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ABSTRACT 

The European Union (EU) banned disposal of sewage sludge (SS) at sea in 

1998. Since that time the application rate of SS to land has risen significantly and is set 

to rise further. Fifty-two percent of SS was disposed to land in the UK in 2000. Land 

application is thus possibly an important transport route for SS-associated organic 

chemicals into the environment. 

There are now over 3000 different pharmaceutical ingredients in use in the EU 

and the last decade has also seen an increase in reports of pharmacologically active 

compounds in the environment (e.g. in watercourses, open ocean, soil). Regardless of 

this there is still a significant lack of knowledge as regards the transport and fate of 

pharmaceuticals in the environment, particularly in soils. The present project therefore 

investigated the biotic fate of the selective serotonin re-uptake inhibitor (SSRI), 

Prozac® (Fiuoxetine HCI), and the 1 ,4-benzodiazepine, Valium® (Diazepam) and their 

major human metabolites Norfluoxetine HCI, Temazepam, Oxazepam and 

Nordiazepam in aUK SS-amended soil. 

Extraction techniques, such as solid phase extraction, for the analytes from a 

range of matrices (water, soil and plant material) were developed, which allowed 

subsequent analysis using developed high performance liquid chromatography -

electrospray ionization - multistage mass spectrometry (HPLC-ESI-MS") techniques. 

Ratio calibration using deuterated internal standards allowed the generation of 

quantitative data. The pharmaceuticals were found to be resistant to biodegradation in 

both liquid culture studies (60 days), and even after prolonged exposure in SS­

amended soil (>200 days; Fluoxetine HCI only). Oxazepam was the only 1 ,4-

benzodiazepine studied which underwent biotic transformation(- 80%) in liquid culture 

studies. Evidence to support the theory that the transformation product seen was a 1 ,4-

benzodiazepine tautomer, is presented. 

Results of what is believed to be one of the first examples of research into 

pharmaceutical uptake by plants are presented. In a preliminary tissue culture study 

the translocation of Fluoxetine HCI into Brassica stems (5% uptake) and leaves (3% 

uptake) confirmed that plant uptake of some pharmaceuticals may be a potential 

transport route in the environment. The stability of the pharmaceuticals under 

environmentally relevant conditions has implications for the consequent accumulation 

in SS-amended soils and possible subsequent uptake into plants grown on the soils. 
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Chapter One: Introduction 

1. Introduction 

1.1. Background 

During the last decade the occurrence of pharmaceuticals and personal care 

products (PPCPs) in the environment has been repeatedly documented 

(Ayscough et al. , 2000; Halling-Sorensen et al. , 1998; Heberer, 2002; Ternes, 

1998; Daughton and Ternes, 1999). A range of studies has shown that 

pharmaceuticals are neither completely removed by sewage treatment works 

(STW) processes, nor completely degraded in the environment; hence the 

environmental occurrence of PPCPs is perhaps of little surprise (Carballa et al., 

2004; Golet et al. , 2002; Heberer et al., 2001 ). 

As concern grows in the public eye (CBC, 2004; Townsend, 2004) UK agencies 

such as Department of Environment, Food and Rural Affairs (DEFRA, 2005) 

and The Environment Agency (EA, 2005a) are expressing their concerns about 

the risks of pharmaceuticals within sewage sludge entering the environment. In 

the EU the POSEIDON project, described as an 'assessment of technologies 

for the removal of pharmaceuticals and personal care products in sewage and 

drinking water to improve the indirect potable water reuse', aimed to provide 

solutions to some of these concerns and was completed in 2004 (Ternes, 

2004 ). The latter project assessed a range of different methods for wastewater 

collection and treatment to remove PPCPs, including flocculation, use of 

activated carbon, various oxidation processes and membrane filter 

technologies. lt was concluded that ozone-b~sed oxidation treatments, which 

are inexpensive but high energy processes, are capable of removing many 

PPCPs from waste water. However, small scale waterworks without advanced 

technologies would not remove the more polar compounds. Therefore it was 
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recommended that for drinking water treatment, ozonation, activated carbon 

filtration and UV or ozone advanced oxidation should be used to prevent 

PPCPs entering drinking water (Ternes, 2004). 

However, even following the POSEIDON study, relatively little is known about 

the fate and transport of pharmaceuticals in the environment; although several 

possible exposure routes have been identified. As human metabolism of 

pharmaceuticals is incomplete, both parent pharmaceuticals and metabolites 

may be excreted. These compounds enter either the aqueous or the sludge 

phase of sewage, depending upon their individual physico-chemical 

characteristics. Both abiotic and biotic processes may then act upon these 

compounds during STW processes, but incomplete degradation will result in 

discharge of pharmaceuticals into waterways or in the terrestrial environment as 

a component of solid sewage sludge when it is used either as an agricultural 

fertilizer or sent to landfill. Ayscough et al., (2000) highlight the processes 

occurring in domestic sewage, in STW and within the aquatic and terrestrial 

compartments. The processes that may occur along this transport route include; 

hydrolysis, biodegradation (aerobic and anaerobic), adsorption, direct and 

indirect photodegradation, volatilisation, run-off and leaching. Such transport 

routes into the environment are summarised in Figure 1 .1 . 
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The aim of the present research was to study the biodegradation of selected 

PPCPs and their human metabolites in agricultural soil treated with STW solid 

faecal matter (also known as biosolids or sludge) and the possible uptake of 

PPCPs into crops grown on such soils. This transport route into the 

environment is of importance as application of sewage sludge as a fertilizer is 

still common practice, and is often performed to improve soil structure and 

fertility (Stevens et al., 2003). 

In December 1998 disposal of sewage sludge to sea was banned in the EU 

countries (Directive 91/271/EEC). Consequently disposal of sludge by 

application to agricultural land as a fertiliser increased substantially. Guidelines 

for disposal are set out in a voluntary agreement known as the 'Sludge Matrix' 

(1999). Under this agreement only conventional or 'enhanced- treated' sludges 

can now be applied to land used for growing food, fodder crops or grazing 

(DEFRA, 2005). The changes in the disposal practices in the UK are illustrated 

in Figure 1.2 to Figure 1.4. The method used for treating sewage sludge prior to 

disposal in UK, is also undergoing change. Lime treating ('enhanced treatment') 

is becoming more common in the UK, with approximately 40% of sewage 

sludge disposed in Devon being lime treated (Millns, 2004). The increasing use 

of lime treatment may have several important implications for biodegradation 

within the STW and impacts upon bacterial populations present in the soil. 
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Source: OFWAT, Scottish Executive and DOE Northern Ireland (DEFRA, 2002a) 
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In the UK in 1999/00 around 1 million tonnes of sewage sludge were produced 

per annum, of which 610,200 tonnes of dry solids (tds) were disposed of to 

land, which equates to 54% of sewage sludge produced. The south west of the 

UK disposed of 5% of this sludge to land (ea 30,000 tds) , of which about 40% 

(ea 12,000 tds) was lime treated (Millns, 2004). The receiving soils in Devon are 

typically derived from rocks of a slate or shale nature i.e. Denbeigh series (e.g. 

type 541 , coarse loamy soil as classified by the Lawes Agricultural Trust Soil 

Survey (1983)). lt has been estimated that 10 million tonnes of sludge were 

produced in the EC by 2005. Clearly disposal of such amounts of biosolid 

material represents a potential route for environmental dispersal of associated 

organic contaminants, including a range of pharmaceuticals. 
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1.2. Aims and Objectives 

The objectives of this study were to determine the transport and fate of selected 

generic pharmaceuticals in sewage sludge-amended soils. This was to be 

achieved by first selecting the target compounds for study via an extensiv·e 

literature search and review. 

Methods for extraction and analysis of these compounds from water, soil and 

plant material were then to be developed; and these methods were then to be 

applied in a range of biodegradation and plant up-take experiments. As 

relatively little work had been performed on the fate and transport of 

pharmaceuticals in soils at the commencement of this study, it was necessary 

to consult literature on the fate of other polar organic chemicals such as 

pesticides, for background and method information. 

For pesticide regulation there are four major issues that are considered. These 

are: transport of residues into crops, resultant effects on both aquatic and 

terrestrial biota and potential for transfer along the food chain; risk of 

groundwater contamination and long-term impacts upon soil quality (Gevao et 

al., 2003). lt therefore seemed logical to consider the same issues with regards 

to pharmaceuticals. This project aimed to answer some of these questions in 

respect of selected generic pharmaceuticals. 
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1.3. Selection Procedure 

The first stage of the study was to complete an extensive review of the literature 

as a means to determine which pharmaceuticals (and human metabolites) 

should be selected as target analytes for these experiments. At the beginning of 

this study (2003) knowledge of the fate and transport of drug metabolites was 

particularly limited as they were not generally included within pharmaceutical 

studies even though many metabolites are known to be bioactive (Ayscough et 

a/., 2000). A list was compiled of all pharmaceuticals which were reported to 

have been found in the environment. Few quantitative data on pharmaceuticals 

in sewage sludge were found. However each one of the potential target 

pharmaceuticals was assessed for selection based on a number of criteria 

(Figure 1.5). 

• Toxicity 

• Usage (UK data where available) 

• Biodegradation 

• Photodegradation 

• Metabolites (identity and bioactivity) 

• Occurrence in the environment (location and concentration) 

• Extent of removal in STW 

• Other possible sources i.e. potential interference problems 

• US EPA modelling suite results 

Figure 1.5. Selection Criteria 

There are over 3000 different pharmaceuticals licensed for use in the UK 

(Sebastine and Wakeman, 2003). Therefore it was important to prioritise 

research into those compounds that are most likely to be present within the UK 

environment. Sebastine and Wakeman (2003) state that the criteria to be 

considered should include those drugs that are most heavily used; hence they 
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began their research by collecting and manipulating data to generate a list of 

annual consumption by active ingredient mass. Kreuzig et al., (2003) also used 

usage data along with positive findings of pharmaceuticals in the environment 

as their selection criteria , but also considered the availability of 14C-Iabelled 

radiotracers as these may be required to trace their movement in soil. 

Application of such choice criteria (Appe.ndix; Tables A.1 to A.8) resulted in the 

selection herein of Fluoxetine Hydrochloride and Diazepam, (trade names 

include Prozac® and Valium®) (TOXNET, 2006b; TOXNET, 2006a). These 

compounds were selected as they have a high usage and their metabolites are 

known to be bioactive. Alongside this, information regarding toxicity to 

organisms was obtained and US Environmental Protection Agency (EPA) 

models predicted that the dominant removal process for these compounds in 

STW would be to adsorption to sludge, and that little or no biodegradation 

would be likely to occur (Appendix, Table A.1 ). Therefore it was felt that this risk 

of SS contamination by these compounds and subsequent transfer to the 

terrestrial environment was of significant concern and warranted further study. 

Subsequent press coverage received by these drugs further emphasised public 

concern over their fate and perhaps supports their selection (CBC, 2004; 

Townsend, 2004; Revill, 2003; Barron, 2004; Barnett, 2003; Ternes, 2004; EA, 

2005a; EA, 2005b; EA, Environment Agency). 
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1.3.1. Fluoxetine HCI 

The selective serotonin reuptake inhibitor (SSRI) Fluoxetine HCI (Figure 1.6), 

which is a racemate of two enantiomers, is commonly used for the treatment of 

depression, bulimia and obsessive-compulsive-disorders (Davis and Phil, 

2001 ). SSRis were first brought to the market in the 1980s and Fluoxetine HCI 

was first sold in 1986. Fluoxetine HCI is a very commonly used medication and 

has featured on the top 200 most prescribed drugs list for the USA since 1995, 

in the UK top 100 prescribed pharmaceuticals by mass, with 2.83 tonnes of 

Fluoxetine HCI dispensed in 2000 (Sebastine and Wakeman, 2003). lt is 

estimated that over 34 million people have taken Fluoxetine HCI in over 1 00 

countries (Fong, 2001 ; rxlist, 2006). 

Human metabolism of Fluoxetine HCI by cytochrome P450 isozymes results in 

the formation of only one major bioactive metabolite; Norfluoxetine (also known 

as Desmethylfluoxetine ). The majority is excreted in urine along with less than 

10% of the parent compound or N-glucuronide (Figure 1.6) (Fiaherty et al., 

2001 ; Hiemke and Hartter, 2000). Fluoxetine is also able to inhibit CYP 1106, 

CYP IA2 and CYP IIIA4 which are drug-metabolising enzymes and can cause 

complex drug-drug interactions. The potency of either S or R-Fiuoxetine is 

equivalent to that of S-Norfluoxetine. The R-Norfluoxetine enantiomer is still 

bioactive although activity is significantly reduced (TOXNET, 2006b). Fluoxetine 

is known to have a higher volume of distribution that the other SSRis, which 

implies extensive tissue accumulation, especially in the lungs, although brain 

accumulation is slower than with other SSRis (Hiemke and Hartter, 2000). 
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The mode of action of SSRis such as Fluoxetine, involves blocking of reuptake 

of neurotransmitters such as serotonin, dopamine and norepinephrine. This 

blocking effectively increases the levels of 5-hydroxytryptophan (5-HT) available 

by preventing repackaging of this compound into synaptic vesicles (Fong, 

2001 ). 

Fong (2001) presents an extensive review of ecotoxicological data for 

Fluoxetine HCI and highlights the fact that serotonin plays a role in a variety of 

physical systems in a range of organisms. Therefore drugs, such as Fluoxetine, 
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that mimic this action could have deleterious effects on a large number of 

organisms if released into the environment. These effects, discussed in detail 

by Fong (2001) and summarised herein, range from vasoconstriction, effects on 

retinomotor activity, metamorphosis, reproduction and ciliary activity. 

Serotonin has previously been shown be involved in the reproduction of the 

common estuarine fish, the Mummichog (Fundulus heteroclitus). lt inhibits 

steroid-induced meiotic maturation of ovarian follicles. These fish spawn on a 

biweekly pattern, which appears to be triggered by the decrease of pituitary 

serotonin secretion and the increase of hypothalamic serotonin secretion, 

suggesting that the levels of serotonin in the brain play a key role in 

coordinating the specific spawning pattern. Serotonin is also known to increase 

gonadotropin levels in the Atlantic Croaker (Fong, 2001 ). 

Various physiological systems in salmonids are regulated by serotonin, such as 

the control of vasoconstriction in trout. lt also causes lowered blood pressure 

and decreases in arterial oxygen tension in trout. Salmon that have a 

tryptophan (a precursor to serotonin) deficient diet are often found with 

scoliosis, a spinal deformation. Teleosts and cartilaginous fish retinas contain 

serotonin, which appears to be involved in retinomotor movement (Fong, 2001 ). 

Serotonin is also found in amphibians where its role is to disperse melanin in 

Red-spotted Newts (Notophta/mus viridescens). In the European Green Toad 

(Bufo viridis) and the African clawed Frog (Xenopus /aevis) the role of serotonin 

is to prevent progesterone-induced oocyte maturation, and it is therefore 

serotonin antagonists that trigger maturation of the oocytes. However, in 
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Starfish, an opposite role is seen, where serotonin actually induces oocyte 

maturation (Fang, 2001 ). 

There has been little research of this type involving mammals. However there is 

evidence that in mink, rats, mice and silver foxes, serotonin suppresses 

predatory aggression. This evidence points towards a serotonin-related dietary 

response that controls the predatory behaviour of these carnivores (Fang, 

2001 ). 

Serotonin also plays roles in the physiology of aquatic worms. lt regulates egg­

laying behaviour in Caenorhabditis elegans (nematode), and mediates 

swimming and feeding behaviour in leeches. In sea urchins serotonin has a 

number of roles, such as increasing swimming speed (as does 5-HT), regulation 

of cell division in early embryonic stages and in embryos serotonin antagonists 

elevate intracellular free calcium. Protozoans are also affected by serotonin. In 

Tetrahymena thermophila, cilia regeneration is down to the action of serotonin, 

as it stimulates phagocytosis. 

The role of 5-HT in aquatic invertebrates is particularly variable. Its role includes 

involvement within the reproductive systems of clams and mussels, where it can 

induce spawning and oocyte maturation. lt has also been linked to behaviour, 

as it induces aggression in crustaceans, especially lobsters and crayfish. Other 

roles include cilia regeneration (in protozoans ), triggering of rhythmic 

contractions (in coelenterates), negative phototaxis (in bryozoan larvae), and 

metamorphosis (in hydrozoan larvae). The effect of Fluoxetine on aquatic 

invertebrates is thought to be due to its inhibition of serotonin reuptake 
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transporters e.g. in lobsters (effectively mimicking the action of 5-HT), or due to 

its ability to bind to 5-HT e.g. in frog embryos (therefore antagonising the 5-HT 

action) (Fang, 2001 ). 

Fluoxetine has been shown to cause a serotonin-induced increase in 

gonadotropins in both male and female pre-spawn goldfish. Serotonin is also 

found in skate retina biopolar and amacrine cells. When Fluoxetine was applied 

to these fish serotonin uptake in these biopolar cells was not blocked, and was 

often elevated . In Zebra Mussels (Dreissena polymorpha) Fluoxetine triggers 

both sexes to spawn because in these organisms oocyte maturation, germinal 

vesicle breakdown and spawning is regulated by serotonin. Fluoxetine at a 

concentration of 5x1 o-6 M caused all male mussels to spawn. However, only 

5x1 o-s M of Fluoxetine was enough to cause statistically significant increases in 

male mussel spawning, and only 5x1 o-6 M for females. However, higher 

concentrations of Fluoxetine (10-3 to 10-4 M), resulted in decreased spawning. 

This suggests that higher concentrations of Fluoxetine may be toxic to these 

mussels. Fluoxetine has also induced spawning in both sexes of the marine 

bivalve, Macoma balthica. The reproductive system of fresh water Fingernail 

Clams ( Sphaerium striatiunum) is also affected by Fluoxetine. By mimicking the 

action of 5-HT it causes juveniles to be released i.e. causing premature birth. In 

Procambarus clarkii (Crayfish) and Uca pugi/ator (Fiddler Crab) Fluoxetine 

exposure resulted in enlarged ovary and oocyte formation. lt can also stimulate 

testicular development in the Fiddler Crab. Another effect of this pharmaceutical 

on the Fiddler Crab is enhanced pigment dispersion, which also occurs in 

Macrobrachium ohione (shrimp) (Fong, 2001). 
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The stimulation of ciliary beating in reptiles (frogs); echinoderms and molluscs 

are all affected by serotonin. In Helisoma trivolis (a freshwater gastropod) not 

only is ciliary beating affected by serotonin but so is embryo rotation, within egg 

masses. A greater degree of rotation has been measured when Fluoxetine was 

applied at 1 o-6 and 1 o-5 M. Although once again a toxic effect has been 

suggested, at higher concentrations (10-4 M) this rotation was decreased. 

Fluoxetine has also been shown to have an impact on marine gastropod larvae. 

Fluoxetine has caused metamorphosis in Llyanassa obsoleta (Mud Snail) larvae 

and stimulates out of season gamete release in M a coma balthica (bivalve) 

(Fang, 2001 ). 

An interesting effect of Fluoxetine, that is highly relevant to the aims of the 

current project since the fate of selected pharmaceuticals in SS treated soil was 

to be investigated, occurs with Lumbricus terrestris (Earthworm). In the 

earthworm, Fluoxetine mimics the action of 5-HT and hence causes decreases 

in locomotor activity with circadian rhythm (Burns et al., 1992). 

Brooks et al., (2003b) performed work into the toxicity of Fluoxetine to aquatic 

biota before producing a preliminary aquatic risk assessment for Fluoxetine 

(Brooks et al., 2003a). Fluoxetine is known to act by blocking serotonin 

reuptake transporters. lt is also known to work at other sites including 

norepinephrine uptake and Sigma receptors, as well as being active at neuronal 

and muscle nicotinic acetylcholine receptors. The binding of Fluoxetine to these 

other receptors is of concern as it could result in unknown and therefore 

unpredictable effects in organisms. Extracellular norephinephrine and dopamine 

has been shown to increase in rats exposed to Fluoxetine HCI. In fish such as 
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the Japanese Medaka (Oryzias laptipes) Fluoxetine has been shown to affect 

neuroendocrine function. Foran et al., (2004) observed a low but s.ignificant 

number of developmental abnormalities in Japanese Medaka offspring, along 

with raised plasma estradiol levels in the maternal fish treated with Fluoxetine. 

Fluoxetine concentrations of only 116nM have been found to detrimentally 

affect Daphnia Magna (crustacean) reproduction (Brooks et al., 2003b) . 

Brooks et al., (2003b) completed a study to evaluate the toxic environmental 

hazard of Fluoxetine HCI to benthic and pelagic organisms. Hyalella azteca 

(amphipod) and Chironomus tentans (insect) were used as test organisms for 

sediment toxicity experi.ments, and Pseudokirchneriella subcapitata (alga), 

Ceriodaphnia dubia (crustacean), Daphnia magna (crustacean), Pimephales 

promelas (fish) and Oryias latipes (fish) for waterborne toxicity experiments. 

Low dosages (0.1-1 J..IM) have also been shown to impact embryonic Physa 

elliptica rotational behaviour (Uhler et al., 2000), and even induce male mussel 

spawning (50nM) (Fong, 1998). Arcand-Hoy and Benson (2001) have shown 

serotonin to induce release of gonadotropins in some fish species, which in turn 

induces sex steroid synthesis, and controls development of oogenesis. Bodar et 

al., (1988) and Ebert (1993) have shown that low-level exposure may increase 

fecundity but often results in decreased egg and body size. Hoonkoop, 

Luttikhuizen et al., (1999) and Nation (2002) believe that future research into 

the impact of Fluoxetine on crustacean reproductive stimulation and 

invertebrate reproduction timing is essential. 
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In summary, the effects of SSRis upon organisms in the environment have the 

potential to be wide reaching and very variable. Effects range from impacts 

upon the biochemical (blood system), cellular (reproduction), behavioural 

(mobility), and even physiological levels (metamorphosis). Such factors are 

important drivers for an investigation into the environmental fate of Fluoxetine. 

The first evidence of Fluoxetine and Norfluoxetine bioaccumulation in three fish 

species, sampled from an effluent-dominated stream in Texas, USA, was 

published by Brooks et al., (2005). The highest concentrations were found in the 

brain (Fiuoxetine = 1.58 ng g-1
; Norfluoxetine = 8.86 ng g-1) , and liver 

(Fiuoxetine = 1.34 ng g-1; Norfluoxetine = 10.27 ng g-1) followed by the muscle 

tissues (Fiuoxetine = 0.11 ng g-1
; Norfluoxetine = 1.07 ng g-1) . Data were used 

to calculate predicted human exposure levels, based on a mean consumption 

rate of 0.286 kg mear1
. For Catfish (lctalurus punctatus) and Black Crappie 

(Pomoxis nigromaculatus) Fluoxetine exposure was calculated to be 34.3 ng 

mear1 and 37.2 ng mear\ and 22.9 ng mear1 for Bluegill (Lepomis 

macrochirus). 

Sebastine and Wakeman (2003) identify Fluoxetine as a compound that may 

accumulate and cause problems in the aquatic compartment of the 

environment. They make this judgement based on usage data and PEC/PNEC 

(predicted environmental concentration I predicted no-effect concentration) 

ratios (sourced from Webb (2000)). Webb (2001) predicted that concentrations 

of Fluoxetine in UK effluents would be around 1.2 nM, from the UK European 

Medicines Evaluation Authority and the UK Medicines Control Agency data, 
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who also use PEGs. In the EU PEC for the purposes of legislation is evaluated 

using the following equation. 

PECsurfacewater (g L-1
) =A (1-R + 100) 365PVD 

When; A = predicted usage per year, in the relevant geographic area (kg) 

R = removal rate (in STW) (%) 

P = population in geographic area 

V= volume of wastewater per capita per day (m3
) 

D =dilution factor (dilution of wastewater by surface flow) 

When the calculated PECsurtace water is <0.01 j..Jg L-1 no further testing or 

evaluation is legally required . The PNEC is usually based on standardised 

acute toxicity studies on fish, algae or Daphnia. The lowest value achieved for 

either ECso or LCso is then used to calculate the PNEC. The formula for this 

calculation is: 

PNEC = EC + AF 

When; EC = effective concentration (i.e. EC50) 

AF = assessment factor (to account for a degree of uncertainty in the test 

data) 

The PEC:PNEC ratio (or Hazard Quotient) can then be calculated. If this ratio is 

<1 the compound in question is not considered to be a problem. However if the 
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ratio is >1 then there is a risk of the compound accumulating in the 

environment. 

The lowest observed effect seen by Brooks et al. , (2003b) was an order of 

magnitude higher than reported concentrations of Fluoxetine in the 

environment. Toxicity data generated in the study by Brooks et al., resulted in a 

Hazard Quotient <<1 , although they also stress the importance of chronic 

impacts, as opposed to acute toxicity, upon aquatic organisms. Fang (1998) 

believed that chronic responses to Fluoxetine may occur at nM or pM 

exposures. 

The use of Hazard Quotients does not result in the classification of these target 

compounds as potential environmental accumulators. However there is criticism 

of these types of risk assessments. O'Brien and Dietrich (2004) point out that 

the dilution factor (1 :1 0) typically used is not environmentally relevant. Most 

receiving surface waters in Europe actually have effluent-water dilution ratios 

between 1:1 and 1:5. Other criticisms arise from consideration of acute toxicity 

only and the disregard of potential toxicity arising from mixtures of compounds 

within the environment. 

Johnson et al. , (2005) drew comparisons between EU PECs and US EICs 

(environmental introduction concentration, PEC equivalent) and undertook a 

water column dissipation study with a range of SSRis, including Fluoxetine. 

Artifical ponds and microcosms were used to determine the aquatic half-lives in 

this 83 day study. Results indicated that the EU PEC system (Fiuoxetine PEC = 

0.220 IJg L-1) was more cautious than the US EIC system (0.23 IJg L-1) , but this 
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is due to the assessment trigger values (EU = 0.01 IJg L-1, US = 1.0 IJg L-1) . The 

dissipation study results pointed to Fluoxetine having a biphasic dissipation 

nature, with average first phase dissipation half-life of 3.8 days, and second 

phase of 76.7 days. Dissipation rates were researched at a range of 

concentrations, and at lower concentrations (23.5 IJg L-1
) second phase half­

lives were found to be close to infinity. Johnson et al. , believe that this biphasic 

nature of dissipation in conjunction with Koc values (>4.3) acts as supporting 

evidence for the sequestration of Fluoxetine into sediments, and that 

concentration of Fluoxetine in sediments may be higher than in the water 

column. 

For these · reasons, alongside the lack of an equivalent terrestrial risk 

assessment, a PEC for sewage-sludge was calculated . This calculation took 

account of factors such as sewage sludge production rates, compound 

production rates and predicted partitioning behaviour and degradation within the 

SlW. This resulted in the predicted concentration of 0.244 IJg g55-
1 for 

Fluoxetine (detailed calculations can be seen in Appendix; Figures A.3 and A.4) 

At the outset of this project virtually nothing was known about the behaviour of 

these target compounds on sewage sludge amended soils, including 

information on their persistence and hence potential accumulation. For this 

reason it was felt that the PECss posed significant risks to the environment 

should accumulation within the soil occur. 
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1.3.2. Diazepam 

Diazepam (Figure 1.7), a benzodiazepine, is a sedative and anti-anxiety drug. 

Status epiepticus, acute cocaine poisoning and a range of anxiety disorders are 

treated with Diazepam (Davis and Phi I, 2001 ). lt is a common and heavily 

prescribed drug featuring in the top 25 pharmaceuticals used in Denmark in 

1997, with 20.7 million daily defined doses, the equivalent of 0.207 tonnes 

(Ayscough et al. , 2000). High levels of usage in the US lead to a ranking on the 

top 200 prescribed drugs from 1995 to current (rxlist, 2006). 

Hepatic metabolism primarily using CYP2C19 and CYP3A4 followed by 

glucuronidation, causes demethylation and 3-hydroxylation of the parent 

compound to form the major metabolites Oxazepam, Temazepam and 

Nordiazepam (TOXNET, 2006a) which are all known to be bioactive, and two 

(Oxazepam and Temazepam) are also prescribed drugs in their own right 

(Figure 1. 7). 

N-dealkylation .. 

Cl Cl 

Diazepam 

I 
3-hydroxylation 

~ 
3-hydroxylation 

~ 

N-dealkylation 

l--fo 
1 rOH 

Cl Cl --N 

Temazepam Oxazepam 

Figure 1.7. Human Metabolism of Diazepam; parent compound and metabolite 

structures 
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Diazepam's seizure suppression action comes from interaction with A-type 

aminobutyric acid (GABAA) receptors. GABA is the central nervous system 

major inhibitor neurotransmitter. Normally GABA opens chlorine membrane 

channels when it interacts with this receptor. The presence of the chloride ions 

then causes an inhibitory potential. This lowers the capability of neurons to 

depolarize the threshold potential, which produces an action potential (i.e. 

chloride entrance inhibits neuron transmission). Seizures can be linked with 

excessive depolarisation of neurons. lt is thought that the strength of the binding 

of GABA to the GABAA receptor is influenced by Diazepam and that Diazepam 

effectively increases GABA action (TOXNET, 2006a). 

Diazepam was detected in eight out of twenty STWs tested by Ternes (1998) 

for a range of pharmaceuticals. The maximum concentration detected in STW 

was 0.04 ng L-1
. However when environmental samples, such as river and 

stream waters, were taken it could not be found at concentrations above the 

limit of detection (LOO = 0.03 ng L-1
). Other researchers such as Richardson 

and Bowron (1985), Ternes et a/., (2001) and Van derV en et al., (2004) have 

also found Diazepam in STW influent (0.59- 1.18 IJg L-1) and effluents(< 1 IJg 

L-1, 0.053 1-1g L-1, 0.66 IJg L-1) . Detection of Diazepam in environmental samples 

such as river water (0.13- 2.13 ng L-1, - 10 ng L-1, 0.033 1-1g L-1, 0.5- 1.2 ng L-

1) and drinking water(- 10 ng L-1, 0.2-23.5 ng L-1
) has been achieved by other 

authors (Calamari et al., 2003; Richardson and Bowron, 1985; Ternes et al., 

2001; Zuccato et al., 2000). 

Aquatic studies completed in Sweden by Carlsson et al., (2006) for Diazepam 

led to the generation of a Hazard Quotent < 1 and subsequent classification of 
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Diazepam as of no risk of accumulation within the aquatic environment. 

Equivalent data for SS could not be found in the literature, although a PECss for 

Diazepam of 0.063 IJg g-1 SS was calculated herein (Appendix; Figure A.1 and 

A.2). 

Calleja et al., (1993) examined the predictive potential of ecotoxicological tests 

for calculating human acute toxicity. One of the compounds they selected to 

study was Diazepam which was assessed using the Microtox TM test with 1 00% 

assay protocol (a standardised marine bioluminescence bacterial toxicity test). 

The results of this were used in conjunction with a linear regression program to 

calculate EC50 values (data can be seen in appendix, Table A.?). 

The POSEIDON project team (Ternes, (2004) discussed in section 1.1) which 

completed an extensive modelling study of the fate of various pharmaceuticals 

within WWTPs (Wastewater Treatment Plants), selected Diazepam as part of 

their study. They concluded that sorption was not a relevant process for the 

removal of Diazepam (Kd < 100 L kg-1 SS). A larger scale study using 

wastewater-irrigated land found no significant changes in concentration 

between the lysimeters and even post-treatment steps appeared to have no 

impact on the concentration of Diazepam. However the starting concentration of 

Diazepam was already close to the limit of quantification (LOQ). 

T ernes (2004) concluded that Diazepam and other neutral compounds would 

not show any removal in either groundwater or post treatment steps. Oxidation 

of Diazepam however followed a second order rate constant (with ozone = 0. 75 

± 0.15 M-1 s-1 at 20 °C, with OH radicals generated via UV I H202 y-radiolysis = 
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7.2 ± 1 M-1 s-1 at 20 °C) and significant removal was seen, but the use of 

chlorine dioxide was ineffective (second-order rate constant for this reaction, at 

pH 7.4 < 0.025 M-1 s-1
). Nanofiltration and reverse osmosis membranes were 

effective for the removal of Diazepam (> 98%), as was the use of powdered 

activated carbon (< 0.2 mg L-1 activated carbon for 99% removal). Full scale 

waterworks studies showed comparable results when compared with Diazepam 

laboratory studies. 

Although some results indicated that many compounds would undergo removal 

it was noted that most small waterworks would not have these technologies 

available to them. lt was therefore concluded that contamination of drinking 

water with PPCPs including Diazepam, held appreciable risk. 

A recent study designed to investigate the biodegradation of pharmaceuticals in 

sediment and water samples included Diazepam as a target compound. 

Samples were taken over 1 00 days and this data was then used to generate 

dissipation times of up to 1 year (Loffler et al., 2005). 

When radiolabelled Diazepam was incubated in a sediment-water system for 

1 00 days, 95% of the radioactivity still remained as Diazepam which was 

undergoing continual partitioning onto the sediment. As the sediment pH was 

7.7 Diazepam was found in its neutral, non-protonated form. This led to the 

conclusion that extensive occurrence of Diazepam in the sediment was 

predominantly due to non-ionic interactions. Diazepam underwent marginal 

degradation in surface waters, but was classified as highly persistent (DT9o 

(Dissipation Time) >>> 365 for sediment, 113 ± 17 for water). These results also 
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led to the conclusion that 60% of the loss was due to sediment sorption and 

less than 2% mineralisation occurred. 

Oxazepam, one of the major metabolites, was also included in this study (Loffler 

et al., 2005). lt has a slightly higher polarity than Diazepam, but partitioned in 

the same manner ( 19 - 29%) and moderate degradation ( DT 90 = 179 ± 11 for 

sediment I water system, DT90 = 63 ± 6 for water) was seen. These results led 

to it's classification as moderately persistent with limited partitioning tendencies. 

25 



Chapter One: Introduction 

1.4. Sewage Sludge 

There has been relatively extensive research into the fate of pharmaceuticals in 

the aquatic environment, e.g. (Heberer, 2002; Ternes, 2004). Aquatic studies 

have covered compounds ranging from analgesics and antibiotics to 

cardiovascular drugs and contraceptives. By comparison there is a substantial 

lack of work into the fate of the same compounds within the terrestrial 

environment. This lack of knowledge helped to focus the present project 

around the fate of pharmaceuticals in SS and SS-amended soil. 

As sewage sludge production in the UK is currently in excess of 1.5 x 106 

tonnes of dry solids (tds) per annum, treatment and disposal is essential 

(T ernes, 2004 ). The main purposes of sewage sludge treatments are to reduce 

volume, reduce health hazards, make it less offensive and to convert it into a 

form suitable for agricultural use, as approximately 50% of sewage sludge 

produced in the UK is land disposed (Ternes, 2004). This is most .commonly 

done via the use of anaerobic digestion, although 'enhanced' treatments, such 

as lime treatment are becoming more common. Lime treated sludge, which is 

classified as 'enhanced', is produced by the addition of lime to liquid sludge until 

pH 12 is acquired and maintained for a minimum of 2 hours. This sludge can 

then be used directly on agricultural land. With all sewage sludges there is a 

risk of phytotoxic damage under acidic conditions. For this reason sludge 

cannot be used on soil with pH < 5 (DoE, 1996). Lime cake provides the 

greatest economic benefit (- £110 fertiliser replacement value ha-1
) when 

compared to digested liquid, digested cake and thermally dried granules. These 

enhanced treated sludges are able to be applied directly onto more crops than 

conventionally treated sludges. There has therefore been significant investment 
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(£450 million) by the water industry to improve processing facilities, which is 

likely to increase the proportions of sludge undergoing enhanced treatment. 

Between the years of 1998 to 2000 an average of 1,072,000 tds were produced 

per annum that needed to be disposed of in the UK (UK, 2001 ). Incineration and 

landfill are used but are significantly more expensive than recycling to land. 

Aside from this there are environmental and economic benefits of disposal to 

land, such as the improved soil structure and water holding capacity, higher 

yields, and saved fertiliser costs (estimated - £8 million saving per annum) 

(DEFRA, 2002b). Approximately 50% of the 1.1 million tonnes of sludge 

produced each year in the UK is disposed of to agricultural land, which equates 

to about 2% of organic materials used in land application (UK, 2001). Despite 

this, only a small proportion of farmers (- 5%) use sewage sludge on less than 

2% (80000 ha treated in 1996/7) of agricultural land (- 60% arable, 40% 

pastural), so there is potential for expansion of this disposal route (DEFRA, 

2002b). The areas to which this sewage sludge is disposed on in the UK are 

illustrated in Figure 1.8. A small number of treatment works in the UK (126) 

process the majority (60%) of the sludge, using a range of processes including; 

mesophilic anaerobic digestion (accounted for 31% of treatment in 1996/7), 

anaerobic digestion followed by dewatering and storage (23%), no treatment 

(26%), lime stabilisation (2%). In 1996/97 lime stabilisation accounted for 5% of 

sludge disposed of to agriculture in England and Wales, which equates to 

480000 tds ( 1996/7 data) (Gendebien et al., 1999). 
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Figure 1.8. Regional percentage contribution to total land disposed SS (690000 

tds in 2000). 

Data sourced: (UK, 2001 ) 

On a larger scale the EU produced 6.6 million tds in 1996, and an estimated 9.4 

million tds by 2005. Alongside this increase in production, EU recycling of 

sewage sludge to land was predicted to increase by 73% in the same time 

period (Agency, 2001). Approximately 6.8 million tonnes of sewage sludge are 

produced per annum in the US, of which 54% is recycled to agricultural land 

(Velagaleti and Gill, 2001). These figures emphasize the potential wide reaching 

impacts of the problem of sewage sludge disposal in westernised nations. 
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1.4.1. Contaminants in Sewage Sludge 

The physiochemical characteristics of an organic contaminant determines the 

extent to which it undergoes processes such as sorption onto solids, 

volatilisation and both biotic and abiotic degradation. This in turn determines the 

partitioning and concentration of these compounds within the different 

components of STW wastes. Regardless of the sewage sludge disposal method 

used (e.g. dumping at sea, use on agricultural land, incineration or landfill), the 

accumulation of contaminants within the sewage sludge poses a disposal 

problem which is potentially hazardous to the environment (Meakins et al. , 

1994 ). Most published data on contaminants in sewage sludge have focused 

upon compounds such as polychlorinated biphenyls (PCBs), heavy metals and 

pesticides, and there is relatively little work on organic contaminants, including 

pharmaceuticals (Bright and Healey, 2003). 

The POSEIDON program (Ternes, 2004) discussed and modelled in quite some 

detail the chemical processes involved during STW treatment. Volatilisation 

from STW settling tanks can be a major removal process for many compounds. 

However a Henry's coefficient > 3 x 1 o-3 atm m3 mole-1 is required for this to be 

an important removal mechanism (Ternes, 2004). Diazepam and Fluoxetine 

have Henry's coefficients of 6.5 x 1 o-10 and 2. 7 x 1 o-7 atm m3 mole-1 respectively 

(US EPA modelling, HENRYWIN V3.1 0), and hence volatilisation, or stripping 

into the air (volatilisation during an aeration process in STW) is not considered 

to be an important process for these substances. As a general rule 

pharmaceuticals have a Henry's coefficient of < 1 o-s atm m3 mole-1. Primary 

sludge is formed in settlement tanks where the predominant removal process is 

adsorption to solids, to which additional fats, oils and greases which are 
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skimmed from the tank surface, are added. Secondary sludge is generated 

through the use of microorganisms in activated sludge or trickling I percolating 

filters and a secondary sedimentation tank. lt is the adsorption of organic 

contaminants onto cellular material (such as bacterial lipid or polysaccharide 

structures, nucleic acids or bacterial proteins), fats and greases that is the main 

mechanism by which these compounds become incorporated into sludge 

(Ternes, 2004). 

Sorption onto biological material can also aid degradation as the entrance of a 

contaminant into a microbial cell is a requirement of intracellular enzyme 

induction and enzymes are then excreted into solution, or can are released at a 

later stage when the cell undergoes lysis. Generally cometabolic 

transformations cause the degradation of organic contaminants and mixed 

cultures are more successful at degradation of these compounds. The presence 

of fats, greases and surfactants in sewage sludge also encourages the 

partitioning of organic contaminants into the sewage sludge as these 

compounds are attracted to substances such as fats and hence are transported 

with them. The presence of dissolved salts or the absence of emulsifying agents 

decreases the solubility of these contaminants and therefore also increases 

their partitioning into the sludge via increased sorption (T ernes, 2004 ). 
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1.5. Transport and Fate 

1.5.1. Sorption 

The concept of pharmaceutical residues sorbed to soil is not an area that has 

been extensively researched, although more published work has appeared 

since the inception of the present study (2003). Since pharmaceuticals may be 

considered similar to pesticides, as stable bioactive compounds with similar 

transport routes onto fields and into the environment, it is not unreasonable to 

expect pharmaceutical residues to occur in soils as is well documented for 

pesticides. Soil is a complex matrix and sorption studies require a range of 

variables to be taken into consideration (Diaz-Cruz et al., 2003; Bollag, 1991; 

Yeager and Halley, 1990; Khan and Ongerth, 2002). 

Yeager and Halley (1990) define sorption as 'a general term that includes 

adsorption (surface binding) and partitioning', and desorption as 'the reverse 

process of sorption'. There are a variety of mechanisms involved in sorption of 

pharmaceuticals to solid matrices. Sorption to organic matter, surface 

adsorption to mineral components, ion exchange, hydrogen bonding and the 

formation of complexes with metal ions are considered to be the most important 

mechanisms (Diaz-Cruz et al., 2003). Once compounds have been sorbed into 

the soil matrix in a manner in which they cannot easily be released they are 

often referred to as residues. 

Pesticides are often transformed into aromatic amine or phenol intermediates 

which are thought to bind covalently to humics. Oxidoreductive enzymes or 

abiotic factors can catalyse this binding (oxidative coupling), and initiate 

covalent bonding between humics and xenobiotics; both of which can then be 
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suceeded by polymerisation and incorporation into the soil matrix. Biological 

and abiotic factors (such as microbial oxidoreductases, clay minerals and 

certain metal oxides) act as catalysts in the cross-linking of phenolic 

compounds to humics. Aromatic amines or anilines become bound to humics by 

mechanisms including hydrogen bonding, charge-transfer, and hydrophobic 

interactions (Bollag, 1 991 ). 

Bollag (1 991) states there are two means by which xenobiotics can become 

integrated into soil organic matter. One is via incorporation into fulvic or humic 

acids during humification processes, in which case the xenobiotic becomes part 

of the structure of the humified residue. The other manner is via direct 

attachment to the surface reactive groups of the organic matter. Covalent bonds 

that are formed are usually fairly resistant to thermal and microbial degradation 

and to acid I base hydrolysis, and hence are classed as stable, persistent 

bonds. 

However it has been questioned as to how stable these bonds are, and whether 

possible future release of xenobiotic residues could pose a risk to health. The 

majority of literature evidence suggests that the release of pesticide residues is 

extremely slow and once released further degradation of .the pesticides can 

occur. These residues are therefore generally considered to be of low risk to the 

environment; although the mechanisms of release are not yet fully understood. 

lt has been suggested that microbial activity can trigger the release of these 

residues. These released residues may then undergo further degradation I 

mineralization, or they may be taken up by plants, and hence could pose a risk 

to the environment (Bollag, 1991 ). 
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Bollag (1991) believes that there are three major environmentally relevant 

impacts due to residue formation. The first is reduced leaching of xenobiotics 

due to the formation of insoluble precipitates during the binding process. The 

second and third points relate to toxicity. Once the compound is bound, the 

bioavailability is reduced, as is the toxicity of a 'polymerised' compound 

compared to the parent compound. Work by Gevao et al., (2003) confirms that 

the toxicity of pesticides is reduced; they become less bioavailable and 

progressively resistant to desorption as they age in the soil. 

Yeager and Halley (1990) used a methodology set out by the US Food and 

Drugs Administration (FDA), for evaluating soil mobility of a veterinary 

pharmaceutical, Efrotomycin; an animal growth promoter. 14C-Efrotomycin was 

used to generate sorption and desorption isotherms based on the Freundlich 

equation. Partial irreversibility of sorption occurred, highlighting that desorption 

is important in the avoidance of an overestimation of sorption. 

Khan and Ongerth (2002) used a model to predict the concentrations of various 

pharmaceuticals in sewage sludge. They felt this work was necessary due to a 

review by The Environment Agency (UK) which stated that quantitative data 

was lacking for pharmaceuticals in sewage sludge. By acquiring pharmaceutical 

usage data and sewage generation rates for selected populations along with an 

adapted version of the Clarke et al. , model, they were able to predict steady­

state concentrations and distribution of pharmaceuticals in aqueous, suspended 

solids and sludge. 
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Although Fluoxetine and Diazepam were not on the list of pharmaceuticals 

modelled, there were some interesting and relevant findings, which were 

comparable to laboratory generated data. Lipophilic compounds with a log Kow < 

2 were predicted to be found in primary sludge at concentrations greater than in 

the raw sewage. However the results predicted that concentrations in the 

digested sludge would be very low. lt was therefore concluded that once the 

sludge had been digested it lost its lipophilic properties and compounds present 

began to partition into the aqueous phase. 

Kinney et al., (2006) investigated the accumulation of pharmaceuticals, 

including Fluoxetine, in soils on three sites across Colorado, USA. The use of 

wastewater effluent for land irrigation is becoming more common place to 

reduce treatment costs (2.4% of US wastewater). Effluent treatment before 

application to land consisted of coagulation, filtration and chlorine disinfection. 

Soil cores taken across the sites were found to contain from 366 to 14,400% of 

estimated Fluoxetine loading. This high recovery clearly shows the 

accumulation of Fluoxetine in soil from previous seasons irrigations. Fluoxetine 

was one of the four most detected compounds in this study, which the authors 

believed is due to an aqueous solubility of < 100 mg L-1 for Fluoxetine, as with 

Carbamazepine and Erythromycin. 

A study by Bedner and MacCrehan (2006) indicated that Fluoxetine readily 

undergoes transformation into N-chlorofluoxetine during wastewater disinfection 

treatment. N-chlorofluoxetine also underwent dechlorination, a process often 

included in wastewater treatment, back to the parent compound. However this 

transformation did not occur in the dechlorination time period normally used in 
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wastewater treatment. Bedner and MacCrehan (2006) therefore believe that 

there is a risk of release of this chloramine into the environment. Chloroamines 

exhibit greater hydrophobicity than parent compounds and therefore are more 

likely to sorb to soils, sediments and biological membranes. Once sorption has 

occurred these chloroamines may transfer the active chlorine to a reductant 

compound, hence releasing the parent compound. The wastewater disinfection 

and dechlorination processes do not act as a means to remove Fluoxetine from 

water. This information regarding the formation of N-chlorofluoxetine may also 

help to explain the very high accumulation of Fluoxetine in soils seen in the 

study by Kinney et al., (2006). 
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1.5.2. Degradation 

There are several degradation processes to which pharmaceuticals may be 

exposed. The biodegradation of various pharmaceuticals has been investigated 

in a range of matrices (Marengo et al. , 1997; Zwiener et al., 2002; Zwiener et 

al., 2000; Mohle and Metzger, 2001; Ternes et al., 2002). These degradation 

processes can be broadly classified into two groups; chemical and biological 

degradation, or biotic and abiotic degradation. Only biodegradation is 

considered in the scope of the present study and only examples of biotic 

degradation experiments are therefore presented herein. A very recent review 

on the impact of abiotic factors on the fate of 1 ,4-benzodiazepines has been 

made by West (2007). 

Marengo et al., (1997) performed a study into the biodegradation of an anti­

bacterial agent in soil. The experiment was performed in soil incubation flasks 

spiked with 14C-sarafloxacin HCI. Results indicated that the degradation of 

sarafloxacin may in fact be due to abiotic, rather than biotic factors. 

A study into the biodegradation of lbuprofen in batch experiments with activated 

sludge and in biofilm reactors resulted in the formation of different metabolites 

depending upon whether conditions were oxic or anoxic (Zwiener et al., 2002). 

The biodegradation of lbuprofen, Diclofenac and the metabolite, Clofibric acid, 

was studied in a biofilm reactor experiment. During various biodegradation 

studies elimination rates increased with increasing time, leading to the 

conclusion that microorganisms gradually adapted to degrade the lbuprofen 

(Zwiener et al., 2000). 
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Mohle and Metzger (2001) studied the elimination of pharmaceuticals in 

activated sludge under aerobic conditions and developed a method using 

HPLC-MS-MS with an on-line batch reactor. This batch method allowed both 

adsorption and biodegradation I transformation to be taken into consideration 

simultaneously. Analysis of the compounds after only 15 minutes showed 

significant decreases in concentrations. The authors believed that this initial 

rapid concentration decrease was due to adsorption of the compounds to the 

sludge. Further slower decreases in concentration were seen later in the 

experiment, which the authors attributed to biodegradation. 

Janusz et al., (2003) used enrichment cultures to degrade target compounds in 

liquid media. Microbial populations in different soils (i.e. urban and agricultural), 

displayed different degradation rates (urban was more rapid) for phenyl-2-

propanone and responded differently to additional carbon sources, such as 

glucose. In some cases the use of an additional carbon source increased the 

rate of degradation, and in others it slowed. The authors therefore drew the 

conclusion that the exact degradation profile and metabolites derived from a 

particular compound will vary between soils, depending upon the residual 

carbon concentrations and the microbial populations present. 

An investigation into the removal of pharmaceuticals during drinking water 

treatment was performed by Ternes et al., (2002). Batch experiments according 

to Organisation for Economic Cooperation and Development (OECD) guidelines 

were carried out to obtain a broad idea of the biodegradability of the target 

compounds. In this particular case no biodegradation or significant sorption of 

any target compounds occurred. However because esterase activity was 
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monitored it can be stated that the pharmaceuticals did not inhibit the microbial 

population and that biodegradation of DOC did occur. 

Loffler et al., (2005) studied the fate of pharmaceuticals in sediment - water 

systems. lt was noted that pharmaceutical metabolites that are the result of 

phase I metabolism, such as Oxazepam, are more likely to undergo further 

transformation processes that the parent compounds. In the case of Oxazepam 

this was shown by its lower half life within the experimental test system. 

Transformation processes that occur within the human body are well known, but 

the use of pharmacacological data to predict the transformation behaviour of a 

compound within the environment is much more limited. Diazepam and 

carbamazepine provide good examples of this. Both drugs are easily 

metabolised by humans, but are both stable within the water - sediment test 

system. The sorption coefficients (Kocs) generated by Loftier et al., (2005) were 

found to be between 83 and 192 L kg-1 for Diazepam and Oxazepam, which 

correlates well with published Kocs for sewage sludge, and for Diazepam in soil 

(Appendix, Table A.2). Loftier et al., believe that for most of their target 

pharmaceuticals that biodegradation was unlikely as many of these compounds 

are stable under both aerobic and anaerobic conditions found in both STW and 

the human body. 

Other authors (e.g. Joss et al., 2006) have devised classification schemes for 

biodegradation of PPCPs during state-of-the-art wastewater treatment 

processes, based on results from batch experiments using sewage sludge. 

Numerical models, regression and estimation of degradation rate constants 

(Kbiol) were then generated from these results using Matlab software. Pseudo 
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first order degradation was seen for all compounds that underwent 

transformation . Three categories were devised, into which all studied 

compounds could be classified : 

90% +, significant removal. (Kbiol > 10 L g5s-1 d"1} 

20 to 90%, partial removal. (Kbtol 0.1 - 10 L g55-
1 d-1) 

<20%, unsubstantial removal (Kbiol < 0.1 L g55-
1 d"1

) 

Biological activity will vary been sludge and reactor types, but despite this Joss 

et al., (2006) believed that compounds can be divided into classes with respect 

to their behaviour in these wastewater facilities. 

The studies discussed highlight how complex the study of biodegradation in SS­

amended soil might be. Biodegradation of a compound can be influenced by 

factors including; soil type and source or usage, abiotic factors such as redox 

conditions and adaptation of microorganisms to degradation of target 

compound. No Quantitative Structure Activity Relationships (QSARs) could be 

developed by the POSEIDON project (Temes, 2004) and the importance of 

determining the .biodegradation of each compound experimentally was stressed. 

For this reason the present study researched experimental biodegradation of 

the target compounds under environmentally relevant conditions. 
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1.5.3. Plant up-take 

Smith et al. , (2001) reviewed the processes involved in the transport of 

persistent, semi-volatile and bioaccumulative organic contaminants into 

vegetation (most markedly atmospheric deposition and soil transfer), and the 

factors which cause dilution of the contaminant within the plant such as growth 

dilution, particle wash-off, volatilisation, photodegradation and metabolism. Most 

studies have shown that air-plant transfer predominates as the transfer 

mechanism to vegetation, as opposed to root uptake from soil which tends t<? be 

an inefficient process. 

Smith et al., (2001) also discuss in some detail the rationale and benefits behind 

the use of sewage sludge as an agricultural fertiliser, alongside the risks 

associated with the introduction of xenobiotics into soils. Various regulations 

have been put into place to limit the use of SS, but these regulations are 

predominantly based on heavy metal inputs. There is a lack of information on 

transport and fate of organic contaminants associated with SS. There is 

currently no consensus on whether limits for organic contaminants in SS are 

necessary and concerns arise that the cost of regulation would be prohibitive 

(McGrath, personal communication). Quantitative pathway analysis has shown 

that the risk of persistent compounds entering the food chain is greater for 

pastoral land due to the risk of ingestion by grazing animals. Legislation has 

dealt with this risk by laying down 'no grazing' ban periods (3 weeks in UK) or 

has banned addition of sludge to pasture land. 

Despite the past concern and publicity over the transport of pesticides into food 

crops almost no research has been performed into the up-take of 
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pharmaceuticals into plants. This project aimed to provide initial background 

knowledge on the uptake of pharmaceuticals into plants, by first developing 

appropriate extraction methods and then by studying the uptake of Fluoxetine 

HCI into cauliflowers grown on gel media. 
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Chapter Two- Method Development of Analysis Techniques 

2. Method Development of Analysis Techniques 

2.1. Introduction 

Published analytical techniques for the study of pharmaceuticals in soils, 

sediments and sludge, have been reviewed by Diaz-Cruz et al. , (2003) and Hao 

et al., (2007). These findings will be summarised here along with reviews of 

subsequent literature. 

Generally, analyte extraction from solid matrices has involved sonication or 

simple blending or stirring of polar organic solvents with the sample. More 

advanced techniques such as accelerated solvent extraction (ASE), pressurised 

liquid extraction (PLE), ultrasonic solvent extraction (USE) or microwave 

assisted extraction (MAE) have also been occasionally used (Hao et al., 2007). 

These reviews concluded that use of advanced clean-up techniques along with 

advanced MS instrumentation are the most appropriate choices for the analysis 

of pharmaceuticals from solid matrices. 

Solid phase extraction (SPE), liquid-liquid extraction (LLE), gel permeation 

chromatography and semi-preparative HPLC have been the most commonly 

used clean-up methods used for aqueous samples. SPE has been the most 

commonly used of these techniques for various reasons, mainly related to the 

ease of use, speed, low risk of contamination, use on-line and low volumes of 

organic solvent required (Oiaz-Cruz et al., 2003). Reversed phase adsorbents 

have often been used with SPE clean-up methodologies, as is the case with 

PPCPs where the readily available Oasis HLB cartridges have been commonly 

used (Hao et al., 2007). 
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For analysis of the purified extracts, HPLC has been the preferred technique of 

choice, although GC-MS has also been used. This preference for HPLC is due 

to the polarity and I or thermolability of many pharmaceuticals. Generally 

reverse phase chromatography with so called C18 columns (octadecylsilane 

stationary phase) has been employed. 

Detectors coupled to the HPLC instruments for analysis of pharmaceuticals 

have tended to be UV, MS or fluorescence detectors. In the past, UV detectors 

were most commonly used; use of MS has now overtaken this due to the higher 

sensitivity and selectivity of MS (Hao et al., 2007). Fluorescence detectors have 

been used to a lesser extent, mainly due to the need for prior derivatisation of 

many analytes. Diaz-Cruz et al., (2003), provide an approximate estimate of 

. achievable limits of detection (LOO) with the different detection methods. When 

UV spectromphotometry was used, the LOO typically ranged from 10 to 200 ng 

g-1. With MS, LOOs ranged from between 0.2 to 40 ng g-1
, and a LOO of 

approximately 10 ng g-1 was achieved with fluorescence detection. 

Within MS, the most favoured ionisation technique is now electrospray 

ionisation (ESI), although there are also reports of the use of fast atom 

bombardment and particle beam MS. The operating mode is usually selected 

ion monitoring (SIM) which allows greater sensitivity but has less rigorous 

confirmation of analyte identity. 

Diaz-Cruz et al., (2003) recommend greater used of advanced MS 

instrumentation, (e.g. LC-tandem MS), to lower detection limits and improve 

identification of analytes in complex matrices. Alongside this the use of more 
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advance purification/clean-up techniques is also recommended. Table 2.1 to 

Table 2.5 have been adapted and expanded from Diaz-Cruz et al., (2003) and 

summarise techniques for the extraction and analysis of pharmaceuticals from a 

range of matrices. 
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Sample Compound Extraction Column Mobile phase (Composition %) Detection 
Method 

Ref limits 

Metasil Basic, 3 !Jm, 150 
mm x 2.0 mm, C18 

Soil (waste 
19 analytical column; coupled (Kinney et 

water 
pharmaceuticals 

ASE (ACN : water; 70 : 30) 
to Metasil Basic safeguard, Ammonium formate I formic acid 

HPLC, electrospray 0.76- 5.46 al., 2006; 

Irrigated) 
(including 31Jffi, 2.0 mm guard column buffer (10mM, pH 3.7) ionisation (+) mode I 

!Jg kg"' Cahill et al., 
Fluoxetine) (or NewGuard RP-18, 7 !Jffi, 

SIM 
2004) 

15 mm x 3.2 mm guard 
column 

Soil 
Metronidazole & 

Solvent extraction (MeOH) Hypersil BDS 250x2.1 mm 
Ammonium acetate (10mM); Electrospray MS(+) (Rabolle and 

Olaquindox Methanol (80:20) mode/SI M 
not reported 

Spliid, 2000) 

Soli Oxitetracycline Solvent extraction (MeOH) Hypersil BDS 250x2.1 mm 
Sodium acetate (10mM) +calcium Fluorescence, lexc 

not reported 
(Rabolle and 

chloride (55mM) + Na2EDTA (20mM). 390nm, lem 512nm Spliid, 2000) 

Ill Soil Tylosin Solvent extraction (MeOH) Hypersil BDS 250x2.1 mm 
Ammonium acetate (10mM); Electrospray MS(+) 

not reported 
(Rabolle and 

Q) Methanol (10:90) mode/SI M Spliid, 2000) 
c. 

Solvent extraction (chloroform E LIChrospher RP-C18 250x4 Gradient. Methanol to phosphoric acid (Brambilla et 
IV Soil Sulfadimethoxine + acetone), followesd by SPE UV, 1275 nm not reported 
en (SCX cartridge) 

mm (10mM), pH 3 al., 1994) 

'(5 
en Solvent extraction (chloroform 

Phosphoric acid (50 mM), pH 3.5 + 

Soil Flumequine + acetone), followesd by SPE 
LIChrospher 100-RP18 acetonitrile (90 + 10):phosphoric acid Fluorescence, lexc 

0.01 Jlg g· ' 
(Brambilla et 

(SCX cartridge) 
125x4 mm (50mM), pH 3.5 +acetonitrile (50+ 327nm, lem 369nm al., 1994) 

50), (70:30) 

Fertilised Tetracycline & Solvent extraction (1M citrate 
Gradient. Formic acid (0.5%) + Eiectrospray (+) 0.001 & 

(Hamscher 
soli Chlortetracycline buffer + ethyl acetate) 

Puresil C18 150x4.6mm ammonium acetate (1mM) +water mode, MS/MS, 0.002 J.!Q g·' et al., 2002) 
(pH 2) MS/MS/MS respectively 

Fertilised Solvent extraction ( 1 M cltrate 
Gradient. Formic acid (0.5%) + Electrospray (+) (Hamscher 

soil 
O.xitetracycline buffer + ethylacetate) 

Puresil C18 150x4.6mm ammonium acetate (1mM) +water mode, MS/MS, 0.001 Jlg g"1 

et al., 2002) 
(pH 2) MS/MS/MS 

Fertilised Solvent extraction (1 M citrate 
Gradient. Formic acid (0.5%) + Electrospray (+) (Hamscher 

Tylosin Puresil C18 150x4.6mm ammonium acetate (1mM) +water mode, MS/MS, 0.001 !Jg g·' 
soil buffer + ethyl acetate) (pH 2) MS/MS/MS 

et al., 2002) 

Table 2.1. Literature examples of extraction and analysis methods of pharmaceuticals from soil matrices 



Sample Compound Extraction Column Mobile phase (Composition %) Detection 
Method 

Ref limits 

10 Sequential sediment 
pharmaceuticals extraction (MeOH & ethyl LC, electrospray (+) s 1% of 

Sediment (including acetate) using ultrasonic Lichrosphere RP •e.e 125 
not reported mode / MS2 OR initally (Loffler et al., 

Diazepam & treatment, and SPE (ICT RP- mm x 3 mm column 
Radlo-TLC applied 2005) 

Oxazepam) 18ec) (for Benzodlazepines) concetration 

18 
River pharmaceuticals Ultrasonic extraction with 

lntertsil ODS-2 column not reported HPLC-MS2 I MRM 9 ng kg·' (Zuccato et 
sediment (including MeOH al., 2000) 

Diazepam) 
Cl) 

..! 
Q. 

Solvent extraction (0.1 M (Jacobsen E Natural 
IV marine Oxitetracycline Na2EDTA + Mcllvaine Buffer), 

RP-8 254x4 mm Methanol:acetonitrile:oxalic acid 
UV, I350nm not reported and m followed by SPE (C,a (10mM), pH 2 (20:30:50) Berglind, ... sediment 

c cartridge) 1988) 
Q) 

E 
'tJ Solvent extraction (0.1 M Q) Natural m Na2EDT A + Mcllvaine Buffer), Acetonitrile, pH 3.2:oxalic acid (Capone et 
iii marine Oxitetracycline 

followed by SPE (C,a 
Microsorv-MV CB 25cm 

(10mM), pH2 (35:65) UV, I365nm 0.2 llg g·1 
al., 1996) ... sediment cartridge) ::J ... 

IV 
z 

Natural 
Solvent extraction (0.1 M 

marine Sulfadimethoxine 
Na2EDTA + Mcllvaine Buffer), hypersil ODS 200x4.6mm. Acetonitrile:sodium phosphate 

UV,I270 nm 0.051-ig g' ' 
(Capone et 

followed by SPE (C,a (50oC) (100mM) (25:75) al. , 1996) 
sediment cartridge) 

Natural 
Solvent extraction (0.1 M 

marine Ormethoprim 
Na2EDTA + Mcllvaine Buffer), Hypersil ODS C18 200x4.6 Acetonitrile:sodium phosphate UV,I270 nm 0.051-19 g'1 (Capone et 

followed by SPE (C,a mm (50oC) (100mM) (25:75) al .. 1996) 
sediment cartridge) 

Table 2.2. Literature examples of extraction and analysis methods of pharmaceuticals from natural sediment matrices 



Table 2.2 - continued ... 

Sample Compound Extraction Column Mobile phase (Composition %) Detection 
Method 

Ref 
limits 

Estriol & Estradiol 
Solvent extraction (MeOH + (lopez de 

Natural river & Ethynyl estradiol 
Acetone), followed by SPE LiChrospher 1 OO-RP18 Gradient. Acetonitrile:water (10:90) to Electrospray MS(-) 0.05-; llg g Alda and 

sediment & Estrone & 
(C,a cartridge) 250x4 mm acetonitrile mode/SI M Barcelo, 

Diethylstilbestrol 2002) 

Estriol & Estradiol 
Solvent extraction (MeOH + 

(Lopez de 
Cl) Natural river & Ethynyl estradiol LiChrospher 1 00-RP 18 Gradient. Acetonitrile:water (10:90) to Electrospray MS(-) 0.05- 1 llg g Alda and 
G) sediment & Estrone & 

Acetone), followed by SPE 
250x4 mm acetonitrile mode/SI M 1 Barcelo, 

Q. Diethylstilbestrol 
(C,a cartridge) 

2002) E 
IV 
(/) - Estriol & Estradiol r:: Solvent extraction (MeOH + CD Natural river & Ethynyl estradiol LiChrospher 1 OO-RP18 Gradient. Acetonitrile:water (30:70) to Electrospray MS(-) (Petrovic et 
E sediment & Estrone & 

Acetone), followed by SPE 
250x4 mm acetonitrile mode/SI M 

1 - 5 1-lg g'1 

al., 2002) 
"C Diethylstilbestrol 

(RAM cartridges; ADS C4) 
G) 
(/) 

IV ... 
(lopez de ::::J Norethindrone & Solvent extraction (MeOH + - Natural river LiChrospher 1 OO-RP18 Gradient. Acetonitrile:water (10:90) to Electrospray MS(+) Alda and IV 

Levonorgestrel & Acetone), followed by SPE 0.04 llg g'' z sediment 250x4 mm acetonitrile mode/SI M Barcelo, 
Progesterone (C,a cartridge) 2002) 

Natural river 
Norethindrone & Solvent extraction (MeOH + LiChrospher 100-RP18 Gradient. Methanol:water (30:70) to Electrospray MS (+) (Petrovic et 

sediment 
Levonorgestrel & Acetone), followed by SPE 250xmm methanol mode/SI M 

0.51-lg g'' al., 2002) 
Progesterone (RAM cartridges; ADS C4) 

Table 2.2. Literature examples of extraction and analysis methods of pharmaceuticals from natural sediment matrices 



Sample Compound Extraction Column Mobile phase (Composition %) Detection Method 
Ref limits 

Artificial and 
(Samuelsen, natural Solvent extraction (0.1 M Acetonitrile:water + Na2EDTA (1 mM) 

marine Oxitetracycline 
Na2EDTA + Mcllvaine Buffer) Hypersil ODS 1 00x5 mm +potassium nitrate (100mM), pH 3.2 UV, 1365 nm 0.1 ~g g·' 

1989; 
Hansen et 

sediment (20:30:50) 
al., 1993) 

Artificial Solvent extraction (0.1 M 

marine Oxitetracycline NaOH), followed by LLE (1 M LiChrospher 1 OO-RP18 Acetonitrile:orthophosphoric acid 
UV, 1355nm 0.01 ~g g·' (Pouliken et 

sediment HCI + chloroform + 125x4.6 mm (20mM), pH 2.3 (24:76) al., 1994) 
ethylacetate) 

t/) 
Q) 

0.. 
E Artificial Solvent extraction (0.1 M 

Graident. Oxalic acid UV, I 355nm & Frit none (UV). 
IV Na2EDTA + Mcllvaine Buffer), Spherisorb 53 ODS1 FAB (-) mode MS- 0.01 ~g g·' (Delepee et t/) marine Oxitetracycline (10mM):methanol (80:20) to - sediment followed by SPE (C,a 150x2.1mm 

acetonitril:methanol (80:20) MS & Particle Beam (FAB). 1 ~g al., 2000) r:: cartridge) (-)mode/scan g·'(PB MS) Q) 

.5 
"C 
Q) 

Artificial Solvent extraction (0.1 M UV I 355nm & Frit none (UV): t/) 
Tetracycline & Na2EDT A + Mcllvaine Buffer), Spherisorb 53 ODS 1 

Gradient. Oxalic acid 
FAB MS & Particle 0.01 ~g g· (Delepee et 

IV marine 
Chlortetracycline followed by SPE (C,a 150x2.1mm (10mM):methanol (80:20) to 

Beam MS(-) mode 1(FAB). 1 ~g al., 2000) "(j sediment acetonitrile:methanol (80:20) :;:: cartridge) /scan g·1 (PB MS) 
:e 
< 

Artificial Phosphoric acid (50 mM), pH 3.5 + 

marine Sulfadimethoxine 
Solvent extraction (0.1 M Hypersil ODS C18 100x4.6 acetonitrile (90 + 10):phosphoric acid 

UV, 1270 nm not reported 
(Samuelsen, 

. Na2EDT A + Mcllvaine Buffer) mm (50mM), pH 3.5 + acetonitrile (50+ 1989) sediment 
50), (50:50) 

Artificial 
Solvent extraction (0.1 M Phosphoric acid (50 mM), pH 3.5 + 

marine Ormethoprim 
NaOH & water & 0.1 M HCI & Hypersil ODS C18 100x4.6 acetonitrile (90 + 10):phosphoric acid 

UV, 1270 nm not reported 
(Samuelsen 

1 M Na2EDT A + Mcllvaine mm (50mM). pH 3.5 + acetonitrile (50 + et al. , 1994) sediment 
Buffer) 50), (50:50) 

Table 2.3. Literature examples of extraction and analysis methods of pharmaceuticals from artificial sediments matrices 
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Table 2.3 - continued ... 

Sample Compound Extraction Column Mobile phase (Composition %) Detection 

Graident. Oxalic acid (25mM, pH 
Artificial 

Solvent extraction (0.1 M 
3.2):acetonitrile:methanol :tethrahydrofuran 

marine Oxolinic acid Hypersil ODS 100x5 mm (80:2.5:15:2.5) to Oxalic acid (25mM), pH UV, 1280 nm 
sediment 

Na2EDT A + Mcllvaine Buffer) 
3.2):acetonitrile:methanol :tethrahydrofuran 

(50:20:25:5) 

Artificial 
Solvent extraction (0.1 M 

Cl) NaOH), followed by LLE (1 M LiChrospher 1 00-RP 18 acetonitrile:orthophosphoric acid (20mM). 
..! marine Oxolinic acid HCI + chloroform + 125x4.6 mm pH 2.3 (24:76) 

UV, 1262 nm 
c. sediment 
E ethylacetate) 

"' Cl) ... Gradient. Oxalic acid (25mM, pH c: 
Cl) Artificial Solvent extraction (0.1 M 

3.2):acetonitrile:methanol:tethrahydrofuran 

.5 marine Fiumequine Hypersil ODS 1 00x5 mm (80:2.5:15:2.5) to Oxalic acid (25mM, pH UV, 1280 nm 
'C sediment 

Na2EDTA + Mcllvaine Buffer) 
3.2):acetonitrile:methanol:tethrahydrofuran 

Cl) 
Cl) (50:20:25:5) 

iO 
(j 

Solvent extraction (0.1M Phosphoric acid (50 mM), pH 3.5 + 1;:: Artificial t: marine 
Sulfadiazine & NaOH & water & 0.1 M HCI & Hypersil ODS C18 100x4.6 acetonitrile (90 + 10):phosphoric acid 

UV, 1270 nm 
~ 

sediment 
Trimetroprim 1M Na2EDTA + Mclivaine mm (50mM), pH 3.5 + acetonitrile (50+ 50), 

Buffer) (70:30) 

Artificial 
Solvent extraction (0.1 M Phosphoric acid (50 mM), pH 3.5 + 

marine 
Sulfadiazine & NaOH & water & 0.1 M HCI & Hypersi l ODS C18 100x4.6 acetonitrile (90 + 1 O):phosphoric acid 

UV, 1270 nm 
Trimetroprim 1 M Na2EDT A + Mcllvaine mm (50mM), pH 3.5 + acetonitrile (50 + 50), 

sediment Buffer) (70:30) 

Table 2.3. Literature examples of extraction and analysis methods of pharmaceuticals from artificial sediments matrices 

Method 
Ref 

limits 

not reported 
(Hansen et 
al. , 1993) 

0.01 , 0.04 (Pouliken et 
1!9 g'' al., 1994) 

not reported 
(Hansen et 
al. , 1993) 

not reported 
(Samuelsen 
eta/., 1994) 

not reported 
(Samuelsen 
et al., 1994) 



Sample Compound Extraction Column Mobile phase (Composition %) Detection 
Method 

Ref 
limits 

Derivistisation 
Sewage 

5 pharmaceuticals 
Filtration followed by SPE 

not reported not reported followed by GC-MS 4 ng L.1 (Jones et al. , 
sludge (lsolute ENV+) (Jones et al 2003 2007) 

method) 
VI 
Q) 

Q. 
E Primary & 

pharmaceuticals ns secondary Ultrasonic extraction (MeOH I LOQ 20-50 (Ternes, (/) (including not reported not reported LC tandem MS 
Q) sewage 

Diazepam) 
acetone), followed by SPE. ng g·, 2004) 

Cl sludge 
'0 
:I 
c;; 

Solvent extraction (MeOH + 
Natural river Estriol & Ethynyl acetone). SPE (C,s cartldges; 

XTI-5 (30 m x 0.25 mm x (Ternes et 
sediment estradiol & Estrone silica gel). LLE (GPC with bio- not reported GC/MS/MS (El) 0.2 - 4 ~lg g"1 

and sludge & Mestranol beads SX-3; Semi-prep 
0.25 mm) al., 2002) 

HPLC) 

01 ...... Table 2.4. Literature examples of extraction and analysis methods of pharmaceuticals from sludge matrices 



(]1 
N 

Sample Compound Extraction Column Mobile phase (Composition %) Detection 

Agilent HP-UL TRA-1 cross-

LLE followed by SPE (Bond 
linked methyl siolxane Derivitisation then 

Fish tissue SSRis capillary column, length 12 n/a GC-MS (-) mode I Elute Certify) m, inner diameter 0.2 mm, SIM 
film thickness 0.33 ~m 

Ill 
HP-5 cross-linked 5% PH Q) 

Human liver Fluoxetine (& p- LLE followed by SPE (Bond Derivaitisation then Q. NE siloxane, 15 m x 0.53 n/a 
E microsomes trifluoromethylphenol) Elute Certify) 

mm, 1.5 ~m film thickness 
GC-E CD 

ea 
(/) 

iii 
.~ Deriviitisation 
C) followed by GC-MS, 
0 Benzodiazeplnes Soils combusted in sample 
0 Hair (including Diazepam) oxidiser 

not reported not reported or HPLC-UV, or 

m HPLC-DAD, or GC-
ECD 

Narrow bore fused silica Derivistitsation 
Rat brain & p- capillary column, 25 m x followed b~ GC-ECD 

LLE n/a 
liver tissues Trifluoromethylphenol 0.32 mm, 1.05 ~m film of (1 5 mCi Ni linear 

5% phenylmethylsilicone ECD) 

Table 2.5. Literature examples of extraction and analysis methods of pharmaceuticals from biologrcal tissue matrices 

Method 
Ref 

limits 

LOO= 0.01 (Brooks et ng g·' LOQ= 
0.05 ng g·• al., 2005) 

LOD = 6.92 
(1.62) ng mr (Liu et al., 

1
• LOQ= 2002) 

34.6 (8.1) pg 

(Sachs and 
not reported Kintz. 1998) 

LOD < 10 ng 
g·• for brain 

(Urichuk et 
tissue, < 25 

ng g·' for al., 1997) 

liver tissue 
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2.1.1. LC-MS" 

Historically the major limiting factor in the use of LC-MS was the issue of 

effective sample introduction. lt was the advent of atmospheric pressure 

ionization (API) interfaces; such as electrospray ionisation (ESI) whose 

development began in the late 1960s, and atmospheric pressure chemical 

ionisation (APCI, early 1970s), that has resulted in significantly increased use of 

LC-MS (Niessen, 1998). LC-MS in this project was carried out using ESI with a 

Finnigan MAT LCQ™ quadrupole ion trap mass spectrometer. Thus the 

following brief explanation of instrumentation is specific to the ESI ion trap 

quadrupole instruments. 

The process of ESI, which is a soft ionisation technique with little or no 

fragmentation, resulting in the formation of dominantly molecular or 

pseudomolecular ions, occurs in 3 stages; charged droplet formation, droplet 

shrinkage and disintegration, and the formation of gas phase ions. The sample 

solution flows through an electrospray capillary at a potential of ± 3 - 5 kV, 

towards the sampling orifice (heated capillary tube) at± 0- 50 V. The electrical 

field results in solution ions of similar polarity collecting at the capillary tip, which 

are then drawn out due to the potential gradient, creating a 'Taylor cone'. As 

solution ions collect at the liquid surface, electrostatic repulsion becomes 

stronger than surface tension, resulting in the emission of charged droplets. In 

most circumstances the loss of negative charge, via electrochemical discharge 

to the metal spray capillary wall, results in positively charged droplets. Direct 

removal of electrons from sample molecules with low ionization energy can 

however occur under certain conditions (Bruins, 1998; McCormack, 2003). 
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As these charged droplets travel down the potential gradient, solvent 

evaporation and droplet shrinkage occur, increasing charge density at the 

droplet surface. Surface tension is overcome by Coloumbic forces, and the 

droplet disintegrates to smaller droplets. This droplet shrinkage and 

disintegration continues until very small droplets (- 10 nm radius) are formed 

which can release charged ions into the gas phase from the droplet surface. At 

high flow rates, pneumatically-assisted ESI, also known as ionspray, aids this 

process by increasing coaxial nitrogen flow (Bruins, 1998; McCormack, 2003). 

A diagram of the ESI process is shown in Figure 2.1. More detailed mechanistic 

information on ESI or other interfaces is given by Bier and Schwartz (1997), 

Niessen (1998), and Niessen and Tinke (1995). 

Heated stainless steel capillary 

Stainless steel electrospray capillary 

t 
+ 3 • 5 kV Sample solution 

High 
Atmospheric pressure 

vacuum 

Figure 2.1. Simplified diagram of Finnigan MAT LCQ™ electrospray ionisation 

source with droplet and gas phase ion formation 

Source: (McCormack, 2003) 
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Most types of mass analysers have at one point been interfaced with ESI. 

Single quadrupole MS instruments can provide structural information on drug 

metabolites using in-source fragmentation, but triple-quadrupole (QqQ) and ion 

trap (IT) mass analysers provide most selectivity because of their ability to 

perform collision induced dissociation (CID). IT instruments trap ions in a small 

volume with the use of electrodes, and alteration of electrode voltages causes 

ion ejection from the trap (Perez and Barcelo, 2007). Instruments which have 

the ability to perform in-source CID subject all ions to CID, whereas instruments 

with MS0 capabilities allow selection of a precursor ion prior to performing CID, 

therefore significantly improving signal to noise ratios (S:N) (Niessen, 1998). A 

distinctive feature of IT mass analysers is their ability to generate MS0 spectra 

(Hao et al., 2007). This is due to their ability to trap, collect and perform 

operations e.g. CID on ions over a period of time within one analyser therefore 

increasing the signal to noise ratio (S:N) (Perez and Barcelo, 2007). 
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2.2. Chemicals 

2.2.1. Target PPCPs 

Structures and sources of the pharmaceuticals used in this project (Fiuoxetine, 

Norfluoxetine, Diazepam, Temazepam, Oxazepam and Nordiazepam) along 

with deuterated analogues chosen as internal standards ( d5-Fiuoxetine and ds-

Oxazepam) are presented in Figure 2.2 and Figure 2.3. Structures of related 

compounds are also presented to aid in understanding of the nomenclature and 

labelling system used with these drugs. 

Cl 

H 
\ 

0 0 
benzene azepine 

7 -chloro-1-methyl-5-phenyl-
1,4-benzodiazepin-2-one 

(Diazepam) 

Sigma Aldrich 
solid > 98% purity 

Cl 

H H 
\ \ 

0 CC) 
' ' H H 

1,4-diazepine 1,4-benzodiazepine 

Cl 

7-chloro-3-hydroxy-1-melhyl-
5-phenyl-1,4-benzodiazepin-2-one 
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Figure 2.2. Structures and supply information for 1 ,4-benzodiazepines 

(Diazepam, Temazepam, Oxazepam, Nordiazepam and ds-Oxazepam (IS) 
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Figure 2.3. Structures and supply information for SSRis (Fiuoxetine, 

Norfluoxetine and d5-Fiuoxetine (IS) 

2.2.2. Chemicals for SPE and HPLC 

Eluents for HPLC-UV work were all of HPLC-UV grade and purchased from 

Fisher Scientific. Sigma-Aidrich was used as the source for acetonitrile (ACN) 

and methanol (MeOH) for LC-MS analysis (Chromasolv LC-MS grade, 99.9%). 

Formic acid (1 00% Aristar) was obtained from VWR, as was orthophosphoric 

acid (95% AnalaR BDH) used in SPE work with solid matrices. 
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2.3. HPLC-UV Method Development 

HPLC and GC have been the most commonly used chromatographic 

techniques for the analysis of pharmaceuticals from environmental matrices. 

HPLC holds an advantage over the use of GC in the analysis of 

pharmaceuticals because PPCPs are often too thermolabile for GC and must 

be derivatised prior to analysis by GC. Another benefit of HPLC is that it is a 

common technique available in most laboratories and a range of detectors are 

available for use. HPLC has in the past been coupled to fluorescence or UV 

detectors for the analysis of veterinary antibiotics from soil and water matrices 

(Rabolle and Spliid, 2000; Blackwell et al. , 2004). Gonzalez-Barreiro et al., 

(2003) used an on-line post-column photo-derivatisation procedure which 

allowed the analysis of pharmaceuticals in water matrices by HPLC­

photochemically induced fluorimetry. By far the most commonly used detector 

with HPLC has been ESI-MS operated in a variety of modes for the analysis of 

pharmaceuticals from water, soil , sediment and even SS matrices (Kinney et al. , 

2006; Cahill et al., 2004; Zuccato et al., 2000; Ternes, 2004). 

The aim of the present experimental work was to develop a simple and practical 

chromatographic method for the separation of the four target analytes 

Fluoxetine, Diazepam, Temazepam and Oxazepam using HPLC-UV, for 

subsequent use with extraction method development samples from water and 

soil matrices. In development of this method is it was important to ensure that 

conditions were also amenable to ESI-MS for which this chromatographic 

method would be later modified. 

58 



Chapter Two- Method Development of Analysis Techniques 

2.3.1. HPLC-UV Method Development: Methodology and Stepwise 

Optimisation 

A gradient pump (Dionex, GP40) coupled to a Ultraviolet diode array detector 

(UV-DAD) (Thermo separation products lamp: SPECTRASYSTEM UV 6000 

LP) and Rheodyne injector valve (5~L sample loop) was used for 

chromatographic method development work to optimise LC conditions for later 

use with HPLC-ESI-MSn. The detector was set to scan from 200 to 600nm, and 

with additional discrete scans at 214, 230 and 254nm. Chromquest software 

was used for data collection and interpretation. Throughout this method 

development work, eluent flow rates were 0.2 ml min-1 and a maximum run 

time of 45 minutes maintained. 

Solutions of individual target compounds (Fiuoxetine, Diazepam, Temazepam 

and Oxazepam; 0.01 mg ml-1) were prepared alongside a mixed standard, to 

test compound separation using 3 different reverse phase columns. HPLC 

columns with different stationary phases (Discovery HS, Hypercarb and Gemini 

Hybrid) were used over a period of several weeks to optimise resolution of the 

four analytes.· Step-wise testing and optimisation of conditions was carried out 

using mixed solutions. Solutions of individual pharmaceuticals were then 

analysed to allow peak identification based on retention time (Rt). The details of 

optimisation steps and results of each stage of method development are 

presented in Table 2.6, and example chromatograms can be found in the 

appendix (Figures A.9 to A.17). A chromatogram of the final optimised 

separation is shown in Figure 2.5. 
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Aqueous Phase Organic Phase Gradient (with respect Standard · Chromatogram 

(A) (B) to B) Solution Matrix Results I Comments found in 
Appendix 

Milli-Q : MeOH : 
MeOH +0.1% MeOH : Milli-Q : Only 3 peaks of 4 expected, possibly 

formic acid (95 : 5 
formic acid 50- 100% over 20 m in formic acid (50 : due to eo-elution of Fluoxetine with Figure A.9. 

: 0.1) 50:0.1) Oxazepam 

"0 Milli-Q : MeOH : MeOH : Milli-Q : Fluoxetine response poor - solutions ACN + 0.1% 
E formic acid (95: 5 

formic acid 
50- 100% over 20 min formic acid (50 : of higher concentration made (0.1 mg Figure A.1 0. 

E : 0.1) 50:0.1) ml"1
) ..... 

N 
X Milli-Q : MeOH : MeOH : Milli-Q : 
E formic acid (95 : 5 

ACN + 0.1% 
isocratic (60:40, A: B) formic acid (50: Fluoxetine eluting within solvent front Figure A.11. 0 formic acid 0 : 0.1) 50:0.1) ..... 

E 
::1. Milli-Q : MeOH : MeOH : Milli-Q : Fluoxetine eluting too close to solvent lt) ACN + 0.1% isocratic (A:B, 60:40); ... formic acid (95 : 5 

formic acid (65:35); (67:33) 
formic acid (50: front & contamination seen in Figure A.12 . 

(.) : 0.1) 50:0.1) solutions - solutions remade 
en 
J: . 

Contamination no longer apparent. ~ Milli-Q : MeOH : 
ACN + 0.1% MeOH : Milli-Q : 

Q) formic acid (95: 5 isocratic (A:B, 67:33) formic acid (50 : Concerns as to stability of target > formic acid 0 : 0.1) 50:0.1) compounds in aqueous solutions 0 
Cl) 

0 Unable to obtain-satisfactory Figure A.13. 
Milli-Q : MeOH : ACN + 0.1% 

MeOH: ACN: separation between Fluoxetine and 
formic acid (95 : 5 

formic acid 
isocratic (A:B, 67:33) formic acid (50 : solvent front for later use of method 

: 0.1) 50:0.1) with biodegradation samples which 
may contain more polar metabolites 

Table 2.6. Optimisation conditions and results for the chronological sequence of HPLC-UV method development using three columns with 

different stationary phases to optimise the chromatographic separation and resolution of four target compounds (Fiuoxetine, Diazepam, 

Temazepam and Oxazepam) 
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Table 2.6- continued ... 
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Appendix 
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~I!) c..-
Q) -
E E MeOH : Milli-Q : 4 peaks baseline resolved,- 0.5 min 
0 :1. Milli-Q + 0.1% ACN + 0.1% Figure 2.5 clO 20- 100% over 10 min formic acid (50 : broad, slight tailing seen on Fluoxetine 
Q) formic acid formic acid Chapter 2 

..c: 50 : 0.1) peak . 
Q.. 

Table 2.6. Optimisation conditions and results for the chronological sequence of HPLC-UV method development using three columns with 

different stationary phases to optimise the chromatographic separation and resolution of four target compounds (Fiuoxetine, Diazepam, 

Temazepam and Oxazepam) 
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2.3.2. HPLC Method Development: Discussion and Conclusions 

After a series of experiments using three different stationary phases and 

numerous mobile phases the stepwise optimisation procedure resulted in the 

development of a method suitable for the analysis of the four target compounds 

by HPLC-UV. The final optimised method selected (Figure 2.4) resulted in 

chromatograms characterised by good Gaussian peak shapes, with baseline 

resolution between all the compounds in a practical, comparatively short 

analysis time. This method was subsequently used for analysis of mixtures 

during SPE method development from both water and soil matrices. An 

example chromatogram can be seen in Figure 2.5. 

This work also highlighted the potential problem of compound stability within 

aqueous solutions. For HPLC-UV and later HPLC-ESI-MSn analysis it was 

found that the inclusion of water within the injected sample aided 

chromatography by reducing peak broadening, improving peak shape, and in 

the case of ESI-MSn also increasing compound electrospray capabilities. This 

knowled~e allowed future experiments to be designed with this in mind. 

Therefore all subsequent samples were reconstituted on the day of analysis. 
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Column: Gemini C18, 5j.Jm, 15 cm x 2.1 mm i.d. 

Phase A: Milli-Q + 0.1% formic acid 

Phase 8 : ACN + 0.1 % formic acid 

Injection volume: 5 !JI 

Flow rate: 0.2 ml min-1 

Gradient: m in 
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Figure 2.4. Optimised HPLC-UV conditions for the chromatographic separation of 

a mixture of Fluoxetine, Diazepam, Temazepam and Oxazepam 
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Figure 2.5. Example chromatogram of optimised reverse phase HPLC-UV 

analysis (@254 nm) of a mixture of Fluoxetine, Diazepam, Temazepam and 

Oxazepam 
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2.4. HPLC-ESI-MS" Method Development 

At the commencement of this project there were literature reports of the use of 

LC-MS for the analysis of many benzodiazepines and SSRis, predominantly 

from biological matrices (Toyoka et al., 2003; Lee et al., 2003). Data on the ESI 

fragmentation of all target compounds was available from Sutherland et al., 

(2001) and Smyth, et al., (2000). The initial aim herein therefore was simply to 

confirm ESI-MS" as a suitable analysis method for the' detection of the target 

compounds. Optimisation of ESI-MS" conditions for all six target compounds 

(Fiuoxetine, Norfluoxetine, Diazepam, Temazepam, Oxazepam and 

Nordiazepam), and determination of the MS fragmentation pathways for each 

compound was then conducted. Optimised conditions were used to establish 

high flow MSn methods for subsequent analysis of compounds from a variety of 

matrices. Determination of fragmentation pathways aided in peak identification 

in addition to retention time (Rt). 

2.4.1. Low flow infusion 

2.4.1.1. Methodology 

All MS work carried out in this project used an electrospray interface fitted to a 

Finnigan MAT LCQ™ (ThermoFinnigan San Jose, CA, USA) quadrupole ion 

trap mass spectrometer. Instrument tuning and optimisation of mass calibration, 

was performed regularly throughout this project, using automatic calibration 

procedures and calibration solutions (caffeine, Sigma, St Louis, MO, USA; 

MRFA, Finnigan Mat, San Jose, CA, USA; Ultramark 1621, Lancaster Synthesis 

lnc, Widham, NH, USA; in MeOH : water: acetic acid (50:50:1 v/v/v)). 
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Low flow (31-JL min-1) infusion of standard solutions of each target compound (1 

!Jg ml-1; MeOH : MilliQ : formic acid, 50 : 50: 0.1 v/v/v), were carried out using 

a syringe pump fitted with a 2501-JL syringe (Hamilton, Reno CA, USA). Infusion 

was performed under the following detector parameters: source voltage (±) 4.5 

kV; capillary voltage (±) 0 - 50V (set by auto tune function); capillary 

temperature 200°C; nitrogen sheath gas flow rate, 40 arbitrary units. 

Sequential product ion fragmentation and condition optimisation of each 

compound was performed in both positive and negative ionisation modes. The 

most abundant product ion at each stage was selected for sequential 

fragmentation, until no further MSn transitions were obtained. This allowed 

generation of ESI fragmentation pathways, alongside development of optimised 

MSn conditions for each compound. A full scan range of m/z 50 - 2000 was 

used. LCQ tune software was used for data acquisition and processing. 

Recording of spectral data for 1 minute time periods, was started once stable 

spectra were obtained. 
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2.4.1.2. Results and Discussion 

The use of low flow infusion allowed optimisation of conditions for each target 

compound. These conditions were used throughout the duration of this project, 

specific to the compound of interest and are shown in Table 2.7. 

MS2 MS3 MS4 

FLUOXETINE Isolation width (m/z) 1.5 ~~ (Auto tune m/z Relative activation 
310.0) amplitude 20 

NORFLUOXETINE Isolation width (m/z) 1.5 
(Auto tune m/z Relative activation 

296.0) amplitude 
20 

DIAZEPAM Isolation width (m/z) 1.5 2.0 1.5 
(Auto tune m/z Relative activation 

285.3) amplitude 
37 37 35 

TEMAZEPAM Isolation width (m/z) 1.5 1.5 
(Auto tune m/z Relative activation 

301 .1) amplitude 
35 22 

OXAZEPAM Isolation width (m/z) 1.5 1.5 
(Auto tune m/z Relative activation 

287.7) amplitude 24 30 

NORDIAZEPAM Isolation width (m/z) 1.5 1.5 1.5 
(Auto tune m/z Relative activation 

271.2) amplitude 
39 36 35 

Table 2.7. Optimised MS" analysis conditions 

Note: activation Q & activation time were found to be optimum at 0.25 & 30 msec respectively, 
for all target compounds. Relative activation amplitude defines ion activation parameters and is 
expressed as a % of the maximum activation voltage. 

Sequential fragmentation mass spectra and proposed ESI fragmentation 

pathways of each target analyte are shown in Figure 2.6 to Figure 2.11 . 
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Figure 2.6. Proposed ESI-MS" fragmentations for protonated Fluoxetine HCI 
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ESI-MS" appeared suitable for the analysis of each of the target compounds. 

Negative ion mode ionisation generated no useful data, so all future analysis 

was performed in positive ESI mode. lt was possible to obtain stable MS" mass 

spectra of each of the target compounds. 

Fluoxetine and Norfluoxetine both underwent protonation under full MS 

conditions, producing [M+ Ht protonated molecular ions, with m/z of 310 and 

296 respectively (Figure 2.6 and Figure 2. 7). Under secondary fragmentation 

(MS2), a loss of 162 u, which corresponds to the loss of p-trifluoromethylphenol, 

occurred for both compounds (m/z transitions: 310 to 148, 296 to 134 

respectively). The internal standard (IS; d5-Fiuoxetine HCI) underwent similar 

ESI fragmentations (m/z transition: 315 > 153). Further transitions, beyond MS2 

could not be obtained. Transitions seen here for both Fluoxetine and 

Norfluoxetine were consistent with literature data (Sutherland et al., 2001 ; 

Vasskog et al., 2006). However both the latter studies identified an additional 

fragment at MS2 with an m/z of 44. This ion was identified by the later authors 

as due to the [CH2NHCH3t fragment ion, but this was not identified in this work 

due to the mass range limitations (m/z 50 -2000) of the Finnigan MAT LCQ™ 

mass spectrometer. 

All of the 1 ,4-benzodiazepines also underwent protonation, resulting in [M + Ht 

protonated molecular ions (Figure 2.8 to Figure 2.11 ). Further fragmentation 

revealed two major ESI fragmentation pathways. Under MS2 conditions 

Temazepam (Figure 2.9) and Oxazepam (Figure 2.10) both lost H20 (- 18u), 

followed by the loss of CO (- 28 u) with ring contraction at MS3 to form a 6 

membered resonance stabilised ring (m/z transitions: 301 to 283 to 255, 287 to 
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269 to 241 respectively). The IS, d5-0xazepam, also underwent a similar ESI 

fragmentation (m/z transitions: 292 · to 27 4 to 246). lt was not possible to 

maintain stable spectra for MS4
. Smyth et al. , (2000) found identical transitions 

for Temazepam and Oxazepam up to MS3
. They were however also able to 

obtain MS4 fragmentation for Oxazepam, which resulted in the loss of the 

chlorine radical (m/z 206). 

Diazepam and Nordiazepam fragment with proposed loss of CO (-28 u) and 

ring contraction, followed by a loss of a Cl radical at MS2 (m/z transitions: 285 to 

257 to 222, 271 to 243 to 208 respectively). These transitions confirm the 

findings of Smyth et a/., (2000). Two different product ions were seen at MS3
; 

the second most intense ion was the [M - CO - Clt (m/z 222 and 208) 

discussed above. The most intense ion at MS3 for Diazepam had a m/z of 228 

and was proposed by Smyth et a/,. (2000) to be a result of the loss of a nitrogen 

containing specie$ such as CH2NH ( -29 u). The loss of this nitrogen-containing 

species was then followed by a loss of a Cl radical at MS4 (m/z 193). Results 

here indicate that Nordiazepam also has an alternative fragmentation at MS3 

(m/z 226), and like Diazepam this then underwent a loss of 35 u (-Cl) at MS4 

(m/z 191 ). The loss of 17 u at MS3 (m/z 226) from the protonated MS2 ion may 

also be due to the loss of a nitrogen containing species, such as NH3 , followed 

by contraction to a five membered ring. However, no literature evidence to 

support this proposed fragmentation pathway could be found. 

These two sets of ESI fragmentation pathways for the target 1,4-

benzodiazepines suggest that that the functional group on C3 (Figure 2.2) 

determines the initial fragmentation step. If an OH functional group is present 
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the MS transitions begin with the loss of H20, whereas if it is not, the first loss 

seen is that due to loss of CO. 

In summary, all target compounds were amenable to ESI-MSn and optimised 

parameters and ESI fragmentation pathways were ascertained for all of the 

target compounds. These optimised parameters were then used as the basis for 

high flow analysis methods, including full MS, MS2
, DDMS (data dependent 

mass spectrometry), SIM (selective ion monitoring) and SRM (selective reaction 

monitoring). During DDMS analysis the most intense ion from each scan, 

provided it had an ion count > 1 x 105
, is promoted to undergo an MS2 

fragmentation. This is therefore an advantageous method to use with unknowns 

such as metabolites where interpretation of MS2 fragmentation aids structural 

identification of the unknown. SIM and SRM are MS and MS2 analysis methods 

designed for known transitions. This results in a much greater sensitivity and 

these are therefore valuable analysis techniques for samples with low 

concentrations of known analytes. 
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2.4.2. High flow injection 

2.4.2.1. Methodology 

High flow analysis required the coupling of an HPLC gradient pump (Dionex 

P580 quaternary pump) to the ESI-MS detector, alongside which a Rheodyne 

injector was used for sample introduction (51-JL sample loop). LCQ tune software 

(ThermoFinnigan) was again used for data acquisition and processing. For 

more routine analysis work, once analysis methods were fully optimised, an 

autosampler was used (51-JL injection volume; Dionex ASI-100 automated 

sample injector) and Xcalibur 1.0 spl software (ThermoFinnigan) was used for 

data acquisition and processing. All high-flow work was performed under the 

following parameters: source voltage (+) 4.5 kV; capillary voltage (+) 0 - 50 V 

(set by auto tune function); capillary temperature 220°C; nitrogen sheath gas 

flow rate 60 arbitrary units; auxiliary gas flow rate, 20 arbitrary units. 

High flow full MS analysis of a mixture of all six target compounds (0.1 !Jg ml-1; 

MeOH : Milli-Q : formic acid, 50:50:0.1 v/v/v), was performed under the HPLC 

conditions developed in section 2.3 (Figure 2.4 ). Small modifications were made 

to the gradient details between runs to optimise chromatographic separation. As 

a mixture of compounds was being analysed, optimum conditions for one 

analyte (Fiuoxetine) were selected since Fluoxetine gave the weakest ionisation 

response. 
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2.4.2.2. Results and Discussion 

Modification of the HPLC method developed using UV detection for use with 

ESI-MS0 for the analysis of samples from soil and plant tissue resulted in 

extension of the analysis time. When the HPLC-UV method was applied directly 

to LC-MS, separation between target peaks decreased. This was due to peak 

broadening and was suspected to be due to the use of silicone based tubing, 

and an overall greater tubing length and hence dead volume on the LC-MS 

system. For this reason it was necessary to slow the gradient to increase peak 

separation. 

For MS analysis it is less essential to achieve baseline chromatographic 

resolution since MS provides the ability to identify compounds by specific ions. 

However this chromatographic method was to be used with samples that could 

contain significant quantities of potentially interfering and eo-eluting components 

from soil and plant tissue matrices. If these components were to eo-elute they 

could potentially cause matrix effects (i.e. ion suppression I enhancement). 

Considering the complex nature of matrices studied within this project, good 

chromatographic separation was considered an important objective, with 

maintenance of a practical run time, to reduce the risk of eo-eluting interfering 

components (Figure 2.13). 

The conditions of the final selected chromatographic method for use with LC­

MS are summarised in Figure 2.1 2. This chromatographic method was 

subsequently used for the analysis of SPE method development samples (cress 

& cauliflower tissues), all biodegradation samples, cauliflower tissue culture 

samples, and samples from related experiments. 
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Column: Gemini C1s. 51Jm, 15 cm x 2.1 mm i.d. 

Phase A: Chromasolv LC-MS grade water with 0.1% formic acid 

Phase B: Chromasolv LC-MS grade ACN with 0.1% formic acid 

Injection volume: 5 jJI 

Flow rate: 0.2 ml min-1 

Gradient: m in A(%} 8(%} 

0 80 20 

18 0 100 

23 0 100 

Figure 2.12. HPLC-ESI-MS" Chromatography Method Details for the Analysis of 

Target Compound and IS 
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Figure 2.13. Example extracted ion chromatogram of reverse phase HPLC-ESI(+)­

MS analysis of a mixture of Fluoxetine, Norfluoxetine, Diazepam, Temazepam, 

Oxazepam and Nordiazepam (m/z 310,296, 285, 301, 287, 271 respectively) using 

HPLC conditions modified from a method using UV detection. 

75 



Chapter Two - Method Development of Analysis Techniques 

2.5. HPLC-ESI-MS" Calibration 

2.5.1. Ratio calibration 

2.5.1 .1. Methodology 

lt was felt it would be of benefit if both qualitative and quantitative data could be 

obtained from analysis using the Finnigan MAT™ LCQ mass spectrometer. Ion 

trap mass spectrometers are notoriously difficult to obtain quantitative data 

from, due to non-linear responses. This is thought to be due to a common ESI 

phenomenon whereby at high analyte concentrations, ESI droplets reach a 

saturation limit (Souverain et al. , 2004; Antignac et al. , 2005). 

The issues over quantification and quality control have been reviewed by Hao et 

al., (2007), who brings attention to the differences in presentation of data for 

pharmaceuticals and personal care products from environmental matrices. For 

example the threshold below which quantitative data cannot be obtained varies 

between published literature methods. Some authors chose to use LOO (limit of 

detection), others LOQ (limit of quantification), MOL (method detection limit), all 

of which are calculated differently and provide slightly different information. Hao 

et al. , (2007) reviewed LC-MS" methods and found signal to noise ratio (S:N) 

approaches were most commonly used (23 from 30 studies). Due to the 

inconsistency in presentation of data, it was decided that herein the common 

S:N approach would be used, especially considering the known variable impact 

of matrix effects, even between samples. Xcalibur software was used to 

generate S:N for all samples analysed in this project. Samples with a S:N < 10 

were rejected for quantitative work, and those with a S:N < 3 were rejected for 

qualitative work. 
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Published literature revealed several examples of the use of ratio based LC-MS 

calibration methods. A very simple ratio-calibration experiment was devised, 

whereby a series of solutions containing all 6 target compounds over a range of 

concentrations (0.05 - 5 IJg ml-1) and the two IS at a consistent concentration 

(1 .25 IJg ml-1) were analysed by full MS. Normal linear calibration was carried 

out alongside this for the two IS (0.05 - 5 IJg ml-1), using full MS analysis, so 

that IS recoveries could be calculated in later experimental work. These 

solutions had a composition of - 50% ACN : 50% Milli-Q with 0.1% formic acid 

(v/v/v). This combination of eluents was selected as it was partially matched 

with HPLC eluents, and the inclusions of Milli-Q aid elec;trospray of the target 

compounds. Results in HPLC method development indicated some potential 

stability issues with the target compounds in water; therefore these solutions 

were made afresh every 3 days. 

2.5.1.2. Results and Discussion 

Appropriate protonated molecular ions were extracted from the full MS spectra 

and the peak areas integrated manually using Xcalibur, Qual Browser software. 

Integrated data allowed the generation of calibration graphs for each 

compound. Normal IS linear calibration (Figure 2.14 A and Figure 2.14 B) 

indicated a good linear response (R2 ~ 0.95) with very little variation between 

replicates. These data indicate that IS concentration and hence recovery may 

be calculated from normal linear calibrations. The data also suggested that 

linear calibration may be appropriate for all target compounds, as structurally 

they are closely related to one of the ISs. However, consideration of the linear 

calibration data in Figure 2.14 C, which compares the response of Fluoxetine 

and d5-Fiuoxetine {IS}, highlights just how much response variation was seen, 

even between compounds for which one would expect a very similar response. 
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Figure 2.14. HPLC-ESI-MS" normal linear external calibration curves: response 

against concentration. 

A. d5-Fiuoxetine; B. d5-0xazepam. X= mean response (n = 3). 
C. Comparison of Fluoxetine and d5-Fiuoxetine calibration curves, mean response (n = 3) • d5-

Fiuoxetine, • Fluoxetine. Error bars ± 1 standard deviation. 
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To generate ratio-calibration graphs for individual compounds the ratio of the 

target compound peak area to the IS peak area were plotted against target 

compound concentration. Use of the ratio calibration system (Figure 2.15) 

allowed variations in compound response to be accounted for and trend-lines 

with excellent R2 obtained. 
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Figure 2.15. Example HPLC-ESI-MS ratio calibration trend line for the generation 

of quantitative data for Fluoxetine HCI liquid culture biodegradation studies. 

Mean response ± 1 standard deviation shown (n = 3). 

This process was repeated for each of the target compounds. In later 

experiments it was necessary to repeat the calibration using different IS 

concentrations specific to the particular experiment and samples in question. A 

summary of all equations of calibration trend-lines used to generate quantitative 

data is presented at the end of this chapter (Section 2.6). 
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2.5.2. Matrix Matched Cauliflower Calibration 

2.5.2.1. Methodology 

During cauliflower method development work (Chapter 3) it was noted that IS 

recoveries were significantly lower than expected. Ion suppression and 

enhancement due to matrix effects are a well known phenomenon in ESI-MSn. 

These matrix effects are highly variable between samples and therefore have a 

significant impact upon reproducibility and reliability of quantitative data. 

There are a range of theories as to why this phenomenon occurs in the 

presence of matrix components, including; impacts upon evaporation efficiency, 

increases in viscosity and droplet surface tension, eo-precipitation with non­

volatile components, all of which have an impact on the transfer of analytes to 

the gas phase (Antignac et al., 2005). However the most commonly accepted 

mechanism is that competition between target analyte and eo-eluting 

compounds, either endogenous or exogenous, for ionisation causes these 

effects (Souverain et al., 2004 ). As matrix effects have been demonstrated in 

plant tissue matrices (Zrostlikova et al. , 2002), and as cauliflower tissue is a 

complex matrix, it was felt that the risk of ion suppression was significant 

enough of a risk to justify this work into ion suppression effects. 

Cauliflower (Marks and Spencer Class 1; as sourced for TIC experiments) was 

extracted in the same manner as for TIC samples. Bulk extractions of curd, 

leaves and stems were performed using tandem SPE. Minor alterations were 

made to the extraction procedure which included; increasing vol of extraction 

solvent to 30 mL 20g-1 wet weight of plant material (250 mL-1 for media); 

following drying samples were made up to 200 mL ( 4 x 50 mL portions Milli-Q) 
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and re-filtered (Whatman No 1) before undergoing SPE extraction. Single 

replicates of 3 different concentrations of ratio calibration samples (0.5, 2.5 and 

7.5 ~g ml-1 Fluoxetine HCI with 5 ~g ml-1 IS) were prepared using the 

extracted cauliflower stem, curd and leaf matrices. 

Analysis was performed using SIM as in the final T/C experiment (Chapter 5). 

Data were then integrated and comparisons drawn between integrated data to 

ascertain whether matrix components were causing any interferences, such as 

ion suppression or enhancement. 

2.5.2.2. Results and Discussion 

The plot of Fluoxetine integrated area data for different tissue types and a non­

matrix matched series (Figure 2.16 A), suggested that the curd matrix may be 

causing ion enhancement of Fluoxetine, relative to the non-matrix matched 

series, whereas in the stem and leaf series, Fluoxetine appeared to undergo 

some level of ion suppression relative to non-matrix matched series. Media 

samples apparently underwent substantial ion suppression due to matrix effects 

relative to non-matched series. 

Figure 2.16 8 shows d5-Fiuoxetine integrated data for different tissue types and 

a non-matrix matched series. All samples contained the same mass of IS (2 

~g); therefore we would expect to see consistent integrated area data for all the 

samples. lt is apparent that at different Fluoxetine concentrations the IS 

response differed. As a general rule, IS response decreased with increasing 

Fluoxetine concentration. 
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The non-matched series and the stem series gave similar responses (Figure 

2.16 A), which suggested that little or no impact upon d5-Fiuoxetine ESI 

occurred with the stem samples. However evidence of ion suppression was· 

seen on the IS in the curd and leaf series, and to an even greater extent in the 

media series (relative to the non-matrix matched series). 

Considering either just the impact upon Fluoxetine or IS response due to matrix 

effects gives complex results for interpretation i.e. curd samples saw both ion 

enhancement and suppression, stem, leaf and media samples appeared to 

undergo ion suppression to differing extents. However it was the impact of 

these matrix effects upon the ratio calibration trend lines, and hence calculated 

Fluoxetine concentrations, within samples that were of most importance herein. 

Figure 2.16 C shows ratio-calibration trend lines for three plant tissue types, 

media and a non-matrix matched calibration series. 
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Figure 2.16. HPLC-ESI-MSn matrix matched cauliflower tissue ratio calibration 

curves: 

A. Comparison of Fluoxetine integrated area data with concentration for 3 cauliflower tissue 
matrices, one growth media matrix and a non-matrix matched series. 
B. Comparison of IS area data Fluoxetine integrated area data at different concentrations for 3 
cauliflower tissue matrices, one growth media matrix and a non-matrix matched series. 
Fluoxetine concentration; 0.5 (• ), 2.5 (•) and 7.5 ( ) 1-Jg ml-1. 

C. Comparison of matrix matched ratio calibration curves for Fluoxetine in 3 cauliflower tissue 
matrices, one growth media matrix and a non-matrix matched series. 
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Calibration Series Equation of trend line R2 

Stem y = 0.1929 X- 0.1103 0.9965 

Leaves y = 0.1876 X- 0.0906 0.9998 

Curd y = 0.1868 X- 0.0843 0.9998 

Media y = 0.1554x- 0.0189 0.9975 

Non-matched y = 0.1798 X- 0.0827 0.9991 

Table 2.8. Ratio calibration curve trend-line equations for Fluoxetine in 

cauliflower tissue matrices, one growth media matrix and a non-matrix matched 

series. 

As can be seen from Table 2.8, all ratio calibration series gave R2 values > 

0.99. All trend lines had a y-axis intercept of- -0.1 ratio units. The steeper the 

gradient of the trend line the greater a ratio is required to achieve the same 

concentration of Fluoxetine, i.e. the steeper the trend line the greater the 

Fluoxetine response. All plant tissue specific series gave trend lines with 

steeper gradients, and lower y-axis intercepts, than the non-matrix matched 

series. This indicated that matrix components were having an ion enhancement 

impact upon all tissue specific ratio calibrations. The greatest ion enhancement 

was seen in stem > leaves> curd (> non-matrix matched series). However the 

gradient of the trend line for the media series is less steep than the non­

matched series. This suggested that in media samples ion suppression, as 

opposed to enhancement, was occurring. Media area data for Fluoxetine and IS 

suggested more significant ion suppression was occurring in the media series 

than any of the other four calibration series, and it is likely that this suppression 

was due to the inference by matrix components such as salts. lt is this relative 

reduction in response, for both the target compound and the IS that resulted in 

a shallower trend-line for ratio-calibration of media series, thus implying overall 

ion suppression. 
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To assess whether the differences seen in these trend lines were significantly 

different enough to warrant continuation of this calibration work an ANOVA 

statistical analysis was performed (Statsgraphics Version Xv.ll) on ratio data. 

ANOVA generated an F-ratio of 0.0024 which equated to a P-value of 1.00 (> 

0.05), indicating there were no statistically significant differences in the means 

of the five data sets, at the 95% confidence interval. These results indicate that 

the use of non-matrix matched calibration trend lines is acceptable for the 

generation of quantitative data in experiments with cauliflower tissues. 
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2.6. Analysis Method Development Summary 

This aforementioned method development resulted in a reverse phase 

chromatographic method suitable for the analysis of four target compounds by 

HPLC-UV and all six target compounds by HPLC-ESI-MS". ESI was found to be 

suitable for the analysis of all target compounds and conditions were optimised 

for maximum sensitivity and selectivity. These conditions were then used as the 

basis for high flow analysis methods throughout this project. ESI(+) 

fragmentation pathways were ascertained along with the Rts of all target 

analytes and the ISs. Studies into ratio calibration and matrix matching to 

account for ion suppression revealed no statistically significant benefits for the 

use of matrix matched calibration series for cauliflower tissue samples. Details 

of calibrations that were developed for various experiments in this project are 

summarised in Table 2.9. 

MS analysis 
Equation of 

used for Experiment 
quantitative ratio R2 

(compound) calibration 
data 

generation 
trend-line 

Soil Biodegradation 
Full MS 

y = 1.0456x-
0.998 (Fiuoxetine) 0.2752 - ---- --

Liquid Culture 
y = 1.0456x-Biodegradation Full MS 0.998 

( Fluoxetine} 0.2752 

Liquid Culture 
y = 0.8287x-Biodegradation Full MS 0.993 

{Norfluoxetine) 0.1662 
-·······-··-

Liquid Culture 
y = 4.1064x + 

Biodegradation Full MS 0.977 
{Diazepam} 0.0749 

Liquid Culture 
y = 0.8094x + Biodegradation Full MS 1.000 

(Oxazepam) 
0.0037 

Liquid Culture 
y = 1.5489x + Biodegradation Full MS 0.997 

{T emazepam} 
0.0509 

Cauliflower TIC SIM y = 0.1733x-
0.996 (Fiuoxetine) 0.0543 

Table 2.9. Ratio-calibration summary table for full scale experiments 
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3. Method Development of Extraction Techniques 

3.1. Introduction 

Method development work (Chapter 2) resulted in the successful development 

of chromatographic methods suitable for the separation and analysis of four 

target compounds (Fiuoxetine, Diazepam, Temazepam and Oxazepam) by 

HPLC-UV. This method was subsequently modified for use with HPLC-ESI-MS" 

and optimised MS parameters were obtained for each of the six target 

compounds. Once analysis methods were established it was possible to begin 

method development work for the extraction of target analytes from a range of 

environmentally relevant matrices. 

In the previous chapter, methods found in literature for the extraction and 

analysis of organic contaminants from solid matrices were briefly discussed and 

examples from the literature given (Tables 2.1 to 2.5). lt was noted that SPE 

was the most commonly selected method for sample clean-up, due to the ease 

of use, speed, low contamination risk, the advantage of potential on-line use 

and that only low volumes of organic solvent are required (Diaz-Cruz et al., 

2003; Liska, 2000). 

There are four major reasons for the use of SPE which are: removal of 

impurities such as endogenous compounds from the matrix; concentration of 

the target analyte; phase exchange for GC analysis and in-situ derivatization 

using specially coated cartridges, e.g. (Bouvier, 1995). For the present method 

development work SPE was selected because of its ability to remove interfering 

components and for concentration of the target analytes. 
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SPE has predominantly been used to prepare samples for subsequent analysis 

by HPLC because they both share the same fundamental basis of separation. 

Both techniques are based upon the differential migration of compounds as they 

are adsorbed and eluted while a mobile phase flow carries them through porous 

media. For this reason knowledge about compound retention behaviour under 

HPLC conditions can provide useful information in selection of appropriate 

loading and elution solvents for SPE, especially for reverse phase (RP) 

sorbents. HPLC using a column with the same stationary phase as the SPE 

cartridges to be used allows the generation of capacity factors (k') also known 

as retention factors or relative retention. These can, in turn, be used to optimise 

analyte elution from the stationary phase as a low capacity factor (typically 0 -

0.5) is required to elute the target analyte (Bouvier, 1995; Swadesh, 2001; 

Liska, 2000). 

Most SPE procedures follow a series of steps known as conditioning, 

equilibration, loading, wash and elution steps. Conditioning with an organic 

solvent is used to activate the SPE cartridge by solvating the whole stationary 

phase which maximises available surface sites for adsorption. Equilibration is 

then used to prepare the sorbent surface for sample loading (Bouvier, 1995). 

Frontal loading was used in initial method development work. During frontal 

loading, target analytes displace conditioning and equilibration solvent 

molecules bound to the solid sorbent surface and thus become bound to the 

sorbent, while unwanted components pass through the cartridge unretained 

(Henry, 2000). 
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The pH used during sample loading in SPE is important and is determined by 

the type of cartridge being used and the target analyte in question. For example 

although Si-based sorbents are mechanically very stable, they are prone to 

hydrolysis at pH extremes and are therefore only considered stable for use at 

pH ranges of 2- 7, whereas polymeric sorbents can be used over a pH range 

of 1 - 14. Various modifiers are often added to the sample prior to loading to 

increase retention of the analyte. For example drug-protein interactions within a 

plasma matrix can be ·minimised by modification of the plasma with acid, salt or 

organic solvent, alongside which buffering the matrix· so that the pH obtained 

ensures the analyte is in its neutral form and is a minimum of 2 pH units away 

from its pK will further increase analyte retention . When using ion exchange 

sorbents it is important to obtain a sample pH that will ensure that both the 

analytes and sorbent are charged. Premature breakthrough of target analytes is 

one of the most common problems in SPE, but can be easily overcome by the 

use of a weaker solvent or by diluting the sample. If breakthrough is still a 

problem then reduction of sample volume or the use of SPE cartridges with a 

greater mass of sorbent should solve the problem (Bouvier, 1995}. 

After loading the sample onto a cartridge the wash step is performed with a 

solvent which will displace weakly bound components but not the target 

analytes. Unwanted material can also be removed from the pore and interstices 

of the packed bed during washing (Henry, 2000). 

For elution a stronger solvent that is able to displace adsorbed analytes on the 

sorbent surface is required. Hydrophobic, Coulombic, dipolar and electrostatic 

forces are the dominant forces involved in binding an analyte to the sorbent 
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surface, although this depends upon the cartridge type. In the present method 

development, two types of cartridge were used; C18 and strong anion exchange 

(SAX) cartridges. Van der Waals and hydrophobic interactions are the primary 

interaction mechanisms responsible for analyte retention in C18 cartridges, 

whereas primarily Coulombic anion exchange mechanisms occur in SAX 

cartridges (Henry, 2000). Of the RP Si-based sorbents available (C2, C4, CB 

and C18) C18 sorbents generally provide the highest analyte retention, but this 

is superseded by the exceptional retention provided by polymeric sorbents 

(Bouvier, 1995). 

3.2. Aims 

At the commencement of this project there were no methods reported in the 

literature for the simultaneous extraction of the selected target analytes. The 

present method development work therefore aimed to develop methods 

appropriate for the simultaneous extraction and clean-up of four target analytes 

(Fiuoxetine, Diazepam, Temazepam and Oxazepam). As a range of matrices 

were to be used in different experiments in this project, it was necessary to 

develop extraction methods for water, soil and plant matrices for later use in 

biodegradation and plant-up take studies. Literature searching showed that the 

most commonly used extraction and clean-up methods for pharmaceuticals 

from environmental matrices were usually based around LLE followed by SPE 

or column chromatography for clean-up as shown in Table 2.1. For this reason 

solvent extraction, where necessary, followed by SPE were the techniques 

selected for experimental work. 

90 



Chapter Three: Method Development of Extraction Techniques 

3.3. SPE Method Development for Extraction from Water 

Water was selected as the first matrix to be used in method development work, 

as it is a relatively simple matrix, compared to the other matrices to be used 

herein. 

3.3.1. Testing Compound behaviour on PRP-1 

The commonly available Phenonmenex Strata-X SPE (500mg I 3ml) cartridges 

which are reverse phase cartridges containing polymeric sorbent, were selected 

for this method development work. To ascertain the behaviour of the target 

compounds (Fiuoxetine, Diazepam, Temazepam and Oxazepam) on this 

stationary phase, a series of analyses using a PRP-1 , 50 x 4.1 mm, 51Jm column 

with a stationary phase similar to that of Strata-X SPE cartridges, was 

performed. 

An HPLC pump (HP 1050) with autosampler (90 IJL injection volume) was 

coupled to a UV variable wavelength detector to examine individual standard 

solutions of Fluoxetine HCI, Diazepam, Temazepam, Oxazepam. Milli-Q and 

MeOH both modified with 0.1% formic acid, were used as the aqueous and 

organic eluents. Standard solutions of each target compound (0.1 mg ml-1 in 

eluent) underwent isocratic elution over 30 minutes at a range of organic phase 

concentrations ( 1 00, 80, 65 and 50%) and the Rt were noted. 

The retention time for each of the target compounds at each concentration of 

organic eluent was then used to calculate capacity factors (k'; Table 3.1 ). The k' 

of a compound is a measure of the degree to which a compound will be 

retained under the given HPLC conditions relative to an unretained compound 

91 



Chapter Three: Method Development of Extraction Techniques 

(e.g. Uracil). The equation given below, was used to generate k' that are also 

presented as plots against organic concentration (Figure 3.1) (Swadesh, 2001 ). 

k' = (tR - to) 7 to 

Where; tR - Rt of retained analyte 

to - Rt of unretained compound I solvent front 

Capacity Factor (k') 

% MeOH + 
Fluoxetine Diazepam Temazepam Oxazepam 

formic (0.1 %) 

100 0.1 1.4 0.8 0.4 

90 0.1 3.5 1.8 1.0 

80 1.9 9.0 4.1 2.5 

65 36.5 (max) 36.5 (max) 20.6 36.5 (max) 

50 36.5 (max) 36.5 (max) 36.5 (max) 36.5 (max) 

Table 3.1. Capacity factors (k') for Fluoxetine, Diazepam, Temazepam and 

Oxazepam generated using PRP-1 column (50 x 4.1 mm, SJ.Jm) with an organic 

phase of MeOH modified with formic acid (0.1%) 

Max indicates the maximum possible value for k' as run time was restricted to 30 minutes (i.e. 
analyte did not elute within 30 minutes). 
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Generated k' plots (Figure 3.1) suggested that Strata-X SPE cartridges would 

be suitable for use with these drugs as it was possible to both retain and elute 

all target analytes from this phase. k' plots also aid in the optimisation of wash 

steps involved during SPE. The use of an organic solvent in combination with 

an aqueous solvent in the wash step maximises removal of interfering 

compounds. However if the organic content is too high this can result in the loss 

of target analytes. These plots indicated that washing Strata-X SPE cartridges 

with 50% MeOH and 50% Milli-Q would not cause the drugs to elute from the 

cartridges prematurely and hence be lost in the wash step. Table 3.1 shows that 

at 50%, MeOH k' were at a maximum for all target analytes (k' = 36.5). However 

at 65% MeOH, Temazepam (k' = 20.6) may elute from the SPE cartridges. Data 

in this table also indicates that 100% Me OH is required for the elution step in 

SPE for maximum recovery of all compounds to be obtained. Comparison of k' 

data for between 90 and 1 00% Me OH shows k' values to still be declining for all 

compounds, except Fluoxetine for which maximum elution was obtained at 90% 

MeOH (k' = 0.1 ). 

3.3.2. SPE from Water: Method Development 

A series of sequential optimisation process were carried out to maximise the 

extraction and hence recoveries of all four target compounds from water. 

Conditions which remained consistent throughout each step of the extraction 

process are summarised in Figure 3.2. The details of steps that were varied 

during this method development work are presented in Table 3.2 along with 

comments upon the results of each method development stage. 
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Samples spiked 

l 
Sample Preparation: Filtration (Whatman No 1) 

l 
SPE: 1ST Vacmaster and Vacuubrand pump 

l 
Phenomenex Strata-X (polymeric sorbent; 
500 mg I 3 ml) 

Condition: MeOH (3 ml) 

l 
Equilibrate: Milli-Q (3 ml) 

l 
Loar Sample: Flow rate - 15 mL min·' 

Wash: varied 

Dry cartridge(- 5 min) 

Elute: varied 

l 
N, blow-down to dry 

Reconstitution: 500 J.!L ACN, of which 200 J.!L 

1 
removed to autosampler vials 
with 300 J.!L of Milli-Q modified 
with 0.2% formic acid 

Analysis: HPLC-UV@ 214 & 254 nm, conditions 
as described in Figure 2.4 

Figure 3.2. Flow diagram of generic experimental steps u·sed during method 

development for the extraction of four target analytes from water 
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Percentage Recovery 

Cl) E E E 
Method c: CO 

:;:; CO a. CO 

Development Sample Details .Wash Elution 
Cl) a. Cl) a. 
)( Cl) N Cl) 

Stage 0 N CO N CO 
:I )( E CO 

LL 0 Cl) c 
1-

100f.lg each 
Milli-Q (2 x 3 ml) 118 81 63 31 

Optimisation of analyte in Milli-Q 
MeOH + 2% formic acid (3 x 10 

wash step (500ml). Single 
ml; collected in 3 x 10 ml 

replicate MeOH : Milli-Q (50: fractions) 

50; v/v) (2 x 3 ml) 
111 151 90 70 

MeOH + 0.5% formic acid (2 x 
10 ml; collected in 3 x 10 ml 77 100 84 55 
fractions) 

100!lg each MeOH + 1% formic acid (2 x 10 
Optimisation of analyte in Milli-Q MeOH : Milli-Q (50 : 

elution step (500ml). Single 50; v/v) (2 x 3 ml) ml; collected in 3 x 10 ml 127 97 113 78 

replicate 
fractions) 

MeOH + 2% formic acid (2 x 10 
ml; collected in 3 x 10 ml 100 91 96 56 
fractions) 

Confirmation of 100f.lg each MeOH : Milli-Q (50 : 
MeOH + 1% formic acid (3 x 3 58± 22 

recoveries and analyte in Milli-Q 50; v/v) (2 x 3 ml) 
ml; collected in 3 x 10 ml 103 ± 24 104 ± 11 95 ± 16 (71 ± 2) 

reproducibility (500ml). Triplicate fractions) 

Table 3.2. Sequential method development stages and results in the extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from 

water 



Table 3.2 continued . .. 

Method Development 
Comments & conclusions Stage 

Inclusion of 50% MeOH within wash step resulted in higher recoveries for all target compounds especially 
Optimisation of wash Temazepam due to lower losses of target compounds during the wash step as predicted by k'-plots. 

step Collection & analysis of elution step in 3 fractions (10 ml) established that all compounds eluted within the 
first 20 ml. 

Results suggest that the use of 1% formic acid within the elution solvent is optimum for maximum recoveries, 
Optimisation of elution although differences in recoveries do not appear to be significantly different. No target compounds were 

step detected in the second fraction, therefore indicating that the elution volume could be reduced to 10 ml 
without a reduction in recovery. 

Recoveries obtained for all target compounds were good with acceptable standard deviations. The use of an 
internal standard may allow some of these minor variations to be accounted for. There was no detection of 

Confirmation of Diazepam in the first elution fraction for one of the replicates, although Diazepam was found in the second 
recoveries and fraction. This anomalous result has therefore reduced the average recovery. If this replicate is discounted 
reproducibility Diazepam recovery increases to 71% (data shown in brackets). No target compounds were detected in the 

third fraction, therefore indicating that the elution volume could be reduced to 6 ml without a reduction in 
recovery. 

Table 3.2. Sequential method development stages and results in the extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from 

water 
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3.3.3. SPE from Water: Final Working Method 

The step-wise method development procedure was successful in producing an 

extraction and pre-concentration method for the analysis of Fluoxetine, 

Diazepam, Temazepam and Oxazepam from water matrices with acceptable 

recoveries. Figure 3.3 shows that this procedure did not introduce any apparent 

contamination, nor affect the Gaussian peak shapes, nor Rt of the compounds 

in question. The final working sample preparation and SPE method from 

extraction from water matrices is presented in Figure 3.4. 
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Figure 3.3. Example HPLC-UV chromatogram and recovery data for the 

extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from water using 

the final working SPE method 

A: 214 nm. B: 254 nm 
Error bars represent± 1 standard deviation (n = 3) 
Chromatogram shown is from 'Confirmation of recoveries and reproducibility' method 
development stage (Table 3.2); first elution fraction from one replicate. 
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Sample Preparation: Filtration (Whatman No 1) 

l 
SPE: 1ST Vacmaster and Vacuubrand pump 

l Phenomenex Strata-X (polymeric sorbent; 
500 mg /3 ml) 

Condition: MeOH (3 ml) 

l 
Equilibrate: Milli-Q (3 ml) 

l 
Loai Sample: Flow rate - 15 ml min-1 

Wash: MeOH : Milli-Q (50 : 50 v/v; 2 x 3 ml) 

Dry cartridge(- 5 min) 

Elute: MeOH + 1% formic acid (6 ml) 

1 
N, blow-down to dry 

Reconstitution: 500 ~L ACN, of which 200 ~L 
removed to autosampler vials 
with 300 ~L of Milli-Q modified 
with 0.2% formic acid 

Figure 3.4. Flow diagram showing the final working method for sample 

preparation and SPE of Fluoxetine, Diazepam, Temazepam and Oxazepam from 

water 

For the liquid culture biodegradation experiments reconstitution was as follows; 200 J,JL ACN, of 
which 50 J,JL was removed to an autosampler vial with 50 J,JL of Milli-Q modified with 0.12% 
formic acid (v/v). 
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3.3.4. SPE from Water: Summary and Method Limitations 

The developed method is suitable for the extraction of Fluoxetine, Diazepam, 

T emazepam and Oxazepam from water. For use with water which may have 

high levels of humic or fulvic acids the use of the developed soil method 

(Section 3.4, Figure 3.8) is recommended as it was specifically designed to 

remove these interfering components. This SPE method is likely to require 

s.ome modification for use with different compounds such as other 1 ,4-

benzodiazepines or different water sources (e.g. marine or estuarine waters). 
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3.4. SPE Method Development for Extraction from Soil 

The successful development of an SPE method for the extraction of target 

compounds from water provided the basis of an extraction methodology for soil 

matrices. As later studies were to involve biodegradation within soil it was 

necessary to develop an efficient extraction method with suitable clean-up that 

would allow a LOO good enough for quantification of target compounds at 

environmentally relevant concentrations in soils. 

3.4.1. Extraction from Soil: Method Development 

As with the method development for the extraction from water, a series of 

sequential method development steps was undertaken to optimise the 

extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from soil. The 

agricultural SS amended-soil used in this method development work was 

sourced from the same site as soil used in the subsequent biodegradation 

studies (Chapter 4). More details on the source of this soil can be found in 

Chapter 4, Section 4.3.1. Prior to the start of experimental work, soil was stored 

at 4°C in the absence of light. Large stones and any flora or fauna were 

removed from the soil but it was not altered in any other manner. A flow 

diagram showing generic experimental stages, including modifications to the 

water SPE method for use with soil is presented in Figure 3.5. In Table 3.3 

details of altered extraction steps along with comments upon the results at each 

stage can be found. 

101 



Chapter Three: Method Development of Extraction Techniques 

Samples spiked: Range of samples prepared 

l 
Sample Sonication (15 min) and centrifugation 
Preparation: (1500 rpm, 15 min) with extraction 

solvent (5 ml) was repeated in 
triplicate and the supernatants 
combined, followed by filtration 
(Whatman No 1 ). Samples were made 
up to 1 L with Milli-Q and H3P04 (200 
I-LL}. 

SPE 1ST Vacmaster and Vacuubrand pump; one 

l 
Phenomenex Strata-X (polymeric sorbent; 
500 mg I 3 ml) and one Strata-SAX (Tri-func 
SAX; 500 m2g-1

, 500 mg I 3 ml) SPE 
cartridge per sample 

Condition: all cartridges MeOH (3 ml) 

1 
Equilibrate: all cartridges Milli-Q (3 ml) 

lPiace cartridges in tandem: Strata-SAX on top 

Load Sample: Flow rate - 5 ml min-1 

l Remove Strata-SAX SPE 

Wash: MeOH : Milli-Q (50 : 50 vlv; 2 x 3 ml) 

l Dry cartridge(- 5 m in) 

Elute: MeOH + 1% formic acid (6 ml) 

! 
N2 blow-down to dry 

! 
Reconstitution: 500 ml ACN, of which 200 ml 

1 
removed to autosampler vials 
with 300 ml of Milli-Q modified 
with 0.2% formic acid 

Ana ysis: HPLC-UV@ 214 & 254 nm, conditions 
as described in Figure 2.4 

Figure 3.5. Flow diagram of generic experimental procedures, including details of 

modification of water SPE method, using during method development for the 

extraction of four target analytes from soil 
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p t ercen age R ecovery 
Q) E E E c C\'S 

Method Development ::: C\'S Q. C\'S 

Sample Details 
Extraction Q) Q. Q) Q. 

Stage >< Q) N Q) 

Solvent 0 N C\'S N 
~ 

C\'S E C\'S >< ·-u. 0 Q) c 
t-

100J.Lg each analyte in soil (5 ± 0.1 g wet MeOH + 1% 
weight). Immediate extraction. Single formic acid 67 86 82 67 
replicate 

Selection of solvent for 1 OOJ.Lg each analyte in soil ( 5 ± 0.1 g wet ACN + 1% 
compound extraction from weight). Immediate extraction. Single formic acid 

85 84 85 69 
soil replicate 

1 OOJ.Lg each analyte in soil (5 ± 0.1 g wet IPA + 1% formic 
weight). Immediate extraction. Single acid 

283 68 60 53 
replicate 

Confirmation of recoveries 100J.LQ each analyte in soil (5 ± 0.1 g wet ACN + 1% 
79 ±2 88 ±2 83 ± 4 63 ± 5 

and reproducibility weight). Immediate extraction. Triplicate formic acid 

Table 3.3. Sequential method development stages and results in the extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from 

soil 



Table 3.3 continued .. . 

Method Development 
Stage 

Selection of solvent for 
compound extraction 

from soil 

Confirmation of 
recoveries and 
reproducibility 

Comments & Conclusions 

Use of ACN + 1% formic acid as the extraction solvent resulted in the highest set of recoveries for the target 
compounds, and so this solvent was selected for use in further soil extraction work. When IPA+ 1% formic 
acid was used unrealistically high Fluoxetine recoveries were obtained, which was thought to be due to eo­
elution of extracted humic or fulvic materials from the soil. 

Recoveries obtained for all target compounds were good with acceptable standard deviations. The use of an 
internal standard may allow some of these minor variations to be accounted for. 

Table 3.3. Sequential method development stages and results in the extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from 

soil 
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Table 3.3 continued ... 

p ercentage Recove_ry 

Q) E E E c: C'O 
;:; C'O Q. C'O 

Extraction Q. 

Method Development Stage Sample Details 
Q) C1) 

C1) Q. 

Solvent >< N N C1) 

0 C'O 
C'O N 

~ >< E C'O 

u. 0 C1) 0 ._ 
Testing impact of compound 1 0011g each analyte in soil (5 ± 0.1 g wet ACN + 1% 

sequestration into soil matrix on weight). Spiked 7 days prior to extraction. formic acid 
70 ± 11 70 ±4 73 ± 11 54± 2 

recoveries Triplicate 

50 g sample spiked at 111g g-1 wet weight ACN + 1% 
each analyte. Immediate extraction. Single formic acid 

59 48 37 28 
replicate 

Testing impact of sample size 
25 g sample spiked at 111g g-1 wet weight ACN + 1% 

upon recoveries 
each analyte. Immediate extraction. Single formic acid 

63 21 15 33 
replicate 

15 g sample spiked at 11.lg g-1 wet weight ACN + 1% 
each analyte. Immediate extraction. Single formic acid 

75 86 61 81 
replicate 

Confirmation of recoveries and 15 g sample spiked at 1.5flg g-1 wet weight ACN + 1% 
reproducibility using 15 g sample each analyte. Immediate extraction. formic acid 

91 ± 21 48 ± 8 48 ± 3 69 ±2 

size Triplicate 

Table 3.3. Sequential method development stages and results in the extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from 

soil 



Table 3.3 continued ... 

. 

Method Development 
Comments & conclusions Stage 

Testing impact of 
Allowing 7 days for compounds to become incorporated into the soil matrix resulted in an expected compound sequestration 

into soil matrix on 
reduction in recoveries. Fluoxetine and Oxazepam recoveries were reduced by- 15%, 10% for 

recoveries Temazepam and 18% for Diazepam. 

Recovery data implied that the use of only 3 x 5 ml of extraction solvent to extract 15 g of soil did not result 
Testing impact of sample in any significant reduction in recoveries. However when the sample size was > 15g recovery data indicated 

size upon recoveries significant losses of all target compounds and larger solvent volumes would be required to extract larger 
volumes of soil. 

Confirmation of recoveries 
Recoveries obtained for all target compounds were acceptable with appropriate standard deviations, 

and reproducibility using 
although they were found on average to be slightly lower than when 5 g of soil were used. For this reason it 
is decided that this extraction and clean-up method should be used with as small a sample size as possible 

15 g sample size to obtain maximum recoveries. 

Table 3.3. Sequential method development stages and results in the extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from 

soil 
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3.4.2. Extraction from Soil: Final Working Method 

A simple extraction method using acidified ACN was developed for use with a 
' 

modified version of the method developed for water. The use of a tandem SAX 

cartridge successfully allowed significant removal of interfering substances such 

as humic and fulvic acids from the soil samples. Comparison of HPLC-UV 

chromatograms from· soil (Figure 3. 7) and water extractions (Figure 3.3) 

indicated the removal of the majority of interfering components. Only one 

additional peak(- 4 minutes, at 214 nm only) due to an unknown soil artefact 

was found. 

During ·the sample preparation process the extracts from soil were heavily 

diluted to reduce the organic content to less than· 2%, which ensured that the 

target compounds were retained upon the Strata-X cartridge and no premature 

breakthrough occurred. This acidification process involved reduction of the pH 

to below 2.9 so that the target compounds were neither positively nor neutrally 

charged and therefore not retained upon the Strata~SAX cartridge and were free 

to pass through to the Strata-X cartridge where they were retained (Biackwell et 

al., 2004). The final working method from the extraction and clean-up of target 

compounds from SS amended-soil is summarised in Figure 3.8. 

Figure 3. 7 also shows a results summary for all ACN + 1% formic acid 

extractions that were performed in triplicate. lt clearly shows the advantage of 

immediate extraction and the use of small ·soil sample masses. Statistical 

analysis to draw comparisons between the 5g sample sets extracted 

immediately or 7 days post spiking showed no difference in variation for any of 

the target compounds at the 95% confidence interval (F-test, P-value: 

Fluoxetine 0.090; Oxazepam 0.495; Temazepam 0.298; Diazepam 0.355). 
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Statistical analysis also indicated no differences in the mean recoveries of 

Fluoxetine or Temazepam (t-test, P-value: 0.228 and 0.233 respectively) when 

the spiked soil was left for a week before being extracted,· as opposed to 

immediate extraction. However for Oxazepam and Diazepam, t-test P-values 

were found to be 0.003 and 0.035 respectively, indicating that the differences in 

Oxazepam and Diazepam recoveries seen in the two sets (immediate and 7 

days) were statistically significantly different. Due· to the commonality of 

functional groups between the 1 ,4-benzodiazepines studied it could be 

expected that their behaviour regarding sorption to soil would be similar. lt is 

possible however that small differences in functional groups, such as the C3 

hydroxyl in Oxazepam or the N1-methyl in Diazepam (Figure 3. 6), impacted the 

rate of sorption of these compounds into soil during this method development 

work. lt would appear that if Temazepam undergoes sorption it is very rapid, 

whereas the sorption of Oxazepam and Diazepam was slower and hence 

appeared more progressive. lt should however be noted that these analyses 

were only repeated in triplicate. 

Figure 3. 6. Structures of target 1 ,4-benzodiazpines 

Diazepam: 
Nordiazepam: 
Temazepam: 
Oxazepam: 

R1 = CH3, R2 = CH2 
R1 = H, R2 = CH2 
R1 = CH3, R2 =OH 
R1 = H, R2 =OH 
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Figure 3.7. Example HPLC-UV chromatogram and recovery data for the 

extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam from SS 

amended-soil spiked either immediately or 7 days prior to extraction using the 

final working soil extraction and SPE method 

• Fluoxetine; • Oxazepam; Temazepam; • Diazepam 
Error bars represent± 1 standard deviation (n = 3) 
Time reference in bar-chart refers to time between spiking and extraction 
Chromatogram shown is from one replicate from 'Confirmation of recoveries and reproducibil ity 
using 15 g sample size' method development stage (Table 3.3). 
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Sample Transfer to centrifuge tube 
Preparation:------- -+with ACN + 1% formic acid 
For soil samples (5 ml) 
15g maximum I 

I 
+ 
Sonicate (15 mins) 
I 
I 
+ 
Centrifuge (1500 rpm, 15 miris) 
I 
I 
+ 
Combine supernatants and 
filter (Whatman No 1) 
I 
I 
+ 

Repeat in 
triplicate 

Make up to 1L with Milli-Q (or reduce organic content 
to< 2 %) and H3PO. (200 fll) to obtain pH< 2.9 

I 
I 

Solid Phase + 
Extraction: --------+ One Phenomenex Strata-X (polymeric sorbent; 500 

mg I 3 ml) and one Strata-SAX (Tri-func SAX; 500 

m2g·', 500 mg /3 ml) SPE cartridge per sample 

Condition: all cartridges with MeOH (3 ml) 

Equilibrate: all cartridges with Milli-Q (3 ml) 

. -

Place cartridges in tandem; Strata-SAX on top 

Load Sample: Flow rate- 5 ml min·' 

Remove Strata-SAX SPE cartridge 

Wash: MeOH : Milli-Q (50 : 50 vlv; 2 x 3 ml) 

Dry cartridge (- 5 m in) 

Elute: MeOH + 1% formic acid (6 ml) 

N2 blow-down to • --

1 ',,,~ . 
Reconstitution: ------+ 500 fll ACN, of which 200 fll 

removed to autosampler vial with 
300 ~L of Milli-Ci modified with 
0.2% formic acid --

Figure 3.8. Flow diagram showing the final working method for sample 

extraction, preparation and SPE of Fluoxetine, Diazepam, Temazepam and 

Oxazepam from SS amended-soil 

For the biodegradation of Fluoxetine HCI in SS amended soil experiment reconstitution was as 
follows; 200 iJL ACN, of which 50 iJL was removed to an autosampler vial with 200 iJL of Milli-Q 
modified with 0.12% formic acid (v/v). 
For the extraction of Rothamsted soils reconstitution was as follows; 200 iJL ACN, of which 50 
iJL was removed to an autosampler vial with 50 iJL of Milli-Q modified with 0.12% formic acid 

(v/v). 
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3.4.3. Extraction from Soil: Summary and Method Limitations 

This study indicated that the soil extraction and clean-up method developed is 

suitable for the extraction of Fluoxetine, Diazepam, Temazepam and Oxazepam 

from SS amended-soils. However, as a final caveat, for use with soils that have 

unusually high SS application rates, or use with untreated sewage, some 

modifications may be required, since as part of this project agricultural soils that 

had been treated previously with SS. for several years, as part of a study on 

heavy metal pollution of SS-amended soils, were obtained from Rothamsted 

Research, Harpenden, Hertfordshire, UK. These soils sourced. from seven 

different sites (Woburn, Gleadthorpe, Watlington, Pwllpeiran, Rosemaund, 

Bridgets and Shirbum) across Britain were sampled annually ··and had 

undergone both short and long· term treatments of annual SS application ( 1994 

- 1997 and 1994 - 2005). The soils included control soils (no SS), soils treated 

with digested sludge cake (short and long term treatments) and soils treated 

with raw SS cake (short and long term treatments) all of which were sampled in 

2005. More detailed information on the characteristics of these soils and 

sludges are presented by Gibbs et a/,. (2006). The aim of obtaining these soils 

was to make an assessment of potential rates of accumulation and degradation 

of PPCP·s in a range of soil types. 

Initially soils treated with undigested sludge cake for 12 years from all seven 

sites were extracted and analysed. Samples(- 40 g) were separated into four 

sub-samples (-10 g) and spiked with IS (ds-Fiuoxetine HCI (1 IJg) and ds­

Oxazepam (1 IJg) per sub-sample) before undergoing the developed soil 

extraction method (Figure 3.8), prior to tandem SPE supernatants were 

combined. HPLC-ESI-MS using conditions described in sections 2.4.1.2 and 
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2.4.2.2 was used for analysis in both full MS and SIM modes. Sub-samples of 

each of these soils treated with undigested sludge cake also underwent 

procedures to generate semi-quantitative data on the bacterial populations 

present as discussed in Section 4.5 and presented in the appendices (Figures 

A.21 to A.33). 

Quantitative data generated from full MS extracted ion chromatograms 

indicated variable IS re.coveries (d5-Fiuoxetine HCI 36 ± 19%; d5-0xazepam 44 

± 19%) that were lower than those obtained for Fluoxetine and Oxazepam in 

method development work (Figure 3.8; - 50- 90%).The differing properties of 

the range of soils used may account for some of the variation of IS recovery 

seen in these samples. Neither full MS nor SIM analysis modes were able to 

detect any of the target compounds Fluoxetine, Norfluoxetine, Diazepam, 

Temazepam, Oxazepam or Nordiazepam. 1t was felt that to utilise these 

valuable samples for an accumulation and degradation study, further method 

development to clean the samples and reduce the LOD would be required. lt 

should be noted however that the SS treatment rate used on Rothamsted soils 

was based upon heavy metal content, which resulted in biosolid application 

rates approximately 10 times greater than those normally used in agriculture. 

Also the particular treatment of these analysed sampled used undigested 

sludge cakes i.e. raw SS, which is a dirtier matrix than digested SS. 

112 



Chapter Three: Method Development of Extraction Techniques 

3.5. Extraction from Plant Tissues 

1t was necessary to develop or modify a method for the extraction and clean-up 

of Fluoxetine from plant tissues for later use in a plant-uptake study. Cauliflower 

was selected to be the final test plant but it was important to develop a method 

using a readily grown, inexpensive and available plant of similar nature ideally 

grown under similar conditions before pursuing the more elaborate cauliflower 

growth studies. Cress was selected as a test plant due to its fast growing 

nature, ability to grow without soil and because it is from the same Brassica 

family as the cauliflower. 

3.5.1. Extraction from Brassica Tissues: Method Development 

An important component of this method development work was to develop a 

method that was able to remove interfering components from the plant tissue 

with minimal loss of Fluoxetine. Humic and fulvic acids are thought to contain a 

large proportion of plant-derived materials. For this reason it was a logical first 

step to test the soil extraction method with plant material. lt was also necessary 

to ensure that the extraction method developed was capable of extracting the 

drug from plant tissue when it has been naturally sequestered. 

During this work two different of sources of plant tissue were used; laboratory 

grown cress and purchased 'mixed Brassica' (Sainsbury's salad cress: 85% 

rape; 10% cress; 5% mustard). Laboratory grown cress (fine curled cress, 

purchased from Wilkinson as seeds) was grown in circular drip trays (14cm 

radius, 2.5cm depth; 10% nitric acid washed) on a laboratory windowsill (20 +or 

- 5°C). Solvent blanks (1 00 J.JL MeOH) were set-up alongside spiked t~ays (0.1 

mg Fluoxetine in MeOH) to which 35ml ofsterile Milli~Q was added. Cardboard 

lids with a slit (10cm x 2cm) were fixed over the drip trays to reduce potential 
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photodegradation of the target compound (Figure 3. 9). Misshapen, cracked or 

discoloured cress seeds were disposed of. 150 cress seeds were sprinkled into 

each tub through the slits in the cardboard (i.e. so that the light slit cut in the 

cardboard was above the cress seeds). Trays were rotated daily to ensure even 

light distribution and watered with sterile Milli-Q until maturity (16 - 27 days). 

Upon harvesting, plants were washed in extraction solvent and the washings 

added to the tray sample. 

A series of experiments was performed to test the suitability of the developed 

soil extraction and clean-up method for use with these Brassica samples. Figure 

3.10 shows the generic experimental steps undertaken during this method 

development work, and the details of individual stages of method development 

are presented in Table 3.4 along with comments upon results of each stage. 

Light slit 
Cardboard lid 

Drip tray{ 

Figure 3. 9. Diagram of set-up for growth of Fluoxetine exposed Cress for use as 

samples in the development of an extraction method for Fluoxetine HCI from 

Brassica tissues 
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Sample· . 
Preparation:- ______ -~ Crush sa_mple us1ng pestle and . 

Solid Phase 
Extraction:--------~ 

N2 blow-down to +- ---

! ---- -- .... 
Reconstitution: ----- -~ 

! 
Analysis: ---------• 

mortar w1th ACN + 1% form1c ac1d 
( 5 m L) & transfer to centrifuge 
tube. IS addition if required 
I 
I ,. 
Sonicate (15 mins) 
I 
I ,. 
Centrifuge (1500 rpm, 15 mins) 
I 
I ,. 
Combine supernatants and 
filter (Whatman No 1) 
I 
I ,. 

Repeat in 
triplicate 

Air dry sample to reduce organic content to 4 mL & 
make up to 200mL with Milli-Q and H3P04 (40 1-J.L) to 
obtain pH< 2.9 

I 
I • One Phenomenex Strata-X (polymeric sorbent; 500 

mg I 3 mL) and one Strata-SAX (Tri-func SAX; 500 

m2g·1 ,500 mg I 3 mL) SPE cartridge per sample 

Condition: all cartridges with MeOH (3 mL) 

Equilibrate: all cartridges with Milli-Q (3 mL) 

Place cartridges in tandem; Strata-SAX on top 

Load Sample: Flow rate - 5 mL m in_, 

Remove Strata-SAX SPE cartridge 

Wash: MeOH : Milli-Q (50 : 50 v/v; 2 x 3 mL) 

Dry cartridge(- 5 m in) 

Elute: MeOH + 1% formic acid (6 mL) 

500 IJ.L ACN, of which 50 1-J.L removed to 
autosampler vial with 200 1-J.L of Milli-Q 
modified with 0.2% formic acid 

HPLC-ESI-MS" operated in full MS and triple 
play (includes MS2

) modes, conpitions as 
described in Figures 2.7 & 2.13 

Figure 3.10. Flow diagram of generic experimental steps used during method 

development for the extraction of four target analytes from plant matrices 
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Testing developed · Cress grown in 100 J.lg Fluoxetine ACN + 1% formic acid. IS 3± 0.3 soil extraction and HCI. Sampled as whole plants. n/a n/a 14 ± 1 

clean-up method Triplicate 10 J.lg. (67 ± 19) (40 ± 12) 
. 

Adaptaiion of harvest 
process & Cress grown in 100 J.lg Fluoxetine ACN + 1% formic acid. IS 6±3 6±2 18 ± 4 8±4 

confirmation of HCI. Sub-sampled. Triplicate 10 J.lg. (IS; 13 ± 5) (IS; 26 ± 12) (IS;19±6) (IS; 32 ± 7) 39 ± 3 

uptake 

IS recoveries 
Brassicas (Sainsbury's) spiked with 

ACN + 1% formic acid. (IS; 28 ± 3) 
(IS; 71 ± 4 

n/a n/a n/a 
10 J.!g IS. Sub-sampled. Triplicate stem only) 

Confirmation of IS 
Cress grown in laboratory spiked 

(IS; 7 ± 0.4 
recoveries with 10 J.lg IS. Sub-sampled. ACN + 1% formic acid. (IS; 11 ± 1) 

stem only) n/a nla nla 
Triplicate 

Use of alternative 
Brassicas (Sainsbury's) spiked with ACN + 1% formic acid. (IS; 5 stem 

SAX cartridge 10 J.!g IS. Sub-sampled. Single Alternative SAX SPE (IS; 6) 
only) 

n/a nla n/a 
replicates cartridge• 

Table 3.4. Sequential method development stages and results in the extraction of Fluoxetine from Brassica plant tissues 

Fluoxetine recovery data is presented as% of originally added amount Equivalent IS (d5-Fiuoxetine HCI) recovery data are presented in brackets as% of IS added 
to each individual sub-sampled tissue 
• !solute SAX IPSA SPE cartridges (500 mg I 3 mL) 



Table 3.4 continued ... 

Method 
Development 

Stage 

Testing 
developed soil 
extraction and 

clean-up 
method 

Adaptation of 
harvest process 
& confirmation 

of uptake 

Comments & conclusions 

Fluoxetine was positively identified in both the tray (3 ± 0.3% remaining) and cress sample (whole plant 11 ± 1% up­

taken), but on average 86% of Fluoxetine could not be accounted for. Losses due to photodegradation I sorption or 

inefficiencies in extraction are likely explanations. No statistical differences were found in germination rates or harvest 

masses between the blank and spiked samples (t-test; P-value = 0.377 & 0.378 respectively) indicating no major 

phytotoxic impacts. Post harvest extraction efficiency (IS recovery) was 40 ± 12% for whole plant and 67 ± 19% for 

tray. As whole plants were sampled, including roots, it should be considered that these findings of apparent uptake 

could in fact be due to sorption and subsequent desorption from seed casings I roots. 

Fluoxetine was positively identified in all tissues tested providing evidence of Fluoxetine uptake (6 to 18%) although 

the majority of the target compound (-60%) could not be accounted for. Again no significant differences were found in 

germination rates (t-test; P-value = 0.406) or harvest masses (t-test; P-value = 0.0794) between blank and spiked 

sample sets. IS recoveries ( 13 - 26% for the different plant tissues) were unacceptable and would need improvement 

to increase extraction and lower the LOO. 

Table 3.4. Sequential method development stages and results in the extraction of Fluoxetine from Brassica plant tissues 

Fluoxetine recovery data is presented as% of originally added amount. Equivalent IS (d5-Fiuoxetine HCI) data are presented in brackets as % of IS added to each 
individual sub-sampled tissue 
* lsolute SAX IPSA SPE cartridges (500 mg I 3 ml) 



Table 3.4 continued ... 

Method 
Development Comments & conclusions 
Stage 

IS recoveries 

Confirmation of 
IS recoveries 

The use of Brassicas (Sainsbury's) as the plant tissue source resulted in good IS recovery from stem tissue (71 ± 

4%) and improved, although still poor, recoveries from leaf tissue (28 ± 3%). The large increase in recoveries 

compared to the previous method development was unexpected as th~ only modification of experimental 

conditions was the source of plant tissue. 

IS recoveries from laboratory grown cress leaves (7 ± 0.4%) was a factor of 10 lower than with Brassicas 

(Sainsbury's), and was less than half for stem tissues (11 ± 1 %). 

An alternative SAX cartridge (SAX I PSA) was used in an attempt to improve sample clean-up and hence lower 

Use of LOO. IS recoveries (6% for leaves; 5% for stem) were found to be lower than with the use of Strata-SAX 
alternative SAX 
cartridge cartridges. Comparison of TICs with SAX/PSA and Strata-SAX (Figure 3.12) showed Strata-SAX to be more 

efficient at the removal of interfering components. 

Table 3.4. Sequential method development stages and results in the extraction of Fluoxetine from Brassica plant tissues 

Fluoxetine recovery data is presented as % of originally added amount. Equivalent IS (d5-Fiuoxetine HCI) data are presented in brackets as % of IS added to each 
individual sub-sampled tissue 
* lsolute SAX I PSA SPE cartridges (1 g /6 ml) 



Chapter Three: Method Development of Extraction Techniques 

This section of method development work which aimed to test the developed 

soil extraction method for use with Brassica samples had some successes. lt 

was possible to extract Fluoxetine which had been naturally sequestered in 

cress tissues using the developed soil method and to generate MS2 data 

(Figure 3.11; extracted ions m/z 310.0 (Fiuoxetine HCI) and m/z 315.0 (d5-

Fiuoxetine HCI) can be seen) to confirm the presence of Fluoxetine within the 

cress tissue samples. The target compound and the internal standard ( d5-

Fiuoxetine HCI) were initially identified based on their Rt and their full MS m/z 

values. Samples in which Fluoxetine was identified at full MS, were then 

subjected to triple play analysis which included an MS2 fragmentation. MS2 

spectra generated were then compared to the known m/z transitions of 

Fluoxetine HCI. 

119 



100 A 
;a 

eo 
70 

eo 
60 

40 

Q) 30 

g 20 

~ 10 

Chapter Three: Method Development of Extraction Techniques 

.---- d5-Fiuoxetine HCI 

§ o~--~~~UL~~~~----~--~-----------------------
~100 * 
Q) ;o 

~ 80 
ctJ 
Qi 70 

!Y eo 

60 

40 

30 

20 

10 

B * 

100 c 
7 -

100 

* 

147.9 

+----- Fluoxetine HCI 

10 1 1 

Tl"nfl(mln) 

4--------- ~ CH3 C
.t _l"' 

~ , 

~ 

400 600 550 600 

Figure 3.11. Example LC-MS extracted ion chromatogram and MS" spectra for the 

extraction of Fluoxetine and IS from Brassicas 

A: Extracted ion chromatogram rnlz 315 
B: Extracted ion chromatogram rnlz 310 
C: Full MS spectra of Fluoxetine and IS (d5-Fiuoxetine HCI) 
0 : MS2 spectra of Fluoxetine 
* artefacts with full MS m/z of 310 were confirmed not to be due to the presence of Fluoxetine 
by MS2 transitions and their presence in non-exposed leaf samples (data not shown) 
Chromatogram shown is from a leaf sub-sample from method development stage 'Adaptation of 
harvest process and confirmation of uptake' (Table 3.4). 

An alternative SAX cartridge, an !solute SAX I PSA (Tri-func SAX, 1 g I 6 ml) 

was used in tandem with a Strata-X SPE cartridge to test the potential for 

improved clean up using the SAX I PSA cartridge instead of a Phenomenex 

Strata-SAX (500 mg I 3 ml). This cartridge was selected as !solute SAX IPSA 

120 



Chapter Three: Method Development of Extraction Techniques 

SPE cartridges have previously been shown to be effective for the purification of 

pesticide extracts from vegetables (Agronaut, 2003). In Figure 3.12 TIC are 

presented for stem and leaf samples which were extracted using tandem SPE 

with the different SAX cartridges. 
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Strata-X & SAX IPSA SPE 
cartridge used in tandem 

Leaf ; TIC: 3.4 x 1 Oil 

Stem; TIC: 1.71 x 10ll 

Time (min) 

Strata-X & Strata-SAX SPE 
cartridgeusedintandem 

Stem; TIC: 2.61 x 10ll 

Figure 3.12. HPLC-ESI-MS Total Ion Chromatograms for leaf and stem samples 

extracted using tandem SPE with two types of SAX SPE cartridges 

Phenomenex Strata-X (polymeric sorbent; 500 m~ I 3 ml) 
Phenomenex Strata-SAX (Tri-func SAX; 500 m2g·, 500 mg I 3 ml) 
!solute SAX IPSA (1 g I 6 ml) 

Figure 3.12 shows that the use of the SAX I PSA cartridge resulted in the 

extraction of more interfering components from the cress matrix, the majority of 

which eluted within the first 15 minutes of analysis. One particularly large 

unknown peak with an Rt of - 1 m in, which may be an artefact from the SPE 

cartridges themselves, resulted in much larger ion counts from the leaf sample 

when the SAX I PSA cartridge was used as opposed to the Strata-SAX 

cartridge. Ion counts for the stem samples were however within the same 

region. As recovery results (Table 3.4) were similar regardless of the cartridge 
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Chapter Three: Method Development of Extraction Techniques 

used, but Strata-SAX cartridges provided better sample clean-up, Strata-SAX 

cartridges were selected for future SPE method development work. 

When cress was grown in the laboratory exposed to Fluoxetine HCI large losses 

(-60 - 80%) of the target compound occurred. lt was suspected that these 

losses were most likely due to photodegradation. Attempts were made to 

minimise photodegradation during the growth period, but it could not be entirely 

be prevented. Cress growth periods ranged from 16 to 27 days, and the half-life 

(t112) of Fluoxetine HCI is 62 hours (unpublished data from West; rate constant= 

0.0111 h-1 ; Figure 3.13), which is consistent with the findings of Lam et al., 

(2005) (t112 55 hours; rate constant = 0.0126 h-1). Over 27 days (648 hrs) the 

Fluoxetine HCI would therefore have been through more than 10 half-lives. 

Thus potentially, only 0.049 !Jg of the total Fluoxetine HCI added in the cress 

experiment would remain after 27 days if full photodegradation has occurred. 

This would easily account for the losses seen. However photoproducts 

identified by Lam et a/., (2005) were not found to be present within the cress 

samples studied herein indicating perhaps complete degradation to C02 and 
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Figure 3.13. Exponential photodegradation of Fluoxetine HCI with. time 

Data Source: West, 2007; personal communication. 
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Chapter Three: Method Development of Extraction Techniques 

A window sill degradation study using a quartz tube containing Fluoxetine HCI 

(1 00 !Jg) in sterilised Milli-Q (35 ml) was carried out to confirm these losses. 

Samples indicated that after only 16 days of light exposure approximately 30% 

of the initial amount of Fluoxetine HCI added still remained. This equates to an 

approximate loss of 70% which helps to account for the Fluoxetine losses seen 

in the laboratory grown cress samples (-60 - 80% loss). · Complete 

mineralization (either due to abiotic or biotic degradation), irreversible sorption 

or poor compound recovery using these methods may also play a role in the 

losses seen. 

The use of two sources of plant tissue; laboratory grown cress and purchased 

Sainsbury's salad cress (containing three Brassicas; cress, rape and mustard) 

highlighted different recoveries from different plant types even though they were 

all Brassicas. For example, in the method stages 'improvement' and 

'confirmation of IS recoveries' (Table 3.4) which used identical extraction 

methods but different plant tissue sources, IS recoveries differed by up to a 

factor of 10 between the Sainsbury's Brassicas (IS: stem 71 ± 4%; leaves 28 ± 

3%) and the laboratory grown cress (IS: stem 7 ± 0.4%; leaves 11 ± 1 %). lt was 

this finding; that recoveries differed hugely depending upon the plant type used, 

that led to the closure of this section of method development work, as it was felt 

that pursuing the development of a method which eventually was to be used on 

a different Brassica (viz cauliflowers) may be futile. 
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Chapter Three: Method Development of Extraction Techniques 

3.5.2. Extraction from Cauliflower Tissue Cultures: Method 

Development 

Method development work for the extraction of Fluoxetine from Brassica tissues 

including cress, rape and mustard highlighted the variability in IS recoveries 

depending upon the plant type used. For this reason it was felt important finally 

to use cauliflower tissues as target plant material in the development of a 

method for the extraction of Fluoxetine from cauliflower matrices. 

Plant material used for this method development work consisted of cauliflower 

tissue cultures (TICs), grown and harvested for plant up-take studies as 

discussed in Chapter 5, Section 5.8.1. Due to the limited number of cauliflower 

TICs available, optimisation of extraction and analysis of Fluoxetine from TICs 

was limited to testing the developed soil method on single replicates. Generic 

extraction details, including SPE used during this method development work are 

presented in Figure 3.14. Flow diagram of generic experimental steps used 

during method development for the extraction of Fluoxetine from cauliflower 

matrices. Details of alterations to IS concentrations and MS operation modes 

are given in Table 3.5 along with recovery data and comments upon each 

method development stage. 
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Chapter Three: Method Development of Extraction Techniques 

Sample . . 
Preparation:- _______ .,.. Crush sample w1th ~and (-1 g) usmg 

Solid Phase 
Extraction: ________ .,.. 

pestle and mortar w1th ACN + 1% 
formic acid (5 ml) & transfer to 
centrifuge tube. IS addition if required 
I 
I ... 
Sonicate (15 mins) 
I 
I ... 
Centrifuge (4500 rpm, 15 mins) 
I 
I ... 
Combine supernatants and 
filter (Whatman No 1) 
I 
I ... 

Repeat in 
triplicate 

Air dry sample to reduce organic content to 4 ml & 
make up to 200ml with Milli-Q and H3P04 (40 fll) to 
obtain pH< 2.9 
I 
I .. 
One Phenomenex Strata-X (polymeric sorbent; 500 

mg /3 ml) and one Strata-SAX (Tri-func SAX; 500 

m2g-1, 500 mg /3 ml) SPE cartridge per sample 

Condition: all cartridges with MeOH (3 ml) 

Equilibrate: all cartridges with Milli-Q (3 ml) 

Place cartridges in tandem; Strata-SAX on top 

Load Sample: Flow rate- 5 ml min-1 

Remove Strata-SAX SPE cartridge 

Wash: MeOH : Milfi-Q (50 : 50 v/v; 2 x 3 ml) 

Dry cartridge(- 5 min) 

N2 blow-down to +---- Elute: MeOH + 1% formic acid (6 ml) 

Rec!nstitution : ___ ........................... ~ 200 fll ACN, of ~hie~ 100 fll remov~? 
I to autosampler v1al w1th 100 fll of Mllfl-
t Q modified with 0.2% formic acid 

Analysis: - --------• 
HPLC-ESI-MS" operated in various modes: full 
MS; triple play, SIM and SRM conditions as 
described in Figures 2. 7 & 2.13 

Figure 3.14. Flow diagram of generic experimental steps used during method 

development for the extraction of Fluoxetine from cauliflower matrices 

For final working method: 2 ~g IS used with MS operated in SIM and SRM modes 
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Percentage Recovery 

Method .~ Ill Ill Ill 
MS analysis .... E Cl) "C -; 

Development Sample Details IS "C 0 > ... .... 
mode Cl) 0 Cl) "' :::l 0 

Stage ~ 0::: 
.... Cl) (.) 1-en _, 

Testing cress 
Full MS & 

extraction method: Cauliflower TIC; 
non-exposed T /C blank IS(10J..Lg) triple play {IS; 5) IS; 5 IS; 5 IS; 4 IS; 4 nla 

sample 
(includes MS2

) 

Testing cress 
Full MS & 

extraction method: Cauliflower TIC; Fluoxetine; 
IS (10 J..Lg) triple play (IS; 6) (IS; 4) (IS; 4) {IS; 4) 44 

exposed TIC exposed (includes MS2
) 

44 (IS; 8) 
sample 

Testing ion 
Cauliflower TIC; Fluoxetine; Fluoxetine; 

suppression due to No IS SIM & SRM 21 
IS 

exposed 10 11 

Optimisation of IS Cauliflower TIC; 
IS (2 Jlg) SIM &SRM 

Fluoxetine; 5 (IS; 16) (IS; 40) 
Fluoxetine; 7 (IS; 33) 12 

concentration exposed (IS; 77) (IS; 40) 

Table 3.5. Sequential metho~ development stages and results in the extraction of Fluoxetine from cauliflower tissue culture matrices 

Fluoxetine recovery data are presented as% of originally added amount, equivalent IS (d5-Fiuoxetine HCI) data is presented in brackets but is a % of IS added to 
each individual sub-sampled tissue 
Total refers to total% of Fluoxetine originally added that could be accounted for in the sub-samples 
Only data for which Fluoxetine presence could be confirmed by acquiring known MS2 transition are presented. 



Table 3.5 continued ... 

Method Development Comments & conclusions 
Stage 

Testing cress extraction 
method: non-exposed T /C IS recovery across all sub-sample types was found to be unacceptable (5 ± 0. 7 %) 

sample 

Extracted ion chromatograms and full MS spectra indicated the presence of Fluoxetine (m/z 310) in the leaf 
Testing cress extraction sample, but due to low amounts of Fluoxetine within the sample this could not be confirmed by MS2

. Mean 
method: exposed T /C IS recovery was again found to be unacceptable (5 ± 1. 7 %) although similar to recoveries achieved in the 

sample previous method development stage. This led to concerns that IS concentration may have been causing ion 
suppression. 

The use of no IS and changing the MS operation mode to SIM and SRM; which effectively increased S:N 

Testing ion suppression 
and hence lowered the limit of detection, allowed the presence and hence uptake of Fluoxetine in the stem 
sub-sample to be confirmed by MS2 (m/z transitions: 310 to 147.9). 11-o/o uptake of Fluoxetine to stem 

due to IS 
tissue was seen, with an overall loss of- 80% of originally added Fluoxetine (9.8 !lg) which can be 
explained by potential photodegradation losses. 

Substantial increases of IS recovery across all sub-sample types occurred with the use of less IS (1/51
h) in 

Optimisation of IS conjunction with use of SIM and SRM operating modes (IS recovery 16- 77%), as opposed to full MS and 
concentration triple play, (IS recovery 4- 8%). More evidence to support the uptake of Fluoxetine was obtained with the 

confirmation of the presence of 7% of originally added Fluoxetine in the leaf sample. 

Table 3.5. Sequential method development stages and results in the extraction of Fluoxetine from cauliflower tissue culture matrices 

Fluoxetine recovery data are presented as% of originally added amount, equivalent IS (ds-Fiuoxetine HCI) data are presented in brackets but as % of IS added to 
each individual sub-sampled tissue. Total refers to total% of Fluoxetine originally added that could be accounted for in the sub-samples. 
Only data for which Fluoxetine presence could be confirmed by acquiring known MS2 transition is presented 



Chapter Three: Method Development of Extraction Techniques 

3.5.3. Extraction from Cauliflower Tissue Cultures: Final Working 

Method 

Initial testing of the developed extraction and tandem SPE method with 

cauliflower tissue cultures gave inadequate average IS recoveries of 5 % for all 

sub-sample types (Figure 3.15) and the presence of Fluoxetine in media 

samples only could be confirmed by MS2
. These exceptionally low recoveries 

led to concerns over potential ion suppression due to matrix effects and so 

further method development steps were then orientated towards finding an 

appropriate IS concentration alongside the use of SIM and SRM MS operating 

modes to tower the S:N and hence LOO. Alongside this an investigation into 

potential ion suppressjon or enhancement due to matrix effects and their impact 

upon the generation of quantitative data (Section 2.5.2) was carried out. 
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Figure 3.15. Internal standard (ds-Fiuoxetine HCI) recovery data from the 

extraction of Fluoxetine from cauliflower tissue cultures 

• media • roots stem • leaves curd 
A: Data from method development stage 'Testing cress extraction method: non-exposed TIC 
sample' 
B: Data from method development stage 'Testing cress extraction method: exposed TIC 
sample' 
C: Data from method development stage 'Optimisation of IS concentration' 
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The use of SIM and SRM operating modes in conjunction with a reduction in the 

IS concentration allowed for significantly more of the IS to be accounted for (16 

- 77%) (Figure 3.15). Using these analysis modes it was also possible to 

generate MS2 spectra for the leaf and stem sub-sample types and therefore 

confirm the presence and hence uptake of Fluoxetine. Example LC-MS results 

for the stem sample in which Fluoxetine was positively identified in presented in 

Figure 3.16. 

Cl) 
0 
c: 
<11 
-o 
c: 
::l 
.0 
~ 
Cl) 

.~ 

.. A 

a; '" B 
Qi 
tx: . .. 

-+-- Fluoxetine 

310.0 

mlz 

.. c 
.. ,. 

.. D 

. 
" 

~ H()tc:--r 
71 
::,... .. . 

+- Fluoxetine 

11 loiA ttt nt 

147.9 

m/z 

Figure 3.16. Example HPLC-ESI-MS" data for the analysis of Fluoxetine extracted 

from cauliflower tissue culture matrices operated in SIM and SRM analysis 

modes 

A: SIM TIC for m/z 310.0 
8 : SIM MS2 spectra 
C: SRM TIC for m/z 147.9 
D: SRM MS2 spectra 
Data shown is from method development stage 'Optimisation of IS concentration', stem sub­
sample 

Although the extraction of Fluoxetine from cauliflower tissue cultures was not 

fully optimised as is indicated by IS recoveries (Figure 3.15) due to project time 

constraints further method development work had to be abandoned. lt was felt 
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Chapter Three: Method Development of Extraction Techniques 

that sufficient improvements in IS recovery had been made with the use of more 

sensitive MS operating modes for this extraction method to be used in the 

preliminary cauliflower TIC plant uptake study. 

3.5.4. Extraction from Cauliflower Tissue Cultures: Method Limitations 

Method development for the extraction of Fluoxetine from cauliflower tissues 

had to be halted due to project time constraints. Further method development 

work would initially have involved testing the impact of the freeze drying 

samples prior to crushing, using MeOH as a component of the extraction 

solvent and the use of column chromatography for clean up, upon IS 

recoveries. 

As the method stands, IS recoveries were found to be range from 16 - 40% for 

plant tissue sub-samples and 77% recovery was obtained for media. This 

method was deemed appropriate for the extraction and analysis of cauliflower 

TIC samples from a preliminary plant uptake experiment. However further use 

of this method would require further optimisation. 
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Chapter Four: Biodegradation of PPCPs in Sewage Sludge-Amended Soil 

4. Biodegradation of PPCPs in Sewage Sludge-Amended Soil 

4.1. Introduction 

There are several degradation processes to which PPCPs may be exposed. 

These degradation processes can be broadly classified into two groups; 

chemical and biological degradation, (sometimes termed abiotic and biotic 

degradation respectively). Biotic degradation or biodegradation only will be 

considered herein as investigation of biodegradation was one of the major aims 

of the present research. A very recent review of into the abiotic degradation of 

pharmaceuticals, including a discussion of photodegradation, has been given by 

West (2007). 

Biotic or biological degradation (including biotransformation whereby chemicals 

are incompletely degraded to carbon dioxide and water but rather are 

transformed to other intermediate organic chemicals) is caused by a range of 

organisms, of which microorganisms are the most important. Invertebrates, 

vertebrates and plants can nevertheless also play a role in degradation 

(Boucard et al., 2005). The term 'microorganism' encompasses bacteria, fungi , 

archaea and actinomycetes and these are prevalent in most, if not all, 

compartments of the environment. Microbes are usually involved in at least one 

of three different biodegradation mechanisms; catabolism, eo-metabolism and 

enzyme excretion (Ghosh and Philip, 2004). Catabolism is the term used when 

an organism utilises a compound as either a nutrient or energy source. 

Repeated exposure of an organism to a particular compound can result in 

acclimatisation of the organism, and hence result in efficient degradation; often 

referred to as enhanced microbial degradation and often encountered in 

bacterial catabolism (Berg and Nyholm, 1996). The susceptibility of a compound 
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to enhanced microbial degradation will depend on several factors. The toxicity 

of the compound to the microbes is of major importance, as is the ease of 

hydrolysis, and whether the hydrolysis products have a high nutritional value 

(Ghosh and Philip, 2004). 

Go-metabolism is the term used when a compound is degraded, but not used 

as a sole carbon source i.e. a compound is degraded, but not for the purpose of 

growth, reproduction or dispersal. 

Enzyme excretion into the soil is performed to enable substrate digestion. 

These enzymes can persist in the soil for significant periods, even beyond the 

organisms death; therefore providing soil with a biochemical catalytic ability e.g. 

phosphatases and amidases (Coats, 1991 ). Enzymatic hydrolysis or oxidation 

typically results in the formation of metabolites with higher polarities that the 

parent compound (Kreuzig et a/., 2003). 
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4.1.1. Environmental Biodegradation Fate Models 

('n alternative to experiments designed to measure the biodegradability of 

organic compounds, is the use computer-modelling programmes to estimate 

biodegradation using QSARs. One of these tools readily available is the 

Environmental Fate Database EPI Suite™ 

(www.epa.gov/opptintr/exposure/pubs/episuite.htm), which allows prediction of 

a range of parameters such as Kow, BCF, Koc. etc, as well as likely behaviour 

regarding biodegradation, based upon the structure of the compound in 

question. The EPI Suite™ is considered as a 'screening level tool and should 

not be used if representative measured values are available' 

(www.epa.gov/opptintr/exposure/pubs/episuite.htm). A detailed discussion of 

the operation of this model has been presented by Howard et al., (1986) and 

Tunkel et al., (2000) who also discuss the accuracy of MITI models. 

Yu et al., (2006) performed a study into pharmaceutical fate during waste water 

soil aquifer treatment. The use of reclaimed wastewater for irrigation is as high 

as 80% in some states in the US. They then compared their results to those 

generated by the Environmental Fate models. The Environmental Fate BIOWIN 

model was used to generate biodegradation predictions using the BIODEG 

linear and non-linear programmes, and the MITI linear and non-linear 

programmes. Aerobic batch biodegradation results showed that 13 of the target 

18 PPCPs underwent more than 80% biotransformation in 50 days. Yu et al., 

(2006) found that their experimental data correlated best with the non-linear 

BIODEG program, although inconsistencies could be found between the 

modelled and experimental data. Equivalent results generated by the 

biodegradation programs in EPI Suite TM from the Environmental Fate Database 
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model (www.epa.gov/opptintr/exposure/pubs/episuite.htm) for the 

pharmaceutical compounds studied herein are summarised in Table 4.1. 

lt is for reasons such as these that pr~dicted data should be treated with some 

level of caution, as regards environmental fate. The results generated under 

experimental conditions can be highly variable. A number of these contributing 

factors such as temperature, adapted microbial population, additional nutrient 

sources, can be better controlled under laboratory conditions via careful 

experimental design. Reviewing literature on both pharmaceutical and pesticide 

biodegradation studies aided in the development of experimental procedures 

which would take into consideration a number of these factors. 
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Linear model Non-linear Ultimate Primary MITIIinear MITI non- Anaerobic Ready 

prediction model biodegradation biodegradation model linear model model biodegradability 
prediction timeframe timeframe prediction prediction prediction prediction 

biodegrades biodegrades 
does not does not does not 

Diazepam 
fast fast 

weeks - months days- weeks biodegrade biodegrade biodegrade No 
fast fast fast 

biodegrades biodegrades 
does not does not does not 

Desmethyldiazepam 
fast fast 

weeks - months days- weeks biodegrade biodegrade biodegrade No 
fast fast fast 

biodegrades biodegrades 
does not does not does not 

Oxazepam weeks - months days- weeks biodegrade biodegrade biodegrade No 
fast fast fast fast fast 

biodegrades biodegrades 
does not does not does not 

Temazepam weeks - months days - weeks biodegrade biodegrade biodegrade No 
fast fast fast fast fast 

does not does not does not does not 
biodegrades 

Fluoxetine HCI biodegrade biodegrade months days- weeks biodegrade biodegrade No 
fast fast fast fast 

fast 

biodegrades 
does not does not does not 

biodegrades 
Norfluoxetine HCI biodegrade months days - weeks biodegrade biodegrade No 

fast fast fast fast 
fast 

Table 4.1. Predicted biodegradation behaviour of pharmaceutical target compounds in present study using US EPA modelling suite (EPI 

Suite V3.20 
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4.1.2. Standardised Tests 

Law requires the biodegradation behaviour of many potential environmental 

contaminants to be ascertained following standardised test guidelines. In the 

UK many of the tests used are from the OECD. The OECD holds a three tier 

testing system for target compounds; ready biodegradability, inherent 

biodegradability and activated sludge simulation test. The first two tests are 

considered as screening tests and the final test as a simulation (of behaviour in 

STP) type test. These tests are rigorous, and are considered by Nyholm (1996) 

to only allow the most readily degradable compounds to pass. 

Other studies, such as the inter-laboratory comparison by the European 

Economic Community and OECD on standardised tests for aquatic 

environments (Nyholm et al., 1984 ), have shown variable biodegradation 

results from suppo~edly 'standan;tised' tests. Nyholm, et al., (1984) selected p­

nitrophenol, which has previously been shown to give variable biodegradation 

results, as their target compound for the identification of the source of this 

variability. The Zahn-Wellens test (ZWT) and the modified OECD screening test 

(MOST) were selected as test models, as they differ greatly regarding both 

microbial biomass and target compound concentration. 

ZWT is a sludge batch testing method that uses DOC or COD analysis to 

monitor biodegradation rates. The OECD classifies this as a test for 'inherent' 

biodegradability whereas MOST is classified as a test of whether a compound is 

'readily' biodegradable, and is a shake flask die-away method. STW secondary 

effluent, surface water, soil or a composite of all three is used to obtain 

inoculum. Nyholm, et al., (1984) also ran these tests with both adapted inocula 
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(i.e. pre-exposed to target compound) and non-adapted inocula. Their findings 

indicated that the variation in the degradation of p-nitrophenol occurred in the 

population growth lag phase, which showed differential biodegradation rates 

depending on whether or not adapted incocula had been used. They proposed 

than an additional classification; 'readily biodegradable after adaptation' should 

be considered . 

Another commonly used standardised test by which a compound is classified as 

'readily' biodegradable, is the closed bottle test (CBT}. This was used in 

research into the biodegradation and toxicity of four antineoplastics in the 

aquatic environment carried out by AI-Ahmad and Kummerer (2001 ). For 

biodegradation studies they used both the closed bottle test (CBT) and the 

ZWT. The CBT uses low bacterial density and low compound concentrations, 

whereas ZWT uses high bacterial density and compound concentrations. The 

concentration of DO (dissolved 0 2) was measured as a method of monitoring 

ihe biodegradation in the CBT and DOC was measured in the ZWT. None of the 

target compounds were found to biodegrade under either set of test conditions. 

Gerike and Fischer (1981) compared the biodegradation of 44 compounds 

under a range of standardised tests; Coupled Units Test, ZWT, Japanese MITI 

test, French AFNOR T 90-302 test, carbon dioxide test according to Strum, 

OECD screening test, EPA activated sludge and CBT. Compounds which gave 

variable results under screening type tests (e.g. CBT), all underwent extensive 

degradation in the activated sludge test. The authors concluded that the 

AFNOR T 90-302 was an appropriate test, but only for compounds that did not 

express inhibitory or toxic properties whereas the EPA activated sludge test is 
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highly resistant to toxic or inhibitory effects, but therefore tends to overestimate 

biodegradation which is likely to occur in the environment. Three tests of those 

selected were considered to provide environmentally relevant results; MITI test, 

CBT and modified OECD test. 

Purely due to the number of PPCPs in use, it would not be possible to assess 

each individual compound for environmental fate due to biodegradation. lt is for 

this reason that lngerslev and Halling-Sorensen (2000) chose to research a 

group of structurally related drugs, the sulfonamides, which have a range of 

therapeutic uses including as diuretics, tuberculostatics and for oral 

hypoglyemic medication. None of the twelve sulfonamides were classifiable as 

readily biodegradable, as none underwent degradation in the screening test. 

However, in the activated sludge simulation test using non-adapted sludge, lag 

phases of 7 to 10 days were seen at 20°C, after which biodegradation occurred. 

However, lag phases and degradation rates were 3 to 4 times longer at 6°C, 

highlighting the importance of environmental conditions within biodegradation 

studies. Interestingly, adapted bacterial cultures were able to degrade the 

same compounds (mix of four), or any of the other combinations of four 

sulfonamides, rapidly and consistently (t112 = 0.2 to 3 days). Therefore these 

compounds were classified as 'inherently' biodegradable under a simulation 

test, as opposed to a screening test. 

Nyholm et al., (1984) also found differential biodegradation trends depending 

upon whether pre-adapted inocula were used. Other potential variables they 

also took into account included test duration and target compound 

concentration. They concluded that more consistent results could be obtained 
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by using higher inoculum concentration and a pre-adapted inoculum (e.g. Sturm 

test and CBT). Both inoculum and compound concentrations had an impact on 

the lag phases seen; lag phase increased with increasing compound 

concentration and decreased with increasing inoculum concentration. A range 

of inoculum sources was also tested , and unsurprisingly had an impact upon 

degradation rates. 

Research into the biodegradation and toxicity . of four antineoplastics in the 

aquatic environment carried out by AI-Ahmad and Kummerer (2001) also found 

variability in biodegradation results regarding the bacterial density used. For 

biodegradation studies they used both the closed bottle test (CBT) and the 

Zahn-Wellens test (ZWT). They stressed that it is important in biodegradation 

studies to first ensure that the target compounds are not toxic to, or have an 

inhibitory effects upon, the bacteria themselves. For this AI-Ahmad and Kummer 

used a growth inhibition test with Pseudomonas putida ATCC 50026. A series 

of concentrations of the target compounds was tested and the biomass of the P. 

putida was recorded both before and after exposure by measuring the optical 

density (at 436 nm) and protein concentration. 
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4.1.3. Simulation Tests 

Many of the standard screening tests have been criticised for their lack of 

environmental relevancy. Simulation tests are seen as a better model for the 

environment. Despite this there have still been criticisms upon standardised 

simulation tests such as the OECD activated sludge biodegradability test. This 

test is criticised over the guideline dosages to be used (20 - 40 mg L-1
), which 

are significantly higher than those likely to occur in a STW. Bergand and 

Nyholm (1996) tested the impact of dosage upon both the degradation kinetics 

and adaptation behaviour by using low (1 0 ~g) and high (1 0 mg) dose semi­

continuous reactors. Results indicated substantial differences in biodegradation 

trends between the two concentrations used. 

Working with soil in biodegradation studies can add additional problems, such 

as sequestration, also known as ageing, which refers to the decreased 

bioavailability of a compound in soil with time. Pesticide data have generally 

shown a decline in the rate of compound degradation in soil as it ages. The 

extent of sequestration is dependent upon a range of factors including soil type 

and the target compound itself. Nam and Alexander (2001) have shown through 

a phenanthrene biodegradation study, that biodegradative activity and 

incubation temperature had an impact upon biodegradation trends. Soils with 

high levels of total bacterial activity expressed rapid biodegradation of 

phenanthrene, whereas in those with low activity expressed slow initial 

biodegradation and therefore higher levels of compound sequestration 

occurred. Initial biodegradation rates are one of the factors that determine the 

extent to which a compound will undergo sequestration in soil. 
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The importance of using consortia in biodegradation studies, as opposed to 

pure cultures, was highlighted by Van Ginkel, (1996) in a study on the 

biodegradation of surfactants in sludge, during STW processes. Total 

biodegradation of surfactants was only achieved through the use of consortia, 

as initially bacteria degraded the alkyl chain and the remaining hydrophilic 

moiety was degraded by other bacteria. In the natural environment and in STW, 

complete biodegradation is dependent upon a mixed microbial population. 

Incomplete degradation can lead to the formation of potentially toxic 

intermediates, which in a pure culture biodegradation study may impact upon 

the population present. Aside from this, pure cultures are arguably not 

environmentally realistic. 

Ghosh and Philip (2004) also presented evidence for increased atrazine 

biodegradation rates (1 st order) when a mixed culture was used. Variability in 

the extent of atrazine biodegradation and rate has in the past also been 

attributed to variations in nitrogen sources, additional carbon sources, C:N ratio, 

moisture level and pH. 

lngerslev et al. , (2000), investigating the rationale behind the use of pure 

cultures and while appreciating the need to minimise variation in experimental 

procedures, reported that these single culture procedures lack environmental 

relevance and cannot therefore be used to predict environmental behaviour of a 

chemical. When inocula ·sourced from the natural environment (e.g. STW, soil) 

are used in biodegradation studies, results tend to be variable. lt is thought that 

this difference may be due to the variation in biomass used for inoculation (i.e. 

microbial density). lngerslev et al., (2000) tested the impact of test volume (i.e. 
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culture volume), used in shake flask experiments on the lag phase, in 

experiments on 2,4-dichlorophenoxyacetic acid (2,4-0 ) and p-nitrophenol. They 

found decreased lag times when the test volume was increased, and they also 

noted that when volumes were below 1 0 ml, biodegradation appeared to fail 

randomly. They hypothesised that not only must the concentration of relevant 

microorganisms present be high enough for initial biodegradation to occur, but 

the total biomass must also be sufficient. Smaller test volumes that do not allow 

this biomass to be achieved, therefore showed random occurrences of no 

biodegradation occurring. 

Another factor to consider in experimental design is test length. Many authors, 

such as Fenyvesi et al., (2005) in their study into biodegradation of 

cyclodextrins as bioremediation additives in hydrocarbon contaminated soil, use 

reference material for test validation. They selected cellulose as their reference 

material, which determines the test validity once 60% degradation is achieved 

(at the plateau phase or by the end of the test). By day 178 in their experiment, 

cellulose had been totally degraded. However they chose to extend their 

experiment to 280 days, and achieved total degradation of all cyclodextrins 

tested. This included randomly methylated p-cyclodextrin, which has previously 

been shown to be non-biodegradable using standardised tests with 

uncontaminated soil. The difference as to whether random methylated P­

cyclodextrin undergoes biodegradation is dependent upon previous 

contamination to the soil, and hence microbiological adaptation to the target 

compounds. 
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Some PPCP research has also included veterinary pharmaceuticals. lngerslev 

et al., (2001) studied the veterinary antibiotics Olaquindox, Metronidazole, 

Tylosin and Oxytetracycline, and performed both aerobic and anaerobic shake 

flask biodegradation experiments. Olaquindox and oxytetracycline exhibited no 

lag phase prior to degradation, with half lives of 4 - 8 days and 42 - 46 days 

respectively. Metonidazole had a lag phase of 2 to 34 days, and a half life of 14 

- 104 days; tylosin had respective timings of 31 to 40 days and 9.5- 40 days. 

In the absence of oxygen the biodegradation trend was significantly slower. 

These data again highlight the variability that can be seen in data generated 

using inocula sourced from the natural environment. 

Kummer et al., (1997) assessed the biodegradation potential of ifosafamide, an 

anti-tumour agent, using a screening test (ZWT) and a simulation test 

(biological sewage treatment). lfosafamide did not undergo biodegradation in 

either test, but the authors indicated the importance of also studying the 

metabolites for complete risk assessment to be achieved. Alongside this the 

abiotic fate of ifosafamide must also be determined before definitive conclusions 

can be drawn regarding environmental impact. Since then Kummer et al., 

(2000) have continued their research into antineoplastics. Research has 

focused around isophosphoramidmustard, which is the active metabolite of both 

cyclophosphamide and ifosafamide. lsophosphoramidmustard is too reactive for 

medicinal use, but has now been synthesised as P-0-

glycosylisophosphoramidmustard (active against tumours) and P-L-

glycosylisophosphoramidmustard (has no antineoplastic effect). P-0-

glycosylisophosphoramidmustard was found to be inherently biodegradable in 

contrast to most other antineoplastics researched. lt is important to note that 
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only one of the enantiomers was biodegraded, and that not only does 

stereochemistry play an important role in therapeutic capabilities, but also in 

biodegradation. 

In summary, there are a range of tools available to scientists to assess whether 

a potential target compound is biodegradable, including modelling tools and 

standardised screening tests. However, to better simulate environmental 

conditions a huge range of potential variables have to be taken into 

consideration and incorporated into a simulation type test. For this reason 

herein it was decided that a simple shake flask screening type test would be 

performed on all target compounds, alongside a simulated agricultural field soil 

test on one target compound. As there are such a large number of factors that 

could be varied within these biodegradation experiments, the choice was made 

to keep experimental design as close to true environmental conditions (i.e. 

moisture content, temperature, additional nutrient sources) for the target 

geographical area: SW England, while giving consideration to optimum 

conditions for biodegradation such as the use of specific pre-adapted inocula. 
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4.2. Aims 

The aims of this study were to ascertain whether Fluoxetine, Diazepam and 

their major human metabolites Norfluoxetine, Oxazepam and T emazepam were 

susceptible to biodegradation in a simple shake flask screening type test. A 

simulated agricultural field soil test on Fluoxetine HCI was also to be conducted 

under as environmentally relevant conditions as possible. If biodegradation 

occurred and metabolites were formed, quantitative and qualitative data on both 

metabolites and the parent compounds would be obtained, therefore allowing 

calculation of biodegradation rates and metabolite formation rates. Qualitative 

data on the bacterial population present in this specific environment were also 

required. 

As the target compounds are pharmaceuticals they are designed to be stable so 

that they are able to perform their function within the body, and hence they have 

potential to be persistent within the environment. At the commencement of this 

project (2003) there was no literature regarding Fluoxetine or Norfluoxetine 

degradation under environmentally relevant conditions. However evidence for 

the persistence of Fluoxetine in the environment had been found in streams and 

STW effluent and concerns about the presence of Fluoxetine in the environment 

have been expressed (Webb, 2000; Brooks et al., 2003; Kolpin et al., 2002; 

Metcalfe et al., 2003). In the case of the 1 ,4-benzodiazepines, the hydrolysis 

products for Diazepam and Oxazepam were known from early studies (Han et 

al., 1977), and fungal degradation of Diazepam was demonstrated over 30 

years ago (Ambrus et al., 1975). The presence of Diazepam in rivers, STW, 

lakes and drinking water, had nevertheless only been reported more recently 

(Richardson and Bowron, 1985; Halling-Sorensen et al., 1998; Ternes et al., 
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2001; Zuccato et al., 2000; Stuer-Lauridsen et al., 2000; Snyder et al., 2001 ). 

There appeared to be no literature available on the biodegradation of these 

compounds under environmentally relevant conditions. Computer-modelled 

data (Table 4.1) gave variable results for each compound, ranging from 

qualitative descriptions such as 'biodegrades fast' to a time frame of months. 

Due to their presence in certain environmental compartments, it was 

hypothesised that the compounds would be resistant to total biodegradation and 

complete mineralisation, although they may undergo partial degradation 

(biotransformation) to intermediates. lt was also possible that some losses 

might be seen due to abiotic factors (e.g. hydrolysis; (Han et al., 1977). 
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4.3. Soil 

4.3.1. Soil Source and Excavation 

Soil was sourced from a field that had been treated with known quantities 

(Table 4.2) of sewage sludge (total - 400 m3 SS) for two years in East Cornwall 

(grid reference withheld; South West Water farm code 2138, field code 0896). 

This field was selected as a typical agricultural field to which sewage sludge has 

been and is, applied. The soil was classified as a well drained coarse loamy soil 

(type 541 B as classified by Lawes Agricultural Trust Soil Survey). Such slate 

and shale type soils (i.e. Denbeigh series), are the most common soil types to 

which sewage sludge is applied within this geographical area (ADAS 2004 

personal communication; Millns, 2004 ). 

When SS is disposed of to agricultural land it is the responsibility of the local 

water company to ensure that the receiving land is suitable as regards its soil 

chemistry. All soils used in this project were sampled from the same site, to 

which the safe disposal of SS is regulated by SWW. Soil characterisation 

results from SWW can be seen in Table 4.2. 
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Parameter measured Result 

Soil Density (by weight} 0.80 kg L'1 

pH (electrode) 7.4 

N total (combustion) 3100 mg kg·1 

P (ICP-OES) 1430 mg kg-1 

Cu (ICP-OES) 23 mg kg'1 

Zn (ICP-OES) 78 mg kg-1 

Pb (ICP-OES) 41 mg kg'1 

Cd (ICP-OES) 0.14 mg kg-1 

Cr (ICP-OES) 40 mg kg'1 

Ni (ICP-OES) 24 mg kg-1 

Mo (ICP-OES) <0.5 mg kg'1 

As (ICP-OES) 31 mg kg'1 

Se (ICP-OES) 1.1 mg kg-1 

Hg (ICP-OES) 0.13 mg kg-1 

Table 4.2. Soil characterisation results generated by South West Water plc 

Sampling date: 23rd May 2002 (final SWW soil characterisation sampling time point, prior to soil 
sampling for this experimental work at 4pm). 
Sampling point: Location witheld, Cornwall, UK- parcel 0896 (F2138-0896) 
Biosolid type: Limed SS cake 
Biosolid amount applied to working area (12.356 acres): 220m3 on 21 .09.2003, 191 m3 on 
29.09.04. 
Note: units above refer to soil dry weight 

Two tubs (acid-washed with 10% nitric acid; polypropylene bases; linear low 

density polyethylene lids (Whitefurze)) of soil were sampled from the A-horizon 

(top 20cm) using a spade (Decon washed). Lids were left loose on live samples 

to allow airflow, but tightly closed on samples to be sterilised. Within the field a 

bund of lime treated sewage sludge stored prior to application provided two tubs 

of sewage sludge sampled as described above. Lids were left tightly closed for 

health and safety reasons. 

Once back at the laboratory all soil samples were weighed and homogenised. 

This weight was taken as the field capacity moisture content to which the 

samples were maintained (by the addition of sterile artificial rainwater (0.01 M 

CaCI2 (analysis grade >99%; Fisher Scientific) in Milli-Q, autoclaved at 125°C 
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for 40 mins) until the experiment began. One tub of soil and one tub of sewage 

sludge were then sent for sterilisation by y-irradiation (25kGy, 6°Co irradiation 

source) at Becton Dickenson & Co, Roborough, Plymouth, Devon. 

Both the sterile y-irradated (500g) and live soils (4kg) were then sieved (4.75 

mm) to remove large stones, macrofauna and microfauna. All samples were 

then stored in a cold room (7 °C) in the absence of light as a pre-incubation 

period of 2 to 28 days is recommended to allow equilibrium of microbial 

metabolism and to allow any seeds to germinate and hence be removed 

(OECD, 2002a). 
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4.4. Liquid Culture Biodegradation Experiments 

4.4.1. Enrichment Cultures 

An initial culture procedure was carried out to generate enriched cultures for 

use in the full scale experiment and as a means to check extraction and 

analysis efficacy of added ISs. 

4.4.1.1. Experimental Procedure 

Soil was used to generate enhanced cultures (sourced from the same site as 

the afore mentioned experiment; Table 4.2) by growing bacteria (dark 

conditions, shaking incubator, 27°C, 30 days) on individual target compounds 

(Fiuoxetine HCI, Norfluoxetine HCI, Diazepam, Temazepam and Oxazepam; 2 

~g) in minimal salts media (MSM; 100 ml; Appendix, Figure A.18). Cultures 

were then sub-sampled (1 ml culture in 100 ml MSM, with 2 ~g target 

compound, 25°C) to create enriched cultures. All work was performed using 

aseptic techniques. 

4.4.1.2. Sample Preparation 

Sub-samples (30 ml) of cultures were taken on days 0 and 30. These sub­

samples were transferred to sterile centrifuge tubes and the appropriate IS 

added (1 ~g. ds-Fiuoxetine HCI or d5-0xazepam). Samples were stored at -20°C 

until extraction. The remaining 20 ml of culture was returned to the incubator 

for subculturing. 

Samples were rapidly defrosted by placing in warm water and centrifuged (4500 

rpm, 5 minutes). All samples were then subjected to the developed SPE method 

and reconstitution processes described in Section 3.3.3 (Figure 3.4). 
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4.4.1.3. Analysis 

HPLC-ESI-MS was used for the analysis of ISs in the enrichment culture 

samples. External linear calibrations allowed the quantification of IS (d5-

Fiuoxetine HCI and d5-0xazepam) concentrations, and hence calculation of 

extraction efficiencies. Conditions and parameters used for LC-MS are given in 

detail in Section 2.4.2. 

4.4.1.4. Results and Discussion 

Single replicates from the start (day 0) and the end (- day 30) of the growth 

period for each target compound were extracted an analysed. Extraction 

efficiencies were then calculated based upon the IS recoveries. As two different 

IS were used depending upon the target compound in question, the data in 

Table 4.3 are presented for the respective IS. 

For d5-Fiuoxetine and d5-0xazepam the mean extraction efficiencies obtained 

were 70.4% (n = 4) and 91.0% (n = 8) respectively, with relative standard 

deviations of 41% and 20%. Extraction efficiencies were rather variable for d5-

Fiuoxetine but somewhat better for d5-0xazepam. lt is likely that these lower 

recoveries for the day 30 samples were due to the fact that samples from day 

30 contained more residual soil than those from day 0, due to the sub-sampling 

process i.e. more soil was present within this samples for the IS to sorb to; 

hence the lower recoveries. Despite the variability in extraction efficiencies 

these experiments provided enriched cultures for use in the full scale study. 
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Enrichment Culture 
Sampling Day 

IS Extraction Efficiency 
Number (%) 

0 72.9 - 1 (.) 29 45.1 ::t: 
111 0 110.2 c: 
;; 2 

QJ 31 53.5 >< 
0 

Mean 70.4 ::s 
u. 

I 

"' "C 
Standard Deviation 28.9 

o/oRSD 41 .1 

0 100.4 
3 

30 98.9 

0 92.7 
4 

E 
30 90.0 

CV 0 110.2 Q. 
111 5 
N 30 102.5 CV 
>< 
0 0 82.3 

I 
6 "' "C 31 50.8 

Mean 91 .0 

Standard Deviation 18.3 

o/oRSO 20.1 

Table 4.3. Internal standard recoveries in liquid culture biodegradation study 

enrichment cultures 

d5-Fiuoxetine HCI was used as IS for SSRis 
d5-0xazepam was used as IS for 1 ,4-benzodiazepines 
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4.4.2. Full Scale Liquid Culture Biodegradation Study 

The preceding enrichment culturing generated environmentally relevant pre­

adapted inocula for all six target compounds (Fiuoxetine, Norfluoxetine, 

Diazepam, Temazepam, Oxazepam and Nordiazepam) and provided data for 

the efficacy of the designed extraction and analysis methods. Unfortunately 

there were supply problems with one of the target compounds, Nordiazepam, 

and therefore it had to be excluded from this full scale biodegradation 

experiment. 

4.4.2.1. Experimental Procedure 

For the full scale study the appropriate target compound (5J..Ig), along with the 

corresponding enrichment culture (1 ml) was added to sterilised MSM (25 ml; 

autoclaved at 121°C, 15 minutes) in culture flasks. Blanks (containing no target 

compound) and abiotic sterile controls containing no culture were also prepared 

for each experiment. Caps with T eflon septa were used to seal the flasks which 

were placed at 25 °C in the dark. Samples and blanks were sacrificed in 

triplicate on days 0, 35, 45 and 60. Abiotic controls were sampled in triplicate on 

days 0 and 60. Appropriate IS (2.5J..1g; d5-Fiuoxetine or ds-Oxazepam) was 

added to each flask before being frozen at -20°C. 

4.4.2.2. Sample Preparation 

Samples were prepared, extracted and reconstituted in the same manner as for 

the enrichment cultures (Section 4.4.1.2) except that whole samples were 

sacrificed as opposed to sub-sampling. Samples were reconstituted just prior to 

analysis as in Figure 3.4. 
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4.4.2.3. Analysis 

HPLC-ESI(+)-MSn was used for determination of the concentration of the target 

compounds versus known concentration of ISs. Full MS analysis was perfonned 

on all samples for the generation of quantitative data. DDMS, which involves 

MS2 fragmentation, was then performed on a selection of samples, controls and 

blanks, for the confirmation of peak identity, via the generation of daughter ions 

(m/z transitions: Fluoxetine 310.0 to 147.9; Norfluoxetine 296.0 to 133.9; 

Diazepam 285.2 to 257.2; Temazepam 301.1 to 283.0; Oxazepam 287.2 to 

269.0; d5-Fiuoxetine 315.0 to 152.9; d5-0xazepam 292.2 to 27 4.0). Ratio based 

calibration (Section 2.5.1) was used to generate quantitative data. Complete 

details of analytical conditions can be found in Sections 2.5 and 2.6. 

4.4.2.4. Results and Discussion 

The use of HPLC-ESI-MSn for analysis allowed identification of all target 

compounds and ISs based upon m/z transitions and Rt, along with the 

generation of quantitative data. 

Figures 4.1 to 4.5 show example extracted ion chromatograms from four 

sampling timepoints, full MS spectra and MS2 spectra for each target 

compound, along with the extracted ion chromatogram and full MS spectra of 

the internal standard. 
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Figure 4.1. HPLC-ESI·MS" extracted ion chromatograms and spectra for 

Fluoxetine and d5-Fiuoxetine in full scale liquid culture biodegradation study 

Extracted ion chromatograms for Fluoxetine (m/z 310) and d5-Fiuoxetine (m/z 315) shown are 
from individual sample replicates from four sampling time points (day 0, 35, 45 and 60). HPLC 
and MS conditions as developed in Sections 2.4 and 2.5. 
A. Full mass spectra of Fluoxetine and IS. 
B. MS2 spectra generated by DDMS analysis showing known fragments for Fluoxetine and IS. 
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Figure 4. 2. HPLC-ESI-MS" extracted ion chromatograms and spectra for 

Norfluoxetine and d5-Fiuoxetine in full scale liquid culture biodegradation study 

Extracted ion chromatograms for Norfluoxetine (m/z 296} and d5-Fiuoxetine (m/z 315) shown 
are from individual sample replicates from four sampling time points (day 0, 35, 45 and 60}. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5. 
A. Full mass spectra of Norfluoxetine and IS. 
B. MS2 spectra generated by DDMS analysis shows known fragments for Norfluoxetine and IS. 
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Figure 4. 3. HPLC-ESI-MS" extracted ion chromatograms and spectra for 

Diazepam and d5-0xazepam in full scale liquid culture biodegradation study 

Extracted ion chromatograms for Diazepam (m/z 285) and d5-0xazepam (m/z 292) shown are 
from individual sample replicates from four sampling time points (day 0, 35, 45 and 60). HPLC 
and MS conditions as developed in Sections 2.4 and 2.5. 
A. Full mass spectra of Diazepam and IS. 
B. MS2 spectra generated by DDMS analysis shows known fragments for Diazepam and IS. 
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Figure 4. 4. HPLC-ESI-MS" extracted ion chromatograms and spectra for 

Temazepam and d5-0xazepam in full scale liquid culture biodegradation study 

Extracted ion chromatograms for Temazepam (m/z 301) and d5-0xazepam (m/z 292} shown 
are from individual sample replicates from four sampling time points (day 0, 35, 45 and 60). 
HPLC and MS conditions as developed in Sections 2.4 and 2.5. 
A. Full mass spectra of Temazepam and IS. 
B. MS2 spectra generated by DDMS analysis shows known fragments for Temazepam and IS. 
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Figure 4. 5. HPLC-ESI-MS" extracted ion chromatograms and spectra for 

Oxazepam and d5-0xazepam in full scale liquid culture biodegradation study 

Extracted ion chromatograms for Oxazepam (m/z 287) and d5-0xazepam (m/z 292) shown are 
from individual sample replicates from four sampling time points (day 0, 35, 45 and 60). HPLC 
and MS conditions as developed in Sections 2.4 and 2.5. 
A. Full mass spectra of Oxazepam and IS. 
B. MS2 spectra generated by DDMS analysis shows known fragments for Oxazepam and IS. 

159 



Chapter Four: Biodegradation of PPCPs in Sewage Sludge-Amended Soil 

Extracted peak areas for relevant [M+Hr ions for each PPCP were integrated 

and these data used in conjunction with ratio calibration data to calculate the 

concentrations of target compounds. These data were then manipulated to 

obtain normalised % recovery of the target compounds. Data for each target 

compound were normalised against the mean day 0 percentage recovery for 

the corresponding sample or control. lt was necessary to normalise the data in 

this way to account for differences in starting concentrations of the controls and 

samples due to the sub-culturing process involved during inoculum introduction. 

The normalised % recovery data were used as input for statistical analysis. 

DDMS spectra were obtained to confirm the identity of each compound by 

comparison of fragmentation pathways and Rt with those of the known analytes. 

Figures 4.6 to 4.10 show the normalised percentage recovery of PPCPs at the 

specified sampling points (day 0 - 60) from both sample and control flasks. 

None of the blank samples contained the target compounds (as expected). 

Sample and control data points from the start (day 0) and end (day 60) of the 

study were subjected to statistical analysis; F-tests were first performed so that 

the appropriate t-test, assuming either equal or unequal variance could be 

selected. All statistical analyses were performed at the 95% confidence interval. 

P-values and their significance were generated by statistical analysis for all 

target compounds, and these results are presented in the Appendix (Table A.9). 
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Figure 4. 6. Percentage of Fluoxetine remaining in full scale liquid culture 

biodegradation study over 60 days 

Error bars ± 1 standard deviation. n = 3. 
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Figure 4. 7. Percentage of Norfluoxetine remaining in full scale liquid culture 

biodegradation study over 60 days 

Error bars ± 1 standard deviation. n = 3. 
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Figure 4. 8. Percentage of Diazepam remaining in full scale liquid culture 

biodegradation study over 60 days 

Error bars ± 1 standard deviation. n =3. 
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Figure 4. 9. Percentage of Temazepam remaining in full scale liquid culture 

biodegradation study over 60 days 

Error bars ± 1 standard deviation. n =3. 
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As is apparent from the data represented in Figure 4. 6 and Figure 4. 7, no 

degradation of Fluoxetine or Norfluoxetine occurred over the 60 day period . 

This was also supported by the t-test results from statistical analysis which 

compared day 0 and day 60 concentrations (P = 0.507 and P = 0.304 for 

Fluoxetine and Norfluoxetine respectively). Error bars on the day 0 and day 60 

control samples for both Fluoxetine and Norfluoxetine overlap, also indicating 

no statistically significant abiotic degradation (P = 0.170 and P = 0.604 

respectively). There were also no statistically significant differences between 

the control and sample mean end concentrations (P = 0.234 and P = 0.938). 

Neither Fluoxetine or Norfluoxetine underwent any losses due to either biotic or 

abiotic factors under these experimental conditions. 

In the case of Diazepam the results were rather variable (Figure 4. 8). Overall 

there was no statistically significant difference between the concentration of 

Diazepam measured in the samples at the start (day 0) and end (day 60) of the 

experiment (P = 0.180). No biodegradation had apparently occurred. Neither 

was there any statistically significant difference (P = 0.807, > 0.05) between the 

mean values for the controls from day 0 and day 60, thereby indicating that no 

abiotic degradation had occurred. However the concentrations of Diazepam 

seen in day 0 controls were very variable and it is therefore· difficult to 

definitively draw conclusions as. regards abiotic degradation. Also no 

differences were found in the mean concentrations of the day 60 samples and 

controls (P = 0.278). No losses, due to either abiotic or biotic factors, of 

Diazepam were apparently seen. 

' 
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Statistical comparison of Temazepam concentrations (Figure 4. 9) in day 0 and 

day 60 samples (t-test; P = 0.009, < 0.05) suggests that degradation of some 

form has occurred. To identify whether this degradation is abiotic or biotic 

control data must be considered. Statistical analysis on control samples showed 

no degradation (P = 0.300), thereby leading to the conclusion that degradation 

seen was due to biotic factors. As expected, due to the normalisation process, 

comparison of day 0 control and sample data sets showed no statistical 

difference (P = 1.000). However comparison between day 60 samples and 

controls also showed no significant difference (P = 0.497). If Temazepam in 

sample chambers was undergoing biodegradation, but not in the control 

chambers, then a significant difference between these two data sets would be 

expected. lt is possible that the losses seen in the sample chambers were due 

to sorption to dead biomass; this loss would not have occurred in the control 

chambers due to the lack of presence of microbial biomass. However due to the 

significant variability in Temazepam concentrations from day 60 samples no 

definitive conclusions can be drawn. 

Data from the control day 60 data set were highly variable; significant 

differences found in variance, when comparing data sets, were only seen when 

one of these data sets was the control day 60 set. Both the F-test and t-test 

assume a normal distribution, with such a variable data set (control day 60) it is 

possible than a non-normal distribution affected the output of these statistical 

tests, especially the t-test which is particularly sensitive to this assumption. For 

these reasons it was not possible to conclude whether Temazepam underwent 

degradation (either biC?tic or abiotic) under these experimental conditions. Other 

researchers have also had problems concluding whether other compounds from 

the 1 ,4-benzodiazepine group undergo partial or no removal. Ternes (2004) 
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was unable to discriminate between partial or no removal (0 - 60%) for 

Oxazepam in liquid cultures, and under anaerobic sludge digestion conditions it 

was also not possible to distinguish whether Diazepam underwent no or partial 

removal. 
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Figure 4. 10. Percentage of Oxazepam remaining in full scale liquid culture 

biodegradation study over 60 days 

Error bars ± 1 standard deviation. n =3. 

In the case of Oxazepam the t-test data (P = 0.024, < 0.05) for comparison of 

day 0 and day 60 samples shows a statistically significant change in 

concentration, suggesting degradation has occurred. This significant change in 

concentration over the duration of the experiment was also seen in controls (P = 

0.019, < 0.05), therefore signifying that abiotic factors played a role in the 

concentration decrease seen in these control chambers. Comparison of the 

controls and samples from day 60 allow assessment of whether the losses seen 

in the sample chambers were due to abiotic or biotic factors. Statistical analysis 

between these two data sets shows a significant difference in the means (P = 

0.0004 ), with live samples containing much lower concentrations of Oxazepam 

at days 45 and 60 than in the day 60 control samples (Figure 4. 1 0) . This leads 
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to the tentative conclusion that whilst both samples and controls were 

undergoing abiotic degradation or irreversible sorption, in live sample 

chambers, biotic degradation was also occurring. 

Comparison of base peak spectra for sample, control and blank chambers 

(Figure 4. 11) clearly showed an unknown peak in all samples from day 60, that 

was not present in the corresponding blank or control samples. 

The mass spectrum of the unknown suspected metabolita-had a base peak ion 

at m/z 271. Assuming this is due to a protonated molecular ion, which is typical 

of the 1 ,4-benzodiazepines (Section 2.4.1 ), this is attributed to a molecular 

weight of 270. This is also the molecular weight of Nordiazepam (Figure 2.11 ). 

Electrospray MS conditions were therefore optimised to allow investigation of 

mlz 271 to 243 fragmentation shown previously to be characteristic of 

Nordiazepam. The day 60 biodegradation samples containing the unknown 

were then re-examined by ESI-MS. An authentic sample of Nordiazepam (2 ~g 

mL-1, also containing 2 ~g ml-1 d5-0xazepam) was also examined for direct 

comparison purposes. Full MS analysis and MS2 for m/z 271 were performed 

with HPLC conditions as discussed previously (Section 2.3, Figure 2.4). Figure 

4.12 shows the mass chromatograms for extracted ions mlz 271 and 292, 

alongside MS spectra. 
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d5-0xazepam 
Sample day 0 

Sample day 60 
Replicate 1 

+-----Unknown metabolite m/z 271 

Sample day 60 
Replicate 2 

Sample day 60 
Replicate 3 

Control day 60 
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Time (min) 

Figure 4. 11. HPLC-ESI-MS base peak chromatogram for Oxazepam liquid culture 

full scale biodegradation experiment: sample, control and blanks for day 60 

Base peak chromatograms shown in each cells are from single replicates from the beginning 
(Day 0) and end (Day 60) of the experiment.. 
IS, d5-0xazepam (m/z 292) at Rt - 10 minutes. 
Unknown (m/z 271) at Rt- 13 minutes present in all three replicates from Day 60. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5. 
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Figure 4.12. Example full MS extracted ion chromatograms and mass spectra for 

Oxazepam liquid culture full biodegradation study: sample day 60, authentic 

Nordiazepam and authentic d 5-0xazepam 

A - Extracted ion chromatogram of IS (d5-0 xazepam m/z 292) and unknown product (m/z 271) 
and full mass spectrum of unknown product 
B- Extracted ion chromatogram and full mass spectra of Nordiazepam 
C- Extracted ion chromatogram and full mass spectra of d5-0xazepam (IS) 

The data in Figure 4.12 show that although the unknown metabolite (Figure 

4.12 A) and Nordiazepam (Figure 4.12 B) have very similar MS spectra, the Rt 

of the two compounds differ by approximately 2 minutes (unknown 13 mins; 

Nordiazepam 11 mins), with the unknown metabolite eluting later. 

For Nordiazepam, MS2 fragmentation generated abundant ions at m/z 243 

(Figure 4.15), 208 and 140, among others. The formation of the ion m/z 243 is 

attributed to loss of CO from the protonated parent ion (viz mlz 271 to 243, 

t;;,.m/z = 28; CO). This contrasted sharply with the MS2 fragment ions produced 

by fragmentation of the protonated parent ion of the ukknown (Figure 4.16) in 

which an ion m/z 253 was abundant. The latter is attributed to loss of water from 

the parent ion (viz mlz 271 to 253; t;;,.m/z = 18; H20). Clearly the difference in Rt 
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and MS2 spectra (Figures 4.12, 4.15 and 4.16) show that the unknown 

metabolite is not Nordiazepam. 

Other possibilities were thus examined for the identity of the unknown. 

Compounds such as the 1 ,4-benzodiazepines undergo rapid keto-enol 

tautomerism (Figure 4. 13). 
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Figure 4. 13. Strutures of Nordiazepam and Oxazepam keto-enol tautomerism 

Often the enol tautomers are more unstable and tend to revert to keto 

tautomers, as is the case with 1 ,4-benzodiazepines (Yang et al., 1995; Yang, 

1994). In other words many ketones are dominated by the lower energy keto 

form at equilibrium. This dominance of the keto form was confirmed herein for 

all target compounds and was confirmed by NMR spectroscopy analysis 

(Oxazepam NMR spectra are presented Appendix, Figures A.19 and A.20). 

Given the similarity of the mass spectra of Nordiazepam and the unknown 

metabolite, it was postulated that the unknown metabolite might be the enol 

tautomer of Nordiazepam (Figure 4. 13). However, given that the precursor of 
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the unknown metabolites was Oxazepam, which has a keto group at C2 and a 

hydroxyl group at C3, a further possibility might be the keto or enol tautomer of 

C3 Nordiazepam (Figure 4.14). 
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Precursor ion [M+Hf 
2-enol-nordiazepam 
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AND/OR 

2-keto-nordiazepam 

273. 1 

... 0 
3-enol-nordiazepam 3-keto-nordiazepam 

200 270 200 ... 300 

Figure 4.14. Full mass spectra of unknown product from Oxazepam liquid culture 

biodegradation sample day 60: all possible precursor ion structures shown 

Data shown is from day 60 Oxazepam biodegradation sample, first replicate. 
Unknown metabolite (Figure 4.12 A) molecular ion [M+Ht (m/z 271) and MS2 fragment (m/z 
253) proposed to be 2- or 3- keto or enol Nordiazepam. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5. 

HPLC-ESI(+)-MS2 of fragments ions m/z 271 of the unknown metabolites in the 

Oxazepam day 60 biodegradation samples and of an authentic sample of 

Nordiazepam generated the MS2 spectra shown in Figure 4.15 and Figure 4.16. 
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Figure 4.15. HPLC-ESI(+)-MS2 of m/z 271 of authentic Nordiazepam (2-keto­

nordiazepam) 

Nordiazepam authentic standard (Figure 4.12 B) molecular ion [M+Ht (m/z 271) and MS2 

fragment attributed to [M-CO+Ht (m/z 243) shown. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5. 
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Figure 4.16. Example HPLC-ESI(+)-MS2 of m/z 271 unknown product (suspected 

to be enol-nordiazepam) from Oxazepam liquid culture biodegradation 

experiment: Sample day 60 

Data shown is from day 60 Oxazepam biodegradation sample, first replicate. 
Unknown metabolite (Figure 4.12 A) molecular ion [M+Ht (m/z 271 ). molecular ion adduct 
[M+H]+Na• (m/z 294) and MS2 fragment attributed to [M-H20t (m/z 253) proposed to be 2- or 3-
keto or enol Nordiazepam. HPLC and MS conditions as developed in Sections 2.4 and 2.5. 
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Figure 4. 17. Proposed ESI(+) fragmentation pathways of Nordiazepam 

Tautomers up to MS2 

Only structures for C2 enol and keto forms are shown, although C3 equivalents are eq\Jally 
possible. 
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To confirm suspicions that the unknown metabolite was an enol form of 

Nordiazepam, a tautomerism experiment was conducted to transform keto 

tautomers of Oxazepam and Nordiazepam to their enol forms under basic 

conditions (Yang et al., 1995). This was done by shaking (5 mins) Oxazepam 

and Nordiazepam (1 mg each) respectively with MeOH (0.02 M NaOH), 

followed by heating (50°C, 20 h). The experiments were also repeated using 

CD30H (0.02 M NaOH) in place of MeOH. An aliquot (1 001-JL) of a solution (1 

mg ml-1) of each of the products was then mixed with Milli-Q and 0.2% formic 

acid (1 001-JL) prior to HPLC-ESI-MSn. Full MS and MS2 analysis was performed 

on all samples. Analysis conditions and methods for the analysis were as 

previously used for Oxazepam liquid biodegradation samples (Sections 2.3 and 

2.4) 

Figure 4.18 to Figure 4.27 show the resultant HPLC-ESI-MSn chromatograms 

and spectra of each product of basification of Oxazepam and Nordiazepam with 

MeOH, and the proposed fragmentation pathways. Information gained from 

deuterated analogs (m/z transitions included in fragmentation pathway figures in 

brackets) was used in conjunction with the MSn spectra generated to elucidate 

proposed structures and ESI fragmentation pathways. 

Two peaks (A and B) were identified in the HPLC-ESI total ion current 

chromatogram from the basified Noridazepam sample (Figure 4.18). The 

retention time of the first peak corresponded to that of 2-keto-Nordiazepam 

(Figure 4.12 8). The second compound eluted approximately 2.5 minutes later 

(Rt 13.4 mins). This is close to the Rt of the unknown biodegradation 

metabolite. Unfortunately due to the low signal response of peak 8 it was not 

possible to obtain MS2 spectra of this component for further confirmation. 
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However mass spectra of the corresponding components to A and B produced 

when basification in CD30H was· conducted, both contained protonated 

molecular ions consistent with bis-deuteration (Figure 4.19 and Figure 4.20). 

This is also indicative that both peaks A and B are tautomeric forms of 

Nordiazepam. The full MS of this component (Figure 4.18, peak B) indicated the 

presence of [M+Ht ion with an m/z of 271 (Figure 4.19), as would be expected 

for Nordiazepam and consistent with the identification of this component as the 

2-enol form (Figure 4.16). 
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Figure 4.18. Tautomerism experiment: HPLC-ESI-MS total ion current for 

Nordiazepam tautomer sample 

TIC shown is for basified Nordiazepam in MeOH. Equivalent TIC was obtained using CD30H. 
A. 2-keto-Nordiazepam (m/z 271) at Rt- 11 minutes. 
B. Unknown (m/z 271) at Rt- 13.5 minutes suspected to be 2-enol form of Nordiazepam. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5. 
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Figure 4.19. Tautomerism experiment: HPLC-ESI-MS mass spectra for 

Nordiazepam tautomer sample, peak A 

A. Full mass spectrum shown is for basified Nordiazepam in MeOH, peak A (Figure 4.1 8). 
B. Full mass spectrum shown is for basified Nordiazepam in CD30H, peak A (Figure 4.18). 
Molecular ion [M+Hf (m/z 271 ). MS2 fragment attributed to [M-COf (m/z 243), MS3 fragment 
attributed to [M-CO-Cif (m/z 208) identified as 2-keto-Nordiazepam. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5 
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Figure 4.20. Tautomerism experiment: HPLC-ESI-MS mass spectra for 

Nordiazepam tautomer sample, peak B 

A. Full mass spectrum shown is for basified Nordiazepam in Me0H1 peak B (Figure 4.18). 
B. Full mass spectrum shown is for basified Nordiazepam in CD30H, peak B (Figure 4.18). 
Molecular ion [M+Hf (m/z 271) Rt - 13.5 minutes, proposed to be 2-enol form of 
Nordiazepam. HPLC and MS conditions as developed in Sections 2.4 and 2.5 

175 



Chapter Four: Biodegradation of PPCPs in Sewage Sludge-Amended Soil 

The spectra presented in Figure 4.19 show the m/z transitions 271 to 243 to 

208, which indicates the loss of CO with ring closure to a 6 membered 

resonance stabilised ring, followed by the loss of the Cl radical. The same 

losses were seen for the deuterated analalog (m/z transitions 273 to 245 to 21 0) 

indicating that the two deuterium ions on either C2 or C3 were not lost during 

ESI fragmentation. Yang et al., (1996) also found bis-deuteration occurred at C3 

under similar experimental conditions using either Diazepam-4-oxide and 

Nordiazepam-4-oxide as starting materials (Figure 4.21 ). The presence of an 0 

on the N4 position, or a methyl at the N1 position, had no impact upon the 

susceptibility of C3 hydrogens to undergo exchange with deuterium ions from 

CD30H. This confirms the identity of peak A as the 2-keto form of Nordiazepam. 

The ESI fragmentation pathway of keto-Nordiazepam can be seen in Figure 

4.22. 

H3C H 

~---10 ~---10 
1 2 

1 2 

3CH 3CH 
1 2 

1 2 4 + 
4 + Cl N Cl N ' -

\ -
0 0 

Diazeflam-4-oxide Nordiazepam-4-oxide 

Figure 4.21. Structures of Diazepam-4-oxide and Nordiazepam-4-oxide 
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Cl 
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Cl 

MS3 

(- 35 u; Cl) 

2-keto-nordiazepam 
mass 270.7 
[M+ H]+ 
mlz 271 .2 
(m/z 273.2) 

mass 242.7 
[M- CO+ H]+ 
mlz 243.2 
(m/z 245.2) 

mass 208.3 
[M- CO- Cl]• 
mlz 208.3 
(m/z 210.2) 

Figure 4.22. Tautomerism experiment: Proposed ESI fragmentation· pathway of 

peak A, Figure 4.18, proposed to be 2-keto Nordiazepam 

Position of deuterated ions and m/z for equivalent deuterated analogs are shown in brackets. 
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Further evidence for the formation of 1 ,4-benzodiazepine tautomers was 

produced by the products of basification of Oxazepam. When Oxazepam was 
. 

basified in MeOH, five peaks were identified in the HPLC-ESI total ion current 

chromatogram (Figure 4.23). However only two of the peaks (A and B) relevant 

to the identification of the biodegradation metabolite formed in the liquid culture 

biodegradation of Oxazepam will be discussed. 
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Figure 4.23. Tautomerism experiment: HPLC-ESI-MS total ion current for 

Oxazepam tautomer sample 

TIC shown is for basified Oxazepam in MeOH. Equivalent TIC was obtained using CD30H. 
A. 2-keto-Oxazepam (m/z 287) at Rt- 10.8 ll)inutes. 
B. Unknown (m/z 287) at Rt- 11 .3 minutes suspected to be 2-enol form of Oxazepam. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5. 

Figure 4.24 shows the mass spectral product ions resulting from MS2 

fragmentation of the protonated molecular ion of peak A from basified 

Oxazepam (m/z 287) which had a Rt of 10.85 minutes (Figure 4.23). The ion 

mlz 269 is attributed to the loss of water (llm/z = 18). The MS3 fragment (m/z 

241) can also be seen and is attributed to loss of CO from ion m/z 269 (llm/z = 
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28). The mass spectrum of the corresponding product obtained by basification 

in CD30H (Figure 4.24) show analogous m/z transitions (288 to 270 to 242) 

indicating mono deuteration at C3, as expected (Yang and Bao, 1994; Yang, 

1994; Yang et al. , 1995). These data support the identification of peak A as 2-

keto-Oxazepam. The ESI fragmentation pathway of this compound can be seen 

in Figure 4.26. 

The mass spectrum (Figure 4.25) derived from peak B (Figure 4.23) was 

qualitatively similar to that assigned to 2-keto-Oxazepam (Figure 4.24). 

However, the relative intensities of the ions differed. MS2 fragmentation of the 

parent ion (m/z 287) produced an ion due to loss of water (m/z 287 to 26~) . The 

structure of this ion (Figure 4.25) is proposed to be due to that of an analogous 

rearrangement product, Oxazepam quinalozine carboxyaldehyde, previously 

identified as a theromolysis product (Sadee and Van der Kleijn, 1971 ; Forgione 

et al., 1971 ; Yang et al., 1995). MS3 fragmentation of m/z 269 produced an ion 

due to further loss of 28 u, which corresponds to the loss of CO from the 

carboxyaldehyde (Figure 4.25). Corresponding fragmentations were seen for 

the mono-deuterated analog (viz m/z transitions 288 to 270 to 242; Figure 4.25). 

These transitions, in conjunction with the later Rt of component B relative to 2-

keto-Oxazepam, suggest that component 8 is the enol form of Oxazepam 

(Figure 4.25). The postulated ESI fragmentation pathway for component 8 is 

shown Figure 4.27. 
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Figure 4.24. Tautomerism experiment: HPLC-ESI-MS" spectra for Oxazepam 

tautomer sample, peak A 

A. Full mass spectra shown is for basified Oxazepam in MeOH, peak A (Figure 4.23). 
B. Full mass spectra shown is for basified Oxazepam in CD30H. 
Molecular ion [M+Hf (m/z 287), MS2 fragment attributed to [M-COf (m/z 241 ), MS3 fragment 
attributed to [M-CO-H20f identified as 2-keto-Oxazepam. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5 
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Figure 4.25. Tautomerism experiment: HPLC-ESI-MS" spectra for Oxazepam 

tautomer sample, peak B 

A. Full mass spectra shown is for basified Oxazepam in MeOH, peak B (Figure 4.23). 
B. Full mass spectra shown is for basified Oxazepam in CD30H. 
Molecular ion [M+Ht (m/z 287), MS2 fragment attributed to [M-H20) ' (m/z 269), MS3 fragment 
attributed to [M-H20-COf proposed to be 2-enol form of Oxazepam. 
HPLC and MS conditions as developed in Sections 2.4 and 2.5 

180 



Chapter Four: Biodegradation of PPCPs in Sewage Sludge-Amended Soil 

Cl 

Cl 

l __ l 0~ H• 

)<H (D) 
-N 

H 

~--{~ 
C-H (D) 

I 
--N 

(- 28 u; CO) 
MS3 j 

Cl 

2-keto-oxazepam 
mass 286.7 
[M+ H]+ 
mlz 287.1 
(m/z 288.1) 

mass 269.7 
[M- H20]+ 

mlz 269.1 
(m/z 270.1) 

mass 241.7 
[M- C02H2]+ 

m!z 241 .3 
(m/z 242.3) 

Figure 4.26. Tautomerism experiment: Proposed ESI fragmentation pathway of 

peak A, Figure 4.23, proposed to be 2-keto Oxazepam 

Position of deuterated ions and m/z for equivalent deuterated analogs are shown in brackets. 
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Figure 4.27. Tautomerism experiment: Proposed ESI fragmentation pathway of 

peak B, Figure 4.23, proposed to be 2-enol Oxa~epam 

Position of deuterated ions and m/z for equivalent deuterated analogs are shown in brackets. 
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4.4.2.5. Summary 

The aim of the series of tautomerism experiments was to confirm suspicions 

that the unknown metabolite formed in the biodegradation experiment with 

Oxazepam was an enol form of Nordiazepam. Unfortunately the conversion of. 

2-keto-Nordiazepam to 2-enoi-Nordiazepam in significant enough quantities to 

gain MS2 data was not achieved. However the Rt of the product of basification 

of Nordiazepam was close to that of the unknown and the molecular ion 

produced was the same. Clearly the keto - enol Nordiazepam equilibrium lies 

further to the left for Nordiazepam than that of Oxazepam, where evidence for 

the existence of the enol form was more clearly demonstrated (Figure 4.25). 

Additional experimental work such as NMR, is required to confirm these findings 

further but this would require milligrams quantities of pure materials. lt is equally 

possible that the unknown biodegradation product corresponds to 3-keto or 3-

enol forms of Nordiazepam (Figure 4.16), although the mass spectral 

fragmentation loss of water favours the latter. 

Although some data for some controls were poorly reproducible, it was clear 

that neither Fluoxetine, Norfluoxetine or any of the 1 ,4-benzodiazepines except 

Oxazepam, were biodegraded in 60 days in liquid cultures from SS-amended 

soil, pre-acclimatised to drug degradation {Figure 4.28). Oxazepam was 

however subject to both biotic and abiotic processes under the experimental 

conditions. Incubation for 60 days could result in the loss of approximately 80% 

of the initial amounts of target compound, half of which could be attributed to 

biotic factors. Degradation within sample chambers resulted in the formation a 

metabolite, proposed to be 2- or 3- enoi-Nordiazepam. Figure 4.29 summarises 

this proposed transformation. lt was not possible to decipher whether 
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enolisation was occurring prior or post transformation as there was no evidence 

of either the enoi-Oxazepam nor the keto-Nordiazepam, nor whether this 

enolisation was occurring on C2 or C3. 

The lack of biodegradation of all SSRis and 1 ,4-benzodiazepines, except 

Oxazepam, under these experimental conditions could have implications for 

persistence within the environment. Liquid culture experiments such as those 

performed herein can be classified as screening experiments. lt was therefore 

deemed important to perform a simulation type experiment using just one target 

compound (Fiuoxetine HCI) in SS-amended soil under more environmentally 

relevant conditions (i.e. moisture content, temperature regime, presence of 

fungal communities). 
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Figure 4.28. Summary of recoveries from liquid culture biodegradation 

experiments from the beginning (day 0) and end of the experiment (day 60) for 

Fluoxetine, Norfluoxetine, Diazepam, Temazepam and Oxazepam 

Error bars± 1 standard deviation (n = 3}. 
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4.5. Biodegradation of Fluoxetine HCI in Sewage-sludge amended-soil 

Previous biodegradation experiments with five target PPCPs in liquid cultures 

derived from SS-amended soil found all PPCPs, except Oxazepam, to be 

resistant to biodegradation over 60 days, thus indicating their potential 

persistent nature within the environment. A more rigorous biodegradation 

experiment over 270 days with more environmentally relevant conditions and 

just one target compound, Fluoxetine HCI was therefore performed. 

4.5.1. Experimental Procedure 

The basis of the proposed methodology outlined below was based upon OECD 

guideline 307 (OECD, 2002b). Soil was sourced from a typical agricultural field 

to which SS had been applied on a regular basis (Table 4.2; - 400 m3 over 2 

years). Soil (15g ± 0.5g) was placed into each incubation chamber, which was 

protected from light to minimise photodegradation and fitted with a filter cap. 

The spiking concentration was determined by calculating the predicted 

concentration of target compounds in SS and hence in amended soil (Appendix, 

Figures A.3 to A. 7). Samples, sterile controls (y-irradiated) and viability test 

chambers were spiked with 1.5 1-1g Fluoxetine HCI in MeOH and mixed by hand 

shaking. Solvent blanks were also prepared, so that any impacts of the solvent 

upon the microbiological populations within the soil would remain consistent 

throughout all chambers. Throughout the duration of the experiment the flasks 

were weighed once a fortnight and sterile artificial rainwater was added (0.01 M 

CaCb in Milli-Q, autoclaved at 125°C for 40 mins) when necessary, to keep the 

moisture content at field capacity. Table 4.4 summarises the details of the 

different incubation chambers. 
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Incubation Microbiological Fluoxetine Number Labelling 

Type Status HCI Spiked of Flasks Code 

Sample Live Yes 95 s 
Sterile 

Sterile Yes 20 c 
Control 

Solvent 
Live No (MeOH only) 20 B 

Blank 

Viability Live Yes 10 V 

Table 4.4. Details of incubation chambers used to investigate the biodegradation 

of Fluoxetine in sewage-sludge amended-soil 

Three incubation chambers were sacrificed on each sampling day. Sampling 

took place on days 0, 1, 2, 4, 6, 9, 12, 15, and then weekly for 2 months and 

fortnightly for the remaining duration. Control (sterile and blank) chambers were 

sampled and viability tested to ensure continued sterility on days 0, 90, 180 and 

270. Viability chambers were sub-sampled fortnightly, diluted (0.1 g of soil 

shaken with 10 ml phosphate buffered saline) and plated onto Tryptone Soya 

Agar (TSA; for bacterial growth) and Malt Agar (MA; for fungal growth). Details 

of the constituents used to make the buffer and both types of agar can be found 

in the appendix (Table A.1 0). Plates were placed into an incubator (25°C for 10 

days) and photographed. SS in the UK is usually spread in September and 

February (SWW, 2004 personal communication). As this experiment was 

designed to mimic field conditions as closely as possible, average South West 

February temperatures were selected as a starting condition for all the samples. 

Temperatures were selected by using data kindly supplied on request by the UK 

Meteorological Office (Mount Batten average monthly mid-range air 

temperatures for 1971 - 2000). All chambers were stored in the dark (to prevent 

photodegradation) at 7°C for 2 months. Temperature was then increased to 9-

12°C (average SW April & May; 2 months) and then 14-16°C (average SW June 
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& July; 3 months) and then finally returned to 9- 12°C (average SW September 

& November; 3 months). 

4.5.2. Sample Preparation 

Just prior to extraction 1.5 IJg d5-Fiuoxetine HCI in MeOH was added to each 

incubation chamber as an IS. Each chamber then underwent extraction, clean 

up and reconstitution using the developed soil extraction and tandem SPE 

method presented in Section 3.4.2, Figure 3.7. 

4.5.3. Analysis 

Analysis was performed using HPLC-ESI-MSn in positive ion mode. During the 

first set of analyses a calibration series for Fluoxetine HCI and d5-Fiuoxetine 

HCI was analysed for quantification purposes (further details of calibration can 

be found in Sections 2.5 and 2.6). Full MS analysis was used for preliminary 

identification (from parent m/z 31 0.0, and Rt) and quantification of Fluoxetine 

HCI remaining within the samples. DDMS was used for further confirmation of 

peak identity, via generation of the principal daughter ion (m/z 147.9). Under 

DDMS conditions the largest ion for each scan undergoes MS2 fragmentation 

(provided that the ion count is > 1 05
) . DDMS was selected as the preferred 

analysis technique, as the use of DDMS can also result in MS2 fragmentation of 

any biodegradation products formed thereby providing some structural 

information regarding the products. Details of HPLC are given in Section 2.3, 

Figure 2.4. Analysis was performed on a Finnigan MAT LCQ™ quadrupole ion 

trap mass spectrometer. ESI in positive mode was used for ionisation. This 

chromatograph was interfaced with a Dionex P580 (gradient) pump and a 

rheodyne injector valve was used for sample introduction. Xcalibur™ software 

was used for data collection and manipulation. 
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4.5.4. Results and Discussion 

4.5.4.1. Soil Microbe Viability 

HPLC grade water (Fisher Scientific), Milli-Q and sterilised Milli-Q water 

(autoclaved 125°C for 40 mins) were plated onto TSA (for bacterial growth) or 

malt agar (for fungal growth) plates prior to the start of the experiment, so that 

appropriate sterile water could be selected for use as artificial rain (to maintain 

field moisture capacity) without introducing additional microbes. No growth was 

seen on the sterilised Milli-Q; hence its use as the base for artificial rainwater. 

Viability chambers, containing live soil and target compound (i.e. identical to 

sample chambers), were sub-sampled fortnightly and plated, so that major 

changes in the microbial populations present could be monitored. Photographs 

of a selection of these plates are presented in Plate 4.1 . These show that over 

the duration of this experiment both the bacterial and fungal populations present 

within the samples remained relatively stable, i.e. the bacterial and fungal 

colonies grown at different time points contained a similar range of microbes. 

However the rate of growth appeared to have declined by the end of the 

experiment. 

More sophisticated analyses of the bacterial DNA composition using Denaturing 

Gradient Gel Electrophoresis (DGGE) were planned and samples sent to the 

University of Exeter Microbiology Department for analysis but unfortunately 

these were not performed. However, bacteriohopanepolyol analysis (Section 

4.6) provided additional complementary data on microbe populations in this soil. 
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Malt Agar 

• 

c 

Plate 4.1. Microbial growth on TSA and Malt Agar plates to test respective 

bacterial and fungal fungal population viability for soil biodegradation 

experiment: Viability chambers 

A - DayO; B - Day90; C - Day274 
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Blank chambers, containing live soil but no Fluoxetine, also underwent regular 

viability checks, and a selection of these plates can be seen in Plate 4.2. This 

was performed so that comparison of these plates with those from viability 

chambers would allow the identification of any toxic effects of Fluoxetine HCI 

upon the soil microbes. No obvious changes in the microbial populations were 

seen over the duration of the experiment. Comparison of these plates with 

those from the viability incubation chambers (Plate 4.2) showed a comparable 

range of microbes present in the samples suggesting that Fluoxetine HCI did 

not have any substantial toxic impact upon populations present. 

A 
TSA 

B 

Plate 4.2. Microbial growth on TSA and Malt Agar plates to test respective 

bacterial and fungal fungal population viability for soil biodegradation 

experiment: Blank chambers 

A-DayO; B-Day274 
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Sterile control (y-irradiated) chambers were viability checked regularly to ensure 

continued sterility. Plate 4.3 from day 274 showed the first signs of loss of 

sterility from these chambers; for this reason the experiment was brought to a 

close on day 270. 

TSA Malt Agar 

Plate 4.3. Microbial growth on TSA and Malt Agar plates to test respective 

bacterial and fungal fungal population viability for soil biodegradation 

experiment: Control chambers for day 274 
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4.5.4.2. Biodegradation of Fluoxetine HCI in SS amended soil 

Soils from a selection of sampling points (days 0, 18, 32, 109, 125, 165, 180, 

238 and 270) were chosen for initial analysis to give an overview of degradation 

rates. Quantitative data were obtained using ratio calibration. Blank and control 

samples (days 0, 180 and 270) were also analysed. No Fluoxetine was 

identified in any of the blank samples (data not presented). Figure 4.30 shows a 

typical example extracted ion chromatogram, full MS spectra and MS2 spectra 

of Fluoxetine for a soil biodegradation sample (day 0), along with the extracted 

ion chromatogram and full MS spectra of the internal standard. Other 

representative chromatograms are shown in Figure 4.31 . 

Figure 4.30. Example chromatogram and spectra for Fluoxetine and IS in 

sewage-slud~e amended soil biodegradation sample (day 0) 

A - Extracted ion chromatograms for Fluoxetine (m/z 31 0} & ds-Fiuoxetine (m/z 315} 
B- Full MS spectra for Fluoxetine (m/z 310} & d5-Fiuoxetine (m/z 315} 
C- MS2 spectra for Fluoxetine & d5-Fiuoxetine (m/z transitions: 310 to 147.9 and 315 to 152.9 
respectively}. HPLC and MS conditions as developed in Sections 2.4 and 2.5 
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... 
: Day32 
: Full MS 

~ : [M+I-W 
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Fluoxetine 

Fluoxetine 

~ .~~~~~~~~~~--~~~~~~ 

Figure 4.31. Example chromatograms for Fluoxetine and IS in sewage-sludge 

amended soil samples from long term soil biodegradation study over 270 days 

Data shown is from individual sample replicates for a selection of sampling time points (days 0, 
32, 1 09, 180 and 270). For each time point extracted ion chromatograms for Fluoxetine (m/z 
31 0) & d5-Fiuoxetine (m/z 315) are shown · 
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Visual appraisal of the quantitative data (Figure 4.32) reveals a slight decline in 

Fluoxetine HCI concentrations with time. lt is apparent however that there is 

considerable variability between the data sets. lt can also be seen that the 

sterile control data points obtained were very close to the mean Fluoxetine 

concentration found at the equivalent time points, indicating variations in day-to-

day instrument performance. 
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Figure 4.32. Percentage recovery of Fluoxetine from sewage-sludge amended 

soil biodegradation samples over 270 days 

D Average percentage Fluoxetine recovery from sample chambers; • average percentage 
Fluoxetine recovery from sterile control chambers 
Error bars represent± 1 standard deviation (n = 3) 

The similarity in values between the sterile controls and the live samples at the 

same time points, suggests that no biodegradation had occurred. An F-test 

followed by a t-test was used to statistically confirm these findings 

(Statsgraphics V.5.1 ). At the 95% confidence interval the P-value obtained for 

the F-test was 0.582, thus the differences between data sets are deemed to be 

not statistically significant different. This confirms that the variance seen 

between samples taken on day 0 and those taken on day 270 data sets is 
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equal. Results from the t-test (P = 0.946, > 0.05) comparing Fluoxetine 

concentrations in sample chambers from the beginning and end of the 

experiment were also not statistically significantly different thereby indicating 

that no biodegradation occurred. The most likely explanation for the very slight 

apparent downward trend is the progressive slight irreversible sorption of the 

target compound the soil with time. However no statistically significant 

difference was found between either the variance (P = 0.282; > 0.05) or the 

mean values for the sterile controls at the beginning and the end of the 

experiment (P = 0.519 > 0.05), which also indicates that no significant abiotic 

losses had occurred. 
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4.6. BHP Analysis 

As the source of inocula for both the soil and liquid culture biodegradation 

experiments was lime treated sewage-sludge (pH 12+) amended soil (Table 

4.2), it was considered necessary to try to characterise the microbial 

populations present. Data from planned collaborative DGGE experiments was 

not forthcoming so an alternative molecular method of bacterial population 

characterisation was sought. 

Bacteriohopanepolyols (BHPs) are compounds found in the bacterial membrane 

and are involved in membrane stabilisation; they are comparable to eukaryote 

steroids. BHPs have been identified in more than 50% of bacterial taxa studied, 

and it thought that certain side chain functional groups may be unique to 

specific bacterial taxa and species (Bednarczyk et a/. , 2005). Tetra-

functionalised alcohol side chains are predominant, although also common are 

the penta- and hexa-functionalised side chains (Figure 4. 33). 

Tetrafunctionalised 
Z=H, Y=H, X=OH or NH 2or composite group* 

Pentafunctionalised 
Z=H, Y=OH, X=OH or NH 2 or cyclitol ether 
Z=OH, Y=H, X=OH 

Hexafunctionalised 
Z=OH, Y=OH, X=NH 2 

Figure 4. 33. Generic structure of Bacteriohopanepolyols 

Side chain variants include a methyl group at C-31 , a ketone group at C-32, -OCONH2 at at C-
34, and structures with the side chain condensed in a cyclic ether form. 
Variants in the ring system include methylation at either C-2 or C-3, and a double bond at C-6 
and I or C-11 . 
*Composite groups typically comprise of sugar or amino acid derivatives. 

The use of .BHPs as bacterial markers is still a technique in its infancy and will 

be improved by extension of sampling locations to establish a larger data base 
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of BHPs (H.Talbot, University of Newcaste; personal communication). A 

selection of seven SS amended soils (Gibbs et al., 2006b; Gibbs et al., 2006a) 

sourced from Rothamsted soil research centre (discussed in more detail in 

Section 3.4.3 ) underwent this analysis alongside the soil used as an inoculum 

source in all biodegradation studies so as to provide a comparative BHP data 

set for SS-amended soils. Current correlation between bacteria and BHP is 

limited to 25 BHPs, which is sufficient to test the hypothesis that BHP structures 

can be used to identify soil bacterial processes (Talbot et al., 2003). lt is not 

however yet known what impacts of stress and laboratory growth conditions 

have upon BHP production, and this must be taken into account. 

4.6.1. Experimental Procedure 

The extraction and analysis procedures were performed by M.Cooke at 

Newcastle University. The methodology will only be briefly summarised herein. 

Ground freeze dried soil (-3g) was sieved (2mm) and suspended in a 

monophasic solvent mixture (50ml; MeOH : chloroform : MilliQ; 2:1 :0.8), 

sonicated (1 hour at 40 °C) and shaken (rotary shaker, 180 rpm, 4 hours). This 

was followed by centrifugation (12000rpm, 15 mins) and removal of 

supernatant. This extraction was performed in triplicate and supernatants 

labelled A, B and C. Gentle shaking with chloroform and Milli-Q (5ml each) 

broke the monophasic solvents which were then centrifuged again (12000 rpm, 

2 mins). The bottom chloroform layer from fraction B was removed and added 

to fraction A. This was centrifuged again (12000 rpm, 2 mins) and the 

chloroform layer transferred to a round bottom flask. This was then repeated by 

moving the chloroform layer from fraction C to B, and then to A, before 

combining the supernatants in the round bottom flask. Rotary evaporation and 

nitrogen blow-down was the used to dry the chloroform extracts. 
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4.6.2. Sample Preparation 

lt was necessary to acetylate the sample prior to analysis to improve HPLC 

separation of the BHPs. This was achieved by heating (50°C, 1 hour) the 

extract with pyridine and acetic anhydride (2 ml each) in a closed vial , which 

was then left to stand overnight before drying with rotary evaporation. Extracts 

were reconstituted in MeOH : IPA (60:40, 0.5 ml) prior to analysis. 

4.6.3. Analysis 

Analysis was performed on a HPLC ion trap MS in positive ionisation mode. 

Explanation of the MS fragmentation pathways seen including serial loss of 

acetylated hydroxyl functional groups and ring system fragmentation, and 

identification of BHPs are given in the appendix (Figures A.21 and A.22). Areas 

of the characteristic base peak ions and the IS peak area (acetylated 5a.­

pregnane-3p,20 P-diol; m/z 345; [M+H-CH3COOHr) were used for the 

generation of semi-quantitative data. The use of acetylated authentic BHP 

standards for both nitrogen and non-nitrogen-containing BHPs generated mean 

relative response factors. Nitrogen-containing compounds gave an average 

response - 12 times greater than the standard, whereas those not containing 

nitrogen give a response - 8 times greater. 
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4.6.4. Results and Discussion 

BHP analysis was completed upon the soil used to generate inocula for 

biodegradation studies and SS-amended soils sourced from seven different UK 

sites (Woburn, Gleadthorpe, Watlington, Pwllpeiran, Rosemaund, Bridgets and 

Shirburn). Table 4.5 and Figure 4.34 show only the bacterial sources identified 

in the soil used to generate the inocula. Additional information including 

example chromatograms and spectra along with data for the other seven soil 

samples can be found in the appendix (Figures A.23 to A.33). Results for all 

eight soils will be briefly discussed. 

Living bacteria, dormant cells in soil , recently dead cells and free relic BHPs are 

thought to be the sources of BHPs extracted using this methodology. lt is 

thought that the majority of BHPs are produced by living cells and that the 

quantities of BHPs reflect the dominance of living bacteria within the soil , and 

therefore allows conclusions to be drawn about the dominant bacterial 

processes occurring within the soil. 

Soils studied in the past (Talbot et al. , 2001) have contained total BHPs at 

concentrations of several hundred j..Jg g-1 dry soil. All of the SS-amended soils 

tested herein contained much lower total BHPs than this (mean of 5.7 j..Jg g-1
; 

max 9.8 j..Jg g-1), with the soil used for biodegradation experiments lower still (3.7 

IJg g-1; Table 4.5). This implies low numbers of bacteria and a high dominance 

of soil processes by fungal populations. These concentrations of BHPs are 

more similar to garden soils and soils from below a depth of 10 cm where 

bacterial activity is usually limited (the soils tested were sampled up to 20 cm). 
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mlz Concentration 
[M+Hf or Bacterial source 

[M+H-CH3COOH]' (~g g"1 dry wt) 

746 
Purple non-sulphur, nitrogen fixing, 

ammonia oxidising 1.1 
714 Various 0.8 

1002 Methylotrophs, Cyanobacteria, Purple 
(cyclitol ether) non-sulphur, acetic acid, Burkholderia 0.4 

655 Various 0.4 
760 Nitrogen fixing bacteria 0 .2 

1086 Facultative Methylotrophs 0.1 
1060 Various 0.1 
669 Cyanobacteria 0.1 
761 Purple non-sulphur 0.1 
772 Methanotrophs (Types I & 11) 0.1 

1016 Cyanobacteria 0.1 

728 
Unknown species (possible in 

cyanobacteria as 2-methyl) 0.1 
1074 Cyanobacteria 0.03 

Total BHP 3.7 

Table 4.5. Summary table of BHP analysis results of sewage-sludge amended 

soil from Cornwall, UK; used as a source of inoculum for biodegradation 

experiments in liquid (Section 4.4) and soil (Section 4.5) media 
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Figure 4.34. Bacteriohopanepolyols Analysis: Identification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Cornwall, UK 

Base peak m/z = [M+Hr or [M+H-CH3COOHr 
Data sourced from Cooke (2007). 
This soil was used in extraction method development and as inocula for all biodegradation 
experiments. 
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Similar BHP profiles for all eight soils were dominated by four BHPs 

(characterised by mass spectral ions m/z 655, 714, 746 & 1002; Table 4.5). A 

wide range of bacteria are associated with these BHPs (Table 4.5) and their 

presence tends to give an indication of overall bacterial population. Variations 

between relative proportions of these compounds was apparent in all the soils 

and may be due to differences in the bacterial populations, or due to differential 

response of bacterial to environmental conditions (e.g. soil moisture, 

temperature). 

In most soils with low total BHPs a limited bacterial diversity is postulated. For 

example, previously analysed garden soil contained only eight BHPs (M.Cooke, 

Univeristy of Newcastle; personal communication). However in the present eight 

soils much wider diversity was seen, ranging from 14 to 19 BHPs per sample 

with 13 BHPs in the soil used for biodegradation experiments (Figure 4.34). 

Bacterophopaneaminopentol (m/z 830) is thought to be uniquely produced by 

methanotrophs, whose presence is generally rare (Neunlist and Rohmer, 1985), 

but this was found in 6 of the 8 soils tested, including the soil used herein for 

biodegradation experiments. Its presence has only been detected in two other 

locations; from a paddy field and agricultural soil treated with manure for 1 00 

years (Palace Leas Plot 2-http://www.staff.ncl.ac.uk/r.s.shiel/Piace_ 

Leas/index). Even samples from adjacent field plots examined previously 

showed no evidence of Bacterophopaneaminopentol. This leads to the 

conclusion that methane-oxidising bacteria can be found in both manure and 

SS treated soils. lt cannot however be concluded whether the source of the 

methanotrophs is the soil itself, or the applied manure or SS. 
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In all eight soils, including the soil used for biodegradation experiments herein, 

another rare BHP (m/z 1 086) was also found to be present. This has also been 

associated with manuring and is thought to be produced only by facultative 

methylotrophs, therefore suggesting access to a source of readily metabolisable 

C1 compounds. This BHP was found in the same manured source mentioned 

earlier (Palace Leas Plot 2), but has occasionally been identified in other non­

manured sites. 

In summary, these soils would not be classified as typical agricultural soils due 

to their low total BHP concentration, which indicates the domination of soil 

processes by fungal populations. lt is however possible that the sampling depth 

(up to 20 cm) may have influenced this result. These soils can also not be 

classified as typical low total BHP soils, due the wide diversity of BHPs seen. 

Two rare BHPs, which have previously been related to manured soils, indicate 

the unusual presence of methanotrophs and methylotrophs. However, though 

this BHP method is in its infancy for microbial population characterisation it is 

clear that the soil used herein for the biodegradation studies has a microbial 

(bacterial and fungal) population typical of SS-amended soils. This justifies the 

use of this environmentally relevant soil for the biodegradation experiments. 
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4.7. Concluding Remarks 

The selective serotonin re-uptake inhibitors (SSRis) Fluoxetine and 

Norfluoxetine did not undergo statistically significant degradation due to either 

biotic or abiotic processes in either soil or liquid cultures containing microbial 

populations representative of SS-amended soils. 

Literature data, such as those of T ernes (2004) and the present results, show 

that biodegradation behaviour of 1,4-benzodiazepines is more variable and 

likely to be very sensitive to specific environmental conditions. Diazepam was 

the most persistent of the compounds studied, with no losses due to either 

biotic or abiotic factors. In the case of Temazepam it was not possible to 

classify whether no or partial (0 - 20%) loss was occurring, and whether this 

possible· loss was caused by abiotic or biotic factors due to the variability seen 

in control samples. However, Oxazepam underwent statistically significant 

losses (-80% total) within 60 days due to both abiotic and biotic factors. 

Approximately half of this loss was due to the biotransformation of keto­

Oxazepam to a metabolite proposed to be the 2- or 3- enol tautomer of 

Nordiazepam on the basis of basification experiments and detailed multistage 

MS analysis. 

The variability seen in the behaviours of the different 1 ,4-benzodiazepines 

maybe partly due to differences in functional groups (Figure 4.35). The results 

suggest that the presence of a C3 hydroxyl group, present in both Temazepam 

and Oxazepam, resulted in abiotic losses possibly due to increased polarity 

compared to Diazepam (Log P: Diazepam = 2.988, Temazepam = 2.479, 

Oxazepam = 2.34, as predicted by US EPA modeling suite Bcfwin V2.15) and 

204 



Chapter Four: Biodegradation of PPCPs in Sewage Sludge-Amended Soil 

therefore more sorption. This functionality was recently related to the rate of 

photodegradation of Temazepam and Oxazepam due to sorption to aquatic 

humic substances (West, 2007). The presence of this hydroxyl group may also 

aid enolisation, therefore allowing formation of more polar compounds and 

increasing sorption further. 

No 
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Figure 4.35. Chemical Structures of Target Compounds: Fluoxetine, Diazepam 

and their major Human Metabolites 

Fluoxetine (R =H), Norfluoxetine (R = CH3) , Diazepam (R1 = CH3, R2 = CH2) , Temazepam {R1 
= CH3, R2 = OH), Oxazepam {R1 = H, R2 = OH) and Nordiazepam (R1 = H, R2 = CH2). 

Since the commencement of this project this research field has developed 

significantly and more evidence of the presence of these comP.ounds in the 

environment has been published. There have been further findings of Diazepam 

(Carlsson et al., 2006), Fluoxetine and Norfluoxetine (Furlong, 2007) in the 

environment including in soil (Kinney et al., 2006) and bioaccumulating in fish 

(Brooks et al., 2005). There have also been a few findings regarding losses of 

these compounds under environmentally relevant conditions. Fluoxetine has 

been shown to photodegrade forming three products (Lam et al., 2005) and has 

been shown to have a biphasic nature of dissipation within the water column 

(Loffler et al., 2005). No environmentally relevant literature on the 

biodegradation of Fluoxetine or Norfluoxetine under field conditions was found. 

For the 1 ,4-benzodiazepines, literature on the dissipation nature of Diazepam 
r 
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and Oxazepam in the water column has been published. Diazepam was found 

to be highly persistent and Oxazepam as moderately persistent with limited 

sediment sorption tendencies (Loftier et al. , 2005). There is still a substantial 

lack of knowledge about the fate of many pharmaceuticals within the 

environment, especially under conditions found in the disposal of sewage 

sludge and the data presented herein help to bridge this deficiency somewhat. 

Considering the lack of biodegradation and the biotransformation of only one of 

these compounds to another suspected bioactive agent (Nordiazepam 

tautomer) under environmentally relevant conditions, alongside the possible risk 

of benzodiazepine sorption to soil and biannual SS application, there is potential 

for accumulation of these target compounds within agricultural soils. Future 

research into the fate and transport of these compounds should therefore focus 

around potential terrestrial ecotoxicity and bioaccumulation. The potential for 

plant uptake may lead to entrance into the food chain. Sorption data for 

pharmaceuticals in the environment have .become more common place (Ternes, 

2004; Kreuzig et al. , 2003; Kinney et al., 2006; Brooks et al., 2003; Jjemba, 

2006), but there is a lack of terrestrial ecotoxicQiogy data for Diazepam, and 

only limited research has been performed on Fluoxetine (Fong, 2001 ). The 

possibility of uptake of pharmaceuticals into agricultural crops and subsequence 

entrance into the food chain has not featured in the literature to date, and an 

attempt was made herein to address this issue (Chapter 5). 
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5. Uptake of Pharmaceuticals by Crop Plants 

5.1. Introduction 

The study of pharmaceuticals as environmental contaminants is still an 

emerging field and such research as has been conducted in this area has been 

focussed mainly around monitoring, biodegradation and sorption studies. There 

appear to be no publications regarding the exposure of terrestrial plants to 

pharmaceuticals, although one study of the phytotoxicity of Fluoxetine to Lemna 

gibba, (aquatic duck weed), has been reported (Brain et al., 2004). That study 

showed no evidence of phytotoxic impacts of Fluoxetine upon the measured 

endpoints. 

However, some relevant information regarding the fate of xenobiotics other than 

pharmaceuticals can be found in studies of pesticides, herbicides and other 

organic compounds on plants. 

Organic compounds can enter plants via a range of pathways (Hellstrom, 2004). 

Only uptake from soil is considered herein. 

5.2. Plant uptake of xenobiotics from soil 

Plant uptake of a compound depends upon both the specific properties of the 

compound and on the prevailing environmental conditions; factors such as the 

plant species, soil organic carbon content, temperature and many others. 

Compounds that are taken up into plants and followed by metabolism tend to 

form polar carbohydrate or amino acid conjugates. These conjugates, along 

with their parent compounds, are commonly stored via binding to cell wall 

components (Harms, 1996). 
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Uptake and translocation of xenobiotics within plants involves a complex series 

of processes, potentially involving compound-specific passive and active 

processes. Prior to uptake from soil, compounds will partition between the soil 

particles, interstitial water and interstitial air, depending upon their individual 

physio-chemical properties, which in turn determine their further transport into 

the plant. The extent of compound sorption to the soil is often the major limiting 

factor in availability for uptake. Sorption effects have been classified as: 

strongly sorbed ~ > 10 if Kow > 4 or moderately sorbed ~ 1 - 10 if Kow 2 - 4, 

for soils with OC 1 - 5% (Hellstrom, 2004 ). Generally, passive diffuse transport 

processes are responsible for the movement of organic chemicals from the soil 

into root systems. In the case of non-ionised compounds this process consists 

of two stages; the first is equilibration of the aqueous phase in the root with the 

surrounding soil water, which is then followed by sorption onto lipophilic root 

solids (e.g. lipids in eel/ walls (Collins et al., 2006)). 

Once compounds have entered the root system three potential pathways may 

be followed; either through the cell walls (apoplastic), via the plasmodesmata 

(symplastic) or from vacuole to vacuole (transcellular). Apoplastic transport 

allows compounds to move without entering cells until they reach the 

endodermis, where active transport is required for hydrophobic compounds. 

Active transport of anthropogenic contaminants has only been seen for 

hormone-like chemicals (Hellstrom, 2004 ). The relative solubility of the 

compound in water and the lipid-rich cell membranes, as well as diffusion, then 

determine the subsequent fate in passive transport from root to shoot. 

Compound hydrophobicity controls further transport and determines partitioning 

to solid structures, thereby limiting long distance transport. This also determines 
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the ability of a compound to move across the membranes. For non-ionised 

compounds, partitioning to the stem has been shown to have a linear 

relationship with Kow (Collins et al., 2006). 

Most studies into the uptake of hydrophobic organic compounds from soil 

indicate that such compounds (e.g. PCB, DDT), tend not to translocate any 

further than the root system. This is thought to be due to binding to lipid-type 

components within the root. These compounds are therefore more at risk of 

entering the human food chain when edible roots and tubers are contaminated 

(e.g. carrots (Hellstrom, 2004)). 

One of the major differences between plant and animal metabolism is that 

animals tend to excrete metabolites, whereas in plants they are stored. In plants 

oxidation is the most commonly seen metabolic process, although reduction 

and hydrolytic processes are also known. Conjugation in plants will either form 

soluble conjugates (e.g. glucoside, glutathion, amino acid, malonyl) or insoluble 

or bound conjugates by incorporation into biomolecules. For example, hydroxyl, 

carboxyl , amino or sulfhydroxyl aromatics tend to be incorporated into lignin or 

other cell wall components (Hellstrom, 2004). Lipophilic compounds tend to 

partition into leaves, where they are stored in two different compartments; a 

large reservoir with relatively slow deposition and a small surface compartment 

with faster uptake and clearance rates (Collins et al., 2006). 
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5.3. Experimental design of uptake studies 

O'Connor (1996) discusses and reviews the range of different experimental 

designs used to study the uptake of organic compounds from sludge-amended 

soils, including hydroponic studies and field experiments. Each of these 

different experiment types are designed to provide data for specific 

interpretations such as for mechanistic studies, compound structure behaviour 

models, worst case scenario exposures and solute transport models. lt is 

necessary to design plant uptake studies with specific aims because of the wide 

range of factors which can influence both compound and plant behaviour. For 

example, Harms (1996) discusses experiments designed to study metabolism 

pathways of anthropogenic chemicals. A study of 4-chloroaniline, at two 

concentrations (0.5 and 1 ppm), allowed the elucidation of the system of 

storage of these metabolites. In this · case 4-chloroaniline was first transformed 

to sugar conjugates which were stored in leaf vacuoles, and once this capacity 

was exceeded excess 4-chloroaniline became incorporated into the cell wall 

structures. In contrast, anthracene metabolites from soybean cell suspensions 

underwent various degrees of association with cell wall components and 

transferred back to the nutrient solution. Studies of phenanthrene metabolism 

showed formation of up to three metabolites depending upon the plant culture; 

barley, wheat, soybean and carrot. The extraction and clean-up procedures for 

organic compounds in plant tissues tend to involve the use of LLE. or ASE, 

followed by column adsorption chromatography. Extensive reviews regarding 

both extraction and analysis have been written by Motohashi et al., (1996), 

Chen and Wang (1996) and Tekel and Hatrik (1996), and so will not be 

discussed in any further detail here. Table 5.1 provides a summary of methods 

for some example experiments from the literature. 
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Plant(s) Compound Exposure Extraction Clean-up Analysis Results Ref procedure 

Transplanted into ASE (n-hexane : Sulfonication & Florisil Concentration in aerial parts < (Tao et al., 
Wheat DOT contaminated GC-E CD 

soil 
acetone) column roots 2004b) 

Transplanted into LLE (petroleum 
Concentration highest in roots (White et al. , 

Zucchini Chlordane contaminated Florisil column GC-MS & declines up xylem. 
soil 

ether: IPA) 
Enantiomer ratios also altered 

2002) 

Soybean, 
Soxhlet 

wheat, corn, 
DOT, Transplanted into (chloroform : TLC 

Concentration of all 4 

alfalfa, 
Dieldrin, 5 different MeOH, 12 hrs), 

Florisil column radioautograph 
compounds; wheat> soybean (Beall and 

bromegrass, 
Endrin & contaminated transfer to ACN &GLC 

seedlings. Endrin concentration Nash, 1969) 

cucumber 
Heptachlor soils and then in bromegrass & alfalfa > soil 

petroleum ether 

Various ASE (n-hexane: 
Concentration highest in 

vegetables Environmental I 
cone sulphuric Sulfonication & Silica gel 

cauliflowers. Predominantly (Tao et al., 
including a 16 PAHs agricultural acid with 2% column 

GC-MS foliar uptake, therefore 2004a) 
range of samples NaS04 

suggesting aerial transport 

Brassicas pathway 

For DOT; Aluminium 

Carrots, 
oxide column, carrot 

potatoes, peas, LLE (IPA for 
samples required 

Grown in soils 1, additional clean with Concentration of all 
cucumbers, DOT, Aldrin 2 or 3 years after 

DOT; IPA+ Nuchar & Celite mix). No details compounds was highest in (Lichtenstein, 
tomatoes, & Dieldrin insecticide 

hexane for For Aldrin & Dieldrin; given carrots, and lindane was found 1959) 
cabbage, application 

Aldrin & Florisil column, Aldrin at concentrations > soil 
beets, radishes, Dieldrin) exposed carrot samples 

ratabaga require additional Altasol 
Celite column 

Table 5.1. Methodologies from literature for studies into the uptake of xenobiotic compounds by plants 
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5.4. Selection of pharmaceuticals for uptake studies 

Xenobiotic compounds with log Kow 2 - 5 within the soil system are most likely to 

undergo plant uptake and moderate sorption. The risk with highly water soluble 

compounds (log Kow < 2) is that they will leach out of the soil system and into 

surrounding waterways, whereas hydrophobic compounds (log Kow ~ 5) are 

more likely to be strongly retained on soil particles (O'Connor, 1996). 

Although, as stated above, few pharmaceuticals have been studied in this 

respect, based on a pH-dependent Kow of between 1 - 4. 7, (Table A.2). 

Fluoxetine HCI might be predicted to undergo plant uptake, which is of high 

significance in the SS disposal route to land and subsequent compound fate, 

particularly since the compound appears to be resistant to biodegradation in 

soils (Chapter 4). For a compound to undergo plant uptake it must be stable 

within the soil system for a sufficiently long period (t112 > 14 days; (O'Connor, 

1996)). The results of the long term soil biodegradation study performed herein 

(Chapter 4,) showed that Fluoxetine HCI was stable in soil for at least 270 days. 

5.5. Selection of plants for uptake studies 

As can been seen from Table 5.1, a wide range of plants has been used to 

study the uptake of organic compounds from soils. Selection of an appropriate 

test plant species is essential for results to be applicable to real world 

environments. The current project was orientated towards environmental 

conditions prevailing from the disposal of pharmaceuticals via SS disposal in 

the SW of England. Therefore it was felt appropriate to select a common crop 

grown locally in the SW as a test species. Cauliflower (Brassica o/eracea) is an 

important economic vegetable crop in the UK. The main growing regions of UK 
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cauliflowers, production rates and income are shown in Figure 5.1 and Figure 

5.2. In 2005 more than 130,000 tonnes of the worldwide 11 ,000,000 tonnes of 

cauliflower was produced in the UK with a commercial value of around £50,000. 
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,. 

Figure 5.1. UK cauliflower growing regions 

Grey areas ( • ) show major cauliflower growth regions 

N 

i 

Source: Living Countryside (www.ukagriculture.com; accessed 2007) 
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Figure 5.2. UK annual cauliflower production and market value 

Data source: Defra (http://statistics.defra.gov.uk; accessed 2007) 
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5.6. Plant Uptake Models 

A range of plant uptake models can be found in literature, such as the simple 

three compartment fugacity model for herbaceous plants developed by Hung 

and Mackay (1997). Many models are able to generate concentration factors for 

different plant tissues, which have been related to chemical constants of the 

target analyte in question. Zebrowski et al. , (2004) found that the maximum 

transpiration stream concentration factor, which demonstrates compound 

translocation from root to shoot, occurred at log Kow 1. 78 for pesticides. 

5.7. Aims of current study 

Literature searches did not reveal any studies or equivalent models for the 

uptake of pharmaceuticals, and therefore few predictions regarding Fluoxetine 

behaviour could be made. Xenobiotic uptake has in the past been shown to 

involve a complex system of interlinking processes and factors, as discussed 

previously. Therefore for this preliminary study it was felt important to limit many 

of the environmental factors which may influence uptake and interpretation of 

results. Since the current work is believed to be the first example of a study into 

the plant uptake of pharmaceuticals it was felt that a simple preliminary 

laboratory study was sufficient. 

The primary aim of this experimental work was to ascertain whether cauliflower 

tissue cultures (T/Cs) were able to uptake Fluoxetine under laboratory 

conditions. Qualitative and qualitative data regarding the transport of Fluoxetine 

within the TIC were to be generated if uptake occurred. 

215 



Chapter Five: Uptake of Pharmaceuticals by Crop Plants 

5.8. Cauliflower Tissue Culture exposure to Fluoxetine HCI 

5.8.1. Experimental Procedure 

5.8.1.1. Lipid Extraction and Quantification 

The established Bligh and Dyer (1959) method for the extraction, purification 

and quantification of lipids was modified for use with cauliflower TIC stem and 

leaf samples. The Bligh and Dyer method is designed for use with 1 00 g 

samples containing - 80 ± 1% water and - 1% lipid. However cauliflower TIC 

sub-samples are significantly lower in mass than this, and the cauliflower florets 

have a mean moisture content of - 91% and a lipid content of - 0.4% wet 

weight (Baardseth, 1977). Solvent volumes were therefore altered to take 

account of the different tissue masses and average water content. 

Cauliflower TIC as described in Section 5.8.1, were used as the sample source 

for this lipid work. The following method applies to a tissue mass of 1 g, 

therefore solvent volumes were altered to take account of the different masses 

of each of the 5 stem and 6 leaf samples. After sectioning the TIC into leaf and 

stem samples, they were homogenised using a pestle and mortar, transferred to 

a vial and the wet weight recorded. 

Chloroform and MeOH (1.1375 and 2.275 ml g-1) were then added to vials, to 

give a chloroform : MeOH : H20 of 1 : 2 : 0.8, and shaken for two minutes. 

Additional chloroform was then added (1 .1375 ml g-1) and shaken for 30 

seconds, followed by Milli-Q (1 .1375 ml g-1) and an additional 30 seconds 

shaking (chloroform : MeOH : H20 of 2 : 2 : 1.8). A Buchner funnel lined with 

filter paper (Whatman No 1) operated with slight suction was used to filter and 

transfer extracts to clean graduated vials. The volume of the chloroform layer, 
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which contained the lipids, was then recorded after complete separation and 

clarification. An aliquot (typically 500 !JL) of the chloroform layer was then 

transferred to pre-weighed vial, and dried using a gentle stream of nitrogen at 

40°C, prior to re-weighing. To confirm that all non-lipid material had been 

removed chloroform (- 300 !JL) was added to each dry vial to ensure that no 

insoluble material remained. The lipid content of each sample was then 

calculated (Total lipid mass = (weight of lipid in aliquot x volume of chloroform 

layer) + volume of aliquot). This was then used to determine average lipid 

contents for leaves and stems which was in turn used to calculate lipid 

quantities in exposed TIC samples. 

5.8.1.2. Preparation of Cauliflower Growth Medium 

The totipotent capacity of many plant cells lies at the basis of cell culture work. 

To take advantage of this capacity and to create clones from apical meristems, 

the growth medium for tissue culture must contain all the nutrients required, a 

carbon source, agar to solidify the medium and growth regulators, such as the 

plant hormone indole-3-acetic acid (IAA) and kinetin which promotes cell 

division. Murashige and Skoog (1962) medium which was adapted for use with 

cauliflower floral meristems (50% strength with 8 g L-1 agar, 20 g L-1 sucrose, 

IAA 0.1 mg L-1 , kinetin 3.8 mg L-1
, adjusted to pH 5.8 with KOH) was used for 

the present work. Details of macronutrients that constitute Murashige and 

Skoog medium are given in Table A.12. 

Media were sterilised by autoclaving (120°C, 20 min) and then placed in a 

steamer (11 0°C for 2 hours) to liquefy. Prior to pouring, the medium was spiked 

with Fluoxetine HCI in MeOH (140 !Jg 500 ml-1 of medium) and stirred with a 

magnetic flea. Medium (35 ml) was then poured into plastic pots with lids and 
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allowed to set in a laminar flow hood, resulting in a final concentration of 9.8 j..lg 

pof1
. This spiking concentration was selected based upon the expected 

concentration in an equivalent volume of SS amended soil Uustification of 

spiking calculations is given in Figure A.8). Equivalent blank pots, spiked with 

only MeOH, were also prepared. 

5.8.1.3. Tissue Culturing 

A cauliflower curd (Organic, Marks and Spencer Class 1) was aseptically 

dissected into approximately 1g curd meristem sections(- 4 - 5 mm diameter 

at base). Each explant was then weighed and the weight recorded . Explants 

were washed in 1 00% ethanol before being placed into beakers containing 

bleach solution (10% Marks and Spencer thick bleach with limescale control in 

deionised water) and a few drops of Tween (wetting agent) for sterilisation and 

shaken on a rotary table (5 mins). 

Tissue culturing was performed in a laminar flow hood where explants were 

removed from the bleach using forceps (heat sterilised), rinsed with deionised 

water and dried on non-fibrous tissue paper. These were then transplanted to 

Murashige and Skoog medium in airtight plastic pots. All pots were then placed 

into a growth cabinet at 20°C ± 2°C with a 12 hour light I dark cycle (cool-white 

fluorescent light source; photosynthetic photon flux 130 ± 10 ~mol m-2 s-1) . 

During the growth period the cauliflower plantlets were checked regularly for 

contamination or death and any infected samples were removed from the 

growth cabinet immediately. After 12 weeks growth all samples were stored at -

80°C. 
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5.8.1.4. Harvest 

Samples for harvest were selected at random (5 blank and 5 spiked) from the 

freezer. The frozen plants were then cut into sections using a scalpel. 

Meanwhile media and roots were allowed to defrost at room temperature before 

separating the roots from the medium. The TIC were sectioned to create sub­

samples; curd, leaves, stem (including internode, node, stem and petiole), roots 

and media (Figure 5.3). All sub-samples were then washed in extraction 

solvent, and the washings added to the corresponding medium sample before 

weighing each sub-sample. 

Figure 5.3. Sub-sample sectioning of cauliflower tissue cultures 
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5.8.2. Sample Preparation 

For the extraction of Fluoxetine from cauliflower TIC the method presented in 

Section 3.5.3, which includes details on sample preparation, extraction, tandem 

SPE clean-up and reconstitution, was used. 

5.8~3. Analysis 

Analysis was performed using HPLC-ESI(+)MSn. Samples were initially 

analysed using SIM for Fluoxetine (m/z 31 0.0) and d5-Fiuoxetine (m/z 315.0), 

for the generation of quantitative data. SRM was then used to confirm the 

identity of peaks with full MS m/z 310.0 as Fluoxetine (m/z transition: 310.0 to 

147.9). A ratio calibration series was also analysed using SIM to allow the 

subsequent development of quantitative data. Full details of MS analysis, HPLC 

conditions and calibration are given in Chapter 2, Sections 2.4.1 .2, 2.4.2.2 and 

2.6. 

5.8.4. Results and Discussion 

5.8.4.1. Growth Rates 

Cauliflower tissue masses were recorded prior to tissue culture and at harvest 

so that growth masses (Table 5.2) could be determined and any potential 

phytotoxic effects identified. Results of statistical analyses using F-test and t­

tests, showed no significant differences in either the means or variance, 

between spiked and blank sample sets for the whole plant or individual sub­

samples at the 95% confidence interval. Thus there was no evidence of 

phytotoxic impacts upon the growth masses of cauliflower TIC exposed to 

Fluoxetine HCI. 
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Harvest Mass (g) 

Original 
Growth 

TIC Sample Root Stem Leaf Curd Total section 
mass 

mass (g) 
(g) 

Ill 
~ Mean 0.23 1.29 2.08 1.21 4.39 1.07 3.32 a. 
E 

"' Standard (/) 
0.34 0.48 1.59 0.45 2.62 0.1 1 2.57 "C Deviation 

Q) 
Ill 
0 
a. %RSD 152 37 76 37 60 11 77 )( 
w 

Ill 
Mean Q) 0.81 1.19 1.79 1.07 4.69 1.07 3.61 

a. 
E 

Standard "' (/) 
Deviation 0.17 0.52 0.72 0.29 1.65 0.20 1.60 

..:.:: 
c: 

"' % RSD m 22 44 40 27 35 18 44 

Table 5.2. Harvest and calculated growth data for Fluoxetine exposed and non­

exposed cauliflower tissue cultures 

5.8.4.2. Lipid Data 

A modified version of the Bligh and Dyer (1959) method for the extraction, 

purification and quantification of lipids was used to generate quantitative data 

on the amounts of lipid in cauliflower TIC stem and leaf samples. Average lipid 

contents were found to be higher in leaves than stems (Table 5.3). 

Lipid concentration Lipid concentration 
(mg g-1 wet weight) (% wet weight) 

Mean 1.69 0.17 

eG" Standard 
Q) 11 0.92 0.09 - Deviation (f)C: -

%RSD 54.6 54.6 

Mean 4.15 0.42 

Ul-
G><O Standard 1; 11 1.63 0.16 
Q) c: Deviation 
..J-

%RSD 39.2 39.2 

5.3. Bligh and Dyer extracted lipid concentrations for cauliflower tissue culture 

leaf and stem sub-samples 
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5.8.4.3. HPLC-ESI-MS" Qualitative and Quantitative Data 

Extracts of cauliflower TIC obtained by the method presented in Section 3.5.3, 

which included tandem SPE clean-up followed by reconstitution, were examined 

by HPLC-ESI-MS in positive ion mode. Example extracted ion chromatograms 

and mass spectra can be seen in Figures 5.4 to 5.8. Peaks in the extracted ion 

chromatograms that were positively identified as Fluoxetine by SRM (m/z 

transition 310 to 147.9) were integrated and these data used in ratio calibration 

calculations to obtain quantitative data on uptake. Details of the calibration 

method are given in Chapter 2, Section 2.5.2. 
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Figure 5.4. Example HPLC-ESI-MS" extracted ion chromatograms and mass 

spectra for Fluoxetine-exposed cauliflower tissue culture (Sample 28, leaf sub­

sample) 

A- SIM m/z 310 (Fiuoxetine full MS [M+Hf} 
B- SIM m/z 315 (d5-Fiuoxetine full MS [M+Hf} 
C- Full MS spectra of Fluoxetine and IS (from SIM analysis) 
0- MS2 spectra of Fluoxetine (m/z transition 310 < 148; from SRM analysis) 
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Figure 5.5. Example HPLC-ESI-MS" extracted ion chromatograms and mass 

spectra for Fluoxetine-exposed cauliflower tissue culture (Sample 28, media sub­

sample) 

A- SIM m/z 310 (Fiuoxetine full MS [M+Hn 
B- SIM m/z 315 (d5-Fiuoxetine full MS [M+Hn 
C- Full MS spectra of Fluoxetine and IS (from SIM analysis) 
D- MS2 spectra of Fluoxetine (m/z transition 310 < 148; from SRM analysis) 
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Unknown artefact 

IlD 8 2 84 80 IUS SIO 8.2 8.4 88 011 100 10.2 10.4 10.0 10.11 1 1.0 

Tlm•(mln} 

c 315.0 D 

d5-Fiuoxetine 
~ Fluoxetine MS2 transition 
t to mlz 147.9 not seen 

Figure 5.6. Example HPLC-ESI-MS" extracted ion chromatograms and mass 

spectra for Fluoxetine-exposed cauliflower tissue culture (Sample 28, root sub­

sample) 

A- SIM m/z 310; Fluoxetine not seen 
B- SIM m/z 315 (d5-Fiuoxetine full MS [M+Hn 
C- Full MS spectra of IS; Fluoxetine not seen (from SIM analysis) 
D - Fluoxetine MS2 transition spectra (m/z transition 31 0 < 148; from SRM analysis) 
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Figure 5.7. Example HPLC-ESI-MS" extracted ion chromatograms and mass 

spectra for Fluoxetine-exposed cauliflower tissue culture (Sample 28, stem sub­

sample) 

A- SIM m/z 310 (Fiuoxetine full MS [M+Hf} 
B - SIM m/z 315 (d5-Fiuoxetine full MS [M+Hf) 
C- Full MS spectra of Fluoxetine and IS (from SIM analysis) 
D- MS2 spectra of Fluoxetine (m/z transition 310 < 148; from SRM analysis) 
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Figure 5.8. Example HPLC-ESI-MS" extracted ion chromatograms and mass 

spectra for Fluoxetine-exposed cauliflower tissue culture (Sample 28, curd sub­

sample) 

A- SIM m/z 31 0; (Fiuoxetine full MS [M+Hn 
B- SIM mlz 315 (d5-Fiuoxetine full MS [M+Hn 
C- Full MS spectra of IS and Fluoxetine; < 3% relative abundancey of mlz 310 (SIM analysis) 
D- Fluoxetine MS2 transition spectra.(m/z transition 310 < 148; from SRM analysis) 
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Table 5.4 and Figure 5.9 summarise data for the uptake of Fluoxetine into 

Cauliflower TICs . Positive identification of Fluoxetine in all media and stem 

samples was achieved, and from 2 of the 4 leaf samples. As expected, the 

majority of Fluoxetine was found to remain in the medium (20%). The confirmed 

presence of the target compound Fluoxetine in all of the stems (mean 5 ± 2.4% 

of applied burden; n=5) and some of the leaves (mean 3 ± 3.5% of applied 

burden; n=4) indicate that xenobiotic transport did occur under these 

experimental conditions in some of the experimental plants. However it is clear 

that uptake to the leaves was not uniform in all experimental samples. No 

uptake to the curd was detected and neither was Fluoxetine detected in the 

roots. 

Mean Concentration 
Positive Uptake Standard (._,g g·1 wet 

identification deviation wei ht 

Leaves 2 from 4 

Curd 0 from 5 

Stem 5 from 5 

Roots 0 from 4 

Media 5 from 5 5-50 23 20.3 n/a n/a 

Table 5.4. Summary of Fluoxetine Uptake: with regard to sub-sample type 

* Percentage of total 9.8 IJg Fluoxetine added to each growth pot 
n/a =not applicable 
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Figure 5.9. Summary of Fluoxetine Uptake: with regard to sub-sample type 

(Media, stem and leaves) 

A. Percentage uptake of initial Fluoxetine added {9.8 IJg growth pof1
) 

B. !Jg Fluoxetine per gram of wet cauliflower tissue 
C. !Jg Fluoxetine per milligram of lipid, for relevant tissue type 
For media and stem samples n = 5 and n = 4 for leaf samples. 

228 



Chapter Five: Uptake of Pharmaceuticals by Crop Plants 

Expression of the data in terms of J.Jg g-1 wet weight and J.Jg mg-1 lipid removes 

some of the variability between data sets due to differences in tissue mass and 

lipid content between tissue types. The data show that mean Fluoxetine 

concentrations in the stems (0.49 J.Jg g-1 wet weight; 0.29 J.Jg mg-1 lipid) were 

considerably higher than those in the leaves (0.13 J.Jg mg-1 wet weight; 0.03 IJ9 

g-1 lipid) although these differences were not statistically significant at the 95% 

confidence interval (t-test P-value = 0.08, 0.07, 0.17 for J.Jg g-1, J.Jg mg-1 and % 

data respectively). Although the average Fluoxetine concentrations were higher 

in the stem than the leaf samples, the average lipid concentrations were 

significantly higher in the leaf samples (stem 1.69; leaf 4.15 mg g-1 wet weight; 

t-test P value = 0.02). Thus Fluoxetine concentration does not appear to be 

directly associated with lipid contents in the plants. lt is also possible that more 

extensive uptake to the leaves did occur, but that the extraction method was 

unable to recover Fluoxetine that was tightly bound to these lipids. 

. 
These data, in combination with positive identification of Fluoxetine in only 2 of 

the 4 leaf samples, suggests perhaps that Fluoxetine was transported through 

the roots, to the stel"!l and then onto leaves. This could be investigated further 

by p_erforming the same experiment with a longer growth period and by 

sampling the plants at intermediate growth stages. Sampling at various growth 

stages would also provide more data regarding the connection between lipid 

content and xenobiotic storage to be investigated. 

Fluoxetine was not detected in the roots of any of the plants, which is at first 

surprising if transport is via the roots to the stem. The most likely explanation 

for this is the root mass was so small and hence the LOO so high, that any 
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Fluoxetine present was below the LOO. lt is also possible that Fluoxetine was 

'stored' in the leaves and stems, whereas in the root system the passage of 

Fluoxetine may have been transient, resulting in concentrations below the LOO 

(Hellstrom, 2004; Collins et al., 2006). Combining sub-samples of roots, or 

again extending the growth period so that more substantial root systems are 

developed might lead to the detection of Fluoxetine in the roots in future 

studies. 

Consideration of the concentrations of Fluoxetine in individual tissue culture 

samples highlights considerable variability between the tissue culture clones 

(Figure 5.1 0). Total recovery of applied Fluoxetine, including Fluoxetine 

remaining in the medium, ranged from only - 15 to 57%, with an average of 

30%. Thus an average loss of 70% of the originally spiked Fluoxetine had 

occurred. 

lt is highly likely that a proportion of these substantial losses were due to 

photodegradation. As discussed in Section 3.5.1, Fluoxetine is a photo labile 

substance with a measured half-life of 62 hours (West, 2007). The duration of 

the growth period in the present experiments (> 23 half-lives) would be more 

than sufficient to account for the observed losses. Plant metabolism and 

irreversible sorption to plant components may also have played a role 

(Zebrowski et al., 2004). Consideration of only plant tissue sub-samples (i.e. 

excluding Fluoxetine remaining in the medium) showed uptake ranging from 2.7 

to 10.5 % with an average of 8 %. 
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Figure 5.10. Summary of Fluoxetine uptake in tissue culture samples from 

individual plants 

Percentage is expressed as % of total Fluoxetine added to each growth pot (9.8 ~g) 
(• leaves; stem; • medium) 

The data also suggest that significantly higher quantities of Fluoxetine remained 

in the medium when uptake did not proceed as far as the leaves (Figure 5. 1 0), 

with a larger proportion of Fluoxetine also remaining within the stems under 

these conditions. This provides support for transport from the medium, through 

the roots and into the stem and leaves. The data in Figure 5.10 also highlight 

the large losses of target compound when uptake to leaves did occur. These 

losses of Fluoxetine which appear to occur en route to the leaf may be due to 

plant metabolism (Zebrowski et al., 2004). 
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5.9. Concluding Remarks 

The primary aim of this work, to complete a simple cauliflower TIC uptake study 

with Fluoxetine, was achieved. Both qualitative and quantitative data on the 

transport of Fluoxetine through the plant TIC were generated. Fluoxetine was 

shown to be taken up from the medium and translocated to the stem in all 

plants and to the leaves in 2 of the 4 replicates. Mean concentrations for stems 

were greater than for leaves, but this difference was not found to be statistically 

significant at the 95% confidence interval due to the high variability. A summary 

of the uptake data is presented in Figure 5.11. These results suggest that there 

may potentially be a risk that Fluoxetine could be found in cauliflowers (and 

related Brassica; Chapter 3) grown on SS-amended soils due to plant uptake. 

However no evidence of uptake to the most commonly eaten part, the curd, was 

found and it should be emphasised that the plants were grown in artificial 

medium, not in soil. Uptake from soil may be the same or may differ significantly 

from the mechanism identified herein. 

Growth data generated in this experiment indicated no significant phytotoxic 

impacts of Fluoxetine upon growth, as regards either total growth mass or the 

mass of different tissue types. Average lipid concentrations were found to be 

significantly higher in leaves (0.42 % wet weight) than stems (0.17 % wet 

weight) , but there was no clear relationship between lipid concentrations and 

Fluoxetine concentrations. Leaf lipid data (0.42 % wet weight) were comparable 

with literature data for cauliflower florets stored at -85°C (0.4 % wet weight; 

(Baardseth, 1977)). 
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5± 2% 

Leaves 

3±2% 

(0.26 1-Jg g·1 wet weight) 

(0.03 1-Jg mg·1 lipid) 

(0.49 1-Jg g·1 wet weight) 
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} RootsO% 

23 ± 20 % remaining in media 

Figure 5.11. Summary of percentage Fluoxetine uptake into different tissues of 

cauliflower tissue culture samples 

Data expressed is percentage of original amount of Fluoxetine HCI added to each pot (9.8 IJg). 

Conclusions drawn from this experimental work should be treated as 

preliminary due to the limited environmentally relevant conditions, notably the 

lack of soil. However these results do suggest that further research into the 

uptake of pharmaceuticals into crops will be of value, as discussed in Chapter 

6. 
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6. Conclusions and Future Work 

6.1. Findings and Conclusions of this project 

This project, which involved an investigation into the transport and fate of 

selected generic pharmaceuticals in SS-amended soils, began with an 

extensive literature review to assess the then current state of knowledge and to 

aid in the selection of the target compounds. Selection criteria such as 

information on usage and ecotoxicty, were tested for a range of compounds, 

which resulted in the choice of Fluoxetine, Diazepam and their human 

metabolites as target analytes. Information gained from literature also allowed 

the calculation of PECss for Fluoxetine and Diazepam, which then ensured the 

use of environmentally relevant spiking I exposure concentrations for 

subsequent experimental work. 

A method for the chromatographic separation of the target analytes, based on 

HPLC-UV, was developed to be used later for the analysis of samples from soil 

and water. An appropriate method for the separation of four target analytes 

(Fiuoxetine, Diazepam, Temazepam and Oxazepam) was achieved using a 

Gemini C1 8, 5J.lm, 15 x 2.1 mm i.d. column with formic aCid (0.1 %) modified 

eluents (Milli-Q & ACN) and gradient elution (20 to 100 % organic eluent over 

10 mins). 

All six target compounds were found to be compatible with analysis by infusion 

ESI(+)-MS, and CID mass spectral fragmentation pathways up to MS4 were 

elucidated using optimised compound-specific parameters. Once the MS 

analysis conditions were optimised, modification of HPLC-UV chromatographic 

conditions for use with HPLC-ESI-MSn was achieved (20 to 80% organic eluent 
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over 18 m ins). The established mass spectral fragmentations, along with Rt 

data then allowed robust methods for the identification of the target analytes in 

later experiments to be established. 

Due to the known limitations of ion trap mass spectrometers for the generation 

of quantitative data, calibration work involving ratio-calibration and matrix 

matching was performed. Ratio-calibration using deuterated internal standards 

was found to be suitable for the production of quantitative data for the target 

compounds when analysed using a Finnigan MAT LCQ™ quadrupole ion trap 

mass spectrometer. Matrix-matched calibration was used to investigate the 

phenomenon known as ion suppression particularly by the matrices resulting 

from extraction of plant material (specifically cauliflower tissues) on the 

response of Fluoxetine. Although the use of matrix-matched calibration 

standards revealed matrix interference to some extent in all samples tested, 

matrix matching was not found to produce a statistically significant advantage 

over the use of non-matched ratio calibration. 

A simple extraction and clean-up method for four target compounds in water 

matrices was developed using Strata-X SPE cartridges, with recoveries ranging 

from - 70 to 100 % depending upon the compound in question. This extraction 

was then modified and optimised for use with soil matrices by the inclusion of 

liquid extraction (ACN with 1% formic acid) and filtration, prior to tandem SPE 

with Strata-X and Strata-SAX SPE cartridges (compound dependant recoveries 

ranged from 60 - 90%). The same extraction method was then examined for 

use with Fluoxetine-exposed cress and cauliflower TIC samples. Recoveries of 

- 28% (n = 3) for cress leaves were obtained, 71% (n = 3) for cress stems and 
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16 - 40% for cauliflower plant tissues (leaves > stem > curd > roots; n = 1) and 

77% for TIC media. Unfortunately, due to project time constraints, it was not 

possible to further optimise the extraction conditions for plant tissues, but since 

deuterated internal standards were used and external calibration studies had 

been made, the recoveries were felt sufficient for a preliminary plant-uptake 

experiment; the first of its kind. The developed extraction methods were used 

for the extraction and clean-up of target analytes in all subsequent experiments. 

Two types of biodegradation experiments were completed ; 60 day simple shake 

flask experiments with Fluoxetine, Diazepam and their major human 

metabolites (Norfluoxetine, Temazepam and Oxazepam), and a 270 day 

simulated agricultural field soil study with Fluoxetine. Simple plating techniques 

and determination of the concentration and distributions of bacterial membrane 

marker chemicals (BHPs) for the test soil and a representative range of UK SS­

amended soils, established that the microbial populations were stable but fungal 

dominated. Under the test conditions, no statistically significant losses of the 

SSRis were seen in either experiment type. The most persistent of the 1 ,4-

benzodiazepines tested, Diazepam, underwent neither biotic or abiotic losses. 

The same was probably the case for Temzepam but results were so variable 

that it was not possible to ascertain whether partial or no losses occurred (0 -

20%). Oxazepam was the only 1 ,4-benzodiazepine to undergo significant 

losses, due to both biotic(- 40%) and abiotic(- 40%) factors. HPLC-ESI(+)-MS 

experiments revealed one of the biotic metabolites and tautomerism 

experiments, conducted with Nordiazepam and Oxazepam, provided in 

conjunction with deuterium exchange experiments and HPLC-ESI(+)-MSn 

produced evidence to support the theory that the metabolite was an enol form of 
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Nordiazepam (either 2-enol or 3-enol forms). Some evidence was provided that 

presence of a C3 hydroxyl group in 1 ,4-benzodiazepines (e.g. Temazepam and 

Oxazepam) produced an increased tendency to undergo sorption to the soil. 

To the authors knowledge the cauliflower TIC work completed in this project is 

the first example of a study of the uptake of a pharmaceutical by a crop plant. 

The aim of this work was therefore to provide initial background knowledge into 

plant uptake as a potential transport route in the environment. A simple 

laboratory study, which delimited many environmental factors, was conducted. 

Fluoxetine was selected as the target analyte after consideration of the 

predicted Kow (1 - 4.7 pH dependent), which placed the pharmaceutical within 

the risk bracket for moderate sorption to soil and possible uptake by plants. 

Cauliflower was chosen as the test plant as it is grown commercially as a crop 

in SW England which was the model area from which soils were obtained for 

the biodegradation studies. Results indicated that Fluoxetine underwent uptake 

from media and translocation to the stem (5 %) and leaves (3%). No evidence 

of uptake in to the edible portion, the curd, was found. 
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6.2. Environmental Implications 

The lack of substantial degradation of all target analytes except Oxazepam 

under simulated but realistic SS-amended soil conditions is of environmental 

concern, and indicates their likely persistent nature. Although Oxazepam did 

undergo significant biotic (and abiotic) losses, the metabolite formed under 

biotic influences was hypothesised to be another bioactive 1 ,4-benzodiazepine, 

either 2-enol or 3-enol Nordiazepam which is likely to be resistant to further 

change. With persistent compounds there is a potential for accumulation within 

environments such as field soil to which SS is regularly added both as a 

disposal mechanism and as a fertiliser. When compounds undergo 

accumulation the risk of transport to other environmental components becomes 

more likely. From field soils these may include potential exposure to flora and 

fauna and possible bioaccumulation in terrestrial organisms and plants, 

including crops grown on the SS-treated soils. Although statutory monitoring of 

path.ogens and heavy metals in SS-amended soil is carried out, there are no 

such requirements in the UK for organic chemicals such as PPCPs. 

The subsequent finding herein that Fluoxetine underwent uptake into 

cauliflower stem and leaves is thus potentially a significant finding and extends 

significantly current knowledge of the transport and fate of pharmaceuticals in 

the environment. Further plant uptake work must be completed before any 

major conclusions can be drawn, but the results highlight the need for further 

research. Should plant uptake of pharmaceuticals prove to be a common 

phenomenon, further contamination risks arising from this should be assessed. 

For example, heavily contaminated crops could pose a risk to terrestrial 

organisms including livestock, any birds that may feed upon crop grains or 
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berries, and the human food chain, but the concentrations are likely to be very 

low. Disposal of pharmaceuticals may need to be reconsidered and further 

attempts to minimise environmental contamination be made. In the case of plant 

uptake, not only the plant species but also the soil type and environmental 

factors e.g. soil moisture, pH, temperature, may influence uptake of xenobiotics. 

Regulation of disposal of SS to land would therefore need to incorporate a 

range of risk based factors including soil and crop type, to minimise uptake. 

Another method for minimising contamination would be to ensure removal at the 

STW (cf Ternes, 2006). However this research field is still emergent and not 

enough is known about the transport of pharmaceuticals in the environment, 

especially the terrestrial environment, and therefore the cost of reducing the 

contamination risk cannot be fully assessed at present. 
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6.3. Recommendations for Future Work 

Research into the fate of PPCPs in aquatic environments has been substantially 

more commonplace than studies of PPCPs in terrestrial environments. 

Monitoring and degradation studies, especially for STWs have resulted in the 

accumulation of enough knowledge to be able to model the fate of many 

pharmaceuticals in these systems, and evidence of accumulation in aquatic 

species is beginning to appear in the literature (Brooks et al., 2005). Equivalent 

literature for terrestrial environments is still sparse. As over 3000 

pharmaceuticals are licensed for use in the UK it is not feasible to test each of 

these extensively and it is in these circumstances that modelling becomes a 

useful tool. However for a model to be accurate a broad database of compound 

behaviour under environmentally relevant conditions must exist for the model to 

be developed. Not enough is currently known about the transport and fate of 

pharmaceuticals in the terrestrial environment for predictive behaviour or fate 

models to be developed. 

This project attempted to use environmentally realistic conditions where 

possible. For example the inocula used in all biodegradation studies were 

isolated from lime treated SS amended field soil, and in the case of soil 

biodegradation of Fluoxetine, realistic environmental temperature regimes were 

employed. Future work into the biodegradation of pharmaceuticals needs to be 

performed under such specific conditions to build a catalogue of data required 

to develop predictive models. 

Repetition of the agricultural field soil simulation type test with 1 ,4-

benzodiazepines as the target analytes would be of interest. This would allow 
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differences in the biotic degradation of Oxazepam to be assessed and 

compared to results from the liquid culture biodegradation study. The 

advantages of using the simulated soil biodegradation study are that the 

environmental conditions are more relevant than in the liquid culture studies. In 

the long term, soil fungal degradation should be studied as should the 

bioavailability of target compounds to soil microbes. Results generated from the 

study of 1 ,4-benzodiazepines would also generate additional data regarding 

sorption, and links between structure and behaviour may be elucidated, 

especially if the range of 1 ,4-benzodiazepines studied was extended. 

This research field in general not only requires more monitoring data to be 

collected, but also further research into the terrestrial transport and fate of 

pharmaceuticals. Future terrestrial biodegradation studies should account for 

field conditions and use groups of structurally related compounds from a wide 

range of pharmaceutical classes. These experiments should have long running 

durations, so that potential build up within an environmental compartment can 

be studied. Ideally all biodegradation studies should generate both quantitative 

and qualitative data on any metabolites formed, and consider their subsequent 

transport and fate. Generation of data for physical constants; such as Kow or ~ 

for different compounds, soils, and SS types, alongside these ~xperiments may 

also aid in interpretation of compound behaviours. 

Future work is also required regarding the plant uptake of pharmaceuticals. This 

project provided the first example of pharmaceutical plant uptake but only 

results for a preliminary experiment were obtained. The first stage in further 

research should be further optimisation of extraction methodologies. 
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Unfortunately due to project time constraints method development for extraction 

and purification of the analyte from plant tissue had to be limited. Although 

detection of the target compound was good; with Gaussian peak shapes, high 

ion counts and peaks well above the required S:N ratio, IS recoveries were low, 

highlighting the need for further method development and optimisation. Average 

IS recoveries for the T/C experiment ranged from 17 to 35 % depending upon 

the sub-sample in question (roots> curd > stem > leaves > media; n = 9 or 1 0). 

These lower recoveries meant that lower LOD were required, hence the use of 

SIM and SRM. Plant metabolites of Fluoxetine formed during the T/C 

experiment were therefore unlikely to be detected using SIM. Improvement of 

extraction and clean up methodologies may also allow for use of full MSn 

analysis methods, therefore potentially allowing identification of any metabolites 

formed . 

Further method development for the extraction and clean-up of pharmaceuticals 

from plant tissue matrices should be completed. The use of ASE or LLE with 

MeOH and chloroform, might aid cell lysis and lipid extraction. This should 

improve compound recovery as there is evidence that organic xenobiotics tend 

to associate with lipid type materials. Further clean-up would lead to lower 

LOOs, and may therefore allow the use of full MS for analysis and hence 

detection of any metabolites fonned. Initially this work should be completed for 

cauliflower matrices but later extended to other plants considered at risk. For 

example results from this project showed no uptake to the edible curd, but 

uptake to leaves was demonstrated in cauliflowers and cress. Both of these 

plants come from the Brassica family, and it may be pertinent to focus future 
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research into Fluoxetine uptake on Brassica crops in which the leaves are eaten 

(e.g. cabbage). 

Tissue cultures proved to be an easy and relatively quick way to screen for 

PPCP uptake in plants, and could be used in the future for routine screening, 

although extension of growth period to full maturity may be advisable. Plant 

uptake of xenobiotics are affected by a wide range of environment factors which 

should be taken into account. The most important of these influencing factors is 

soil, and the influence of soil on uptake must be considered for results to be of 

more environmental significance. The use of glasshouse pot trials or even 

larger scale field trials would perhaps be an appropriate choice. lt is important 

that uptake studies provide information on where in the plant the compound is 

translocated as this has an impact on further transport and fate of the 

compound, and may provide a route for bioremediation. 

To obtain true perspectives on the terrestrial fate of pharmaceuticals more 

research is required across the whole of this field. Monitoring data are 

beginning to emerge in the literature but there is still a lack of information on 

terrestrially relevant biotic and abiotic losses, including sorption. There are 

almost no terrestrial ecotoxicological data in the literature and no evidence of 

plant uptake studies. Considering the potential for accumulation of persistent 

compounds in soils future research needs to include more fate studies, 

especially ecotoxicological and plant-up take studies. 
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US EPA Modelling Suite (EPI Suite \13.20) Results (Kowin v1.67; Henry v3.10; Biowin v4.01; PcKocwin v1.66; Hydrowin v1.67; BCF v2.17; Level Ill 
fugacity model; STP fugacity model) 

Log Kow = 2. 70 

Henry's Law Constant (at 25°C) = 3.64 x 10-9 atm m-3 mole_, 

Linear model prediction = biodegrades fast; Non-linear model prediction = biodegrades fast; Ultimate biodegradation timeframe = weeks - months; primary 
E biodegradation timeframe =days- weeks; MITIIinear model prediction= does not biodegrade fast; MITI non-linear model prediction= does not biodegrade 
:g_ fast; anaerobic model prediction = does not biodegrade fast; ready biodegradabil ity prediction = No. 
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Log BCF = 1.471 

Soil t112 = 1800 hours 

Removal in STW: Total removal = 4.42 %; total biodegradation = 0.11 %; total sludge adsorption 4.31 % 

Log Kow = 2.87 

Henry's Law Constant (at 25°C) = 1.78 x 10-10 atm m-3 mole_, 

Linear model prediction = biodegrades fast; Non-linear model prediction = biodegrades fast; Ultimate biodegradation timeframe = weeks - months; primary 
biodegradation timeframe =days - weeks; MITIIinear model prediction= does not biodegrade fast; MITI non-linear model prediction= does not biodegrade 
fast; anaerobic model prediction = does not biodegrade fast; ready biodegradability prediction = No. 

Koc = 8847 

Hydrolysis rate extremely slow, t112 > 1 year 

Log BCF = 1.556 

Soil t112 = 1800 hours 

Removal in STW predictions: Total removal= 5.14 %; total biodegradation= 0.12 %; total sludge adsorption 5.02 % 

Table A. 1. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: US EPI Modelling Suite 

Results 

Kow: Octanol-water partition coefficient. Koc: Soil adsorption coefficient. 
BCF: Bioconcentration factor. t112: half-life. STW: sewage treatment works 
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Table A. 1 continued ... 
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US EPA Modelling Suite (EPI Suite V3.20) Results (Kowin v1.67; Henry v3.10; Biowin v4.01; PcKocwin v1.66; Hydrowin v1 .67; BCF v2.17; Level Ill 
fugacity model; STP fugacity model) 

Log Kow = 2.32 

Henry's Law Constant (at 25°C) = 5.53 x 1 o-10 atm m-3 mole-1 

Linear model prediction = biodegrades fast; Non-linear model prediction = biodegrades fast; Ultimate biodegradation timeframe = weeks - months; primary 
biodegradation timeframe = days -weeks; MITIIinear model prediction = does not biodegrade fast; MITI non-linear model prediction = does not biodegrade 
fast; anaerobic model prediction = does not biodegrade fast; ready biodegradability prediction = No. 

Koc = 442.5 

Hydrolysis rate extremely slow, t112 > 1 year 

Log BCF = 1.025 

Soil t112 = 1800 hours 

Removal in STW: Total removal = 2.54 %; total biodeg = 0.1 %; total sludge adsorption = 2.44 % 

Log Kow = 2.15 

Henry's Law Constant (at 25°C) = 1.13 x 1 o-s atm m-3 mole-1 

Linear model prediction = biodegrades fast; Non-linear model prediction = biodegrades fast; Ultimate biodegradation timeframe =weeks - months; primary 
E biodegradation timeframe = days -weeks; MITI linear model prediction = does not biodegrade fast; MITI non-linear model prediction = does not biodegrade 
RI 
a. fast; anaerobic model prediction = does not biodegrade fast; ready biodegradability prediction = No. 
~ E 1<oc = 561 

{! Hydrolysis rate extremely slow, t112 > 1 year 

Log BCF = 0.986 

Soil t112 = 1800 hours 

Removal in STW: Total removal= 2.46 %; total biodeg = 0.10 %; total sludge adsorption= 2.37 % 

Table A.1. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: US EPI Modelling Suite 

Results 

Kow: Octanol-water partition coefficier:~t. Koc: Soil adsorption coefficient 
BCF: Bioconcentration factor. t112 : half-life. STW: sewage treatment works 
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US EPA Modelling Suite (EPI Suite V3.20) Results (Kowin v1 .67; Henry v3.10; Biowin v4.01; PcKocwin v1.66; Hydrowin v1 .67; BCF v2.17; Level Ill 
fugacity model; STP fugacity model) 

Log Kow = 4.65 

Henry's Law Constant (at 25°C) = 8.90 x 10-a atm m·3 mole·1 

Linear model prediction = does not biodegrade fast; Non-linear model prediction = does not biodegrade fast; Ultimate biodegradation timeframe = months; 
primary biodegradation timeframe =days- weeks; MITIIinear model prediction= does not biodegrade fast; MITI non-linear model prediction= does not 
biodegrade fast; anaerobic model prediction = biodegrade fast; ready biodegradability prediction = No. 

f<oc = 2.07 X 105 

Log BCF = 2.419 

Soil t112 = 2880 hours 

Removal in STW: Total removal= 32.40 %; total biodegradation= 0.34 %; total sludge adsorption= 32.06 % 

Log Kow = 4.18 

Henry's Law Constant (at 25°C) = 4.05 x 10-a atm m·3 mole·1 

Linear model prediction = biodegrades fast; Non-linear model prediction = does not biodegrade fast; Ultimate biodegradation timeframe = months; primary 
biodegradation timeframe =days- weeks; MITIIinear model prediction= does not biodegrade fast; MITI non-linear model prediction = does not biodegrade 
fast; anaerobic model prediction = biodegrade fast; ready biodegradabi lity prediction = No. 

f<oc = 1 .497 X 1 05 

Log BCF = 2.520 

Soil t,12 = 2880 hours 

Removal in STW: Total removal= 38.89 %; total biodeg = 0.39 %; total sludge adsorption= 38.50% 

Table A.1. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: US EPI Modelling Suite 

Results 

Kow: Octanol-water partition coefficient 
Koc: Soil adsorption coefficient 
BCF: Bioconcentration factor 
t112: half-life 
STW: sewage treatment works 
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Diazepam 

Desmethyldiazepam 
Oxazepam 

Temazepam 

Fluoxetine HCI 

Norfluoxetine HCI 

Constants 

Log Kow = 2.82 

Soil I water K, = 4 to 20 (soil type dependant) 

Primary sludge Kd = 43.9 ± 26.1 L kg-1 SS, for secondary sludge Kd = 21 .1 ± 7.6 L kg-1 SS 

Soil I water K, = 44 ± 26 L kg-1 for primary sludge; secondary sludge = 21 ± 8 L kg-1
. Log K, = 1.6 for 

primary sludge; secondary sludge = 1.3. Log Koc = 125 ± 75 L kg-1 for primary sludge, secondary sludge 
= 62 ± 23 L kg-1 

Low solubility = 0.01 mg mr1 

No literature data available 

No literature data available 

Low solubility = 0.1 mg mr1 

Log Kow = 1 - 2.6 (pH 5 - 9) 

Log Kow = 1.25 - 4.3 (pH 2 - 11) 

Log Kow = 4.05 

Log Koc = 0.64-3.70 (pH 2 - 11) 

BCF - 1; 2.00; 1071.52 (pH 2, 7, 11) 
Moderately soluble = 33 mg mr1 

Solubility = 60.3 mg L-1 

Log Kow = 0.97 - 4.06 (pH 2 - 11) 

Log Koc = 0.49 - 3.58 (pH 2 - 11) 

BCF - 1; 6.97; 716.12 (pH 2, 7, 11) 

Reference 

{Ternes, 2004) 

(Kreuzig et al. , 2003) 

(Ternes, 2004) 

(Ternes et al., 2004) 

(Jjemba, 2006) 

(Jjemba, 2006) 

El-lily website 

(Brooks et al. , 2003a) 

(Kinney et al., 2006) 

(Brooks et al., 2003a) 

(Brooks et al., 2003a) 
(Jjemba, 2006) 

(Kinney et al., 2006) 

(Brooks et al., 2003a) 

(Brooks et al., 2003a) 

(Brooks et al., 2003a) 

Table A.2. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Constants 

Kow: Octanol-water partition coefficient 
Koc: (Kd + % Organic content) x 1 00 
Kd: Partition coefficient (matrix I matrices stated) 
BCF: Bioconcentration factor 
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Occurrence in the Environment 
River water- 0.13- 2.13 ng L-1 

STW effluent=< 1f..lg L"1; river -10 ng L"1 ; potable waters -10 ng L-1 

STW effluent = 0.053 f..lg L-1; river = 0.033 f..lg L-1 

STW influent= 0.59- 1.18 f..Lg L-\ effluent= 0.66 f..lg L-1 

Drinking water = 0.2 - 23.5 ng L-1 ; river water = 0.5 - 1.2 ng L-1 

PEC = 0.055 f..lg L"1
; PNEC = 4.2 f..lg L-\ PEC I PENC = 0.013 

Waters of lake Mead, Nevada = 3 - 62 ng L-1 

PECsurtacewater Sweden (worst case scenario);:;, 0.028 f..lg L-1; refined PECsewagewater Sweden = 0.13-0.1 6 f..lg L-1, refined 
PECsurfacewater Sweden = 0.006 f..lg L"1 

No literature information available 

No literature information available 

No literature information available 

Reference 

(Calamari et al., 2003) 

(Halling-Sorensen et al. , 1998; 
Richardson and Bowron, 1985) 

(Ternes et al., 2001) 

(van der Ven et al., 2004) 

(Zuccato et al., 2000) 

(Stuer-Lauridsen et al., 2000) 

(Snyder et al. , 2001) 

(Carlsson et al., 2006) 

Table A.3. Selection criteria findings fr9m literature for Fluoxetine HCI, Diazepam and their human metabolites: Environmental Occurrence 

PEC: Predicted environmental concentration (EU system). PNEC: Predicted no-effect concentration (EU system) 
EIC: Environmental introduction concentration (US EPA system) 
DWTP: drinking water treatment plant 
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Stream= 0.012 J.Lg L'1 

PEC I PNEC = 14.19 

Occurrence in the Environment 

STW effluent= 0.038-0.099 J.Lg L'1; Canadian surface waters= 0.013- 0.046 J.Lg L'1 

EIC (assuming no metabolism & no dilution)= 0.439 J.Lg L'1; (assuming 90% metabolism & no dilution)= 0.0439 J.Lg L'1 

USA Reclaimed water facility effluent estimate = 1.23 - 5.40 ng L'1 

Soil accumulation (soil cores irrigated with reclaimed water)= 366 to 14400% of loading estimates; mean integrated 
mass equivalent from 3 sites = 109 ng, max = 376 ng 

EU PEC = 0.220 J.Lg L'1; US EIC 0.230 Jlg L-1 

Refined (accounting for STW estimated removal & dilution factors) EU 991h centile PEC = 0.182 Jlg L'1; US refined 99th 
centile EIC = 0.019 J.Lg L'1 

Fish (3 species, stream USA): Bioaccumulation seen, brain = 1.28 ng g·1; liver= 1.34 ng g·1; muscle tissue = 0.11 ng g·1 

STW effluent= 40 J.Lg L'1; upstream river water< LOQ; detected downstream from STW (upto 8km) 

STW effluent=< LOQ- 1.3 ng L'1; STW influent= 0.4- 2.4 ng L'1; effluent average concentration= 73% of influent 
concentration 

DWTP: detected in solid samples; average concentration in solids after clarification step= 49.5 J.Lg kg-1; average 
concentration in solids after filtration step = 5~.6 Jlg kg-1

. These solids are returned to STW for disposal 

Q) 

c:: Fish (3 species, stream USA): Bioaccumulation seen, brain = 8.86 ng g'1 ; liver= 10.27 ng g·\ muscle tissue= 1.07 ng g·1 
;:: 
Q) 

~u 
::::JJ: 
lE STW effluent=- 1.2 ng L'1; upstream river water< LOQ; detected downstream from STW (upto 8km) 
0 z 

Reference 

(Kolpin et al., 2002) 

(Webb, 2000) 

(Metcalfe et al., 2003) 

(Brooks et al., 2003a) 

(Kinney et al., 2006) 

(Kinney et al. , 2006) 

(Johnson et al. , 2005) 

(Johnson et al., 2005) 

(Brooks et al., 2005) 

(Furlong, 2007) 

(Vasskog et al., 2006) 

(Stackelberg et al., 2007) 

(Brooks et al. , 2005) 

(Furlong, 2007) 

Table A.3. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Environmental Occurrence 

PEC: Predicted environmental concentration (EU system). PNEC: Predicted no-effect concentration (EU system) 
EIC: Environmental introduction concentration (US EPA system). DWTP: drinking water treatment plant 
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Human Metabolites 

N-desmethyldiazepam & Temazepam N-methyloxazepam; then converted to Oxazepam; followed by 
glucuronide conjugation 

1 %excreted as parent compound; metabolites = 22- 43% of applied dose 

Primary metabolite is S-Norfluoxetine. >50% of metabolic end products are unknown. Extensively 
metabolised in the liver to Norfluoxetine, and other unidentified metabolites. Norfluoxetine, the demethyl 
metabolite is also a SSRI 

2.5 - 5 % of dose recovered in urine as parent compound, 10 % as Norfluoxetine, 5.2 % as fluoxetine 
glucuronide & 9.5 % as Norfluoxetine glucuronide. 16 % recovered in faeces 

14C-fluoxetine application: 65 % of radioactivity recovered in urine, of which 2.5 % is fluoxetine, 10 % is 
Norfluoxetine, 5.2 % as conjugated fluoxetine and 9.5 % as conjugated Norfluoxetine, 15 % is also 
recovered in faeces 

Table A.4. Selection criteria findings from literature for Fluoxetine HCI, Diazepam: Human Metabolites 

Reference 

(TOXNET, 2006a) 

(Smith-Kielland et al., 2005) 

(TOXNET, 2006b) 

(Risley and Bopp, 1990) 

(Lemberger et al., 1985) 



N 
(.11 

N 

E 
ra 
Q. 
Q) 
N 
.~ 
c 

E 
ra 
Q. 
Q) 
N 
ra 
:0 ... 
0 z 

E 
ra 
Q. 
Q) 
N 
ra 
>< 
0 

E 
ra 
Q. 
Q) 
N 
ra 
E 
Q) 

1-

Degradation (Biotic & Abiotic) 

Fungal degradation: N1-demethylation & ring cleavage lead to formation of 3 metabolites (7-chloro-5-pheyl-1 ,3-dihydro-2H-
1 ,4-benzodiazepin-2-one, 2-acetamido-2-benzoyl-4-chloroacetanilide and 2-acetamido-2-benzoyl-4-chloro-N­
methylacetanilide ). 

Under acidic aqueous abiotic conditions 7 degradation products were found 

Marginal surface water degradation: Sediment I water system DT 90 » 365 days; OT50 = 311 ± 25 days; Surface water 
DT 90 = 113 ± 17 days; DTSO = 34 ± 5 days. Classified as highly persistent 

Sediment sorption= 60% 

Mineralisation < 2 % 

Hydrolysis (pH 1 - 11 ): formation of 2-methylamino-5-chlorobenzophenone 

No literature information available 

Classified as moderately persistent with limited sediment sorption tendencies: Sediment I water system DT 90 = 179 ± 11 
days; DT 50 = 54 ± 3 days; Surface water DT 90 = 63 ± 6 days; DT 50 = 19 ± 2 days 

Sediment sorption = 19 - 29 % 

Hydrolysis (pH 1 to 11 ): formation of 2-amino-5-chlorobenzophenone 

No literature information available 

Reference 

(Ambrus et al. , 1975) 

(Cabrera et al., 2005) 

(Loftier et al. , 2005) 

(Loftier et al., 2005) 

(Loftier et al., 2005) 

(Han et al., 1977) 

(Loftier et al., 2005) 

(Loftier et al., 2005) 

(Han et al., 1977) 

Table A.5. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Degradation 

DTxx: Dwell time (xx days) 
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Degradation (Biotic & Abiotic) 

Photodegradation: 3 products (o-dealkylation & photonucleophilic substitution) 

Stability: Under acidic stress conditions a-[methylaminoethyl]benzene methanol and p-trifluoromethylphenol formed; 
otherwise stable under normal storage conditions 

Biphasic dissipation nature in water column: mean 1 st phase dissipation t112 = 3.8 days; mean 2nd phase dissipation t112 = 
76.7 days (infinite 2nd phase at lower concentrations) 

No literature information available 

Reference 

(lam et al. , 2005) 

(Risley and Bopp, 1990) 

(Johnson et al. , 2005) 

Table A.S. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Degradation 

DTxx: Dwell time (xx days) 



Compound Name 

Diazepam 

Desmethyldiazepam 

Oxazepam 

Temazepam 

Fluoxetine HCI 

Norfluoxetine HCI 

Therapeutic Use 

Adjuvants, anaesthesia, anaesthetics, anti-anxiety agents, anticonvulsants, 
antiemetics, GABA modulators, muscle relaxants, sedatives 

No therapeutic use 

Anxiolytic 

Sedative and hypnotic 

Selective serotonin reuptake inhibitor (SSRI), Anti-depressant, Bulimia Nervosa 
treatment, Obsessive-compulsive-disorder (OCD) treatment 

SSRI, Anti-depressant, Bulimia Nervosa treatment, OCD treatment. lt has linear 
pharmacokinetics contributing to the long duration of action of fluoxetine 

Reference 

(TOXNET, 2006a) 

(British pharmacopoeia) 

(British pharmacopoeia) 

(British pharmacopoeia) 

(British Pharmacopeia) 

(British Pharmacopeia) 

Table A.6. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Therapeutic Usage 



N 
c.n 
c.n 

Compound Name 

Diazepam 

Ecotoxicity 

Hydra vulgaris(cnidarian): NOEC < 0.01 mg L"1 

Hydra vulgaris: inhibited regeneration of digestive regions (1 0 J..lg L"1) 

Artemia parthenogenetica (crustacean): expressed oxidative-related stress response 

Artemia parthenogenetica: alterations in cellular redox status & neurotransmission interference 

Artemia parthenogenetica: LC50 = 12.16 mg L"1 

Tetraselmis chuii (algae): IC50 = 16.46 mg L"1 

Hyalella azteca & Chironomus tentans LC/EC50 = 15.2 mg kg"1 

Pseudokirchneriel/a subcapitata: cell density LC/EC50 = 39 J..lg L"\ turbidity LC/EC50 = 24 J..lg L"1 

Ceriodaphnia dubia: LC/EC50 = 234 J..lg L"1 

Daphnia magna: LC/EC50 = 820 J..lg L"1 

Daphnia magna: EC50 = 1.69 J..lmol L"1 

Pimephales promelas: LC/EC50 = 705 J..lg L-1 

Streptocephalus proboscideus: EC50 = 2.55 J..lmol L"1 

Rat: EC50 = 3.40 J..lmol kg"1 

Mouse: EC50 = 2.89 J..lmol kg"1 

Human oral lethal dose= 2 .00 J..lmol kg·1 

Photobacterium phosphoreum: EC50 (Microtox test) in > 35000 J..lmol L"1 

Artemia salina: EC50 (Artoxkit M test) = 230 J..lmol L-1 

Streptocephalus proboscideus: EC50 (Streptoxkit F test) = 362 J..lmol L"1 

Daphnia magna: EC50 = 49.5 J..lmol L"1 

Brachionus calyciflorus: EC50 (Rotoxkit F test) > 35100 J..lmol L"1 

Reference 

(Crane et al., 2006) 

(Pascoe et al., 2003) 

(Nunes et al., 2006b) 

(Nunes et al., 2006a) 

(Nunes et al., 2005) 

(Nunes et al., 2005) 

(Brooks et al., 2003b) 

(Brooks et al., 2003b) 

(Brooks et al., 2003b) 

(Brooks et al., 2003b) 

(Calleja et al., 1993) 

(Brooks et al. , 2003b) 

(Calleja et al., 1993) 

(Calleja et al., 1993) 

(Calleja et al. , 1993) 

(Calleja et al. , 1993} 

(Calleja et al., 1994) 

(Calleja et al., 1994) 

(Calleja et al., 1994) 

(Calleja et al., 1994) 

(Calleja et al., 1994) 

Table A.7. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Ecotoxicity 

No literature regarding the other target 1 ,4-Benzodiazpines (Temazepam, Oxazepam and Nordiazepam) was available 
LCxx: Lethal concentration (for xx % of population). ICxx: Growth inhibition concentration (for xx % of population) 
ECxx: Effective concentrat ion (for xx% of population). NOEC: No observed effect concentration 



Table A.? continued ... 

Compound Name Ecotoxicity 

Wide range of known detrimental effects on organisms 

Fluoxetine HCI 

Green alga: NOEC,ong term exposure = 0.001 mg L-1 

Hya/ella azteca (amphipod): NOEC1ong term exposure> 43 mg kg'1 

Ceriodaphnia dubia (waterflea): NOEC,ongterm exposure= 0 .056 mg L-1 

Lemna gibba (duckweed): NOEC1ong term exposure> 1.0 mg L-1 

Gammarus pu/ex (Crustacea, Amphipoda): LOECactivity = 100 ng L-1 

Anolis carolinensis (Green anole lizard): reduction in aggressive behaviour 

Rodents: reduction in aggressive behaviour 

Thalassoma bifasciatum (bluehead wrasse): reduction in aggressive behaviour 

Territorial tree sparrows: reduction in aggressive behaviour 

Golden hamsters: reduction in aggressive behaviour 

Corynebacterium (group 02): MIC90 = 32 mg L-1 

Two fish hepatocyte cell lines: oxidative stress induced, followed by cytotoxicicity (EC50 EROD = 77J..1M) 

Reference 

(Fong, 2001) 

(Crane et al. , 2006) 

(Crane et al., 2006) 

(Crane et al., 2006) 

(Crane et al., 2006) 

(De Lange et al., 2006) 

(Perreault et al. , 2003) 
(Perreault et al. , 2003) 

(Perreault et al. , 2003) 
(Perreault et al. , 2003) 

(Perreault et al. , 2003) 

(Munoz-Bellido et al. , 2000) 

(Laville et al. , 2004) 

Table A.7. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Ecotoxicity 

LCxx: Lethal concentration (for xx % of population). 
ECxx: Effective concentration (for xx% of population) 
NOEC: No observed effect concentration 
LOEC: Lewest observed effect concentration 
MICxx: Minimum inhibitory concentration (for xx % of population) 



Table A.? continued ... 

Compound Name 

Fluoxetine HCI 

Norfluoxetine HCI 

Ecotoxicity 

A. cygnea: lava! release (10-6 M, 10·9 M some release); valve opening and foot extension (10"2 to 10·3 M); death 
of females after 5 - 6 hours 

Daphnia magna: increased feundicity by- 3 times (36 J.lg L"\ in combination with Clofibric acid (100 ug L"1) 

62.5% mortality (over 6 days); with less Clofibric acid (10 J.lg L"1
) morphological abnormalities in -19% occurred 

(including crinkled carapaces, malformed antennae, bent tail spines, which lead to mobility problems & death) 

Ceriodaphnia dubia: 48 hr LCso = 0.51 mg L"1
; NOECmean numberotneonates = 0.089 mg L"1; reduced number of 

broods produced (7 days) 

Lemma gibba (duckweed): LOECs for various endpoints (wet weight, frond number, Chlorophyll a & b, 
Carotenoids) all showed no significant difference 

Japanese medaka (Oryzias latipes): 4 weeks exposure resulted in a low incidence of offspring developmental 
abnormalities, and significantly increased plasma estradiollevels in females 

Fish (3 species, stream USA): Bioaccumulation seen, brain= 1.28 ng g·1; liver= 1.34 ng g·1 ; muscle tissue= 
0.11 ng g·1 

Lumbricus terrestris: reduced crawling rate 

Fish (3 species, stream USA): Bioaccumulation seen, brain = 8.86 ng g·1; liver = 10.27 ng g·\ muscle tissue = 
1.07 ng g·1 

' 

Reference 

(Cunha and Machado, 
2001) 

(Fiaherty and Dodson, 
2005) 

(Henry et al., 2004) 

(Brain et al., 2004) 

(Foran et al., 2004) 

(Brooks et al., 2005) 

(Burns et al., 1992) 

(Brooks et al., 2005) 

Table A.7. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Ecotoxicity 

LCxx: Lethal concentration (for xx% of population). 
ECxx: Effective concentration (for xx % of population) 
NOEC: No observed effect concentration 
LOEC: Lowest observed effect concentration 
MICxx: Minimum inhibitory concentration (for xx % of population) 
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Usage I Demand 

US: 12.4 75 prescriptions in 1995; featured on top 200 list from 1995 to current 

Diazepam Denmark: 0.207 tonnes in 1997; on top 25 list 

Sweden: 183 kg sold in 2002 

Nordiazepam No literature information available 

A pharmaceutical within it's own right 

Oxazepam 

Sweden: 642 kg sold in 2002 

Temazepam A pharmaceutical within it's own right 

UK: number 83 in usage (2000); 2.83 tonnes 

US: on top 200 prescribed drugs since 1995 to current 

Fluoxetine HCI 

Canada: 916 kg used I produced 

Norway: 320% increase in SS RI use in last 10 years 

Norfluoxetine HCI No literature information available 

Reference 

(rxlist, 2006) 

(Ayscough et al., 2000; Stuer­
Lauridsen et al., 2000) 

(Carlsson et al., 2006) 

(British pharmacopeia) 

(Carlsson et al. , 2006) 

(British pharmacopeia) 

(Sebastine and Wakeman, 
2003) 

(rxlist, 2006) 

(Johnson et al., 2005) 

(Vasskog et al., 2006) 

Table A.8. Selection criteria findings from literature for Fluoxetine HCI, Diazepam and their human metabolites: Demand 



Appendix 

The EPI Suite from the Environmental Fate Database was used to generate 

data to predict the behaviour of Diazepam in a STW: 

4.31% of Diazepam will enter the sewage sludge 

95.58% of Diazepam will not be removed. 

Assuming that all the Diazepam not removed enters the effluent; 

Influent concentration x 0.9558 =effluent concentration 

Influent concentration x 0.9558 = 1 

Influent concentration= 1 + 0.9558 

Influent concentration = 1.046 f.lg L-1 

4.31% of this then enters the sewage sludge; 

Influent concentration x 0.0431 =Concentration in sewage sludge 

1.046 x 0.0431 = 0.0451 f.lg Diazepam enters SS per L of effluent 

Diazepam Concentration in SS = 

Mass of Diazepam entering SS L-1 effluent + tMass of influent solids L-1 

0.0451 + 720 = 0.00006261 f.lg mg·1 SS 

Diazepam PECss = 0.06262 !Jg g·1sS 

Figure A.1. Calculation of Diazepam PECss from literature data 

· This figure (1 J.Lg L-1) was selected as it was the highest effluent concentration of Diazepam 
found in the literature (Halling-Sorensen et al., 1998) at the commencement of this project, and 
it represents a worst case scenario. 
t Typical influent contains 720 mg L-1 of total solids (European Environment Agency, 2001 ). 
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Diazepam PECss x 1 ton (1 06 g)= Diazepam concentration (~g ton-\s) 

:t:o.06261 x 106 = 62610 J.lg Diazepam in 1 ton of sewage sludge 

= 0.06261 g ton-1SS 

0.06261 x §106 = 62610 g Diazepam in 1,000,000 tonnes of SS 

= 62.61 kg Diazepam in 1,000,000 tonnes of SS 

= 0.06261 tonnes Diazepam enter SS annually 

Appendix 

By taking into account the mass of Diazepam expected to enter SS annually 

along with the predicted partitioning behaviour of Diazepam in STW (from EPI 

Modelling Suite) the total annual excretion of Diazepam can be calculated; 

= (0.06261 + 4.31 ) X 100 

= 1 .45 tonnes 

Unfortunately Diazepam data for UK usage were not available in the literature, 

and therefore this calculated value cannot be compared and assessed against 
I . 

manufactured amounts, however 1.45 tonnes does appear realistic. 

Figure A.2. Back-checking calculated Diazepam PECss 

* The PECss for Diazepam was previou~ly calculated to be 0 .06261 J..Lg g-\5 . . 

§There are approximately 1,000,000 tonnes of sewage sludge produced per annum in the UK 
(Gendebien et al. , 1999). 
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Appendix 

The EPI Suite from the Environmental Fate Database was used to generate 

data to predict the behaviour of Fluoxetine in a STW: 

32.06% of Fluoxetine will enter the sewage sludge 

67.6% of Fluoxetine will not be removed. 

Assuming that all the Fluoxetine not removed enters the effluent; 

Influent concentration x 0.676 =effluent concentration 

Influent concentration x 0.676 = 0.3708 •• 

Influent concentration= 0.3708 + 0.676 

Influent concentration= 0.549 ).lg L-1 

32.06% of this then enters the sewage sludge; 

Influent concentration x 0.3206 =Concentration in SS 

0.549 x 0.3206 = 0.176 ).lg Fluoxetine enters SS per L of effluent 

Fluoxetine concentration in SS = 

Mass of Fluoxetine entering SS L-1 effluent+ ttMass of influent solids L-1 

0.176 + 720 = 2.44 x 10-4 Jl9 mg·1 SS 

Fluoxetine PECss = 0.244 ug g·1 SS 

Figure A.3. Calculation of Fluoxetine PEC55 from literature data 

At the commencement of this project there was AO literature data available for Fluoxetine in 
STW effluents. However a predicted ambient exposure concentration of 1.2nM for effluents was · 
found (Webb, 2001 ). The RMM of Fluoxetine = 309. This predicted concentration equates to: 

1.2x10·9 x 309 = 3.708x10-7 g L-1 

= 0.3708 J..l9 L-1 

tt Typical influent contains 720 mg L-1 of total solids (European Environment Agency, 2001 ). 
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Fluoxetine PECss x 1 ton (1 06 g)= Fluoxetine concentration (1-Jg ton-\s) 

:t:;0.244 x 1 06 = 244000 f-lg Fluoxetine in 1 ton of sewage sludge 

= 0.244 g ton-1 SS 

0.244 x §§1 06 = 244000 g Fluoxetine in 1 ,000,000 tonnes of SS 

= 244 kg 

= 0.244 tonnes Fluoxetine enter SS annually 

Appendix 

By taking into account the mass of Fluoxetine expected to enter SS annually 

along with the predicted partitioning behaviour of Fluoxetine in STW (from EPI 

Modelling Suite) the total annual excretion of Fluoxetine can be calculated ; 

= (0.244 + 32.06) X 100 

= 0. 76 tonnes 

In the UK 2.83 tonnes of Fluoxetine HCI are prescribed per annum (Sebastine 

and Wakeman, 2003). Of this it is estimated that 65% is excreted in urine or 

. faeces (this may include metabolites as this figure is obtained through radio 

tracer studies; (Risley and Bopp, 1990). Of that excreted it is predicted that 

32.06% will enter the sewage sludge. Therefore; 

(4.1 x 0.65) x 0.3206 = 0.59 tonnes of Fluoxetine HCI enter SS annually 

This back checking of calculations suggested that the calculated PECs$ for 

Fluoxetine may be a s'light overestimate but is within the right magnitude. 

Figure A.4. Back-checking calculated Fluoxetine PEC55 

** The PEC55 for Fluoxetine was previously calculated to be 0.244 J.Jg g-1 SS 
§§ There are approximately 1,000,000 tonnes of sewage sludge produced per annum in the UK 
(Gendebien et al., 1999). 
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Appendix 

The application rate of sewage sludge for the field in which soil and sewage 

sludge samples where sourced from = 4400 g m-2 

As a m2 = 10,000 cm2 the application rate can be shown as; 

4400 + 10,000 = 0.44 g cm-2 

Figure A.S. Calculating sewage sludge application rates 
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Appendix 

No additional SS was to be added to SS amended-soil used for the 

biodegradation of Fluoxetine in soil experiment; however the application rate of 

sewage sludge is required to calculate spiking concentrations as the transport 

path of these drugs into soil is via sewage sludge application. 

To calculate the sludge application rate assumptions first need to be made. As 

the sample mass of each chamber was 15 g, there was a choice of two 

assumptions; 

A: That the 15g of soil is all surface area. 

'8: That the 15g of soil is a core (as sewage sludge is ploughed into 

20cm deep). The surface area of this core needs to be chosen. 

Option A was chosen as this will give the greatest sewage sludge and hence 

drug application rate, therefore providing a 'worst case scenario'. lt has been 

assumed that this 15g of soil is a 1 cm deep layer. 

Denbigh soil series (silty clay loam) is known to have a bulk density of 0.9 g cm-

3 (data from Holtham (2006)). 15g of soil in a 1 cm deep layer with a bulk 

density of 0.9 g cm-3 equates to a volume of 13.5cm3
, i.e. surface area= 13.5 

Therefore SS application rate for 15 g of soil 

= 0.44 X 13.5 

= 5.94g of SS 

Figure A.6. Calculating sewage sludge application rates for biodegradation of 

Fluoxetine in SS amended soil experiment 
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Appendix 

Fluoxetine PECss= 0.244 J.l9 g-1 SS 

SS application rate for 15 g soil = 5.94 g 

Therefore spiking rate for Fluoxetine in soil biodegradation experiment; 

5.94 x 0.244 = 1.45 J.lg of Fluoxetine to be added to the 15 g of soil 

For easy and accuracy the actual amount of Fluoxetine added to the soil 

biodegradation experiments was 1.5J.lg (15J..LI of 0.1 mg/ml in MeOH). 

Figure A.7. Calculating Fluoxetine HCI spiking rate for biodegradation in SS 

amended soil experiment 
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Appendix 

Liquid media was spiked with Fluoxetine HCI in MeOH (140~1 of 1 mg ml-1 into 

500ml of media) and stirred with a magnet flea. Then 35 mls poured into plastic 

pots (6 cm diameter) with lids and allowed to set, in a laminar flow hood. 

This concentration was selected as the pot surface area = TT~ 
=TT X 32 

= 28.27 cm2 

In a field situation 0.44g of sewage sludge would be applied per cm2 of soil, so 

in total= 28.27 x 0.44 = 12.44 g of sewage sludge would be applied. 

Fluoxetine concentration =SS mass x Fluoxetine PECss··· 

= 12.44 X 0.244 

= 3.04 ~g of Fluoxetine HCI per pot 

lt was decided that a spiking rate of 1 0 ~g Fluoxetine HCI per growth poit would 

be appropriate as it was within the same magnituded as the predicted 

concentration above. As the drug was spiked directly into 500ml of media 

before being pour the actual exposure concentration = 9 .8~g per 35 ml media 

i.e.perpot. 

Figure A.8. Calculating Fluoxetine HCI spiking rate for plant up-take of 

pharmaceutical experiment 

... Previously calculated Fluoxetine PECss = 0.244 ~g g-1 SS 
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Figure A.9. Example 1: HPLC-UV method development chromatogram (at 254nm) 

of a mixture of four target compounds using Discovery HS C18, 51-Jm, 1 Ocm x 

2.1mm i.d. 

Aqueous phase (A): Milli-Q : MeOH : formic acid (95 : 5 : 0.1 ; v/v/v) 
Organic phase (B): MeOH + 0.1% formic acid (v/v) 
Gradient: 50- 100% B over 20 minutes 
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Figure A.1 0. Example 2: HPLC-UV method development chromatogram (at 

254nm) of a mixture of four target compounds using Discovery HS C1s. 5J.1m, 

10cm x 2.1mm i.d. 

Aqueous phase (A): Milli.-Q : MeOH : formic acid (95 : 5 : 0.1; v/v/v) 
Organic phase (B): ACN + 0.1 % formic acid (v/v) 
Gradient: 50- 100% B over 20 minutes 
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Figure A.11. Example 3: HPLC-UV method development chromatogram (at 

254nm) of a mixture of four target compounds using Discovery HS C1s. 51Jm, 

10cm x 2.1mm i.d. 

Aqueous phase (A): Milli-Q : MeOH : formic acid (95 : 5 : 0.1; v/v/v) 
Organic phase (B): ACN + 0.1% formic acid (v/v) 
lsocratic: 60 : 40; (A : B) 
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Appendix 
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Figure A.12. Example 4: HPLC-UV method development chromatogram (at 

254nm) of a mixture of four target compounds using Discovery HS C1s. SJ.Jm, 

10cm x 2.1mm i.d. 

Aqueous phase (A): Milli-Q : MeOH : formic acid (95 : 5 : 0.1; v/v/v) 
Organic phase (8): ACN + 0.1% formic acid (v/v) 
lsocratic: 67 : 33; (A : B) 
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Figure A.13. Example 5: HPLC-UV method development chromatogram (at 

254nm) of a mixture of four target compounds using Discovery HS C1s. 51Jm, 

10cm x 2.1mm i.d. 

Aqueous phase (A): Milli-Q : MeOH ·: formic acid (95 : 5 : 0.1; v/v/v) 
Organic phase (B): ACN + 0.1% formic acid (v/v) 
lsocratic: 60 : 40; (A : B) 
Freshly made standard solutions used 
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Figure A.14. Example 1: HPLC-UV method development chromatogram (at 

254nm) of a mixture of four target compounds using Thermoquest, Hypercarb, 

SJ.Jm, 1 Ocm x 2.1 mm i.d. 

Aqueous phase (A): Milli-Q : MeOH : formic acid (95 : 5 : 0.1; v/v/v) 
Organic phase (B): ACN + 0.1% formic acid (v/v) 
lsocratic: 67 : 33; (A : B) 
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Figure A.15. Example 2: HPLC-UV method development chromatogram (at 

254nm) of a mixture of four target compounds using Thermoquest, Hypercarb, 

SJ.Im, 1 Ocm x 2.1 mm i.d. 

Aqueous phase (A): Milli-Q : MeOH : formic acid (95 : 5 : 0.1; v/v/v) 
Organic phase (B): ACN + 0.1% formic acid (v/v) 
lsocratic: 67 : 33; (A : B) 
Note: This particular analysis was performed by C. West using individual standards 0.1 mg ml·1 

(in 50% MeOH : 50% ACN : 0.1% formic acid v/v/v) 
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Figure A.16. Example 1: HPLC-UV method development chromatogram (at 

· 254nm) of a mixture of four target compounds using Phenomenex, Gemini C1e 

hybrid, 51Jm, 15cm x 2.1 mm i.d. 

Aqueous phase (A): Milli-Q + 0.1 % formic acid (v/v) 
Organic phase (B): MeOH + 0.1% formic acid (v/v) 
Gradient: 5 - 1 00% B over 30 minutes 
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Figure A.17. Example 2: HPLC-UV method development chromatogram (at 

254nm) of a mixture of four target compounds using Phenomenex, Gemini C1s 

hybrid, 5J,Jm, 15cm x 2.1 mm i.d. 

Aqueous phase (A): Milli-Q + 0.1 % formic acid (v/v) 
Organic phase (B): MeOH : ACN : formic acid (90 : 10 : 0 .1; v/v/v) 
Gradient: 5 - 100% 8 over 30 minutes 
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Minimal salts media (MSM) consisted of: 

MgS04.?H20 

(NH4)2S04 

NaOH 

0.2 g L-1 

0.5 g L-1 

0.5 g L-1 

1.5gl-1 

0.12 g L-1 

- 0.02 g L-1 (to adjust pH to 7) 

1 ml of trace element solution per L of MM added. Trace 

element solution consists of: 

ZnS04 0.4 g 100 ml-1 

CaS04 0.1 g 100 ml-1 

Na2S04 0.01 g 100 ml-1 

Na2Mo04 0.1 g 100 ml-1 

CoCI2 0.01 g 100 ml-1 

MnS04 0:04 g 100 IJL-1 

Appendix 

Figure A.18. Constituents of minimal salts media used in liquid culture 

biodegradation studies for Fluoxetine, Norfluoxetine, Temazepam, Diazepam and 

Oxazepam 
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F-test t-test 

Sample Types 
P- P-Compared Significance Significance 

value value 

Sample Sample 
0.779 Variance not 0.507 

Means not 
Q) DayO Day60 significantly different significantly different 
c: 

:.;:::; 
Control Control Means not Q) 

0.880 Variance not 0.170 >< DayO Day60 significantly different significantly different 0 
:J 
u. Sample Control Variance not Means not 

Day60 Day60 0.735 
significantly different 0.224 significantly different 

Q) 
Sample Sample 

0.036 Variance significantly 0.304 
Means not 

c: DayO Day60 different significantly different 
:.;:::; 
Q) 

>< Control Control Variance not Means not 0 
Day 0 Day60 0.476 significantly different 0.604 significantly different :J 

'E 
0 Sample Control Variance not Means not z 

Day60 Day60 0.458 
significantly different 

0.934 significantly different 

Sample Sample 
0.442 Variance not 0.180 

Means not 

E DayO Day60 significantly different significantly different 
ea 
a. Control Control Variance significantly Means not 
Q) 0.0004 0.8072 
N Day 0 Day60 different significantly different ea 
c Sample Control Variance not Means not 

Day60 Day 60 0.118 
significantly different 

0.2779 significantly different 

Sample Sample 
0.925 Variance not 0.009 Means significantly 

DayO Day60 significantly different different. 

E Control Control Variance significantly Means not ea 0.017 0.300 a. DayO Day60 different significantly different Q) 
N ea 

Sample Control Variance not Means not E 0.842 1.000 
Q) DayO DayO significantly different significantly different 
f-

Sample Control 
0.015 

Variance significantly 
0.497 

Means not 
Day60 Day60 different significantly different 

Sample Sample 
0.009 

Variance significantly 
0.024 

Means significantly 

E DayO Day60 different different. 
ea a. Control Control Variance not Means significantly Q) 0.254 0.019 N DayO Day60 significantly different different. ea 
>< 
0 Sample Control Variance not Means significantly 

Day60 Day60 0.103 
significantly different 

0.0004 different. 

Table A.9. Results for-the statistical analysis of normalised percentage recovery 

data generated in the liquid culture biodegradation of Fluoxetine, Norfluoxetine, 

Diazepam, Temazepam and Oxazepam 
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Figure A.19. 1H NMR Spectrum of Oxazepam in CD300 (5 mg ml.1) 

Jeol EX270 Hz high resolution FT-NMR spectrometer used. 
16 scans 

Cl 

Proton i was found to have a coupling constant of 3 (usually 8), therefore indicating this H has no H neighbours. Protons c and d had undergone deuteration. 
Evidence that keto tautomer is dominant isomer; as proton e was found to be present (as was quaternary carbon C = 0). 



Quaternary carbons (*) 
C=O 
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Figure A.20. 13C NMR Spectrum of Oxazepam in CD30D (5 mg mL"1) 

Jeol EX270 Hz high resolution FT-NMR spectrometer used. 
16,000 scans 
* indicates quaternary carbon 
Evidence that keto tautomer is dominant isomer; as quaternary carbon C = 0 was found to be present (as was proton e). 
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Compound I Constituent Concentration (g L"1
) 

"'0 Sodium chloride (NaCI) 40 
Qj ... 
Qj 

lt: 
::I Qj Potassium chloride (KCI) 1 
m c: 
Qj= 
-Ill 
~(f) Anhydrous potassium dihydrogen phosphate (KH2P04) 1 Q. 
VI 
0 

.r:. 
a. Anhydrous disodium hydrogen phophate (Na2HP04) 4.6 

Casein peptone (pancreatic) 15 

... 
Ill 
01 Soya peptone (papainic) 5 < 
Ill 
>-
0 

(f) Sodium chloride (NaCI) 5 
Qj 
c: 
0 -Q. Agar 15 
~ 

1-

Final pH 7.3 ± 0.2 at 37°C 

Potatoe infusion from solids 4 

... 
Ill Malt extract 20 01 
< 
:: 
Ill 

Peptic digest of animal tissue 1 ~ 
0 -Ill -0 Sucrose 60 a. 

Agar 20 

Table A.1 0. Constituents of tryptone soya agar, potato malt agar and phosphate 

buffered saline used in viability testing during biodegradation of Fluoxetine HCI in SS 

amended-soil experiment 
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m/z 
627 

653 
655 
669 
712 
714 
728 

• 
760 
761 
772 
775 
• 
830 
• 
• 
943 
957 
1002 
1016 
1060 
1074 
1086 
1118 
1132 

Known Bacterial Source 
Originally in ammonia oxidising bacterium and subsequently found in Purple non­
sulphur (Talbot et al 2007) 
Acetic acid bacteria 
Various 
Cyanobacteria 
Purple non-sulphur (one species only - Talbot et al 2007) 
Various 
Unknown species- possible in cyanobacteria as 2-methyl- (Talbot et al in 
review) 
Purple non-sulphur, nitrogen fixing, ammonia oxidising 
Nitrogen fixing bacteria (T albot et al 2007) 
Purple non-sulphur (Talbot et al 2007) 
Methanotrophs (Types I and 11) 
Unknown species 

Methanotrophs 
Methanotrophs (Type I) 

Methanotrophs 
Cyanobacteria (Talbot et al - in review) 

Cyanobacteria (Talbot et al- in review) 
Cyanobacteria- especially if 2-Methyl (Talbot ef al- in review) 
Methylotrophs, Cyanobacteria, Purple non-sulphur, acetic acid, Burkholderia 
Cyanobacteria as it is 2-Methyl 
Various 
Cyanobacteria as 2 methyl 
Facultative Methylotrophs 
Unknown species 
Unknown species -possibly cyanobacteria as 2-Methyl 

Appendix 

Figure A.21. Bacteriohopanepolyols Analysis: Base Peak m/z and known bacterial 

sources 

Compounds are referred to by their base peak m/z valu(:l for ease of identification and differentiation 
Base peak m/z = [M+Hf or [M+H-CH3COOHf 
Please note this information is sourced from a report kindly prepared by (Cooke, 2007) . 

• 
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100 MS2 of mlz 655 

Q) 
(.) 
c 

Loss of 60 

~ mlz 655.----~ 
::J 

..0 
<t: 475.3 
a> Bacteriohopanetetrol 
.~ ..... 
~ 535.3 

0::: 

283.2 

191 .1 

25 m/ 30 

595.3 

656.4 

Prior to HPLC-MS" the extracts were acetylated using pyridine and acetic anhydride to 
increase the amenability of the extracts to separation by HPLC-MS". This results in the 
acetylation of any hydroxyl groups and amines on the hopanoids. 

Appendix 

These acetylated hydroxyls (OAc) have a characteristic mass of 59, but are lost as the 
neutral molecule (mass = 60) and as each is lost during the analysis the remaining fragment 
loses 60 from its mass give a spectra such as the one above ( 655-595-535-475) which 
equates to the loss of the 4 CH3COOH groups from the molecule, in this case 
bacteriohopanetetrol. 
In addition to the serial loss of hydroxyls BHPs have characteristic spectra based upon the 
fragmentation of the 
ring system of the molecule. The remaining m/z 475 ion breaks on the C ring to give 
fragments of 191 and 283 depending where the charge is retained. 
If the BHP was methylated at the C2 or C3 position then the 191 fragment would become 
205. 
If the A orB rings were unsaturated then the 191 would become 189. 
For pentols the loss of all functional groups gives an m/z of 4 73 with corresponding 191 and 
281 ring fragments 
For hexols the loss of al functional groups gives m/z 4 71 and therefore 191 and 279 
fragments. 
BHPs with amine functional groups produce stable NH3+ ions that give different characteristic 
spectra (see m/z 714). The final method of identification is the relative retention time of the 
compounds. More polar compounds have a short retention time. Methylated compounds 
have a longer retention time than their non-methylated equivalents. 

Figure A.22. Bacteriohopanepolyols Analysis: Identification of Bacteriohopanepolyols 

in samples based upon HPLC-MS" fragmentation 

Base peak m/z = [M+Hr or [M+H-CH3COOHt 
Please note this information is sourced from a report kindly prepared by (Cooke, 2007). 
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N 
CO 
w 

m/z 655 669 714 728 746 760 761 772 775 

Unknown Puirple non- Nitrogen 
Bacterial source Various Cyanobacteria Various 

species (possible sulphur, nitrogen 
fixing 

in cyanobacteria fixing, ammonia 
as 2-methyl) oxidising 

bacteria 

Purple Methanotrophs Unknown 
non-

sulphur 
(Types I & 11) species 

Woburn 1./ 1./ 1./ 1./ 1./ 1./ 

Gleadthorpe 1./ 1./ 1./ 1./ 1./ 1./ 

Watlington 1./ 1./ 1./ 1./ 1./ 1./ 

Bridgets 1./ 1./ 1./ 1./ 1./ 1./ 

Rosemaund 1./ 1./ 1./ 1./ 1./ V 

Pwllpeiran 1./ 1./ 1./ 1./ 1./ 1./ 

Shirlburn 1./ 1./ 1./ V 1./ 1./ 

Launceston 1./ 1./ 1./ 1./ 1./ 

Table A.11. Bacteriohopanepolyols Analysis: Identification of Bacteriohopanepolyols in sewage sludge amended-soil samples from eight 

different sites across the UK 

Base peak m/z = [M+Ht or [M+H-CH3COOHt 
Please note this data is sourced from a report kindly prepared by (Cooke, 2007). 
Rothamsted Research kindly supplied SS amended soils from Woburn, Gleadthorpe, Watlington, Bridgets, Rosemaund, Pwllpeiran and Shirlburn. Soil from 
Launceston was used in extraction method development work and as an inocula source for all biodegradation studies. 



1\.) 
CD 
~ 

Table A.11 continued .. . 

mlz 

Bacterial source 

Woburn 

Gleadthorpe 

Watlington 

Bridgets 

Rosemaund 

Pwllpeiran 

Shirlburn 

Launceston 

830 
aminopentol 

Methanotrophs 
(Type I) 

l .: : ~ . . . . ' . .ot• .. .:. ~ 
0' '. , ' 

. . 
. . 

'. r ; 

';. I, ,.,. ow' 

1002 
cyclitol ether 

Methylotrophs, 
Cyanobacteria, Purple 

non-sulphur, acetic 
acid, Burkholderia 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

1016 1060 1074 1086 1118 

Cyanobacteria Various Cyanobacteria 
Facultative Unknown 

Methyltrophs species 

~ ~ ~ ~ 

~ ~ ~ ~ 

~ ~ ~ ~ 

~ ~ ~ ~ ~ 

~ ~ ~ 

~ ~ ~ ~ ~ 

~ ~ ~ 

~ ~ ~ ~ 

Table A.11. Bacteriohopanepolyols Analysis: Identification of Bacteriohopanepolyols in sewage sludge amended-soil samples from eight 

different sites across the UK 

Base peak m/z = [M+Ht or [M+H-CH3COOHt 
Please note this data is sourced from a report kindly prepared by (Cooke, 2007). 
Rothamsted Research kindly supplied SS amended soils from Woburn, Gleadthorpe, Watlington, Bridgets, Rosemaund, Pwllpeiran and Shirlburn. Soil from 
Launceston was used in extraction method development work and as an inocula source for all biodegradation studies. 



N 
(X) 
<11 

Table A.11 continued ... 

Total non- Total Total Total Total 
m/z methylated methylated non-methylated methylated non-methylated TOTAL BHP 

tetra tetra penta penta hex a 

Woburn 8.8E-09 1.3E-09 2.9E-09 2.9E-09 5.8E-10 4.8 

Gleadthorpe 1.2E-08 1.2E-09 2.6E-09 2.6E-09 5.9E-10 5.2 

Watllngton 1.8E-08 3.4E-09 3.6E-09 3.6E-09 1.2E-09 6.5 

Bridgets 1.3E-08 1.4E-09 1.5E-09 1.5E-09 1.3E-09 6.5 

Rosemaund 1.2E-08 1.7E-09 1.9E-09 1.9E-09 4.8E-10 5.4 

Pwllpeiran 1.7E-08 1.4E-09 2.1 E-09 2.1 E-09 1.1E-09 9.8 

Shirlburn 1.3E-08 2.6E-09 1.6E-09 1.6E-09 2.0E-09 4.1 

Launceston 1.3E-08 2.3E-09 1.1 E-09 1.1 E-09 O.OE+OO 3.7 

Mean 5.7 

Table A.11. Bacteriohopanepolyols Analysis: Identification of Bacteriohopanepolyols in sewage sludge amended-soil samples from eight 

different sites across the UK 

Base peak m/z = [M+Hr or [M+H-CH3COOHr 
Please note this data is sourced from a report kindly prepared by (Cooke, 2007). 
Rothamsted Research kindly supplied SS amended soils from Woburn, Gleadthorpe, Watlington, Bridgets, Rosemaund, Pwllpeiran and Shirlburn. Soil from 
Launceston was used in extraction method development work and as an inocula source for all biodegradation studies. 



Woburn 

Total BHPs = 4.83 J..Lg g-1 dry soil 
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Appendix 

Figure A.23. Bacteriohopanepolyols Analysis: Identification of Bacteriohopanepolyols 

in sewage sludge amended-soil from Woburn 

Base peak m/z = [M+H( or [M+H-CH3COOHf 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
Rothamsted Research kindly supplied SS amended soils from Woburn. 
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·- 2.50 
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~ 2.00 
"0 
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ll. 
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0.00 

Gleadthorpe 

Total BHPs = 5.19 J..Lg g-1 dry soil 

• •• I • il 

Figure A.24. Bacteriohopanepolyols Analysis: Identification of Bacteriohopanepolyols 

in sewage sludge amended-soil from Gleadthorpe 

Base peak m/z = [M+Hf or [M+H-CH3COOHt 
Please note this data is sourced from a report kindly prepared by Cooke (2007). Rothamsted 
Research kindly supplied SS amended soils from Gleadthorpe. 
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Watlin9ton 

Total BHPs = 6.48 J.l9 9-1 dry soil 
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Figure A. 25. Bacteriohopanepolyols Analysis: Identification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Watlington 

Base peak m/z = [M+H( or [M+H-CH3COOH( 
Please note this data is sourced from a report kindly prepared by Cooke {2007). 
Rothamsted Research kindly supplied SS amended soils from Watlington. 

Brid9ets 

Total BHPs = 6.50 J.l9 9-
1 
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Figure A.26. Bacteriohopanepolyols Analysis: Identification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Bridgets 

Base peak m/z = [M+H( or [M+H-CH3COOH( 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
Rothamsted Research kindly supplied SS amended soils from Bridgets. 
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Rosemaund 

Total BHPs = 5.39 Jl9 g·1 dry soil 
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Figure A. 27. Bacteriohopanepolyols Analysis: Identification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Rosemaund 

Base peak m/z = [M+Ht or [M+H-CH3COOHt 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
Rothamsted Research kindly supplied SS amended soils from Rosemaund. 
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Figure A.28. Bacteriohopanepolyols Analysis: Identification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Pwllpeiran 

Base peak m/z = [M+Ht or [M+H-CH3COOHt 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
Rothamsted Research kindly supplied SS amended soils from Pwllpeiran. 
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Shirlburn 

Total BHPs = 4.06 ~g g·
1 

dry soil 

3.00 
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Ill 

~ 2.00 
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a. 
:I: 1.00 ---m 
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0.00 

Figure A. 29. Bacteriohopanepolyols Analysis: Identification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Shirlburn 

Base peak m/z = [M+Ht or [M+H-CH3COOHt 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
Rothamsted Research kindly supplied SS amended soils from Shirlburn. 
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Figure A.30. Bacteriohopanepolyols Analysis: Example Full MS extracted ion 

chromatograms for the identification and quantification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Cornwall, UK, low 

mass range data 

Base peak m/z = [M+Hf or [M+H-CH3COOHf 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
This soil was used in extraction method development and as inocula for all biodegradation 
experiments. 
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RT:22.37 
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Figure A.31. Bacteriohopanepolyols Analysis: Example Full MS extracted ion 

chromatograms for the identification and quantification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Cornwall, UK, low 

to mid-range mass data 

Base peak m/z = [M+Ht or [M+Ii-CH3COOHt 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
This soil was used in extraction method development and as inocula for all biodegradation 
experiments. 
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Figure A.32. Bacteriohopanepolyols Analysis: Example Full MS extracted ion 

chromatograms for the identification and quantification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Cornwall, UK, mid­

range mass dat~ 

Base peak m/z = [M+Hf or [M+H-CH3COOHf 
Please note this data is sourced from a report kindly prepare9 by Cooke (2007). 
This soil was used in extraction method development and as inocula for all biodegradation 
experiments. 
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Figure A.33. Bacteriohopanepolyols Analysis: Example Full MS extracted ion 

chromatograms for the identification and quantification of 

Bacteriohopanepolyols in sewage sludge amended-soil from Cornwall, UK, high 

mass range data 

Base peak m/z = [M+Hf or [M+H-CH3COOHf 
Please note this data is sourced from a report kindly prepared by Cooke (2007). 
This soil was used in extraction method development and as inocula for all biodegradation 
experiments. 

293 



Macro nutrients 

Ammonium nitrate (NH4N03) 

Boric acid (H3B03) 

Calcium chloride (CaCI2 ) 

Cobalt chloride (CoCI2 ) 

Magnesium sulfate (MgS04) 

Cupric sulfate (CuS04) 

Potassium phosphate (KH2P04) 

Ferrous sulfate (FeS04 ) 

Potassium nitrate (KN03) 

Manganese sulfate (MnS04) 

Potassium iodine (Kf) 

Zinc sulfate (ZnS04) 

Disodium EDTA (Na2EDTA) 

Organic Additives 

lndole-3-acetic acid (IAA) 

Kinetine 

Sucrose 

A ar 

Appendix 

Concentration (mg L"1) 

1650 

6.2 

332.2 

0 .025 

180.7 

0.025 

170 

27.8 

1900 

16.9 

0.83 

8.6 

37.2 

Concentration (mg L"1) 

0 .1 

3.8 

20 g L-1 

8 L-1 

Table A.12. Details of macronutrients and organic additives that constitute 

Murashige and Skoog medium used for cauliflower tissue culturing 
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