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ABSTRACT 

The overall aim of this research was to design, configure and validate a system 

which was capable of on-line performance monitoring and fault diagnosis of a 

diesel engine. This thesis details the development and evaluation of a 

comprehensive engine test facility and automated engine performance monitoring 

package. Results of a diesel engine fault study were used to ascertain commonly 

occurring faults and their realistic severities are discussed. The research shows how 

computer simulation and rig testing can be applied to validate the effects of faults 

on engine performance and quantify fault severities. A substantial amount of engine 

test work has been conducted to investigate the effects of various faults on high 

speed diesel engine performance. A detailed analysis of the engine test data has led 

to the development of explicit fault-symptom relationships and the identification of 

key sensors that may be fitted to a diesel engine for diagnostic purposes. The 

application of a neural network based approach to diesel engine fault diagnosis has 

been investigated. This work has included an assessment of neural network 

performance at engine torques and speeds where it was not trained, noisy engine 

data, faulty sensor data, varying fault severities and novel faults which were similar 

to those which the network had been trained on. The work has shown that diagnosis 

using raw neural network outputs under operational conditions would be inadequate. 

To overcome these inadequacies a new technique using an on-line diagnostic 

database incorporating 'weight adjusting' and 'confidence factor' algorithms has 

been developed and validated. The results show a neural network combined with an 

on-line diagnostic database can be successfully used for practical diesel engine fault 

diagnosis to offer a realistic alternative to current fault diagnosis techniques. 
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CHAPTER! 

INTRODUCTION 

1.0 Diesel Engine Condition & Performance Monitoring 

The application of condition monitoring and fault diagnosis strategies to diesel 

engines is a well recognised method of increasing operational efficiency ( 1.
21 . The 

term 'condition monitoring' covers the application of a multiplicity of approaches 

and methods to many different systems. Condition monitoring can be defined as "an 

assessment on a continuous or periodic basis of the mechanical condition of 

machinery, equipment and systems from observations and/or measurements of 

selected parameters" [3J • In essence, condition monitoring is any technique which is 

capable of assessing a system's physical condition under operational conditions. 

Condition monitoring offers ignificant advantages over more traditional 'hours run' 

or 'calendar based' maintenance strategies. The primary benefits are summarised 

below. 

• Only equipment which requires attention is dismantled for assessment. This 

minimises wastage of labour, replacement consumables such as gaskets and seals 

and engine operating time. Often engine manufacturers will err on the side of 

caution and include an 'abuse margin' when specifying hours run to maintenance. 

• Only components or assemblies which are defective are replaced. The philosophy 

of replacing components because the engine is dismantled is exceedingly 

common and creates higher replacement parts costs. 



• Effective prediction and planning of maintenance operations. Down-time can be 

planned and used much more effectively since the nature of the fault is known in 

advance and spares and labour can be planned during the increased lead time. 

• The rate of development of a fault can be monitored and informed decisions can 

be made as to when corrective action should take place. This increases reliability, 

minimises unplanned down-time and allows a fault to develop until maintenance 

is forced by safety considerations, catastrophic failure or long term engine 

damage. 

• Improved decision making ability when selecting optimum engine operating 

conditions. 

• More effective negotiations with manufacturers or sub-contracted engineers, 

backed up by systematic measurements of engine condition. 

• Measurements of the engine parameters from new, at the end of the 

guarantee/warranty period and after overhaul gives useful comparative data. 

• Good clear accurate records of engine performance are easy to obtain and 

therefore this data can be utilised in future diesel engine design. 

The main methods applied to diesel engine health assessment can be classified into 

three distinct categories, these are discussed below; 

• Lubricating oil and wear debris analysis. A broad survey of mechanical 

breakdowns suggest that well over half of all failures are linked to tribology, that 

is to implicate the working faces of mechanical contact [4J • Bearings, pistons, 

cylinders, gears and other lubricated components account for most mechanical 
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troubles. Damage at the contacts takes the forms described as mechanical wear, 

abrasion, scoring, pitting, deposit formation, corrosion, overheating, seizure etc.; 

each may be attributed to lubrication failure. The vast majority of problems of 

this nature are initiated by small amounts of wear but are quickly accelerated to 

problems of larger magnitude. Each problem gives rise to particles of foreign 

material in the lubricating oil. These particles may be of metal, metal oxides or 

traces of corrosion products. The particles have characteristic composition, shape, 

size and concentration. These properties indicate which component is failing, the 

failure mode and how serious the fault is. Generally detailed lubricating oil 

analysis is conducted under laboratory conditions and is therefore not regarded as 

an on-line technique. 

• Noise and vibration assessment. These techniques are based upon the 

measurement and interpretation of engine or component vibration signatures. In 

reality engines are built to tolerances, and therefore, will always exhibit a 

vibration characteristic. The extent of vibration is due to two factors, the quality 

of engine build and the condition of components. If vibration analysis is 

undertaken on a new engine the signature is attributable to build quality only and 

could be termed the 'baseline signature'. Any subsequent analysis can be 

compared to the baseline signature and differences can be attributed to engine 

damage or deterioration. 

• Thermodynamic performance monitoring. This is the most favoured approach to 

condition monitoring since the data generated not only indicates the health of the 

machinery but also enables engine efficiency to be monitored and optimised 
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simultaneously. This is achieved through the measurement of physical properties 

like temperatures, pressures and flow rates The primary objectives of performance 

monitoring are; 

(a) To monitor specific fuel consumption data and ensure that the engine 

is running efficiently and economically. 

(b) Analysis of fuel injection and combustion data to ensure fuelling 

levels, timing and combustion is optimal. This is increasingly 

important due to gaseous and particulate emissions regulations. 

(c) To generate trends in engine performance data over an extended 

duration which can reflect degradations in performance. 

(d) The examination of engine performance trends to allow fault 

diagnosis. 

1.1 Overview Of Diesel Engine Condition Monitoring & Fault Diagnosis 
Systems 

To date, several commercial diesel engine condition monitoring and fault diagnosis 

systems have been developed. The following sections give an overview of the 

techniques which have been applied to commercial systems. 

1.1.1 Diesel Engine Expert Diagnostic System 'DEEDS' 

This system was jointly developed by The University Of Newcastle and Lloyds 

Register l5•
61 . The system was designed to work on a four stroke, turbocharged, 

direct injection, medium speed marine diesel engine. DEEDS consisted of two 

separate modules, signal conditioning and condition assessment. The signal 
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conditioning element performed the data acquisition, assessment of engine stability 

for steady state operating conditions and the calculation of data variability. A 

mathematical model was used to derive the normalised values for the sensor 

readings under healthy operating conditions. The readings from the sensors were 

compared to the model outputs and deviations outside a tolerance band invoked the 

condition assessment system. The condition assessment system was essentially a 

knowledge based system with an embedded rule structure. The results from the 

signal conditioning system were fed to the knowledge based rule structure which 

performed the fault diagnosis. 

1.1.2 Fault Avoidance Knowledge System 'FAKS' 

FAKS has been developed by Wartsilla Diesels[?] . The system uses approximately 

10 transducers per cylinder which are mainly temperatures and pressures. These are 

read every 15 minutes and are passed for diagnostic analysis. Diagnosis based on 

the sensor data is performed by three operations. Firstly, data normalisation is 

applied to take account of varying engine operating conditions. The normalised data 

is condition checked to assign qualitative expressions like high or low to a 

parameter. Finally, these expressions are then operated on by a knowledge base rule 

structure to determine the diagnosis. 

1.1.3 MODIS-Geadit 

This system was developed by MAN B & W and AEG electronics in 1989[81 and 

embraced both condition and performance monitoring. It was based around an 

expert system which was developed using many years of diesel engine experience. 
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The philosophy of the system was to embed the knowledge of the manufacturers 

into a system and make it available to it's customers. The system targeted the 

combustion, fuel injection, turbocharger and load bearing components. The engine's 

condition and performance was assessed using thermodynamic performance 

parameters including exhaust temperatures, cylinder pressures, manifold pressures 

and fuel flow rate. Subsequent diagnosis was achieved by applying an expert system 

rule base to the recorded data. 

1.1.4 Diesel Engine Intelligent Monitoring System 'DIEMOS' 

This system was developed by Ricardo 191 as part of the government's programme 

for intelligent information systems. The system consisted of several separate 

information systems which were linked by a supervisory system. The engine data 

was gathered by an on-line data acquisition system and compared to database 

information and simulation results. This gave rise to performance deviations which 

were analysed by feature finding and pattern recognition techniques. 

1.1.5 Compuchek 

Compuchek was designed and developed by Cummins Diesels 1101 as a 

comprehensive service centre tool and is widely used in North America. It examined 

induction temperature & pressure, lubricating oil temperature and pressure and 

cooling water system temperature and pressure, blowby, fuel vacuum pressure, air 

filter pressure drop, engine speed and cranking parameters. These physical 

measurements were operated on by simple causal logic statements to provide a 

diagnosis and information on specific service operations. 
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1.1.6 Cylinder Pressure Monitoring For Diesel & Gas Engines 'CYLDET' 

This Asea Brown Boveri [Ill developed system concentrated primarily on cylinder 

pressure and fuel injection system data measurement and analysis. From the raw 

data the system calculated ignition delay, Pmax, mean indicated pressure, start of 

combustion, indicated power etc. All of the calculated data was monitored against 

operator set limits and made available in trend format. In addition to this, heuristic 

logic was applied to the data to provide diagnostic and corrective action 

information. 

1.1.7 Diesel Engine Unit Condition Evaluator 'DEUCE' 

Developed jointly by Cummins, Caterpillar and GEC in early 1992 l 121 this system 

differs significantly from those described above since it relies heavily on vibration 

analysis. The system employed sophisticated signal processing techniques to refine 

vibration signals which originate from the engine internal mechanisms but are 

measured on the external surfaces of the block. After a baseline signal had been 

established for a particular engine, comparisons were made with subsequent 

vibration data. The system used the vibration signal to perform a heuristic operation 

which subsequently lead to a closer analysis of engine subsystems and a diagnosis. 

For example, if the vibration signature identified that cylinder combustion pressure 

was low for a particular cylinder the system automatically checked the fuel injection 

system performance, and so on. 
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1.1.8 Computer Aided Maintenance Of Diesel Engines 'CAMODE' 

CAMODE is a system which was developed at the University of Adelaide. It is 

essentially a knowledge based expert system which required the manual input of 

data. Work by Autor in 1994 [IJJ looked at developing a new front end for 

CAM ODE which would facilitate automated data collection, post processing and 

interface with the expert system. The sensor configuration included vibration 

monitoring, oil temperatures and pressures, crankcase pressures, exhaust gas 

temperature and pressure, exhaust emissions, inlet manifold conditions and fuel 

delivery. The data acquisition system managed the collection of the data and the 

application software also acted as a data reduction tool. Processed data was fed to a 

database where it resided until the expert system was activated. When a diagnosis 

was performed healthy data sets were compared with current data sets. Differences 

in these two data sets were analysed by the expert system rule structure. Any 

abnormalities were reported and actions required were recommended. 

1.2 Overview Of Fault Diagnosis Techniques 

The performance of a condition monitoring system can be greatly enhanced if the 

data it generates can be operated on by a decision making tool as described above. 

This enables the system to inform the engineer or maintenance personnel of exactly 

what is required to return the engine to a healthy state. The application of a 

diagnostic tool has the following advantages. 

• It reduces the dependency on experienced personnel and allows manning levels 

and overhead costs to be reduced. 
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• It can easily analyse large amounts of data and draw conclusions based on multi­

dimensional relationships. 

• It can repeatably diagnose faults of a safety critical nature which could otherwise 

be vulnerable to human error. 

• Experienced personnel may not be available. The equipment may be new or its 

location inaccessible which is particularly applicable to marine installations. 

• Decision making is faster and trend analysis to determine the rate of fault 

development is easier. 

Diesel engine fault diagnosis has been performed by the comparison of data when the 

engine is operating in both healthy and faulty modes. Operation of a system in a faulty 

mode may give rise to a deviation of sensor data from the expected healthy running 

mode. In the examples discussed above, comparative data has been generated by 

computer simulation, experimental engine testing and traditional mathematical 

modelling (parameter identification). This information has been stored in complex 

look-up tables, databases or knowledge bases for comparative purposes. 

Parameter identification techniques involve the generation of a mathematical model of 

a system to map the inputs onto the outputs. If a system is highly non-linear this 

process is often very difficult and time consuming. The real outputs for a set of given 

inputs are then compared to the model and a difference or residual is generated, using 

Kalman filtering for example, characterising the fault. One great disadvantage of this 

approach is that the mathematical model must fit the process very closely otherwise 

residuals are generated during healthy operation giving rise to incorrect diagnosis. 

Development of the mathematical model is often very time consuming and requires an 
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understanding of the physical relationships between the inputs and the outputs. An 

example of this can be seen in work by Kouremenos et al. in 1996 l' 41 which 

characterised a .set of constants relating to specific engine or sub-system processes and 

used changes in these constants to perform diagnoses. 

The knowledge based system approach, commonly called the expert system approach, 

has found widespread application in the field of fault diagnosis as described in 

Sections 1.1.1 to 1.1.8. The knowledge base contains a series ofiF .. .THEN and AND 

statements in an attempt to capture an experts knowledge and experience. This rule 

structure may then be applied to a problem in the hope that it will emulate the experts 

decision making process and arrive at the correct conclusions. Despite the vast success 

of this style of approach to practical fault diagnosis its serious limitations became 

evident in the early eighties. These limitations are discussed in detail later in Section 

1.4. 

More recent advances in the field of artificial intelligence and computer technology 

have brought new techniques to light. One such technique is the neural network. Since 

fault diagnosis is essentially a problem of pattern classification it is now widely 

realised that artificial neural networks offer a potential alternative to traditional 

mathematical models or knowledge based systems. 

1.3 An Introduction To Neural Networks 

The advent of neural networks can be dated back to the 1940's. Early pattern 

classification research was conducted throughout the 60's and 70's the results, 
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however, had few practical connotations and little attention was paid to real world 

applications [ISJ • Since then, rapid developments in the field of microcomputer · 

technology have allowed neural networks to be applied in practical situations such as 

system dynamics modelling, speech, vision, robotics and fault diagnosis. 

1.3.1 Artificial Neural Network Principles 

Artificial neural networks aim to mimic the structure of the brain on a very simple 

level. The microcomputer is a high speed serial machine whereas the brain runs at a 

much lower speed but is a massively parallel system. This parallel system is capable 

of representing and storing knowledge in an accessible way so that it may be applied 

to problem solving. Perhaps one of the most important features of the brain is its 

ability to learn by example and reapply the newly acquired knowledge. To enable a 

microcomputer to behave like the brain it is necessary to analyse the brains basic 

structure and then model this on the microcomputer. 

The brain's structure is highly complex and is generally poorly understood. It consists 

of about ten thousand million basic units, called neurons, as shown in Figure 1. The 

soma forms the body of the biological neuron and the dendrites form the connection 

through which all the inputs to the neuron arrive. The output from each neuron is 

known as the axon, these in turn maybe coupled to other dendrites via a synapse. The 

synapse is a chemical connection which effectively governs the weighting of the 

inputs into the dendrite. Each dendrite is capable of summing its inputs and 

transmitting the result to the soma. When the potential in the soma rises above a 
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certain critical level the axon produces a voltage pulse known as an action potential, 

as shown in Figure 2. 

Output Signal 

On 

Figure 1 Basic Components Of A Biological Neuron 

Neuron Output On 

Off .... ............................ . Neuron Output Off 

Time 
Input Level 

Neuron Input Threshold 

0;------------------------------------------------------
Time 

Figure 2 Neuron Input & Output Relationship 

This basic understanding of how the neuron functions allows the design of a 

microcomputer model. Figure 3 outlines the basic model of the neuron. A number of 

inputs are applied to the neuron via links, each link has an associated weighting. Each 

input is multiplied by its weighting and the neuron sums the weighted inputs and 

applies a transfer function to detennine the neuron output. 
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Figure 3 Computer Model Of A Neuron 

Many of these neurons or nodes may now be linked together to form a network. 

Figure 4 shows a multi-layer feed forward network. It consists of three layers of 

neurons, the input layer, the hidden layer of which there maybe one or more, and the 

output layer. 

Inputs Outputs 

Input Layer Hidden Layer Output Layer 

Figure 4 Multi-layer Feed Forward Network 
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1.3.2 Learning In Artificial Neural Networks 

Probably the most important attribute of the neural network is its ability to learn by 

example and progressively improve its performance. The learning process can be 

categorised into two basic classes: unsupervised learning and supervised learning. 

1.3.3 Supervised Learning 

For a network to undergo supervised learning it must be presented with pairs of 

training data, in the form of inputs and desired outputs. During training the features 

extracted from the example data will be entered into the input layer of neurons. The 

consequent results will feed through the network until they reach the output layer. The 

results will then be compared to the desired output. Through the implementation of a 

training algorithm, back propagation for example, the weights in the network maybe 

manipulated so as to reduce the error between the output from the network and the 

desired output. This process is repeated until the output from the network matches the 

desired output within a particular tolerance level. Each forward pass is known as an 

'epoch'. 

1.3.4 Unsupervised Learning 

Unlike supervised learning only input training data is required by the network. 

Implementation of the training algorithm will again adjust the weights in the network 

but this time the network is trained to produce the same output for similar inputs. This 

process allows the network to group or cluster inputs which exhibit similar properties. 

This technique proves most useful in the realms of fault diagnosis since the network 

does not need to be trained to recognise every possible fault. Providing the network 
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has been given a sufficient variety of training data it is possible for the network to 

classify a novel fault simply by virtue of the fact that it does not closely match any of 

the clusters derived during training. 

1.3.5 Neural Networks Applied To Fault Diagnosis 

The aim of this section is to give an over view of research in the field of neural 

networks applied to fault diagnosis. This area of work began in the late 1980's and is 

currently one of the fastest expanding research topics. Research work conducted to 

date on both process plant [l 6
-
211and machinery [22

-
361 has produced several systems 

which are in commercial operation today [l 8
-
221 

. Other programmes of research which 

are not yet technically mature are, however, producing some very promising results. 

1.3.6 The Application Of Neural Networks To Process Plant Fault Diagnosis 

By far the most popular research field has been chemical process plants. The relatively 

new approach of neural networks stems from earlier work by Yenkatasubramanian 

and Chan [161 1989 and Watanabe et al. [181
. 

Work by Yenkatasubramanian and Chan [161 1989 demonstrated how a neural network 

approach maybe substituted for an expert system approach. It showed how a fault tree 

maybe utilised by a neural network to diagnose process faults. The work also 

investigated the effects of network training and hidden layer architecture by 

evaluating the accuracy of diagnosis. This work was extended further to analyse how 

the neural network would perform on multiple faults, noisy data and novel faults. The 

research revealed that the neural networks diagnosis of trained single faults was nearly 
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perfect at 98%. It was also discovered that multiple faults comprising of single trained 

faults could be diagnosed successfully whilst diagnosis of totally novel single faults 

was poor. It was concluded that the network performed well under novel conditions 

that were similar to those encountered in training but network performance 

deteriorated under totally novel conditions. The work also proved that neural networks 

have the ability to function successfully even in the presence of noisy input data. 

These findings are also reinforced by research work carried by Hoskins [ 171 et al. 1991. 

Research by Watanabe [ISJ et al. 1989 investigated the training and testing of a 3 layer 

neural network using the back propagation algorithm on 5 process faults. The eventual 

approach used a cascade of two networks. One to recognise the 5 faults and 5 further 

separate networks to diagnose the faults. The results showed that the two tier structure 

of networks proved very successful and could not just diagnose a particular fault but 

could also class the degree of severity of the fault. 

Later work by Venkatasubramanian [191 et al. 1990 investigates the implementation of 

a neural network on a more complex chemical process plant. The main difference 

between this and previous work was that the faults to be investigated affect almost all 

of the network inputs making the derivation of fault-symptom relationships a difficult 

task. The work completed on noisy input data was taken further to include faulty 

sensor data. Again it was found that diagnosis of single trained faults and multiple 

faults was successful. The network also demonstrated its robustness in the presence of 

both noisy and faulty sensor data. 
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1.3.7 The Application Of Neural Networks To Machinery Fault Diagnosis 

The application of neural networks to machinery fault diagnosis generated a great deal 

of interest from industry and educational establishments in the early 1990's. Research 

work has included EDS Scicon [nJ, Lloyds Register [23
'
241 and T & EE Pyestock . 

A study by Ray [251 showed how a two layer neural network may be interrogated with 

a knowledge based system. This off-line approach interrogated the user in order to 

determine what symptoms were present on the machinery. The user would classify 

whether the symptoms were present, likely present, unknown, likely absent, or absent. 

These five classes represented numbers between +1 and -1, present and absent 

respectively. These numbers were fed to the neural network input layer and the 

outputs were analysed. The outputs represented a number of weighted causes. The 

magnitude of the weighting inferred the probability of the fault presence. Although 

this system gave a correct diagnosis 75% of the time it was found that some symptoms 

generated too many causes with similar weightings. Another good example of how 

neural networks have been integrated with other techniques is the work by Healey et 

al.[261 
. This demonstrated how system identification and Kalman filtering could 

produce inputs to a neural network for the diagnosis of underwater machinery. 

Chow and Yee [271 investigated the use of neural networks to detect incipient faults in 

squirrel cage motors. Healthy and faulty motor data was generated through computer 

simulation and used to create a two level network. The first network acted as a data 

filter to remove noisy data and the second performed the diagnosis. The results 
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showed that the two tier network had the ability of identifying and diagnosing faults in 

95 to 99% of instances. 

Dietz l281 examined real time diagnosis of jet and rocket engine faults using neural 

networks. The work used a three layer feed forward network trained by the back 

propagation algorithm. The network was tested on data representing various fault 

severities, duration's of fault presence and noisy data on two faults. The results 

showed that the network could easily classify the two faults and give an indication of 

severity. 

Kirkman and Elliot [291 undertook feasibility studies in the application of neural 

networks to diesel engine viscous damper condition, reconstruction of direct cylinder 

pressure from load cell washers and health monitoring of gas turbines. The work 

concluded that the neural network approach had the following limitations; 

• The nature of the problem to be solved should be fully understood before neural 

networks are applied. 

• Effective development of a neural network requires vast quantities of 'real life' 

data. 

• Neural network input data will usually require some form of pre-processing. 

Similar work by Gu et al.l 301 investigated the use of a non-parametric Radial Basis 

Function (RBF) neural network to model the relationship between instantaneous 

crankshaft velocity and cylinder pressure. The work demonstrated that the neural 

network could be trained to model the relationship between crankshaft velocity and 
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cylinder pressure and hence could predict in-cylinder pressure. Although cylinder 

pressure can be reconstructed this research did not prove the validity of the technique 

for the identification of diesel engine faults. In some instances the occurrence of a 

diesel engine fault will only give rise to very small sensor deviations hence 

demanding that any reconstructed data matches the measured data very accurately. 

Work by Leonhardt et. al. [31
• 

321 and Ludwig [331 has also investigated the use of neural 

networks and cylinder pressure to supervise a diesel engine fuel injection system. The 

research has focused on the relationship between fuel injection timing and delivery 

and cylinder pressure data. The research examined features of the cylinder pressure 

trace and used a Radial Basis Function (RBF) neural network to draw relationships 

between these cylinder pressure data features and fuel delivery and injection timing. 

By measuring cylinder pressure it was possible to reconstruct both fuel delivery and 

injection timing using the neural network. These reconstructed values could then be 

compared to the desired fuel delivery and injection timing. Any discrepancies could 

lead to the display of specific messages like 'injection timing too advanced' or 'fuel 

delivery too low'. The fault diagnosis capability was not substantiated using real 

engine data taken under realistic fault conditions. This research also relies on the 

inclusion of cylinder pressure measurement on the engine. Whilst the work has shown 

some of the operational problems of using in-cylinder pressure transducers can be 

overcome, fitting of expensive, intrusive transducers should be avoided for practical 

fault diagnosis. 
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Scaife et al. [341 showed how computer simulation results could be applied to neural 

network training for both a CHP plant and a diesel engine. The research investigated 

the computer simulation and subsequent training of a neural network on the following 

diesel engine faults; 

• Exhaust restriction 

• Exhaust manifold leak 

• Inlet manifold leak 

• Exhaust valve leak 

• Intercooler fault 

The research concluded that neural network techniques showed potential for further 

investigation but before neural networks could be confirmed as a commercially viable 

tool, the following areas of concern would need to be addressed. 

• Degree of network training 

• The effects of different training algorithms 

• A more detailed analysis of engine instrumentation and inputs into the neural 

network 

• The effect of different network architectures 

Ayoubi [351 and Ludwig [361 have investigated the use of a dynamic neural network to 

diagnose a diesel engine turbocharger waste gate fault. In this approach a Dynamic 

Multi Layer Perceptron (DMLP) was used to model the turbine performance. Exhaust 

temperature and pressure upstream and downstream were used as network inputs, 
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turbine speed was used as the output. This work showed that an accurate model of the 

turbine could be developed. Further to this, the model could be used to identify a leaky 

waste gate by comparing the actual measured turbine speed with the neural network 

predicted turbine speed. Whilst promising, the work has concentrated on one specific 

fault which has not necessarily been introduced at a realistic fault severity. In addition 

to this, it has used a number of very specific transducers to identify one fault which 

could prove disadvantageous for practical application. 

1.4 Conclusions Drawn From The Review Of Previous Diesel Engine Condition 
Monitoring & Fault Diagnosis Experience 

By far the most intensively researched areas are expert systems/ knowledge based 

approaches and traditional mathematical models. Previous experience has shown that 

systems developed using these approaches have the following disadvantages. 

• Building a knowledge base system is both costly, time consuming and relies 

heavily on consultation with one or more experts in a particular domain. 

• Because of the often very specific structure of the knowledge base modifications to 

account for physical changes in the plant or novel faults are very difficult. 

• The occurrence of novel faults or noisy or corrupted data often results in a severe 

degradation in the performance of a knowledge based system. 

• If a system is highly non-linear mathematical modelling is often very difficult and 

time consuming. 

• The mathematical model must fit the process very closely otherwise residuals are 

generated during healthy operation giving rise to incorrect diagnosis. 
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• Development of a mathematical model requires an understanding of the physical 

relationships between the inputs and the outputs. 

Research into the application of neural networks to fault diagnosis in both process 

plant and machinery has shown that neural networks have the potential to be very 

competent diagnostic tools whilst eliminating many of the problems identified above. 

The following conclusions can be drawn from the research. 

• Neural networks offer a realistic alternative to knowledge based systems and 

traditional mathematical models . 

. 
• Computer simulation of the process and its faults can provide invaluable 

information for the development of a neural network approach. 

• Network topology and training is critical to the performance of the network, in 

terms of training times and accuracy of diagnosis. 

• The most widely used training method is the back propagation algorithm. 

• Most process faults can be diagnosed with either one or two hidden layers. 

• Diagnosis of faults which the network has been trained on is very successful. 

• Neural networks can generalise and diagnose multiple faults which comprise single 

faults on which the network has been trained. 

• Neural networks prove to be very robust classifiers in the presence of both noisy 

and faulty sensor data. 

• Neural networks offer no user transparency making the insight into the problem 

solving process impossible. 
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• Unlike knowledge based systems, neural networks suffer a progressive degradation 

in performance when faced with incomplete data sets. 

Although neural networks have found widespread use as diagnostic tools, the 

amount of experience in applying them to diesel engine fault diagnosis, particularly 

at a practical level, is very limited. Current knowledge in this area of work is non­

existent or deficient in the following areas; 

• The training and testing of neural networks on real engine test data representing 

realistic fault conditions. 

• Trend determination and identification of fault-symptom relationships. 

• The analysis of neural network diagnostic ability on authentic diesel engine faults 

at genuine levels of fault severity. 

• A detailed analysis of the most effective diagnostic sensors on high speed diesel 

engines for a variety of faults in various engine sub-systems. 

• Training and testing of neural networks on direct fault-symptom relationships 

using various training algorithms. 

• Training and testing neural networks to obtain an optimal degree of learning. 

• The effect of neural network architecture on diesel engine fault diagnosis. 

• Neural network diagnostic performance on a wide range of diesel engine faults 

including fuel injection equipment. 

• Neural network performance under noisy and faulty diesel engine sensor data. 

• Neural network performance on new diesel engine faults which it has not been 

trained on. 
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• The diagnostic performance of a neural network at different torques and speeds 

which it has not been trained at. 

The following overall research aim and objectives were identified as a suitable 

vehicle for investigating these areas of weakness in current knowledge. 

1.5 Aims And Objectives Of This Research 

The overall aim of the research was to design, configure and validate a system 

which would perform on-line condition monitoring and fault diagnosis of a marine 

diesel engine. In order to achieve this the following objectives were identified. 

I. Design and configure a sensor & hardware platform to gather engine data 

under both healthy and faulty modes of engine operation. 

2. Develop & validate an on-line diesel engine performance monitoring system 

which will facilitate on-line fault diagnosis using a neural network approach. 

3. Identify faults/fault groups which could be analysed by an advanced 

condition monitoring and fault diagnosis system of limited scope. 

4. Assess engine fault conditions using computer simulation modelling and rig 

testing. 

5. Compile operating maps of the engine's performance under both healthy and 

faulty modes of operation by the use of a diesel engine test bed facility. 

6. Configure a neural network based system that will perform on-line condition 

monitoring and fault diagnosis based on the data generated from the 

performance monitoring system. 
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1.6 Major Achievements Of This Research 

By satisfying the research objectives outlined above the work has led to several 

major achievements. These are summarised in the following points. 

• The development of a comprehensive, fully automated, PC based system to 

monitor engine performance using largely 'off the shelf' software and hardware. 

• A detailed analysis of high speed diesel engine instrumentation repeatability and 

the effects of data sampling and averaging. 

• A comprehensive study of commonly occurring high speed diesel engine faults, 

reasons for their occurrence and quantification of fault severities experienced on 

real in-service engines. 

• As a result of engine testing genuine faults of realistic severity, explicit fault­

symptom relationships were developed and key diagnostic sensors for a high 

speed diesel engine were identified. 

• The training and testing of a neural network based diagnostic system on real 

engine data including fuel injection system faults. 

• An assessment of several neural network training algorithms and neuron 

configurations to give optimum diagnostic performance when applied to diesel 

engine diagnostics. 

• The development of a new technique which greatly enhances the diagnostic 

ability of neural networks through the use of an on-line diagnostic database. 

• The development of 'weight adjusting' and 'confidence factor' algorithms 

which operate on raw neural network outputs to ensure a correct, reliable and 

repeatable diagnosis can be achieved under operational conditions. 
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• The development of a neural network diagnostic sensor filter to demonstrate that 

sensor failures can also be detected by neural networks. 

• Neural network testing on engine faults which the network was not trained on and 

torques and speeds which the network had not been trained on. And an 

assessment of neural network performance on noisy and faulty engine test data. 
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CHAPTER2 

THE DIESEL ENGINE TEST CELL FACILITY 

2.0 Introduction 

This chapter describes the diesel engine test cell developed in the Thermal Power 

Group test cells at RNEC Manadon. The engine used for all testing in this research 

was a 6 cylinder Perkins T6.354(M) diesel engine. The engine was fully refurbished 

before installation to check that components were within manufacturers tolerances 

and that performance was to specification. This minimised the possibility of the 

engine developing an unknown fault, detrimentally affecting the validity of the data 

representing both healthy and faulty test conditions. The engine was run in for 

several hundred hours to ensure stable engine performance and to minimise the 

effects of initial component run in before experimental results were taken. 

Load was applied using an eddy current dynamometer. Both engine and 

dynamometer were housed in an enclosed and sound proofed test cell as shown in 

Figure 5. 

Cooling water and fuel was supplied to the test cell from external tanks, air was 

supplied through the cell ventilation system. The engine was controlled externally 

from the test cell console, which also served as a focal point for data collection and 

is shown in Figure 6. 
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Figure 5 Engine & Dynamometer 
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Figure 6 The Test Cell Console 
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Engine data could be recorded manually using the panel meters and an A VL 647 

lndiskop or automatically using the engine performance monitoring package 

developed as part of this research . All data collected for the purposes of this 

research used the latter method. The panel meters and the A VL 647 Indiskop were, 

however, initially used to cross check results recorded by the automated engine 

performance monitoring system. 

2.1 The Perkins T6.354(M) Diesel Engine 

The Perkins T6.354(M) diesel engine has two core applications within the Royal 

Navy. It is used for the main propulsion of small craft such as LVCP's, launches 

and patrol vessels and on warships as a generating set engine. 

Since the engine is employed in propulsive and gen-set applications this enabled the 

research to realistically target two main areas of diesel engine operation. Some of 

the most salient features of the engine specification are listed below, a full 

specification can be found in Appendix 'A'. 

Type: 

Number of cylinders: 

Rated speed 

Brake power at full load rated speed 

Nominal cylinder bore: 

Stroke: 

Connecting rod length: 

Swept volume: 

4 stroke, DI, Cl, marinised 

6 

2250 revs.min·' 

90kW 

98.4 mm 

127 mm 

219.07 mm 

5.8 litres 
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Nominal compression ratio: 

Firing order: 

Manifold groupings: 

Fuel injection pump: 

Turbocharger: 

2.2 Engine Instrumentation 

16:1 

1-5-3-6-2-4 

Inlet: single 

Exhaust: Twin (1 ,2,3 & 4,5,6) 

Lucas CAV mechanical DPA 

Holset 3LD Mk.I (Appendix 'A') 

The ability to generate accurate and repeatable engine test data is fundamental to the 

application of diesel engine condition monitoring and fault diagnosis techniques. 

Since any diagnosis or assessment of engine performance is solely dependent on 

engine data, the engine instrumentation must be seen as the most important 

component in any condition monitoring or diagnostic system. The viability of any 

condition monitoring or diagnostic system is largely dictated by the number, 

location and type of sensors required to derive an accurate assessment of engine 

health. Ideally, the sensor configuration chosen for condition monitoring and 

diagnostic type applications should meet the following criteria; 

• Sensors should give accurate, and more importantly, repeatable data. 

• Instrumentation should be non intrusive. 

• Sensor installation should require minimal engine modification. 

• Sensors should have a reliability much greater than the engine itself. 

• Instrumentation should be robust. 

• Instrumentation cost should be low. 

• A degree of sensor redundancy should be incorporated. 
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The Perkins T6.354(M) diesel engine was comprehensively instrumented allowing a 

thorough evaluation of engine performance and the processes leading to the 

development of the fault-symptom relationships. The adoption of this strategy meant 

that the instrumentation system was initially complex, but allowed the potential of 

all sensors as diagnostic aids to be investigated fully, with sensor minimisation only 

being applied after fault-symptom relationship development. 

2.3 General Instrumentation 

The most commonly measured parameters were temperature and pressure of the 

charge air and exhaust gas. In all instances temperature was measured using 'K' 

type thermocouples and pressure was measured using resistive strain gauge 

transducers. 

2.3.1 Temperature measurement 

Several types of temperature measuring devises were considered including in-glass 

thermometry, resistance thermometry and themocouples. The eventual use of the 

data acquisition system ruled out the use of in-glass techniques. Resistance 

thermometry, although accurate, was rejected on the grounds of the signal 

conditioning required and the cost. It was concluded that the thermocouple offered a 

cheap, simple, reliable and versatile form of temperature measurement which could 

be easily interfaced with the data acquisition hardware. 

The 'K' type thermocouple junction was composed of two base metal alloys, ni<;:kel­

chromium and chromium-aluminium. This type of junction had an operating range 
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of 73 K to 1673 K and produces approximately 42 microvolts perK. The 

relationship between temperature and EMF was not linear particularly in the range 

323 K to 473 K and the measuring junction required a reference cold junction. 

Linearisation and cold junction referencing could be performed by either a 'K' type 

thermocouple panel meter or a suitable data acquisition card. Because the EMF 

produced was a function of the composition of the metal in the junction, 

thermocouple accuracy often varied from batch to batch. The only means of 

quantifying this variation was through calibration, this is discussed more fully in 

Chapter 4. Temperature measurement of flowing streams of gas was made difficult 

because the velocity of the gas and the orientation of the thermocouple junction to 

the direction of flow both affect the indicated temperature reading[371 
. Exhaust gas 

temperature measurement was also subject to further inaccuracies due to radiation 

effects from the manifold walls, especially at higher temperaturesr371 
. 

2.3.2 Pressure Measurement 

The strain gauge pressure transducer features a diaphragm which was exposed to the 

pressure to be measured. The diaphragm deformed under the pressure of the fluid 

and this deflection was passed through a push rod mechanism to a bending beam 

which had strain gauges mounted on its surface. By using a wheatstone bridge 

principle, beam deflection and hence diaphragm pressure could be gauged by output 

voltage. Typically these transducers had a natural frequency of 15kHz. This low 

natural frequency made them more suitable for indicating average pressures in 

turbulent or pulsating fluid flows, than piezo electric or piezo resistive transducers 
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with a higher natural frequency. All pressure tappings were drilled perpendicular to 

the direction of fluid flow thus recording static pressure[381 
. 

2.4 Instrumentation Specification 

For ease of presentation the engine instrumentation is best divided into the 

following sub systems. 

• Atmospheric conditions 

• Charge air system 

• Exhaust system 

• Combustion monitoring 

• Fuelling & power 

• Lubricating oil and cooling water 

2.4.1 Atmospheric Conditions 

Ambient conditions were monitored at regular intervals inside the test cell for the 

duration of all engine tests. Table 1 gives a brief description of the instruments used. 

_ ~od~ · f- · 'Jnstrument.Dcs_cription I - Instr_ument Type -
' ' 

HI Atmospheric humidity Capacitive relative humidity sensor 

PI Barometric pressure Aneroid barometer 

Tl Ambient temperature 'K' Type thermocouple 

Table 1 Instrumentation To Measure Atmospheric Conditions 

2.4.2 Charge Air System Instrumentation 

This set of instrumentation covered the charge air path from the intake filter to the 

inlet valves including the turbocharger compressor and intercooler. Table 2 
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summarises the instrumentation system. Figure 7 shows a schematic diagram of. 

instrumentation arrangement 

Code I Instrument Description Instrument Type : 
I 

Ql Inlet air volumetric flow rate Scheme IPL Vortex frequency sensor 

T2 Air temperature before compressor 'K' Type thermocouple 

P2 Air pressure before compressor Strain gauge pressure transducer 

T3 Air temperature after compressor 'K' Type thermocouple 

P3 Air pressure after compressor Strain gauge pressure transducer 

T4 Inlet manifold temperature 'K' Type thermocouple 

P4 Inlet manifold Pressure Strain gauge pressure transducer 

SI Turbocharger rotational speed Inductance pick-up 

Table 2 Charge Air Instrumentation Summary 

The following describes the function of the charge air instrumentation with regard 

to performance monitoring and fault diagnosis. 

• Charge air filter condition 

The difference between atmospheric pressure and the pressures downstream of the 

filter coupled with the air mass flow rate gave an indication of the amount of filter 

fouling. 

• Compressor performance 

Pressure and temperature both upstream and downstream of the compressor 

combined with measurements of air flow rate and turbocharger rotational speed 

allowed compressor operating points to be plotted on the compressor map. Plotting 

the data in this format would identify any deterioration in compressor performance. 
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Cylinder head 

Figure 7 Charge Air System Instrumentation Arrangement 

• Intercooler performance 

Measurement of temperature and pressure upstream and downstream of the 

intercooler and a knowledge of the air mass flow rate and cooling water temperature 

differential allowed the intercooler effectiveness to be quantified. Intercooler 

fouling, corrosion or cross mixing of fluids would lead to a reduction in 

effectiveness. 

• Inlet manifold conditions 

Manifold pressure and temperature were measured since they would be effected, to 

some extent, by both charge air system performance and valve faults. Manifold 

conditions also directly affect combustion and therefore overall engine performance. 

2.4.3 Exhaust System Instrumentation 

The exhaust system instrumentation followed the gas path from the exhaust valves 

along the exhaust manifold through to the turbine discharge. Table 3 summarises the 

instrumentation system. 

35 



Code 
I 

li1strumcnt D_escri1)tion I Instrument T)Jie I I 

TS Exhaust port temperatures I & 2 cylinders 'K' Type thermocouple 

T6 Exhaust port temperature 3 cylinder 'K' Type thermocouple 

T7 -Exhaust port temperature 4 cylinder 'K' Type thermocouple 

TS Exhaust port temperatures 5 & 6 cylinders 'K' Type thermocouple 

T9 Collective exhaust manifold temperature 'K' Type thermocouple 

PS Collective exhaust manifold pressure Strain gauge pressure transducer 

TIO Turbine exit temperature 'K' Type thermocouple 

P6 Turbine exit pressure Strain gauge pressure transducer 

SI Turbocharger rotational speed Inductance pick-up 

Table 3 Exhaust System Instrumentation 

The exhaust system consisted of two separate manifolds combined in one water 

cooled casting. One manifold served cylinders 1,2 & 3 the other served cylinders 4, 

5 & 6. The two exhaust gas streams mixed in a separate casting just upstream of the 

turbine entrance. The collective manifold instruments, T9 and PS, were located in 

this casting. The cross sectional area of the casting reduced towards the turbine 

entrance increasing the kinetic energy of the exhaust gas. The pressure was 

measured at the largest cross sectional area of the casting which was of a similar 

size to the manifold exit ensuring that a representative measure of collective 

manifold pressure was obtained. The exhaust manifold cooling water jacket made 

collective manifold temperature and pressure difficult to measure in any other way. 

Only four exhaust port thermocouples served the six cylinders, this was due to the 

nature of the head casting. Gas paths for cylinders 1 & 2 and 5 & 6 were common 

whereas cylinders 3 and 4 had individual exhaust gas paths. Some of the injection 

faults, discussed later in this thesis, were introduced on to number six cylinder only, 

due to the location of the combustion and injection instrumentation. The 

thermocouple serving cylinders 5 & 6 was positioned with the junction close to 
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number six cylinder valve. This minimised the risk of exhaust gas flow from 

number five cylinder diluting any changes in number six cylinder exhaust 

temperature due to faults introduced. Similarly the thermocouple serving cylinders 1 

and 2 had its junction located close to number one cylinder exhaust valve as a 

comparitor for the number six cylinder thermocouple. 

The exhaust manifold is a harsh environment for most instrumentation. To 

withstand this environment sheathed thermocouples were used. The subsequent 

increase in thermocouple diameter reduced the thermocouple response time. Since 

exhaust gas temperature was being monitored as a steady state parameter and not 

on an in-cycle variation basis, this loss in response rate was accepted. Figure 8 

shows the general arrangement of the exhaust system instrumentation. 

Cylinder Head 

Figure 8 Exhaust System Instrumentation 
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The following comments outline the purpose of the exhaust system instrumentation. 

• Exhaust gas temperature measurement 

Exhaust gas temperature measurement could provide a wealth of diagnostic 

information since it bore a direct relationship to in-cylinder combustion. This in turn 

meant that a knowledge of the charge air system and fuel injection equipment 

performance could be gained. The close proximity of the thermocouple junctions to 

the exhaust valves also maximised the chances of detecting exhaust valve faults. 

• Turbine performance 

Measurement of temperature and pressure upstream and downstream of the turbine 

combined with turbine speed and exhaust gas mass flow rate allowed operating 

points to be plotted directly on the turbine map. Any deterioration in turbine 

performance due to fouling or mechanical failure could be identified by the position 

of the operating point on the map. 

2.4.4 Combustion Monitoring 

The combustion is the single most important process when determining the 

performance of a diesel engine. Poor combustion leads to excessive fuel 

consumption, high gaseous emissions & particulates and abnormally high wear rates 

and fouling of cylinder components. Four pieces of instrumentation were dedicated 

to combustion monitoring, these are shown in Table 4. 

In-cylinder conditions vary from cylinder to cylinder, however, due to the high cost 

and problematic installation of these instruments only one cylinder was monitored. 
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All combustion data was taken from number six cylinder and was considered 

representative of the performance of the other five cylinders. 

Code Instrument Description Instrument Type 

CA Crank angle encoder A VL 364 Optical shaft encoder & signal conditioners 

CP Cylinder pressure A VL QC32C-E Water cooled piezoelectric pressure transducer 

NL Injector needle lift Wolff controls Hall effect adjustable length sensor 

FL Fuel line pressure A VL KG6 Piezo electric fuel line pressure transducer 

Table 4 Combustion Monitoring Instrumentation 

Cylinder pressure, needle lift and fuel line pressure were all recorded with respect to 

crank angle position. The optical shaft encoder, mounted on the crank nose as 

shown in Figure 9, allowed these parameters to be sampled at 0.5° crank angle 

increments and also indicated TDC of the monitored cylinder. 

Figure 9 Crank Angle Measurement 

2.4.5 Cylinder Pressure Measurement 

The piezoelectric transducer was fitted vertically down through the cylinder head 

avoiding the valves and the injector and was exposed to the edge of the cylinder 
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bore. Research has shown that the in cylinder position of the transducer can effect 

the pressure reading due to a phenomena known as 'squish'. Squish effects are due 

to the flow across the piston crown at and around TDC as the compressed mixture 

migrates from the cylinder walls towards the piston bowl. Due to the geometry of 

the cylinder head and transducer, fitting is limited to the position described above 

making it susceptible to squish effects. For the purposes of this research squish 

effects were ignored since precision was considered more critical than absolute 

accuracy. 

The transducer was connected directly to a Kistler 5007 charge amplifier which 

gave an output voltage proportional to input charge. This linear analogue voltage 

was then scaled to engineering units to indicate cylinder pressure. Direct 

measurement of cylinder pressure is key to determining the thermodynamic 

performance of a diesel engine. When measured with respect to crank angle, 

cylinder pressure data gaverise to the following performance parameters which 

identified any abnormal combustion characteristics and in cylinder conditions. 

• Maximum cylinder pressure (Pmax) and its position with respect to TDC. 

Abnormally high Pmax· are caused by well developed fuel premixing and 

atomisation leading to a rapid and uncontrolled first phase of combustion. High 

P max· are usually associated with advanced injection timing or long ignition delay 

periods. 

• Indicated Mean Effective Pressure (IMEP). Since IMEP equates to the indicated 

work done per cylinder per cycle it gives a general indication of the combustion 
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efficiency. Once the IMEP has been determined, Friction Mean Effective 

Pressure (FMEP), indicated thermal efficiency and mechanical efficiency can be 

calculated. 

• Pumping Mean Effective Pressure (PMEP). Faults in the charge air system, inlet 

or exhaust valve faults leading to poor engine breathing would manifest 

themselves in an abnormally shaped pumping loop, leading to a change in the 

PMEP value. PMEP's determined through the use of piezoelectric pressure 

transducers should be treated with some scepticism since the transducer is 

rapidly cooled during the pumping loop and the effect of cyclic thermal shock 

can lead to large percentage errors in these relatively small pressure readings. 

• Approximate rate of heat release. Heat release diagrams derived from cylinder 

pressure will usually rely on empirical relationships to estimate change of 

species and heat transfer during combustion. Despite this, heat release diagrams 

give valuable information on premixing, atomisation, injection timing and 

determination of phases of combustion. Long combustion periods can often 

destroy the cylinder liner lubrication film because the liner is exposed to flame 

for a greater period of time, leading to accelerated wear of cylinder components. 

• Ignition delay . Ignition delay is defined as the time period between the point of 

injection and the point when heat release becomes positive. The delay period is a 

function of premixing ,atomisation, injection timing, cylinder pressure and 

charge temperature. 
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2.4.6 Dynamic Injection Timing Measurement 

Point of injection, ignition delay and duration of injection are all determined from 

injector needle lift. Needle lift was detected using the Hall effect principle. A 

magnetic cap was mounted on the injector spindle and a fixed probe held a semi­

conducting slice in close proximity to the magnetic cap. When high pressure fuel 

entered the injector nozzle the needle and spindle moved upward against the injector 

spring. As the magnetic cap moved closer to the semi-conducting slice an EMF was 

produced proportional to needle lift. Needle lift traces can provide valuable 

diagnostic information on the injection pump and injector performance. 

2.4. 7 Fuel Line Pressure Measurement 

Fuel line pressure was measured by a cheap, simple, non-intrusive and robust piezo 

electric device which was designed to give a qualitative rather than quantitative 

indication of fuel line pressure. The transducer clipped on to the high pressure 

injection pipes running between the injection pump and the injector. The high 

pressure fuel pulse generated by the injection pump instantaneously deformed the 

fuel pipe. The sensor used this deformation to produce a charge which was then 

conditioned by a Kistler 5007 charge amplifier to produce a 0- 10 volt analogue 

voltage signal. Fuel line pressure data provides diagnostic data on fuel pump and 

injector performance. Figure 10 shows the cylinder pressure, needle lift and fuel line 

pressure transducers. 
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Figure 10 Cylinder Pressure, Needle Lift & Fuel Line Pressure Transducers 

2.4.8 Fuelling & Power 

Fuel consumption measurement and brake power are the two most important 

parameters when assessing overall engine performance. Engine load was applied 

using a Froude AG250 Eddy Current Dynamometer and controlled by a Froude 

Consine Texcel 50 dynamometer controller. The Texcel 50 Dynamometer controller 

had four modes of operation, constant speed, constant torque, power law and open 

loop control. Fuel consumption was measured in volumetric terms. Table 5 outlines 
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all instrumentation associated with fuelling and power measurement. A schematic 

diagram of the instrumentation layout is shown in Figure 11 . 

Code Instrument Description Instrument Type 

S2 Dynamometer rotational speed Inductance pick - up 

ZI Engine torque Maywood U4000 Load cell 

S3 Engine rotational speed Inductance pick - up 

FI No. 1 Fuel flow rate meter Flint fuel meter 

TII Fuel temperature in fuel flask 'K' Type thermocouple 

F2 No. 2 Fuel flow rate meter Hydrotechnic GFM 01 geared flow meter 

T12 Fuel temperature at meter 'K' Type thermocouple 

XI Fuel Rack Position Potentiometer 

Tl3 Fuel temperature at injection pump supply 'K' Type thermocouple 

Table 5 Fuelling & Power Instrumentation 

Figure 11 Fuelling & Power Instrumentation 

Engine fuel consumption was measured by two independent instruments. F1 

Fuel 
supply 

recorded the time period and number of engine revolutions required for the engine 
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to use a specified volume of fuel, usually 200 ml. F2 was a very accurate geared 

flow meter which measured the volumetric flow rate in litres per second. Both 

instruments included temperature measurement and fuel specific gravity was 

measured periodically for volume flow rate to mass flow rate conversion. Engine 

speed was measured by two individual sensors. S2 was linked to the Texcel 50 

dynamometer controller and S3 was connected to the Plint fuel measuring system. 

2.4.9 Lubricating Oil & Cooling Water System Instrumentation 

Lubricating oil temperature was monitored by a 'K' type thermocouple at one point 

on the main oil gallery in the block. Lubricating oil pressure was also measured at 

this point using a strain gauge pressure transducer. The cooling water system was 

monitored by 'K' type thermocouples placed in the following locations. 

• Cooling water inlet 

• Intercooler inlet 

• Engine discharge 

• Intercooler discharge 

• Engine thermostat housing 

Abnormal intercooler cooling water temperature differentials could identify if 

fouling or corrosion existed in the intercooler, particularly if these trends could also 

be linked to data obtained from the charge air instrumentation. The remainder of 

cooling water instrumentation could give a measure of the cooling systems 

effectiveness and identify abnormal heat transfer processes. 

45 



2.5 Summary 

This chapter has detailed the overall test facility layout, engine and instrumentation 

specification which was used to undertake this research. This comprehensive test 

facility was developed from the base test engine over a 9 month period. This chapter 

has also discussed the rationale applied to instrumentation selection and installation 

and some of the difficulties experienced during fitting and commissioning of engine 

test instrumentation. In addition to this, the measuring principles of the 

instrumentation have been discussed. Completion of this work satisfied research 

objective 1 detailed in Chapter 1 and formed the foundation for the development of 

an automated performance monitoring system. 
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CHAPTER3 

AUTOMATED ENGINE PERFORMANCE MONITORING 

3.0 Introduction 

This chapter details the development of an automated diesel engine performance 

monitoring package. One of the objectives of this research was to perform on-line 

diagnosis which necessitated automated data capture and post-processing. Initially 

the test cell used panel meters to display all parameters except the fuel injection and 

combustion data which was recorded by an A VL 647 Indiskop. This was then 

superseded by an IBM compatible PC based data acquisition system to facilitate 

automatic data collection. The following sections outline the instrument signal 

processing, data acquisition hardware and software and the development of the 

automated diesel engine performance monitoring package. 

3.1 Instrument Signal Processing 

Many of the instruments outlined in Chapter 2 required some form of signal 

conditioning before they could be connected to the data acquisition cards. In general 

the data acquisition cards accepted various analogue voltage ranges. Table 6 details 

the instrument type, signal conditioning applied, card input signals and the 

subsequent engineering units and range of each parameter as defined in the data 

acquisition software. 
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Table 6 Instrumentation Signal Conditioning 
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3.2 Data Acquisition Hardware And Software 

Engine data was gathered using two separate data acquisition devices linked to a 

486 DX2 50 MHz IBM compatible PC. Instruments which read steady state 

parameters such as temperatures, pressures, speeds and flows were connected to an 

external Microlink 3000 rack which contained a number of data acquisition cards. 

High speed instruments such as the fuel line pressure transducer, needle lift 

transducer and cylinder pressure transducer were connected to a Microlink 570 high 

speed data acquisition card. 

3.2.1 Steady State Parameter Data Acquisition 

The Microlink 3000 data acquisition rack was linked to the PC using a GPIB (lEE 

488) link. Communication and data transfer between the PC and the data acquisition 

rack was controlled by 2 cards, one inserted into the data acquisition rack and the 

other installed into a vacant AT expansion slot on the PC motherboard. The data 

acquisition rack comprised the following cards; 

• Power Module Card: Provided a stabilised power supply to all the cards in the 

rack. 

• GPIB Control Card: Managed the communication between the cards in the 

rack and an interface card inserted into one of the AT expansion slots on the PC 

motherboard. 

• 12 Bit Analogue To Digital Buffered Card: Performed all A to D conversion 

to 12 bit accuracy (1 in 4096 steps). It also contained some buffer for short term 

data storage. 
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• 16 Channel 10 Analogue Voltage Card :This card read all of the slow speed 

analogue voltage signals as shown in Table 6 except the thermocouples. 

• 2 off 16 Channe.l Thermocouple Cards : All thermocouples were connected to 

these cards via an isothermal box, which performed cold junction referencing 

electronically. The thermocouple cards linearised and amplified the 

thermocouple signal. 

All of the hardware located in the data acquisition rack was controlled through 

Windows environment software called Windmill. Four applications in the Windmill 

program group were used to configure the data acquisition system and acquire the 

raw data, these are as follows. 

• Conf IML: Used to set addresses and device numbers of the hardware and 

configure the channels. 

• Setup IML: Used to set channel specification through assignment of name, 

signal type, input voltage range and a scaling and offset factor to calibrate into 

engineering units. 

• Windmill Logger: Used to select channels and sampling rates and log the data 

in a table type format. The data was simultaneously displayed on-screen and 

saved to the hard drive in a logger file on-line. The channel and sampling details 

were saved as a logger set-up file to avoid unnecessary repetition in specifying 

the logger parameters. 

• Windmill Chart: Used to simulate a paper and pen chart recorder and display 

data in a graphical format on-screen. Up to 8 channels could be logged 
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simultaneously, sampling frequency and parameter ranges could also be 

specified. This application was particularly useful when a generalised picture of 

transient behaviour was needed. Figure 12 gives a diagrammatic representation 

of the slow speed data acquisition system. 
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Setup IML 
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format. This data is displayed 
on screen and saved to the 
hard drive during logging. 

Figure 12 Slow Speed Data Acquisition System 
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3.2.2 High Speed Data Acquisition 

All of the fuel injection and combustion instrumentation was logged by a 16 channel 

Microlink 570 I 00 kHz high speed data acquisition card. It was capable of reading 

the conditioned analogue voltage signals from by the fuel line pressure transducer, 

cylinder pressure transducer and the needle lift transducer as detailed in Table 6. 

The card had on-board 12 bit analogue to digital conversion and 512 K bytes of 

buffer. This enabled large high speed streams of data to be read instantaneously and 

then written to the hard drive after sampling. 

Cylinder pressure, fuel line pressure and needle lift were sampled with respect to 

crank angle. The A VL 364 Optical Crank Angle Encoder generated 720 TTL pulses 

per revolution and a single TTL pulse per revolution which was phased with TDC of 

the instrumented cylinder. The Microlink 570 card used the once per revolution 

pulse as a trigger to phase the three channels of data with TDC and the 720 pulses 

per revolution as the clock signal to sample all three channels at 0.5° crank angle 

increments. The Microlink 570 card was controlled by Windows environment 

software called Windspeed. Four applications in the Windspeed program group 

were used to configure the data acquisition system and acquire the raw data. 

• Conf IML: Used to set addresses and device numbers of the hardware and 

configure the channels. 

• Setup IML: Used to set channel specification through assignment of name, 

signal type, input voltage range and a scaling and offset factor to calibrate into 

engineering units. 
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• Streamer: Allowed channel selection and specification of sampling details. In 

this instance sampling was triggered at TDC and subsequent readings of cylinder 

pressure, fuel line pressure and needle lift occurred at 0.5° CA increments. 

Streamer initialised the card and controlled the rapid collection of data in one 

continuous 'stream'. This data was collected far too rapidly to be written to the 

hard drive during sampling so the data was stored in the on-card buffer. 

Sampling was terminated when the specified number of samples had been 

gathered. When sampling had finished the data was written to the hard drive. 

IMX To XL: Converted streamed files to an ASCII format which could be read 

by a number of applications, including Microsoft Excel. 

Figure 13 shows a diagrammatic representation of the high speed data 

acquisition system. 
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3.3 Automated Engine Performance Monitoring 

The final stage in the development of the performance monitoring system was to 

automate the entire instrumentation, collection and post processing of data. The aim 

was to create a package which would automatically generate a single performance 

file characterising every aspect of the engine's performance. A Windows 3.1 

environment was chosen as the operating system platform because it; 

• Supports Dynamic Data Exchange (DDE) and Dynamic Link Libraries (DLL's) 

which allows software operating in a windows environment to share and 

manipulate data without the need for writing lengthy programs to ensure data 

compatibility. 

• Is a multi tasking environment allowing several processing operations to be 

performed simultaneously. 

• Is a cheap, well supported and readily available piece of software which will 

operate on most modern IBM compatible PC's 

• Is an object orientated environment allows the rapid development of custom 

applications. 

• Uses, and allows, the development of highly intuitive Man Machine Interfaces 

(MMI's). 

• Supported the data acquisition software. 

• Supports Microsoft Excel which can be used for a large proportion of the data 

post processing. 
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The final package developed, called Performance Monitor, consisted of 6 Microsoft 

Excel command macros, 1 Turbo C program and a number of Excel worksheets to 

manipulate the data. Essentially Performance Monitor was made up of a central 

command macro which controlled all of the other programs and applications. The 

central command macro controlled when data acquisition started and finished. It 

also controlled the movement of data from one application or worksheet to another 

and initiated each stage of data processing. Performance Monitor performed three 

major functions, firstly the collection and processing of the high speed data, 

secondly the collection and processing of the slow speed data and thirdly, the 

compilation of the performance file. Figure 14 shows a diagrammatic representation 

of Performance Monitor's structure. Hard copies of the programs and macros can be 

found in Appendix 'B'. 

3.3.1 High Speed Data Collection & Processing 

Once the RUN command had been selected from Performance Monitor's initial user 

screen, shown in Figure 15, the central command macro sent a series of commands 

to WINDSPEED, the Microlink 570 high speed data acquisition software. 

WINDSPEED initialised the card and selected and calibrated the channels. The 

central command macro then ran STREAMER which controlled the data 

acquisition, read cylinder pressure, needle lift and fuel line pressure and stored the 

data on the 570 card buffer. Performance monitor moved the streamed data into 

IMX To XL where the data was converted into a ASCII file format. This ASCII file 

was then read by the Turbo C program which divided the data into 720° crank angle 

blocks from TDC to TDC. 
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DESCRIPTION OF EVENT 

PERFORMANCE MONITOR INTRODUCTORY USER SCREEN 
Contains virtual buttons to allow the user to exit to Windows or run 
Performance Monitor 

BEGIN STREAMING HIGH SPEED DATA 

: ORDER OF EVENTS 

•• J ••••••••••••••• • 

' 

Central command macro runs STREAMER.EXE and sends commands to · · .:. · · · · · · · · · · · · · · · 
initialise the card, setup the channels and begin streaming data 

CONVERT & SAVE HIGH SPEED DATA 
Central command macro runs IMX TO XL.EXE. Data is converted into 
an ASCII file format and saved to a working file on the hard drive 

AVERAGE HIGH SPEED DATA 
Central command macro runs the Turbo C program which reads the 
streamed ASCil data and outputs 1 averaged engine cycle of data 

PROCESS AVERAGED HIGH SPEED DATA 
Central command macro moves averaged data into 3 working sheets. I 
sheet for cylinder pressure data, I for needle lift & I for fuel line 
pressure data. Correct TDC & fuel injection events identified 

AVERAGED, PROCESSED HIGH SPEED DATA LINKED TO 
PERFORMANCE FILE 

Central command macro links processed data to performance file 

LOG SLOW SPEED DATA 
Central command macro runs LOGGER.EXE and sends commands to 
initialise the cards, setup the channels and start logging data. 

PROCESS SLOW SPEED DATA 
Central command macro moves logged data into a working sheet. Sheet 
calculates average, max. & min. values of each sensor reading. 

AVERAGE, MIN & MAX SLOW SPEED DATA LINKED TO 
PERFORMANCE FILE 

Central command macro links average, max. and min. slow speed data to 
performance file 

PERFORMANCE FILE GENERATION 
Central command macro initiates all data processing, calculations and 
graph plotting of both high and slow speed data in the performance file 

FINAL USER SCREEN DISPLAYED 
Central command macro initiates display of final user screen. Virtual 
buttons allow the following user actions; 
I) Display newly generated or any other performance file 
2) Choose drive, path & filename and save any performance file 
3) Choose drive, path & filename and print any performance file 
4) Quit Performance Monitor & exit to Windows 
5) Run another performance scan 

' 

' ................... 
' 

' ................... 

' ············-······ 
' 

.. ) . .............. . 
' 

' ·· ·,················ 

' .. ................. 
' 

' ................... 

' ··············-···· 
' 

.. .) ............... . 

Figure 14 Diagrammatic Representation Of Performance Monitors Structure 
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The 720° blocks were then averaged by the Turbo C program to give a single 720° 

average cycle of cylinder pressure, needle lift and fuel line pressure. The central 

command macro then moved the cylinder pressure data from the averaged file 

created by the Turbo C program into an Excel worksheet for processing. The crank 

angle encoder gave two TDC pulses per engine cycle (720°). The data acquisition 

equipment could not distinguish between these two pulses resulting in cylinder 

pressure, fuel line pressure and needle lift data being collected in two formats, 360° 

out of phase. This is illustrated in Figure 16 

TOC TOC 
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80 
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a ... 40 'I) 

et 

,k::" Sampling begins at TDC during ~Sampling begins at TDC during the 
combustion pum ping loop 

u 20 
-a 

~ 0 
0 
\0 
"';' 

Degrees Crank Angle [Deg] 

Figure 16 Affect Of Different TDC Signals On Cylinder Pressure Data Format 

To perform calculations on the high speed data it needed to be recorded or 

rearranged into a consistent format. This was done by an Excel macro which looked 

at the first value of cylinder pressure in the data stream. If the value was greater 

than 5 [Bar] the macro identified that the card had been triggered during combustion 

(red curve) and rearranged the cylinder pressure data to resemble that collected on a 

pumping loop TDC (blue trace). If rearrangement of cylinder pressure data was 

necessary needle lift and fuel line pressure data were also rearranged accordingly in 

separate worksheets. If the first cylinder pressure value was less than 5 [Bar] no 

rearrangement of data was required. Following the checking and, if necessary, 

rearrangement, the cylinder pressure data was linked to the Performance File. 
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After checking the format of the needle lift data an Excel macro determined the 

point of injection and duration of injection. The macro identified these points by 

searching through the averaged needle lift data and finding the points where the 

value of needle lift exceeded 5% of the peak needle lift. The macro counted the 

number of samples it needed to find the 5% values and knew that the first piece of 

data checked related to TDC and that all subsequent samples occurred at 0.5° 

increments. This allowed the macro to convert the number of samples counted to 

degrees crank angle from TDC. The first piece of data to exceed the 5% threshold 

was identified as the point of injection and the next value to fall below the 5% 

threshold was the end of injection. The difference between these two points is the 

duration of injection. 

The 5% threshold was selected as it prevented the macro from mistaking signal 

noise for a genuine needle lift yet identified the point of injection accurately. A 

decrease in the threshold value meant that random points were being identified as 

the point of injection. Conversely, an increase in the threshold value resulted in the 

macro giving a retarded value for the point of injection and an advanced value for 

the end of injection. Once the macro had identified the point and duration of 

injection the values together with all of the averaged needle lift data were 

transferred to the Performance File. 

Start and duration of fuel pump discharge were determined from the fuel line 

pressure data using the same search and count method described above. Because the 

fuel line pressure trace was more erratic than the needle lift trace the threshold value 
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was raised to 7%, however, this had little effect on the results because the rate of 

change of line pressure rise and decay was so great. Once point and duration of 

pump discharge had been ascertained this data together with the averaged fuel line 

pressure data was transferred to the Performance File. 

3.3.2 Slow Speed Data Collection & Processing 

As with the high speed data collection and processing the central command macro 

controlled this part of the Performance Monitoring Package. The process of slow 

speed data collection and processing is shown in Figure 14. 

The central command macro sent a series of instructions to Windmill, the data 

acquisition software, this initialised the rack and selected and calibrated all of the 

channels before data logging began. The central command macro then started the 

data logging. Data was displayed on the screen in a table type format and was also 

written to a hard disk file simultaneously. Logging was terminated by the central 

command macro and the data was linked to an Excel worksheet. The worksheet 

automatically identified the maximum, minimum and mean values for each channel 

and transferred this data to the Performance File. 

3.3.3 The Performance File 

Once the averaged high speed and slow speed data reached the Excel worksheet 

called the 'performance file', the majority of the performance parameters could be 

calculated. This file showed all of the numerical data and plotted all of the 

performance curves on autoscaled axes. The final user screen, shown in Figure 17, 
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allowed the performance files to be viewed on screen or as hard copies. They could 

also be written to the PC hard drive, 3.5" floppy or the preferred storage media, 128 

MB magneto optical floppy disk. Part of an example performance file can be seen in 

Figures 18 & 19, each file contained the following subsections of data. 

• File description, date, time, file name etc. 

• Atmospheric conditions. 

• General performance parameters. 

• Charge air system performance parameters. 

• Exhaust gas system performance parameters. 

• Fuel injection and combustion parameters. 

• Maximum, minimum and mean slow speed instrumentation data. 

• Average high speed data for cylinder pressure, needle lift and fuel line pressure 

for 720° Crank angle. 

• Plots of cylinder pressure, needle lift & fuel line pressure against crank angle. 

• Approximate heat release diagram. 

• Cylinder Pressure Vs Cylinder Volume plot. 

• Log Cylinder Pressure Vs Log Cylinder Volume plot. 
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Figure 17 Performance Monitor Final Screen 
64 



t>EIUONS T6354(i\ll Pt:RFORMANCE I'ILE 

File Name XB0308 

File Date & Time 17-2-95 [15:32] 

Atmospheric Pressure [kPa] 99.62 

Atmospheric Temperature [K] 300.89 

Humidity[%) 34.3 

Sea water Inlet Temp [K] 298.24 

GENERAL PERFORMANCE PARAMETERS Average Parameter Value 

Engine Torgue [Nm] 354.58 

Engine Speed [Revs/min] 2008.57 

Brake Power [kW] 74.58218583 

Indicated Power [kW] 88.28243345 

BMEP [Bar] 7.689540363 

PMEP [Bar) 0.506448725 

IMEP [Bar) 9.102057385 
FMEP [Bar] 1.412517022 
BSFC (kg/kW.Hr] 0.253529496 
ISFC [kglkW.Hr] 0.214185125 
Brake Thermal Efficiency [%) 33. 1259964 
Indicated Thermal Efficiency[%) 39.21101989 
Mechanical Efficiency [% J 84.48134348 

CHARGE AIR SYSTEM 

Inlet Air Mass Aow Rate [kgls] 0.12249539 
Inlet Air Mass Flow Rate Parameter 2.132858937 
Compressor Pressure Ratio 1.394892466 
Compressor Speed Parameter 3323.939569 
Compressor lsentropic Efficiency [%) 56.84423333 
lntercoolcr Air Temperature Gradient [K] 29.68 
lntercooler Air Pressure Gradient [kPa) 1.06 
lntercooler Water Temperature Gradient [K] 3.05 
lntercooler Effectiveness [% J 53.51914224 
Volumetric Efficiency[%) 85.48016764 

EXHAUST GAS SYSTEM 

Exhaust Gas Mass Aow Rate [kgls] 0.12774783 
Exhaust Gas Mass Aow Rate Parameter 2.511175379 
Turbine Expansion Ratio 1.449209802 
Turbine Speed Parameter 1989.212126 
Turbine lsentropic Efficiency [%] 77.49244287 

FUEL INJECTION & COMBUSTION PARAMETERS 

Mass Flow Rate Fuel (kgls) 0.00525244 
Max Fuel Line Pressure [Bar) 812.5867985 
Degrees CA Max Fuel Line Pressure [Deg_rees] -10.5 
Degrees CA Estimated Fuel Pump Discharge Point [Degrees] - 18.5 
Degrees CA Estimated Fuel Pump Discharge Termination [Degrees] 5 
Degrees CA Pump Discharge Period [Degrees] 23.5 
Point Of Injection [Degrees) -1 2 
End Of injection [Degrees) 6.5 
Duration Of Injection [Degrees) 18.5 
Max Needle Lift [mm) 0.25 
Degrees CA Max Needle Lift [Degrees] -9 
Prnax Cylinder [Bar] 75. 15110126 
Degrees CA Pmax Cylinder [Degrees] 9 
IMEP [Bar] 9.102057385 
Overall Air/Fuel Ratio 23.32161617 
Point Of Ignition [Degrees] I 
Ignition Delay [Degrees) 13 

Figure 18 Summary Of Numeric Data As Displayed In A Performance File 
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Figure 19 Automatic Plots Displayed In Performance Monitor Format 
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3.3.4 Performance Monitor Calculations 

Some of the parameters which feature under the headings of general performance 

· parameters, charge air system performance parameters, exhaust gas system 

performance parameters and fuel injection and combustion parameters were 

averaged sensor readings. However, the majority of performance parameters needed 

to be calculated from the averaged sensor data. Cylinder pressure calculations are 

discussed below. Full details of all the calculations used in Performance Monitor 

can be found in Appendix 'B'. 

Indicated Mean Effective Pressure !MEP [Bar] 

The indicated mean effective pressure was determined from the cylinder pressure 

data. IMEP is defined as the indicated work output per cylinder per mechanical 

cycle divided by the swept volume per cycle. The gross work done per cylinder per 

cycle is the area enclosed between the compression and expansion lines on the 

pressure Vs volume diagram. For the purpose of IMEP calculation Performance 

Monitor treated the compression and expansion lines as two separate curves 

between BDC and TDC. Performance Monitor then calculated the cylinder volume 

at each 0.5° of crank angle for the compression and expansion strokes. Using the 

trapezoidal rule at each 0.5° increment the area under each curve was calculated. 

The difference between these two areas is the area enclosed between the two curves, 

the gross work done per cylinder per cycle. The gross work done divided by the 

cylinder swept volume gives the IMEP value. 
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Pumping Mean Effective Pressure 

Pumping mean effective pressure was calculated in exactly the same way as IMEP 

but used the area between the induction and exhaust strokes instead of the 

compression and expansion strokes. 

Approximate Heat Release, Point Of Ignition & Ignition Delay 

Approximate heat release data was generated from the cylinder pressure 

measurements. If the compression and expansion strokes of a motored cylinder are 

assumed to be an adiabatic process the resulting temperature T2 due to a 

compression from VI to v2 is given by; 

Equation 1 

Therefore T 2 can be calculated for OS crank angle increments. If a similar 

incremental calculation is carried out on the experimental cylinder pressure data it is 

possible to calculate T2 for a pressure rise from p 1 to p 2 ; 

y-1 

T =T.(P2]r 
2 1 p 

1 

Equation 2 

If the T2 values from both methods are compared at each 0.5° increment it can be 

seen that T 2 calculated from the experimental cylinder pressure data during 

combustion will appear higher than the T 2 value calculated from the volumetric 

data. This difference can be attributed to the heat released by the combustion 

process. Coupling this temperature differential with a knowledge of the trapped 

mass, from the inlet manifold conditions, it was possible to compute the heat 
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released by the combustion. Plotting the value of heat released against degrees crank 

angle gave an approximate rate of heat release diagram. 

These calculations were made more difficult because the value of the specific heats 

and hence y change as the charge temperature increases. This was largely due to the 

dramatic change of Cp for C02 with temperature. To allow Performance Monitor to 

calculate the heat release data it also needed to calculate CP, Cv and y at each 0.5° 

crank angle increment using the JANAF table thermodynamic data [391 and a 41
h 

order polynomial. The rate of heat release diagram generated by performance 

monitor was only approximate for the following reasons; 

• The motored compression & expansion were assumed to be adiabatic. 

• Calculation of the specific heats was made very difficult due to the change of 

species during combustion 

• Specific heats were not calculated for the exhaust gas species 

• Heat transfer to the cylinder walls was neglected, generally around 20% 

• Temperature and specific heats were assumed to remain constant for each 0.5° 

crank angle increment 

The point of ignition is defined as the point at which heat release becomes positive. 

An Excel macro similar to that used for determination of point of injection was used 

to determine the point of ignition and the result was read into the Performance File. 

Ignition delay is defined as the time interval between the point of injection and the 
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start of combustion. Since both of these pieces of information were already held in 

the performance file computation of ignition delay was straight forward. 

3.4 Summary 

This chapter has detailed the design and development of an automated performance 

monitoring system for a high speed marine diesel engine. It has described the 

original approach of developing and configuring a comprehensive, fully automated, 

PC based system. This was achieved using largely 'off the shelf hardware, software 

and instrumentation. The system combined high speed fuel injection and 

combustion data with other physical measurements and performance parameters. 

By combining all of these individual elements in an effective way the system could 

generate a single 'performance file' characterising engine performance under both 

healthy and faulty modes of operation. This allowed the performance and condition 

of the diesel engine to be continuously monitored. The information could be easily 

managed, compared and trended using a readily available PC based spreadsheet 

package. Ultimately the data could be accessed and used by a neural network based 

diagnostic tool. Completion of this work partially satisfied research objective 2, 

outlined in Chapter I. 
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CHAPTER4 

CALIBRATION, EXPERIMENTAL PROCEDURE 

& ERROR ANALYSIS 

4.0 Introduction 

Prior to the experimental phase of the research beginning it was considered 

necessary to validate the test facility and the data it generated. This chapter 

concentrates on the methods used to check the quality of the data obtained from the 

performance monitoring system. It also outlines the experimental procedure applied 

to all testing conducted during the research. Finally, sources of error are identified 

and discussed. 

Calibration of all the instrumentation used in this research was traceable to National 

Standards. This was either performed by instrument manufacturers, calibration 

houses or in the test cell using certified calibrators. The slow speed instrumentation 

was calibrated statically. The high speed instrumentation was calibrated both 

statically and dynamically. 

4.1 Slow Speed Instrumentation Calibration 

The slow speed instrumentation consists of thermocouples, pressure transducers, 

flow meters, inductive pick- ups, a load cell and a hygrometer. The calibration of 

these instruments is briefly discussed below. 
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4.1.1 Thermocouple Calibration 

The calibration rig consisted of a drilled brass block fitted with two thermocouple 

glands, a high temperature furnace, a domestic freezer and a calibrated 'K' type 

thermocouple and panel meter. Between 7 and 10 calibration test points were 

selected around the normal operating temperature of each thermocouple. The 

thermocouple to be tested and the calibrated thermocouple were inserted into the 

brass block ensuring uniform temperature. For thermocouples operating in a cool 

environment the brass block was initially chilled in a freezer allowing the 

calibration range to start at sub zero temperatures. For thermocouples consistently 

operating at a high temperature the block chilling was omitted. 

The brass block temperature was slowly raised using the furnace through the desired 

test points until the maximum test temperature was reached. The temperatures from 

the thermocouple under test were read from the PC screen and compared to those 

read from the calibrated thermocouple meter. This procedure was repeated three 

times for each thermocouple to give an average reading. Although thermocouple 

calibration could not be changed through the software because a default calibration 

value was used, it was important to reference against the National Standard in case 

any thermocouple needed replacing part way through testing. 

4.1.2 Pressure Transducer Calibration 

Calibration was performed by selecting approximately 9 points around the operating 

range of the individual transducers. A calibrated aneroid barometer was used to 

determine barometric pressure before and after each calibration run. Calibration was 
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performed on each transducer by a Druck DPI601/S which allowed pressures to be 

applied and measured traceable to National Standards. The results from each 

transducer were read from the PC screen and compared to the calibrator reading at 

each of the test points. Each calibration run was performed three times to give 

averaged values. If necessary, the span and zero variables in the data acquisition 

software were altered until the pressure transducer reading agreed with the 

calibrator. 

4.1.3 Air Flow Meter & Geared Fuel Flow Meter Calibration 

Both of these instruments were calibrated by the manufacturer. The tabulated 

calibration results from the manufacturer showed a range of flow rates and the 

respective instrument analogue output voltages. The data acquisition channels were 

calibrated by applying a range of known voltages to the channel, simulating the 

instrument outputs. The results were read from the PC screen and compared to the 

calibration certificate. If necessary, the span and zero values in the data acquisition 

software were changed until the screen and calibration certificate were in 

agreement. 

4.1.4 Engine Speed Pick- Up Calibration 

Only the speed signal from the Texcel 50 Dynamometer controller was fed to the 

data acquisition system. The signal was an analogue voltage from the controller 

back panel calibrated by the controller manufacturers. The signal was connected to 

the data acquisition equipment and the engine speed was read from the PC screen 

and compared to the readout on the dynamometer controller panel. The span and 
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zero values in the data acquisition software were adjusted until the PC screen and 

the dynamometer controller panel were in agreement. 

4.1.5 Load Cell Calibration 

The load cell was calibrated using static calibration arms supplied by the 

dynamometer manufacturers. The arms were connected to the dynamometer and 

weights were suspended from the end. This simulates a torque reaction through the 

dynamometer casing and load cell. The applied torque was calculated from the 

length of arm, mass suspended and acceleration due to gravity. The torque signal 

was taken from the dynamometer controller back panel and connected to the data 

acquisition card. The calculated torque values were compared to the torque readings 

on the PC screen and, if necessary, the zero and span values in the data acquisition 

software were adjusted until the calculated torque values were in agreement with the 

PC screen values. 

4.1.6 Turbocharger Rotational Speed Pick- Up Calibration 

As shown in Table 6, Chapter 3, the turbocharger speed pick up is connected to a 

Frequency to Voltage, F-V, converter. The nominal output of the F-V converter 

was JOY for an input frequency of 100kHz. The data acquisition software span and 

offset values were set to reflect this nominal range and display a revs/min value on 

screen. The analogue voltage output from this unit was connected to the data 

acquisition card and a range of frequencies were applied to the unit's frequency 

input using an oscilloscope and a signal generator. The applied input frequencies 

were compared to the on screen values of revs/min. If necessary, the span and offset 
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values were adjusted in the data acquisition software until the revs/min value 

displayed on the PC screen agreed with the corresponding input frequency values. 

This procedure ensured the data acquisition equipment and F-V converter were both 

calibrated. 

The pick - up signal was connected to the F-V converter and the inlet trunking was 

removed from the compressor inlet to give a clear view of the compressor vanes. A 

strobe was shot into the compressor inlet and the engine was run at several torques 

and speeds. The strobe frequency was varied until the compressor vanes appeared 

stationary and the on screen revs/min reading was recorded. The strobe frequencies 

were then compared with the on screen values of turbocharger revs/min. This is not 

a calibration but does give some confidence that the pick-up is generating 

frequencies which equate to the turbocharger rotational speed. 

4.1.7 Hygrometer Calibration 

The hygrometer only required a two point calibration. Two calibration capsules 

were used, one to represent dry conditions ( 11% Rh) and the other to represent a wet 

condition (73% Rh). Each capsule was placed on the instrument and the instrument 

output was connected to the data acquisition card. The on screen values were 

observed and compared to the 11 and 73 %values and, if necessary, the span and 

offset values in the data acquisition software were changed until the screen values 

agreed with the 11 and 73% values. 
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4.1.8 Fuel Rack Position Calibration 

The fuel pump throttle lever was moved to the low idle position and a dial test 

indicator accurate to 0.01 mm was fitted and the pbtentiometer voltage reading was 

noted. The throttle lever was moved in small increments towards the full throttle 

position, the travel and potentiometer voltage were noted. These values were plotted 

and a straight line graph was produced. The intersection and gradient of the line 

were entered into the data acquisition software as the offset and span values 

respectively. The fuel pump throttle lever was moved back and forth and the on 

screen values were compared to the dial test indicator reading. If necessary the 

offset and span values in the data acquisition software were adjusted until both 

readings agreed. 

4.2 High Speed Instrumentation Calibration 

The cylinder pressure transducer was the only high speed instrument which could be 

calibrated both statically and dynamically. The needle lift and fuel line pressure 

transducers could only be dynamically calibrated. After transducer calibration all 

three readings must be phased with the crank angle encoder both statically and 

dynamically. 

4.2.1 Cylinder Pressure Transducer Calibration 

The piezo electric transducer was connected to a Kistler 5007 Charge Amplifier 

which gave an output voltage proportional to input charge. Prior to calibration the 

transducer, cables and connectors were thoroughly cleaned. Having let the charge 

amplifier, set to long time constant, warm up and stabilise for a period of at least I 
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hour the transducer was subject to pressures from atmospheric to 120 [Bar] in 10 

[Bar] increments using a Budenburg dead weight tester, calibrated to National 

Standards. The transducer sensitivity was set on the charge amplifier and the correct 

scaling factor was entered into the data acquisition software. The transducer was 

pressurised and 1000 samples of data were collected using the Microlink 570 Card 

over a 2 second period at each pressure station. The 1000 samples were then 

averaged to give the average pressure recorded by the data acquisition during the 2 

second period. This procedure was repeated three times at each pressure to obtain 

average values. Unfortunately, the scaling factor entered in the data acquisition 

software needed to be adjusted before accurate results could be achieved. 

Experimental trials showed that the data recorded during in-cylinder operation 

suffered problems that were not apparent during static Budenburg calibration. When 

Performance Monitor began to produce Cylinder Pressure Vs Cylinder Volume 

plots the pumping loop consistently appeared at a pressure several bars below 

atmospheric. Checking the raw cylinder pressure data confirmed this to be true. To 

remedy this the cylinder pressure reading at BDC after the induction stroke was 

mathematically corrected to equal zero, all other cylinder pressure readings were 

subsequently corrected by the same amount. Theoretically, at this point in the cycle 

the cylinder pressure transducer reading should equal the inlet manifold pressure 

since the exhaust valve is closed, the effective flow area of the inlet valve is 

minimal having taken in a complete fresh charge and the piston is stationary. Once 

the cylinder pressure readings had been corrected to zero the reading from the inlet 

manifold pressure transducer was added to all of the cylinder pressure readings 
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ensuring the BDC value equalled inlet manifold pressure. Piezoelectric cylinder 

pressure transducers are well known for the number of operational problems they 

suffer, some of these are identified below; 

• The need for complete cleanliness of associated cables, plugs and sockets in a 

dirty environment. 

• The location of the transducer in the cylinder head can affect the pressure 

reading. 

• Setting of a reference pressure, illustrated by the problems outlined above 

• Build up of carbon deposits on the transducer diaphragm can effect the pressure 

reading. 

• Thermal shock through high temperatures encountered in the combustion 

chamber. 

• Correct phasing of the pressure signal with engine TDC, discussed later. 

4.2.2 Needle Lift Transducer Calibration 

The needle lift transducer gave an analogue voltage output directly proportional to 

needle displacement. Lucas CA V advised that the maximum needle lift was 

0.26mm. A recently tested injector was fitted and the engine was run at peak torque 

to achieve maximum lift for several degrees of crank angle. Offset and span values 

were entered into the data acquisition software so that the needle lift during the 

injection was recorded as 0.26mm. 
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4.2.3 Fuel Line Pressure Transducer Calibration 

The transducer outputs a charge signal and suffers from many of the same problems 

as the cylinder pressure transducer. The signal is conditioned by a Kistler 5007 

Charge Amplifier to produce the analogue voltage required by the data acquisition 

card. The transducer produces a charge proportional to the rate of change of fuel 

line pressure. This makes static calibration impossible and as a result calibration 

could only take place when the engine was running. 

The injector was fitted with a needle lift transducer and the opening pressure was set 

at 210 [Bar] as recommended by Lucas CAV. Having let the charge amplifier warm 

up and stabilise for a minimum of I hour the engine was run at peak torque. The 

needle lift and fuel line pressure channels were sampled by the data acquisition card. 

The needle lift trace identified when lifting occurred, and the fuel line pressure 

transducer offset and span values in the data acquisition software were adjusted so 

that a pressure of2l0 [Bar] registered when the needle lifted. The low level of 

accuracy of this method was accepted since the fuel line pressure transducer is 

primarily a qualitative rather than quantitative device. 

4.2.4 High Speed Data Dynamic Phasing 

All of the high speed instrumentation was sampled with respect to crank angle. 

Phasing the high speed data channels with the crank angle encoder is critical to 

ensure that Performance Monitor can accurately determine the following; 

• IMEP and mechanical efficiency 

• Point of injection 
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• Point of fuel pump discharge 

• Point of ignition. 

To ensure correct phasing, the crank angle encoder was initially phased with TDC 

statically. This was achieved by removing the injector and placing a long throw dial 

test indicator on the piston crown. The engine was slowly rotated by hand until the 

dial test indicator reaches a maximum reading and piston movement became 

negligible. This only set TDC approximately because of the very small change in 

piston position with crank rotation. To set TDC more accurately statically the engine 

was rotated to approximately 60 degrees past TDC. The engine was then rotated 

back to 40 degrees after TDC, as indicated by the flywheel markings and a dial test 

indicator reading was taken. The engine was then rotated to 60 degrees before TDC 

and then moved back towards TDC until the dial test indicator reading equalled the 

previous reading and the flywheel was marked. TDC was then identified as the 

midpoint between the 40 degree after TDC point and the marked point 

approximately 40 degrees before TDC. The engine was then rotated to this mid 

point and the crank angle encoder TDC marker pulse position was re-adjusted. This 

procedure was repeated until no further adjustment was required. 

Static calibration alone is not accurate enough to ensure that the high speed data is 

correctly phased with crank position. In a dynamic situation the TDC apparently 

shifts and leads to the generation of inaccurate data. The reasons for this shift have 

not been investigated in this research but are thought to be a combination of 

mechanical variations and signal processing lags. TDC was dynamically set using a 

method developed by Lancaster [401 et al.. This paper showed how correct phasing 
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of the cylinder pressure signal with crank angle position could be determined 

through the shape of a Log Cylinder Pressure Vs Log Cylinder Volume plot. 

The engine was run at constant torque and speed and cylinder pressure was recorded 

with respect to crank angle. The results were then plotted on a Log Cylinder 

Pressure Vs Log Cylinder Volume graph. The crank angle encoder TDC marker 

pulse was adjusted until the desired graph shape was achieved. Copies of these 

graphs can be found in Appendix 'C'. IMEP and consequently mechanical 

efficiency are both very sensitive to changes in phasing as shown in Table 7. 

Degrees Cranl{ Angle Shift From True TDC Mechanical Efficiency [%] 
-3 105.61 
-2 95.49 
-I 87.87 
0 81.41 

+1 75.87 
+2 71 .04 
+3 66.82 

Table 7 Sensitivity Of Mechanical Efficiency Value To Phasing 

4.3 Performance Monitoring System Validation 

After Performance monitor had been calibrated it was run through a series of tests to 

validate its performance. These are identified below; 

• Averaging trials to determine data repeatability. 

• Comparison of Performance Monitor data with test cell panel meters and the 

A VL 364 Indiskop. 

• Willans Line test comparison 
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4.3.1 Data Averaging & Repeatability Trials 

These trials were conducted to ascertain how the number of samples recorded and 

averaged affected the repeatability of the data in the Performance File. The engine 

was run at a nominal speed of 1800 [revs/min] and torque of 300 Nm as this 

represented a mid range operating point. The fuel rack position and speed were held 

constant for the duration of the trial and the engine was allowed a 1 hour 

stabilisation period before any data was taken. The central command macro in 

Performance Monitor was edited so that it recorded varying numbers of high and 

slow speed data samples as shown in Table 8. Ten separate performance scans were 

taken with each combination of sampling conditions. 

Test Number Of Slow Speed Number of Engine Cycles Number Of Repetitions 
No. Samples Averaged Averaged 

1 10 10 10 
2 30 50 10 
3 60 100 10 
4 120 200 10 

Table 8 Numbers Of Samples Taken By Performance Monitor 

Slow speed samples were logged at an interval of 1 second, high speed samples 

were logged at 0.5° crank angle increments. After the data had been logged the ten 

runs in each test were compared to ascertain the repeatability. For both high speed 

and slow speed data the repeatability of the data generated by Performance Monitor 

improved with number of samples averaged. Tables 9 and 10 show the percentage 

variation of the slow speed and high sensor readings as a function of number of 

samples averaged. 
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Instrument Description %Variation 10 lk Variation 30 lk Variation 60 r1c Variation 120 
Samples A \'eragc Samples A vcrage Samples A nragcd Samples A vcragcd 

Air Flow [m3/Hr] 1.424338146 0.87583371 0.907390991 0.77985007 
Compressor Discharge Pressure [kPa] 2.897713302 1.488675411 1.671756722 0.729802641 
Compressor Discharge Temperature [K] 0.580998984 0.238582276 0.606541402 0.144421593 
Compressor Inlet Pressure [kPa] 1.533895772 1.126636587 1.340830327 1.276281667 
Compressor Inlet Temperature [K] 0.577345534 0.231838418 0.494322076 0.087068058 
Cylinder 1&2 Port Temperatures [K] 0.708219066 0.45078671 1.909508149 0.940792302 
Cylinder 3 Port Temperature [K] 0.682592866 0.495906274 1.634771317 0.791289013 
Cylinder 4 Port Temperature [K] 1.087654277 1.158851074 2.042019043 0.826651432 
Cylinder 5&6 Port Temperatures [K] 0.710749262 0.475465336 1.277512048 0.688102921 
Engine Cooling water Discharge Temperature [K] 0.385390194 0.56822783 0.536253101 0.39955657 
Engine Water Temperature [K] 0.394113647 0.279168089 0.272079244 0.195939651 
Engine Speed [Revs/Min] 0.26514542I 0.284393355 0.282048698 0.033897087 
Exhaust Manifold Pressure [kPa] 23.4275673 I 23.09772093 9.88796I504 4.56623711 
Exhaust Manifold Temperature [[K] 0.996566222 0.593267326 1.568763428 0.604834242 
Fuel Rack Position [mm] 0.2I8811575 0.08733255 I I .528847663 0.060667027 
Fuel Temperature [K] 0.487356823 0. I 70 I47851 0.289373244 0.382762959 
lntercooler Cooling water Discharge Temperature [K] 0.5 I 9918789 0.569236448 0.51385I864 0.463735005 
Inlet Manifold Pressure [kPa] 3.922277196 2. I 454 I 2336 2.3I0386I76 2.037809623 
Inlet Manifold Temperature [K] 0.495444533 0.36428651 1 0.437982922 0.267460757 
Lubricating Oil Temperature [K] 0.840233639 0.132573599 0.233782866 0.096412258 
Engine Torque [Nm] 1.697283556 0.909252793 3.884648856 1.173187891 
Turbine Discharge Temperature [K] 0.553366854 0.366643082 1.338673631 0.373282542 
Turbine Discharge Pressure [kPa] 1.101065587 1.198237528 0.753052003 0.52536983 
Turbocharger Speed [Revs/min] 3.36 I 749487 7.2257339 I 6 5.853865776 1.942743116 
Cooling Water Supply Temperature [K] 0.508957807 0.515452211 0.555413964 0.486593811 
Fuel Mass Flow Rate [Kg/s] 10.76207574 8.127403278 6.920350134 2.896244976 

Table 9 Slow Speed Data Repeatability As A Function Of Number Of Samples Averaged 

83 



Measurement nescription ck \' ariation I 0 0"l: Variation 50 9C \' ariation I 00 C!c· \' ariation 200 
Samples Average Samples A vcragc Samples A\cragc Samples A urage 

Mass Flow Rate Fuel [Kg/s] 10.73162383 8. 127403278 6.920350134 2.896244976 
Max Fuel Line Pressure [Bar] 6.207417399 2.623299266 5.273639579 4.768760459 
Degrees CA Max Fuel Line Pressure [Degrees] 0.5 0 0 0.5 
Degrees CA Estimated Fuel Pump Discharge Point [Degrees] 1 0 0 0.5 
Degrees CA Estimated Fuel Pump Discharge Termination [Degrees] 0.5 0.5 0.5 0.5 
Degrees CA Pump Discharge Period [Degrees] 0.5 0.5 0.5 0.5 
Point Of Injection [Degrees] 0 0 0 0.5 
End Of injection [Degrees] 0.5 0.5 1 0.5 
Duration Of Injection [Degrees] 0.5 0.5 l 0.5 
Max Needle Lift [mm] 5.44595937 2.3642 13817 2.661649608 4.11796474 
Degrees CA Max Needle Lift [Degrees] 7 0 0.5 0.5 
Pmax Cylinder [Bar] 2.3597 504 17 2.278 171 99 1.490273172 1.279927448 
Degrees CA Pmax Cylinder [Degrees] 1.5 2.5 2 0.5 
IMEP [Bar] 1.747889741 1.5 1556483 1 3.460721 978 2.2711 90842 

Table 10 High Speed Data Repeatability As A Function Of Number Of Samples Averaged 

Note: % Variation figures quoted do not apply to those measurements made in degrees crank angle. Crank angle variations are in degrees. 
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After analysing the results from the repeatability trials the number of slow speed and 

high speed samples were set to 120 and 200 respectively. All further testing was 

conducted using these settings. These readings were compared to the test cell panel 

meters to highlight any gross errors that may have been introduced through wiring 

or programming mistakes. The comparison confirmed that Performance Monitor's 

results were in close agreement with the panel meters. 

The ability to measure or calculate performance parameters with precision is a very 

important feature of a diagnostic system. The level of precision of the system will 

directly affect it's sensitivity and hence it's ability to diagnose faults. A diagnostic 

system with a high level of precision will have the ability of diagnosing faults which 

may only cause a marginal change in sensor readings and identify faults at a much 

lower level of severity. An imprecise system relies heavily on the fault causing large 

changes in sensor readings since the deviation in the sensor reading must exceed the 

relatively large tolerance band experienced during normal engine operation before it 

can positively diagnose. Since the calculation of performance parameters often 

requires several sensor readings to be combined together the repeatability of 

calculated parameters becomes slightly more complex. Figures 20 & 21 show the 

repeatability of the sensor data recorded at one torque and speed. The repeatability 

of a reading is a function of the engine stability at a particular operating point, the 

precision of the instrumentation and data acquisition and the variation in ambient 

conditions. Figures 22 & 23 show the repeatability of calculated parameters. 
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Exhaust Gas System Parameter Repeatibility 
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Figure 23 Exhaust Gas System Parameter Repeatability 

'K' Type thermocouple temperature measurement is shown to be very repeatable. 

This is partly due to the thermocouples having a response time far greater than the 

process temperature variation frequency, which gives a temperature reading 

damping effect. Pressure measurements are slightly less repeatable particularly in 

the inlet & exhaust manifolds. The strain gauge pressure transducers used for these 

measurements had a natural frequency in the order of 15kHz. Despite the low 

natural frequency of these transducers the complex pressure wave phenomena in the 

manifolds caused the transducer to have an erratic output. By introducing a section 

of pipe work and averaging the samples taken every second these pressure variations 

were reduced to less than +/- 2.5% as shown in Figure 21. Ideally, the pressure 

transducer should have been sampled at more than twice the frequency of the 

pressure waves to avoid aliasing. This was not possible due to data acquisition 
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sampling speed limitations. Once the exhaust gas had passed through the turbine 

the pressure pulsations were further damped and the variation in exhaust gas 

pressure measurement was reduced to less than+/- 0.5 %. 

Turbocharger speed showed an approximate variation of less than+/- 1%. This was 

deemed acceptable because of it's extreme sensitivity to engine torque which could 

only be controlled to +1- 0.5 %. 

Fuel flow measurement repeatability was approximately +/- 1.5 %. The flow meter 

was mounted upstream of the lift pump which was a positive displacement 

reciprocating device driven from the camshaft. Due to the nature of the pump the 

flow rate reading taken at each sample was dependant upon where the pump was in 

it's stroke at that instant. The flow meter was mounted as far as practically possible 

upstream of the lift pump and a large number of samples were averaged to minimise 

the variation in the fuel flow readings as shown in Table 9. Fuel flow was also 

measured by a timed fixed volume device as shown in Chapter 2.0, Table 5 and 

Figure 11, to give added confidence in fuel flow measurement. 

Figures 22 & 23 show that calculated parameters using two or more measured 

variables are susceptible to a lower degree of repeatability. This is because tolerance 

band of each variable contributes to the repeatability of the overall result. If, for the 

purpose of this example, if it is assumed that pressure and temperature are 

independent variables during the turbine expansion process the 'worst case' 
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repeatability of turbine isentropic efficiency can be calculated from the repeatability 

trial results. 

Va~·iablc Max Value ]\:fin Value +vc % De,·iation ·\'e % Deviation Total% 
From mean From Mean Variation 

Exhaust Manifold 135.64 129.58 2.16 2.41 4.57 
Pressure [kPa] 

Exhaust Manifold 769.22 764.58 0.377 0.227 0.60 
Temp [K] 

Turbine Discharge 104.46 103.91 0.248 0.277 0.525 
Pressure [kPa] 

Turbine Discharge 723.82 721.13 0.185 0.187 0.372 
Temp. [K] 

Table 11 Repeatability Of Variables Used To Calculate Turbine Isentropic 
Efficiency 

Table 11 shows the variables used to calculate turbine isentropic efficiency and their 

respective repeatability's. The maximum and minimum values shown are the 

maximum and minimum values encountered throughout the whole testing 

programme and therefore did not necessarily occur together during any single test 

run. If these values are substituted into the isentropic efficiency equation the 

maximum and minimum efficiency values can be obtained as follows. 

Turbine Isentropic Eff. = (1 - (Ttoutfftin)) I ( 1- [(Ptout I Ptin) (y- t )ly ] ) Equation 3 

Min Turbine Isentropic Eff. = ( 1-(723 .821764.58))1(1-[( 1 03.911135.64)0
·
2587

] 

Min Turbine Isentropic Eff. = 0.800 

Max. Turbine Isentropic Eff. = (1-(721.131769.22))1(1-[(104.461129.58) 0·
2587

] ) 

Max. Turbine Isentropic Eff. = 1.153 

% Deviation From The Mean = (((0.800+ 1.153)/2)-

0.800)1((0.800+ 1.153)12)* 100 

% Deviation From The Mean = +1-18% 

Figure 23 shows that in practice, turbine isentropic efficiency variation from + 8.94 

1- 10.53 %as oppose to the calculated +1- 18%. This smaller practical variation 

91 



suggests that although sensor repeatability contributed to the efficiency variations, 

the above set of wide maximum and minimum conditions used in the calculation did 

not occur in the experimental environment. This could be because either not enough 

data sets were taken and therefore the maximum repeatability range was not found 

or the physical relationship between temperature and pressure variations across the 

turbine are such that these max and min conditions could not occur simultaneously 

in practice. 

4.3.2 A VL 647 Indiskop Comparison 

To give added confidence in the high speed data generated by Performance Monitor 

a comparison was made to the A VL 647 Indiskop. The Indiskop was the only other 

piece of equipment capable of accurately determining the point and duration of 

injection & position of maximum cylinder pressure. The engine was run at a series 

of torques and speed and a comparison was made at each. Figure 24 summarise the 

results taken at 1600 [revs/min] and 236 [Nm]. 
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Figure 24 A VL 647 lndiskop & Performance Monitor Comparison 
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Throughout the torque and speed range the A VL 64 7 Indiskop and Performance 

Monitor agreed within 3 ° on all crank angle position measurements. For medium 

and high torque conditions the two systems agreed within 1° crank angle, the greater 

variations only occurred under light torque conditions. This can be attributed to the 

more erratic fuel pump behaviour at light torques. A VL64 7 Indiskop values for peak 

cylinder pressure, position of peak cylinder pressure and fuel line pressure 

measurements were also in close agreement with the Performance Monitor data. 

Based on these results the high speed data generated by Performance Monitor was 

deemed acceptable. 

4.3.3 Validation Of IMEP & Mechanical Efficiency Data 

Performance Monitor IMEP values were checked against values obtained from the 

A VL 64 7 Indiskop and the Willans Line method . The results for an engine speed of 

1500 [revs/min] are summarised below in Figure 25. 
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The IMEP values obtained from all three methods were in close agreement 

throughout the torque and speed range. However, the A VL 647 Indiskop gave lower 

IMEP values than the other two methods at most torques. These lower IMEP values 

gave abnormally high mechanical efficiencies in the 89 to 98 % band. Similar 

calculations using the Willans Line and Performance Monitor IMEP values gave 

mechanical efficiencies ranging from 58 to 89%. 

Based on the mechanical efficiency values Performance Monitor's IMEP 

calculation was accepted. Although it recorded consistently higher IMEP's than the 

A VL 647 Indiskop the Indiskop mechanical efficiencies were unrealistic. The close 

agreement between the Willans Line method and Performance Monitor gave added 

confidence that the Performance Monitor IMEP values were correct. 

4.4 Experimental Procedure 

The following sections outline how the testing strategy was developed. This 

involved selecting the most suitable speeds and torques and then arranging the most 

efficient way to collect data at these conditions. This necessitated an understanding 

of the engines performance envelope and warm up behaviour. 

4.4.1 Selection Of Torque-Speed Operating Points 

When selecting operating points three main factors were considered; 

• They are evenly spaced throughout the engines operating range 

• They are representative of real applications, either propeller law or gen-set. 
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• They are practically possible, avoiding problems of overheating, vibration and 

max. intermittent powers. 

For generating set application 1500 [revs/min] is favoured because of the electrical 

frequency implications. Four torques were picked 100, 200, 300, and 430 [Nm] to 

simulate varying current being drawn from the gen-set. The propeller law points 

were selected using Perkins Engine Ltd. power curves. The curve showed that the 

max continuous rating was 91 kW at 2150 [revs/min]. Using a propeller law index 

of 2.8 the constant K could be found, thus; 

Equation 4 

91000 = K. 21502
·
8 

K = 4.25 E-5 

Subsequent torque-speed points were found by substituting in speed values ranging 

from 1400 [revs/min] to 2150 [revs/min] in 200 [revs/min] increments. Table 12 

shows both propeller law [P] and gen-set [G] operating points. Figure 26 Shows the 

power and torque curves for the engine and propeller law points. 

No. Engine Speed Engine Tor<JUC [Nm] Brake Power [kW] Gen-sct = G 
[revs/min] Prop Law= P 

1 1500 100 15.71 G 
2 1400 186.6 27.36 p 

3 1500 200 31.42 G 
4 1600 237.3 39.77 p 

5 1500 300 47.12 G 
6 1800 293.2 55.27 p 

7 1500 Full (430 Nm) 67.53 G 
8 2000 354.6 74.28 p 

9 2150 Full (404 Nm) 91.00 p 

Table 12 Engine Torque-Speed Operating Points 
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4.4.2 Determination Of Steady State Conditions 

To ensure that the engine had reached steady state conditions before data was 

sampled a warm up trial was conducted. The engine was started from cold and run 

through the sequence of torques and speeds shown in Table 12. Initially the 1500 

[revs/min] full torque condition was run between the 2000 [revs/min] and 2150 

[ revs/min] operating points. This however, showed that temperatures took a 

downward trend during the 1500 [revs/min] full torque condition and that the 

sequence needed to be arranged as displayed in Table 12 to maintain a temperature 

rise throughout a test run. After start up the engine was set to run at low idle for 10 
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minutes before moving to the first torque-speed station. Subsequent changes in 

torque and speed were made when every channel had held a constant reading for a 

minimum of 5 minutes. Each channel of slow speed data was logged at 5 second 

intervals for the duration of the test. 

The results showed that the parameter with the longest time constant of 17 minutes 

(63% value) was lubricating oil temperature. Based on the results from this test all 

subsequent engine runs started with a warm through period of 1 hour at the first 

torque-speed station. The remaining eight torque-speed stations were given a 20 

minute stabilisation period before data collection. An example plot of some of the 

temperatures monitored during the stabilisation trial can be seen in Figure 27. 

Copies of all of the stabilisation plots can be found in Appendix 'C'. 
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4.5 Summary 

This chapter has described the techniques and testing used to validate the quality of 

engine test data generated by Performance Monitor. This included the calibration of 

each individual transducer and its associated signal conditioning. The affects of data 

averaging for both high and low speed instrumentation have been investigated to 

establish an optimum sampling duration. An indication of repeatability for each 

sensor reading and calculated parameter has been determined. Where practically 

possible instrumentation repeatability was improved by a number of methods. 

Reasons for the larger repeatability variations have been discussed. The trials have 

shown that calculated performance parameters which use two or more sensor 

readings generally have poorer repeatabilities than directly measured parameters. In 

all cases the data from the high and slow speed instrumentation was compared to 

data generated from panel meters, the A VL 647 Indiskop and other methods. 

Finally, the experimental testing procedure was developed through the selection of 

appropriate test speeds and torques and an assessment of engine behaviour to ensure 

performance was stable before test data was recorded. Completion of this phase of 

the research satisfied research objective 2 and confirmed that the developed test 

facility and performance monitoring package were acceptable. The research could 

now focus on the analysis of diesel engine fault conditions. 
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CHAPTERS 

DIESEL ENGINE FAULT INVESTIGATION & COMPONENT 

FAILURE MECHANISMS 

5.0 Introduction 

This chapter discusses the results of a detailed study into Perkins T6.354(M) diesel 

engine faults and details some of the mechanisms responsible for their occurrence. 

The results of this study allowed realistic faults to be targeted for experimental 

investigation. Engine testing of unrealistic faults, either those which do not happen 

in practice or those who's severity is inappropriate, ultimately meant that the 

experimental data would have been unrepresentative and subsequent conclusions 

drawn about the performance of the neural network would be invalid. 

5.1 Fault Study Results 

Data was gathered from various maintainers and refitters who had an interest in 

Perkins T6.354(M) diesel engines of the same build list as the test engine. 

Information was collected through direct discussion with the engineers and fitters, 

questionnaire forms, refitters/maintainers records and photography. All of the data 

gathered was specific to Perkins T6.354(M) diesel engines and related to 25 

individual engines refitted over a 3 year period. Table 13 and Figure 28 summarise 

the results of the study. It should be noted that the majority of these faults were 

discovered as a result of routine maintenance, not due to a noticeable change in 

engine operating characteristics. Most of these would however, have had an effect 

on rated power, fuel economy, or long term engine health. 
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Table 13 Results Of Perkins T6.354(M) Diesel Engine Fault Study 
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Fault data specific to the Perkins T6.354(M) fuel injection system and turbocharger 

was relatively scarce since refurbishment of these pieces of equipment is specialist 

task often undertaken by the respective manufacturers. Similarly data on fuel and 

charge air filter blockages were not specifically recorded as faults since filter 

replacement was a mandatory function during refurbishment. Examination of a 

number of filters, however, revealed these were also commonly occurring due to 

poor maintenance routines. 

To increase confidence in the results obtained from the fault study and review a 

more global picture of diesel engine faults, statistics from the Diesel And Gas 

Turbine Engineers Working Cost And Annual Report[411 years 1983 to 1993 were 

analysed. The results of their findings are summarised below in Figure 29 
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5.2 Conclusions Of Fault Study 

Table 13 & Figure 28 show that the most commonly occurring faults lie in the 

following areas; 

• Valves, valve guides & seats 

• Cylinder bores & pistons 

• Intercooler 

• High pressure fuel injection pipe corrosion 

Figure 29 shows a good correlation with Table 13 & Figure 28 also identifying 

valves and seats and cooling systems to be problematic. It also shows that fuel 

injection system faults are consistently high. Through the combination of both sets 

of statistics and knowledge gained during the investigation the following areas were 

short-listed as possible candidates for further investigation. 

• Valves and valve.seats 

• Fuel injection equipment 

• Intercooling 

• Filter blockages 

• Cylinder bores & pistons 

It was decided due to the practical implications and time-scale allocated to the 

testing program that cylinder bores, rings & pistons could not be properly 

investigated. Further to this, they have been the subject of previous research. The 

faults finally identified as suitable for investigation fall in to three categories, charge 

air, valve, and fuel injection. 
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5.3 Charge Air System Faults 

Two charge air system faults were selected for experimental investigation, these 

were, a fouled charge air filter and a defective intercooler. These were selected since 

they were relatively easy to introduce and represented genuine faults that were being 

experienced in practice. 

5.3.1 Fouled Charge Air Filter 

Inspection of a l~ge number of Perkins T6.354(M) diesel engines that had been 

returned for refurbishment revealed that regular cleaning of the air filter was being 

omitted despite the manufacturers recommendation of cleaning every 250 hours or 

every 4 months, whichever occurs ftrst. It was not uncommon to fmd ftlters which 

had 80% of the flow area blocked, a typical example of fouling is shown in Figure 

30. 

Figure 30 Typical Fouled Perkins T6.354(M) Charge Air Filter 
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Charge air filters foul because of the presence of oil mist and exhaust particles in the 

engine space. The Perkins T6.354(M)'s filter consists of a truncated conical section 

and a removable gauze filter. 

Airborne oil mist settles on the gauze and behaves like an adhesive allowing small 

particles to stick. Gradually the fouling builds up between the holes in the gauze 

until complete blockage of a hole occurs. Work conducted by Newcastle 

University[421 suggests that air filters have a significant factor of over-design to 

accommodate for inadequate maintenance schedules. As a result, a substantial 

blockage may be required before any deterioration in engine performance is 

observed. The work conducted by Newcastle University concluded that 80% filter 

fouling remained almost undetectable. 

5.3.2 Faulty Intercooler 

Table 13 showed that fouled or corroded intercoolers were found on 80 % of the 

engines which were inspected. After close examination of the intercooler's water 

side fouling appeared to be more severe than air side fouling. 

Many of today's diesel engines are highly turbocharged giving higher power 

densities than their naturally aspirated counterparts. As a result there is an inevitable 

increase in the mechanical and thermal loading of components. Mechanical stresses 

can be overcome by the use of suitable materials and appropriate design. The 

increase in thermal loading must be overcome through efficient engine and charge 

air cooling[431
. Inefficient charge cooling leads to higher exhaust gas temperatures, 
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increased thermal stress on combustion chamber components, poorer specific fuel 

consumption and a reduction in rated power.[441 

Intercoolers are often over designed to accommodate for various operating 

environments. The worst case being tropical climates where air and water 

temperatures are high. This results in fouling going undetected when the engine is 

operating in cooler climates and gives scope for both corrosion and fouling to take 

place. Intercooler effectiveness can be reduced through several mechanisms; these 

are discussed below. 

(a) Marine Growth 

The marine growth problem can occur in both temperate and tropical climates. 

Primarily it reduces the heat transfer coefficient of the matrix and impedes water 

flow. This can lead to accelerated localised corrosion and material deposition. The 

use of biocidal treatments such as electrolysis of sodium hypochloride at the vessels 

sea strainers and regular physical scrubbing can largely eliminate the biological 

growth. 

(b) Precipitation, Deposition and Sedimentation Of Material 

Sea water contains many metallic salts which, at ambient conditions, form a stable 

solution. Solution stability decreases with temperature and at around 80°C some of 

the metallic salts begin to precipitate[451 
. At higher torque and speed conditions the 

Perkins T6.354(M)'s compressor discharge temperature is approximately 95°C, 

making it susceptible to salt precipitation. As salts precipitate and crystallise they 
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crust on to the matrix reducing heat transfer coefficients and effective flows. 

Secondary to this process, areas of low flow encourage sedimentation and sediment 

can become superimposed on the crystallisation. Superimposition of sediment 

material however, leads to weaker crystalline structures and eventually causes the 

crystalline structure to fracture and decompose[461 
• The deposition and 

crystallisation of salts is greatly affected by matrix surface finish and temperature. 

The surface roughness and density of cavities will have their most marked effect 

during the initiation of the crystalline nucleation and sedimentation processes rather 

than the continued fouling [461 
. 

(c) Corrosion Of Matrix Material 

If sea water is used as the coolant the intercooler materials become particularly 

vulnerable to corrosion. Even copper-nickel-iron alloys such as CuNiiOFe or 

CuNi30Fe generally used for intercooler construction are susceptible to extensive 

corrosion. Corrosion leads to a degradation in heat transfer and, if well developed, 

will lead to sea water ingressing into the charge air system. Plastic coatings such as 

Tegon can be used to halt corrosion with the penalty of a reduced heat transfer[431 
. 

Figure 31 shows a typical Perkins T6.354(M) intercooler matrix which has suffered 

salt precipitation and crystallisation, sediment deposition and corrosion. 
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Figure 31 Typical Defective Perkins T6.354(M) Intercooler Matrix 

5.4 Valve Faults 

The results of the diesel engine fault investigation discussed earlier in this chapter 

shows that valve faults are some of the most commonly occurring. This is also 

reinforced through the statistics compiled by the Diesel & Gas Turbine Engineers & 

Users Association. Valve guide wear is reported as the most commonly occurring 

defect on Perkins T6.354(M) diesel engines. Valve and valve seat wear and pitting 

are also frequently occurring and, to a lesser degree, valve stem wear. 

Fundamentally all of these phenomena contribute to an insufficiently gas tight seal 

between the cylinder head seat and valve. Examination of a large number of inlet 

valves also showed severe fouling on the lower portion of the stem and top head 

face. 
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The results discussed earlier in this chapter also show that valve and valve seat wear 

and pitting occurs fairly uniformly for all valves on a particular engine. It is very 

rare that isolated valves are pitted or worn. Valve catastrophic failure is rare, even 

with modern two piece valves. It can generally be attributed to poor valve train 

design i.e. poor cam profiles or incorrect spring rate matching. Very occasionally 

catastrophic valve failures occur due to engine over-speeding where valve 

acceleration and hence seat impact loadings are beyond design levels. This type of 

failure is generally associated with vehicle applications. 

Three valve faults were chosen for examination, these were, fouled inlet valves, 

leaking inlet valves and leaking exhaust valves. 

5.4.1 Fouled Inlet Valves 

Investigation by A.T. Colwell[471 showed that valve stem deposits cause 

approximately 50% of all valve trouble. Valve stem deposits are due to the 

oxidation and subsequent decomposition of lubricating oil. The decomposed oil 

eventually forms hard coke like material, time for formation is dependent on oil type 

and engine operating conditions. Valve stem deposits gradually wear valve guides 

causing the valves to stick open and quickly bum. Valve guide wear, a frequent 

problem with Perkins T6.354(M)'s, can only ease the passage of lubricating oil to 

the valve head. Slight inlet valve stem deposits rarely cause problems unless they 

become large enough to impede the flow of charge air or hold the inlet valve open. 
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Visual inspection showed that valve stem deposits were in the order of 3mm thick. 

Figure 32 shows a typically fouled valve with some of the fouling removed to show 

the cross sectional thickness. 

Figure 32 Perkins T6.354(M) Fouled Inlet Valve 

5.4.2 Leaking Inlet & Exhaust Valves 

Leakage through Inlet and exhaust valves occurs for several reasons, some of these 

are mentioned below; 

• Incorrect setting of tappet clearances 

• Weakened valve springs 

• Valves sticking open due to valve stern deposits 

• Severely pitted valves and seats leading to guttering 

• Badly worn valve guides leading to incorrect seating 

• Badly worn valves and seats 
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The fault study discussed earlier in this chapter showed that 76% of T6.354(M) 

valve seats were beyond regrinding, 64% of exhaust valves and 60% of inlet valves 

were severely pitted or worn beyond regrinding. Much research has been dedicated 

to identifying materials and methods of design and production to increase valve life. , 
M.G. Kingston-Jones et al. 1481 identified 4 mechanisms of valve damage; 

• Deposit formation on the seat which then cracks or flakes. 

• Deposit formation that corrodes the valve material. 

• Formation of pits which, ifdensely populated, form gas paths. 

• Thermal fatigue of the valve face, leading to cracks in the main seat material. 

The formation of deposits is largely due to the oxidation of sulphur, vanadium and 

sodium which are all constituents of many diesel fuels. The oxidation takes place 

during the combustion process and oxides·such as S02, S03, V20 5 and Na20 5 are 

formed. These oxides readily react with each other and with traces of calcium found 

in the lubricating oil to form low melting point salts. Many of the salts formed are 

highly corrosive, particularly the vanadyl species. 

The molten salts flow on to the cooler valve seat area and solidify. Umland & 

Ritzcopf491 believe that the molten portion of the solid-liquid seat deposit is 

squeezed out during the valve seating action leaving the solid, brittle deposits 

behind. These deposits are subsequently impacted through valve action to leave a 

layered deposit around the valve seat. As the thickness of the deposit increases the 

temperature of the valve seating face increases due to reduced heat transfer. This 

rise in temperature results in portions of the deposit flaking off leaving a narrow and 
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localised gas path. The formation of pits in the valve seating face can be caused by 

hard particles such as aluminium or silicon oxides, resulting from the combustion 

process, being pressed into the valve face. Should the pitting become densely 

populated on the valve face the pits link together to form a gas path, commonly 

known as a gutter. After gutter formation, blow through occurs throughout the 

engine cycle and the increased localised temperature and velocity of gas results in 

accelerated corrosion and rapid removal of valve material[501
. Figure 33 shows a 

portion of a pitted T6.354(M) exhaust valve sealing face magnified 35 times. 

Figure 33 Pitted T6.354(M) Exhaust Valve Seating Face 

5.5 Fuel Injection System Faults 

Figure 29 shows that the single most problematic engine subsystem is the fuel 

injection equipment. Faulty fuel injection equipment can have severe secondary 

affects on other engine components, particularly if the governor action is modified 

or up-fuelling is used to offset the poorer engine performance caused by the fuel 

injection equipment fault. Incorrect timing, over-fuelling or poor injection and 

atomisation will have the following secondary effects. 
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• Increased combustion temperatures leading to higher thermal stress on rings, 

pistons liners and valves. Higher combustion temperatures also promote the 

formation of NOx which must be controlled due legislative restrictions. Increased 

combustion temperatures lead to higher exhaust gas temperatures which can 

cause exhaust manifold fixing torque relaxation and eventual blowing. 

• Higher engine temperatures cause a reduction in lubricating oil viscosity and 

lead to oil oxidation and increased levels of oil soot content. 

• Increased mechanical stresses on the combustion chamber components, 

connecting rod, big end and main bearings and crankshaft. 

• Higher levels of noise and vibration due to irregular combustion. 

• Increased levels of smoke, particu\ates, and un-burnt hydrocarbons. 

• Accelerated deposition of carbon on valves, rings, piston crowns and lands. 

• Breakdown of the bore lubrication film due to fuel impingement and combustion 

on the liners. 

Four fuel injection system faults were selected for further investigation, these were, 

incorrect fuel pump timing, fouled injector nozzle hole, worn needle and nozzle and 

incorrect injection pressure. 

5.5.1 Incorrect Fuel Pump Timing 

Correct fuel pump timing is critical if rated power, fuel consumption and specific 

emissions and noise targets are to be met. Four mechanisms could be responsible for 

incorrect fuel pump timing. 
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• Wear in the timing gears or auxiliary drive. Discussion with engine fitters 

revealed that excessive wear in the timing gears was relatively rare compared to 

auxiliary drive wear. In one instance auxiliary drive gear wear was so extensive 

that the pump could not be re-timed on the engine without replacement parts 

being refitted. 

• Worn suction pump vanes in the hydraulic head. Small carbon vanes which are 

located in the hydraulic head reciprocate producing a vacuum to suck fuel into 

the injection pump, the pressure generated is known as the transfer pressure. The 

Lucas CA V pump fitted to the Perkins T6.354(M) is hydraulically governed by 

the transfer pressure and any vane wear will cause a shift in the point of injection. 

• Pump cam ring or roller wear. Wear in the high pressure pumping components of 

the Lucas DPA pump would result in an retarded point of injection since contact 

between the cam ring and rollers will be delayed. 

• Incorrect fitting and timing of the pump. 

5.5.2 Fouled Injector Nozzle Hole 

Injector nozzle fouling can occur through three mechanisms; 

(1) Entrapped particles which manage to pass through the fuel filter will eventually 

deposit in the nozzle sack volume. If these particles are larger than the diameter of 

the nozzle holes blockage occurs. Smaller suspended solid contaminants may not 

block the nozzle holes but could damage the injector nozzle, needle valve and barrel 

as discussed in Section 5.5.3 below. 
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(2) Particle erosion can liberate material from the internal surface of the high 

pressure injection pipes[SIJ and will occur if; 

• Low quality material is used for the manufacture of the pipes. 

• Pipe connections are over-tightened leading to pipe or olive cracking. 

• Excessive vibration is experienced leading to fatigue and crack formation. 

If large enough particles are removed from the internal surfaces of the pipes nozzle 

blocking occurs, small particle debris leads to accelerated needle valve, barrel and 

nozzle hole wear. 

(3) Poor injector cooling, excessive fuel temperatures, incorrect timing or up­

fuelling can cause nozzle tip overheating. If temperatures exceed 180- 200°C there 

is a high risk of carbon build up in the form of cones extending in the line of spray 

penetration. If this build up becomes excessive nozzle blockage may occur. 

5.5.3 Worn Needle And Barrel With Enlarged Nozzle Holes 

Enlarged nozzle holes give poor fuel atomisation and excessive fuel penetration 

producing some of the undesirable effects discussed in Section 5.5. Nozzle holes 

enlarge because of the erosion caused by the high pressure fuel and suspended 

debris which flow through them. This effect is also accelerated by cavitation on 

needle closure, and gas blow back, which can occur due to incorrect needle lift, a 

sticky needle or low spring pre tensions. In general needle and barrel wear can be 

attributed to three mechanisms, 
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(1) Particle Abrasion: Abrasive particles which pass through the needle valve 

originate from the two sources discussed above, fuel suspended debris not caught by 

the filter and material removed from the internal surface of the high pressure pipes. 

W.J. Gerwiner 1521 showed that abrasive wear only occurs if the particle debris is 

larger than the clearances between the moving surfaces, smaller particles held in 

suspension pass with no detrimental effect. The same reference also suggests that 

very small concentrations of large particle contaminants will cause a rapid 

deterioration in injection system performance. Wear also occurs due to the 

occasional contact between moving components. 

(2) Cavitation Erosion: The cavitation process consists of the formation and 

collapse of vapour bubbles in a flowing liquid due to large pressure differentials. 

Vapour bubbles can form in any portion of the nozzle and barrel where the pressure 

is below the vapour pressure of the fuel at that temperature. When the vapour 

bubbles are exposed to a higher pressure, generally at the needle valve seat, they 

collapse generating very high pressures. Constant bombardment of the needle and 

seat surfaces during collapse erodes the exposed metal. Cavitation erosion is 

particularly common if the fuel is contaminated by water. 

(3) Corrosion: Sodium and sulphurous fuel contaminants in the presence of water 

will cause corrosive attack on injection system components. Evidence of corrosion 

is shown by a gradual blackening of components caused by iron oxides which 

results in a greatly accelerated wear rate of the moving components1531 . Water alone 

can cause two forms of corrosion. Water corrosion can occur when the fuel 
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temperature is below the boiling point of water and is identified by a greenish 

discoloration of the components. Entrained water also causes problems when the 

surrounding temperatures are in excess of 1 00°C but the pressure is higher than 

atmospheric. If the fuel-water mixture leaks from this area of high pressure to an 

area of lower pressure the water content will flash into steam causing extensive 

corrosive action. 

5.6 Summary 

This chapter has presented the results of an 8 month detailed study into Perkins 

T6.354(M) diesel engine faults, failure and fault mechanisms have also been 

discussed. This work has satisfied research objective 3 outlined in Chapter 1 and 

laid the foundation for faults to be evaluated using computer simulation, rig testing 

and eventually engine test. As a result of the fault study, 9 faults have been clearly 

identified as worthy of further investigation, these are; 

• Fouled Air Inlet Filter, present on the majority of engines examined. 

• Faulty Intercooler, occurring on 80% of engines refitted. 

• Fouled inlet valves, present on many engines during strip investigation. 

• Leaking inlet Valves, present on 60% of field engines. 

• Leaking exhaust valves, evident on 64% of engines stripped for rework. 

• Incorrect (retarded) fuel pump timing. 

• Fouled Injector nozzle holes. 

• Worn injector needle and barrel. 

• Low Opening pressure injector. 
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CHAPTER6 

DIESEL ENGINE SIMULATION 

6.0 Introduction 

This chapter discusses the theory, development and results of a simulation model 

which was created to validate engine performance due to fault introduction. The 

simulation approach was adopted because engine test bed time was valuable and the 

engine modifications required to introduce the faults properly was very time 

consuming. It was thought that simulation could give an indication of engine 

performance trends when faults were introduced and identify the sensitivity of 

engine performance to fault severity. 

Today's methods of diesel engine thermodynamic cycle simulation are widely 

recognised as useful tools in assessing engine performance. The developments in 

simulation are largely due to the rapid increase in the computational ability of 

computer based systems. There has been many varied approaches to diesel engine 

simulation. The most common has been the empirical or semi-empirical based 

models due to their inherent simplicity. Empirical and semi-empirical methods fall 

into two types, 'emptying and filling' and 'method of characteristics' models. 

Emptying and filling models treat the manifolds and cylinders as thermodynamic 

control volumes in their entirety. The model works on the basis of these volumes 

'emptying and filling'. The volumes are linked and filled and emptied via junctions 

which represent valves, atmosphere or turbomachinery to create a model of the 

engine. Equations for the conservation of mass and energy are applied to the model 
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and are solved on a step by step basis assuming quasi-steady processes for each step. 

Step size will be in the order of I degree crank angle or smaller. Within the overall 

'filling and emptying' model smaller models for specific processes like heat release, 

friction, heat transfer and valve flow will be included. 

This type of model treats the manifolds as control volumes which have a uniform 

gas state spatially along their length. This is disadvantageous if the engine is pulse 

turbocharged since it depends on energy transferred along the manifold in the form 

of a pressure wave. The degree of error introduced by assuming no spatial 

differences in gas state will depend on the crank angle displacement required for the 

pressure wave to travel the length of the manifold. If the crank angle displacement is 

very small the error will, in turn, be small and vice-versa. 

Unsteady compressible flow, as found in diesel engines, can be modelled using 

hyperbolic partial differential equations. One technique for solving these equations 

is known as the 'method of characteristics'. Essentially the 'method of 

characteristics' approach to diesel engine simulation is the same as described for the 

'emptying and filling' model with the exception of manifold gas dynamics 

modelling. The 'method of characteristics' approach solves equations for the 

modelling of pressure wave and fluid motion in the exhaust manifolds such that 

each exhaust pipe's flow is modelled. This naturally increases simulation 

computational complexity and simulation run times. 
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The aim of this research was to develop a model which could establish performance 

trends due to fault implementation and therefore a simple 'emptying and filling' 

model was chosen. 

The simulation package selected for this work was SPICE (Simulation Program for 

Internal Combustion Engines). The software was developed by Dr. S. J. Charlton at 

the School Of Mechanical Engineering, University Of Bath. This package was used 

because it was a 'filling and emptying' based model which was readily available, 

user friendly and allowed basic fault models to be developed quickly. Basic models 

for all of the faults were created with the exception of the injectors. SPICE does not 

allow spray penetration and atomisation to be directly modelled. Combustion can be 

modelled through the use of user defined heat release models but this necessitated 

engine test data which defeated the object of simulation in this instance. 

6.1 SPICE Diesel Engine Simulation Theory 

The simulation is based on the control volumes being linked by mass or energy 

transfer and the principles of mass and energy conservation are applied to the inlet 

manifold, cylinders and exhaust manifold. In summary, the principles of 

conservation of mass and energy must be applied to the following processes during 

the cycle 

o Mass and therefore energy transfer from the inlet manifold into the cylinders 

through the inlet valves 

• Mass and therefore energy transfer from the cylinders into the exhaust manifold 

through the exhaust valves 
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• The addition of a fuel mass into the charge and consequently the heat released by 

its combustion. 

• Heat transfer from the gas to the cylinder walls, cylinder head and piston. 

• Work transferred to and from the piston. 

These processes are shown below in Figure 34 which is a diagrammatic 

representation of the cylinder thermodynamic control volume. 

Exhaust Mass Flow dme/dt 

Control Volume Status 
p,V,T,m,h,u,s 

W=pdV 

-Hr---. Heat Loss Qw 

System Boundary 

Figure 34 Engine Cylinder Thermodynamic Control Volume [541 

During the simulation it is assumed that all control volumes are in thermodynamic 

equilibrium and that they follow ideal gas behaviour. It is also assumed that 

individual control volumes contain homogeneous mixtures of air and products of 

combustion at every instant and that there is perfect mixing. Property gradients and 

phenomena such as pressure waves, non equilibrium compositions and fuel 

evaporation before and during combustion are neglected. 

122 



The principles of conservation of mass and energy can be described by three 

coupled differential equations. These differential equations are solved for each 

volume using a numerical integration technique on an incremental or step by step 

basis throughout the 720° cycle. 

6.1.1 System Differential Equations 

The principles of conservation of mass and energy can be described by three 

coupled differential equations as shown in equations 5, 6 and 7. 

Rate of change of temperature with respect to time 

dT =-~-r dQw + dQf + h. dmi +h dmf _ h dme -m 8u dA- _ mRT dV -udm] 
dt m 'j; l: dt dt f ' dt for dt ~ e dt OA. dt V dt dt 

Equation 5 

The total mass flow rate with respect to time 

Equation 6 

Rate of change of air-fuel ratio with respect to time 

dA- (l+A-)ldmf dm.(A-.-A-)] _ + L. l _!._l ---,---

dt m dt i dt (1 + A . ) 
l 

Equation 7 

6.1.2 Solution Of The Differential Equations 

Section 6.1.1 shows the three first order differential equations, identified as 

equations 5, 6 & 7. These coupled differential equations describe the general 

thermodynamic behaviour of a control volume and can be solved using a numerical 
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integration technique. There are many numerical techniques available for example, 

modified Euler predictor corrector, Adams-Bashforth and Runge-Kutta. SPICE uses 

the former and compromises speed of computation and accuracy. Computational 

difficulties can be experienced, especially during the valve overlap period when the 

convergence criteria may not be met. This problem can be easily overcome by 

reducing the step size at the expense of computational speed. The modified Euler 

predictor method takes the form; 

Y1 = Yo+{:}/x Predictor Equation 8 

Y1 = Yo+{(: )0 +(:)J ~ Corrector Equation 9 

6.2 Development Of A Healthy Perkins T6.354(M) Model 

The Perkins T6.354(M) was modelled in the conventional way, by representing the 

engine as interconnected thermodynamic control volumes and junctions. A 

diagrammatic representation of the engine model is shown below in Figure 35. 

lntercooler 

Inlet Manifold 

Tor ue 

S2 

Turbine 

Figure 35 Perkins T6.354(M) Simulation Model 
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The input data required by the simulation is contained within three files. These are 

the engine file, compressor file and turbine file. Copies of these files can be found 

in Appendix 'D' . Besides specifying the configuration, geometric and volumetric 

data these files contain sub-models used by the simulation. These sub-models are 

discussed below in more detail. 

6.2.1 The Heat Release Model 

The heat release model is key to developing an accurate engine simulation model. 

Much work has been dedicated to developing accurate heat release models which 

reflect combustion across the engine operating envelope. The heat release model 

chosen for this simulation was the Dynamic Watson. Amongst others Watson et 

al. r551 developed a model which was particularly suitable for high speed direct 

injection engines as used in this research. Watson et. al. attempted to derive a model 

which matched experimental data closer than previous models throughout a wide 

range of torque and speed conditions. Watson' s model is initiated at the point of 

injection and the subsequent process can be broken into 4 phases as shown in Figure 

36. 
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Figure 36 Typical Heat Release Diagram 

Phase 1 (ignition delay): The period between the start of fuel injection into the 

chamber and the start of combustion. Start of combustion is defined as the point at 

which heat release becomes positive. 

Phase 2 (premixed burning): In this phase the fuel already sufficiently mixed with 

air during the ignition delay period rapidly combusts. 

Phase 3 (diffusion burning): The rate of combustion decreases and is a function of 

rate of atomisation, vaporisation, mixing of fuel vapour with air and pre-flame 

chemical reactions. 

Phase 4 (late combustion phase): Largely due to small residual amounts of fuel 

burning and the release of heat energy from soot or fuel rich combustion products. 

6.2.2 Heat Transfer Model 

Determining heat transfer from the hot gases to the combustion chamber walls is a 

very complex process. As with the heat release models, attempts have been made to 
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model the heat transfer process. One such model was developed by Woschnir561 and 

is used in this simulation. The model uses a semi empirical method which considers 

gas motion due to both piston motion and combustion to determine the 

instantaneous heat transfer coefficient. The rate of convective heat transfer is 

calculated from the following equation. 

dQ =hA(T -T ) 
dt w g 

Equation 10 

Where h is the instantaneous heat transfer coefficient, A is the area through which 

the heat is transferred, T w is the combustion chamber wall temperature and T g is the 

gas temperature outside of the thermal boundary layer. The calculation of heat 

transfer is made particularly difficult since all of the terms in the above equation are 

continuously varying. The engine file specifies the fixed surface areas such as piston 

crown and cylinder head flame face and also assigns mean wall temperatures to 

these areas. Exposed cylinder liner surface area is computed by the simulation. 

6.2.3 The Friction Model 

Frictional losses in the engine are calculated using a relationship developed for 

turbocharged engines by Chen & Flynn[571
• The model expresses the frictional losses 

as a function of mean piston speed and maximum cylinder pressure. Equating 

frictional losses to FMEP, their equation takes the form; 

FMEP=O.l37+0.005p +0.162C . 
max pzston Equation 11 
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6.2.4 Valve Flow Mapping 

Valves are regarded as junctions which link thermodynamic control volumes. At 

any instant in time the pressure in each of the volumes can be calculated. The 

resulting pressure gradient across the junction determines the direction of flow. The 

mass flow rate through the valve is calculated using the equation which describes 

one-dimensional compressible flow through an orifice. It is assumed that the static 

pressure at the throat is equal to the downstream stagnation pressure and that flow 

upstream of the junction is isentropic. 

Velocity at the throat is given by; 

The Mach number at the throat may be calculated by; 

c 
M=--;:::====== 

And the continuity equation states; 

dm 
-=pAC 
dt t 

Equation 12 

Equation 13 

Equation 14 

Substituting equation 12 into equation 14 and defining the density term gives; 

1 

[
Pt ly Pu 
Pu RT., 

Equation 15 
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--- - ---

Where M~ 1 then the pressure ratio in equation 15 is substituted hence; 

r 
Pt _ { 2 }r -1 - - - -
Pu y+1 

Equation 16 

For equation 5 to be used to compute valve flow, the effective flow area must be 

known. The engine file contains two tabulations relating effective valve flow area 

and crank angle. These tabulations were created by measuring valve lift on engine 

with a DTI, Dial Test Indicator, with respect to crank angle. Figure 37 shows valve 

lift vs crank angle for both inlet and exhaust valves. 

12 

- 10 

~ 8 

$; 6 
~ 4 
Q,l 

~ 2 

> 0~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-2 

Degrees CA (deg] 

1-In!et Valve -Exhaust Valve I 
Figure 37 Inlet & Exhaust Valve Lift vs Crank Angle 

It was not practically possible to conduct a steady flow test to establish the valve 

flow discharge coefficients. Instead, the results from work conducted by Annand 

and Roe[SSJ into diesel engine gas flows were used. Figure 38 shows how the 

"' 00 

"' 

discharge coefficient varies with non dimensional valve lift for an inlet valve. Three 

distinct phases of flow regime are evident labelled A, B & C and relate to the three 

stages of valve lift illustrated. 
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Figure 38 Discharge Coefficient vs Inlet Valve ND Lift 

The relationship between discharge coefficient and valve lift for an exhaust valve is 

shown in Figure 39 

0.75 

.... 0.7 

= 0.65 ~ ·u e 0.6 
~ 
~ 0.55 u 
~ 0.5 .. 

] 0.45 

.~ 0.4 
~ 

0.35 

0 .3~-------r--------~-------r--------r-------~------~ 

0.07 0.115 0.16 0.205 0 .25 0 .295 0 .34 

Non Dimensional Valve lift 

Figure 39 Discharge Coefficient vs Exhaust Valve ND Lift 

From the relationships between non-dimensional valve lift and discharge 

coefficients the effective valve flow areas with respect to crank angle can be 

derived, and are shown in Figure 40. 
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6.2.5 Turbine And Compressor Data 

The turbine and compressor are both regarded as junctions as indicated in Figure 35. 

As with valve flow, compressor and turbine characteristics are represented by 

tabulated performance maps. The maps provide pressure ratio, mass flow parameter, 

speed parameter and isentropic efficiency data. At any instant during the simulation 

the flow through the turbocharger is a function of rotor speed and pressure ratio. 

The maps are interpolated during the simulation to determine mass flow and 

isentropic efficiency. The turbocharger is simulated as a fully dynamic system, 

hence mass flow, efficiency and rotor speed all vary throughout the cycle. 

6.3 Validation Of The Engine Simulation 

The simulation was set to model engine performance at the experimental operating 

points determined in Chapter 4 such that a direct comparison could be made 

between the experimental results and the simulation. Performance Monitor was used 

to generate the experimental results which reflected healthy engine performance. 

Performance Monitor generated 15 complete sets of results for each of the 9 

operating points, totalling 13 5 separate engine tests. These tests were conducted 
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to generate the experimental results which reflected healthy engine performance. 

Performance Monitor generated 15 complete sets of results for each of the 9 

operating points, totalling 135 separate engine tests. These tests were conducted 

over a 6 month period and therefore allowed for significant changes in ambient 

conditions such as relative humidity, barometric pressure and temperature. The 

testing conducted over this period totalled several hundred hours of running and 

therefore also accounts for variation in engine component bedding, power 

enhancement and bore condition effects. 

6.3.1 Comparison Of Simulation & Experimental Data 

The experimental results were averaged at each of the operating points to give a 

definitive data set which could be compared to the simulation results. A summary of 

the results are shown in Figures 41 to 45. 
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The results show that the SPICE model simulates the engine performance with a 

reasonable degree of accuracy. In nearly all cases the trends in performance are 

matched throughout the torque and speed range. The fact that the general trends are 

followed is considered more important than the simulation's absolute accuracy. This 

research used the simulation to predict trends in performance due to fault 

implementation and not absolute deviations. However, there were some differences 

between the experimental and simulation results and these are discussed below. 

(a) The Charge Air System: All of the charge air system parameters were well 

modelled, with the exception of low power turbocharger speed. All of the charge air 

parameters were modelled to within 4.3% throughout the power range. At the lowest 

power the simulated turbocharger speed was 16.7% higher than the experimental 

reading. This deviation reduced dramatically to within a few percent by mid range 

power. 

(c) Combustion & Injection: In order that maximum cylinder pressure, angle of 

maximum cylinder pressure and IMEP could be well modelled the point of injection 

needed to be retarded from that measured during experimentation for low speed, 

low torque conditions. Consequently the point of injection specified in the 

simulation was retarded by a maximum of 3.3° from the experimental results. This 

deviation is caused by the limitation of the heat release model to accurately predict 

the ignition delay and pre-mixed burning phases. This problem could have been 

overcome by specifying heat release through a user defined heat release map but the 

version of SPICE used for this simulation would not allow user defined heat release 

modelling. Evidence of the inability of the heat release model to predict the low 

power conditions is also reflected in the fuel delivery and BSFC data which showed 
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a maximum deviation of 8%. Again these deviations soon reduced to a few percent 

at the higher power conditions. 

(c) Exhaust System: The exhaust mass flow rate and mass flow rate parameter 

were well modelled to within a few percent. Exhaust manifold pressure showed a 

reasonable correlation with a maximum deviation of 5.26%. The low power 

conditions were well modelled but the discrepancy increased with increasing power. 

The exhaust manifold is specified in the simulation as a fixed volume reservoir 

accepting mass flow from the cylinders. The simulation neglects manifold geometry 

and assumes a uniform gas state spatially along the length of the manifold, 

neglecting pressure wave effects. Experimentally, exhaust manifold pressure was 

only measured at one location, close to the turbine inlet. It is thought that this steady 

trend in discrepancy between the experimental and simulated results was due to a 

combination of both the pressure wave effects and the location of the transducer. 

Altho-ugh absolute exhaust manifold temperatures were poorly modelled the trend 

throughout the speed and torque range was good. The large temperature difference 

between the simulation and experimental results can be attributed to a simulation 

simplification of the exhaust manifold heat transfer characteristics. The engine had a 

water cooled manifold but the simulation ignored heat transfer processes between 

the manifold walls and the exhaust gas in an attempt to keep the simulation as 

simple as possible. 
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6.4 Summary 

This chapter has detailed the development of a simple computer simulation model of 

a Perkins T6.354(M) diesel engine to evaluate trends in engine performance due to. 

the introduction of faults. The rationale behind program selection and simulation 

theory have been discussed. The results show that the model gives a good 

correlation with the experimental data for the majority of parameters. The 

simulation showed a poorer correlation for some fuelling parameters at low speeds 

and exhaust manifold temperature and pressure throughout the speed and torque test 

points. Reasons for this however, are understood and have been explained. Based on 

the results of the comparison between the experimental and simulated data the 

SPICE model was regarded as suitable for determining trends in engine 

performance due to the introduction of faults. 
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CHAPTER 7. 

DIESEL ENGINE FAULT 

VALIDATION & IMPLEMENTATION 

7.0 Introduction 

The methods used for fault introduction are particularly important. If faults are 

introduced in an unrealistic fashion the validity of the engine test data and 

conclusions drawn about the artificial neural network's diagnostic performance are 

questionable. The majority of faults were introduced using genuinely faulty 

T6.354(M) components which had been collected during the course of the fault 

study. These defective components were removed at engine refurbishment and had 

not been previously identified as being faulty during engine operation. When 

genuinely faulty components could not be used for engine test, simulated faults were 

created using a variety of methods which are discussed later in this chapter. Where 

appropriate, rig testing was used to assess the characteristics of the faulty 

components prior to engine test. The faults were also assessed using the computer 

simulation developed in Chapter 6 to estimate their effect on engine performance. 

The faults were simulated at the five highest power torque- speed stations since 

these were the most effectively modelled and the faults were expected to be more 

evident at the higher speeds and torques. Simulation allowed the sensitivity of 

engine performance to a particular fault to be estimated quickly. The use of simple 

fault simulation combined with a knowledge of genuine fault characteristics allowed 

an effective engine testing program to be developed. 
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A total of nine faults were identified as a result of the fault study which is outlined 

in Chapter 5. The following sections discuss how each of these faults were 

validated prior to engine testing. Further to this, methods of introduction of the 

faults for engine testing are detailed. 

7.1 Fouled Charge Air Filter 

Work conducted at Newcastle University[421 suggested that significant filter 

blockages can be tolerated before any degradation in performance can be detected 

.This is largely due to the degree of over design applied by engine manufacturers. 

The fault study detailed Chapter 5 revealed that filter blockages of up to 80% were 

not uncommon on Perkins T6.354(M) engines. Two severities of blockage, 30% and 

80%, were simulated using the SPICE model developed in Chapter 6. These were 

modelled by introducing a fixed volume upstream of the compressor. The additional 

volume was filled via a variable effective flow area orifice junction which 

connected between the volume and atmosphere. Where the effective flow area Ae is 

simply the actual flow cross sectional area multiplied it's discharge coefficient. The 

junction effective flow area was varied to simulate different severities of fouling. 

The additional volume was geometrically identical to the filter cone connected to 

the engine. A copy of the SPICE model file can be seen in Appendix 'D'. The 

junction effective flow area was derived from the initial engine trials using equation 

15. From experimental trials the following conditions were determined for the filter 

system; 

Mass flow rate of air through filter= 0.136 [kg/s] 

Temperature of air= 303.4 [K] 
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Upstream pressure= 100.5 [kPa] 

Downstream pressure= 100.4 [kPa] 

Assuming y = 1.39, Cp = 1000 J/kg.K & R = 280 J/kg.K 

Substituting values into equation CP, T, p & "{into equation 12 gives a throat 

velocity of 15.36 [m/s]. 

Substituting the calculated velocity into equation 13 gives a Mach number of 0.045, 

i.e. un-choked flow. 

Substituting values of p, T, CP, R & y into equation 15 gives an effective flow area 

of 8.85 * 10"3 [m2
] for a clean filter. 

The effective flow area for the clean filter was entered into the modified SPICE 

simulation and run through the five highest power torque and speed points to ensure 

that the addition of the clean filter had not affected the performance. Further 

simulation runs were conducted, each time reducing the effective flow area until the 

results began to deviate from the healthy engine simulation data. At an equivalent 

filter blockage of 80% trends in inlet manifold pressure, inlet air mass flow rate, 

exhaust temperature and exhaust manifold pressure started to develop. Figure 46 

compares data generated from the healthy and 80 % fouled air filter simulation 

models. To ascertain whether Performance Monitor could detect these predicted 

changes under engine test conditions, the repeatability of each parameter was 

plotted against the simulation data in Figure 46. Simulation was not conducted for 

fouling in excess of 80% because this was considered unrealistic based on the 

findings of the fault study detailed in Chapter 5. The fact that 80% filter fouling was 

considered realistic and that the instrumentation, in theory, was capable of 
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measuring these small performance changes it was decided that this fault was 

suitable for engine testing. The repeatability study only examined sensor precision 

under one set of torque and speed conditions. For Figure 46 to be valid it was 

assumed that sensor repeatability remains constant regardless of the engine 

operating point and that the engine torque and speed settings can be reproduced. 

Affects of ambient conditions are also neglected. 

144 



1500 [revs/ min]- 300 [Nm] 

0+---

-1 -+---

-2 +---------~~~~--~-----

-3 +---------~--------~--------~---------+---------4--------~ 

-4 ~---------L--------~----------~---------L--------~--------~ 

0 

-I 

1800 [revs/min] -293 [Nm] 

-2+---------,_--------~----

-3 +---------~--------~----------+---------~---------+--------~ 

-4 ~--------~--------~---------L---------L--------~--------~ 

0 +---­
-1 +---

1500 [revs/ min]- 427 [Nm] 

-2 +---------~--------~-----

-3 +---------~--------~----------+---------~--------~--------~ 

-4 ~---------L--------~----------~---------L--------~--------~ 

0 

-1 

2000 [revs/min]- 356 [Nm] 

-2 +---------4---------~----

-3 +---------~--------~----------r---------4----------+----------

2150 [revs/min]- 369 [Nm] 

• % Change In Parameter • Performance Monitor Parameter Repeatability 

Figure 46 Percentage Change In Simulated Performance Parameters Due To 
80% Fouled Air Inlet Filter Compared To Performance Monitors Data 

Repeatability 
145 



In practice air filters foul through the gradual build up material on the filter mesh, 

effectively blocking each of the mesh holes by a small amount. For this reason it 

was considered invalid to completely block 80% of the inlet area with a solid 

membrane. Instead, the fault was created by covering the clean filter with layers of 

perforated polythene. Since the perforation density and area of each perforation was 

known the percentage blockage could be calculated. 

7.2 Fouled & Corroded Intercooler Matrix 

This fault was recorded as the second most popular defect on engines returned for 

reconditioning. Two genuinely faulty intercooler units were obtained from engines 

which had been returned to a re-fitters for routine overhaul. Both intercoolers were 

fitted to the test engine and preliminary trials were conducted to establish their 

effectiveness. The effectiveness of both intercoolers was found to be almost 

identical which gave added confidence that the severity of this fault was realistic. 

Figure 47 compares the effectiveness and air side pressure drop of a new and faulty 

intercooler. 
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Figure 47 Healthy & Faulty Intercooler Performance Comparison 

Figure 47 shows that the returned cooler had a reduced effectiveness and an 

increased pressure drop on the air side of the matrix due to fouling. From the two 

intercoolers tested it can be concluded that reduced effectiveness and increased 

pressure drop will occur simultaneously, since both sides of the matrix are prone to 

fouling during engine operation. The values of effectiveness and pressure gradient 

from the intercooler tests were entered into the simulation and set to run at the five 

highest power torque - speed stations. The results summarised in Figure 48 

indicated that a faulty intercooler with a realistic degree of fouling could be detected 

by Performance Monitor. Based on this prediction it was decided that the 

intercooler fault warranted further experimental investigation. 
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7.3 Fouled Inlet Valves 

The fault study discussed in Chapter 5 showed that inlet valve fouling was a 

common feature on Perkins.T6.354(M) engines. The fouling of the valve, as shown 

in Chapter 5, Figure 32, changed the shape of the valve head. Relationships between 

non-dimensional valve lift and discharge coefficient are illustrated in Chapter 6, 

Figure 38. These relationships do not, however, consider a dramatically changed 

valve head profile, as was caused by the fouling. For this reason, the flow around a 

fouled valve was investigated using a Computational Fluid Dynamics, CFD, 

package known as FIDAP. The work conducted by the thermofluids section at 

RNEC Manadon concluded that the valve fouling did not reduce the discharge 

coefficient or mass flow, even when the fouling was increased to a greater level than 

seen during the fault study. For this reason fouled inlet valves were not investigated 

any further. 

7.4 Leaking Inlet Valves 

Four sample inlet valves which had been run in marine applications were acquired 

from ABB Propulsion Ltd., Derby. They all showed a degree of pitting on the faces 

and excessive carbon build up on the upper face of the valve head, between the face 

and stem. Figure 49 depicts a typical valve face which has been magnified 35 times, 

the pitting is shown quite clearly by the darkened patches. 
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Figure 49 Typical Pitted Inlet Valve Seating Face 

To quantify the leakage between the valve and cylinder head seat a test rig was 

designed and manufactured, as shown below in Figure 50. This allowed the cylinder 

head flame face and valves to be subjected to the maximum cylinder pressure 

experienced in testing, approximately 80 Bar. The pressure chest which butted 

against the flame face was tapped out to accept a supply of high pressure instrument 

air and a 200 Bar F.S.R. resistive strain gauge pressure transducer. The transducer 

was connected to a slow speed data acquisition card and samples were taken at one 

second intervals to monitor the pressure decay. 
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Figure 51 shows the results of the pressure rig tests. The fault study showed that 

single valve faults were particularly rare and, in general, catastrophic. For this 
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reason, it was considered more realistic to investigate a less severe leakage rate but 

across all inlet valves. Valves 8 & D were selected for analysis by simulation. The 

engine simulation model was modified to incorporate flow junctions between the 

cylinders control volumes and the inlet manifold, copies of the model can be seen in 

Appendix 'D'. The effective flow area of the junctions were determined from the 

results of the rig tests and some additional calculation, as detailed below. Where the 

effective flow area is the product of the hole cross sectional area and the discharge 

coefficient. 

Considering the following conditions; 

Nominal pressure in chest, Pu = 80 * 105 [Pa] 

Atmospheric Pressure, p1 = 1.01 * 105 [Pa] 

Temperature of instrument air Tu= 291 [K] 

CP = 1000 [J/kg.K], y = 1.39, R = 280 [J/kg.K] 

From the pressure rig tests; 

Valve 8: Pressure at to= 7991800 [Pa] and after 1 second t1 = 7859400 [Pa] 

Valve D: Pressure at to= 7842450 [Pa] and after 1 second t1 = 7424860 [Pa] 

From the equation of state; 

pV=mRT Equation 17 

Valve 8 mass flow rate= 4.057 * 10·4 [kg/s] 

Valve D mass flow rate= 1.609 * 10·3 [kg/s] 

Substituting the above values into equation 12 and calculating gives C = 506 [rnls]. 
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The Mach number at the throat may be calculated by equation 13, entering C = 506 

[m/s] gives a Mach Number of 1.06, hence choked flow. For choked flow, mass 

flow rate is given by equations 15 & 16. 

Substituting in values for mass flow rate, Pu· Pt> R, Tu. y and CP the effective flow 

areas, Ae for valves B & D can be calculated thus; 

Ae Valve B = 2.114 * 10-8 [m2
] 

Ae Valve D = 8.544 * 10-8 [m2
] 

The effective flow areas were entered into the simulation and run at the five highest 

power torque - speed stations. Figure 52 shows the percentage changes in 

performance due to the introduction of a leaking inlet valve with an effective flow 

area of 8.544 * 10-8 [m2
]. The simulation predicted no change in engine 

performance when a leaking valve with an effective flow area of 2.114 * 10"8 [m2
] 

was introduced. Only four parameters showed a consistent trend which would be 

measurable in practice. In these four instances the margin between parameter 

deviation and Performance Monitors repeatability was small. Since this fault could 

only be engine tested at one severity it was decided to increase the effective leakage 

area to provoke a more positive response from the engine. Through further 

simulation it was shown that an effective leakage area of 2.488 * 10·7 [m2
] would 

be required for Performance Monitor to detect the fault. This represented a very 

small increase of 0.159[mm2
] effective flow area, from the genuinely faulty valves 

tested. It was decided that this increased leakage area was still worthy of engine test 

since valve face guttering would lead to much greater increases in flow. 

To replicate this fault for engine testing new inlet valves were ground into the 

cylinder head and sent for machining. The effective leakage area was divided by the 
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discharge coefficient and a groove was machined into the valve face to give the 

correct leakage area. Figure 53 shows a valve which has been modified to simulate a 

leak. The machined yalve was then pressure tested to verify that the new increased 

flow area which had been machined still represented a leakage rate which was 

comparable to the genuinely faulty. The rig test results for the simulated leaking 

valve are shown in Figure 54. 
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7.5 Leaking Exhaust Valves 

Several genuinely faulty exhaust valves were obtained during the course of the fault 

study. These were pressure tested using the same rig and test method described 

above. The results are shown in Figure 55. 
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Figure 55 Rig Test Pressure Profiles Of Genuinely Leaky Exhaust Valves 

As with the inlet valves, the fault study showed that it was far more realistic to 

investigate a small leakage area on all exhaust valves, rather than a large leakage, 

due to a catastrophic failure, on one single valve. 

The SPICE simulation model was modified to incorporate flow junctions between 

the cylinder control volumes and the exhaust manifolds, copies of the simulation 

model can be found in Appendix 'D'. The effective flow area of the junctions was 

calculated using the same method as described above for the inlet valves. From the 

calculations, valves D and C returned effective flow areas of3.477 * 10-8 [m2
] and 

9.522 * 10-8 [m2
] respectively. The simulation was run at the five highest power 
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torque - speed points. The performance parameter deviations predicted by the 

simulation for valve C are plotted with the respective Performance Monitor data 

repeatabilities in Figure 56. The simulation model which had leaking exhaust valves 

with an effective flow area of 3.477 * I0-8 [m2
] predicted no change in engine 

performance. 

Although the simulation which incorporated an effective leakage area of 9.522 * 

I0-8 [m2
] predicted a slight degradation in performance, the deviations generally fell 

within the repeatability of Performance Monitor. As a result these changes in 

performance would not be detected during engine test. Through further simulation it 

was established that an effective leakage flow area of 3.72 * I0-7 [m2
] would be 

required before any changes in performance would be detected by Performance 

Monitor. This represented a very small increase of 0.277[mm2
] effective flow area, 

from the genuinely faulty valves tested. It was decided that this increased leakage 

area was still worthy of engine test since valve face guttering would lead to much 

greater increases in flow. The exhaust valve leakage was reproduced for engine test 

by the same valve face grooving technique used for the inlet valves. 
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7.6 Incorrect (retarded) Fuel Pump Timing 

No data could be obtained to identify a realistic degree of fuel pump mis-timing. As 

a result, 1.0° retardation was chosen as a starting point for initial simulation. If the 

simulation predicted no changes in performance, the degree of retardation would be 

increased until the changes in performance reached a level which could be detected 

by Performance Monitor. The SPICE simulation model was modified by retarding 

the point of injection in heat release data set by 1.0°. 

At 3° retarded injection, the simulation model predicted trends in performance 

which, in theory, could be detected by Performance Monitor. These trends are 

shown in Figure 57. It was decided that this fault warranted further investigation 

through engine test. The fault was replicated on the engine by rotating the fuel pump 

on the auxiliary drive. The amount of rotation was calculated from the pump body 

diameter, 0.5 mm of arc rotation equated to 1° of crank angle. 

7.7 Injector Faults 

As a result of the fault study 19 atomisers were acquired from engines in the field 

and made available for testing. All atomisers were obtained from engines 

manufactured to the same build list as the test engine. All atomisers were 

manufactured by Lucas CA V and had identical atomiser & nozzle part numbers as 

the test engine. Although simulation could not be used to quantify the effect on 

performance, a substantial amount of rig test work was carried out to assess each 

atomisers performance. 
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The rig testing strategy developed allowed the nozzles to be tested statically to 

assess back-leakage, breaking pressure, spray formation and atomisation during 

injection. All of the rig testing was conducted on a Hartridge atomiser test rig. Back­

leakage and breaking pressure were recorded using the instrumentation on the 

Hartridge rig. Spray formation and atomisation were recorded using spray pattern 

tests and high speed photography. The results allowed 3 atomisers from the 19 

tested to be selected for engine test, based on the distinct differences between the 

baseline and faulty atomisers. 
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7.7.1 Spray Pattern Tests 

The spray pattern tests allowed static comparisons to be made between the baseline 

and faulty nozzles. The Hartridge rig was adapted to accept a back-plate which 

would hold sheets of paper to record the spray pattern. Figure 58 shows the 

modified Hartridge rig. The 4 holes in the nozzle tip were offset to account for the 

angle of injector mounting in the cylinder head and to achieve the best spray 

formation across the combustion chamber. The back-plate, however, was mounted 

perpendicular to the atomiser body. This created a spray pattern which indicated the 

penetration of the spray from the two holes on the fuel pump side of the engine 

being much greater than the other two holes, in reality this was not the case. The 

Hartridge rig operated in the normal way in all other respects. Tests were carried out 

to identify the ideal back-plate to nozzle tip clearance giving the best clarity results. 

It was established that ?mm gave the best results. Spray pattern tests were 

conducted for both the baseline and the returned atomisers. 

7.7.2 High Speed Photographic Technique 

Since the static tests only gave an indication of spray angle, degree of penetration 

and to a lesser degree, shape of plume it was decided to use high speed photography. 

The high speed photography allowed a qualitative assessment of spray penetration, 

plume shape and degree of atomisation. The camera and film speed was set to 4000 

frames per second. The developed photographs were made available in a series of 

stills which 
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Figure 58 Modified Hartridge Test Rig 

shows the progressive formation of the spray in a step by step format and a video 

showing the dynamic formation. Since it was not possible to apply high speed 

photographic techniques to all of the returned atomisers 3 were short-listed based on 

the spray pattern tests . 

7.7.3 Baseline Injector Rig Test Results 

The baseline injector had been subjected to several hundred hours of engine running 

prior to rig testing. Despite this, the back leakage time was in excess of 1 minute for 
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a pressure drop of 50 [Bar] from 150 [Bar],compared to a minimum specified time 

of six seconds. The breaking pressure was recorded at 203 [Bar], slightly below the 

recommended level of 205 [Bar]. The characteristic buzzing noise was made during 

injection. 

The spray pattern shown in Figure 59 identified four fairly evenly spread plumes of 

spray with the right hand side plumes slightly offset from the axis lines, a 

characteristic present on all nozzles. The spray started to deposited approximately 

20mm from the centreline of the nozzle and spread to 80 mm on the lower two 

nozzle holes and 60 mm on the upper holes. The average spray area was 570 [mm2
] 

per plume and the maximum plume width was 19[mm]. 

Figure 59 Static Spray Pattern Of The Baseline Injector 
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The high speed photography results in Figure 60 clearly show the development of 

four even plumes of spray with a well defined core until the break up distance is 

reached. The core of each plume is surrounded with an even nebula of finely 

atomised fuel extending out and showing good penetration. 
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Figure 60 High Speed Photography Stills Of The Baseline Injector Spray 
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7.7.4 Excessively Worn Needle & Nozzle Rig Test Results 

This atomiser gave a back-leakage time of less than 1 second. This atomiser tended 

to hose fuel and no defmitive breaking pressure could be determined, however, fuel 

started to discharge from the nozzle at approximately 155 [Bar]. Instead of the 

characteristic buzzing noise made by the baseline nozzle a dead hissing noise was 

heard. The spray pattern results in Figure 61 showed three heavy patches of spray 

and one less intense, all in the same angular position as the baseline. Three of the 

four plumes started to deposit 15 [mm] from the nozzle centre line and extended out 

to approximately 60 [mm]. The maximum plume width was 24 [mm] and the 

average spray area per plume was 480 [mm2].Plume width and spray area were 

difficult to calculate in this case since the spray laid very densely on the paper and 

was soon absorbed, spreading the diesel further than originally sprayed. 

Figure 61 Static Spray Pattern Of The Worn Needle & Nozzle Injector 
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The high speed photography in Figure 62 clearly shows four streams of un-atomised 

fuel. Although probably achieving the same degree of penetration as the baseline 

nozzle, no spray core is formed and little or no atomisation takes place. Figure 63 

shows photographs of new nozzle holes and the excessively worn nozzle holes. The 

excessively worn nozzle holes are not only larger but the exterior edge of the hole is 

chamfered. 
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Figure 62 High Speed Photography Stills Of The Worn Needle & Nozzle 
Injector Spray 

170 



Figure 63 Comparison Of New And Worn Injector Nozzle Holes 

This external chamfering will affect both the discharge coefficient of the nozzle 

hole and its atomising capability. Both spray angle and spray penetration can be 

related to the diameter of the nozzle holes. For a nozzle which gives a spray in the 

atomisation regime the spray angle 8 follows the relationship; 

Equation 19 

Where p g and p l are the gas and liquid densities and A is a constant for a fixed 

nozzle geometry. Based on the high speed photography it is thought that the spray 

from the worn nozzle does not operate in the atomisation regime. As a consequence 

this expression can not be applied. It should also be noted that this expression takes 

no account of hole geometry other than the basic nozzle length - diameter ratio. 

Spray penetration can be related to nozzle hole diameter from; 
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1 1 

S= 307[~ ) 4 ~ ~4 
)

4 
Equation 20 

Where !lP is the pressure drop across the nozzle, p & T are the density and g g 

temperature of the gas respectively, t is time after the point of injection and d is n 

the diameter of the nozzle holes. This expression also neglects hole shape effects, it 

could, however, be argued that any changes in hole shape would change the 

discharge coefficient and consequently the pressure drop across the nozzle holes. 

7.7.5 Blocked Injector Nozzle Hole Rig Test Results 

This atomiser gave a back-leakage time of 34 seconds and a breaking pressure of 

195 [Bar]. It also emitted the characteristic buzzing noise associated with a good 

injection. The spray pattern result in Figure 64 shows three plumes of spray as 

would be expected. Two plumes were not dissimilar to the baseline injector, the 

third was somewhat more concentrated. Two plumes started to deposit spray 20 

[mm] from the nozzle centre line as with the baseline but spread out in excess of 90 

[mm], 10 [mm] further than the greatest baseline plume. The remaining plume 

started at a distance 25 [mm] from the nozzle centreline and spread out to 70 [mm]. 

The maximum plume width was 22 [mm] and the average spray area per plume was 

770 [mm2
]. These results prove that the blocked injector discharges similar width 

plumes of spray which penetrate further than the baseline, as would be expected. It 

also suggests that although the injector is blocked the amount of fuel delivered to 

the combustion chamber will not be dramatically reduced. Equations 19 and 20 also 

reinforce the spray pattern findings. 
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Figure 64 Static Spray Pattern Of The Blocked Nozzle Hole Injector 

The high speed photography reinforced this as shown in Figure 65. Two of the 

plumes show very well defined cores of spray which have an increased break up 

length. It is interesting to note that the overall spray angle is comparable with the 

baseline but the core which exists until brake up is wider and shows very little 

atomised fuel spray along it's flanks. Finely atomised spray readily forms at the tip 

of plume projecting outwards. The remaining plume never develops a full core, the 

spray shows penetration and atomisation both less satisfactory than that obtained 

from the baseline nozzle. 
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Figure 65 High Speed Photography Stills Of The B!ocked Nozzle Hole Injector 
Spray 
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7.7.6 Low Breaking Pressure Injector Rig Test Results 

This atomiser gave a back-leakage time of 43 seconds and a breaking pressure of 

155 [Bar]. The spray pattern test results shown in Figure 66 depicts 4 plumes which 

started to deposit spray between 10 and 15 [mm] from the nozzle centreline, closer 

than displayed by the baseline. The spray projected out to 70 [mm], 10 [mm] less 

than that of the baseline nozzle. The maximum plume width was 28 [mm] and the 

average spray area per plume was 590 [mm2
]. Occasionally the normal buzzing 

noise could be heard during injection. The nozzle behaved exactly as expected, 

wider plumes of spray with less penetration. 

Figure 66 Static Spray Pattern Of The Low Breaking Pressure Injector 
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Figure 67 High Speed Photography Stills Of The Low Breaking Pressure 
Injector Spray 
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The high speed photography in Figure 67 reinforces these conclusions further. Four 

even plumes of spray develop, more pointed and all showing a smaller core than the 

baseline nozzle. The spray surrounding the plume cores consist of a mixture of 

droplets and spray which is not as finely atomised as the baseline spray. Break-up 

length and penetration are both slightly reduced when compared to the baseline 

nozzle. 

7.8 Summary 

The fault study identified several faults which were worthy of further investigation. 

This chapter has shown how rig testing and computer simulation techniques can be 

used to assess genuinely faulty engine components and their effect on engine 

performance. Each fault has been qualitatively assessed to determine realistic levels 

of fault severity found in practice. Where possible the faults have been modelled 

using a simple computer simulation to ascertain their effects on engine performance 

trends. As a result research objective 4 was satisfied and the following faults were 

considered suitable for experimental engine test. 

1. 80% Fouled air filter 

2. 40% Effective genuinely fouled & corroded intercooler 

3. Leaking inlet valves with an effective leakage area of 0.248 [mm2
] 

4. Leaking exhaust valves with an effective leakage area of 0.372 [mm2
] 

5. 3° Crank angle retarded fuel pum-p timing 

6. Excessively worn injector needle & nozzle [genuine faulty component] 

7. Blocked injector [genuine faulty component] 

8. Low breaking pressure injector [genuinely faulty component] 
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CHAPTERS 

EXPERIMENTAL RESULTS & DEVELOPMENT OF FAULT 

SYMPTOM RELATIONSHIPS 

8.0 Introduction 

This chapter examines the experimental results of the engine testing conducted 

during this research. The automated performance monitoring package, Performance 

Monitor, developed as part of this research was used to generate all of the results 

files for both healthy and faulty modes of operation. This allowed complete results 

files to be generated and compared in a convenient way. The testing procedure 

discussed in Chapter 4 was applied to all of the test work undertaken in both 

healthy and faulty modes of engine operation. 

The experimental data was collectedover an 11 month period, which allowed-for 

variations in ambient conditions and changes in engine performance. The eight 

faults discussed in Chapter 7 were investigated under engine test conditions. The 

engine testing programme began with baseline tests to establish a datum for the 

healthy engine. Each fault was subsequently introduced, directly followed by 

another set of baseline testing with the fault removed. This ensured that the 

introduction and removal of each fault did not affect healthy engine performance. It 

also acted as a constant check on the performance monitoring system since the 

results were checked back-to-back with previous baselines. 
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The severities of fault, determined through the simulation trends and rig testing in 

Chapter 7, were introduced for engine testing. In some instances, a second series of 

engine tests were conducted at a different fault severity based on the results of the 

initial engine test. 

The experimental results for each fault were compared against the baseline results 

and the salient differences were identified, quantified and are discussed in the 

following sections. These differences were used to create a set of fault symptom 

relationships which formed the foundation for development of a neural network 

based diagnostic system. Section 8.1 discusses the baseline data, subsequent 

sections detailing faulty engine results, show the percentage changes in data due to 

the introduction of the fault and lead to the development of fault-symptom 

relationships. 

8.1 Baseline Experimental Results 

In total 135 separate engine tests were conducted over an eleven month period to 

establish the healthy performance of the engine. These results were used as the 

datum with which to compare the engine data taken under faulty condition. The data 

obtained at each torque and speed for all of the baseline runs was averaged to form a 

definitive set of baselines. The maximum and minimum values of each parameter 

recorded during baseline testing were identified to quantify the repeatability 

demonstrated by each parameter throughout the entire set of baseline tests. The 

following sections discuss the definitive baseline data sets and the most notable 

variations in repeatability. For convenience, the analysis and discussion is split into 
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five sections, sensor data, injection and combustion data, general performance data, 

charge air system data and exhaust system data. 

8.1.1 Analysis Of Baseline Sensor Data 

The majority of measurements showed good repeatability to within 5% i.e. +1-

2.5%, and generally speaking, all sensor readings showed an improving percentage 

repeatability with increasing engine power. Sensors which appeared to give poor 

repeatability are discussed in more detail below. 

• Exhaust manifold pressure showed a maximum variation of 12.79% at 2000 

[revs/min] and 354 [Nm], but on average, showed a repeatability of 8.1 %. This 

was expected since the repeatability trials showed that the measurement 

repeatability was 4.57% neglecting changes in ambient conditions and setting of 

torque and speed. The poor repeatability of this parameter is largely due to the 

inherent difficulty of measuring the average pressure of a pulsating gas stream of 

varying pressure, temperature and velocity as proved by the repeatability trials 

results. 

• Fuel rack position showed a maximum deviation of 10.5% and an average 

deviation of 7 .44%. For engine torque and speed stations where the fuel rack was 

set to full the deviation was within+/- I%. This variation in fuel rack position 

was due to a combination of factors. It was initially thought that the fuel rack 

position varied due to the inability to set engine torque and speed repeatably. On 

examination of the data, there was no apparent relationship between variations in 

torque and speed and fuel rack position. Since the aim was to hold speed and 
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torque constant all performance deviations caused by ambient conditions would 

manifest themselves in a varying fuel rack position. In nearly all cases the 

maximum and minimum fuel rack positions coincided with the minimum and 

maximum inlet air temperatures respectively. This relationship was further 

substantiated by the fuel injection and combustion data which is discussed later in 

this chapter. The linkage between the actuator and the fuel pump rack was 

checked to confirm that no mechanical play was contributing to this large 

variation in reading repeatability. 

• Turbocharger speed showed a maximum deviation of 8.59% at 1500 [revs/min] 

and 100 [Nm], but an average repeatability of 4.6% across all torques and speeds. 

As torque and speed increased through the power range the percentage 

repeatability improved to 2.6% at 2150 [revs/min] and 354 [Nm] but the actual 

variation remained fairly constant at approximately 2000 [revs/min]. This was 

higher than expected based on the repeatability trials result of 1.94%. No 

relationship between turbocharger speed variation and other parameter variations 

could be established. 

• Mass flow rate of fuel showed a deviation of 10.13% at 1500 [revs/min] and 100 

[Nm] which steadily decreased to 1.28% at 2150 [revs/min] and 372 [Nm]. The 

repeatability trials identified a repeatability of 2.89% neglecting changes in 

ambient conditions and the ability to consistently set torque and speed. It was 

thought that a combination of varying ambient conditions and the inability to 

precisely set engine torque and speed contributed to these large variations. At the 
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2150 [revs/min] and 372 [Nm] and 1500 [revs/min] and 430 [Nm] test points, 

fuel throttle position was set at the maximum and effectively became a constant. 

In these instances fuel mass flow rate repeatability was much improved at 1.28% 

and 4.34% respectively. This indicates that the variation of fuel throttle position 

to maintain the set engine torques and speeds was certainly a contributing factor 

to the variations in fuel mass flow rate readings. 

8.1.2 Analysis Of Baseline Fuel Injection & Combustion Data 

The repeatability trials showed that all fuel injection and combustion events could 

be measured to 0.5° crank angle repeatability neglecting variations in ambient 

conditions and variations in the setting of engine speed and torque. Repeatability of 

the baseline data was generally good and improved with increasing engine power. 

The following sections discuss the baseline results in more detail . 

• Needle lift data showed a spread in point of injection of 3.5° crank angle. There 

was no evidence of a direct relationship between point of injection and engine 

torque and speed as would be expected. Fuel rack position and point of injection 

could be related and it was thought that since the objective was to hold speed and 

torque constant that rack position, and consequently the point of injection varied 

to compensate for changes in ambient conditions. Examination of the ambient 

conditions revealed that the maximum and minimum values of injection timing 

and fuel rack position coincided with the maximum and minimum air inlet 

temperatures. It can be concluded that point of injection is particularly sensitive 

to inlet air conditions. Duration of injection was very repeatable at all torques and 
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speeds. Needle lift trace shape was also repeatable with the exception of the 

lowest power condition at 1500 [revs/min] and 100 [Nm]. The maximum 

deviation in point of injection also occurred at this torque and speed. It was 

thought that since the needle never lifts fully and the quantity of fuel injected was 

relatively small the fuel pumps behaviour was slightly erratic at this low torque, 

low speed condition. 

Fuel line pressure readings showed an excellent correlation with needle lift data. 

Generally the repeatability was good taking into account the shifts in point of 

injection discussed above. If fuel line pressure data and needle lift data from two 

sets of results which both have similar ambient conditions and torque-speed settings 

the repeatability was excellent as shown in Figure 68. This excellent repeatability 

was evident at all torques and speeds. The maximum deviation in peak fuel line 

pressure was 16.3% at the 1500 [revs/min] and 430 [Nm] test point. The average 

variation in peak fuel line pressure throughout the torque and speed range was 8.2%. 

Position of maximum fuel line pressure was very repeatable at all torques and 

speeds except the two highest power test points. Position of maximum fuel line 

pressure agreed within OS crank angle relative to point of injection. At the two 

highest power test points the pressure data featured several pressure peaks which 

only differed from the peak pressure by several bar. Therefore a slight increase or 

decrease in pressure at any of these peaks resulted in a large change in position of 

maximum fuel line pressure, even though the overall pressure traces were almost 

identical. 
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Figure 68 Repeatability Of Fuel Line Pressure And Needle Lift Under Constant 
Ambient And Engine Torque And Speed Conditions 

• The only obvious variations in cylinder pressure were caused by the variation of 

point of injection. Consequently varying points of injection gave variations in 

maximum cylinder pressure and it' s position relative to crank angle. As with the 

injection data, maximum cylinder pressure and it's position relative to crank 

angle showed the greatest variations of 11.2% and 4.5° respectively, at 1500 

[ revs/min] and 100 [Nm]. 
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8.1.3 Analysis Of Baseline General Performance Data 

The majority of these parameters were calculated using slow speed sensor data and 

cylinder pressure data. Consequently, any variations in cylinder pressure or sensor 

data had impacts on the repeatability of these performance parameters. 

• The variations in cylinder pressure data discussed above caused deviations in 

IMEP and subsequently any other indicated parameters. In theory, for a given 

engine speed FMEP should remain constant. Since the objective was to 

consistently set engine torque and speed, BMEP should also have remained 

constant. Given this, it was reasonable to assume that IMEP and mechanical 

efficiency should also have remain constant. In practice this proved not to be the 

case. The repeatability trials showed that IMEP was repeatable to within 2.3%. 

The baseline results showed however, that throughout the torque and speed range 

the average repeatability was 9.9%. It was initially believed that mechanical 

efficiency may have improved due to running in over the eleven month 

experimental period. Analysis of the data did not provide conclusive evidence of 

this. It was therefore concluded that IMEP calculation was susceptible to 

variations in ambient conditions which may not necessarily have the same impact 

on BMEP. 

• Friction and pumping mean effective pressure showed large percentage 

deviations throughout the torque and speed range. These high percentage 

deviations were a result of small pressure deviations relative to the transducer 

FSR. For example, at 1400 [revs/min] and 186 [Nm] actual pressure deviations 

of 0.03 [Bar] in PMEP and 0.29 [Bar] in FMEP gave rise to the large percentage 
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differences of 16.2 and 26.85% respectively. These pressure differences represent 

0.02% and 0.19% of the transducer FSR. It was therefore concluded that these 

deviations were caused by the limitations of transducer sensitivity. 

8.1.4 Analysis Of Baseline Charge Air System Data 

Some parameters gave very large percentage differences throughout the torque and 

speed range, these are discussed below; 

• Compressor speed parameter showed a maximum variation of 8.9% at 1500 

[revs/m in] and I 00 [Nm]. Throughout the torques and speeds, deviations in 

compressor speed parameter coincided with variations in turbocharger speed as 

would be expected. Turbocharger speed variations are discussed in Section 8.1.1. 

• Compressor isentropic efficiency variations were caused by pressure 

instrumentation sensitivity. Maximum and minimum efficiencies coincided with 

the maximum and minimum compressor discharge pressures and pressure ratios. 

The maximum and minimum pressure ratios could not be related to either 

turbocharger rotational speed or mass flow rate parameter maximums and 

minimums. Although the compressor pressure ratios were generally repeatable 

giving a maximum deviation of 4.09%, compressor efficiency was very sensitive 

to pressure ratio particularly when the pressure ratio was small as was the case at 

the lower engine torques and speeds. This can be illustrated by using the data 

recorded at 1500 [revs/min] and [100] Nm as an example. If the compressor 

temperature ratio was held constant and a variation of 0.853% was applied to the 

pressure ratio there was a significant change in compressor isentropic efficiency 

as shown below. 
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Compressor isentropic efficiency is given by; 

y-1 

(p2/p1) y - 1 
17 = ____;:=-:---____::_----,-__ 

ctt (T2 /T1)-1 

Applying a constant temperature ratio of 1.0304 and the maximum and minimum 

pressure ratios of 1.015 and 1.006 gave isentropic efficiencies of 13.51 & 5.42% 

respectively, representing a percentage change in excess of 100%. 

• Intercooler air and water temperature gradients showed maximum variations of 

121.2 and 208.251% respectively. These deviations arose because of two reasons. 

Firstly, the large range of intercooler cooling water inlet temperatures which 

varied approximately IO[K]. Consequently, the air was cooled significantly more 

with a cooler water inlet temperature. Secondly, the temperature gradients, 

particularly for the cooling water, were small, yielding high percentage 

differences for small absolute temperature changes. This theory is supported by 

the percentage deviation in intercooler water and air temperature gradients 

decreasing as engine power and consequently, temperature gradients increase. 

• Intercooler air pressure gradient showed a maximum variation of 193.8%. As 

with the intercooler cooling water temperature gradient, the air pressure gradient 

was small leading to an enormous percentage variation for small pressure 

changes. The pressure drop was also particularly small when compared to the 

FSR of the pressure transducers. The intercooler inlet and discharge pressures, 

however, show good repeatability to within a couple of percent. It was concluded 

that the instrumentation sensitivity was certainly a limiting factor when trying to 

measure such small pressure drops. 

187 



8.1.5 Analysis of Exhaust Gas System Data 

The largest two variations encountered were turbine speed parameter and turbine 

isentropic efficiency which showed maximum deviations of 8.11 and 149.9% 

respectively. The turbine speed parameter displayed a poor repeatability because of 

the variation in turbocharger rotational speed. Turbine isentropic efficiency was 

badly affected by the large variations in exhaust manifold pressure in a similar 

manner to compressor isentropic efficiency discussed above in Section 8.1.4. 

8.2 Development Of Fault - Symptom Relationships 

The following sections discuss the engine testing conducted and show a summary of 

the results obtained for each engine fault tested. All results are presented in a tabular 

format which shows the percentage change in average sensor reading when 

compared to the average baseline reading. This comparison was performed for every 

sensor reading and performance parameter contained within the Performance 

Monitor file. The tables shown only contain the parameters which showed the most 

consistent trends. Further to this, the magnitude of change due to the fault 

introduction was compared to the natural variation of each parameter recorded 

during baseline testing. This had the effect of exposing parameters which exhibit a 

significant change, greater than experimental error or natural variation, due to 

ambient conditions. Superimposed over the numerical values is a colour coding. 

Red and blue cells denote positive and negative sensor deviations which exceed the 

baseline set repeatability. These deviations can therefore almost certainly be 

attributed to the introduction of the fault. Yellow and green cells identify readings 

which show positive and negative deviations which fall within the baseline set 
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repeatability but show a basic trend. Once compiled, these tables represent the fault­

symptom relationships used as the foundation for the development of a neural 

network based diagnostic system. 

The salient features of the fuel injection and combustion data, for example point of 

injection, duration of injection, ignition delay, position of maximum cylinder 

pressure etc. were also compared and displayed in the fault-symptom tables where 

appropriate. Plots of average cylinder pressure, fuel line pressure, needle lift and 

approximate heat release against degrees crank angle for both baseline and faulty 

conditions are also presented where the introduction of the fault caused the data to 

change significantly. 

8.3 Fouled Charge Air Filter Experimental Results 

Ninety separate engine tests were conducted over a five week period to quantify the 

effect of a fouled charge air filter. Initially forty five tests were conducted at a 80% 

level of fouling as discussed in Chapter 7. As a result, some clear trends developed 

in sensor and performance parameter data. Despite previous research and the SPICE 

simulation model both predicting that 30% fouling would be undetectable, it was 

decided to engine test at 30% fouling based on the results found at the 80% level of 

fouling. The two sets of results could subsequently be used to determine the ability 

of the neural network to correctly diagnose the fault and identify the level of 

severity. The fouling was introduced by the perforated polythene method described 

in Chapter 7. The following sections analyse the results obtained at both severities 

and display the results in the fault-symptom tables. 
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8.3.1 Analysis Of 80% Fouled Air Filter Sensor Data 

Table 14 details the sensor readings which showed a deviation due to the 

introduction of a 80% fouled air filter. In total, 14 sensor readings showed trends. 

These are discussed below. 

• The reduction in inlet air flow rate was the most positive trend identified, as 

might be expected. Inlet air volume flow rate showed a maximum decrease of 

10.7%. Coupled with the lower flow rate, compressor inlet, discharge and inlet 

manifold pressures all showed reductions due to the filter fouling. At lower 

engine powers the pressure decreases fell within the baseline repeatability. As 

engine power increased the deviation became larger until it exceeded the baseline 

repeatability showing a strong trend. 

• There was a small but consistent trend in reduced turbocharger speed due to the 

decrease in charge air mass flow and subsequently exhaust gas mass flow. 

Increased temperatures throughout the exhaust system also gave a clear trend. 

This was consistent with a fuel rich mixture and later burning during combustion. 
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Nom. Speed [revs/min]-Torque [Nm] 
Inlet Air Volume Flow Rate 
Compressor Discharge Pressure 
Compressor Inlet Pressure 

1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 

Inlet Manifold Pressure 
Turbine Discharge Pressure 
Turbocharger Speed 
Compressor Discharge Temperature 
Compressor Inlet Temperature 
Cylinder 1&2 Port Temperatures 
Cylinder 3 Port Temperature 
Cylinder 4 Port Temperature 
Cylinder 5&6 Port Temperatures 
Exhaust Manifold Temperature 
Turbine Discharge Temperature 

1.5 
0.3 
-0.4 
0.6 
0.5 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

1.0 
0.7 
0.3 
0.6 

Table 14 Percentage Changes In Sensor Data From Baseline Due To An 80% Fouled Charge Air Filter 
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8.3.2 Analysis Of 80% Fouled Air Filter Performance Parameter Data 

Twelve performance parameters showed trends due to the 80% fouled air filter as 

shown in Table 15. 

• Volumetric efficiency, inlet and exhaust mass flow parameters and inlet and 

exhaust mass flow rates used inlet air volume flow in their calculation, 

consequently they all showed a negative deviation. Compressor speed parameter 

showed a steady decrease in line with the decrease in turbocharger speed. Turbine 

speed parameter showed a deviation greater than turbocharger speed decrease due 

to the increased exhaust temperatures. 

o IMEP and PMEP both showed consistent increases which fell within the ranges 

experienced during baseline testing throughout the speed and torque range. These 

increases were expected since the cylinder pressure data was corrected using the 

inlet manifold pressure as described in Chapter 4, Section 4.2.1 . 

. • The intercooler air temperature gradient showed an increase representing greater 

charge air cooling. It was thought that the rate of heat transfer had remained 

constant but the mass flow rate of charge air through the intercooler had 

decreased and it was therefore subjected to greater cooling. 
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Nom. Speed [revs/min]-Torque [Nm] 
Indicated Power 
IMEP 
Intercooler Effectiveness 
Volumetric Efficiency 
PMEP 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Compressor Speed Parameter 
Intercooler Air Temperature Gradient 
Exhaust Gas Mass Flow 
Exhaust Gas Mass Flow Parameter 
Turbine Speed Parameter 

1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

1500-430 
1.8 
1.9 
0.7 

2000-354 
0.9 
1.0 
1.0 

2150-372 
1.3 
1.4 
1.2 

Table 15 Percentage Changes In Performance Parameters From Baseline Due To An 80% Fouled Charge Air Filter 
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8.3.3 Analysis Of 80% Fouled Air Filter Injection & Combustion Data 

There were no detectable trends in the fuel injection data. Similarly the combustion 

data showed little deviation from the baseline data. A small deviation was present in 

the cylinder pressure diagram and the approximate heat release profile at 2150 

[revs/min] & 372 Nm, these are shown in Figure 69. The cylinder pressure trace 

shows a decrease in maximum compression pressure as would be expected with a 

smaller trapped mass. The approximate heat release diagrams show that the 

introduction of the fault increases the rate of heat release and subsequent burning 

takes place later in the cycle which lead to the higher exhaust system temperature 

data shown in Table 14. 

8.3.4 Analysis Of 30% Fouled Air Filter Data 

With the exception of air flow, all trends in the data had diminished and were 

undetectable at the 30% level of filter fouling. Table 16 shows the percentage 

changes in the parameters from the baseline results due to a 30% fouled charge air 

filter. Air volume flow rate showed a decrease in the order of 2% from the baseline 

at 30% fouling compared to the 9-10% reduction from the baseline at 80% filter 

fouling. 
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Figure 69 Comparison Of Baseline & 80% Fouled Air Filter Cylinder Pressure 
& Heat Release Data At 2150 [revs/min] & 372 [Nm] 
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Nom. Speed (revs/min]-Torque [Nm) 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 
Inlet Air Volume Flow Rate 
Compressor Inlet Pressure 
Cylinder 3 Port Temperature 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Volumetric Efficiency 
Exhaust Gas Mass Flow Rate 
Exhaust Gas Mass Flow Rate Parameter 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

Table 16 Percentage Changes In Performance Parameter & Sensor Data Due To A 30% Fouled Air Filter 
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8.4 Fouled & Corroded Intercooler Matrix Experimental Results 

Ninety separate engine tests were conducted over a four week period to assess the 

affect of a genuinely fouled and corroded intercooler matrix on engine performance. 

Two genuinely faulty intercoolers were obtained and both underwent preliminary 

trials as described in Chapter 7. Initially engine testing was performed with one of 

the genuinely faulty coolers fitted to the engine. The results clearly showed that the 

introduction of this fault affected engine performance. Further to this, a second 

series of testing was conducted with a simulated foul condition significantly less 

than the genuine intercooler. This additional data was collected so that it could be 

used to determine the neural networks ability to identify not only the fault but also 

its severity. The following section discusses the results and present the fault­

symptom relationship tables. 

8.4.1 Analysis Of Genuinely Fouled & Corroded Intercooler Sensor Data 

Table 17 shows the percentage changes in average sensor readings from the average 

baseline results due to the introduction of a genuinely fouled and corroded 

intercooler. Several sensor readings showed deviations, these are discussed below. 

• Charge air temperature in the inlet manifold rose steadily with increasing engine 

power and maintained a deviation greater than the baseline repeatability for the 

five highest power test points. 

• The increase in charge air temperature caused the exhaust port temperatures, 

exhaust manifold and turbine discharge temperatures to rise particularly at higher 

power. 
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• The inlet manifold pressure increased slightly but never showed a large enough 

deviation to exceed the baseline repeatability. It was expected that the inlet 

manifold pressure would decrease because of the greater pressure drop across the 

intercooler due to air side fouling. Although this may have been evident it was 

masked by the higher charge air temperature and consequently increased 

pressure. This was further substantiated by the reduction of inlet air volume flow 

rate since the higher temperature charge air had a lower density than the cooler 

baseline charge. 

• The intercooler cooling water discharge temperature showed a decrease as was 

expected with reduced heat transfer across the cooler matrix. 

• Turbocharger rotational speed and turbine discharge pressure showed minimal 

deviations which never exceeded ,the baseline set repeatability. 

8.4.2 Analysis Of Genuinely Fouled & Corroded Intercooler Performance 
Parameter Data 

Table 18 shows the percentage change in performance parameters from the average 

baseline data due to the introduction of a fouled & corroded intercooler. 

• Intercooler air and water temperature gradients and consequently intercooler 

effectiveness all showed a clear reduction which exceeded the baseline set 

repeatability. 

• lntercooler air pressure gradient increased due to increased air side fouling but 

did not consistently exceed the baseline set repeatability. 
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• Inlet air mass flow rate, inlet air mass flow rate parameter and exhaust mass flow 

rate parameter all showed a reduction which, generally, developed further with 

increasing engine power due to the reduction of cooling and charge air density. 

• Both indicated, and brake specific fuel consumption showed a positive deviation 

but this trend was particularly weak. The trend for indicated specific fuel 

consumption and thermal efficiency was stronger than that shown for brake 

parameters. This was due to the consistent decrease in IMEP and consequently 

indicated power throughout the power range. PMEP also showed a consistent 

decrease which strengthened with increasing engine power. 

• The trend in increased specific fuel consumptions was matched by a decrease in 

indicated thermal efficiency. 
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Nom. Speed [revs/min]-Torque [Nm] 
Inlet Air Volume Flow Rate 
Cylinder 1&2 Port Temperatures 
Cylinder 3 Port Temperature 
Cylinder 4 Port Temperature 
Cylinder 5&6 Port Temperatures 
Exhaust Manifold Temperature 
Intercooler Cooling water Dischg Temp 
Inlet Manifold Pressure 
Inlet Manifold Temperature 
Turbine Discharge Temperature 
Turbine Discharge Pressure 
Turbocharger Speed 

1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

Table 17 Percentage Change In Sensor Readings From Baseline Due To A Genuinely Fouled & Corroded Intercooler 
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Nom. Speed [revs/mio]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Indicated Power 
PMEP 
IMEP 
BSFC 
ISFC 
Indicated Thermal Efficiency 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Compressor Speed Parameter 
Intercooler Air Temperature Gradient 
Intercooler Air Pressure Gradient 
Intercooler Water Temperature Gradient 
Intercooler Effectiveness 
Exhaust Gas Mass Flow Rate 
Turbine Expansion Ratio 
Turbine Speed Parameter 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

Table 18 Percentage Change In Performance Parameters From Baseline Due To A Genuinely Fouled & Corroded Intercooler 
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8.4.3 Analysis Of Genuinely Fouled & Corroded Intercooler Fuel Injection And 
Combustion Data 

In general, the data showed very small changes which always remained within the 

baseline repeatability. 

• The needle lift data showed no clear trend of either advanced or retarded 

injection throughout the operating points. At lower powers the point of injection 

was slightly retarded and became increasingly advanced at higher engine powers 

with the exception of the full throttle position operating points. This trend was 

also evident in the fuel line pressure data and combustion data. 

• The heat release data showed that the point of ignition is retarded in line with the 

retarded point of injection. This led to a reduced and retarded maximum cylinder 

pressure at lower engine powers. There was no evidence of a change in ignition 

delay at lower engine powers. 

• At higher engine powers, the ignition delay decreased and point of injection 

advanced. These results were expected since the charge air temperature increased 

significantly and therefore caused combustion to initiate earlier in the cycle. The 

reduction in ignition delay was, however, small relative to the baseline set 

repeatabi li ty. 

8.4.4 Analysis Of Simulated Faulty Intercooler Sensor Data 

Table 19 shows the percentage deviation of sensor readings from the baseline 

average due to the introduction of a simulated faulty intercooler. Eight sensor 

readings in total showed a reasonably consistent trend, three of these exceeded the 
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baseline repeatability. All eight sensor readings were previously deviated by the 

introduction of the genuinely faulty intercooler. 

• Inlet air volume flow rate decrease exceeded the baseline set repeatability at all 

torques and speeds with the exception of the highest power. This was due to the 

reduced cooling and density of the charge air. Consequently reducing the air 

volume flow rate at ambient conditions. 

• Turbocharger rotational speed showed a fairly consistent decrease throughout the 

speed and torque range, but never decreased significantly to exceed the baseline 

set repeatability. It was thought that this was due to reduced exhaust gas mass 

flow. 

• Inlet manifold temperature and exhaust ports 4, 5 & 6 all showed an increase in 

temperature as with the genuinely faulty intercooler. An increase in turbine 

discharge, collective exhaust manifold and exhaust ports 1,2 & 3 temperatures 

was not apparent as with the genuinely faulty intercooler. 

• Both inlet manifold and turbine discharge pressures showed a small percentage 

increase. Inlet manifold pressure never exceeded the baseline set repeatability. 

Turbine discharge pressure only exceeded the baseline set repeatability at the 

lowest engine power. 
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Nom. Speed [revs/min]-Torque [Nm) 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Inlet Air Volume Flow Rate 
Cylinder 4 Port Temperature 
Cylinder 5&6 Port Temperatures 
lntercooler Cooling Water Dischg Temp 
Inlet Manifold Pressure 2.3 
Inlet Manifold Temperature 0.1 
Turbine Discharge Pressure 0.5 
Turbocharger Speed 0.3 

Table 19 Percentage Changes In Sensor Readings From Baseline Data Due To A Simulated Faulty Intercooler 

Nom. Speed [revs/min]-Torque [Nm) 
PMEP 
BSFC 
ISFC 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Compressor Speed Parameter 
lntercooler Air Temperature Gradient 
Intercooler Water Temperature Gradient 
Intercooler Effectiveness 
Volumetric Efficiency 
Exhaust Gas Mass Flow Rate 
Exhaust Gas Mass Flow Rate Parameter 
Turbine Speed Parameter 

1500-100 1400-186 1500-200 1600-237 
0.5 1.3 

0.9 

1500-300 
1.1 
0.5 
0.1 

1800-293 1500-430 2000-354 2150-372 

Table 20 Percentage Changes In Performance Parameters From Baseline Data Due To A Simulated Faulty Intercooler 
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8.4.5 Analysis Of Simulated Faulty Intercooler Performance Parameters 

Table 20 shows the percentage deviation in performance parameters from the 

average baseline due to the introduction of a simulated faulty intercooler. All of the 

parameters identified also showed a deviation during testing with the genuinely 

faulty intercooler. Only three parameters showed deviations consistently outside the 

baseline set repeatability, namely, intercooler effectiveness, air and water 

temperature gradients. All other parameters generally showed deviations smaller 

than those experienced with the genuinely faulty intercooler. Several parameters 

previously showing deviations with the genuine faulty intercooler now ceased to 

show any trend. 

• Both indicated and brake specific fuel consumptions showed an increase. This 

was consistent with a decreased trapped mass of charge air and poorer 

combustion. 

• Inlet air and exhaust mass flow rates both showed a decrease. This was due to the 

increased temperature, and therefore, reduced density of the charge air. 

• Inlet and exhaust mass flow parameters showed a decrease, largely due to the 

decrease in inlet air mass flow rate. The deviations for both were generally larger 

than for the respective mass flow rates. These enhanced deviations were caused 

by a combination of increased turbine and compressor inlet temperatures and 

reduced inlet pressures. 

• Intercooler effectiveness and air temperature gradient both showed significant 

decreases as a result of the decreased heat transfer through the cooler matrix. 

• Intercooler water temperature gradient increased. The genuine fault showed a 

marked decrease in water temperature gradient. This conflict was caused by the 
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method of simulating the faulty intercooler. The simulated fault was introduced 

by throttling back the water discharge from the intercooler. This in turn caused 

the cooling water to remain in the matrix for a longer period of time allowing the 

water to be heated significantly more. 

• Volumetric efficiency showed a steady decrease throughout the speed and torque 

range. This was a direct reflection of the reduction in inlet air volume flow rate. 

• Both compressor and turbine speed parameters decreased in line with the 

decrease in turbocharger rotational speed. This trend was further strengthened 

when turbine or compressor inlet temperatures increased. This was clearly shown 

at 1500 [revs/min] and 100 [Nm]. 

8.4.6 Analysis Of Simulated Faulty Intercooler Injection And Combustion Data 

There was no appreciable trends in any of the fuel injection or combustion data. All 

deviations fell within the baseline set repeatability and fluctuated randomly around 

the average baseline data. 

8.5 Leaking Inlet Valves Experimental Results 

A total of forty five separate engine tests were conducted over a three week period 

to establish the effect of leaking inlet valves on engine performance. The forty five 

tests consisted of five separate repetitions of the nine speed and torque points 

identified in Chapter 4. The leaking inlet valves were developed and introduced 

onto the test engine as described in Chapter 7, Section 7 .4. 
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8.5.1 Analysis Of Leaking Inlet Valve Sensor Data 

Table 21 shows the percentage change in average sensor readings from the average 

baseline readings due to introduction of leaking inlet valves. Sixteen sensor readings 

showed deviations and approximately twelve of these showed variations which 

exceeded the baseline set repeatability at more than one engine speed and torque 

condition. 

• Inlet air volume flow rate showed a significant decrease which exceeded the 

baseline set repeatability at all speeds and torques. The maximum reduction in 

flow of 6.55 % coincided with the highest engine torque. The reduction in flow 

was due to the reverse flow of the usually trapped charge past the valve and into 

the inlet manifold during compression and combustion. This reverse flow 

replaced charge air normally drawn through the charge air system. 

• Compressor inlet and discharge pressures both showed minimal decreases. 

Despite this, inlet manifold pressure remained unchanged from the baseline test 

data. It was thought that the reverse flow from the cylinder into the inlet manifold 

maintained the inlet manifold pressure rather than increasing it, as might be 

expected. This idea was further substantiated by the consistent decrease in 

turbocharger rotational speed whilst inlet manifold pressure was similar to that 

seen in baseline testing. 

• Inlet manifold temperature increased significantly and exceeded baseline set 

repeatability at most torques and speeds. This positively identified that reverse 

flow from the cylinder into the manifold was occurring, further substantiating the 

above theory. 
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• The increased inlet manifold temperature subsequently lead to increased exhaust 

temperatures at all measuring locations. The exhaust temperature deviations 

generally exceeded the baseline set repeatability with the exception of the full 

throttle test points. At these speeds and torques the exhaust temperatures had a 

tendency to decrease since delivery could not be increased any further. This 

therefore proves that the increased exhaust temperatures were due to both 

increased charge temperature and up-fuelling to maintain torque. 

• The increased delivery to maintain torque at partial travel rack positions is 

supported further by both increased rack position and therefore delivery and a 

subsequent increase in fuel mass flow rate. 

8.5.2 Analysis Of Leaking Inlet Valve Performance Parameter Data 

Twenty two performance parameters showed deviations due to the introduction of 

leaking inlet valves. These are shown in Table 22 together with the respective 

percentage deviations from the baseline data set. Fourteen of the twenty two 

deviated outside the baseline set repeatability at more than half of the engine test 

points. 

• Engine torque, brake power and BMEP all showed reductions of approximately 

8-9 % at the full throttle test points. This was due to the reduced density and 

quality of charge air, loss of compression pressure and, most importantly, the 

continued loss of charge through the inlet valve during the combustion and 

expansion part of the cycle. 
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Nom. Speed (revs/min]-Torque (Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Inlet Air Volume Flow Rate 
Compressor Discharge Pressure 
Compressor Discharge Temperature 
Compressor Inlet Pressure 
Cylinder 1&2 Port Temperatures 
Cylinder 3 Port Temperature 
Cylinder 5&6 Port Temperatures 
Exhaust Manifold Pressure 
Exhaust Manifold Temperature 
Fuel Rack Position 
Intercooler Cooling water Dischg Temp 
Inlet Manifold Temperature 
Turbine Discharge Temperature 
Turbine Discharge Pressure 
Turbocharger Speed 
Fuel Mass Flow Rate 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

Table 21 Percentage Change In Sensor Readings From Baseline Data Due To Leaking Inlet Valves 
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Nom. Speed [revs/mio]-Torque [Nm] 
Engine Torque 
Brake Power 
Indicated Power 
BMEP 
PMEP 
IMEP 
BSFC 
ISFC 
Brake Thermal Efficiency 
Indicated Thermal Efficiency 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Compressor Pressure Ratio 
Compressor Speed Parameter 
Compressor Isentropic Efficiency 
Intercooler Air Temperature Gradient 
Intercooler Water Temperature Gradient 
Volumetric Efficiency 
Exhaust Gas Mass Flow Rate 
Exhaust Gas Mass Flow Rate Parameter 
Turbine Expansion Ratio 
Turbine Speed Parameter 

1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 

Blue/Red Cells = Negative/Positive deviation from baseline average greater than natural variation 

GreenlY ellow Cells = Negative/Positive deviation from baseline average less than natural variation 

Table 22 Percentage Change In Performance Parameters From Baseline Data Due To Leaking Inlet Valves 

210 



• IMEP showed a small deviation throughout the torque and speed range. The 

largest deviation occurred at the full throttle test points for the same reasons as 

discussed in the above paragraph. 

• The reduction in PMEP throughout the torques and speeds was caused by the 

significantly lower cylinder pressure at BDC after expansion & combustion and 

for a reasonable portion of the exhausting stroke. Intake strokes for both baseline 

and leaking valves were very similar, as expected. This is shown in Figure 70. 
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Figure 70 Comparison Between Leaking Inlet Valve & Baseline Data Pumping 
Loops at 1500 [revs/min] & 430 (Nm] 

• Both indicated and brake specific fuel consumption showed strong positive 

deviations which exceeded the baseline set repeatability significantly. Reasons 

for this have been discussed in the above sections. 

• Indicated and brake thermal efficiencies reduced, again, the deviations were 

greater than the baseline set repeatability. 
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• Inlet air mass flow rate reduced beyond the baseline set repeatability. This trend 

was also evident in the inlet air mass flow rate parameter although to a lesser 

extent because of the reduced compressor inlet pressure. 

• Exhaust gas mass flow rate decreased but not as significantly as the inlet air mass 

flow because of the increase in fuel mass flow required to maintain engine 

torque. The exhaust gas mass flow rate parameter also decreased but generally 

remained within the baseline set repeatability. This was due to the increase in 

exhaust gas temperature at turbine inlet. 

• Compressor pressure ratio, and isentropic efficiency both increased despite a 

reduction in speed parameter and mass flow parameter. These increases were due 

to the inlet manifold pressure being maintained by flow from the cylinder into the 

manifold during compression and combustion rather than increased work being 

done by the compressor on the charge air. 

• Both intercooler air and water temperature gradients showed increases which 

occasionally exceeded the baseline set repeatability. It was thought that these 

increases were due to the reverse flow from the cylinder to the manifold. This 

reverse flow was hotter than the normal charge and occupies volume in the inlet 

manifold. This has been shown to reduce the volume flow rate of charge air. 

Consequently the air which passed through the compressor remained in the cooler 

matrix for a longer period of time allowing greater heat transfer. Further to this, 

the increased inlet charge air temperature could have transferred heat to the inlet 

manifold and intercooler castings. 

• Turbine mass flow rate parameter and turbine speed parameter both show 

decreases throughout the speed and torque range. These reductions were 
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primarily due to the decreases in inlet air mass flow rate and turbocharger 

rotational speed. Turbine speed parameter shows a stronger trend than 

turbocharger rotational speed alone. This was due to the increase in turbine inlet 

temperature. The trend in turbine mass flow rate parameter compared to exhaust 

mass flow was weakened by the higher exhaust gas temperatures. 

8.5.3 Analysis Of Leaking Inlet Valves Fuel Injection & Combustion Data 

Figure 71 shows a comparison between leaking inlet valves and baseline needle lift, 

fuel line pressure, approximate heat release and cylinder pressure data at low speed 

and low torque. For all but the highest engine speeds and torques the point of 

injection advanced. The point of injection advanced to maintain a constant point of 

ignition, despite the reduced compression temperatures and pressures. This is clearly 

illustrated in Figure 71. At the full throttle travel test points these trends changed as 

shown in Figure 72. Both point and duration of injection remained unchanged 

within baseline set repeatability. Heat release always remains retarded due to the 

fixed point of injection at full throttle. The trend of reduced compression pressure 

and temperature combined with the fixed point of injection lead to an increased 

ignition delay. Cylinder compression pressure was reduced at all speeds and torques. 

The greatest reductions were seen at low speed conditions since the effective time 

period of leakage was greater. 
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Figure 71 Comparison Of Leaking Inlet Valves And Baseline Fuel Injection & 

Combustion Data At 1500 [revs/min] And 100 [Nm] 
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8.6 Leaking Exhaust Valves Experimental Results 

Forty five individual engine tests were conducted over a three week period to assess 

the effect of leaking exhaust valves on engine performance. The testing consisted of 

five repeated engine runs with data being collected at nine engine speeds and 

torques, in accordance with the experimental procedure outlined in Chapter 4. The 

valve faults were introduced onto the test engine as discussed in Chapter 7, Section 

7.5. 

8.6.1 Analysis Of Leaking Exhaust Valve Sensor Data 

Table 23 shows the percentage changes in the sensor readings compared to the 

average baseline data due to the introduction of leaking exhaust valves. Sixteen 

sensor readings showed deviations, of these, only two showed negative deviations 

from the baseline data set. 

• Inlet air volume flow rate showed a steadily increasing trend throughout the 

engine speeds and torques. The maximum deviation of 2.2% occurred at the 2150 

[revs/min] and 372 [Nm] position test point. This increased inlet air flow rate 

was due to the increase in turbocharger speed, boost pressure and, subsequently, 

charge density. 

• Compressor discharge pressure and temperature increased despite the inlet 

pressure showing a decrease throughout the speed and torque range. These trends 

are all attributable to the increased turbocharger speed. 

o All exhaust temperatures increased with the exception of exhaust port 5 & 6. The 

majority of these increases exceeded the baseline set repeatability. The positive 

deviations were partially due to the leakage of trapped charge past the exhaust 

valves 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Inlet Air Volume Flow Rate 
Compressor Discharge Pressure 
Compressor Discharge Temperature 
Compressor Inlet Pressure 
Cylinder 1&2 Port Temperatures 
Cylinder 3 Port Temperature 
Cylinder 4 Port Temperature 
Engine Cooling water Dischg Temp 
Exhaust Manifold Temperature 
Intercooler Cooling water Dischg Temp 
Inlet Manifold Pressure 
Inlet Manifold Temperature 
Turbine Discharge Temperature 
Turbine Discharge Pressure 
Turbocharger Speed 
Fuel Mass Flow Rate 

Blue Cells = Negative% deviation from baseline average greater than natural variation 

Red Cells = Positive % deviation from baseline average greater than natural variation 

Green Cells= Negative% deviation from baseline average less than natural variation 

Yellow Cells = Positive % deviation from baseline average less than natural variation 

Table 23 Percentage Change In Sensor Readings From Baseline Data Due To Leaking Exhaust Valves 
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throughout the compression and combustion parts of the cycle. Without doubt, the 

overriding factor for the increased exhaust temperatures was the up-fuelling 

required at all partial rack travel test points to maintain engine torque. This was 

demonstrated by the downward trend of the exhaust port temperatures at the highest 

power test point which was set at maximum rack travel. The collective exhaust 

manifold and turbine discharge temperatures also showed a weakened trend at the 

full throttle travel test points. 

• Intercooler cooling water discharge temperature and inlet manifold temperature 

both showed increases due to the increased compressor discharge temperature. 

• Inlet manifold pressure increased but generally the deviation fell within the 

baseline set repeatability. This increase was due to the increased turbocharger 

speed and subsequent increase in compressor discharge pressure. 

• Turbocharger speed increased through the torque and speed range, except at the 

1500 [revs/min]- 430 [Nm] and the 2150 [revs/min]- 372 [Nm] test points. 

These anomalies were a direct reflection on the combustion process. At these two 

full throttle travel test points the maximum cylinder pressure and subsequent 

expansion pressure were reduced. This in turn, reduced the amount of trapped 

charge escaping passed the exhaust valves. Partial rack travel test points, 

however, had the ability to be up-fuelled to maintain the combustion and 

expansion pressures despite the leakage. This gave rise to a higher leakage rate 

than could be achieved with the fixed rack position test points. 

• Fuel mass flow rate showed some large positive deviations in excess of the 

baseline set repeatability. These increased flows support the theory of up-fuelling 

required to maintain the specified test torques. This was further substantiated by 
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the increased exhaust gas temperatures discussed above. Increased fuel mass flow 

rate was not seen at the two maximum rack travel points since delivery was fixed 

in these instances. 

8.6.2 Analysis Of Leaking Exhaust Valve Performance Parameters 

Table 24 summarises the performance parameter deviations from the baseline 

average due to the introduction of leaking exhaust valves. Seventeen parameters 

showed deviations, four of these parameters consistently deviated in excess of the 

baseline set repeatability. 

• Engine torque, brake power and BMEP all decreased by approximately 6-7 % at 

the full throttle travel test points. These reductions were caused by the loss of 

combustion and expansion pressure because of the leakage of gas into the exhaust 

manifold. 

• IMEP and subsequently indicated power decreased throughout the speed and 

torque range. The most notable deviations occurred at the maximum rack position 

test points because of the fixed delivery. 

• Brake and indicated specific fuel consumptions showed strong trends. In both 

cases the trend strengthened with engine power and exceeded the baseline set 

repeatability at all test points. These trends were consistent with those discussed 

earlier and highlight that up-fuelling was required to maintain torque at the partial 

rack travel test points. As already discussed, full throttle travel test points failed 

to hold the specified test torques despite consuming the same mass flow of fuel. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Engine Torque 
Brake Power 
Indicated Power 
BMEP 
PMEP 
IMEP 
BSFC 
ISFC 
Brake Thermal Efficiency 
Indicated Thermal Efficiency 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Compressor Pressure Ratio 
Compressor Isentropic Efficiency 
Intercooler Air Temperature Gradient 
Volumetric Efficiency 
Exhaust Gas Mass Flow Rate Parameter 

Blue Cells = Negative% deviation from baseline average greater than natural variation 

Red Cells = Positive % deviation from baseline average greater than natural variation 

Green Cells = Negative o/o deviation from baseline average less than natural variation 

Yellow Cells = Positive % deviation from baseline average less than natural variation 

Table 24 Percentage Change In Performance Parameters From Baseline Due To Leaking Exhaust Valves 
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• Brake and indicated specific fuel consumptions increased significantly and 

showed well defined trends throughout the engine speed and torque range. 

o Inlet air mass flow rate, mass flow rate parameter and exhaust gas mass flow rate 

parameter all decreased despite the volumetric air flow rate increasing. These 

appeared to conflict but the decreased inlet air pressure and increased temperature 

reduced the air density sufficiently giving a net reduction in air mass flow. 

• Compressor pressure ratio and isentropic efficiency increased due to the 

increased turbocharger rotational speed discussed earlier in this chapter. 

• The intercooler air temperature gradient increased, sometimes exceeding the 

baseline set repeatability. This increase was due to the higher compressor 

discharge temperatures caused by the increased compressor inlet temperature and 

compressor speed. The fact that in nearly all cases the percentage rise in 

compressor discharge temperature exceeded the percentage rise in inlet manifold 

temperature lead to the conclusion that more heat must have been rejected during 

intercooling. 

8.6.3 Analysis Of Leaking Exhaust Valve Fuel Injection & Combustion Data 

Both needle lift and fuel line pressure traces identified that there was little or no 

change in point of injection throughout the speeds and torques. Any deviations in 

timing were directly reflected in the point of ignition meaning no change in ignition 

delay. At the lower speeds and torques the initial rates of heat release exceeded 

those experienced during baseline testing. It was suspected that this faster rate of 

heat release was due to the increased delivery leading to a larger premixed charge 

and a higher charge air temperature. After a more vigorous phase of premixed 
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burning the rate of heat release tailed off during the diffusion burning phase. As 

speed and torque increased the initial heat release phase became almost identical to 

the baseline data particularly at maximum rack position and fixed delivery test 

points as shown in Figure 73. Cylinder compression pressure was reduced at all 

speeds and torques. This reduction was more noticeable at low speeds since the 

effective time period for leakage was longer. 
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8.7 Incorrect Fuel Pump Timing Experimental Results 

Initially fuel pump timing on the test engine was retarded by 3° crank angle as 

discussed in Chapter 7, Section 7.6. Forty five separate engine tests were conducted 

over a two week period with the pump retarded by 3° crank angle. The results 

obtained showed some clear sensor and performance parameter deviations from the 

baseline data set. Based on these results, the degree of retardation was reduced to 

1.5° crank angle and a further forty five engine tests were conducted. These two sets 

of data of varying severity could then be used to test the neural networks ability to 

identify fault severity. 

8.7.1 Analysis Of 3° Crank Angle Retarded Fuel Pump Timing Sensor Data 

Table 25 shows the 16 sensor readings which deviated due to the introduction of the 

3° retarded fuel pump timing. All trends showed positive deviations from the 

baseline set average. 

• Inlet air volume flow rate showed a positive deviation although not always 

exceeding the baseline set repeatability. The maximum deviation occurred at 

2150 [revs/min] and 372 [Nm]. The increased volume flow was caused by the 

higher turbocharger speed. 

• The higher turbocharger speed also lead to increases in the compressor discharge 

and inlet manifold temperatures and pressures. 

• All exhaust temperatures showed a strong increase and generally exceeded the 

baseline set repeatability throughout the torque and speed range. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 
Inlet Air Volume Flow Rate 
Compressor Discharge Pressure 
Compressor Discharge Temperature 
Cylinder 1&2 Port Temperatures 
Cylinder 3 Port Temperature 
Cylinder 4 Port Temperature 
Cylinder 5&6 Port Temperatures 
Exhaust Manifold Pressure 
Exhaust Manifold Temperature 
Fuel Rack Position 
Inlet Manifold Pressure 
Inlet Manifold Temperature 
Turbine Discharge Temperature 
Turbine Discharge Pressure 
Turbocharger Speed 
Fuel Mass Flow Rate 

1500-200 1600-237 1500-300 1800-293 

3.1 

Red Cells = Positive deviation from baseline average greater than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

2000-354 2150-372 
0.2 
0.5 
0.1 

-0.6 
1.2 
1.0 
0.1 
0.3 
0.5 
0.0 
0.1 
1.0 
-0.2 
-2.2 

Table 25 Percentage Change In Sensor Readings From Baseline Due To 3° Crank Angle Retarded Pump Timing 
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The trend was weakened at both full throttle position test points. These increased 

temperatures were due to the inlet charge being hotter, up-fuelling to maintain the 

specified· test torques and a delayed poiht of injection causing combustion to take 

place later in the cycle. 

• Exhaust manifold and turbine discharge pressures showed minor increases which 

generally failed to exceed the baseline set repeatability. These increases were due 

to the delayed point of injection causing higher cylinder pressures throughout the 

expansion stroke and at the point of exhaust valve opening. Trends in combustion 

data are discussed more fully in Section 8.7.3. 

• Turbocharger speed showed a reasonably positive trend which deviated outside 

the baseline set repeatability on several occasions. The increased speed was 

caused by the increased exhaust manifold pressure discussed above. This is 

further substantiated by the turbocharger speed actually reducing below the 

baseline average at 2150 [revs/min]and 372 [Nm]. This was due to delivery 

remaining constant at this test point. 

• Fuel mass flow rate and rack position both showed healthy increases at all partial 

rack travel test points. This is consistent with the up-fuelling required to maintain 

the specified test torques and increased exhaust temperatures. 

8.7.2 Analysis Of 3° Crank Angle Retarded Fuel Pump Timing Performance 
Parameters 

Table 26 shows the twenty performance parameters which showed deviations due to 

3° crank angle retarded fuel pump timing. No parameter showed a trend which 

consistently exceeded the baseline set repeatability. The best trends were seen in 

226 



Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Engine Torque 
Brake Power 
Indicated Power 
BMEP 
IMEP 
BSFC 
ISFC 
Brake Thermal Efficiency 
Indicated Thermal Efficiency 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Compressor Pressure Ratio 
Compressor Speed Parameter 
Compressor Isentropic Efficiency -3.4 
Intercooler Air Temperature Gradient -3.0 
Volumetric Efficiency 
Exhaust Gas Mass Flow Rate 
Exhaust Gas Mass Flow Rate Parameter 
Turbine Expansion Ratio 
Turbine Speed Parameter -5.1 0.2 

Blue/Red Cells = Negative/Positive deviation from baseline average greater than natural variation 

GreenlY ellow Cells = Negative/Positive deviation from baseline average less than natural variation 

-0.3 
0.3 
-0.2 

Table 26 Percentage Change In Performance Parameters From Baseline Due To 3° Retarded Fuel Pump Timing 
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BSFC, brake thermal efficiency, compressor pressure ratio & compressor speed 

parameter. 

• Engine torque, BMEP and brake power all showed a reduction greater than the 

baseline set repeatability at the maximum engine power test point. The other 

maximum rack position test point also showed a reduction, but failed to exceed 

the baseline set repeatability indicating the fault's sensitivity to engine speed. 

• IMEP and indicated power both showed a downward trend throughout the test 

speeds and torques. 

• BSFC and ISFC showed strong trends identifying increased specific fuel 

consumptions. This further reinforces the suspicions of up-fuelling to maintain 

specified test torques identified from the sensor data in Section 8.7 .1. 

• Brake and indicated thermal efficiencies decreased in line with the increased 

specific fuel consumptions, as would be expected. 

• Inlet air mass flow rate and mass flow rate parameter both showed small 

increases from the baseline data. These increases were due to the increased 

turbocharger speed and subsequent pressure ratio increase. These trends, together 

with turbocharger rotational speed, weakened at the full throttle position test 

points. 

• Compressor speed parameter, pressure ratio and isentropic efficiency all 

increased and exceeded the baseline set repeatability occasionally. These 

increases diminished, as did the trend in turbocharger speed at the full throttle 

position test points. Turbocharger rotational speed, compressor pressure ratio and 

speed parameter all showed a negative deviation at 2150 [revs/min] and 372 

[Nm]. 
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• Exhaust gas mass flow and mass flow rate parameter showed a small increase for 

the majority of speeds and torques. This was due to increases in both inlet air and 

fuel mass flow rates. 

• Turbine speed parameter increased but by a smaller margin than turbocharger 

rotational speed. This was due to the higher exhaust gas temperatures 

experienced at nearly all speeds and torques. 

• The increase in turbine expansion ratio was caused by the increased exhaust 

manifold pressure. At 1400 [revs/min] and 186 [Nm] and 1500 [revs/min] and 

430 [Nm] the expansion ratio fell below the baseline set data. Exhaust manifold 

pressure also followed this trend. The increased expansion ratio had the effect of 

increasing the turbocharger rotational speed as discussed above. 

8.7.3 Analysis Of 3° Crank Angle Retarded Fuel Pump Timing Fuel Injection 
& Combustion Data 

Table 27 shows the deviations in fuel injection and combustion data due to 3° crank 

angle retarded pump timing. The needle lift data confirmed that on average the 

injection was delayed by 3° crank angle. The duration of injection generally 

exceeded the baseline set repeatability for all partial rack position test points due to 

the up-fuelling required to maintain the specified test torques. Consequently, end of 

injection was retarded by more than 3° crank angle. The trends in needle lift data 

were very closely matched by the fuel line pressure data, which showed excellent 

repeatability. These trends can be seen in Figures 74, 75 and 76. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Pmax Cylinder [% change] 
Overall Air/Fuel Ratio [% change] 
Degrees CA Max. Fuel Line Pressure 
Degrees CA Est. Pump Dischg. Point 
Degrees CA End Of Pump Dischg 
Degrees CA Pump Discharge Period 
Point Of Injection 
End Of injection 
Duration Of Injection 
Degrees CA Pmax Cylinder 
Point Oflgnition 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

All measurements in degrees crank angle unless otherwise stated. 

Table 27 Deviations In Fuel Injection & Combustion Data From Baseline Due To 3° Retarded Pump Timing 

230 



600 

500 

'i:' 
cos 400 a 
f 
= 300 ... ... 
Qj 
a.. 
~ 200 Qj 

~ -Qj lOO 

= ~ 

0 

-lOO 

700 

600 

'i:' 
cos 500 
a 
Qj 
a.. 400 
= .. 
"' f 300 
~ 
Qj .s 200 
~ 
4i 

lOO = ~ 

0 

-lOO 

700 

600 

'i:' 500 
cos = ~ 400 
"' "' Qj 

' 300 Qj 

~ 200 
4i = ~ lOO 

0 

-lOO 

-

1500 [re~/mio] 100 [Nm] 

I 
1/ '\ 

I 
I 11 \ A 

V ~\ 
!/ 

I ll I ~ ~ u ..t. .... Pill 

1400 [re~/mio] 186 [Nm] 

... ~n 
1 

\ 

lJ \... " I ~ ' 
~) ' 1\ 

1. .A 
~ 

1500 [re~/mio] 200 [Nm] 

I ~h 

I 
l.t 

~ ~ ' I I I 
n '\ 

~ If 
't l ~ ll 

1: :1 

Degrees C rank Angle [Deg) 

0.25 

0.2 

0.15 I 
0.1 ~ 

Qj 

~ 

0.05 i! z 
.. 

0 
rr .r 

-0.05 
0 "' 0 ..,. ..,. 

"' 

0.25 

0.2 

0.15 I 
0.1 ~ 

Qj 

~ 

0.05 
Qj 
Qj 

z 

0 
.... . , I' / I/ ~"' 

[k ;7 I" '\ :::\ 

-0.05 
S? 

0.25 

0.2 

0.15 a a -
0.1 

s 
~ 
~ 
~ 

0.05 
t z 

0 
r 'f:. ~ / rr ~ ~ 

M<;j T -I-\: I""' 

-0.05 

- Fault Fuel Line Pressure --Baseline Fuel Line Pressure --Fault Needle Lift - -Baseline Needle Lift 

Figure 74 Comparison Of Baseline And 3° Crank Angle Retarded PumpTiming 
Fuel Line Pressure & Needle Lift Data (Three Lowest Power Test Points) 

231 



700 
1600 [re"ll/min] 237 [Nm] 

0 .25 

600 
~ ~"'"' 

0.2 
;:::;' 

500 ~ e 
Gl 400 ... 
= 

\ " 0.15 i' 
.! 

"" .. 
Gl 300 ... 
~ 
41 

! 200 

-; 
lOO &: 

0 

'\o f'\. 

lit \.. 1 

I 11 ,f ~ ~~ .... "" I 1 1.1~.-- \L I\ ..... ~ \l~ .,..V' I ~['\. 

"" I" ... ~,;~ ~- .... 'la 1'!11. 

0.1 ~ 
.i! 
"CC 

0.05 ~ z 

0 

-l OO -0.05 

700 
1500 [re"ll/min] 300 [Nm] 

0.25 

600 " ... ~~ 
0.2 

'5" 500 
e 
Gl 400 ... 
= .. .. 
Gl 300 ... 

~ 

~ 
0. 15 I 
0.1 ~ 

~ 
41 

.5 200 

...;l 
-; 

lOO &: 
0 

) r,. /'~ 
11 \1~" 

j ~ 1\ If ~ lr"...., ~~ 
~- J ~ ]I I ~ ..... r\: .-.: I" 

[V IIV .., ~ 

Gl ::a 
0.05 ~ z 

0 

-l OO -0.05 

800 
1800 [re"ll/min] 293 [Nm] 

0.25 

1" 17' 
700 

0 .2 
600 

;:::;' 
e'G e 500 
..; 

~ 
0 .15 i' 

.! 
"" 400 f 
~ 
Gl 300 

! 
-; 200 
= ~ 

l OO 

0 

1 J \~ 
ltr ' 1\1 \ 

Ill ' IJ -"'r: ~, I J 
Jl.c ;...- " \~ 

1n \ ... J I "" "\ ~~ '==~ -
" u 

0.1 ~ 
Gl ::a 

0.05 ~ z 

0 

- lOO -0.05 

Degrees Crank Angle (DegJ 

--Fault Fuel Line Pressure - Baseline Fuel Line Pressure - Fault Needle Lift --Baseline Needle Lift 

Figure 75 Comparison Of Baseline And 3° Crank Angle Retarded PumpTiming 
Fuel Line Pressure & Needle Lift Data (Three Medium Power Test Points) 

232 



700 
1500 [rew/min] ~30 CtJrri] 

0.25 

600 1 l ) 
I 0.2 

;::;- 500 ~ 

ES. 
41 400 3 
"' :i 300 .. 
~ 
41 

! 200 

"il 
100 &: 

0 

Ill 

' I 

vv 1 \~ 
lL 11_ J \ 
V /I/ ' 

I J 
1/ If ~ .,;I .. ~ l'lo(;O ~ooootl' L\ l"'b ...., 

~LI: 
r- ~ 

'\i 

-0. 15 e 
.! 

0. 1 ~ 
41 -"CC 

0.05 ~ z 

0 

-100 -0.05 

900 
2000 [rew/min] 354 [Nm] 

0.3 

800 

;::;- 700 
~ 

ES. 600 

2:! 500 ::1 .. 
~ 400 
~ 
41 300 
~ 
'43 200 

&: 100 

0 

~ 1.11 

~ '\ 
ll 

l 

J ~I '-
VIJ n 

V 'I 

IJ " 
I~ V I/ V""' ..... 

ll ll. ~ ""' ~~ 1A l!l f\ 1\11 ,..... ("r 
~ 

f" 11""" 

0.25 

0.2 

I 
0.15 

~ 
0.1 41 

:a 
41 
41 

0.05 
z 

0 

-100 -0.05 

900 

800 

700 
;::;-

600 ~ 

ES. 
.,j 500 .. 
2:! 

400 ~ 
41 

! 300 

'43 200 ::1 
~ 

100 

0 

-100 

2150 [rew/min] '311. [Nm] 

\ ~ I 
l JIAI. 

I , 11' ' 
\ 

V lJ 

I 'Ill 
~ 1 

vl IJ ' ~ I ll) 
,.. r-

~l'-' h l/1 ~ I/ 1-'"' !'.. 
...... L ~ ....... \IJ ll :"-

IV IV fl r' ....: 11 "'\ ru 

0.3 

0.25 

0.2 

I 0.15 

~ 
0.1 ~ -= 41 

41 

0.05 
z 

0 

-0.05 

Degrees Crank Angle [De g) 

--Fault Fuel Line Pressw-e --BaseUne Fuel Line Pressure --Fault Needle Lift --BaseUne Needle Lift 

Figure 76 Comparison Of Baseline And 3° Crank Angle Retarded Pump Timing 
Fuel Line Pressure & Needle Lift Data (Three High Power Test Points) 

233 



Due to the retarded injection timing the point of ignition also retarded. This led to 

consistently lower maximum cylinder pressures which, especially at lower speeds 

and torques, were also retarded. The reduction in cylinder pressures was due to less 

premixed charge being available, lower cylinder compression pressures and the 

increase in crank throw from the crank centre line at the point of ignition. 

In addition to the retarded point of ignition, the approximate heat release diagrams 

also showed a higher sustained heat release during the diffusion burning phase. This 

is consistent with the up-fuelling identified from the slow speed sensor data, 

performance parameters and duration of injection data. Figure 77 compares baseline 

and 3° crank angle retarded pump timing heat release and cylinder pressure data. 

This data was taken at 1500 [revs/min] and 200 [Nm] and was typical of the trend 

throughout the speed and torque range. 
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8.7.4 Analysis Of l.SO Crank Angle Retarded Fuel Pump Timing Data 

Table 28 shows all of the sensor deviations from the average baseline data due to 

1.5° crank angie retarded pump timing. All of the sensor readings which showed a 

deviation were also identified at 3° crank angle retarded pump timing. Three sensor 

readings which showed deviations at 3° retarded pump timing failed to show any 

trend at 1.5° retarded pump timing. These were compressor discharge temperature, 

inlet manifold temperature and turbine discharge pressure. Those sensors which 

deviated in both cases generally showed less of a deviation at 1 S than 3° retarded 

pump timing. This gives added confidence that any deviations were due to the fault 

introduction rather than faulty or spurious results. Since the trends in the 1.5° 

performance parameter data are essentially replications of the 3° retarded pump 

timing data they will not be discussed in any further detail. Table 29 shows 

performance parameter data deviations from baseline due to 1.5° retarded pump 

timing. All of the performance parameters which showed a deviation from the 

baseline average due to the introduction of the 1.5° retarded pump timing were 

identified in the original 3° retarded pump timing testing. As with the sensor data 

the trends in the performance parameters generally showed a weakening at IS 

retardation, as might be expected. Table 29 shows the performance parameter 

percentage changes from the baseline set average due to the introduction of 1.5° 

retarded pump timing. The trends which developed as a result of the 1 S retarded 

pump timing will not be discussed in any further detail since they follow the same 

pattern as those seen in the 3° retarded pump timing data. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1500-300 1800-293 1500-430 2000-354 2150-372 
Air Volume Flow Rate 
Compressor Discharge Pressure 
Cylinder 1&2 Port Temperatures 
Cylinder 3 Port Temperature 
Cylinder 4 Port Temperature 
Cylinder 5&6 Port Temperatures 
Exhaust Manifold Pressure 
Exhaust Manifold Temperature 
Fuel Rack Position 
Inlet Manifold Pressure 
Turbine Discharge Temperature 
Turbocharger Speed 
Fuel Mass Flow Rate 

Red Cells = Positive deviation from baseline average greater than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

Table 28 Percentage Deviations In Sensor Data From Baseline Due To 1.5° Retarded Pump Timing 
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-0.1 
-0.8 
-1.9 
-0.7 
-1.0 
0.6 
-0.3 
-0.8 
0.9 
-0.5 
-0.9 
-0.9 
-4.3 



Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Engine Torque 
Brake Power 
Indicated Power 1.3 
BMEP 
IMEP 
BSFC 
ISFC 
Brake Thermal Efficiency 
Indicated Thermal Efficiency 
Inlet Air Mass Flow Rate 
Inlet Air Mass Flow Rate Parameter 
Compressor Pressure Ratio 
Compressor Speed Parameter 
Compressor Isentropic Efficiency 
Volumetric Efficiency 
Exhaust Gas Mass Flow Rate 
Exhaust Gas Mass Flow Rate Parameter 
Turbine Expansion Ratio 
Turbine Speed Parameter 

2.2 
-6.2 

Blue/Red Cells= Negative/Positive deviation from baseline average greater than natural variation 

Red/Yellow Cells = Positive/Negative deviation from baseline average greater than natural variation 

-1.2 
0.4 
0.6 
0.5 
1.5 
-0.5 

Table 29 Percentage Deviations In Performance Parameters From Baseline Due To 1.5° Retarded Pump Timing 
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Table 30 summarises the deviations in fuel injection and combustion data from the 

baseline average due to 1.5° retarded pump timing. All of the trends were 

essentially a replication of the 3° retarded pump timing trends except they were 

generally weaker. The point of injection data shows that the pump was retarded 

between 1.44° and 2.7° crank angle. The fact that the mean deviation was greater 

than 1.5° had no detrimental effect on the validity of the data. The mean was 

substantially less than 3° and therefore remained a valid data set to test the 

network's ability to distinguish between fault severities. 

Examination of the needle lift, fuel line pressure, cylinder pressure and heat release 

data revealed similar trends to those seen for the 3° retarded pump timing. Figure 78 

shows a comparison between baseline and 1.5° retarded pump timing needle lift, 

fuel line pressure, cylinder pressure and heat release data. These curves show the 

deviations encountered at 1500 [revs/min] and 200 [Nm] but were typical of the 

trends seen throughout the speed and torque range. 

The trends seen in the 1.5° retarded fuel pump data are not discussed any further 

since the reasons behind the deviations in the fuel injection and combustion data 

have been discussed in Section 8.7.3. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372. 
Pmax Cylinder [% change] 
Overall Air/Fuel Ratio [% change] 
Degrees CA Max Fuel Line Pressure 
Degrees CA Est. Pump Dischg. Point 
Degrees CA End Of Pump Dischg 
Point Oflnjection 
End Of injection 
Duration Oflnjection 
Degrees CA Pmax Cylinder 
Point Oflgnition 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

All measurements in degrees crank angle unless otherwise stated. 

Table 30 Deviations In Fuel Injection & Combustion Data From Baseline Due To 1.5° Retarded Pump Timing 
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8.8 Low Opening Pressure Injector Experimental Results 

The injector used for engine test was obtained from a marine engine which was to· 

the same build list as the test engine. It had been operating in a marine application 

but the duration of engine running and time from last service were both unknown. 

As a result of the rig testing discussed in Chapter 7, Section 7.7, it was identified as 

having a low opening pressure. The as received condition showed a breaking 

pressure of 155 [Bar] against a specification of 210 [Bar]. The injector was fitted to 

No. 6 cylinder of the test engine in the as received condition. Number 6 was the 

only cylinder which could be monitored by the high speed fuel injection and 

combustion instrumentation. 

Forty five separate engine tests were conducted over a two week period to quantify 

the effects of a low opening pressure injector on engine performance. The following 

sections present and· discuss the salient differences in results between the average 

baseline data and the data recorded with the faulty injector fitted. 

8.8.1 Analysis Of Low Opening Pressure Injector Sensor & Performance 
Parameter Data 

Table 31 shows that only two performance parameters showed a weak trend. BSFC 

increased marginally but never deviated sufficiently to exceed the baseline set 

repeatability. Similarly, brake thermal efficiency showed a small decrease at the 

majority of test points. It was thought because these trends are based on minimal 

deviations they could not be used for a positive diagnosis. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 
BSFC 
Brake Thermal Efficiency 
Cylinder 1&2 Port Temperatures 
Cylinder 3 Port Temperature 
Cylinder 4 Port Temperature 
Cylinder 5&6 Port Temperatures 
Exhaust Manifold Temperature 
Turbine Discharge Temperature 

1500-200 1500-300 

Blue Cells = Negative % deviation from baseline average greater than natural variation 

Red Cells = Positive % deviation from baseline average greater than natural variation 

Green Cells = Negative o/o deviation from baseline average less than natural variation 

Yellow Cells = Positive % deviation from baseline average less than natural variation 

1500-430 2150-372 

Table 31 Percentage Deviations In Sensor And Performance Data From Baseline Due To A Low Opening Pressure Injector 
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Cylinder port 5 & 6 exhaust gas temperature showed a marginal increase at the 

majority of torques and speeds. Despite this increased port temperature, all other 

exhaust temperatures showed a decrease. This was because the low opening 

pressure injector fitted to No. 6 cylinder had a detrimental effect on the fuel pump 

line to line balance causing a de-fuel on cylinders 1 to 5. The net impact of this was 

a reduction in collective exhaust manifold and turbine discharge temperatures. 

8.8.2 Analysis Of Low Opening Pressure Injector Fuel Injection And 
Combustion Data 

Table 32 shows a summary of the deviations in the fuel injection and combustion 

data due to the introduction of a low opening pressure injector in No. 6 cylinder. 

The strongest trend was the reduction in maximum fuel line pressure, as might be 

expected. The point of injection advanced and the duration of injection increased 

due to the reduced injector spring pre load. This advanced point of injection lead to 

an advanced position of maximum cylinder pressure and point of ignition in the 

majority of cases. 

By far, the best deviations were found in the fuel line pressure data. Figures 79, 80 

and 81 show the deviations between the baseline and low opening pressure injector 

fuel line pressure and needle lift data. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Degrees CA Max Fuel Line Pressure 
Point Of Injection 
Duration Oflnjection 
Degrees CA Pmax Cylinder 
Point Of Ignition 

Blue Cells = Negative % deviation from baseline average greater than natural variation 

Red Cells = Positive % deviation from baseline average greater than natural variation 

Green Cells = Negative% deviation from baseline average less than natural variation 

Yellow Cells = Positive % deviation from baseline average less than natural variation 

All measurements in degrees crank angle unless otherwise stated. 

Table 32 Deviations In Fuel Injection & Combustion Data From Baseline Due To A Low Opening Pressure Injector 
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At all test points, except those at full throttle, the rising edge of the fuel line 

pressure trace showed a marked step at the point of injector needle lift. The low 

opening pressure injector consistently showed a lower fuel line pressure at the rising 

edge step. In all cases the maximum fuel line pressure and subsequent pressure 

peaks at the crest of the trace were reduced. At all test points, except maximum 

power, the falling edge of the trace showed a reduced pressure. This feature was 

particularly apparent at the point of needle closure. These distinct trends combined 

with the excellent repeatability of the fuel line pressure data made this data 

particularly suitable for diagnostics. 

Figure 82 shows a comparison between baseline and low opening pressure injector 

approximate heat release and cylinder pressure data taken at 1500 [revs/min] and 

200 [Nm]. The trends seen at this speed and torque were typical of those throughout 

the speed and torque range. The heat release data showed that the point of ignition is 

advanced. This was a direct result of the advanced point of injection caused by the 

lower spring pre-Ioad. The heat release data also showed that the rate of heat release 

for the low opening pressure injector was reduced in the initial premixed burning 

phase. This was due to the poorer spray atomisation and penetration identified by 

the rig testing discussed in Chapter 7, Section 7. 7 .6. Despite the reduced rate of heat 

release during premixed burning the rate of heat release remains higher throughout 

the diffusion burning phase for the low opening pressure injector. This is consistent 

with the poorer atomisation, longer period of injection, up-fuelling and higher 

exhaust temperatures for this cylinder. 
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8.9 Blocked Injector Experimental Results 

The injector used for engine testing was obtained from an engine which had been 

operating in the field. The injector was identified as having one of the four nozzle 

holes blocked by rig testing as discussed in Chapter 7. On completion of the rig 

testing the injector was installed into cylinder No. 6 of the test engine in the as 

received condition. When fitted, forty five separate engine tests were conducted 

over a four week period. 

8.9.1 Analysis Of Blocked Injector Sensor & Performance Parameter Data 

Eight performance parameters and three sensor readings deviated from the baseline 

set due to the introduction of a blocked injector nozzle, as shown in Table 33. 

Engine torque, brake power and, consequently, BMEP all showed reductions at the 

full throttle position test points. The baseline set repeatability was only exceeded at 

the maximum power test point. BSFC and ISFC both showed increases throughout 

the engine speed and torque range. The trend in BSFC only exceeded the baseline 

set repeatability at the lowest power test point. ISFC showed a more positive trend 

because of the lower IMEP values experienced throughout the speed and torque 

range. Cylinder 5 & 6 exhaust port temperatures showed a decrease despite a small, 

erratic, trend in increased fuel rack position. In general, sensor and performance 

parameter deviations were small with the exception of the two highest powers. 
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Nom. Speed (revs/min]-Torque (Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Engine Torque 
Brake Power 
Indicated Power 
B:MEP 
IMEP 
BSFC 
ISFC 
Brake Thermal Efficiency 
Indicated Thermal Efficiency 
Cylinder 5&6 Port Temperatures 
Fuel Rack Position 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

1.5333 

Table 33 Percentage Deviations In Sensor & Performance Parameter Data From Baseline Due To A Blocked Injector 
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8.9.2 Analysis Of Blocked Injector Fuel Injection & Combustion Data 

Table 34 summarises the fuel injection and combustion results. The point of 

maximum fuel line pressure advanced as might be expected since the effective flow 

area of the nozzle was reduced. The point of fuel pump discharge was also shown to 

be advanced. It was thought, however, that this was not true and the data was 

misleading. Performance Monitor determined the point of discharge by identifying 

the point at which the pressure trace exceeds 7.5% of the maximum line pressure. In 

this instance a fuel line pressure rise of 7.5% was achieved earlier in the cycle due 

to reduced effective flow area of the nozzle. Duration of injection increased due to 

the reduced volume flow rate. The reduction in flow caused the line pressure to be 

sustained above the nozzle opening pressure for a greater period of time. 

The fuel line pressure data showed some clear, repeatable, trends which appeared to 

be engine speed and hence injection rate dependant. At low engine speeds the 

blocked injector nozzle always showed an increased initial rate of fuel line pressure 

rise. After maximum fuel line pressure had been achieved there was little difference 

between the blocked and baseline injector nozzles. 

At higher engine speeds the increased initial rate of fuel line pressure rise was still 

evident. After the point of maximum fuel line pressure, the blocked injector nozzle 

trace became more erratic and, generally, the line pressure was greater than for the 

baseline injector. 
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The needle lift traces generally followed the profile of the fuel line pressure traces. 

The blocked nozzle injector showed a significantly increased maximum lift over the 

baseline. It was suspected that this difference was due to the increased wear of the 

blocked injector spindle and body since this injector was returned from a field 

engine which had probably run more than several hundred hours. All of the injection 

data trends can be seen in Figures 83, 84 & 85. 

The rig testing conducted in Chapter 7, Section 7.7.5 showed that the degree of 

spray penetration and atomisation both increased due to the blockage of one nozzle 

hole. The affect of this on combustion was to reduce the mass of fuel available, but 

increase atomisation and evaporation for premixed phase combustion. This 

mechanism is clearly identified in Figure 86, which shows the approximate rate of 

heat release and cylinder pressure data at 1500 [revs/min] and 200 [Nm]. 
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Nom. Speed [revs/min]-Torque [Nm] 
Pmax Cylinder [%] 

1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 

Degrees CA Max Fuel Line Pressure 
Degrees CA Point Of Fuel Pump Dischg. 
Duration Of Injection 
Degrees CA Pmax Cylinder 
Point Of Ignition 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells= Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

All measurements in degrees crank angle unless otherwise stated. 

Table 34 Deviations In Fuel Injection & Combustion Data From Baseline Due To A Blocked Injector 
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8.10 Worn Injector Experimental Results 

As with the previous injector faults, this injector was obtained from an engine which 

had been running in the field. The duration of hours run since the last service were . ·. 

unknown. The injector was subjected to rig testing to assess its performance before 

engine test, as detailed in Chapter 7, Section 7.7 .4. The injector was fitted to No. 6 

cylinder in the as received condition. Forty five engine tests were conducted over a 

four week period to establish the effect of the worn injector needle and nozzle on 

engine performance. 

8.10.1 Analysis Of Worn Injector Sensor & Performance Parameter Data 

Table 35 shows the deviations in both sensor and performance parameter data due to 

the introduction of a worn injector needle and nozzle. Only two performance 

parameters showed any marked deviation throughout the speeds and torques, 

namely, BSFC and brake thermal efficiency. In addition to these changes, three 

sensor readings showed a positive deviation. The largest deviations were generally 

experienced at the higher speeds. The increased BSFC and decreased brake thermal 

efficiency were attributed to the poorer atomisation and spray penetration in No. 6 

Cylinder. These trends were further substantiated by the increase in fuel mass flow 

rate and fuel rack position at partial rack travel test points. Cylinders 5 & 6 port 

temperature showed a temperature increase consistent with up-fuelling and late 

burning due to poor atomisation. Analysis of the approximate heat release and 

combustion data shows why these trends have arisen. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1500-300 1500-430 2000-354 
BSFC -0.3 
Brake Thermal Efficiency 0.3 
Cylinder 5&6 Port Temperatures 1.1 
Fuel Rack Position 0.8 -0.2 
Fuel Mass Flow Rate 0.1 1.5 0.2 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

Table 35 Percentage Deviations In Sensor & Performance Param. Data From Baseline Due To Worn Injector Needle & Nozzle 
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8.10.2 Analysis Of Worn Injector Needle & Nozzle Fuel Injection & 
Combustion Data 

Duration of injection showed a marked decrease through out the speed and torque 

range. This was due to the inability of the injector to maintain the line pressure 

because of the excessive leak-off. This theory was further supported by the lower 

maximum fuel line pressure and the increasing retarded point of injection with 

speed and torque. 

The fuel line pressure data showed some excellent trends and maintained very good 

repeatability. All worn injector fuel line pressure traces, except the lowest power, 

showed a marked kink in the rising edge of the trace at the point of needle lift. As 

power increased the kink became more pronounced showing a clear line pressure 

decrease at needle lift off. The most noticeable feature of the worn injector fuel line 

pressure traces was the rapid pressure decay on the falling edge of the trace .. 

Particularly in the portion between maximum fuel line pressure and the secondary 

peak. In some cases the pressure drop before the secondary peak was so severe it 

caused the needle to seat and then re-lift for a secondary injection. Needle lift 

reflected the trends seen in the fuel line pressure trace as might be expected. It was 

interesting to note that maximum needle lift of the worn injector was 85% greater 

than the baseline. This was probably due to the faulty injector having run 

considerably more hours than the baseline causing injector spindle and body wear. 
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These trends are best seen in Figures 87, 88 and 89 which show the fuel line 

pressure and needle lift data for both baseline and excessively worn needle and 

nozzle. 

The approximate heat release data, shown in Figure 90, clearly showed a decreased 

rate of heat release during the premixed phase of burning for the worn needle and 

nozzle throughout the speed and torque range. This was due to the poorer 

atomisation and penetration of the worn needle and nozzle discussed in Chapter 7, 

Section 7 .6.4. This trend is also reflected in the lower maximum cylinder pressures 

shown in Table 36 and Figure 88 . The reduced maximum cylinder pressure near to 

TDC meant that up-fuelling was required to maintain the specified test torques. The 

heat release data also shows that the poorer atomisation and up-fuel lead to a greater 

rate of heat release later in the cycle causing cylinder 5 & 6 port temperatures to 

nse. 
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Nom. Speed [revs/min]-Torque [Nm] 1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-430 2000-354 2150-372 
Max Fuel Line Pressure [%] 
Pmax Cylinder [%] 
Degrees CA Start OfPump Dischg 
Point Oflnjection 
End Of injection 
Duration Oflnjection 

Blue Cells = Negative deviation from baseline average greater than natural variation 

Red Cells = Positive deviation from baseline average greater than natural variation 

Green Cells = Negative deviation from baseline average less than natural variation 

Yellow Cells = Positive deviation from baseline average less than natural variation 

All measurements in degrees crank angle unless otherwise stated. 

Table 36 Deviations In Fuel Injection & Combustion Data From Baseline Due To A Worn Injector 
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8.11 Summary 

Each of the faults identified in Chapter 7 were the subject of a substantial amount of 

engine testing. The performance of the engine was assessed during both healthy and 

faulty modes of operation using the performance monitoring package developed 

during this research. As a result of a detailed analysis of the test data, explicit and 

original fault-symptom relationships for each fault have been developed for a high 

speed marine diesel engine. The sensitivity of engine performance to varying fault 

severity has also been quantified. In addition to this, variations in engine test data 

due to instrumentation repeatability and changing ambient conditions have been 

analysed and combined with the fault-symptom relationship data. This approach has 

allowed the identification of key diagnostic sensors for each particular fault. The 

development of fault-symptom relationships and identification of key diagnostic 

sensors is of primary importance for two reasons. Firstly, if fault detection requires 

specialist, intrusive, expensive and unreliable instrumentation and signal processing 

the whole diagnostic system becomes unfeasible for practical application. Secondly, 

if fault-symptom relationships are indefinable, contradictory or inconsistent it is 

unlikely that any form of artificial intelligence will perform successfully. There 

must be a pattern to the data, even if it is complex. The engine test work and 

subsequent analysis can be summarised by the following comments. 

• An 80% fouled charge air filter has a marked effect on high speed diesel engine 

performance, contrary to indications from similar work1421 on medium speed 

engines, and simulation. Trends in engine performance were sufficiently well 

defined at 80% fouling to justify additional engine testing at a much lower 
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severity of 30% fouling. Performance Monitor was also capable of detecting 

slight trends at this reduced severity 

• Performance Monitor easily detected adverse performance trends due to a 

genuinely faulty intercooler. Performance Monitor was also capable of detecting 

similar performance trends when a simulated faulty intercooler of reduced 

severity was engine tested. 

• Performance Monitor could comfortably detect performance trends caused by 

leaking exhaust and inlet valves. Computer simulation predicted that detection of 

these faults would be marginal. This demonstrates the distinct advantage of using 

real engine test data over un-validated simulation data to predict engine 

performance trends under faulty conditions, as has been the case in previous 

research[341 
• It is regrettable that further engine testing could not be conducted 

with a smaller leakage area more akin to the valves which were rig tested. In 

general, research on the effect of leaking valves on engine performance has been 

inadequate. Engine testing has been conducted [42
.451 on single valves with 

effective leakage areas over 10 times greater than used in this research. Other 

work [34
·
591 which has discussed the use of simulation to predict engine 

performance trends due to leaking valves have not quantified or qualified the 

effective leakage area used. The size of leakage area is critical when determining 

a system's ability to detect or diagnose the fault. Until now the effect on engine 

performance caused by a small degradation in sealing ability across all valves due 

to valve wear and pitting has not been investigated. The fault study, however, 

proved this is what happens in practice. 
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• 3° retarded fuel pump timing can be easily detected by Performance Monitor. 

Both high and slow speed data were affected significantly. The resulting 

performance trends were so positive at 3°, further testing was conducted at a 

lower severity. 

o Performance Monitor could detect the presence of all injector faults. The most 

notable discovery was the excellent quality diagnostic data generated by the 

simple non-intrusive fuel line pressure transducer. 

• Faults were introduced using genuinely faulty components or realistically 

simulated using a variety of techniques. This work has shown that firstly, engines 

are operating in service with faults present, detrimentally affecting performance 

and secondly, Performance Monitor has the ability to detect these faults. 
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CHAPTER9. 

DEVELOPMENT & VALIDATION OF A 

DIESEL ENGINE DIAGNOSTIC NEURAL NETWORK 

9.0 Introduction 

The overall aim of this research was to design, develop and validate a system which 

would perform on-line performance monitoring and fault diagnosis of a diesel 

engine. This chapter consolidates all of the work conducted during this research and 

demonstrates how the data captured and post processed by Performance Monitor 

was used to develop, optimise and validate a diesel engine diagnostic neural 

network. 

Previous research[5
·
6

·
7

·
8

·
9

·
101

, detailed in Chapter 1, has used complex look-up tables, 

large knowledge bases or traditional mathematical models to perform diagnosis. In 

addition to this, sensor readings have often required normalistaion and sophisticated 

signal processing before diagnosis could be performed. This work shows how a 

neural network can be developed which eliminates the need for all of the above 

work and still offers satisfactory performance. 

Previous systems discussed in Chapter 1 have often required a significant degree of 

computing hardware and software. This work also shows how the same relatively 

low specification PC used to run Performance Monitor can also be used to perform 

the diagnosis simultaneously. 
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Until now, neural networks have never been trained and tested on real diesel engine 

data to perform fault dioagnosis. Neither have they been used to diagnose a wide 

range of realistic engine faults including fuel injection equipment. Further to this, 

particular attention has been paid to the development of fault-symptom relationships 

for high speed diesel engines. This has lead to the identification of key diagnostic 

sensors which were used as neural network inputs. 

Previous work has given little regard to various neural network training methods 

and network architectures. This work has investigated several algorithms and 

various network architectures to achieve optimum diagnostic performance. 

Throughout the development and validation of the neural network diagnostic 

system, emphasis was put on the practical application of a neural network to diesel 

engine fault diagnosis. Previous work [341 has given little or no attention to practical 

application of neural networks to diesel engine fault diagnosis. 

To ascertain the neural network based diagnostic system practical limitations the 

following success criteria were defined. The neural network based system must; 

• Be able to be trained on real engine data. This would allow the neural network to 

be trained simultaneously with endurance, reliability and field trial engine testing 

which forms part of any engine development programme. This would make the 

neural network approach more commercially viable than other forms of AI, 

expert systems for example. Further to this the neural network diagnostic model 

could train throughout it's service life, continuously improving it's performance. 
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• Be capable of correctly identifying healthy and faulty conditions repeatably, 

even when sensor failure occurs. If a system continuously mis-diagnoses it 

quickly loses credibility. 

• Be able to perform an accurate diagnosis with reliable, non-intrusive, cheap 

instruments. 

• Demonstrate that it's diagnostic ability is not severely degraded in the presence 

of noisy sensor data. 

• Have the ability to perform an accurate diagnosis at torques and speeds it was not 

trained at. If the model needs to be trained on data generated at all speeds and 

torques, it is not practically viable. 

• Be capable of diagnosing faults of varying severity. Ideally, the neural network 

diagnostic model should be able to detect and diagnose faults of a lesser severity 

than those it was trained on. This would allow the tracking of faults from infancy 

and aid effective maintenance planning. 

• Demonstrate the ability to make an 'intelligent' diagnosis in the presence of a 

novel fault which it has not been trained on. 

All neural network model development was performed using Neuraldesk V2.ll 

running on a 100 MHz DX4 IBM compatible PC. This package was chosen since it 

supported the development of supervised learning, back propagation networks. 

Previous research has shown that this type of network could be successfully applied 

to similar diagnostic problems as discussed in Chapter 1. Neuraldesk operated in a 

windows environment, allowing DDE, and hence, easy interface with Performance 

Monitor. 
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9.1 Selection Of Inputs For Neural Network Diagnostic Model 
Development 

Previous work, discussed in Chapter 1, has shown that the choice of input data is 

critical to the successful development of a neural network. The analysis of the 

engine test data and subsequent fault-symptom relationship tables shown in Chapter 

8 were used to select which sensor readings were key to detecting the presence of a 

particular fault. It was decided that network development would use key sensors 

which were cheap, easy to install, non intrusive and reliable. 

Generally, the calculated performance parameters showed poorer repeatability than 

the raw sensor readings, as discussed in Chapter 4. It was decided that neural 

network development would concentrate on using raw sensor readings. This was 

beneficial because it allowed raw sensor data to be passed directly to the network, 

eliminating pre-processing. More importantly, all of the performance parameter 

deviations were directly caused by sensor deviations. Since the basic principle of the 

neural network is to create relationships between data it should be capable of using 

raw sensor data. Similarly, for this reason, engine performance corrections to BS or 

ISO were not applied. Table 37 shows a summary of the key diagnostic sensors 

identified from the fault- symptom relationship tables shown in Chapter 8. 

Although cylinder pressure and needle lift are both key diagnostic sensors they were 

both omitted from Table 37. They are expensive, intrusive, unreliable and require 

specialist signal processing. For these reasons they are considered unsuitable for use 

in any practical application. The following sensors were chosen as practically viable 

inputs for neural network diagnostic model development. 
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l. Engine torque 
2. Engine speed 
3. Compressor inletpressure 
4. Compressor inlet temperature 
5. Cylinders 1 & 2 exhaust temperature 
6. Cylinder 3 exhaust temperature 
7. Cylinder 4 exhaust temperature 
8. Cylinder 5 & 6 exhaust temperature 
9. Fuel rack position 
10. Intercooler cooling water discharge temperature 
11. Inlet manifold pressure 
12. Inlet manifold temperature 
13. Turbine discharge temperature 
14. Turbocharger rotational speed 
15. Fuel mass flow rate 
16. Charge air volume flow rate 
17. Cooling water inlet temperature 
18. Fuel line pressure (taken at l 0 crank angle resolution) 

The choice of sensors is of critical importance in the development of any diagnostic 

system. Sensors should be cheap, non-intrusive, reliable and give repeatable data. In 

addition to this they should give significant and detectable changes in the presence 

of a fault. Previous work on the application of Artificial Intelligence, AI, to fault 

diagnosis has concluded that inputs into the AI should be closely vetted to ensure 

they do not give contradictory or confusing d~ta but clearly indicate fault-symptom 

relationships. If this is not possible, the degree of success of the artificial 

intelligence may well be compromised. 
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SENSOR DESCRIPTION FAULT DESCRIPTION 
Air Filter If Cooler Leaking ·Leaking Fuel Pump Low Press Blocked Worn 
Blockage Blockage Inlet valve Exh valve Timing Injector Injector Injector 

Air Flow * * * * * 
Compressor Discharge Pressure * * 
Compressor Discharge Temperature * * 
Compressor Inlet Pressure * 
Compressor Inlet Temperature 
Cylinder 1&2 Port Temperatures * * * * * * 
Cylinder 3 Port Temperature * * * * * * 
Cylinder 4 Port Temperature * * * * * * 
Cylinder 5&6 Port Temperatures * * * * * * * 
Engine Cooling water Discharge Temperature 
Engine Water Temperature 
Engine Speed * * * * * * * * 
Exhaust Manifold Pressure * 
Exhaust Manifold Temperature * * * * * * 
Fuel Rack Position * * * * * 
Fuel Temperature 
Intercooler Cooling water Discharge Temperature * * 
Inlet Manifold Pressure * * 
Inlet Manifold Temperature * * * * 
Lubricating Oil Temperature 
Engine Tor_que * * * * * * * * 
Turbine Discharge Temperature * * * * * * 
Turbine Discharge Pressure 
Turbocharger Speed * * * * 
Cooling Water Supply Temperature 
Fuel Line Pressure * * * * 
Fuel Mass Flow Rate * * * * * 

Table 37 Key Diagnostic Sensors For Neural Network Development 
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The fuel line pressure sensor has been included since it is cheap, non intrusive and 

reliable. It also gave excellent diagnostic data relating to the fuel injection 

equipment faults. Fuel line pressure was sampled with respect to crank angle at 0.5° · 

resolution, as discussed in Chapters 2 and 3. Crank angle was measured using a 

specialised A VL 364 optical encoder which is both expensive and fragile and is only 

suitable for research test cell applications. It was thought that fuel line pressure data 

could only be used if the sampling resolution could be decreased to 1° crank angle. 

This would allow fuel line pressure to be sampled using a more robust and practical 

method such as a toothed flywheel and inductive pick-up or a rear end oil seal 

embedded inductive encoder. The latter are now cheap, reliable, easy to fit and 

common place in the automotive industry. 

All 9 temperature measurements chosen were measured using 'K' type 

thermocouples, both pressures were measured using simple strain gauge 

transducers. Both of these forms of instrumentation were cheap, easily fitted and 

reliable. Turbocharger rotational speed was easily measured using an inductive 

probe which is a cheap sensor well suited to practical situations. 

Fuel flow and air flow sensors are the only 'specialist' pieces of instrumentation · 

listed. The drive for low gaseous and particulate emission engines and increased 

efficiency has lead to the advent of engine management and electronic fuel injection 

systems. These systems, in particular automotive based, already use air and fuel 

flow sensors together with much of the instrumentation specified above. 
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9.2 Training Of Neural Network Diagnostic Models 

The engine test data from the sensors identified in Section 9.1 was divided into two 

distinct data sets. These were, training input data and validation input data sets. Both 

data sets contained data taken during healthy and all faulty modes of engine 

operation at all nine speed and torque test points. The validation input data 

comprised randomly selected sets of engine test data, the remainder of the engine 

test data, and by far the majority, formed the training input data. Supervised neural 

network training requires input data and output data for training. To compliment the 

training input data a set of neural network outputs were devised to characterise both 

healthy and faulty modes of engine operation. The output vector was a simple binary 

code as shown in Table 38. 

Output Layer Neuron Demanded Response 
Fault Description Neuron Neuron Neuron Neuron .Neuron Neuron Neuron Neuron 

1 .2 3 4 5 6 7 8 

Healthy 0 0 0 0 0 0 0. 0 
Fouled air filter 1 0 0 0 0 0 0 0 
Fouled intercooler 0 1 0 0 0 0 0 0 
Leaky inlet valves 0 0 1 0 0 0 0 0 
Leaky exhaust valves 0 0 0 1 0 0 0 0 
Fuel pump timing 0 0 0 0 1 0 0 0 
Low pressure injector 0 0 0 0 0 1 0 0 
Blocked injector 0 0 0 0 0 0 1 0 
Worn injector 0 0 0 0 0 0 0 1 

Table 38 Neural Network Diagnostic Model Outputs 

Neuraldesk contained a selection of 4 training algorithms, Stochastic Back 

Propagation, Skeletonising Back Propagation, Wiegend Weight Eliminator, and 

Standard Back Propagation. Each of these training algorithms was applied to the 

training input and output data sets. The networks trained on the Wiegend Weight 

Eliminator and the Standard Back Propagation Algorithm both failed to train and 
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converge properly after numerous attempts using varying architectures. The 

networks trained on the Stochastic and Skeletonising Back Propagation Algorithms 

both trained and converged successfully. These are discussed in more detail below 

and will be referred to as model 'A' and model 'B' respectively. 

9.2.1 Training Using The Stochastic Back Propagation Algorithm [Model 'A'] 

The input and output training data sets were entered into Neuraldesk and the input 

data sets were autoscaled between 0 and I. The network architecture was set to 

auto-design and Neuraldesk generated a 3 layer network. The input layer was set to 

117 input neurons, I7 inputs were dedicated to the slow speed data inputs, for 

example, temperature and pressure. The remaining input layer neurons took the 

digitised fuel line pressure readings taken from -50° BTDC to +50° ATDC at I 0 

sampling resolution. The output layer contained 8 neurons dictated by the binary 

outputs shown in Table 38. 

The optimal number of hidden layer neurons was established through trial and error. 

Three separate models were trained with six, seven and eight hidden layer neurons. 

The first model developed had six hidden neurons which gave high neuron outputs 

correctly which positively diagnosed the faults but also tended to mis-classify and 

give high neuron outputs for faults that were not present, giving a confusing 

diagnosis. Eight hidden layer neurons generally caused neuron outputs to be lower, 

reducing the confidence of diagnosis and also tended to give low neuron outputs on 

a large number of other neurons making the diagnosis too 'fuzzy'. Training and 

testing proved that the optimal number of hidden neurons was seven. 
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The Stochastic Back Propagation Algorithm was chosen from the algorithm menu 

and Neuraldesk generated default learning parameters of momentum = 0.9 and 

Learn rate =0 .1. The seven hidden layer network was set to train and the maximum 

network error and number of epochs was monitored. Figure 91 shows the reduction 

in maximum network error against number of epochs. 

1.6 
0 
"" "" 1.4 
~ 
.::c: .. 1.2 
0 

! 
~ z 0.8 

a = 0.6 

·~ 0.4 

~ 0.2 

0 

~ 
,___ 

"-
~ 

0 1000 2000 3000 

EPochs 
4000 5000 6000 

Figure 91 Model 'A' Training Error Reduction With Increasing Epochs 

At 540 epochs the learning rate was decreased from 0.1 to 0. 0 1 since the network 

was failing to converge and the error value showed increasing instability. This had 

the effect of dramatically reducing the error initially and then learning progressed in 

a slower but more controlled manner. At 1440 epochs the learning rate was 

decreased fwther to 0. 00 1. Again the rate of change of error decreased but the 

network moved slowly towards convergence. The network was occasionally tested 

using the validation input data sets until it's performance ceased to improve with 

further training. After 13 hours and 40 minutes of training the maximum network 

error had decreased to less than 0.1 and there was no evidence of the network's 

performance improving. The degree of training did affect network performance. The 

results showed that reduced network training lead to poorer diagnostic clarity. 

Correct neuron outputs were reduced in magnitude whilst the other incorrect 
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neurons started to give small activations. Increased training gave high neuron 

outputs correctly which positively diagnosed the faults but also tended to mis­

classify and give high neuron outputs for faults that were not present, giving a 

confusing diagnosis 

9.2.2 Training Using The Skeletonising Back Propagation Algorithm [Model B] 

The Skeletonising Back Propagation Algorithm is similar to the Stochastic Back 

Propagation Algorithm except it focuses on the most and least important weighted 

connections in the network. Connections of lower significance are actually removed 

from the network all together. The procedure for setting the network to train was 

identical to that used for Model 'A' except the Skeletonising Algorithm was chosen. 

When the Skeletonising Back Propagation Algorithm was selected values of 

momentum (alpha)= 0.9, Learn rate= 0.1 and Skel rate= 0.3 were set by software 

default. The network architecture before training was identical to Model 'A'. The 

network was set to train and the maximum error and epochs were monitored. Figure 

92 shows the reduction in maximum network error with increasing number of 

epochs. After 370 epochs the learning rate was reduced from 0.1 to 0.01. This 

steadied learning, and at 1190 epochs the network began to rapidly converge. 

Training became slightly unstable at 1410 epochs and the learning rate was further 

reduced to 0.001. The network was periodically tested on the validation data 

throughout training to ensure optimum diagnostic performance. After 8 hours and 

20 minutes of training the maximum 
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network error was 0.0998 and the network performance was ceasing to improve so 

training was terminated. 

~ 
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Figure 92 Model 'B' Training Error Reduction With Increasing Epochs 

9.3 Validation Of Neural Network Diagnostic Models 'A' & 'B' 

Initially the basic diagnostic performance was assessed on normal engine test data 

which represented both healthy and all faulty conditions at all speeds and torques. 

Once it was established that the models could successfully train and diagnose on 

real engine test data a series of tests were performed to assess each models 

performance against the success criteria outlined in Section 9.0. The following 

sections detail the validation testing methods and results 

9.3.1 Validation Of Neural Network Diagnostic Models 'A' & 'B'- Basic 
Diagnostic Performance 

The models were validated using the previously unseen engine data contained in the 

validation set. Examples of data taken at all speeds and torques under healthy and 

all faulty conditions were presented to the network input layer of both Model 'A' 

and Model 'B'. The models were interrogated and returned output vectors in less 

than a second. The results are shown in Figures 93 to 100. 
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Both models proved themselves to be competent diagnostic tools in the majority of 

cases. The following points summarise their performance. 

• Both models correctly identified the healthy running condition of the engine in 

over 97% of instances. For example, if performance monitor performed I 00 

separate diagnosis's on a healthy engine it would incorrectly show the presence 

of a fault less than three times. 

• Both models diagnosed an 80% blocked air filter with 100% success and no mis­

classifications. 

• Model 'A' failed to diagnose a genuinely faulty intercooler at 1400 [revs/min] 

and 186 [Nm]. Similarly, Model 'B' gave a very poor diagnosis at this condition. 

At 1600 [revs/min] and 237 [Nm] both models mis-classified and gave outputs 

representing a low opening pressure injector. Model 'B', did however, 

simultaneously give an output representing a faulty charge cooler. 

• Both models clearly diagnosed the presence of leaking inlet valves. Model 'A' 

also showed an output for leaking exhaust valves at 2150 [revs/min] and 372 

[Nm]. 

• Exhaust valve leakage was 100% diagnosed by both models with no mis­

classifications. 

• Model 'A' positively diagnosed 3° retarded injection at all torques and speeds 

except 1500 [revs/min] and 430 [Nm]. Model 'B's diagnosis was less positive 

throughout the speed and torque range and also suffered from poor diagnosis at 

1500 [revs/min] and 430 [Nm]. Neither model mis-classified. 

• Both models easily diagnosed a low opening pressure injector with no mis­

classifications 
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• Model 'A's response to a blocked injector was good except at 1500 [revs/min] 

and 200 [Nm] where the output dropped to just above 0.5. Model 'B's 

performance was poor at three of the nine torques and speeds. Both models 

showed a very slight tendency to mis-classify. 

• Diagnosis of a worn injector caused both models some problems. Model 'A' 

failed to diagnose at 3 speeds and torques and mis-classified the fault as either a 

low opening pressure injector or a blocked injector. Model 'B's performance was 

slightly better and only poorly diagnosed at 2 speeds and torques. As with Model 

'A', Model 'B' also suffered mis-classification problems. Despite this m is-

classification it was encouraging that both models identified that a fault was 

present, and that it was injector related. 

9.3.2 Validation Of Neural Network Diagnostic Models 'A' & 'B'- Diagnosis 
Of Faults Of Lower Severity Than Those Trained On 

The ability of the diagnostic models to identify the presence of a fault at its onset or 

before it becomes critical is a very valuable asset. If a diagnostic system has the 

ability to detect a fault in its infancy it allows the engineer to assess how the fault is 

developing, decide how long before corrective action is required and to correct the 

fault before it causes long term damage or catastrophic failure. To assess the 

models sensitivity to fault severity three faults were engine tested at two severities 

as follows; 

• Engine testing of a fouled air filter was initially conducted at 80% fouling based 

on fault study and simulation results. Based on the engine test results obtained at 

80% fouling further it was decided to undertake further engine testing at 30% 

fouling. 
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• The genuinely fouled and corroded intercooler obtained as a result of the fault 

study was subjected to engine test. Following this, engine test results were 

generated for a simulated faulty intercooler which created an intercooler fault of 

lower severity than the original genuinely faulty cooler tested. 

• Simulation predicted that engine testing should start with 3° retarded fuel pump 

timing. After this, engine test was conducted with fuel pump timing set at 1 .SO 

retardation based on the engine test results obtained at 3°. 

Neural Network Diagnostic Models 'A' & 'B' were trained and tested on the, 80% 

air filter fouling, genuinely faulty intercooler and 3° retarded injection engine test 

data as detailed in the above sections. The trained networks were then tested on 

engine data taken when the air filter was fouled by 30%, the intercooler had a 

simulated blockage less severe fault than the genuinely faulty intercooler and the 

fuel pump timing was retarded by 1.5°. Full results can be seen in Appendix 'E'. 

The following comments summarise the performance of both models. 

• Model 'A' detected and positively diagnosed the presence of a 30% fouled air 

filter at all speeds and torques except 1400 [revs/min] and 186 [Nm] and 2150 

[revs/min] and 372 [Nm]. Although the response at these two test points was less 

than at other test points the neurons still registered an output. Generally the 

magnitude of output was less than experienced with the 80% filter fouling and no 

mis-classification occurred. 
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o Model 'A' successfully diagnosed the simulated faulty intercooler at the majority 

of torques and speeds. The poorest diagnosis occurring at 1400 [revs/min] and 

186 [Nm]. Low neuron outputs were also experienced at 1500 [revs/min] and 430 

[Nm] and 1800 [revs/min] and 293 [Nm]. 

• Model 'A' failed to diagnose IS retarded fuel pump timing at 1500 [revs/min] 
,. 
and 430 [Nm] and 1800 [revs/min] and 293 [Nm]. However, at all other torques 

and speeds this fault was positively diagnosed. 

• The overall performance of Model 'B' was worse than model 'A'. All three faults 

were diagnosed with a generally lower level of confidence. Diagnosis of the 30% 

fouled air filter was not as positive as Model 'A', at three torque and speed 

conditions diagnosis was particularly poor. 

• Model 'B's diagnosis of the simulated faulty intercooler was poor with 5 torques 

and speeds giving rise to neurori outputs of less than 0.5. 

• Model 'B' failed to register an output for the 1 .SO retarded fuel pump timing at 2 

speeds and torques. The neuron outputs at the other 7 speeds and torques were 

lower than Model 'A's. 

9.3.3 Validation Of Neural Network Diagnostic Models 'A' & 'B'- Reaction To 
Completely Novel Faults 

Models 'A' & 'B' were trained as described in Sections 9.2.1 and 9.2.2 but with a 

modified training set. All training data relating to leaking inlet valves and a worn 

injector was deleted from the training set. The network weights were completely 

randomised to destroy all former knowledge of these faults and then set to train. 

Both models converged to give a final maximum network error of less than 0.1. The 

models were then tested on leaking inlet valve and worn injector data sets. Both 
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responded well beyond expectations, full results of the diagnosis are contained in 

Appendix 'E'. The following comments summarise each models performance. 

• When tested on the novel leaking inlet valve fault, Model 'A' gave outputs in 

excess of 0.9 at seven engine speeds and torques. More surprisingly it repeatably 

diagnosed the fault as leaking exhaust valves, which physically, is very similar to 

leaking inlet valves. At the remaining two speeds and torques where the diagnosis 

was not as positive the model gave smaller outputs, but still indicated that the 

fault was leaking exhaust valves. 

• Model 'B' showed a similar response but only gave a positive diagnosis at six of 

the nine speeds and torques. Despite one output indicating a fuel pump timing 

fault, both models did not show any further evidence of mis-classification. 

• Model 'A' gave a strong diagnosis when tested on the worn injector data, at 8 of 

the 9 speeds and torques. These high neuron outputs clearly diagnosed the fault 

as being a low pressure injector, which, in reality, is very similar to a worn 

injector . 

• Model 'B' gave a similar response at 6 of the 9 speeds and torques on the worn 

injector data. With the exception of one output in both cases, the models did not 

indicate the presence of any other faults. 

• The results of these tests proved that both models have the ability of making 

intelligent decisions when presented with completely novel data. Both models not 

only recognised that a fault was present but accurately made predictions on the 

nature of the fault. 
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9.3.4 Validation Of Neural Network Diagnostic Models 'A' & 'B'- Diagnostic 
Ability At Previously Unseen Speeds and Torques 

The traini~g data sets were edited and all engine test data relating to I500 

[revs/min] and 200 [Nm] was removed. The network weights were fully randomised 

to destroy any knowledge of the 1500 [revs/min] 200 [Nm] operating condition. 

Both networks were set to train until they converged to give a maximum network 

error of O.I. 

Both models were asked to perform a diagnosis when presented with data taken at 

I500 [revs/min] and 200 [Nm] during both healthy and faulty modes of engine 

operation. The following points summarise the performance of both models, full 

results of the diagnosis can be found in Appendix 'E'. 

• Model 'B' gave 4 significant outputs which indicated the presence of faults when 

presented with healthy engine test data. Model 'A's performance was 

significantly better giving only I output above 0.5 from the 32 sets of data 

presented to the model. 

• Model 'A' correctly diagnosed the presence of an 80% fouled air filter, giving 

high outputs in 3 out of the 4 cases presented to the model. There was also some 

evidence of mis-classification. Model 'B's performance was particularly poor and 

failed to give a positive diagnosis of the 80% fouled filter. Further to this it had a 

tendency to mis-classify the fault as a faulty intercooler. 

• Both models diagnosed the presence of a faulty intercooler I 00% correctly with 

no mis-classifications. 
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• Leaking exhaust valves were positively diagnosed 100% correctly with no mis-

classifications by both models. 

• Both models positively diagnosed retarded fuel pump timing 100% correctly with 

no mis-classifications. 

• The low opening pressure injector was clearly diagnosed in three out of four 

cases, by both models. Similarly, both mis-classified the low opening pressure 

injector as retarded fuel pump timing in the remaining case. 

• Neither model performed particularly well on the blocked injector test data. 

Model 'B' only correctly diagnosed in one instance and managed to strongly mis-

classify two other data sets. Model 'A's performance was slightly better since it 

also correctly diagnosed in one case, but only mis-classified once. 

9.3.5 Validation Of Neural Network Diagnostic Models' A' & 'B' -Diagnostic 
Performance On Noisy Sensor Data 

Random variations of+/- 1% and+/- 2% were applied to each sensor reading in the 

validation data set, producing two more validation sets. These variations were set 

based on the magnitude of repeatabilities seen under test cell conditions and the 

performance repeatability of current production engines. The aim of this was to 

simulate poor sensor repeatability above that already experienced under test cell 

engine test conditions. It was thought that in practice data repeatability is worse than 

under test cell conditions. These two data sets were then presented to the inputs of 

both models. Both models were trained as described in Section 9.2. Full results can 

be found in Appendix 'E'. The following comments summarise each models 

performance. 
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• Model 'A' still effectively diagnosed the 80% fouled inlet air filter under both 

I% and 2% simulated noisy data. Only the lowest speed and torque condition did 

not register a high neuron output. Model 'A' made I mis-classification on the I% 

noisy data and 2 mis-classifications on the 2% noisy data. In comparison Model 

'B's overall performance was similar. Model 'B' clearly diagnosed the 80% 

fouled air filter at 6 of the 9 speed and torque conditions and gave no mis­

classifications on the I% noisy data. When tested on the 2% noisy sensor data 

Model 'B' diagnosed the fouled air filter well at all speeds and torques except 

one and only gave one mis-classification. 

• Diagnosis of the genuinely faulty intercooler was largely successful. Model 'A' 

diagnosed correctly at 7 of the 9 speeds and torques with no m is-classifications 

on the I% noisy data. Model 'A's test on the 2% noisy data gave a good 

diagnosis of the faulty intercooler at 5 speeds and torques and one mis­

classification. Model 'B' successfully diagnosed the genuinely faulty intercooler 

at 7 of the 9 speeds and torques and gave 2 mis-classifications when tested on the 

I% noisy data. When tested on the 2% noisy data, Model 'B' correctly diagnosed 

at 6 speeds and torques and gave 1 mis-classification. 

• Model 'A' diagnosed leaking inlet valves I 00% correctly at all speeds and 

torques with no mis-classifications when tested on the I% noisy data. Model 'A' 

also correctly diagnosed leaking inlet valves at 8 of the 9 speeds and torques and 

gave no mis-classifications on the 2% noisy data. Model 'B's performance on the 

I% noisy data was comparable Model 'A's. Testing on the 2% noisy data, 

however, showed a poorer performance with positive diagnosis at only 7 speeds 

and torques and 1 mis-classification. 
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• Leaking exhaust valves were diagnosed well by both models based on the I% 

noisy data. Model 'A' successfully diagnosed at 8 of the 9 speeds and torques and 

showed a tendency for mis~classification at one speed and torque. Model 'B' 

correctly diagnosed at all speeds and torques with one neuron output being 

slightly low and no evidence of mis-classifications. Testing on the 2% noisy data 

gave a similar response except Model 'B' gave one strong mis-classification. 

• Model 'A' diagnosed retarded fuel pump timing at 8 and 7 of the 9 speeds and 

torques when tested on the 1% and 2% noisy data respectively. Model 'B's 

performance was poorer than Model 'A'. Model 'B's diagnosis on 1% noisy data 

gave low neuron outputs at 2 of the 9 speeds and torques. Testing on the 2 % 

noisy data gave low neuron outputs at 4 of the 9 speeds and torques and some 

evidence of mis-classifications. 

• Diagnosis of the low opening pressure injector on 1% noisy data by both models 

was generally good, however both gave strong mis-classifications at one speed 

and torque. Testing on the 2% noisy data caused an increase in number of mis­

classifications in both cases. 

• Both models showed evidence of mis-classification when diagnosing a blocked 

injector. The number of misclassifications increased as the degree of noisiness of 

data increased. Despite this, neuron outputs indicating the presence of a blocked 

injector were high at the majority of speeds and torques for both models. 

• The worn injector fault was poorly diagnosed by both models on 1% and 2% 

noisy data. Both models mis-classified on numerous occasions and gave low 

'worn injector' neuron outputs at a number of speeds and torques. 
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9.3.6 Validation Of Neural Network Diagnostic Models 'A' & 'B'- Ability To 
Diagnose Selected Faults On Faulty Sensor Data 

Both models were trained as described in Sections 9.2.1 and 9.2.2. Three faults were 

selected at random, namely, fouled inlet air filter, leaking inlet valves and retarded 

pump timing. For each of these faults two key diagnostic sensors were identified 

from the fault-symptom relationships developed in Chapter 8. Severe sensor failure 

often leads to the sensor giving either no reading at all or a full scale reading. To 

simulate sensor failure the validation data sets were modified. Data from both key 

sensors was changed to read either zero or full scale. Table 39 shows the key 

sensors chosen for each fault and the modified faulty sensor data which was 

substituted into the validation data sets for testing. 

Test Fault Description Key Sensor 1 Reading Key Sensor 2 Reading 
No. 

1 Fouled Inlet Air 0 [m3/hr] inlet air flow 1200K 1 & 2 exhaust 
Filter port temperature 

2 Fouled Inlet Air 700 [m3/hr] inlet air 0 [K] 1 & 2 exhaust 
Filter flow port temperature 

3 Leaking Inlet 0 [K] inlet manifold 0 [K] turbine discharge 
Valves temperature temperature 

4 Leaking Inlet 1200 [K] inlet manifold 1200 [K] turbine 
Valves temperature discharge temperature 

5 Retarded Injection 100000 [revs/min] 0 [Kpa] inlet manifold 
Timing turbocharger speed temperature 

6 Retarded Injection 0 [revs/min] 200 [Kpa] inlet 
Timing turbocharger speed manifold pressure 

Table 39 Simulated Faulty Sensor Data Substituted Into The Validation Sets 

The two models were tested on the simulated faulty sensor validation data sets. Full 

results can be seen in Appendix 'E'. The following comments summarise both 

models performance under faulty sensor data. 

• Both models lOO% correctly identified the fouled inlet filter under Test 1 

conditions. Both models failed to diagnose the fouled inlet air filter on Test 2 
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validation data. Model 'A' mis-classified on a couple of occasions whilst Model 

'B' mis-classified frequently. 

• Model 'A' correctly diagnosed leaking inlet valves under Test 3 conditions. It 

also 100% diagnosed the fault as retarded injection timing simultaneously. 

Model 'B' correctly identified leaking inlet valves and gave no mis­

classifications under Test 3 conditions. Both models diagnosed leaking inlet 

valves as a faulty intercooler under test 4 conditions. Further to this, Model 'B'' 

simultaneously diagnosed the fault as a worn injector. 

• Both models diagnosed retarded injection timing as leaking inlet valves under 

Test 5 conditions. Model 'A' diagnosed retarded pump timing as a faulty 

intercooler, a worn injector and showed some evidence of low opening pressure 

injector neuron outputs under Test 6 conditions. Model 'B' clearly diagnosed the 

retarded injection timing as a faulty intercooler when tested on Test 6 data. 

9.3.7 Summary Of Neural Network Diagnostic Models 'A' & 'B' Performance 

Assuming that an output of greater than 0.5 on the correct neuron constitutes a 

correct diagnosis. The basic diagnostic performance of both models when tested on 

normal engine data representing conditions which the networks had been trained on 

was good. The following points compare and summarise the performance of both 

models. 

• Model 'A's performance was marginally better than Model 'B's since it 

successfully diagnosed in l% more cases when tested on the validation data set. 

• Model 'A's performance on data representing varying fault severity was better 

than Model 'B's. 
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• Model 'A' proved to be more robust than Model 'B' on noisy sensor data. Model 

'A' correctly diagnosed in 7% more cases on 1% noisy data and over 11% more 

cases on 2% noisy data when compared to Model 'B'. 

• The diagnostic performance of both models was comparable when tested on data 

taken at a novel speed and torque or under novel fault conditions. 

• Both model's performance on faulty sensor data was very poor. 

9.4 Summary 

This chapter has partially satisfied research objective 6, identified in Chapter 1, and 

has shown how a neural network can be developed to perform diesel engine fault 

diagnosis. Key diagnostic sensors have been identified and used as neural network 

inputs. Several training algorithms and were investigated to achieve optimum 

performance. The two most successful neural network models were validated 

against the practical success criteria defined in Section 9.0. The following points 

summarise. 

• The sensors used for diagnosis were cheap, robust, relatively non-intrusive and 

easily installed. 

• The Stochastic Back Propagation Algorithm offered the best method of neural 

network training. 

• The degree of network training affected their diagnostic ability. Insufficient 

training led to 'fuzzy' results and a poor diagnosis. Too much training gave a 

good positive diagnosis. Unfortunately, it also led to an increased number of mis­

classifications. 

303 



o The number of hidden layer neurons affected the neural networks diagnostic 

performances. In this research the number of both input and output neurons were 

fixed. Increasing the number of hidden layer neurons led to a 'fuzzy' diagnosis, 

too few neurons led to mis-classifications. 

o The networks could diagnose the following faults at a genuine severity with 

varying levels of success. 

Fouled inlet air filter 
Genuinely fouled & corroded faulty intercooler 
Leaking inlet valves 
Leaking exhaust valves 
Retarded fuel pump timing 
Genuinely worn injector 
Genuinely blocked injector 
Genuine low pressure injector 

o The networks could diagnose faults of lower severity than those found on engines 

currently in operation. This was demonstrated using the fouled air filter, 

intercooler and fuel injection timing faults. 

o Diagnosis could be performed under noisy sensor data conditions however, the 

diagnostic accuracies of the neural network outputs were compromised. Previous 

research has also suggested this is true. It should, however, be noted that the 

noisier the data the worse the diagnosis. 

o The diagnostic performance of the networks on novel faults on which they not 

had been trained was impressive. They clearly registered that a fault was present 

despite never being trained. More importantly, they had the ability to correctly 

draw similarities between novel faults which were physicaly similar to faults on 

which they had been trained. 
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• The neural networks could diagnose at a speed and torque at which they had not 

been trained but the diagnostic accuracies were slightly impaired. 

• Despite previous research suggesting otherwise, the neural networks suffered a 

severe degradation in performance when given faulty data from key diagnostic 

sensors. It may be true to say that less important sensors could fail and not affect 

the diagnosis significantly. In this respect diagnosis would be much more robust 

if several parameters changed by a small amount as oppose one sensor giving 

huge deviations under fault conditions. 

Based on the results of all the testing done Model 'A' was shown to be more 

competent diagnostic model than Model 'B'. Despite Model 'A' requiring a longer 

training time than Model 'B', it was thought that this disadvantage was out-weighed 

by the improved diagnostic performance. Although better than Model 'B', Model 

'A' had the following weaknesses which needed to be addressed before it could be 

considered a practical diagnostic tool. 

• The model gave 10 mis-classifications when tested on the validation data. This 

represents a mis-diagnosis rate of 1.2% 

• The diagnostic ability of the model was degraded from 98% successful on the 

validation data to 79.8% on the 1% noisy data and, 71.7% on the 2% noisy data. 

• The model failed to give neuron outputs greater than 0.5 in six instances of 

diagnosis based on normal validation data. Assuming that an output greater than 

0.5 is required for a positive diagnosis. The model failed to diagnose that a fault 

was present in 8.3% of cases. For example, if the network was asked to perform 

305 



100 independent diagnoses on a faulty engine it would incorrectly identify that 

the engine was healthy 8.3 times. 

• The model clearly fails to diagnose correctly when subjected to faulty sensor 

data. 

The work has shown that even the best model developed was unsuitable for 

practical diesel engine fault diagnosis because of the deficiencies identified above. 

It was decided that further work was required to develop a practically viable neural 

network based diagnostic system. As a result, a significant amount of original work 

was completed to develop and validate two extra diagnostic modules. This work is 

discussed in Chapter 10. 
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CHAPTER 10 

DEVELOPMENT & VALIDATION OF A 

NEURAL NETWORK BASED DIAGNOSTIC SYSTEM 

10.0 Introduction 

To address the weaknesses identified in Chapter 9 and satisfy the success criteria 

listed in Section 9.0 further work was required to create the final diagnostic system. 

The validation of the neural network showed that occasionally the network gave a 

weak output classifying the fault correctly, but not confidently. In other instances 

the model gave spurious mis-classifications. One of the objectives of the work 

discussed in this chapter was to develop and validate a technique which could take 

the raw neural network outputs and convert them into a data-set which would allow 

a correct, reliable and repeatable diagnosis to be made by the system despite the 

problems which existed with the raw neural network outputs under practical · 

conditions. 

As a result, original work has been conducted and a new technique for enhancing 

neural network generated data for diagnostic purposes has been developed and 

validated. Further to this, a method of recognising faulty sensor data has been 

developed which can be incorporated into the final diagnostic system. 

This chapter also discusses how the individual elements of the performance 

monitoring package, neural network, neural network raw output processing and 
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faulty sensor data recognition modules can be combined together to create a 

practically viable, on-line diesel engine fault diagnosis system. 

10.1 Development Of A Technique To Enhance Neural Network 
Diagnostic Ability 

All of the validation work discussed so far has assumed that the ultimate diagnosis 

would be based on a single diagnosis from one data set. In reality, Performance 

Monitor could run continuously and generate many successive data sets. 

Considering this, and the knowledge that the neural network makes more correct 

diagnoses than incorrect, a new technique for dramatically improving the diagnostic 

performance of the neural network was developed. The whole principle is based on 

the fact that it is more probable the neural network will produce a comparatively 

larger output from the correct neuron than from an incorrect neuron for a given 

engine health condition. The neural network validation in Chapter 9.0 showed this 

to be true. 

This new technique developed to enhance the diagnostic ability of a neural network 

uses the new approach of linking an on-line diagnostic database to the raw network 

outputs. The data actually used to perform the diagnosis comes from the diagnostic 

database. The database is fed successive raw neural network output vectors and re-

computes it's output based on the current network output and the previous 'n' neural 

network output vectors. This worked by comparing a form of cumulative average of 

all previous network outputs held in the database, with the latest network outputs. If 

the latest diagnosis agreed with the database diagnosis then the maximum output of 
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the latest diagnosis was increased by a weighting factor. Similarly, lesser neuron 

outputs which disagreed with the database diagnosis were reduced even further to 

strengthen the diagnosis. The latest diagnosis result was then added to the database 

arid further strengthened the databases diagnosis. By using a diagnostic database 

spurious mis-classifications could be eliminated and correct but small neuron 

outputs could be amplified since the database could enhance the latest diagnosis 

based on the results of many previous diagnoses. 

To implement the on-line diagnostic database a Visual Basic For Applications, 

VBA, program was written which performed the following steps. 

1. Select the key diagnostic sensor readings from the performance file. 

2. Pass the sensor data to the neural network as the input stimulus. 

3. Interrogated the neural network for the diagnosis. 

4. Returned the neural network output layer results to an Excel worksheet. 

5. Managed the data in the worksheet so that each successive diagnosis was added 

to a database. 

A full copy of this program named DIAMAC.XLM can be found in Appendix 'E'. 

To perform the cumulative averaging and weighting of the neural network outputs 

in the database to give the improved diagnostic ability an algorithm was developed. 

As each successive diagnosis was added to the worksheet a series of calculations 

were performed as follows. 
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l. Calculate the cumulative average of each of the output neurons i .... .j; 

. . . 
nd 1

. + (n+ l)d 1 
. .•.••• Nd 1 

. 

. X~= 1 1 1 
1 N 

Equation 21 

X= cumulative average, where i is the ith output neuron and} is thejth output 

neuron, n is the number of successive diagnosis's and d is the neuron output. 

2. Calculate the cumulative product of output neurons i. ... .j after each diagnosis; 

• 0 • • 

Z 1
. = nd1

. * (n + l)d1
. * .......... Nd1

. 
1 1 1 1 

Equation 22 

3. From the cumulative average and cumulative product calculate a confidence 

factor. The confidence factor was designed to increase the neuron output which had 

the most frequently occurring maximum output. Successively small outputs or 

occasional high outputs were heavily penalised. After 'n' diagnoses the confidence 

factor was given by; 

c = n 

z'. 
1n 

zl. 
1nmax. 

3 

4. Calculate the database output after 'n' diagnoses; 

y~ = X1
. * c 

1n 1n n 
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10.2 Validation Of The Diagnostic Database 

Following the development of the on-line diagnostic database it was validated on 

previously unseen Performance Monitor files. The files were presented to the neural 

network ·in a completely random order and represented all of the following 

conditions. 

• Normal experimental engine test data, previously unseen by the network, taken 

under healthy and all faulty modes of running at all test point speeds and torques. 

• Experimental test data which had been subjected to random +1- 1 and +1- 2% 

variations above normal practical repeatability's on all sensor readings. 

• Engine test data taken at speeds and torques on which the network had not been 

trained. 

• Lower severity faults on which the network was not trained. 

These conditions represented everything which the diagnostic system would be 

likely to see in a practical application with the exception of sensor failure. The 

outputs were monitored as the diagnostic database was tested on all of the above 

data sets. Figures 101 to 112 show a comparison between the raw neural network 

outputs and the diagnostic database outputs as successive diagnoses were made. 
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Raw Neural Nemork Output On Fouled Air Filter Data 
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Raw Neural Ne~.,rk Output On Faulty Intercooler Data 
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Raw Neural Nernork Output On Leaking Inlet V al~s Data 
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Raw Neural Nemork Output On Leaking Elhaust V al\es Data 
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Raw Neural Netoork OutpJt On Retar~d FUel Pump Timing Data 
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Raw Neural Nenwrk Output On Low Pressure Injector Data 
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Raw Neural Netoork Output On Blocked Injector Data 
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Figure 108 Neural Network & Diagnostic Database Results On Blocked 
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Raw Neural Ne~rk Output On Worn Injector Data 
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Raw Neural Netoork OutpJt On 30% Fouled Air Filter Data 
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Raw Neural Netoork Output On l..ow Se~rity Simulated Faulty Intercooler Data 
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Raw Neural Netoork Output On I ,S Deg Retarded FUel Pump Timing Data 
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The results show that the novel approach of linking the neural network to an on-line 

diagnostic database greatly improves the diagnostic performance. The following 

comments discuss the diagnostic databases perfot:mance. 

• Spurious mis-classifications were totally eliminated under all conditions 

including noisy sensor data and novel engine speeds and torques. 

• Low neuron outputs which correctly identified the fault were enhanced by nature 

of the fact that the other seven neuron outputs were low and the low neuron 

output agreed with the current database output. 

• The trend in successive database outputs can be used to monitor the development 

of the fault since the level of database output genuinely reflects the fault severity. 

The 80% fouled air filter gave a final database output of 0.86 on the correct 

neuron. The 30% fouled air filter gave a neuron output of 0.56. The genuinely 

faulty intercooler gave a final database output of 0.78 whereas the lower severity 

simulated faulty intercooler gave a database output of 0.64. The 3 degree retarded 

fuel pump timing gave a final database output of 0.84 as oppose to the 1.5 degree 

retarded fuel pump timing which gave a database output of 0.60. This is very 

important since the diagnostic system not only detects the low severity faults but 

can quantify the level of severity. This would allow minor faults develop and 

only implement corrective action when necessary. 

• The diagnostic database accurately diagnoses I 00% of the time under both 

healthy and faulty engine operation on all faults and under all conditions. 

• The nature of the calculation in the database weights the successive diagnoses. 

This means that if the engine had been running healthily for an extended duration 

the database would be slow to respond to the occurrence of a fault. The rate of 
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detection would be proportional to the number of diagnoses made during healthy 

engine operation since any neuron output indicating a fault would be over-ruled 

by the database values. The number of successive database results should be 

limited to, say 10, and then the database be completely refreshed. The number of 

successive database results used is a function of desired diagnostic system 

response time and the diagnostic accuracy of the raw neural network inputs. For 

example a neural network with excellent diagnostic clarity would require fewer 

database values to provide a good basis for decision making. 

• The confidence factor and weight adjusting algorithms discussed here work 

extremely well m1 single faults. Further work would be required to adapt this 

technique for the diagnosis of multiple faults. 

• The database results allow very accurate and easy decision making by simple 

greater than/less than statements. 

10.3 Safeguarding Against Incorrect Diagnosis Due To Sensor Failure 

Section 9.3.6 showed that the model performed very badly when key diagnostic 

sensors failed. This often lead to very positive mis-classifications. The problem was 

addressed by developing a sensor filter network which was trained to recognise full 

scale or zero sensor outputs. The engine sensor data could be fed through the sensor 

filter before feeding into the engine diagnostic network. This would allow a sensor 

check to be performed before every diagnosis. 

To demonstrate this principle a network was trained on three complete sets of 

engine data. The first set was the training set used for all network development in 
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this chapter. The second and third data sets had the air flow sensor readings 

modified to zero and full scale respectively. All three data sets included data which 

·represented healthy and faulty modes of engine operation at all speeds and torques. 

The network trained very quickly using the Stochastic Back Propagation Algorithm 

and was tested on validation sets which were selected at random but represented 

healthy and faulty modes of engine operation and various speeds and torques. In all 

cases the sensor filter positively identified if the air flow sensor was healthy or 

faulty. Figure 113 shows the sensor filter's ability to diagnose the faulty air flow 

sensor. 
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10.4 Integrating The Diagnostic System With Performance Monitor 

The results screen shown in Figure 17 was modified to include options allowing the 

user to run the diagnostic system on the data contained within Performance Monitor 

files and see the on-line diagnostic database results. Further to this, the database and 

VBA program, DIAMAC.XLM, were modified to give decision making ability and 

automate the sensor check before the diagnosis. A copy of the program can be found 

in Appendix 'E'. 

Decision making was achieved by looking at the last on-line diagnostic database 

output. If the maximum output was less than 0.2 the program returned the message 

"Engine Healthy" to the results screen. If the maximum output was greater than 0.2 

the maximum output was located. Each output was assigned a message as shown in 

Table 38 which was returned to the results screen. The maximum output value was 

returned to the results screen to give the user a measure of diagnostic confidence. 

Further to this the diagnostic database results were presented in 30 graphical format 

to allow the analysis of diagnostic trends. Figure 114 shows the an overall schematic 

of the final performance monitoring and diagnostic package developed during this 

research. Figure 115 shows the performance monitoring & diagnostic package's 

final user screen. 
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10.5 Summary 

Combined with the work discussed in Chapter 9 this chapter has satisfied research 

objective 6, identified in Chapter 1, and shown how neural networks can be applied 

to diesel engine fault diagnosis. A totally new technique for improving the 

diagnostic ability of neural networks operating under practical conditions has been 

developed and validated. This utilised the novel combination of an on-line 

diagnostic database and a neural network and included the development of weight 

adjusting and 'confidence factor' algorithms. The diagnostic database approach has 

worked very well in this instance and it is conceivable that this approach could 

certainly be developed more widely for other kinds of decision making applications. 

A diagnostic sensor filter was developed to demonstrate that sensor failures can also 

be detected by neural networks. The best neural network model was combined with 

the sensor filter and on-line diagnostic database to form a diagnostic system which 

satisfied the practical success criteria. The diagnostic system was integrated with 

Performance Monitor to give a complete on-line diesel engine condition monitoring 

and fault diagnosis system. The following points summarise; 

• The system could diagnose the following faults at a genuine severity, 100% 

correctly on a repeatable basis; 

Fouled inlet air filter 
Genuinely fouled & corroded faulty intercooler 
Leaking inlet valves 
Leaking exhaust valves 
Retarded fuel pump timing 
Genuinely worn injector 
Genuinely blocked injector 
Genuine low pressure injector 

331 



• The system could diagnose faults of lower severity than those found on engines 

currently in operation. This was demonstrated using the fouled air filter, 

intercooler and fuel injection timing faults. Further to this the system gave a 

qualitative indication of fault severity. 

• Diagnosis could be successfully performed under noisy sensor data conditions. 

The diagnostic accuracy of the raw neural network outputs were compromised. 

The use of the on-line diagnostic database addressed this and always ensured 

correct diagnosis. Previous research has also suggested this is true. It should, 

however, be noted that the noisier the data the worse the diagnosis. 

• The neural network diagnostic performance on novel faults was impressive. It 

clearly registered that a fault was present despite never being trained. More 

importantly, the neural network had the ability to correctly draw similarities 

between novelfaults and faults on which it had been trained. 

• The neural network diagnostic system could diagnose at a speed and torque at 

which it had not been trained. The accuracy was slightly impaired but the on-line 

diagnostic database compensated for this deficiency. 

• Despite previous research suggesting otherwise, the neural network suffered a 

severe degradation in performance when given faulty data from key diagnostic 

sensors. It may be true to say that less important sensors could fail and not affect 

the diagnosis significantly. In this respect diagnosis would be much more robust 

if several parameters changed by a small amount as oppose one sensor giving 

huge deviations under fault conditions. This work has, however, shown that 

neural networks can be trained to recognise and diagnose sensor failures prior to 

engine fault diagnosis. 
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CHAPTER 11 

CONCLUSIONS & RECOMMENDATIONS 

11.1 Conclusions 

This research has designed, configured and validated a system which was capable of 

on-line condition monitoring and fault diagnosis of a marine diesel engine using a 

neural network based approach. The overall research aim was achieved through the 

satisfaction of all the research objectives identified in Chapter I. Further to this, the 

research constitutes original work which has also satisfied recommendations made . 

by previous research. 

The work conducted in this research can be summarised as follows; 

• An automated diesel engine performance monitoring system for a high speed 

marine diesel engine was designed, developed and fully validated. 

• Prior to the main research testing programme a detailed study on diesel engine 

data sampling, repeatability and error analysis was undertaken. 

• A detailed Perkins T6.354(M) diesel engine fault study was undertaken. The 

results determined the most commonly occurring faults. Causes and mechanisms 

for failure were also established through the application of findings from other 

research. 

• Diesel engine computer simulation models and rig testing have been used to 

predict performance under both healthy and faulty modes of operation. The 

results from the simulations, rig testing and the fault study ensured that engine 

testing and results generated were credible. 
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• Performance Monitor could comfortably detect performance trends caused by 

leaking exhaust, inlet valves, I .SO retarded fuel pump timing and a fouled inlet air 

filter. Computer simulation predicted that detection of these faults would be 

marginal. This demonstrates the distinct advantage of using real engine test data 

over un-validated simulation data to predict engine performance trends under 

faulty conditions, as has been the case in previous researchr281 
• 

• During the course of this research a significant amount of engine testing was 

conducted under both healthy and faulty modes of engine operation. A detailed 

analysis was performed on the experimental data to explicitly define fault-

symptom relationships. 

• A neural network based system capable of diagnosing diesel engine faults has 

been developed and validated. 

The following conclusions can be drawn from this research; 

• Some of the most commonly occurring diesel engine faults are; 

Fouled air filter 
Faulty intercooler 
Leaking inlet valves 
Leaking exhaust valves 
Retarded fuel pump timing 
Worn injectors 
Blocked injectors 
Low pressure injectors 

• These faults lead to degradations in the engines performance. The adverse trends 

in performance could be detected by an on-line performance monitoring system 

using the following measurements; 
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1. Engine torque 
2. Engine speed 
3. Compressor inlet pressure 
4. Compressor inlet temperature 
5. ~ylinders 1 & 2 exhaust temperature 
6. Cylinder 3 exhaust temperature 
7. Cylinder 4 exhaust temperature 
8. Cylinder 5 & 6 exhaust temperature 
9. Fuel rack position 
10. Intercooler cooling water discharge temperature 
11. Inlet manifold pressure 
12. Inlet manifold temperature 
13. Turbine discharge temperature 
14. Turbocharger rotational speed 
15. Fuel mass flow rate 
16. Charge air volume flow rate 
17. Cooling water inlet temperature 
18. Fuel line pressure (taken at 1° crank angle resolution) 

• A neural network based diesel engine diagnostic model can; 

(a) Be substantially enhanced if used in conjunction with an on-line 

diagnostic database. 

(b) Intelligently diagnose completely novel faults and draw similarities 

between novel faults and faults on which it had been trained. 

(c) Diagnose faults in the presence of noisy sensor data and not suffer a 

severe degradation in performance. 

(d) Diagnose faults on data generated at speeds and torques at which it 

was not trained. 

(e) Detect and diagnose faults of a lower severity than those which it was 

trained on and give a quantitative indication of the level of severity. 

(f) Perform a correct diagnosis 100% of the time when linked to an on-

line diagnostic database, even when faced with noisy sensor data or 

data taken at torques and speeds at which it had not been trained. 
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(g) Not perform an intelligent diagnosis when key diagnostic sensors fail, 

but could be trained to recognise and safeguard against faulty sensor 

.data. 

• Neural networks can be successfully be applied to practical diesel engine fault 

diagnosis and offer a realistic alternative to current techniques. 

11.2 Worth Of This Research 

This work has shown that a wide range of diesel engine faults can be successfully 

diagnosed using a limited number of sensors. Much effort has been directed towards 

the selection of key diagnostic sensors. As a result, the sensors chosen allow this 

system to be practically viable. The PC based strategy combined with these sensors 

would allow a similar system to be used as either a fixed or portable diagnostic tool. 

The application of such a system could give the following practical benefits. 

• Only equipment which requires attention is dismantled for assessment. This 

minimises wastage of labour, replacement consumables such as gaskets and seals 

and engine operating time. 

• Only components or assemblies which are defective are replaced. 

• Effective prediction and planning of maintenance operations. 

• The rate of development of a fault can be monitored and informed decisions can 

be made as to when corrective action should take place. This increases reliability, 

minimises unplanned down-time and allows a fault to develop until maintenance 

is forced by safety considerations, catastrophic failure or long term engine 

damage. 
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• Improved decision making ability when selecting optimum engine operating 

conditions. 

• More effective negotiations with manufacturers or sub-contracted engineers, 

backed up by systematic measurements of engine condition. 

o Measurements of the engine parameters from new, at the end of the 

guarantee/warranty period and after overhaul gives useful comparative data. 

This work has made a significant contribution to knowledge in the following areas. 

• The approach of developing and configuring a comprehensive, fully automated, 

PC based system to monitor engine performance using largely 'off the shelf' 

software and hardware. 

• A detailed analysis of high speed diesel engine instrumentation repeatability and 

the effects of data sampling and averaging. 

• A comprehensive study of commonly occurring high speed diesel engine faults, 

reasons for their occurrence and quantification of fault severities experienced on 

real in-service engines. 

• As a result of engine testing genuine faults of realistic severity, explicit fault­

symptom relationships were developed and key diagnostic sensors for a high 

speed diesel engine were identified. 

• The training and testing of a neural network based diagnostic system on real 

engine data including fuel injection system faults. 

• An assessment of several neural network training algorithms and architectures to 

give optimum diagnostic performance when applied to a diesel engine. 
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• The approach of combining an on-line engine diagnostic database with a neural 

network was developed. This included the development of weight adjusting and 

'confidence factor' algorithms. 

• A diagnostic sensor filter was developed to demonstrate that sensor failures can 

also be detected by neural networks. 

• Neural network testing on new engine faults and torques and speeds which the 

network had not been trained on. And an assessment of neural network 

performance on noisy and faulty engine test data. 

11.3 Recommendations ,..·_. . : .. _.. 

Finally, as a result of this research the following recommendations can be made; 

I. This research has shown that a neural network based system can successfully 

be trained to diagnose genuine diesel engine faults on real engine test data 

generated from one engine. Further validation work is required to test this 

diagnostic system on many engines of a similar type and rating to establish 

whether the neural network developed in this research is generic. 

2. Variations in barometric pressure, air inlet temperature, cooling water 

temperature and relative humidity were all restricted to ranges found in the 

UK over approximately one calendar year. If this system were to be installed 

in an application it could possibly see huge variations in climatic conditions. 

Further engine test work and neural network validation are required to 
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establish the diagnostic ability of the system under various extremes of 

climatic conditions. 

3. The key diagnostic sensors chosen for the inputs to the neural network would 

not currently be installed onto a production engine of this type. However, the 

drive for increased engine efficiencies and lower gaseous and particulate 

emissions has led to the development of electronic fuel injection and engine 

management systems. It is predicted that within the next few years 

production engines will be fitted with more sophisticated instrumentation 

which will include the majority on the sensors used in the development of the 

diagnostic system in this research. It is suggested that the implementation of 

a diagnostic system could 'piggy-back' on the changes which are already 

occurring in diesel engine development today. Engines will be controlled 

using an Engine Control Unit, ECU, which would accept conditioned 

signals from various sensors. Since neural networks can be embedded onto a 

chip, the network could simply be an addition to the existing ECU. 

4. The fuel line pressure instrumentation used in this research allowed the 

diagnosis of all of the fuel injection equipment faults. This instrument was 

cheap, non-intrusive, robust and gave repeatable results. For these reasons it 

is ideally suited to fault diagnosis and condition monitoring type applications. 

Based on the results obtained in this research it is thought that the 

combination of this sensor and a neural network warrants much further 

investigation. 

339 



5. This research has concentrated on the diagnosis of single faults. Further work 

is required to establish the performance of a neural network based system on 

multiple diesel engine faults. 

6. Work by Kirkman et.al.l291 has shown how accurate cylinder pressure 

data can be obtained using a cylinder head bolt mounted strain gauge linked 

to a neural network. It is suggested that the results from the research 

presented in this thesis should be used to investigate inferred sensor readings 

for cylinder pressure, injector needle lift, fuel flow rate and inlet air flow 

rate using neural networks. 
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APPENDIX 'A' 

Perkins T6.354(M) Engine Specification 

Figure 116 Holset 3LD Mk I Compressor Map 

Figure 117 Holset 3LD Mk I Turbine Map 
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Perkins T6.354(M) Engine Specification 

Type: 

No. of cylinders: 

Nominal bore: 

Stroke: 

Connecting rod length 

Surface area of piston 

Nominal compression ratio: 

Firing order: 

Manifold groupings 

Valve timings: 

Valve lift (both valves): 

Inlet manifold dimensions: 

4 stroke, compression ignition 

6 

98.4 [mm] 

127 [mm] 

219.07 [mm] 

10326.5 [mm2
] 

16: l 

l-5-3-6-2-4 

Induction­
Exhaust-

Inlet -

Exhaust-

10.29mm 

Length: 
Effective Diam: 

single 
twin (1 ,2,3 ; & 4,5,6) 

opens 19° BBDC 
closes 49° ABDC 
opens 52° BBDC 
closes 16° A TDC 

llOO[mm] 
49.88[mm] 

Exhaust (1,2 & 3)manifold dimensions: Length: 700[mm] 
43.7[mm] Effective Diam: 

Exhaust (4,5 & 6) manifold dimensions: Length: 450[mm] 
49.88 [mm] Effective Diam: 

Fuel injection pump: Lucas CA V, DPA type 

Nominal performance at continuous rating: 90 [kW] at 2250 [revs/min] 

Turbocharger: Holset 3LD Mk I 
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Figure 117 Holset 3LD Mkl Turbine Map 
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APPENDIX 'B' 

Performance Monitor Central Command Macro [DAC.XLM] 

Performance Monitor Cylinder Pressure Macro [CYLINDER.XLM] 

Performance Monitor Needle lift Macro [NEEDLE.XLM] 

Performance Monitor Fuel Line Pressure Macro [FUEL.XLM] 

Performance Monitor Turbo C High Speed Data Averaging Program 

Performance Monitor Formulae 
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Performance Monitor Central Command Macro 

ACQUISITION & DATA PROCESSING 
=ECHO(FALSE) 
=OPEN("c:\msoffice\excel\intro.xlm") 
=DIALOG.BOX('D:\INTRO.XLM'!intro) 
=IF(B7=FALSE,GOTO(C5)) 
=CLOSE() 
=EXEC("c:\windsped\streamer.exe") 
=APP.ACTIV A TE("windspeed streamer") 
=SEND.KEYS("-") 
=SEND.KEYS("o/of',TRUE) 
=SEND.KEYS("h",TRUE) 
=SEND.KEYS("t6354h.ims" ,TRUE) 
=SEND.KEYS("-",TRUE) 
=W AIT(NOW()+"00:00:02") 
=SEND.KEYS("o/oc" ,TRUE) 
=SEND.KEYS("c:\windsped\ l.imx" ,TRUE) 
=W AIT(NOW()+"00:00:02") 
=SEND.KEYS("-",TRUE) 
=SEND.KEYS("y" ,TRUE) 
=WAIT(NOW()+"00:00:05") 
=SEND. KEYS("%S" ,TRUE) 
=W AIT(NOW()+"00:00:20") 
=SEND.KEYS("-",TRUE) 
=SEND.KEYS("o/of',TRUE) 
=SEND.KEYS("x",TRUE) 
=WAIT(NOW()+"OO:OO:OI ") 
=EXEC("c:\windsped\imxtoxl") 
=SEND.KEYS("-",TRUE) 
=SEND.KEYS("o/os" ,TRUE) 
=SEND.KEYS("c:\windsped\ l.imx" ,TRUE) 
=SEND. KEYS("o/od" ,TRUE) 
=SEND. KEYS("c:\tc\in.dat" ,TRUE) 
=SEND.KEYS("%C" ,TRUE) 
=W AIT(NOW()+"00:03:40") 
=SEND.KEYS("o/of',TRUE) 
=SEND.KEYS("x",TRUE) 
=WAIT(NOW()+"00:00:02") 
=DIRECTORY("c:\tc") 
=EXEC(" stoaty .exe") 
=W AIT(NOW()+"00:00:40") 
=DIRECTORY("C:\TC") 
=OPEN("C:\TC\FUEL.DA T" ,2) 
=SELECT("R2CI :RI441CI ") 
=COPY() 
=OPEN("C:\msoffice\excel\fuel.xlm") 
=SELECT("R I C9:R 1440C9") 
=PASTE() 
=CLOSE(TRUE) 
=CANCEL.COPY() 
=CLOSE(TRUE) 

=OPEN("C:\TC\NEEDLE.DAT" ,2) 
=SELECT("R2Cl :RI441CI ") 
=COPY() 
=OPEN("C:\msoffice\excel\needle.xlm") 
=SELECT("RIC9:RI440C9") 
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=PASTE() 
=CLOSE(TRUE) 
=CANCEL.COPYO 
=CLOSE(TRUE) 
=OPEN("C:\TaCYL.DA T" ,2) 
=SELECT("r2c I :rl441c I") 
=COPY() 
=OPEN("C:\msoffice\excel\cylinder.xlm") 
=SELECT("R I Cl :RI440CI ") 
=PASTE() 
=RUN('D:\CYLINDER.XLM'!cylinder) 
=CLOSE(TRUE) 
=CANCEL.COPY() 
=CLOSE(TRUE) 
*START LOGGING SLOW SPEED DATA* 
=DIRECTORY("c:\windmill") 
=EXEC("Iogger.exe") 
=SEND.KEYS("-" ,TRUE) 
=SEND.KEYS("%F" ,TRUE) 
=SEND.KEYS("r",TRUE) 
=SEND.KEYS("21ab. wig" ,TRUE) 
=SEND.KEYS("-",TRUE) 
=WAIT(NOW()+"OO:OO:OI ") 
=SEND. KEYS("o/os" ,TRUE) 
=SEND.KEYS("o",TRUE) 
=W AIT(NOW()+"00:02:55") 
=SEND.KEYS("o/ot" ,TRUE) 
=SEND.KEYS("o/of' ,TRUE) 
=SEND.KEYS("x",TRUE) 
=OPEN("c:\windmill\l.wl") 
=SELECT("r6c2:rl80c28") 
=COPY() 
=OPEN("c:\msoffice\excel\logger.xls") 
=PASTE() 
=OPEN("c:\msoffice\excel\perform.xls" ,3) 
=CLOSE(TRUE) 
=CLOSE(FALSE) 
=CANCEL.COPY() 
=CLOSE(FALSE) 
=BEEP() 
=OPEN("c:\msoffice\excel\results.xlm") 
=D lA LOG .BOX('D:\RES UL TS.XLM' !results) 
=CLOSE(TRUE) 
=IF(('D:\[RESUL TS.XLM]RESUL TS'!G5)=1 ,GOTO(D2)) 
=lF(('D:\[RESUL TS.XLM]RESUL TS' !G5)=2,GOTO(E2)} 
=lF(('D:\[RESUL TS.XLM]RESUL TS' !G5)=3,GOTO(F2)) 
=IF(('D:\[RESUL TS.XLM]RESUL TS' !G5)=4,GOTO(G3)) 
=IF(('D:\[RESUL TS.XLM]RESUL TS'!G5)=5,GOTO(H I)) 
=RETURN() 
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Performance Monitor Cylinder Pressure Macro 

=IF( A l>S,GOTO(D I)) 
=IF(AI<S,GOTO(E I)) 
=RETURN() 

=COPY(A I :A720,B721 :B 1440) =COPY(A I :A1440,B I :B 1440) 
=CANCEL.COPY() =CANCEL.COPY() 
=COPY(A 721 :AI440,B I :8720) =OPEN("c:\msoffice\excel\fuel.xlm") 
=CANCEL. COPY() =RUN("c:\msoffice\excel\fuel.xlm !r I c3") 
=OPEN("c:\msoffice\excel\fuel.xlm") =CLOSE(TRUE) 
=RUN ("c:\msoffice\excel\fuel.xlm! r I c2 ") =OPEN ("c:\msoffice\excel\needle. xlm ") 
=CLOSE(TRUE) =RUN("c:\msoffice\excel\needle.xlm !r I c3 "') 
=OPEN("c:\msoffice\excel\needle.xlm") =CLOSE(TRUE) 
=RUN("c:\msoffice\excel\needle.xlm") =RETURN() 
=CLOSE(TRUE) 
=RETURN() 
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Performance Monitor Needle Lift Macro 

A 
=IF('D:\[CYLINDER.XLM]CYLINDER' !A I> I O,GOTO(B I)) 
=IF('D:\[CYLINDER.XLM]CYLINDER'!A I< I O,GOTO(C I)) 
=RETURN() 

E 
=SELECT(" instant") 
=COPY() 
=SELECT(."rc[ I]") 
=PASTE() 
=CANCEL. COPY() 
=GOTO(D8) 

F 
=SELECT(" lift") 
=FORMULA(GET.CELL(2),H6) 
=FORMULA(((((H6)-I )/2)-360),H7) 
=BREAK() 
=GOTO(DII) 
=RETURN() 

8 c 
=COPY(Il :1720,1721 :J 1440) 
=CANCEL.COPY() 
=COPY(I721 :11440,1 I :1720) 
=CANCEL. COPY() 
=GOTO(DI) 

=COPY(!! :I 1440,1 I :J 1440) 
=CANCEL. COPY() 
=GOTO(DI) 
=RETURN() 

=RETURN() 

G 
=SELECT("scan 
=FORMULA(GET.CELL(2),H8) 
=FORMULA(((((HS)-1 )/2)-360),H9) 
=BREAK() 
=GOTO(D14) 
=RETURN() 
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D 
=FORMULA(MAX(JI:J1443),Hl) 
=FORMULA( A VERAGE(J I :J300),H2) 
=FORMULA((H 1-H2),H3) 
=FORMULA((H3*0.l),H4) 
=FORMULA((H2+H4),HS) 
=FOR.CELL("instant",J I :JI443,FALSE) 
=IF(instant>HS,GOTO(EI)) 
=NEXT() 
=FOR.CELL("Iifl" ,K I: K 1443,FALSE) 
=IF(lift>O,GOTO(FI)) 
=NEXT() 
=FOR.CELL("seat",lift:KI443,FALSE) 
=IF(seat=O,GOTO(G I)) 
=NEXT() 
=SELECT(Kl:K1443) 
=CLEAR(3) 
=RETURN() 



Performance Monitor Fuel Line Pressure Macro 

A 
=IF('D:\[CYLINDER.XLM]CYLINDER'!A I> I O,GOTO(B I)) 
=IF('D:\[CYLINDER.XLM]CYLINDER' !A I< I O,GOTO(C I)) 
=RETURN() 

E 
=SELECT(" instant") 
=COPY() 
=SELECT(."rc[ I]") 
=PASTE() 
=CANCEL. COPY() 
=GOTO(D8) 

F 
=SELECT(" rise") 
=FORMULA(GET.CELL(2),H6) 
=FORMULA(((((H6)-1 )/2)-360),H7) 
=BREAK() 
=GOTO(DII) 
=RETURN() 

B c 
=COPY(Il :1720,1721 :J 1440) =COPY (I I :11440,1 I :J 1440) 
=CANCEL.COPY() =CANCEL.COPY() 
=COPY(I721 :I 1440,1 I :1720) =GOTO(D I) 
=CANCEL.COPY() =RETURN() 
=GOTO(DI) 
=RETURN() 

G 
=SELECT(" fall'") 
=FORMULA(GET.CELL(2),H8) 
=FORMULA(((((H8)-I )/2)-360),H9) 
=BREAK() 
=GOTO(DI4) 
=RETURN() 
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D 
=FORMULA(MAX(JI:JI443),HI) 
=FORMULA(A VERAGE(J I :J300),H2) 
=FORMULA((HI-H2),H3) 
=FORMULA((H3*0.1),H4) 
=FORMULA((H2+H4),H5) 
=FOR.CELL("instant" ,J I :J 1443,FALSE) 
=IF(instant>HS,GOTO(E I)) 
=NEXT() 
=FOR.CELL("rise",KI :KI443,FALSE) . 
=IF(rise>O,GOTO(FI)) 
=NEXT() 
=FOR.CELL("fall",rise:KI443,FALSE) 
=IF(faii=O,GOTO(G I)) 
=NEXT() 
=SELECT(KI :KI443) 
=CLEAR(3) 
=RETURN() 



Performance Monitor High Speed Data Averaging Turbo C 

#include <stdio.h> 
main(){ 

#define sample 1440 /*no of samples per wave*/ 
FILE *fopen(), *fp[4); 
int i,j,k; 
char c[S); 
double num,va1[3][sample],atof(); 
void fgetword(); 

I* Open files */ 
if( (fp[O]=fopen(" c :\in .dat", "r") )==NULL) { 

printf("Cannot open input file \n"); 
exit(l); 

I 
if((fp(2]=fopen("fuel.dat" ,"w"))==NULL) { 

printf("Error file out I"); 
exit(l ); 

I 
if((fp[ l)=fopen("cyl.dat","w"))==NULL){ 

printf("Error file cyl"); 
exit(l); 

I 
if((fp[3]=fopen("needle.dat", "w"))==NULL) { 

printf("Error file needle"); 
exit( I); 

I* Read in no. of wave cycles to be averaged */ 
printf("\nPLEASE WAIT PROCESSING HIGH SPEED DATA"); 

I* Strip header from input file */ 
for(i=O;i<4;i++ )fgetword(fp[O],c ); 

I* Initialise variables */ 
i=O; 
num=O.O; 
for(i=O;i<3;i++) 

forU=O;j<sample;j++) 
val[i][j)=O.O; 

for(i=O;i<S;i++ )c[i]=' '; 

I* total wave arrays *I 
forU=O;j<SO;j++) 

for(i=O;i<sample;i++) { 
fgetword(fp(O],c); /*disregard time value */ 
for(k=O;k<3;k++ ){ 

fgetword(fp[O],c); 
num=atof(c); 

val[k) [i)=val[k) [i)+num; 
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I* Find average *I 
for(i=O;i<sample;i++) 

for(j=O;j<3 ;j++) { 
val[j] [i]=val [j][i]l50; 
fprintf(fp[j+ 1],"\n %4.4f', val[j][i]); 

for(i=O;i<4;i++) 
fclose(fp[i]); 

I* read a number from input file and return *I 
void fgetword (fp,w) 
FILE *fp; 
char w[]; 
{ 

int i; 
char c; 

i=O; 
c=w[i]=getc(fp); 
while((c!=EOF) && (c!='\r') && (c!=' ') && (c!='\t') && (c!='\n')){ 

++i; 
c=w[i]=getc(fp); 

I* convert character string to double precision floating point number *I 
double atof(s) 
chars[]; 
{ 

double val,power= 1.0; 
int i,sign; 

for (i=O;s[i]=='' 11 s[i]=='\n'll s[i]=='\t';i++); 
sign= I; 
if(s[i]=='+' 11 s[i]=='-') 

sign=(s[i++ ]=='+')?I :-1; 
for (val=O;s[i]>='O' && s[i]<='9';i++) 

val= IO*val+s[i]-'0'; 
if(s[i]=='.')i++; 
for (power=! ;s[i]>='O' && s[i]<='9';i++){ 

val= I O*val+s[i]-'0'; 
power*=IO; 

retum(sign*val/power); 
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Performance Monitor Formulae 

Brake Power [kW] 

2*n:*n*T. . - b 
Brake Power [kW]- lOOO 

Brake Mean Effective Pressure: BMEP [Bar] 

BMEP [Bar]= BrakePower[kW] 
L*A *N *n*!OO p c 

Indicated Power [kW] 

lndicatedPower[kW]= IMEP[Bar]*L*Ap *Ne *n*lOO 

Friction Mean Effective Pressure; FMEP [Bar] 

FMEP = /MEP - BMEP 

Brake Specific Fuel Consumption; BSFC [kglkW/hr] 

m f *3600 
BSFC=~--­

pb-

Indicated Specific Fuel Consumption; ISFC [kglkW/hr] 

m f *3600 
ISFC = _____:: __ _ 

P. 
l 

Brake Thermal Efficiency 

17btherm = Q *m 
c f 

Indicated Thermal Efficiency 

17itherm = Q *m 
c f 

P. 
l 

353 



Mechanical Efficiency 

Compressor Mass Flow Parameter 

m*~ 
a ··r cin CompressorMassFlowParameter = ----'---

pcin 

Compressor Pressure Ratio [non - dimensional] 

p 
Compressor Pr essureRatio = eo ut 

Pcin 

Compressor Speed Parameter 

N 
CompressorSpeedParameter = ~ 

T. 
Ctn 

Compressor Iseritropic Efficiency 

(y-1) 

( 
p co.ut ) Y _ 1 
p Ctn 

17 et = ....:(:-T-----'---T--,):---1 
cout cin 

Intercooler Effectiveness 

(T -T ) 
11 . = aO a1 

lC (T - T ) 
aO wO 

Volumetric Efficiency 

2Q 
17 - a 

vol- V *n 
SW 
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Exhaust Gas Mass Flow Rate [kgls] 

Turbine Mass FlowRate Parameter 

m * .jf;; 
TurbineMassFlowParameter = _e _ _:__t_zn_ 

ptin 

Turbine Expansion Ratio [non - dimensional] 

p. 
TurbineExpansionRatio = tzn 

Prout 

Turbine Speed Parameter 

N 
TurbineSpeedParameter = i,;;: 

T. 
tzn 

Turbine Isentropic Efficiency 

1-(pto.ut] 
Ptzn 

y 

Overall Air Fuel Ratio 

m 
A I FRatio = ___!!:_ 

mf 
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APPENDIX 'C' 

Figure 118 High Speed Dynamic Data Phasing Plots 

Figure 119 Engine Warm-up Trial Torque & Speed Settings 

Figure 120 Engine Warm-up Trial Pressure Profiles 

Figure 121 Engine Warm-up High Temperature Profiles 

Figure 122 Engine Warm-up Low Temperature Profiles 
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APPENDIX 'D' 

SPICE Example Engine Input Data File 

SPICE Turbine Input Data 

SPICE Turbine Map 

SPICE Compressor Input Data 

SPICE Compressor Map 

SPICE Example Fouled Air Inlet Engine Data File 

SPICE Example Leaking Exhaust Valves Engine Data File 

SPICE Example Leaking Inlet Valves Engine Data File 

Table 40 Healthy SPICE Simulation & Engine Results 

Table 41Fouled & Corroded Charge Cooler SPICE Simulation Results 

Table 42 80% Fouled Air Filter SPICE Simulation Results 

Table 43 Leaking Exhaust Valves SPICE Simulation Results 

Table 44 Leaking Inlet Valves SPICE Simulation Result 

Table 45 3° Retarded Fuel Pump Timing SPICE Simulation Results 
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*SPICE 11 PERKINS 6 CYLINDER T 6.354(M) SINGLE STAGE 
TURBOCHARGED DIESEL ENGINE 

*CONTROL & SYSTEM DATA 
*mode I 
* reference cylinder" 

c ncyc step nv nj ns nhr nhrf ng nht nval 
20 2 9 14 2 I 0 4 I 2 

* PRINT & PLOT CONTROLS 
20 20 * plot data for cycles i to j 
110441 
I 7 8 9 
I 2 13 14 
2 
* CONTROL VOLUME OAT A 
0 I I I I 360 4 I I I I 2 
01111600411112 
0 I I I I 120 4 I I I I 2 
0 I I I I 480 4 I I I I 2 
0 I I I I 240 4 I I I I 2 
01111 0411112 
12001 000000 
13001 000000 
14001 000000 
* FLOW JUNCTION OAT A 
I 10700011 
I 20100081 

10700022 
20200082 
10700033 

I 20300083 
I 10700044 

20400094 
10700055 
20500095 
10700066 
20600096 

2 00000072 
3 02890002 
*SHAFT DATA 
I 0.0 0.00 
2 0.5E-3 0.80 
* HEAT RELEASE DATA SETS 
0 709 150 42.5e6 5.50e-5 0 0 0 0 
* GEOMETRIC DATA SETS 
0.0984.12714.0.219 1.0 
2.14E-3 0000 
1.38E-3 0 0 0 0 
1.20E-3 0 0 0 0 

*cylinder I 
*cylinder 2 
*cylinder 3 
* cylinder4 
*cylinder 5 
*cylinder 6 

* intake manifold 
*exhaust manifold 
*exhaust manifold 

* intake valve cylinder I 
* exhaust valve cylinder I 
* intake valve cylinder 2 
*exhaust valve cylinder 2 
* intake valve cylinder 3 
*exhaust valve cylinder 3 
* intake valve cylinder 4 
* exhaust valve cylinder 4 
* intake valve cylinder 5 
*exhaust valve cylinder 5 
* intake valve cylinder 6 
* exhaust valve cylinder 6 
* compressor 
*turbine 

* crankshaft 
*TIC Rotor 

*cylinder geometry 
*intake manifold geometry 
* exhaust manifold geometry 
* exhaust manifold 
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* HEAT TRANSFER DATA 
3 
0 0.0126 0.0158 
573.0 673.0 773.0 
*VALVE DATA SETS 

* no. of surface areas 
*areas 
* respective temeratures 

24 0 I I *intake valve 
350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 
550 560 570 580 
0.0 3.44e-5 1.34e-4 2.67e-4 3.74e-4 5.02e-4 6.57e-4 6.94e-4 7.07e-4 7.41e-4 
7.42e-4 7.43e-4 7.42e-4 7.44e-4 7.44e-4 7.le-4 6.95e-4 6.61e-4 5.25e-4 3.73e-4 
2.87e-4 1.36e-4 3.44e-5 0.0 

26 0 I I * exhaust valve 
125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 285 295 305 315 
325 335 345 355 365 375 
0.0 9.lle-6 5.3e-5 1.37e-4 2.53e-4 4.05e-4 5.35e-4 5.96e-4 6.42e-4 6.69e-4 
6.64e-4 6.66e-4 6.7e-4 6.7e-4 6.6e-4 6.6le-4 6.55e-4 6.53e-4 6.25e-4 5.63e-4 
4.57e-4 3. 11 e-4 1.8e-4 7 .7e-5 2.15e-5 0.0 

* ENTRY AND EXIT CONDITIONS 
100.5E+3 303.4 100.5E+3 794 

*INITIAL SHAFT SPEEDS . 
2150.0000 
63378 

* INITIAL PRESSUREffEMPERATURE!FUEL-AIR RATIO 
179864.29 820.1090 4.2025646e-02 
256147.71 461.4268 1.2475206e-03 
708221.1 1265.3490 4.4623716E-02 
189895.90 416.6010 1.5031702E-03 
173277.24 881.4562 4.4690090E-02 · 
11677172. 1655.4655 1.4050251E-02 
150280.60 332.53050 3.7844169E-l 0 
155285.88 871.9995 4.4870996E-04 
155213.07 871.3113 4.4820266E-04 
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*SPICE 11 PERKINS T6354(M) TURBOCHARGER TURBINE DATA FILE 
*CONTROL DATA. .. No.SPEED CURVES ROTOR DIAM SCALING:RP N EFF M 
7 0.075 I.5 I.2 0.80 I.2e-5 
*TABULATED TURBINE MAP: P-RATIO M FLOW PAR EFFICIENCY 
920 
1.10 1.60 0.40 

·· I. I I 2. I 0 0.55 
I.20 2.60 0.60 
I.38 3.00 0.65 
1.66 3.I6 0.65 
2.00 3.20 0.60 
* 
I290 
I.I8 1.60 0.40 
I.2I 2.20 0.48 
I.32 2.70 0.56 
I.50 3.00 0.67 
I.80 3.I3 0.60 
2.00 3.I5 0.50 

* 
I550 
I.22 I.60 0.35 
I.28 2.30 0.45 
I.40 2.70 0.67 
I.55 2.95 0.75 
I.80 3.05 0.65 
2.00 3.I 0 0.50 

* 
I875 
I.25 I.60 0.30 
I.3I 2.20 0.45 
I.43 2.60 0.66 
I.60 2.90 0.75 
I.90 3.00 0.60 
2.00 3.05 0.55 

* 
2078 
I.28 I.60 0.30 
I.33 2.IO 0.45 
I.43 2.50 0.62 
I.60 2.80 0.78 
I.90 2.95 0.82 
2.00 3.00 0.65 

* 
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2281 
1.33 1.60 0.30 
1.36 2.00 0.43 
1.47 2.45 0.66 
1.65 2.74 0.70 
1.90 2.85 0.75 
2.00 2.90 0.63 

* 
3531 
1.36 1.60 0.30 
1.39 1.90 0.35 
1.52 2.42 0.66 
1.72 2.72 0.73 
1.90 2.83 0.65 
2.00 2.87 0.60 

* 
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*SPICE 11 PERKINS T6.354(M) TURBOCHARGER COMPRESSOR FILE 
*CONTROL DATA:No. OF SPEED CURVES,SCALING FATORS,RP,N,E,M 
8 0.83 I I le-5 
* INTER COOLER DATA 
1320 298.4 0.521 
* TABULATED MAP 
1000 
1.0 I 0.1 0 0.55 
1.01 0.40 0.60 
1.00 1.14 0.60 
1.00 1.40 0.62 
1.00 1.55 0.55 
1.00 1.44 0.50 
* 
1375 
1.08 0.10 0.60 
1.07 0.50 0.65 
1.07 1.20 0.67 
1.06 1.50 0.70 
1.05 1.75 0.65 
1.04 2.00 0.60 

* 
2171 
1.19 0.40 0.57 
1.17 0.80 0.62 
1.17 1.30 0.66 
1.15 1.80 0.70 
1.13 2.10 0.65 
1.12 2.30 0.60 

* 
2357 
1.23 0.80 0.60 
1.22 1.10 0.62 
1.22 1.30 0.68 
1.20 1.90 0.70 
1.18 2.20 0.68 
1.17 2.40 0.57 

* 
2946 
1.39 1.30 0.63 
1.39 1.50 0.65 
1.38 1.80 0.67 
1.37 1.95 0.70 
1.35 2.50 0.65 
1.30 2.80 0.62 

* 
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3536 
1.580 1.90 0.62 
1.575 2.20 0.70 
1.560 2.80 0.75 
1.505 3.20 0.67 
1.460, 3.50 0.62 
1.440 3.60 0.60 

* 
4125 
1.820 2.60 0.67 
1.820 2.80 0.72 
1.800 3.50 0.72 
1.740 3.90 0.67 
1.680 4.10 0.62 
1.600 4.20 0.57 

* 
4714 
2.140 3.20 0.67 
2.140 3.50 0.70 
2.100 4.30 0.68 
2.060 4.50 0.67 
2.000 4.70 0.65 
1.920 4.80 0.60 

* 
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*SPICE 11 PERKINS 6 CYLINDER T 6.354(M) SINGLE STAGE 
TURBOCHARGED DIESEL ENGINE WITH FOULED AIR INLET FILTER 

*CONTROL & SYSTEM DATA 
I *mode I 

* reference cylinder 
c ncyc step nv nj ns nhr nhrf ng nht nval 

20 2 I 0 IS 2 I . 0 6 I 2 
* PRINT & PLOT CONTROLS 
2020 
I I 0 4 4 I 
1789 
I 2 13 I4 
2 
* CONTROL VOLUME DATA 
0 I I I I 360 4 I II I 2 
OIIII60041 III2 
0 I I I I I20 4 I I I I 2 
0 I I I I 480 4 I I I I 2 
0 I I I I 240 4 I I I I 2 
OIIII 04IIII2 
12001 000000 
13001 000000 
14001 000000 
15001 000000 
* FLOW JUNCTION DATA 
I 10700011 
120100081 

10700022 
20200082 
10700033 
20300083 
10700044 
20400094 
10700055 
20500095 
10700066 

I 20600096 
2 001000072 
3 02890002 
0 600000100 
* SHAFfDATA 
I 0.0 0.00 
2 O.SE-3 0.80 
* HEAT RELEASE DATA SETS 
0 719.4 100 42.5e6 2.92e-5 0 0 0 0 

* plot data for cycles i to j 

*cylinder I 
*cylinder 2 
*cylinder 3 
*cylinder 4 
*cylinder 5 
*cylinder 6 
* intake manifold 
* exhaust manifold 
* exhaust manifold 
* filter volume 

* intake valve cylinder I 
*exhaust valve cylinder I 
* intake valve cylinder 2 
*exhaust valve cylinder 2 
* intake valve cylinder 3 
*exhaust valve cylinder 3 
* intake valve cylinder 4 
*exhaust valve cylinder 4 
* intake valve cylinder 5 
*exhaust valve cylinder 5 
* intake valve cylinder 6 
* exhaust valve cylinder 6 
* compressor 
*turbine 
* filter orfice 

* crankshaft 
*TIC Rotor 
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* GEOMETRIC DATA SETS 
0.0984 .127 14.0 .219 1.0 
2.14E-3 0 0 0 0 

* cylinder geometry 
* intake manifold geometry 

1.38E~3 0 0 0 0 
1.20E-3 0 0 0 0 

* exhaust manifold geometry 
* exhaust manifold 

1.42e-3 0 0 0 0 * inlet duct vol 
2.21e-3 0 0 0 0 *filter EFA 
*HEAT TRANSFER DATA 
3 
0 0.0126 0.0158 
573.0 673.0 773.0 
*VALVE DATA SETS 

* no. of surface areas 
*areas 
* respective temeratures 

24 0 I I *intake valve 
350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 
550 560 570 580 
0.0 3.44e-5 1.34e-4 2.67e-4 3.74e-4 5.02e-4 6.57e-4 6.94e-4 7.07e-4 7.41e-4 
7 .42e-4 7.43e-4 7.42e-4 7.44e-4 7 .44e-4 7.le-4 6.95e-4 6.61e-4 5.25e-4 3.73e-4 
2.87e-4 1.36e-4 3.44e-5 0.0 

26 0 I I *exhaust valve 
125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 285 295 305 315 
325 335 345 355 365 375 
0.0 9.11e-6 5.3e-5 1.37e-4 2.53e-4 4.05e-4 5.35e-4 5.96e-4 6.42e-4 6.69e-4 
6.64e-4 6.66e-4 6.7e-4 6.7e-4 6.6e-4 6.61e-4 6.55e-4 6.53e-4 6.25e-4 5.63e-4 
4.57e-4 3.11 e-4 1.8e-4 7 .7e-5 2.15e-5 0.0 

* ENTRY AND EXIT CONDITIONS 
101.6E+3 297.5 101.4E+3 647 

* INITIAL SHAFT SPEEDS 
1500.0000 
31135 

* INITIAL PRESSURE!fEMPERATUREIFUEL-AIR RATIO 
179864.29 820.1090 4.2025646e-02 
256147.71 461.4268 1.2475206e-03 
708221.1 1265.3490 4.4623716E-02 
189895.90 416.6010 1.5031702E-03 
173277.24 881.4562 4.4690090E-02 
11677172. 1655.4655 1.4050251 E-02 
110380.60 305.53050 3.7844169E-IO 
I I7685.88 665.9995 4.4870996E-04 
I 17613.07 665.3113 4.4820266E-04 
I00900.00 297:3 4.48e-IO 
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*SPICE 11 PERKINS 6 CYLINDER T 6.354(M) SINGLE STAGE 
TURBOCHARGED DIESEL ENGINE WITH EXHAUST VALVE LEAK 

*CONTROL & SYSTEM DATA 
I *mode I 

*reference cylinder 
c ncyc step nv nj ns nhr nhrf ng nht nval 

20 2 9 20 2 I 0 5 I 2 
* PRINT & PLOT CONTROLS 
20 20 
110441 
1789 
I 2 13 14 
2 
* CONTROL VOLUME DATA 
0 I I I I 360 4 I 11 I 2 
0 I I I I 600 4 I I I I 2 
0 I I I I 120 4 I 11 I 2 
0 I I I I 480 4 I I I I 2 
0 I I I I 240 4 I I I I 2 
01111 0411112 
12001 000000 
13001 000000 
14001 000000 
* FLOW JUNCTION DATA 
I 10700011 

20100081 
10700022 
20200082 
10700033 
20300083 
10700044 
20400094 
10700055 
20500095 
10700066 

I 20600096 
2 00000072 
3 02890002 
050100080 
0 50200080 
0 50300080 
0 50400090 
0 50500090 
0 50600090 
* SHAFfDATA 
I 0.0 0.00 
2 0.5E-3 0.80 

* plot data for cycles i to j 

*cylinder I 
*cylinder 2 
*cylinder 3 
* cylinder4 
*cylinder 5 
*cylinder 6 
* intake manifold 
* exhaust manifold 
* exhaust manifold 

* intake valve cylinder I 
*exhaust valve cylinder I 
* intake valve cylinder 2 
*exhaust valve cylinder 2 
* intake valve cylinder 3 
*exhaust valve cylinder 3 
* intake valve cylinder 4 
*exhaust valve cylinder 4 
* intake valve cylinder 5 
* exhaust valve cylinder 5 
* intake valve cylinder 6 
* exhaust valve cylinder 6 
* compressor 
*turbine 
* valve leak I cyl 
* valve leak 2 cyl 
* valve leak 3 cyl 
* valve leak 4 cyl 
* valve leak 5 cyl 
* valve leak 6 cyl 

* crankshaft 
*TIC Rotor 
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*HEAT RELEASE DATA SETS 
0 713 I 00 42.5e6 6.07e-5 0 0 0 0 
* GEOMETRIC DATA SETS 
0.0984.127 16.0.219 1.0 
4.88E-2 0 0 0 0 

*cylinder geometry 
* intake manifold geometry 

1)8E-2 0 0 0 0 
1.20E-2 0 0 0 0 

* exhaust manifold geometry 
* exhaust manifold 

0.000000372 0 0 0 0 * leakage EFA 
* HEAT TRANSFER DATA 
3 
0 0.0126 0.0158 
573.0 673.0 773.0 

* no. of surface areas 
*areas 
* respective temeratures 

*VALVE DATA SETS 

24 0 I I *intake valve 
350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 
550 560 570 580 
0.0 3.44e-5 1.34e-4 2.67e-4 3.74e-4 5.02e-4 6.57e-4 6.94e-4 7.07e-4 7.41e-4 
7.42e-4 7.43e-4 7.42e-4 7.44e-4 7.44e-4 7 .le-4 6.95e-4 6.61e-4 5.25e-4 3.73e-4 
2.87e-4 1.36e-4 3.44e-5 0.0 

26 0 I I * exhaust valve 
125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 285 295 305 315 
325 335 345 355 365 375 
0.0 9.11e-6 5.3e-5 1.37e-4 2.53e-4 4.05e-4 5.35e-4 5.96e-4 6.42e-4 6.69e-4 
6.64e-4 6.66e-4 6.7e-4 6.7e-4 6.6e-4 6.61e-4 6.55e-4 6.53e-4 6.25e-4 5.63e-4 
4.57e~4 3.11e-4 1.8e-4 7.7e-5 2.15e-5 0.0 

* ENTRY AND EXIT CONDITIONS 
98E+3 294 IOOE+3 298 

* INITIAL SHAFT SPEEDS 
1500.0000 
76525.55 

*INITIAL PRESSUREffEMPERATUREIFUEL-AIR RATIO 
179864.29 820.1090 4.2025646e-02 
256147.71 461.4268 1.2475206e-03 
708221.1 1265.3490 4.4623716E-02 
189895.90 416.6010 1.5031702E-03 
173277.24 881.4562 4.4690090E-02 
11677172. 1655.4655 1.4050251E-02 
192664.60 381.3050 3.7844169E-05 
150385.88 960.9995 4.4870996E-02 
171113.07 1004.3113 4.4820266E-02 
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*SPICE 11 PERKINS 6 CYLINDER T 6.354(M) SINGLE STAGE 
TURBOCHARGED DIESEL ENGINE WITH INLET VALVE LEAK 

*CONTROL & SYSTEM DATA 
I *mode I 

* reference cylinder 
c ncyc step nv nj ns nhr nhrf ng nht nval 

20 2 9 20 2 I 0 5 I 2 
* PRINT & PLOT CONTROLS 
2020 
I I 0 4 4 I 
1789 
I 2 13 I4 
2 
* CONTROL VOLUME DATA 
0 I I I I 360 4 I I! I 2 
OIIII600411112 
0 I I I I I20 4 I I I I 2 
0 I I I I 480 4 I 11 I 2 
0 I I I I 240 4 I I I I 2 
01111 0411112 
12001 000000 
13001 000000 
14001 000000 
* FLOW JUNCTION DATA 
I 10700011 
120100081 

10700022 
20200082 
10700033 
20300083 
10700044 
20400094 
10700055 
20500095 
10700066 

I 20600096 
2 00000072 
3 02890002 
050100070 
0 50200070 
0 50300070 
0 50400070 
0 50500070 
0 50600070 
*SHAFT DATA 
I 0.0 0.00 
2 0.5E-3 0.80 

* plot data for cycles i to j 

*cylinder I 
*cylinder 2 
*cylinder 3 
*cylinder 4 
*cylinder 5 
*cylinder 6 
* intake manifold 
* exhaust manifold 
* exhaust manifold 

* intake valve cylinder I 
* exhaust valve cylinder I 
* intake valve cylinder 2 
*exhaust valve cylinder 2 
* intake valve cylinder 3 
*exhaust valve cylinder 3 
* intake valve cylinder 4 
*exhaust valve cylinder 4 
* intake valve cylinder 5 
* exhaust valve cylinder 5 
* intake valve cylinder 6 
*exhaust valve cylinder 6 
* compressor 
* turbine 
* valve leak I cyl 
* valve leak 2 cyl 
* valve leak 3 cyl 
* valve leak 4 cyl 
* valve leak 5 cyl 
* valve leak 6 cyl 

* crankshaft 
*TIC Rotor 
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* HEAT RELEASE DATA SETS 
0 713 100 42.5e6 6.07e-5 0 0 0 0 
*GEOMETRIC DATA SETS 
0.0984 .127 16.0 .219 1.0 
4.88E-2 0 0 0 0 

*cylinder geometry 
* intake manifold geometry 

1.38E-2 0 0 0 0 
1.20E-2 0 0 0 0 

* exhaust manifold geometry 
* exhaust manifold 

0.0000002488 0 0 0 0 *leakage EFA 
* HEAT TRANSFER DATA 
3 
0 0.0126 0.0158 
573.0 673.0 773.0 

* no. of surface areas 
*areas 
* respective temeratures 

*VALVE DATA SETS 

24 0 I I *intake valve 
350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 
550 560 570 580 
0.0 3.44e-5 1.34e-4 2.67e-4 3.74e-4 5.02e-4 6.57e-4 6.94e-4 7.07e-4 7.41e-4 
7.42e-4 7.43e-4 7.42e-4 7.44e-4 7.44e-4 7.le-4 6.95e-4 6.61e-4 5.25e-4 3.73e-4 
2.87e-4 1.36e-4 3.44e-5 0.0 

26 0 I I * exhaust valve 
125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 285 295 305 315 
325 335 345 355 365 375 
0.0 9.lle-6 5.3e-5 1.37e-4 2.53e-4 4.05e-4 5.35e-4 5.96e-4 6.42e-4 6.69e-4 
6.64e-4 6.66e-4 6.7e-4 6.7e-4 6.6e-4 6.61e-4 6.55e-4 6.53e-4 6.25e-4 5.63e-4 
4.57e-4 3.11 e-4 1.8e-4 7 .7e-5 2.15e-5 0.0 

*ENTRY AND EXIT CONDITIONS 
98E+3 294 IOOE+3 298 

* INITIAL SHAFT SPEEDS 
1500.0000 
76525.55 

* INITIAL PRESSURE!fEMPERATUREIFUEL-AIR RATIO 
179864.29 820.1090 4.2025646e-02 
256147.71 461.4268 1.2475206e-03 
708221.1 1265.3490 4.4623716E-02 
189895.90 416.6010 1.5031702E-03 
173277.24 881.4562 4.4690090E-02 
11677172. 1655.4655 1.4050251 E-02 
192664.60 381.3050 3.7844169E-05 
150385.88 960.9995 4.4870996E-02 
171113.07 1004.3113 4.4820266E-02 
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Speed [revslmin] • T [Nm] 

Dala Source 

PO! [DegCA] 

Mass FPS [kg] 

Inlet man P [kPa] 

Inlet man T [K] 

Inlet air mass flow [kg/s] 

Exhaust mass flow [kg/s] 

Exhaust man P [kPa] 

Exhaust man T [K] 

Max cylinder P [Bar] 

Deg CA P max [Deg CA] 

Torque [Nm] 

BSFC [kg!kW!hr] 

Comp P ratio 

Comp mass flow 

Comp Eff 

Turbo speed [revslmin] 

Turb expansion ratio 

Turbine mass flow 

Turbine eff 

Mech eff 

IMEP [Bar] 

Brake therm eff 

Volumetric eff 

1500-100 1400-186 1500-200 1600-237 1500-300 1800-293 1500-427 2000-354 2150-372 

Engine Sim Engine Sim Engine Sim Engine Sim Engine Sim Engine Sim Engine Sim Engine Sim Engine Sim 

-5.3 -1.3 -3.6 -1 -4 -0.6 -5 -2 -5 -3 -12 -13 -12.9 -12 -12 -12 -12.2 -11 

1.98E- 1.28E- 2.98E- 2.73E- 3.19E- 2.97E- 3.72E- 3.56E- 4.68E- 4.30E- 4.30E- 4.27E- 6.16E- 5.80E- 5.24E- 5.20E- 5.61E- 5.50E-
05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 

102.6 104.3 107.6 107.5 110.3 111.8 116.3 117 121.5 120.4 124.2 123.4 129.4 129.6 140.2 139.7 150.9 152 

299 302 302.6 304 305 306 308.5 308 336 311 314 314 315.5 316 324.5 322 332 329 

0.0699 0.0719 0.06735 0.692 0.07419 0.0767 0.08307 0.0858 0.08045 0.0827 0.09849 0.1001 0.08286 0.0878 0.12242 0.1245 0.13641 0.1437 
8 

0.0714 0.0728 0.06944 0.705 0.07658 0.0784 0.08604 0.0884 0.084 0.0852 0.1024 0.1038 0.08748 0.0921 0.1277 0.1297 0.14244 0.149 

Ill 

536 

42.66 

11.7 

99 

0.3511 

1.01 

1.204 

9 

23686 

1.096 

1.508 

51 

58 

3.623 

23.922 

83.4 

116 

655 

43 

10 

94 

0.338 

1.05 

1.23 

59 

31654 

1.15 

1.59 

36 

59.5 

3.42 

25.07 

80.8 

114.6 

628 

46.9 

12.2 

185.4 

0.2774 

1.057 

1.204 

9 

27557 

1.147 

1.521 

47.55 

79.6 

5.06 

30.27 

82.8 

118 

747 

48 

10 

179 

0.266 

1.07 

1.18 

59 

35900 

1.18 

1.6 

36 

74 

5.25 

31.8 

81 

117 

665 

48.8 

11.6 

200 

0.2742 

1.089 

1.278 

42.6 

31135 

1.16 

1.707 

75.3 

80.62 

5.39 

30.63 

83.4 

122 

759 

49 

10 

190 

0.268 

1.12 

1.31 

61 

38740 

1.22 

1.73 

36 

74 

5.53 

32 

82 

121 

717 

52.8 

10.4 

237 

0.2699 

1.15 

1.434 

50.6 

37420 

1.21 

1.917 

79 

81.62 

6.3 

31.12 

83.8 

1.26 

796 

53 

12 

232 

0.256 

1.18 

1.47 

63 

40883 

1.26 

1.92 

37 

77 

6.52 

33.1 

83.5 

123.6 

791 

55.24 

9.2 

301.7 

0.27 

1.21 

1.392 

55.5 

41464 

1.24 

1.917 

68.63 

88.3 

7.41 

31.1 

83.2 

127 

898 

54 

10 

297 

0.249 

1.203 

1.41 

63 

42418 

1.29 

1.93 

39 

82 

7.87 

34 

84 

129.2 

757 

67.3 

6.9 

292.7 

0.253 

1.23 

1.708 

53.7 

45302 

1.264 

2.214 

80.8 

83.4 

7.61 

33.2 

84.2 

136 

871 

68 

6 

286 

0.256 

1.23 

1.72 

66 

45031 

1.34 

2.19 

41 

78 

7.91 

33 

84 

3 
128 

876 

74.8 

8.5 

427 

0.2481 

1.284 

1.437 

57 

47949 

1.272 

2.029 

79.9 

95.6 

9.69 

33.8 

81.8 

135 

966 

74 

8 

406 

0.244 

1.29 

1.51 

65 

49354 

1.38 

2.03 

40 

85.1 

10.35 

34.7 

85 

Table 40 Comparison Of Healthy SPICE Model & Experimental Results 

375 

143 

838 

75.1 

9.2 

355 

0.2529 

1.4 

2.13 

57.2 

57126 

1.42 

2.56 

83 

84.6 

9.09 

33.2 

85.3 

151 

927 

75 

8 

357 

0.251 

1.4 

2.15 

69.8 

56686 

1.52 

2.54 

44 

80 

9.63 

33.7 

85.2 

155.5 

871 

79.4 

8.7 

369 

0.2651 

1.508 

2.38 

58.7 

63378 

1.508 

2.705 

79.6 

83.5 

9.59 

32.11 

84.3 

163 

935 

78 

8 

373 

0.253 

1.53 

2.49 

71 

64372 

1.62 

2.72 

47 

80 

10.08 

33.4 

85.9 



Speed [revs/min] - T [Nm] 

D:11a Source 

PO! [DegCA] 

Mass FPS [kg] 

Inlet man P [kPa] 

Inlet man T [K] 

Inlet air mass now [kg/s] 

Exhaust mass now [kg/s] 

Exhaust man P [kPa] 

Exhaust man T [K] 

Max cylinder P [Bar] 

Deg CA P max [Deg CA] 

Torque [Nm] 

BSFC [kg!kw/hr] 

Comp P ratio 

Comp mass now 

Comp Eff 

Turbo speed [revs/min] 

Turb expansion ratio 

Turbine mass flow 

Turbine eff 

Mech eff 

!MEP [Bar] 

Brake thenn eff 

Speed [revs/min]- T [Nm] 

Data source 

PO! [DegCA] 

Mass FPS [kg] 

Inlet man P [kPa] 

Inlet man T [K] 

Inlet air mass now [kg!s] 

Exhaust mass now [kg/s] 

Exhaust man P [kPa] 

Exhaust man T [K] 

Max cylinder P [Bar] 

Deg CA P max [Deg CA] 

Torque [Nm] 

BSFC [kg!kw/hr] 

Comp P ratio 

Comp mass now 

Comp Eff 

Turbo speed [revs/min] 

Turb expansion ratio 

Turbine mass now 

Turbine eff 

Mech eff 

!MEP [Bar] 

Brake thenn eff 

Volumetric Eff 

1500-300 

Faulty 

-3 

Healthy 

.-3 

1800-293 1500-427 200- 354 

Faulty 

-13 

Healthy Faulty · Healthy Faulty Healthy 

-13 -12 -12 -12 -12 

2150-372 

Faulty 

-11 

Healthy 

-11 

0.000043 0.000043 0.000042 0.000042 0.000058 0.000058 0.000052 0.000052 0.000055 0.00005~ 

121.3 121.3 121.4 122.6 128.3 129 137.9 139.5 

310 311 313 313 316 316 322 322 

0.0813 0.08279 0.0986 0.09968 0.0867 0.0875 0.1226 0.1243 

0.0859 0.0859 0.102 

128 

895 

55 

9 

297 

0.248 

1.21 

1.4 

67 

43.13 

1.29 

1.94 

38 

85.5 

7.89 

34 

128.2 

894 

55 

10 

296.2 

0.2496 

1.212 

1.42 

67 

43.052 

1.297 

1.94 

38 

81.7 

7.86 

33.9 

135.6 

876 

67 

6 

284.9 

0.258 

1.22 

1.7 

68 

44.469 

1.33 

2.17 

38 

83.6 

7.88 

33 

0.1035 

136.1 

871 

67.5 

6 

285.9 

0.2573 

1.224 

1.72 

69 

44.538 

1.334 

2.19 

38 

78.39 

7.92 

32.91 

0.0912 0.0918 

134 134.3 

972 967 

74 

8 

404.8 

0.244 

1.28 

1.5 

65 

48.751 

1.37 

2.03 

38 

84.7 

10.31 

34.6 

74 

8 

405.8 

0.244 

1.289 

1.51 

65 

48.738 

1.375 

2.03 

38 

85.14 

10.34 

34.7 

Table 41 Faulty Intercooler SPICE Results 

1500- 300 

Faulty 

-3 

Healthy 

-3 

1800- 293 

Faulty 

-13 

Healthy 

-13 

1500- 427 

Faulty 

-12 

Healthy 

-12 

0.000043 0.000043 0.000042 0.000042 0.000058 0.000058 

121 121.3 121.7 122.6 128.5 129 

311 316 313 319 316 323 

0.08279 0.0815 0.09968 0.09753 0.0875 0.0856 

0.0847 

127.8 

904 

54 

10 

296.2 

0.2493 

1.211 

1.4 

67 

43 

1.293 

1.93 

38 

81.7 

7.86 

33.9 

84.6 

0.0859 

128.2 

894 

55 

10 

296.2 

0.2496 

1.212 

1.42 

67 

43.052 

1.297 

1.94 

38 

81.7 

7.86 

33.9 

83.95 

0.1013 

135.5 

883 

67 

6 

283.4 

0.2595 

1.223 

1.68 

69 

44.439 

1.372 

2.16 

38 

78.29 

7.85 

32.64 

83.9 

0.1035 

136.1 

871 

67.5 

6 

285.9 

0.2573 

1.224 

1.72 

69 

44.538 

1.334 

2.19 

38 

78.39 

7.92 

32.91 

83.65 

0.0899 

133.7 

983 

73 

9 

403.4 

0.246 

1.29 

1.47 

65 

48.678 

1.369 

2.02 

38 

85.1 

10.29 

34.4 

84.8 

0.0918 

134.3 

967 

74 

8 

405.8 

0.244 

1.289 

1.51 

65 

48.738 

1.375 

2.03 

38 

85.14 

10.34 

34.7 

85.2 

0.127 

ISO 

936 

74 

8 

355.3 

0.252 

1.38 

2.14 

69 

56.552 

1.51 

2.53 

43 

85.6 

9.58 

33.6 

0.1295 

150.9 

930 

75 

8 

356.8 

0.2512 

1.397 

2.15 

69 

56.567 

1.518 

2.54 

43 

80.4 

9.62 

33.7 

2000- 354 

Faulty 

-12 

0.000052 

138.4 

322 

0.1243 

0.1256 

149.8 

947 

74 

8 

353 

0.2539 

1.394 

2.08 

69 

56.273 

1.504 

2.51 

43 

80.33 

9.54 

33.3 

85.7 

Healthy 

-12 

0.000052 

139.5 

332 

0.1204 

0.1295 

150.9 

930 

75 

8 

356.8 

0.2512 

1.397 

2.15 

69 

56.567 

1.518 

2.54 

43 

80.4 

9.62 

33.7 

85.2 

Table 42 80% Fouled Air Filter SPICE Results 
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150.3 149.6 

329 328 

0.142 0.1474 

0.148 0.1474 

159.8 162.7 

945 944 

77 

10 

375 

0.251 

1.502 

2.49 

71 

64.338 

1.598 

2.77 

48 

86.2 

10.14 

33.6 

77 

10 

373.5 

0.2528 

1.502 

2.49 

71 

63.017 

1.61 

2.71 

48 

80.24 

10.09 

33.5 

2150- 372 

Faulty 

-11 

0.000055 

149.3 

340 

0.1373 

0.1431 

161.5 

966 

75.3 

10 

370 

0.2555 

1.499 

2.38 

71 

62.799 

1.598 

2.68 

48 

80.14 

10.01 

33.1 

86.4 

Healthy 

-11 

0.00005. 

149.6 

328 

0.1474 

0.1474 

162.7 

944 

77 

10 

373.5 

0.2528 

1.502 

2.45 

71 

63.017 

1.61 

2.71 

48 

80.24 

10.09 

D.5 

85.8 



Speed- revslmin]- T [Nm] 

Data Source 

POI 

Mass FPS 

Inlet man P 

Inlet man T 

Inlet air mass now 

Exhaust mass flow 

Exhaust man P 

Exhaust man T 

Max cylinder P 

DegCA P max 

Torque 

BSFC 

Comp P ratio 

Comp mass now 

Comp EH 

Turbo speed 

Turb expansion ratio 

Turbine mass flow 

Turbine eff 

Mech eff 

!MEP 

Brake therm eff 

Volumetric Eff 

1500-300 

Faulty 

-3 

Healthy 

-3 

1800-293 

Faulty 

-13 

Healthy 

-13 

0.000043 0.000043 0.000042 4.3E-05 

121.1 

311 

0.0813 

0.0859 

128 

896.5 

54.8 

10 

296 

0.25 

1.21 

1.42 

67 

42.971 

1.294 

1.93 

38 

81.69 

7.86 

33.94 

84.1 

121.3 

311 

0.0826 

0.0854 

127.9 

894 

55 

10 

296.2 

0.2496 

1.212 

1.42 

67 

43.052 

1.297 

1.94 

38 

81.7 

7.86 

33.9 

83.95 

122.8 122.6 

317 313 

0.0984 0.09968 

0.1022 0.1035 

135.75 136.1 

879 871 

67 67.5 

6 6 

284.9 285.9 

0.2581 0.2573 

1.224 1.224 

1.69 

68 

44.5 

1.33 

2.17 

38 

78.34 

7.89 

32.83 

83.9 

1.72 

69 

44.538 

1.334 

2.19 

38 

78.39 

7.92 

32.91 

83.65 

1500-427 

Faulty 

-12 

0.000058 

128.9 

322 

0.0861 

0.0901 

134.2 

981 

73 

8 

402.8 

0.2464 

1.287 

1.48 

65 

48.581 

1.366 

2.01 

38 

85.06 

10.27 

34.3 

84.1 

Healthy 

-12 

0.000058 

129 

316 

0.0875 

0.0918 

134.3 

967 

74 

8 

405.8 

0.244 

1.289 

1.51 

65 

48.738 

1.375 

2.03 

38 

85.14 

10.34 

34.7 

85.2 

2000-354 

Faulty 

-12 

Healthy 

-12 

2150-372 

Faulty 

-11 

Healthy 

-11 

0.000052 

139.9 

326 

0.123 

0.1281 

150.5 

937 

72 

5.2E-05 0.000055 5.5E-05 

8 

352.2 

0.2532 

1.398 

2.13 

69 

56.608 

1.515 

2.53 

43 

80.33 

9.51 

33.44 

85.5 

139.5 

322 

0.1243 

0.1295 

150.9 

930 

75 

8 

356.8 

0.2512 

1.397 

2.15 

69 

56.567 

1.518 

2.54 

43 

80.4 

9.62 

33.7 

85.2 

149.4 

331 

0.1397 

0.1455 

161.8 

952 

76 

10 

371 

0.2542 

1.5 

2.42 

71 

62.874 

1.605 

2.7 

48 

80.18 

10.05 

33.32 

85.9 

149.6 

328 

0.1474 

0.1474 

162.7 

944 

77 

10 

373.5 

0.2528 

1.502 

2.49 

71 

63.017 

1.61 

2.71 

48 

80.24 

10.09 

33.5 

85.8 

Table 43 Leaking Inlet Valves SPICE Simulation Results 

Speed- revs/min]- T [Nm] . 

Data Source 

PO! [DegCA] 

Mass FPS [kg] 

Inlet man P [kPa] 

Inlet man T [K] 

Inlet air mass now [kg/s] 

Exhaust mass now [kg/s] 

Exhaust man P [kPa] 

Exhaust man T [K] 

Max cylinder P [Bar] 

Deg CA P max [Deg CA] 

Torque [Nm] 

BSFC [kglkw/hr] 

Comp P ratio 

Comp mass now 

Comp Eff 

Turbo speed [revs/min] 

Turb expansion ratio 

Turbine mass now 

Turbine eff 

Mech eff 

IMEP [Bar] 

Brake therm eff 

Volumetric Eff 

1500-300 1800-293 1500-427 2000-354 2150-372 

Faulty Healthy Faulty Healthy Faulty Healthy Faulty Healthy Faulty Healthy 

-3 -3 -13 -13 -12 -12 -12 -12 -11 -11 

0.000043 0.000043 0.000042 0.000042 0.000058 0.000058 0.000052 0.000052 0.000055 0.00005 

121.1 

311 

0.08261 

0.08545 

127.9 

896 

54.66 

10 

296 

0.25 

1.21 

1.42 

67 

42.925 

1.294 

1.93 

38 

81.68 

7.85 

33.94 

84.05 

121.3 

311 

0.0826 

0.0854 

127.9 

894 

55 

10 

296.2 

0.2495 

1.212 

1.42 

67 

43.052 

1.297 

1.94 

38 

81.7 

7.86 

33.9 

83.95 

122.7 

313 

0.09975 

0.1035 

136.15 

874 

67 

6 

284.4 

0.2587 

1.224 

1.72 

68 

44.539 

1.333 

2.19 

38 

78.31 

7.876 

32.74 

83.9 

122.6 

313 

0.09968 

0.1035 

136.1 

871 

67.5 

6 

285.9 

0.2573 

1.224 

1.72 

69 

44.538 

1.334 

2.19 

38 

78.39 

7.92 

32.91 

83.65 

128.9 

316 

0.08738 

0.09166 

134.65 

973 

74 

8 

403.6 

0.2454 

1.287 

1.5 

65 

48.59 

1.37 

2.03 

38 

85.09 

10.287 

34.52 

84.1 

129 

316 

0.0875 

0.0918 

134.3 

967 

74 

8 

405.8 

0.244 

1.289 

1.51 

65 

48.738 

1.375 

2.03 

38 

85.14 

10.34 

34.7 

85.2 

140.2 

322 

0.1248 

0.12998 

151.4 

933 

73 

8 

353.4 

0.2523 

1.402 

2.16 

69 

56.843 

1.521 

2.55 

43 

80.36 

9.535 

33.58 

85.2 

139.5 

322 

0.1243 

0.1295 

150.9 

930 

75 

8 

356.8 

0.2512 

1.397 

2.15 

69 

56.567 

1.518 

2.54 

43 

80.4 

9.62 

33.7 

85.2 

149.7 

328 

0.1416 

0.1474 

162.8 

948 

76 

10 

372 

0.2536 

1.503 

2.45 

71 

63.07 

1.612 

2.71 

48 

80.19 

10.06 

33.39 

85.7 

149.6 

328 

0.1474 

0.1474 

162.7 

944 

77 

10 

373.5 

0.2528 

1.502 

2.49 

71 

63.017 

1.61 

2.71 

48 

80.24 

10.09 

33.5 

85.8 

Table 44 Leaking Exhaust Valves SPICE Simulaton Results 
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Speed- revs/min] - T [Nm] 1500-300 1800-293 1500-427 2000-354 2150-372 

Data Source Faulty Healthy Faulty Healthy Faulty Healthy Faulty Healthy Faulty Healthy 

POI [Deg CA] -3 -3 -13 -13 -12 -12 . -12 -12 -11 -11 

Mass FPS [kg] 0.000043 4E-05 0.000042 4E-05 0.000058 6E-05 0.000052 5E-05 0.000055 6E-05 
7 

Inlet man P [kPa] 122.3 121.3 123.7 122.6 130.4 129 141.2 139.5 151.2 149.6 

Inlet man T [K] 312 311 314 313 316 316 323 322 328 328 

Inlet air mass now [kg!s] 0.08336 0.0826 0.10056 0.0997 0.0884 0.0875 0.1256 0.1243 0.149 0.1416 

Exhaust mass now [kg!s] 0.866 0.0854 0.10436 0.1035 0.09267 0.0918 0.1308 0.1295 0.1483 0.1487 

Exhaust man P [kPa] 129 127.9 137.1 136.1 135.4 134.3 152.4 150.9 164.1 162.7 

Exhaust man T [K] 912 894 886 871 985 967 940 930 955 944 

Max cylinder P [Bar] 51 55 64 67.5 69 74 70 75 71 77 

Deg CA P max [Deg CA] 10 10 8 6 10 8 10 8 10 10 

Torque [Nm] 293.8 296.2 290 285.9 408.6 405.8 355.6 356.8 369 373.5 
BSFC [kglkw/hr] 0.252 0.2495 0.254 0.2573 0.2435 0.244 0.2518 0.2512 0.2545 0.2528 

Comp P ratio 1.221 1.212 1.234 1.224 1.302 1.289 1.414 1.397 1.517 1.502 
Comp mass now 1.43 1.42 1.73 1.72 1.52 1.51 2.17 2.15 2.48 2.45 
Comp Eff 67 67 68 69 65 65 69 69 71 71 
Turbo speed [revs/min] 43.762 43.052 45.277 44.538 49.7 48.738 57.59 56.567 63.78 63.017 
Turb expansion ralio 1.308 1.297 1.346 1.334 1.389 1.375 1.533 1.518 1.628 1.61 
Turbine mass flow 1.95 1.94 2.2 2.19 2.05 2.03 2.55 2.54 2.73 2.71 
Turbine eff 38 38 38 38 38 38 43 43 48 48 
Mech eff 81.77 81.7 78.8 78.39 85.44 85.14 80.585 80.4 80.31 80.24 
IMEP [Bar] 7.79 7.86 7.98 7.92 10.37 10.34 9.57 9.62 9.99 10.09 
Brake therm eff 33.61 33.9 33.35 32.91 34.77 34.7 33.63 33.7 33.29 33.5 
Volumetric Eff 84.2 83.95 83.7 83.65 84.9 85.2 85.4 85.2 85.9 85.8 

Table 45 3° Crank Angle Retarded Pump Timing SPICE Simulation Results 
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APPENDIX 'E' 

The Back Propogation Algorithm 

Model 'A' & 'B's Diagnostic Performance On Faults Of A Lower Severity Than 
Those Trained On 

Model 'A' & 'B's Diagnostic Performance On Novel Faults 

Model 'A' & 'B's Diagnostic Ability At A Speed and Torque Not Trained At 

Model 'A' & 'B's Diagnostic Ability On+/- I% Randomly Noisy Data 

Model 'A' & 'B's Diagnostic Ability On+/- 2% Randomly Noisy Data 

Model 'A' & 'B's Diagnostic Ability On Faulty Sensor Data 

Automated Sensor Check Program 

Semi Intelligent On -Line Diagnostic Database Program, DIAMAC.XLM 
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· The Back Propagation Algorithm 

The back propagation algorithm has been successfully applied to many diagnostic 

problems as discussed in Chapter 1. It works by progressively moving down the 

networks error surface. The rate at which it moves down the error surface is 

inversely proportional to the gradient of the error surface. If the walls are steep the 

networks take large steps during each iteration. As the gradient of the error surface 

decreases it takes progressively smaller steps to reach convergence. The error 

surface represents the entire network error for all combinations of weights and 

therefore any movement on the error surface will require the network weights to be 

adjusted. Rummelhart [601 detailed how the algorithm makes these weight 

adjustments for Standard Back Propagation. This is shown below; 

1. The output of the ith neuron in layer m, V;m is given by the sigmoid function; 

vm = -~--1-----,----,--
1 (I wmv m-1 +rp ·) 

1+e 1J J 1 

2. Set aU weights to smaU random values. 

3. Present a training vector I and an output vector 0. Apply I to the input layer 

neurons (m=O) so that V" = I. 

4. For other layers, m= l ..... M, perform the forward pass computation; 

where Wym is the connection weight from vp- 1 to vr 
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5. Compute the errors in the output layer; 

81:1 =V.M(1-v.M)(o. -v.M) 
1 1 1 1 1 

6. Compute the back propagation errors for the preceding layers M-1, ... ,1; 

8~-1 = v.m-1(1-vm-l)r.w'!'811! 
1 1 1 . )1 J 

J 

7. Adjust the weights; 

W.~(t + 1) = W.~(t) + a8~V~ - 1 
1) 1) 1 J 

where a is the gain parameter. Thresholds are adjusted in a similar way to weights. 

8. Iterate by going to step 3. 

The algorithm continues until the overall error, which is the mean square difference 

between the desired and actual outputs for all training patterns is reduced to the 

criteria set in Neuraldesk. The Stochastic Back Propagation algorithm deviates from 

this slightly because the weights are adjusted at a different point in the learning 

process. Stochastic Back Propagation adjusts the weights after each input vector is 

applied to the input neurons. 
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Figure 126 Model 'A' & 'B's Diagnostic Performance On A Novel Fault­
Leaking Inlet Valves 
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Figure 127 Model 'A' & 'B's Diagnostic Performance On A Novel Fault- Worn 
Injector 
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Figure 128 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
Torque On Healthy Data 
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Figure 129 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
Torque On 80% Fouled Air Filter Data 
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Figure 130 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
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Figure 131 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
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Figure 132 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
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Figure 133 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
Torque On Retarded Fuel Pump Timing Data 
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Figure 134 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
Torque On Low Pressure Injector Data 
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Figure 135 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
Torque On Blocked Injector Data 
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Figure 136 Model 'A' & 'B's Diagnostic Performance At A Novel Speed & 
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Figure 137 Model 'A' & 'B's Diagnostic Performance on +/-1 o/o Noisy Fouled 
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Figure 139 Model 'A' & 'B's Diagnostic Performance on +/- 1% Noisy Leaking 
Inlet Valves Data 

398 



MKiei'A' Diagnosis Leaking Exhaust Valves +/-1% Noisy Data 
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Figure 140 Model 'A' & 'B's Diagnostic Performance on +/- 1% Noisy Leaking 
Exhaust Valves Data 
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Mxlel 'A' Diagnosis Retarded Fuel Pump Timing +/-1% Noisy Data 
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Figure 141 Model 'A' & 'B's Diagnostic Performance on +/- 1 o/o Noisy 
Retarded Fuel Pump Timing Data 
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1\i)del 'A' Diagnosis Low Pressure Injector +/-1% Noisy Data 
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Figure 142 Model 'A' & 'B's Diagnostic Performance on +/- 1% Noisy Low 
Pressure Injector Data 
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~I 'A' Diagnosis Blockedlnjector+/-1% Noisy Data 
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Figure 143 Model 'A' & 'B's Diagnostic Performance on +/- 1% Noisy Blocked 
Injector Data 
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M:>del 'A' Diagnosis Worn Injector+/-1% Noisy Data 
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Figure 144 Model 'A' & 'B's Diagnostic Performance on +/- 1% Noisy Worn 
Injector Data 
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M>del 'A' Diagnosis 80% Fouled Air Filter+/- 2% Noisy Data 
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Figure 145 Model 'A' & 'B's Diagnostic Performance on+/- 2o/o Noisy Fouled 
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Figure 146 Model 'A' & 'B's Diagnostic Performance on+/- 2o/o Noisy Faulty 
Intercooler Data 
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M>del 'A' Diagnosis Leaking IoletVal~s +/-2% Noisy Data 
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Figure 147 Model 'A' & 'B's Diagnostic Performance on+/- 2% Noisy Leaking 
Inlet Valves Data 
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M>del 'A' Diagnosis Leaking ExbaustVahes +/-2% Noisy Data 
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Figure 148 Model 'A' & 'B's Diagnostic Performance on+/- 2% Noisy Leaking 
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Mulel'A' Diagnosis Retarded Fuel Pump Timing +/-2~o Noisy Data 
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Figure 149 Model 'A' & 'B's Diagnostic Performance on+/- 2% Noisy 
Retarded Fuel Pump Timing Data 
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1\blel 'A' Diagnosis Low Pressure Injector+/- 2% Noisy Data 
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Figure 150 Model 'A' & 'B's Diagnostic Performance on+/- 2% Noisy Low 
Pressure Injector Data 
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1\blel 'A' Diagnosis Blocked Injector+/- 2% Noisy Data 
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Figure 151 Model 'A' & 'B's Diagnostic Performance on+/- 2% Noisy Blocked 
Injector Data 
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Mxlel 'A' Diagnosis Worn Injector+/- 2% Noisy Data 
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Figure 152 Model 'A' & 'B's Diagnostic Performance on+/- 2% Noisy Worn 
Injector Data 
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Model'A' Diagnosis 80% Fouled Air Filter Zero Air Flow Sensor Reading Full 
Scale 1&2 Exhaust Port Temperature 
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Figure 153 Model 'A' & 'B's Diagnostic Performance on 80% Fouled Air Filter 
Data With Zero Air Flow Sensor Output & Full Scale 1 & 2 Cylinder Port 

Temperatures 
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Modei'A' Diagnosis 80% Fouled Air Filter Full Scale Air Flow Sensor Reading 
Zero 1 &2 El.haus t Port Temperature 
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Figure 154 Model 'A' & 'B's Diagnostic Performance on 80% Fouled Air Filter 
Data With Full Scale Air Flow Sensor Output & Zero 1 & 2 Cylinder Port 

Temperatures 
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Model 'A' Diagnosis Faultylntercooler Zero Inlet Manifold Temperature & Zero 
Turbine Discharge Temperature 
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Figure 155 Model 'A' & 'B's Diagnostic Performance on Faulty Intercooler 
Data With Zero Inlet Manifold Temperature & Zero Turbine Discharge 

Temperature 
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Model 1 A 1 Dlagnos Is Faulty Intercooler Full Scale Inlet Manifold Temperature & 
Full Scale Thrblne Discharge Temperature 
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Figure 156 Model 'A' & 'B's Diagnostic Performance on Faulty Intercooler 
Data With Full Scale Inlet Manifold Temperature & Full Scale Turbine 

Discharge Temperature 
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Model 'A' Diagnosis Retarded Fuel Pump Timing FnU Scale Turbocharger Speed 
& Zero Inlet Manifold Pressure 
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Figure 157 Model 'A' & 'B's Diagnostic Performance on Retarded Fuel Pump 
Timing Data With Full Scale Turbocharger Speed & Zero Inlet Manifold 

Pressure 
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Model 'A' Dlagoos is Retarded Fuel Pump 'Ilmlng Zero Thrbocharger Speed & FuU 
Scale Inlet Manifold Pressure 
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Figure 158 Model 'A' & 'B's Diagnostic Performance on Retarded Fuel Pump 
Timing Data With Zero Turbocharger Speed & Full Scale Inlet Manifold 

Pressure 
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Model 'A' Diagnosis Leaking Wet Valves Zero Rack Position & Full Scale 
Turbocharger Speed 
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Figure 159 Model 'A' & 'B's Diagnostic Performance on Leaking Inlet Valves 
Data With Zero Rack Position & Full Scale Turbocharger Speed 
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Mxtel 'A' Diagnosis Leaking Inlet Valves Full Scale Rack Position & 'hro 
Turbocharger Speed 
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Figure 160 Model 'A' & 'B's Diagnostic Performance on Leaking Inlet Valves 
Data With Full Scale Rack Position & Zero Turbocharger Speed 
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Automated Sensor Check Program 

At 

=EXEC("c:\ncs\neurun c:\ncs\sensor.ncs") 
=INITIATE("neurun","sensor.ncs") 
=OPEN("c:\rnsoffice\excel\perfmon\diagnose.xls",O) 
=SELECT("r78c7:r78c 125 ") 
=POKE(A3, "InterrogStimulus" ,SELECT! ONO) 
=EXECUTE(A3, "[Process(Relate )] ") 

Bl 

=COPY(A26) 
=OPEN("c:\msoffice\excel\perfmon\results.xlm" 
=FILE.CLOSE(TRUE) 
=GOTO(Al8) 
=RETURNO 

=SET.NAME("Result" ,REQUEST(A3, "lnterrogResponse")) B8 

=SELECT('C:\MSOFFICE\EXCEL\PERFMON\[DIAGNOSE.XLS =COPY(A28) 
]Sheetl'!$0$1 :$V$ I) 
=SELECT('C:\MSOFFICE\EXCEL\PERFMON\[DIAGNOSE.XLS =OPEN("c:\msoffice\excel\perfmon\results.xlm" 
]Sheetl'!$0$1 :$V$1) 
=FORMULAARRA Y("=DIAMAC.XLM!Result") 
=EXECUTE(A3, "[Process(QUIT)]") 
=TERMINATE(A3) 
=FOR.CELL("Max",Ol:VI,FALSE) 
=IF(rnax>A23,GOTO(B2)) 
=NEXTO 
=GOTO(B9) 
=GOTO('C:\MSOFFICE\EXCEL\PERFMON\[DIAGNOSE.XLM] 
DIAGNOSE'! AI) 
=RUNO 
=RETURNO 

A22 
0 .5 

A25 
AIR FLOW SENSOR F AlLURE PLEASE CHECK 
PERFORMANCE FILE RESULTS 
A27 

SENSORS ALL FUNCTIONING OK 
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=FILE.CLOSE(TRUE) 
=GOTO(Al8) 
=RETURNO 



DIAMAC.XLM On-line Database Program 

AI 
=EXEC("c:\ncs\neurun c:\ncs\net4sto2.ncs") 
=INITIA TE("neunin", "net4sto2.ncs") 
=OPEN("c:\msoffice\excel\perfmon\diagnose.x.ls",O) 
=SELECT("r78c7:r78c 125") 
=POKE(AJ,"lnterrogStimulus",SELECTION()) 
=EXECUTE(AJ," [Process(Relate)] ") 
=SET.NAME("Result" ,REQUEST(AJ, "InterrogResponse")) 
=SELECT('C:\MSOFFICE\EXCEL\PERFMON\[DIAGNOSE.XLS]Sheet l'!$G$I :$N$I) 
=SELECT('C:\MSOFFICE\EXCEL \PERFMON\[DIAGNOSE.XLS]Sheet I' !$G$I :$N$I) 
=FORMULAARRA Y("=DIAMAC.XLM!Result") 
=EXECUTE($A$3," [Process( QUIT)]") 
=TERMINA TE(AJ) 
=RUN("DIAMAC.XLM!ric2") 
=RETURN() 

C2 
=FORMULA((Cl+I),Cl) 
=IF($C$I<IO,GOTO($A$24)) 
=GOTO($A$30) 
=RETURN() 

A23 
=SELECT('C:\MSOFFICE\EXCEL\PERFMON\[DIAGNOSE.XLS]Sheet I'!$G$I :$N$1) 
=COPY() 
=SELECT(OFFSET(SELECTION(),2,($C$I ),8, I)) 
=PASTE. SPECIAL(3, I ,FALSE, TRUE) 
=RETURN() 
A29 
=SELECT("rl Oc7:ri7ci6") 
=ClJf() 
=SELECT(OFFSET(SELECTION(),O, -I)) 
=PASTE() 
=SELECT("r!Oc6:rl7c6") 
=CLEAR() 
=SELECT('C:\MSOFFICE\EXCEL\PERFMON\[DIAGNOSE.XLS]Shect l'!$G$2 :$N2) 
=COPY() 
=SELECT("rlOci6:rl7ci6") 
=P ASTE.SPECIAL(3, I ,FALSE, TRUE) 
=RETURN() 
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