... . ..... ...... .... .. ..... ....... .... . 16 

1.4.1 Cold and dehydration stress response ... .. ..... ..... ...... ... ............... .... ...... .......... 21 

1.4.2 Drought stress .......... ... ... .. ........... ............ ... .... .. ...... .. ..... ....... ... .................. .. 25 

1.4.3 Cell signaling and gene regulation under stresses ... ..... ......... ... ............... ....... 26 

1.4.4 Engineering for osmo-protectant accumulation .. .. ... ...... ....... .... .... ...... .......... . 27 
iii 



1.4.5 Mannitol ...... .. .... .... .. .... .. ....... ................ ....... ...... ........... ..... ..... ... ... ....... .. ..... 28 

1.4.6 Raffinose, galactionol, fructan and trehalose .... ..... ........ .... .. .... .... ..... ..... ... ... .. 28 

1.4.7 Proline ......... ... ...... ........ ... ........ ...... .... ... ..... ........... ..... .. ..... .... .... .. .... ....... ..... 30 

1.4.8 Functions of drought-inducible genes .. .. .. .... ...... ....... ......... ... ...... .... .. ....... .. ... 32 

1.5 Transcriptional factors and abiotic stresses ..... ... ....... ... ...... ... .. .. .. ......... ............ .... 33 

1.5.1 CBFIOREB ... ..... .. .. .. .. ...... .. ... .. .. .. ..... .. .... ... ... ..... .... ..... .. .. .... ... .. ...... .. ... .. .... ... 35 

1.5.2 AP2- EREBPs .. .... .... ... .... .. .. .... .. .... .. ..... .. .. .... .......... .... .. .. .... .... .. ... .. .. ... .... .. ... 42 

1.6 Cold acclimation and frost stress tolerance in plants .. .... .... .. ...... .. ........ .... .. .. .... .. .. 44 

1.6.1 Regulation of genes expression in response to low temperature .... .. .......... .... . .47 

1.6.2 CBF cold response pathway .. ..... ........ ... ..... ..... ....... .. ... ... ...... .... ...... ... .... .... .. .47 

1.6.3 Calcium role in CBF regulon pathway .................... .. ............ .. ............. .. .... .. . 50 

1.6.4 Half-Life ofCBF Transcripts at warm temperatures .. ... ............... .. .. .... .... .. .... 51 

1.6.5 Regulation of the CBF pathway .. .. ........ .. .. ........ .. .. ..... .. .. ... .. .. .... .. .. .. .. .. .... .. ... 51 

1.6.6 Functions of the CBF Regulon .... .. ................... .. .... .. .. .. .. ............ ...... .... .. ...... 53 

1.6.7 Plant breeding and freezing tolerance ... .. .. .......... .... .. ... .. .. ..... .... .... .. .. .. .......... 54 

1.6.8 Freezing injuries in plant.. .. .. .... ... .... ..... ...... .. ....... ......... ... ..... .. ... .. ... ... .. ....... . 54 

1.7 Cold regulated gene (COR15) ... ...... .. ....... .. , .... .......... ...... .. ........ ....... ... ..... ... ...... . 56 

1.8 Aim and objectives of thesis ... .... .......... .. .... ...... .... .. .... .. ...... .. ........ .... .............. .. .. 61 

Chapter 2: General Materials and Methods ...... .. .......... .. .. .. .. ... .. ..... ...... .. ... 62 

2.1. Mutagenesis and abiotic stress resistant mutants selection .... .... ........ .. .... .. ...... .. ... 62 

2.2 Weaning process .... ....... .... ... ... .... ... ... ..... .. .. ... .. .... .. .. ... .. .... ... ...... ....... ........... .... .. . 63 

2.3 Regeneration and sub culturing of experimental clones .... .. .... ...... .. .. ...... .. .......... .. 63 

2.3.1 Media preparation .... ............ .... ... ..... .. .... ......... .......... ... .. ........ .. ... ..... ..... ... 64 

2.3 .2 Hormonal stock solution ....... ...... .......... ... ... .......... .... ... .... .... ....... ... ....... ... 64 

2.3.3 Explants preparation and inoculation ... .... ...... .. ..... .... ... ...... ...... ... ... .. ..... .. .. 64 

2.3.4 Transfer to rooting media and sub-culturing .. ...... .. ........... .. ....... .... .......... .. 65 

2.4 Physiological screening of clones for abiotic stress resistance ...... .. .................. .. .. 65 

2.4.1 Drought stress resistance investigation .. .... .. ...... .... .... .. ...... ...... .. .......... .. .. ..... 66 

2.4.2 Frost stress resistance analysis ............. .. .. ........... ... ... .. .. .. .. .... ... ....... ... ... .. .. .. . 67 

2.4.3 Salt stress resistance evaluation .. .... ..... .. .... .... .. .... ... .. .. .... .... .......... .. ..... ..... .. .. 69 

2.5 Cold acclimation before RNA and Protein extraction ........ .. .. .. .... .. .. .... .............. ... 70 

2.5.1 RNA isolation and purification .......... ... .. .... ........ .... .. .. ..... ........ ...... .. .... .. .... .. . 71 

iv 



2.5.2 BoCBFIDREBJ regulatory gene identification using RT -PCR .... .... ......... ... ... . 72 

2.5.3 RT -PCR product (cDNA) sequence analysis ...... ... ................ ............... .... ..... 73 

2.5.4 Genomic DNA isolation and purification ....................................... ........ .. .... . 7 4 

2.5.5 Analysis of RNA and DNA purity ..... ..... .... .......... .... ......... ......... ........ ........ .. 75 

2.5.6 DNA quality confirmation .. .. .............. .. ............. ... ..... .... .... ........ ........... ... .... 75 

2.6 Protein extraction and purification .... .... ..... ............ .... ... ... ..... ...... .. ......... ........... .. 76 

2.6.1 SDS-PAGE (Sodium dodecyl sulfate polyacrylamide gel electrophoresis) .... .. 76 

2.6.2 Western blotting (lmmunoblot Analysis) for detection ofCOR15 ... .. ... ..... ..... 78 

2.7 Free-proline (Pro) and protein evaluation in genotypes under cold acclimation ..... 79 

2. 7.1 Proline (Pro) extraction and estimation ........... .. ............ .... ......... .. ................. 80 

2.7.2 Protein estimation ... ... .. .. .. ... ..... .... .. .. ..... ..... ... .... .. ......... ... ...... .... .... ... ... .... ... .. 81 

2.8 Statistical Analysis .......... ... ..... .. ... .... ....... .... .... .... ...... .... .. .... ... .. ...... .. .......... .. ..... . 81 

2 .9 Summary of Experimental approach ....... ... ....... ... .. ...... .... ....... .... ... ........ ........ ... .. 82 

Chapter 3: Physiological Characteristics of Mutants .. ... .. .. .... ..... .... ..... ... . 83 

3 .1. Introduction .... .. ...... ...... ....... .. ......... .... ........................................................... .. . 83 

3 .1.1 . Micro-propagation and sub-culturing of clones ... ........ ....... ...... ............ ...... .. 83 

3.1 .2. Abiotic stress tolerance through mutagenesis ..... .... ................... .. ...... ... .. ...... 85 

3 .1.3. Dehydration stresses effect on plant. ..... .... ...... .. ........... ............ .................... 86 

3 .1.4. Frost stress injuries in plant.. ......... ......... ..... ............. .. .. ................ .............. . 88 

3 .1.5. Cold acclimation and frost stress tolerance in plants ..... .... ............. .. ......... .... 88 

3.2 Aim and objectives ............. ... ......... ....... ................... .......... .... ... ..... ... ....... .. ... . 91 

3.3 Materials and methods ........... .. .... .............. ..... ........................ .. ...... ..... ... ... ........ 92 

3.3 .1 Selection of abiotic stress resistant mutant clones .. ... ... .... .... .... ... .. .. ... .. ...... ... . 92 

3.3 .2 Regeneration and propagation of clones ........ ... ................ .... ................ ..... .. .. 92 

3.3.3 In-vitro clones transfer to in-vivo conditions .. .. ... .. ... ... ......... ... ........ ... ... ....... . 93 

3.3.4 Frost stress resistance ........................ .... ..... .. .... ... ..... ... ..... ...... ...... .... .... ... .... 95 

3.3.5 Drought stress resistance ... ......... ..... ... .. ... .............. .. ....... .. ..... .... ... ... ... ..... .... . 96 

3.3.6 Salt stress resistance ....... .... ............... .. ... ... ... .. .. .. ..... .......... ...... ...... ... .... ... .. .. 97 

3.4 Results .... ....... ... ... ....... .... .. ... ....... ... ..... ..... .................... ... .... ........... ... ................ 98 

3.4.1 Regeneration and sub-culturing of experimental clones .... ... ... .... ......... ...... ... . 98 

3.4.2 Assessment of in-vivo and in-vitro mutants for frost resistance under cold-

acclirnation .... .... .. ............ .. ...... .. .. .. ....... ......... .. .. ... .... ... ...... .... ... ........ ..... ........... 100 

V 



3.4.3 Evaluation of in-vivo and in-vitro shoots of mutants for salt resistance ........ 104 

3.4.4 Assessment of in-vivo and in-vitro mutants for drought resistance ............... 110 

3.4.5 Correlations between in-vitro and in-vivo clones for drought, salt and frost 
resistance ......................................................................................................... 113 

3.4.6 Correlation of proline with salt and drought resistance in clones ................. 117 

3.4. 7 Multi-stress resistance summary of mutants ............................................... 120 

3.4.8 Correlations among frost, drought, and salt stress resistance in mutants ....... 122 

3.5 Discussion ...................................................................................................... 125 

3.6 Conclusions .................................................................................................... 131 

Chapter 4: Molecular and Biochemical Characteristics of Mutants . 132 

4.1 Introduction .................................................................................................... 132 

4.1.1 Cold acclimation and the CBF regulon ...................................................... 132 

4.1.2 Transcription factors (CBFs/DREBs) ........................................................ 134 

4.1.3 CBF regulation ......................................................................................... 136 

4.1.4 Cold regulated genes (CORI5 gene) .......................................................... 137 

4.1.5 CBF expression and level of free proline (Pro) ........................................... 138 

4.2 Aim and objectives ...................................................................................... 141 

4.3 Materials and methods .................................................................................... 142 

4.3.1 Plant materials and growth conditions ....................................................... 142 

4.3.2 RNA extraction ........................................................................................ 144 

4.3.3 Identification of BoCBFIDREBJ gene ....................................................... 144 

4.3.4 cDNA sequencing .................................................................................... 145 

4.3.5 Multiple alignment of sequences ............................................................... 146 

4.3.6 Genomic DNA isolation ........................................................................... 146 

4.3.7 Protein extraction and SOS-PAGE ............................................................ 146 

4.3.8 Western Blot Analysis for CORIS ............................................................. 147 

4.3.9 Proline and protein estimation ................................................................... 14 7 

4.4 Results ........................................................................................................... 149 

4.4.1 Identification and expression of BoCBFIDREBJ gene under cold acclimation. 

························································································································ 149 

4.4.2 Isolation and cON A sequence alignment of BoCBF/DREBJ gene ............... 154 

4.4.3 Amino acid sequence alignment and phylogenetic analysis of BoCBF/DREB I 

························································································································ 156 

vi 



4.4.4 Detection of COR/5 gene in mutants of Brassica oleracea var. botrylis ...... 160 

4.4.5 The effect of cold acclimation on proline and protein level ......................... 164 

4.4.6 Correlation between frost resistance and CBF expression ........................... 167 

4.4.7 Relation between CBF expression and proline production .......................... 172 

4.4.8 Correlation between proline production and frost resistance ........................ 17 4 

4.5 Discussion ...................................................................................................... 177 

4.6 Conclusions .................................................................................................... 183 

Chapter 5: General Discussion ................................................................... 184 

5.1 Mutagenesis as a tool to enhance abiotic stress resistance in cauliflower ............ 184 

5.2 BoCBFIDREBJ expression and frost resistance in mutants under cold acclimation 

···························································································································· 187 

5.3 Expression of BoCBFIDREBI and proline production under cold acclimation .... 188 

5.4 Role of free proline and COR 15a protein in frost resistance under cold acclimation 
............................................................................................................................ 190 

5.5 Conclusions .................................................................................................... 193 

5.6 Further research recommendations ................................................................... 194 

5.7 Future perspectives ......................................................................................... 195 

References ....................................................................................................... 196 

vii 



List of Figures 

Figure I. The origin of three amphidiploids species from three diploid Brassicas .......... 2 

Figure 2: Different steps involved in plant tissue culture ................................................ 11 

Figure 3: A complex mechanism of abiotic stress response in plants ............................. 18 

Figure 4: Factors determine how plants respond stresses, .............................................. 19 

Figure 5: Various signal transduction elements involve in cold and drought response. 22 

Figure 6: Dehydration Stress tolerance factors produced in plant .................................. 23 

Figure 7: Proline biosyntheses pathways in plants .......................................................... 31 

Figure 8: Drought stress-inducible genes products .......................................................... 32 

Figure 9: Transcriptional regulatory networks of abiotic stress signals and gene 

expression ............................................................................................................................ 34 

Figure 10: Cold acclimation induces changes in cellular processes ............................... 46 

Figure 11: CBF cold acclirnation pathway (CBF regulon) ............................................ 49 

Figure 12: Weaning process: transfer of in-vitro clones into in-vivo conditions ........... 94 

Figure 13: Frost resistance test. ......................................................................................... 95 

Figure 14: Drought resistance test... .................................................................................. 96 

Figure 15: Regeneration response of clone on different media ..................................... 99 

Figure 16: Effect of cold acclimation on leakage from cell membrane of in-vivo clones 

at different freezing temperatures ..................................................................................... I 0 I 

Figure 17: Response of cold acclimated in-vivo clones at -6 °C ................................. 102 

Figure 18: The cold acclirnation effect on in-vitro clones ............................................. 103 

Figure 19: Effect of salt treatments on greenness of leaf discs ..................................... I 05 

Figure 20: The response of in-vivo clones at different NaCI concentrations ............... I 06 

Figure 21: The effect ofNaCI concentrations on leaf discs after 7 days treatments ... I 07 

Figure 22: Response of in-vivo clones to higher salt concentration (550mM) after 5 

days treatment .................................................................................................................... 108 

Figure 23: Response of in-vitro clones at different salt concentrations ....................... 109 

Figure 24: The relative water content (RWC%) in leaf tissues of in-vivo clones after 

treatments with mannitol at different concentrations ...................................................... Ill 

Figure 15: Response of leaves tissues of in-vivo clones to 450 mM mannitol in media . 

. .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . I I I 

Figure 16: The relative water content (RWC%) in leaf discs of in-vitro clones at 

different concentrations of mannitol in media ................................................................. 112 

Figure 17: Response of leaf discs of in-vitro clones at 450 mM mannitol in media ... 112 

viii 



Figure 28: Correlation of relative water content (RWC %) between in-vivo and in-vitro 

clones .................................................................................................................................. 114 

Figure 29: Correlation of greenness% between in-vivo and in-vitro clones ................ 115 

Figure 30: The frost resistance correlation between in-vivo and in-vitro acclimated 

klones at different test temperatures ................................................................................ 116 

Figure 31: Correlation between salt tolerance and proline level in in-vivo clones ...... 118 

Figure 32: Correlation between water content% and free proline level in in-vivo clones 

............................................................................................................................................ 119 

Figure 33: Correlation among Non-acclimated frost, drought and salt resistance ....... 123 

Figure 34: Correlation among acclimated frost with drought and salt resistance ........ 124 

Figure 35:CBF regulon of model Arabidopsis plant: ..................................................... 133 

Figure 36: Cold acclimation process and plants growth conditions ............................. 143 

Figure 37: PCR optimization: .......................................................................................... !50 

Figure 38: RT-PCR product and band intensity ofCBF/DREBI after 3 and 6 h 

acclimation ......................................................................................................................... !51 

Figure 39: RT -PCR product and bands intensity of CBF /DREB I after 24 h and 14 d 

acclimation ......................................................................................................................... !52 

Figure 40: Non-acclimated genotypes RT -PCR ............................................................. !53 

Figure 41: Nucleotide sequences (cDNA) alignment .................................................... !55 

Figure 42: Multiple sequence alignment and comparison of the deduced amino acids 

sequence of BoCBFIDREBJ with protein sequences of other Brassica species ........... !57 

Figure 43: Multiple alignment of the BoCBFIDREBJ deduced amino acids sequence 

with members ofBrassicacea family ............................................................................... !58 

Figure 44: Phylogenic relation of the BoCBF ID REB I proteins ................................... !59 

Figure 45: The SDS-P AGE analysis of genotypes ......................................................... 161 

Figure 46: Western blot analysis for the detection of COR15 protein under cold 

acclimation ......................................................................................................................... 162 

Figure 47: Western blot analysis for the detection ofCOR15 in genotypes under non-

acclimated condition ......................................................................................................... 163 

Figure 48: Frost resistance in non-acclimated clones .................................................... 163 

Figure 49: The effect of cold acclimation on proline production .................................. 165 

Figure 50: The effect of cold acclimation on total protein production in clones ......... 165 

Figure 51: Correlation between proline and total protein level after 14 d cold 

acclimation ......................................................................................................................... 166 

ix 



Figure 52: Correlation between frost resistance and CBF expression on 14 d cold-

acclimation ......................................................................................................................... 168 

Figure 53: Relationship of frost resistance and CBF expression after 24 h cold-

acclimation ......................................................................................................................... 169 

Figure 54: Correlation between frost resistance and CBF expression after 6 h cold-

acclimation ......................................................................................................................... I 70 

Figure 55: Correlation between frost resistance and CBF expression after 3 h cold-

acclirnation ......................................................................................................................... I 71 

Figure 56: Correlation between CBF expression and Proline production after 14 d cold 

acclirnation ......................................................................................................................... 173 

Figure 57: Correlation between frost resistance and proline production in 14 d cold 

acclimated clones .............................................................................................................. 175 

Figure 58: Correlation between proline level and EC% in in-vivo clones under non-

acclimated condition, ........................................................................................................ 176 

X 



List of tables 

Table I. Summary of the anti-mutagenic ability of the crude extracts from the 

Brassica oleraceae varieties ..................................................................... 5 

Table 2. Summary of the resistance to multi-stresses ..................................... 121 

xi 



Dedication 

'J ~ fi4e to ded«ate ~ t4e4i4 to ~ ~ ~ 

(~ tfod m<lll &e44 t&emJ 

xii 



Acknowledgements 

It is my pleasure to express sincere thanks to my supervisors, Professor Mick 

Fuller and Dr. Martyn Gilpin for their assistance, encouragement, guidance, criticism 

and support throughout the present research project. 

I greatly appreciate the assistance and support from Mrs Lynne Cooper, and 

Angela Harrop, for their technical support in the laboratory, without whom the 

experiments could not have been completed. I also offer my gratitude to Michel, Andy 

and Mate (technicians in the laboratory) for their help during my project work. 

I also offer my sincere gratitude to all the members of staff in Graduate school 

and the school of Biomedical and Biological Sciences University of Plymouth and 

especially to my colleagues on third and fourth floor Davy Building. 

I am very thankful to Dr. Michael F Thomashow and Dr. Sarah Gilmour of the 

Michigan State University (USA) for providing the antibodies for the COR I Sa protein. I 

am also thankful to Charles Wallace Trust (UK registered) for support during thesis 

write up stage. 

I would like to acknowledge the Pakistan Higher Education Commission (HEC) 

and the University of Malakand for the award of scholarship that provided the financial 

support for this research project. 

I am very grateful for the encouragement and support of my Mother, Brother, 

Sisters and my loving nephew Jarnal Nasar who patiently waiting for me. I am 

extremely grateful to my wife and especially to my son Naveed and daughter Mad.iha 

(Born in England) for their lovely smiles that can relieve any kind of tiredness. 

Finally, my entire deep thanks to Almighty God, Who blessed me with the 

strength, confidence and determination needed for the completion of my research 

project. 

xiii 



Declaration 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award. 

This study was financed by Higher Education Commission (HEC) of Pakistan through 

faculty development program (FOP) of the University of Malakand, Khyber 

Pukhtoonkhwa Pakistan. 

I declare that the work submitted in this thesis is the results of my own investigations 

except where reference is made to published literature and where assistance is 

acknowledged. 

Candidate 

Director of studies 

Word account of main body of tbesis: 41,191 words, tota154,868 words 

xiv 



Presentations (Oral) 

• Final PhD project presentation in symposium 'plant physiology' 09/03/20 I 0 
in School of Biomedical and Biological Sciences, University of Plymouth. 

• Presentation for ten m in in Lab based teaching course (Module ENV51 0 I) 
30/ I 0/2009. (Topic; plant cloning). 

• Presentation five min in the VC"s Research and enterprise conference, 
29/04/2009 at University of Plymouth. 

• PhD nine months progress report presentation July tO, 2008 
• PhD project proposal presentation on April29, 2008. 
• Presentation ten min in SAS teaching training, June 12, 2008. (Topic: 

Cloning) at University of Plymouth 
• Presentation ten min in GTA course Nov 22,2007. (Topic: Introduction to 

Biotechnology) at University of Plymouth. 

Courses and trainings attended 

• Laboratory based teaching/demonstration (EN V 510 I), theory and practice 
from the University of Plymouth. 2009 

• Module BI03310, (Microbial Biotechnology) School of Biological Sciences. 
(Or Martyn Gilpin). Oct 2008 

• Module BI05124 (Postgraduate Research Skills and Methods), School of 
Biological Sciences, Oct 10- Dec 14, 2007 

• General Teaching Associate Course (GT A), theory and practice, from the 
University of Plymouth education department. Nov 0 I - Dec 06, 2007 

• SAS training (student associate scheme), organized by the Faculty of 
Education, 16/06/2008-04/07/2008 

Postgraduate skills attended 

• Word 2007 proof reading and tracking changes.28/05/2009. Uni. Of 
Plymouth. 

• Postgraduate forum meeting, 03/12/2008, Portland square A415, Uni. of 
Plymouth. 

• Transfer process MPhiVPhD. 18/02/2009. Uni. of Plymouth. 
o Wining at job interviews" 04/03/2009. Uni. of Plymouth. 
• Data visualisation" 11103/2009. Uni of Plymouth. 
• Debating skills part!" 07/04/2009. Uni. of Plymouth. 
• A Doctor in Three Years: Project and time managing your PhD ,Good 

project management and supervision is crucial and not optional'! June 06, 
2008 

• Endnote Bibliographic Referencing for Beginners (May 02, 2008) 
• Preparing Effective Poster Presentations (May 7, 2008) 
• Workshop on ,Plagiarism- Your words or other people? (May 13, 2008) 
• Workshop on ,Impact Factor: Getting Published in Scientific Research" May 

16,2008 
• Rapid reading Feb 27, 2008 
• Developing Professional Writing Skills for the PhD. Jan 31, 2008 
• Take to the trees. Postgraduate skills from another planet. (Off-campus 

workshop in Kingsbridge) Jan 25, 2008 
• Managing working relationships. October 24,2007. 

XV 



• Risk management for research students. Nov 05, 2007. 
• IT skills, Office 2007. Nov 09 and Nov 16,2007 
• Getting started in Office 2007. Dec 03, 2007. 
• Introduction to Excel 2007. Dec 10,2007. 
• Research owning and using. Nov 28, 2007. 

Conferences, workshops, seminars and public lectures attended 

• A public lecture by John Craig Venter (the president of J. Craig Venter institute, 
Rockville, MD, and San Diego, CA, USA. Topic: Genomics; From reading to 
writing the code. Robbins Lecture theatre, Plymouth, England. 21/05/2009. 

• Training workshop for 3 days; South west Universities GRAD School at 
Buckland Hall Conference and Retreat centre Bwlch Brecon. Wales. 02nd-05th 
June 2009. 

• Workshop on Research and enterprise, 20/01/2009, Rolle Building 002/003, 
University of Plymouth. 

• Workshop on intellectual property rights, 27/0112009, Rolle Building 002/003, 
University of Plymouth. 

• Seminar on ,molecular laboratory" 03/03/2009. University of Plymouth. 

• International conference ,Plant abiotic stress tolerance" 8-12 February 2009, 
Presentation (Poster) of some part of PhD work. University of Vienna Austria. 

• GWR Video conference. ,Conservatives and environment" 23/02/2009. 
Simultaneous in Universities of Exeter, Bristol, Plymouth and Bath. 

• Conference on Agrivision (agriculture business) 2020. 03/04/2009. Royal 
Cornwall showground UK. 

• Vice Chancellor" s Research and Innovation Conference, University of Plymouth 
UK. April 28, 2008. 

• Workshop on molecular biology techniques, organized by Alpha Laboratories & 
Biohit at School of Biological Sciences, Plymouth University, May 21,2008. 

• Seminar on Physiology to Microarrys ,Crab population response to climate 
change (temperature stress)" Organized by Marine Science laboratory, Univ. of 
Plymouth UK, May 30, 2008. 

• Seminar on toxic seedling and escaping trees, investigation into the ontogeny of 
defence (Kasey E. Barton Royal holloway University of London). 14/11/2008, 
sherwell upper lecture theatre University of Plymouth. 

xvi 



Professional membership 
2009-todate: Society for Experimental Biology (SEB) 
20 I 0- International Phytotechnology Society (IPS) 

Research Publications 

Three papers are in progress for 20 I 0-2011 

2010 
• Hadi, F. Fuller, M. P., Gilpin, M. and Nisr, R.B. Identification and expression 

analysis ofCBF/DREBI and COR15a in dehydration stress resistant mutants of 
cauliflower (Brassica oleraceae v. botrytis), Proceeding, International 
conference organised by Society of Experimental Biology (SEB), 301

h June-3'd 
July 2010, Prague, Czech Republic, pp 323-324. 

• Hadi, F., A. Bano and Fuller M.P. (2010). The improved phytoextraction of lead 
(Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators 
(GA3 and IAA) and EDTA alone and in combinations. Chemosphere, 80, 457-
462. (Impact factor 3.253) 

• Hadi, F. and A. Bano (2010) 'The effect of diazotrophs (Rhizobium and 
Azatobactor) on growth and biomass of maize in lead (Pb) polluted soil, and 
accumulation of the lead in different parts of plant'. Pak. J. Bot. (Impact factor 
0.520) (accepted) 

2009 
• Hadi, F. and Fuller, M. P. (2009) 'Enhanced Tolerance to Abiotic Stress in 

Cauliflower by Mutagenesis', Proceeding, International Conference 'Plant 
Abiotic Stress Tolerance'. 08-11 February, Austria, Vienna, pp. 168. 

• Hadi, F. and A. Bano (2009) 'Utilization of Parthenium hysterophorus for the 
remediation of lead-contaminated soil ' Weed Biology and Management (Japan), 
9 pp 307-314. (Impact factor 0. 743). 

• Hadi, F. and Fuller, M.P. (2009) 'Effect of the cold acclimation on proline and 
protein contents in Cauliflower clones', Nutrition Society Winter Meeting, 15 
December, Reading University UK. 

• Hadi, F., A. Bano and Fuller, M.P. (2009) 'A comparative study of the 
effectiveness of exogenous plant growth regulators, EDT A, and plant growth 
promoting rhizobacteria in lead (Pb) phytoextraction and plant growth', Sixth 
International Phytotechnologies conference. 02-04 December, Hyatt Regency 
St. Louis Riverfront, 315 Chestnut Street St. Louis, MO 63102. USA. 

2008 
• Zia, M.A. Hadi, F.Akbar, H.Akbar, F. Ullah, Z and Khan, I. (2008) 

'Physiochernical and Molecular Analysis of Brassica napus seeds of different 
varities'. Asian J. Plant Sci, 7 (I). pp 85-89. 

xvii 



• Tariq, M. Ali, G. Hadi, F. Ahmed, S. Ali, N and Shah, A.A. (2008) 'Callus 
induction and in vitro Plant regeneration of rice (Oryza saliva L.) under various 
conditions'. Pak. J. Bioi. Sci, 11 (2). pp 255-259. 

2007 
• Akbar, F. Hadi, F. Ullah, Z and Zia, M.A. (2007) 'Effect of marble industry 

effluent on seed germination, post germinative growth and productivity of Zea 
mays L'. Pak .J. Bioi. Sci, 10 (22). pp 4148-4151. 

• Ali, G. Hadi, F. Ali, Z. Tariq, M. and Khan, M .A. (2007) 'Callus induction and 
invitro complete plant regeneration of different cultivars of tobacco (Nicotiana 
tabaccum L.) on media of different hormonal concentrations'. Biotechnol, 6 (4). 
pp 561-566. 

xviii 



List of Abbreviations 

2,4-D: 

ABA: 

ANOVA: 

APS: 

BLAST: 

BoCBF: 

BSA: 

CAMTA: 

CBF: 

cDNA: 

COR: 

CRT: 

DAB: 

dATP: 

dCTP: 

ddHzO: 

dGTP: 

DNA: 

dNTPs: 

DRE: 

DREB: 

DTT: 

dTTP: 

EBI: 

EC: 

EDTA: 

EMBL: 

EMS: 

ERD: 

EtBr: 

gDNA: 

HzOz: 

HCI: 

HRP: 

2,4-dichlorophenoxyacetic acid 

Abscisic Acid 

Analysis of variances 

Amonium Persulfate 

Basic Local Alignment Search Tool 

Brassica oleracea C-repeat binding factor 

Bovin Serum Albumin 

Calmodulin Binding Transcription Activator 

C-repeat binding factor 

Complementary deoxyribonucleic acid 

Cold regulated 

C-repeat 

Diaminobenzidine 

Deoxyadenosine triphosphate 

Deoxycytidine triphosphate 

Double-distilled water 

Deoxyguanosine triphosphate 

Deoxyribonucleic acid 

Deoxynucleoside Triphosphates 

Dehydration Responsive Element 

Dehydration Responsive Element Binding Factor 

Dithiothreitol 

Deoxythymidine triphosphate 

European Bioinforrnatics Institute 

Electrical Conductivity 

Ethylenediaminetetraacetic acid 

European Molecular Biology Laboratory 

Ethyl Methane Sulfonate 

Early Responsive Dehydration Gene 

Ethidium Bromide 

Genomic deoxyribonucleic acid 

Hydrogen peroxide 

Hydrogen chloride 

Horseradish Peroxidase 

xix 



IAEA: International Atomic Energy Agency 

IBA: Indole-3-butyric acid 

ICE: Inducer ofCBF Expression 

K
2
HP 0

4
: Dipotassium Hydrogen Phosphate 

kDa: Kilo Dalton 

KHl0
4

: Potassium Dihydrogen Phosphate 

KP0
4

: Potassium Phosphate 

LEA: Late Embryogenesis Abundant (LEA) proteins 

LS: Linsmair and Skoog 

LSD: Least Significant Difference 

LTRE: Low Temperature Responsive Element 

MS: Murashige and Skoog 

MSU: Michigan State University 

mtlD: Mannitol Dehydrogenase 

NazHP04: Sodium Hydrogen Phosphate 

NaCI: Sodium chloride 

NaHzP04, Sodium Dihydrogen Phosphate 

NaOH: Sodium Hydroxide 

NCBI: National Center for Biotechnology Information 

NEU: N-nitrose-N-ethylurea 

NiCiz: Nickel Chloride 

NMU: N-nitrose-N -methyl urea 

OH: Hydroxyl radicals 

PSCS: Dl-pyrroline-5-carboxylate synthase 

PAGE: Polyacrylamide Gel Electrophoresis 

PBS: Phosphate Buffer Saline 

PBST: Phosphate Buffer Saline Tween 

PCR: Polymerase Chain Reaction 

RNA: Ribonucleic acid 

ROS: Reactive Oxygen Species 

RT-PCR: Reverse Transcription-Polymerase Chain Reaction 

RWC: Relative Water Content 

SCE: Sister Chromatid Exchange 

SDS: Sodium Dodecyl Sui fate 

XX 



SNP: Single-Nucleotide Polymorphism 

TBE: Tris Borate Ethylenediaminetetraacetic acid 

TEMED: Tetramethylethylenediamine 

TILLING: Targeting Induced Local Lesions in Genomes 

UDS: Unscheduled DNA synthesis 

UV: Ultra Violet 

xxi 



Chapter 1: General Introduction and Literature Review 



Chapter 1: Genera/Introduction and Literature review 

1.1. The Cauliflower (Brassica o/eracea var.botrytis L.) plant 

Cauliflower is one of the popular vegetable crops originated m the Mediterranean 

coastal area and reached to the Southeast Asian countries (Lu, 1992; Nonnecke, 1989; 

Thompson & Kelly, 1957) . Cauliflower is one of the varieties of the highly 

polymorphic species Brassica oleracea. The other varieties are acephala (Kale), 

capita/a (Cabbage), gemmifera (Brussels sprouts), kohlrabi and broccoli (Christopher, 

1994). This species belongs to the family Brassicaceae, which is a cosmopolitan family, 

while mostly found in the northern temperate regions and it has high diversity in 

Mediterranean areas like Italy. Cauliflower is grown for its white curd, which consists 

of inflorescence and floral meristems and their interconnecting stem branch tissues (Lee 

& Graham, 2000). 

The Brassica species are associated with each other as described by the triangle of U 

(U, 1935) in Figure I. The three diploid Brassica species B. rapa, B. nigra and B. 

oleracea have hybridized in all possible combinations to produce the three 

allotetraploid (hybrid that has a chromosome set 4 times that of a haploid) species B. 

juncea, B. napus and B. carina/a. The genomes have been named as A, 8 and C 

respectively B. rapa AA, B. nigra BB and B. oleracea CC. Therefore the resulting 

amphidiploids (having a diploid set of chromosomes from each of its parents) 

cytodemes (a group of individuals differing cytologicaly from other groups, usually in 

chromosome number) become AABB, AACC and BBCC for B. juncea, B. napus and B. 

carina/a, respectively (Lars & Graham, 2008). 
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Figure 1. The origin of three amphidiploids species from three diploid Brassicas 
(Jules, 2009; U, 1935), 
AA- 2n=2x=20- Brassica rapa (syn. Brassica campestris)- Turnip, Chinese cabbage 
BB- 2n=2x=16- Brassica nigra- Black mustard 
CC - 2n=2x= 18 - Brassica o/eracea - Cabbage, kale, broccoli, Brussels sprouts, 
cauliflower 
AABB- 2n=4x=36 -Brassicajuncea- Indian mustard 
AACC- 2n=4x=38 -Brassica napus- Rapeseed, rutabaga 
BBCC - 2n=4x=34 -Brassica carinata - Ethiopian mustard 
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Cauliflower is a low-calorie vegetable. It is a rich source of vitamins C, K, and A (beta­

carotine), and folic acid, fiber, and flavonoids, which gives the cauliflower anti­

inflammatory and antioxidant proprieties, as well as it is an important source for animal 

feed (Tossaint, 1994). Christopher (1994) investigated the dietary anti-mutagenic ability 

of cauliflower and other varieties of Brassica oleraceae and reported them to be a 

group of potentially cancer preventative vegetables (Table I), particularly against the 

bowel, breast, and other female cancers. Cauliflower can also play an important role in 

protection against arteriosclerosis and offers a high degree of protection from strokes 

(Pattison et al., 2004). Cauliflower is also a carbohydrate source that is an efficient fuel 

for energy production (Robert, 200 I) as cauliflower dried waste has been reported as a 

supplementary source of ethanol production and incorporation of dried cauliflower 

waste in cane molasses at the level of 15 %increased ethanol production by nearly 36% 

compared to molasses alone (Dhillon, Bansal & Oberoi, 2007). 

Cauliflower requires constant moisture with cool temperatures and frequent use of 

fertilizers. It should have an uninterrupted growth; and any delay in growth encourages 

the plants to form a premature small head of no value. To avoid this the soil should be 

high in organic matter with optimum pH of about 6.5, and for best development of 

cauliflower a large amount of available nitrogen is required along with minor elements 

particularly boron and magnesium (John, 1996). Cauliflower curd initiation depends on 

nitrogen level, temperature, genotype, photoperiod and irradiance. Nitrogen deficiency 

can prevent curd initiation (Atherton, Hand & Williams, 1987) because the leaf area 

development is restricted, which affects growth. Temperature is considered as a major 

factor in curd initiation (Atherton, Hand & Williams, 1987; Sadik, 1967; Salter, 1960) 

and some varieties stay vegetative under high temperature (Booij, 1987; Haine, 1959). 

The optimum temperatures for curd initiation in different varities is proposed as 14 °C 
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for variety Revito (Pearson, Hadley & Wheldon, 1994), 15.5 °C for variety Plana 

(Wheeler et al., 1995) and 13 °C for cv. White Fox (Hand, 1988). Different genotypes 

make possible the cultivation of cauliflower over a range of climatic conditions 

(Nieuwhof, 1969; Wurr, Akehurst & Thomas, 1981.). Investigations show that each 

variety or genotype has different requirements for curd initiation, that's why it is 

important to select a suitable variety according to climatic conditions for commercial 

cultivation. Cauliflower shows variation in responses to photoperiod and reduction in 

total irradiance can delay curd initiation under warm conditions, and increased 

irradiance can act as partial substitute for low temperature in accelerating curd initiation 

(Hand, 1988; Sadik, 1967). 
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Table 1. Summary of the anti-mutagenic ability of the crude extracts from the Brassica 
oleraceae varieties; Ames (to assess mutagenic potential of chemical compounds using 

bacterial strains) type assays (Christopher, 1994). 

Plant extracted Mutagens Percent (%) reduction in the 
rate of muta2enesis 

Cauliflower Nitrate+ methyl urea 78 

Cauliflower Nitrate+ aminopyrine 57 

Cabbage Nitrate+ sorbic acid Moderate (not calculable) 

Cauliflower Nitrate+ sorbic acid Moderate (not calculable) 

Cabbage Tryptophan pyrolysate 97 

Broccoli Tryptophan pyrolysate-1 97 

Broccoli Tryptophan pyro1ysate- 81 

Broccoli Ethidium bromide 92 

Broccoli 2-Aminoanthracene 84 

Broccoli AF-2 0 

Broccoli Oxidized linolenic acid 82 

Cabbage Oxidized linolenic 76 

Red cabbage Oxidized linolenic acid 81 

Cauliflower Oxidized linolenic acid 76 

Cabbage Tryptophan pyrol ysate-2 35 
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1.2 Plant tissue culture 

Plant tissue culture refers to growing and multiplication of plant cells, tissues and 

organs on distinct solid or liquid media under aseptic and controlled condition as shown 

in Figure 2. Plant tissue culture technology is being widely used for large-scale plant 

multiplication. The commercial technology is primarily based on micro-propagation, in 

which rapid proliferation is achieved from minute stem cuttings, auxiliary buds, and to a 

limited extent from somatic embryos and cell clumps in suspension cultures 

(Ahloowalia et al., 2002) 

1.2.1 Explants Source 

Plant tissue cultures are initiated from small pieces (known as explants), taken from any 

part of the plant. The "explant" is removed surgically from surface sterilized part of 

plant and then placed on a nutrient medium to initiate the mother culture, which is 

multiplied repeatedly by sub-culturing (Ahloowalia et al., 2002). The following plant 

parts are widely used for micro-propagation. 

Shoot-tip or meristem-tip: Shoots develop from a small group of cells known as shoot 

apical meristem. The apical meristem maintains itself, gives rise to new tissues and 

organs, and communicates signals to the rest of the plant (Medford, 1992). It is the most 

"well-liked'' source of explants. The apical meristem of a shoot is the portion lying 

distal to the youngest leaf primordium (Cutter, 1965), and is about I 00 IJm in diameter 

and 250 IJm in length (Quak, 1977). Shoot-tip explants are cultured to obtain plants free 

from viruses. The term "meristem-tip culture" has been suggested to distinguish the 

large explants from those used in conventional propagation (Bhojwani & Razdan, 

1983). 

Nodal or auxiliary buds: Consist of a piece of stem with auxiliary bud, when only the 

auxiliary bud is taken, it is known as "auxiliary bud" culture. 
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Floral meristem and buds: Floral meristems and buds can generate complete plants. 

Other sources of explants: In some plants, leaf discs, intercalary meristems from 

nodes, small pieces of stems, immature zygotic embryos, anthers, pollen, microspores 

and nucellus have also been used as explants to initiate cultures. 

1.2.2 Cell suspension and callus cultures: A callus is a mass of unorganized cells, 

which upon transfer to suitable medium is capable of giving rise to shoot-buds and 

somatic embryos, which then form complete plants. Such calli in liquid media on 

shakers are used for initiating cell suspensions (Ahloowalia et al., 2002) 

1.2.3 Pathways of Cultured Cells and Tissues 

Cultured cells and tissues take numerous pathways to generate a complete plant. Among 

these, the pathways that lead to the production of plants in large numbers are the 

popular and favoured ones for commercial multiplication. The following terms are used 

to describe various pathways of cells and tissue in culture (Bhojwani & Razdan, 1983; 

Pierik, 1989). 

1.2.4 Regeneration and organogenesis 

In this pathway, groups of cells of the apical meristem in the shoot apex, auxiliary buds, 

root tips, and floral buds are stimulated to differentiate and grow into shoots and 

ultimately into complete plants. The explants are cultured on media having 

comparatively high auxin (2,4-D, 2,4-dichlorophenoxyacetic acid) and form an 

unorganized mass of cells, called callus. The callus can be further sub-cultured and 

multiplied. The callus shaken in a liquid medium produces a cell suspension, which can 

be sub-cultured and multiplied into more liquid cultures. The cell suspensions fonn cell 

clumps, which eventually form calli and give rise to plants through organogenesis 

(Ammirato, 1983). In some cases, explants e.g. leaf-discs and epidennal tissue can also 

generate plants by direct organogenesis and somatic embryogenesis without intervening 
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callus formation, e.g. in orchard grass. Dactylis glomerata L (Hanning & Conger, 

1986). 

1.2.5 Somatic embryogenesis 

Cells or callus cultures on solid media or in suspension cultures can form embryo-like 

structures called somatic embryos, which on conversion (germination) produce 

complete plants. The primary somatic embryos are also capable of producing more 

embryos through secondary somatic embryogenesis (Ahloowalia et al., 2002). Somatic 

embryos are produced as adventitious structures directly on explants, from callus and 

suspension cultures. Somatic embryos hold potential for large-scale clonal propagation 

of superior genotypes (Mamiya & Sakamoto, 2001; Redenbaugh, Fujii & Slade, 1993) 

and may be used for commercial plant production and multiplication of parental 

genotypes in large-scale hybrid seed production (Bajaj, 1995; Cyr, 2000). 

The synthetic auxm, 2,4-D is commonly used for embryo induction. In many 

angiosperms, e.g., carrot (Lee, Cho & Soh, 200 I) and alfalfa (McKersie & Bowley, 

1993), subculture of cells from 2,4-D containing medium to auxin-free medium is 

sufficient to induce somatic embryogenesis. The process can be enhanced with the 

application of osmotic stress, manipulation of medium nutrients, and reducing humidity. 

A major problem in large-scale production of somatic embryos is culture 

synchronization. This is achieved through selecting cells or pre-embryonic cell clusters 

of certain size, and manipulation of light and temperature (McKersie & Bowley, 1993 ), 

temporary starvation (Lee, Cho & Soh, 200 I) or by adding cell cycle synchronizing 

chemicals to the medium (Dobrev et al., 2002). 
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Cytokinins seem to play a key role in cell cycle synchronization (Dobrev et al., 2002) 

and embryo induction, proliferation and differentiation (Schuller, Kirchner-Ness & 

Reuther, 2000). Abscisic acid is crucial in all the stages of somatic development, 

maturation and hardening (Nieves et al., 200 I; Schuller, Kirchner-Ness & Reuther, 

2000). 

1.2.6 Culture Media 

The growth of plants in in-vitro conditions is mostly dependent on the culture media 

composition. The major components of most plant tissue culture media are mineral salts 

and sugar (as carbon source) and water. Other components include growth regulators, 

organic supplements and gelling agent (Gamborg, Miller & Ojima, 1968; Gamborg & 

Phillips, 1995). The amount of the various ingredients vary in the medium for different 

stages of culture and plant species, but the most popularly used are the basic MS 

(Murashige & Skoog, 1962) and LS (Linsmaier & Skoog, 1965) media. 

Usually stock solutions are prepared pnor to media; the stock solutions consist of 

groups of chemicals, e.g. macronutrients, micronutrients, vitamins and plant growth 

hormones. The inorganic chemicals and vitamins solutions can be combined into a 

single, I 0 X concentrated, stock solution. The stock solutions can then be frozen 

(Prakash, Hoque & Brinks, 2002) 

Different types of media are used for in vitro plant culture (Pierik, 1989; Street & 

Shillito, 1977; Torres, 1989) and ingredients compositions have been formulated for the 

specific plants and tissues (Conger, 1981; Nitsch & Nitsch, 1969). Some tissues respond 

much better on solid media while others on liquid media. Depending on the presence or 

absence of gelling agents, the medium can be solid, semi-solid or liquid. Agar is the 
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most commonly used gelling agent for preparation of solid and semi-solid media and 

contributes to the matrix potential, the humidity and affects the availability of water and 

dissolved substances in the culture containers (Debergh, 1983). It is usually unnecessary 

to use high purity agar for large-scale micro propagation; cheaper brands of agar have 

been successfully used for industrial scale micro propagation (Boxus, 1978). A semi­

solid medium ensures adequate contact between the plant tissue and the medium. It is 

beneficial to growth as it allows better diffusion of medium constituents, and is easily 

removed from plantlets before their transfer to in vivo conditions. For these reasons, a 

semi-solid medium is often preferred over solid medium. 

The ratio of auxins to cytokinins in the medium is important; their combination 

determines the morphogenic response for root or shoot formation. A relative high auxin 

: cytokinine ratio induces root formation while a high cytokinin : auxin ratio induces 

shoot production (Skoog & Miller, 1957). Generally, buds could be initiated from callus 

or cut edges of ex plants when a high cytokinin : auxin ratio is applied (Gresshoff, 1978; 

Helenice et al., 2003; Hiroharu et al., 200 I; Nathan & Sekhar, 2006), while in some 

species the addition of cytokinin into medium fails to induce shoot, it is suggested that 

the accumulation of endogenous auxin or other hormones shows inhibitory effect on 

organogenesis which could not be reversed by exogenous hormones applied (Khalid, 

2003; Street, 1977). For root induction usually a high concentration of auxin is favoured 

but in some cases exogenous auxin shows inhibitory effects on roots (Guichuan, Jeffery 

& Elison, 2004; Thomas & Street, 1970). Silver nitrate is another important supplement 

in the culture medium which is essential for maintaining the callus as well as improves 

regeneration (Sethi, Basu & Cuha, 1990), while in high concentration silver nitrate 

causes necroses in culture, even though as high as 15 mgL-1 silver nitrate did not show 

any negative effect on transformation of Brassica rapa (Kuvshinov et al., 1999) 
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1.2.6 Process of micro-propagation 

The process of plant micro-propagation aims to produce clones. The process is usually 

divided into the following stages (Ahloowalia et al., 2002). 

Stage 0- pre-propagation step or selection and pre-treatment of suitable plants. 

Stage I - initiation of ex plants- surface sterilization, establishment of mother ex plants. 

Stage II- subculture for multiplication/proliferation of ex plants. 

Stage III- shooting and rooting of the explants. 

Stage IV - weaning/hardening. 

The cauliflower curd a preinflorescence is an important part of the plant to use for 

micro-propagation and the use of this curd meristematic tissue for in vitro culture has 

been reported for micro-propagation (Kieffer, Fuller & Jellings, 1995a). The outermost 

layer of the curd consists of millions meristems having the capability of producing 

shoots in in-vitro condition (Kieffer, Fuller & Jellings, 1995b). The use of cauliflower 

curd for micro-propagation is now well established. One of the efficient protocols for 

clonal propagation of cauliflower has been reported by Kieffer, Fuller & Jellings 

( I995a). In this protocol the meristernatic layer of the curd is removed and partially 

homogenised to disrupt the meristem clusters and then graded through precision sieves 

to produce homogenous size-classes. For a single curd, over 400 000 explants of size­

class 0.1-0.3 mm can be produced and each explant produces one to three shoots per 

explant. The number of 'microshoots' produced from one curd within two weeks is over 

I 0 000. The rooting step takes place on a semi-solid medium in the presence of IBA, 

within 2 weeks over 80% of shoots are rooted. This protocol has the qualities of 

simplicity, large scale propagation, and high quality propagules, making it superior to 

conventional methods and a cost effective candidate for an industrial semi-automated 

system of propagule production (Kieffer, Fuller & Jellings, 1995a). 
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1.3 Mutation 

Mutation means change in the DNA sequence of a genome and mostly caused by 

radiation, transposons, viruses, and mutagenic chemicals, as well as errors that occur 

during meiosis or DNA replication (Aminetzach, Macpherson & Petrov, 2005; Bertram, 

2000; Burrus & Waldor, 2004). Induction of mutation has become an established 

method of creating variation within a crop variety. It offers the possibility of inducing 

desired attributes that either cannot be expressed in nature or have been lost during 

evolution (Brunner, 1995). 

More than I, 700 mutant cultivars of crop plants with significantly improved attributes 

such as disease and stress resistance, increased yield and improved quality, were 

released worldwide in the period 1965-95 (Brunner, 1995), and in the past seventy 

years, more than 2250 varieties have been released worldwide 60% of them released 

from 1985 onwards. Most mutant varieties were released in China (26.8%), India 

(11.5%), Russia (9.3%), the Netherlands (7.8%), USA (5.7%) and Japan (5.3%) 

(Ahloowalia, Maluszynski & Nichterlein, 2004). 

In the literature there is a tremendous amount of information available regarding plant 

abiotic stress resistance and about the different ways to improve resistance in plants, but 

to date only a limited number of techniques have been successful and traditional plant 

breeding approaches are showing very limited success (Richards, 1996). The approach 

of mutagenesis has had some success in agronomic and horticultural crop species 

(Deane, Fuller & Dix, 1995; Fuller et al., 2006; Mohan, 2010) and some success via 

genetic modification has been observed but this technology may not readily be 

operational everywhere in the world due to social-economic limitations (Mohan, 20 I 0). 
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Mutation induction contributes significantly to plant breeding (Maluszynski et al., 1995; 

Nichterlein, 2000) and constitutes a valuable strategy to create genetic variability, which 

in turn reduces the time required to breed new varieties compared with traditional 

methods (Cornide, 2001). Plant breeding for the improving tolerance against cold and 

salinity stress by classical methods of selection and crossing is a time consuming and, 

often, inefficient procedure whilst enhancing the frost and salt tolerance either by direct 

gene transfer or through DNA mutation is much quicker (Zhang et al., 2000). Also 

through these methods the cultivar might be improved for a particular trait without 

disrupting the genotype or breaking desirable gene linkages. 

The ability to induce mutations has been a major driving force in genetics (Muller, 

1930). Amongst the mutagens that are used to induce mutations, chemical mutagens 

have become especially popular. Alkylating agents, such as ethyl methane sulfonate 

(EMS), are most effective, they form adducts with nucleotides, causing them to mispair 

with their complementary bases, thus introducing base changes after replication 

(Ashburner, 1990; Haughn & Somerville, 1987). EMS mutagenesis results in high 

numbers of point mutation without or with a very low level of chromosome breaks 

which can some times cause aneuploidy, reduced fertility, and dominant lethality. 

Therefore, the chemical mutagenesis has become the method of choice for genetic 

studies; this method is popular even with the advent of sophisticated transgenic 

technologies. 

Mutation could be induced by mutagens which may be either physical or chemical, and 

both have been used in conventional plant breeding programmes as well as in 

conjunction with in-vitro selection methods. The majority of chemicals used to induce 

mutation in plant cell cultures can be placed in two groups, base analogous and alkaline 
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agents. Alkaline agents include N-nitrose-N-ethylurea (NEU), N-nitrose-N-methylurea 

(NMU), alkyl sulphate and nitrogen mustards. NEU or NMU are bio functional agents 

(Charlotte, 1976) and can induce depurination and depyrimination. Both NEU or NMU 

have been shown to induce gene mutation (deletion), transition mutation, unscheduled 

DNA synthesis (UDS), sister chromatid exchange (SCE) and they can also induce 

DNA-DNA and DNA protein crosslink (IAEA, 1977; Negrutu, 1990). Multiple 

mutations also occur more frequently in NMU-treated plants. There is great scope for. 

increasing both the frequency and spectrum of mutations in treatments with chemical 

mutagens through suitable modification of the treatment conditions (Savin et al., 2003). 

Traditional genetic screens do not readily disclose the underlying mutational process, 

because geneticists select for phenotypes, and as a result, only a small minority of 

mutations applying to target gene are examined. This is changing now with the 

availability of large amounts of DNA sequences from model organisms and the 

incentives to determine the functions of genes discovered from DNA sequence and 

reverse-genetic approaches are becoming increasingly important. Among these are 

genome-wide mutagenesis methods followed by screening within individual gene 

segments, which is made possible by using polymerase chain reaction PCR (Henikoff 

& Comai, 2003 ). 

Although PCR-based detection of insertions and deletions is straightforward, detection 

of point mutations, such as those induced by chemicals, is still challenging, because the 

PCR amplified fragment does not show any change in the size. However, detection of 

single-base changes has improved rapidly with advances in single-nucleotide 

polymorphism (SNP) detection technologies (K wok, 200 I), and this has fuelled the 

application of new technologies to reverse-genetic mutational screening. One example 

of SNP detection technology being applied to reverse genetics is TILLING (targeting 
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induced local lesions in genomes), in which chemical mutagenesis is followed by 

screening for point mutations (McCallum et al., 2000). TILLING has been streamlined 

for high output with the use of the CELl endonuclease (Colbert et al., 200 I), which 

cleaves at mismatches within hetero duplexes formed between mutant and wild-type 

strands (Oleykowski et al., 1998). This allows for cleaved fragments to be detected on 

electrophoretic gels, revealing the mutation and its approximate position in the 

fragment. 

Agrobacterium mediated transformation is mostly used for transgenic plant production 

but is also being used as an effective mutagen and as a tool for functional genomics in 

higher plants. Besides the fact that the insertion ofT -DNA (transfer DNA) element into 

a gene can lead to loss or gain of function, ingenious use of a variety of vectors have led 

to the identification of genes and regulatory elements in Arabidopsis and focus has 

shifted from structural genomics to functional genomics, specifically in plants with the 

availability of complete genome sequences of several plants. An advantage of using T­

DNA as the insertional mutagen as compared to transposons is that the T -DNA 

insertions do not transpose subsequent to insertion and are chemically and physically 

stable through multiple generations (Resmi, Anand and Ramamurthy 2005). 

1.4 Abiotic stresses 

Plants are exposed to various abiotic stresses, such as frost, drought and salinity in the 

field environment. It is estimated that such stresses can potentially reduce the yield of 

crop plants by more than 50% (Boyer, 1982; Bray et al., 2000; Shubha & Akhilesh, 

2007), and can cause extremely high economic losses. It is accepted that the human 

population of the world is increasing day by day at an alarming rate and food 

productivity is decreasing due to various abiotic stresses (Shilpi & Narendra, 2005). The 
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minimization of these losses is a major area of concern for plant and crop scientists. 

Since it is often difficult or impossible to eliminate or reduce the stresses themselves, it 

is important to develop stress tolerant or resistant crop genotypes (Shilpi & Narendra, 

2005). 

Plant abiotic stress tolerance is a complex trait that involves multiple physiological and 

biochemical mechanisms coded by numerous genes (Figure 3). However through the 

growing power of genomic and proteomic tools, progress in understanding abiotic stress 

resistance is accelerating and with a better understanding comes more effective ways to 

improve plant tolerance to abiotic stress (Ji, Dai & Hong, 2007b). 

Drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are 

major threats to crops and natural ecosystems as increased salinization of arable land is 

expected in 30% land loss within the next 25 years, and up to 50% by the year 2050 

(Wang, Vinocur & Altman, 2003). Breeding for abiotic stress tolerance in crop plants 

for food supply and in forest trees (a central component to global ecosystems) is 

therefore important and should be given high research priority. Research into the 

molecular mechanisms of stress responses like genetic modification of stress tolerance 

has shown promising results in agriculturally and ecologically important plants (Wang, 

Vinocur & Altman, 2003). Results are not always consistent in plants that over-express 

the genes regulating osmolytes, specific proteins, antioxidants, ion homeostasis, 

transcriptional factors and membrane composition (Zhang et al., 2000). Generating 

crops having multi-stress tolerance capability should be priority strategy of future 

research program (Mittler, 2006) and understanding the genetic and functional basis of 

multiple stress tolerance will be an important step toward increasing plant productivity 

(Swindell, 2006). 
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a 

Figure 3: A complex mechanism of abiotic stress response in plants 
at molecular to cellular and whole plant level (Diagram reproduced from Anil et al 
(2001): (1) Stress perception (2) stress signal is transduced through the signal 
transduction machinery, which may involve protein kinases, phosphatases, and Ca2+­
binding proteins. (3) stress signal is transduced inside the nucleus where the genes 
encoding the stress transcription factors (STF; e.g. dreb, myc, myb, cbf and hsj). The 
synthesis of transcription factors involve cytoplasmic ribosomes, which means that 
nucleus-cytoplasmic crosstalk is an important feature in this respect. ( 4) transcription 
facors re enter into nucleus and binds to stress responsive elements in promoters (5) 
Stress responsive genes (SRG) are transcribed and translated leading to stress proteins 
synthesis (6) initiate a biochemical response (7) cellular response and subsequently the 
(8) physiological and finally the whole plant response. HSP (heat shock proteins), WSP 
(Water Stress Proteins), ANP (Anaerobic Proteins), SSP (Salt stress Protein) . 
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There are many factors determine how plants respond to environmental stresses as 

shown in Figure 4. The genotype of the plant, the duration and severity of the stress, and 

synergistic effect of multiple stresses on failure to compensate for a severe stress can 

result in plant death (Bray, Julia & Weretilnyk, 2005). 
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Figure 4: Factors determine how plants respond stresses, 
modified from Bray, Julia & Weretilnyk (2005). 
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Abiotic stress tolerance molecular mechanisms are based on the activation and 

regulation of specific stress-related genes, such genes are involved in the whole series of 

stress responses, like signaling, transcriptional control, protection of membranes and 

proteins, and free-radical and toxic-compound scavenging (Wang, Vinocur & Altman, 

2003). 

Cold, drought and salinity are stressors which due to their wide range occurrence may 

cause the most fatal economic losses in agriculture. The effects of these stressors have 

been tackled in various studies ranging from the molecular to the whole plant level, all 

of these three forms of stress affect the water relations of plants at the cellular as well as 

entire plant level causing specific and unspecific reactions, and inducing adaptation 

reactions (Erwin et al., 2007). 

Cold (usually low +ve temperatures) induces the expression of C-repeat binding 

transcription factors (CRBs of which CBF is one), which activate downstream the cold 

regulated genes and several CRT -binding proteins have been identified which act as 

transcription factors (Browse & Xin, 2001; Nakashirna & Yamaguchi, 2006b). The 

expression of CRBs is regulated by the transcription factor inducer ICE I (Inducer of 

CBF expression!) which is probably negatively controlled by HOSI, a ring finger 

protein that has been identified as an E3 ubiquitin conjugating enzyme (Erwin et al., 

2007; Viswanathan, Zhu & Zhu, 2006). 

Transcriptome profiling of about 8,000 genes of Arabidopsis showed that multiple 

regulatory pathways are involved in the cold response and the expression of more than 

300 genes was affected by low temperature with increasing transcripts expression for 
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218 genes and decreasing transcripts expression for 88 genes during 7 -day treatments 

(Fowler & Thomashow, 2002a). 

1.4.1 Cold and dehydration stress response 

Calcium (Ca) plays a vital role in cold or drought stress signal transduction. Proteins, 

which sense changes in the cytoplasmic calcium concentrations are the important 

components of the signal transduction chain, although at which level of the signalling 

chain the specific responses arise is still an unanswered question (Erwin et al., 2007). It 

was found through a short term treatment experiment that 30% of the Arabidopsis 

transcriptome responded to cold, salinity and water deficiency treatment in a quite 

specific way. However only < 5% of the responses were induced by all of the 3 

stressors. Even though this rate decreased further to < 0.5% after about I day, which 

indicating a growing tendency for a specific reaction (Kreps et al., 2002b). Cross talk in 

the signalling pathways is apparent and is characterized by the well-known cross­

protections, e.g. frost hardening by drought or salt treatment. Also as well cooperative 

actions of transcription factors and the occurrence of several different cis-acting 

elements in one promoter exist as shown in Figure 5. (Erwin et al., 2007; Mahajan & 

Tuteja, 2006 ). 
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Figure 5: Various signal transduction elements involve in cold and drought response. 
ICE, transcription induction factor; DREB, bZIP, MYC and MYB, transcription 
activators and DREICRT, ABRE, MYCRE and MYBRE are responsive elements in the 
promoter(Erwin et al., 2007; Mahajan & Tuteja, 2006 ). 

The products of different genes which respond to dehydration stress can be categorised 

into two groups i.e. functional and regulatory proteins as shown in Figure 6 (Erwin et 

al., 2007). The functional genes include ones which encode metabolically inactive 

polypeptides, such as dehydrins, chaperones (including proteases), antifreeze proteins or 

ice-nucleation active proteins genes for metabolic pathways leading to the synthesis of 

low molecular osmolytes, radical scavengers or compounds with both functions which 

increase stress tolerance, whilst the other genes encode regulatory proteins such as 

transcription factors, protein kinases, phospholipase Cor 14-3-3 proteins (Erwin et al., 

2007). 
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Most of the cold up-regulated genes are expressed at a slightly higher level after the 

cold pulse, but the dehydrins encoding genes are strongly induced by cold (Browse & 

Xin, 200 I). The dehydrins have also been found to act as chaperones that stabilize 

proteins, membrane structure and vesicles in the abiotic stressed plants (AIIagulova et 

al., 2003a; Koag et al., 2003). 

Cellular dehydration by drought or frost stress can induce the expresswn of genes 

encoding dehydrins, which also accumulate in seeds during maturation where they are 

known as Late Embryogenesis Abundant (LEA) proteins. Dehydrins are a group of 

proteins having wide range of molecular masses from 9 to 200 kDa, they are 

thermostable and contain a high proportion of glycine and lysine residues (Allagulova et 

al., 2003a; Erwin et al., 2007). Dehydrins have been found in vascular plants, mosses, 

ferns, lichens and algae, and their molecular functions are not well understood as they 

do not catalyze any metabolic reaction (Erwin et al., 2007) 
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Figure 6: Dehydration Stress tolerance factors produced in plant 
Source (Erwin et al., 2007) 
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Producing drought and frost tolerant crop plants has been undertaken over many years 

using conventional breeding and targeted gene transformation. To date however the 

progress has been very small due to the fact that the tolerance or hardiness mechanism 

is multi-factorial and multi-genic (Bohnert, Nelson & Jensen, 1995; Mittler, 2006; 

Shinozaki & Yamaguchi-Shinozaki, 2000). Sometime by improving resistance against 

one stress through gene transfer can also alleviate other stresses and therefore generate 

plants with a higher stress tolerance than those which have been genetically tailored 

against a specific stress (Levitt, 1980 ). 

A good example for a kind of a master switch is transcriptional activator CBF (C-repeat 

binding factor), which binds to the C-repeat/dehydration responsive element (ORE with 

the core sequence CCGAC) of the promoter of cold and drought-regulated genes (Jaglo­

Ottosen et al., 1998b; Kasuga et al., 1999; Stockinger, Gilmour & Thomashow, 1997c). 

CBF over-expression activates multiple genes (CBF regulon) whose products directly or 

indirectly enhance multi stress tolerance. 

The molecular mechanism of abiotic stress resistance varies depending on the stress 

type and intensity (Valerie, Seifollah & Mylene, 2009 ). Some times molecular 

mechanisms are initiated in response to different stresses in plants and share similar 

steps in the pathway e.g. drought, salt and freezing stresses disturb the osmotic 

homeostasis of the plant cell. Moreover in plants there are numerous ways to respond to 

abiotic stress depending on the growth stage and plant genotype. Given this complexity 

it is difficult to meet the criteria to declare a genotype as 'resistant' to abiotic stress. 
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1.4.2 Drought stress 

Drought is one of the major limitations to decline in crop productivity. To enhance the 

plant tolerance towards drought stress, a basic understanding of physiological, 

biochemical and gene regulatory networks is essential. Understanding of stress signal 

perception, transduction, and molecular regulatory network is being improved through 

different genomics tools (Babu & Henry, 2006). These tools expose a number of stress 

inducible genes and various transcription factors that regulate the drought stress­

inducible systems. Translational genomics of drought responsive genes have provided 

encouraging results using model plants, whilst transgenic crop plants in the field testing 

for better performance and productivity is still minimal. In addition, the better 

understanding of the specific roles of various metabolites which are involved in crop 

stress tolerance mechanism can give rise to a strategy for the metabolic engineering of 

crop tolerance of drought (Babu & Henry, 2006). 

Through transcriptomics and proteomics studies, the activation and regulation of a 

number of stress inducible genes have been identified, which are usually classified into 

two major categories on the bases of their involvement in stress tolerance mechanisms. 

One group is involved in signaling cascades and in transcriptional control, whereas the 

other group participate in membrane protection, as osmo-protectants, as antioxidants 

and as reactive oxygen species (ROS) scavengers. Manipulation of genes from both of 

these groups has been the major target of attempts to produce plants with enhanced 

stress tolerance (Babu & Henry, 2006). 

Modification of plants for enhanced drought tolerance is mostly based on the 

manipulation of either signalling or transcription factors or genes that directly protect 

plant cells against water deficit, but a full understanding of the molecular and 
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biochemical mechanisms for drought stress perception, transduction and tolerance is 

still a major challenge in plant biology (Babu & Henry, 2006). 

The ability of a plant to avoid or repair the membrane damage during dehydration or 

rehydration processes is essential for the maintenance of membrane integrity, especially 

for those that embed functional proteins, such as water transporters, which play 

important role in the regulation of plant water status as well as transport of other 

metabolites. Some of the mechanisms leading to adaptation to dehydration or 

rehydration, has been possible by the identification of key genes and emphasis is given 

to the promising technologies of genetic engineering in crops, using regulatory or 

functional genes, such as the transfer and expression of transcription factors in modified 

plants to alter metabolism and increase plant tolerance to drought (Chaves & Oliveira, 

2004 ). 

1.4.3 Cell signaling and gene regulation under stresses 

Gene expression profiling using micro-arrays or cDNA technology has developed the 

basic understanding of gene regulatory networks in plants under various stresses (Bray, 

2004; Denby & Gehring, 2005; Shinozaki, Yamaguchi & Seki, 2003). There are a 

number of genes that are early responsive dehydration (erd) genes and responsive to 

dehydration (rd) genes in the model plant Arabidopsis (Shinozaki & Yamaguchi, 1996 

). At least four independent regulatory systems for gene expression in response to 

dehydration stress have been identified, two are abscisic acid (ABA) independent and 

two are ABA dependent pathways (Shinozaki & Yamaguchi-Shinozaki, 2000). 

In the ABA-independent regulatory systems, a cis-acting dehydration responsive 

element/C-repeat (DREICRT), is involved, which was confirmed by over-expression of 
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the DREICRT-binding protein DREBIICBF in transgenic Arabidopsis plants where 

changes in the expression of more than 40 stress-inducible genes were identified, which 

led to the increased freezing, drought and salt tolerance (Maruyama et al., 2004; Seki et 

al., 2001). Arabidopsis genes CBF3 and ABF3 that function in ABA-independent and 

ABA dependent stress-response pathways, respectively were tested in transgenic rice 

(Oh et al., 2005). The over-expression of these genes improved the drought and high 

salinity tolerance while slightly improving low temperature tolerance (Babu & Henry, 

2006; Oh et al., 2005). 

1.4.4 Engineering for osmo-protectant accumulation 

Osmo-protectants are the small neutral molecules m the cell which at molar 

concentration are not toxic to the cell, and they play an important role to stabilize 

proteins and cell membranes against the denaturing effect of stress conditions on 

cellular functions (Yancey, 1994). Generally, the osmolytes are contained in the 

cytoplasm of the plant cells and their active accumulation decreases the osmotic 

potential of the cells and maintains the cell turgidity (Pathan, Brigitte & Subudhi., 

2004). Osmoprotectant accumulation, however, does not always lead to osmotic 

adjustment in cells in response to stress, and they also play a role in other ways, such as 

the scavenging of ROS, and chaperone-like activities that protect protein structure and 

metabolic detoxification (Serraj & Sinclair, 2002). 

Some important crops lack the capability to synthesize the particular osmoprotectants 

which are accumulated naturally in stress-tolerant plants. Therefore, a potential strategy 

for improving the stress tolerance of crop plants could be enhanced by engineering the 

introduction of osmoprotectant synthesis pathways in the abiotic stress susceptible 

plants (Rathinasabapathi, 2000). Genetic engineering for the production of osmolytes 
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such as mannitol, fructans, trehalose and proline etc might mcrease resistance to 

dehydration, but the complete mechanisms are still not completely identified through 

which these osmolytes provide protection to the cell under dehydration stress 

(Ramanjulu & Bartels, 2002). 

1.4.5 Mannitol 

Mannitol is an important photosynthetic product in higher plants and some algae, which 

enhances tolerance to dehydration stress mainly through osmotic adjustment (Loescher 

et al., 1992). The introduction of a mannitol dehydrogenase (mtlD) gene into wheat 

showed a substantial increase in dehydration stress tolerance (Abebe et al., 2003). 

However, there was no significant difference in osmotic adjustment between the mtiD 

transgenic wheat and control plants, at either the callus or whole-plant level and it is 

suggested that protective mechanisms other than osmotic adjustment are likely to be 

involved in the scavenging of hydroxyl radicals (OH) or the stabilization of 

macromolecules. Another example is the transgenic tobacco, where the mannitol 

protected thioredoxin, ferredoxin, and glutathione and the thiol-regulated enzyme 

phosphor ribulo kinase from the effects of OH (Shen, Jensen & Bohnert, 1997). 

1.4.6 Raffinose, galactionol, fructan and trehalose 

Dehydration stress induce the synthesis of metabolically important carbohydrates in 

plants to facilitate adaptation of plants under stress conditions (Pattanagul & Madore, 

1999) such as raffinose-family oligosaccharides, like raffinose, stachyose and 

galactinol, play vital roles in the dehydration tolerance in plants. Seven galactinol 

synthase (GoiS)-related genes have been identified in Arabidopsis but their roles in 

accumulation of galactinol and raffinose in plants under dehydration stress is still not 

clearly known (Taji et al., 2002). 
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Over-expression of the AtGolSI and AtGolS2 genes in Arabidopsis showed enhanced 

tolerance to drought stress in relation to the galactinol and raffinose accumulation in 

transgenic plants. The endogenous production of these sugar compounds provided 

membrane protection and a reduced rate of transpiration, which resulted in dehydration 

tolerance, thus, galactinol and raffinose act not as osmo-protectants but rather by 

osmotic adjustment to provide an adaptation to water stress conditions (Taji et al., 

2002). 

Fructans are poly-fiuctose molecules, located in the vacuoles and its metabolism plays a 

significant role in drought- and cold-stress tolerance in plants (Vereyken et al., 2003). 

These compounds are soluble, and play an important role in osmotic adjustment. 

Transgenic sugar beet and tobacco plants that were engineered with the bacterial fiuctan 

gene showed increased tolerance to drought stress (Pilonsmits et al., 1995; Pilonsmits et 

al., 1999). 

Trehalose (a-D-glucopyranosyl-1, 1-a-D-glucopyranoside) is a disaccharide present in 

many plants that functions as a stress protectant, stabilizing proteins and membranes 

and protecting them from denaturation (Goddijn & Van, 1999). Transgenic plants that 

expressed the trehalose biosynthesis genes resulted in the accumulation of trehalose and 

an elevated level of drought-stress tolerance. Metabolic engineering for the 

accumulation of trehalose in plants has led phenotypic abnormalities which were 

noticed in some cases (Avonce et al., 2004; Penna, 2003). 
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1.4.7 Proline 

Proline is thought to play a role as an osmo-regulatory solute in drought and salt stresses 

and this amino acid could be part of a general adaptation to several environmental 

stresses like low temperature, nutrient deficiency, exposure to heavy metals and high 

acidity (Ashton & Desh, 1993). Plants accumulate proline on exposure to cold 

acclimation (Wanner & Junttila, 1999a) and the proline accumulation under stress was 

reported for the first time in plant tissues of rye grass (Kemble & MacPherson, 1954). 

The dehydration stress damage in plants can be very much reduced with the 

accumulation of proline. Its accumulation decreases osmotic potentia I in the cytosol and 

facilitate water uptake along with other functions like protecting proteins from 

misfolding and overcoming the toxic effect of ROS (Xiong & Zhu, 2002). The 

biosynthetic pathway of proline in plants has been well characterized as shown in 

Figure 7 (Delauney & Verma, 1993; Nanjo et al., 1999) and its involvement in the 

response to dehydration stress has been demonstrated in transgenic tobacco when 

proline biosynthesis enzymes genes were over-expressed in transgenic plants (Kavi 

Kishor et al., 1995; Roosens et al., 2002). And in contrast its suppression in transgenic 

plants increased sensitivity to water deficit (De, Spreeth & Cress, 2000). Other 

examples are the transgenic petunia and soybean plants that over-expressed the P5CS 

gene from Arabidopsis and rice respectively and showed drought tolerance over wild 

type plants (Simon et al., 2005; Yamada et al., 2005). 
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Figure 7: Proline biosyntheses pathways in plants. 
The proline is synthesed in plants via P5C and not P2C. P5CS=pyrroline-5-carboxylate 
synthetase, P5CR= pyrroline-5-carboxylate reductase. (Delauney & Verma, 1993) 
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1.4.8 Functions of drought-inducible genes 

The products of drought stress-inducible genes are classified into two groups (Figure 8). 

The first group includes proteins that probably function in stress tolerance and known as 

functional proteins, while the other group include regulatory protein that are involved 

in further regulation of signal transduction and gene expression that function in stress 

response (Shinozaki & Yamaguchi, 2007) 
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Figure 8: Drought stress-inducible genes products. 
Source (Shinozaki & Yamaguchi, 2007) 

32 

HB ate.) 

Protein klnases, 
Phoaphltasas, 

1--- -. 
Phospholipid 
metabolism 

ABA biosynthesis 



Chapter 1: Genera/Introduction and Literature review 

1.5 Transcriptional factors and abiotic stresses 

Transcriptional regulation is essential for plant adaptation to abiotic stresses (Ji, Dai & 

Hong, 2007a). Many plants can tolerate dehydration stresses by activating transcription 

of genes that cause biochemical and physiological changes (Steponkus, Uemura & 

Webb, 1993; Thornashow, 1999). ABRE and DRE/CRT function in ABA dependent 

and ABA-independent gene expression, respectively, in response to dehydration stress 

as sown in Figure 9 (Shinozaki & Yamaguchi, 2007). 

Transcription factors that belong to the ERF/ AP2 family which bind to DRE/CRT 

elements have been isolated and named as CBF/DREBI and DREB2 (Yamaguchi & 

Shinozaki, 2005) and their conserved DNA-binding motif is NGCCGAC. The 

CBF/DREB I genes are induced by cold stress and their products activate the expression 

of stress responsive genes (Jaglo-Ottosen et al., 1998b; Kasuga et al., 1999; Liu et al., 

1998b). 

Over-expression ofCBF/DREBI in transgenic plants has increased tolerance to freezing 

stress, suggesting that the CBF/DREB I proteins function in the development of cold­

stress tolerance without modification (Liu et al., 1998b). A number of CBF/DREBI 

target genes have been identified in plants using cDNA and Gene Chip microarrays 

(Fowler & Thomashow, 2002a; Maruyama et al., 2004; Seki et al., 200 I; Vogel et al., 

2005b). 

The DREB2 genes are induced by dehydration stress and activate expression of other 

genes that are involved in drought and salt stress tolerance (Liu et al., 1998b; Shinozaki 

& Yamaguchi, 2007). Such an active form of DREB2 was shown to activate target 

stress-inducible genes and found improved drought tolerance in transgenic Arabidopsis 

(Sakuma et al., 2006). 
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Figure 9: Transcriptional regulatory networks of abiotic stress signals and gene 
expression. 
Six different signal transduction pathways exist in drought, high salinity, and cold stress 
responses: three are ABA dependent and three are ABA independent. In the ABA 
dependent pathway, ABRE functions as ABA-responsive element. MYB2 and MYC2 
function in ABA-inducible gene expression. In one of the ABA-independent pathways, 
ORE is mainly involved in the regulation of genes not only by drought and salt but also 
by cold stress. DREB 1/CBFs are involved in cold-responsive gene expression. DREB2s 
are important transcription factors in drought and high salinity stress-responsive gene 
expression. Another ABA-independent pathway is controlled by drought and salt, but 
not by cold. The NAC and HD-ZIP transcription factors are involved in ERDI gene 
expression. Source (Shinozaki & Yamaguchi, 2007) 
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1.5.1 CBF/DREB (C-repeat binding/dehydration responsive element binding 
factor) 

The name 'CBF' originates from the observation that AtCBF is a C-repeat (CRT) 

binding factor, a binding that results in the activation of genes with a CRT element in 

their promoter (Stockinger, Gilmour & Thomashow, 1997c; Thomashow, 1999). The 

DRE/CRT was identified as a cis-acting element regulating gene expression in response 

to dehydration (salt, drought, and cold stresses) in Arabidopsis (Yamaguchi & 

Shinozaki, 1994). 

In plants, it is possible for a single transcription factor to control the expression of many 

target genes through the specific binding of the transcription factor to cis-acting element 

in the promoters of their respective target genes. This type of a transcription unit is 

called a "regulon." (Kazuo & Kazuko, 2006). A regulon can also be defined as a set of 

nonadjacent structural genes that are under the control of a common regulatory gene, the 

different structural genes of a regulon are located at different sites on a chromosome, or 

are scattered over several chromosomes as opposed to an operon (Stenish, 1975). 

Analysis of the expression mechanisms of osmotic stress- and cold stress-responsive 

genes revealed apparent presence of multiple regulons in Arabidopsis like (DREBI)/C-

repeat (CRT)-binding factor (CBF) and DREB2 regulon involved in stress-responsive 

gene expression (Kazuo & Kazuko, 2006) . 

Progress has been made towards understanding the role of CBFs/DREBs as described 

by various scientists that many plants can tolerate freezing and drought stresses by 

activating transcription of genes that cause biochemical and physiological changes such 

as changes in the composition of lipid membranes, increases in soluble protein content, 

in levels of molecules that can serve as protectants, such as sugars (Tabaei-Aghdaei, 
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Pearce & Harrison, 2003) and proline (Steponkus, Uemura & Webb, 1993; Thomashow, 

1999). Two similar regulatory sequences, called C-repeat (CRT; TGGCCGAC) and 

dehydration-responsive element (DRE; TACCGACAT) were found in the promoters of 

such genes (Gilmour et al., 1998b; Liu et al., 1998a; Stockinger, Gilmour & 

Thomashow, 1997c). 

Various investigators have demonstrated through gene fusion studies that the promoters 

of Arabidopsis COR15a (Baker, Wilhelm & Thomashow, 1994a), COR6.6 (Wang et al., 

1995), and COR78 (Horvath, MacLamey & Thomashow, 1993; Yamaguchi & 

Shinozaki, 1993) genes are induced in response to low temperature. The cold regulatory 

element that appears to be primarily responsible for this regulation was identified by 

Yamaguchi and Shinozaki (1994) in RD29A (COR78) promoter. It is a 9-bp element, 

TACCGACAT, referred to as the DRE (dehydration responsive element). The DRE 

which has a 5-bp core sequence of CCGAC designed the CRT (C-repeat) which 

stimulates gene expression in response to low temperature, drought, and high salinity 

(Baker, Wilhelm & Thomashow, 1994a). The element is also referred to as the L TRE 

(low temperature regulatory element (Jiang, Iu & Singh, 1996; Nordin, Vhala & Palva, 

1993). 

Stockinger et al., (1997c) isolated the first cDNA for a protein that binds the CRT/DRE 

sequence. The designated protein CBFI (CRT/DRE binding factor 1), has a mass of24 

kDa, a bipartite sequence, an acidic region that potentially serves as an activation 

domain, in addition it has an AP2 domain, a 60 amino acid motif that has been found in 

a large number of plant proteins including Arabidopsis APET ALA2 (Jofuku et al., 

1994b), AINTEGUMENT A (Klucher et al., 1996b), and TINY (Wilson et al., 1996a). 

Oham & Shinshi (1995) have demonstrated that the AP2 domain includes a DNA-
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binding region. Such domain is present in over 140 proteins encoded in the Arabidopsis 

genome. These proteins are classified into five subfamilies based on the amino acid 

sequences of the AP2 domains (Sakuma et al., 2002b). A recent domain-swap study 

demonstrated that the N -terminal 115 amino acids are sufficient to both target CBF I to 

COR gene promoters and enable binding to CRT/DRE elements, while the C-terminal 

98 amino acids are sufficient for transcriptional activation (Wang et al., 2005). 

Stockinger et al., ( 1997c) have reported that the CBF protein binds to the CRT/DRE 

sequence and activates expression of reporter genes in yeast carrying the CRT/DRE as 

an upstream regulatory sequence, which leads to confirm that CBFI is a transcriptional 

activator that can activate CRT/DRE containing genes and thus was a probable regulator 

of COR gene expression in Arabidopsis. Jaglo et al., (1998b) have demonstrated that 

constitutive over expression of CBFI in transgenic Arabidopsis plants resulted in 

expression of CRT/DRE controlled COR genes without a low temperature stimulus. 

Thus CBFI appears to be an important regulator of the cold acclimation response, 

controlling the level of COR gene expression which in turn promotes freezing tolerance. 

Gilmour et al., (1998b) and Shinwari et al., (1998) have realized that CBFI is a member 

of a small gene family encoding three closely relate transcriptional activators. The three 

genes referred to as either CBF1, CBF2 and CBF3 (Gilmour et al., 1998b) or DREB1 B, 

DREB1C and DREB1A respectively (Liu et al., 1998a; Shinwari et al., 1998) are 

physically linked in direct repeat on chromosome 4 near molecular markers PG 1 I and 

m600 (-71cM) (Liu et al., 1998a; Shinwari et al., 1998), and they are unlinked to their 

target CRT/DRE controlled genes, COR6.6, COR15a, COR47 and COR78 which are 

located on chromosomes 5,2,1 and 5 respectively (Gilmour et al., 1998b). 
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CBF2 and CBF3 proteins like CBFI can activate expression of genes containing 

CRT/DRE in their promoter (Gilmour et al., 1998b), this was realised by a study on 

reporter genes in yeast that contain the CRT/DRE as an upstream activator sequence, 

these results indicate that these two family members are also transcriptional activators. 

Liu et al., (1998a) have shown that over expression of DREB I NCBF3 in transgenic 

Arabidopsis plants enhanced both the freezing and drought tolerance in transgenic 

plants. 

Various investigators have explored that transcripts for CBFI, CBF2 and CBF3 can 

accumulate to detectable levels within 15 min of exposing plants to low temperature 

(Gilmour et al., 1998b; Jaglo-Ottosen et al., 1998b; Liu et al., 1998a; Medina et al., 

1999) demonstrating extreme sensitivity to an environmental stimulus. 

There are many published reports addressing that orthologs of Arabidopsis CBFIDREBI 

genes have been found in every higher plant that has sofar been examined (Benedict et 

al., 2006; Jaglo et al., 200 I; Kayal et al., 2006; Nakashima & Yamaguchi, 2006a; 

Owens et al., 2002; Skinner et al., 2005). Recently a fourth CBF gene (CBF4) from 

grape ( Vitis riparia) has been identified. The expression of the CBF4 gene was low at 

ambient temperature, but enhanced upon exposure to low temperature (4 °C} and this 

expression was maintained for several days in both young and mature tissue, in contrast 

to the previously described Vitis CBFI, CBF2 and CBF3 (Huogen et al., 2008). 

Many researchers have demonstrated that the CBF pathway alone appears sufficient to 

increase abiotic stress tolerance since constitutive expression of CBF genes in 

transgenic Arabidopsis plants induces expression from CRT -containing genes and 

results in an increase in freezing and drought tolerance without prior stimulus (Gilmour 
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et al., 2000; Haake et al., 2002; Jaglo-Ottosen et al., 1998b; Kasuga et al., 1999). 

However, the presence of the CBF pathway is apparently not complete in all plants, 

either because CBF members are not activated in time or for a sufficiently long period, 

or they are not active, or the CBF regulon is smaller. For example, over-expression of 

Arabidopsis AtCBF3 or the tomato LeCBFI, while increasing stress tolerance in 

transgenic Arabidopsis, did not have the same effect in transgenic tomato (Zhang et al., 

2004). 

Lirning et al., (2002) conducted a reporter gene-aided genetic screen in Arabidopsis. 

They reported that seven allelic mutations in the FIERY2 (FRY2) locus resulted in 

significant increases in the expression of stress-responsive genes with the DRFJCRT 

(drought-responsive/C-repeat) cis element but non-DREICRT type stress-responsive 

genes were less affected. These results indicate that the presence of DRFJCRT sequence 

in regulatory sequences of target genes is essential for the expression of stress 

responsive genes. 

Many researchers have noticed side effects of the over expressiOn of DREB I A, 

DREBIB, or DREBIC in transgenic Arabidopsis in the form of dwarfism (Gilmour, 

Fowler & Thomashow, 2004; Gilmour et al., 2000; Kasuga et al., 1999; Liu et al., 

1998a). Similarly, the development of dwarf phenotypes was also found in transgenic 

tomato over expressing Arabidopsis DREBlB, and was prevented by exogenous 

application of gibberellins (Hsieh et al., 2002a; Hsieh et al., 2002b). This side effect 

was reduced by fmdings of Kasuga et a/.,(2004) they reported improved drought and 

low-temperature stress tolerance in tobacco with minimized negative effects on growth 

by constitutive over expression of transgene Arabidopsis DREB I A, via the stress­

inducible RD29A promoter. 
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The first CRT/DRE binding factor was discovered by using a reporter gene in yeast that 

carried the CRT/DRE element and CBFI (CRT/DRE binding factor 1), and was initially 

shown to activate expression of the reporter gene (Stockinger, Gilmour & Thomashow, 

1997c) and indicated that the protein, which has an AP2/EREBP DNA binding motif 

(Riechmann & Meyerowitz, 1998) is a transcriptional activator. Jaglo et a! ( 1998b) 

reported that over-expression ofCBFI in Arabidopsis activates expression of the entire 

battery of known CRT/DRE regulated COR genes and to enhance whole plant freezing 

survival without a low temperature stimulus. All of the three CBF genes of Arabidopsis 

are cold-induced and CBF transcript levels increases within 15 min of transferring 

plants to low temperature which followed at approximately 2 h by the transcript 

accumulation of CRT/DRE-regulated COR genes (Gilmour et al., 1998b; Shinwari et 

al., 1998). The mechanism whereby the CBF genes are activated by low temperature is 

not known but does not appear to involve auioregulation (Gilmour et al., 1998b). 

Jonathan et al (2005) indicated the existence of additional cold response pathways 

which may have important roles in plant life at low temperature. They studied CBF 

proteins and other transcription factors with roles in cold acclimation, they used the 

Affymetrix GeneChip containing probe sets for approximately 24000 Arabidopsis genes 

to define a core set of cold-responsive genes and to determine which genes were targets 

of CBF2 and six other transcription factors that appeared to be co-ordinately regulated 

with CBF2, for this investigation. A total of 514 genes were placed in the core set of 

cold-responsive genes, 302 of which were upregulated and 212 downregulated. Through 

hierarchical clustering and bioinformatic analysis, they found 84 % genes induced by 

CBF2 and 8 % were regulated by both CBF2 and ZAT 12. They concluded that the large 

majority (92%) of the most highly induced genes belong to the CBF and ZAT12 

regulons. 
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In Arabidopsis cold acclimation involves action of the CBF pathway (Thomashow, 

2001). This pathway comprises the CBFI, CBF2, and CBF3 genes (Gilmour et al., 

1998b; Jaglo et al., 200 I; Medina et al., 1999), also known as D REB 1 b, D REB 1 c, and 

DREB 1 a, respectively (Liu et al., 1998a), which encode transcriptional activators that 

bind to the C-repeat (CRT)/dehydration response element (ORE) regulatory element 

present in the promoters of COR and other cold responsive genes (Baker, Wilhelm & 

Thomashow, 1994a; Gilmour et al., 1998b; Stockinger, Gilmour & Thomashow, 1997c; 

Yamaguchi & Shinozaki, 1994) . 

Constitutive expression of the CBF genes can increase the constitutive expression of the 

CBF regulon, which enhances the freezing tolerance without a low-temperature 

stimulus (Gilmour, Fowler & Thomashow, 2004; Gilmour et al., 2000; Jaglo-Ottosen et 

al., 1998b; Liu et al., 1998a). The freezing tolerance was conferred by the CBF regulon 

involves the production of cryoprotective polypeptides such as COR! Sa (Artus et al., 

1996a; Steponkus et al., 1998a) and the accumulation of compatible solutes such as 

sucrose, raffinose, and proline (Gilmour, Fowler & Thomashow, 2004; Gilmour et al., 

2000; Nanjo et al., 1999). 

Fowler and Thomashow (2002b) investigated and found the expression of about 8000 

Arabidopsis genes in response to low temperature, their results indicated that extensive 

changes occur in the transcriptome during cold acclimation. However, only about 12 % 

of these genes were assigned to the CBF regulon and at least 28% of the cold­

responsive genes were not affected by the expression of CBF transcription factors. It 

was concluded that cold acclimation is associated with the activation of multiple low 

temperature regulatory pathways. 
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1.5.2 AP2- EREBPs 

AP2 (APET ALA2) and EREBPs (ethylene-responsive element binding proteins) are the 

members of a family of transcription factors in plants and their unique characteristic is 

that they have the AP2 ON A-binding domain. They play a variety of roles throughout 

the life cycle of the plant, from being key regulators of several developmental 

processes, like floral organ identity determination or control of leaf epidermal cell 

identity, to forming part of the mechanisms used by plants to respond to various types 

of biotic and abiotic environmental stresses (Riechmann & Meverowitz, 1998). 

The AP2 domain was first identified as a DNA binding domain conserved in a family of 

tobacco ethylene responsive element binding proteins (EREBPs) (Ohme-Takagi & 

Shinshi, 1995), and later found, conserved in Arabidopsis APET ALA2 (AP2) a gene 

which is involved in flower development (Jofuku et al., 1994a). 

The number of different proteins containing an AP2 like domain in plant species 

appears to be strikingly large and the number of genetically and biochemically 

characterized AP2 like domain containing protein is increasing. These include 

Arabidopsis AINTEGUMENT A (ANT) a gene that regulates flower development and is 

vital for ovule formation (EIIiott et al., 1996; K.lucher et al., 1996a), TINY, a gene that 

suppresses cell proliferation during both vegetative and floral organogenesis (Wilson et 

al., 1996b) and CBF (Stockinger, Gilmour & Thomashow, 1997a). The AP2 domain is 

- 60 amino acid residue domain found in transcription factor proteins which can bind to 

DNA. 

The APET ALA2 (AP2) domain also known as the AP2/ethylene-responsive element­

binding factor (ERF) domain or ERF/ AP2 domain, which defines a large gene fumily of 
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DNA-binding proteins called AP2/ERF. AP2/ERF genes are divided into different 

classes on the bases of the number of AP2 domains present. One class encodes a 

protein containing two AP2 domains (Jofuku et al., 1994a) like AINTEGUMENT A 

(ANT) (Elliott et al., 1996; K.lucher et al., 1996a) and Glossyl5 (GLI5) (Moose & 

Sisco, 1996 ). The second class encodes a protein with only one AP2 domain (Ohme­

Takagi & Shinshi, 1995) like TINY (Wilson et al., 1996b), AtEBP (Buttner & Singh, 

1997 ), and ABI4 (Finkelstein et al., 1998). A third class of AP2/ERF genes, RA VI and 

RA V2 (Kagaya, Ohrniya & Hattori, 1999) encode proteins that have two different 

ON A-binding domains, AP2 and B3 (Giraudat et al., 1992). 

The Arabidopsis AP2 is a well studied gene among the AP2/ ERF family. There are two 

AP2 domains, and each domain contains 68 amino acids with an 18 amino acids core 

region that forms an amphipathic a-helix (Alien et al., 1998; Jofuku et al., 1994a). These 

domains are essential for AP2 function (Jofuku et al., 1994a). In addition to AP2, other 

genes encoding the AP2 domain have been well studied in Arabidopsis. These include 

ANT (AP2-Iike), a gene that regulates floral organ growth (Elliott et al., 1996; Klucher 

eta/., 1996a) and CBFI (ERF-like). 

Following the complete sequencmg of the Arabidopsis genome, Riechmann et al., 

(2000) searched for AP2/ERF in the Arabidopsis genome and found 144 AP2/ERF 

genes. Sakuma et al., (2002a) classified AP2/ERF genes of Arabidopsis in five classes 

based on the similarities in their DNA-binding domains: AP2 subfamily (14 genes), 

RA V subfamily (6 genes), DREB/CBF subfamily (55 genes), ERF subfamily (65 

genes), and others (the fifth group; 4 genes). 
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1.6 Cold acclimation and frost stress tolerance in plants 

In many plants, a period of exposure to low non freezing temperatures results in an 

increased level of freezing tolerance, the phenomenon is known as cold acclimation 

(Levitt, 1980; Sakai & Larcher, 1987; Smallwood & Bowles, 2002; Thomashow, 1999). 

Different tissues within an organ respond to cold in different way and express different 

genes, indicating that the whole plant could display a combination of requirements for 

cold acclimation not displayed by a single tissue or a cell culture (Pearce et al., 1998). 

Extensive effort has been made to understand the biochemical and molecular basis of 

cold acclimation response, and a variety of changes have been exposed that occur 

during cold acclimation, including alterations in lipid, protein, and carbohydrate 

composition (Guy, 1990; Steponkus & Lynch, 1989; Thornashow, 1990). While 

sensing the cold, an influx of calcium into the cytosol is the starting point of signa ling 

pathways (Monroy & Dhindsa, 1995), followed by the regulation of downstream genes 

as follows: activation of transducers, expression of inducer of CBF (C-repeat binding 

factor) expression (ICE), induction of CBF genes, and finally expression of downstream 

COR (cold-regulated) genes (Chinnusamy, Zhu & Zhu, 2006). Even though the whole 

molecular mechanism of cold acclimation is still not well understood, a specific profile 

of gene expression has been observed during this process (Chunzhen et al., 2009). 

Once it was recognized that changes in gene expressiOn take place through cold 

acclimation this opened a floodgate of effort by investigators to identify and 

characterize cold-responsive genes (Guy, Niemi & Brambl, 1985; Pearce et al., 1998; 

Thomashow, 1999) and through investigations on cold-regulated gene expression in 

Arabidopsis, a family of transcriptional activators, the CBF/DREB I was discovered, 

that have a key role in cold acclimation (Thomashow, 200 I). Some cold-responsive 

genes continue a high expression level until cold temperatures are removed, while 

44 



Chapter 1: Genera/Introduction and Literature review 

others are only expressed transiently (Tang et al., 2005; Xiong & Fei, 2006). These 

responses are activated soon after sensing cold (Thomashow, 1999). 

Freezing injury in plants largely results from the cellular dehydration that occurs upon 

ice formation, and the consequent physical damage to cellular membranes (Atici & 

Nalbantoglu, 2003; Griffith et al., 1997; Thomashow, 2001). The expression of the 

second group of genes minimize the dehydration injury by up-regulation of cold­

regulated (COR), dehydration-responsive, and ice re-crystallization inhibition (IRI) 

genes to limit ice crystal growth, and regulation of photosynthesis and respiration­

related genes which are important in increasing freezing tolerance in important 

assimilatory mechanisms (Chunzhen et al., 2009). 

The freezing tolerance acquired through cold acclirnation is not static but varies 

seasonally and is lost quickly when plants are returned to a warm temperature and it is a 

photosynthetic activity-demanding process (Griffith & Mcintyre, 1993; Wanner & 

Junttila, 1999). For successful cold acclirnation, moderate to high light conditions are 

essential, which otherwise expose the plant to photo-inhibition and can lead to 

formation of reactive oxygen species (ROS) (Foyer, Lelandais & Kunert, 1994; Wanner 

& Junttila, 1999). 

A plants capability to cold-acclirnate is a polygenic trait and various physiological and 

biochemical changes occur during cold acclimation as shown in Figure I 0. The most 

remarkable changes include reduction in growth and tissue water content (Levitt, 

1980), increase in abscisic acid (ABA) levels (Chen, Brenner & Li, 1983), changes in 

membrane lipid composition (Lynch & Steponkus, 1987; Uemura & Steponkus, 1994), 

the accumulation of compatible osmolytes such as proline, betaine, polyols and soluble 
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sugars, and increased levels of antioxidants (Dorffling et al., 1997; Kishitani et al., 

1994; Koster & Lynch, 1992; Murelli et al., 1995; Nomura et al., 1995; Tao, Oquist & 

Wingsle, 1998). 

Cell membranes are the primary sites of freezing injury and changes in membrane to 

develop freezing tolerance is critically important, ultra-structural changes in plasma 

membrane have been observed within 6 h of the cold acclimation in Arabidopsis (Ristic 

& Ashworth, 1993). Variations in membrane lipid composition are correlated with 

membrane cryostability and have been observed in all investigated plants during cold 

acclimation (Steponkus, 1984; Uemura et al., 1995; Uemura & Steponkus, 1994). 

Gene regulation 
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• Down-regulation 
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Figure 10: Cold acclimation induces changes in cellular processes . 
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Different responses are observed while exposing plants to low non-freezing 
temperatures. Modified from (Xin & Browse, 2000) . 
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1.6.1 Regulation of genes expression in response to low temperature 

Cold acclimation involves numerous genes expression either up or down-regulated 

(Fowler & Thomashow, 2002a; Pearce et al., 1998; Seki et al., 2002; Seki et al., 200 I; 

Xiong, Schumaker & Zhu, 2002). Some of the cold-induced genes are also up-regulated 

by drought or salt stress (Kreps et al., 2002a; Nuotio, Heino & Palva, 200 I; Seki et al., 

2002; Seki et al., 2001; Shinozaki, Yamaguchi & Seki, 2003; Thomashow, 1999). The 

expression of COR genes is regulated by the transcription factor DREB/CBF which 

binds to DRE/CRT in the promoter of COR genes (lshitani et al., 1997; Shinozaki & 

Yamaguchi-Shinozaki, 2000). The genes expression profiles show the activation of 

multiple regulatory pathways during cold acclimation which indicate that cold-induced 

genes can be members of more than one cold regulon (Fowler & Thomashow, 2002a). 

1.6.2 CBF cold response pathway 

The cold responsive CBFIDREBJ genes are induced transiently by cold and their 

expression regulates COR genes expression (Gilmour et al., 1998a; Liu et al., 1998a; 

Medina et al., 1999). There are three different cold-inducible CBFIDREBJ genes, have 

been identified in Arabidopsis known as CBFJIDREBJB, CBF2/DREBJC and 

CBF31DREBJ A (Thomas how, 200 1). Over-expression of CBFI conferred freezing­

tolerance in Arabidopsis (Pearce, 1999) and the expression of CBFs/DREB Is in 

transgenic plants has shown the activation of downstream cold-responsive genes even at 

warm temperatures and improved freezing, drought and salt tolerance (Hsieh et al., 

2002b; Jaglo-Ottosen et al., 1998a; Kasuga et al., 1999; Liu et al., 1998a). 

The orthologues of Arabidopsis CBF/DREB I have been identified in other plant species 

(Jaglo et al., 200 I) and suggesting the CBF transcriptional cascade is highly conserved 

in the plant kingdom during cold stress. The CBFIDREBJ genes expression related to 

temperature changes such that the lower the temperature the higher the CBF 
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transcription, but the expression of CBF genes becomes desensitized at a given low 

temperature, and resensitization requires exposure to a higher temperature (Zarka et al., 

2003). 

The CBF genes expression is apparently repressed by either their own products or the 

products of their downstream target genes, which ensuring transient and tightly 

controlled expression of these genes (Chinnusamy et al., 2003; Guo et al., 2002) as 

shown by Novillo et al. (2004), who found CBFJ/DREBJ B and CBF3/DREBJA 

negatively regulated by the expression of CBF2/DREBJC. 

The transcript levels for all three CBF (CBF I, 2, 3) genes increases within 15 min 

exposure to cold temperatures, which is then followed by the induction of CBF 

mediated COR genes at about 3 h (Xin & Browse, 2000). The expression of COR genes 

is induced by both the CBFJ (ABA-independent) pathway and by the bZIP-mediated 

AB A-dependent pathway (Gilmour & Thomashow, 1991; Mantyla, Lang & Palva, 

1995; Nordin, Heino & Tapio, 1991 ). The constitutively freezing-tolerant mutant eskl 

accumulates high levels of proline but does not constitutively express the COR genes 

(Xin & Browse, 2000). 

The existence of a transcription factor designated ICE, which acts at the CBF/DREB 

promoters upon exposing plants to low temperature; the ICE becomes activated and 

stimulates transcription of the CBFIDREB genes followed by induction of the CBF 

regulon as shown in Figure 11. (Thomashow, 200 I) subsequently increases the freezing 

tolerance. 
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Figure 11: CBF cold acclimation pathway (CBF regulon) . 
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Low temperature leads to rapid induction of the CBF/DREBl genes followed by the 
expression of the CBF regulon of CRT/DRE-regulated genes. CBF regulon includes 
COR, ERD, and presumably non-discovered ("XYZ") cold-regulated genes, increases 
freezing tolerance in plants. Low temperature either activate the ICE protein or other 
protein(s) with which it interacts. Such activation involves alterations in protein 
phosphorylation by a cold-induced influx of calcium. The SFR6 protein appears to act 
between CBF/DREB 1 transcription and induction of the CRT/DRE-regulated genes 
whereas HOSl appears to act upstream ofCBF transcription (Thomashow, 2001). 
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Using the PCBF3::LUC bioluminescent genetic screen, Chinnusamy et al. (2003) also 

identified an upstream transcription factor Inducer of CBF Expression I (ICE I) in 

Arabidopsis. They investigated that a dominant ice I mutation blocked the expression of 

CBF3 and decreased the expression of many CBF -target genes. The ice! mutant · 

showed impaired chilling tolerance and cold acclimation, while constitutive over 

expression oflCEI enhanced the expression ofCBFs and constitutively expressed COR 

genes but activation ofCBF expression required cold treatment. These results show that 

ICE! is a master switch that controls many cold-responsive CBF-dependent regulons. 

Probably, ICEI-like bHLH transcription factors may be involved in the regulation of 

CBFI and/or CBF2 (VanBuskirk & Thornashow, 2006). It can be considered that 

regulon biotechnology is hoped in the future to contribute positively to sustainable food 

production by increasing abiotic stress resistance in plants. 

1.6.3 Calcium role in CBF regulon pathway 

However, little is known about how the cold signal is perceived and how the CBF 

genes themselves are regulated (Nancy, 2009). Calcium was thought to be involved in 

cold acclimation process and a rapid increase in free calcium in the cytoplasm on low 

temperature exposure is found. This free Ca came from extra cellular and intracellular 

calcium stores and might be induced the CBF regulon (Knight & Knight, 2000; Knight, 

Trewavas & Knight, 1996). 

The evidence of a link between calcium signalling and cold induction of the CBF 

pathway was provided with the discovery of calmodulin binding transcription activator 

(CAMT A) factors which bind to a regulatory element in the CBF2 gene promoter which 

play a role in controlling the CBF regulon and freezing tolerance (Doherty et al., 2009). 

The calmodulin is Ca binding protein and CAMT A proteins are calmodulin binding 
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transcription factors, they play direct role in transduction of low temperature induced 

cytosolic calcium signals into downstream regulation of gene expression (Doherty et al., 

2009; Nancy, 2009). 

The peak levels and duration of the calcium influx is altered upon cold acclimation and 

becoms reduced in amount and prolonged in length, and the expression of certain cold­

regulated genes, including COR and other CBF-targeted genes, appears to involve the 

action of calcium as a second messenger (Daniel G. Zarka, 2003; Knight, Trewavas & 

Knight, 1996). Thus when it is shown that cold-induced calcium influx was inhibited 

using chemical agents, the expression of the COR genes was weakened but when the 

chemical agents were used to raise intracellular calcium levels at warm temperatures, 

the COR gene expression was induced (Daniel G. Zarka, 2003; Knight, Trewavas & 

Knight, 1996; Tahtiharju et al., 1997). 

1.6.4 Half-Life of CBF Transcripts at warm temperatures 

The CBF transcripts at warm temperatures has a very short half-life, about 7.5 min at 

warm temperatures, this value is amongst the shortest half life for described plant genes 

(Daniel G. Zarka, 2003). The CBF genes promoters could become inactive promptly 

within minutes of transferring plants from low to high temperatures (Daniel G. Zarka, 

2003). Similarly, no transcripts were detected 90 min after transferring plants from cold 

to warm temperatures (Daniel G. Zarka, 2003). 

1.6.5 Regulation ofthe CBF pathway 

There are no evident DRE/CRT elements in the promoter regions of CBFs genes that 

indicate that, these genes do not appear to be controlled by auto-regulation (Gilmour et 

al., 1998a). Factors controlling the cold induced expression of CBFs have been 
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identified; one example is ICE (inducer of CBF expression) which was identified 

through mutational screening. On the other hand, ice} showed minor effect on cold­

induced accumulation of CBF2 transcripts, which indicate that differences in the 

activation mechanisms exist within the CBFIDREBI family (Chinnusamy et al., 2003). 

The over-expression of ICEJ enhances the expression of the CBF regulon and improves 

freezing tolerance in transgenic plants (Chinnusamy et al., 2003). 

LOS4 is another gene that encodes DEAD-box RNA helicase, and plays a positive role 

in CBF expression. In los4-l mutant plants the expression of CBFs, their downstream 

target genes and cold acclirnation were impaired (Gong et al., 2002). los4-J plants were 

highly sensitive to chilling when exposed to cold in darkness. This could be specifically 

due to the impaired expression of CBF2 in los4-l plants, as CBF2 was expressed in 

wild-type Arabidopsis plants when exposed to cold in darkness (Gong et al., 2002). 

It has been recognized that the promoters of the CBFI/DREBlb, CBF2/DR£Blc, and 

CBF31DREBJ a are responsive to low temperatures (Shinwari et al., 1998) and a 

transcription factor, ICE I (Inducer ofCBF Expression I) has a role in CBF expression 

(Chinnusamy et al., 2003). As shown that transferring of Arabidopsis plants 

immediately from 20 ac to 4°C results in the rapid accumulation of CBF transcripts 

(Gilmour et al., 1998a; Liu et al., 1998a; Medina et al., 1999). The CBF transcript 

levels reached a maximum at about 3 h and then significantly declined, but remained 

elevated over those found in warm grown plants over the course of the 3-week 

experiment (Daniel G. Zarka, 2003). 

The amount of the cold shock affects the CBF transcripts levels such as, that when 

plants were transferred from 20 °C to I 0 °C, the CBF levels after 2 h were less than the 
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plants when transferred from 20 °C to 4 °C. Similarly, higher levels of CBF transcripts 

were found in plants transferred from 20 °C to -5 °C when compared with the 20 °C to 4 

°C treatment (Daniel G. Zarka, 2003). The threshold temperature for CBF induction was 

observed 14 °C at which the accumulation of CBF transcripts became detectable 

(Daniel G. Zarka, 2003). As the temperatures continued to drop, the levels of CBF 

transcripts continued to increase along with an increase in the transcript levels of the 

CBF target gene, COR15a (Daniel G. Zarka, 2003). Plant cold acclimated at 4 °C for 14 

d when transferred to 0 °C or -5 °C, an increase in CBF levels observed as well as when 

subjected to a gradual decrease in temperature from 20 °C to I 0 °C, the accumulation of 

CBF transcripts observed but the transcript levels declined upon continued exposure to 

this temperature (Daniel G. Zarka, 2003). While on renewal of a gradual decrease in 

temperature, the CBF transcripts again increased (Daniel G. Zarka, 2003). 

1.6.6 Functions of the CBF Regulon 

The fundamental function of the CBF regulon in plant is to protect cells against freezing 

and other stresses involving dehydration (Thomashow, 200 I). There are about six 

CRT/DRE-controlled genes have been identified which are KIN 1, COR6.6/KJN2, 

COR/5a, COR47/RD17, COR78/RD29a, and ERD/0 (Steponkus et al., 1998a; 

Thomashow, 200 I). The over-expression of COR15a gene increases the freezing 

tolerance by I to 2 °C in non-acclimated plants (Artus et al., 1996b; Thomashow, 200 I) 

through decreasing the membrane tendency to form detrimental hexagonal 11 phase 

lipids upon freeze-induced dehydration (Steponkus et al., 1998a). Plants over­

expressing CBFnot only increase the levels ofCOR proteins, but also elevate the levels 

of proline and total sugars (Gilmour et al., 2000). Such increase in proline and sugars 

levels occur in a wide variety of plants under cold acclimation, that contribute to the 

enhancement of freezing tolerance (Thomashow, 200 I). 
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1.6.7 Plant breeding and freezing tolerance 

Freezing tolerance in plant is a complex trait with multigenetic inheritance 

(Thomashow, 1990) and plants vary in inherent freezing tolerance before cold 

acclimation as well as varying in the potential to acquire freezing tolerance during cold 

acclimation (Xin & Browse, 2000). Crosses of two potato species with different 

freezing tolerance established that these traits are controlled by different sets of genes 

(Stone et al., 1993) and this finding is very important to show that it may be possible to 

manipulate different aspects of freezing tolerance and combine them to make a 

significant improvement in freezing tolerance. 

Although it is not clear that how many genes are involved in freezing tolerance, 

progress in mapping of quantitative trait loci has permitted the identification of major 

loci that have a great effect on freezing tolerance (Galiba et al., 1995; Pan et al., 1994). 

Mapping of major loci may ultimately lead to the identification of genes contributing to 

freezing tolerance and the identification of these genes may allow the study of naturally 

evolved mechanisms of freezing tolerance, while the cloning of these quantitative trait 

loci could be a huge endeavour (Xin & Browse, 2000). 

1.6.8 Freezing injuries in plant 

Freezing temperatures induce ice formation in the intercellular spaces and cell walls, 

because of the higher freezing point of intercellular than cytoplasmic fluid. In addition, 

the intercellular fluid also contains heterogeneous ice nucleating agents, such as dust 

and ice-nucleating proteins (Brush, Griffith & Mlynarz, 1994). In the absence of these 

ice-nucleating agents, pure water remains as a super-cooled liquid until -39 °C, which is 

the temperature at which water freezes in the absence of any heterogeneous nucleating 

agents (Xin & Browse, 2000). 
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The ice-state of water has a much lower water potential than liquid state and this 

difference increases as temperature decreases (Guy, 1990). So, when ice forms extra­

cellularly, water potential outside the cell drops suddenly and consequently, the water 

from the cytoplasm moves to the outside through the plasma membrane by osmosis, 

causing cellular dehydration (Xin & Browse, 2000). 

The removal of the net amount of water from the cell depends on the initial solute 

concentration of the cytoplasm and the freezing temperatures. For instance, it has been 

calculated that freezing to -I 0 °C causes -11·6 MPa water potential, that removes 90% 

of the osmotically active water from the cytoplasm. Due to accumulation of the solutes 

during cold acclimation, the same freezing temperature removes only 80% of cellular 

water in acclimated plants. As a consequence, freezing injury is mainly caused by 

cellular dehydration and, that's why freezing, drought and salt stresses share many 

characteristics (genes) in common (Xin & Browse, 2000). 

Dehydration damages cellular functions in different ways. In the case of freezing stress, 

injury usually involves effects on plasma membrane structure and function (Uemura et 

al., 1995; Webb, Uemura & Steponkus, 1994). The cell membrane has been considered 

as the primary site of freezing injury for many years (Levitt, 1980). Freezing-induced 

destabilization of plasma membrane involves lesions (Uemura et al., 1995; Webb, 

Uemura & Steponkus, 1994) as demonstrated in non-acclimated protoplasts, where 

reduction in volume was observed at -5 °C due to invagination of the membrane 

followed by budding off of endocytotic vesicles and upon rewarming, the melted water 

was drawn back into the cells, but because of the irreversible loss of plasma membrane, 

the protoplast bursts before it regained the original volume due to the hydrostatic 

pressure created by the incoming water. This type of lesion is known as 'expansion-
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induced lysis (Webb, Uemura & Steponkus, 1994 ). In contrast, protoplasts prepared 

from cold-acclimated leaves did not form endocytotic vesicles (Xin & Browse, 2000). 

Certain lipids in non-acclimated plant cell membrane aggregate to form an inverted 

structure with hexagonal packing symmetry (Hexll phase) arranged in cylinders of20 A 

in diameter, which disrupts the bilayer of cell membrane. Thus the plasma membrane 

becomes permeable to water and solutes upon re-warming and loses osmotic 

responsiveness (Uemura et al., 1995; Webb, Uemura & Steponkus, 1994; Xin & 

Browse, 2000). In cold-acclimated cell membranes, freezing injury is associated with 

'fracture-jump lesion' due to the localized fusion of the plasma membrane with other 

cellular membranes, especially the chloroplast envelopes (Webb, Uemura & Steponkus, 

1994 ). It is believed that both of Hexll and fracture-jump lesions are created from a 

common structural intermediate of membranes (Uemura et al., 1995) but still it is not 

clearly understood why Hexll lesions are observed only in non-acclimated tissues 

whereas fracture-jump lesions are observed exclusively in cold-acclimated tissues. In 

addition, the temperatures at which fracture-jump lesions are observed vary among plant 

species (Uemura et al., 1995; Webb, Uemura & Steponkus, 1994) and little is known 

about the biochemical and molecular basis of this variation (Xin & Browse, 2000). 

1.7 Cold regulated gene (COR IS) 

Plants have evolved various adaptive mechanisms to tolerate abiotic stresses, most 

higher plants due to their sessile nature, have developed more diverse strategies to 

acclimatize to abiotic stresses than animals (Seki et al., 2003 ). 

A number of genes are involved to respond to abiotic stress (Thomashow, 1998). 

COR 15 gene is one of these genes and was initially isolated from Arabidopsis thaliana. 
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This gene encodes a 15 kD protein having extensive resemblance with LEA (late 

embryogenesis abundant protein) in its amino acid sequence (Lin & Thomashow, 1992). 

LEA genes are specifically up-regulated during the dehydration phase of seed 

development and are assumed to help assist plants to protect their cells during 

dehydration. 

Cor15 proteins are found in the stromal compartments of the chloroplasts, these proteins 

are involved in the tolerance mechanisms against dehydration stress in plants. The over 

expression of the COR15 gene can reduce the susceptibility of membranes to form 

hexagonal-phase lipids during freezing stress (Steponkus et al., 1998b) and enhance the 

cold tolerance (Artus et al., 1996b). 

A homolog of the COR15 gene (with 82% ammo acid similarity) has also been 

discovered in A. thaliana (Wilhelm & Thomashow, 1993). These two homologs are 

present on the same chromosome but their pattern of expression is different in the 

response to cold stresses (Wilhelm & Thomashow, 1993). Likewise, two COR15 copies 

have also been discovered in Brassica napus, which are also involved in responses to 

cold stresses (Weretilnyk et al., 1993), but the evolutionary patterns of this small gene 

family in plants have not been explored (Dangwei et al., 2008). 

Extensive attempts have been made by many workers to explore the regulatory 

mechanism of the expression of cold regulated gene (Shinozaki, Yamaguchi & Seki, 

2003). Their findings have revealed that CBF/DREB transcription factors are the key 

regulators of cold-regulated (COR) genes expression (Jaglo-Ottosen et al., 1998a; Liu et 

al., 1998c; Stockinger, Gilmour & Thomashow, 1997b). The over expression of 

CBF/DREB transcription factors increased the freezing tolerance in Arabidopsis (Jaglo­

Ottosen et al., 1998a; Liu et al., 1998c). There might be some other regulatory 
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pathways which still need to be explored but CBF/DREB is becoming the most 

commonly found regulatory pathway for freezing tolerance increase. 

Certain of the cold-regulated (cor) genes encode polypeptides which remain stable on 

boiling in aqueous solution and CORIS protein is one of them (Chentao & Michael, 

1992). Through immunoblot analyses it was found that Arabidopsis cor!S gene encodes 

a 14.7-kD cold-regulated polypeptide, which is processed in-vivo to about 9 kD 

polypeptide, a mature protein designated as COR ISm, which is soluble, hydrophilic, 

and in addition, COR ISm located in the chloroplasts; particularly it can be detected in 

soluble protein extracts from chloroplasts (Chentao & Michael, 1992). 

Different investigation showed that acclimation plays important role in the freezing 

tolerance like cold-acclimated spinach and cabbage synthesized proteins that can protect 

isolated thylakoid membranes against freeze damage in vitro, but non-acclimated plants 

did not produce such proteins (Hincha, Heber & Schmitt, 1989; Volger & Heber, 1975). 

The cryoprotective activity of these proteins is high as they are >I 0,000 times more 

effective than sucrose in protecting thylakoids against damage by a freeze-thaw cycle 

(Hincha, Heber & Schrnitt, 1989; Volger & Heber, 1975). 

Earlier studies have shown that the cor!S gene is expressed in response to low 

temperature and has a role in freezing tolerance (Hajela et al., 1990). On the other hand, 

cor15 transcripts also accumulate in response to water stress, certainly, each of the four 

cor genes studied were induced in response to water deprivation (Hajela et al., 1990). 

There is a question why the genes involved in cryoprotection might be activated under 

drought conditions? One possibility relates to the fact that the damaged plant cells in 

response to a freeze-thaw cycle results largely from the cellular dehydration that occurs 

during freezing (Levitt, 1980; Steponkus & Lynch, 1989). Accordingly, tolerance to 

58 



Chapter 1: Genera/Introduction and Literature review 

freezing must include tolerance to water stress. lt seems reasonable to guess that 

freezing and drought tolerance might involve related mechanisms and the activation of 

related or identical genes (Chentao & Michael, 1992). In fact, water stress has been 

shown to increase the freezing tolerance of certain cereal (Siminovitch & Cloutier, 

1983) and Brassica species (Chentao & Michael, 1992; Cox & Levitt, 1976). 

Over-expression of COR15a, encodes a polypeptide which is targeted to the 

chloroplasts, showed increase in freezing tolerance of chloroplasts in vivo and 

protoplasts in vitro (Artus et al., 1996b). This increase in freezing tolerance was found 

from the COR15a encoded protein which stabilized membranes against freezing injury 

(Artus et al., 1996b; Steponkus et al., 1998b). There is also evidence that the mature 

polypeptide of COR !Sa, directly acts as a cryoprotective protein that decreases the 

propensity of lipid bilayers to form deleterious hexagonal II phase lipids (Steponkus et 

al., 1998b). 

COR genes have been implicated in the acquisition of low temperature tolerance in 

wheat, the genes transcript levels peaked at two days of the cold acclimation period and 

differences among genotypes were most apparent at this time. COR gene expression 

was highest for the low temperature tolerant and was lowest for the tender genotypes 

(Seedhabadee et al., 2008). The most rapid changes in low temperature tolerance, as 

measured by LTSO, occur during the initial stages of low temperature acclimation, but 

plants cannot fully acclirnate until temperatures drop well below the threshold induction 

level (Fowler, 2008). 

Moreover, the expression of the entire set of COR genes, which includes the COR47, 

COR6.6, COR78 and COR15 gene pairs (Jaglo-Ottosen et al., 1998a) was made 
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possible to express by the discovery of the CBF family of transcriptional activators 

(Gilmour et al., 1998a; Stockinger, Gilmour & Thomashow, 1997b), also known as 

DREBl proteins (Liu et al., 1998c; Shinwari et al., 1998). COR6.6, CORJ5a, COR47, 

and COR78, and presumably other genes yet to be discovered are CRT (C-repeat)/DRE 

(dehydration responsive element)-regulated COR genes, contain CRT/DRE in their 

promoters which is a cold and dehydration-responsive DNA regulatory element (Baker, 

Wilhelm & Thomashow, 1994b; Yamaguchi-Shinozaki & Shinozaki, 1994).Transgenic 

Arabidopsis plants which over-expressed CBF3 gene at normal growth temperature, that 

constitutively produced the COR 15am protein at levels equal or greater than in cold­

acclimated wild-type plants (Gilmour et al., 2000) 
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1.8 Aim and objectives of thesis 

Aim 

The aim of this research was the investigation of CBF regulon existence and its relation 

to abiotic stress resistance in mutants of cauliflower (Brassica oleracea var. botrytis L). 

The mutants had been produced using microshoots treated with the chemical mutagens 

(NEU & NMU) and then selected for resistance to hydroxyproline (Fuller & Eed, 2003). 

Hydroxyproline resistance selection was used to obtain high proline accumulating lines, 

as a strategy for improving abiotic stress tolerance. The free proline accumulation in 

response to environmental stress has been observed in plants (Deane, Fuller & Dix, 

1995). 

Objectives 

I. To regenerate the previously created clones (Mutants and control) 

2. To analyse the clones (Mutants and control) for frost, drought and salt stress 

resistance for confirmation of mutation stability in mutants. 

3. To investigate the presence ofCBF regulon pathway in cauliflower and to study 

its role in cauliflower mutants for abiotic stress resistance 
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Chapter 2: General Materials and Methods 

2.1. Mutagenesis and abiotic stress resistant mutants selection 

The January heading Roscoff Fl hybrid cauliflower Medaillon (courtesy of Elsoms 

Seeds Ltd) was grown in the field of the Seale-Hayne Estate, University of Plymouth, 

Devon, UK, following good commercial practice (Anon, 1982). The curds were 

harvested and taken to the laboratory where in-vitro micro-shoots were produced in 

liquid culture according to the method of Kieffer et al., (1995; 2001). This method 

produces a high volume of single or double curd meristem explants in the size range 

300-600 j.lm. 

The mutagenesis was carried out by Fuller & Eed (2003) and the procedure is given 

here for reference. N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methylurea (NMU) 

were used as mutagens. The NEU and NMU were used at I and 2.5 mM concentration 

respectively for 90 minutes in liquid culture, 24 h after the preparation of the 

microshoots. The mutagens were removed by decanting and washing the microshoots 

three times in fresh liquid culture medium of Kieffer et a] (1995). Approximately 1.5 

million microshoots were exposed to the mutagens. All techniques were carried out 

according to safe working practices established by McCabe et al (1990). 

After mutagenesis selection of stress resistant mutants was made by the addition of 3 

mM hydroxyproline to the final liquid culture medium and incubated for 3 weeks. 

Surviving green shoots after selection were removed from liquid medium and sub-

cultured onto S23 solid culture medium of Kieffer et a] ( 1995) without hydroxyproline 

to develop into shoots. Shoots with obvious morphological abnormalities either died or 

were discarded. Selections were then subjected to a multiplication phase (S23 + Kinetin 

2 mgL- 1 and IBA I mgL-1
) to produce clones of each selection which were either rooted 

and regenerated or put into a cold storage (+5 "C). A population of non-
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mutated/selected control clones was also prepared from the same curd materials (Fuller 

& Eed, 2003). After continuous sub-culturing for a three years period, the clones were 

re-assessed for abiotic stresses and further selection was made (Fuller et al., 2006). Sub­

culturing was carried out after each 3 to 4 month period on S23M medium and 

maintained in in-vitro condition. 

2.2 Weaning process 

In-vitro clones grown on S23M medium were uprooted and agar from the roots was 

gently removed by hand. A systemic general fungicide was sprayed on the roots to 

protect from soil borne pathogenic fungi, and then plants were transferred to pots (6 cm 

x 6 cm) containing moist compost and kept in a growth chamber at 20 °C with 16 hours 

light (light intensity 180.8 J.lmol m-2 s- 1
). After 5 days the lids of the culture pots were 

perforated using a hot needle to reduce humidity inside the pots and left for 5 days, then 

lids were taken off and for 5 days regular water checking was carried out. The bases of 

pots were then perforated with a hot needle and after 5 days the pots were transferred to 

the green house under shade. After 5 days under shade the plantlets along with compost 

were transferred to bigger pots ( 12 cm x 13 cm) containing moist compost and exposed 

to full natural light in the green house (rnin 15 °C, 16 h long day photoperiod) and 

allowed to grow in in-vivo conditions. This weaning process demonstrated l 00% 

successful transfer of in-vitro clones to in-vivo conditions without any damageable 

symptom observed in a single plant. 

2.3 Regeneration and sub culturing of experimental clones 

The experimental clones were regenerated and the curds from the mature regenerated 

plants were subjected to the multiplication medium of Kieffer et al ( 1995) in order to 

build up clone numbers for the project experimentation. The in-vitro cultures were 
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maintained in a growth chamber at 23 °C, 16 h photoperiod, 50 f1mol" 1 m-2 s· 1 light 

intensity. 

2.3.1 Media preparation 

Cauliflower (B. oleracea var. botrytis L} clones were proliferated in-vitro clonally 

through tissue culture. Three different shoot induction media were prepared for 

proliferation. Different media were prepared to compare their response on shoot 

induction and growth rate. Media were differentiated on the basis of agar concentration. 

Proliferation medium S23M (Kieffer, Fuller & Jellings, 1995) was prepared by 

dissolving the following ingredients in distilled water. MS (Murashige & Skoog, 1962) 

basal salts 4.4 gL- 1
, Thiamine 0.4 mgL- 1

, Adenine sulphate 80 mgL- 1
, sodium 

dihydrogen orthophosphate 170 mgL- 1
, sucrose 30 gL" 1

, Kinetin 4 mgL- 1
, indole-3-

butyric acid (IBA) 2 mgL- 1 and agar was added as 7 gL- 1
, 4 gL- 1 and 0 gL- 1 denoted as 

Tl, T2 and T3 respectively. The pH of media was adjusted to 5.8 and autoclaved. 20 m! 

pof 1 of medium was poured into each sterile plastic pot (5 cm x 4 cm) under aseptic 

conditions in a laminar flow cabinet; a lid was then placed on each pot and allowed to 

cool overnight at room temperature. 

2.3.2 Hormonal stock solution 

Stock solutions of indole-3-butyric acid (IBA) 2 mg ml" 1 and kinetin I mg m1" 1 were 

prepared. Kinetin was dissolved in few drops of2M HCI and IBA in 2M NaOH prior to 

making stock solutions. The volume was then increased to 50 ml with distilled water. 

From stock solutions I m! of IBA and 4 m! of kinetin per litre was transferred to each 

tube of shoot induction medium. 

2.3.3 Explants preparation and inoculation 

Cauliflower curds were used as explants materials for proliferation. Curd material was 

collected from plants in the green-house and were packed in labelled plastic bags and 
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brought to the laboratory in a cooled insulation box. Curds were cut into small pieces 

and surface sterilization was carried out with 70% ethanol for 40 seconds and then with 

10% bleach for 5 minutes. Surface sterile curds were rinsed 5 times with sterile distilled 

water for removal of bleach from the surface. Surface sterile pieces were then 

transferred to a sterile Petri dish and cut into small pieces about 2 to 3 mm across. Each 

small piece was inoculated into shoot induction media in small and sterile plastic pots 

and gently pressed in media with curd side facing up. Inoculation was carried out in 

sterile conditions in laminar flow cabinet. Pots were kept in incubator at 23 °C with 8 h 

photoperiods and observation was carried out until shoots developed. 

2.3.4 Transfer to rooting media and sub-culturing 

After a 5 week period, the young shoots were cut midway at an inter-node with a sterile 

scalpel and transferred to S23M hormone free medium. Pots were kept at 23 °C with 16 

h photoperiod in the incubator and were observed until complete rooted plantlets were 

produced. Sub-culturing of in-vitro clones on S23M hormone free media was carried 

out regularly after each 3 to 4 months period to maintain plant materials for continued 

experimentation during project work. 

2.4 Physiological screening of clones for abiotic stress resistance 

In the present study, highly resistant mutants of cauliflower (Brassica oleracea var. 

botrytis) were selected from a mutant population in the plant physiology laboratory of 

the University of Plymouth, selection was made on the bases of previous screening 

results of Fuller et al (2006), and reassessed in the present study for abiotic stress 

(Drought, Frost and Salt stress) resistance under both in-vitro as well as in-vivo 

conditions. The genotypes (clones) were designated as mutants (KI, K4, K9, KII, Kl3, 

Kl8, Kl9, and K21) and control (KC). 
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2.4.1 Drought stress resistance investigation 

Drought resistance assessment of genotypes was carried out by leaf disc assays to 

compare their resistance potential. For this evaluation 4 g L-1 MS medium (Murashige 

& Skoog, 1962) was dissolved in distilled water with different test concentrations of 

Mannitol added (0, 150, 250, 350 and 450 mM) denoted by TO, Tl, T2, T3 and T4 

respectively. The pH of all of the media was adjusted to 5.8 prior to being autoclaved. 

The sterilized media were poured into sterile Petri dishes under aseptic conditions in a 

laminar flow cabinet. Leaves from both in-vivo (from green house) as well as in-vitro 

clones were tested. Two fully expanded upper leaves from each plant (clone) were 

collected from the green-house and surface sterilised in 70% ethanol for a few seconds 

and then in I 0% bleach for I 0 minutes followed by three rinses with sterile distilled 

water. 

Leaf discs were cut usmg a 1.0 cm diameter cork borer from the leaf blade areas 

avoiding the major vascular bundles and leaf discs of each genotype were transferred to 

a specifically labeled and sterilized petri dish containing sterilized distilled water and 

allowed to stand overnight at room temperature in order to become turgid. The 

following day the turgor weight (TW) of each leaf disc was recorded, using a 5 decimal 

place balance, and then the discs were allocated to each one of the different media 

contained in petri dishes and incubated for seven days in an incubator at 23 °C with 16 h 

photoperiod. Three and two divisions replicate petri plates were used for in-vivo and in­

vitro clones respectively for each treatment, and each plate contained three discs which 

had been individually la be led on the leaf surface (I, 2, 3) using a permanent marker pen 

during discs preparation. After seven days the weight of each disc was re-measured and 

noted as the fresh weight (FW). Discs were then freeze dried and the dry weight (DW) 

of each of the discs recorded. Percent relative water content (RWC) for each disc was 
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measured using the formula RWC% = (FW-DW) I (TW-DW) x 100. The mean value 

of replicates discs and then of replicate petri plates was analysed. The total number of 

petri plates used for in-vivo clone screening were= 9 genotypes x 3 rep x 5 treatments= 

135, and for in-vitro clones screening were= 9 genotypes x 2 rep x 5 treatments= 90. 

2.4.2 Frost stress resistance analysis 

Frost resistance analysis of the cauliflower (Brassica oleracea var. botrytis L.) clones 

(Kl, K4, K9, Kll, Kl3, Kl8, Kl9, K21 and KC) was carried out to compare the degree 

of their frost resistance. The electrical conductivity technique described by Fuller et al 

(2003; 1989) was used for analysis. Both in-vitro as well as in-vivo clones were tested 

at different temperatures + 1 °C, -2 °C, -4 °C, -6 °C. Four fully expanded upper leaves 

from each genotype in the greenhouse (in-vivo) were excised and transferred to the 

laboratory in a cooled insulated box containing ice packs. Two leaves were used for 

assessment as non-acclirnated and the other two leaves were acclirnated by placing them 

in an incubator (Snijder scientific) at 4 °C, 8 h photoperiod for 14 d. Previous 

experimentation in the lab had demonstrated that excised leaves of cauliflower referred 

the ability to acclimate. Acclimation for in-vitro clones were carried out by keeping 

whole plantlet in the same incubator used for in-vivo clones leaves. Ten leaf discs of 1 

cm diameter each were cut and placed in boiling tubes. Three replicate tubes were used 

for each treatment and each genotype. The total tubes used for each of in-vitro or in-vivo 

clones analyses were = 9 genotypes x 3 replicates x 2 unacclirnated/acclirnated x 4 

different test temperatures= 216 tubes. Three replicate tubes without leaf discs (blank 

tubes) were used for monitoring EC contamination. 

All the tubes were labeled in test tube racks and put in a freezing chamber (Sanyo) 

adjusted to + 1 °C overnight. The following day a small piece of ice was added to each 
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tube to ensure ice nucleation and the chamber programmed to fall to temperature of -2 

°C, -4 °C, and -6 °C with a hold of two hours at each temperature. Samples were 

removed at the end of the 2 h hold of each temperature. The +I °C treatment tubes were 

removed and transferred to a defrost incubator (Sanyo) running at 4 °C. The other 

treatments were likewise transferred and allowed to defrost overnight. After defrosting 

the tubes were moved to the laboratory bench at ambient temperature and 20 ml distilled 

water added to each tube using an automatic dispenser. The tubes were covered and left 

overnight at room temperature to allow leaching of electrolytes from cells damaged by 

the freezing. The following day the post-freezing electrical conductivity (EC) of each 

solution was measured. All tubes were then autoclaved to rupture all the cells to provide 

a total leachate measurement. After autoclaving samples were kept for overnight 

· incubation at room temperature and then the post-autoclaving electrical conductivity 

(EC) was measured for all tubes. Identical procedures were used for analysis of both 

acclimated as well as non-acclimated leaves. The percent relative electrical 

conductivity (REC) was calculated to give an indication of the level of cell membrane 

damage at the different freezing temperatures, with more damaged cells giving higher 

electrical conductivity. For calculation of percent relative EC the following formula was 

used as 

REC% =Post freezing EC/ Post autoclaving EC x 100 
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2.4.3 Salt stress resistance evaluation 

The clones analysed for drought and frost resistance analysis were also tested for salt 

resistance. Both in-vivo as well as in-vitro clones were analysed. Liquid media of three 

different concentrations of sodium chloride (NaCI) were prepared in distilled water i.e. 

0 mM (control), 350 mM and 550 mM (approximately the concentration of sea water) 

and labelled as TO, Tl & T2 respectively, then 4 g1" 1 MS salts (Murashige & Skoog, 

1962) were added to each ofTO, Tl and T2. The pH of all media was adjusted to 5.8, 

and then autoclaved. Media were poured into sterile Petri dishes under aseptic 

conditions in a laminar flow cabinet. Three replicate petri dishes were used for each 

clone under each treatment. Two fully expanded upper leaves were detached from each 

genotype clone in the green-house (in-vivo) and brought to lab in a cooled insulation 

box. Leaves were surface sterilized with 70% ethanol for a few seconds and then in a 

solution of I 0% bleach for I 0 mins followed by 3 rinses with sterile distilled water. 

Leaf discs of I cm diameter were prepared in a laminar flow hood under aseptic 

conditions and 3 discs/petri dish were floated on each liquid media. Petri dishes were 

properly labeled and three replicate petri plates were used for each genotype and each 

treatment and placed in an incubator at 23 °C with 16 h photoperiod. Leaf discs from in­

vitro clones were prepared direct from pots and analysed in a similar way used for in­

vivo clones analyses. The total petri dishes used for each of in-vitro or in-vivo clones 

analyses were = 9 genotypes x 3 rep x 3 treatments = 81 plates. The effect of salt 

concentrations on leaf discs was recorded after 3, 5 & 7 days treatments. Change in leaf 

discs col or was used as a score to differentiate resistance strength. Col or change of leaf 

discs was categoriesed as: 

A. Dark green (lOO% greenness) 

B. Light green-no white (75% greenness) 

C. Half light green half white (50% greenness) 
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D. Small amount of light green (25% greenness) 

E. White. (0% greenness) 

2.5 Cold acclimation before RNA and Protein extraction 

Four replicate plants of each mutant and control clone were transferred from in-vitro 

conditions to small plastic pots contained compost in growth chamber (Sanyo Fitotron) 

at 22 °C under a long day photoperiod ( 16 h) with a light intensity of 180.8 1-1mol m-2 s·' 

and 52.5% humidity. One set of two replicate were retained in the same growth 

chamber (non-acclimated) and the other set of two replicates for each clone (young 

plants with 4-6 true leaves) were transferred to another growth cabinet (Snijder 

scientific) for 14 days cold acclimation (4 °C with 8 h photoperiod, light intensity 180.8 

1-1mol m-2 s-1 and 52 %humidity). 

To investigate the CBFIDREBJ gene in cauliflower, the total RNA was isolated from 

non-acclimated and acclimated clones. To study the effects of cold acclimation length 

on CBFIDREBJ genes expression in mutants, the mRNA was isolated from clones at 

different intervals i.e, 3 h, 6 h, 24 hand 14 d acclimation. At each interval one leaf was 

detached from each clone and frozen immediately in liquid nitrogen and finaly ground 

in liquid nitrogen in a pestle and mortar. After the liquid nitrogen evaporated, 100 mg of 

frozen tissue powder for each sample was weighed in 1.5 ml RNase free micro­

centrifuge tubes (Ambion) and stored at -80 °C to prevent RNA degradation before 

RNA isolation. For the investigation of COR15a and COR6.6 proteins in the genotypes, 

the proteins were extracted from both non-acclimated and acclimated genotypes 

(clones) once after 14 days acclimation and then stored at -80 °C until further analysis 

through sodium dodecyl sulfate (SOS) polyacrylamide gel electrophoresis (PAGE) and 

Western blotting techniques. 
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2.5.1 RNA isolation and purification 

Total RNA was isolated by following the method of Farrell (1998) and Sambrook et al 

(1989). Samples (I 00 mg powder) stored at -80 °C were taken and 500 Ill of lysis 

solution (sigma cat# L8167) added and vortexed immediately and vigorously for at 

least 30 seconds following the instructions from the kit supplier (Sigma cat # STRN50) 

, and then incubated at 56 °C for 5 minutes. Samples were centrifuged at 13000 xg for 5 

minutes to pellet the cell debris. The supernatant was pippetted into a filtration column 

(sigma cat # C6866) in a 2-ml collection tube and then centrifuged at 13000 xg for 3 

minutes and the flowthrough lysate saved. 500 J.ll of binding solution (Sigma cat # 

L8042) was pippeted into the lysate and mixed immediately and thoroughly by 

pippeting at least 5 times and vortexed briefly. 700 Ill of the mixture was pippeted into 

a binding column (Sigma cat# C6991) in a 2 ml collection tube and centrifuged at 

13000 xg for I minute to bind RNA. The flow-through liquid in the collection the tube 

was decanted and tube was cleaned with absorbent paper and returned to the column 

and repeated for the remaining mixture. 

DNasel (Sigma cat# DNASEIO) was used for removal oftrace amount of DNA. 80 J.ll 

of the DNasel mixture was added directly onto the centre of the filter inside the binding 

column the cap closed and incubated at room temperature for 15 minutes. 500 Ill of 

wash solution I was pippeted into the binding column and centrifuged at 13000 xg for I 

minute. The flowthrough liquid was decanted and the tube cleaned with absorbent paper 

and continued to the second column wash with ethanol diluted wash solution 2 (Sigma 

cat# W3261) and centrifuged at 13000 xg for 30 seconds and repeated the third column 

wash with wash solution 2 and centrifuged similarly. The tube was cleaned by 

absorbent paper and returned to the column into the clean tube, centrifuged at 13000 xg 

for I minute to dry the column. The column was carefully removed and transferred into 
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a new 2 ml collection tube and 50 j.tl of elution solution (sigma cat # E8024) pippeted 

directly onto the centre of binding matrix inside the column and the cap closed and 

stood undisturbed for I minute and then centrifuged at 13000 xg for I minute to elute. 

The purified RNA in the flow-through eluate was distributed in small aliquots and some 

were stored at -20 °C for short time and at -80 °C for long term storage. 

2.5.2 BoCBFIDREBJ regulatory gene identification using RT-PCR 

Two steps PCR was used for cDNA synthesis and amplification. Total RNA was used 

as the template for the synthesis of the first strand cDNA using lmProm-11™ Reverse 

Transcription System (Promega cat # A3800). The reverse transcription reaction 

mixture was prepared in sterile and nuclease free 1.5 ml microcentrifuge tubes 

(Ambion) on ice. The total mixture was distributed in aliquots of 15 j.tl for each cDNA 

synthesis reaction following the instructions of kit manufacturer. RNA was diluted to 

equilibrate all the samples as 0.8 j.lg in nuclease free water (Sigma cat # w1754) and 

each sample was combined with primer oligo (dT) 15 (0.5 j.tg/reaction) for a final volume 

of 5 j.ti/RT reaction in 0.2 ml nuclease free PCR tubes (Ambion). Tubes were treated at 

70 °C for 5 minutes and immediately chilled in ice for 5 minutes and centrifuged for I 0 

seconds to separate condensate to maintain the original volume. Tubes were kept on ice 

until further use. Each final RT reaction volume of 20 j.tl was prepared by combining 5 

j.tl of RNA and oligo (dT) 1s primer mixture with 15 j.tl reverse transcription reaction 

mixture. All the micropipettes and tips used were sterile and nuclease free for 

preventing RNA degradation and contamination. 

First strand cDNA syntheses was carried out by placing the tubes in the thermal cycler 

(Perkin El mer 9700) under the following thermal cycle; Annealing: 25 °C for 5 minutes, 

Extension: 42 °C for 60 minutes, Inactivation of Reverse Transcriptase: 70 °C for 15 
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minutes. The first strand cON A was directly amplified in 50 J.d of reaction mixture. The 

mixture was prepared by adding components in the following ratio following the 

instructions of PCR master mix (Promega cat # M7502). PCR master mix, 2X (25 Jll), 

forward primer, 10 J!M (5.0 Jll), reverse primer, 10 J!M (5.0 Jll), cDNA (5 Jll), nuclease­

free water (Sigma cat # wl754) was added to make a 50 )ll final reaction mixture for 

each sample. According to the Brassica juncea and B.napus CBFIDREBJ genes the 

following gene specific (degenerate) primers were used for amplification of cDNA 

strands. (Forward, 5-AAGAAGTTTCGTGAGACCCGTCAC-3 and Reverse, 5-

GGCAAAAGCATACCTTCCGCCAT-3). The 50 Jll reaction mixture for each sample 

was run under the following thermal cycle. Initially denaturation at 94 °C for 3 minutes 

once, 35 cycles of(denaturation at 94 °C for I minute, annealing at 61 °C for I minute, 

extension at 72 °C for 2 minutes) and a final extension at 72 °C for 10 minutes and then 

4 °C oo. The PCR products were analysed by using 0.8 % high melting agarose (Sigma) 

gel added with EtBr to a final concentration of 0.5 )lg/ml, and compared with a PCR 

marker (Promega G3161) consisting of six DNA fragments with sizes of 50, 150, 300, 

500, 750 and I ,000 bp. The bands intensity were measured using Quantity one 4.6.3 

Bio-Rad software. 

2.5.3 RT-PCR product (cON A) sequence analysis 

The specific RT-PCR products were isolated and purified from the gel slice using the 

Wizard® SV Gel and PCR Clean-Up System (Promega A9281) and the purified 

products were stored at 4 °C for a short time and then subjected to sequence analyses 

(Eurofins MWG Operon, Germany). The sequences were then analysed using Clustal W 

and Basic Local Alignment Search Tool (BLAST) and then compared with nucleotide 

and deduced amino acids sequences of CBFIDREBJ genes from other Brassica species 

by iterative multiple alignments. 
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2.5.4 Genomic DNA isolation and purification 

Genomic DNA was extracted from young leaves of the clones based on the methods of 

Sambrook et al., (1989) and Bruce and Eric (1993). The harvested leaves were ground 

into a fine powder in liquid nitrogen, using a mortar and pestle, and 100 mg of the 

powder transferred to a 1.5 ml micro-centrifuge tube kept on ice and 350 jJl lysis 

solution A and 50 Ill of lysis solution 8 added according to the protocol provided by the 

kit manufacturer (Sigma cat# G2NIO). To dissolve any precipitate, the mixture was 

incubated at 65 °C for I 0 minutes, then 130 Ill of precipitation solution was added and 

mixed completely by inversion and placed on ice for 5 minutes. The samples were 

centrifuged at 13000 xg for 5 minutes to pellet the cellular debris. The supernatant was 

pippeted onto a GenElute filtration column into a 2 ml collection tube, centrifuged at 

13000xg for l minute, the filtration column which removed any cellular debris was then 

discarded. 700 Ill of binding solution was added to the flow-through liquid in the 

collection tube and mixed thoroughly by inversion. A DNA binding column was 

prepared following the protocol. Carefully 700 IJI of the mixture was pippeted onto the 

DNA binding column and centrifuged at 13000 xg for I minute, flow-through liquid 

was discarded and the collection tube retained, returned to the column the remaining 

mixture applied onto the column and centrifugation repeated. The binding column was 

placed into a fresh 2 ml collection tube and 500 Ill of ethanol diluted wash solution 

(Sigrna cat # W30 11) applied and centrifuged at 13000 xg for I minute. The flow-

through liquid was discarded and the collection tube was used for a second wash 

similarly and centrifuged at the same speed for 3 minutes which dried the column. The 

DNA binding column was then transferred to a fresh 2 ml collection tube for DNA 

elution. l 00 jJI of pre-warrned (65 °C) Elution solution (I 0 mM Tris, I mM EDT A, pH 

8.0) was applied to the column and centrifuged at 13000 xg for 5 minutes. The elution 

process was repeated and the column was prevented from contacting the flow-through 
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liquid. The eluates were stored in small aliquots at 4 °C for short term and at -20 °C for 

long term for downstream processing. 

2.5.5 Analysis of RNA and DNA purity 

The purity and concentration of DNA and RNA was determined by spectrophotometric 

analysis. The RNA was diluted 10-50 fold in TE buffer (10 mM Tris HCI, I mM 

EDT A, pH 8) and absorbance was measured using A26o/ A2so ratio procedure (Warburg 

& Christian, 1942). Nucleic acids have a higher absorbance at 260 nm than at 280 nm 

and pure DNA and RNA samples have expected A26o/A2so ratios of 2:,1.8 and 2:,2.0 

respectively (Maniatis, Fritsch & Sambrook, 1982) 

2.5.6 DNA quality confirmation 

A gel of0.8% agarose was prepared in a 250 ml flask by melting 0.4 g of agarose in 50 

mL of I xTBE buffer using a microwave to completely melt the agarose. The solution 

was allowed to cool for a couple of minutes to about 50 °C (a temperature at which one 

can hold the flask). Ethidium Bromide (EtBr) was added to the agarose solution to a 

final concentration of0.5 !lg/ml and mixed before pouring the gel. Using a supplied gel 

tray and comb, the gel was cast and allowed to solidifY for a minimum of 20 min at 

room temperature. I xTBE buffer was added to submerge the gel. Samples were 

prepared in PCR tubes (0.2 ml) by adding 4 J.d loading dye (Promega cat# G 1881) to I 0 

111 of sample, mixed then I 0 111 total volume of each sample per well loaded. 5 111 of the 

molecular weight markers of I kb (Promega cat # 05711) was loaded in a well as a 

reference ladder. The gel was run at 100 V until the bromophenol blue was about 3/4 

through the gel (approx. I h). The tray with the agarose gel was carefully removed and 

taken to the UV transilluminator and the gel examined under UV light to confirm the 

DNA quality. Presence of a highly resolved high molecular weight band indicated good 

quality DNA. A photograph was made using the gel documentation system. I !iter of 
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lxTBE buffer was prepared by diluting lOxTBE (Tris base 10.8 g, Boric acid 5.5 g, 

EOT A 4 m! from 0.5 M stock solution, and volume rised to I 00 m! with dH20). 

2.6 Protein extraction and purification 

0 

The leaf tissues from the -80 C freezer were thawed on ice and placed in a mortar and 

pestle. 2 m! of extraction buffer (Ni et al., 1996) (100 mM potassium phosphate buffer 

(200 m! of 2 M KP0
4 

stock solution was prepared by dissolving K2HP0
4 

63.2 g and 

KHl0
4 

5.0 g in dw), pH 7.8, I mM OTT, I mM EOTA, 1% Triton X-100, 10% 

glycerol) was added to I gram tissues and ground. I ml of the liquid grindate was 

transferred to a microfuge tube (1.5 ml) and placed on ice and the mortar and pestle 

washed in preparation for the next sample. Centrifugation was carried at 13000 xg for 

15 minutes at 4 °C. The supematant was pippeted into a new microfuge tube (1.5 m!) 

and centrifuged again for I 0 minutes then the clear supematant was distributed in 

aliquots and stored at -80 °C until used. 

2.6.1 SOS-PAGE (Sodium dodecyl sulfate polyacrylamide gel electrophoresis) 

SOS-PAGE analysis was carried out with Laemmli's buffers (1970). Vertical 8.6 x 7.7 

cm (WxL) polyacrylamide gels were prepared and run in a Biometra Minigel-twin 

electrophoreses system. Each experiment was repeated 3-4 times. Buffer A (for the 

resolving gel) (Tris HCl 0.75 M, SOS 0.2% w/v, pH 8.8), buffer B (for the stacking gel) 

(Tris HCI 0.25 M, SOS 0.2% w/v from 10% stock solution of SOS, pH 6.8), running 

buffer (Tris HCl 25 mM, SOS 0.1% w/v, pH 8.3) and loading buffer (Tris HCI 0.5 M 

pH 6.8, SOS I 0% w/v, bromophenol blue 0.1 %, ~-mercaptoethanol 0.5 nll/1 0 ml, 

Glycerol 20%) were prepared. 11.41 ml solution for the 12.5% resolving gel was 

prepared by mixing buffer A 5.2 ml, ddH20 1.4 ml, 4.4 ml of 30% (w/v) solution of 

Acrylamide/Bis-acrylamide (29: I) (Sigma cat# A3574), 380 J.ll of amonium persulfate 
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(APS) I 0% w/v and 30 111 tetramethylethylenediamine (TEMED). 4.1 ml of 5% 

stacking gel was prepared by mixing buffer B, 2 ml, ddH20 1.3 ml, 30% solution of 

Acrylamide/Bis-acrylamide 0.7 ml, APS 100111, and TEMED 15 111. APS and TEMED 

were added before pouring the gel. Resolving gel solutions were poured quickly into the 

gel casting system and space left about same size of combs for the stacking gel below 

the bottom of the comb. Any bubbles were removed by adding isobutanol to the top of 

the gel. lsobutanol also prevented the gel from drying out. After 15 minutes, the gel was 

completely polymerized; the isobutanol was washed away and the gel dried with 

blotting paper prior to pouring the stacking gel. The comb was added soon after pouring 

the stacking gel and allowed to polymerize completely for I hour. 30 111 of loading 

buffer was mixed with 40 111 of each sample and boiled in water a bath for 5 minutes 

then cooled; centrifugation at 1300 xg for 2 minutes was carried out to remove any 

debris which could cause any blockage of gel pores. 20 111 of the supematant of each 

sample mixture was loaded into each well. 6 111 of standard protein marker (Sigma cat# 

C 1992) was loaded as a reference ladder; the marker proteins consisted of 8 bands of 

different colours and sizes i.e Violet 220, Pink I 00, Blue 60, Pink 45, Orange 30, Blue 

20, Pink 12 and Blue 8 kDa. The gel was run at 80 volts while the samples reached the 

resolving gel and then increased to I 00 volts for about 2 further hours. The staining 

potential of staining solution (Coornassie blue 1.25 g, methanol ( 100%) 400 ml, glacial 

acetic acid 70 ml, dH~O 530 ml per !iter solution) and staining reagent (Sigma cat # 

G I 041) was compared and the Sigma reagent was found to be better only requiring a 

ddH~O for destaining, while other stains required destaining solutions of I 00% 

methanol 400 ml, glacial acetic acid 70 ml, dH 20 530 ml per litre of solution. After 

destaining, photographs were made with the gel documentation system and stored for 

further analysis. A non stained gel was used for protein transfer to nitrocellulose 

membrane for subsequent Western blotting. 
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2.6.2 Western blotting (lmmunoblot Analysis) for detection ofCOR15 

Protein samples resolved using SOS-PAGE were transferred to nitrocellulose membrane 

and subjected to immunoblot analysis (Towbin et al., 1979 ). The nitrocellulose 

membrane (Sigma) was placed next to the gel and sandwiched between absorbent paper 

and sponge (- sponge/filter paper/gel/membrane/filter paper/sponge +). All were 

clamped tightly together after ensuring no bubbles have formed between the membrane 

and gel. The sandwich was submerged in transfer buffer (Towbin et al., 1979 ) so that 

the gel was closest to the negative electrode and an electrical field was applied as 300 

mA or 15-20 volts for 90 minutes. Transfer time and voltage depends on protein size, 

time or voltage is reduced for smaller protein. The negatively charged proteins travel 

towards the positively charged electrode but the membrane stop them and bind them. 

Bio-Rad criterion blotter was used for protein transfer. Hybridization for COR15a was 

performed with specific primary antibodies obtained from the Pro[ Michael 

Thomashow's Lab, (Michigan State University, USA). Each experiment was repeated 

3-4 times. 

lxTris-glycine transfer buffer preparation (I Litre) 

Tris HCI = 3.05 gm 

Glycine= 14.4 gm 

Methanol = 200 ml 

ddH20 = 800 ml 

pH= 8.3 (adjusted with NaOH) 

Tris and Glycine were dissolved first in dH 20 and then methanol was added, for protein 

larger than 80 kOa, SOS is recommended at a fmal concentration ofO.l %. 

Blocking solution and hybridization: after proteins were transferred to nitrocellulose 

membrane the membrane was incubated in the blocking solution (PBST + 1.5-3 % 

BSA) for I hour at room temperature with mild shaking. PBST (Phosphate buffer saline 
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Tween 20) is 80 mM Na2HP04; 20 mM NaH2P04; 10 mMNaCI; 0.1% Tween 20; pH 

7.5. The 2% BSA (Bovin serum albumin) was prepared by dissolving 2 g BSA per 100 

ml of PBST buffer, mixed well and filtered. PBST (I tablet in 200 ml water was 

dissolved. pH 7-7.5 if not, adjusted with NaOH and then autoclaved). After the 

incubation in blocking solution the membrane was washed with PBST twice for 5 

minutes each, followed by incubation with primary antibodies (produced in rabbit) 

obtained from the Michigan State University, USA. Antibodies were diluted (I: 1000) 

in a total volume of 20 ml PBST and membrane incubation was carried overnight at 

room temperature with very mild shaking. The following day the membranes were 

washed three times with PBS while agitating, for 10 min each. The goat anti rabbit IgG 

conjugated to horseradish peroxidase (abeam) was used as secondary antibody. 

Membranes were incubated in PBS diluted (I :20,000) secondary antibodies, incubation 

was carried out for 90 minutes at room temperature with mild shaking on a shaker and 

then washed 3 times for I 0 minutes of each wash with PBS. 

Developmental solution: A solution was prepared by dissolving DAB 

(diaminobenzidine) 0.06 g, NiCb 0.03 gm in 100 ml PBST. The chromogenic reaction 

was initiated by the addition of I 00 1-11 H202 into solution, the H202 was added 

immediately before pouring the solution on to the membrane. Membranes were 

incubated in developmental solution for about 15 minutes to overnight in the dark, DAB 

is sensitive to light. Membranes were washed repeatedly with PBS and then digital 

images were made from the membranes. 

2.7 Free-proline (Pro) and protein evaluation in genotypes under cold acclimation 

The levels of free-proline and protein in tested clones (KI, K4, K9, Kll, K13, K18, 

Kl9, K21 and KC) grown under different environmental conditions were analysed. (I) 
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In growth chamber at (22 °C day night, 16 h photoperiod, light intensity 180.8 J.lmOI m· 

2s" 1 and 52.5% relative humidity), (2) Cold acclimated in a growth cabinet at 4 °C, 8 h 

photoperiod, 180.8 J.lmol-m·2.s·1 and 52% relative humidity, (3) In green house at 15 °C 

in natural light). Some of the in-vitro clones grown on agar media (S23M) at 23 °C in 

growth cabinet were transferred into plastic pots (6 cm x 6 cm) containing compost and 

retained in the same cabinet at 23 °C for one week and watered on a daily basis 

(weaning process). Two replicate pots for each clone were transferred to the green 

house for six weeks and four replicate pots for each clone were kept in a growth 

chamber (Sanyo Fitotron) in the lab at 22 °C, 16 h photoperiod. After 4 weeks in the 

fitotron cabinet, for acclimation process two replicate pots for each clone were 

transferred into another growth cabinet for a two weeks period adjusted to 4 °C (Fig. 

2.1 ). After a 6 week period the leaves were detached from each clone and frozen 

promptly in liquid nitrogen and then stored at -80 °C in freezer until further use. 

2.7.1 Proline (Pro) extraction and estimation 

Proline extraction and biochemical quantification was carried out following the method 

of Bates, Waldern & Teare (1973). 100 mg powder of frozen leaf tissue was 

homogenized in 1.5 ml of 3% sulfosalicylic acid in 2 ml tubes. Centrifugation was 

carried out at 13000 xg for 5 minutes. 300 J.il of the supernatant was treated with 2 ml 

glacial acetic acid and 2 ml acid ninhydrin (1.25 g ninhydrin warmed in 30 ml glacial 

acetic acid and 20 ml 6 M phosphoric acid until dissolved) in test tubes at I 00 °C in a 

boiling water bath for I h. The reaction was then ended immediately by dipping the 

tubes in ice. The reaction mixture was extracted with I ml toluene by mixing vigorously 

for 10-30 seconds. The chromophore containing toluene was pipetted from the aqueous 

phase, warmed to room temperature and the absorbance was read at 520 nm by 

spectrophotometer using toluene for a blank. The concentration of proline in different 
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samples was detennined from a standard curve. The reaction for each sample was 

performed in triplicate. 

2.7.2 Protein estimation 

For total protein isolation the method was used as described earlier for protein 

extraction (Ni et al., 1996). Protein content estimation was made by the standard 

method of Clive, Daniel & Steve (1989) based on Bradford (1976). Three replicate 

aliquots of I 00 J.ll for each sample was mixed with 5 ml of I :4 diluted Bradford dye 

reagent (sigma cat# 86916). I 00 J.ll of protein extraction buffer was mixed with dye in 

similar way used for samples and used as a blank. After 15 minutes, I ml of each 

replicate was transferred to a disposable polystyrene cuvette and the absorbance at 595 

nm was recorded using a single beam spectrophotometer. 

2.8 Statistical Analysis 

The statistical program Minitab 15 was used for the analyses of data. Analysis of 

variances (ANOVA) was performed and the means were compared using least 

significant difference (LSD) test. The probability table (Fisher & Frank, 1948) was used 

for determination of the significance level. Correlation among the different parameters 

was also investigated using Excel fitting curve and values of the correlation coefficient 

for different levels of significance investigated according to Fisher and Frank ( 1948). 
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2.9 Summary of Experimental approach 

In-vitro clones in growth chamber at 23 °C, 16 h photoperiod 
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Two replicate clones for each genotype were grown in each case. One plant 
was used for analysis whiles other for backup purpose. 
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Chapter 3: Introduction 

3.1. Introduction 

3.1.1. Micro-propagation and sub-culturing of clones 

The plant micro-propagation process is used for proliferation of clones of genotypes. 

The process usually consists of the following steps; selection of the suitable plants, 

surface sterilization, initiation of explants, establishment of explants, subculture for 

multiplication of explants, shooting and rooting induction, and the weaning/hardening 

step to produce complete in-vivo plant clones (Ahloowalia et al., 2002). Plant micro­

propagation is initiated from small pieces, known as explants. The explant is isolated 

from surface sterilized part of a plant. The widely used explants are shoot tips or 

meristem-tips which are the most well-liked explant source (Medford, 1992). Other 

explant sources like floral meristem and buds, nodal or axillery buds, anthers, pollen 

and microspores have also been used as explants. 

The cultured tissues generate a complete plant through regeneration process through 

different ways either by callus production or by direct shoot induction. Callus is a mass 

of unorganized cells which have the potential to produce complete plant upon transfer 

to suitable media and widely used for plant clonal generation (Bhojwani & Razdan, 

1983; Pierik, 1989). The explants are stimulated to differentiate in shoot and roots using 

specific types of media and grow into a complete plant is known as regeneration and 

organogenesis. The media having comparatively high auxm (2,4-D, 2,4-

dichlorophenoxyacetic acid) form callus which can be further sub-cultured and 

multiplied for clonal production. In some cases, explants e.g. leaf-discs and epidermal 

tissue can also generate plants by direct organogenesis and somatic embryogenesis 

without prevailing callus formation (Hanning & Conger, 1986). 
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The regeneration and growth of plants in in-vitro condition depends on the composition 

of media, the major components of culture media are mineral salts, sugar and water 

while growth regulators, organic supplements and gelling agent are other important 

components including in media (Gamborg, Miller & Ojima, 1968; Gamborg & Phillips, 

1995). The quantity of the components vary for plant species and stage of growth, 

however the most widely used media for plant tissue culture are the basic MS 

(Murashige & Skoog, 1962a) and LS (Linsmaier & Skoog, 1965) media. Many plant 

tissues grow better on solid media while others on liquid media, the solid, liquid and 

semi liquid media formation depends on the absence or presence of gelling agent. Agar 

is the most commonly used gelling agen (Debergh, 1983). 

The growth regulators like auxins to cytokinins in media play important role and their 

ration in media determines the morphogenic response for root or shoot formation as a 

relative high cytokinin : auxin ratio induces shoot production while high auxin : 

cytokinine ratio induces root formation (Skoog & Miller, 1957). Usually high 

concentration of auxine is favoured for root induction but in some cases exogenous 

auxin show inhibitory effect on roots (Guichuan, Jeffery & Elison, 2004; Thomas & 

Street, 1970). Another important supplement in media is silver nitrate which play role 

in maintaining the callus as well as improves the regeneration (Sethi, Basu & Cuha, 

1990), while in high concentration causes necroses, while though as high as 15 mgL-1 

silver nitrate did not show any negative effect on Brassica rapa culture (Kuvshinov et 

al., 1999). 

84 



Chapter 3: Introduction 

3.1.2. Abiotic stress tolerance through mutagenesis 

Environmental stresses such as drought, salinity, extreme temperatures, toxic chemicals, 

and excessive ozone or carbon dioxide, are known as abiotic stresses. These stresses 

cause reduction in the productivity and causing average yield loss of more than 50% for 

major agricultural crops (Boyer, 1982; Bray et al., 2000; Shubha & Akhilesh, 2007). It 

is a major concern for the scientist to reduce the loss of yield but is difficult and about 

impossible to reduce the stresses. So there is ultimate way to develop the stress tolerant 

crops. 

The change in sequence of genetic material is known as mutation, which has become an 

established method of inducing variation within a variety of crop. This method 

contribute significantly to plant breeding (Maluszynski et al., 1995; Nichterlein, 2000) 

in creating genetic variability, which reduces the time to breed new varieties in 

comparison with traditional methods (Cornide, 200 I). Mutation also offers the 

possibility of inducing desired attributes that either cannot be expressed in nature or 

have been lost during evolution (Brunner, 1995). The classical methods of breeding is 

time consuming and sometime inefficient while through DNA mutation or direct gene 

transfer the cultivar might be improved for stress resistance without disrupting the 

genotype and breaking of gene linkages (Zhang et al., 2000). 

The mutation detection through traditional genetic screens mostly not exposed the 

mutation because geneticists select for phenotypes, and sometime only a small 

mutations within a target gene could not examined. Even though the deletion and 

insertion detection by PCR is straightforward, but detection of point mutations, mainly 

inducing by chemicals is challenging, because the PCR amplified fragment does not 

show any change in the size. Single base variation detection has also been improved 
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with advances in single-nucleotide polymorphism (SNP) detection technologies (Kwok, 

200 I). One example of SNP detection technology being applied to reverse genetics is 

(targeting induced local lesions in genomes), in which chemical mutagenesis is 

followed by screening for point mutations (McCallum et al., 2000). 

Substances that cause mutation known as mutagens, mutagens may be either physical or 

chemical, and both are in conventional plant breeding. The chemical mutagens that 

induce mutation in plant cell cultures could be divided into two groups, base analogous 

and alkaline agents. Alkaline agents include N-nitrose-N-ethylurea (NEU), N-nitrose-N­

methylurea (NMU), alkyl sulphate and nitrogen mustards. NEU or NMU are 

biofunctional agents (Charlotte, 1976) and can induce depurination and depyrimination. 

Both NEU or NMU have been shown to induce gene mutation (deletion), transition 

mutation, unscheduled DNA synthesis (UDS), sister chromatid exchange (SCE) and 

induce DNA-DNA and DNA protein crosslink (IAEA, 1977; Negrutu, 1990). They can 

also cause mispairing of nucleotides with their complementary bases, so introducing 

base changes after replication (Ashbumer, 1990; Haughn & Somerville, 1987). Multiple 

mutations also occurred more frequently in NMU-treated plants. There is great scope 

for increasingly both the frequency and spectrum of mutations in treatments with 

chemical mutagens through suitable modification of the treatment conditions (Savin et 

al., 2003). 

3.1.3. Dehydration stresses effect on plant 

In some cases the plant response to different stresses share similar steps in the 

mechanism e.g. freezing, drought and salt stresses disturb the osmotic homeostasis of 

the plant cell and these stresses affect the water relations of plant and causes cellular 

dehydration and collectively these stresses are known as dehydration stresses (Erwin et 
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al., 2007). Frost, drought and salinity due to their wide range occurrence may cause the 

most fatal economic losses in agriculture. It was found through a short term treatments 

experiment on Arabidopsis responded to cold, drought and salt stresses in a quite 

specific way (Kreps et al., 2002) and a cross talk in the signalling pathways appeared in 

frost hardening by drought or salt treatment and showed cooperative actions for all of 

these stresses (Erwin et al., 2007; Mahajan & Tuteja, 2006 ). 

The cell membrane damage occurs during dehydration or rehydration and the capability 

of plant to avoid or repair this damage to membrane is essential for plant to survive 

under dehydration stresses. some of the mechanisms leading to adaptation to 

dehydration, has been possible by the identification and manipulation of key genes and 

transcription factors to alter metabolism and increase plant tolerance to dehydration 

(Chaves & Oliveira, 2004 ). The dehydration stress tolerance in crop could be improved 

by engineering and manipulation of osmoprotectent syntheses pathway in the 

susciptable plant (Rathinasabapathi, 2000). Gene manipulation for the production of 

osmolytes such as mannitol, fructans and proline etc might increase resistance to 

dehydration (Ramanjulu & Bartels, 2002). Modification of plant for increased 

dehydration tolerance is mainly based on the manipulation of either signalling or 

transcription factors or genes that directly protect plant cells against water deficit, but 

understanding of the molecular and biochemical mechanisms is still a challenge for 

scientists (Babu & Henry, 2006). 
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3.1.4. Frost stress injuries in plant 

Freezing temperatures damage the plant cells and tissues as well as entire plant, while 

the cell membrane has been the primary site of freezing injury (Levitt, 1980). The ice 

formation induces in intercellular spaces and cell wall on exposure to freezing 

temperature, in some cases the ice nucleating agents such as dust or ice nucleating 

bacterial proteins further facilitate the ice formation (Brush, Griffith & Mlynarz, 1994). 

The freezing temperature destabilize the cell membrane (Uemura et al., 1995) and the 

water from the cytoplasm moves outside through the plasma membrane by osmosis and 

that's why the freezing injury is mainly caused by cellular dehydration (Xin & Browse, 

2000). Certain lipids in cell membrane form an inverted structure with hexagonal 

packing symmetry which disrupts the bilayer of cell membrane and the plasma 

membrane becomes permeable to water and solutes and loses osmotic responsiveness 

(Uemura et al., 1995; Webb, Uemura & Steponkus, 1994; Xin & Browse, 2000). The 

solute concentration of the cytoplasm play vital role and the removal of the net amount 

of water from the cell some time depends on the solute concentration in cytoplasm (X in 

& Browse, 2000). 

3.1.5. Cold acclimation and frost stress tolerance in plants 

Freezing tolerance increases in many plants on exposure to non freezing low 

temperature for certain period, the process is known as cold acclimation (Levitt, 1980; 

Sakai & Larcher, 1987; Smallwood & Bowles, 2002; Thomashow, 1999). Cold 

acclimation is a collective processes and whole plant display a combination of 

responses in different organs and tissues during cold acclimation which could not 

display by a single tissue or cell culture (Pearce et al., 1998). 
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Cold acclimation has provided an avenue for investigation that how plant cells can 

tolerate freezing and the biochemical changes that occur during cold acclirnation 

include the changes essential for freezing tolerance. However, the biochemical changes 

are not necessarily all adaptive to freezing stress (Gareth, 200 I). Further several 

plausible reasons for biochemical changes occurring during acclimation were listed 

(Gareth, 200 I; Pearce, 1999). In association with low temperature stress, there may be 

adaptive responses to other stresses as well, such as attack by snow moulds or ice 

encasement and developmental responses such as vernilization also entail novel 

biochemistry and some biochemical changes may be not adaptive (Gareth, 200 I). 

Therefore, while other changes may make zero or negative contribution (Gareth, 200 I). 

Light also plays an important role in cold acclirnation process as moderate to high light 

is essential for cold acclimation process, in the absence of light, photo-inhibition leads 

the plant to form reactive oxygen species causing oxidative stress (Foyer, Lelandais & 

Kunert, 1994; Wanner & Junttila, 1999). 

The cold acclirnation capability of plant is a quantitative trait involving a large number 

of genes, and massive reprogramming of gene expression is associated with cold 

acclimation (Mantas, Pekka & Tapio, 20 I 0). It has been estimated in Arabidopsis that 

5-25% of the genes show varied patterns of expression during low temperature (Mantas, 

Pekka & Tapio, 2010; Robinson & Parkin, 2008). The induction of low temperature 

responsive genes resulted in a large amount of physiological, metabolic, and 

biochemical alterations that determine the ultimate level of freezing tolerance achieved 

during acclirnation (Mantas, Pekka & Tapio, 2010). These alterations include the 

changes in the level of antioxidants, phytohormones, and changes in the level of 

production of compatible solutes and protective proteins, the proteins including 
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chaperons and some of other proteins of unknown functions (Aalto, Heino & Palva, 

2006; Mantas, Pekka & Tapio, 2010) 

In this part of the the study, the N-nitrose-N-ethylurea (NEU) and N-nitrose-N­

methylurea (NMU) created mutants were regenerated, sub-cultured the clones after each 

3-4 months continuously for the maintenance of the material for the project and clones 

were screened for frost, drought and salt stress resistance. The frost stress resistance was 

also investigated under cold acclimation conditions. 
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3.2 Aim and objectives 

Aim 

The aim of physiological assessment was to confirm the persistence of abiotic stress 

resistance tolerance in mutants clones over many clonal generations, which was 

important to identify the response of each mutant line prior to further molecular and 

biochemical characterization of mutants. 

Objectives 

• To regenerate the experimental clones of cauliflower to maintain materials for 

project work 

• To screen the cauliflower in-vitro clones (mutants and control) under frost stress 

• To analyse in-vivo clones (mutants and control) of cauliflower under frost stress 

• To screen the cauliflower in-vitro clones (mutants and control) under drought stress 

• To analyse in-vivo clones (mutants and control) of cauliflower under drought stress 

• To evaluate the cauliflower in-vitro clones (mutants and control) under salt stress 

• To screen in-vivo clones (mutants and control) of cauliflower under salt stress 

• To investigate the effect of cold-acclimation on frost stress resistance in cauliflower 

clones (mutants and control) 

• To investigate multi-stress potential of each mutant 
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3.3 Materials and methods 

3.3.1 Selection of abiotic stress resistant mutant clones. 

The clones were maintained in in-vitro condition for about three years by continuous 

sub-culturing and reassessed for selection of stress resistant clones (Fuller et al., 2006). 

In the current study, the highly resistant mutants from mutated population were selected 

on the bases of previous screening (Fuller et al., 2006) and the resistant clones were 

regenerated, propagated and screened once again physiologically for the frost, drought, 

and salt stress resistance. After stress resistance confirmation through physiological 

screening, the highly resistant clones were then subjected to molecular and biochemical 

investigations. For the present study, the selected clones were designated as KC 

(control) and the mutants Kl, K4, K9, Kll, Kl3, Kl8, Kl9, and K21. 

3.3.2 Regeneration and propagation of clones 

For regeneration and propagation of clones, the S23M media (Kieffer, Fuller & Jellings, 

1995) was prepared and 20 ml of medium was poured into each sterile plastic pot (5cm 

x 4cm) under aseptic conditions, and allowed to cool overnight at room temperature. 

Three different shoot induction media were tested with different agar concentration (T I 

= 7g, T2 = 4g, T3 = Og) and their responses on shoot induction was observed. 

Curds were used as explants materials for regeneration and clonal proliferation. In the 

green house, the explants were collected in labelled plastic bags and brought to 

laboratory in a cooled insulation box. Curds were cut into small pieces and treated with 

70% ethanol for 40 seconds and then with I 0% bleach for 5 m in for surface sterilization 

and then washed 5 times with sterilize dH20 in order to remove bleach from the 

surface. The explants (2-3 mm) were then inoculated into shoot induction media in 
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plastic pots. The pots were kept in incubator at 23 °C and 8 h photoperiod and 

observation was carried out until shoots were produced. The young shoots after 5 weeks 

period were excised with sterile sharp scalpel and inoculated into hormone free S23M 

media in plastic pots and allowed at 23 °C with 16 h photoperiod in the incubator. 

Observed until complete rooted plantlets were regenerated and sub-culturing of these in­

vitro clones on S23M hormone free media was carried out regularly after each 3 to 4 

months for maintenance of the plant materials for continued experimentation during the 

whole project work. All of the tissue culturing steps were performed in sterile 

conditions in laminar flow cabinet. 

3.3.3 In-vitro clones transfer to in-vivo conditions 

The in-vitro clones were grown on S23M medium at 23 °C and 16 h photoperiod light 

intensity 180.8 !!mol m·2 s· 1 were transferred to in-vivo conditions through the weaning 

process (Figure 12) and through this process I 00% successful transfer of all clones was 

obtained. The process in detail has been discussed earlier in chapter 2. 
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a. b. 

c. d. 

e. f. 

g. 

Figure 12: Weaning process: transfer of in-vitro clones into in-vivo conditions. 
a. removal of in-vitro plants from agar media and fungicide spray on roots, b. in­
vitro plants transferred to compost, c. plants in growth cabinet, d. plants in green 

house under shade, e plants transfred into bigger pots in green house, f young 
plants, g. mature plants. 
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3.3.4 Frost stress resistance 

Both of in-vitro as well as in-vivo clones were examined for frost stress resistance at 

different temperatures i.e. + 1 °C, -2 °C, -4 °C, and -6 °C with hold of two hours at each 

freezing temperature (Figure 13). The leaf discs assay was performed under cold-

acclimated and non-acclirnated conditions using the electrical conductivity technique 

described by Fuller et al (2003; 1989). For acclirnation process, four fully expanded 

upper leaves from each genotype in the greenhouse (In-vivo) were excised and 

transferred to the laboratory in insulation box containing ice packs. Two leaves were 

used as non-acclirnated and the other two leaves were acclirnated in incubator (Snijder 

scientific) at 4 °C, 8 h photoperiod for 14 d. In the same incubator the in-vitro clones 

were acclimated as entire plant for 14 d. The percent relative electrical conductivity was 

measured as REC% = Post freezing EC/ Post autoclaving EC x 100. 

a 

oc 
2.0 

0 
-2.0 
-4.0 
-6.0 
-8.0 

Freezing treatments 

-10.v;----~----~----~----~----~----~ 

25/4 18:2721 :27 26/4 00:2703:27 06:27 09:27 12:27 

b 

Figure 13: Frost resistance test. 
(a). Example of the temperature trace of a frost test at + 1, -2, -4, -6 °C to study damage 

of cell membranes. (b). General view of the set-up for measuring electrical 
conductivity. 
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3.3.5 Drought stress resistance 

Leaf discs assay was canied out for drought stress resistance for both of in-vivo and in­

vitro plants. The basal MS medium (Murashige & Skoog, 1962b) at ration of 4 gr1 was 

dissolved in dH20 and added with different concentrations of mannitol as 150, 250, 

350 and 450 mM and control media was used without mannitol. Leaf discs were 

incubated overnight in sterilized dH20 in labeled an sterilized petri plates at room 

temperature to become turgid (Figure 14) and after measuring turgor weight (TW), leaf 

discs were allocated to test media in petri dishes and incubated for seven days at 23 °C 

with 16 h photoperiod and re-measured the weight (fresh weight FW) then dried the 

discs for dry weight measurement. Percent relative water content in discs was measured 

as RWC% = (FW-DW) I (TW-DW) x 100. 

Figure 14: Drought resistance test. 
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3.3.6 Salt stress resistance 

Plants were screened for salt (NaCI) resistance using a leaf disc assay. Leaf discs of one 

centimetre diameter were prepared from the leaves of both in-vivo and in-vitro clones. 

Leaf discs from in-vivo clones were surface sterilized in 70% ethanol for a few seconds, 

followed by shaking in I 0% bleach solution (sodium hypochlorite) for -I 0 minutes 

followed by three rinses with sterile distilled water. The in vitro clones were used direct 

from culture pots. 

Leaf discs were transferred to Petri-dishes containing 20 ml sterile liquid medium 

(M&S salts at 4 g 1-1) supplemented with NaCl at concentrations of350 and 550 mM. 

Media without NaCI was used as control media. Leaf discs damage was assessed after 

3, 5 and 7 days using a five point score based on the percentage greenness of the leaf 

discs. 
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3.4 Results 

3.4.1 Regeneration and sub-culturing of experimental clones 

Responses to different media was different for the same genotype, the medium with 4 

gr' agar (T2) was found to be best for shoot induction and subsequent growth rate 

whilst the medium with 7 gr 1 agar (TI) was better than the medium without agar (T3) 

which tended to leave the explants vitrified. The difference in shoot induction and 

growth was observed after three weeks period but this difference was more clear after 5 

days period as shown in Figure 15. 
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After 3 weeks After 5weeks 

Tl (agar 7 g!L) T l (agar 7 g!L) 

T2 (agar 4 g!L) T2 (agar 4 g!L) 

T3 (agar 0 g!L) T3 (agar 0 g!L) 

You ng shoots on rooting media 

Figure 15: Regeneration response of clone on different media. 
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3.4.2 Assessment of in-vivo and in-vitro mutants for frost resistance under cold­
acclimation 

Cell damage was increased with lowering temperature i.e. -2 °C, -4 oc and -6 °C and 

highest damage in terms of highest relative electrical conductivity was observed at -6 

°C. The response of non-acclimated and acclimated in-vivo plants at + 1 °C and -2 °C 

(Figure 16 A and B) were similar and showed less leakage of electrolytes from the cells 

but at -4 °C and -6 °C (Figure 16 C and D) an increase in electrical conductivity was 

observed. The acclimation process was very effective in increasing frost resistance in 

all in-vivo genotypes but was more effective in the mutant genotypes and clear 

differences existed among acclimated mutants at -6 °C with some mutants like Kl8, 

K 19, K I and K 11 showing high resistance as compared to control clone (Figure 17). 

Other mutants like K13, K4, K9 and K21 showed moderate resistance as compared to 

control and the highest resistant mutant was found to be K18 followed by K19 (Figure 

17). 

The acclimation process was also found to be effective for the increase in frost tolerance 

in in-vitro clones. Figure 18 showed that acclimation process increased tolerance over 

non-acclimated plants. All the cold acclimated mutants showed more tolerance 

compared to the control and electrical conductivity increased with lowering the 

temperature (Figure 18 A-D). All clones in the in-vivo state showed higher resistance 

than in the in-vitro state in terms of relative electrical conductivity. One reason for this 

difference between in-vivo and in-vitro might be the young and soft in-vitro growing in 

incubator under constant optimum temperature and humidity prior to exposure to 

freezing, while in-vivo plats were mature and grown in glass house environment where 

plants are constantly challenged with some minor stresses. It can be concluded from 

these results that K18, K19, Kl and Kll are highly resistant to frost compared to 

control. 
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Figure 16: Effect of cold acclimation on leakage from cell membrane of in-vivo clones 
at different freezing temperatures. 
(A) + 1 °C, (B) -2 °C, (C) -4 °C and (D) -6 °C. Lower the electrical conductivity (EC%) 
means less damage as measured by leakage against freezing temperature. The clone KC 
is control and Kl - K21 are mutants. 
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Figure 17: Response of cold acclimated in-vivo clones at -6 °C . 
Lower the %EC higher the frost resistance. The clone KC is control and K 1 - 1<21 are 
mutants. The results show that the mutants are significantly different while some of the 
mutants are highly significant when compared with the control clone. 
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Figure 18: The cold acclimation effect on in-vitro clones. 
Response of clones at different freezing temperature, (A) +1 °C, (B) -2 °C, (C) -4 °C 
and (D) -6 °C. Lower the electrical conductivity (EC%) means less damage as measured 
by leakage. The clone KC is control and Kl - K21 are mutants 
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3.4.3 Evaluation of in-vivo and in-vitro shoots of mutants for salt resistance 

The increase in salt concentration and time of exposure showed a decrease in greenness 

in both of in-vivo (Figure 19A) and in-vitro (Figure 19B) clones. After 3 days 

incubation the differences between genotypes was not obvious but by day 5 differences 

were clear and on day 7 there was very clear differentiation between mutants and the 

greenness in in-vivo clones reduced with increase in salt concentration from 350 mM to 

550mM (Figure 20 A and B). Some clones had also progressed from green to white and 

the higher concentration ofNaCI (550 mM) in liquid media showed clear differences in 

colour change (Figure 20B) and control clone discs changed from dark green to white 

after seven days treatments (Figure 20B and 21 ). Some mutants, e.g. K19, K9, showed a 

high level of resistance and maintained 83% and 73% greenness respectively at 550 mM 

NaCI after 7 days (Figure 20B and Figure 21 ). All the in-vivo mutants showed 

significant difference when compared with the control (Figure 22). Moderately resistant 

mutants (KI3, K11 and K4) showed mix of colours of light green and with some discs 

white. Control leaf discs showed less than 40% greenness after 5 days treatment at 550 

mm NaCI (Figure 22). In-vitro grown clones showed the same general response to in­

vivo clones with increasing salt concentration and exposure time of treatments (Figure 

19B) and all the mutants showed higher greenness compared to control (Figure 23A-B). 

All the mutants showed more resistance than the control clone and among the mutants 

the response of each mutant was different and the control line changed from green to 

white after 7 days treatment at 550mM salt (Figure 23B and Figure 21D). These results 

confirmed that their resistance had been maintained after long time and many sub­

cultures of the clones. 
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Figure 19: Effect of salt treatments on greenness of leaf discs. 
Salt stress tolerance of clones after 3, 5 and 7 days treatments with different 
concentrations of salt (TO= without salt, Tl= 350 mM NaCl, T2= 550mM NaCl): In­
vivo clones (A) and in-vitro clones (B), the values represent mean of all clones. 
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Figure 20: The response of in-vivo clones at different NaCl concentrations. 
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The response of clones at 350 mM (A) and 550 mM salt in media (B) after 3, 5 and 7 
days treatments. KC is control and Kl-K21 are mutants. 
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Mutant (K19) Control 

A. B. 

Mutant (K9) Control 

c. D. 

Figure 21: The effect ofNaCl concentrations on leaf discs after 7 days treatments. 
A and B.are in-vivo klones, C and D are in-vitro klones. TO = Control media without 
NaCl, Tl = 350 mM NaCl in media, T2 = 550 mM NaCl in media, Greenness indicate 
resistance. 
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Figure 22: Response of in-vivo clones to higher salt concentration (550mM) after 5 
days treatment. 
KC is control and Kl - K21 are mutants. Higher greenness indicates salt resistance. 
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Figure 23: Response of in-vitro clones at different salt concentrations. 
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The individual genotype response of in-vitro clones at 350 mM (A) and 550 mM NaCl 
in media (B), after 3, 5 and 7 days of treatments. KC is control and Kl-K21 are mutants. 
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3.4.4 Assessment of in-vivo and in-vitro mutants for drought resistance 

Results showed clear differences in leaf disc relative water contents of in-vivo clones 

after treatment with different mannintol concentrations and the relative water content 

was reduced while increasing the mannitol concentration showing the dehydration effect 

ofthe treatments, and there was differentiation between the genotypes (Figure 24). The 

mutant genotypes maintained more water even at 450 mM mannitol as compared to 

control plant indicating drought resistance (Figure 25). All the mutant genotypes 

showed more than 50% RWC at 450 mM while control plant maintained less than 50% 

RWC at 450 mM mannitol (Figure 25). The highly resistant mutants K21, Kl, Kl9 

and Kl8 showed 73%, 69%, 62% and 57% respectively at 450 mM (Figure 25). The in­

vitro plants showed similar response to in-vivo plants with increasing mannitol 

concentration reducing the water contents of leaf discs (Figure 26). This decrease in 

water contents was very obvious between 150 mM and 350 mM but decreased 

somewhat at 450 mM (Figure 26). Figure 27 showed that even at the highest 

concentration of mannitol (450 mM) some mutants like Kl, Kl9, and K21 maintained 

higher water content compared to the control (KC). It can be concluded that mutants 

like Kl, Kl9, and K21 were highly resistant to mannitol induced drought as compared 

to control plant. 
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Figure 24: The relative water content (RWC%) in leaf tissues of in-vivo clones after 
treatments with mannitol at different concentrations. 
TO= control without mannitol, Tl= 150 mM, T2= 250 mM, T3= 350 mM and T4= 450 
mM mannitol in media. High R WC% indicates more resistant to drought. KC is control 
and Kl - K21 are mutants. 
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Figure 25: Response of leaves tissues of in-vivo clones to 450 mM mannitol in media. 
KC is control and Kl - K21 are mutants. High %RWC more resistant to drought. 
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Figure 26: The relative water content (RWC%) in leaf discs of in-vitro clones at 
different concentrations of mannitol in media. 
TO= control without mannitol, Tl = 150 mM, T2= 250 mM, T3= 350 mM and T4= 450 
mM mannitol in media. High R WC% indicates more resistant to drought. KC is control 
and Kl - K21 are mutants. 
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Figure 27: Response of leaf discs of in-vitro clones at 450 mM mannitol in media. 
High the RWC, more resistant to drought. Kl to K21 are mutants and KC is control. 
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3.4.5 Correlations between in-vitro and in-vivo clones for drought, salt and frost 
resistance 

The leaf discs either from in-vivo or from in-vitro clones, both showed damage on 

exposure to drought, salt and frost stresses. Overall, the in-vivo grown clones showed 

higher level of resistance over in-vitro clones. There was a significant positive linear 

correlation between the in-vitro and in-vivo clones for drought stress resistance (Figure 

28) and salt stresses resistance (Figure 29). For frost stress resistance a positive 

correlation was found between in-vitro and in-vivo clones but the relation was not 

significant (Figure 30) which might be due to the higher susceptibility of soft and 

fragile leaves of in-vitro clones to lower temperature. 
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Figure 28: Correlation of relative water content (RWC %) between in-vivo and in-vitro 
clones. 
In the presence of different mannitol concentrations in media (A) 150 mM, (B) 250 
mM, (C) 350 mM, (D) 450 mM mannitol in media. 
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3.4.6 Correlation of proline witb salt and drought resistance in clones 

The proline level was measured in in-vivo clones and correlated with greenness% (salt 

stress) and relative water content % (drought stress) of clones leaf discs. A positive and 

significant correlation was found between greenness% and proline level in clones 

(Figure 31), and similarly a positive found in relative water content% and proline level 

in clones (Figure 32). 
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3.4.7 Multi-stress resistance summary of mutants 

The summarize data of clones resistance to different stresses are presented in Table 2. 

All of the mutants except a few showed higher resistance over control for all of the three 

frost, drought, and salt stresses, which clearly demonstrated the existence and stability 

of the chemically induced mutations through many sub-culturing in in-vitro conditions 

over time. The cold-acclimation process was found highly effective for frost resistance 

over non-acclimated clones and even in the control clone the level of resistance 

enhanced over non-acclimated (Table 2). Among the mutants the response of individual 

mutant was different for each of the stresses, some mutants were resistant to double 

stresses like K4, Kl3 and Kl8. Other mutants like KI, K9, KII, KI9 and K21 were 

triple stress resistant (Table 2). 
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Table 2. Summary of the resistance to multi-stresses 

Frost resistance 

Clones (K) Acclimated Non-acclimated Drought resistance Salt resistance 

Kl ••• • •• • 
K4 ••• •• * -
K9 ** * •• ** 

Kll ••• • * • 
K13 ••• •• * -
K18 ••• ** * -
K19 *** ** ••• -

1<21 •• • 
KC * -

KC is control and K I - K21 are mutants. 

Highly resistance(***) 
Resistant (**) 
Moderate(*) 
Sensitive (-) 

••• 
-

Frost resistance on the bases of% relative electrical conductivity at -6 °C: 

Acclimated 
<45 (***) 
45-60 (**) 
60-75 (*) 
>75 ( -) 

Non-acclimated 
<55(***) 
55-70 (**) 
70-85 (*) 
>85 ( -) 

• 
-

Drought resistance bases on % relative water content at 450mM mannitol for 7 d 
treatment. 
<50 ( -) 
50-60 (*) 
60-70 (**) 
>70 (***) 

Salt resistance on the bases of% greenness at 550 mM NaCI for 7 d treatment 
<50 ( -) 
50-60 (*) 
60-75 (**) 
>75 (***) 
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3.4.8 Correlations among frost, drought, and salt stress resistance in mutants 

The stress resistance responses of mutants were examined by correlation for the 

relationships between the responses to all of the three stresses resistance. There was a 

positive correlation between drought and salt stress resistance (Figure 33A) as well as 

the correlation between drought or salt stress resistance with frost resistance of non­

acclimated mutants were also positive as shown in Figure 33B and 33C respectively. 

While very weak or no relationship between drought or salt stress resistance with frost 

resistance of cold acclimated mutants were found (Figure 34A & B). 
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Figure 33: Correlation among Non-acclimated frost, drought and salt resistance. 
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Between salt and frost resistance. 
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3.5 Discussion 

The results clearly demonstrated altered abiotic stress resistance in chemically (NEU & 

NMU) induced mutants of cauliflower compared to control plants. This confirmed the 

persistence of the mutations over-long time storage and many sub-cultures of the clones. 

In addition, the in-vivo forms of these mutants correlated positively with in-vitro 

screening of resistance, indicating a stability of the mutation after regeneration. The 

mutants used in this investigation had been created by chemical mutagenesis and the 

results show that this approach is successful in producing mutant lines with improved 

resistance. These fmdings suggest that the NEU and NMU could be used in plant 

breeding programs for Brassica o/eraceae (IAEA, 1977; Negrutu, 1990). 

The simple leaf disc assay refined in this investigation was found to successfully 

differentiate the control and mutant clones for salt, drought and frost stress resistance 

and the selection process used in this investigation clearly show that this type of 

selection in cauliflower is very useful to generate abiotic stress resistant genotypes like 

in other Brassica species (Ashraf & Harris, 2004; Ashraf & McNeilly, 2004; Fuller et 

al., 2006). 

The Electrical Conductivity Test (EC) was confirmed as a useful test and cold 

acclimation effectively reduced the EC and indicated increase in frost resistance, 

confirming previous fmdings (Fuller et al., 2006; Jianhua et al., 2007; Thornashow, 

1999). 
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In all tests there was no significant leakage of electrolytes from leaf discs treated at -2 

°C , while there was a sharp increase in leakage at -4 and -6 °C. This suggests B. 

oleraceae is constitutively resistant to -2 °C. The mutants showed significant variation 

in EC values were differentiated at both -4 °C and -6 °C. Cold acclimation at 4 °C with 8 

h photoperiod for 14 d appeared good enough to reduce leakage of electrolytes and 

activate cold acclimation responses in Brassica olearacea. Low EC% due to no or less 

leakage of electrolytes is described in term of the stability of cell membranes. An 

increased leakage of electrolytes reflects the damage to cell membranes (Maheshwari et 

al., 1999; Srinivisan et al., 1996). Guy (2003) found that the ability of higher plants to 

acclimate and tolerate freezing stress is a complex quantitative trait and the product of 

activities of not one but a sizable suite of genes 200-2000. It is possible that the mutants 

produced here carry the same or similar mutations. 

It was assumed that the electrical conductivity of the leachate is directly proportional to 

the extent of damage of leaf discs caused by low temperature. There was wide range of 

EC values among low temperature treated leaf discs either unacclimated or acclimated 

genotypes. This is due to variations in leaf discs thickness and lack of complete 

homogeneity of the discs, and necessitated the calculation of relative electrical 

conductivity.Even with the use of relative conductivity, there is variation and therefore 

replication and randomisation are important in experimental designs. 

Generally cauliflower can withstand light frost ( -2 °C) and the results showed that there 

are possibilities to increase frost resistance in Brassica olearcea by exposing to low 

temperatures (cold acclimation). Genetic diversity also exist in genotypes of B. oleracea 

after acclimation (Fuller, Gout & Tapsell, 1989). The variation in frost resistance and 
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low temperature induced acclimation may be exploited for selection and breeding 

programme for frost prone areas. 

The results clearly showed differentiation in mutants for salt resistance and this 

difference was very prominent after 7 days of salt treatments. All of the mutants showed 

higher resistance compared to the control clone. These results confirm the previous 

findings of Fuller et al (2006) who reported 80% damage for control population and 

significant degree of resistance with less than 50% damage for selected population. 

K.ingsbury et al (1984) reported that sensitive species were more impaired by salt stress 

than resistant one due to reduced photosynthesis and a greater osmotic shock. Munns et 

al (2002) also observed that salinity reduces the ability of plants to take up water. Salt 

stress leads to both an osmotic stress which can be like freezing stress but also to 

sodium poisoning as potassium channels cannot distinguish between Na and K and 

excess Na uptake is toxic. 

A technique used previously by Fuller et all 2006 for salt stress resistance screening of 

clones was followed in the present study and a similar response was found that confrrms 

the effectiveness of the technique. The screening technique effectively discriminated the 

clone (having different genetic make up) in term of greenness scoring of leaf discs 

floated in a saline liquid media. 

Leaf discs of control clones lost their greenness (chlorophyll) resulting in a bleaching 

effect under salt stress. It might be suggested that leaf discs of control clone lost 

chlorophyll as a symptom of salt stress injury or that the plasmalemma is damaged and 

the cell contents leak out and the cell dies. Gibon et al (2000) hypothesised that the loss 

of chlorophyll was a result of stress induced senescence and Huang and Redman ( 1995) 
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proposed the death of leaves due to the build up of Na in tissues which would prevent 

the supply of other nutrients to leaves leading to the death of tissues. 

Different selection methods in Brassicas have been used for salt tolerance by using 

different concentration of NaCl e.g. Jain et al (1991) performed in-vitro selection for 

salt tolrence in Brassica juncea using cotyledon explants, callus and cell suspension 

cultures in Petri dishes containing M&S agar media supplemented with 0, 0.25, 0.50, 

0.75, 1.0 and 1.25% (w/v) NaCI. 

The clones found to exhibit salt resistance might have some osmo-protective or specific 

ion toxicity resistance mechanisms. Osmo-protective mechanism for salt resistance 

depends upon the genetic make up of plants (Moghaieb, Saneoka & Fujita, 2004)and 

specific ion toxicities depend upon adaptation to sodium toxicity (Kingsburry & 

Epstein, 1986). 

Fuller et al (2006) regarded cauliflower in-vivo having the damage of greenness of leaf 

discs less than 50% showing significant degree of resistance. Following this criteria at 

day 7 of NaCl treatment, the in-vivo mutants K1, K9, K11, K19, and K21 showed less 

than 50% loss of colour and therefore showed salt resistance, while others showed a 

colour change of 50% or more and were classified as sensitive to NaCI. 

The results of the drought resistance tests demonstrated a clear variation in relative 

water content (RWC) at different concentrations of mannitol and RWC decreased with 

an increase in mannitol concentration.Also the response of each clone was different at 

each mannitol concentration. Some mutants such as K1, K9 and K21 showed about 70% 

RWC even in the presence of high 450 mM mannitol in the media with no symptoms of 
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necrosis. Chandler and Thorpe ( 1987) also reported similarly that mannitol up to 440 

mM concentration was not toxic in the screening medium and all unselected replicate 

explants remained green and healthy. The present findings confirmed the safe use of 

mannitol with B. oleraceae indicating it was a suitable stressor for induced drought 

stress resistance screening of cauliflower leaf discs. 

Mannitol is an important photosynthetic product in higher plants and some algae, which 

can enhance tolerance to dehydration stress mainly through osmotic adjustment 

(Loescher et al., 1992) and many crop genotypes have been screened for drought 

resistance using mannitol induced drought e.g in-vitro screening of Prunus accessions 

(Rajasheker et al., 1995), legumes (Grezesiak et al., 1996), sugar beet (Sadighian & 

Yavari, 2004). 

Relative water content (RWC) is suggested as a sound index of water status in plant 

tissues (Diaz-Perez, Shackel & Sutter, 1995). In the present investigation the 

mechanisms leading to clonal variation on the basis of RWC are unknown but one 

might be osmotic adjustment allowing uptake of water from the mannitol supplemented 

media. Osmotic adjustment in plants under stress has been reported in Brassica species 

(Chandler & Thorpe, 1987; Kumar et al., 1984), in sorghum (Bium & Sallivan, 1986) 

and in wheat (Moinuddin et al., 2005). Cell wall elasticity may also be the cause for 

variable RWC (Kumar & Elston, 1992) and both osmotic adjustment and cell wall 

elasticity might have adaptive mechanisms to drought stress. 

Osmotic effects are similar in Frost, Salt (NaCI) and Drought (Mannitol) stress but 

specific ion toxicities are specific to Salt stress. Specific ion toxicities are due to sodium 

and chlorine accumulation in a tissue to damaging levels and damage is visible as a 
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foliar chlorosis and necroses (Ferguson & Grattan, 2005). Leaf discs greenness scoring 

for salt resistance was based on the magnitude of foliar chlorosis and necrosis, the 

damage specific to salt stress resulting poor or no relationship to frost or drought stress, 

as in frost stress electrolytes leakage (EC%) and in drought stress relative water content 

(RWC%) was measured instead of leaf discs greenness score. In the present work, 

improved resistance to drought, salinity and sub-zero temperatures was demonstrated. 
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3.6 Conclusions 

The physiological analysis of in-vivo and in-vitro clones (mutants and control) for frost, 

drought and salt stress resistance indicated that the mutations were expressed both in in­

vivo as well as in in-vitro clones after many clonal generations and the mutants 

maintained higher resistance over control plants. This fulfilled the aim of the frrst part 

of this investigation and confirmed that the second aim, molecular and biochemical 

analysis could be pursued. 
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4.1 Introduction 

4.1.1 Cold acclimation and the CBF regulon 

The exposure of many plants for a period to non freezing low temperature increases 

their freezing tolerance and this phenomenon is known as cold acclirnation 

(Thomashow, 1999). Cold acclimation plays an important role in freezing tolerance as 

shown by early research that cold-acclimated cabbage and spinach synthesized proteins 

protect thylakoid membranes against freeze damage but such proteins were not found in 

non-acclimated plants (Hincha, Heber & Schmitt, 1989; Volger & Heber, 1975). The 

cryoprotective activity of these proteins was I 0,000 times higher than sucrose in 

protecting thylakoids against freeze-thaw damage (Hincha, Heber & Schmitt, 1989; 

Volger & Heber, 1975). 

The cold acclimation process is a polygenic trait and a variety of physiological and 

biochemical changes take place during acclimation. These include changes in 

membrane lipid composition (Lynch & Steponkus, 1987; Uemura & Steponkus, 1994), 

the increase in production of compatible osmolytes such as proline, and soluble sugars, 

as well as increased levels of antioxidants (Dorffling et al., 1997; Kishitani et al., 1994; 

Koster & Lynch, 1992b; Murelli et al., 1995; Nomura et al., 1995; Tao, Oquist & 

Wingsle, 1998), abscisic acid (Chen, Brenner & Li, 1983), reduction in growth and 

water content in tissues (Levitt, 1980). Even though the whole molecular mechanism is 

still not well understood, various specific profiles of gene expression has been observed 

during cold acclimation (Chunzhen et al., 2009). 

In many higher plants the existence of a transcription factor ICE (Inducer of CBF 

expression), acts at the promoter of CBF/DREB (C-repeat/dehydration responsive 
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element binding factor) genes upon exposure of plants to low temperature. The ICE 

stimulates the transcription of CBFIDREB genes followed by induction of the CBF 

regulon and subsequently freezing tolerance is increased. Eukaryotic regulon is a set of 

eo-expressed genes that share a similar expression profile across multiple temporal, 

spatial, genetic and environmental conditions and under the common transcriptional 

regulations (Jaglo-Ottosen et al. , 1998a; Wieslawa & Eve, 2008). In higher plants the 

model CBF regulon is shown in Figure 35. 

/ 

Figure 35:CBF regulon of model Arabidopsis plant: 

Increased 
Freezing 

Tolerance 

Low temperature leads to rapid induction of the CBF genes ( CBFJ , 2, and 3), which in 
turn results in expression of the CBF regulon of the CRT/DRE-regulated genes. Action 
of the CBF regulon, which includes COR, ERD, (early-responsive to dehydration) and 
yet to be discovered ("XYZ'') cold-regulated genes. Source: Michael F. Thomashow 
www.prl.msu.edu/Publications/ thomashow m.html 

133 



Chapter 4: Introduction 

The constitutive expression ofCBF regulon in some transgenic studies occurs when the 

CBF genes are expressed constantly and this enhances the freezing tolerance without a 

low-temperature stimulus (Gilmour, Fowler & Thomashow, 2004; Gilmour et al., 2000; 

Jaglo-Ottosen et al., 1998b; Liu et al., 1998a). The freezing tolerance in plants conferred 

by the CBF regulon has been shown to involve the production of cryoprotective 

polypeptides such as COR15a (Artus et al., 1996a; Steponkus et al., 1998b) and the 

accumulation of compatible solutes such as sucrose, raffinose, and proline (Gilmour, 

Fowler & Thomashow, 2004; Gilmour et al., 2000; Nanjo et al., 1999). 

4.1.2 Transcription factors (CBFs/DREBs) 

Transcription factors known as C-repeat binding factors (CBFs) (Gilmour et al., J998b; 

Stockinger, Gilmour & Thomashow, 1997b) or dehydration-responsive element binding 

factors (DREBs) (Liu et al., 1998a; Shinwari et al., 1998) have been identified, and 

regulate the expression of cold and dehydration stress responsive genes in plants. These 

transcription factors bind to two analogous regulatory sequences, known as C-repeat 

(CRT; TGGCCGAC) and dehydration-responsive element (ORE; T ACCGACAT) 

which have been identified in the promoters of cold and dehydration stress regulated 

genes (Gilmour et al., 1998a; Liu et al., 1998a; Stockinger, Gilmour & Thomashow, 

1997c). CRT/DRE elements contain the highly conserved core 5 -bp sequence of 

CCGAC, which is able to induce transcription under low temperature, drought and high 

salinity (Baker, Wilhelm & Thomashow, 1994; Yamaguchi & Shinozaki, 1994). This 

transcriptional regulation of genes is essential for plant adaptation to abiotic stresses (Ji, 

Dai & Hong, 2007). 

It has been demonstrated earlier that the CBF pathway appears to be sufficient to 

increase abiotic stress tolerance in plants since constitutive expression of CBF genes in 
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transgenic plants induces expression of CRT -containing genes and results in an increase 

in freezing and drought tolerance without prior stimulus (Gilmour et al., 2000; Haake et 

al., 2002; Jaglo-Ottosen et al., 1998b; Kasuga et al., 1999). However, the presence of 

the CBF pathway is apparently not complete in all plants, either because CBF members 

are not activated in time or for a sufficiently long period, or they are not active, or the 

CBF regulon is smaller. For instance, over-expression of AtCBF3 or the tomato 

LeCBFI, increases stress tolerance in transgenic Arabidopsis, but does not have the 

same effect in transgenic tomato (Zhang et al., 2004). 

The mechanism whereby the CBF genes are activated by low temperature or 

dehydration is not well known but does not appear to involve autoregulation (Gilmour 

et al., 1998a). The role of CBF as transcriptional activator in the expression of 

CRT ID RE containing genes was confmned by the findings of Stockinger et al., ( 1997c), 

where they reported that the CBF protein binds to the promoter of the reporter genes in 

yeast carrying the CRT/DRE sequence in the promoter. The constitutive over 

expression ofCBFI in transgenic plants resulted in expression ofCRT/DRE controlled 

COR genes without acclimation which further confirmed the role of CBF as the 

transcription activator (Jaglo et al., (1998b). 

The transcripts of CBF genes have a very short half-life, of about 7.5 minutes at warm 

temperatures, which is amongst the shortest half life for the plant genes thus far 

described (Daniel G. Zarka, 2003). "The decay rate of transcripts in plants appears to 

be similar to those observed in other multicellular eukaryotes and half-lives range from 

I h for unstable messages, to several days for stable transcripts, the average being 

several hours"(Rodrigo, Gustavo and Pamela 1999). The promoters of the CBF genes 

become inactive promptly within minutes of transferring plants from low to high 
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temperatures, with no transcripts detected in plants after 90 minutes of transferring 

plants from cold to warm temperatures (Daniel G. Zarka, 2003). The transcript levels of 

CBF genes increase within 15 minutes of exposing plants to low temperature, followed 

by the transcript accumulation of the CRT/DRE regulated COR genes at approximately 

2 h (Gilmour et al., 1998a; Shinwari et al., 1998). The COR gene expression is 

regulated by the CBF/DREB transcription factor which binds to CRT/DRE element in 

the promoter of COR genes (lshitani et al., 1997; Shinozaki & Yamaguchi-Shinozaki, 

2000). 

4.1.3 CBF regulation 

There are no evident CRT/DRE sequence in the promoter of CBFs genes, which shows 

that CBF genes do not appear to be controlled by auto-regulation (Gilmour et al., 

1998b). Different factors controlling the expression of cold induced CBF genes have 

been identified, such as ICE (inducer ofCBF expression), which was identified through 

mutational screening. ICE encodes a transcriptional activator, which binds to the CBF 

promoter to start its expression, as negative mutation of ICE/, ice/, almost completely 

abolished CBF3 transcript accumulation even in the presence of low temperatures. On 

the other hand, ice/ showed insignificant effect on CBF2 transcripts, which suggests 

the existence of differences in the activation mechanisms within the CBFIDREB family 

(Chinnusamy et al., 2003). The over-expression of ICE! transcription activator 

enhances the expression of the CBF regulon and subsequently increased the freezing 

tolerance in transgenic plants (Chinnusamy et al., 2003). Another transcription factor 

known as LOS4 that encodes DEAD-box RNA helicase, which plays a positive role in 

CBF expression as in los4-l mutant plants the expression of CBFs. and other 

downstream target genes were reduced (Gong et al., 2002) and los4-l plants were 

highly sensitive to low temperature, that could be due to the impaired expression of 

CBF(Gong et al., 2002). 
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The expression ofCBF genes is repressed by either their own or the products of their 

downstream target genes, which ensuring controlled expression of these genes 

(Chinnusamy et al., 2003; Guo et al., 2002) as shown by Novillo et al. (2004), who 

reported the negative regulation of CBFI/DREBIB and CBF3/DREBIA by the 

expression of CBF2/DREBIC. 

4.1.4 Cold regulated genes (CORIS gene) 

A number of CRT/DRE controlled cold regulated COR genes have been identified 

including COR6.6, COR/5a, COR47, and COR78 (Steponkus et al., 1998b; 

Thomashow, 2001). The products of these genes help in increasing cold or dehydration 

stress tolerance, for instance, the over-expression of COR 15a gene increases the 

freezing tolerance by I to 2 °C in non-acclimated plants (Artus et al., 1996b; 

Thomashow, 200 I) through decreasing the membrane tendency to form detrimental 

hexagonal II phase lipids upon freeze-induced dehydration (Steponkus et al., 1998b). 

The COR 15 gene was identified as an important low temperature induced, cold 

regulated gene in Arabidopsis and was designated as COR 15a (Lin & Thomashow, 

1992). The mature CORI5 protein is designated as CORI5m, and is hydrophilic, 

soluble, and can be detected in soluble protein extracts from chloroplasts (Chentao & 

Michael, 1992). The COR15 gene encodes a 15 kD protein having extensive 

resemblance with LEA proteins (late embryogenesis abundant) in its amino acid 

sequence (Lin & Thomashow, 1992). LEA genes are up-regulated in seeds during the 

dehydration phase and help to protect embryo cells during dehydration. 

Some of the cold-regulated genes encode polypeptides, which are boiling stable and 

COR15 is one of these (Chentao & Michael, 1992). The COR15 proteins are involved 

in the dehydration tolerance process in plants and are found in the stromal 
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compartments of the chloroplasts. Over expression of the COR IS gene reduces the 

susceptibility of membranes to form hexagonal-phase lipids during freezing stress 

(Steponkus et al., 1998a) and subsequently enhances cold tolerance in plants (Artus et 

al., 1996b). 

Many early researchers tried to identify the regulatory mechanism of cold regulated 

genes expression and all found that the CBF/DREB transcription factors are the key 

regulators controlling their expression (Jaglo-Ottosen et al., 1998a; Liu et al., 1998b; 

Stockinger, Gilmour & Thomashow, 1997a). However, there may be other regulatory 

pathways that need to be explored but it is accepted that the CBF/DREB regulatory 

mechanism is the most important regulatory pathway for cold regulated genes 

expression to increase freezing tolerance. 

The COR IS gene plays a particular role in freezing tolerance but also is induced in 

response to water stress (Hajela et al., 1990). There is a common cellular dehydration in 

both freezing and water stress, and cell damage from dehydration occurs (Levitt, 1980; 

Steponkus & Lynch, 1989). So, it is rational to assume that freezing and drought 

tolerance involve associated mechanisms and identical genes activation during these 

stresses is expected (Chentao & Michael, 1992). This has been shown by different 

workers with certain cereal (Siminovitch & Cloutier, 1983) and Brassica species 

(Chentao & Michael, 1992; Cox & Levitt, 1976). 

4.1.5 CBF expression and level offree proline (Pro) 

Different mechanisms in plant cells at the biochemical and molecular level are involved 

to facilitate plants survival in adverse environments. One of the most familiar 

mechanisms in higher plants is the synthesis and accumulation of various low molecular 
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metabolites, that serve as "compatible solutes". These solutes include proline (free 

amino acid), mannitol, sorbitol, trehalose and these compounds play crucial roles in 

cellular response to dehydration stresses (Bohnert, Nelson & Jensen, 1995; Misra, 

Biswal & Misra, 2002; Misra et al., 1990). 

The frrst time proline accumulation under stress conditions was observed in tissues of 

rye grass (Kemble & MacPherson, 1954) and proline was considered mostly to play a 

vital role in balancing of osmotic stress produces by drought or salt stress. Subsequent 

investigations showed that the accumulation of proline may be a part of general 

adaptation to other abiotic stresses as well, including, low temperature, nutrient 

deficiency, exposure to heavy metals and high acidity (Ashton & Desh, 1993). Low 

temperature stress increases proline accumulation in plants (Wanner & Junttila, 1999a) 

and its accumulation contributes to improved freezing tolerance, which was confirmed 

from various freezing-tolerant mutants of Arabidopsis that accumulated proline (Xin & 

Browse, 1998). 

The enzyme D 1-pyrroline-5-carboxylate synthase (P5CS), which is the proline 

biosynthetic enzyme has an essential role in the proline level determinination in plants 

(Yoshiba et al., 1997). The transcript level of P5CS was observed to be increased in 

Arabidopsis in response to low temperature (Xin & Browse, 1998). Further 

investigations were carried out to find the relationship of proline transcript level and 

CBF3 expression and found approximately 4-fold higher P5CS transcript levels in 

CBFJ-expressing non-acclimated plants when compared with non-acclirnated plants 

(Gilmour et al., 2000). 
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CBF over-expression not only increases the levels of COR proteins, but also increases 

the proline and total sugars, and this increase of proline and sugars occur under cold 

acclimation in plants, that contribute to the development of freezing tolerance (Gilmour 

et al., 2000; Thomas how, 200 I). Proline, COR proteins, and sugars biosynthesis are 

regulated co-ordinately and the CBF3 gene play an essential role in this regulation 

(Gilmour et al., 2000). 

The present investigation looked at the molecular and biochemical evidence of the 

existence of the CBF regulon in mutants of Brassica oleracea var. botrytis. The 

investigation was carried out for the identification and expression pattern of 

CBF/DR£81 and COR/5 genes in genotypes and also the proline estimation under cold 

acclimated and non acclimated conditions. 
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4.2 Aim and objectives 

Aim 

The aim of this study was to investigate the presence of CBF regulon pathway in 

mutants of Brassica oleracea var. botrytis and to investigate the response of different 

mutants under cold acclimation. 

Objectives 

I. To optimize a PCR protocol for CBF/DREB I gene detection 

2. To investigate the presence ofCBF regulon in cauliflower (BoCBF) 

3. To investigate the effect of cold acclimation on BoCBF/DREB I expression 

4. To identify the BoCBF/DREB I gene and to determine its sequence homology 

5. To investigate the effect of cold acclimation on COR IS gene in cauliflower 

6. To evaluate the effect of cold acclimation on proline level in mutants 

7. To investigate the correlation of BoCBF/DREB I expression with frost resistance 

8. To investigate the correlation ofBoCBF/DREBI expression with proline 

production 

9. To investigate the correlation between proline production with frost resistance 

under cold acclimation 

I 0. To investigate the relationship of proline and total protein level under cold 

acclimation 
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4.3 Materials and metbods 

4.3.1 Plant materials and growtb conditions 

The in-vitro mutant clones of Brassica oleracea var. botrytis were first transferred to in­

vivo conditions through the weaning process and then grown under cold-acclimating 

and non-acclimating conditions (Figure 36). For cold acclimation, the clones were 

grown in a growth chamber for 14 d at 4 °C, 8 h photoperiod, 180.8 J.lmol m·2 s· 1 light 

intensity and 52 % humidity. Non-acclimated clones were grown in two groups, in a 

growth chamber (22 °C with 16 h photoperiod and with same light intensity and 

humidity as provided during cold acclimation) and in a green house with a minimum 

temperature of 15 °C and 16 h photoperiod natural1ight. 
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a. 

b. 

c. 

Figure 36: Cold acclimation process and plants growth conditions. 
(a) Acclimation in growth cabinet (4 °C, 8 h photoperiod) (b) Non-acclimated clones in 
growth chamber (22 °C, 16 h Photoperiod) (c) Non-acclimated clones grown in green 
house (15 °C, 16 h light). 
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4.3.2 RNA extraction 

For RNA extraction leaf tissues were used. From non-acclimated clones leaves were 

detached after 14 d and from cold acclimated clones leaves were detached after 3 h, 6 h, 

24 hand 14 d of cold acclimation and immediately frozen in liquid nitrogen to avoid 

RNA degradation. The tissues were then ground in liquid nitrogen and I 00 mg of frozen 

tissue powder for each sample was weighed into 1.5 m! RNase free micro centrifuge 

tube (Ambion) and stored at -80 °C before RNA isolation. Leaf tissues samples (100 

mg) were taken from -80 °C and 500 J.ll lysis solution (sigma cat # L8167) added and 

vortexed immediately and vigorously for at least 30 seconds and then incubated at 56 °C 

for 5 minutes. Following the instructions from the kit manufacturer (Sigma cat # 

STRN50) the total RNA was extracted from each clone and the purified RNA in flow 

through eluate was distributed in small aliquots and stored at -20 °C for a short time and 

at -80 °C for long term storage. 

4.3.3 Identification of BoCBFIDREBJ gene 

Total RNA was used as the template for the synthesis of first strand cDNA using 

ImProm-11™ Reverse Transcription (RT) System (Promega cat# A3800) following the 

instruction from the kit manufacturer. Each RNA sample (0.8 J.lg/reaction) was diluted 

with nuclease free water (Sigma wl754) and primer oligos (dT)15 (0.5 J.lg/reaction) were 

combined for a final volume of 5 J.li/RT reaction in a 0.2 ml nuclease free PCR tube 

(Ambion). A final volume of 20 J.ll of RT mixture for each sample was prepared by 

combining 5 Ill of RNA+ oligo (dT) 15 primer mixture with 15 J.ll RT reaction mixture. 

The first strand cDNA was synthesized in the thermal cycler (Perkin Elmer 9700) under 

the thermal cycle i.e. Annealing: 25 °C for 5 min, Extension: 42 °C for 60 min, 

Inactivation of Reverse Transcriptase: 70 °C for 15 min. The amplification of first 
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strand cDNA was made in a 50 1-11 PCR reaction of25 J.ll PCR master mix 2X (Promega 

cat# M7502), 5 1-11 (10 !JM) of each forward and backward primers, 5 !JI of first 

strand cDNA, and added nuclease-tree water (Sigma cat# wl754) to make 50 !JI of 

final reaction mixture for each sample. The gene specific (degenerate) forward and 

backward primers (For, 5-AAGAAGTTTCGTGAGACCCGTCAC-3 and Rev, 5-

GGCAAAAGCAT A CCTTCCGCCAT -3) were used for amplification of cDNA strand 

of BoCBFIDREBI gene under the thermal cycle as given. Initial denaturation at 94 °C 

for 3 min once, denaturation at 94 °C for I min, annealing at 61 °C for I min, extension 

at 72 °C for 2 min (35 cycles) ) and then a final extension at 72 °C for I 0 min followed 

by 4 "C oo. The PCR products were run on a 0.8 % high melting agarose (Sigma) gel and 

than visualized under UV light and photographs taken with the gel documentation 

system. The PCR products were compared with PCR marker ladder (Promega cat # 

G3161) and band intensities were semi-quantitatively measured using Quantity one 

4.6.3 Bio-Rad software. 

4.3.4 cDNA sequencing 

The DNA fragment of interest excised in a minimum volume of agarose gel using a 

clean and sharp scalpel. Each slice was then transferred to 1.5 ml microcentrifuge tube 

and isolation of the DNA fragment was carried out by using the ® SV Gel and PCR 

Clean-Up System (Promega A9281 ). The weight of the tube was noted before and after 

addition of slice. Membrane binding solution was added to the tube at a ratio of I 0 !JI/1 0 

mg of agarose gel slice, mixed very gently and incubated at 61 "C until the gel slice 

dissolved completely. This was centrifuged briefly at room temperature and DNA was 

purified with an SV mini-column following the instruction of the kit manufacturer and 

the purified DNA was subjected to sequencing by Eurofins MWG Operon (Germany). 
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Some of the purified DNA was stored at 4 °C for a short time and at -20 °C for longer 

storage .. 

4.3.5 Multiple alignment of sequences 

Multiple nucleotide sequence alignment and deduced amino acids sequences of 

BoCBFIDREBJ comparison with other cold induced genes sequences was carried out 

using Clusta!W 2. EMBL-EBI (Larkin et al., 2007) and BLAST (NCBI). Following this 

a phylogenic tree was constructed using this sequence information. 

4.3.6 Genomic DNA isolation 

Leaves from each clone were ground into a fine powder in liquid nitrogen, using a 

mortar and pestle, and I 00 mg of the powder transferred to a 1.5 ml rnicrocentrifugse 

tube on ice and 350 1-11 lysis solution A and 50 1-11 of lysis solution B were added 

according to the protocol provided by the kit manufacturer (Sigma G2N I 0) based on the 

methods ofSambrook et al., (1989) and Bruce and Eric (1993). 

4.3.7 Protein extraction and SOS-PAGE 

Leaf tissues from -80 °C were thawed on ice, placed in a mortar and pestle and then 2 

ml extraction buffer (Ni et al., 1996) (100 mM potassium phosphate, I mM OTT, I 

mM EDT A, I% Triton X-1 00, I 0% glycerol, pH 7 .8) was added to I g of tissues and 

ground. I ml of the liquid grindate was transferred to rnicrofuge tube ( 1.5 ml) on ice. 

The supematant was centrifuged twice at 13000xg for 15 and 10 min respectively at 4 

°C. The clear supematant containing proteins was separated using SOS-PAGE (Sodium 

dodecyl sui fate polyacrylamide gel electrophoresis) (Laemmli, 1970) and visualized by 

using coomassie blue staining solution. Unstained gels were used for Western blotting 

and the proteins were transferred to a nitrocellulose membrane by electro blotting at 15 

V for 90 min. I L of I XTris-glycine transfer buffer was prepared by dissolving Tris 
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HCI 3.05 gm, Glycine 14.4 gm, adding methanol 200 m!, ddH20 800 m!, pH 8.3 

adjusted with NaOH (Towbin et al., 1979 ). 

4.3.8 Western Blot Analysis for CORIS 

After transferring the proteins on to the nitrocellulose membrane, the membrane was 

incubated in blocking solution (PBST + 2% BSA) for I hour at room temperature with 

mild shaking. After incubation, the membrane was washed with PBST twice for 5 min 

each, followed by incubation with primary antibodies obtained from the Dr. 

Thomashow's lab, Michigan State University, USA. Primary antibodies were diluted 

(I: 1000) in a total volume of 20 m! PBST and the membrane was incubated at room 

temperature overnight with very mild shaking. The membranes were washed 3 times 

with PBS while agitating, for 10 min each. The membrane was then incubated in goat 

anti rabbit lgG horseradish peroxidase conjugated secondary antibody (PBS diluted 

I :20,000) (Abeam) for 90 min at room temperature with mild shaking to detect primary 

antibodies attached to the desired protein (COR15). The membranes were washed 3 

times with PBS for 10 minutes of each and then incubated in developmental solution 

(DAB 0.06 g, NiCb 0.03 gm in I 00 m! PBST) for about 15 min. The membranes were 

washed repeatedly with PBS, and blots were observed and digital images made. 

4.3.9 Proline and protein estimation 

The leaves were powdered in liquid nitrogen and stored at -80 °C. The Proline was 

extracted from frozen powders and estimated following the method of Bates et al, 

(1973). 100 mg powders were homogenized in 1.5 ml of3% sulfosalicylic acid in 2 m! 

tubes andcentrifuged at 13000xg for 5 minutes in room temperature. 300 fll of the 

supernatant was incubated for I h with 2 m! glacial acetic acid and 2 m! acid ninhydrin 

in test tubes at I 00 °C in a water bath. The tubes were then immediately dipped in ice. 
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The reaction mixture was extracted with I ml toluene by mixing vigorously for 10-30 

seconds. The chromophore containing toluene was pipetteed into a fresh tube, warmed 

to room temperature and its absorbance noted at 520 nm by spectrophotometer using 

toluene as a blank. The proline concentration in samples was determined from a pre­

determined standard curve. The reaction for each sample was performed in triplicate. 

The proteins were extracted as described earlier (Ni et al., 1996) and protein estimation 

was made by the standard method of Clive, Daniel & Steve (1989) based on Bradford 

(1976). Three replicate aliquots of 100 J.tl for each sample were mixed with 5 ml of 

Bradford dye (I :4 diluted) reagent (Sigma cat # B6916). 100 J.ll of protein extraction 

buffer was mixed with and used as a blank. A I ml sample mixture was transferred to a 

disposable polystyrene cuvette and the absorbance recorded at 595 nm using a 

spectrophotometer. 
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4.4 Results 

4.4.1 Identification and expression of BoCBFIDREBJ gene under cold acclimation. 

The PCR conditions were optimized empirically by adjusting annealing temperature 

(Figure 37). Through RT-PCR with gene specific primers, the CBFIDREBJ gene of 

B.oleracea var. botrytis was identified and examined for its expression pattern under 

cold acclimation. 

Among the mutants there was apparent differences in expression level observed under 

cold acclirnation treatments. After 3 h cold acclimation only Kl, Kll, Kl3, Kl8 and 

KI9 showed PCR product (Figure 38a), after 6 h, two more clones K21 and KC also 

showed the PCR product (Figure 38b), after 24 h acclimation, all the clones except K9 

showed the product (Figure 39a), while after 14 d, only very weak bands were present 

for all clones (Figure 39b). 

Cold acclimation increased the expression level of BoCBFIDREBl transcript up to 24 h 

cold acclimation (Figure 39a), whilst the PCR product bands were not clear to observe 

at day 14 but still very weak bands were appeared there (Figure 39b) indicating that the 

transcript level had declined. 

In non-acclimated condition no PCR product was found in all clones either mutants or 

control as shown in Figure 40. The analysis was repeated 3-5 times for confirmation. 
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Figure 37: PCR optimization: 
Annealing temperature is 5, 4, 3, and 2 degrees less than melting temperature in Fig. a, 
b, c, and d respectively. M = Marker, lane 9 = Control clone, lanes 1-8 = mutant clones. 
1 = K1 , 2 = K4 , 3 = K9, 4 = Kll , 5 = K13 , 6 = K18, 7 = K19, 8 = K21 , 9 = KC, K = 
Klone (clone), KC = Control plant clone, c = reaction without template gDNA. 
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Figure 38: RT-PCR product and band intensity of CBF/DREBl after 3 and 6 h 
acclimation. 
(a). after 3 h and (b). after 6 h cold acclimation. M= Marker, lane 9 = control clone, 
lane 1-8 = mutant clones, I (Kl), 2 (K4), 3 (K9), 4 (Kll), 5 (KI3), 6 (Kl8), 7 (K19), 8 
(K21), 9 (KC), K = Klone (clone) , KC = Control wild type clone, c = reaction without 
template RNA. Band intensities were measured with Quantity one 4.6.3 Bio-Rad 
software. 
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Figure 39: RT-PCR product and bands intensity ofCBF/DREB1 after 24 hand 14 d 
acclimation. 
(a) after 24 h and (b) after 14 days cold acclimation. M = Marker, lane 9 = Control 
clone, lane 1-8 = mutant clones, I = Kl , 2 = K4, 3 = K9, 4 = Kl1 , 5 = Kl3, 6 = K18, 7 
= K19, 8 = K21, 9 = KC, K = Klone (clone), KC = Control plant clone. The bands 
intensity was measured with Quantity one 4.6.3 Bio-Rad software. 
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Figure 40: Non-acclimated genotypes RT -PCR. 
All of the genotypes either mutants or control clones showed no products (bands) of 
CBF/DREBl. a and b are the repetition of the experiment for confmnation. M = 
Marker, lane 9 = control clone, lane 1-8 = mutant clones, 1 (Kl), 2 (K4), 3 (K9), 4 
(Kl l), 5 (K13), 6 (K18), 7 (K19), 8 (K21), 9 (KC), K = Klone (clone), KC= Control 
wild type clone, c = reaction without template RNA. 
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4.4.2 Isolation and cDNA sequence alignment of BoCBFIDREBJ gene 

The nucleotide sequence of cDNA isolated from Brassica oleracea var. botrytis was 

compared with CBFIDREBJ gene sequences reported for other species of Brassica. 

The results in Figure 41 showed significant resemblances with up to 91% sequence 

consensus found with sequences from Brassica napus BnCBF5/DREBJ (GenBank: 

AF499031.1, 879 bp gene, (Gao et al., 2002}), Brassica juncea BjDREB l B (GenBank: 

EU136731.1, 838 bp gene (Cong et al., 2008)) and Brassica rapa subsp. Pekinensis 

(GeneBank: EU924266.1, 645 bp gene) (Wang, Shen & Li, Unpublished). The % 

consensus was calculated by the number of identical nucleotides in all sequences I total 

nucleotides sequence isolated than multiplied by I 00 = 3 75/412 x I 00 = 91% 

consensus. These multiple sequence alignments were made using ClustaiW 2. EMBL­

EBI (Larkin et al., 2007) and BLAST (NCBI). 
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BrDREB1 
BjDREB1B 
BoCBF/DREB1 
BnCBF5 
Consensus 
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Consensus 

BrDREB1 
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BnCBF5 
Consensus 

BrDREB1 
BjDREB1B 
BoCBF/DREB1 
BnCBF5 
Consensus 

BrDREB1 
BjDREB1B 
BoCBF/DREB1 
BnCBF5 
Consens us 

BrDREB1 
BjDREB1B 
BoCBF/DREB1 
BnCBF5 
Consensus 

BrDREB1 
BjDREB1B 
BoCBF/DREB1 
BnCBF5 
Consensus 

BrDREB1 
BjDREB1B 
BoCBF/DREB1 
BnCBF5 
Consensus 

114 TCGGAAGAAGTTTCGGGAGACGCGTCACCCAATTTACAGAGGAGTACGTCTGAGAAACTC 173 
121 TCGGAAGAAGTTCCGGGAGACGCGTCACCCAATTTACAGAGGAGTTCGTCTGAGAAACTC 180 

1 ---------------------------------------------------GAGA-ACTC 8 
298 TCGGAAGAAGTTTCGGGAGACGCGTCACCCAATTTACAGAGGAGTTCGTCAGAGACACTC 357 

174 AGGTAAGTGGGTGTGTGAGGTGAGGGAGCCAAACAAAAAGTCTAGGATTTGGCTCGGTAC 233 
181 AGGTAAGTGGGTGTGTGAAGTGAGGGAGCCAAACAAGAAATCTAGGATTTGGCTCGGTAC 240 

9 AGGTAAGTGGGTGTGTGAGGTGAGAGAGCCAAACAAGAAATCCAGGATTTGGCTCGGTAC 68 
358 AGGTAAGTGGGTGTGCGAGGTGAGAGAGCCAAACAAGAAATCCAGGATTTGGCTCGGAAC 417 

234 TTTCCTAACCGCCGAGATCGCAGCTCGTGCTCACGACGTCGCCGCCATAGCCCTCCGTGG 293 
241 TTTCCTAACCGCCGAGATCGCAGCTCGTGCTCACGACGTCGCCGCCATAGCCCTCCGCGG 300 

69 TTTCCTAACCGCCGAGATCGCAGCTCGTGCTCACGACGTCGCCGCCATAGCCCTCCGTGG 128 
418 TTTCCTAACCGCCGAGATCGCAGCTCGTGCTCACGACGTCGCCGCCATAGCCCTCCGTGG 477 

294 CAAATCCGCCTGCCTCAATTTCGCCGACTCGGCTTGGCGGCTCCGTATCCCGGAGACAAC 353 
301 CAAATCAGCTTGTCTCAATTTTGCTGACTCGGCTTGGCGGCTCCGTATCCCGGAGACAAC 360 
129 CAAATCCGCCTGCCTCAATTTCGCCGACTCGGCTTGGCGGCTCCGTATCCCGGAGACAAC 188 
478 CAAATCCGCCTGCCTCAATTTCGCCGACTCGGCTTGGCGGCTCCGTATCCCGGAGACAAC 537 

354 ATGCCCCAAGGATATCCAGAAGGCGGCTGCTGAAGCCGCGGTGGCTTTTCAGGCTGAGAT 413 
361 ATGCCCCAAGGAGATTCAGAAGGCGGCTGCTGAAGCCGCCTTGGCTTTTCAGGCTGAGAT 420 
189 ATGCCCCAAGGATATCCAGAAGGCGGCTGCTGAAGCCGCGGTGGCTTTTCAGGCTGAGAT 248 
538 ATGCCCCAAGGATATCCAGAAGGCGGCTGCTGAAGCCGCGGTGGCTTTTCAGGCTGAGAT 597 

414 AAATGATACGACGAAGGATCATGGCTTGGACGTGGAGGAGACGATCGTGGAGGCTATTTT 473 
421 AAATAATACGACGACGGATCATGGCCTGGACATGGAGGAGACGATCGTGGAGGCTATTTT 480 
249 AAATGATACGACGACGGATCATGGCCTGGACGTGGAGGAGACGATCGTGGAGGCTATTTT 308 
598 AAATGATACGACGACGGATCATGGCCTGGACGTGGAGGAGACGATCGTGGAGGCTATTTT 657 

474 TACGGAGGAAAACAGCGATGGGTTTTATATGGACGAGGAGGAGTCCATGTTCGGGATGCC 533 
481 CACGGAGGAAAACAACGATGTGTTTTATATGGACGAGGAG---TCCATGTTAGAGATGCC 537 
309 TACGGAGGAAAACAACGATGGGTTTTATATGGACGAGGAGGAGTCCATGTTCGGGATGCC 368 
658 TACGGAGGAAAACAACGATGGGTTTTATATGGACGAGGAGGAGTCCATGTTCGGGATGCC 717 

534 GACCTTGTTGGCTAGCATGGCCGAAGGGATGCTTTTGCCGCCACCGTCCGTACAATTCGA 593 
538 GGCCTTGTTGGCTAGTATGGCGGAAGGAATGCTTTTGCCGCCGCCGTCCGTACATTTCGG 597 
369 GTCCTTGTTGGCTAGCATGGCGGAAGGTTGCCTTTTGCCATGCT---------------- 412 
718 GTCCTTGTTGGCTAGCATGGCGGAAGGGATGCTTTTGCCGCCACCGTCGGTACGATTCGA 777 

Figure 41: Nucleotide sequences (cDNA) a lignment. 
Alignments were made using ClustalW2 EMBL-EBI (Larkin et al. , 2007). Consensus 
symbols denoted as: "*" means that the nucleotides in that column are identical in all 
sequences in the alignment. ":" means that conserved substitutions have been observed, 
"." means that semi-conserved substitutions are observed. The AP2 region is indicated 
by overline. BrDREBI from Brassica rapa subsp. pekinensis , BjDREBJ B from Brassica 
juncea, BoCBFIDREBJ sequence isolated from Brassica oleracea v. botrytis, BnCBF5 
from Brassica napus. 
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4.4.3 Amino acid sequence alignment and pbylogenetic analysis of BoCBFIDREBl 

The multiple sequence alignment and comparison of the deduced amino acids sequence 

of Brassica o/eracea var.botrytis BoCBFIDREBl with other cold induced protein 

sequences in Brassicas is presented in Figure 42 and 43. The BoCBFIDREBl protein 

showed 90% amino acid consensus with other proteins from the members of Brassica 

species (Figure 42) such as Brassica napus BnCBF51DREBl (AAM18958), Brassica 

rapa subsp. Pekinensis BrDREBl (ACL12046) and Brassica juncea BjDREBl B 

(ABX00639). There was no sequence found in the genebank for B. nigra and B.carinata 

for comparision. 

When the BoCBFIDREBl amino acids sequence was compared in a broad way with 

members of the Brassicacea family, then amino acid sequence consensus reduced to 

67% (Figure 43) which indicated that the sequence isolated from the B.oleracea var. 

botrytis is highly conserved in Brassica species, more than in the Brassicaceae family. 

The multiple sequence alignment was made using clustalW2 EMBL-EBI (Larkin et al., 

2007). 

In order to investigate the phylogenetic relationship of BoCBFIDREBl with other 

plants, a phylogenetic tree was constructed (Figure 44 ). This shows the relationships 

with other higher plants. Tree was made using clustalW2 EMBL-EBI (Larkin et al., 

2007). 
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BoCBF/DREB1 
BnCBF5 
BrDREB1 
BjDREB1B 
Consensus 

BoCBF/DREB1 
BnCBF5 
BrDREB1 
BjDREB1B 
Consensus 

BoCBF/DREB1 
BnCBF5 
BrDREB1 
BjDREB1B 
Consensus 

------ -------------------------------------------------- ENSG 4 
MTS FSAFSEMMGSENES PA- LSGEYC PTLAASCPKKPAGRKKFRETRHPIYRGVRQRHSG 59 
MTS FST FSEMLGSEYESPT-LSGEYCPTLAASCPKKPAGRKKFRETRHPIYRGVRLRNSG 59 
MTSFSTFSEMLGSEYESPVTLGGEYCPTLAASCPKKPAGRKKFRETRHPIYRGVRLRNSG 60 

• + ~ 

____________________________________________ +++++ 
KWVCEVREPNKKSRIWLGT FLTAE IAARAHDVAAIALRGKSACLN FADSAWRLRIPETTC 64 
KWVCEVREPNKKSRIWLGTFLTAE IAARAHDVAAIALRGKSACLN FADSAWRLRIPETTC 119 
KWVCEVREPNKKSRIWLGTFLTAE IAARAHDVAAIALRGKSACLNFADSAWRLRIPETTC 119 
KWVCEVREPNKKSRIWLGT FLTAEIAARAHDVAAIALRGKSACLNFADSAWRLRIPETTC 120 

PKDI QKAAAEAAVAFQAEI NDTTTDHGLDVEETIVEAIFTEENNDGFYMDEEESMFGMPS 124 
PKDIQKAAAEAAVAFQAEINDTTTDHGLDVEETIVEAIFTEENNDGFYMDEEESMFGMPS 179 
PKDI QKAAAEAAVAFQAE I NDTTKDHGLDVEET I VEAIFTEENSDGFYMDEEESMFGMPT 179 
PKEIQKAAAEAALAFQAEINNTTTDHGLDMEET IVEAIFTEENNDVFYMDEE- SMLEMPA 179 

BoCBF/DREB1 LLASMAEGCLLPC------------------- - -- 137 
BnCBF5 LLASMAEGMLLPPPSVRFEHXYDFDGDAXVSLWSY 214 
BrDREB1 LLASMAEGMLLPPPSVQFEYNYDFDGDTDVSLWSY 214 
BjDREB1B LLASMAEGMLLPPPSVHFGHNYDFDGDADVSLWSY 214 
Consensus *·•~•**K *** 

Figure 42: Multiple sequence alignment and comparison of the deduced amino acids 
sequence of BoCBFIDREBJ with protein sequences of other Brassica species. 
Brassica napus BnCBF5/DREBJ (GeneBank,AAM18958)(Gao et al., 2002), Brassica 

juncea BjDREBJ B (ABX00639)(Cong et al., 2008), Brassica rapa subsp. Pekinensis 
DREBJ {ACL12046)(Wang, Shen & Li, Unpublished), Bo. Brassica oleracea. The 
symbol "*" indicate the consensus and the DNA (CRT/DRE) binding AP2 domain is 
indicated by a thick overline and + indicate the CBF signature motif DSA WR and ":" 
indicate conserved substitutions, "." indicate semi-conserved substitutions. Percent 
consensus among the Brassica species was calculated and found to be 90% homology 
for 137 amino acids sequence of BoCBFIDREBJ . The% consensus calculated as the 
number of "*"/total amino acid sequence which is 123 aa and multiplied by 100 = 
123/137 x 100 = 90%. So it is like CBF2 but not CBFI or 3. The dot line shows the 
missing amino acids of the full length gene sequence because of the isolation of the 
partial sequence of the gene from B.oleracea v. botrytis. 
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TaCBF 
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MNS FSAFAEMFGSEYES PDT I GADYC PTLATSC PKKPAGRKKFRETRHPIYRGVRRRNSG 60 
MNS FSAFAEMFGSEYES PVTVGGDYC PTLATSC PKKPAGRKKFRETRHPIYRGVRRRNSG 60 
------------------------ ----------------------------- - --ENSG 4 
MTS FSAFSEMMGSENES PA- LSGEYC PTLAASC PKKPAGRKKFRETRHPIYRGVRQRHSG 59 
MTS FST FSELLGSEHES PVTLGEEYCPKLAASC PKKPAGRKKFRETRHPIYRGVRLRNSG 60 
MTSFSTFSEMLGSEYES PT- LSGEYCPTLAASC PKKPAGRKKFRETRHPIYRGVRLRNSG 59 
MTS FST FSEMLGSEYES PVTLGGEYCPTLAASC PKKPAGRKKFRETRHPIYRGVRLRNSG 60 
MNSCSAFSEMFGSDYES PVSSGGDYS PKLATSC PKKPAGRKKFRETRHPIYRGVRQRNSG 60 
MSS FSAFSEMFGSDYESMISSVGDYS PTLATSC PKKPAGRKKFRETRHPVYRGVRQRNSG 60 

+++++ 
~KW~V~C=E=V7.R~E~P~N~K~K=s=R=rw~L~G=T=F=P=T=AE~MAARAH~~~o=v~AA~I=AL77R=G=Rs=A~C=L~N~F~ADSAWRLRIPESTC 120 
KWVCEVREPNKKSRIWLGT FPTAEMAARAHDVAAIALRGRSACLNFADSAWRLRIPESTC 120 
KWVCEVRE PNKKSRIWLGT FLTAE IAARAHDVAAIALRGKSACLNFADSAWRLRIPETTC 64 
KWVCEVREPNKKSPIWLGT FLTAE IAARAHDVAAIALRGKSACLNFADSAWRLRIPETTC 119 
KWVCEVREPNKKSRIWLGT FLTAE IAARAHDVAAIALRGKSACLNFADSAWRLRIPETTC 120 
KWVCEVREPNKKSRIWLGT FLTAE IAARAHDVAAIALRGKSACLNFADSAWRLRIPETTC 119 
KWVCEVREPNKKSRIWLGTFLTAE IAARAHDVAAIALRGKSACLNFADSAWRLRI PETTC 120 
KWVCE LREPNKKTRIWLGT FQTAEMAARAHDVAAIALRGRSACLNFADSAWRLRIPESTC 120 
KWVSELRE PNKKTRIWLGT FQTAEMAARAHDVAAIALRGRSACLNFADSVWRLRIPESAC 120 

AKDIQKAAAEAAVAFQAE-MSDTTT-DHGLDMEETIVEAIVNEE-QSGG FYMDEE-AMFG 176 
AKDIQKAAAEAAVAFQAE- MSDTMTS DHGLDMEETTVEVIVTEEEQSEGFYMDEE-AMFG 178 
PKDI QKAAAEAAVAFQAE- I NDTTT-DHGLDVEETIVEAIFTEE-NNDGFYMDEEESMFG 121 
PKDI QKAAAEAAVAFQAE- I NDTTT-DHGLDVEETIVEAIFTEE-NNDG FYMDEEESMFG 176 
PKDI QKAAAEAAVAFQAE- I NDTTT-DHGLDVEETIVEAIFTEE-NSDG FYMDEEESMFG 177 
PKDI QKAAAEAAVAFQAE- I NDTTK-DHGLDVEETIVEAIFTEE-NSDGFYMDEEESMFG 176 
PKEIQKAAAEAALAFQAE- I NNTTT-DHGLDMEET IVEAIFTEE-NNDVFYMDEE-SMLE 176 
AKEI QKAAAEAALNFQDE-MCHMTTDAHGLDMEETLVEAI YTPEQSQDAFYMDEE-AMLG 178 
AKDIQKAAAEAALAFQNELMSDTATT DHGLDMEETLVEAIVTAEQ- I DTFYI DEE-TMFG 178 

MPRLLANMAEGMLLPPPSVQWGQNYDCDGDADVSLWSY 214 
MPRLLANMAEGMLLPPPSVQWGHNYDCDG DADVSLWSY 216 
MPSLLASMAEGCLLPC---------------------- 137 
MPSLLASMAEGMLLPPPSVRFEHXYDFDGDAXVSLWSY 214 
MPTLLASMAEGMLLPPPSVQFGHTYDFDGDADVSLWSY 215 
MPTLLASMAEGMLLPPPSVQFEYNYDFDGDTDVSLWSY 214 
MPALLASMAEGMLLPPPSVHFGHNYDFDGDADVSLWSY 214 
MSSLLDNMAEGMLLPSPSVQWNYT FDVEGDDDVSLWSY 216 
MPSLMANMAEGMLLPLPSIQWINNYDVEGDADMPLWSY 216 

Figure 43: Multiple alignment of the BoCBFIDREBJ deduced amino acids sequence 
with members ofBrassicacea family. 
Brassica oleracea v. botrytis BoCBFIDREBJ, Brassica napus BnCBF5/DREBJ 
(GenBank: AAM18958.1 , 214 aa) (Gao et al., 2002), Brassica juncea BjDREBJB 
(GenBank: ABX00639.1, 214 aa) (Cong et al., 2008), Brassica rapa subsp. Pekinensis 
DREBJ (GenBank: ACL12046.1, 214 aa) (Wang, Shen & Li, Unpublished), Raphanus 
sativus RsCBFJ (GenBank: ACX48435.1 , 215 aa) (Li & Gao, Unpublished), Thlaspi 
an,ense TaCBF (GenBanlc ABV82985.1 , 2 14 aa) (Zhou et al. , 2007), Eutrema 
salsugineum EsDREBJ(GenBank: AAS00621.1 , 216 aa) (Feng & Zhang, unpublished) 
and Arabidopsis thaliana AtCBF2 (GenBank: ABV27090.1, 2 16 aa) (Lin et al., 2008). 
Different symbols such as + indicate the CBF signature motif DSA WR, "*" indicate the 
identical nucleotides in all sequences. ":" indicate conserved substitutions, "." indicate 
semi-conserved substitutions and CRT/DRE binding AP2 domain is indicated by oveline. 
The % consensus in the members of Brassicacea family was calculated as the number of 
"*"/total nucleotides sequence which is 137 aa and multiplied by 100 = 91/137 x 100 = 
67%. 
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Phylogram 
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Figure 44: Phytogenic relation ofthe BoCBF/DREBl proteins. 
The phylogram is based on the alignment of amino acids sequence of Brassica oleracea 
v. botrytis BoCBFIDREBJ and the following proteins from the members of Brassicacea 
and other families . Brassica napus BnCBF5/DREBJ(AAM18958), Brassica rapa subsp. 
Pekinensis BrDREBJ(ACLl2046), Brassica juncea BjDREBJ B (ABX00639), Thlaspi 
arvense TaCBF(ABV82985, Brassicacea) Eutrema salsugineum EsDREBJ(AAS00621, 
Brassicacea), Arabidopsis thaliana AtCBF2 (ABV27090, Brassicacea), Nicotiana 
tabacum NtDREBJ(ACE73693, Solanacea), Iris lacteal IlCBF (ACK58683, Iridaceae), 
Arabis pumila ApCBF (ABA42927, Brassicacea), Solanum commersonii ScCBF4 
(ACB45084), Solanum tuberosum StCBF (ACJ26757), Hippophae rhamnoides HrCBF 
(ABS30426, Elaeagnaceae), Catharanthus roseus CrCBftABI85277, Apocynaceae), 
and Raphanus sativus RsCBFJ (ACX48435, Brassicacea). The values show tree graph 
distances. The tree was constructed with ClustalW2 EMBL-EBI(Larkin et al., 2007). 
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4.4.4 Detection of CORJ5 gene in mutants of Brassica oleracea var. botrytis 

Total soluble protein was extracted from each genotype (mutants and control) grown 

under acclimated and non-acclimated conditions. The effect of cold acclimation on 

CORI5 gene expression in each genotype was investigated. Sodium dodecyl sulfate 

polyacylamide gel electrophoresis (SDS-P AGE) was used for protein fractionation and 

then proteins were transferred to nitrocellulose membrane for detection of COR 15 by 

Western blot technique. 

Under acclimation the SOS-PAGE analysis showed similar protein band patterns in all 

clones and no differences were observed (Figure 45a). Under non-acclimated conditions 

(Figure 45b) the clones showed differences in bands pattern when compared with 

acclimated, with the bands designated as Y in Figure 45a and 45b clearly demonstrating 

the difference between acclimated and non-acclimated genotypes. Lanes# I and 5 (Kl 

and K13 mutants) showed missing bands designated as Y (Figure 45b) but it is 

interesting that on acclimation these missing bands reappeared as shown in Figure 45a. 

The marker protein ladder indicates that the molecular weight of band Y is about 

15kDa, which is similar in size to CORI5. 

The Western blot results confirmed the presence of CORI5 protein and this was 

repeated three times to verify the results (Figure 46). The results clearly demonstrated 

the influence of cold acclimation process on the expression of CORJ5 gene, where all 

the genotypes showed the presence of CORI5 protein (Figure 46). In non-acclimated 

conditions, only mutant clones # I, 2 and 8 (K I, K4 and K21) showed clear blots while 

in other clones no clear blots were observed (Figure 4 7). This suggests constitutive 

expression of COR 15 in these clones. These three clones showed higher frost resistance 

compared to other mutants except Kl3 and Kl8 where the response was about similar 

(Figure 48). 
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Figure 45: The SDS-P AGE analysis of genotypes. 
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a. Cold acclimation. b. Non-acclimation. M= Marker, lane 9 = Control klone (Clone), 
lane 1-8 =mutant klones, K = Klone genotype (Clone), lane l is Kl, 2 = K4, 3 = K9, 4 
= K11, 5 = K13, 6 = Kl8, 7 = K19, 8 = 1<21 , 9 =KC, KC= Control wild type klone. 
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Figure 46: Western blot analysis for the detection of COR15 protein under cold 
acclimation. 
a, band care the repetition of the same experiment for the verification. M= Marker, K 
=genotype Klone (Clone), lane 9 =control klone, lane 1-8 = mutant klones, lane 1 is 
K1, 2 (K4), 3 (K9), 4 (K11), 5 (K13), 6 (Kl8), 7 (Kl9), 8 (K21), 9 (KC), KC= Control 
wild type klone. 
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M 2 3 4 5 6 7 8 9 

I ' ' ' 
I ., 

COR15 -- I. . ' 
Figure 47: Western blot analysis for the detection of COR15 in genotypes under non­
acclimated condition. 
The lane 1, 2, and 8 show the blots while no clear blots were appeared in the rest of the 
genotypes clones. The lane 1, 2 and 8 are mutants K1 , K4 and K21 respectively, which 
shows constitutive expression of COR15. K = genotype Klone (Clone), Lane 3 = K9, 4 
= Kll , 5 = K13 , 6 = K18, 7 = K19, and lane 9 = KC, KC = Control wild type klone. 
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Figure 48: Frost resistance in non-acclimated clones. 
K1, K4 andK21 where COR15 expressed without cold acclimation. 
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4.4.5 The effect of cold acclimatioo on proline and protein level 

The cold acclimation increased the proline production in clones while the total protein 

level was found to be reduced over non-acclimated clones as shown in Figure 49 and 

Figure 50 respectively. The correlation between proline and protein under cold 

acclimation was found negative and non significant (Figure 51). 
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Figure 51: Correlation between free proline and total protein level after 14 d cold 
acclima tion. 
KC is control and Kl-K.21 are mutants 
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4.4.6 Correlation between frost resistance and CBI<' expression 

The cold-acclimation induced the CBF expression in clones, as well as increased frost 

resistance (see chapter 3). The relationship between parameters for the clones under 

cold acclimation was investigated by correlation. There was a positive correlation 

between frost resistance and CBF expression, with increased CBF expression decreased 

the % relative electrical conductivity at all test temperatures. This correlation was 

significant after 14 d (Figure 52) and after 24 h (Figure 53) cold acclimation, but after 6 

h (Figure 54) and 3 h (Figure 55) cold acclimation the correlation was also positive but 

was not significant. The highest R2 value was found between CBF expression at 14 d 

and EC% at -6 °C (93 .43% of variation accounted for) and the second highest between 

CBF expression at 24 hand EC% at -6 °C (82.57% of variation accounted for). 
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Figure 52: Correlation between frost resistance and CBF expression on 14 d cold­
acclimation. 
(A) Electrical conductivity (%) at -6 °C, (B) Electrical conductivity(%) at -4 °C, (C) 
Electrical conductivity(%) at -2 °C . Lower the % EC, higher the frost resistance. 
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Figure 53: Relationship of fros t resistance and CBF expression after 24 h cold­
acclimation. 
(A) Electrical conductivity(%) at -6 °C, (B) Electrical conductivity(%) at -4 °C, (C) 
Electrical conductivity(%) at -2 °C . 
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Figure 54: Correlation between frost resistance and CBF expression after 6 h cold­
acclimation. 
(A) Electrical conductivity (%) at -6 °C, (B) Electrical conductivity (%) at -4 °C, (C) 
Electrical conductivity(%) at -2 °C . 
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Figure 55: Correlation between frost resistance and CBF expression after 3 h cold-
acclimation. 
(A) Electrical conductivity (%) at -6 °C, (B) Electrical conductivity (%) at -4 °C, (C) 

Electrical conductivity(%) at -2 °C . 
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4.4.7 Relation between CBF expression and proline production 

Cold acclimation increased the proline production and also induced the CBF expression. 

The results indicate that the increase in CBF expression in mutant clones was correlated 

with increased proline production. A significant positive correlation was found between 

the CBF expression and proline production under cold acclimation (Figure 56). 

172 



Chapter 4: Results 

96 

94 • • u 
92 u 

ro y = 0.3472x + 62.901 
"0 R2 = 0.7468 ...,. 

90 
c 
0 ·u; 88 
Cl) • ~ 
0. 86 X 
Q) 

u.. 
al 84 r = 0.8642** (.) 

n-2 = 7 
82 

80 

0 20 40 60 80 100 

Pro (1-19 mg-1 ) 

Figure 56: Correlation between CBF expression and Proline production after 14 d cold 
acclimation 

173 



Chapter 4: Results 

4.4.8 Correlation between proline production and frost resistance 

The clones on exposure to cold acclimation increased the proline production and 

showed decrease in relative electrical conductivity (%EC), which indicates a positive 

correlation between frost resistance and proline production. The positive correlation was 

found to be significant between proline and frost resistance under cold acclimation at all 

of the test freezing temperatures i.e. -6 °C, -4 °C and -2 °C (Figure 57). Non-acclimated 

clones showed very weak relation between proline and frost resistance (Figure 58). 
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Figure 57: Correlation between frost resistance and proline production in 14 d cold 
acclimated clones. 
(A) electrical conductivity (%) at -6 °C, (B) electrical conductivity (%) at -4 °C, (C) 
electrical conductivity(%) at -2 °C. Lower the %EC higher the frost resistance. 

175 



Chapter 4: Results 

14 

12 ••• • • 10 • Q) 
8 • .!; 

0 
6 y = 0.0065x + 9.987 .... 

a. R2 = 0.0037 
4 

2 

0 

0 20 40 60 80 100 

%EC at-6C 
a 

14 

12 ••• • • • 10 • Q) 

.!; 8 • 0 6 .... 
a. y = 0.0057x + 10.15 

4 R2 = 0.0045 
2 

0 

0 20 40 60 80 100 

%ECat -4C 
b 

14 

12 
~ 10 

Q) • :§ 8 • 
0 

6 .... 
a. 

4 y = -0.2148x + 13.253 

2 R2 =0.1314 

0 

0 5 10 15 20 

%ECat -2C 

c 

Figure 58: Correlation between proline level and EC% in in-vivo clones under non­
acclimated condition, 
The clones grown at 22 °C. (A) electrical conductivity (%) at -6 °C, (B) electrical 
conductivity (%) at -4 °C, (C) electrical conductivity (%) at -2 °C. Lower the %EC 
higher the frost resistance. 
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4.5 Discussion 

In the present study, a part of the CBF regulon pathway was investigated in Brassica 

oleracea var. botrytis and identified the CBFIDREBJ like gene, the COR15a gene, as 

well as demonstrating higher levels of free proline under cold-acclimation condition. 

These results confirmed the existence of the CBF regulon in cauliflower (B. oleracea 

var. botrytis) for the frrst time. The results also confirmed the induction of CBF regulon 

by cold acclimation as reported earlier by other scientists (Chentao et al., 1990; Kume et 

al., 2005; Pearce, 1999; Pino et al., 2008; Thomashow, 1999). The gene has been 

ascribed a Bo prefix to stand for Brassica oleraceae. 

The results demonstrate that length of cold-acclimation period plays an important role 

in the expression level of the BoCBFIDREBJ gene and acclimation also differentiates 

the transcript level in genotypes.After 3 h cold acclimation the transcript appeared in 

few mutant genotypes and after 6 h the number of genotypes increased and increased 

further up to a maximum at 24 h cold acclimation and then the transcript level declined 

at 14 d acclimation. All of the non-acclimated genotypes, either mutants or control, 

showed no RT -PCR product for BoCBFIDREBJ gene. The DREB I specifically induces 

by cold stress (Javad, Sasan & Hassan, 2009) and similar pattern of increase in 

transcript level with increase in length of cold acclimation has been reported by many 

scientists (Cong et al., 2008; Novillo et al., 2003; Yong et al., 2006). 

For identification and isolation of BoCBFIDREBJ gene in the present investigation, the 

RT -PCR was used instead of the more common northern blotting technique to avoid 

cross-hybridization. Furthermore during the last 5-6 years the RT -PCR technique has 

been used by many scientists for isolation of cON A sequences of CBF/DREB genes and 

has successfully led to sequence identification (Kume et al., 2005; Yong et al., 2006). 
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Expression analysis for CBF/DREB I gene in different genotypes was carried out on the 

basis of band intensity, this method is not suitable for precise evaluation of mRNA 

quantification, but has a crude ability to compare the gene expression patterns among 

the genotypes. Mutants and controls showed clear variation among genotypes in the 

present analysis. These patterns could have been confirmed by quantitative PCR but 

unfortunately this was not possible within the constraints of the experimental phase of 

this study. 

In this investigation, the cDNA partial gene sequences were isolated from both mutant 

and control clones.On comparison using bioinformatics tools, their sequences were 

identical, which shows that in this part of gene sequence no mutation has occurred. 

Since there is evidence for differences in expression pattern then this suggests that the 

mutation might be in an upstream position or regulator gene like ICE (Inducer of CBF 

expression!) or might be in the promoter region of the CBF/DREBI gene that induces 

the expression of BoCBFIDREBJ. ICE! is a master switch involved in the regulation of 

CBF genes (VanBuskirk & Thomashow, 2006). Mutations in ICE I could affect the 

CBF transcript accumulation under cold acclimation since over-expression of 

ICE/enhances the expression of the CBF (Chinnusamy et al., 2003). Further 

investigation is suggested firstly to identifY the remaining BoCBFIDREBJ sequence and 

to investigate the upstream DNA in this pathway for mutations. 

The present investigation demonstrated that the sequenced part of the BoCBFIDREBJ 

gene has no intron as the PCR product from gDN A and RT -PCR product ( cDNA) 

shows similar size of the fragment and this sequence is therefore an exon. Further study 
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is suggested on the basis of present results for isolation of the whole BoCBFIDREBJ 

gene to investigate whether the whole gene is exon or not. 

Comparison of the isolated partial sequence by bioinformatics tools indicates that this 

partial sequence of Brassica oleracea BoCBF!DREBI gene shows highly similarity 

(91 %) with other Brassica species CBFIDREB genes such as B.rapa DREB I, B.juncea 

BjDREBJ and B.napus CBF5 (Fig. 4 I ).This confirms that this gene is in the genome of 

Brassica oleracea. Further confirmation was carried out by deduced amino acid 

sequence comparison. 

Deduced amino acid sequence of the BoCBFIDREBJ partial sequence in comparison 

with other Brassica species showed 90% homology and showed identical conserved 

AP2 domain as shown in Fig. 42. The AP2 domain may play a crucial role in 

recognition of DNA binding sequence in the promoter of cold responsive genes (Liu et 

al., I 998a; Sakuma et al., 2002). This homology reduced to 67% when compared with 

plants other than Brassicas. 

Among the six member Brassica species in the triangle of U (U, I 93 5), the sequence 

from B. oleracea showed high resemblance with the species B. napus, B. juncea, and B. 

rapa. For the remaining two species, B. nigra and B. carina/a, no CBF genes have been 

reported in the literature. All these resemblances confirm that this sequence is highly 

conserved in Brassicas and confirms that this is an important mechanism for regulating 

cold hardness in plants. 
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Through immunoblot analysis, the CORI5a protein was detected for the first time in 

Brassica oleracea. The results demonstrated the expression of a CORI5a gene in all 

clones under cold acclirnation which correlated with higher frost resistance over non 

acclimated plants. Earlier investigations in the literature show that the CORI5 gene is 

expressed in response to low temperature and correlates with enhanced freezing 

tolerance (Hajela et al., 1990; Katsuhiro et al., 2007). Non acclimated clones showed rio 

blots for CORI5 gene, with the exception of three mutants Kl, K4 and K21 where 

apparent constitutive expression of COR IS is demonstrated even under non-acclirnated 

conditions. This might indicate the presence of other CBF genes which induced the 

COR IS gene expression because in these mutants no RT -PCR bands appear under non­

acclirnated conditions with the primers used for the BoCBFIDREBI gene sequence 

isolated. Previous studies show that expression/overexpression of CBF increases the 

levels of COR proteins (Gilmour et al., 2000) and CBF/DREB transcription factors are 

the key regulators for expression of the COR genes (Stockinger et al 1997, Jaglo-Ottsen 

et al 1998, Liu et al 1998). So this suggests that there might be other CBF genes in 

cauliflower. These three mutants Kl, K4 and K21 where COR IS is expressed, showed 

better frost resistance than other mutants K9, Kll, Kl9 and KC under non-acclirnated 

condition. Seedhabadee et al (2008) also reported COR gene expression in tolerant 

genotypes compared to susceptible genotypes. 

The mutants K I, K4 and K21 showed blots for COR 15a gene under both conditions of 

acclimation and non acclimation, but the frost resistance was higher in acclimated 

mutants compared to non-acclirnated.The recent findings of Polashock et al (2010) 

support the present results, they investigated that transgenic plants over-expressing the 

CBF gene exhibited induced expression of the Arabidopsis cold-regulated (COR) genes 
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COR78 and COR6.6, under non-acclirnating conditions. They also showed enhanced 

freezing tolerance in the transgenic plants under non acclimating conditions but not to 

the level of acclimated control plants. 

The other interesting thing observed here is that the frost resistance level of mutants 

Kl3 and Kl8 is also similar to Kl, K4, and K21 under non-acclirnated condition, while 

COR15 blots not appear in Kl3 and Kl8 under non-acclirnated condition. This suggests 

that mutants Kl3 and Kl8 have the presence of CBF and COR genes other than 

BoCBFIDREBJ and COR I Sa, and there might be some upstream mutation which might 

enhance the frost resistance in these mutants under non-acclimated condition. These 

results suggest further investigation to analyse these two mutants (K 13 and Kl8) for 

detection of other CBF and COR genes under non-acclimated conditions. In CBF 

regulon, the induction of ICE (Inducer of CBF) regulates CBF expression which then 

controls downstream regulation of COR genes (Chinnusamy, Zhu & Zhu, 2006; 

Monroy & Dhindsa, 1995) but the whole molecular mechanism of cold acclimation is 

still not well defmed (Chunzhen et al., 2009). 

Cold acclirnation showed an effect on the production of free proline in relation to total 

protein content in all of genotypes tested but not significant. A negative correlation in 

proline level with total protein contents in cold acclimated clones was demonstrated. 

These results agree with the findings of Debnath (2008) who reported similar increases 

in proline content with a decrease in protein under dehydration stress. Many other 

scientists have also reported increase in proline during cold acclimation in Arabidopsis 

and other plants species (Aiberdi et al., 1993; Fuller et al., 2006; Koster & Lynch, 

1992a; McKown, Kuroki & Warren, 1996; Misra, Biswal & Misra, 2002; Wanner & 

Junttila, 1999b). The present results demonstrate increase in frost resistance with raise 

in free proline level in the clones and shows positive correlation. CBF expression was 
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shown to increase the level of proline and frost resistance under cold-acclimation in 

Arabidopsis (Gilmour et al., 2000). Furthermore studies have shown that an increase in 

free proline show enhanced resistance in plants to abiotic stresses such as salt and 

freezing (Ashraf & McNeilly, 2004; Dorffling, Dorffling & Lesselich, 1993; Fuller et 

al., 2006; Kueh & Bright, 1981; Tantau & Dorffling, 1991). 
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4.6 Conclusions 

This work was the first reported evidence ofCBFIDREBJ and COR/5 genes in Brassica 

oleraceae. These genes were identified and demonstrated the major influence of cold 

acclimation on expression of these genes. Cold acclirnation also influenced proline 

production. These results also verified the existence of mutations in the clones, as the 

constitutive expression of COR/5 gene was observed in three genotypes even under 

non-acclirnated conditions. The clones demonstrated positive correlation in CBF 

expression vs frost resistance in cold acclimated plans, CBF expression vs proline 

production, and the proline level vs frost resistance under cold acclimation and 

demonstrated negative correlation between proline and total protein in cold acclirnated 

plant. 
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Chapter 5: General Discussion 

5.1 Mutagenesis as a tool to enhance abiotic stress resistance in cauliflower 

Tbe appearance of the success of mutagenesis in the frrst phase of this project confirmed 

that this is a promising method of producing mutant lines with better stress resistance in 

B. oleraceae. Mutation breeding can have many advantages as well, for instance 

mutants with multiple traits can be identified compared to transgenic approach where a 

single trait can be introduced in the crop. Also the chances of survival of mutant 

varieties are also much higher (Mohan, 20 I 0). Another important use of induced 

mutagenesis is to build up mutant lines to identify trait specific genes and to set up gene 

and sequence databases for functional genomics study (Mohan, 2010). 

There are shortcomings of the method of mutagenesis because it is random and 

sometimes desirable mutations are associated with undesirable effects and some times 

the frequency of desirable mutations are very low. The technique can be considered as a 

blind technique where specific genes in the genome are not targeted and mutations can 

be induced any where in the genome. For this reason large populations are used to 

screen for mutant lines for abiotic stress resistance e.g.thirty one resistant cauliflower 

shoots were recovered from more than six thousands explants mutagenised that showed 

a mutation frequency of about 0.52% for the abiotic stress resistance (Deane, Fuller & 

Dix, 1995). 

The tissue culture techniques were used in the present investigation for regeneration, 

sub-culturing and for screening of the clones. The in-vitro culture techniques in 

combination with induced mutation can speed up breeding programmes such through 

the generation of variability and through selection to the clonal multiplication of the 

desired genotypes. 
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The present findings clearly show that a short selection process with relatively high 

selection pressure can produce functional and stable mutants in a short time. The 

physiological screening of cauliflower clones under freezing temperatures and under 

elevated salt and mannitol concentrations using leaf discs resistance assays provided 

several advantages over the use of intact plants. These screening processes took a short 

time and provided excellent chances of repeatability for confirmation, and the processes 

took place under well controlled experimental conditions in a small space. Many 

researchers have reported similar techniques as powerful tools for investigation of plant 

responses to different abiotic and biotic stresses (Baraka & Audran, 1997; Fuller et al., 

2006; Marcin, 1999; Vijayan, Chakraborti & Ghosh, 2003). 

All the mutants produced more proline over control clones both under cold-acclimation 

and non-acclimation conditions. This increase in proline level in mutants may possibly 

be resulting from increased activity of the enzymes involved in the proline synthesis, or 

might be possibly due to inhibition of enzymes involved in the degradation of proline, a 

hypothesis supported by Aspinall and Paleg (1981). The results presented here support 

the hypothesis that proline acts as a protective compound during dehydration stress and 

similar observations in other species led to the suggestion that proline can be used as a 

metabolic marker for specific screening or selection (Bhaskaran et al., 1985; Martinz et 

al., 1996). 

The evidence from the present investigation suggests that through chemically induced 

mutagenesis, mutant lines of cauliflower can be produced which demonstrate correlated 

resistance to more than one abiotic stress. Some mutants were resistant to all of the 

three analysed abiotic stresses i.e. frost, drought and salt stress, while some of the others 

were resistant to salt and drought or drought and frost or salt and frost. No one mutant 
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was resistant to only a single stress. Similar pattern of multi stress resistance in some 

mutants was also observed by Fuller et al (2006), and the present findings confmns their 

findings and suggest that there is a common resistance mechanism involved in 

resistance to multi stresses in a single mutant. The results from physiological screening 

of mutants for frost, drought and salt resistance also provide evidence to support the 

molecular evidence that many genes are involved in the up-regulation of resistance to 

abiotic stress (Guy, 2003; Pearce, 1999; Vinocur & Altman, 2005). 

Many plants on exposure to non freezing low temperature increases their freezing 

tolerance (Thomashow, 1999) and in the present investigation cold acclimation 

significantly increased the frost resistance compared to non-acclimation. In the light of 

all the evidence obtained from physiological screening, it was hypothesised that there is 

a group of genes where they are expressing to resist multi-stresses in each mutant. On 

the basis of this hypotheses, the CBF regulon was investigated which is a group of eo­

expressed genes under cold acclimation (Wieslawa & Eve, 2008). Before this 

investigation no one had reported this regulon pathway in cauliflower or other Brassica 

oleraceae sub species. Molecular study was carried out for investigation of the presence 

of CBF regulon pathway in cauliflower and on the basis of the present results it is 

confirmed that the CBF regulon exists in cauliflower where the CBF/DREBI, COR15a 

genes and higher level of proline was found under cold acclimation conditions. 

Thomashow(200 I) reported that the CBF regulon includes COR and ERD genes, 

membrane stabilizing proteins and cryoprotectents such as proline. 
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5.2 BoCBFIDREBJ expression and frost resistance in mutants under cold 

acclimation 

In the present investigation cold acclimation always increased the frost resistance and 

the BoCBFIDREBJ gene was expressed in clones only under cold acclimation and 

therefore showed a positive correlation between BoCBFIDREBJ transcript level and 

frost resistance. Several of the low temperature responsive genes contain in their 

promoter regions one or more copies of a cis element C-repeat/low temperature 

responsive element/dehydration responsive element (CRTIL TRE/DRE) (Baker, 

Wilhelm & Thomashow, 1994; Nordin, Vhala & Palva, 1993; Yamaguchi-Shinozaki & 

Shinozaki, 1994) with a core sequence ofCCGAC, which is the binding site for the cold 

specific transcriptional activators CBFs/DREBs (Stockinger, Gilmour & Thomashow, 

1997) that induce the expression of cold responsive genes and subsequently enhance 

cold/frost resistance in plants (Mantas, Pekka & Tapio, 2010). 

The level of expression of the BoCBFIDREBJ was not constant at all times during cold 

acclimation. The transcript level in mutants increased up to 24 h cold acclimation where 

the values were maximum and then declined, and this demonstrated that the beginning 

of cold acclimation highly increases the expression of BoCBFIDREB 1 gene while cold 

acclimation for longer time losses its potentional to maintain the expression level of 

BoCBFIDREBJ gene high. Huogen et al (2008) reported similar pattern of CBF 

expression in Vitis plants under cold acclimation and also reported that the transcript 

was maintained for several days under cold acclimation. 

Cold acclimation also induced frost resistance in control plants in comparison with 

control plants grown under non acclimated conditions. This evidence showed that cold 

acclimation works to increase the frost resistance in cauliflower. Similarly cauliflower is 
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known to acclimate in the field (Fuller, Gout & Tapsell, 1989).The mutants highly 

increased the frost resistance compared to the control under cold acclirnation even 

though the transcript of BoCBFIDREBI appeared in control plant under cold 

acclimation; its transcript level was very low as compared to the transcript levels in the 

mutants. This evidence showed the expression of BoCBFIDREBI gene in non mutant 

cauliflower (control) under cold acclimation but the mutagenesis had increased the level 

of expression of this gene and ultimately enhanced frost resistance in the mutants over 

control plant. 

Many researchers have reported increased frost tolerance with over-expression of 

CBF/DREBI gene in plants (Gilmour et al., 2000; Liu et al., 1998). Constitutive over­

expression of the CBFJIDREB/b or CBF3/DREB/a genes in transgenic Arabidopsis 

plants induced the expression of cold-responsive CRT/DRE-containing genes without a 

low-temperature stimulus and non-acclirnated transgenic plants were more freezing 

tolerant than non-acclimated control plants (Jaglo-Ottosen et al., 1998; Kasuga et al., 

1999; Liu et al., 1998). It has been concluded that the "CBF regulon" includes those 

genes which have roles in cold acclimation (Thornashow, 200 I) and previous 

investigations report that orthologs of Arabidopsis CBFIDREBI genes have been found 

in many higher plants (Benedict et al., 2006; Jaglo et al., 200 I; Kayal et al., 2006; 

Nakashirna & Yarnaguchi, 2006; Owens et al., 2002; Skinner et al., 2005). 

5.3 Expression of BoCBF/DREBJ and proline production under cold acclimation 

The level of proline increases during cold acclirnation in Arabidopsis and other plants 

(Alberdi et al., 1993; Koster & Lynch, 1992; McKown, Kuroki & Warren, 1996; 

Wanner & Junttila, 1999b). In Arabidopsis plants an increase in proline accumulation 
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under cold acclimation occurred by the genes which were regulated by the CBF 

activators, and over-expression of CBF3 resulted in elevated levels of proline in non­

acclimated plants (Gilmour et al., 2000). 

In the present investigation proline was always produced in clones under both situations 

of either cold acclimation or non acclimation conditions. Cold acclimation increased the 

proline level about 8 fold higher than non acclimated clones. One reason here for the 

significant increase in proline level under cold acclimation might be the expression of 

BoCBFIDREBJ gene in cauliflower mutants under cold acclimation because there was 

no transcript observed for BoCBF/DREB gene in non acclimated clones. These results 

also indicate that proline production in cauliflower is not only under the control of 

BoCBFIDREBJ because the proline produced in non acclimated clones without 

expresswn of BoCBF/DREBI gene but the level of proline was lower under non 

acclimated condition. The results indicate a possible role of BoCBFIDREBJ in the 

proline production because a positive and significant correlation was found in 

BoCBFIDREBJ transcript level and proline production but this correlation was only 

under cold acclimation. 

The mutants always produced higher level of proline with higher transcript level of 

BoCBFIDREBJ when compared to control. This increase in proline and BoCBFIDREBI 

transcript in mutants might be due to mutagenesis that has induced over-expression of 

the BoCBFIDREBI in mutants over control plant. Over-expression of CBF has been 

reported to elevate the levels of proline and total sugars (Gilmour et al., 2000) and such 

increase in proline levels occur in a wide variety of plants under cold acclimation 

(Thomashow, 200 I). 
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In the present findings it is speculated that the positive correlation between proline and 

BoCBFIDREBJ gene expression might be due to the over-production of an enzyme in 

the proline cycle such as Dl-pyrroline-5-carboxylate synthase (PSCS), which has a key 

role in determining proline levels in plants (Yoshiba et al., 1997). 

P5CS transcript levels have been reported increased in in Arabidopsis in response to 

low temperature (Xin & Browse, 1998b), and there has been a high interest to determine 

whether P5CS transcript levels could elevated in CBF over-expressing plants. Northern 

analysis revealed approximately a 4-fold higher P5CS transcript levels in non­

acclimated CBF expressing plants than non-acclirnated controls and these were about 

equal to those found in plants which were cold treated for one day (Gilmour et al., 

2000). The transcript level of P5CS in 7 days cold-acclimated CBF expressing plants 

were 2- 3-fold higher than in cold-acclirnated control plants (Gilmour et al., 2000). 

Thus it appears that CBF binds to the promoters of genes which are directly involved in 

the proline synthesis (Strizhov et al., 1997) which seems to contribute to the increase in 

the level of proline. 

5.4 Role offree proline and COR15a protein in frost resistance under cold 

acclimation 

In the present investigation the cold acclimation played a vital role in proline production 

and increased the level of proline in mutants over non-acclirnated mutants and 

subsequently the acclimated mutants demonstrated higher frost resistance than non­

acclimated. There was no or very weak correlation between proline production and 

frost resistance in mutants under non-acclimated conditions, but when the mutants were 

exposed to cold acclimation, a positive and significant correlation between proline 

production and frost resistance was obtained. Proline plays an essential role in freezing 
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tolerance (Xin & Browse, 2000) and many researchers have reported increased proline 

levels in a wide variety of plants under cold acclimation, correlated with the 

enhancement of freezing tolerance (Bohnert, Nelson & Jensen, 1995; Gilmour, Fowler 

& Thomashow, 2004; Gilmour et al., 2000; Misra, Biswal & Misra, 2002; Misra et al., 

1990; Nanjo et al., 1999; Thomashow, 2001). The present results also agree with the 

findings of Fuller et a! (2006) who reported that elevated proline can improve 

resistance some-times but is not always essential for improved resistance to abiotic 

stress. 

The mutants always showed higher proline level and frost resistance compared to 

control plants but the difference between mutants and control plants become very clear 

when the plants cold acclimated. These findings demonstrated that the mutagenesis 

positively increased the proline level, this increases might be due to mutation, that could 

induce over-expression of proline biosynthetic enzyme P5CS as discussed earlier in the 

previous section 5.3. These results demonstrated the influential role of cold acclimation 

in production of proline in cauliflower mutants and subsequently enhanced frost 

resistance. There is further molecular and genetic evidence that proline contributes to 

improved freezing tolerance from various freezing-tolerant mutants of Arabidopsis that 

accumulated proline even in the absence of low temperature treatment (X in & Browse, 

1998a). The proline content was increased by I 0 -fold during two days of cold 

acclimation at 4 °C in wild-type Arabidopsis, and in the eskimol (frost tolerant) gene 

mutant the proline level was 30-fold higher than wild-type plants under non-acclimated 

conditions (Xin & Browse, 1998a). 

Previous literature have shown that the CORI5 gene is expressed in response to low 

temperature and has a role in freezing tolerance (Hajela et al., 1990) and two CORI5 
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copies have been discovered in Brassica napus involved in cold stress response 

(Weretilnyk et al., 1993). In this investigation the response of clones under cold 

acclirnation and non-acclirnated conditions were different for the expression ofCOR15 . 

All of the clones expressed the COR15 under cold acclimation but when the clones 

were grown without cold acclirnation, no product of COR15 appeared except in the 

three mutants where COR15 was expressed constitutively without cold acclirnation. The 

frost resistance in cold. acclimated clones where COR15 was strongly expressed was 

higher than non acclirnated clones. This increase in frost resistance might be due to the 

COR 15 protein which can reduce the susceptibility of membranes to form hexagonal­

phase lipids and enhance the freezing tolerance by membrane protection (Artus et al., 

1996; Steponkus et al., 1998). 

In the mutants where COR 15 was constitutively expressed, the frost resistance was 

better among the clones when non-acclirnated but this level of frost resistance in 

constitutively expressed mutants was not similar to that of mutants under cold 

acclimation. These results confrrm the recent findings of Polashock et al (20 I 0) who 

reported constitutive expression of COR genes in transgenic Arabidopsis under non­

acclimated condition but frost resistance in cold acclimated plants was higher. The 

demonstration of constitutive expression in non acclirnated mutants might indicate some 

upstream mutation in the transcription factor regions that control the expression of 

COR15a. Earlier reports shows that constitutive expression of ICE! enhanced the 

expression ofCBFs and constitutively expressed COR genes (2003). Jaglo et al (1998) 

have also reported similar constitutive expression ofCRT/DRE controlled CORI5 gene 

without cold acclimation in Arabidopsis. 
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5.5 Conclusions 

Chemical induced mutagenesis is a promising approach compared with traditional plant 

breeding approaches and showed highly potential to improve multiple abiotic stresses 

resistance in cauliflower (Brassica oleracea var. botrytis). This approach has many 

advantages such as low cost, rapid, simple, requires minimal use of chemicals, can 

improve multiple traits simultaneously and mutated varieties have more chances of 

survival in the environment.The mutants appear to retain abiotic stress resistance for a 

long time such as in the present investigation where the resistance in mutants was 

retained over a 3-4 years period without any phenotypic damage to the mutants. 

The in-vitro and in-vivo screening of cauliflower for abiotic stress resistance using leaf 

discs is an efficient method to differentiate the genotypes for their potential of abiotic 

stress resistance and to identify frost, drought and salt resistant genotypes within a 

limited time and space. 

Cold acclimation induced the expression of CBF regulon and the present investigation 

reported the presence of the CBF/DREB I regulon in cauliflower for the first time. This 

regulon was con finned by identification of CBF/DREB I partial gene sequence 

designated as BoCBFIDREB/ and its expression pattern determined under cold 

acclimation. The target genes in this regulon are COR genes and COR 15 gene product 

(protein) was identified and correlated with higher frost resistance. The other important 

molecules in this regulon pathway are enzymes producing cryoprotentents such as 

proline and sugars and in this investigation the presence of higher level of proline under 

cold acclimation was reported. The genotypes showed positive correlation between CBF 

expression and frost resistance, between CBF expression and free proline production, 

between proline and frost resistance, while negative correlation found between free 

proline production and total protein content. All these indicate the positive role of 
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BoCBF/DREBI, CORI5 and proline in increased frost tolerance in clones of Brassica 

oleracea var. botrytis. 

5.6 Further research recommendations 

Cold acclimation induces the expression of numerous genes to enhance frost resistance 

in many plants. The findings from the present investigation is not the answer for the 

whole mechanism of frost resistance in cauliflower but this study for the first time 

report the presence of CBF regulon pathway in cauliflower. This investigation 

provides a base for further investigations to explore the molecular mechanism and the 

gene expression in cauliflower during cold acclimation that has increased frost 

resistance under cold acclimation. The micro-array technique is recommended for the 

exploration of whole genes expression during cold acclimation that has increased frost 

resistance in cauliflower. But due to limitation of time and finance, the micro-array 

technique was not performed in this project to identify how many genes are expressed 

in the cauliflower mutants under cold acclimation, and this can open the door for further 

research to enhance frost tolerance in cauliflower. 

Dehydration stress resistance is a complex mechanism and numerous genes are evolved 

in response to dehydration stresses (such as frost, drought and salt stress) and more 

investigations are required to explore and understand the resistance mechanism to 

enhance resistance in cauliflower plant. In the present investigation a number of mutants 

were screened physiologically for frost, drought and salt stress resistance but molecular 

and biochemical investigation was carried out for frost stress resistance only because of 

limited time. These mutants along with frost resistance also showed variable resistance 

to drought and salt stress, further investigation to explore the molecular mechanisms for 

this drought and salt stress resistance is recommended for these mutants. 
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5.7 Future perspectives 

Explanation of the mechanisms of the cold acclimation and development of freezing 

tolerance is of vital importance for the design of novel crop varities to allow use of 

marginal lands for agricultural production. A concerted effort through physiology, 

molecular biology and biochemistry is required to understand the complex quantitative 

trait of low temperature and freezing tolerance (Mantas, Pekka & Tapio, 20 10). In the 

coming years a major challenge will be the shortage in food production for the 

increasing population of the world (Royal Society Report, 2009) . The development of 

crops with increased environmental stress tolerance will greatly help in this regard, as 

abiotic stresses (such as frost, drought and salt) limit the geographical locations where 

crops can be grown and cause significant losses in plant productivity on an annual basis 

(Thomashow, 200 I). There is the possibility of using the Arabidopsis CBF/DREB 

genes, or homologs from other plants, to optirnize the expression of CBF regulons in 

agriculturally important crops to enhance freezing, drought, and salt tolerance 

(Thomashow, 200 I). One example is the over-expression of the Arabidopsis CBF genes 

in canola (Brassica napus) that increased the expression level of target CRT/DRE­

regulated genes and increased freezing tolerance in both non-acclimated and cold­

acclimated plants (Jaglo-Ottosen et al., 2000). Further investigations and achievements 

in this area will not only be exciting and a profound scienti fie achievements, but will 

greatly aid efforts in agriculture to continue providing food to feed the world 

(Thomashow, 200 I). 
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