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Abstract 

ABSTRACT 

DAWN TIT/ANN/A ROSE 

Gomphonema parvulum (Kutzing) Kutzing: Ecophysiological, Morphometric 
and Observational Studies of a Species Complex. 

Perturbations to environmental conditions experienced by any one species, can 
invoke a physiological and/or behavioural response that may be expressed 
morphologically and ecologically. This has important implications for diatom taxonomy 
and the use of diatoms as environmental indicators. The reliable recognition of a 
taxon with a particular life history, morphology, ecology and physiology may 
necessitate the adoption of narrower species concepts than those in current floras. 
This would have the advantage of clarifying the ecological ranges of taxa used in 
biological monitoring programmes. 

Gomphonema parvulum has long been a taxonomic problem. The species exhibit 
considerable is found over a wide range of environmental conditions. lt has also been 
used as an indicator of "pollution" in diatom indices of water quality. 

Clones of G. parvulum, exhibiting a range of morphologies, were isolated from 
different sites into unialgal culture. Experimental investigations on the clones, tested 
against different environmental variables to determine ecological tolerances of 
different isolates, occasionally produced auxospores. This rare opportunity allowed 
the morphology of particular clones to be studied over their full size range (initial cell 
through to mother cells). Additionally, aspects of diatom behaviour, including sexual 
reproduction could be observed and recorded. 

Results indicate that not only are there differences in cell shape and behaviour with 
size and environmental condition, but in some G. parvulum clones, heteropolarity is 
not determined in the auxospore or initial cell, but becomes established after a series 
of vegetative divisions. This increases the likelihood that specimens may have been 
incorrectly identified as different species or varieties (G. parvulum complex 
encompasses two previously described species, G. gracile and G. hebridense), 
underlining the need for experimental studies and culturing. These observations 
argue strongly against reliance on diatom valve morphology as the sole criterion on 
which to delimit taxa, and provide a compelling argument for the benefits of algal 
culturing and observation of live material. There are serious issues for the sampling of 
waters and the use of diatom indices of water quality. Community analyses, water 
quality indices and taxonomic studies will be invalid, especially if different parts of the 
life cycle are shown to be ecologically as well as morphological variable. 
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Preface 

PREFACE 

Readers should note that the "Foot & Mouth Crisis" in 2000/2001 and the resulting access 

bans to many sites affected the ability to collect fresh algal material from a wide 

geographical area and environmental gradient, although access to urban sites was not 

affected. This was compounded by the appalling weather conditions with consequent 

flooding in the autumn of 2000, which also rendered the early acquisition of suitable 

material for isolation difficult, and delayed the initiation of experimental work. 

The absence of light micrographs of live cultures for the light and temperature regime and 

some stock and experimental cultures was due to late arrival of digital camera equipment 

for the inverted microscope. 

Additionally, in August 2003, the author's home was subject to a flash flood due to 

torrential rainfall. Consequently, computer equipment, software, data storage devices 

(hard disk and COs) and PhD paper notes were damaged. Most of the data was 

thankfully recovered but inevitably, some data was lost (largely in the light and 

temperature regime). 

Finally, this thesis and all accompanying figures, tables and appendices plus any 

relevant raw data are available on the CD accompanying this thesis (see pocket at back). 
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Chapter 1 - Introduction 

1 INTRODUCTION 

Gomphonema parvulum (KOtzing) KOtzing is a well-known example of a freshwater 

benthic diatom for which a number of varieties and forms have been described. 

Morphologically variable, with a seemingly wide distribution (Kelly, 2000; Krammer & 

Lange-Bertalot. 1986, 1991b; Round. 1993), it is nonetheless used as an indicator of 

"pollution" in diatom indices of water quality, despite there being no clear link between the 

various morphologies and particular autecologies. Taxa with wide ecological ranges are 

usually considered poor biological indicators, so should G. parvulum be used in such a 

way? Alternatively, does the G. parvu/um species complex actually consist of several 

discrete taxonomic entities and if so, what are they and how can we identify them? 

There are two basic requirements in choosing any taxon as a biological indicator, (i) it 

must be sensitive to change and (ii) its response must be measurable and predictable to 

ensure causal inference (Reid et al., 1995). G. parvulum 's pollution indicator status 

however, is largely derived from diatom community studies and metals (lvorra et al., 1999 

and 2000 and Oliveira. 1985), or in which it occurs at high abundance under certain, 

primarily saprobic, conditions (Butcher. 1947; Fairchild et al .. 1985). None of these 

studies recognise the different varieties of G. parvu/um nor attribute them to a particular 

habitat, few studies do. There is no evidence of morphological change linked to ecology 

for G. parvu/um, and this, along with its wide distribution and morphological variability, 

raise questions about its taxonomic status and its use in biological monitoring. 

The recognition of taxa with narrow ecological ranges can improve the predictive power of 

diatoms in water quality monitoring (Anderson et al .. 1993; Koppen, 1975; HOrlimann & 
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Straub, 1991 ). lt has been argued that the recognition of "races" with specific habitat 

requirements would allow finer ecological distinctions to be made within monitoring 

systems (Hurlimann & Straub, 1991 ), whereas grouping taxa into complexes (sensu 

Krammer & Lange-Bertalot, 1986, 1988, 1991a, 1991b) may facilitate recognition of taxa, 

but the cost is loss of ecological information (Cox. 1995) and the production of broad 

species concepts based on a coarse classification. Mann & Droop (1996) suggest that a 

very narrow species concept may be necessary based on ultrastructural characters, 

which would perhaps highlight endemic taxa. A narrow species concept would however 

result in a number of taxonomic revisions and a large number of species being separated 

on [sometimes) very slight differences. 

1.1 DIATOM DISTRIBUTION 

Diatomists have always been interested in the distributional patterns of diatoms. Many 

appear to be cosmopolitan, some have restricted distributions and fewer still are endemic. 

Many diatoms such as G. paNulum have broad distributional patterns and Kristiansen 

(1996) remarks, ''When discussing distributional patterns of algal species, the species 

concept is crucial. However, just as important is the stability of the taxa in question .. . 

even if the species are static in morphological characters, their genomes may vary and be 

able to adapt in various ways throughout the occurrence of the species, in response to 

environmental factors and geographical isolation". The broad distributional patterns 

exhibited by many diatom species may have led to the belief that most are cosmopolitan 

however, the amount of endemism remains unknown. Additionally, the reliance on a few 

(mostly European and North American) illustrated diatom floras to identify diatoms in the 

tropics and the southern hemisphere may have inadvertently, through forced fitting, 

underestimated diatom diversity, distribution and endemism. Global checklists and floras 

are a long way from being published, though the internet is proving to be a great resource 
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(e.g. Index Nominum Algarum, AlgaeBase). Add to this a lack of detailed descriptive and 

photographic evidence, no standard terminology, and ongoing taxonomic arguments (e.g. 

what constitutes a species and how broad that definition should be) make interpretation 

and comparison of different studies difficult. 

lt is clear therefore, that if one is to correctly identify a taxon and associate it with a 

particular environment, the relationship between diatom morphology and the environment 

must be understood, e.g. do morphological varieties co-exist in a single habitat or are 

particular forms only seen at particular times of the year, or in particular water 

chemistries? If two or more varieties are able to co-exist, it suggests genetic 

distinctiveness (=gamodemes) (Mann, 1988), if they cannot co-exist then the taxa are 

probably distinct. As expressed by West-Eberhard (1989), "The environment is not only 

an agent of selection (arena where different phenotypes achieve different degrees of 

survival and reproductive success), but also an agent of development, influencing the 

range of phenotypes that will be produced by a given genotype". Alternatively, in a 

variable environment a novel morphology can evolve alongside an established 

morphology without being expressed in the same situation (West-Eberhard, 1989), i.e. 

even if an established phenotype is more efficient in most situations or individuals, any 

alternative morphology that happens to be better associated with a particular condition or 

trait can be positively selected for (facultative expression) (Dawkins, 1980). lt is likely that 

these alternatives or novel individuals can become increasingly divergent and specialised 

over time, so increasing the number of morphologically distinct taxa. This divergence 

drives speciation if sufficient to cause reproductive isolation, and if phenotype fixation 

occurs. Therefore, is the morphological variation so often seen under the microscope, 

actually a window on the speciation process? How do polymorphisms affect our over 

reliance on diatom cell wall morphology for identification and classification purposes? 
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Certainly, there is an inherent danger in assigning new species based on valve 

morphology alone. As previously suggested, ecology and ontogeny are also important 

factors, and molecular studies will no doubt add to this information base. 

1.2 DIATOM ECOPHYSIOLOGY 

Consistently found in extreme conditions, diatoms are excellent bio-indicators. Patrick 

(1986) however, raised the question of why diatoms might be found in such conditions 

and suggested that certain species are able to utilise [or neutralise] nutrients that may 

otherwise be toxic to other taxa. 

There are no ecophysiological studies in the literature on the effects of light, temperature, 

pH or organic pollution on G. parvulum and only one metal toxicity study (lvorra et al .. 

2002). Gomphonema parvulum is often mentioned however, in a number of community 

studies, suggesting an inherent tolerance to high and low pH, eutrophic conditions and 

conditions of metal toxicity. For example, lvorra et al., (1999 and 2000), found G. 

parvulum present in high numbers among benthic algal assemblages subject to zinc and 

cadmium pollution (on artificially translocated substrata). In the same study, G. parvulum 

abundance ranged between 8 and 19% of the total diatom abundance despite the metal 

pollution. Additionally, the authors found that the effects of metal exposure varied with the 

developmental stage of the algal biofilm. Oliveira's (1 985) study of phytoplankton 

communities receiving copper mine effluent, also showed G. parvulum as abundant at a 

mean dissolved copper concentration of between 60 and 390mg/l, with cell densities 

ranging between 0.08 and 0.34 cells/ml-1 • 

Butcher ( 194 7), described G. parvulum as being resistant to polysaprobic conditions, but 

relatively uncommon in oligotrophic waters, though also occurring in all other zones from 
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eutrophic to oligosaprobic, and the dominant diatom taxon in the mesosaprobic zones at 

the height of the growing period May to October. In another study, Palmer (1969) 

compiled a list of algae tolerating high organic pollution from 165 authors. The species 

most often referred to as significantly tolerant were remarkably stable throughout the 

research. Gomphonema parvulum was listed 20th out of 725 species of algae as being 

particularly tolerant to organic pollution. Later still, Fairchild et al .. (1985), used clay pots 

dosed with specific ions to study the growth responses of algae in a lake. They found 

Gomphonema spp. were N03- limited. Niederhauser & Schanz (1993) found G. parvulum 

to be the dominant species on clay pots dosed with nitrogen, phosphorus and carbon, 

seemingly confirming their preference for eutrophic waters. These results and comments 

strongly indicate that G. parvulum is a highly adaptive taxon generally tolerant of a wide 

range of saprobic and metal polluted waters however, authors rarely distinguish between 

the different forms of G. parvulum, nor do they provide micrographs with which to 

compare different reports. This brings us back to the question raised earlier, i.e. does the 

species complex G. parvulum actually consist of several discrete taxa, each associated 

with a particular autecology? 

In studying the ecophysiological responses of diatoms, growth rate is often used as an 

analogue for metabolic rate, and according to Finkel & lrwin (2000), "an organism's size is 

a powerful predictor of its metabolic rate" and this "simple allometric model predicts that 

small cells should always outcompete large cells". One would therefore expect there to be 

metabolic differences related to size even within the same taxon, e.g. between vegetative 

parent cells and initial cells produced after sexual reproduction. Other factors, e.g. 

intracellular pigment concentration, can however complicate this model. 
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Although each diatom taxon has specific growth requirements, generalisations can be 

made. Generally, it is the chemical content of the water together with light and 

temperature that determines where particular taxa are found , and in what numbers. 

Studies have shown that in addition to sodium, calcium, iron, silicon, nitrates, phosphates, 

sulphates, oxygen, carbon dioxide and humic acid (Patrick, 1948), copper, zinc, and 

organic substances are also important (Button & Hostetter. 1977; Ellwood & Hunter. 

2000; Gerringa et al., 1995; Joux-Arab et al., 1998; Lee & Morel, 1995). In one case, 

even cadmium has been shown to have a biological function (Lane & Morel , 2000). 

1.3 MORPHOLOGY, SPECIES CONCEPTS AND TAXONOMY 

Morphological variation occurs in a number of diatom taxa, e.g. Caloneis amphibaena 

(Bory) Cleve, Anomoeoneis sphaerophora (Ehrenberg) Pfitzer, Craticula cuspidata 

(Kutzing) D. G. Mann, Cymbella amphicephala Naegeli in KUtzing, Navicula gregaria 

Donkin, Sellaphora pupula Mereschkowski. In some cases, different morphologies in a 

single taxon have been linked to different environmental conditions, whereas in other 

taxa, e.g. Sel/aphora pupula, morphological variation has been shown to be a 

manifestation of discrete breeding populations (Mann. 2001; Mann et al .. 1999, 2004 ). 

Taxa can also be morphologically similar but occur in different habitats. 

The aim of the systematist is to provide a natural hierarchy of classification for all living 

and fossil organisms. This necessitates a terminology to describe units of variation and 

change (Waiters. 1989). Turesson (1922) as cited in Waiters (1989) was the first to 

propose the term "ecotype", having discovered via transplantation experiments that many 

of the morphological variants of species were genetically distinct. Later, Gilmour & 

Heslop-Harrison's (1954) paper defined the term "deme" with the appropriate prefixes to 
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denote particular kinds of demes (now used by modern taxonomists such and Mann, 

1990) to describe "... any specified assemblage of taxonomically closely related 

individuals". Waiters (1989), paper goes on to describe the misuse of this terminology, 

which continues to exists in its incorrect form today, e.g. workers using the term deme 

without prefixes and to describe what should be a gamodeme. Unfortunately, the term 

"ecotype" has not escaped erroneous use either. Perhaps this is partly down to the 

original and subsequent authors not being clear in their definitions or clarifying 

appropriate use, and it may be why none of these terms is in widespread use today. On 

the other hand, perhaps it is an unwillingness to change from what is comfortable and 

familiar. As M ann ( 1990) has said, "lt is discourteous to dismiss an idea merely because it 

disagrees with the current orthodoxy". 

The role of authority is also important in terms of defined criteria for application. In 

Williams & Round's (1994) paper, the role of authority in systematics and the need for a 

set of principles is discussed. The real question however is what principles? Who is going 

to choose them and will they be widely accepted and incorporated into the Botanical 

Code? lt is likely that they will change as science moves forwards, but this should not 

preclude open discussion. The authors also caution against the overzealous use of 

authorities simply because they are named, suggesting instead that judgment should be 

made on all data available and the methodology behind it, echoing Mann's (1999) "total 

evidence approach". 

What perhaps needs to be stated is that taxonomy, at the level of species and below at 

least, is a fluid process, i.e. taxa are continuously evolving. What was once described as 

a variety or form, may eventually become either distinct enough to allow upgrade to 
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species or become extinct. This means that varieties and forms cannot be easily defined 

and the point at which a new species forms is unknowable. The development of a clonal 

nomenclature has been suggested (Round, 1997a, 1997b) as a suitable alternative but 

has not been developed further. For a thorough evaluation of species concepts in diatoms 

however, Mann's (1999) detailed review is required reading. 

When referring to species, biologists generally have two objectives in mind, one practical 

and concerned with the description and cataloguing of individuals (grouped into "species" 

for convenient identification) and the second, to facilitate the study of processes such as 

speciation and evolution (Endler. 1989; Rines. 1994 ). Yet there is much debate regarding 

species concepts, largely because these concepts depend on the questions being asked 

and the personal preferences and preconceptions of the researcher. Consequently, 

species concepts can often be viewed as clashing rather than complementary, e.g. 

taxonomic vs. evolutionary (does one want to catalogue or study processes) or 

reproductive vs. cohesive (species defined by their ability to interbreed or by whatever 

cohesive forces maintain the integrity of the taxon) (Endler, 1989). 

Although most contemporary diatomists recognise the existence of genotypic and 

ecophenotypic variation in morphology, the requirement of the International Code of 

Botanical Nomenclature (ICBN) to designate a nomenclatural type, sometimes leads to a 

typological species concept being followed (Rines, 1994). This concept is no longer in 

use, and whilst at one time a type specimen was considered a perfect example of the 

species in botany, today its purpose is nomenclatural not taxonomical Rines (1994). This 

begs the question of why have type specimens at all? Fixing a name to a single 

specimen sitting on a slide in a darkened drawer only perpetuates the typological species 
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concept whether intentional or not. A species consists of a group of organisms evolving in 

time and space. In 100 years, will G. parvu/um still be G. parvulum? In terms of its name, 

probably yes. In terms of the features that determine it taxonomically as G. parvulum, 

possibly no. The concept of species is of fundamental importance in any taxonomic work, 

yet a stable and universally acceptable definition remains elusive. 

What of the infraspecific separation of taxa? According to Round (1996, 1997b ), the use 

of variety has been almost exclusively based on morphological data and there are several 

instances of upgrading a variety to species status, e.g. Sellaphora pupu/a (Mann. 1989b). 

Droop's (1994) paper on the morphological variability of the valve in the diatoms 

Diploneis smithii and D. fusca highlights some of the problems involved in identifying and 

naming parent varieties. However, one must be careful to include as many discriminating 

characters as possible to ensure complete separation of the groupings, and if these are 

well defined and clearly described, there should be no need to weight them. Failure to 

follow this course of action may result in incomplete separation due to similarity in 

characters chosen whereas they may in fact be clearly recognised by eye as distinct 

entities (see Round 1996, 1997a, 1997b ). Droop (1994 ), however also points out that this 

is not always possible because some characters, e.g. valve shape and shape of raphe 

endings, are so difficult to measure quantitatively. Cryptic factors such as the presence of 

certain proteins or chemicals also need to be considered. Based on the biochemical and 

physiological factors of the taxon under study, cryptic characters can be determined by 

experimental means and are capable of separating taxa into ecologically important 

entities (Round 1996, 1997a, 1997b ). Relating such cryptic features to morphology, 

especially where significant inter-clonal variability is found, will not only increase the 

possible number of species but also provide precision in biomonitoring. 
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Size diminution is also an important aspect of morphology. The overall size diminution 

over the diatom vegetative life cycle, with full size only being restored through sexual 

reproduction (Crawford, 1981; Geitler. 1932), is known as the MacDonald-Pfitzer rule 

(MacDonald, 1869; Pfitzer. 1871 ), the first authors to give detailed accounts of cell size 

change during the diatom life cycle. The process of size diminution during vegetative 

growth in most diatoms will additionally cause changes in overall valve shape, symmetry, 

volume of nucleus, cytoplasm and vacuoles, position of chloroplasts and loss and/or 

distortion of some morphological characters such as striae and raphes. Size reduction is 

also accompanied by a change in relative proportions, e.g. longitudinal axis of the 

pennate diatoms shortens faster than the transverse axis. This leads to changes in valve 

outline, e.g. increasing heteropolarity, and loss of pole detail, which in turn can lead to 

misidentification unless the full size range of a particular species is known. Maximum cell 

size is only restored by meiosis and pairing to produce an auxospore (= zygote). Any 

disturbance during cell division however can result in abrupt changes to cell dimensions 

and valve morphology and may lead to death of a population. 

1.4 THE USE OF LIVE MATERIAL IN DIATOM TAXONOMY 

The identification and classification of diatoms relies heavily on the morphological 

features of the silica cell wall, including symmetry, shape and ultrastructural features. 

Little attention has been given to cell contents, physiology, biochemistry, colony form, 

reproductive behaviour or the production of different forms of extracellular polysaccharide 

substances (EPS) as taxonomic criteria. Whereas earlier diatomists and non-diatom 

phycologists regularly use such features in their diagnoses, most contemporary 

diatomists do not. Attempts to introduce taxonomic characters based on the features of 

live cells , e.g. use of chloroplasts, pyrenoids and reproductive behaviour (e.g.Cox 1987, 

1996; Mann. 1984a, 1984b, 1984c, 1984d), are however on the increase. These studies 
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are reassessing taxa previously established using light microsopical studies of the 

frustule (Mann, 1988, 1989b, 1990; Mann & Stickle. 1988, 1995). 

There is additionally, a need for studies evaluating the sensitivity of taxa to various 

environmental conditions, particularly if these are also linked to a stable morphology. 

Compared to the data available for marine and freshwater planktonic diatoms however 

(e.g. Gensemer et al. , 1993; Morel et al., 1978), information on the sensitivity of 

freshwater benthic diatoms to, e.g. metal pollution (Takamura et al .. 1989), is sparse. The 

formation of morphologically abnormal diatom valves in the presence of heavy metals or 

extreme pH is well known (Barber & Carter. 1981; Cox, 1981a; Dickman. 1998); however, 

cytological cell deformities such as increases or decreases in cell volume, chloroplasts 

and vacuole number and size, and the production of exopolymeric substances are rarely 

investigated. Yet they can indicate the overall state of health and hint at ultrastructural 

deformities and ecological preferences. Together with other cytological features, such as 

lipids, polyphosphates and mitochondria, these features can indicate disruption to, e.g . 

photosynthesis and ATP production. 

Additionally, the culturing of diatoms and the induction of sexual reproduction allows the 

full size range and life history to be observed and measured, and can clarify species 

identifications. Workers are now recognising that in order to maximise the benefits of 

using diatoms as bio-indicators, taxonomy needs to be clarified and there is a need for a 

synthesis of ideas, techniques and information from different areas of phycological 

research (and beyond). 
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1.4.1 Diatom Organelles as Taxonomic Characters 

Chloroplasts are the most obvious organelle in diatoms, the shape and orientation being 

taxon specific. The number, shape and ultrastructure of the diatom chloroplasts was 

reviewed by Duke & Rei man (1977), and Cox (1981 b, 1996), who has shown that there 

are consistent differences between species in their chloroplast arrangement and that this 

can facilitate and clarify species recognition. Chloroplast morphology, movement and 

inheritance were reviewed by Mann (1996). 

Data on vacuole morphology is contained within Raven's (1987) comprehensive review, 

which provides the background to the role of the vacuoles in plants such as increasing 

surface areas for the acquisition, storage and transport of resources and regulating 

cytoplasmic volume. In particular, Ravens' analysis suggests that the specific growth rate 

of a cell under optimal growth conditions is decreased if it is vacuolated, yet resource 

acquisition under limiting conditions may be enhanced by vacuolisation. lt is therefore a 

balancing act, and the flexible nature of the vacuole facilitates this and may be largely 

taxon specific. 

Large oil bodies are also highly visible in diatom cells. They are a food reserve, occur 

frequently in both cultured and wild diatoms, and diminish if diatoms are kept in the dark 

for extended lengths of time. Lipids in the chloroplasts are assumed to have the same 

density as the larger oil bodies, but the chemical make-up and function of the two types is 

not known (Drum, 1963). However, no studies have been carried out to discover whether 

the production of oil bodies increases or decreases in relation to cell cycle or 

environmental conditions. How useful, variable or visible other organelles are in live cells 
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is not clear and does not appear to have been researched to any great extent, though a 

variety of stains are available to show up various organelles within the diatom cell. lt is 

likely that most other organelles only become visible, and or mobile, during cell division, 

e.g. the Golgi bodies (Duke & Reiman, 1977). 

1.4.2 Diatom Growth Mode and EPS Production 

An important adaptation of diatoms to their environment is the production of extracellular 

polysaccharide substances (EPS) in the form of cell or colony coatings, tubes, stalks, 

apical pads, and adhering films or fibrils. Although diatoms function as single entities 

either freely motile or attached to substrata, they are also often associated in colonies, 

and as Round et al., (1990) point out, "There is no reason why sytematists should not use 

colony form, and the means diatoms employ to achieve this, as sources of taxonomic 

information". 

The production of EPS has been linked to changes in environmental conditions, and 

different growth stages of diatoms, indicating a high level of genetic control (Abdullahi et 

al., 2006; Underwood & Paterson, 2003). EPS are associated with both planktonic and 

sessile diatoms, and have a wide varieties of forms, e.g. crystalline, fibrous or 

mucilaginous (Hoagland et al., 1993). Whilst it is generally known that EPS comprise of 

polysaccharides together with small amounts of protein and glycoproteins and are 

involved in gliding motility and adhesion (Chiovitti et al., 2003; Staats et al., 1999), much 

remains unknown in relation to their function and synthesis. The structure, biochemistry 

and biosynthesis of EPS are beyond the scope of this study (see reviews of Hoaqland et 

al., 1993 and Wetherbee et al. , 1998) however, the morphology and ecological 
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significance of the types of EPS produced by G. parvulum clones under various culture 

conditions will be examined. 

G. parvulum was first reported as producing mucilaginous stalks or mucous coverings in 

dense aggregations by KOtzing, (1849), and modern diatom floras (e.g. Krammmer & 

Lange-Bertalot, 1986) do not depart from these descriptions. However, EPS in the form of 

a mucilaginous matrix is considered rare, and there is no description in the literature 

defining a matrix. The literature points to two colony forms involving EPS for G. 

parvulum, (i) when free-living, it forms mass aggregations encapsulated in a mucilaginous 

covering or matrix, and (ii) when sessile, it forms stalks, possibly dichotomously 

branched. lt is not clear whether these are related to different ecotypes or ecomorphs. If 

the different modes of attachment remain stable, they would provide additional 

information for taxonomic and ecological diagnoses. 

1.4.3 Sexual Reproduction 

Diatoms are presumed to be primarily asexual because this is the stage in which they are 

invariably observed however, the significance of asexuality in taxonomy differs depending 

on the species concept used. lt would be highly relevant to the biological species concept 

for example. The presumption of asexuality may simply be a result of not looking in the 

right places at the right time of year/day, or perhaps the cell cycle is spread over much 

longer time spans as in some higher plants (e.g. such as those that only flower once 

every 50 years, or only flower when an exceptional event such as fire occurs). This is one 

reason why repetitive field sampling and exploratory experimental assays are so 

important in diatom taxonomy. 
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Only a small number of pennate diatom life histories have been studied to date, but 

according to Chepurnov et al., (2004) they are better documented than for other major 

diatom groups. Two of the earliest researchers were Smith (1856), and Geitler (1927, 

1932, 1939, 1951a, 1951b, 1952a and1952b, 1953, 1957, 1969a and1 968b, 1977, 1979, 

1984, 1985), who studied sexual reproduction in representative taxa from several genera 

including Cymbella, Synedra, Eunotia, Navicula, Nitzschia and Gomphonema. Few other 

researchers took the time or interest to study this area of diatom taxonomy until the early 

1980's and 1990's, when interest began to resurface and earlier works were rediscovered 

(e.g. Chepurnov & Mann. 1997; 1999, 2000, 2003; Cohn et al., 1989; Cox. 1985; 

Davidovich & Bates. 1998; Edlund & Stoermer. 1991, 1997; Mann 1982a, and 1982b, 

1984a, 1984b, 1984c and 1984d, 1993a and 1993b). Edlund & Stoermer's (1997) review 

suggests only a dozen or so researchers have contributed to nearly all the knowledge on 

diatom life histories to date. 

Sexual reproduction in diatoms has been reviewed by Drebes (1977); Edlund & Stoermer 

(1997); Mann (1993a); Patrick (1954) and Round et al., (1990), and more recently, 

Chepurnov et al., (2004) provide an historical and "next steps" review of experimental 

studies on sexual reproduction in diatoms. There remains however, a lack of information 

on individual species. Primarily this is due lack of knowledge about their culture 

requirements, the environmental cues stimulating sexual reproduction, and the low 

incidence of diatom sexual reproduction in nature and culture. 

The only cytological and life history works (as opposed to valve morphology or 

experimental studies) conducted on Gomphonema spp. are those by Dawson (1973a, 

1973b), Drum & Pankratz (1964b); Geitler (1973) and Hohn and Patrick (1959). The 
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literature tells us that most raphid diatoms are isogamous, having male and female 

gametes that are morphologically and/or behaviourally different (Orebes 1977; Geitler, 

1932; Round et al., 1990). We also know through these studies that, in raphid diatoms, 

sexual pairing is an active process due to or because of, the motile nature of diatoms. 

Whilst a number of factors are shared by several taxa, the process of pairing, 

gametogenesis, fertilisation, mucilage production, auxospore and initial cell development 

however, are very diverse (Chepurnov et al .. 2004) and probably species-specific. The 

cytological ultrastructure of sexual reproduction in raphid diatoms has been studied in 

only a few taxa, e.g. Gomphonema parvulum and Neidium affine {Ehrenberg) Pfitzer 

(Drum et al., 1966). The arrangement of cell organelles, especially chloroplasts, can 

change in a predictable and taxon specific manner during the cell cycle, e.g. the 

pyrenoids may temporarily disappear (Cox, 1996). In G. parvulum, the single chloroplast 

moves to the girdle and divides longitudinally prior to cytokinesis, so that each offspring 

receives one chloroplast. 

A rational train of thought might lead one to consider that inducement of sexual 

reproduction is more likely under favourable conditions. Waite & Harrison (1992) have 

shown in the much-studied marine diatom Ditylum brightwelli (T. West) Grunow in Van 

Heurck however, that sexual development can also be a stress response. They studied 

natural populations of this diatom, and found that a portion of the population sexualised at 

a time of nitrogen limitation. Culture studies indicated that sexual induction increased 

sinking rates up until the post auxospore stage, when it then became positively buoyant. 

lt was suggested that this allowed the diatom to procure the additional nitrate required at 

an early stage in sexual development, allowing it to complete sexual reproduction prior to 
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re-colonisation of surface waters. lt would be interesting to know if this was an aberrant 

occurrence, due to unusual environmental conditions, or a regular, perhaps seasonal 

pattern. 

Studies have also shown that auxospore formation can occasionally occur within a single 

unpaired mother cell via automixis. Automixis involves either fusion of two normally 

differentiated gametes (=paedogamy), or meiosis is suppressed and two of the four nuclei 

fuse (=autogamy). Autogamy within the raphid diatoms has been shown to occur only in 

Oenticula tenuis Kutzing (Geitler, 1953) and Cymbella ventricosa Kutzing (Geitler. 1953) 

(now Encyonema minutum (Hilse ex Rabenhorst) Mann) (Geitler. 1985). All reports of 

paedogamy occur in the raphid diatoms, and include representatives of Gomphonema 

(Round et al.. 1990). This phenomenon suggests that, in normal allogamous sexual 

reproduction, there must be a mechanism that prevents sister gametes fusing 

(Chepurnov et al., 2004), though no study to date has discovered what that mechanism is 

or might be. 

lt is also possible for size restoration to come about via asexual auxosporulation 

(vegetative apomixis) (Drebes. 1977; Geitler. 1973; Nagai et al., 1994; Sabbe et al .. 

2004), in which meiosis and fertilisation are by-passed, and a single mitotic division 

occurs to form the auxospore. True vegetative size restoration in which no auxospore is 

formed also occurs, and it is believed such populations are permanently asexual , e.g. 

M ann ( 1989a) and M ann et al.. (2004) have shown that populations of Sel/aphora 

lanceolata have a narrow size range that has remained unchanged over many years of 

observation with no sign of sexulisation. In the absence of sexual cell enlargement, size 
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restoration is instead brought about by "vegetative cell enlargement" as detailed by von 

Stosch (1 965). 

Observations on auxospore formation in heteropolar diatoms like G. parvulum have 

revealed that gomphonemoid initial cells are almost isopolar (Passy-Tolar & Lowe. 1995). 

The restoration of a marked heteropolarity, only after several vegetative divisions 

suggests that daughter valves are not simply moulded by the parent walls as suggested 

by M ann ( 1994 ), but perhaps also cytoplasmic factors in some situations (Cox & 

Kennaway, 2004). 

The ecology of diatom sexuality has also been overlooked until fairly recently with Edlund 

& Stoermer's (1997) review of diatom life history strategies. One of the strategies, 

"Synchronous sexuality under favourable growth conditions", is utilised by most diatoms 

and describes a population in which a number of cells undergo sexual reproduction at the 

same time. The authors suggest that this is the favoured method for spring blooms of 

Cymbel/a spp. and Gomphonema spp. and may therefore be tied to seasonal signals 

such as light and/or temperature, together with favourable nutrient conditions, but again 

few other diatomists have studied this aspect. 

The inclusion of cytological and life history research in taxonomy alongside traditional 

morphological studies can only enhance our knowledge about diatoms and their ecology. 

As Edlund & Stoermer (1997) suggest, this can lead to an organismal approach to diatom 

classification and a more natural classification system. lt has already had an impact on 
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diatom classifications, with several genera having been resurrected and others re­

designated, e.g. Biremis (Round et al., 1990), Craticu/a (Mann & Stickle, 1991) and 

Placoneis (Cox. 1987; Mann & Stickle, 1995). There is clearly a need for, and diatomists 

are now working towards, a more holistic approach in the study of diatoms. 

1 .5 G. PARVULUM: AN HISTORICAL PERSPECTIVE 

Gomphonema parvulum exhibits considerable morphological variability (Figure 1.1). In 

considering the circumscription, nomenclature and typification of G. parvulum, two 

questions arise: "What was Kutzing's original definition of G. parvulum? and "Does 

Kutzing's original definition comply with modern taxonomists views of what constitutes G. 

parvulum?" In other words, has Kutzing's original concept been maintained? Clarifying 

the taxonomic and nomenclatural issues associated with the different morphologies within 

the Kutzing material is important because, any new species or ecotypes revealed by 

experimental study will need to be formally identified and named. Similarly, 

experimentally defined ecological tolerances must be linked to defined taxa. Accordingly, 

Kutzing material housed at the Natural History Museum (NHM), in London was examined 

alongside copies of Kutzings original descriptions and notes. 

The current International Code for Botanical Nomenclature (ICBN) (St. Louis Code 2000), 

outlines the rules for naming type material however, prior to the current and some earlier 

codes, different species concepts prevailed and the concept of type and type material 

was not generally accepted. If it was, it did not conform to the modern interpretation. Not 

until 1930 did taxonomists agree to the first ICBN, and the first definition of a type 

specimen did not come into force until 1958. Thus, when Kutzing fi rst identified G. 

parvulum, he was not adhering to current rules. Early authors often considered the most 
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common species as "typical" of a genus (not to be confused with the contemporary 

meaning for type in taxonomy), but this has caused confusion in that several "typical" 

specimens represented one species. 

NB: question marks after species names in the following sections are deliberate, 

appearing in this manner in KOtzing's original material. 
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Figure 1.1 
An example of the range of morphologies exhibited by G. parvulum in this thesis. Scale 

bar = 10~m . 
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1.5.1 Kutzing's Material 

In the 1840s, gomphonemoid diatoms were split into two genera, Sphenel/a and 

Gomphonema. The former genus was composed of free-living forms and the latter of 

attached and stipitate forms. In all other respects, the species had numerous other 

characters in common. Kutzing's original description for what is currently known as G. 

parvulum, was originally described as two separate species (1) Sphenella parvula (free­

living form) (KOtzing, 1844) and (2) Gomphonema parvulum (stipitate form) (Kutzinq, 

1844 and 1849). 

Examination of the KOtzing Collection Catalogue (originals held by the Zoological Society 

of Antwerp in the van Heurck collection) (Figure 1.2a-b) reveals four packets of diatom 

material associated with the collection, and copies of Kutzing's original description and 

drawing (Figure 1.3a-b) confirmed the material as originating in Falaise, a small town in 

Normandy, northern France. KOtzing's catalogue cites two packets of material from which 

he identified S. parvula, and two packets from which he identified G. parvulum (Table 

1.1). All four packets were donated by de Brebisson under his manuscript names 

Gomphonema minutissimum? and later, Sphenella parvula? from which KOtzing identified 

Sphenel/a? parvula and Gomphonema parvulum respectively (Table 1.1). 

Additionally, four slides (Table 1.1) were located that corresponded to each of the four 

packets identified. As was consistent with the times, no single packet or specimen was 

identified as the type by KOtzing. However, Dawson (1972) had labelled two slides as the 

type slides for G. parvulum and S. parvula. Dawson also wrote notes on the back of these 
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"type" slides in which she stated that each slide was identical to the other. However, as all 

four slides originate from four different but corresponding packets of material, and may 

have been collected at different times, this is incorrect. 

KOtzing's description (1844) (Figure 1.3b) of S. parvula is extremely brief and his 

drawings very small (Figure 1.3a) and perhaps a little exaggerated. Nonetheless, 

together they depict a diatom that is small , raphid, almost lanceolate-like with tapered but 

expanded apices that are subcapitate or sub-rostrate, and a shape that is heteropolar and 

asymmetrical about the transapical axis. In his description, KOtzing also recognised that 

the species could easily belong to the genus Gomphonema. This may be why he 

maintained the question mark after the genus name Sphenel/a in his 1844 publication. 

KOtzing's description of G. parvulum came four years later in 1849, together with a 

description for Sphenel/a parvula as follows: 

Sphenella parvula 
Sphenella minuta, in stratum, aggregate, laevissima, latre secundario lanceolate, 
apice acuminate, basi producto subdilatato 
Long 1/80 
Gomphonema minutissimum Breb. 
Inter. Oiatomeas prope. 
Falaise legit cl. De Breb (v.s.) 

Gomphonema parvulum 
Gomphonema baciliis magnitudine et habitu Sphenellae parvulae, sed stipatum 
et in stratum mucosum dense aggregatum - In aqua dulci Germaniae et Galliae. 

There are no drawings for either taxon in the 1849 publication, but KOtzing does specify in 

his description that G. parvulum has very similar characters to S. parvula, and was only 

separated because it was stipitate, often with a dense mucous covering when 

aggregated. In his description for the genus in 1844, KOtzing suggests it is probable that 
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most Gomphonema live freely and only later settle and develop a stalk. Thus, we have 

two taxa that were initially separated because of their distinctly different modes of 

attachment, but that in all other respects were the same. This could mean that KOtzing 

was looking at two different forms of the same species, two different species or simply 

that he did not observe attachment in some samples. 
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Table 1.1 

Packet numbers, manuscript names and slide numbers of material used to diagnose S . 

parvula and G. parvulum. Catalogue of the Kutzing Collection held at the Natural History 

Museum, London. BM = British Museum. 

Packet De Brebisson's Kutzing's BM Slide Dawson's type 
number manuscript name manuscript name Number material 

1262 Gomphonema Sphenella parvula BM18587 
Sphenella 

minutissimum? parvula 

1269 
Gomphonema Sphenella parvula 

BM18588 
minutissimum? 

1260 Sphenella Gomphonema BM18696 Gomphonema 
parvu/a? parvulum parvulum 

1648 
Sphenella Gomphonema 

BM18695 
parvula? parvulum 
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, 

/t 

('1°). S. minuta, lncd~sima, lntrre secundario lnn­
ccolato, apicc acuminnto, basi producto subdilutato. 

Gomphonema minutissimum De n r eh. ex specim. 

Unter Dintomcen ' 'on Fahtise: Herb. Din de r! 
- Liinge 11

1-o '". 

Kann leichl zu Gomphonema gehoren. 

Figure 1.3: a-b 

.11 a 

b 

Scanned extract from Kutzings 1844 publication "Die Kieselschaligen Bacillarien order 

Diatomeen" (Page 83-84). (a) Kutzings illustration and (b) describing Sphene//a? parvula 

for the first time. 
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1.5.2 Taxonomic Treatment post Kutzing 

Table 1.2 summarises the taxonomic treatment of G. parvulum and its varieties post 

KOtzing. Heiberg (1863) recognised that Sphenel/a and Gomphonema could no longer be 

maintained as separate genera because they were founded on the same characters 

occurring in the same species. Attitudes were also beginning to change with respect to 

the separation of genera based on habitat, e.g. Rabenhorst (1864) considered G. 

parvulum and S. parvula as the same species regardless of mode of attachment, as did 

Grunow (1878). Consequently, Sphenella was rejected as a genus and all 

gomphonemoid taxa appear to have been subsumed under the genus Gomphonema. 

Whether this was because Gomphonema had priority or was simply the preferred name is 

not clear. Certainly, Sphenella as a genus was erected after Gomphonema (1843 and 

1844 respectively). Either way Sphenella as a genus fell out of use. Thus, the correct 

circumscription for the species is Gomphonema parvu/um (KOtzing) KOtzing (1849). 

Grunow (1878) attempted to arrange the known species of the Gomphonema 

systematically, taking heed of Heibergs reasoning for subsuming Sphenel/a. Grunow 

additionally separated Gomphonema into those with, and those without stigmata, and 

consequently G. parvu/um was placed within the Stigmatica. Cleve (1894-1895) 

supported Heiberg, but excluded some of the American forms of Gomphonema, putting 

them instead in the genus Gomphoneis. 

Cl eve ( 1894-1895) noticed there were similarities between the Gomphonema and 

Cymbel/a , noting that Gomphonema spp. are often asymmetrical about the longitudinal 
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axis as well as the transapical axis and that all forms of Gomphonema were highly 

variable. Cleve (1894-1895) however did not recognise Van Heurck's varieties. which he 

instead subsumed as synonyms for the species, stating that too much emphasis had 

been placed on valve outline. He did however recognise G. parvulum var. micropus as a 

variety rather than a species as Kutzing (1844) had originally stated. lt was therefore 

apparent early on, that G. parvulum was a variable taxon, although up to this point 

descriptions had been very brief and representative figures lacking. 

At the turn of the 20th Century, more detail was beginning to emerge and additional 

varieties were established. Mayer (1917) was the first to record G. parvulum in Bavaria 

and two new varieties G. parvulum var. curta and G. parvulum var. lagenu/a were 

described by Frenguelli (1923), the latter of which Kutzing had considered a distinct 

species, whilst the former was new for Argentina. Mayer (1928) also noted that larger 

forms of G. parvu/um could easily be confused with G. angustatum in outline, although 

the latter has stronger and more widely spaced striae. Mayer (1928) listed three new G. 

parvulum varieties and appears to have been the first to recognise and describe a form, 

G. parvulum var. genuinum to. semiaperta. Hustedt (1930) noted that G. parvulum var. 

subel/iptica was difficult to differentiate from G. parvulum var. micropus. 

In 1932 came the seminal and important work of Geitler (1932). His paper was the first of 

its kind, and in it, he carefully described the changing morphology and sexual 

reproduction of G. parvulum var. micropus (amongst other diatoms). Geitler described in 

detail the processes of sexual and vegetative reproduction and noted how growth rates 

changed with age. His experimental approach helped highlight changing morphology 

within diatoms. This morphological variability was further examined in relation to size 
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diminution (the loss of stria and pole detail) and auxospore formation by Wallace & 

Patrick (1950) and Hohn & Patrick (1959). 

Carter (1960) was the first to recognise formally that the nomenclature of the 

Gomphonema was in a "chaotic state" and to consider valve outline an invalid character 

for diagnosis due to the morphological plasticity exhibited both within the genus and 

within species. In agreement with his predecessors, he considered G. parvulum to be a 

common species, but added that it was not always seen in any quantity. Carter (1960) 

also suggested that G. micropus may be a variety of G. parvulum and that G. parvulum 

var. lanceolata and G. parvulum var. subcapitata differed little from the "type". 

In 1971 van Landinqham published the Catalogue of Fossil and Recent Genera and 

Species of Diatoms and their Synonyms. This has proven very useful in validating names 

to the 1970's, listing 12 varieties and 4 forms for G. parvulum. In this publication the 

varieties G. parvulum var. exilissima, G. parvulum var. tergestina and G. parvulum var. 

genuinum were declared invalid, but G. parvulum var. lanceolata was maintained. 

Meanwhile Dawson (1972. 1973a, 1973b, 197 4) was the first to undertake an SEM study 

of Gomphonema spp. and observed that G. gracile closely resembled G. parvulum in all 

respects except valve outline and the presence of pits on the valve face. Dawson also 

claimed that G. gracile had mucilage pores at both poles (Dawson 197 4 ). Dawson 

acknowledges that this had not been previously recorded in the genus and certainly, no 

subsequent flora's have described G. gracile as having mucilage pores at both apices. lt 

is therefore possible that what Dawson recorded was initial cell morphology, which is 

known to differ considerably in most sexually reproducing diatoms, and not the 

morphology of G. gracile sensu stricto. Certainly, her SEMs are of very large cells. 
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Lowe (1974) also produced a useful reference guide in which he reviewed a large number 

of papers and tabulated the environmental requirements and tolerances of various 

species. The review highlighted how little was, and still is, known about the ecological 

tolerances and preferences of G. parvu/um or other diatom taxa. Similarly, Patrick & 

Reimer's (1966-1975) account of G. parvulum recognised that if the "extremes of the 

gradients of forms that exist" are found , then certain varieties, e.g. G. parvulum var. exilis 

and G. parvulum var. micropus might be considered distinct from G. parvulum. 

Relatively modern floras , e.g. Krammer and Lange-Bertalot. Su~wasserflora von 

Mitteleurooa (1986-1991), have provided more detailed descriptions of the variability 

within species, in addition to known details on ecology, morphology and reproduction 

(including the larger, morphologically different post auxospore cells that are rarely seen). 

Krammer & Lange-Bertalot have recognised and commented on the difficulty in the 

demarcation of the numerous varieties and forms of G. parvulum. Similarities in pore 

structure/stria arrangement between G. parvulum and G. gracile for example, were 

highlighted by Krammer & Lange-Bertalot (1986, 1991 b) and Reichardt (1999) as well as 

Dawson (1972 and 1973a and 1973b ), but without a series of intermediate forms, no 

taxonomic link could be deduced. Auxosporulation is still not recorded in most diatom 

taxa and consequently, the full range of sizes, shapes and morphological characters at 

different stages remains unknown. Krammer & Lanqe-Bertalot (1986), suggest that 

genetically isolated populations are likely to exist, and note that the smaller forms do not 

correspond to KOtzing's type material despite claims that they are representative 

examples by Geitler (1932); Germain (1981) and Hustedt (1930). However, their 

comments take no account of the different species concepts held at those times. 
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Table 1.2: part 1 

Taxonomic treatment of G. parvulum and its varieties post KOtzing. Text in red indicates authority for that taxon. 

Row ID Ehrenberg 

A 

B 

c 
D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 G. parvulum var. lanceo/ata (?) 

p 

Q 

R 

s 
T 

u 
V 

de Bn!bisson 

Gomphonema minutissimum? 

Sphenella parvula? 

G. angustatum 

Kutzing 

Gomphonema parvula (1844) 

Sphenella parvula (1844) 

Gomphonema parvulum (1844) 

G. parvulum var. subelliptica Cleve 

G. parvulum var. exilis Grunow 

G. parvu/um var. exilissima Grunow 

G. parvu/um var. micropus (1844) 

G. parvulum var. tergestina Grunow 

G. parvulum var. /agenula (?) 



Table 1.2: part 2 

Taxonomic treatment of G. parvu/um and its varieties post KOtzing . Text in red indicates authority for that taxon. 

Row ID Grunow 

A 

B 

C Gomphonema parvulum Kutzing 

D 

E 

F 

G G. parvulum var. exilis (1878) 

H G. parvulum var. exilissima (1878) 

I G. angustatum var. intermedia (1878) 

J G. micropus fo. major(1880) 

K G. micropus var. minor(1880) 

L G. micropus var. exilis (1880) 

M G. parvulum var. tergestina (1880) 

N G. parvulum var. subcapitata (1880) 

0 G. parvulum var. lanceolata (1880) 

p 

Q 

R 

s 
T 

u 
V 

Heribaud 

G. micropus var. major(1903) 

G. parvulum var. subcapitata van Heurck 

G. parvulum var. lanceo/ata Ehrenberg 

Van Heurck 

G. parvulum (1880) 

G. parvu/um var.subcapitata (1880) 

G. parvulum var. lanceolata (1880) 

G. parvulum var. tergestina Grunow 

G. parvulum var. subcapitata Grunow 

G. parvulum var. lanceolata Ehrenberg 

G. lagenula (1880) 



Table 1.2: part 3 

Taxonomic treatment of G. parvu/um and its varieties post KOtzing. Text in red indicates authority for that taxon. 

Row ID Cleve 

A 

B 

C Gomphonema parvulum Kutzing 

D Gomphonema parvulum Kutzing 

E Gomphonema parvulum Kutzing 

F G. parvufum var. sube((iptica (1894) 

G 

H 

I G. parvulum var. micropus (1894) 

J 

K 

L 

M Gomphonema parvu/um KOtzing 

N Gomphonema parvulum KOtzing 

0 Gomphonema parvufum Kutzing 

p 

Q 

R 

s 
T Gomphonema parvulum Kutzing 

u 
V 

Dippel 

G. parvufum van Heurck 

G. parvufum var. micropus Cleve 

Mayer 

Gomphonema parvufum (Kutzing) Kutzing 

G. parvulum var.subcapitata van Heurck 

G. parvulum var. subellipticumCieve 

G. parvulum var. exifis Grunow 

G. parvu/um var. exifissimum Grunow 

G. parvulum var. micropus (Kutzing) Cleve 

G. parvulum var. genuinum (1928) 

G. parvulum var. genuinum fo. semiaperta (1928) 

G. parvufum var. aequafis (1928) 
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Table 1.2: part 4 

Taxonomic treatment of G. parvulum and its varieties post Kutzing. Text in red indicates authority for that taxon. 

Row ID Frenguelli 

A 

B 

C Gomphonema parvulum Kutzing 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 
p 

Q 

R 

S G. parvulum var. curta Rochoux d' Aubert 

T G. parvulum var. lagenula Kutzing 

u 
V 

Hustedt 

Gomphonema parvulum (Kutzing) Grunow 

Pascher 

Gomphonema parvulum (Kutzing) Grunow 

G. parvulum var. subelliptica Cleve 

G. parvulum var. exilis Grunow 

G. parvu/um var. exilissima Grunow 

G. parvulum var. micropus (KOtzing) Cleve 

G. parvulum var. lagenula ( Kutzing? Grunow) Hustedt 
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Table 1.2: part 5 

Taxonomic treatment of G. parvulum and its varieties post Kutzing. Text in red indicates authority for that taxon. 

Row ID 

A 

B 

Low a 

C Gomphonema paNulum (KOizing) KOizing 

D 
E 

F G. paNulum var. subelliptica Cleve 

G 

H 

I G. paNulum var. micropus (KOizing) Cleve 

J 

K 

L 

M 

N 

0 
p 

Q 

R 

s 
T 

u 
V 

Patrick & Raimar 

G. pBNU/um (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. pBNU/um (KOizing) var. PBNUium 

G. paNulum (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. paNu/um (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. paNulum (KOizing) var. paNulum 

G. paNu/um (KOizing) var. paNulum 

G. paNu/um (KOizing) var. paNulum 

Dawson 

G. paNulum var. subellipticum Cleve 

G. paNulum var. exi/issimum Grunow 

G. paNulum var. genuinum Mayer 

G. paNulum var. aequalis Mayer 



Table 1.2: part 6 

Taxonomic treatment of G. parvulum and its varieties post KOtzing. Text in red indicates authority for that taxon. 

Row ID Germain 

A 

B 

C G. parvulum (Kutzing) Grunow 

D 

E 

F 

G 

H 

I G. parvulum var. micropus (Kutzing) Cleve 

J 

K 

L 

M 

N 

0 

p 

Q 

R 

s 
T 

u 
V 

KRAMMER & LANGE-BERTALOT 

Gomphonema parvu/um (KOtzing) KOtzing 1849 

Gomphonema parvulum (KOtzing) KOtzing 1849 

Gomphonema parvulum (KOtzing) KOtzing 1849 

Gomphonema parvulum (KOtzing) KOtzing 1849 

Gomphonema parvulum (KOtzing) KOtzing 1849 

Gomphonema parvulum (Kutzing) KOtzing 1849 

Gomphonema parvulum (KOtzing) KOtzing 1849 

Gomphonema parvulum to. saprophilum (1993) 

Gomphonema parvulum var. parvulius (1993) 
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McBride & Edgar. (1998), were the first to note that G. paNulum was capable of 

producing a morphological oddity, the Janus cell (Figure 1.4), occurring when two 

morphologically distinct valves occur in a single diatom frustule, often seen in the 

contrasting stria arrangements on the valve faces. This phenomenon is considered rare 

(but presumably inducible?), and indicates that G. paNulum's various phenotypes could 

be produced from the same genotype, i.e. the developmental pathway can be modified. 

M ann ( 1999) suggests that because the two halves of a diatom frustule form at different 

times, each may be influenced by different environmental conditions and hence exhibit 

two different morphological forms within the same species. Experimental work might 

therefore be beneficial in revealing the true nature of G. paNulum's phenotypic plasticity, 

as well as its ecological tolerances. The advantage of this type of environmental 

interaction is that it may allow a population to maintain a narrow tolerance range (lower 

cost in energy terms) but still exhibit some plasticity in environmental adaptation. 

Modern diatom floras and keys continued to be published, e.g. Hartley (1986), Kelly 

(2000) and Prvgiel & Caste (2000), and a recent review of Krammer and Lange-Bertalot's 

diatom combinations (Metzeltin & Kusber. 2001) indicates that G. paNulum var. 

undulatum Cleve, has been raised to a species, and the name changed to Gomphonema 

astridae E. Reichardt et Lange-Bertalot (in Reichardt, 1990). 
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Figure 1.4 

Light micrograph example of Janus valves in Gomphonema sp. One valve has more 

striae in 1 O~m than the other. Scale bar = 1 O~m. 
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1.5.3 Identifying the Type Specimen 

As KOtzing did not specify a type specimen in any of his material and Dawson {1972, 

1973a and 1973b) did not publish specific material or specimens as type (this was not a 

requirement of the Botanical Code at the time), her labelling of particular slides and by 

association, material as type, is questioned. To this end, the material on all four slides 

was re-examined in an attempt to identify a specimen that most closely resembles 

KOtzings original description and drawings. On initial examination of the four slides 

(BM18696, 18695, 18587, 18588) representing a sub-sample of each of KOtzings four 

packets of material from Falaise, it was apparent that more than one form of 

Gomphonema was present on each of the slides, raising the question "Which form was 

KOtzing was referring to?" KOtzing's descriptions of G. parvulum were minimal. There is 

no mention of stria density or form, limited no doubt by G. parvulum's small size and the 

resolving power of KOtzing's microscope. Therefore, one is reliant on the small drawing 

to get a feel for valve and apical pole shape. 

Figure 1.5 illustrates representative specimens of the different forms present on each 

slide, and their respective labels of either S. parvu/a or G. parvulum. Referring back to 

KOtzing's original, but somewhat brief descriptions and drawing for S. parvu/a/G. 

parvu/um, the specimens relating most closely to those in KOtzing's original publication 

(1844 and 1849) are indicated by green arrows. Both these forms have pronounced 

rostrate to capitate poles as indicated in KOtzing's descriptions and illustration. Figures 

1.6 to 1.9, further illustrate the different forms for each slide and using modern floras 

(Krammer and Lange-Bertalot. 1986 and 1991 b), the forms were identified as either G. 

parvu/um, varieties of G. parvulum or some other Gomphonema species. This therefore 

presents a dilemma, which of the two specimens identified in Figure 1.5. should be 
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ir16mif1ated as the type? As slide Bt\1118587: and I thus ,packet f262 r~prf!sent the· earliest 

imaterial ,from' which KIHzing1 (!ascribed What ~we how know to ibe •G. ,par:vt.ilum: the 

I principle of priority would I seem ;to1applyand .thus 'this specimen,shoul~ ibe «on~icj_erecl the 

species type, iFalaise ,the type. location, packet 1262 ;the l}lpe material and slide Bt\1118587 

,the l}lpe slide. 
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BM 18587 BM 18695 
Sphenella Gomphonema 

parvula parvulum 

BM 18588 
Sphenella Gomphonema 

parvula parvulum 

Figure 1.5 

Diagram showing representative specimens of the different forms of Gomphonema spp. 

present in each packet of Falaise material. The specimens most closely relating to 

KOtzings original descriptions and drawings (centre) are indicated by green arrows. All 

scale bars = 1 01Jm. 
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c d 

Figure 1.6: a - f 

Three forms of Gomphonema recognized in KOtzing's Falaise material, packet 1262, slide 

BM 18587, and identified as, (a-b) G. parvulum var. parvulum to. #1 ; (c-d) Gomphonema 

cf. angustatum # 1 and (e-f) Gomphonema cf. angustatum/parvulum? All scale bars = 

101-Jm. 

a b c d e f 

Figure 1.7: a - g 

Three forms of Gomphonema recognized in KOtzing's Falaise material , packet 1269, slide 

BM 18588, and identified as, (a-b) G. gracile (c) G. parvulum var. # 3 and (d-g) G. cf. 

angustatum!sarcophagus!micropus. All scale bars = 1 01-Jm. 

43 



Chapter 1 - Introduction 

a b c d e 

Figure 1.8: a - e 

Three forms of Gomphonema recognized in Kutzing's Falaise material (BM 18695) and 

identified as, (a-b) G. gracile (c) G. angustatum #3 and (d-e) G. angustatum # 4. All scale 

bars 101Jm. 

a b d e f 

Figure 1.9: a - f 

Three forms of Gomphonema recognized in Kutzing's Falaise material (BM 18696) and 

identified as, (a-b) G. parvulum var. parvulum fo. #2, (c-d) Gomphonema cf. angustatum 

# 2 and (e-f) G. parvulum. All scale bars 1 01Jm. 
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1.6 RATIONALE 

• G. parvulum is widely distributed, morphologically variable and used in diatom indices 

of water quality despite there being no clear link between various morphologies and 

particular autecologies. 

• Taxa with apparently wide ecological distributions are usually considered poor 

biological indicators. 

• There is no evidence in the literature that G. parvulum's morphology changes in a 

predictable manner. 

• Few diatom studies have investigated the autecology and taxonomy of freshwater 

benthic diatoms. 

In order to refine the use of G. parvulum in water quality monitoring, it is desirable to 

develop a better understanding of the effects of specific environmental variables such as 

light and temperature, pH, organic pollution and heavy metals on valve and protoplast 

morphology and diatom colony formation. 

1. 7 AIMS AND OBJECTIVES 

The collection of material for laboratory studies will enable the relationship between 

morphology and ecology to be investigated, the taxonomic relationship of populations 

from different sites evaluated and the use of G. parvu/um in biological monitoring 

assessed. 

Variation in distribution and morphology will be documented for wild populations against a 

range of environmental parameters. In particular, organic pollutants, heavy metals and 

pH. Clones will be isolated into unialgal cultures from a range of sites representing 
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2 GENERAL METHODS 

This chapter outlines the general laboratory, field collection, material preparation and 

statistical methods used throughout this study. 

2.1 EQUIPMENT & MEDIA 

Aseptic techniques were used throughout the study. Field collecting equipment was 

always rinsed in local water prior to collection to minimise cross contamination, and algal 

samples were always placed in clean plastic vials, petri-dishes or glass bottles. Water 

samples were placed in clean plastic bottles and labelled. 

All re-useable glass and plastic-ware were soaked for at least 24 hours in 5-1 0% 

hydrochloric acid, thoroughly rinsed in distilled water, with a final rinse in de-ionised water 

to remove any ions adhering to the vessel surface. Glass and plastic-ware used for 

media containment and filter sterilisation were autoclaved at 120°C for 15 min (Midas 56 

Priorclave). Medium transfers were always performed in a laminar flow cabinet. Diatom 

cells were transferred between culture dishes using a flame-sterilized micropipette. All 

petri and multi-well dishes (NunclonlM) were sterile. Distilled water was obtained via 

Millipore Rosm and Elixm water purification system (reverse osmosis & electro­

deionisation respectively). Deionised water was obtained via Milli-Qm Gradient System 

using UV filtration and ultrafiltration. 

All stock diatom cultures were maintained in the liquid growth medium Woods Hole MBL, 

pH 7.2. All experiments used MBL as the base medium with the appropriate variable or 
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nutrient adjusted or added, and filter sterilised in the manner described above. All media 

preparations can be found in Appendix I. 

2.2 COLLECTION AND INITIAL PREPARATION OF WATER SAMPLES 

Two 50 ml samples of filtered water (Nalgene Syringe Water Filter 0.45 1Jm pore) were 

collected at every sampling site. Within 12 hours of collection, one of each pair of water 

samples had 2 ml of Nitric acid (AnalaR 60%) added to preserve the chemical integrity of 

the sample and to stop precipitation of cations and their adsorption onto the container 

wall. All samples were stored at -25°C until such time that water chemistry analyses could 

be performed. Water chemistry analyses consisted of ion chromatography (non-acidified 

samples) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

(acidified samples), with a resolution to parts per million (ppm/1 o.a or mg/1). 

2.3 COLLECTION AND PREPARATION OF DIATOM SAMPLES 

Muddy sediments were sampled to a 2cm depth using a simple corer made from a 

section of plastic drainpipe approximately 5cm in diameter. Field cores were placed in 

petri-dishes with a little local water. In the laboratory, distilled water was added and stirred 

into the core sample and then allowed to settle for 10 minutes. Two layers of lens tissue 

were placed over the mud cores allowed diatoms to migrate to the surface overnight. On 

the following day, the lens tissue was removed and placed into clean glass vials with a 

little MBL medium. Unconsolidated sediments were sampled by means of a Pyrex tube 

approximately 1m long and O.?cm in diameter and placed in clean vials. Algae growing 

on man-made surfaces were scraped with a small penknife and placed in vials with local 

water, whilst algae attached to rocks, gravels and cobbles were collected whole with a 

little local water for separate scrapings in the laboratory. At least three rocks of similar 

size were collected from a site and the material combined. 
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Sub-samples of algal material were placed into petri-dishes with fresh MBL and 

maintained in a culture cabinet under a light and temperature regime of 16hrs light: 8hrs 

dark, 20°C and an average light level of 15cd/m2/sec-1
. These "rough" cultures of algae 

were allowed to settle for 5 -7 days prior to examination for and isolation of, single G. 

parvulum cells. All remaining field samples were transferred to small glass vials, 

preserved with Lugol's iodine and stored in a fridge until they could be prepared for light 

and scanning electron microscopy (LM and SEM). 

2.3.1 Isolation and Culturing of G. parvulum 

"Rough" cultures established from field material were examined under an inverted 

binocular microscope (Olympus CK2), to determine the sample comprised primarily live, 

healthy cells, and to isolate single G. parvulum cells. Several individual drops of prepared 

MBL medium were placed in sterile petri-dishes (one dish for each sample site) using a 

sterile, disposable plastic pipette and covered. Several G. parvu/um cells from each 

"rough" culture for each sample site were isolated and transferred into the one of several 

prepared drops of medium by micropipette and allowed to settle for a few minutes. Each 

drop was examined, and individual cells located and micropipetted into a neighbouring 

drop of MBL. This process was repeated at least 5 times per single cell, per sample to 

clean each cell of any bacteria, fungi and smaller green algae. After a final wash, a single 

cell was inoculated into a second batch of prepared sterile petri-dishes (two dishes per 

site), each containing a single drop of MBL. Each drop was checked to ensure it 

contained a single undamaged G. parvu/um cell before each petri-dish was topped up 

with MBL. Petri cultures were allowed to grow into uniclonal cultures for 3-5 weeks. If 

these initial inoculations were successful, single cells were removed and inoculated into 

fresh media, using the same isolation method every 4-6 weeks. These clonal stock 

cultures were used for all assays, as well as providing material for morphological analysis 
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of cell diminution, and when it occurred, sexual reproduction. Material was harvested 

every 4-6 weeks, digested and permanent slides prepared for light microscopy (LM). All 

stock cultures were maintained at 20°C with a 16hr light: Bhr dark regime and an average 

light level of 15cd/m2/sec·1
. 

2.3.1.1 Sexual Reproduction in Uniclonal Culture 

Four of the ten uniclonal stock cultures underwent sexual reproduction, producing 

auxospores and subsequently, a second generation of uniclonal cultures. Both the 

original parent culture and their offspring were studied. The original parent culture was 

subsequently denoted as generation 1 (G 1) and their offspring as generation 2 (G2). Only 

uniclonal cultures established from Kings Mere, Ham Gate Pond, Llyn ldwal and Parys 

Mountain underwent sexual reproduction. The denotation is used throughout the thesis. 

2.3.2 Light and Electron Microscopy 

All live observations utilised two digital cameras. One attached to an inverted microscope 

(Olympus CK2) with a maximum magnification of x40, and one to a Zeiss Axioplan with a 

maximum magnification of x1000 (+oil immersion). 

For cell wall studies, all cells were digested using 48 hours cold acid treatment (Nitric 

Acid, 60%) for low yield samples, or for dense samples, boiling in nitric acid to rid cells of 

their organic content. In both cases, the supernatant was pipetted off and replaced with 

distilled water. Samples were then centrifuged at least three times, more often five times 

(Sigma 3-10 Howe) for 10 min at speeds of 3000 revolutions per minute (rpm). After each 

centrifugation, the supernatant was pipetted off leaving behind a diatom pellet that was 
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then re-suspended in distilled water. This process ensured displacement of any 

remaining acid. After final centrifugation and pipetting, the diatom pellet was placed in a 

clean, clip-top glass vial with equal proportions of distilled water and 90% alcohol, to 

deter fungal and bacterial growth, and stored in a covered box in a cool room. 

Drops of preserved material were placed onto glass coverslips and allowed to dry 

naturally over a period of 24 hours. Once dried, coverslips were examined to ensure 

sufficient material had been deposited. Where insufficient material was present, an 

additional drop of preserved diatom material was added and allowed to dry. Once dried, 

coverslips were inverted onto mounting medium (Naphrax or Zrax) and gently heated on 

a hotplate to release the solvent before cooling and allowing the medium to harden. 

For SEM's, a coverslip was glued onto an SEM stub prior to the samples being prepared 

as described above. Stubs were then sputter-coated with gold-palladium, and examined 

under a Philips XL30 SEM. Air dried samples of non-digested material were also 

examined under SEM to examine and illustrate any extracellular polymeric substances 

(EPS) present. 

2.4 ASSAY METHODS 

All experiments were conducted on two illuminated water-filled, temperature controlled 

metal gradient plates. Both light and temperature could be varied and controlled by the 

positioning of an overhead strip light (raising and lowering and moving back and forth) 

and a water pump/heater maintained by a timer switch respectively. 
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Sterile, multi-welled dishes (= square Nunclon ™ dishes, each with 4 round micro-wells 

per dish each of which was able to hold a maximum of 2ml of medium) were used for all 

experiments. Gradient plates were subject to a 16hr light: Bhr dark cycle for all 

experiments. Experimental temperature was maintained within ±2°C of the target and 

monitored daily. Four replicates of each treatment were checked every other day for 6 

days and the number of diatom cells counted. Six experimental gradient regimes were 

undertaken: light & temperature, pH, artificial sewage, copper, zinc and cadmium. 

For the Light & Temperature Regime, the metal gradient plates were divided into nine 

equal sections each accommodating 9 Nunclon™ dishes. Three bands of light (High, 

Medium, Low) and six grades of temperature (5°C, 10°C, 15°C, 20°C, 25°C, 30°C) were 

established (Figure 2.1). For all other experimental regimes, light and temperature were 

held at 22°C (±2°C) and 38cd/m.2/sec·1 (±3cd/m.2/sec·1
, due to variability in power supply 

and shading) across the two plates. 

For the pH regime, the pH of standard MBL medium was adjusted by the addition of 32% 

HCI or 10% sodium hydroxide (NaOH) prior to filtration to within ± 0.2 pH units. The pH 

series ran from pH 3.5 to pH 11.0 at 0.5 unit intervals, providing 16 parameters per clone. 

An artificial sewage was produced following the recipe and protocol described by OECD 

(1981) (recipe: Appendix 1). The artificial sewage series consisted of five strengths of 

artificial sewage, i.e. full strength, 1/2 strength, 1/5 strength, 1/10 strength and 1/25 

strength, plus a control of standard MBL without any artificial sewage added. 
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Figure 2.1. 
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Gradient plate map depicting low, medium and high irradiance levels (4-20: blue; 21-34: 

green and 35-48: red, cd/m-2/sec-1 respectively), and temperature range from left to right 

(5°C to 30°C). 
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Copper and Zinc are micronutrients required for growth by diatoms and were present in 

the standard MBL medium as CuS04.5H20 and ZnS04.5H20 respectively. 

Concentrations of CuS04.SH20 and ZnS04.5H20 were adjusted to provide nine 

elemental Cu and Zn concentrations. This was the "initial run". 

Preliminary examination of cell counts on the initial run indicated increased growth at the 

higher concentrations for all clones. The Zn and Cu experiments were subsequently 

extended to provide a further eight elemental metal concentrations. This was the 

"extended run". The assays in this study exceeded the maximum allowable 

concentrations of Cu and Zn in drinking water per WHO, EU and UK legislation. All 

medium recipes can be found in Appendix I. 

Duplicate treatments at 0.05 and 12.50Jlg/l metal concentration, were also tested without 

the addition of sodium ethylenediamunetetra-acetic acid (Na2 EDTA) (each denoted with 

the letter 'E'). EDTA is normally included in media to prevent the precipitation of salts. 

Although trace metals are essential for microalgal growth, little is known about the 

relationship between different metal species and biological availability. Non-EDTA 

treatments would give an indication as to how influential EDTA was in binding Cu and Zn 

at low and high concentrations. 
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2.5 GROWTH RATE ANALYSIS 

Diatom cell numbers were transformed into growth rates using the equation: 

Ke = log (N1/No) (3.322/t) (Stein. 1973) Equation 1 

Where Ke the growth constant, is the number of logarithm-to-base 1 0 units increase per 

day, N1 and N0 are the number of cells present at times t1 and to respectively, and where t 

= t1 - to days. Growth rate (k) was calculated from successive counts made every other 

day (day 0, 2, 4 and 6) to identify the period of mean exponential growth rate (MEGR). If 

mean growth rate fell after, e.g. day 4, the period of exponential growth reflecting 

experimental conditions was taken to extend from day 0-4 and the growth rate was re­

calculated to reflect this four day period and denoted k~. Averaging of the separate 

values of k for days 0-2 and 2-4 would not have yielded the same value as k~ (Stein. 

1973). 

2.6 MORPHOMETRIC ANALYSIS 

Diatom material was collected from different habitats and 1 0 clonal isolates established. 

Preparations of acid cleaned samples enabled morphological examination under LM. 

Selected subcultures were also examined under SEM. Initial identification and naming of 

each clone was based on a synthesis of the morphological characters detailed in the 

literature. (Cox. 1996; Dawson. 1972; Geitler. 1932; Krammer & Lanqe-Bertalot. 1986, 

1991 b and KOtzing. 1844 ), thus all clones utilised in this study had the taxonomic features 
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of G. parvulum sensu stricto. Clones were then assigned to variety or form where 

possible. 

The terminology for the main elements of the siliceous cell wall and protoplast, and 

descriptions of morphogenesis, reproduction and modes of growth in the general pennate 

diatom cell, as well as G. parvulum, can be found in the following publications: Barber & 

Haworth (1981); Cox. (1981b); Cox. (1996); Drum and Pankratz. (1964a); Mann. (1996) 

and Round et al., (1990). A full account of sexual reproduction in G. parvulum can be 

found in Chepurnov et al .. 2004 and Geitler ( 1932). Readers should also take note of the 

description and formation of the Voigt discontinuity in Voiqt, (1943). 

Additionally, Cox (2004, unpub.) has shown that under the electron microscope, the 

various pores that comprise the striae are often seen to be occluded by delicate flaps or 

plates of silica, however the terminology for these flaps is somewhat confused. Cox 

(2004. unpub.) has also shown that different terms are being used for similar structures in 

centrics and pennates and conversely, identical terms are being used to describe 

dissimilar structures in the pennates. lt is clear from the literature (Mann. 1981; Ross et 

al., 1979) that six types of pore occlusion have been identified. These are cribra, hymen, 

volae, rotae, foriculae and tectulum and they describe finely or coarsely perforate pores 

or flap-like closures. This thesis will uses the terminology of Cox (2004. unpub.) for the 

partially occluded areolae, with flap-like unilateral foricula, previously termed volate 

areola in the Gomphonemataceae. 
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Clones were cultured according to section 2.3. and 14 morphological characters were 

examined (Table 2.1) for each subculture, six of which were measured quantitatively. 

These characters were chosen either because they are standard diatom measures (e.g. 

length, breadth, striae density), and/or because in G. parvulum, the character is observed 

to vary. Additionally, Figures 2.2a-c, define what is meant by inserted, broken and short 

striae; characters which although mentioned in the literature, have not previously been 

systematically recorded, enumerated or analysed. Up to 50 valves per stock sub-culture, 

and 10 valves per assay level for each clone were morphologically examined. 

Whilst in stock culture conditions, four clones auxosporulated (from Kings Mere, Ham 

Gate Pond, Llyn ldwal and Parys Mountain). This enabled the full size and shape 

continuum to be recorded for these clones. Three clones also auxosporulated whilst in 

experimental medium (Liyn Ogwen at pH 6.5, Ham Gate Pond at pH 8.5 and 9.0 and at 

1/5th sewage concentration, and the Scion Pond clone at a copper concentration 

0.00016J.tg/l). 
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Table 2.1: part 1 

Fourteen morphological characters examined under LM and SEM and subject to statistical analysis. 

Character 

Code 
L 

B 

R1 

R2 

51 

52 

SD1 

502 

css 

oss 

IS 

BS 

STIG 

Character 

Valve length 

Valve breadth 

Raphe length Upper raphe 

Lower raphe 

Number of central striae in 10pm. Stigma side (primary) of valve 

Non.Stigma side (secondary) of valve 

Striae direction 

Number of central short striae 
opposite stigma 

Other short stria 

Inserted striae 

Broken/interrupted striae 

Number of stigma 

Radiate 

Convergent 

Present(!) 

Absent (0) 

Present (1) 

Absent (0) 

Present (1) 

Absent (0) 

Character Description 

Length is measured along the apical axis of the valve face. apex to apex. 

Width is measured transapically at the widest point. 

Measured from central nodule to apical nodule of head pole (head pole = that ha~ of the valve lace !hat is 
often wider and shorter than the other half) 

Measured from central nodule to apical nodule of foot pole (foot pole = that ha~ of the valve face that is 
often narrower and longer than the other ha~) 

Measurements were taken S~m either side of the mid-point between the central raphe endings. 

Radiate = when the striae radiate outwards from the central area 

Convergent = when the stria are all laying in the same direction. converging towards one of the apices 

There is often. but not always a short stria opposite the stigma 

The presence or absence of short stria other than that oppos~e the stigma (see Figure 4.1 e) 

The presence or absence of "inserted" striae refers to stria that do not extend to the valve margin (see 
Figure 4.1 b) 

The presence or absence of 'broken' or 'interrupted' stria refers to stria that are not uniform across the 
valve face (se Figure 4.1 c) 

The number of stigma were counted and recorded for each valve in a sample. 
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Table 2.1: part 2 

Fourteen morphological characters examined under LM and SEM and subject to statistical analysis. 

Character 
Code 

SHP1 Valve shape 

SHP2 

SHP3 

SHP4 

SHP5 

SHP6 

HPS1 Head Pole shape 

HP 52 

HP 53 

HPS4 

HPSS 

HPS6 

HP 57 

FP 51 Foot Pole Shape 

FP 52 

FP 53 

FPS4 

FPS5 

FP 56 

FP 57 

ABN Abnonnalittes 

Character 

Narrow lanceolate 

Lanceolate 

Lanceolate-clavate 

Ovate 

Ovate-clavate 

Elliptic 

Rounded 

Rounded~subrostrate 

Subrostrate 

Subrostrate-rostrate 

Rostrate 

Rostrate-subcepitate 

Subcapitate 

Rounded 

Rounded-subrostrate 

Subrostrate 

Subrostrate-rostrate 

Rostrate 

Rostrate-subcapitate 

Subcapitate 

Present (1) 

Absent (0) 

Character Description 

Valve shape was determined according to Cox, 1996 and Barber. 1981. 

Pole shape was determined according to Cox, 1996 and Barber, 1981. 

Pole shape was determined according to Cox, 1996 and Barber, 1981. 

Gross abnormalities included bulges and dents to valve. major disruptions to striae or raphe systems, or 
any atypical morphology. An abnormality was recorded as present or absent for each cell in a sample. 
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Figure 2.2:a-c 

Morphometric characters not previously described (a) other short striae (OSS) (b) 

inserted stria (IS) (c) broken/interrupted striae (BS). 
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2. 7 ANALYSIS OF LIVE MATERIAL 

All stock cultures were observed in their live state on a regular basis over a period lasting 

up to two years. Data were obtained from observations on seven morphological or 

behavioural characters that might be related to size, sexual stage or culture regime 

(Table 2.1 ). These characters were chosen as the ones most easily identifiable in LM. 

For the experimental regimes, a distinction was made between observations on days 

when cell counts were made, i.e. days 0-6 (denoted ~) and observations post day 6 

(denoted Ka+). This allowed for any differences in observations during and post 

exponential growth phase to be highlighted. LM examples of each character state are 

provided in Figures 2.3 to 2.18. 

All observations were summarised in a simple binary coded presence/absence table for 

each clone, under each growth regime and time period (= Operational Unit, where data 

were available). The presence of a character was indicated by 1 and its absence by 0. 

The binary coded table formed the basis of several cluster analyses as described in 

section 2.9. 
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Table 2.1 

The morphological character states and descriptions used for observations of live G. 

parvulum cultures. 

Character Code 

Attachment Mode 

ATT1 

ATT2 

ATT3 

ATT4 

ATT5 

Colony Type 

COL1 

COL2 

COL3 

COL4 

COL5 

COL6 

COL7 

Chloroplast Colour 

CHL1 

CHL2 

CHL3 

CHL4 

CHL5 

CHL6 

Chloroplast Size 

CHL7 

CHLB 

CHL9 

CHL10 

CHL11 

Pyrenold 

PYR1 

PYR2 

Vacuoles 

Character Description 

Non attached cells, primarily suspended in the water column 

Cells primarily attached in valve view 

Cells primarily attached in girdle view 

Cells primarily attached by mucilage pad at foot pole 

Cells primarily attached by mucilage stalk at foot pole 

Primarily single cells 

Primarily paired cells 

Cells forming short chains (valve face to valve face) 

Cells forming short chains (girdle to girdle) 

Cells forming tufts of cells 

Cells forming an amorphous mucilaginous matrix 

Cells forming dense mass aggregations 

Dark brown chloroplast with darker patches/peripheries 

Golden brown chloroplast with darker patches/peripheries 

Pale golden brown chloroplast with darker patches/peripheries 

Yellow chloroplast 

Green chloroplast 

Colourless chloroplast 

Chloroplast normal H-shaped 

H-shaped but chloroplast lobes extended into apical pole space 

Chloroplast appears lo occupy entire cellular space 

Chloroplast constricted to medial area 

Chloroplast constricted to cell walls (usually by enlarged vacuoles) 

Visible and triangular 

Visible and rounded 

VAC1 Visible, 2 polar (normal) 

Other 

VAC2 Visible, 1 polar (abnormal) 

OIL1 

GRAN1 

OTH1 

OTH2 

OTH3 

Lipids 

Granules 

Unidentified dark bodies, slightly larger than granules 

Cell wall teratology observed in some cells 

Culture auxosporulated 
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a b 

Figure 2.3: a-b 

Examples of observational character state: Single (Code: COL 1) Suspended Cells (Code: 

A TT1 ). Scored as present when the majority of the cells are not attached to the culture 

vessel but suspended in the water column. Scale bars = 40JJm. 

a b 

Figure 2.4: a-b 

Examples of observational character state: Single (Code: COL 1) attached in valve and/or 

girdle view (Codes: ATT3 and ATT4). Scored as present when the majority of the cells 

are attached to the culture vessel in valve and I or girdle view. Scale bars = 40JJm. 
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a b c d 

I 
aakshctt 

Figure 2.5: a-d 

Examples of observational character state: Stalked cells (Code: ATT4). Scored as 

present when cells are attached to the culture vessel by a mucilaginous stalk at the foot 

pole. Note the mucilage surrounding individual cells in figure a. Scale bars = 1 OJ.Jm. 

Figure 2.6: a-d 

Examples of observational character state: Mucilage pad (Code: A TT5). Scored as 

present when cells are attached to the culture vessel by a mucilaginous pad at the foot 

pole. Scale bars = 1 OJ.Jm. 
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a b c d e 

Figure 2.7: a-e 

Examples of observational character state: paired cells (Code: COL2). Scale bars = 

10pm. 

a b c d 

Figure 2.8: a-d 

Examples of observational character state: chains formed valve face to valve face 

(CODE: COL3) or girdle to girdle (CODE: COL4 ). Scale bars = 1 Opm. 
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a b 

Figure 2.9: a-b 

Examples of observational character state: tufted colonies (CODE: COL5). Scale bars = 
(a) = 40 11m (b) = 20JJm. 
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a 

c 
d 

f 

Figure 2.10: a-f 

Examples of observational character state: EPS Matrix (CODE: COL6). Scale bars = (a, 

c-f) 20JJm (b) 40JJm. 

67 



Chapter 2 - General Methods 

Figure 2.11: a-d 

Examples of observational character state: Mass aggregations of cells, often forming 

clumps (CODE: COL?). Scale bars= (a and d) 40JJm (band c) 20JJm. 
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d e f 

Figure 2.12: a-c 

Examples of observational character state: (a) dark brown chloroplasts (CODE: CHL 1 ), 

(b) golden brown chloroplasts (CODE: CHL2), (c) pale golden chloroplasts (CODE: 

CHL3), (d) Pale yellow chloroplasts (CODE: CHL4), (e) green chloroplasts (CODE: 

CHL5) and (f) colourless chloroplasts (CODE: CHL6). Scale bars for all= 10pm. 
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a b c 

Figure 2.13: a-c 

Examples of observational character state: (a) normal H-shaped chloroplasts (CODE: 

CHL7), (b) chloroplast lobes extend to poles (CODE: CHL8) and (c) chloroplasts 

occupies full cell volume (CODE: CHL9). Scale bar for all = 1 OJJm. 

a b 

Figure 2.14: a-b 

Examples of observational character state: (a) chloroplasts contracted to the medial area 

of the cell (CODE: CHL 1 0), (b) chloroplast constricted to the cell wall, usually by one or 

two enlarged polar vacuoles (CODE: CHL 11 ). Scale bar for all = 1 OJim. 

Note also the large vacuoles (CODE: VAC1 and VAC2). 
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a b 

Figure 2.15: a-b 

Examples of observational character: (a) triangular pyrenoids (CODE: PYR1 ), (b) and 

rounded pyrenoids (CODE: PYR2). Scale bars for all = 1 O~m. 

a b 

Figure 2.16: a-b 

Examples and description of observational character: (a) Lipids (CODE: OIL 1) and 

presented as small or large globular droplets within the live cell, (b) Granules (CODE: 

GRAN1 ), small, dark round bodies, usually present in quantity within a cell. Scale bar= 

10JJm. 
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Figure 2.17: a-e 

Examples of observational character: dark bodies (CODE: OTH1 ), larger dark spherical 

bodies, usually only 2-4 per cell. Scale bar= 1 Opm. 

a b c d 

Figure 2.18: a-d 

Examples of observational character: Teratologies (CODE: OTH2). Scale bar= 10pm 
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2.8 STATISTICAL ANALYSES 

Raw data and descriptive statistics (mean, range, standard deviation and coefficient of 

variation) for each analysis are provided on the accompanying CD. 

2.8.1 Analysis of Variance 

The statistical analyses performed on the different sets of data in this study were carried 

out using a combination of Minitab v14.13 and XLSTAT® v. 2006.3 (Addinsoft©, 2006). 

To test the null hypothesis that there was no significant difference in Mean Exponential 

Growth Rate (MEGR) between each treatment, per regime or per clone, either a two-way 

(= two factor, for the light & temperature regime) or one-way (= one factor, for all other 

regimes) ANOVA was carried out. Examination of observational and measurement data 

for morphological analysis, determined whether ANOVA, Kruskai-Wallis and pairwise 

comparison tests were appropriate for the analysis of stock cultures. Additional Kruskai­

Wallis tests were performed to test for significant differences between morphological 

characters occurring on both the primary and secondary side of the diatom valve, i.e. 

central striae, or occurring on both sides of the valve face transapically, i.e. upper and 

lower raphe and, head and foot pole shape. The significance level in all cases was set to 

95%. 

Diagnostic checks were performed to verify that each data set held to ANOVA 

assumptions (the Anderson-Darling test for normality and Bartlett's or Levene's test for 

73 



Chapter 2 - General Methods 

equal variances on normal and non-normal data respectively) (Frv. 1993). Where non­

normality and/or heterogeneous data were observed, it is usual to transform raw data to 

modify the scale upon which the data are expressed so that valid statistical assumptions 

are expressed. Where cell counts had already been transformed via Equation 1 into 

growth rates, further transformation was not appropriate. Any indication of non-normality 

and heterogeneous variance was therefore subject to an ANOVA equivalent, non­

parametric test, either Kruskai-Wallis (KW) or Moods Median. Figure 2.19 illustrates the 

steps taken in deciding which test to proceed with. 

A full statistical analysis of each clone within each experimental regime was not possible 

for several reasons: 

• not all clones grew at all assay levels, 

• growth is recorded, but insufficient harvestable material survived the digestion 

process, 

• poor quality slides/material: despite repeated washing an unidentified coating 

obscured diatom morphology on some slides, 

• loss of data (see Preface) 

• assays for each regime were conducted at different times, thus diatom size reduction 

occurred between each regime and would not allow sensible comparison of 

quantitative characters. 

2.8.2 Pahwise Comparisons 

Where the ANOVA indicated a significant difference between MEGRs, the null hypothesis 

was rejected and a comparison of between treatment MEGR performed to determine 

where the differences lay, using the Bonferroni method. Bonferroni was chosen over both 

the Tukey or Sidak methods due to small sample size and the presence of extreme 
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values that may otherwise produce false positives in terms of significance {Berk & Carey. 

2000). lt is a conservative method that is robust to violations of ANOVA assumptions. For 

all other regimes, the Dunnett method was used to test the difference between each 

treatment MEGR and control MEGR. The Bonferroni method was additionally used to test 

for significant differences with increasing temperature/light and pH, i.e. between 

neighbouring treatment groups, e.g. between pH 5.0 and 5.5 or copper concentration x2 

and x4, but not between, e.g. pH 5.0 and 6.0. The significance level in all cases was set 

to 95%. For those clones in which the null hypothesis was accepted, no pairwise 

comparisons were made. 

All data sets comprised of a number of occasional negative (when enough cells died to 

reduce overall numbers) and nil (when no growth took place) growth rates. Such data are 

often revealed as outliers or extreme values, and may be expressed as skewed 

histograms. These data were valid with a potential to yield important information, it was 

therefore considered inappropriate to eliminate them from the analysis as their removal 

would have artificially inflated the mean and reduced the variance but increased the 

probability of finding a significant difference where none existed. 
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NORMAL& 
HOMOGENEOUS 

Proceed with the 
parametric ANOV A 

Test 

Figure 2.19 

Are the data normally distributed? 
Test the residuals with the 

Anderson-Darling Normality Test 

Are the variances homogeneous? 
Test for equal variances using 

Levene's Test for non-normal data 
and Bartlett's Test for normal data 

NORMAL& 
HETEROGENEOUS 

Draw boxplot of 
observations. Are 

the boxplots similar 
or dissimilar? 

Proceed with the 
non-parametric 
MOODS Test 

NON-NORMAL & 
HOMOGENEOUS 

Proceed with the 
non-parametric 

KRUSKALL­
WALLIS Test 

NON-NORMAL & 
HETEROGENEOUS 

Proceed with the 
non-parametric 
MOODS Test 

Flowchart of procedural steps in the analysis of mean exponential growth rates. 
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2.9 CLASSIFICATION TECHNIQUES 

Data were binary-coded and the simple matching resemblance function/similarity 

coefficient used. This takes account of both positive 1, 1 and negative 0, 0 matches LErY.. 

1993), and in which absence, presence, and matches (+/+ and -/-) or mismatches (+/­

and -/+) all have equal weights, to produce a symmetrical similarity matrix from which the 

cluster method could produce its classification. No character weighting was used, as it 

would imply that one character was preferable to another. 

The study used the Unweighted Pair-Group cluster Method, with Arithmetic averages 

(UPGMA cluster analysis), as it is a good compromise between the extremes exhibited by 

single and complete-linkage, and because it is reported to work best on most data sets 

(Frv. 1993; Sneath & Sokal. 1973). Cluster results are presented as UPGMA 

dendrograms. Where data was missing from a dataset, it was omitted from the final raw 

data matrix. 

All cluster analyses were performed using XLSTAT® v. 2006.3 (Addinsoft©. 2006) to 

produce a similarity matrix on which a hierarchical classification could be produced and 

presented as a truncated dendrogram. XLSTAT® allows for automatic truncation of the 

full dendrogram, determined according to the structure of the levels in an accompanying 

histogram of node levels. 
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3 ECOPHYSIOLOGY 

3.1 INTRODUCTION 

This study uses clones collected from ten sites from which single G. parvulum cells were 

isolated and subsequently grown as uniclonal cultures. The results of experiments on G. 

parvu/um clones are investigated and discussed. The chapter aims to provide an 

ecophysiological framework from which inferences about G. parvu/um's ecological and 

taxonomic status can be discussed and applied to diatom indices of water quality. lt will 

identify those ecophysiological factors that influence G. parvulum growth rate. 

3.2 SAMPLE SITE CHARACTERISTICS 

Of the many sites visited, ten provided specimens of G. parvu/um for subsequent culture 

and experimentation. Their geographical location and site details are provided in Table 

3.1. and full water chemistry for all ten sites is shown in Table 3.2. Nearly all water quality 

variables measured were within regulatory limits ( = World Health Organisation (WHO), 

European Union Drinking Water Directive 80/778/EEC and The Water Supply (Water 

Quality) Regulations 2000 UK) with the exception of chlorine (all samples except for Llyn 

ldwal), iron (samples for Kings Mere, Ham Gate Pond and Llyn ldwal), ammonium 

(samples for Barnwood Pond and Kings Mere) and nickel (sample for Llyn ldwal). 
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Table 3.1 

Site name, reference, collection date, sample date, sample description and substratum 

type. 

Site Name Site Landranger Collection Sample Sample 
Ref. Grid Ref. Date Sediment Type 

Richmond Park Pond 35/01 TQ200737 12/09/2001 Macrophyte Epiphytic 

Scion Pond, Putney 39/01 TQ228734 25/09/2001 Sandy Sediment Episammic 

Kings Mere Pond, Putney 40/01 TQ232732 25/09/2001 Fine Gravel Episammic 

Ham Gate Pond, Richmond 41/01 TQ188717 25/09/2001 Sandy Sediment Episammic 

Abbey Lakes River, Nr Wigan 56/01 SD535041 28/09/2001 Fine Gravel Episammic 

Lyn ldwal Lake, N. Wales 59/01 SH646597 28/09/2001 Rock Epilithic 

River Kennel, Wiltshire 01/02 SU152688 01/02/2002 Mud Epipelic 

Pen-y-Bryn, N. Wales 14/02 SJ164422 16/04/2002 Rock Epilithic 

Llyn Ogwen, N. Wales 16/02 SH661603 16/04/2002 Sandy Sediment Episammic 

Pa~s Mountain Pond, Anglese~ 17/02 SH437900 17/04/2002 Fine Sediment E~isammic 

Table 3.2 

Concentrations of anions and cations in filtered water samples. NB: All values are in mg/1 

(ppm). m = missing. nf = not found as below detection limits. <0.01 indicates below the 

detection limit. 
SITE NAME and REFERENCE 

Bamwood Scion Kings Ham Ab bay Lyn River Pen-y- Llyn Parys 
Pond Pond Mere Gate Lakes ldwal Kennel Bryn Ogwen Mountain 

Pond Pond River Lake Pond 
Ion Cone. 35101 39/01 40/01 41/01 56101 59/01 01/02 14102 16102 17/02 
Total P 0.3 nf nf nf nf nf 0.3 <0.01 <0.01 <0.01 
PO/ 2.1 nf nf nf nf nf <0.01 <0.01 <0.01 <0.01 
TotalS 18.0 10.0 16.0 19.0 15.0 4.3 m m m m 
sol 47.5 24.7 39.0 52.0 39.5 7.4 19.6 6.0 2.0 9.7 
NH

4
+ 0.9 nf 3.3 nf nf nf 0.2 <0.1 <0.1 <0.1 

No,· 7.9 0.4 0.6 0.8 7.9 0.5 26.6 5.3 0.4 0.2 

Li 0.0 0.0 0.0 0.0 0.0 nf <0.01 <0.01 <0.01 <0.01 
Na 26.0 28.5 16.5 24.5 14.5 2.6 11.8 5.0 3.2 12.8 
K 7.0 6.8 5.9 5.1 4.8 0.1 4.7 4.1 0.2 1.7 
Mg 6.2 4.4 3.9 10.8 8.0 0.5 1.6 3.4 0.6 2.5 
Ca 57.0 25.5 13.5 36.0 39.0 2.0 100.0 9.3 1.5 6.7 
Zn 0.2 0.1 0.3 nf 0.0 0.2 0.1 0.0 <0.01 0.0 
Ni nf nf nf nf nf 0.2 <0.01 <0.01 <0.01 <0.01 
Mn 0.0 0.2 0.4 0.2 0.1 0.1 <0.00 <0.01 <0.01 0.0 
Fe nf 0.2 1.5 0.3 0.1 1.1 <0.01 <0.01 <0.01 <0.01 
Cd nf nf nf nf nf nf <0.01 <0.01 <0.01 <0.01 
Go nf nf nf nf nf nf <0.01 <0.01 <0.01 <0.01 
Si nf nf nf nf nf nf 3.3 0.7 0.1 <0.01 
Pb nf nf nf nf nf nf <0.01 <0.01 <0.01 <0.01 
Cr nf nf nf nf nf 0.2 <0.01 <0.01 <0.01 <0.01 
Cu nf nf nf nf nf nf <0.01 <0.01 <0.01 <0.01 
AI nf nf nf nf nf nf 0.1 0.0 0.0 0.0 
Sr 0.2 0.1 0.1 0.2 0.1 0.0 0.2 0.0 0.0 0.0 
Ba 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.1 
F 0.1 0.2 0.3 0.1 0.1 nf 0.2 0.0 <0.01 0.0 
er 30.0 38.0 18.0 28.0 19.0 2.6 13.8 24.6 6.1 20.6 
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Pen-y-Bryn, Lake Ogwen and Parys Mountain were the most nutrient poor, whilst 

Barnwood Pond was the most nutrient rich. Barnwood Pond, Kings Mere, Ham Gate 

Pond and Abbey Lakes were particularly high in sulphates (39 to 52mg/l), whilst 

Barnwood, Scion and Ham Gate Ponds were high in sodium (24.5 to 28.5 mg/1). The 

River Kennet sample was particularly high in nitrates (26.6mg/l) and showed a high 

concentration of calcium (100mg/l). All sites except Llyn ldwal and Lake Ogwen had high 

levels of chlorine (13.8 to 38mg/l). Conversely, aluminium, barium, cadmium, cobalt, 

chromium, copper, fluorine, lithium, manganese, lead, silicon, strontium and zinc 

concentrations were all very low. 

3.3 ASSAY RESULTS 

Results of tests for normality, equal variances and subsequent ANOVA, Kruskai-Wallis or 

Mood's tests for each experimental regime and multiple pairwise comparisons of 

treatment MEGRs, are available on the enclosed CD. Figures 3.2 to 3.22 show the 

MEGRs for each clone for each treatment as boxplots. 

3.3.1 Light and Temperature Regime 

Figures 3.1 to 3.13. In addition to the boxplots, a main effects plot for the data means, 

comparing the relative strengths of light and temperature on growth rate is also shown. 

Most clones were able to grow across t~e full light and temperature ranges assayed in 

this study with the exception of clones from Kings Mere and Ham Gate Ponds (G 1 and G2 

clones). The former failed to grow at 10°C and 30°C at all light levels, and the latter failed 

to grow at 5°C high and low light. For the former, this suggests a narrow limit to light 

exposure, particularly at lower and higher temperatures. For the latter the temperature 
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may have been too low for the Ham Gate Pond clones. As expected, most clones 

generally exhibited an increase in MEGR with increasing light levels from low to medium 

and medium to high with the exception of clones from Scion Pond, Kings Mere (G1) and 

Pen-y-Bryn. Most clones also exhibited a general increase in MEGR with increasing 

temperature from 5°C to 25°C, but falling sharply from 25 to 30°C. However, there were 

some marked drops in MEGR against the general trend. Some of these decreases can 

be explained by failed inoculation, e.g. the Kings Mere (G1 and G2) clones failed to grow 

at 10°C and 30°C high, medium and low light and 5°C high light, probably for the same 

reasons as the Kings Mere and Ham Gate Pond clones above. Alternatively, cells could 

have been damaged at the inoculation stage and thus failed to replicate, particularly as 

they were able to grow at temperatures higher and lower than this. 

Multiple pairwise comparisons of treatment MEGRs, indicate growth rate was significantly 

affected by increasing light levels but only from low to medium light in 6 clones (Barn 

Wood Pond, Kings Mere (G, clone), Abbey Lakes River, Llyn ldwal (G2 clone), Lake 

Ogwen and Parys Mountain). There were no significant results for any clone at medium to 

high light, and remaining clones showed no significant difference in MEGR either from 

low to medium or medium to high light. Pairwise comparisons also indicated that growth 

rate was significantly affected by temperature in seven clones (all clones except Kings 

Mere and Llyn ldwal: G2 clones). 
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Barnwood Pond Clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means, comparing the relative strength of 

effect of light and temperature on growth rate. 
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Figures 3.2: a-b 

Scion Pond clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit increase 

per day) showing variance in replicate growth rate (including the minimum, maximum and 

interquartile range), the median and the means (connected line) for each treatment 

group. (b) Main effects plot for data means comparing the relative strength of effect of 

light and temperature on growth rate. 
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Figures 3.3: a-b 

Kings Mere. G1 clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. NG = No Growth. 
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Kings Mere. G2 clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. NG = No Growth. 
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Figures 3.5: a-b 

Ham Gate Pond, G1 clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. 
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Figures 3.6: a-b 

Ham Gate Pond. G, clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. 
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Abbey Lakes River clone (a) Boxplots of mean exponential growth rates (Ke = log,0 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. NV = No variance. 
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Figures 3.8: a-b 

Llyn ldwal. G1 clone {a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. 
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Figures 3.9: a-b 

b 

Llyn ldwal, G, clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. NV = No variance. 
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Figures 3.11: a-b 

Pen-y-Bryn clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit increase 

per day) showing variance in replicate growth rate (including the minimum, maximum and 

interquartile range), the median and the means (connected line) for each treatment group. 

(b) Main effects plot for data means comparing the relative strength of effect of light and 

temperature on growth rate. 
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Lake Ogwen clone (a) Boxplots of mean exponential growth rates (Ke = log1o unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. 
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Figures 3.13: a-b 

Parvs Mountain. G 1 clone (a) Boxplots of mean exponential growth rates (Ke = log10 unit 

increase per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. (b) Main effects plot for data means comparing the relative strength of 

effect of light and temperature on growth rate. 
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3.3.2 pH Regime 

Figures 3.14 to 3.23. Most clones were able to grow between pH 4.0 to 10.5 and some 

clones were also able to grow at pH 3.5 and 11.0 (Scion Pond, Llyn ldwal: G2, River 

Kennel and Pen-y-Bryn clones). Others did not grow at pH 3.5, but did grow at pH 11.0 

(Kings Mere: G2, Ham Gate Pond: G2, Abbey Lakes River and Lake Ogwen clones). 

Clones from Scion Pond, Abbey Lakes River and River Kennel failed to grow at pH 5.0, 

4.0 and 8.0 respectively, suggesting inoculation failure for the Scion Pond and River 

Kennel clones but a requirement for higher pH in the Abbey Lakes clone. Only the G2 

clone from Kings Mere showed a significant difference with increasing pH level and only 

between pH 7.0 and 7.5. 

Overall, it was difficult to infer a consistent pattern of MEGR with increasing pH. Some 

clones (Scion Pond, Ham Gate Pond: G2 clone and Llyn ldwal: G2 clone) appeared to 

show no particular preference, the growth rates rising and falling randomly across the pH 

range assayed, though these clones had a clear peak MEGR at pH 7.0, 7.0 and 4.5 

respectively. Generally however, clones show an increased MEGR with increasing pH 

from between pH 3.5 and 4.5 to between pH 5.5 and 9.0, declining thereafter. Therefore, 

all clones assayed appear to have a circumneutral optimum but with a wide tolerance 

range. The clone from Abbey Lakes River has a clear optimum of pH 8.5 and the clones 

from the River Kennel an optimum of pH 9.5. 
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Figures 3.14 and 3.15 

pH Regime, clones from Scion Pond and Kings Mere (G2) respectively. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.16 and 3.17 

pH Regime, clones from Ham Gate Pond (G2} and Abbey Lakes River respectively 

Boxplots of mean exponential growth rates (Ke = log10 unit per day) showing variance in 

replicate growth rate (including the minimum, maximum and interquartile range), the 

median and the means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.18 and 3.19 

pH Regime, clones from Llyn ldwal (G, ) and River Kennet respectively Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG =No Growth. 
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Figures 3.20 and 3.21 

pH Regime, clones from Pen-y-Brvn and Lake Ogwen respectively. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.22 and 3.23 

oH Regime, clones from Parvs Mountain (G1 and G, respectively) Boxplots of mean 

exponential growth rates (Ke = log1o unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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3.3.3 Artificial Sewage Regime 

Figures 3.24 to 3.32. All clones were able to grow at all strengths of sewage. Clones 

from Scion Pond, Ham Gate Pond (G2), Pen-y-Bryn, Lake Ogwen and Parys Mountain 

(G1 and G2), however showed no significant differences between treatments. Boxplots 

indicate decreasing MEGR with decreasing sewage strength in the Scion Pond clone, but 

the opposite in the Pen-y-Bryn clone. Each clone had clear optima (excluding the control) 

as follows: 

• 1/5 strength for clones from Scion Pond, Ham Gate Pond (G2) and the River Kennet; 

• 1/10 strength for clones from Uyn ldwal (G2), Pen-y-Bryn and Parys Mountain (G1); 

• 1/2 strength for clones from Ham Gate Pond (G2) and Lake Ogwen and 

• 1/25 strength for G2 clones from Parys Mountain. 

Overall, it was difficult to interpret a firm pattern in MEGR with decreasing sewage 

strength, though generally, clones show a decreased MEGR with decreasing sewage 

strength from Full to 1/25th strength sewage. Nearly all clones e~hibited their highest 

MEGR in the control group of Nil sewage (standard MBL medium) with the exception of 

the G2 clone from Ham Gate Pond, in which the highest MEGR was at 1/2 strength, and 

the G2 clone from Llyn ldwal in which, 1/10 strength sewage and the control group, were 

almost the same. The results suggest all clones assayed appear to be broadly tolerant of 

eutrophic environments however, they show a preference for non-eutrophic 

environments. 
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Figures 3.24 and 3.25 

Sewage Regime, Scion Pond and Kings Mere G1 clones respectively. Boxplots of mean 

exponential growth rates (Ke = log1o unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. 
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Figures 3.26 and 3.27 

Sewage Regime, clones Ham Gate Pond G2 clone and Llyn ldwal G2 clone respectively. 

Boxplots of mean exponential growth rates (Ke = log10 unit per day) showing variance in 

replicate growth rate (including the minimum, maximum and interquartile range), the 

median and the means (connected line) for each treatment group. 
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Figures 3.28 and 3.29 

Sewage Regime, River Kennet and Pen-y-Brvn clones respectively. Boxplots of mean 

exponential growth rates (l<e = log1o unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NV = No variance. 
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Figures 3.30 and 3.31 

Sewage Regime, Llyn Ogwen and Parvs Mountain G, clone respectively. Boxplots of 

mean exponential growth rates (Ke = log10 unit per day) showing variance in replicate 

growth rate (including the minimum, maximum and interquartile range), the median and 

the means (connected line) for each treatment group. 
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Figure 3.32 

Sewage Regime. Parys Mountain G2 clone. Boxplots of mean exponential growth rates 

(Ke = log10 unit per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. 
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3.3.4 Copper Regime 

Figures 3.34 to 3.42. Only the Scion Pond clone was able to grow across the full range 

of copper concentrations in both the initial and extended runs. In the initial run, only the 

Lake Ogwen clone was not able to grow across the full copper concentration range, 

failing to grow at 0.000661Jg/l and 0.0421-Jg/1. The failure at 0.000661Jg/l is probably due to 

inoculation failure. In the extended run however, several clones were unable to grow at 

higher concentrations. No clone was able to grow at copper concentrations of 12.51-Jg/1 

with or without the addition of EDTA. Additionally, clones from Kings Mere, Ham Gate 

Pond, Llyn ldwal and Parys Mountain (all G2 clones) failed to grow in the extended run at 

copper concentrations of 0.1 0, 0.25, 1.0 and 0.251-Jg/1 respectively, probably due to 

inoculation failure rather than copper concentration. 

Nearly all clones exhibited a higher MEGR in media containing EDTA compared to that 

without EDTA (0.05 and 12.51-Jg/1) with the exception of clones from Llyn ldwal (G2) and 

the River Ken net, which both showed a slight increase in MEGR in the absence of EDT A. 

However, none of these differences was significant at the 95% probability level. 

Subsequent pairwise comparisons of treatment groups with the control group (Nil Copper) 

in the extended run, indicated [often highly] significant differences, with the exception of 

the Ham Gate Pond (G2) clone, in which none of the pairwise comparisons in the initial 

run were significant. Generally, all clones exhibited a decrease in MEGR with increasing 

copper concentration. This was particularly marked in the extended run where three 

clones (Ham Gate Pond (G2), River Kennel and Parys Mountain (G2)) exhibited a 

107 



Chapter 3 - Ecophysio/ogy 

significant difference with increasing copper concentration from 0.05 to 0.1 O!Jg/1. 

Interestingly, approximately half the clones assayed exhibited higher MEGRs in the 

absence of copper than in its presence, i.e. clones from Scion Pond and lake Ogwen for 

both the initial and extended runs, and G2 clones from Kings Mere, Ham Gate Pond, Llyn 

ldwal and Parys Mountain in the extended run. The results suggest that overall, all clones 

assayed are broadly tolerant of high copper environments with the exception of the clone 

from Lake Ogwen and the G2 clone from Parys Mountain, which appear more sensitive. 
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Figures 3.33: a-b 

Copper Regime. Scion Pond clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (l<e = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. 
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Figures 3.34: a-b 

a 

b 

Copper Regime, Kings Mere G2 clone. (a) initial run (b) extended run. Boxptots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 

110 



Chapter 3 - Ecophysiology 

3.0 

2.5 

2.0 

Gl 
otJ 
~ 1.5 
.c 

~ ~ 1.0 

0.5 

0.0 

a 

-0 . 5 ~-.----.----,,----.----.-----,----.----~----r---~--

3.0 

2.5 

2.0 

Gl 
otJ 

1.5 ~ 
.c 
3 1.0 0 
~ 

0.5 

0.0 

-0.5 

Nil 0.00016 0.00033 0.00066 0.0013 0.0026 0.0053 0.011 0.021 0.042 

Nil 

Elemental Copper Concentration (ug/ 1) 

NV NG 

~ 

0.05 0.05(E) 0.10 0.25 0.50 1.0 2.5 5.0 12.5 12.5(E) 
Elemental Copper Concentration (ug/1) (E = without mTA) 

Figures 3.35: a-b 

b 

Copper Regime, Ham Gate Pond G2 clone. (a) initial run (b) extended run. Boxplots of 

mean exponential growth rates (Ke = log1o unit per day) showing variance in replicate 

growth rate (including the minimum, maximum and interquartile range), the median and 

the means (connected line) for each treatment group. NG = No Growth. NV = No Growth. 
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Figures 3.36: a-b 

Copper Regime. Llyn ldwal G2 clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth 
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Figures 3.37: a-b 

Copper Regime. River Kennet clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.38: a-b 

Copper Regime. Pen-y-Brvn clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG =No Growth. 
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Figures 3.39: a-b 

Copper Regime. Lake Ogwen clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log1o unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. NV = No variance. 
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Figures 3.40: a-b 

Copper Regime. Parvs Mountain G1 clone. (a) initial run (b) extended run. Boxplots of 

mean exponential growth rates (l<e = log1o unit per day) showing variance in replicate 

growth rate (including the minimum, maximum and interquartile range), the median and 

the means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.41 : a-b 

Copper Regime. Parvs Mountain G2 clone. (a) initial run (b) extended run. Boxplots of 

mean exponential growth rates (Ke = log10 unit per day) showing variance in replicate 

growth rate (including the minimum, maximum and interquartile range), the median and 

the means (connected line) for each treatment group. NG = No Growth. 
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3.3.5 Zinc Regime 

Figures 3.43 to 3.51. No single clone was able to grow across the full range of zinc 

concentrations, though several grew at all initial run concentrations, i.e. clones from Scion 

Pond, G2 clones from Ham Gate Pond and Kings Mere, G1 and G2 clones from Parys 

Mountain and clones from Pen-y-Bryn. The Llyn ldwal clone (G2) failed to grow at a zinc 

concentration of 0.042 ~g/1 in the initial run and clones from the River Kennet and Lake 

Ogwen failed to grow at a zinc concentration of 0.011 ~g/1, though this was probably due 

to inoculation failure as it grew well at 0.0053 and 0.021 ~g/1 copper concentration in the 

initial run . 

In the extended run, clones from Kings Mere (G2), River Kennet, Pen-y-Bryn and Parys 

Mountain (G1) ceased to grow at zinc concentrations of 2.5, 1.0, 2.5, and 0. 5~g/l 

respectively. Additionally, clones from Scion Pond, Kings Mere (G2), Ham Gate Pond 

(G2). Llyn ldwal (G2) and Lake Ogwen did not grow at 5.0, 0.25, 5.0, 2.5 and 0.1 O~g/1 zinc 

concentrations respectively. Again, these later failures are probably due to inoculation 

failure as the clones were able to grow at higher concentrations. 

Nearly all clones exhibited a higher MEGR in the extended run at the zinc concentration 

of 0 .05~g/l with EDTA, compared to that without EDTA, with the exception of the Lake 

Ogwen clone in which the MEGRs were the same for both the EDTA and non-EDTA 

replicates. The same was true at zinc concentration of 12 . 5~g/l, in which clones Ham 

Gate Pond (G2), Llyn ldwal (G2). Lake Ogwen and Parys Mountain (G2), in the presence 

of EDTA, exhibited a higher growth rate than in its absence. Clones from River Kennet, 
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Pen-y-Bryn and Parys Mountain {G1) did not exhibit any growth at zinc concentrations 

12.51-Jg/1 or without EDT A. Only the Kings Mere (G2) clone had a higher growth rate at a 

zinc concentration of 12.51-Jg/1 without EDTA added. None of these differences was 

significant at the 95% probability level. 

Pairwise comparison of treatment MEGR and control MEGR for the Ham Gate Pond, G2 

clone on the initial run showed significant differences between the control group and zinc 

concentrations of 0.00033, 0.0053, 0.011 and 0.0421-Jg/1. In the extended run, pairwise 

comparisons indicated [often highly] significant differences (see enclosed CD). 

Therefore, all clones assayed appear to be broadly tolerant of high Zn environments with 

the exception of clones from the River Kennet, Pen-y-Bryn and the G1 clone from Parys 

Mountain. 

Generally, all clones exhibited a decrease in MEGR with increasing zinc concentration. 

However, only the Ham Gate Pond clone (G2) exhibited a significant difference with 

increasing zinc concentration and only in the extended run with zinc concentrations 

between 0.0053 and 0.0111-Jg/1. In both runs, nearly all clones exhibited higher overall 

MEGRs in the absence of zinc than in its presence (at any concentration), with the 

exception of clones from Scion Pond, Pen-y-Bryn and the G2 clones from Parys Mountain 

(initial run) and the Pen-y-Bryn clone (extended run). 
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Figures 3.42: a-b 

Zinc Regime. Scion Pond clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log,o unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG =No Growth. 
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Figures 3.43: a-b 

Zinc Regime. Kings Mere Gz clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (l<e = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG =No Growth. 
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Figures 3.44: a·b 

Zinc Regime, Ham Gate Pond G2 clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log1o unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.45: a-b 

Zinc Regime. Llyn ldwal G2 clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.46: a-b 

b 

Zinc Regime. River Kennet clone. a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log,0 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG =No Growth. 
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Figures 3.47: a-b 

Zinc Regime. Pen-y-Brvn clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.48: a-b 

Zinc Regime, Lake Ogwen clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = logw unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG =No Growth. 
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Figures 3.49: a-b 

Zinc Regime. Parys Mountain G, clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log1o unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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Figures 3.50: a-b 

Zinc Regime. Parvs Mountain G2 clone. (a) initial run (b) extended run. Boxplots of mean 

exponential growth rates (Ke = log10 unit per day) showing variance in replicate growth 

rate (including the minimum, maximum and interquartile range), the median and the 

means (connected line) for each treatment group. NG = No Growth. 
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3.3.6 Cadmium Regime 

Figures 3.52 to 3.58. All clones were able to grow across the full range of cadmium 

concentrations. lt was difficult to interpret a clear pattern in MEGR with increasing 

cadmium concentration for any clone, as MEGRs rose and fell randomly. Nearly all 

clones however, exhibited their lowest MEGR at cadmium concentrations of 12.51-Jg/1 with 

or without EDT A, with the exception of clones from Scion Pond and River Ken net in which 

the lowest MEGR was at a cadmium concentration of 0.5 and 0.021-Jg/1 respectively. 

Nearly all clones exhibited a higher MEGR in media containing EDTA compared to that 

without, with the exception of clones from Scion Pond and Pen-y-Bryn, which showed an 

increased MEGR in the absence of EDTA at cadmium concentrations of 0.05 and 

12.51-Jg/1. None of these differences was significant at the 95% probability level. 

Pairwise comparisons did not indicate any significant differences between the control (Nil 

cadmium) MEGR and treatment MEGRs. Therefore, all clones appear to be broadly 

tolerant of high cadmium environments. 
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Figures 3.51 and 3.52 

Cadmium Regime. Scion Pond and Ham Gate Pond (G2) clones respectively. Boxplots of 

mean exponential growth rates (Ke = log10 unit per day) showing variance in replicate 

growth rate (including the minimum, maximum and interquartile range), the median and 

the means (connected line) for each treatment group. 
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Figures 3.53 and 3.54 

Cadmium Regime, Llyn ldwal (G?) and River Kennet clones respectively. Boxplots of 

mean exponential growth rates (Ke = log10 unit per day) showing variance in replicate 

growth rate (including the minimum, maximum and interquartile range), the median and 

the means (connected line) for each treatment group. 
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Figures 3.55 and 3.56 

Cadmium Regime, Pen-y-Brvn and Parvs Mountain (G1) clones respectively. Boxplots of 

mean exponential growth rates (Ke = log1o unit per day) showing variance in replicate 

growth rate (including the minimum, maximum and interquartile range), the median and 

the means (connected line) for each treatment group. 
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Figure 3.57 

Cadmium Regime. Parvs Mountain. G2 clone. Boxplots of mean exponential growth rates 

(Ke = log10 unit per day) showing variance in replicate growth rate (including the minimum, 

maximum and interquartile range), the median and the means (connected line) for each 

treatment group. 
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3.4 CLONAL PERFORMANCE 

Figures 3.59 to 3.64, show MEGRs for each clone under each regime (regardless of 

treatment), as boxplots. Taking no account of treatment level and comparing only the 

overall MEGR per regime, it is clear that some clones had overall higher and wider 

ranging MEGRs, e.g. the River Kennet clone had both the highest MEGR and the widest 

MEGR range in three regimes (sewage, copper and cadmium), whilst the Lake Ogwen 

clone was the least productive, having the lowest MEGR in the sewage, copper and zinc 

regimes. The growth range and optimum for each clone, under each experimental 

regime, are summarised in Table 3.3. 
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Figure 3.58 and 3.59 

Boxplots of overall mean growth rates (Ke = log 10 unit per day) for each clone assayed in 

the L&T and pH regime respectively, showing variance growth rate (including the 

minimum, maximum and interquartile range), the median and the means (connected line). 

Stars (*) = outliers. SC = Scion Pond, KM = Kings Mere, HG = Ham Gate Pond, AL = 

Abbey Lakes Pond, Ll = Llyn ldwal, RK = River Kennet, PB = Pen-y-Bryn, LO =Lake 

Ogwen, PM = Parys Mountain; G1 = G1 clone, G2 = G2 clone. 
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Boxplots of overall mean growth rates (l<e = log 10 unit per day) for each clone assayed in 

the sewage and copper regimes respectively, showing variance growth rate (including the 

minimum, maximum and interquartile range), the median and the means (connected line). 

Stars(*)= outliers. SC =Scion Pond, KM = Kings Mere, HG = Ham Gate Pond, Ll = Llyn 

ldwal, RK = River Kennet, PB = Pen-y-Bryn, LO =Lake Ogwen, PM = Parys Mountain; 

G1 = G1 clone, G2 = G2 clone. 

136 



Chapter 3 - Ecophysiology 

3.0 
Figure 3.62 

2.5 

0.0 

-0.5 
se KM(G2) HG(G2) U(G2) RK PB LO PM(Gl) PM(G2) 

Clone 

3.0 * 
Figure 3.63 

t 
2.5 

2.0 

QJ .. 11 1.5 
.J:. 

~ & 1.0 

* 
0.5 

* * 
0.0 * 

-0.5 ..J.._-,-----,.-----r-----r--------,------r----.--

se HG(G2) U(G2) 

Figure 3.62 and 3.63 

RK 
Clones 

PB PM(Gl) PM(G2) 

Boxplots of overall mean growth rates (Ke = log 10 unit per day) for each clone assayed in 

the zinc and cadmium regimes respectively, showing variance growth rate (including the 

minimum, maximum and interquartile range), the median and the means (connected line). 

Stars(*) = outliers. SC = Scion Pond, KM= Kings Mere, HG = Ham Gate Pond, Ll = Llyn 

ldwal, PB = Pen-y-Bryn, LO =Lake Ogwen, PM = Parys Mountain; G1 = G, clone, G2 = 

Gz clone. 
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Table 3.3: part 1 

Summary of the tolerance range and optimum for each clone under each experimental 

regime. NC = no culture (culture died prior to experimentation). H M L = High, Medium 

and Low Light. R = Range, 0 = Optimum. 

Clone 

Barn 
Wood 
Pond 

Scion 
Pond 

Kings 
Mere (G1 
Clone) 

Kings 
Mere (G2 
Clone) 

Ham Gate 
Pond(G1 
Clone) 

Ham Gate 
Pond(G2 
Clone) 

Abbey 
Lakes 
River 

Llyn ldwal 
(G1 Clone) 

Light and 
Temperature 

R 5-30°C, HML 
0 25°C, H 

R 5-30°C, HML 

0 20-25°C, MH 

R 5-25 (30)°C, 
HML 

0 25°C, L 

pH 

NC 

pH 3.5-
11 .0 
pH 7.0 

NC 

pH 4.0-
11 .0 

Sewage 

NC 

Nil to 
full 
1/5th 

NC 

R 1 0-30°C, HL 
& 5-30°C, M 

0 30°C, H pH 6.5-7.0 

Nil to 
full 
1/5th 

R 5-30°C, HML 
0 25°C, H NC 

R 5-30°C, HML pH 4.0-
11.0 

0 25°C, H pH 7.0 

R 5-30°C, HML pH 4.5-
11 .0 

0 20°C, H & pH 8.5 
30°C, M 

R 5-30°C, HML 
0 30°C, H NC 

NC 

Nil to 
full 
1/2 

NC 

NC 

138 

Copper 
(~g/1) 

NC 

All cone. 

0.021 

NC 

Nil to 
2.50 

0.00016 

NC 

Zinc 
(~g/1) 

NC 

All cone. 

0.0026 

NC 

Nil to 1.0 

0.0053 

NC 

Nil to 5.0 All cone. 

0.25 0.00066 

NC NC 

NC NC 

Cadmium 
(~g/1) 

NC 

All cone. 

0.02 

NC 

NC 

NC 

AJJ cone. 

0.05 

NC 

NC 
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Table 3.3: part 2 

Summary of the tolerance range and optimum for each clone under each experimental 

regime. NC = no culture (culture died prior to experimentation). H M L = High, Medium 

and Low Light. R = Range, 0 = Optimum. 

Clone 

Llyn 
ldwal (G1 
Clone) 

Llyn 
ldwal (G2 
Clone) 

River 
Ken net 

Pen-y-
Bryn 

Lake 
Ogwen 

Parys 
Mountain 
(G1 
Clone) 

Parys 
Mountain 
(G2 
Clone) 

R 
0 

R 

0 

R 

0 

R 

0 

R 

0 

R 

0 

R 

0 

Light and 
Temperature 

5-30°C, HML 
30°C, H 

5-30°C, HML 

20°C, M 

5-30°C, HML 

20°C, H 

5-30°C, HML 

25°C, M-H 

5-30°C, HML 

5 & 20°C, M 

5-30°C, HML 

20°C, M 

NC 

pH 

NC 

pH 3.5-
11.0 

pH 4.5 

pH 3.5-
11 .0 

pH 9.5 

pH 3.5-
11 .0 

pH 6.5 

pH 4.0-
11 .0 

pH 7.5 

pH 4.0-
10.5 

pH 9.0 

pH 4.0-
10.5 

pH 6.0 

Sewage 

NC 

Nil to 
full 
strength 
1/1 Oth 

Nil to 
full 
strength 
1/5th 

1/10th 
to full 
Strength 
1/1 Oth 

Nil to 
full 
strength 
1/1 Oth 

Nil to 
full 
strength 
1/1 Oth 

Nil to 
full 
strength 
1/2 
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Copper 
(IJg/1) 

NC 

Nil to 2.5 

0.021 

Nil to 5.0 

0.0053 

Nil to 1.0 

5.0 

Nil & 
0.05 

0.00033 
to 
0.00066 

Nil to 1.0 

0.00016 

Nil to 
0.25 

0.021 

Zinc 
(IJg/1) 

NC 

Nil to 
12.5 

0.00066 

Nil to 
0.00066 

0.0013 

Nil to 1.0 

0.00033 

Nil to 
12.5 

0.0013 

Nil to 
0.25 

0.00066 

Nil to 
12.5 

0.0013 

Cadmium 
(IJg/1) 

NC 

All cone. 

2.5 

All cone. 

0.05 

All cone. 

0.05 

NC 

All cone. 

0.05 

All cone. 
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3.5 DISCUSSION 

This study looked at seven different factors that are thought not only to affect growth, but 

also morphology in both micro- and macro-algae. The first two of those factors are light 

and temperature (L& T). Light and temperature are intricately bound together and 

therefore must be considered both in unison as well as apart. One expects that at lower 

light intensities, temperature will be lower (unless heated by another source, e.g. 

hydrothermal) and there will be less photosynthesis and therefore less growth, as found 

in a number of investigations for other algae (Fawley, 1984; Foy, 1983 and Meeson & 

Sweeney, 1982). This can be explained by the fact that light increases temperature, 

especially in shallow waters, whilst heat causes DNA damage. However, slight rises in 

temperature can also increase enzyme activity. This study shows that for the G. parvulum 

clones tested, light-limited growth is more susceptible to the effects of temperature 

change than non light-limited. 

One of the main effects of high temperature is the inhibition of enzymes, and the 

reactions they mediate, however the actual temperature experienced by any single cell is 

dependant on the conductive and convective properties of the water, which vary both 

temporally and spatially. As all experimental regimes were carried out in multi-welled 

dishes, which one could argue are equivalent to small natural pools of water, the 

influence of irradiance level may have produced higher temperatures than those set by 

the light-temperature regime, due to the smaller spatial scales involved. Additionally, 

although cultures were maintained in various different media, the day: night regimes and 

containers were the same. 
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The laboratory can never hope to duplicate natural conditions exactly, but it can provide 

invaluable insights and approximations of tolerance and ecological limits, essential 

knowledge if diatoms are to be used as bio-indicators. In this study, any potential abiotic 

variation in the laboratory was kept to a minimum by standardisation of methods. The 

inherent variation within each clone was minimised by replication. If the temperatures in 

the L& T regime however, were high enough to have elicited protein denature one might 

expect a reduction in photosynthetic capacity at higher temperatures and therefore a 

reduction in growth rate, however that was not always the case. Certainly, a number of 

clones exhibited a drop in growth rate at 30°C, but this was not always as low as at 5 or 

1 0°C and did not kill the culture nor stop it replicating. lt would suggest therefore that 

whilst higher temperature had a slight inhibitory effect on growth rate, there is no 

evidence of damage to replication mechanisms. 

Living in water and sediments, benthic diatoms are subject to dynamic light regimes and 

in disturbed areas would be widely tolerant of different light levels. As a biraphid diatom, 

G. parvu/um can regulate (to an extent) the amount of light it receives (its phototaxic 

response), by moving or migrating through the sediment. The light benthic diatoms 

receive is therefore attenuated by, e.g. terrestrial and aquatic vegetation, water turbidity 

and the benthic algal community. All the clones used in this study were benthic in origin 

and many were from disturbed sites, though the type of substratum differed with habitat 

and sampling site. One would therefore expect G. parvulum to be broadly tolerant of 

differing light regimes and take advantage of optimal conditions. Certainly, for most of the 

clones in this study, light had less of an effect on growth rate than temperature, but only 

marginally so. 
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Interestingly, several studies have shown that diatoms and other algae are able to grow 

heterotrophically/survive in the dark or in low light levels (Admiraal & Peletier. 1979; 

Lewin & Lewin. 1960; Peters 1996; Peters & Thomas 1996; Smiley & Darley, 1972). 

Admiraal & Peletier (1979) suggest that this may be down to a capacity to use one or 

more organic substrates for growth in the dark, and therefore possibly a metabolism 

intermediate between exclusive autotrophy and heterotrophy. Such versatility gives great 

advantage to such diatoms. Whilst this study does not suggest that G. parvulum is able to 

grow in the dark, it is clearly able to compensate for low light levels and more recently, 

Gould (1994) as cited in Peters & Thomas (1996) has suggested that there may be a 

genetic basis to dark survival. Little work has been carried out on the physiological 

implications of dark survival, which diatom taxa are capable of dark survival, or the effect 

on growth rate recovery. The ecological implications of surviving in low light regimes are 

clear; benthic diatoms are routinely subject to turbulence either by the nature of the water 

body or from grazing animals, one consequence of which is a reduction in received light. 

Additionally, many diatoms form biofilms either with each other or with other algae and 

competition for space and nutrients in addition to light, can mean that those taxa more 

able to survive at lower light levels have a greater advantage. Gomphonema parvulum 

however, compensates by being motile and able to form stalks to elevate itself in the 

water column. 

All clones of G. parvulum tested were able to grow under all L& T regimes and most had 

their optimum between 20 and 25°C, medium to high light levels, except clones from 

Kings Mere (G1) (25°C, low light), Kings Mere (G2) and Uyn ldwal (G1) (both 30°C high 

light). There were marked differences between G1 and G2 cells for Kings Mere and Llyn 

ldwal Clones, but not for clones from Ham Gate Pond. The cell size difference is large. 

The G2 cells are 2-3 times larger than the G1 cells. Banse (1982), in studies of diatoms 
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and dinophytes, has shown that for cells of a given class, e.g. Bacillariophyceae or 

Dinophyceae, maximum specific growth rate decreased with increasing cell size. 

Admiraal's (1977) study also shows this phenomenon, but only at optimal temperatures; 

at below optimum temperature there was little difference in growth rate. A general 

presumption is that smaller cells have higher metabolic rates with faster uptake of 

nutrients, and due to the smaller surface area: volume ratio may divide more frequently 

and thus have higher growth rates. There is no evidence in this study that smaller (or 

conversely larger) cells are more or less sensitive to L&T. However, if a coefficient of 

variation (CV= standard deviation/mean x 100%) for each clone's dataset is computed, it 

becomes clear that in all cases the G1 cells have a larger variability in growth rate than 

the G2 cells. Additionally, in all cases, within clone growth rate varied considerably more 

than between clone growth rate. 

Acid tolerant forms are well documented in the diatom literature (Hustedt. 1937 -1939; 

Moss. 1973 and Patrick & Reimer. 1966). However, there is little in the literature on the 

specific pH optimum or tolerance of G. parvulum. From this study, it is clear that different 

clones within the same complex exhibit slightly different preferences, but are generally 

tolerant of extremes of temperature, light, pH, eutrophication and metal concentrations. 

There were marked differences in optima between the G1 and G2 cells for the Parys 

Mountain clone, the former growing better under alkaline conditions and the latter under 

slightly acidic conditions. This suggests that different stages in the life cycle have different 

tolerances, which leaves us with a problem. How does the diatom cell at either end of the 

size continuum change is habitat to suit a particular stage in its life cycle? Does it need to 

change habitat, or is the physiology of the cell sufficiently robust to tolerate any pH 
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regardless of life cycle stage? The fact that both the G1 and the G2 clones are able to 

grow at pH 4.0 through to pH 1 0.5, suggests that clonal physiology is sufficiently robust. 

However, it is hypothetically possible (though has not been tested) for benthic and other 

attached diatoms to "detach" themselves from one undesirable habitat and float freely 

either in the water column or with water currents, and float down stream to a more 

suitable habitat. This may seem somewhat random, but plenty of land plants exhibit the 

same "behaviour'' with wind/animal borne pollen and seeds. Sufficient cells make it to a 

more desirable habitat to ensure survival of the population. That the smaller G1 cells in 

this study should prefer conditions that are more alkaline, does not however agree with 

published data that suggest smaller cells are generally found in conditions that are more 

acid. The CVs for each clone show that growth rate for all clones in the pH regime was 

highly variable, though unlike the L&T regime there was less of a difference between G1 

and G2 cells for the Parys Mountain clone. These data therefore agree with published 

data, in that G. parvulum appears to be generally pH indifferent. 

In diatoms, the study of organic pollutant uptake generally focuses on the role of 

elemental phosphorus, nitrogen and carbon or their compounds, e.g. NH4, NH3 , P04• 

Gomphonema parvulum is generally considered broadly tolerant of high organic pollution 

as shown in Palmer's (1969) composite rating . Gomphonema parvulum is also found in 

organically enriched waters the world over as one of the most pollution tolerant diatoms 

(Dakshini & Soni, 1982; Kelly & Wilson. 2004; Lange-Bertalot. 1979; Lobo et al., 1996 and 

van Dam. 1982). 

Phosphate uptake and metabolism has been shown to be affected by pH in some studies 

with other algae (Healey, 1979). Bostrom et al., (1988) have shown that assay 

144 



Chapter 3 - Ecophysiology 

procedures in the laboratory may be unfavourable for certain P-mobilisation processes 

and that the bioavailability of phosphorus will vary according to other biochemical and 

physical conditions, such as pH and temperature (high pH favours P-mobilisation). The 

most important form of phosphorus for diatoms is dissolved inorganic phosphorus, e.g. 

orthophosphate. In this study however, nutrients were present in sufficient quantities over 

the short assay period, as the medium was regularly topped up, so it is unlikely that 

nutrient deficiency at low pH would reduce growth. In the sewage regime however, 

phosphate compounds are considerably higher, mimicking moderate to high organic 

pollution, and G. parvulum clones generally grew less well at full-strength sewage than at 

lower concentrations. These results agree with Admiraal's ( 1977) study, which show that 

nitrate and orthophosphate are either not at all, or only slightly, inhibitory to benthic 

diatoms at concentrations of 0.9 mg/1 to 16.9 mg/1. 

All transfer of material and media were conducted under aseptic conditions nonetheless, 

the sewage regime inevitably became infected by bacteria. In the sewage regime, both 

algae and bacteria will therefore compete for phosphorus just as they would in nature. 

Diatoms are known to perform luxury accumulation of phosphorus to enable survival in 

times of limited availability however, Currie & Kalff (1984a, 1984b) suggest that bacteria 

unlike diatoms, are not phosphorus limited but carbon-limited. Most of the carbon is 

supplied by phytoplankton. Bacteria have a higher affinity for phosphorus than algae so 

there is the possibility that they could starve diatoms of this resource. In a review of 

literature on bacterial and algal phosphate utilisation and uptake however, Jansson 

(1988), suggested that the main source of phosphorous for algae (in a mixed population) 

was organic excretory products from bacteria in phosphorus-rich waters (usually ortho­

phosphate) in a feedback mechanism. If this were true for this study, it would account for 

the ability of G. parvulum clones to grow well at all sewage concentrations despite 
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increasing concentrations of bacteria. Jansson (1988) also suggests that some algae may 

have the same ability as bacteria, so that when phosphorus concentrations are low, both 

have a mechanism to ensure continuous access to a limiting nutrient. 

Ammonia and nitrate however, have more deleterious effects in both long-term exposure 

culture experiments and short-term exposure photosynthesis measurements. Nitrate has 

been shown to retard growth, and ammonia is known to retard growth and inhibit 

photosynthesis (Admiraal. 1977). Yet Gomphonema species are generally associated 

with higher nitrate (N03-) (and dissolved oxygen) in organically polluted drains (Oakshini 

& Soni, 1982), and, using clay pots (Fairchild et al .. 1985) dosed with specific ions to 

study the growth responses of algae in a lake, found Gomphonema species were nitrate­

limited. Whilst this study does not distinguish between different elements making up the 

artificial sewage, the constituent ingredients suggest high phosphorus and nitrogenous 

compounds will be present. Certainly ammonia and urea will be broken down into nitrate 

by the bacteria, however nitrate becomes limiting in the presence of plentiful phosphorus. 

In the metals regimes, the pattern of growth rate was more straightforward and largely as 

expected, i.e. growth rate decreased with increasing metal concentration, although there 

were slight differences between the clones. In this study, the addition of EDTA as well as 

Tris buffers, had the potential to detoxify metals by lowering the concentration of free 

metal-ions. In the experiments presented here, EDTA and Tris buffer were retained as 

constituents of the metals regime media so that they were comparable to the clonal stock 

cultures and the L& T, pH and sewage regimes. However, at the lowest and highest metal 

concentrations, clones were also inoculated into EDTA-free media for comparison, none 

of which grew well , if at all, suggesting that EDTA does not have a strong inhibitory effect. 
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Any effect that EDTA and Tris may have however was possibly short-lived. Fabregas et 

al., (1993) report that Tris buffer has been implicated in increasing bacterial populations in 

non-axenic algal cultures if sodium phosphate is also present. In this study however, 

NaP04 was not used to make the medium, but both Na• and PO/ - were present in 

solution and consequently may have contributed to the bacterial problem in the sewage 

regime. 

Leland & Carter (1984) and Denisegar et al., (1986) showed that metal adaptation differs 

between clones of the same species based on history of exposure, e.g. lvorra et al., 

(2002) observed clones of G. parvulum with a natural history of chronic Zn and Cd 

exposure were more tolerant to metals than a clone isolated from a markedly less 

contaminated site (though not to Cu). In short-term studies Medley & Clements (1998) 

found greater sensitivity of G. parvulum to metals compared to other diatom taxa, and 

Monteiro et al.. (1995) show that G. parvulum was strongly tolerant to Cu, Zn and Cd 

(concentration 0.088mg/l, 1.8mg/l and 0.03mg/l respectively). Conversely, Rushforth et 

al., (1981) and Sabater (2000) assessed G. parvulum as metal intolerant. Oliveira's 

(1985) study, showed that Cu mine effluent enabled the development of a Cu-tolerant 

group of species, of which G. parvulum had the highest population. 

Metal tolerance was exhibited to varying degrees by all clones in this study. In particular, 

the Parys Mountain (G2) clone in the Zn and Cd regimes, though less so for the Parys 

Mountain {G1) clone. If we compare the Parys Mountain clones, (from a known metal 

contaminated site), with the clone from Llyn ldwal (from an oligotrophic lake), the Parys 

Mountain clone (both G, and G2 cells) had a wider tolerance and generally higher MEGRs 

than the Llyn ldwal clone in the Cu regime, though not in the Zn regime, where the Parys 
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Mountain G1 clone did less well. There was little difference between the two clones in the 

Cd regime. This suggests a genetic basis for the difference. On the other hand, Joux­

Arab et al., (2000) showed that cell size in the marine diatom Has/ea ostrearia (Gaillon) 

Simonsen did not affect metabolic rate in the absence of Cu, although significant 

differences in Cu sensitivity were found between all three size ranges during cell size 

reduction, with the largest cells showing the greatest sensitivity, suggesting tolerance 

changes throughout the life cycle of a cell. 

lvorra et al., (1999) showed that the percentage abundance of G. parvulum (among 

others) increased in polluted sites, compared to reference sites that contained less 

pollution (in particular Zn) in spring and autumn, but decreased slightly in winter. In lvorra 

et al. 's, (2002) study on G. parvulum, Zn induced tolerance showed significant difference 

between clones and treatment. In particular, they showed that clones isolated from waters 

subject to chronic Zn (and Cd) loading, were more tolerant to Zn than clones originating 

from waters with markedly lower Zn loadings, despite pre-incubation in a metal-free 

medium. This tolerance was still evident 2 years later, suggesting a genetic basis. Further 

evidence of G. parvulum's zinc tolerance is given in Loez et al., (1995) where G. 

parvulum is one of only a few diatom species still surviving at 25mg/l. This was similar to 

results obtained by Say & Whitton (1978), Say & Whitton (1981) and Takamura et al., 

(1989). The literature therefore suggests that G. parvulum should be strongly tolerant to 

zinc, and in this study, this was largely true, though some clones were slightly less 

tolerant than others, and the Parys Mountain G1 clone was more sensitive than the G2 

clone, or any other clone. 
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Like many heavy metals, cadmium is also known to have inhibitory effects at low 

concentrations. Rushforth et al., (1981) found that G. parvulum was one of the diatom 

species occurring at high concentrations of Cd for at least three seasons in the Uintah 

Basin, USA. The Cd range was 0.1-5.7 mg/1, much higher than in this study, suggesting 

that G. parvulum is Cd tolerant. In fact, G. parvulum in the Uintah study showed a 

consistent preference for high metal concentration, especially Cd and Al. In this study, Cd 

had little effect on growth rate, generally in line with Rushforth et al. 's, (1981) study. 

3.6 CONCLUSIONS 

Although G. parvu/um is recorded as a common taxon and abundant in polluted sites, this 

study has shown that this is not always the case. Gomphonema parvulum can be difficult 

to find and does not occur in great numbers. In over 100 samples collected, G. parvulum 

was only isolated from 10. 

Results show that different clones of the same species have similar broad tolerances to 

several physico-chemical measures, regardless of genetic and environmental exposure 

history, though they vary in their optima. This supports the reported adaptability of G. 

parvulum. Gomphonema parvulum is able to grow and reproduce in a wide spectrum of 

habitats and is especially tolerant of pH and heavy metals. However, this study also 

highlights that it may not be as tolerant of organic pollution as has been reported, growing 

better in standard MBL than in media laced with artificial sewage. From this study, it is 

clear that different clones exhibit different preferences and, and although responses 

overall were very similar, there are indications of a genetic basis for the encountered 

differences. 
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4 MORPHOLOGY 

4.1 INTRODUCTION 

The inherent morphological variability of G. parvulum suggests that a number of taxa 

constitute the species complex. This seems at odds with its use as an indicator of organic 

pollution in diatom indices of water quality. The separation of either ecotypes or 

morphotypes however, may rely on subtle differences. A case in point is the 

morphologically variable, freshwater diatom Sel/aphora pupula (KOtzing) Mereschowsky. 

Mann (1989a, 1999) and Mann et al., (2004) have established that slight differences in 

valve shape, size and striation pattern and density are markers for non-interbreeding 

populations. Although the differences are subtle, these morphological characters have 

been demonstrated as stable in culture, and are supported by descriptive and 

diagrammatic references and quantitative analyses. The fact that these morphotypes 

remain distinct even within the same water body, suggests that they represent separate 

lineages that are reproductively isolated (Mann & Droop, 1996). The same may be true 

for G. parvulum. lt may be that different morphotypes are separated by habitat, ecological 

niche or season, and therefore no gene flow occurs, or that morphologies are induced by 

environmental conditions. As Mann & Droop (1996) point out however, if a sexual 

organism shows discontinuity in its pattern of morphological variation between 

populations that live together, the biological species concept may serve as a test of 

significance where molecular analysis is not feasible. 

Variability in shape, stria density and size, and the lack of intermediate morphologies, 

make G. parvulum a highly heterogeneous taxon. Ideally, a good biological indicator has 

the wide distribution of G. parvulum, however it should also have a well-defined 
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ecological range and be easily and reliably identifiable (Geissler. 1982). That does not 

appear to be the case for this taxon insofar as many morphologies make up the species, 

few varieties are attributable to defined environmental conditions, and it can be confused 

with other Gomphonema spp. In particular, it is very similar to G. angustatum, which has 

somewhat coarser and more radiate striae. However, these are matters of degree, and 

there are no standard measures of "radiate" or "coarseness" for striae. How certain are 

we that, given is similarity to G. parvulum, G. angustatum is a separate species and not 

simply a morphological variety linked to a particular environment? What about other 

similar taxa? Under what conditions does morphology change? 

The rare occurrence of auxospores and initial cells in samples or cultures can also 

confuse the taxonomy of a taxon unless a direct link is made to a known species. 

Morphology disparate from the sensu stricto however, would cause such a taxon to be 

identified as either a separate species or a new taxon. The usefulness of diatom cell wall 

morphology as the sole criterion on which to classify diatoms is therefore questioned. 

Experimental work however, can help clarify some of these issues, and several authors 

(Cox. 1995; Fisher et al., 1981; Geissler. 1970a, 1970b, 1982; Gensemer. 1990; Jahn. 

1986; Schultz. 1971) have shown that changes in environmental factors can modify 

diatom valve morphology or induce sexual reproduction, though little work has been done 

on freshwater pennates. In some cases, these modifications have been shown to be 

characteristic of described taxa (Holmes & Reimann. 1966; Schultz, 1971 ), bringing into 

question the taxonomy of those species in addition to the taxon under evaluation. 

151 



Chapter 4 - Morphology 

The purpose of the analyses in this chapter, apart from exploring the variation in G. 

parvulum morphology, is to establish a baseline data set that can be used for future 

morphometric comparisons of G. parvulum and one that can, alongside ecophysiological 

data and observations on live material, inform the separation of taxa from the complex. 

This study aims to determine the effects of particular environmental conditions (pH, 

sewage, copper, zinc and cadmium) on the morphology of several isolated clones of G. 

parvulum, testing whether morphological variability is a response to changes in these 

conditions, and assess whether clones can be differentiated into ecomorphs or ecotypes. 

4.2 CLONAL IDENTITY 

Initial inspection of clonal material provided clonal identity to species. Clones were then 

assigned to variety or form where possible (Table 4.1). 

LM examples of each clone at the start of subculture are provided in Figures 4.1 to 4.5. 

Krammer and Lange-Bertalot's, Sur..wasserflora von Mitteleuropa (1986-1991 ) is one of 

the main identification flora 's used to identify European freshwater diatoms, therefore 

beneath each set of figures , a comparison with equivalent taxa in the sor..wasserflora von 

Mitteleuropa is made, to illustrate if these clones agree with Krammer and Lange­

Bertalot's descriptions and micrographs. 
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Table 4.1 

Taxonomic identity of each of the ten clones under study. 

Clone Taxonomic identity of clone Taxonomic Authority 

Barn Wood Pond 
G. parvulum KOtzing var. 

KOtzing 

parvulum fo. parvulum 

Pen-y-Bryn, 
G. parvulum var. exilissimum 

Grunow 

(morph #1) 

Parys Mountain 
G. parvulum var. exilissimum 

Grunow 

(morph #2) 

Kings Mere 
G. parvu/um var. parvu/um fo. 

Lange-Bertalot & 
Ham Gate Pond 

saprophilum (morph #1) 
Reichardt 

Lyn ldwal 

Abbey Lakes River 
G. parvulum var. parvu/um fo. 

Lange-Bertalot & 

saprophilum (morph #2) 
Reichardt 

Scion Pond 
G. parvulum (morph #1) 

KOtzing 

River Kennet 
G. parvulum (morph #2) 

KOtzing 

Llyn Ogwen 
Gomphonema gracile I fo. 

Ehrenberg, Lange-

saprophilum 
Bertalot & Reichardt 
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Figure 4.1 

Barnwood Pond clone, G. parvulum fo. parvulum. This clone agrees well with Krammer & 

Lange-Bertalot's, (1991 b) descriptions and LM plates, specifically their Plate 76: Figs1-2. 

Scale Bar = 1 01-Jm. 

Figure 4.2 

Llyn Ogwen clone, G. gracile I G. parvulum var. parvulum fo. saprophilum. This clone is 

very similar in size and shape to the Kings Mere clone (G. parvulum var. parvulum fo. 

saprophilum #1 ), however the striae appear finer and the upper part of the valve has 

slightly straighter valve margins. In the literature, Gomphonema gracile is noted to 

resemble G. parvulum though the size range is larger than that of G. parvulum, and it 

has been suggested that G. gracile sensu Hustedt (non Reichert & Fricke), may form part 

of the G. parvulum complex (Krammer & Lange-Bertalot. 1986). Scale Bar = 1 01-Jm. 
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a: Morph #1 b: Morph #2 

Figure 4.3: a-b 

(a) Pen-y-Brvn clone and (b) Parvs Mountain Clone. both identified as G. parvu/um var. 

exilissimum. Note the clear demarcation with respect to valve and pole shape. Morph #1 

(clone from Pen-y-Bryn) has a more attenuated rostrate head and foot pole than morph 

#2 (Clone from Parys Mountain), and morph #2 has a less rounded, slightly rhombic valve 

shape compared to morph #1, which is more rounded. This demarcation agrees with the 

flora of Krammer & Lange-Bertalot. {1991 b}. Specifically, morph #1 agrees with Krammer 

& Lange-Bertalot's, ( 1991 b) Plate 77, Fig 2, and morph #2 with Plate 76, Fig 14. The 

authors suggest that very narrow individuals are generally characteristic of oligotrophic 

waters and certainly, both clones in this study originate from low nutrient waters in Wales. 

Scale bar = 1 OiJm. 
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a: Morph #1 b: Morph #2 

Figure 4.4: a-b 

Clones from {a) Scion Pond and {b) River Kennet are identified as G. parvulum (morphs 

#1 and #2 respectively) without further taxonomic refinement. They both have a broadly 

similar lanceolate valve outlines, though the Scion Pond clone is slightly narrower in 

appearance. The foot pole in morph #2 is slightly more attenuated than morph #1 and the 

head pole marginally wider. Scale bar = 1 01-Jm. 
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a: Morph #1 b: Morph #1 

c: Morph #1 d: Morph #2 

Figure 4.5:a-d 

Clones designated G. parvulum var. parvulum fo. saprophi/um. Morph #1 from (a) Kings 

Mere. (b) Ham Gate Pond and (c) Llyn ldwal (d) Morph #2 from Abbey Lakes River. All 

scale bars = 1 Opm. Of the four clones identified as G. parvulum var. parvulum fo. 

saprophilum, the Kings Mere, Ham Gate Pond and Llyn ldwal clones are the most similar 

(morph #1) with rounded head poles and attenuated foot poles. The Abbey lakes River 

clone (morph #2) however, despite being almost the same size as the clone from Kings 

Mere, is narrower, and has a slightly less broad rostrate head pole. This is also in 

agreement with Krammer & Lange-Bertalot. (1991 b) figures. Specifically Plate 76: Figs 8-

13 is akin to morph#1 in this study, and Plate 77: Figs 5-9, to morph#2. 
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4.3 GENERAL OBSERVATIONS 

4.3.1 Morphology of Clonal Stock Cultures 

Clonal subcultures were grown in stock culture for between 8 and 21 months. LM 

examination of clones grown in long-term culture reveal that size, valve and apical pole 

shape and stria density are the characters that change most significantly with time 

(Figures 4.6 to 4.15). Curiously, there is a slight increase in length with time in the River 

Kennet clone, despite there being no evidence of auxosporulation. Despite the highly 

variable valve shape in all clones except River Kennet and Llyn Ogwen, a principal form 

was apparent, i.e. the form produced by >50% of the population. For the Barnwood Pond 

and Parys Mountain clones, it was lanceolate. In the Scion Pond and Abbey Lakes River 

clones, it was ovate-clavate, whilst the Kings Mere, Ham Gate Pond and Pen-y-Bryn 

clones were lanceolate-clavate, and in the Llyn ldwal clone lanceolate to lanceolate­

clavate. Observations of clonal stock cultures also found that Janus cells occurred in 

some populations, but rarely. One exception was the Kings Mere clone, in which one 

subculture population consisted of circa 25% Janus cells. Janus cells often had the same 

overall shape and size as the rest of the population, but the striae were more numerous. 

There is often a concave/convex aspect to the valve profile when in girdle view (Epitheca 

= convex and Hypotheca = concave) (Figure 4.16). Apical pole shape varies with size 

and degree of attenuation, and the Kings Mere clone was the most variable in this 

respect. The propensity for morphological abnormality increases as cells get smaller. The 

smallest cells often have rounded profiles in girdle view. Abnormalities rarely occur at 

more than 3% in a population. 

Striae density between the stigma and non-stigma side of a valve rarely differed by more 

than a mean value of 1 stria, although individually, the differences could be 2 and in some 
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cases, they are equally numbered. The ratio between the stigma side and non-stigma 

side striae was constant, irrespective of size or clone. Differences in striae density on 

each side of a single valve are generally due to the common absence of a shortened stria 

opposite the stigma, and occasionally where there is more than one shortened striae. 

Patterns of variation in central stria density on both sides of the valve cluster around 1 0-

15 /1 O,um, with the exception of the clone from Scion Pond, which is 14-17/1 O,um on the 

stigma-side and 11-16/1 O,um on the non-stigma side. The occurrence of non-central short 

striae and inserted striae occurs in all clones except Barnwood Pond, which was not 

observed to have other short striae, and the Llyn ldwal clone in which no inserted striae 

were observed. Striae direction is generally radial throughout all the clones, often 

becoming almost parallel at the lower end of the size range. There is also variation to the 

degree of curvature of the striae approaching the central area both within and between 

clones. 

The loss of morphological features, particularly at the apices, as size reduction occurs, is 

of particular importance. Size reduction occurs more rapidly in length than in breadth, and 

consequently cells often appear 'fatter' when they are smaller. In particular, the apices of 

the valve become less attenuated and/or rostrate and instead become more rounded, and 

the frustule in valve view becomes more ovate. The reduction in size and loss of 

morphological features is so great that different stages in the life cycle of a single clone 

are identified as different taxa. This clearly undermines the use of diatom valve 

morphology as the sole criterion with which to identify taxa in water quality indices, and 

therefore may invalidate existing analyses that have used diatom indices. 
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Although difficult to separate, differences in the valve morphology of G. parvulum clones 

are demonstrated. 
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a b c 

? ? 

Figure 4.6: a-b 

LMs of the Barn Wood Pond clone, grown in long-term culture (December 2001 to July 

2002) illustrating changes in valve size and morphology with time. Initially identified as (a 

and b) Gomphonema parvulum var. parvu/um fo. parvulum, smaller cells would be 

identified as (c) Gomphonema cf. lagenula?. Scale bars= 10,um. 

a 

b 

Figure 4.7: a-b 

LMs examples of the Scion Pond clone, grown in long-term culture (April 2002 to January 

2003) illustrating changes in valve size and morphology with time. Initially identified as (a) 

Gomphonema parvu/um var. #1, smaller cells of the same clone would be identified as 

(b) Gomphonema cf. innocens?. Scale bars= 10,um. 
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Sexual 
Reproduction 
occurred and 
parents give 
rise to new 
generation. 

c 

Figure 4.8: a-c 

LMs of the Kings Mere clone, grown in long-term culture (December 2001 to November 

2002), illustrating changes in valve size and morphology with time and sexual 

reproduction. Initially identified as (a) Gomphonema parvulum var. parvulum fo. 

saprophilum #1 Lange-Bertalot & Reichardt, larger post auxospore cells would be 

identified as (b-e) Gomphonema gracile Ehrenberg . Scale bars = 1 OJJm. 
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c 

Figure 4.9: a - d 

? ? 

Sexual 
Reproduction 
occurred and 
parents give rise 
to new 
generation. 

LMs of the Ham Gate clone, grown in long-term culture (February 2002 to April 2003), 

illustrating changes in valve size and morphology with time and sexual reproduction. 

Initially identified as (a) Gomphonema parvulum var. parvulum fo. saprophilum Lange­

Bertalot & Reichardt, larger post auxospore cells would be identified as (b-e) 

Gomphonema gracile Ehrenberg. Scale bars = 1 OJJm. 
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a b 

Figure 4.10: a-b 

LMs of the Abbey Lakes Pond clone, grown in long-term culture (December 2001 to July 

2002), illustrating changes in valve size and morphology with time. Initially identified as 

(a) Gomphonema parvulum var. parvulum fo. saprophilum #2 Lange-Bertalot & Reichardt, 

smaller cells would be identified as (b) Gomphonema parvulum. Scale bar = 1 OJJm. 

a 

Figure 4.11: a-b 

LMs of the River Kennet clone, grown in long-term culture (April 2002 to December 

2002), illustrating changes in valve size and morphology with time. Initially identified as 

(a) Gomphonema parvulum #2. This identity was maintained throughout culture. Scale 

bar = 1 OJJm. NB: this clone apparently increased slightly in size without undergoing 

sexual reproduction. 
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a 

Sexual 
Reproduction 
occurred and 
parents give 
rise to new 
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c 

Figures 4.12: a-b 

? 

LMs of the Llyn ldwal clone, grown in long-term culture (May 2002 to April 2003), 

illustrating changes in valve size and morphology with time and sexual reproduction. 

Initially identified as (a) Gomphonema parvulum var. parvulum fo. saprophilum #1 Lange­

Bertalot & Reichardt, larger post auxospore cells would be identified as (b-e) 

Gomphonema gracile Ehrenberg. Scale bars = 10J.Im. 
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b 

Figures 4.13: a·b 

LMs of the Pen-y-Bryn clone, grown in long-term culture (May 2002 to February 2003), 

illustrating changes in valve size and morphology with time. Initially identified as 

Gomphonema parvulum var. exilissimum #1 Grunow, this identity was maintained with 

reduction in size. Scale bars = 1 OJJm. 

Figures 4.14: a-b 

LMs of the Llyn Ogwen clone, grown in long-term culture (May 2002 to July 2002), 

illustrating changes in valve size and morphology with time. Initially identified as 

Gomphonema gracile I G. parvulum var. parvulum to. saprophilum, this identity was 

maintained with reduction in size. Scale bar= 10JJm. 
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c 

Figures 4.15: a-b 

LMs of the Parys Mountain clone, grown in long-term culture (May 2002 to February 

2003), illustrating changes in valve size and morphology with time and sexual 

reproduction. Initially identified as (a) Gomphonema parvu/um var. exilissimum #2, larger 

post auxospore cells were identified as (b) Gomphonema hebridense Gregory Grunow 

and intermediated sized cells as (c) Gomphonema parvulum var. exilissimum #2. Scale 

bars = 1 O,um. 
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Figure 4.16 

SEM of Barnwood Pond clone showing convex/concave profile in girdle view. Scale bar = 

10pm. 
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SEM examination of clonal stock cultures reveal that the basic features of G. parvu/um 

are present in all clones, and do not reveal features that allow taxonomic separation of 

clones. However, in cells at the smallest end of the size range, some features were not 

as marked as in larger specimens, e.g. in the Scion Pond clone, some valves had central 

raphe endings that were not as strongly hooked (Figure 4.17), whilst in the Ham Gate 

Pond clone, girdle band pores were more elongate (Figure 4.18) and thicker cell walls 

were observed, as well as a number of stria/pore disruptions (Figure 4.19). Additionally, 

G1 clones from Ham Gate Pond and Llyn ldwal had less well-developed areolae (Figure 

4.20). However these are matters of degree and further work is needed to determine how 

useful or stable these slight differences are. In girdle view, all clones had very shallow 

mantles (Figure 4.21), girdle bands with uneven edges (Figure 4.22), and were either 

barely wedge-shaped or rectangular in profile. No valve under SEM was observed to 

have more than one stigma. 

The clone from Llyn ldwal was also observed to be asymmetrical about the apical axis 

with a convex bulge (attained during/after auxosporulation) on the non-stigma side of the 

valve, which was maintained in all G2 cultures. 
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Figure 4.17 

SEM of the Scion Pond clone, internal view in which the central raphe endings are less 

hooked than in other clones. Scale bar = 51Jm. 

Figure 4.18: a-b 

SEM of the (a) Ham Gate Pond clone and (b) Scion Pond clone, external views showing 

elongate girdle band pores. Scale bars (a) = 51Jm and (b) = 21Jm. 
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Figure 4.19 

SEM of pore and stria disruption in the Ham Gate Pond clone. Scale bar= 51-Jm. 

Figure 4.20 

SEM of underdeveloped areolae in the Ham Gate Pond clone. Scale bar = 11-Jm. 
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a 

c 

f 

b 

Figure 4.21: a-g 

LMs of stock culture clones showing shallow 

mantles in girdle view. (a) Barnwood Pond (b) 

Scion Pond (c) Abbey Lakes Pond (d) Lake 

Ogwen (e) Pen-y-Bryn (f) Llyn ldwal (g) Parys 

Mountain. All scale bars = 1 Opm. 
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Figure 4.22 

SEM of Scion Pond clone showing uneven edge of girdle bands. Scale bar = 2,um. 
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4.3.2 Morphology and Experimental Regime 

Observations under LM reveal that under certain conditions, valves of some clones often 

appeared thicker (noted as denser, darker valve perimeter/mantle), e.g. clones from 

Scion Pond (Nil and 0.00016j.Jg/l zinc concentration, initial run), Ham Gate Pond (pH 8.5 

and 9.5), Llyn ldwal (pH 4.0 and 4.5), River Kennet (0.25, 1.0 and 2.51Jg/l zinc 

concentration, extended run) and Pen-y-Bryn (0.000331Jg/l zinc concentration, initial run). 

Additionally, pH caused shortening and rounding of shape in some clones and in some 

cases, transapical asymmetry. The Ham Gate Pond clone often appeared more rounded 

and squat at pH 5.0 to pH 8.0, but more rhombic in shape at pH 8.5. Whereas the Kings 

Mere clone became more squat at pH 7.5 to 9.0, and was often asymmetrical about the 

apical axis with the stigma side of the valve slightly wider. Striae were also much denser. 

However, both the Kings Mere and the Ham Gate Pond clones had much more 

attenuated foot poles compared to head poles, regardless of assay or size. Whereas the 

apical poles in the River Kennel clone became less pronounced in the cadmium regime. 

The clone from Llyn ldwal maintained the convex bulge on the non-stigma side of the 

valve, regardless of assay. Although normal shape was restored after the next 

auxosporulation, or became less pronounced at the smaller end of the size range. 

However, in the zinc assay, the apical asymmetry was often enhanced and the valve 

appeared thicker at 0.00033j.Jg/l in the initial run and 0.1 Oj.Jg/1 in the extended run. This 

clone also maintained a more attenuated foot pole compared to head pole. 

Sewage concentration had the greatest effect on valve morphology, modifying length and 

central striae density in several clones. The Parys Mountain clone was the least affected 
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by any assay except sewage. From the data it is clear that the Scion Pond clone is 

tolerant of sewage, clones from Llyn ldwal, River Kennel and Parys Mountain (G1) are 

tolerant of pH, the Pen-y-Bryn and Parys Mountain (G2) clones are tolerant of copper, 

clones from Scion Pond, River Kennel and Parys Mountain (G1 and G2) are tolerant of 

zinc, and clones from Ham Gate Pond, Llyn ldwal, River Kennel, Pen-y-Bryn and Parys 

Mountain (G2) are tolerant of cadmium. 

Although the sample size for the assays is smaller than that of the stock cultures, there 

are nonetheless between 3 and 7 times more abnormalities occurring in certain assayed 

clones. 

Observations in SEM generally agreed with those found under LM, although stria and 

raphe disruption were more readily identifiable, and other developmental abnormalities 

observed. In the copper regime, a few valves of the Llyn ldwal clone had less prominently 

hooked central raphe endings. Underdeveloped pores were observed in a few valves of 

clones from Llyn ldwal, River Kennel and Pen-y-Bryn in the copper, zinc and cadmium 

regimes (Figure 4.23), whilst non-reniform and completely occluded pores were observed 

in the River Kennel clone in the copper regime (Figure 4.24). 
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Figure 4.23: a- d 

SEM examples of underdeveloped pores produced by clones in the metals regimes. 

Scale bars= (a) 1t~m (b) 2t~m (c) 2t~m (d) 1t~m. 
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Figure 4.24: a- b 

SEM of occluded non-reniform areolae in the River Kennet clone subject to the copper 

regime. Scale bars (a) 10,um (b) 5,um. 
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4.4 MORPHOMETRIC ANALYSIS 

4.4.1 Morphometric Analysis of Clonal Stock Cultures 

Results tables for Kruskai-Wallis tests and multiple pairwise comparison tests (Bonferroni, 

95% Confidence Level) can be found on the enclosed CD along with Coefficients of 

Variation (CV) and descriptive statistics. 

Figures 4.25 to 4.27 are boxplots summarising the measurements for morphological 

characters of length, breadth, striae density, raphe length, valve shape and apical pole 

shape for each clone. Figures 4.28 to 4.37 are line graphs showing how mean values for 

these later characters change with each subsequent subculture for each clone, and Table 

4.2 provides the percent occurrence of each morphological character per clone. 

Results of the Kruskai-Wallis tests indicate highly significant differences between clones 

for the morphological characters of length, breadth, striae density, raphe length, valve 

shape and apical pole shape. Additionally, 90% of the pairwise comparisons for the later 

characters were significantly different. Multiple pairwise comparisons of paired characters 

(upper and lower raphe, primary and secondary side central striae and head and foot 

poles), show 66% as significantly different. The results suggest that these characters may 

be useful in diagnosing different forms of G. parvulum. However, there are overlaps in the 

length and width ranges as shown in the scatterplot for all clones (Figure 4.38) and 

therefore no clear separation between clones using length and breadth. 
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Figure 4.25: a-b 

Boxplots of (a) valve length and (b) valve breadth (~m), for each clone. 
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Horizontal line with box = median 
+= Mean 
• = Minimum and maximum values in range 
* = Extreme outliers 
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Figure 4.26: a-b 

Boxplots of (a) upper and (b) lower raphe length (IJm), for each clone. 

Boxes = enclose interquartile range 
Horizontal line with box = median 
+=Mean 
+ = Minimum and maximum values in range 
* = Extreme outliers 
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Figure 4.27: a-b 

Boxplots of central striation density in 1 01Jm on (a) stigma side of the valve and (b) the 

non-stigma side of the valve, for each clone. 

Key 
Boxes = enclose interquartile range 
Horizontal line with box = median 
+ = Mean 
• = Minimum and maximum values in range 
* = Extreme outliers 
0 =moderate outliers 
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Figures 4.28 and 4.29 
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TIME (Stock Subcultures) -

01/07/02 12/09/02 15/10/02 

---- Length (~m ) 

- Breadth (~m) 
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2 Rol.Ried-subrostrale 
3 Subrostrate 
4 Subrostrat&-rostrate 
5 Rostrale 
6 Rostrale-subcaP1ate 
7 Subcapitale 

Line Graphs for Barnwood Pond and Scion Pond clones respectively. NB: They-axis is a 

multiunit scale and the values for the characters of valve and pole shape are given in the 

table bottom right. 
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Line Graphs for Kings Mere and Ham Gate Pond clones respectively. NB: The y-axis is a 

multiunit scale and the values for the characters of valve and pole shape are given in the 

table bottom right. Note the second auxosporulation at 07/06/02 for Ham Gate Pond. 
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Figures 4.32 and 4.33 
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Line Graphs for Abbey Lakes Pond and Llyn ldwal clones respectively. NB: They-axis is 

a multiunit scale and the values for the characters of valve and pole shape are given in 

the table bottom right. Note the second auxosporulation at 08/05/02 for Llyn ldwal. 
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Line Graphs for River Kennet and Pen-y-Brvn clones respectively. NB: The y-axis is a 

multi unit scale and the values for the characters of valve and pole shape are given in the 

table bottom right. Note that the apparent auxosporulation at 20/08/02 for Pen-y-Bryn was 

not observed and other than a change in length there was no evidence that sexual 

reproduction had taken place. 
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Line Graphs for Llyn Ogwen and Parvs Mountain clones respectively. NB: They-axis is a 

multi unit scale and the values for the characters of valve and pole shape are given in the 

table bottom right. The arrow points to the parent clone which gave rise to the G2 

generation. 
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Table 4.2 

Percent occurrence of qualitative characters and character states for each G. parvulum 

clone in stock culture. All values are percentage occurrences. * = no value. 

Bamwood Scion Kings Ham Abbey Llyn River Pon-y· Lly Parys 
Pond Pond Mare Gate Lakes ldwal Kennel Bryn Ogwen Mountain 

Pond River 

Non-central short stria 
Absent 0 100.00 93.50 90.95 96.89 99.65 96.66 98.75 95.75 97.33 98.36 

Present 1 1.50 9.05 3.11 0.35 3.34 1.25 4.25 2.67 1.64 

Inserted striae (IS) 
AbsentO 97.71 97.25 95.71 93.91 98.96 95.48 97.75 95.75 88.67 94.73 

Present 1 2.29 2.25 4.29 5.97 1.04 4.52 2.25 4.25 10.67 5.27 

Interrupted striae (BS) 
Absent 0 99.43 98.75 99.05 97.73 100.00 99.50 99.75 99.75 94.67 98.18 

Present 1 0.57 1.25 0.95 2.27 0.50 0.25 0.25 5.33 1.82 

Striae Direction (SO) 
Radiate 1 100.00 100.00 99.05 100.00 100.00 99.50 100.00 100.00 100.00 100.00 

Convergent 5 0.00 0.95 0.50 

Valve shspe 
Narrow lanceolate 1 0.00 30.48 5.97 8.36 18.91 

Lanceolate 2 95.71 37.50 7.94 11.47 0.35 26.86 100.00 26.73 
Lanceolate-clavate 3 4.29 12.50 57.94 51.37 16.61 36.79 75.00 27.27 

Ovate 4 14.19 8.36 

Ovate-clavate 5 50.00 3.65 30.82 68.86 26.09 9.64 

Elliptic 8 0.36 25.00 100.00 9.09 
Head pole shape (HPS) 

Rounded 1 12.50 50.00 31.30 46.49 44.18 

Rounded-subrostrate 2 4.29 50.00 20.63 29.75 50.17 12.50 33.33 18.18 

Subrostrate 3 16.35 38.47 16.96 3.34 66.67 28.55 
Subrostrate-rostrate 4 17.30 

Rostrate 5 38.57 13.02 0.48 65.74 100.00 87.50 9.09 

Rostrate-subcapltate 6 57.14 37.50 

Subcapitate 7 0.00 
Foot pole shape (FPS) 

Rounded 1 12.50 30.46 30.35 38.13 44.18 

Rounded·subrostrate 2 4.29 87.50 36.51 8.36 33.33 18.18 

Subrostrate 3 7.94 41.34 16.96 41.81 66.67 28.55 
Subrostrate-rostrate 4 3.65 5.85 17.30 11.71 

Rostrate 5 95.71 21.43 22.46 65.74 100.00 100 9.09 

Rostrate-subcapitate 6 

Subcapitate 7 
Abnormalities (ABN) 

Absent 0 99.71 97.75 98.41 97.01 94.81 99.50 99.50 99.75 100.00 98.18 

Present 1 0.29 2.25 1.59 2.99 5.19 0.50 0.50 0.25 1.82 
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Figure 4.38 

Scatterplot of Length versus Breadth (~m) for all clones. 
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Chapter 4 - Morphology 

Apart from length and breadth, which were expected to decrease over time, stria density 

increased in tandem with a reduction in length in clones from Barnwood Pond, Scion 

Pond, Abbey Lakes River, River Kennel and Llyn Ogwen, and less markedly so in clones 

from Ham Gate Pond, Llyn ldwal and Pen-y-Bryn. Two clones (Kings Mere and Llyn 

ldwal) exhibited non-radiate (convergent) striae in some valves, occurring in less than 1% 

of the population. The number of short central striae varied considerably from none to 

four, although the majority of valves were observed to have one. The propensity to 

produce two or three short central striae opposite the stigma was common among all the 

clones, although the Scion Pond clone was the most variable in this respect with a 

quarter of all valves exhibiting no short striae, and three quarters one short stria. Clones 

from Abbey Lakes River and the River Kennel never had more than one short central 

stria, though they may also have been absent. 

Rarely more than 5% of a population of any clone exhibited either other non-central short 

striae or inserted striae, with the exception of the Kings Mere (9%, other short stria), Ham 

Gate Pond (6%, inserted striae) and Llyn Ogwen (11 %, inserted striae) clones. The 

presence of interrupted striae occurred in ~ 2% of any clonal population with the 

exception of the Llyn Ogwen clone in which occurrence was 5%. 

Clones from River Kennel and Llyn Ogwen did not vary in shape, maintaining lanceolate 

and ovate-clavate shapes respectively, regardless of size or culture age. The most 

variable clone was from Parys Mountain, in which all six valve shapes occurred across 

the full size range, though lanceolate was the dominant form, occurring in 45% of the 

population. Only clones from Ham Gate Pond and Parys Mountain produced elliptic 
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valves, and only at the lower end of the size range. All listed pole shapes, except 

subcapitate, occurred at both apices. Clones from Barnwood Pond, Scion Pond and Llyn 

ldwal were unlike the other clones, having rostrate-subcapitate, rounded-subrostrate and 

rounded to rounded-subrostrate head poles, respectively. 

Abnormalities rarely occurred in more than 3% of any clonal population. Generally, 

abnormalities occurred between 1.6 and 3.0 % of a population, with the exception of the 

clone from Abbey Lakes River in which 5% abnormalities were recorded, and the Llyn 

Ogwen clone in which no gross abnormalities were observed. The types of abnormality 

observed are illustrated in Figures 4.39 and 4.40, and include major disruptions to stria 

configuration, buckling of the raphe, and convergent striae. There are no significant 

differences in the percent occurrence of abnormalities between any paired clones. 
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Figure 4.39: a- e 

Examples of abnormalities in G. parvu/um clones. (a) disruption to striae pattern (b) 

disruption both striae and raphe, note that the lower raphe is flanked by two shorter 

pseudo-raphes (c) convergent stria, possibly Janus cells (d) "dents" to valve shape (e) 

striae and raphe disturbances at the lower end of the size range, note the buckling of the 

raphe in some. All scale bars = 1 OJJm. 
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Figure 4.40: a- d 

Examples of abnormalities in G. parvulum clones. (a) and (b) internal view showing 

disruption to striae pattern. Note the raised nature of the areolae in (a) and that the 

stigma has been repositioned (arrow) (c) disruption to the raphe system. Note that the 

upper raphe is flanked by a shorter pseudo-raphe {d) abnormal valve shape. Note the 

"cymbelloid" aspect and expanded central area. This possibly an initial cell. Scale bars = 
(a) 5JJm, (b) 1JJm, (c) 5JJm and (d) 20JJm. 
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4.4.2 Morphometric Analysis of Experimental Assays 

Assayed subcultures were grown for 4-8 weeks. Descriptive statistics for quantitative 

measures and percent occurrences for each character are provided on the enclosed CD. 

Mean valve length and breadth, raphe length and central stria density for each assay 

level are presented as a series of line graphs, where relevant, for each clone in Figures 

4.41 to 4.52. are also on the enclosed CD. 

There was very little morphological change in any clone for the quantitative characters of 

breadth, raphe length and striae density. Raphe length as expected, increased or 

decrease in tandem with length, and striae density varied little other than when 

auxosporulation occurred or another unexplained change in length occurred. Length was 

the only character to change significantly, but only in a few clones and some assays. 

There was a decrease in length with increasing assay concentration and/or pH in clones 

from Kings Mere (pH regime) and Llyn ldwal (sewage, copper - initial and extended 

runs)(Figures 4.41 and 4.43). In the initial run of the copper regime however, the River 

Kennel clone showed a sudden decrease in size at concentration of 0.000161-Jg/1 (Figure 

4.44). There was no evidence of auxosporulation in this clone. 

Auxosporulation occurred in clones from Scion Pond (copper concentration = 000.161-Jg/1), 

Ham Gate Pond (pH 8.5-9.0, 1/5th strength sewage), Llyn ldwal (zinc concentration 

0.00531-Jg/1) and Llyn Ogwen (pH 6.5) (Figures 4.45 to 4.49). There were also other 

sudden increases in valve length not associated with auxosporulation in clones from 

Scion Pond (pH 9.0), Pen-y-Bryn (pH 5.5 onwards) and Parys Mountain (G1) (copper 

concentration 0.0026 and 0.00531-Jg/1) (Figures 4.50 to 4.52). The sudden increases 
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were not, so large ,t1JI3t they. might: be: considered! 1post auxospore: 'celis;, as; ihese are. 

•usually > 45f.Jrri,long:, ,particularly in .the iPC:Jrys Mountain· clone, though it. is possible that 

:the Scion Pond I and! Pen:y-Bryn, clones 1produce smaller auxosporE)s.lff()weyer:;'there •was• 

ino evidence' ;to suggest that auxosp()rlllation hadl ;taken' !Place: e.g. mix ,<)f, parent, 

auxospore and'initi~l celi vaive~L 
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Line graphs for Ham Gate Pond (Sewage Regime) and Llyn ldwal (Zinc Regime) clones 

respectively, showing mean length, breadth, raphe length and central striae density in 
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cells. 
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Qualitative characters included observations for striae, valve shape and apex shape. 

Striae direction did not depart from radiate in any clone for any assay with the exception 

of clones from Ham Gate Pond at pH 6.0 (10% convergent) and Llyn ldwal at pH 59/01 

5.5, 7.5, 8.0, 8.5 and 10 (10% convergent and 20% convergent at pH 10 respectively). 

The River Kennet clone produced no central short stria in the pH and copper regimes, 

however some valves in the cadmium regime were observed to have two short central 

striae, whilst and 2-3 short striae were observed in the pH, copper and zinc regimes. All 

had occurrences between 10-30%. This clone also produced valves with 4 central short 

stria in the copper regime at a concentration of 0.00016mg/l (1 0% of population). 

Compared to stock cultures, the occurrence of more than 1 or no short central striae 

increases with increasing pH, sewage and metal concentration. 

The presence of non-central short striae, inserted striae and broken striae, occurred in all 

assays for nearly all clones. These three characters occurred more often in the metal 

(particularly copper) and pH regimes, whilst the sewage regime had relatively few 

occurrences of these characters. Clones from River Kennet and Parys Mountain (G2) 

under the sewage regime, and from Scion Pond and Parys Mountain (G2) under the zinc 

regime, did not produce any of these three characters. Generally, non-central short striae 

occurred more often than inserted or broken striae, and inserted striae occurred more 

often than broken striae. The occurrence of inserted or broken striae never exceeded 

60% and 50% of the assay population respectively, though these high occurrences were 

rare. A 10-30% occurrence was more common. The occurrence of non-central short 

striae ranged between 0 and 100%, although 0-40% was more common. Clones from 

Kings Mere, Ham Gate Pond, River Kennet and Parys Mountain (G2) had the highest 

occurrence of non-central short striae (all ;e:SO%) in the pH regime, whereas in the copper 

regime, clones from Scion Pond, Ham Gate Pond, Llyn ldwal and Parys Mountain (G1) 
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had the highest occurrence. Clones from Ham Gate Pond and Parys Mountain had high 

occurrences of this character in the cadmium regime. 

Both valve shape and apical pole shape remained unchanged, regardless of assay 

concentration, in clones from Scion Pond (pH and sewage regime), Kings Mere and 

Parys Mountain (G 1 and G2} (zinc regime), Ham Gate Pond (copper and zinc regimes), 

Llyn ldwal (cadmium regime), River Kennel (zinc and cadmium regimes) and Pen-y-Bryn 

(copper and cadmium regimes). In clones from Llyn Ogwen and Parys Mountain (G1}, 

changes in valve and apical pole shape appear linked to increasing pH concentration 

(excluding auxosporulation). In the River Kennel clone, valve shape changes if copper is 

omitted, whilst in the Parys Mountain clone (G1} head pole shape changes if copper 

concentration increases. 

Abnormalities occurred within 10-20% of an assayed population. Two exceptions were 

the Parys Mountain clone (G1) at a copper concentration of 0.0111Jg/l (40% of the 

population) and the Ham Gate Pond clone at cadmium concentrations of 5.0 and 12.51Jg/l 

(30 and 40% of the population respectively}. The clone from Barnwood Pond was most 

afflicted with abnormalities (in pH, copper and zinc regimes}, followed closely by the Ham 

Gate Pond (in pH, copper, zinc and cadmium regimes). Clones with the least occurrence 

of abnormalities were Llyn ldwal (copper regime), Llyn Ogwen (pH regime) and Parys 

Mountain (G2) (cadmium regime). 
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4.5 FRUSTULE MORPHOLOGY AND SEXUAL REPRODUCTION 

Observation revealed that differences in shape, size, symmetry and valve morphology, 

between opposing ends of the size spectrum and intermediaries, equate to different 

taxonomic identities. Figures 4.8, 4.9, 4.11 and 4.15 for stock cultures, illustrate the 

changes in size and morphology for each auxosporulating clone and the taxonomic 

identity of intermediate entities where different. lt can be seen that the larger post 

auxospore cells are morphologically very different from their parent cells and in turn, the 

smallest cells are very different from the larger and intermediate sized cells. These 

differences are particularly exaggerated between parental cells prior to auxosporulation 

and initial cells post auxosporulation, when differences are so great that they would be 

identified as different species in any wild population. This brings into question the identity 

of G. parvulum and any associated taxon, i.e. Gomphonema gracile Ehrenberg and G. 

hebridense Gregory. In particular, early initial cells (Figures 4.53a-d) have apical poles 

that are barely heteropolar and rounded, whilst transapically the cells are often somewhat 

expanded, and/or the cell is apically asymmetrical. Striae and raphes are often disrupted 

in initial cells, and the poles often bowed, giving a cymbelloid-like appearance in valve 

view and corresponding to the concave/convex hypotheca/epitheca observed in stock 

culture parental cells. The size ranges for sexualised cells are shown in Table 4.3. 
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a b 

c 

Figure 4.53: a-d 

LMs examples of initial cells (a) Kings Mere (b) Ham Gate Pond (c) Llyn ldwal and (d) 

Parys Mountain. All scale bars = 1 OJ.im. 
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Table 4.3 

Summary of length and breadth measurements of sexualised clones detailing size for 

parent and offspring whilst in stock culture. 

Kings Mere 
Ham Gate Pond 
Llyn ldwal 
Parys Mountain 

Parent Cells 
Length (Jlm) Width (Jlm) 

Range Mean Range Mean 
16-19 17.14 6-8 7 
12-21 15.61 6-10 6.98 

14-17.5 16 6-7 6.5 
14.5-18 16 5-7 6.2 
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Offspring 
Length (Jlm) Width (Jlm) 

Range Mean Range Mean 
56-59 57.4 7-10 9.3 

47-50.9 49.2 5.6-8.4 7.6 
46-58.5 52.2 4.5-9.5 8.5 
48-53 51.1 7-8.5 7.6 
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4.6 DISCUSSION 

The purpose of this study was two fold, (i} to investigate the range of morphologies 

exhibited by different G. parvulum clones by observing how morphology changed with 

reduction in size and sexual reproduction over several generations, and (ii) what effects 

certain environmental conditions have on morphology, testing whether morphological 

variability is a response to changes in those conditions. 

4.6.1 Stock Culture Clonal Morphology 

Geitler. (1932) has shown that G. parvulum is capable of auxosporulation and has a size 

reduction cycle. 1t is therefore expected that length, width, striae density and valve and 

apical pole shape will vary widely. In particular, auxosporulating clones exhibit the most 

morphological variability. The lack of variability in the River Kennet clone however, is 

surprising. This clone survived 16 months in culture, therefore one would expect to see a 

wider size range compared to, e.g. the Llyn Ogwen clone, which survived just 8 months in 

culture but shows much wider morphology. The River Kennet clone does not exhibit 

typical diatom size reduction. In fact, it appears to increase slightly in size with each 

generation. 

The data for the River Kennet clone suggests either errors in measurement, vegetative or 

sexual cell enlargement or another as yet unidentified mechanism. Measurement errors 

seem unlikely, as the growth is steady and consistent with time. For vegetative 

enlargement to have occurred one would expect to come across much larger cells on par 

with post auxospore cells, however no auxospores, initial cells or otherwise enlarged cells 

were observed. Some other mechanism must therefore be at work. lt has been suggested 
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(pers. comm. Cox, 2006), that there is sufficient flexibility in the mantle of the valve and 

the girdle bands in some diatoms to allow for some enlargement without auxosporulation 

or vegetative cell enlargement. Although this type of cell enlargement would manifest 

primarily as a change to the depth of the frustule, minor changes to length could occur as 

valve mantle is flexed outwards. The small but progressive increases in valve length in 

the River Kennet clone could accommodate this model of cell expansion and if so, 

suggests that the River Kennet clone, and possibly also the Barnwood clone, are 

asexual. 

Although the size ranges for all clones overlap, significant differences between clones 

(except for clones from Ham Gate Pond and Parys Mountain) largely reflect the 

differences between auxosporulating and non-auxosporulating clones. Overlaps in the 

ranges of length and breadth and the lack of clear-cut separation of clones, suggest that 

the traditional morphological measures of length and breadth may be insufficient in 

separating G. parvu/um clones. A similar problem was encountered for two demes of 

Sel/aphora pupu/a (Mann et al. 2004). The occurrence of auxosporulation in four clones 

however, highlights the problem of relying on traditional characters of length, breadth and 

striae density to separate taxa. If none of these clones had auxosporulated, and the full 

size range was not known, several clones could easily have been separated into discrete 

entities. This highlights the need to know the full size range and morphology of a taxon 

before naming. 

The characters broken, inserted and non-central short stria do not necessarily represent 

voigt discontinuities, as often there may be more than a single occurrence in a single 

valve. The data shows that striae density is closely related to length, increasing in most 
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clones as they get smaller, suggesting that despite the variation, mean striae number 

should be a stable character if related to length. Only the Kings Mere and Parys Mountain 

clones do not conform to this pattern. Striae direction in this study was uniformly radiate 

for all clones. The degree of curvature, especially for the central striae, along with angle 

might however prove better measures of striae direction. Taxonomic characters or 

descriptors such as "radiate" are a matter of degree, but if quantifiable could refine the 

usefulness of the character further, e.g. does the degree of striae radiation (or other 

descriptor of direction) change during the cell cycle and/or is it influenced by 

environmental factors? Are particular regions of striae more susceptible to change (e.g. 

central area striae)? 

Although the Pen-y-Bryn and Parys Mountain clones have been identified as the same 

taxon, they differed in their principle valve shape. However as clone 17/02 

auxosporulated and 14/02 did not, this accounts for the difference. In most clones, there 

is a progressive change in valve shape as cells get smaller, e.g. lanceolate to lanceolate­

clavate to ovate-clavate to ovate. From the data, it can be concluded that in the clones 

from River Kennel, Llyn Ogwen and Barnwood Pond, valve shape is a stable character. 

Whereas apical pole shape is often similar, it is not necessarily the same at both apices. 

The head pole is often wider and less attenuated than the foot pole, resulting in loss of 

apical detail in the head pole faster than in the foot pole. A practical reason for this 

difference, aside from the clavate morphology of the valve, is that the mucilage pores for 

attachment are located at the basal pole. Loss of basal pole detail to the extent of loss of 

mucilage pores would be a distinct disadvantage to this taxon. Post auxospore cells 

however, are typically narrow lanceolate and almost isopolar, suggesting that 
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heteropolarity is not fixed, but develops after several vegetative cycles. Transapical 

expansion or swelling is also common in these valves, reflecting the origin of the 

expanding auxospore after plasmogamy. 

The data also show that abnormalities are a normal part of the population, rarely 

occurring above 3% and largely confined to the smallest cells in favourable conditions. In 

the assays however, the types of abnormal morphology are often the same but occur with 

higher frequency, suggesting that pH, sewage and metals act similarly on the silica 

deposition· process, perhaps interfering with key developmental pathways. lt is still 

unclear how teratological forms arise or why. Not all teratological forms are thought to 

arise from the same cause, i.e. similar changes in environmental conditions can produce 

dissimilar teratological forms and possibly vice versa (Barber & Carter. 1981 ). lt has been 

suggested that the mechanical injury caused by, e.g. overcrowding during vegetative 

reproduction, may cause some of the abnormalities seen and that these are passed to 

each clone in an approximation of the original deformity (Drum. 1964a). Heavy metals 

and low pH however, have been implicated as having a causal effect. lt has also been 

suggested (Barber & Carter. 1981) that deformities may be a protective measure within 

the natural variability of the genetic make-up of the cell, when normal conditions rapidly 

change. That proposition could apply in this study, though it is difficult to understand what 

"protection" the deformity might bestow unless there is some yet undisclosed structural 

benefit. 

4.6.2 Assay Morphology 

Although the assays produced similar morphological responses in different clones, each 

clone exhibited different sensitivity to a particular assay and no two clones exhibited the 

same tolerance profile. Cadmium however had less of an influence over morphology than 
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pH, copper or zinc, perhaps reflecting its non-biological nature (Although, Lane & Morel. 

2000 have shown a biological function for cadmium in the marine diatom Thalassiosira 

weissflogii under constant conditions of low zinc). 

The occurrence of isolated incidences of abrupt size change, or unequal division within a 

subculture, anomalous to the general trend, is unusual. However, it does not seem 

sensible to conclude that the relevant assays had a real effect on growth, i.e. if there was 

an effect at say 0.00131Jg/l zinc concentration, one would expect to see a similar and 

more noticeable effect at adjacent higher or lower concentrations, which was not the 

case. For the Pen-y-Bryn clone (pH & zinc) it is possible that auxosporulation occurred in 

the pH regime, but that turnover in the subsequent vegetative cycle at higher pHs is 

enhanced, such that come harvest, there is a noticeable difference in size. In the zinc 

regime however, cell size is stable from Nil through to 0.00211Jg/l concentration, but 

length decreases dramatically at 0.0421Jg/l concentration, suggesting that concentrations 

at this magnitude are in some way inhibitory. In the subsequent extended run however, 

an increase in cell size occurred which cannot be explained. 

Abrupt cell size reductions are recorded for other taxa (Chepurnov & Mann. 1997; Geitler. 

1932; Klinq. 1993; Roessler. 1988), possibly in response to limiting nutrients. lt has been 

suggested (Edlund & Stoermer. 1997; Roessler. 1988) that this phenomenon may enable 

diatoms to shorten the life cycle when conditions are suboptimal. In this study, the 

inconsistent occurrence of the phenomenon suggests causes such as (i) medium 

chemistry altered during assay culture causing protoplasm to either progressively shrink 

away from the cell wall resulting in progressively smaller cells, or (ii) the original inoculum 

may have consisted of a single aberrant cell that was at the smaller end of the vegetative 
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reproductive cycle compared to the other assay subcultures, perhaps reproducing at a 

slower or faster rate than the main population. 

The Parys Mountain clone proved to be the least affected by any assay except the 

sewage regime. This clone originates from a metal contaminated, low pH site and it is 

therefore not surprising that it should be tolerant of metals, however there are differences 

between the parent cells and the post auxospore progeny, with the smaller parent cells 

being less tolerant of copper and zinc and the progeny being less tolerant of pH, 

suggesting crucial differences in physiology at different stages in the life cycle. Similarly, 

the Scion Pond clone comes from a nutrient rich site and therefore expected to be 

tolerant of sewage as was shown. The absence of tolerance to sewage other than in the 

Scion Pond clone is intriguing, as it goes against the literature. However, bacteria 

became a significant problem either within days of inoculation in the case of full strength 

sewage, or over the following week or two of culture at lower strengths, and this may 

have exacerbated and confounded the results. The decrease in length with increasing 

assay concentration for some clones is an indication that there is some sensitivity to 

sewage levels. 

4.6.3 Taxonomic Implications 

Whilst all clones in the data set have the features typical of G. paNulum sensu stricto, the 

initial separation of clones into variety or form was based primarily on traditional diatom 

taxonomy using length, breadth, striae density and overall shape according to the 

literature. Only SEM reveals further detail than described in the literature (Dawson. 

1973b, 1974; Geitler. 1932; Krammer & Lange-Bertalot. 1986, 1991a, 1991b) however, 

there are disagreements. (Dawson. 1973b, 1974) stated that G. paNulum has reniform 
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slits that do not lye in depressions on the valve face whereas, e.g. G. acuminatum and G. 

intricatum do. The observations in this study disagree with both the terminology and the 

observations. The pores on the valve face are not reniform slits. The term slits give the 

impression of a narrow thin opening, whereas the pores are in fact more rounded and 

reniform and clearly composed of at least three layers internally. The depressions in G. 

acuminatum are no different from those observed in this study and therefore are not a 

valid basis for separating G. acuminatum. (Dawson. 1973b, 1974) also separates G. 

gracile based on transverse striae, yet the diatom floras of (Krammer & Lange-Bertalot. 

1986) and her SEMs show variation from transverse to slightly radial, similar to G. 

parvulum. Similarities in pore structure between G. parvulum and G. gracile have been 

noted by Krammer and Lange-Bertalot (1986), but without a series of intermediate forms, 

as shown here, no firm taxonomic link could be inferred. A link has not been made in the 

literature between G. parvu/um and G. hebridense, though (Dawson. 1973b, 1974) and 

Krammer and Lange-Bertalot (1986) note its similarity to G. gracile, which in turn is 

similar to G. parvulum. The taxonomy of G. gracile and G. hebridense will now need to 

be re-examined in light of these findings. (Dawson, 1973b, 1974) also states that the 

raphe in G. parvulum is straight, whilst observation in this study has shown that it is 

slightly undulate. The observations in this study therefore disagree with the basis of 

Dawson's separation using these characters. The comparison also highlights the need 

for standard taxonomic terminology accompanied by diagrammatic and micrographic 

representations. 

The results call into question the taxonomic status of G. gracile, G. hebridense, possibly 

also G. /agenu/a and G. innocens; all clonal morphologies shown to be part of the life 

cycle of G. parvulum. Further examination of the type materials and finer discrimination 
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5 OBSERVATIONS ON LIVE MATERIAL 

5.1 INTRODUCTION 

This chapter presents the results of observational notes on live clonal, stock and 

experimental cultures over a period of approximately two years. Initially, the aim of this 

chapter was to provide evidence of basic behavioural and protoplastic changes, as 

observed under the light microscope, in response to different culture regimes. The 

discovery of sexually reproducing clones and the production of unusual forms of 

Extracellular Polysaccharide Substances (EPS) however, provided additional interesting 

material for discussion. Therefore, this chapter aims to identify the environmental factors 

influencing behaviour and protoplasmic responses of G. parvulum in an ecological 

context, to assess whether clones can be differentiated on one or more of these 

characters. 

5.2 GENERAL OBSERVATIONS 

A cell that did not auxosporulate continued vegetative reproduction resulting in cell 

diminution, to a point where the cell's ability to function was severely affected both in 

terms of physiology and reproduction, i.e. almost as many cells died as were being 

produced. Thus, turnover rate was low, and cells eventually reached a finite size at which 

all cellular functions were at their end limit. At this latter vegetative stage, most organelles 

would not be able to reduce their size further without also reducing functionality, e.g. 

chloroplast size diminishes proportionate to frustule size, probably leading to loss in 

photosynthetic ability and energy production. Smaller cells may require and produce less 

energy, however a cut-off point must inevitably arise where the energy requirements 
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versus the energy production is not balanced. Consequently, the cultures eventually die 

out. All cultures were eventually lost in this manner. 

The by-clone and by-regime percentage occurrence of a live observational characters 

within a clone or within a regime, are summarised in Tables 5.1 and 5.2, respectively. 

The number of Operational Units (OUs) refers to the individual subcultures for each clone 

and any G2 offspring, plus each time period for exponential (Ko.a). and post exponential 

(Ks.) growth (see Chapter 2). The low number of OUs for Barnwood Pond, Abbey Lakes 

River, Llyn ldwal (G1) and Llyn Ogwen clones and the light and temperature regime, are 

due either to the death of a clone prior to assay, or missing data as highlighted in the 

preface to this thesis. 
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Table 5.1 

Summary of by-clone % occurrence of live observational character states. t = Number of 

Operational Units per clone. A = total number of clones exhibiting a single character state 

and B = total number of character states exhibited by a single clone. 

Number of Operational Units per Clone (t) and %Occasion Character Occurred 

Bamwood Scion Kings Ham Abbey llyn River Pen.y- Llyn Parys 
Pond Pond Mere Gate Lakes ldwal Kennel Bryn Ogwen Mountain 

~~~~~~~~~------------~------~--~~P~o~nd~~~~w~r----~--~----~--~----~~ A 
CODE Character Description 7t 72t 93t 126t 10t 133' 121' 53t 7t 186t 

Attachment Mode 

ATI1 Suspended cells 

ATI2 Attached in valve view 

ATI3 Attached in girdle view 

An 4 Attached by mucilage pad at foot pole 

A TI5 Attached by mucilage stalk at foot pole 

Colony Type 

COL 1 Single cells 

COL2 Paired cells 

COL3 Short chains (valve face to valve face) 

COL4 Short chains (girdle to girdle) 

COLS Tufts 

COLS Mucilaginous matrix 

COL7 Dense mass aggregations 

Chlomplast Colour 

CHL 1 Dar1< brown chloroplast 

CHL2 Golden brown chloroplast 

CHL3 Pale golden brown chloroplast 

CHL4 Yellow chloroplast 

CHL5 Green chioroplast 

CHL6 Colourless chloroplast 

Chloroplast Size 

CHL7 Chloroplast nonnal 

CHL8 Chloroplastlobes extended into apical 

CHL9 Chloroplast occupies enUre cellular 

CHL1 o Chloroplast constricted to medial area 

CHL11 Chloroplast constricted to cell walls 

Pyrenald 

PYR1 Pyrenoid triangular 

PYR2 Pyrenoid rounded 

Vacuolas 

VAC1 Vacuoles 2 

VAC2 Vacuoles, 1 

Other 

Oll1 Upids 

GRANt Granules 

OTH1 Dar1< bodies 

OTH2 Teratology 

OTH3 Auxosporulation 

1.00 

0.57 

0.43 

1.00 

0.14 

1.00 

0.14 

1.00 

0.14 

0.14 

0.14 

0.14 

1.00 

0.57 

0.82 0.30 0.55 1.00 0.41 0.30 0.46 0.29 

0.74 0.90 0.77 1.00 0.74 0.93 0.86 1.00 

0.69 0.86 0.76 1.00 0.70 0.88 0.84 1.00 

0.07 0.24 0.42 0.47 0.16 0.43 

0.04 0.07 

0.93 0.95 0.95 1.00 0.89 1.00 0.97 1.00 

0.29 0.44 0.32 0.25 0.26 0.19 0.57 

0.04 0.03 0.02 1.00 0.03 0.01 0.03 0.29 

0.01 0.01 0.80 0.03 0.03 0.14 

0.22 0.41 0.38 0.06 0.38 

0.05 0.07 0.14 

0.11 0.05 0.01 0.06 

0.01 0.10 0.02 0.10 0.02 0.03 

0.82 0.77 0.74 1.00 0.83 

0.03 

0.72 

0.47 

0.07 

0.97 0.86 

0.18 0.37 0.38 0.29 0.17 

0.01 0.01 0.02 

0.01 0.03 0.02 0.05 0.02 

0.04 0.01 0.05 0.11 0.04 0.02 0.14 

0.82 0.83 0.89 1.00 0. 79 0.64 0.89 1.00 

0.25 0.23 0.24 0.09 0.17 0.17 

0.13 0.01 0.04 0.02 0.02 0.14 

0.04 0.03 0.06 0.10 0.11 0.32 0.35 

0.13 0.53 0.24 0.23 0.36 0.38 

0.19 0.19 0.22 0.20 0.12 0.06 0.06 

0.25 0.24 0.25 0.23 0.12 0.08 

0.79 0.96 0.95 1.00 0.95 0.90 0.95 1.00 

0.01 0.01 0.06 0.08 

0.17 0.29 0.30 0.26 0.74 0.60 

0.39 0.59 0.52 0.63 0.26 0.40 

0.08 0.11 0.10 0.05 0.02 0.10 

0.43 

0.79 

0.78 

0.25 

0.05 

1.00 

0.22 

0.01 

0.01 

0.19 

0.03 

0.01 

0.88 

0.16 

0.01 

0.01 

0.01 

0.87 

0.19 

0.06 

0.11 

0.15 

0.11 

0.36 

0.89 

0.02 

0.33 

0.81 

0.05 

0.06 0.09 0.04 0.05 0.10 0.02 0.14 0.03 

0.01 0.01 0.02 0.02 0.14 0.09 

8 ___ 1~4 ____ ~2~8--~30~~3~1--~12~~2~6--~3~0--~26~--~15~--~3~1---
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Table 5.2 

Summary of by-regime % occurrence of live observational character states. t = Number 

of Operational Units per clone. A = number of regimes exhibiting a single character state 

and B = number of character states exhibited within a regime by all clones. 

Number of Operational Units per Clone (t) and % Occasion 
Character Occurred 
Stock L&T I!H Sewage COI!I!er Zinc Cadmium 

CODE Character Description 1551 151 1841 63t 1741 1361 1381 A 
Attachment Mode 

ATI1 Suspended cells 0.31 0.64 0.63 0.36 0.38 0.42 6 
ATI2 Attached in valve view 0.87 0.81 0.71 0.87 0.87 0.74 6 
ATI3 AHached in girdle view 0.81 0.69 0.71 0.87 0.87 0.75 6 
ATI4 Attached by mucilage pad at foot pole 0.22 1.00 0.29 0.08 0.39 0.43 0.21 7 
ATI5 Attached by mucilage stalk at foot pole 0.05 0.01 0.06 0.07 4 

Colony Type 

COLI Single cells 0.99 1.00 0.96 1.00 0.92 0.93 0.99 7 
COL2 Paired cells 0.42 0.38 0.03 0.24 0.43 0.02 6 
COLJ Short chains (valve face to valve face) 0.15 0.01 0.05 3 
COL4 Short chains (girdle to girdle) 0.10 0.01 0.02 3 
COLS Tufts 0.08 1.00 0.13 0.32 0.46 0.27 6 
COL6 Mucilaginous matrix 0.04 0.01 0.06 0.05 4 
COL7 Dense mass aggragations 0.03 0.04 0.05 0.02 0.02 5 

Chloroplast Colour 

CHL1 Dark brown chloroplasl 0.10 0.03 0.01 0.04 4 
CHL2 Golden brown chloroplast 0.81 1.00 0.84 0.95 0.76 0.86 0.77 7 
CHLJ Pale golden brown chloroplast 0.11 0.26 0.06 0.41 0.38 0.31 6 
CHL4 Yellow chloroplast 0.01 0.02 0.05 0.01 4 
CHL5 Green chloroplast 0.07 0.03 0.03 0.01 0.04 5 
CHL6 Colourless chloroplast 0.03 0.07 0.05 0.05 0.06 5 

Chloroplast Size 

CHL7 Chloroplasl normal 0.85 1.00 0.76 0.97 0.84 0.80 0.77 7 
CHL6 Chloroplast lobes extended into apical pole 0.06 0.33 0.08 0.25 0.16 0.09 6 
CHL9 Chloroplast occupies entire cellular space 0.05 0.12 0.02 0.02 0.03 5 

CHL10 Chloroplast constricted to medial area 0.13 0.10 0.15 0.29 0.12 5 
CHL11 Chloroplast constricted to cell walls 0.10 0.12 0.14 0.36 0.59 0.22 6 

Pyrenold 

PYR1 Pyrenoid triangular 0.12 0.18 0.19 0.20 0.11 0.04 6 
PYR2 Pyrenoid rounded 0.23 0.64 0.11 0.18 0.07 5 

Vacuoles 

VAC1 Vacuoles 2 0.92 0.94 0.90 0.86 0.90 0.97 6 
VAC2 Vacuoles, 1 0.01 0.04 0.07 3 

Other 

OIL I Lipids 0.23 0.56 0.41 0.41 0.26 0.32 6 
GRAN I Granules 0.20 0.65 0.38 0.58 0.57 0.67 6 
OTH1 Dark bodies 0.06 0.10 0.02 0.11 0.06 0.01 6 
OTH2 Teratology 0.03 0.06 0.13 0.05 4 
OTHJ Auxosporulation 0.07 0.02 0.08 3 

B 31 5 31 22 28 28 23 
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5.2.1 Clonal Stock Cultures 

Nearly 200 subcultures of G. parvulum were established between September 2001 and 

September 2002, representing 10 different clones, and where those clones reproduced 

sexually, the G2 offspring. Clonal survival lasted between 3 and 21 months with the Scion 

Pond clone surviving the longest. Ordering clones by length of survival gave the following 

ranking, with number of months in brackets: 

1. Scion Pond (21) 
2. Llyn ldwal (G2) (18) 
3. Abbey Lakes River, Pen-y-Bryn and Parys Mountain (G1) (14) 
4. River Kennet (16) 
5. Llyn ldwal (G1) (15) 
6. Kings Mere (G2) and Ham Gate Pond a(G2) (13) 
7. Barnwood Pond (12) 
8. Kings Mere (G1), Ham Gate Pond (G1) and Parys Mountain (G2) (10). 

Ranking of clones by the total number of character states observed (Row 8, Table 5.1) 

indicates that smaller sized cells, such as the Barnwood Pond, Abbey Lakes River and 

Llyn Ogwen, were less variable in their mode of attachment, colony type and chloroplast 

morphology. They were also less likely to contain granules or lipids. 

A few clones exhibited a consistent mode of attachment throughout their period of culture; 

clones from Barnwood Pond (attached in valve view), Llyn Ogwen (attached in valve and 

girdle view), Abbey Lakes River (suspended cells or attached in valve or girdle view) and 

Ham Gate Pond (G2) (attached in valve or girdle view or by stalk). All other clones were 

observed to increase the propensity to attach with increasing age of clone, with the 

exception of the Abbey Lakes River clone, which remained stable. Small chains of cells 

(3-10 cells long) which adhered valve face to valve face, occurred in a few subcultures, 

often in clones at the lower end of the size spectrum. Chains of cells adhering girdle to 
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girdle, occurred only in those clones that already formed valve face to valve face chains, 

though not necessarily in the same subculture. Tufted colonies usually 'sprouted' from a 

shared mucilage pad and because they took a little while to develop, appeared only in 

older subcultures. 

Some clones produced more unusual types of colony. A thin sheet, or irregular shaped 

amorphous extracellular matrix, containing many single cells was formed by clones from 

Ham Gate Pond (G2) and Llyn Ogwen. The matrix was often suspended in the water 

column, though it could also be tenuously attached to the base of the culture dish by a 

thread. This occasionally, but not always, occurred in subcultures that were adversely 

affected by bacteria (Ham Gate Pond (G2) and Llyn Ogwen). Mass aggregation of cells 

also formed in some of the latter subcultures for clones from Scion Pond and Parys 

Mountain (G1). 

Pyrenoids were not always easily seen, but when visible they were large and usually 

rounded (hemispherical), however the triangular form could occur in the same clones 

and/or the same subculture. 

Occasionally, vacuoles were not visible/observed (as in some of the subcultures for 

clones from Kings Mere (G2), Ham Gate Pond (G2), River Kennel and Parys Mountain 

(G1 )). Sometimes this was due to cell size (very small cells <1 01Jm) or because the 

chloroplast appeared to fully occupy the cell. In certain clones and subcultures, the 
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vacuoles were extremely large, constricting the chloroplast to the cell wall. No clone or 

subculture from the stock cultures was observed to have a single vacuole. 

Lipids were less likely to be observed in the smaller clones, e.g. Kings Mere (G1), Ham 

Gate Pond (G1), Abbey Lakes River, Llyn ldwal (G1) and Llyn Ogwen. When bacterial 

presence was high, some clones increased lipid content in response (Ham Gate Pond 

(G2) and River Kennet), or produced a gelatinous coating around individual cell. Small 

granular bodies were occasionally observed to exhibit chaotic Brownian movement. The 

function of these granular bodies is not known. 

Teratologies were not obvious in the stock cultures, but occurred in at least one 

subculture each for clones from Llyn ldwal (G2), River Kennet, Parys Mountain (G2) and 

Llyn Ogwen. 

5.2.2 Experimental Regimes 

Ranking of regime by the total number of character states observed (Row B, Table 5.2), 

gave the following: 

1. Stock cultures and pH Regime 
2. Copper and Zinc Regimes 
3. Cadmium Regime 
4. Sewage Regime 
5. Light and Temperature Regime. 
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5.2.2.1 Light and Temperature Regime 

Whilst in exponential growth phase, the Barnwood clone appeared to "avoid" the light at 

5°C high light, by crowding at the very edge of the culture dish. The Ham Gate Pond (G,) 

clone auxosporulated at 20°C low and medium light, 25°C low, medium and high light, 

and at 30°C high light between days 2 and 8 of exponential growth. The progeny of both 

produced 'tufted' colonies post exponential growth, and grew less well at 5°C low, 

medium and high light. The Abbey Lakes River clone grew well at all light and 

temperature levels, mostly as single attached cells in valve and girdle view. Many clones 

also began to exhibit paler chloroplast as both temperature and light intensity increased, 

from 25°C high light to 30°C low, medium and high light. Many of the clones had paler 

chloroplasts as both temperature and light intensity increased, from approximately 25°C 

high light to 30°C low, medium and high light. 

Cell pairings in opposing polar orientation i.e. head pole to foot pole, were often a pre­

curser to sexual reproduction (whether successful or not). The Kings Mere clone (G1 was 

seen to pair in this manner on days 2 and 4 of the exponential growth phase in the light 

and temperature regime, but in most cases did not produce auxospores. The 

morphologically similar clone from Ham Gate Pond (G1) auxosporulated at 20°C low and 

medium light, 25°C low, medium and high light and at 30°C high light between days 2 and 

8 of the exponential growth phase, indicating warmer temperatures may be a necessary 

cue for sexual reproduction. 

5.2.2.2 pH Regime 

Most clones (except Ham Gate Pond, G2), exhibited a more stable and consistent mode 

of attachment during the exponential growth phase than the period thereafter, with 
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attachment in valve and girdle view dominating. The dominant attachment mode post 

exponential phase was suspended cells. The dominant colony mode both during and post 

exponential growth, was as single cells (exception, Kings Mere (G2) at pH 8.0 and Ham 

Gate Pond (G2) at pH 4.0-4.5 and 6.5 and 8.0 to 8.5). Cells forming tufts were half as 

common during post exponential growth phase than during exponential growth. 

Cells forming chains linked valve face to valve face, and cells forming an amorphous 

mucilaginous matrix, occurred only in one clone and one pH level each. The former in the 

Llyn ldwal clone (pH 4.0), and the later in the River Kennet (pH 8.5). In acid conditions, 

the River Kennet clone was observed to form branched stipate colonies (as opposed to 

individually stalked cells). The branches being mucilaginous stalks at the end of which 

was a single cell. 

Chloroplast colour and size was more variable during the post exponential growth phase 

than during exponential growth. Pale chloroplasts were often, but not always, associated 

with chloroplasts that had been restricted to cell walls, usually by an enlarged vacuole. All 

chloroplast sizes and colours could eo-occur in a single subculture. Dark brown, yellow, 

green and colourless chloroplasts were only observed during post exponential growth, as 

were chloroplasts that were restricted medially. There was also an increase in the 

number of subcultures exhibiting chloroplast constricted to the cell wall in post 

exponential growth. 
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Teratologies were only observed in the post exponential growth phase, having spent 

longer in the assay medium. Auxosporulation occurred during the post exponential growth 

phase in clones from Scion Pond and Ham Gate Pond (G2), at pH 9.0 and 5.5 to 6.0, 

respectively. However, initial cells appeared slightly deformed in the Scion Pond clone at 

pH 9.0, having a medially concave 'dent'. In the Ham Gate clone, auxosporulation was 

unsuccessful at pH 5.5 and 6.0, and cells tended to die before forming initial cells. 

Bacteria and precipitates were a problem in some pH assays. Precipitates tended to form 

around day 6 onwards, and only at higher pH's in clones from Kings Mere (G2) (pH 10.5 

to 11.0) and Abbey Lakes River and Parys Mountain (G2) at pH 11.0. Bacteria 

contaminated clones from Kings Mere (G2), Abbey Lakes River, Llyn ldwal (G2), River 

Kennel, Pen-y-Bryn and Parys Mountain (G2), at pH's 6.0, 9.0 to 9.5, 9.0, 5.0, 4.0 to 10.0 

and 5.0 to 10.5 respectively. There was a tendency for less, or no bacteria in the more 

acid conditions. Generally, the more alkaline the conditions, the higher the number of 

dead, empty 'ghost' valves, particularly in clones from River Kennel and Parys Mountain 

(G1 & G2). 

In the Ham Gate Pond clone (G2). at pH 4.0 and 4.5, and the River Kennel clone at pH 

4.5 and 5.5, some cells in low pH culture were observed to grow and crowd at the 

margins of the culture dish, close to the dish walls or on the walls, apparently 'avoiding' 

the centre of the dish. The reason for this behaviour was not apparent. 
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5.2.2.3 Sewage Regime 

In the Sewage Regime, during the exponential growth phase, the dominant mode of 

attachment was single cells attached in valve and girdle view, at all sewage strengths for 

all clones except Ham Gate Pond (G2), in which single suspended cells dominated all 

sewage strengths. Mode of attachment and colony type were very similar post 

exponential growth. 

Bacteria were a problem in most subcultures due the nature of the medium, and despite 

all efforts to the contrary (e.g. aseptic techniques and antibiotic treatment). They were a 

significant problem in the full strength sewage assays and quickly overran the subculture. 

5.2.2.4 Copper Regime 

Mode of attachment and colony type were highly variable both in the initial and the 

extended runs, however single suspended and single cells attached in valve view 

dominated during the exponential growth phase, followed closely by attached cells in 

girdle view, and cells attached by a mucilage pad. Single cells attached in valve view 

and/or girdle view dominated latter cultures, followed closely by suspended cells and cells 

attached by a mucilage pad. 

The branched stipate colony observed in the pH and sewage regimes for the Ham Gate 

Pond clone, also occurred for the same clone at copper concentrations of 0.00131Jg/l and 

0.0026 during the post exponential growth phase. 
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No clones exhibited chloroplasts where the lobes extended into the poles, occupied the 

entire cellular space or were restricted medially during exponential growth, however all 

three chloroplast types were observed post exponentially in all clones except Parys 

Mountain (G2). The occurrence of triangular and rounded pyrenoids both during and post 

exponential growth was approximately equal. 

Cells were observed to have one large polar vacuole in clones from Kings Mere (G2) and 

Ham Gate Pond (G2) (at 0.00531Jg/1), River Kennet (0.0013, 0.0053, 0.05 and 0.251Jg/l) 

and Pen-y-Bryn (0.00261Jg/l). Lipids and dark bodies occurred in more subcultures and 

clones post the exponential growth phase. 

5.2.2.5 Zinc Regime 

The Zinc Regime was dominated by cells that attach in valve and girdle view, both during 

and post the exponential growth phase, and in all clones at most zinc concentrations. No 

clone exhibited attachment by stalk during exponential growth, however it was observed 

in latter cultures of the Parys Mountain clone (G1) (Nil to 0.0111Jg/l). Single cells were the 

dominant colony type both during and post exponential growth, and observed in all clones 

and most zinc concentrations. 

During post exponential growth, the Kings Mere (G2) (0.000661Jg/l) clone was observed to 

have a large number of pale chloroplasts, and clones from River Kennet (0.0013, 0.10 to 
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1.01Jg/l), Pen-y-Bryn (0.011j.Jg/l) and Parys Mountain (G1) (0.042j.Jg/l) all had a high 

proportion of colourless cells. 

There were occasions when only one vacuole was present during post exponential 

growth in clones from River Kennet (0.053, 0.011 and 0.021j.Jg/l), Pen-y-Bryn (0.00066, 

0.0053, 0.011 and 0.042j.Jg/l) and Parys Mountain (G1) (Nil and 0.000161Jg/1). 

5.2.2.6 Cadmium Regime 

Cells forming mass aggregations or suspended in a matrix were rare, and occurred only 

during post exponential growth in clones from River Kennet (Nil to 0.0013j.Jg/l) and Pen-y­

Bryn (mass aggregation only, 0.00033 to 0.0013iJg/l). Branched stipate colonies occurred 

in clones from Kings Mere and River Ken net for the cadmium regime at 0.02 and 0.1 Oj.Jg/1 

respectively. 

Chloroplast colour and size was more variable during post exponential growth days. 

Vacuoles on the other hand, were normal in all clones and at all cadmium concentrations 

during and post exponential growth days, except for clones from River Kennet (0.05 and 

0.251Jg/1) during exponential growth, and Pen-y-Bryn (0.05j.Jg/l (No EDTA) and 12.51Jg/l 

(No EDTA)) during post exponential growth phase. 
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5.2.3 EPS production 

The types of Extracellular Polysaccharide Substances (EPS) produced by G. parvulum 

clones in this study include stalks, pads and an amorphous matrix. Additional EPS are 

presumably produced by cells adhering to the culture vessel surface in valve or girdle 

view, in paired cells, chains of cells, tufts and mass aggregations, the latter of which over 

time produce floc-like clumps. 

In LM, cells that attached in valve and/or girdle view without a stalk were common. 

Often the majority of cells were inactive, occasionally however, the majority of cells were 

observed to be very active and motile, often in the morning. All cells appeared to be 

heading directly for a central mass congregation of cells. This behaviour occurred only in 

the River Kennel clone and was never repeated or observed in any other culture. 

In stalked cells, the stalk can be seen to consist of a collar and shaft. There are also 

three fine transverse bands in the upper part of the shaft near the collar, which may 

indicate growth spurts. The shaft also appears to be differentiated longitudinally, i.e. there 

is thicker, denser material at the edges of the stalk, with either a central tube or thinner 

central portion. The stalks were invariably very long, often more than 3 times the valve 

length. Dichotomously branched stalks were observed in clones from Kings Mere (G2) for 

the cadmium regime, Ham Gate Pond (G2) for the copper and sewage regimes, and River 

Kennet for the pH and cadmium regimes. These branched colonies were not large, and 

only a few occurred in each of the cultures mentioned, alongside single stalked cells. The 

end of each stalked branch bore a single cell. Cells forming mucilage pads were 

distinguished from stalks in being considerably shorter. The structure was difficult to 
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discern in LM, but in at least one case appeared to consist of a collar and shaft much the 

same as the stalked cells. 

Non-sexual paired cells were often observed in cultures, and on occasion could be seen 

to constitute over 50% of the population. Due to the clavate nature of G. parvulum's 

outline shape, pairing was observed to occur along the upper part (near the head pole) of 

both cells, the lower part (near the foot pole) in larger cells, or nearer the centre in smaller 

cells. These paired cells were always in the same polar orientation. Mucilage pads at the 

site of attachment were not observed, but as these pairing were always girdle to girdle, it 

is probable that either the mucilage coating around individual cells or additional mucilage 

secreted from the girdle region, facilitates this pairing. Pairings were always observed 

either pyrenoid to pyrenoid or non-pyrenoid to non-pyrenoid sides, never pyrenoid to non­

pyrenoid side. 

Although the base of tufts were not observed, it is likely that the cells are joined by a 

shared mucilage pad, though this is not always securely anchored to the base of the 

culture vessel, and several subcultures were observed to have floating tufts, i.e. a 

majority of tufts were suspended in the medium. These are possibly precursors to the 

formation of algal floes. 

This thesis is the first reported case of G. parvu/um forming a mucilage matrix, and 

appears to be confined to clones from Ham Gate Pond (G2), River Kennel and Llyn 

Ogwen. lt was more common however in the River Kennel clone in the cadmium regime. 
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Cells appear to be embedded in the matrix rather than actively moving through it. The 

matrix was observed to be tenuously attached by a 'cord' of several threads, to the base 

of the culture dish, though it was also found floating free in some cases. In each of the 

cultures in which this behaviour was observed, the matrices occurred as single entities 

with either small floes of clumped cells, or cells attached in valve view or girdle view. 

When cells formed sufficient densities, some began to mass together to form tight 

bundles/clumps of cells or mass aggregations. These were not tufts, rather, a muddle of 

cells very densely packed together and either attached to the base of the culture dish, or 

floating free in the medium as floc. 

Cells did not form chains often, and there were rarely more than 6-8 cells in any one 

chain, though a few chains of 10 cells were observed. There was no consistency in the 

occurrence and no 'active' cell joining was observed. The majority of chains were formed 

in older cultures when cells were at their smallest. 

Examination of individual cells in SEM, showed that mucilage secretion (EPS) occurred 

from the valve face, the mantle, the apical pore field and sutures. Looking at the valve 

face, not all the clones examined under SEM had mucilage secretions, and in some 

cultures secretions were present, but only in very small amounts (Figures 5.1: a-f). 

However, in every clone where mucilage secretions were evident, it was clear that 

secretions were exuded from valve face pores and the raphe (Figures 5.2, 5.3, 5.4, and 

5.6). The mucilage is in the form of strands and occasionally, as a smooth deposit on the 
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valve surface (Figures 5.4: e and 5.6: a-d) or a granulised deposit (Figures 5.6: e-g). 

The mucilage strands also originate from the stigma (Figures 5.2: d, 5.4: f, 5.5: c, h and 

1). In Figures 5.6: h·l, there is evidence of mucilage between two adjacent frustules lying 

valve face to valve face. In girdle view, mucilage secretions followed much the same 

pattern od deposition as shown on the valve face, i.e. strands, smooth layers and 

granulised layers. Mucilage originated from mantle pores, the pores on the girdle band 

and sutures (Figures 5.7, 5.8, 5.9). Overall, the mucilage appears relatively thick in 

places (on the raphe, in-between cells adhered valve face to valve face and with 

mucilage pads), and where it is a smooth deposit, EPS is seen to obscure pore openings. 

lt also appears quite opaque, though this may be an artefact of the drying process. 

Figures 5.9: a-b, show a mucilage pad, apparently exuded from the apical pore field on 

both valves of a single frustule, to form a thick, short, and undifferentiated mucilage pad. 

Neither the collar nor the substratum pad was visible. Figures 5.9: c-d, show fibrous 

strands of mucilage, also exuded from the apical pore field, linking three single frustules. 

The morphology is very different from that of the mucilage pad in Figure 5.9: a-b, being 

more fibrous and considerably thinner. Again, there is no clear collar, shaft and pad 

visible. 
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Figure 5.1 : a-f 

SEMs showing small amounts of EPS present on uncleaned valves, as strands of 

material originating from valve face pores (arrows) (a) Barnwood Pond (b-e) Kings Mere 

(G2) (d-e) Parys Mountain (G1). Scale bars = 2JJm. 
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Figure 5.2: a-d 

SEMs showing EPS present on uncleaned valves, as strands of material originating from 

valve face pores (arrows). (a-b) Kings Mere (G2) , subculture 08/05/02. Note the mucilage 

originating from the valve face pores in Fig. b. (c-d) Kings Mere (G2) , subculture 

01/07/02. Note the mesh of fine interlacing strands in Fig d. Scale bars= 4Jm. 
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Figure 5.3: a·f 

SEMs showing EPS present on uncleaned valves, as strands of material originating from 

valve face pores (arrows). (a·d) Hamgate Pond (G2), subculture 01/07/02. Note the 

mucilage originating from the valve face pores and raphe in Fig. b. (e·f) Abbey Lakes 

River, subculture 01/12/01 . Note the coalescing of mucilage in Fig d and e. Scale bars = 

2JJm. 
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Figure 5.4: a-f 

SEMs showing EPS present on uncleaned valves, as strands of material originating from 

valve face pores (arrows). (a-c) Llyn ldwal (G2) , subculture 01/07/02. Note the mucilage 

originating from the raphe in Fig. c. (d-f) Parys Mountain (G1), subculture 01/07/02. Note 

the mucilage emanating from the raphe in Fig d. and from the stigma in Fig e. Scale bars 

= 2.tJm. 

234 



Chapter 5 - Observations on Live Material 

Figure 5.5: a-j 

SEMs showing EPS present on uncleaned valves, as strands of material originating from 

valve face pores (arrows). (a-c) Parys Mountain (G1), subculture 01/07/02. (d-e) Kings 

Mere (G2), subculture 01/07/02. (f·j) Llyn ldwal (G2) , subculture 01/07/02. Scale bars = 

2JJm. 
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Figure 5.6: a- i 

SEMs showing EPS present on uncleaned valves. (a-d) Mucilage forms a smooth 

covering over the valve surface in (a) Kings Mere (G1) , subculture 01/07/02 (b-d) Ham 

Gate Pond (G2), subculture 01/07/02. (e-g) Mucilage as a granulized deposit over the 

valve surface in Kings Mere (G2), subculture 08/05/02 (h-i) Mucilage (arrows) between 

paired cells in Parys Mountain {G1), subculture 07/06/02. Scale bars = 2,um. 
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Figure 5.7: a-g 

SEMs showing EPS present on uncleaned valves. Mucilage originating from mantle 

pores (mp) and sutures (s) . (a) Kings Mere (G2), subculture 01/07/02 (b-d) Kings Mere 

(G2), subculture 08/05/02. (e-g) Parys Mountain (G2). subculture 01/07/02. Scale bars = 

2JJm. 
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Figure 5.8: a-f 

SEMs showing EPS present on uncleaned valves. Mucilage originating from mantle 

pores, girdle band pores (gp) and sutures. (a-f) Kings Mere (G2) , subculture 01/07/02. 

Scale bars = 2JJm. 
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Figure 5.9: a-e 

SEMs showing EPS present on uncleaned valves. Mucilage originating from mantle 

pores and girdle pores. (a-b) Kings Mere (G2). subculture 01 /07/02. (c-d) Barnwood 

Pond, subculture 01/07/02. Scale bars (d) = 5JJm all others= 2JJm. 
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Figure 5.10: a-d 

SEMs showing EPS present on uncleaned valves. (a-b) Mucilage pad originating from 

apical pore field of both valves in a single frustule in Abbey Lakes River clone, subculture 

01/12/01 . (c-d) Strands of EPS produced from apical pore fields of three single frustules, 

joining the three cells together in clone from Parys Mountain (G2) , subculture 20/05/02. 

Scale bars = 2JJm. 
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5.2.4 Sexual Reproduction 

As mentioned, certain clones under particular conditions were able to auxosporulate. 

However, these sexual stages were often unsuccessful, other than in the clonal stock 

cultures and the pH regime, suggesting that this stage in the life cycle of G. parvu/um is 

especially sensitive to extreme changes in water chemistry. Figures 5.11-5.12, are 

simple diagrams illustrating some of the sexual reproductive stages as observed under 

LM for the Ham Gate Pond (G1) clone at pH 5.5, and the Parys Mountain (G2) clone from 

subculture dated 20/08/02. The process was the same for all four clones exhibiting 

auxosporulation, i.e. Kings Mere, Ham Gate Pond, Llyn ldwal and Parys Mountain. Not all 

sexual stages were observed. 

Sexual reproduction was assumed to have begun when two vegetative parent cells pair­

up, usually in opposite polar orientation (Figures 5.11:a and 5.12:a), but sometimes lying 

on top of one another. Meiotic division was assumed to occur in both parent frustules (but 

not observed), giving rise to two gametes per parent cell (Figure 5.11:b and 5.12:b). One 

gamete of each parent cell was passive, exhibiting no movement, whilst the other was 

active and moved across to the opposite partner cell to effect plasmogamy (Figures 

5.11:c and 5.12:b). During this process, a semi-protective matrix must have been exuded 

by both parents to then allow the valves of the frustule to either part or open in some way. 

Plasmogamy produces a bi-nucleate cell, with nuclear fusion two zygotes were produced, 

one in each of the two parental thecae (Figure 5.11 :d). The zygotes are assumed to form 

a protective organic wall around themselves, and exhibit bipolar expansion, which 

eventually ruptures the parental thecal walls, though this was not observed, (Figures 
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5.11:e and 5.12:c). The nucleus was often obscured, and therefore its position could not 

be determined. 

The zygote, now an auxospore, continued to expand. Perizonal caps at the poles of the 

expanded auxospores were only observed on one occasion. Within the organic casing of 

the expanded auxospore, an initial cell formed via mitosis (Figure 5.12:d). The initial cell 

silicifies and further mitotic divisions occur to produce the initial valve and the first 

vegetative cell (Figure 5.11 :f). These initial cells varied from the basic features of a 

normal vegetative cell in that they were longer, had more rounded features and often, 

disrupted striae patterns. 

The term auxospore is often used as an encompassing term including all developmental 

stages from the moment of plasmogamy to just before the laying down of silica to form 

the initial cell thecae. The stages in auxospore development and the formation of the 

initial cell are not protected by a silica wall, but by an organic layer and thus are more 

vulnerable to changes in the environment. This was evident in some of the deformations 

observed (Figure 5.12: c). The lack of a restrictive cell wall produces initial cells with a 

modified morphology, notably expanded across the transapical plane with either only a 

very slight, or no heteropolarity in the apical plane. More often, initial cells appeared 

either isopolar or somewhat cymbelloid-like in outline. Additionally, initial cells and the 

first few vegetative cells do not have the typical rostrate or capitate head pole of the 

species, and the lengths of the polar raphe fissures were equal in size compared to 

vegetative cells. These "modified" morphologies suggest that the gross taxonomic 

characters of heteropolarity, symmetry and head pole morphology in G. parvulum, may 

not be determined until after a series of vegetative divisions. 
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Several clones were also mated in all possible pairwise combinations and left to grow for 

two weeks. At no time was auxosporulation observed suggesting that either all the clones 

tested were reproductively isolated or simply that conditions were not favourable. 

The mean size ratio of initial cell length to parent cell length, produced by clones from 

Kings Mere (G,), Ham Gate Pond (G,), Llyn ldwal (G,) and Parys Mountain (G,), was on 

average 1: 3 (for Kings Mere and Ham Gate Pond) or 1: 2 (for Llyn ldwal and Parys 

Mountain). However, this could sometimes be as much as 1: 4 (Parys Mountain) or 1 :5 

(Kings Mere and Llyn ldwal), especially when particularly small parent cells were 

involved. The average length of a parent cell undergoing sexual reproduction varied 

between 9.5 and 17.5pm (Kings Mere =15pm, Ham Gate Pond= 11pm, Llyn ldwal = 

9.5pm and Parys Mountain = 13pm). 
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d 

f 

Figure 5.11: a - f 

Sexual Reproduction and Auxosporulation in clone from Kings Mere whilst in 

experimental culture (pH Regime. pH 5.5). Respectively, (a) Cells pair up in opposite 

polar orientation to each other, girdle to girdle or lying with one cell under the other (b) 

Meiosis occurs in both cells, giving rise to two gametes each (c) One of the gametes is 

passive and one active. The active gamete from each cell moves to its partner cell to 

effect plasmogamy (d) Within the organic casing of the expanded auxospore, an initial 

cell forms via mitosis. The initial cell silicifies and further mitotic divisions occur to produce 

the initial valve. Further mitotic divisions occur to produce the first vegetative cell (e) 

Zygotes may have an organic casing, but this was not observed. Zygotes expand, 

eventually rupturing the parental thecae walls (f) vegetative cell. 
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c 

d 

Figure 5.12: a-d 

Sexual Reproduction and Auxosporulation in clone from Parvs Mountain. subculture 

20/08/02. Respectively, (a) Cells pair up in opposite polar orientation to each other, girdle 

to girdle or lying with one cell under the other. (b) Meiosis occurs in both cells, giving rise 

to two gametes each. One of the gametes is passive and one active. The active gamete 

from each cell moves to its partner cell to effect plasmogamy (c) Nuclear fusion produces 

two zygotes, one in each parent theca. Zygotes expand, eventually rupturing the parental 

thecae walls. (d) Within the organic casing of the expanded auxospore, an initial cell 

forms via mitosis. The initial cell silicifies and further mitotic divisions occur to produce the 

initial valve. Further mitotic divisions occur to produce the first vegetative cell. 
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5.3 CLASSIFICATION OF LIVE OBSERVATIONS 

The purpose of the classification was to identify any major differences or similarities in 

observed characters between clones, and infer the probable causes of those differences. 

Where characters are stable, they may be used as a tool for differentiating between 

different eco- or morphotypes of the G. parvulum species complex. 

Dendrograms are automatically truncated and provide within and between clone 

comparisons and within and between experimental regime comparisons. Where 

applicable, divisions in a dendrogram are denoted by the presence(+) or absence(-) of a 

character state, i.e. a character occurring/not occurring in all OUs for the cluster or group 

of clusters. Occasionally, a division may not be clear-cut and presence/absence of a 

character will not occur in all OUs for a cluster. Classification results are summarised in 

Tables 5.3 and 5.4. 
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Table 5.3 

Summary of by-clone cluster analyses where n= number of Operational Units (OUs) in 

each cluster and 

• = Character state present in all OU's within a cluster 

D = Character state absent from all OU's within a cluster 

D = Character state present in some, but not all OU's within a cluster 

NB: Refer to Chapter 2 for character state code descriptions and examples. 

CHARACTER STATES FOR LIVE OBSERVATIONS 

Clone n u~~<~~uuuuuuuuuuuuuuuuuu~~>>O~ooo 
Bamwood 2 A I I l i I l l i ! ! 
Pond 1 B I i ! I ; i i ! ! l 

1 c I ; i ! I I j ! I I 
3 D I I I ' i I I I I I i ! I i - i-

' . ' I 

Scion 1 A I I I ! j i ! ! I I r 

Pond 1 B i ! ! I I I I ' ' ' ' 
12 c ! I ! I i I I i i 

58 D i I - i ! I ; i i i 

Kings 2 A I I I \ I I I i ~ . l i I I ; i ; l l 
Mere 1 B ! i ' I I I i I w l ' ! . ! 

7 c ~ ; ~ t l ! _l 
1 D i I 1 

! 1 l ! J 82 E ' I ! ! l l 
Ham Gate 8 A I J I • J i _I I i ! I L 
Pond 3 B I I l l I ~ i I I i ! i 

4 c ! I I I i t I I I I I I I 
111 D I J I I I I 

I ! I 
Abbey 5 A ! ! I I ! ! i 
Lakes 1 B j I i I ! ' 
River 2 c i ! I I ---·-· 1 D i ~ i ! ; ; 

' i 
1 E l I I I ! ~ I ! ' 

Llyn ldwal 10 A ' ~ i l .1 I 1 ! ; i -1--
96 B _L ! I i I I 
22 c I I ~ I ! i i 

5 D ! i ' I I I I ! I ' 
River 11 A i i i I I ! ! 
Kennel 1 B ~ I l ' 

5 c j I I I 
104 D ! i ' I I I ! ! I I 

Pen-y- 5 A I I I T i -~ ~ i i I 

Bryn 2 B 1 I [ ! I i i 
2 c i i ! ! i 

48 D 1 I I i i 
6 E I l I ' ' I I I I 

Llyn 1 A ' ; I _I ' I -
I ; I ~ I ' . 4 

... -j 
i I i I I ~ '. 

Ogwen 8 i 
1 c I l ; I ! i ' 
1 D I I l I i I I ~ 

Parys 2 A I I ! ' I I I I I I -, ' l 
Mountain 1 B I i i ! I i I ; I i ' ~ ~ 

3 c ! ~ i I i i I I I ! I 
180 D ! ! ' I 1 I l I ! ! ! i 
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Table 5.4 

Summary of by-regime cluster analyses where n= number of Operational Units (OUs) in 

each cluster and 

• = Character state present in all OU's within a cluster 

D = Character state absent from all OU's within a cluster 

D = Character state present in some, but not all OU's within a cluster 

NB: Refer to Chapter 2 for character state code descriptions and examples. 

CHARACTER STATES FOR LIVE OBSERVATIONS 

Clone 
Stock 1 A I l i I I I -Lffl_f-1 _I I I I I 1 ! f ,_r-r-r--- ! I I I ! i Cultures 2 B ! ! l ! ! ! ' 3 c I ! ! i I I I i I . I ! I ! I 

149 D I ! i I ! I ~ I I 
Sewage 2 A I I I I i liT i I I ! l • ~ l I ' . • 
Regime 4 B i I I l I l 

t 
I ! I ! l I I i 

I \ ' l l ' 
I 

\ 1 2 c ~ l I I ~ l ' ' I ' 
55 D ; I ! ~ i l i I ! L I i ! 

pH 1 A ! i I ! I i ! i i I I i j i t 

Regime 2 B ! 
-·-i-~ I I l l I ! i ! I i ' 10 c i I i l ~ I I I I I 

44 D ! ! I i i ! I I I I I 
Copper 1 A i ' I I i ; i i I J ! 

Regime 35 B J I ! ! J 
53 c i I i _I 
B5 D i I I ! I ' 

Zinc 3 A I I i I I I I I 
Regime 4 B I I 1 I i I -15 c I I ! ! ! 

6 D I [ j l I I 
20 ~+ l I r ! i J 
BB l I ! I l I i I ' .. 

Cadmium 5 A ' I I I i I I I t·-
! 

Regime 4 B l j i I l i 

17 c I I I i f 

12 D i ! ! i I 
100 E ! I ' ! I i 
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5.3.1 Clonal Stock Cultures 

A cluster analysis revealed nested clusters for clones from Scion Pond, Kings Mere, Llyn 

ldwal and River Kennet, whilst the remaining clones showed a clearer separation 

amongst clusters. Nearly all by-clone analyses produced a 3 level, 4 cluster classification 

at between 73 and 94% similarity, except clones from Kings Mere, Abbey Lakes River 

and Pen-y~Bryn which produced 5 clusters and 4 level dendrograms at between 74 and 

97% similarity. 

Overall, a common factor that emerges from the by-clone cluster analyses is the 

separation of a number of OUs into a single branch cluster. This single branch, primarily 

consisted of circumneutral to alkaline OUs with the exception of the clone from Ham Gate 

Pond, which consisted of acid to circumneutral OUs, and the River Kennet clone, which 

included acid and alkaline OUs. The results suggest that pH is a major contributing factor 

to difference between clones. The results also suggest that pH has more of an effect on 

chloroplast morphology than any other character. Most of the separation also occurred 

for OUs during post exponential growth, when one might expect differences to occur due 

to initial shock of a different medium; however, the results may indicate a lag in 

behavioural and protoplasmic responses to changing environment. 

Additionally, the separate analyses of parents (G1 cells) and offspring (G2 cells) for the 

Parys Mountain clone suggest that the initial run of the zinc regime and low levels of 

copper are contributing factors accounting for differences between parents and offspring 

and that there is a physiological basis to that difference. 
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Finer, more reliable clusters among clones can be achieved by including additional 

observations with more characters where type and equipment allow. 

5.3.2 Experimental Regimes 

A cluster analysis of clones under each experimental regime revealed typically nested 

clusters for all regimes except zinc. The stock cultures, sewage regime and copper 

regime all produced a 3 level, 4-cluster classification at between 73 and 80% similarity, 

whilst the pH and cadmium regimes produced 4 and 5 level classifications respectively, 

also between 73 and 80% similarity. The zinc regime produced a 5 level, 6-cluster 

classification at 77% similarity. 

In the by-regime classification, results suggest that culture regime contributes to 

differences between clones and that some clones may have particular 

tolerances/sensitivities. 
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5.4 DISCUSSION 

5.4.1 Relationship between Culture Regime & Observed Live Characters 

Growth mode and EPS production: Mann (1999) noted in casual observations and in 

controlled laboratory experiments, that colony characteristics often change in response to 

environmental conditions as well as seasonally, and may be due to changing abundance 

of clones with different growth habits, phenotypic plasticity or environmental conditions. 

Chepurnov & Mann (1997) stated that unisexual and bisexual clones tend to grow 

dispersed, whereas monoeocious clones form dense tufts. If this were true, one would 

expect to observe the regular formation of dense tufts in the monoeocious G. parvulum 

clones however, most of the clones in this study grew as dispersed, single suspended or 

attached cells, whilst some grew on stalks or in fibrous EPS matrices. Growth mode was 

often not consistent within a clone, changing temporally and spatially with size and 

experimental regime. If changes in size throughout the life cycle of a diatom are also 

accompanied by changes in morphology, is it reasonable to suggest that growth mode 

could also change with size and morphology as well as environment. 

EPS production by diatoms and other algae has been linked to changes in environmental 

conditions and different growth stages. Cultures may develop one or several different 

forms of EPS, and observations on the EPS produced by different clones show that 

mucilage is produced by all clones, but not necessarily in the same form or 

circumstances. The clones in this study agree with the literature that stalks and pads are 

formed and that stalks may occasionally be dichotomously branched. What is new 

however, is that some clones can produce tufted colonies and colonies in a matrix, which 

have not previously been observed in G. parvulum. 
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In this study, pad production was more common than tuft production, which in turn was 

more common than stalk production. Pad production was mainly associated with copper, 

zinc and cadmium and to a lesser extent pH, though it also occurred in older stock 

subcultures. Only the River Kennel clone regularly produced pads in the sewage regime. 

Stalk development was largely seen as single cells on single stalks, but rarely seen in the 

stock subcultures. The only clones to exhibit this mode of growth were Ham Gate Pond 

(Gd (sewage), Parys Mountain (G2) (zinc) and Kings Mere (G2) at pH 8.0 and 8.5. 

Though not tested, it is entirely possible that stalk production was initiated by density 

(Lewis et al. 2002) as stalk production tended to develop late in the culture when cell 

numbers were higher. lt is also possible that stalk production was a response to resource 

depletion (Hudon & Bourget. 1981; Staats et al. 2000). Although growth media were 

topped up regularly, it is possible that a fast growing population depleted nutrients faster 

than they were being replaced. This study has also shown that stalks are differentiated 

according to the studies of Daniel et al. (1987), Hufford & Collins (1972) and Wang et al. 

(1997). 

Mass aggregations were of several types, either tightly bunched single cells, or tightly 

bunched tufted cells forming "island" populations in a sea of single attached cells, or the 

cells exhibited "swarming" behaviour. The latter is discussed further on (other 

behaviours). The other two modes of growth however, tended to occur intermittently in 

only one or two clones of the pH, copper or zinc regimes. lt is unlikely to be a reaction to 

crowding, as the density of the masses would incur considerable self-shading. 1t is 

however, possible that massing of cells is a protective measure, particularly if it also 

encompasses mucilage. Tufts of cells were rare in stock subcultures, but more frequent 
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than stalk formation, and tended to occur in older cultures. In the experimental regimes, 

tufts were primarily associated with clones from Ham Gate Pond (G2) and Llyn ldwal (G2) 

under all metal regimes, with intermittent occurrences in other clones, and regular 

occurrences in clones from Pen-y-Bryn and Parys Mountain (G2) for cadmium and zinc 

respectively. 

The amorphous, mucilaginous matrices produced by clones from Ham Gate Pond (G2), 

River Kennet and Llyn Ogwen, may also have been instigated by cell density or resource 

depletion as results suggest that EPS production increases generally, from exponential to 

stationary phase growth (Smith & Underwood. 2000; Staats et al. 1999, 2000). As EPS 

production requires energy, a lag phase in the growth period would allow time to gather 

resources and recover from the initial shock of a different environment (which may also 

have acted as a cue to start producing EPS as a protective measure). 

SEMs show that EPS is largely in the form of strands rather than a smooth uniform 

deposit, however this could be an artefact of the drying and sputter coating process, e.g. 

size, shape and position of mucilage strands may change via shrinkage or coalescence. 

Wang et al. (2000) had particular difficulties in preserving stalks of Achnanthes longipes 

Agardh and Cymbe/la cistula (Ehrenberg) Kirchner for SEM and in TEM, due to the high 

level of hydration. Instead, they utilised high-pressure freeze substitution and cryo-field 

emission scanning electron microscopy, which had been applied successfully to plant, 

fungal and animal cells. The mucilage trails and paths preserved with this technique are 

more detailed and depict an almost web-like structure of mucilage strands. Clearly, better 

preservation techniques need to be tried and developed in order to clarify EPS structure 

and origin in G. parvulum and other diatoms. Nonetheless, none of the features observed 
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and described in this study occur in acid cleaned samples, which would seem to 

confirm that they are not artefacts. The studies of Rosowski et al. (1983) and Wang et al. 

(2000) together with Edqar (1983), have shown that mucilage is exuded from sutures, 

raphe and pores of the valve face and mantle (expanding thereafter), therefore agreeing 

with the observations in this study. 

Chain formation among the Gomphonema spp. is not recorded in the literature either in 

nature or in culture, and its rare occurrence in his study suggests it may be an artefact of 

culturing. Only the Abbey Lakes River clone formed chains regularly in most stock 

subcultures, and therefore this may be an adaptive strategy for this clone, which was very 

small when collected. Its small size is unlikely to be encountered in nature. Paired cells 

on the other hand were more common, occurring in most OUs for clones from Kings Mere 

(G2) (copper, zinc, stock subcultures), Ham Gate Pond (G2) (copper, pH and stock 

subcultures), Llyn ldwal (G2) (pH), Llyn ldwal (G1) (stock subcultures), River Kennel 

(stock subcultures, pH and zinc), Parys Mountain (G 1), (pH, copper, zinc) and Parys 

Mountain (G2) (pH). The pairing observed differed from that of sexualised pairing, in that 

paired cells were always in the same polar orientation and paired girdle to girdle. Again, 

this behaviour is not recorded elsewhere for the Gomphonema, and its purpose is 

unknown, but it usually occurred in a large portion of the population. 

The most common feature of the cultures were that all clones at some point and fairly 

regularly, exhibited single cells attached in valve and or girdle view and thus this can be 

said to be the main mode of attachment in G. parvulum. Cells suspended in the water 

column (usually most or all of the population), were almost as common and a somewhat 

unusual occurrence for a benthic taxon. Invariably, suspended cells were not motile, other 
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than the odd cells here and there. There was also no direct correlation with the 

occurrence of cells containing enlarged vacuoles or those with plentiful oil droplets, 

therefore, neither vacuoles nor lipids were changing buoyancy in these cells. lt is 

therefore not clear what mechanism was allowing the cells to maintain their buoyancy. 

Chloroplasts: Pale chloroplasts were evident in all clones subject to experiment and in a 

few cases, chloroplast damage in the form of loss of pigment was evidenced by the 

appearance of a number of green or yellow chloroplasts. In both cases, the frequency of 

occurrence increased with time and/or higher concentration of test substance. Diatom 

chloroplast colour is known to vary owing to the carotenoid pigments contained within, 

which mask the colour of the chlorophylls that normally give plants their green 

colouration. Pale and even green or yellow chloroplasts however, have been linked to 

high irradiances and the effects of pH (acid conditions destroy carotenoids revealing the 

chlorophylls) (Round et al. 1990). Studies in higher plants show that higher light 

intensities are capable of destroying chloroplasts of shade tolerant ecotypes (Bjorkman & 

Holmqren. 1963). As all the clones in this study are benthic, and from either turbid or 

disturbed sites. lt seems highly probable that they would be shade adapted and therefore 

more prone to damage by high light intensities. Neither the lamps nor the highest light 

level used in this study however, are likely to have provided enough damaging short­

wave radiation as the highest light levels used were <50 pmol/cd'2/s·1
, therefore 

photoinhibition is an unlikely cause of the pale chloroplasts, or loss of pigmentation often 

observed. Loss of pigmentation was not confined to experimental regimes; stock cultures 

also exhibited pale, green and yellow chloroplasts, mostly in older subcultures. Loss of 

pigmentation may therefore indicate other stresses, e.g. crowding, depletion of nutrients. 

Although little is known about the impact of temperature on certain environmental factors, 

e.g. metal toxicity, temperature is thought unlikely to have been the cause of chloroplast 
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damage in the majority of cultures in this study, as most were kept at the same 

temperature. Only within the Light and Temperature Regime were light and temperature 

varied, and here pale chloroplasts developed between 25°C high light and 30°C low, 

medium and high light. Pigment loss in the pH regime also occurred, but was erratic. 

Therefore, whilst a combination of temperature and high irradiance may elicit a pigment 

loss response, the intermittent occurrence of pigment loss in the pH regime would 

suggest that there are other factors eliciting this response. 

Yellow or green chloroplasts were considerably rarer than pale chloroplasts. The only 

consistent loss of pigment within a clone subject to assay was for Parys Mountain (G2) 

(almost all copper concentrations at ~<e. days), Kings Mere (G2) (at higher copper , most 

zinc concentrations at Ko.jj days), Ham Gate Pond (G2), Llyn ldwal (G2) and River Kennet 

at low, low to medium and low to high zinc concentrations (!<e. days). Interestingly, the 

Parys Mountain (G1) clone rarely lost pigment, unlike its daughter progeny, in which loss 

of pigment occurred the most frequently for the copper regime. Loss of pigment was not 

however, a major feature of the cadmium regime, with the Llyn ldwal (G2) clone being the 

most affected at most or all concentrations, though the clone from Ham Gate Pond (G2) 

was more affected at Ko.jj days than at ~<e. days, and the River Kennet clone affected at 

~<e. days. The results suggest that in some clones at least, loss of pigment may be a sign 

of metal stress, but that compensatory mechanisms may work to alleviate or repair initial 

damage. 

Accessory pigments are also able to protect against damage at high irradiances by 

accumulating and absorbing excess photons, and producing additional carotenoids or 

alternatively, as shown by Gallagher & Alberte (1985), increase photosynthetic capacity 

256 



Chapter 5 - Observations on Uve Material 

at low irradiances by increasing pigmentation. Whether this translates as darker 

chloroplasts is not clear, but several clones (no discernable pattern) exhibited darker 

chloroplasts in both stock and experimental cultures. Occurrence was rare and 

inconsistent, but primarily within the pH and cadmium regimes (one in the copper 

regime), it therefore seems unlikely that increases in pigmentation were a direct response 

to experimental assay, but may be a measure of increased metabolic activity in particular 

clones in response to an unknown (genetic?) factor. The increase in pigments in low light 

has however, been attributed to the effect of nutrient limitation in batch cultures (Beardall 

& Morris. 1976). This may account for the intermittent occurrence in both stock and 

experimental cultures, and changes in pigment content may optimise the cells ability to 

harvest light. Only further experimentation will determine if darkened chloroplasts are 

inducible, and which pigments are involved. 

Clonal cultures also exhibited changes to chloroplast size. Ballantine & Forde (1970) 

were able to show that the number of chloroplasts per 0.01mm2 in higher plants, differed 

significantly between temperature regimes, though not with light intensity. With only a 

single chloroplast and therefore an inability to increase chloroplast numbers, G. parvulum 

must find other ways to maximise photosynthetic capacity, therefore the size of the 

chloroplast relative to cell size may be important. lt may however, be difficult to separate 

from normal chloroplast changes related to life cycle stages and cell diminution. 

Nonetheless, reduced size chloroplasts were repeatedly seen in all clones, increasing in 

frequency of occurrence as time progressed. Size reduction generally took two forms; 

one caused by enlarged polar vacuoles squeezing the chloroplasts to the cell wall and 

therefore reducing photosynthetic capacity, the other condensing the chloroplast to the 

centre of the cell. The latter was not necessarily accompanied by enlarged vacuoles. 
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Medially condensed chloroplasts may be a response to alkaline conditions, which are 

known to dissolve silicate, and thus diatom frustules. Alkaline conditions tend to produce 

diatoms with thinner valves and less prominent features, which may affect the 

permeability of the cell, resulting in shrinkage of the chloroplast away from the cell wall. 

This character was observed in alkaline conditions in this study however, it was also 

observed in circumneutral and acid conditions in the River Kennel clone and additionally, 

in a number of the metal regimes (particularly copper and zinc), and in some of the 

sewage and stock regime cultures. In the cadmium regime, condensed chloroplasts 

occurred more often at the lower concentrations, in only one or two odd cultures. As 

shrinkage also occurred in a few stock cultures this, like pigment loss, may be a sign of 

stress rather than pH or metal concentration. In the sewage regime, the stress factor may 

have been the fast increase in the bacterial population. The link with metals however is 

less clear. lvorra et al. (2002) however, have shown that non-viable or dying cells have 

strongly condensed chloroplasts or are irregularly shaped or fully spread throughout a 

vacuolised cell. This may account for increased occurrence of highly vacuolated cells with 

condensed chloroplasts after several weeks in culture as well as a number of cultures 

with expanded chloroplasts. Canterford ( 1980) has shown that cells exposed to 300pg/l 

copper, had protoplasts that withdrew from the cell walls and chloroplasts concentrated in 

a small group. Whilst no effect on the protoplast was observed, and the copper 

concentrations used were considerably less, the condensed chloroplasts could indicate 

physiological stress due to pH in the River Kennel clone, possible crowding or nutrient 

stress in stock cultures, and metal stress in clones from River Kennel (copper, zinc and 

cadmium), Pen-y-Bryn (copper, zinc and cadmium) and Parys Mountain (G1 and G2) 

(zinc). 
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Chloroplasts were also seen to exhibit expansion. The extension of the chloroplast into 

the poles of the cell may in part, be a response to size diminution, i.e. in order to 

maximise light intake and photosynthesis, though expansion occurred in larger cells too. 

Alternatively, slight expansion and contraction may simply be part of the vegetative cycle. 

Further observation, experimentation and analysis are required. 

Vacuoles, oil droplets, granules and dark bodies: Occasionally vacuoles coalesced 

into a single large vacuole occuping one pole, pushing the cytoplasm and chloroplast to 

the other pole. There is no reference to this phenomenon in the literature. On the other 

hand, Sicko-Goad & Stoermer (1979) have demonstrated that the volume of the vacuole 

could increase considerably after phosphate starvation and remain high even after 

phosphate uptake in Diatoma tenue var. e/ongatum. Whilst none of the cultures in the 

study were phosphate starved, and media were topped-up on a regular basis, the speed 

at which phosphate depleted would be dependant upon the clone and its growth rate. 

There is no clear indication as to why vacuolisation should increase unless benthic 

diatoms employ similar tactics to that of plankton diatoms, and utilise the vacuole as a 

buoyancy device to obtain nutrients. 11 seems more likely however that the enlarged 

vacuoles are a symptom of metal toxicity and pH tolerance/intolerance possibly affecting 

permeability. 

Granular inclusions consistently occurred in nearly all subcultures of clones from Llyn 

ldwal (G2) and Parys Mountain {G2), all pH levels for clones from Kings Mere (G2) Ham 

Gate Pond {G2), Llyn ldwal (G2), Parys Mountain {G 1) and Parys Mountain (G2), most or 

all copper concentrations for clones from Kings Mere (G2), River Kennel and Parys 

Mountain {G2), most or all zinc concentration for clones from Kings Mere (G2 ) and Parys 
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Mountain (G2) and all cadmium concentrations for clones from Ham Gate Pond (G2), Llyn 

ldwal (G2), Parys Mountain (G1) and Parys Mountain (G2). lt is likely that these are 

polyphosphate granules as indicated by Dawson {1973a). Sicko-Goad & Stoermer. 

{1979) have shown that these granules are capable of incorporating heavy metals as a 

means of reducing toxicity, and that some form of exocytosis may occur to rid the cells of 

the metals. The results would then suggest that most clones have this capability, however 

none of the smaller cells (Kings Mere (G1), Ham Gate Pond (G1), Abbey Lakes River, Llyn 

ldwal (G1). Llyn Ogwen) of the stock subcultures nor clones subject to the sewage regime 

had granules. In the case of the latter, this was presumably because phosphate was 

plentiful however, for the smaller cells the requirement for phosphate may not have been 

as high as in larger cells and the culture medium supplied sufficient nutrients. 

Alternatively, the small size of the cells coupled with large and/or expanding chloroplasts 

may have obscured observations. 

Frustular teratologies: Whilst frustular morphology has shown that teratologies are 

produced by environmental conditions, they were more difficult to observe consistently in 

live cells under LM. Only clone Kings Mere (G2) consistently exhibited some form 

teratology whilst under the copper regime, all other teratologies were observed in the pH, 

copper or zinc regime; none were observed for the copper or sewage regimes. The 

teratologies largely take the form of a bulging theca, i.e. in girdle view one valve would be 

either considerably convex or considerably concave. Sometimes the convex or concave 

extremes were polarised and sometimes the convexation was in the form of a medial 

"dent'' in the thecae. This suggests that stresses were placed on the cells either during 

vegetative reproduction whilst the daughter thecae were being laid down (resulting in one 

distorted valve) or, whilst an initial cell was being formed inside an auxospore (resulting in 
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a two distorted valves). As isolated entities, these few teratologies are not necessarily 

indicative of population stresses and may instead reflect differences in cell fitness. 

Other behaviours: There was some unusual behaviour observed for one or two clones 

that in many ways were akin to faunal responses, e.g. clones from Barnwood Pond in the 

Light and Temperature Regime, at the lower temperature of 5°C, Ham Gate Pond (G2) at 

pH 4.0 and 4.5 and River Kennel at pH 4.5 and 5.5, all appeared to "avoid" the light by 

crowding at the edges and walls of the culture vessel. This phenomenon is not mentioned 

anywhere else in the literature. In one culture believed to be the clone from the River 

Kennel (damaged notes), cells were observed to actively "swarm" toward, as well as in 

and around, a large mass of vigorously active cells in the culture dish reminding one of 

slime mould pseudoplasmodia, the streaming together of single cells into one giant 

organism. One can speculate that the frenzied activity had something to do with 

reproduction however, no auxospores were ever formed in this clone. lt might also have 

been precursor behaviour to the formation of a mucilage matrix, as exhibited by this clone 

at pH 8.5. 

5.4.2 Sexual Reproduction 

Sexual reproduction was seen to initiate in several stock subcultures, pH regime cultures 

and L&T regime cultures however, only the stock cultures successfully auxosporulated. 

As most of the population for the successful clones underwent sexualisation, the clones 

would seem to fit either the first life history strategy of Edlund & Stoermer ( 1997), i.e. 

"synchronous sexuality under favourable growth conditions" as stock cultures had been 

maintained in these conditions for some time prior to sexualisation. Whereas the 
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unsuccessful sexualisation of some of the clones in the pH and L& T assays, would 

appear to fit the second life history strategy "synchronous sexuality under unfavourable 

growth conditions", i.e. the shock of placement into an alternative environment. Having 

said that, most of the light and temperature conditions at which sexualisation occurred 

should have been favourable. Additionally, the clone from Ham Gate Pond (G1) 

sexualised at Ko-11 days, whereas clones from Scion Pond and Ham Gate Pond (G2} in the 

pH regime sexualised at ~. days (Scion Pond also had deformities). Sexualisation 

however occurred in only a small part of the population and so perhaps is better 

described as asynchronous sexualisation. Alternatively, sexualisation in a small part of 

the population suggests rapid decay of environmental cue (Armbrust et al. 1990) which in 

turn may have caused failure to reproduce. Without further experimentation, it is not 

possible to say which life strategy these clones employing. 

There have been few comprehensive studies on the use of live material in diatom 

taxonomy and yet it was an important part of early taxonomist's toolbox. Without the use 

of SEM or TEM, good preservation techniques and often with lower resolution 

microscopes, early diatomists would always describe the live diatom cell or colony prior to 

any analysis of the cleaned frustule. Indeed these early descriptions often relied on the 

live features to inform taxonomic circumscription. Whilst these descriptions were largely 

basic compared to today, the habit of looking at live material appears to have fallen out of 

use, perhaps due to the ease with which numerous samples can now be cleaned and 

examined. Additionally, photographic film is expensive and camera lucida drawings time 

consuming. However, the advent of high specification digital cameras and digital video 

has made examination of live material easier, more accessible and considerably more 

cost effective in the long term. 
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By not including descriptions on live material and considering how those features in 

addition to cell wall morphology, change over time and in different environments, 

diatomists may be missing vital information relating to the ecology and ontogeny of 

diatom taxa. Additionally, many floristic descriptions that do mention live characters and 

habit, do so only briefly and there is the possibility that some of these, in the absence of 

evidence to the contrary, are simply descriptions that originate from those early 

taxonomists that have been repeatedly recycled without context, or are based on the 

authors own, but unpublished observations. Such descriptions need to be verified and 

substantiated if they are to be held up as taxonomic truths. One way to do this is to 

conduct culture experiments, another to observe cells in situ in either cultured or natural 

environments, and diatomist need to be encouraged to publish such observations. Just as 

diatomists have built up extensive databases of taxonomic information based on cell wall 

morphology, diatomists can equally build complimentary databases of information based 

on live material. 

5.5 CONCLUSION AND SUMMARY 

The results of the present investigation show that the adaptive strategy of G. parvulum 

clones primarily involves variation in the morphology of the chloroplasts and mode of 

attachment, and that pH is a dominant factor or predictor in separating clones, suggesting 

there are discrete ecotypes. Culture regime can account for differences in live 

morphology in clones from Scion Pond, Parys Mountain (G1 and G2) and Llyn ldwal (G2) 

showing that these clones are either particularly sensitive or adapted to pH, copper, zinc 

and cadmium respectively. The universal mode of attachment for all clones is as single 

cells attached in valve or girdle view to the substratum however, most clones were also 

able to develop pads, stalks and mass aggregations involving EPS production though not 

in a consistent manner that would allow separation of clones based on mode of 
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attachment. There are suggestions that crowding, bacteria and possibly nutrient depletion 

may act as cues to EPS production. 

Stalk and pad morphology has been established as consisting of a collar and 

differentiated shaft, with stalk length exceeding 3x length of the cell. EPS production in 

most clones and regimes developed in the stationary growth phase (Ka. days) and EPS 

originates from areolae on the valve face, the raphe, mantle areolae, girdle band pores 

and sutures and forms stands of polysaccharide over the surface of the cell. 

Clones subject to pH assay were more variable in live character morphology than any 

other assay, whilst copper and zinc regimes elicited similar morphological profiles and 

sewage and cadmium regimes were the least variable, though loss of pigment may 

indicate physiological stress. 

Sexual reproduction is physiologically and behaviourally anisogamous, however size 

differences occur between clones entering the sexual phase with the parent: initial cell 

length ratio varying between 1: 2 and 1: 5 pm. Non-sexualised populations continue 

asexual division until cell size reaches a point where a cells ability to function is 

compromised and the population dies. Whislt clonal survival is highly variable, lasting 

between 3 and 21 months depending of age and size, smaller cells are more prone to 

producing chains of cells and dense aggregations than larger cells, but overall are less 

variable in terms of the live characters. 
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6 GENERAL DISCUSSION 

The aims of this thesis were to document variation in the distribution and morphology of 

G. parvulum and establish whether different morphological races have particular 

autecologies, or whether morphology is a response to environment, prompting a 

taxonomic revision of the species and the recognition of ecotypes or ecomorphs. The 

combination of an historical perspective and diatom culture observation and 

experimentation, enabled these aims to be explored. 

6.1 CIRCUMSCRIPTION, NOMENCLATURE, TYPIFICATION AND SPECIES 
CONCEPTS 

Whilst contemporary botanical science and the ICBN recognises genotypic and 

ecophenotypic variation in morphology, the recognition of new species occurs because 

the material differed in some small way from the designated type (Rines. 1994), and 

regardless of intent, such workers are following a typological species concept (Rines. 

1994). This is an outmoded concept no longer accepted by the ICBN. Today, the type 

serves a nomenclatural rather than taxonomic role (Longino. 1993; Williams. 1993), but in 

doing so fixes the morphology of a specific specimen, inadvertently promoting its 

comparison with similar and related entities. However, regardless of shifts in species 

concepts, changing circumscriptions and the inclusion/exclusion of individuals from the 

taxonomic set, the name remains with the type specimen. 

With the ICBN rules in mind, it therefore falls to a defined species concept to delimit taxa 

within the G. parvulum complex. However, defining a group of taxa based on a single 

species concept (Biological, Ecological, Evolutionary, Phylogenetic) intrinsically requires 
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the taxonomist to place a larger emphasis and importance on a particular set of criteria, 

sometimes to the exclusion of all others. 

There are many different species concepts (typological, nominalist, biological, phenetic, 

phylogenetic, ontogenetic and evolutionary) and no single concept has been identified or 

accepted as the taxonomic standard. Each has a number of problems, and lack 

correspondence with each other. For example, the Biological Species Concept (BSC) 

rests on the idea that interbreeding (or the ability to interbreed) is of prime importance in 

evolution. Yet breeding compatibility is only one of several evolutionary forces acting on a 

species. Mann & Kociolek (1990) reviewed species concepts in diatoms with particular 

reference to the raphid diatoms, using it as a basis for comparison between different 

groups of organism. This is despite the large number of problems with this concept in the 

literature (e.g. it excludes asexual reproduction and extinct species) (Gallagher. 1980, 

1982; Ghiselin. 1987; McCourt & Hoshaw. 1990; Templeton. 1989). Yet in diatoms, 

taxonomic species are still largely defined by the morphology of the silica cell wall 

(phenetic concept) as evidenced by the taxonomic monographs routinely used for 

identification purposes. The extent to which morphology is reflected in the genotype 

however, is largely unknown. Whether a phenetic, ecological or biological concept is 

used, they all inherently suffer non-correspondence and consequently are difficult to 

compare or apply uniformly. 

As a unifying species concept does not exist, the general approach is different 

classifications are utilised depending on the requirements of the researcher and the 

questions asked, or where one tries to accommodate and explain different aspects of 

each species concept (a pluralistic approach). Mishler & Donaghue (1982) state that 
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single, optimal, general purpose classifications are possible for particular situations, but 

that the criteria in each case are likely to be different. Choice of criterion is of course 

largely down the questions asked and the preferences of the researcher. As long as the 

reasoning is expressed clearly however, reciprocal comparisons should be possible. 

However, data should be sought from all areas of research , where feasible to build up a 

complete picture. Yet in diatoms, cleaned valve morphology is consistently used to both 

group and rank taxa, but does not necessarily reflect biological or evolutionary 

trajectories. 

6.2 EVIDENCE FOR DISCRETE TAXA 

6.2.1 Morphology 

This study agrees with floristic literature that considerable morphological variation is 

inherent in the cell wall of G. parvulum, as evidence by each of the clones studied, with 

the exception of clone River Kennel, which was altogether different. A large proportion of 

the morphological variability observed is a direct result of cell size reduction and 

auxosporulation, accounting for much of the statistically significant differences 

encountered. There were however morphological and behavioural differences attributable 

to assay concentration. Therefore, there is a direct link between physiology/biology and 

morphology and ecology however, morphological variability confounds efforts to separate 

the clones into discrete entities. Whilst the clones can be separated qualitatively into 

morphologically distinct entities based on floristic micrographs and descriptions, and more 

simply by eye, most characters chosen in this study have proven to be insufficiently 

stable to allow quantitative separation. On the other hand, the ratio between upper and 

lower raphe slit, and the ratio between stigma-side and non-stigma side central stria 

density remained constant regardless of size. Both Geitler (1932) and Geissler (1970a) 

have shown that stria density remains relatively constant with decreasing valve size. If 
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different Gomphonema spp. can be shown to have the same intraspecific, but different 

interspecific ratios these two characters may serve to discriminate at the species level. 

Whilst the data shows that a predominant valve shape occurs in each clone, it is not 

consistently associated with a particular size class. 

Qualitatively however, the Scion Pond clone can be separated based on stria density (14-

17/10pm) on the stigma side of the valve. In all other clones, both the stigma and non­

stigma sides have the same stria density, 10-15/10pm). Additionally, clones from River 

Kennel and Llyn Ogwen can be separated based on an unchanging valve shape. This is 

particularly marked in the River Kennel clone, in which there was little variance in any 

character except the number of central short striae. 

Morphological data also indicate that certain clones are more tolerant of certain 

environmental conditions than others, though no one culture treatment induced changes, 

that were consistent with G. parvulum varieties established in published diatom floras. 

However ecophysiologically, the Scion Pond clone can be separated from on the basis of 

its tolerance to organic pollution, the Llyn ldwal, River Kennet and Parys Mountain (G1) 

clones on their pH tolerance, Pen-y-Bryn and Parys Mountain (G2) clones on their copper 

tolerance, Scion Pond, River Kennel and Parys Mountain (G,and G2) clones are tolerant 

of zinc, and Ham Gate Pond, Llyn ldwal, River Kennet, Pen-y-Bryn and Parys Mountain 

(G2) clones are tolerant of cadmium. 
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These data highlight that traditional morphological measures are insufficient to separate 

G. parvulum clones at the species level (also shown by Trobajo & Cox. 2006). lt is 

recommended that future studies on G. parvulum take a keener interest in SEM level 

characters such as the distance between striae, or areola density, the latter has been 

shown to be a reliable character in other taxa (e.g. Amphora). Additionally, a quantitative 

measure of shape such as contour analysis, rectangularity, Legendre or Fourier 

descriptors (Lake et al. 2004; Mou & Stoermer. 1992; Stoermer & Ladewski, 1982; Rhode 

et al. 2001) may yield further information. 

Despite the lack of discriminating characters delimiting the taxa, this study has highlighted 

new and important morphological features not previously recorded for G. parvulum. 

• The G. parvulum complex encompasses other previously described taxa: 

The G. parvulum species complex includes two previously described species, G. 

gracile and G. hebridense, as evidenced by four clones that underwent 

auxosporulation. Clones from Kings Mere, Ham Gate Pond and Llyn ldwal, were 

initially identified as 3 morphs of G. parvulum var. parvulum fo. saprophilum (the 

clone from Abbey Lakes River was also identified as this taxon), and the clone 

from Parys Mountain identified as a morph of G. parvulum var. exilissimum (clone 

from Pen-y-Bryn was also identified as this taxon) according to modem floras. 

After auxosporulation and subsequent size reduction, it was clear that clones from 

Kings Mere, Ham Gate Pond and Llyn ldwal consisted of G. gracile valves and 

Parys Mountain of G. hebridense valves. The data also show that other clones 

consist of previously described taxa, i.e. the clone from Barnwood Pond consists 

of G. cf. lagenula, the clones from Scion Pond and River Kennel, G. cf. innocens 
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and the Abbey Lakes River clone a third unidentified G. parvulum morph (denoted 

G. parvulum #3). 

• The heteropolarity assumption: Auxospores and initial cells are almost isopolar, 

indicating that marked heteropolarity in this taxon requires several vegetative 

divisions before "typical" gomphonemoid heteropolarity is formed. 

• The absence of size reduction: Clone River Kennel does not undergo size 

reduction, a rarely recorded phenomenon (e.g. Geitler. 1932). Mann et al. (1999) 

Round et al. (1990) suggest this is possible if the girdle is sufficiently arched. This 

clone however has also shown a small degree of non-sexual cell enlargement. 

Cox (pers. comm.2006) has suggested there may be sufficient flexibility in the 

valve mantle to allow for some cell enlargement. This phenomenon is rarely 

recorded (see Geissler. 1970a, 1970b). Measurement error has been discounted. 

• Non sexuallsed abrupt changes in cell size: A number of anomalous (not 

linked to assay level) abrupt cell size changes occurred in culture. Mann et al. 

(1999) stated that occasional disturbances in cell division can cause abrupt 

changes in cell dimensions. This would seem to suggest that assay level effected 

disturbance to cell division. If this were the case however, one would expect to 

see similar effects at neighbouring assay levels. This was not the case. Therefore, 

it seems likely that the culture medium was in some way compromised. 

• Production of other forms of EPS: The clone sin this study were seen to 

produce not only stalks and pads typical of the taxon but also, on occasion, a 

mucilage matrix, tufts and floes, non-sexualised pairings and when very small in 
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size, chain of cells. This is the first time these modes of growth have been 

observed in this taxon and may be taxon specific and/or related to a change in 

environment and/or size. 

These observations strongly argue against reliance on diatom valve morphology as the 

sole criterion on which to delimit taxa, and provide a compelling argument for the benefits 

of algal culturing and observation of live material. There are serious issues for the 

sampling of waters and the use of diatom indices of water quality. Diatom (or any 

biological) sampling, by its very nature, provides a snapshot of the community at a 

particular point in time. Even if a particular site is sampled repeatedly every week or 

month, it becomes meaningless unless something is known about the ecology and life 

cycle of that taxon and the time span over which the life cycle occurs. The reason why 

actively sexualised cells are not encountered in samples may simply be that we are not 

looking in the right places at the right time, that sexualisation occurs only in part of the 

population, or that like cells at their lower size limits, sexualised cells are diluted out of the 

population (Round et al. (1990), especially if auxosporulation is relatively rapid. If one 

cannot accurately identify the different stages in the life cycle (as a zoologist would 

identify the juvenile tadpole and adult frog), community analyses, water quality indices 

and taxonomic studies will be invalid, especially if different parts of the life cycle are 

shown to be ecologically as well as morphological variable. 

6.2.2 Experimental Assays 

Overall, all the clones were remarkably tolerant, with widely varying tolerance ranges for 

light, temperature, pH, sewage, copper, zinc and cadmium, only failing to grow at the 

higher metal assay levels. Growth rate generally decreased with increasing metal assay 
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and temperatures above 25°C. Overall, there is little difference between the clones in 

their light, temperature and metal tolerances and ranges. Apparent differences in pH 

optima should however, be treated with caution as growth rates were very variable and 

very erratic, both between replicate cultures and between assay levels. 

There were marked differences between parent cells and progeny for clones from Kings 

Mere and Llyn ldwal in the light and temperature regime, and the clone from Parys 

Mountain in the pH regime. The parent cells grew better under alkaline whilst the progeny 

grew better under slightly acidic conditions. Generally the data agree with the literature 

that G. parvulum is a broadly pollution tolerant taxa. lt is therefore problematic to delimit 

G. parvulum clones based on growth rates. 

Some constituents of algal culture media such as Ethylene Diamine Tetra-acetic Acid 

(EDT A = disodium salt) as well as amino acids, organic matter, humic acids, and fulvic 

acids can detoxify metals. On the other hand, it could be argued that substances such as 

EDT A are representative of a natural process whereby portions of the metal are 

sequestered and therefore a valid addition. lt may also be important in not over-stating 

accumulation rates and tolerances. The separation of the factors involved in diatom 

responses is however difficult, and this is where laboratory experiments can play an 

important role. Each environmental variable can be controlled and quantified, aiding 

recognition of taxa with defined ecological ranges and improving the predictive power of 

diatoms in water quality monitoring and paleaoecological and climate change studies. 

273 



Chapter 6- General Discussion 

6.2.3 Live Material 

The data do not link a particular form of attachment or colony formation to assay level. 

Observations on live material show G. parvulum is as variable cytologically and in colony 

formation as it is morphologically. The data suggest the adaptive strategy of G. parvulum 

clones involves variation in chloroplast morphology and that pH is a dominant factor or 

predictor in separating clones, suggesting there are discrete morphotypes. Clones subject 

to pH assay were more variable in live character morphology than any other assay, whilst 

copper and zinc regimes elicited similar morphological profiles and sewage and cadmium 

regimes were the least variable. Culture regime can account for differences in live 

morphology in clones from Scion Pond, Parys Mountain (G, and G2) and Llyn ldwal (G2), 

showing that these clones are either particularly sensitive or adapted to pH, copper, zinc 

and cadmium respectively. The universal mode of attachment for all clones is as single 

cells attached in valve or girdle view to the substratum; however, most clones were also 

able to develop other modes of attachment, though not in a consistent manner that would 

allow separation of clones. Observations on the light and temperature, and sewage 

regimes were confounded by the absence of data and the presence of bacteria 

respectively. Despite the lack of separation, this study has shown that even the simplest 

of studies can yield valuable information and aid in the understanding of diatom ecology 

and life cycle. 

6.3 SUMMARY AND CONCLUSIONS 

The reliability of diatom indices of water quality depends on accurate identification, 

preferably to species level (Cox. 1991 ). However, diatom classification still largely rests 

on the features of the diatom cell wall (Round et al. 1990) and assumes that wall 

morphology is constant and species specific. This study shows that this is not the case 

and that the diatom can express considerable morphological variability. However, the 
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development of the cell wall and the ways in which structure and shape are determined 

remain largely unknown. The outline of a developing hypovalve is probably determined by 

its parent wall, however major shape changes can be introduced, as shown in this study 

(clone Llyn ldwal), at the auxospore/initial valve stage when there are fewer constraints 

on size and shape, and these changes can be propagated over several generations. The 

initial cells rarely conform to the "typical" morphology of the taxon (clones from Kings 

Mere, Ham Gate Pond, Llyn ldwal, Parys Mountain) and can take several divisions before 

"normal" valve pattern and shape is established. This begs several questions. How is the 

polarity of heteropolar species set? How does the cell know what shape to form? How is 

the cell able to control its dimensions of length and width, which are species specific? 

Considerable further work is required before a revised taxonomy can be considered for G. 

parvulum. lt is recommended that similar ecophysiological and morphological studies be 

carried out in combination with mating experiments and biochemistry to clarify the status 

of G. gracile, G. hebridense, G. innocent, G /agenula and other G. parvulum varieties and 

forms forming the complex, but not encountered in this study. Samples of the clone from 

the River Kennel also need to be examined further to establish whether this is a separate 

taxon requiring upgrade to species. lt could be argued that these species contain stages 

that would have been identified as G. parvulum, but the definitions of G. gracile and G. 

hebridense need revising. The evidence points to several distinct entities subsumed 

under G. parvu/um strongly suggesting that G. parvulum should be reappraised and 

divided into separate species or varieties. 

Finally, it is recommended that diatom indices of water quality bear in mind (in the 

absence of a revised taxonomy) that the taxonomic status of G. gracile and G. 
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APPENDIX I 

MEDIA PROTOCOLS AND RECIPES 

Standard Woods Hole MBL (Stein, 1973), pH 7.2 

Macronutrients Stock Solution ml of stock solution per 1 
Concentration mg/L Litre of de-ionised water 

CaCI2. 2H20 36.76 1.0 

MgS04.7H20 36.97 1.0 

NaHC03 12.60 1.0 

K2HP04 8.71 1.0 

NaN03 85.01 1.0 

Na2SiOJ. 9H20 28.42 1.0 

Micronutrients 

Na2 EDTA 4.36 0.25 

FeCI3 . 6H20 3.15 0.25 

CuS04.5H20 0.01 0.25 

ZnS04.1H20 0.022 0.25 

CoCI2. 6H20 0.18 0.25 

MnCI2. 4H20 0.006 0.25 

Na2Mo04. 2H20 1.0 0.25 

Other Ingredients 

IM Tris 121 2.0 

• pH adjusted to 7.2 with HCI. 

• Provides elemental Cu and Zn concentrations of 2.63 and 5tJg/l respectively in the 

stock solution. 

• 0.25 ml of each of Cu and Zn stock solutions in1 Litre of MBL provides elemental Cu 

and Zn concentrations of 0.0006575 and 0.00125tJg respectively. 
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Artificial Sewage Protocol (adapted from OECD. 1981) 

Three solutions made as follows: 

A 27 .5g of peptone into 250 ml water 

B 27.5 g of meat extract into 250 ml water 

C 1.875 g of Urea 

dissolved in 250 ml water 

437.5 mg NaCI 

• Mix the three solutions in a 1: 1: 1 ratio. This is the stock sewage solution. 

• Full strength artificial sewage solution was made by adding 3.13mls of mixture to 1 

litre of water. This gives a BOD of 160 mg/1 and a mean concentration of ammonia of 

45 mg/1. 
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Concentration Series for Artificial Sewage Experimental Regime 

Using standard MBL as the base for the artificial sewage medium, the following 

concentration series was made by addition of varying quantities of stock sewage solution. 

Sewage Concentration 

Full strength 

1/2 strength 

1/5 strength 

1110 strength 

1/25 strength 

279 

ml of Stock Sewage 

Solution per Litre of 

MBL 

3.13ml 

1.565 ml 

0.626 ml 

0.313 ml 

0.1252ml 
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Copper and Zinc adjusted Woods Hole MBL for Experimental Regimes 

Where the required elemental Copper and Zinc concentrations were > 0.051Jg/l, the 

micronutrients CuS04.5H20 and ZnS04.7H20 found in standard MBL were suitably 

adjusted. 

Where the required elemental Copper and Zinc concentration were ;:£).05 IJQ/1, stronger 

stock solutions were produced as follows: 

Micronutrients Stock solution 
concentration mg/L 

1.9 

2.1988 

This provides elemental Cu and Zn concentrations of 499.7 and 5001Jg/1 respectively, in 

the stock solution. 

1 ml of this stock solution in 1 Litre of MBL provides elemental Cu and Zn concentrations 

of 0.5pg each. 
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Concen!r~ti()n ser,i~s;for Experirnen~ll Regirnes 

A. Copper Regime ~ Initial Hun 

petll:.itre of, MBL 

16 0.04~ 

8' 0.021 

4 0.0111 

2: 0!0053 

1 0!0026 

0.5' 0!00.13 

0!25' i0:00066 

:O.J25 i.0:00033 

10!062 :o:ooo1a 

0:00 0.00 
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A Copper Regime - Extended Run 

rnl' of St()ck Cuso·4~~H20 JJgiotelementai 'Cu! 
per, 'I.Litre ~of, 1\11~1.!. in 11l!.iire of, IVIBL 

25' 1Z.5 

10· 5;o, 

i5 2:5 

2 1!0 

il •0;5 

0.5 '0,251 

.0.2 :0.10' 

0.1 0.05' 
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B. Zinc Regime - Initial Run 

ml of Stock ZnS04. 1H20 IJQ of elemental Zn 

per 1 Litre of MBL in 1 Litre of MBL 

16 0.08 

8 0.04 

4 0.02 

2 0.01 

1 0.005 

0.5 0.0025 

0.25 0.0013 

0.125 0.00063 

0.062 0.00031 

0.00 0.00 
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'm I ()f $tock zl1so4 .. ,7,1-t2b iper IJg!of elemiu'itai!Zn in 

1! Li~re of l'v'IEIL 1 Litre of MBL. 

25 12:5 

10 !5.0 

5 2.5 

2 1.0 

1 0.5 

0;5 o:25 

0!2 Ol1.0 

0::11 0!05. 
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Cadmium Regime 

ml/~1 of Stock CdCI2.2.5H20 in ~g of elemental Cd in 1 

1 Litre of MBL Litre of MBL 

2.5ml 12.5 

1.0ml 5.0 

500!-11 2.5 

200!-11 1.0 

1 00!-11 0.5 

50!-11 0.25 

20!-11 0.10 

10!-11 0.05 

41-11 0.02 

0.00 0.00 

As Cd is not biologically required, the concentration series used a stock solution of 

CdCb.2.5H20 containing 10.158 mg of compound per 1 litre of water, providing an 

elemental Cd concentration of 5 mg/1. 

0.1 ml (1 00 IJI) of CdCb.2.5H20 stock solution in 1 Litre of Standard MBL provides an 

elemental Cd concentration of 0.51Jg. 
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