AN EXPERIMENTALSTUDYOP

ELECTRON SPIN RESONANCE IN SYNTHETIC DIAMOND

A thesis aubmitted to the University of Fawwiok
for the degree of Dootor of Philosophy by Brian R. Angel, M.Sc.

The work desoribed in this thesis was oarried out in the School of Physios at the University of Warwiok and in the Department of Physios at the College of Technology, Plymouth, during the period from September, 1965, to September, 1968. This is to certify that, uniless otherwise stated, the results presented here were obtained by B. R. Angel under my supervision.

M. J. A. Smith, B.So., Ph.D., Lecturer in Physios, Sohool of Physios,
University of Wawwiok, Coventry, Warwiokshire.

$A C K N O W L E D G E N T S$

The author is indebted to Professor A. J. Forty of the University of Warwiok for the use of the facilities in the Sohool of Physios and for his oo-operation in arranging for this work to be completed externally. Thanks are due to Dr. M. J. A. Smith for his continued enoouragement and gupervision of this work.

The assistance and co-operation of the Department of Physios, Plymouth College of Teohnology, is gratefully acknowledged. Thanks are also due to Dr. E. F. W. Seymour of the School of Physios, University of Warsiok, for the loan of a maget system, to Professor J. J'. Charette of the University of Lovanium, Congo, who performed the infra-red measurements on the single synthetic diamonals, to Dr. D. Burr of International Nickel Ltd., who campied out an X-ray mioro-probe analysis on a bulk sample of synthetio diamoma, and to Cuiver Diamonds Ltd., who assisted by grinding and polishing a number of diamonds.

The author is grateful to Br. P. Patriok of the United States General Bleotric Company and to Mr. W. F. Cotty of the De Beers Organisation both of whom supplied samples of synthetio diamond.

A grant from the Soience Researah Gounoil 18 -also gratefully aoknowledged.
Page
ABSTRACT 1

1. THE PRTNCIPLES OF ELECTRON SPIN RESONANCE 4
1.1. The Resomance Comdition 4
1.2. Spin-Lattice Relaxation 6
1.3. Spin-Spin Relasation 8
1.40 Exchange Interaction 10
1.5. Cross Relaxation 11
1.6. Fine Structure 13
1.7. Hyperfine Structure 15
1.8. Quadrapole Interaction 21
1.9. Line Width 22
1.10. Ferromagnetic Resonance 24
1.11. The Spin Hamiltonian 26
1.12. Referonces: 30
2. DIAMONDS 32
2.1. General Considerations 32
2.2. The Fhysical Properties of Diamond 34
2.2.1. Structure 34
2.2.2. Optioal Properties and Classification 36
2.2.3. Thermal Properties 37
2.2.4. Hardness and Strength 38
2.3. Synthetio Diamond 39
2.4. Nitrogen in Dismond 45
Page
2.5. References 49
3. ELECTRON SPIN RESONANCE IN DIAMOND 51
3.I. Natural Diamond 51
3.1.1. Irfadiation Damage 51
3.1.2. AIrminium Accoptors: 51
3.2. Substitutiomal Nitrogen 51
3.2.I. Hyperfine Interaction 51
3.2.2. Cross Relaxation 57
3.2.3. Distribution: of Substitutional Nitrogen 61
3.2.4. The Effect of ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ 61
3.2.5. Type Ib Classification 66
3.2.6. Costed Stones 66
3.3. Synthetio Diamond 69
3.3.1. General Considerations 69
3.3.2. Line Width of the Nitrogen Resonance 72
3.3.3. Previous Work by the Author 74
3.4. Summery 75
3.5. References 76
4. AN EXPERIMGNTAL STUDY OF SYNTHETIC DIAMOND 78
4.I. Introduction 78
4.2. Experimentel Apparatus 79
4.3. Sample Specification 82
4.4. Fleotron Spin Resomance of Bulk Samples 85
Page
4.5. The Nature of the Ferromagnetic Additives 89
4.6. Visible Imclusions 91
4.7. The Effeot of Heat Treatment 94
4.8. Experiments with Oxidised Samples 104
4.9. Speotrogreaphio Anslysis 107
4.I0. Single Crystel Studies 111
4.10.1. The Correlatiom between Crystal Habit and Eleotrom Sipin Resonance Phenomena 111
4.10.2. Orientation Effects 116
4.11. Suxface Cambomisation 125
4.I2. Spatial Variation of Concentration of Substitutiomal Nitrogen 127
4.13. Eleatron Spin Resomansoe at Low Temperatures 132
4-13.1. Quadrapale Effects 132
4.13.2. A New Resonance Linè 132
4.13.3. Cross ReIaxation Effeots: Inveraion 136
5. T4. Experiments Eith Crushed Samples 137
4.15. Sumaty 140
4.16. References 142
6. FITIAL DISCUSSION AND COMCLUSIONS 143
5.1. Disoussion and Comolusions 143
5.2. Praotical Applioations 151
5.3. Future Work 153
5.4. References 155

ABSTRACT

This thesis is divided into five ohapters. The flost chapter begins with a discussion of the basic prinoiples of eleotron spin resonance and concludes with a desoription of the theoretioal interpretation of electron apin resonance spectra in terms of the Spin Hamiltomian.

The first part of the second ohapter is a general discussion of the physical properties of diamond and includes reasons for the classification of diamond into various types. The second part of the ohapter is devoted to a brief historioal survey of the developments in the produotion of synthetic diamond. The final part of the ohapter is an outline of the experiments which have Ied to the identification of nitrogen as.a major impurity in natural and synthetic diamond.

The third chapter combines and desoribes some of the experimental studies whioh have been mide on diamond using the teohnique of electron spin resonance. Particular emphasis is plaoed on theories whioh have been put forward to explain the eleotron spin resmance signals associated with substitutional nitrogen in natural diamomad. Eleotron spin resonance assooiated with synthetio diamond is disoussed under a separate heading.

The fourth chapter is devoted entirely to a desoription of the experiments carried out in this work and is conoerned mainly with eleotron spin resonance from Pive different types of
commeroially available synthetio diamond. Those resonances, which. are due to the nitrogen and ferromagnetic impurities, are shown to depend marikedly on the nature of the diamond as well as its temperature. Experiments on samples which have been treated either by heating or orushing or by a combination of both, are also desoribed. In additiom, results ere presented whioh were obtained from visual examination of samples by optical mioroscopy and whioh supplement the information obtained from the eleotron spin resonance survey. Some of the results are disoussed as they are presented. The chapter conoludes with a sumary of the main features of interest which were observed.

In the final chapter the results from a number of the experiments are disoussed and correlated in an attempt to present a more complete desoription of the experimental observations. Some of the ways in which the electron resonance spectrum due to nitrogen ingurity in synthetic diamond is affected by the conditions existing in the waterial are established. The nature of the ferromagnetio additive, the conoentration of disperged nitrogen, the formation of free radioals by carbonisation or meohanioal damage, ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ and quadrapole effeots and acoeptor impurities such as aluninium or boron are a:ll factors which it is suggested are inportant. "In additiom, a mechanism is proposed to explain the disappearance of the Perromagnetic resonance in heated synthetic diamond whioh is observed in conjunotion with a narrowing of the
$-3-$
line width from the nitrogen resomance. Pimally, some praotioal applications of the results are disoussed and future experimental work is suggested.

Copies of papers published by the author are bound into the thesis. An additional paper is imoluded whioh was published by the author and his supervisor immediately preceding this work and whioh is direotly related to it.

1. THE PRINCIPLES OF BLECTRON SPIN RESONANCE

Many of the results whioh are to be disoussed have been obtained by the teahnique of electron spin resonanoe. For this reason the basic prinoiples of this subjeot are presented together with a rather more detailed account of those interaotions which are of importanoe in interppeting the subsequent experimental results. Kore generalised and detailed discussion of the theories of electron spin resonance are covered extensively in the available 1iterature. ${ }^{1-8}$

1.1. The Resonance Condition

If an atomic system, which possesses a resultant spin angular momentur and, therefore, a magnetic moment, is placed in a magnetic field, the spin degeneraoy is lifted and a splitting of the energy levels is produced. Transitions betreen the energy levels oreated by the magnetio field may then be induced by an osoillating magnetic field of suitable frequenoy and symmetry.

The simplest system consists of a single unpaired electron with an angular momentur of $\mathrm{sh} / 2 \pi\left(\mathrm{~s}= \pm \frac{1}{2}\right)$ and a magnetic moment of $2 \sqrt{s(s+I) \beta}$ where h is Planok' s constant and β is the Bohr magneton. The magnetio field produces two levels with an energy separation $g \beta$ Here g is the apeotroscopic splitting faotor and H is the magnitude of the applied steady magnetic field. The two energy levels correspond to the e7antima preoessing about the
positive and negative directions of H. If an osoillating magnetic field of frequenoy Y is applied in a plane normsl to the steady magnetic fleld, transitions can be induced between the levels when $h y=g \beta$. For the single eleotron system the spin of the electron provides the only contribution to the angular momentum; g is equal to 2.0023 and the resonance condition is satisfied for a steady magnetic fleld of $3,4000 \mathrm{e}$ when y is $9,500 \mathrm{M} \mathrm{Hz} . \mathrm{y}^{0}$ ocours, therefore, in the miorowave region of the eleotromagnetio speotrum for magnetic flelds above about 1,000.0e.

In a sample which contains many unpaired electron systems, the thermal equilibrium distribution of the unpaired eleotrons between the energy levels areated by the applied magnetic fleld is desoribed by the Maxmell-Boltgmann expression. For the eroup of single eleatron systems, the ratio of the muber of unpaired eleotrons in the higher energy state n_{2} to the number in the lower energy state n_{1} is given by $\frac{n_{g}}{n_{1}}=e^{-\left(\frac{h y}{k T}\right)}$ where k is Boltamann's constant and T is the absolute temperature. At all but the lowest temperatures, $h y<k T$ and to a good appracimstion $\Delta n=\frac{n_{0} h y}{2 k T}$ where $\Delta n=n_{1}-n_{2}$ and $n_{0}=n_{1}+n_{2}$. Transitions between the two energy levels are induced by the applied radiation and ooour with equal probability in either direotion. However, as the number ohanging state per seoond is proportiomal to the probability per second of a change and to the population of the state, there is a net migration of eleotron spins from the lower to the higher level.

It follows that if a sufficiently strong meahanism is available which rill enable eleotrons in the higher level to lose energy and to celax to the lower level, the popalation difference will be maintained and a contimous absorption of power froif the osoillating magnetic fleld will take plave. A steady state resonance can be observed in this case if the level of the oscillating field at the sample is monitored. If the relacation mechanism does not exist n_{1} will become equal to n_{2}, the system will be saturated and a steady state rescnance will not ocour. Partial saturation will ocour when the relasation mechanism is present but is weak. A deorease in the amplitude of the central part of the resomance will then be observed together with an increase in the recorded line width.

1.2. Spin-Lattice Relaration

Interaotions between the electron spins and their surroundings can couse the spin axientation to ohange while the energy difference is tronsferred to the lattice. They can, therefore, provide the relaxation meohanism which is neopessagy to maintain the equilibrium popalation differenoe. Kronifg suggested that, fors the came of a paramagnetic ion in paroticular, lattice phonons prodnce a vibration of the orystalline electric fleld at the ion whioh can modulate the energy levels of the ion. Although the phonoss cannot interact directly with the spim but only with the orbital motion,
the interaction: can take place through spin-orbit coupling in Which there is magnetio interaction between the spin and its orbital motion.

The apins can exchange energy with the phonons via the above meohanism in two ways. In the direot process a whole quantum corresponding to the energy level difference is exchanged direotly Fith a phonon of the same frequenoy. In the indirect or Raman process energy is transferred by the inelastic soattering of a phonon when the spin changes orientation. Kronig' has derived expressions for the relacation times which might be expeoted from these tro mechanisms. For $s=\frac{1}{2}$ his expressions are of the form:

Direot Prooess $\quad T_{1}=\frac{10^{4} \Delta^{4}}{\lambda^{2} H^{4}{ }^{4}}$ seo.
Indirect or Raman Process $\quad T_{1}=\frac{10^{4} \Delta^{6}}{\lambda^{2} H^{2} T^{7}}$ sec.
Where $\Delta=$ separation between the groumd state and the next highest orbital level (in on ${ }^{-1}$), $\lambda=$ apinborbit ooupiling ooefficient, $T=$ absolute temperature. $T_{\text {, }}$ is the inverse of the transition rate and is a measure of the time taken for the interaction to restore theryal equilibrium. The broodening of the onergy levels, Δy, produced by the interaction is of the order of $\frac{1}{T_{1}}$. The equatices describing both mechanisms show that ions" "Ith small values of Δ should have wide absorption lines. A reduction in temperature will be neoessary to inorease the relaration time and thus reduce the line width. A typioal value of the out-off frequency
for the phonon speotrum of a orystal is $10^{15} \mathrm{~Hz}$ and at frequenoies of $10^{16} \mathrm{~Hz}$ (X-Band miderowave region) the intensity of the phonons is very weak. Since the higher frequenoy modes are more plentiful but are only excited at high temperatures it follows that the indireot process is more important than the direot process at high temperatures whereas at low temperatures the reverse is true.

1.3. Spin-Spin Relaxation

Additiomal relaxation processes, whioh ocour through interaotions between the spims, have the effeot of varying the relative energies of the spin levels and oan produce a line broadening (Dipolar broadening). The theory of the effect has been studied in detali by Van Vleok ${ }^{10}$ and by Pryce and Stevens. ${ }^{11}$

If each ion is regarded as a dipole preoessing in the applied magnetio fleid, (Lasmor precessiom) its oomponent in the direotion of the applied fleld will have a steady value whioh will produce an extra magnetio fleld at the neighbouring paramagnetic ions. The total field vaiue at any one ion is altered alightly and the energy levels are consequently shifted. This effect varies with the direction of the applied magnetio fleld and the contribution of each meighbouring dipole will have an angular dependence of the form ($1-3 \cos ^{2} \theta$) where θ is the angle between the line joining the dipoles and the direction of the applied field.

The rotating component of the precession can also cause line broadening by induoing transitions between spins of the same

Laxmor frequency thereby reduoing the lifetimes of their energy atates. Line broadening oaused by a pelaxation process which limits the iffetime of an exergy state is an example of homogeneous broadening. Homogeneous broadening applies only to line broedening oaused by interactions within the spin system where a single relaxstion prooess is involved. It is possible to saturate the whole of a homogeneously broadened line by applying an osoillating fleld of sufficient intensity anywhere Fithin the frequency range determined by the line width. When saturation oocurs the effect is to reduoe the expeoted power absorption and to alter the line shape. (Seotion 1.1) Inhomogeneously broadened lines oocur either due to inhomogeneities in the megnetic fleld such as those produced by the steady fleld components of the dipolar interaotion or by interaotions whioh vary with a period which is long compared with the time of a spin trassition. The lime shape in this oase is produced by a distribution of individual lines each with their own oharacteristic relaxation times. Provided, therefore, that interactions involving oross relacation processes (Section 1.5) are relatively weak, any additional broadening which ocoura due to saturation takes place for the indiridual lines separately. The line shape and width does not change on saturation but the expected power absorption falls in the same proportion across the whole of the line shape.

Frors the foregoing discussion it is clear that dipolar broadening results from two line broadening effects, one of whioh is an inhomogeneous effeot die to the steady fleld components and the other is a homogemeous effect due to the rotating fleld componeats. For interaoting dipoles which are not identical it is possible that the syromagetic ratios of the nuclei involved may differ to suoh an extent that dipolar broadening is caused mainily by the inhomogeneous broadening effeot.

Spin-spin or dipolar interaction is charaoterised by a relasation time T_{2} in a similar mamer to spin latioe relacation. In contrast to the spin lattice interaction, however, the apinospin interaotion is not temperature dependent. Horeover, spin-spin interaction falls off rapialy with imoreasing distance between the ions. If on the other hand the spins are brought closer together dipoliar broadening does not necessarily imorease as might bè expected.

1.4. Exchange Intexaction

If the ions are sufficiently close together the wave functions describing the spin states: will overiap and a simple veotor sunmation of the magnetic flelds of the dipoles at meighbouring lattice sites does not Lead to a satisfactory descriptions of the behaviour of the system. It is necessaxy to ocnsider interactions between a large number of stromgly interacting ions. Van Vleok ${ }^{10}$ studied
this problem in I948 and showed that the spins are coupled by exchange forces and the effect can modify the line width considerably.

When the neighbouring ions are similar exohange interaotion narrows: the observed line widh at half-height and broadens it in the wings. In theoretical terms this means that the second moment of the lime shape remains oonstant but the fourth moment changes. 10 For dissimilas ions two different transitions may be brought together and onse broader line may be produced. Exchange interaotion is found in many undilated paramagnetic salts and the expected dipolas broadening is often reduced by a lasge factor. An effeot of this kiwd is observed in diamond with the rescmance from high cosoentrations of dispessed nitrogem. (Seotion 3.3.3) 1.5. Cross Relaxation

Resulits from past experimental studies have shown that it is not ailways possible to interpret magnetic resonance speotra aatisfactorily with the aid of the relaration processes so far described. Spinmlattice relaxation desoribes a meahanism whereby as spin system remains if thermal equilibrium with the lattice. In contrast, dipolar interaction desoribes how thermal equilibrium between the spins is schieved. It follows, therefore, that if spin lattice relacation is redinced by lowering the temperature of the system so that $T_{1}>T_{2}$; the equilibrium betreen the spins is obtained through
dipolar interaction rather than through the lattioe and the line width of a rescmance is determimed by the dipolar interaction. For many systers, in partioular those in which adjacent resonance lines partially overlap, dipolas broadening does not provide a logical explanation of experimentally observed line widths. For exansple, the line width ΔH due to dipolar broadening is given appraximately by the expression $\Delta H \sim N x I 0^{-19} 0_{0}$ where N is the number of unpaired eleotrom spins per co. 12 In many instances, inoluding the case of diamoma, the value of N is not high enough to account for observed lime widths. Consequently, additiomal selacation mechanisms have been proposed and imirestigated. 13

For equal spacing of the energy levels of a spin system a Boltamann distribution over the different spin levels is established In a time of the order of T_{2}. For unequal spacing the establishment of a BoItsmann distribution ocours relatively slowly ${ }^{14,15}$ and, therefore, the spins come into equilibrium with the lattice first with their respective relasation times T_{1}. In the intermediate regiom of approximately equal spacing different parts of the spin system may come into internal equilibrium in an intermediate time T_{q} which is called the orossorelasation time. Bloembergen et al ${ }^{13}$ have shown that miltiple flip-flop processes of neighlouving ims in which the Zeeman energy is almost oonserved axe responsible for this effect and the small balance of energy is taken up by the dipolar
interaotion. It is worth noting here that it is the higher order texms C, D, E, and P of the dipolar Spin Hamiltonian (Sectioms 1.7 and 1.11) which account for the maltiple spin flip processes. Cross relaxation effects have been observed by Sorokin et al ${ }^{16}$ for the nitrogen centre in natural diamond. With the aid of a suitably designed miorowave cirouit they were able to disturb the distribution of eleotrons in the energy levels assooiated with one resomance line and at the same time to measure ahanges in the intensities of the remaining lines as the system returned to equilibrium via the orose relacation processes. In this work similar effects were observed in one synthetic diamond. They are discussed in more detail in Seotion: 4.13.3.

1.6. Pine Struoture

The theory desoribed at the begiming of this ohapter referred to a single mpaired: eleotron with a half integral spin. In a system, whioh might be for example a paramagnetio ion, where the groum state is an orbital simglet with a spin maltiplicity of more than two $(S \geqslant 1)$, the degeneraoy of the spin levels is often lifted even in the absence of an applied magnetic field. Suah a serofield splitting is illustrated in Fig. 1 for the asse of an ion with $S=1$ in a orystal fleld with an axial component. The axial fleld splits the triplet into a singlet and doublet. The application of a magnetic field parallel to the axis of symmetry oauses the

ZERO FIELD SPLITTING FOR AN ION WITH S=1 IN A CRYSTAL FIELD WITH AXIAL SYMMETRY

FIG.I
levels to diverge linearly with slopes proportional to the values of M_{B}. Allowed transitions between the ievels are governed by the seleotion rule $\Delta M_{8}= \pm 1$ when the osciliating magnetio fleld is perpendioular to the applied magnetio fleld. Since these transitions oocur at different field values the spectrum will have a fine struoture consisting of $2 S$ lines. In certain situations forbidien lines corresponding to $\Delta \mathrm{K}_{\mathrm{B}}= \pm 2$ can be observed.

When the zero fleld splitting is large, the applioation of a convenient magnetic fleld may never bring the levels olose enough for transitions to be induced by an osoillating magnetic fleld in the miorowave region. However, a theorem due to Kramers ${ }^{17}$ atates that if there is an odd number of unpaired electrons in the ion, then no eleotrio field can oompletely remove the degeneraoy and the bottom level is always at least two-fold degenerate in spin. Eleotron spin resonance is, therefore, always theoretically possible in such cases.

1.7. Epperfline Struature

If the orbit of an umpaired eleotron embraces a nuoleus whioh has a spin and, therefore, a magnetio moment, there is often a magnetic interaction between the eleotrom and the nuoleus whioh can split the electron energy levels. In the general oase the interaotion comprises an isotropic part and an anisotropio part. Isotropic splitting occurs when the orbital of the unpaired electron possesses s-character and the probability distribution of the
electron density at the moleus is finite. The nuoleus is quantised in the magnetic field due to the electron and an additional magnetic field which will either add to or subtraot from the external fleld is produced at the eleotron by the nuoleus. If the nucleus has a magnetic quantum number M_{1} in the fleld of the electron, the allowed transitions between the energy levels whiah are split by this interaotion are given by the seleotion rules $\Delta M= \pm 1$ and $\Delta M_{I}=0$.

For an unpairec eleotron interacting with a single nuoleus with a spin mumber $I,(2 I+I)$ lines are possible. If the electron interacts with more than one nucleus the number of innes prodsoed and their expected intensities depend on the epin mumbers of the nuclei, their relative abundanees, and the relative magnitudes of the hyperfine interactions. For example, if the eleotron spin interacts more strongly with a nucleus with spin number I_{1} than it does with a second nuoleus with spin number I_{2}, then $\left(2 I_{1}+1\right)$ lines appear Thich are each split into $\left(2 I_{2}+i\right)$ sub-components. Examples of the expeoted transitions are shom in Fig. 2 for the three oases of an eleotron spin interaoting with one proton, equally with two protons, and with a nucleus with a spin mumber of 1. The third example is applicable to a substitutional nitrogen atom in diamond Fhen the gteady magnetic fleld is applied along a <100> direction.

FIG. 2

It is necessary in the case of diamond to speoify the direotion of the steady magnetio field as the number of lines produced also depends on the symmetry of the probability distribution of the eleotron at the nucleus. Isotropio splitting only takes into accounit the effect of an unpaired spin: probability density whioh is spherically distributed about a nucleus. Por non-spherical symuetry in which the electron orbital may possess p-oharacter as well as s-character, anisotropic splitting can ocour and the spacing between the hyperfine lines depends on the angle between the steady magnetic fleld and the axis of symmetry. By measuring the magitude of the spacings between the hyperfine lines for various known orientations of a orystal it is possible to assess the amount of s and p ohasaoter assooiated Fith an unpaired eleotron orbital. As measurements of this trpe represent an important part of the work to be described a more detailed theoretical interpretation of hyperfine interaction is now presented:

The simple olassical interaotion onergy E between two
 Where E is the vector joining the two magnetic dipoles. To obtain a. quantum mechanical desoription of the interaction μ, and μ_{2} are treated as operators and are defined as $\underline{\mu}_{1}=\delta_{1} \ell I_{1}$ and $\underline{\mu}_{2}=\delta_{2} k I_{2}$ Where I_{1} and I_{2} are angular momentum operators and δ_{1} and δ_{2} are the grromagnetie ratios of the two interaoting maleons. The

Hamiltomian (H_{a}) for the system then becomes

$$
H_{d}=\frac{\delta_{1} \delta_{2}}{r^{3}}\left(I_{1} \cdot I_{2}-\frac{3}{r^{2}}\left(I_{1} \cdot \underline{r}\right)\left(I_{2} \underline{r}\right)\right)
$$

By expanding this expressicn and using the raising and lowering operators $I^{+}=I_{x}+i I_{y}$ and $I^{-}=I_{x}-i I_{y}$ the expression may be written

$$
\begin{aligned}
& H_{d}= \frac{\delta_{1} \delta_{2} \ell^{2}}{r^{3}}\left(A^{\prime}+B^{\prime}+C+D+B+F\right) \\
& \text { where } A^{\prime} \propto I_{1 z} I_{2 z} \\
& B^{\prime} \propto\left(I_{1}^{+} I_{2}^{-}+I_{1}^{-} \cdot I_{2}^{+}\right) \\
& C \propto\left(I_{1}^{+} I_{2 z}+I_{1 z} I_{2}^{+}\right) \\
& D \propto\left(I_{1}^{-} I_{2 z}+I_{12} I_{2}^{-}\right) \\
& B \propto I_{1}^{+} I_{2}^{+} \\
& F \propto I_{1}^{-} I_{2}^{-}
\end{aligned}
$$

The aignificance of the various terms $A^{\prime}, B^{\prime \prime}, C, D$ eto. are best Visualised by considering which states are conneoted by them. Clearly, term A^{\prime} is completely diagomal. On the other hand B^{\prime} simaltaneously flips one spin up and the other one down (A single flip-flop process). The remaining terms are off diagomal and either flig only one spin or both simultaneously up or down. SIfohter has shown that the net effeot of the off diagomal terms is to produce very weak absorption peaks at 0 and $2 \omega_{0}$ on either aide of the resonant frequenoy Mo The relasation prooesses insrolved for these peaks can be desoribed whier the general heading of crossrelasation If an acourate theoretioal expianation of observed lime width is required it mag be necessary to consider the off
diagomal terms and multiple flip-flop processes. (Seotions 1.5 and 3.2.2.) In contrest, the terms A^{\prime} and B^{\prime} are the only two whioh have to be comsidered to provide a satisfactory explamation of anisotropic hyperfine splitting.

It is olear from the expression for H_{d} that as the diatanoe between the two magnetio moments beoomes increasingly amall the interaction energy becomes infinite and, therefore, the olassicsl interaotion theory is no longer valid. A term (the Fermi Contact teria) has to be inoluded in the desoription of the interaotion to allow for isotropic splitting which results from the s-oharacter essooiated with an electron orbital. The fundamental derivation of this term is complicated and will not be inoluded here. A simpler derivation has been suggested by Slichter ${ }^{2}$ using oiassical theory. When the Fermi contact term is included in the desoription of the interaotion the oompleted hyperfine interaction operator for an unpaired eleotron with an effective spin number S interaoting with a nuoleus with spin number I is then represented by the expression

$$
\begin{aligned}
& H=\frac{\delta_{1} \delta_{R} f^{2}}{r^{3}}\left[\frac{3(\underline{r} \cdot \underline{S})(\underline{r} \cdot \underline{I})}{r^{2}}-(\underline{S} \cdot \underline{I})\right] \\
& +\frac{\delta_{1} \delta_{2} \delta^{2}}{r^{8}} \frac{8 \pi}{3} \delta(\underline{s}) \underline{S} \cdot \underline{1} \\
& \text { where } \delta(\underline{r}) \text { is a Dirac - } \delta \text { finotion. }
\end{aligned}
$$

To express the interaotion as a function of spin oo-ordinates only an integration ovar the spatial parts of the electronic wave
function is performed and $\langle H\rangle=\int \mid \psi^{e}(r) / \mathrm{H}^{2} \mathrm{~T}^{2}$ For an axially symmetric wave function (ass in the ouse of the nitrogen centre in diamond) $\left\langle x^{2} / r^{5}\right\rangle=\left\langle y^{2} / r^{5}\right\rangle$, while terms such as $\left\langle\frac{\text { IV }}{T_{5}^{5}}\right\rangle$ are zero. Therefore, if $\alpha=\left\langle\frac{1}{T_{3}}\right\rangle$ and $\beta=\left\langle x^{2} / 5^{5}\right\rangle$ then $\left\langle\frac{Z^{2}}{2_{5}^{2}}\right\rangle=\alpha-2 \beta$.
Collecting terms,

$$
\begin{aligned}
& \langle H\rangle=\frac{\delta_{1} \delta_{2} \ell^{2}}{2}\left\{\left[\frac{8 \pi}{3} \psi^{2}(0)+2(\alpha-3 \beta)\right] I_{8} S_{2}\right. \\
& \left.+\left[\frac{8 \pi}{3} \psi^{2}(0)-(\alpha-3 \beta)\right]\left(I_{z} s_{g}+I_{y} s_{y}\right)\right\} \\
& \text { that } I_{8},\langle H\rangle=A I_{8} S_{g}+B\left(I_{z} S_{x}+I_{y} S_{y}\right) \\
& \text { Where } A=\frac{\delta_{1} \delta_{2} \mathcal{R}^{2}}{T}(0+2 P) \\
& B=\frac{\delta_{1} \delta_{2} \ell^{2}}{F}(0-P) \\
& 0=\left(\frac{8 \pi}{3}\right) / \psi(0) /^{2} \quad \text { (s character) } \\
& P=\left\langle\frac{\left(z^{2}-\frac{1}{1}\left(x^{2}+z^{2}\right)\right.}{z^{5}}\right\rangle(p \text { character })
\end{aligned}
$$

The calculation shows how values of A and B appearing in the Spin Hamiltonian are related to the s and p character of the paired electron orbital.

1.8. Quadrapole Interaction

Many of the processes which occur in electron spin resonance involve magnetic interactions. However, small intensity transitions which are forbidden by the $\Delta M_{I}=0$ selection rule sometimes arise as the result of an interaction between the gradient of an electric field at the nucleus and the quadrupole moment of the
nucleus. The quadrapole moment is oharacterised by a parameter Q which is a measure of the charge distribution of the nucleus. For nuclei with a spim number greater than $\frac{1}{2}$ the oharge distribution is mon-spherical and Q is finite. The nuoleus may be considered to be elongated in the direction of the eleotric field when Q is positive or flattened when Q is negative while still retaindrg its aymatry about the aris of spin. If the applied magnetic fleld is parailel to the symmetiry axis of the eleotric fleld the intersotion shifte all the hyparfine energy levels by an equal amount and hence produces no change in the observed tramsitions. If, horever, the appiled magnetic fleld is not parellel to the eleotrio fleld the two types of interaction compete and try to quantise the moleus along their reapective axies. It is possible then for the seleotion rule $\Delta H_{I}=0$ to be broken and for emall intensity 'forbidäen' transitions to ocour. In addition, the shift of the energy lievels is not the same for eaioh hyperfine compoment as it depends oni $M_{I}{ }^{2}$. In this work effeots of this E . nd were observed in ome synthetic diamoud. They are discussed in more dotail in Section 4.13.1.

1.9. Line Fidth

The possibility that the line width of an electron resomance is determined either by homogeneous or by inhomogeneous brosdening processes has been disoussed in Seotiow 1.3.

The uncertainty relatiomship. $\Delta \mathrm{E} \Delta \mathrm{t} \sim 1$ suggests a line broadening due to spin-lattice intersotion of the order of $\frac{1}{T_{i}^{-}}$. Interactions between the spins with whioh the charaoteristic time T_{a} is associated also contribute to the width of the absorptiom line. In addition, oross relaxation processes oharaoterised by T_{2} may occur. To a first approxination therefore, the total line wiath is given by $\frac{1}{\mathrm{~T}_{1}}+\frac{1}{\mathrm{~T}_{2}}+\frac{1}{\mathrm{~T}_{21}}$.

Line broadening due to the spin-lattice interaotion can be reduced by lowering the temperature but olearly T_{2} is not temperature dependent. Depending on the presence or absence of spin-lattice interaction withim a oross relaxation process, T_{24} may or may not be temperature dependent. ${ }^{3}$

The effeot of exchange interaction with respect to line width has been discussed in Section 1.4.

If the apin Iattice interaction is weak (I_{t} is long) partial saturation may ocour. The degree of saturation depends on the value of T_{1} relative to the level of miorowave power inoident an the sample. To avoid saturation broadenimg, superheterodyne detection systems are employed in which milorowave power levels at the sample can be kept very low.

Additiomal line broadening may be caused by the experimental apparatus. Variations of the magnetic fleld value over the sample volume which are greater than the natural line width, produce:a
mecrosoopic distribution of local magnetic fleld and hemee can oause lime broadening (inhomogeneous broadening). The design and comstruction of the magnet may be responsible for this affect. In adaition, sidebands produced by A.C. methods of deteotiom, in partioular by modulatiom of the steady megnetic field, oan be the cause of an observed line broadening. Both the frequenoy and the amplitude of the modulatiom should be at least an order of magnitude less than the natural line width if accurate line shape measurements are required. This ocndition is partially relaxed if maximus sensitivity is the oriterics.

In the case of synthetic diamond it will be shown that line broadening is due to a spread of local magnetic fleld caused by ferromagnetio impurities within the sampIe. Hereafter, this phemomena is referred to as ferromagnetio broadening.

1.10. Ferfomagnetio Resomance

In general, theories applioable to eleotron spin resonance phenomena in paramagnetio systems are well developed and provide a satisfactory explanation of experimental obsexvations. In direct contradistinotion resonance from ferromagnetic materials is still not fully umderstood although it was discovered by Griffiths ${ }^{19}$ in 1946.

A theory due to $\mathrm{Kittell}^{20}$ is able to account for both the resonant field position and the shape of the absorption lines.

Although demagnetising flelds and magnetic anisotropy are taken into account the theory oan only yield quantitative results if samples have at least one dimension less than the skin depth ($\sim 1 \mu$ at X-band frequenoies). It is usual, therefore, to utilise samples which are either in the form of thin sheets with the miorowave fleld appilied tangential to the sheet and the steady magretic fleld applied normal to the sheet, or which are in the form of small spheres. If a spherical specimen with a diameter less than the skin depth is used, the theory is considerably simplifled as it is not then necessary to introduce demagnetising factors. However, isolated spheres with diameters less than the skin depth are particularly diffloult to produce. Bagguley ${ }^{21}$ has overcome the problem for some metals by producing oolloidal suspensions in paraffin wax whioh contain spherical partioles less than $100 \AA$ in diameter. The theory of ferromagnetic resonance has aliso been studied in detail by Polder ${ }^{22 .}$. However, there remain two outstanding points in whioh the theory and experimental observations are not recomoiled. These are the experimentaily observed high g-values and large line widths.

Theoreticailly, due to the olose proximity of the spins in a ferromagnetic material, exchange naxrowing effects should be greater than dipolar brosdening effects and narrower lines are expeoted. Several authors ${ }^{23-25}$ have postulated other interactions inoluding spim-lattice interaotion, ekin effect, an interaotion with
comduotion electrons and anisotropio exchange Poroes, but with little suocess so far.

In this work ferromagnetio resonanoes were observed with line WIdths between 500 and 15000 and g-values between 3 and 4. These values are typical of those obtained in ferromagnetic resonanoe for which at the moment there is no satisfactory theory. 1.11. The Sipin Hamitonian

In order to distinguish between the vapious effects so far discussed: and to ease the probliem of interpreting resonance speotra, it is convenient to introduee the ooncept of the Spin Hamiltonian which wis developed by Abragam and Pryoe ${ }^{26}$.

If. a paramagnetic iom is token as an exrample, the wave funotion whioh completely desoribes an electronio atate is an admixture of the spin and orbital wave funotions of the free iom suitably medifled by the enviromment of the iom The lowest state whioh experimentally is usually the most important, may be charaoterised by a singie quantum number S^{\prime}, called: the effeotive spin. S^{\prime} is defined by equating the number of eleotronic transitions in the lowest state to $2 s^{\prime}$. At temperatures when onily the lowest levels are appreciably populated, the paramagnetic ion oan be treated as a magnetic aipole having $\left(2 S^{\prime}+1\right)$ allowed oxientations in an applied magnetic fleld, each energy level being assooiated with omo orientation.

If, however, the energy levels have a sero fleld splitting energy ternis mast be added representing electrostatic interaction with the crystal fleld and magnetic interaction with other spins. The sum of all terms, written ass a sum of the energy operators: to, be applied to the effeotive spin states is known as the Spin Hamiltonian. The sctual energies are then the eigen values E which satisfy the operator equation $H \psi=E_{0} \psi$ where ψ is the wave function of the spin state.

Abragail and Pryoe^{26} demonstrated that the splittings between the enersy levels of a spin system may be oaloulated with a Spin Hamiltonian by firgt and seoond order perturbation theory. The result is precisely the same as if one ignored the orbital angular momentura explioitly and replaced its: effect by am anisotropio coupling between the electron spin and the external magnetic fleld. If the orystailine olectric field has axial symmotry, the Spin Hamiltonian reduces to the form

$$
\begin{aligned}
H & =D\left(S_{z}^{2}-\frac{1}{3} S(S+I)\right)+\beta\left(\mathcal{E}_{y} H_{z} S_{z}+g\left(H_{z} S_{x}+H_{y} S_{y}\right)\right) \\
& +A I_{z} S_{z}+B\left(I_{z} S_{z}+I_{y} S_{y}\right)+Q^{\prime}\left(I_{z}{ }^{2}-\frac{1}{3} I(I+I)\right)
\end{aligned}
$$

where S is the effective electronio spin and I is the nuclear apin. D represents the splitting of the Zeeman levels when $H=0$ (sero fleld splitting) in the absence of nuclear interaction and oomes from the effect of the orystal fleld, spin-orbit coupling and the spir-spin interaction. $g_{\| 1}$ and g_{\perp} are the g values when the applied
magnetic field is respeotively parallel, and perpendicular to, the arystailime fleld axis. The g-values are related to the apimorbit coupling which mixes the ground and exoitea states and introances: a contribution to the eleotronic moment from the otherwise quenched orbital angular momenturn. Values of A and B are related to the magnetic dipole intersctions between electrons and nuolei which produce the hyperfine struoture. \dot{q}^{\prime} is the parameter which measures the small changes in the spectrum produced. by the quadram pole interaotion. The Spin Hamiltonian provides the essential link between theory and experiment and leaves the experimentalist with the task of measuring the various parameters A, B, g, D, etc.

Other terms may be ircluded in the Spin Hamiltonian to allow. for magnetic interactions between eleotrons and for magnetio interactions between the applied fleld and the nuolear magnetio maments. In eleotron spin resonance studies energies assoolated with these interaotions are usually suffloiently small to be negleoted. Clearisy, the form of the Spin Hamilitomian for a partioular oase depends largely on the symmetry of the surromalngs of the paramagnetio ion.

Experiments show that for substitutiomal nitrogen domors in diamond the g-value is isotropic and $D=0$.

In adaitiom lines due to quadrapole interaction are very weak. It is possible, therefore, because of the axial symmetry of
the system, to interpret the main speotrum by using a Spin Hamiltonian of the form

$$
(g \beta \text { H:S })+\left(A I_{8} S_{z}+B\left(I_{x} S_{2}+I_{y} S_{y}\right)\right)
$$

The may in phioh A and B are related to the symmetry properties of the unpaired electron orbital has been demonstrated in Section 1.7.

1.12. References

1. Abragam, A., The Prinoiples: of Nuclear Magnetism, Oxfora University Press, 1961. . .
2. Sliohter, C. P., Prinoiples of Magnetic Resomanoe, Harper and Row, 1963.
3. Pake, G. E., Paramagnetio Resonance, W. W. Benjamini, Inc., New York, 1962.

Caxmingtan; A., and HoLeahlan, A. E., Introduction to Magnetic Rescosance, Harper and Row, 1967.
5. Bleaney, B., and Stevens, K. W. H., Rep. Prog. Phys., 16, 108, 1953.
6. Bowers, K. D., and Owen, J., Rep. Prog. Phys., 18, 304, 1955.
7. Abragam, A_{0}, and Pryoe, M. H. L., Proo. Roy. Soc., A205, 135, 1951.
8. Bleaney, B., Phil. Mag., 42, 44I, 1951.
9. Kronig, R. de L., Phisica, 6, 33, 1939.
10. Van Vleak, J. Ho, Phys. Rev., 74, 1168, 1948.
11. Pryee, M. H. L., and Stevens, K. W. H.; Proc. Phys. Soo., A63, 36, 1950.
12. KitteI, C., and Abrahame, E., Fhys. Rev., 90, 283, 1953.
23. Bloembergem, No, Shapiro, So, Perghan, P. So, and Airtman, J. 0_{0}, Phys. Rev., 114, 445, 1959.
14. Pound, R. Vo, and Puroell, E. Mo, Phys. Rev., 81, 279, 1951.
15. Abragam, Ao, and Prootor, W. G., Phys. Rev., 109, 1441, 1958.
16. Sprokin, P. F., Lassher, G. J. and Gelles, I. I., Phys. Rev., 118, 939, 1960.
17. Kreamers, H. A., Proc. Agad. Soi. Amst., 33, 959, 1930.
18. Reitz, J. R., and Miliford, F. J., Foundations of Eleotromagnetio Theory, Adaison-Hesley, $\mathbf{I 9 6 0 .}$
19. Griffithe, J. H. E., Nature, 158, 670 , 1946 .
20. Kittel, C., Phys. Rev., 73, 155, 1948 and 76, 743, 1949.
21. Bagguiley, D. M. S., Proc. Roy. Soc., A66, 765, 1953.
22. PoIder, D., Physica, 15, 253, 1949 and Phil. Mag., 40, 99, 1949.
23. Bloembergem, in., Phys. Rev., 78, 572, 1950.
24. Alcheiser, A., J. Phys. U.S.S.R., 10, 217, 1946.
25. Stevens, K. W. H., Proo. Phys. So0., A65, 149, 1952.
26. Abragram, A. and Prycie, M. H. L., Proc. Roy. Soc., A205, 336, 1951.

2. DIAMONDS

2.1. Gemaral Considerations

Diamonds have been the subject of a comsiderable amount of soientific imvestigation as they possess same imteresting physical properties apart froill their well known aesthetic appeal.

The most atriking feature to arise from early experiments ${ }^{1}$ on natural diamond was the marked specimen dependence of the physicel properties. For this reason it is usual, when investigating diamonds experimentally, to consider a number of stones and to identify the physical properties which are common to particular groups of diamonds. Experimental data may then be oorrelated with easily identifiabie parameters such as shape, sise and colour.

Although synthetic diamomds were flist produced in 1953, it has not been possible as yet to produce a orystal of gem-stome quaility. The exaet nature of the process of diamoma growth, whether natiral or synthetic, is still not fully understoad. Two theories have been proposed for natural diamom whioh is known to have a voloanio origim. The first theory suggests that the diamond is orystallised at great depths and is released when the volcanic eruption oceurs. The second theory suggests that orystallisation takes place as the molten material oools after the eruption. The successful synthesis of diemond at high temperatures and pressures supports the first theory. However, in order to achieve diamond aynthesis in the Laboratory,
temperatures of at least $1700^{\circ} \mathrm{C}$ are necessary togother with pressures of 50,000 atmospheres in contrast with temperatures of $1200^{\circ} \mathrm{C}$ and pressures of 1,000 atmospheres which are found in voloanio aotiom at great depths. The oonditions for the growth of diamond orystals in the laboratory are not, therefore, an exact reproduction of those which ocour naturaily. In addition to high pressures and temperatures, the production of synthetio diamond also requires the introduotion of a metal catalyst into the reaction maxture with the result that relatively large amounts of the metal remain as an impurity in the finished product. Some care has, therefore, to be exercised when amalysing results from synthetic diamond if the conclusions drawn are to be applied in the general sense to natural stones. Although it is olearly important to compare results for natural and synthetic diamoma, most published work refers speoiflcally to one type or the other. An irmortant part of this work is ooncerned with a deternimation of some of the differences which exist between natural and synthetic diamond.

It should be pointed out that the unquestiomable existence of synthetio diamond is founded on three basic properties whioh are comman to both natural and synthetic diamond. These are an identical struoture as determimed by X-ray analysis, an equal hardiness and a comparabile resistance to corrosion by very strong aoid soIntiozs. However, upan oloser examination of synthetio diamond, although many :
of the oharaoteristios of natural diamonds are retained, other new features appear. For example, amongst natural diamonds the most common faces which appear are usually octahedral or dodeoahedral. Cube faces are relatively rare and are always rough and pitted. In aireot contradistinotion cube faces are oommon in synthetic diamond and are often surprisingly smooth and perfect.

Many of the results published on synthetic diamond have been presented by soientists who have had a full knowledge of the method of apeoimen preparation and who, in addition, were able to produce orystals with controlled impurity concentrations. The need for industrial seourity has meant that certain information of this kind was not available for this work.

2.2. The Physical Propertios of Diamomas

2.2.1.Structure

A perfect orystal of diamond oontains carbon atoms only. Eaoh atom lies at the centre of a regular tetrahedron and is joined to four others which lie at the oomers of the tetrahedrom.

The space lattice is face centred oubic with a basis of two atoms at $0,0,0 ; \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$, assooiated with eaoh lattice point as shown diagramaticaliy in Fig. 3. The diagram shows the atomic positioms in the unit coli projected on to a oube face. Fraotions denote height above the base in units of a cube edge. The points at 0 and $\frac{1}{2}$ are on a face centred cubic lattice and those at $\frac{1}{4}$ and $\frac{3}{4}$ are on a A

ATOMIC POSITIONS IN THE UNIT CELL OF DIAMONO STRUCTURE PROJECTED ON A CUBE FACE

FIG. 3
similar lattice which is displaced along the body diagmal by one quarter of its length. There are eight atoms in a unit $0 e l l$ and each atom has four nearest neighbours and twelve next nearest neighbours. The edge length of the unit cell is $3.567 \AA$ and the diatance between nearest neighbouss is $1.544 \AA$. The density of diamond is $3.52 \mathrm{gracm}^{-3}$

Most natural diamonds exist either in the form of ootahedre Whose faces are (211) planes or as dodecahedra whose faces are (110) planes. The simple cube with (100) feces is often found in synthetio diamond but rarely occurs in natural stones. In addition; natural diamonds in the form of flat triangular plates are found and are comemily referred to as 'macles'. The plates are bounded by (ili) faces with a twin passing through the centre and parallel to the large faces. A lasge amount of natural diamond is found to exist as agglomerates of samall pooriy formed orystals and is known as boart. 2.2.2. Optical Properties and Classifleation

Diarrond has a high refractive index of 2.417 at $5890 \AA$ whioh makes imternal refleotions possible from rear facets. It is this property combined with a high diapersive power that gives: rise to the natural brililance.

The classiflication of diamond into two types; Mype I and Type II, was flrst proposed by Robertson et ail as a result of a 00mprehensive survey an a large number of natural stones. Their
experiments illustrated marked differences in :a wide vapiety of physical properties. Pype I diamonds have an absorption peak at a wave number of $1290 \mathrm{~cm}^{-1}$ in the imframred and absorb strongly below $3000 \AA$ in the ultramiolet. They show little photoodnductivity and are birefringent. In contrast Type II diamonds have no $1290 \mathrm{am}^{-1}$ absorption and are transparent down to $2250 \AA$. They are photooonduotive and optically isotropic. Most diamands show chapacteristics that lie between these extremes of olassification. However, in general this approximate method of olassification is direotly related to the types of impurities present in the orystals. It ean be shom that Type I diamonds oontain relatively large ooncentrations of nitrogen impurity whioh do not exiet in Type II diamonds ${ }^{3}$.

A sub-classification of Type II diamonds into Type IIa and Hype IIb was proposed by Custers ${ }^{4}$ in 1952. He found that some Type II diamonds exhibited semi-conduoting properties and these were classifled as Type ITb. A similar olassifleation for Type I diamonds was proposed by Dyer et a1 ${ }^{5}$ in 1965 and was based on the configuration and constitution of the nitrogen impurity in Type I speodmens. Diamonds olassified as Type Ib are discussed in more detail in Seotion 3.2.5.
2.2.3. Thexpal Properties

Diamonds of gem quality have thermal conductivities at room temperature greater than any other substance. A Type IIa diamond
has a therwal conduotivity which is five times greater than that of copper at $0^{\circ} \mathrm{C}$ increasing to twenty five times at $-175^{\circ} \mathrm{C}$.

At high temperatures a diamond will burn or be transformed into other allotropic farms of carbon. The rate and degree of the transformation depends on the temperature and duration of the heating as well as on the enviromiment in which the heating is carried out. 6,7

In the presence of axygen a diamond will begin to burn at about $600^{\circ} \mathrm{C}$. When the oxygen content is reduced to correspond to a partial pressure of 0.4 Torr diamond will graphitize at temperatures above $700^{\circ} \mathrm{C}$. Whem the oxygen content is further reduced to 10^{-3} Tory, no thermal transformations take place even at $1600^{\circ} \mathrm{C}$. At temperatures above $1800^{\circ} \mathrm{C}$ diamond becomes fully graphitized even in a high vacuum. 2.2.4. Haraness and Strength

Diamond is the hardest material known to exist in the natural state and, therefore, has the highest number (10) on the Mohs' soale of hardiness. However, the term hardness when applied to diamond may refer to its reaistance to wear when used as the cutting edge of a mahine toal, to its resistance to wear when used as a die, or to its resistance to grinding and polishing. In each case the rate of wear depends on the particular ciroumstances in which the diamond is employed. Regardiess of the technique used te determine a hardness factor, it is found that hardness varies between different direotions on the same face, and between different faoes. Although
conflicting explanations have been given, all theories agree that the hardness variations must exhibit the same symmetry as the diamand itself. It is beyond the scope of this thesis to discuss hardiness offeots in dotail. A paper published recently by E. M. and J. Wilks ${ }^{8}$ reviews the situation and provides many references on this topio.

Diamond has a compressive atrength of $200 \mathrm{~kg} \mathrm{~mm}{ }^{-2}$, a bending strength of $30 \mathrm{~kg} \mathrm{~mm}^{-2}$, and a modulus of elastiofty between 72,000 and $93,000 \mathrm{~kg} \mathrm{sm}^{-2}$. As the compressive strength and particularly the bending strength are comparatively low, diamond is brittle. The modulus of elastioity is higher than that of all other materials. 2.3. Synthetio Diamond

The physical properties of synthetic diamond are probably more varied than those observed im natural stones as synthetic diamond can be grown under fairly well controlled conditions. Only a limited variety of synthetic stones are available commercially. In many cases, only specimens which lend themselves to a particular type of examination have been selected for study. This is particularif so for examination by optical transmission spectroscopy as the diamonds are in general coloured and contain many imperfeotions and impurities. The firat confirmed synthesis of diamond was aahieved in 1953 by A.S.A.E. (Allmana Svenska Blektriska Aktiebolaget) in Sweden. However, olaims had been made earlier by Hennay ${ }^{9}$ in 1880 and

Moisssen 10,11 in 1896 although these were inoonolusive. The diamonds produced in Sweden were less than 1 min sise and it was thought that such small stones did not wampent publioity.

In 1947, Bridgman ${ }^{12}$ performed a series of experiments using new high pressure teabmiques. The results, combimed with theoretical considerations of the diamond-graphite thermodynamio equiIibriun ourve, led to a suocessful synthesis of diamond at the Gemeral Eleotric Compeny in 1955. Bumaly et ai ${ }^{13}$ showed that diem monds could be symenesised somewhere in the pressure region: $30,000-100,000 \mathrm{Atm}$ at temperatures between $1200^{\circ} \mathrm{C}$ and $3200^{\circ} \mathrm{C}$. At this atage little information on the reaction mixture had been released, although it was atated that a metallio carailyst had to be included in the reaotion wixture and also that the pressure and temperature of the system had to be controlled to ensure that dismond was thermodynamically stable. In 1959 Bovenkork et ail ${ }^{14}$ published a full acoount of this research. The actual transformation from carbon to diamond occurred across a thin film of catalytic material approximately 0.1 m thick whioh separated the carboni fram the diamond. The situation is illustrated in Fig. 4. It was noted that the erystal habit varied with the temperature of formation. At the lowest temperatures used, cubes were predominant, whereas at intermediate temperatures oubes, cubo-octahedra, or dodecahedsa: were formed. Only at the highest temperatures were ootehedra formed. No tetrahedra were ever observed.

DIAMOND GROWTH FROM GRAPHITIC CARBON

FIG. 4

In 1959 the De Beers group ${ }^{15,16}$ in South Africe amounced a successful synthesis of diamond and by 1963 hsd opened a synthetio diamond plant whioh yielded an output provisionally estimated at 750,000 oaseats (1 oarat $=200 \mathrm{mgm}$) per annum. Although details have never been released, the process used for the manufeoture of these stones appears to be very similar to that of the General Eleotric Company. The three most commonily used oatalysts are now lnown to be irom, niakel, and oobalt.

Since 1959 a. number of different methods have been employed In the synthesis of diamond. They include contributions frail the Duteh ${ }^{17}$ and the Japanese ${ }^{18}$. However, large quantities of aifferent types of synthetic diamond are available only from De Beers or the Gemeral Eleotric Company.

It is worth noting that the direct transformation of graphite to diamond without the aid of a metallic oatalyst was finally aohieved by Bundy ${ }^{19,20}$ in: 1962. As a result of his work it was possible to locate the diamoma-graphite-liquid triple point and, therefore, to complete the phase diagram for carboan. This is shown in Fig. 5.

Although the details of specimen preparation had not been made aveilable, the soientific investigation of synthetic diamond began soon after the announcement of successful synthesis. X-rey studies on two types of synthetio diamond manufactured by the Gereral Electric Company and A.S.A.E., Sweden, were made by

Lomdsutale et a: ${ }^{21}$ in 1959. They found that speoimens supplied by the General Eleotric Corpany always contained single orystal finelusions of niokel or of a nickel-rioh face centred compouma. Results from a spectrographic analysis illustrated that many metailic inmurities were present in the diamond. Concentrations of niokel Fere as high as 0.2%.

The Swedish apecimens, which were not available comercially, did not appear to contain niokel but platimum was identifled. However, a private commaication from the supplier indicated that piatimm was not used intentiomally as a catalyst.

In 1961 Charette ${ }^{22}$ reported the inframred spectra of eight synthetic diammds made at the Adamant Researoh Laboratory at Jahannesburg. Opticail measurements were made by Raail in the ultra violet but enly tentative suggestions were mede on the subject of their classiflication. As a result of observations made on twentysix specially seleoted stones by the same laboratory in 1962, Charette ${ }^{23}$ stated deflinitely that both Type I and Type II syathetic ALamomis exist.

In 1959 and 1960 Tolansky 24,25 gtudied the surface niorostruoture of synthetic stones supplied by the General Eleotric Company and the De Beers group. Procise optical and interferometrio teahmiques revealed features which had not been observed on natural diamonds. They were as follows:-

1. Ootahedral faces with a hopper or skeletal character.
2. Remarkably smooth plane oubic faces.
3. Dendritic growth characteristics.
4. Well defined growth spirals on the highly perfeot oube froes.

A mechanism to desoribe the growth of cube faces was proposed by Kamaiye and Lang ${ }^{26}$ in 1964 after detailed X-rey diffraction and absorption topographio measurements were made on two selected aynthetic diamonds manufaotured by the General Eleotric Company. It wes shown theoretically that cube faces can form if fluotuations ocour in the growth rate and niakel is present.
2.4. Nitrogen in Diemond

The flrst indication that nitrogen exista as a major ingurity in many diamonds emerged from a study made by Kaiser and Bond ${ }^{3}$ in 1959. Specimens were heated to a temperature of $2000^{\circ} \mathrm{C}$ in a carbon arucibile and the gases released during eraphitiastion were analysed with a mass spectrometer. In some cases concentrations of nitrogen as high as 0.2 劽 were foum. Furthermore, a correlation between the nitrogen content and the intensity of absorption in the infra-red at $1290 \mathrm{om}^{-1}$ was observed.

Preoise X-ray determinations of lattioe parameters and density measurements on apeoimens with different nitrogen concentrations led Kaiser and Bond ${ }^{3}$ to suggest that the fupprity existed in the form of substitutiowal and not as interstitial atoms. This oonolusion,was
supparted by the faot that nitrogen is a Group V element and lies next to and above carbon in the periodic table, and could possibly be present as a substitutional donor in the diamond lattice. Electron spin resonance measurements made by Smith et al ${ }^{27}$ in 1959 demonstrated that this was indeed the case.

Perhaps one of the most interesting features of this work concerned the concentratiom and enviroment of the nitrogen impurity. Concentrations in the range $10^{15}-10^{17} / 00$ were measured and were several orders of magaitude less than those reported by Kaiser and Boan ${ }^{3}$. As a result of this work most of the nitrogen impurity in diamond was thought to be present in a non paramagnetio form and hence would not be expeoted to give rlise to an eleotron resonance signal.

Substitutiomal pairs of nitrogen atoms were suggested by Surith et al ${ }^{27}$ as: an example of non paramagnetio arrangements of the nitrogen impurity. Unfortunately, at the time at which they reported their experimente Smith et al ${ }^{27}$ did not deseribe in detail the type of diamonds whioh gave rise to the eleotron spin resomance speatra. This information has since been shown to be of considersble signifloance and its implication will be discussed later in the thesis. In 1960 Kenmey and Mitohell ${ }^{28}$ suggested that the substitutiomal nitrogen may be compensated eleotronicolly by alorimium acoeptors or alternatively may exist in diamond in an aggregated forim.

Anomolous X-zray spikes projeoting from the Lave apots for certain diamonds observed by Raman and NiLakanton ${ }^{29}$ Ied Frank ${ }^{30}$ in I956 to suggest that this phenomena oculd be explained by the presence of platelets of inpurity atoms substitutionally placed in the cube planes. He considered silicon to be the relevant impurity. Honever, in 1958 Caticha-E111s and Coohran, 31 although agreeing in promolple with Frank's proposal, showed that the concentration of silicon found in diamnud is too small to acooumt for the spike intensities.

Following the discovery of high concentrations of nitrogen in diamomas, Elliot ${ }^{32}$ in 1960 proposen the presence of platelets of nitrogen impurity atoms lying in the oube planes.

There was now suffioient evidence to suggest that the absorption at $1290 \mathrm{~cm}^{-1}$ in the infra-red would not arise from isolated substitutiomal nitrogen but might vell do so in the presence of nitrogen platelets. 32,33 Clearly, a large amount of information had been accumulated which suggested that the initrogen impurity in diamond exists in two different forms. A direot observation of the nitrogen platelets had yet to be achieved.

In 1961 Evans and Phasi ${ }^{34}$ examimed the kinetios of the diamand-osygen reaotion and applied their results in the following year 35 to produce specimens whioh were sufficiently thin for examinetiom by treansmisision eleotron mioroscopy. They showed that Type I
diamonds do contain nitrogen platelets on (100) planes and that these defeots are absent in Type II diamowds.

In order to compate the total nitrogen content of diamond and hence to substantiate the results of Kaiser and Bond ${ }^{3}$ whiah had been obtained fromi only five speoimems, Lightowlers and Dean ${ }^{36}$ in 1964 used the teahnique of photon aotivation analysis. Their method depended on the reaction ${ }^{14} \mathrm{~N}(8, n)^{13} \mathrm{~N}$. Specimens were irradisted with high energy geama rays obtained as bremsstrahlung fron an electron inmear accelerator. The isotope ${ }^{13} \mathrm{~N}$ which is produced by the reation deoays by positron omission with a half life of 10.5 minntes. The results obtained from the positroncount confirmed those of Kaiser and Bond ${ }^{3}$ and also demonstrated the non-uniform distribution of the impurity. However, this method oniy lends itself to the determination of total nitrogen content and does not provide information on the environment of the nitrogen in the orystal lattice.

Further evidence for the non-uniform distribution of nitrogen platelets in Type I diamonds was provided by the ultre-violet transmisaion topographs produoed by Takagi and Lang ${ }^{37}$ in 1964.

2.5. Reforences

1. Robertson, R., Fox, J. J., and Martiry, A.E., Phil. Trama., A232, 463, 1934.
2. Yoder, H. S. Jr., and Tilley, C. E., Carnegie Institation of Waghington Year Book, 60, 106, 1960/1.
3. Kedser, F., and Bomd, W. L., Phys. Rev., 115, 857, 1959.
4. Custers, J. P. H., Physioa, 18, 489, 1952.
5. Dyer, H. B., Raal, F. A., Du Prees, L., and Loubser, J. H. N., Fhil. Mag., 11, 763, 1965.
6. Wearlad, R. G., The Certifled Engineer, 36, 1963.
7. Waiker, P. L., Rusinko, F., and Austin, L. G.; Adv. Catalysis, 11, 133, 1959.
8. Wiliks, E. M., and Wilks, J., Industr. Diam. Rev., 26, 303, 1966.
9. Hamay, J. Bo, Proo. Roy. Soc., 30, 450, 1880.
10. Hoissan, H., The Electric Furnace, Arnold. London 1964.
11. Moissen, H., C. R. Acad. Soi. Paris, 140, 277, 1905.
12. Bridgman, P. W., J. Chem. Phys., 15, 92, 1947.
13. Bumaly, F. P., Hall, H. To, Strong, H. Mo, and Fentorf, R. H., Nature, 176, 51, 1955.
14. Borenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M., and Hentorf, R. H., Nature, 184, 1094, 1959.
15. The Times, No. 54621, November, 1959.
16. The T1mes, Ho. 54622, November, 1959.
17. Van Tlilberg, J., Brit. Pat. 822366, 1959.
18. Амот. New Soientist, $15,29,1962$.
19. Bundy, F. P., Soience, 137, 1057, 1962.
20. Bumdy, F. P., J. Chem. Phys., 38, 631, 1963.

2I. Lomisdale, K., Milledge, H. Ji., and Nave, E., Miner. Mag., 32, I85, 1959.
22. Charette, J. J., J. Chem. Phys., 35, 1906, 1961.
23. Charette, J. J.o, Report of First International Congress onl Diamomds in Industry, Paris, 1962.
24. Tolamsky, S., and Suragama, I., Nature, 184, 1526, 1959.
25. Tolansky, S., Proc. Roy. Soc., A263, 31, 1961.
26. Kamifa, Y., and Lang, A. R., J. Appl. Phys., 36, 579, 1965.
27. Smith, W. V., Sorokim, P. P., Gelles, I. L., and Lasher, G. J.o, Phys. Revo, 115, 1546, 1959.
28. Kemmey, P. J., and Mitohell, E. W. I., Proo. Int. Conf., Semicomaductor Physios, Prague, 1960.
29. Raman, C. V., and Nilakanton, P., Proc. Indian Acad. Soi., All, 389, 1940.
30. Frank, F. C., Proc. Roy. Soc., A237, 168, 1956.
31. Caticha-E1lis, So, and Coohran, Wo, Aota Cryst., 11, 245, 1958.
32. Elliot, R. Jo, Proc. Phys. Soc., Lomd., 76, 787, 1960.
33. Hoersit, J. A., and Wooster, W. Ao, Acta Cryst., 8, 187, 1955.
34. Bvans, T., and Phasl, C., Proc. Fifth Comf. on Carborx, 1962.
35. Evans, T., and Phael, C., Proo. Roy. Soc., A270, 538, 1962.
36. Lightowlers, B. C., and Dean, P. J., Diamom Researah, Industr. Diamo Rev. Inf. Bureau, 1964.
37. Takagd, Mo, and Lang, A. Ro, Proc. Roy. Soc., A281, 310, 1964.

3. ELECTRON SPIN: RESONANCE IN DLAMOND

3.1. Natural Diamond
3.1.1. Iryediation: Damage

Bleotron spin resomance was: firgt observed in diamond by Grifflths: et ail in 1954. Their measurements were conoerned exolusively with the paramagnetic centres produced in; natural stores by irradiationi with fast neutrons. Subsequently, irradiation: damage in diamomi has been studied extensively ${ }^{2-4}$ although in general, the spectra obtarined are complicated and difficult to interpret. 3.1.2. AInminifum Acceptops

In 1958 Smith et al ${ }^{5}$ reported a: woak eleotron spln resonance speotrua im unirradiated natural diamond. A complicated speotrum of up to thirty lines covering a magnetic fleld range of approximately 30 0e was: observed. The spectrum varied with the orientatiom of the steady magnetio fleld to the orystallographio axis and the hyperfine atruoture corresponded to Interrotion between an electron spin and a nucleus with a apin of $\frac{5}{2}$. The speotrum was attributed: to alnminium ions constituting bound acceptors. At the time of this work speotrographic studies ${ }^{6} \mathrm{had}$ established that aIuminium was one of the elements most frequently foumd in diamomad. 3.2. Substitutiomal Nitroogen

3.2.1. Inperfine Intergotion

Electrom spin resomance from dispersed substitutiomal nitrogen in damom wasi first reported by Smith et al ${ }^{7}$ in 1959. Por a given
nitrogen donor one of the carbon-nitrogen bond direotions is a hyperfine axis and gives rise to four similar types of equally abundant donors. For each primitive oell oontajining a nitrogen domer there is an equal probability that the donor election will be confined to any one of the four bond directions since the fump time of the electron between the four bond direotions is relatively slow for this systemi below $930^{\circ} \mathrm{C} .{ }^{17}$ For the nitrogen moleus $I=I$ and, therefore, if the umpaired electron orbital (an the nitrogen atom onily possesses s-charaoter three lines ($2 I+1$) would appear in the spectrum regardless of the orientation of the magnetic fleld. However, the orbital also possesses p-character and hence an anisotrapio splitting ocours (Fig. 6). If the magnetic fleld is applied along a<100> direotion so that it makes an equal angle with all four bond directions, the hyperfine splitting will be the same for each of the donors. In oontrast, for the fleld applied in a<lill> direction (along one of the bonds) the spacing between the three lines for donors in bonds parallel to <lll>> directions will be greater than that for eaoh of the three remaining bomds all of which make an equal angle with the steady magnetio fleld. Fig. 6 shows how for this orientation, five lines are produced with intensities in the ratios $1: 3: 4: 3: 1$.

Fig. 7 is a diagrammatio representation of the spectrum obtained by Simith et al ${ }^{7}$. A Labelled diagram showing the positions

ANISOTROPIC HYPERFINE STRUCTURE DUE TO ${ }^{14} \mathbf{N}$ IN DIAMOND

FIG. 6

SCHEMATIC REPRESENTATION OF THE E.S.R. SPECTRUM OF SUBSTITUTIONAL NITROGEN IN DIAMOND. NUMBERS REPRESENT RELATIVE INTENSITIES OF LINES. CLASSIFICATION OF LINES INTO THREE GROUPS $A, B, A N D ~ C ~ I S ~ D I S C U S S E D ~ I N ~ T H E ~ T E X T . ~$

FIG. 7

IDENTIFICATION OF ${ }^{13} \mathrm{C}$ CENTRES WHICH PRODUCE LINES OF GROUPS B AND C (FIG.7)

FIG. 8
of the ${ }^{13} C$ atoms in the diamond lattice whioh are responsible for the groups B and C innes, is given in Pig. 8.

Donors of ${ }^{14} \mathrm{~N}$ interacting with ${ }^{18} \mathrm{C}$ nuclei (nuclear spin $\mathrm{I}=\frac{1}{2}$; C_{1} in Pig. 8) were shown to exist by the appearance of a weak additional hyperfine spectrum (B). In order to make quantitative masurrements of the relative intensities of the resonance limes the gaim of the detecting system had to be reduced as the Iow fleld satellite (A_{1}) of the maim nitrogen triplet was approached. As a result of the reduotion in gesin and the overlep of limes due to their finite vidth, it was not possible to observe all the B lines and therefore they are not reproduced in Fig. 7. The intensity of this speotrum (4 in Fig; 7) was correlated quamtitativeIy with the Io 1% natural abundance of ${ }^{13} \mathrm{C}$ within the diamond lattice. Similam results were obtained for the group C Iines (Intensity 12) which were observed in the wings: of the main lines and which were attributed to the donor eleotron density on: the basal ${ }^{\text {B/ }} \mathrm{C}$ nearest neighbour atoms. (C_{2} in Fig. 8) 。

The results are best described by the Spin Hamiltonisn

$$
\begin{aligned}
H & =g \beta H_{0} S+A s_{z} I_{z}+B\left(S_{x} I_{x}+S_{y} I_{y}\right) \\
& +A^{\prime} S_{z} I_{z}^{\prime}+B^{\prime}\left(S_{z} I_{x}^{\prime}+S_{y} I_{y}^{\prime}\right)
\end{aligned}
$$

Where $S=\frac{1}{2} \quad G=2.0024$ (isotropic) $; I=1$
$I=\frac{1}{2}$ is the nuclear spin of C.
Measured values of the hyperfline constants were as follows:

$$
\begin{aligned}
& A=40.80 e_{0}, B=29.20 e_{0} \\
& A=60.80 e_{0}, B=25.300 .
\end{aligned}
$$

The results were interpreted by assuming that the unpaired electron donated by the nitrogen is in an antibonding orbital between the oarbon and nitrogen atomis. The orbital is of the form: $\psi=\frac{1}{\sqrt{8}}\left(\phi_{N}-\phi_{C}\right)$ (Neglecting overlap) where ϕ_{N} and ϕ_{C} are hyberid orbits each consisting of 2 s and 2 p atomic orbitals. Thus ϕ is of the form $\phi \approx s+\lambda p$. From the expressions derived for A and B (Seotio 1.7) it is passible to calculate the relative amounts of s and p orbit sssociated with the antibonding orbital. The values of the umpired electrom probability densities (0 and P) dednced from the experimental results are shown in Fig. 9. They are compased with values computed for a model in which the unpaired electron is assumed to be in a regular sp ${ }^{3}$ type antibonding orbital between the carbon and nitrogen atoms and also for a similar model in: which the bond is stretohed by 10\%. The stretahed band model corresponds to $\lambda=\sqrt{7}$ and therefore the probabilities of finding the electron in an s or a p orbit axe $\frac{1}{8}$ and $\frac{7}{8}$ respectively. The resulte show that reasomable agreement is obtained in the case of the stretohed bond model.
3.2.2. Cross-Relaxation

The shape and width of the nitrogen resonanoe in diamond are not satisfactorily explained if only the relaxation processes characterised. by T_{1} and T_{2} are considered. Multiple spin flip prooesses and cross relaxation effects which are characterised by T_{21} (Section 1.5) also have to be oonsidered.

	EXPERIMENTAL	CALCULATED SP3 ORBITAL	CALCULATED IO\% ELONGATION
O_{N}	2.41	4.8	2.37
P_{N}	0.28	0.38	0.44
O_{C}	0.78	3.1	1.53
P_{C}	0.25	0.18	0.21

FIG. 9

The oross relaxation effects reported by Bloembergen ot al ${ }^{8}$ suggested that, for the nitrogen resomance in diamond, two spins of the centre lime oan make a downard transition while a spin belonging to each satellite line makes an upward transition (Fig. 10). Simple oonsideretions of the rate at which these processes could occur were made by Sorakin et al ${ }^{9}$ in 1960. They showed that if a saturating microwave field is sudienly applied to one of the three lines of the nitrogen apeotrum, a weak probing microwave signal at either of the two other lines should register a^{\prime} ohange in absorption in a time $T_{q 1}$. Theoretical argumente showed that by saturating the centre line, the absorption at either satellite should drop to zero provided: that T_{21} is muoh less than T_{1} and Tg. Alteraatively, if either of the satellite lines are saturated the intensities of the centre lines and the remaining satellite limes should be reduced by $\frac{3}{4}$ and $\frac{2}{6}$ of their thermal equilibrium values sespeotively. These prediotions were verified experimentally. In addition, it was ahown both theoretioally and axperimentally that for certain cases the four spin flip mechantam may be used to invert the population of one of the satellite limes and to establish oontinuous wave maser operation. A similar effect has been observed in this work from one synthetic diamond. It is discussed in more detail in Seotion 4.13.3.

ENERGY LEVEL DIAGRAM FOR SUBSTITUTIONAL NITROGEN IN DIAMOND $H_{11}(I O O)$ SHOWING THE FOUR SPIN FLIP MECHANISM THROUGH WHICH CROSS RELAXATION PROCEEDS

FIG.IO

3.2.3. Distribution of Substitutional Nitrogen

The distributiom of substitutional nitrogen donors in diamond was investigated in 1964 by Samsenenko. ${ }^{30}$ He considered lime shape changes in different speoimens and used the method of linear superposition to show that the wings of the lime profiles fitted a Gaussian distribution: while the central portion had a Lorents form. He conoluded that the concentratiom of paramagnetio centres in a certain volume of the orystal had attained a value such that exahamge interaction was important. Further calculations showed that the regions of elevated nitrogen content represented about 2% of the total orystal volume. He was umable, however, to suggest the exact nature of the distributiom 3.2.4. The Effect of ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$

In 1964 Loubser and Du Preez ${ }^{11}$ re-examinea the eleotron spin resomance spectra of natural diamonds. Carefully seleoted stones, which gave rise to marrow spectrum lines, were used. The spectrometer was operated at very low energy densities in the miorowave cavity in order to avoid saturation effects and the smaillest possible $100 \mathrm{kH}_{\mathrm{L}}$ magnetic fleld modulation was used to avoid broadening the limes. A typical speotrum is shown in Fig. 11 together with a diagram of the diamond lattice to aid explanation of the results. Aparct from the lines which are spaced symmetrically on either side of the wain triplet and which were attributed by Smith et an ${ }^{27}$ to nearest neighbours (denoted C_{I}), additiomal lines (A) were found

E.S.R. SPECTRUM OF NITROGEN DONORS IN DIAMOND, GROUP A LINES DUE TO ${ }^{13} \mathrm{C}$ (CENTRES II, III, AND IV,) ; GROUP B LINES DUE TO NITROGEN QUADRAPOLE MÓMENT; GROUP C LINES DUE TO ${ }^{15} \mathrm{~N}$.

IDENTIFICATION OF ${ }^{13} \mathrm{C}$ CENTRES PRODUCING THE LINES OF GROUP A. (LOUBSER 1964)

FIG.II
which were close to the maim lines. These were attributed to the interaotion of the impaired eleotron with ${ }^{13} \mathrm{C}$ at other lattice sites (Contres II, III and IV). In addition, lines (B) were found and were shown to be due to the interaction of the quadrapole moment of the nitrogen nuoleus with the eleotric fleld-gradient at the nucleus. Finally, limes (c) due to the isotope ${ }^{15} \mathrm{~N}$ with a nuclear spin $I=\frac{1}{2}$ were also identifled.

The lines: (A) have since been considered by other authorsi 12,13 in more detail and a more preaise theoretical approaoh to the problem has been developed. Group (A) Innes were attributed by Loubser and Du Preez ${ }^{11}$ to three different types of defeot which were designated centres II, III and IV in deoreasing order of hyperfine splitting. As in the work of Surith et al?, the oentre II lines were assooiated with ${ }^{13} \mathrm{C}$ in one of the three basal carbomi positions (C_{z} in Fig. 11). Loubser and Du Preez ${ }^{21}$ made the assumptiom that the unpaired electron apent most of its time on the nitrogen atcm: but the calculations of Bower and Symons demonstrated that this was not so. However, Loubser and Du Preez elso pointed out that if the lines of centre III were attributed to ${ }^{13} \mathrm{C}$ In one of the carbon positions basal to the oarbom in the N-C bond ($C_{3} \ln$ Fig. 11) and if the antibonding orbital gave a greater density om the C_{1} oarbom than on the nitrogen, the association of the lines of the C_{2} and C_{3} oarbons would be reversed. In efther
case the centres II and III lines would have three times the intensity of the centre I lines in agreement with experiment. The probable pasition of the ${ }^{18} \mathrm{C}$ atoms whioh geve rise to the lines of centre IV, was given as C_{4}. The lines due to C_{3} and C_{4} were found to be isotropio and therefore it wes: assumed that onily the contact part of the hyperfine interaction had a flinite value at these more distant muclei. This model suffered one serious drawback. If it was correct, it was difficult to explain the direotion of the hyperfine axds of the ${ }^{13} \mathrm{C}$ atom of oentre II which would have been expeoted to be along the $C_{2}-N$ direction. This was not the case. The contradiotion led Bower and Symons ${ }^{12}$ to propose a silghtly different oonflguration for the centre. Their model is show in Fig. 12. In this case it was: asgumed that the unpaired eleotron was located predominantly on the carbon atom. Lines due to centres III and IV were assigned to C_{c} and C_{b}. A finite unpeirsd electrom density on the carbon atoms C_{d} was proposed as: the reason for the lines of oentre II. In this case the hyperfine oris was paraillel to the $C_{\alpha-N}$ bond direotion and produoed a oloser agreement with experimental results. Further theoretioal evidence in support of Bower' ${ }^{\prime}$ vesulte was pablished in 1965 by Every and Sohomiand. ${ }^{13}$ A molecular orbital treatment was given for the nitrogan centre in diamona. It acoounted satisfaotorily for the quadrapole and main hyperfine constants: assoilated with oontres I and II.

IDENTIFICATION OF ${ }^{13} \mathrm{C}$ CENTRES ($\mathrm{Ca}, \mathrm{Cb}, \mathrm{C}_{\mathrm{c}}$, AND Cd REFERRED TO IN TEXT) PRODUCING THE LINES OF GROUP A. (FIG.11) (BOWER 1966)

FIG. 12

3.2.5. Type Tb Clasigifloation:

The interpretation of electron spin resonance apeotra in natural diamonds wes now more fully understood and it appeared that there was little further imformation to be gained from similar experimental investigations. However, in the same year, Dyer et ai ${ }^{14}$ studied the combined optical and paramagnetic properties of a large nusiber of diamonds and the results (summarised in Fig. 13) had far resching consequemoes. The most surprising observation was that only approximately 0.1% of the total number of naturel stones examined produced the electron spin resonance spectrec charaoteristio of dispersedi substitutiomal nitrogen domors. In addition, they obserped an optical absorption speotrum whioh had not been previously reported. It was suggested that damonds which possessed these charaoteristios should be classifled as Type Ib. Although natural stones of this type were foumd to be extremely rare it was shown that the synthetic damomas which were also examined in this survey, could invariably be olassified as Type Ib. 3.2.6. Coated Stones

The reasom why Smith ot al^{7} did not point out that electron spim resomance could be observed only in a very amall number of matural diamonds was probably due to the fact that they had excamined a. relatively common form of atone known as 'ooated diamond'. These stones consist of a olear diamond oore with an opaque overgrowth of ixperfectly grom diamond or ooat which is often very thick.

Type	Chareoteristic defect oentres	Characteristic ultra-violet and Fisible features	Characteristio infra-red features	Characteristio E.S.R. features
I a	Nitrogen In platelet form (Elifiott 1960)	$\begin{aligned} & \text { Secondary } \\ & \text { absorption } \\ & \text { edge } \\ & \text { (clark et aI. } \\ & \text { 1956a) } \end{aligned}$	A bands (Sutherland et EI: 1954)	Nome
I b	Nitrogen in dispersea form (Smith et al. I959)	I b syatem	I b bands	I b speatrum (Siedth et al. 1959)
II a	No nitrogen strinatural defects (Clark et al. 1956 b)	Absorption continuxum between 2.0 ev and 5.4 ev (Clark et aI. 1956 b)	Nome, onily intrinsic bends of diamond (Leax and Burnstein 1955)	Single isotropio. line (Duncan 1963)
II b	No nitrogen; acceptor oentres:(Wedepohi 1957)	Absorption Continuun betreen 1.0 ev and 2.0 ev (Wedepohl 1957)	II b bands (Weadepoh工 1957)	Nome

Charaoteristic absorption properties of the diamomad types.
(After Dyer et al. ${ }^{\frac{1}{4} \text {) } \text {. }}$

Fig. 13.

Clearly, a composite orystal of this type should not be used if the characteristios so determimed are presented as typical of a single arystal. It is likely that the diamonds: examined by Samsenenko ${ }^{10}$ mere also of the coated variety and were not Type I as apeoifled. These suggestions are supported by the results of experiments performed by Faulkner ${ }^{15}$ in whioh he demonstrated that the electrom spim resonance spectrs in coatsa diamonds arises from dispersed substitutiomal nitrogen in the ooat. The speotrum was not observed. in the core whioh remained after the ooat had been removed.

More reoent work which is connected direotly with the nitrogen centre, was reported by Cook and Whiffen ${ }^{16}$ in 1966. An Endor study of a Type Ib matural diamond enabled more soourate values of the hyperfine constants A and B to be quoted. These were given as $A=40.7230$ and $B=29.0620 \theta$.

The above review represents work carried out on patural diamoma up to and-including the period during whioh the results presented here were obtaimed. However; since that time, further experisenteil work has: Pollowed. Kore recently Loubser and Van Ryneveld ${ }^{17}$ have reported eleotron apin resonance measurements of Type Ib natural diamond in the temperature range frose $330^{\circ} \mathrm{C}$ to $960^{\circ} \mathrm{C}$. It שers shown that at temperatures of $930^{\circ} \mathrm{C}$ the reorientation of the Jahn-Teller distortion of the substitutional nitrogen centre was suffleientiy rapid to produce isotropic lines of equal intensity regardless of orystal orientation. .

3.3. Synthetio Diamond

3.3.1. General Considerations

Manufaoturers of synthetio diamond desoribe their products with the aid of a system of letters and numbers. The letters desoribe the suitability of the product for bonding by a resin or a metal. The relative merits of the various types in this respeot are not directly relevant and will not be discussed further. The numbers relate to the sise in terms of the dimensions of the sieves through which the diamond will pass (mesh range). The table in Fig. 14 relates mesh numbers and size.

Eleotron: spin resonance in synthetic stones was first reported by Huggins and Canon ${ }^{18}$ in 1962. Onily the R.V.G. type of the three which they examined is availabile oommercially and is prepared with a nickel catalyst. The electron spin resonanoe spectrum from R.V.G. diamoma is shown in Fig. 15. The broad band (A) is attributed to tranaition metal irepurities (maimily nickel). The resonance (B) whioh is attributed to dispersed substitutiomal nitrogen atoms Is superimposed on the broad band and is contred very close to the free aping-value.

Two other spectra were reported which were obtained from specially prepared orystals. One specimen was produced with an aluminium : 2 nickel catalyst and the other was produeed with a boran catalyst. The wide band (A) was no lamger present in the

MESH NUMBER	DIMENSIONS IN mm	MESH NUMBER	DIMENSIONS IN m m
30	0.59	100	0.149
35	0.50	120	0.125
40	0.42	140	0.105
45	0.35	170	0.088
50	0.297	200	0.074
70	0.210	270	0.062
70	0.177	325	0.053
		230	0.044

FIG. 14

- 力一

MAGNETIC FIELD OE					
0	1	2	3	4	5×10^{3}
1	1	1	1	1	1

E.S.R. SPECTRUM OF A BULK SAMPLE OF R.V.G. DIAMOND (HUGGINS 1962)

Fig. 15
aluminium : 2 nickel doped spaciman and the detail at $g=2$ was reduced to the extent that it was impossible to define the structure. In the boron doped speoimen no speotrum ocourred at $g=2$ but a broad resomance centred about $g=3$ was observed. Hyperfine struoture was not observed when this speoimen vas cooled to $-173^{\circ} \mathrm{C}$, but the band at $8=3$ deoreased im intensity and a strueture of unresolved dotail: began to appear at $g=2$. No explanations for these phenomena were offered.
3.3.2. Lime Width of the Nitrogen Resonance

For synthetio diamond, the eleotrom spin resonance speotrum from the substitutiomal nitrogen donors is often imompletely resolved as the lines are considerably inhomogeneously broadened by the spread of local magnetic fleld produced by the ferromagnetic impurities which remain in the crystels after manufaoture. In 1965 Dyer et al ${ }^{14}$ grew diamond oryatals with a nom-ferromagnetio catalyst Brightray - S (78 Ni, 2I Cr, I Fe) and examined the eleotron spin resonanoe speotrua, Their results are shown in Fig. 16. Although the central isotropio line was much narrower (3.90) than in the commeroially available samples (8.000), the random orientetion with respect to the megnetio fleld of many small crystals prodnced broad satellite lines. Using the same type of theory developed by Sands ${ }^{19}$ the maximat and minisum values of the spacing between hyperfine lifea, A and B were deduced.

It should be emphasised that at this time there had been wo reports of eleotron spin resonance ivvestigations of single orystais of synthetio diamomd. In addition, the line width of the nitrogen resonance in oxystals grow vith Brightray - S was still an order of magnitude greater than that observed in natural Iype Ib diamond. 3.3.3. Previous Work by the Author

Fimally work which was carried out by the author ${ }^{20}$ shortly before the present survey was undertaken and which was oonfirmed during it, is now described. Colleotive samples of three different types of syathetic diamond manufactured by the General Eleotric Cotapany were examined. Each sample contained the same mass of diamond but differed in the sizes of the individual stones. The variations in intensity of the nitrogen resonanoe between the three samples indicated that the distribution of the aubstitutional nitrogen domors in single stones was non-uniform. As in all preFious reports the conclusions drawn with respeot to a single stone Fere extrapolated from results obtained with bulk samples.

The line shape of the nitrogen resonance for specimens oomsisting of the swaller stones was also observed to differ noticeably Prom the lime shape for specimens of the larger stones. The narrowing of the central peak in the case of smaller stones which contained a high concentratiom of nitrogen $\left(>10^{19} / 00\right)$, was attributed to exchange interaction between the nitrogen centres. Results subsequently published by Loubser et $a 1^{21}$ have supported this suggestion.
3.4. Summasy

This section has sumarised briefly the published morls on diamomd which is most relevant to this thesis. In the case of synthetic atomes the majority of the specimens described were manufactured elther by the General Eleotric Company or the De Beers group. Although soms authors used stones which they desoribed as typioal of those available comeroially, the mejority were specially selected or grown to a known specifioation. Aparit from the work presented in this thesis on three types of synthetio damond omly one other publication ${ }^{18}$ related direotly to a type of diamond (R.V.G.) which is known to be oommeroialiy available. Although dotailied information rogarding the manufaoture of synthetic diamond is not ifsclosed, it is felt that investigations can nevertheiess make an important oontribution to a more complete umierstanding of the properties of this material. It is inevitable that wide vapiations in phyrioal properties will be observed If speoimens are prepared under different oomditions and, therefore, in order that the results obtained in this work may be compared With those of future investigations, partioular attention has been given to synthotic diamona which is comparaially available.

3.5. Referemoes:

1. Grifflthe, J. H. E., Owem, J., and Mard, I. H., Nature, Lond., 4401, 439, 1954.
2. Mitohell, E. F. J., Physical Properties of Diamma, 394-421, Berman, Claremion Press, axford.
3. Faullmer, E. A., and Lomer, J. N., Phil. Kag., 7, 1995, 1962.
4. Faulrmer, E. A., 通tahell, E. W. J., and Whippey, P. W., Nature, Lumed., 198, 981, 1963.
5. Sunth, W. V., Sorolin, P. P., and Goiles, I. L., Phys. Rev. Letters. 2, 39, 1959.
6. Rasli, F. A., Am. MineraIogiat, 42, 354, 1957.
7. Simith, W. V., Sorokinu, P. P., Gelles, I. I., and Lasher, G. J., Phys. Rev., 115, 1546, 1959.
8. Bloembergen, H., Shapiro, S., Persham, P. S., and Artmam, J. O., Fhyt. Rev., 114, 445, 1959.
9. Soroidin, P. P., Lisher, G. J., and Gelles; I. L., Phery. Rev., 118, 939, 1960.

I0. Semsenemico, N. D., Soviet Physics, Solia State, 6, $2460,1965$.
11. Loubser, J. H. N., and Du Prees, L., Brit. J. Appl. Phys., 16, 457, 1965.
12. ... Bower, H. J., and Symoms, H. C. R., Nature, 210, 1037, 1966.
13. Briery, A. G., and Sohomiand, D. S., Solid State Commalications, 3, 205, 1965.
14. Dyer, H. B., Raal, F. A., Du Prees, Li; and Loubser, J. H. N., Phil. Mago, 11, 763, 1965.
15. Faulkner, E. A., Whippey, P. W., and Newnan, R. C., Fhil. Hag., 12, 423, 1965.
16. Cook, R. J., and whiffem, D. H., Proc. Roy. Soc., A295, 99, 1966.
17. Loubser, J. H. N., and Van Ryneveld, W. P., Brit. J. Appl. Phys., 18, 1029, 1967.
18. Hugetms, C. Mo, and Cannom, P., Nature, 194, 829, 1962.
19. Sands, R. H., Phys. Rev., 99, 1222, 1955.
20. Smalth, M. J. A., Angel, B. R., and Branome, R. G., Nature, 210, 692, 1966.
21. Loubser, J. FH. N., Van Rymeveld, W. P., and Du Prees, L., Solld State Commualoations, 3, 307, 1965.
4. ANV EXPFERIMENTAL STUDY OF SHNTHETIC DIAMOND
4.1. Introduotion

An experimental study was made of flye different types of oymthetio diamond all of which are commoroially avallable. The method of preparatiom is different for eaoh type and consequently variations are observed in their physical properties. For a given type variations were also observed amongst diamonds of different shape and size. Many of the experiments imvolved diamonds whioh had been subjeoted to heat treatment. The nature of the diamomas was modified by this treatment to the extent that significant ahanges in physical properties were detected. Tro resonance limes not previously reported for synthetio diamond were observed. One wes due to oarbonisation of heated samples and the other occurred only et liquid nitrogen temperatures. The numerous variations in physical properties are olearly refleoted in the results which illustrate that in many eases they are typicail of all flve types of synthetio diamoud. In comirast, certain properties are characteristio oolly of a particular speoies. As the combination of so many variables can lead to comfusion the results of each set of experiments are discussed in turn. Disoussion at some points is limited until resuIts from further experiments involving different teahniques have been presented.

4.2. Experimental Apparetus

Preliminary eleotron spin resonanoe imreatigations of samples of aynthetic diamond were made with an X-band speotrometer which was oonstructed by the author. A simple transmission oavity was usea with magnetio field modulation at $50 \mathrm{kH}_{\mathrm{z}}$ produced by a coil mounted inaide the cavity. The magnet system comprised a Newport $4^{\prime \prime}$ magnet energiseat by an Advance power supply. This speotrometer gave results which provided the basis of this work but it was not suffioiemitly sensitive (apmroximately 10^{13} spins $0 e^{-1}$ line width) to deteot a resonanoe from a single aynthetio diamond. In additiony the magnetic fleld produced by the 4^{n} mageet was not sufficiently uniforin over a typical sample volume (appcoximately 0.5 co for a bulk sample of synthetio diamond) to resolve lines less than 300 wide.

The eleotron spin resonance spectrea presented in this thesis were obtained from a Decea XI spectrometer which operates at $9270 \mathrm{MH}_{\mathrm{z}}$ (X-Band) with $100 \mathrm{kdif}_{\mathrm{g}}$ magnetio fleld modulation. The modniation
 is used in a reflootion mode. The kifstron is phase locked to a harronic of a low noise orystal controlled osoillator. In adaition the effeots of cavity drift oan be minimised by locking the klystron to the cavity. With 1 m.W. miarowave power at the oavity and for a time consitant of 1 seoond, the sensitivity is 4×10^{91} spins 00^{-1} Line width. The sample temperature is continuously veriable from
$-175^{\circ} \mathrm{C}$ to $+300^{\circ} \mathrm{C}$. The magnet whioh was kindiy loanoa by Dr. B. F. W. Seymour of the Sohoal of Physios, University of Warwiok, had flat pole pieoes of 6^{n} diameter and was not a commercial design. The optical midorographs were obtained with a Zeiss Ultraphot II. Froilities were available whioh permitted observation either by transmission or reflection. The miorogrephs were recorded on standard Ifford plates ($9 \times 12 \mathrm{~cm}$). Observations at elevated temperatures were made with a Griffin-Teller hot stage wioroscope. The sample. temperature could be varied from room temperature to $1800^{\circ} \mathrm{C}$ in an atmosphere of argon.

Spectrographic analysis was carried out on a Hilger Large Quartz Speotrogreph.

Simgle orystal faces were ground and polished with a two bearing saalfe incorporating a spindle mounted in blocks of Lignum Vitae. A device was oonstruoted whose working principles were similar to those of a: conventional sand-blasting machine in order to reduce the overaill dimensions of diamonds as undfornly as possible. A diagram of the machine is show in Fig. 17. By inoreasing the rate of air flow it was possible to produce air turbulence which in turn caused the diamonds to oollide and so to produce abresion.

The vacuus furnsoe which was used for the heat treatment was not a commercial design. The heating process was by radio frequency induotiom in a oylindrical tantelum susceptor. Specimens

Here contained in: a thoria oruolble whioh wes suspended inside the susceptor with tentalum wire. The water cooled induction: 0011 was powered by an oscillator at $400 \mathrm{kH}_{\mathrm{z}}$ with a maximur outpat of 30 kW . The coil. was mounted inside an inverted water cooled bell-jar in which gless ports were situated to enable temperature measurements to be wade with an optioal pyrometer.

X-ray microprobe ansilysis was carried out by Dr. D. Burr of Intermational Niokel Ltd. an an electron mieroprobe analyser mamfactured by Cambridge Instruments Ltd. . Both line and spot ansiysis were carried out with the probe operated at $15 . \mathrm{kV}$.

Infra-ired spectra were recorded by Professor J. J. Charette of the University of Lovanium, Congo, using a Perkin-EIder 112G apectrometer with the microscope attachment model 85.

4.3. Sample Speoifloation

Of the five different types of oynthetic diamond used in this Fork three were manufectured by the General Eleotric Company of the U.S.A. and are desoribed as K. B.G. (Hetal Bomd Grinding), M.B.S. (Hetal Bomding Saw), and R.V.G. (Resinous Vitrifled Grinding). The other two types were produced by the De-Beers Organisation and are designated M.D.A. (Metal Diamond Abpasive) and R.D.A. (Resin Dianond Abresive). The general appeasance of all five types of dianond is illustrated in Pig. 18.

M.B.S. 35/40
U.S. GENERAL ELECTRIC

M.D. A. 40/60

R.D. A. $40 / 60$

DE BEERS

FIG.IB

4.4. Electron Spin Resomance Survey of BuIk Samples

Typical electrom spin resonance spectra associated with synthetic diamond at rooin temperature are shom in Fig. 19. Hereafter, that part of the speotrum (A) which is attributed to ferromagnetic impuxities will be referred to as the broad resomanoe and the triplet spectrum (B) due to substitutional nitrogen atoms as the nitrogen resowance. Other resonanoes will be referred to explicitly as they are disoussed.

The investigation was started by recording the spectra from 0.1 gms of each of the five types of diamond. (Figz. 19 and 20). The simiLarity between the broad resonances from the metal bonding diamonds is olearily indicated together with a marked difference between both the resin bonding types and between the metal and resin bowing types. It was likely, therefore, that although different catalyst may have been used in the preparation of resin bonding types, a common catalyst was involved in the case of metal bonding diamonds. The variation in line width of the nitrogen resonance supported this suggestion.

The widest variations in the width and intensity of the nitrogen resomance occurred in the resin bonding samples. Two distinct features were apparent. First of all both the broad resonance and the nitrogen resonance from the R.V.G. diamond appeared to be more intense than was the case for the R.D.A. Secomdly, the three lines of the nitrogen resonance of the R.D.A. sample appeared

to be broadened to the extent that they appeared ag a single isotropic lime. Experiments with heated samples which are disoussed in Seotian 4.7 veriflied that this wess sọ. It is also important to note that the lines from the R.V.G. sample were the narrowest of all flve types.

A's fars as the author is aware, no steps were taken by the manufacturers to exolude nitrogen from the reaction mirture in the preparetiow of R.D.A. diamond. There wes no reason to suppose, therefore, that the mean ooncentration of nitrogen impurity in these crystals should be less than that in the four other types. However, the intensity of the nitrogen resonances indicated that this might have been the oase. Previous work ${ }^{1}$ had demonstrated the variation in auplitude of eleotron spin resonance signsls with size of specimen. In this case, however, the speotre were representative of stomes whose dimensions were within the mesh ranges 35/80 (177μ to 350μ) and, therefore, the appearance of the suppressed resonance due to this effect was not expeoted. The R.D.A. sample possibly oontained alurinnium: or boron which can cause a reduction in the intensity of the nitrogen resomance. ${ }^{2}$.

The spectra: also illustrated that the intensity of the broad resomance could not be oorrelated with the broadening effect on the nitrogen lines. For example, the broad resonance was very intense for the R.V.G. diamond but the nitrogen lines were sharp. The reverse was true for R.D.A. diamond. These results suggested
that it was unilikely that a defect ocourred in the diamond whioh was joimtly responsible for the broad resonance and the broedening effeot of the nitrogen lines.

4.5. The Nature of the Ferromagnetic Additives

Variations in the broad resonance auggested that different types of ferromegnetic catalyst were used in the manufaoture of each of the five different types of synthetic. diamond. However, With the exceptiom of R.V.G. diamond which was known to oontain nickel, ${ }^{2}$ the nature of the additives was unknown. An attempt was made, therefore; to determine the composition of the diamonds using the technique of X -ray miorcanalysis.

The intensity of the broad resomance suggested that ooncentrations of ferromagnetic impurity might have been as high as 10^{20} atoms om^{-3}. In adaition, experiments: carried out by Kamiya and Lang ${ }^{3}$ in 1964 demonstratea the presence of nickel rich surface films and Ni-rich globules in some synthetio diamonds. Although the equipsent required to carixy out the X-ray mioroanalysis"was not readily available, Dr. D. Burr of Internatiomal Nickel Ltd.., kindly agreed to assist. A copy of his report on the work is included overleaf where it can be seen that neither iron nor nickel could be identifled. Unsuccessful attempts were made to identify other metallic substances which may have been present. After further discussion with Dr. Burr and his colleagues it was clear that the results oould not lead to any positive conclusions.

INTERRNATIONAL NICKEL LIMITED

Development and Research Department

$$
\text { D. } 5024 \text { REPORT NO. } 1
$$

MICROANALYSIS: OF SINTHETIC DIAMOND

HISTORY

Electron spin resonance studies of the structure of synthetic diamonds at the University of Warwick have led to the suggestion that the surface layer may oontain nickeI, which is present in the catalyst used in the manufaoturing process.

SAMPLES

Synthetic diamond particles were supplied and mioroanalysis was requested for niokel and iron at the surface.

EXPFRTMENTAAC FROCEDURE
Partioles were inserted in aluminium: disos by pressing onto olean glass or tantalum sheet, and examined in the mioroprobe anslyser at 15 kV . Line and spot analyses were performed.

RESULTS

No indication of the presence of nickel could be obtained. Several records showed very small intensity maxima at the wavelength appropriate to iron, but the effeot was not reproducible and could not be definitely distinguished from background radiation.

CONCLUSIONS

No nickel or irom was: detectable in the samples. The limit of detection in a relatively large volume is $\sim 0.01 \mathrm{wt}. \mathrm{\%}$, but if the elements are present only in a volume small compared with probe dimensions, the Iimit is correspomdingly higher.

DJB/PMMO
August, 1966.

4.6. Visible Inolusions

The coloured photographs (Pig. 18 Page 84) show that many dark inclusioms are visible in synthetio diamond. As the majority of the synthetio diamonds examined in this. work were ferromagnetic it was thought that the inclusions oomprised aggregates of ferromagnetio impurity. The results of the X-ray midaroamalysis did not support this suggestion. In adaition similar drolusions whioh were not ferromagnetic were readily visible in natural diamond. The true nature of dark inclusions in synthetio diamond was not therefore obvious. A simple but oonvinoing experiment demonstrated beyond reasonable doubt that the visible inclusions were ferromagnetic.

To provide a means of examining the irolusions a diamond containing a dask inclusion whioh was olearly Fisible, was ground on a scaife to expose parailel dodecahedral faces. To produce such a epecimen the scaife was oharged with natural diamond powder of dimensions less than 1μ. Although a single polished face proved to be extremely difficult to obtain, the problem was partly eased as a result of advice kindly given by experts at Culver Diamonds Ltd., Lichfleld. However, no information was available on methods of producing the seoond parallel face on suoh small stones ($\sim 420 \mu$). The flrst face was ground using a conventional soldered dop to hold the diamom. It was not possible using this device to reverse the
arystal and so to preserve the correot orientation. As an alternative method, the orystal wes cemented with the ground face adjacent to the flat end of a brass rod which was then lowered on to the scaife so that the prinoiple axds of the diamond wes perpendioular. to the face of the soaife. Great eare had to be exercised to onsure that grinding was allowed to continue at ahort intervals so that the heat produced did not orack the stone.

Fig. 21 shows an opticel miorograph taken with transmitted Iight. The sketah illustrates the experimental axrangement. The dark inclusion is fisible and extends into the crystal as shown by the boundsry AB. During the grinding process, the arystail brake around the imolusion in a direction parailel to the grinding lines CD Which accounts for the extension of the inclusion above the orystal surface. The strong attreotion of the imolusion to a pair of magnetised tweesers KF indioated that it was ferromagnetic. As oan be sean from the sketoh, the attraction was suffioiently strong to allow the specimen to be held in a hoirisontal plane without further support. Apart from the inolusion, no other region of the oryatal was attracted to the tweesers. The dark porymeter on the miorograph was cansed by the odges of the orystal.

The imolusiom was dissolved in conoentrated hydroakloric aoid but due to the small oonoentration of meteilic ions in the solution, it was not possible to identify the ions by ohemical

TRANSMISSION OPTICAL MICROGRAPH OF MBS $35 / 40$ DIAMOND AS SUPPLIED, WITH GROUND OPPOSITE DODECAHEDRAL FACES.

FIG. 2 I
amalysis. There was no longer any doubt that the dark inclusions were aggregates of ferromagnetic impurity although their composition was umknown.

4.7. The Effeot of Heat Treatment

Lonsdaile et al ${ }^{4}$ in 1959 showed that the amomalous X-ray spikes which occur on the Laue spots from synthetio diamond can be removed by heating the diamond at $1500^{\circ} \mathrm{C}$ in vacuo. They suggested that the metallic inolusions melted and were dispersed. It was possible, therefore, that similar treatment might give rise to aignificant ohanges ir the electron spin resonance spectra; and at the same time oould possibly provide a means of identifying the ohemioal composition of the evaporated metaillic impurities by allowing them to recondense in a more concentrated form. With the aid of a vacurum furnace samples were heated for a few minutes at a temperature of approximately $1500^{\circ} \mathrm{C}$ and a pressure of 5×10^{-5} Torr. The effect on the electron spin resonance spectra was very promounced and is shown in Fig. 22 for a bulk sample of M.B.S. 35/40 diamand.

Two distinot features are apparent. The broad resonance wes removed and the nitrogen lines appeared to be mach oharper. Similar results were obtained with all five types of synthetic diamond. The effect of heat treatment was, therefore, to either renove the ferromagnetio additive from the orystals or to reduce it to a form which no longer produced a broad resonamoe. The

first alternative seemed more likely as a significant loss in weight occurred after heating. In addition, discolourations which were oharacteristic of the type of diamond appeared on the orucibles. For R.V.G. and the three M-type diamands the colour observed was green but for R.D.A. it was a very dark blue. The residue on the oruoibles was dissolved in concentrated hydroohlorio soid and the resulting solutions were subjeoted to ohemical analysis: Although the concentrations of metal ions were amall positive results were obtained. The residue from: R.D.A. samples was found to contain cobalt unlike the residue from: BoV.G. diamond which, as expected, contained nickel. The metal from all three \mathbb{L}-type diamonds was identified as a mixtare of iron and niokel. No other elements were deteoted.

At this point the investigation had established that the effect of heat treatment at $1500^{\circ} \mathrm{C}$ was to remove either part or all of the ferromagnetio additive. However, neither the mechanisms imvolved in the process nor the effeot of temperatures less than $1500^{\circ} \mathrm{C}$ were known. This being so, orystals which had been heated at various temperatures between $800^{\circ} \mathrm{C}$ and $1500^{\circ} \mathrm{C}$ were examined with an optioal mioroscope.

Although it was not possible to make detedled observations of speoimens as they were being heated, the results of an exminatim of a crystal after its temperature had been raised to
approximately $1200^{\circ} \mathrm{C}$ for a fem minutes, were found to be partioularly significant. The optical micrographs in Fig. 23 whioh were all recorded with reflected light, show the main features of interest. The first photograph is one of a typioal (111) face prior to any heat treatment. The dendritio nature of the surface is clearly visible. The same face, after the crystal had been heated in the manner desoribed, is shown in the second miorograph. The appearance of dark regions can be seen superimposed on two Iines which are parallel to the edges of the orystal face and which were caused by orscks at the orystal face. The remaining dark regions were of particular interest and therefore were studied in more detail. The results are best desoribed by referring to micrographs 3 and 4 which were reoorded with inoreased magnifica-. tion. By focussing the mioroscope alternately on the orystal surface and the top surface of the dark regions the majority of them were found to be hillooks which extended at least 75μ from the orystal faoe. Although the tops of the hillooks showed a definite pattern it oould not be identified with a known orystal symmetry.

A series of experiments were oarried out to investigate the nature of the hillocks and their assooiated patterns. The experimemts showed that the hillooks adhered to magnetised tweesers in a manner similar to that previousiy desoribed for imolusions inside the diamomi. In addition, it was found that

FIG. 23
the hillacks could be dissolved in boilimg equa-regia. The surface which remained (micrograph No. 5) appeared rough and pitted. It was concluded, therefore, that the hillooks comprised ferromagnetio material which prior to the heating process existed inside the diamond probabiy as dark Visible imolusions.

The eleotron spin resonance lifes of the nitrogen resonance remained broadened after this treatment and the broad resonance was present. Only when the diamond was heated to $1500^{\circ} \mathrm{C}$ in vacuo did the width of the nitrogen resomance deorease and the broad resomance disappear.

It was possible with the aid of a hot stage microsoope to control the temperature more acourately and to obserpe the extrusion of the metal as the temperature of the specimen was increased. The diamond was contained in an atmosphere of argon for the examination as the windows of the cell in which the diamond was situated were not sufficiently rigid to withstand the excess pressure caused by evaouation. The design of the optical aystem restrioted the thickness of the windows. This technique had the advantage that more than one orystal face could be observed at the same time. Conclusive evidence was obtained to show that in the majurity of cases the diamonds oraoked to expose (111) faces. In addition the extrustion process took place in two distinct stages.

At temperatures of approximately $800^{\circ} \mathrm{C}$ migration of material through the crystal occurred and it became opaque. As natural diamond remains transparent under the same conditions the observation is attributed to graphitisation and the formation and migration of ferromagnetic globules. At this stage no metal appeared at the surface. A further inorease in temperature was required to release the metal to the surface. The production of a orack whioh immediately preceded the release of metal in some cases produced sufficient disturbance to make movement of the whole diamond clearly visible. The release of strain energy stored in the stone as a result of the growth of the metallic inclusions provides an acceptable explanation. Both processes occurred very rapidly and it was not possible to study the mechanisms involved in: more detail.

As it was suspected that the sudden cleavage of a diamond due to expansion of the metaillic inclusions produced small fragments of diamond which might be responsible for the observed patterns on the hillocks, mixtures of diamond and metal were heated in vacuo at a temperature of $1200^{\circ} \mathrm{C}$. It was found that for either iron or nickel or for a mixture of both, the metals melted to form a globule and the diamonds floated to the surface where they remained approximately half immersed. The result was to produce a piece of metal which tended to be hemispherical in
shape with the majority of the curved surface encrusted with diamonds. (Fig. 24) The process of heating the metals alone, produced very smooth surfeces and patterns on the hillooks could not be seproduced. The patterns were most probably due to small fragments. of diamond which had floated to the surface of the mols tea metal. The fragnents probably resulted from the heating process which caused cleavage of the crystal. Additional evidence for this conolusiow was obtained by performing scratch tests on plate glass. The metal failed to make any impression on the glass but an inverted hillock produced a soratch with comparative ease.

408. Experiments with oxidised samples

An aIternative and somewhat more quantitative investigation of the composition of the ferromagnetic additives was carried out by oxdidising known weights of each type of diamond. Larger quantities of residue were obtained by this method and conse quently a more detariled chemical analysis was possible.

The weights of the residues obtained from complete oxidation of equal weights of two samples were compared. One of the samples comsisted of stones as supplied by the manufacturer and the other of stones which had reoeived the heat treatment. It was found that approximately 70% of the ferromagnetic additive in a bulk sauple of synthetic diamond could be removed by heating the stones in Facuo at $1500^{\circ} \mathrm{C}$ for 15 minutes.

$\times 15$.
REFLECTION OPTICAL MICROGRAPH OF A HENAISPHERE OF METAL (IRON OR NICKEL OR A MIXTURE OF EOTH) ENCRUSTEO WITH DIAMONDS WHICH WAS PRODUCED BY HEATING A MIXTURE OF DIAMOND AND METAL. IN VACUO AT $1200^{\circ} \mathrm{C}$

$$
\text { F1G. } 24
$$

With the exception of the R.V.G. residue, the electron spin resomance spectrum assooiated with the residues obtained after oomb plete caidatiom was found to be identical with the appropriate broad speotrum from unheated stones. No signal was obtained from: the $R_{0} V_{0} G$. residue. A negative result was also obtained from a pordered sample of nickel oxide. In the prooess of oxidation, the diamond residue had probably been oxidised to form a simlar compound.

Although no further information ooncerning the nature of the additives was obtained by coidising diamonds manufactured by the General Electric Company a sigaificant result was obtained from the RoD.A. and $M_{0} D_{0} A$. diamond. A small number of white oxystallites appeared in both the residues. The largest quantity was obtained from the R.D.A. sample. At first the crystallites were thought to have come from the roof of the furnace in which the diamond had been heated or possibily from the alumina boats whioh were used as coustaimers. By repeatea trial both these possibilities were elimpated. It should be pointed out that relatively large quantities of diamond had to be destroyed in order to obtain correspondingly small amounts of residue. For this reason it was not possible to obtain a sufficient quantity of orystaliftes for chemioal analysis. A more detailed qualitative analysis ves oarried out by speotrographic analysis on all five types of diamond before and after axidation.

4.9. Speotropesphio Analysis

A Hilger quarts speotrograph was used in the analysis. The speotral region from $2600 \AA$ to $5000 \AA$ was covered and was seleoted beosirse it includea the major portion of the sensitive lines of the elements which preliminary examination had shown were present. Eaoh sample wes ignited at a current of 7 amps with an eleotrode separation of 3 mm .

For the mafority of samples, oopper eleotrodes were used in preference to oarbon eleotrodes as the latter would have given rise to strong oyanogen bands and would have tended to obsoure the prinoipal lines associated with some of the expeoted trace elements. Separate tests were made with oarbon electrodes to determime if copper was present. The aro mothod was used as the exitation process was sufficiently energetic to give deteotable speotra for most elements.

The method also had the advantage that the sample did not need to be treated ohemically with the associated risk of contaminationb An attempt was made to detect the thirty elements listed in Fig. 25. The most sensitive lines and the appropriate oheoking lines for each element are also given in Fig. 25. A speotrum of each element was recorded on a separate plate and oompared with the spectra obtained from each type of diamond and its

Fig. 25.
associated residue om a. Higiger oonparator. The analysis was semiquantitative and no ettempt was made to determine the absolute quantities of the impurities present in the samples. Part of a typical speotrum showing predominately Iron and Niokel lines is shown in Pig. 26 together with the results of the analysis. The results हere the same both for the diamonds and their associated residues.

The initensities of the spectral lines suggest that those elements olassifled as major oonstituents were introduced intentionally by the manufacturer into the reaotion mixture. It has been mentioned previously that R.D.A. samples probably contained aluminitua or boron. (Pege 88). The amsalysis established the existence of aluminium but in addition suggested that silioon was present. It is likely that silicon might have arisen from the pyrophilite used in the diamond presses. If this is 80 , it is difficult to woderstand why it should not have been present in the samples manufactured by the General Eleotrio Company. A logioal explanation is cleariy not possible without more details of the manufaoturing process.

The results also suggest that chromium is the onily addition to irm and niokel required as a major constituant to produce the Larger M.B.S. damomd rather than the M.B.G. diammd.

AN ARC SPECTRUM OF M．B．G．DIAMOND IN THE RANGE $3197-29438$ ．SHOWING IRON AND NICKEL LINES

RESULTS OF SPECTROGRAPHIC ANALYSIS

Type of Diamond or Residue	 Constituents	Traee
M．B．S． $35 / 40$	Iron，裴akal， Chro週ium	Magrenive， Maganese
M．B．G． $60 / 80$	Iron，値㫙el	Chroandm， Megnoaitua， Manganese
R．V．G． $40 / 60$	Wiakel	Iroin， Itagosiluty Margumazo
H．D．A．40／60	Aludaive，811160n， Makei，Iroa	Magnostivs， Mangazese， Churoniun
R．D．A．40／60	Auminim，$\$ 11100 \mathrm{~m}$ ， Cobelt	Megneaivy， Iron

4.10. Simele Cyystail Studies
4.10.1.The comealation: between electron spin resonance phenomana and oxystal habit

The intensity of the nitrogen and the broad resonances from: bulk samples indicated the possibility of obserfing these resonances in simgle diamonds. Spectra were easily detected in aimost all of the $M_{0} B_{0}$ S. $35 / 40$ diamonds, although for these stones the speotra showed marked variations. Each erystal without exception gave rise to a broad resonance, but in some oases no nitrogen resonance could be deteoted and some correlation between electron apin resonamoe phemomena and generail appearance was antioipated. Only a very small number of the four remaining types of diamond gave detectable resonances and therefore the H_{0} B.S. diamond was seleoted for special consideration.

With the aid of a small magnifying glass (xIO) it was possible to divide a bulk sample into four main groups A, B, C, and D. The stones in group A had a pale greenish-yellow colour and only a few dark inolusions were Fisible. Group B oontained stones with a large number of imolusions and appeared either blaok or very dark greon. Group C was intermediate between groups A and B. The stones in group D were a sub-sectior of C but with an almost perfeot ootehedral habit. They were comparatively rare and onIy 20 were obtained. The stwes of all groups were attracted to a permanent magnet. Speotra nere recorded individually for samples of 50 stones from
each of the groups A, B and C and for the 20 stones of group D. All samples gave a broad resanance with an apparently anisotropic g-value and a variable intensity. No correlations were detected between the samples.

Each stone from groups A, B; and C gave a nitrogen resonance With an isotropic g-value, a line width of 8.00 , and a shepe which was more neariy Gaussian than Lorentrian. . The intensity varied between atones by a factor of approximately 5 but a direct correlation with the group to which it belonged did not appear to exist. For the octahedra. no trace of a nitrogen resumance could be found. Furthermore, a bulk sample oomprisirg the whole group failed to produce a resonance in the region of $B=2$. These orystals were, therefore, the onily type in which any noticeable.correlation existed between an eleotron spin resonance and the general appearance. The absence of an eleatron resonance fram the octahedra suggested that the number of substitutioual nitrogen atoms in these stomes was at least 2 orders of magitude smaller than the number in the common cubomoctahedra. As far as the author is aware E. common catalyst is used in the manufacture of M.B.S. diamond and therefore it seems umilkely that the octahedra oantained sufficiently large amounts of boron or aluminium to completely suppress the nitrogen resonance. (Section 3.3). AIternatively, these diamonds may have been formed at temperatures which were sufficiently high to
allow the formation of nom-paramagnetio nitrogen platelets by diffusion. If this were the case it should be possible to identify the nitrogen impurity by an absorptiom peak in the infra red at $1280 \mathrm{om}^{-1}$ as this teohnique would respond to the total number of nitrogen atoms. Due to the small size of the oryatals, the specialised equipment required to take advantage of this method was not readily available. In this respect the author is grateful to Professor J. J. Charette of the University of Lovanium, Congo, who made infra-red measurements on the octanedra. He found that onIy two. diamonds were sufficiently transparent to be investigated. The spectre: were compared with a reference spectrum from a oubooctahedron whioh had previously been examined by eleotron spin resonance and was known to contain deteotable amounts of substitutional nitrogem. The results of the investigation are shown in: Fig. 27.

Earlier experiments had led Dyer et al ${ }^{6}$ to euggest that peaks at $1129 \mathrm{~cm}^{-1}$ and $1345 \mathrm{om}^{-1}$ together with a broad saddie between the. peaks.were probably produced by isolated nitrogen donors. In addition they showed that a peak at $1280 \mathrm{~cm}^{-1}$ within the broad saddie is associated. with a non-paramagnetic formi of nitrogen. .. In the case of the ootahedra:, but not for the cubo-octahedra, the peaks at 1129. om^{-1} and $1345 \mathrm{om}^{-1}$ were likely to be absent. Fig. 27 shows that the expected behaviour is observed. In neither asse was a peak at $1280 \mathrm{om}^{-1}$ deteoted. It seems, therefore, that only

FIG. 27
substitutional nitrogen is present in the oubo-octahedra as the electron spin resonance measurements suggest and that no significant amount of nitrogen in any form is present in the octahedra.

These results provide strong additiomal evidence for assigning the absorption peaks in the infra-red at $1129 \mathrm{~cm}^{-1}$ and $1345 \mathrm{om}^{-1}$ to isolated substitutiomal nitrogen donors. In addition, they suggest that for substitutional nitrogen in MoB.S. diamonds there is a direot correlation between electron spin resonance and infra-red spectra. Perhaps the most interesting result is the definite correlation which seems to exist between the nitrogen content and the crystal habit. A comparison of the amounts of nitrogen in the octahedra and cubo-octahedra suggests that nitrogen impurity in diamond probably encourages the growth of cube faces: The source of nitrogen and its distribution in the reaction mixture remains unkown. The explanation for production of ootahedres. mey be that they are formed in regions of the reaction mixture where the concentration of nitrogen is relatively low. A non uniform distribution of nitrogen might oocur if the temperature is suffioientiy high in some regions of the mixture to enable nitrogen to diffuse out of the diamond at a higher rate than the growth process is taking place. In ordor to clarify the problem experiments; would have to be performed with crystals grown in a oontrolled environment.

4.10.2. Oxientation Effects

The ability to detect an eleotron resonance from a single synthetio diamond leads direotly to an investigation of the variation of the spectra with orientation in the steady magnetic field. Experiments: of this kimd have been performed by Loubber and Du Prees ${ }^{5}$ on the nitrogen centre in large natural Type Ib diamond but not on a single synthetic diamond. Dyer et a I^{6} quoted values of the hyperfine constants for synthetic diamond by examining bulk samples and applying the theory developed by Sands ${ }^{7}$ to evaluate the constants for a large number of crystals in ramiom orientation. The results were obtained from crystals which had been produced with a nonferromagetic additive Brightray-S ($78 \mathrm{Ni}, 21 \mathrm{Cr}, 1 \mathrm{Fe}$). The resulting reduotion in line width provided greater resolution and enabled more accurate quantitative measurements to be made. In this work single diamonds were used and a larger reduction in line width was obtained.,

It is olearly important to determine if the angular variation of the nitrogen resonance is the same: for synthetic and natural diamond and also if any angular correlations are associated with the additional resonances in synthetic diamond. The main difficulties involved in determining these properties arise due to the small size of available specimens. The largest synthetic diamond availabIe for this work (K.B.S. $35 / 40$) in which
the average concentration of nitrogen donors is approximately $10^{18} \mathrm{~cm}^{-3}$ contains only 10^{14} umpaired spins. As the nitrogen lines are broadened by the ferromagnetic impurity the resonance lies within a magnetic fleld spread of approximately. 100 0e, the sensitivity of the spectrometer mast be, therefore, at least 10^{12} spins $0 e^{-1}$ line width in order to detect a resionance. Difficulties are also encountered in the controlled manipulation of small Aiamomeds.

To study orientation effects: in a single diamond the most convenient axis of rotation is a line passing through the centre of a diamond perpendicular to (110) planes. It is then possible to rotate the crystal about this axis and to align the magnetic fleld parallel to the three principal planes (100, 110, 111) in turn. The diamond should be mounted with a (110) face adjacent. to the flat base of a sample tube. However, this was not possible with the $M_{0} B_{0} S$. diamonds unless they were ground to expose a (110) face: A diagram whioh illustrates the form of the oubaootahedra is given in Fig. 28. It can be seen that the (110) faces are not visible. The (100) faces are bounded by edges which are in $\langle 110\rangle$ directions and the (111) faces are bounded by six edges. If the diamonds are ground to provide a convenient axis of rotation they are reduced in volume to the extent that the total number of spins becomes too small to detect. As an alternative

IDENTIFICATION OF CRYSTAL FACES OF A CUBO OCTAHEDRAL DIAMOND (MBS.)

FIG. 28
the base of a sample tube was ground at 45° and a diamond was cemented with a cube face in contact with the ground surface. Although controlled manipulation of such small speoimens ($\sim 0.5 \mathrm{~mm}$ diameter) proved extremely diffioult, electron spin resonance spectra: were recorded for a large number of diamonds at knomn orientatioms.

In general Type Ib natural diamonds have no preferred shape and it is necessary to orientate specimens by X-ray methods. For the regularly shaped M.B.S. diamond correct orientation was possible by visual examination. The broad resonance was investigated by aligning a diamond with the magnetic fleld parailel to a [100] direotion and by recording the eleotron resonance spectra for 10° rotations from this orientation. The intensity, shape and apparent $g-v a l u e$ varied with the rotation but it was not possible to associate the variation with orystal symmetry. Adilitional tests on a number of single orystals established that wide variations occur but that coinoidence is not neoessarily obtained at the same orientation. Extremes in the variations of the speotrum for a single diamond are illustrated in Fig...29. It seemed unlikely that the centres responsible for the broad resonance had a preferential shape and lay in any particular plane.

The nitrogen resonance was recorded for three orientations correspanding to the steady magnetic field aligned parallel to the

$$
-120-
$$

EXTREMES IN THE VARIATION OF THE BROAD RESONANCE OF A M.BS. DIAMOND AT DIFFERENT ORIENTATIONS WITH RESPECT TO THE STEADY MAGNETIC FIELO

F!G. 29
three principal orystal planes. Although the expected anisotropic splitting occurred the lines were broadened by ferromagnetic imolusions to such an extent that they were not olearly resolved and, therefore, it was not possible to measure the hyperfine constants accurately. This problem was overcome by using heat treated samples. (Section 4.7)

After heating at $1500^{\circ} \mathrm{C}$ in vacuo the stones of groups A, B, and C (Section: 4.10.1) were recIassifled into two groups. Group 1 contained stones whioh were still attracted to a permanent magnet whereas those in group 2 were not so attracted. In all cases the intensity of the nitrogen resonance remained unchanged but the lime width from group 2 had been redaced from $8.0 \pm 0.50 e$ to 3.0 ± 0.500. Group 1 gave a width whioh was slightly less at 6.0 ± 0.400.

Having reduced the width of the nitrogen lines it was now possible to measure the hyperfine oonstants: more accurately with a. stone from group 2. Figs. 30, 3I, and 32 show nitrogen spectra obtained from three crystals. One of these had not received the heat treatment whilst the other two were from groups 1 and 2. The g-value im each ase was 2.0024 ± 0.0005 (isotropio) and the hyperfine constants were $A=4.1 .0 \pm 0.400$ and $B=28.9 \pm 0.40 e$. These values are consistent with those obtained from natural diamomad.

E.S.R. SPECTRA OF THE SUBSTITUTIONAL NITROGEN IN A SINGLE MBS 35/4O DIAMOND OF GROUP I, AT FIXED ORIENTATIONS TO THE APPLIED MAGNETIC FIELD, AFTER HEAT TREATMENT IN VACUO AT $1500^{\circ} \mathrm{C}$

FIG. 31

ESS.R. SPECTRA OF THE SUBSTITUTIONAL NITROGEN IN A SINGLE M.B.S. $35 / 40$ DIAMOND OF GROUP 2 , AT FIXED ORIENTATIONS TO THE APPLIED MAGNETIC FIELD, AFTER HEAT TREATMENT IN VACUO AT $1500^{\circ} \mathrm{C}$

FIG. 32

4.11. Surpere Carbonisation

Dyer et $a l^{6}$ have suggested that the nitrogen spectrum from a. bulk sample of synthetic diamond which does not contain ferromagnetic additive has the shape which is expected from a large number of crystals in random orientation. It is interesting and possible to verify that this is the case by using the heated stomes from group 2.

The nitrogen resonance from a single stone was recorded and by successive addition of further stones it was established that the shape of the satellite lines in a bulk specimen was due to their random orientation. During this experiment a distortion was noticed on the high field side of the central peak of the nitrogen triplet (Fig. 33) which can be attributed to a second resonance occurring at a g-value slightly greater than that of the nitrogen resonance. The effeot was small and not easily deteotable in single orystals but arose as a direot result of the heating process.

In order to investigate the effect in more detail, five stones which were slightly imperfect ootahedra. with small visible oube faces were examined before and after heat treatment. The distortion from perfect octahedral habit resulted in only a small nitrogen resonance which was used as a convenient reference. After heat treatment the additional line was olearly visible and

E.S.R. SPECTRUM OF A BULK SAMPLE OF MB.S. 35/4O DIAMOND AFTER HEAT TREATMENT IN VACUO AT $1500^{\circ} \mathrm{C}$

FIG. 33
had epproximateily the same intensity as the nitrogen resonance. It ocourred at a g-value of 2.0023 and had a width of $5.8 \pm 0.50 \mathrm{e}$. Comsideration of the heating conditioms and of the previous work on the subjeot ${ }^{8,9}$ suggested that the resomance could be attributed to the usual free radioal produced by carbonisation. Prolonged boiling in aquairegia did not. remove the resonance but it did disappear when a small amount of the surface was removed by unform abrasion: with natural diamond powder contained in an air blast. Speotra to illustrate the effect are given in Pig. 34. The origin. of the carbon which propided the free pradical was most probably the diamond itself. An alternative explanation would require carbon enriched aggregates of additive.
4.12. Spatial Variation of concantration of substitutiomal nitrogan Imediately preceding this worly the author predioted that the concentration of substitutional nitrogen in synthetio diamond varies inversely with the mean radius of the sample. In order to verify this prediotion by more preoise methods than had beem previousiy employed an attempt was made to reduce uniformily the size of a bulk sample. The machine previously desoribed was used. (Seotion 4.2)

A preliminary investigation was disaippointirg. The stones became coated very quickly with metal from the walls of the enclosure and a prolonged air blast produced no further grinding action. It was neoessary to remove the diamonds after intervals

E.S.R. SPECTRA OF A SAMPLE OF M.B.S. $35 / 40$ DIAMOND CONSISTING OF FIVE SLIGHTLY IMPERFECT OCTAHEDRA
I. BEFORE HEAT TREATMENT
2. AFTER HEAT TREATMENT IN VACUO AT $1500^{\circ} \mathrm{C}$ 3.AFTER HEAT TREATMENT BUT WITH SURFACE LAYERS REMOVED

FIG. 34
of a. few minutes and to dissolve the metal coating in aqua-regia. After repeated trials the stones became almost spherical (Fig. 35). However, the reduction im mean diameter was too small to produce a: significant change in the intensity of the nitrogen resonance. The resistance of spherical diamonds to abrasion seemed to inorease markediy and further reductiom in size was not possible.

Visual examination of the heated samples from group 2 revealed that some of the stones had become friable in their outer regims and these were, therefore, subjected to the grinding technique. 3 mgm of diamond with a mean diameter of 90μ was obtained from approximately I gm of MoB.S. 35/40 diamond (mean diameter 460μ). The intensities of the nitrogen resonance from the tro samples of ground and unground diamond of equal mass were expeoted to vainy by at least a faotor of 3 if the distribution of the donors previously proposed by the author was correot. The resulter, shown in Fig. 36 oomflrmed the expected behaviour. The lime width was reducea to 2.0 ± 0.300 and the shape of the satellite resomances was more peaked which suggested narrower component lines. It is also of interest to note that the centres. peak was symmetrical due to the removal of the crystal surface and therefore of the free radical mentioned in the preoeding sectiom. The narrowing of the central peak was expeoted due to exchange imteraotion. (Seotion 1.4).

REFLECTION OPTICAL MICROGRAPH OF A SAMPLE OF MBS 35/4O DIAMOND WHICH HAS BEEN GROUND TO PRODUCE ALMOST COMPLETELY SPHERICAL STONES

E.S.R. SPECTRA OF EQUAL WEIGHTS OF M.B.S. $35 / 40$ DIAMOND, I. BEFORE GRINDING (MEAN DIAMETER $460 \mu)$ 2. AFTER GRINDING (MEAN DIAMETER 90μ)

FIG. 36

4.13. Eleotron Spin Resomanoe at Low Temperatures

4.13.1. Quadrapole Effeots

Although the nitrogen lines were easily saturated at Ilquid niftrogen temperatures: it was possible under these conditions to observe hyperfine lines mid-way between the outer lines and the central isotropio line. (Fig. 37) These were very weak and oould omily be observed when a diamond was aligned with the magnetic fleld parallel to (100) planes. Similar lines have been observed in natural diamond ${ }^{5}$ and have bean attributed to quadrapole interaotion.

Unsuccessful attempts were made to observe additional lines due to ${ }^{15} \mathrm{~N}$ whioh also have been detected in natural diamond ${ }^{5}$. Two additiomal effects which had not been reported and uhich are of particular initerest, were also observed at Ilquid nitrogen temperatures.

4.13.2. A Nem Resomance Line

An additional resonance was observed in all types of synthetic diamond with the exoeption of the ootahedra: of group D. Below $-53^{\circ} \mathrm{C}$ a single isotropio lio with a widh of 6 oe appeared at $g=2.0310$. At this time there had been no reports of such a resomance and, therefore, the eleotron spin resomance spectra of all four types of natural diamond were re-examined. In order to inorease the probability of detecting the new lime bulk samples ซere used wherever possible. It was established that as the

E.S.R. SPECTRUM OF SUBSTITUTIONAL NITROGEN IN A M.B.S. DIAMOND AT $-175^{\circ} \mathrm{C}$. LINES OF THE MAIN TRIPLET ARE PARTIALLY SATURATED; LINES MID-WAY BETWEEN THE MAIN TRIPLET ARE DUE TO THE QUADRAPOLE MOMENT OF ${ }^{14}$ N.

FIG. 37
resomance oculd only be observed in synthetio and not natural diamond it was associated with the ferromagnetic additive. The ohange in intensity of the resonance was partioularly rapid in the region of $-73^{\circ} \mathrm{C}$ but approximated to the usual $\frac{1}{\mathrm{~T}}$ dependence at lower temperatures. In heated samples the intensity remained unchanged but the line width was reduoed by the same amount as the nitrogen lines and suggests that the broadening meahanism is the same for both resonances. A distribution of Local magnetic field by aggregates of additive which are removed by the heating process provides a logical meohanism. A typical resonance is shown in Fig. 38.

Loubser and van Ryneveld ${ }^{10}$ observed the same resomance independently at approximately the same time and reported their work. As a result of measurements on diamond grom with and Without nickel additive they attributed the line to the presence of dispersed niokel although its form was not certain. If these results are combined with the work reported here a number of interesting problems arise. In diamonds which were grown with adadtives other than niokel the intensity of the resonance would be expeoted to be relatively small or even non existent. For example, the Ro $D_{0} A$. diamond was found to contain large amounts of cobalt but no nickel. In oontrast, the RoV.G. diamond contained nickel onily. However, the intensity of the resonance wes approximately the same for both types of diamonid. Clearly, if niokel is
-23 -

E.S.R. SPECTRUM OF A BULK SAMPLE OF M.B.S. $35 / 40$ DIAMOND (AS SUPPLIED) AT $-175^{\circ} \mathrm{C}$

FIG. 38
present, the amount whioh gives rise to the resonsnce is in all cases very small and therefore may only be a part of the total nickel content.

The resonance could not be observed from the ootahedra of Group D (M. BoS. diamond containing iron and niokel). Furthermore, the absence of a nitrogen resonance in these. stones suggested that in: order to produce the isotropio resomance both nitrogen donors and dispersed nickel may need to coexist. The possibility that the ooncentrations of both impurities in the ootahedra might have been suffloiently low to prevent deteotion by electron spin rescmance should be noted. Cleariy, further experiments to resolve these problems satisfectorily would require diamonds with known impurity concentrations and as these were not available no further progress was made.

4.13.3. Gross Reliassation Effects: Inversion

It has been mentioned.in Section 3.2.2. that in speoial oases it is possible to imvert. the population of ons of the satellite Lines of the nitrogen resonance and to esteblish continuous wave maser operation. Sorakin et.al Il in 1960 showed that the effect can only be observed in diamonds whioh give additiomal resonance limes due to inpruities. For these diamonds..inversion of the low fleld satellite was obtained aith a specially designed microwave ofrouit in which it was possible to saturate only the central line and at the same time observe either of the satellite lines. In
this work using a conventional electron spin resonance speo trometer in whioh erch resonance lime is imdividnally reoorded as the magnetic field is swept through the resonant value it was not possible to observe the three nitrogen lines sisultaneously and at the same time to saturate any one 1ine. Nevertheless an inversion effect was observed. The spectrum is shown in Fig. 39. Unilike Sorolin's results in whioh the 10w field satellite imverted whilst the high field satellite remained unohanged, the central Ine appeared to invert whilst the fow field satellite remained unahanged. In adaition the high field aatellite appeared to be saturated. Unfortunately, the effeot was not reproducible and after many repeated trials it was observed only three times in one synthetic diamoma which had been heated at $1500^{\circ} \mathrm{C}$ in vacuo. Consequently, the effect could not be exemined in detail. 4.14. Experiments with Crushed Samples

Line widths narrower than any previously reported in symthetio diamond were observed in heated samples of group 2. Although line widths of 3.9.0e were reported by Dyer et al ${ }^{6}$ in samples of synthetio diamond grown. With a nen-ferromegnetic catailyat Brightray-S this vaiue is at Ieast an order of magnitude greater than the lower limit of 0.3 Oeswich is observed in natural diamond. It should be noted that to date no satisfactory explanation has been offered to explain line width varlations in natural costed stones. No details of spin concontrations were

$$
\mid g=2.0024
$$

AN INVERSION EFFECT IN THE E.S.R. SPECTRUM OF SUBSTITUTIONAL NITROGEN IN A M.B.S. 35/4O DIAMOND (PREVIOUSLY HEATED IN VACUO AT $1500^{\circ} \mathrm{C}$) AT $-175^{\circ} \mathrm{C}$. THE CENTRAL LINE IS INVERTED WHILE THE HIGH FIELD SATELLITE LINE IS ALMOST COMPLETELY SATURATED.

FIG. 39
given by Dyer et aI ${ }^{6}$ but it is unitikely that in the oase of diamonds gromin with the Brightray-S, the ooncentration exceeded 10^{19} spins am^{-3}. For spin ooncentrations less then approximately $10^{18} \mathrm{am}^{-3}$ dipolar broadening would not be signifiosnt and it is difficult to see why the limes should not have been narrower.

Experiments carried out in the present investigation on semples of synthetic diamond of mean diameter 460μ whioh had been arushed past a 240 mesh sieve (66μ) and heated in vaưo at a temperature of $1600^{\circ} \mathrm{C}$ have shown that line widths oan be reduced to 0.500 . In samples which had been orushed, cleaned in equer-regia, but not heated, line widths of 100 were observed. It is reasonable to suppose that If the sample is orushed to smaller dimensioms, the width may be reduced even further.

These results suggest that if synthetic diamond is orushed in addition to being heated, the aggregates of ferromagnetic additive which would otherwise melt and remain in the diamond, will be able to gain access to a surfere and so be able to evaporate. The larger amount of additive extracted would produce a reduotion in the spread of looal magnetic fleld within the diamond with a oomsequent reduction in the observed. Fidth of any inherently narrow resonamoe. It seems reasomable to suggest, therefore; that in samples grown with Brightray-S ferromsenatic oompoumde were formed which caused the lines to be bromdened. The same may be true for some natural coated stones.

As the broadening effect of the ferromagnetio additive wes not oonfined to the nitrogen resonance but extended to the resonames associated with dispersed motalic ions, the variation of the line width of this resomance with temperature oould be investigated more preolsely by using the orushed samples. The width variled from 5.7 ± 0.400 to $1.2 \pm 0.10 e$ over the range $-60^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$ and appeared to be a linear funotion of imverse temperature over this range. Below $-100^{\circ} \mathrm{C}$ and as the temperature approsohed $-177^{\circ} \mathrm{C}$, the 14 me width tended towards a constant value determined by the small amount of additive still present in the diamomi.
4.15. Sumpasy

All available types of synthetio diamond were ferrowegnetic. The oharacteristios of the broad eleotrom spin resonance speotrum and the width of the nitrogen resomance seamed to be determined largely by the nature of the ferromagnetic additives.

The effect of heat treatment in vacuo was to remove the broad resonance completely and to narrow the nitrogen linesi to varying extents; There was, however, no correlation between the extent of the narroring and the retentiom of ferronagnetic properties. By heating alone, line widths were reduced to 3.000 . Although this value was greater than that observed in natural Ib diamond, it was possible to make fairly acourate measurements on
a aingle crystal and so to obtain values for the hyperfine constants which were in agreement with those previously obtained for natural diamomed.

Lime widths approaching the smailest vailues observed in natural diamom were obtarined by orushing and heating synthetic diamoma. However, further measurements on single orystsis with the inproved resolution of lines were not possible due to the rednced size of the stones.

As well as remoring the broad resonance the heat treatment also gave rise to free radicals on or near the surface of the diamomds. In addition, some stones becsme more friable and consequently their sise could be reduced and the variatiom of comentration of substitutiowal nitrogen with mean radius of sample could be studied in a most direot way.

A resonance not previously reported was observed at lilquid nitrogen temperatures.
4.16. Reforences

1. Sudth, M. J. A., Angel, B. R., and Emanis, R. G., Nature, 210, 692, 1966.
2. Huggins, C. M., and Cannom, P., Nature; 194, 829, 1962.
3. Kamija, Y., and Lang, A.. R., J. Appl. Phys., 36, 579, 1965.
4. Londsdale, K., Milledge, H. J., and Nave, E., Miner. Mag., 32, 185, 1959.
5. Loubser, J. H. N., and Du Prees, L., Brit. J. Appl. Phys., 16, 457, 1965.
6. Dyer, H. B., Raal, F. A., Du Preez, L., and Loubser, J. H. N., Phil. Mago, 11, 763, 1965.
7. Sands, R. H., Phys. Rev., 99, I222, 1955.
8. Evans, T., and Jemes, P. F., Proo. R. Soo., A,277, $260,1964$.
9. Evans, T., and Saulter, D. H., Fhil. Mag., 6, 429, 1961.
10. Loubser, J:. H: N., and van Rynevela, W. P., Nature, Lond., 211, 517, 1966.
11. Sorokin, P. P., Lasher, G. J., and Gelles, I. L., Phys.; Rev., 118, 939, 1960.

5. FITAL DISCUSSION AND CONCLUSIORS

5.1. Diboussioni and Comelusians

Unilike natural diamonds, which mey or may not contain nitrogen impurity in deteotable quantities, eacoh type of synthetic diamond contained doteotable amounts of nitrogen with the exception of the ootahedra. The origin of the nitrogen inpurity remains undetermined and it is not possible to explain the affinity of diamond for nitrogen. As the nitrogen is substitutiomal and not interstitial in form it is wilikely that it diffuses into the diamonds after they have been formea. In this respeot an investigation into the possibility of forcing nitrogen imito natursl Type Ib diamonds at high pressure would be interesting.

In order to investigate the existence of nitrogen in the ootahedre, experiments are being developea to determine the total nitrogen content of synthetic diamord samples. Onlike natural stones which may contain 100 times as much nitrogen in platelet form oompared with the substitutiomal nitrogen content, synthetic diamond appears to either contain very small umdetectable amounts of nitrogen (as in the oase of the ootahedra) or fairly large ooncentrations (as high as 0.01\%) most of which is in the substitutiomal forili Present methods of synthesis do, therefore, almost certaimly differ from the natural prooesses in at least some respeots.

The nitrogen resomance has: been show to be imfluenced by the nature of the ferromagnetio additive, the oomcentration of the nitrogen impurity, free radicals produoed by carbonisation or meahanical damage, the presence of ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$, quadrapole interaction, and accoptor furpurities such as almminium. The most noticeable differences in spectre from the different types of synthetio diamond artse as a result of the various types of ferromagnetic additive used in manufature. As well as produoing a charaoteristic broad resonance the effect of the additives is to broaden the nitrogen lineg to varying extents. The results show that in the case of a nickel additive the line widtirs are similar to those obtained from natural coated stones. The effeot of iron and ohrom ndum is to inorease the lime widths considerably. Diamomds oontaining aluminius and cobalt were found to achibit spectra whose Iines were broadened to such an extent that they oould no lorger be resolved. In order to provide a satisfaotory explanation of the ferromegetic broadening effects a detailed knowledge of the ferromagnetio complexes rithin the orystenls is necessary. As far as the author is aware, little or no information: is available which desoribes the possible formations of metailic oompounds at the pressures and temperatures used in the diamond reactian. Furthermore, it has not been possible to determine the nature of dispersed meteilic ions in the diamond lattice. It is hoped that future
investigations will olamify the situation. However, the present work has suggested that relatively small amounts of ferromagnetic impurities might eesily. give rise to signifioent broadening of the nitrogen lines. The variation in line width observed in coated natural diamond is probably due in part to the presence of very swall quantities of metailic impurities whose nature remains undetermimed.

The nempowest lines so far observed oocur in natural Type Ib diamoma. It would be interesting, therefore, to use the teahnique of speotrographic analysis to determine the relative impurity concentrations in natureil lype Ib and coated stones. As natural Type Ib stones are rare, it was not possible to earry out such an experiment in this work.

When the nitrogen lines: become broadened to such mextent that they tend to merge, any adaitional resonance whioh occurs in the region of $g=2$ will clearly affect the shape of the speotrum ag a whole. . The effeot may be small but could limit the acouraoy with which the hyperfine constants of the nitrogen resonsace are đotermimed.

The production of a free radical which gave rise to a resonance at. $\mathrm{g}=2.0023$ is of paritioular interest. Its existerce can be identifiea by the assymetry it produces in the central peak of the nitrogen resorance. However, the concentration of the free
racilcails may be just sufflicient to produce an apparent g-shift of the nitrogen resonance without necessarily giving rise to a noticeable distortion.

The resonance associated rith the free radical is almost identical to that observed in natural Type IIa diamond for which no explanation has as yet been offared. Natural Type IIa diamondse mey, therefore, contadn similar centres. The results: of a spectrogrephic amalysis of a netural Iype IIa diamond are not inoonsistent with this auggestion in that inpurities were not deteoted apart from those found in the majority of synthetic diamonds. Nevertheless, the possibility of an alternative centre being responsible for a similar resomance carnot be excluded. The enhanoement of the central peak obtained with orushed specimens clearly indicates an alternative mechanian for the productior of a free radical. However, im the asse of crushed speoimens the free radicals decay and it is unilikely that the surface effeots in Type IIa diamonde are responsinle for the isotropic Ifine at $g=2$ (Pig. I3).

Secomdany effeots due to exchange interaction are more noticeable in small stones. Additiomal evidence has been obtained in this work to support the suggestion that the omoentration of substitutimal nitrogen veries inversely with the mean radius of a stone although the average concentration over a semple remsins approfmately constant for all sises. For smaller stones the contribution
to exahange interation increases and produces a deteotable nampowing of the contral peak. It should be pointed out that in general the smaller synthetio diamonds supplied by manufacturers comprise nidrtures of orushed stones. The diamonds used in this work had not been subjected to any treatment by the manufacturers apart from the usual oleaning processes.

Previous electron spin resonance investigations have shown that mechenisms other than those so far mentionea give rise to adaitional Iines in the nitrogen spectrum. Isotopio variation of aarbon and nitrogen provides an example ${ }^{l}$ although umiless the lines are nasry and the concentration of substitutiomal nitrogen is high, the lines cenmot be resolvea on account of the Iow natural abundences. A further example is illustrated by the spectivm in Fig. 37 whioh shows quadrappole linegs obtained from a synthetic diemond. In this case a high milorowave power level is used so that the main limes are reduced by saturation, and the quadrapole lines are more easily deteoted. It has not been possible to resolve innes from C_{13} - Nof paire in synthetio diamond. The intensities of the lines are small and are expected to ocour very olose to the main lines. The lime width in aynthetio diamond is larger than the expeoted aplitting and the effect ammot be detected.

For samples in whiah aluminium is present as spectrum due to bound aluminium acceptors is expected in the region $g=2$. Previous

Fork ${ }^{2}$ has shown that in natural diamond the spectrum comprises between 1_{4} and 30 lines in a total magnetic field spread of approximately 30 0e.. The number of limes depends on the orientation of the diamond to the steady magetio field. If a speotrum of this type is superimposed on the nitrogen speotrum and is of a lower intensity than the nitrogen resonance the shape of the central peak would be altered to a greater extent than that of the setellite lines. Furthermore, the g-value of the aluminium resonance would be silightly shifted relative to that of the nitrogen resonance (AI. $g=2.0023, \mathbb{N}: g=2.0024$). A combination of the two spectre could easily leadito a base line shift on either side of the central peak of the nitrogen triplet. An effeot of this kind is noticeable when bulk samples are used. In addition a displacement of the base litre of the nitirogen spectrum oan be produced by the tail of the broad resonance. The degree of ahift is determined by the type of additive used. For example, in the oase of R.V.G. diamond the base line of the nitrogen speotrum is situated an a felriy horisontal portion of the broad resomance and therefore only small shiftes are observed (Fig. 20). In oontragt, all M-type diamonds give rise to significant shifts (Fig. 19).

The .most. imteresting and significant results have probabily. been obtained from heated samples. Any mechanism whiah is .proposed as an explamation of the observed effects of heat treatment must account for the variable extent of the narrowing of the nitrogen lines and also for the disappearance of the broad resonance together
with a reduotion or loss of the gross ferromagnetio property. The following meohanism accounts for the axperimental observations. X-ray measurements by Kamiya and Lan, 3^{3} provide evidence that synthetic diamonds whioh have been produced with a niokel oetalyst, cortain niokel rioh surface films with partiole diameters less than $I \mu$. With the exception of the gross inclusions previously discussed, the catailyst was found to exist primailly in the form of aggregates of varying sizes which are located preferentially in the outer regioms of the diamomi. If the broad resonance is attributed to aggregates or particles which have at least one dimension of the order of or less than the miorowave skin depth (1μ), the contribution from the larger aggregates and imolusions is expected to be small as only their outer regions are eqfective. In contrast, it has been shown that the attraction of diamonds to a permanent magnet is determined maimly by gross imolusions.

After heating in vacuo at $\mathrm{I} 200^{\circ} \mathrm{C}$ the larger aggregates are able to melt and exert pressure on the diamond so that a distribution of oracks is produoed along \{IIl\} oleavage plenes through which the additive may esoape. The formation of spherically shaped globules of molten catalyst is most probably due to surface tension effeots. The inability to wet diamonds with any type of material is a well know hinderance in the diamond tool industry. Although the melting points of Ni, Co, and Fe metals lie in the range from $4455^{\circ} \mathrm{C}$ to
$1535^{\circ} \mathrm{C}$, the required depression of the melting point can be obtained if the aggregates are enriohed with carbon. At this stage the broad resonance would not be expeoted to ohange aignificantly.

Two processes oocur if the temperature is raised to $1600^{\circ} \mathrm{C}$. In the first process, eggregates of molten additive whioh have reached the surface of the orystal, evaporate. The results indicate that on average approximately 70% of the total amount of adaitive is removed by this process. In the second process it is suggested that the amaller particles coslesce looally but remain trapped within the diamoma. There is no longer a suffioient number of partioles present whose dimensions are small enough to produce an observable broad resonsnce. Diamonds which still contain aggregates of oatalyst remain attracted to a permanent magnet and the nitrogen resomance may still be significantly broadened although less so than in the unheated orystals. The experiments involving orushed apecimens have illustrated quite clearly that the majority of broadening is due to gross inclusions. which oan be removed by heating. For the stones of Group 2 which are not noticeabily attracted to a permanent magnet, most of the aggregated catalyst probably gains aocess to the surface by any of a number of extensions of the proposed meohenisms. The magnitude of the broadoning and the gross ferromagnetic effects are, therefore, compespondingly less.

For reasons given previously (Seotion 4.13.2) it is not possible to explaim in detail the exdstence of the edditional
eleotron resonance which appears at lower temperatures. However, it is olear that some of the additive also exdsts in the diamond both before and after heat treatment in a more dispersed form which has quite different properties from the aggregated adaitive. Attenpts were made to anneai this type of defect but even when the temperature was reised to approximately $2000^{\circ} \mathrm{C}$ and the diamond began to graphitise very rapidly no ohange was observed.

5.2. Prsotioal Appliogtions

The results of this work might easily lead to some practioal appliaations in the diamond mmufaoturing and tool industry. Past reports ${ }^{4,5}$ heve imdicated that diamonds oan be produoed which are free of nitrogen impurity. Unfortunately, no details of the oatalyst or of the diamomd were given. It would seem from the work reported here that in the case of H.B.S. diamond the absence of nitrogen: favours the growth of ootahedral orystals. Clearly, it is advanteogeous to be sble to oontrol the shape of synthetio diamond.

In most practical applications of diamond in: grinding tools, the stones have to be seourely fixed within the host meaium. For this reasom, manufaturers provide different types of synthetic diamond which beeause of their shape and mechanioal properties lend themselves to different types of bonding eystems. The efficiency of a particular bond is determined primarily by the nature of the dismona surfaco. It has been shown that metal may be diaplacod
from synthetio diamonds and may exist in the formation of an improved boud to the host medium, The experiments involving heat treatmemt of mixtures of metal and diamond (Fig. 24) illustrate the feasibility of this suggestion.

A: secand method of treating the surfaces of a diamosed in order to make them more ohemicaily suitable for bonding might well be aohieved with orushed specimens. In this case, immediately after orushimg, the surfaces: are likely to contain free radicals due to broken bomis and are consequently chemically very active. Before the free radicals decay they may be used to form a strong bond to a material whioh in turn would lond itself to bonding to the host madium in a way which is superior to normal direot boming between the diamond and the host medium.

The degree of friability of a synthetio diamond sample is determined by the method of manufaoture. This property is desirable for industrial use and samples are available which have a range of friability indioes. Heat treatment siadiar to that described in this work might easily lead to a convenient mothod of producing damonds with these charaoteristios...

The gross inclusions which have been shown to contain ferromagnetic material tend to weaken the orystals and in this respect they assist in producing a more friable type of diamond. This oharaoteristic might however be more directly and usefuliy employed.

The variation in the beriness of diamom with orystal direotion is well known and an appropriate oyystal alignment within e diamond grimding wheel would Iead to greater efficiemoy. As a result of the large number of diamonds employed and their small sise, no attempts to orientate the oxystals have been made. However, if diamomeds could be produced which contained aggregates of ferrom megnetic material arranged as Ianinge in preferred pianes, the application of ar magnetic fleld wight well provide a means of oontrollimg theix orientation within the grinding wheel.

5.3. Future work

The resuIts presented here suggest that metailio impurities in synthetio diamond can exist either as large Fisible imolusioms or as disperged metailic ioms. In both oases, however, knowledge of the physiesil properties of the impurity is limited and experiments to investigate the defects in more detail would therefore be ingortant. Preliminary experiments with oleavea oryatals have demongtreited that gross imolusions can be extracted for oloser expmination.

The dispersed metallic ions present a. more ohallenging problem both from the experimental and the theoretical viewpoints. The intensity of the resomance which ocours at Iiquid nitrogen temperatures and whioh has been attributed to the dispersed ioms, imdicates that the comcentration may be as low as: one part per

- 154 -
miliox. Comsequently experimental methods of detection are limited. In this respeot, it is hoped that further electron spin resomanoe investigatioms oombimed with additional non-destructive techoiques such as X-ray fluorescence amalysis, will provide a olearer umderstomaling of the physios of synthetic diamond.

Lindwig and Woodbury ${ }^{6}$ reported an eleotron resomance frove dispersed piokel ions in germanium which is similar to that observed in synthetio diamond but whioh shows byperfline structure at $-271^{\circ} \mathrm{C}$. Provision is beimg made to examime heated synthetic diamonds at similar temperatures.

In order to establish that the amount of substitutional nitrogen in natural diamonds is often several orders of magaitude less than the total nitrogan oontent, the total nitrogen content was deterimimed by gass fusim amslysis. 7 Similer measurements on synthetic diamond would be of interest particularly on the octahedra whiab: would seem to be Type IIa.

1. Loubser, J. H. N., and Du Preez, L., Brit. J. AppI. Phys. 16, 457, 1965.
2. Smith, W. V., Gelles, I. L., and Sorokim, P. P., Phyt. Rev. Letters, 2, 39, 1959.
3. Keariya, Y., and Lamg, A. R., J. Appl. Phys., 36, 579, 1965.
4. Hingims, C. Y., and Cemnon, P., Nature, 194, 829, 1962.
5. Dyer, H. B., Resil, F. A., Du Preer, I., and Loubser, J. H. N., Fhill. Mag., 11, 763, 1965.
6. Ludwig, G. W., and Woodbury, H. H., Solid State Physics, 269, feademic Press, N. Y., 1962.
7. Kaiser, W., and Bond, W. L., Phys. Rev., 115, 857, 1959.

DISTRIBUTION OF SUBSTITUTIONAL NITROGEN DONORS IN SYNTHETIC DIAMONDS

By Inst. Lt. M. J. A. SMITH*, R.N., B. R. ANGEL* and Inst. Lt. Cdr. R. G. EMMONS, R.N.

Royal Naval Engineering College, Manadon, Plymouth, Devon

CONSIDERABLE attention has been devoted to the study of nitrogen impurity in natural diamonds using the tochnique of electron spin resonance ${ }^{1-3}$. The spectrum obtained is due to the unpaired electron provided by the substitutional nitrogen atom and the main feature is a triplet at $g=2.0024$ caused by interaction with the nitrogen nucleus which has a spin of unity. The distribution of nitrogen is variable and would seem to depend on the method by which the diamond was formed.

In the majority of natural diamonds nitrogen exists substitutionally in the form of non-paramagnetic platelets and such diamonds have recently been classified as Type $1 a$ (ref. 4).

Type $\mathrm{I} b$ diamonds contain nitrogen atoms which are not linked in platelet form. The electron spin resonance spectrum is usually narrow ($0 \cdot 3$ oorsted) and depends on the orientation of the static magnetic field to the diamond lattice. It has hyperfine constants $A=40.8$ oersteds and $B=29 \cdot 2$ oersteds and typioal concentrations lie in the range $10^{14}-10^{17}$ atoms cm^{-3}. A theory of the interaction for the nitrogen centre has been developed ${ }^{1,3}$.

Samsonenko ${ }^{2}$ observed electron spin resonance from nitrogen in natural diamonds and obtained two sets of superimposed lines of different widths. Line shape measurements indicated that the broad resonance was probably eaused by dipolar interaction between nitrogen centres in regions of elovated concentration. He concluded that pairing of spins takes place and platelets are formed at concentrations of the order of 10^{20} atoms cm^{-3}. Exchange interaction should precede such pairing and evidence for this is provided by the Lorentz form of the central poak.

Huggins and Cannon ${ }^{5}$ studied 'RVG'-type ('resinous vitrified grinding'type) synthetic diamond and obtained the nitrogen spectrum superimposed on a broad resonance

[^0]due to the transition metal catalyst used during preparation. The nitrogen resonance is considerably broader than is observed with natural diamonds and the three lines overlap considerably. More recent results by Dyer et al. ${ }^{4}$ using samples of mean diameter 400μ strongly suggest that the major contribution to the line-width is produced by a spread in the local field due to ferromagnetic inclusions. For the nitrogen concentrations present, the satellite lines are broadened owing to the angular variation of the hyperfine coupling and the random distribution of the diamonds which form the sample. Evidence that nitrogen exists in platelet form is not obtained and synthetic diamond is thought to be wholly Type $1 b$, The nitrogen content can be controlled during formation and can have a value up to about 10^{20} atoms cm^{-3}.
In the work presented here the electron spin resonance spectra have been recorded for a range of 'MBG'-type ('metal bonding grinding'type) synthetic diamonds of different sizes. The diamonds are passed through sieves of known mesh and groups of the same mean diameter are isolated. Each diamond is assumed to be spherical and the diameter of a group is quoted as the mean mesh size of two consecutive sieves. A sample of constant weight, equal to 48 mg , is taken from the appropriate group and consists of between 6,000 and 130,000 single diamonds depending on the group diameter.

A typical spectrum is shown in Fig. 1, For the samples investigated, the concentration of paramagnetic transition metal impurity remains constant at approximately 10^{21} spins cm^{-1}. This is also true for specimens of 'MBS'. ('metal bonding saw') and 'RVG'-type synthetic diamonds which were studied, although g-value variations suggest a different catalyst. Ferromagnetic inclusions can clearly be expected.

Table 1 summarizes the results obtained for the nitrogen resonance. The spectrometer was calibrated against diphenyl picryl hydrazyl to obtain the concentration of paramagnetic centres and against methyl methacrylate monomer treated with nitric oxide ${ }^{6}$ to define the magnetic field axis. The g-value of the central nitrogen resonance is 2.0024 ± 0.0007 and is in agreement with other published results. The splitting between the satellite lines (a) is

Table 1

${ }_{(\mu)}{ }^{\text {d }}$	$\mathrm{Spins}^{\text {Ners }} \mathrm{cm}^{-4} \times 10^{11}$	$\underset{\text { Oersteds }}{\Delta H}$	$\left[\begin{array}{l\|l\|l}\mathrm{N}_{d} \\ r_{d} \\ 11.7 \mu \\ \hline \mathrm{~N}_{d} & \begin{array}{l}11.7 \mu\end{array}\end{array}\right]$
			Calculated
81.5	$2 \cdot 43$	14.0	53
68.5	3.00	12.4	36
$48 \cdot 5$	$3 \cdot 68$	$12 \cdot 1$	18
40.5	$4 \cdot 35$	7.8	12
29.0	6.55	$6 \cdot 2$	5

60 ± 2 oersteds and the width of each satellite ($2 b$) is $20^{\circ} \pm 2$ oersteds measured as shown in Fig. 1. These three parameters remain constant within the deviations quoted.

The concentration of paramagnetic nitrogen, $\mathrm{N}_{\text {scc }}$, in the sample is given in the second column of Table 1 and is obtained by dividing the observed intensity by the total volume of diamond. It is clear that the concentration is not the same for diamonds of all sizes taken from the same batch and increases as they become smaller. One way in which the variation may be expressed is by plotting the concentrations in Table 1 against $1 / r_{d}$, where r_{d} is the mean radius of the diamonds in a given sample. The graph obtained is linear (Fig. 2) and suggests that over the range investigated the number of paramagnetic nitrogen centres per cm^{-3} at a radius $r \mathrm{~cm}$ within an individual diamond can be represented by the equation:

Fig. 1. Electron spin resonance spectrum for 'MBG'type synthetic diamonds

$$
\mathrm{N}_{\mathrm{cc}}=\frac{K_{1}}{r}+K_{2} \quad \begin{aligned}
& K_{1}=1.2 \times 10^{17} \\
& K_{z}=1.8 \times 10^{18}
\end{aligned}
$$

A similar relationship is obtained for 'MBS'. but not for 'RVG'-type diamonds. The latter inconsistency is believed to be caused by the irregular and elongated shape of 'RVG'-type diamonds for which the present experimental method is not suited.

Although the curve of Fig. 2 can equally well be fitted by an expression for $\mathrm{N}_{c c}$ involving exponentials, the foregoing expression is preferred since it provides at least as good an agreement with experiment, and is more convenient mathematically.

The observed spectra are made up of contributions from continuously varying concentrations of paramagnetic nitrogen, each element of which will have an associated line width. The surface values of $\mathrm{N}_{c c}$ are approximately equal to $0.7 \mathrm{~N}_{\text {sce. }}$. Using the foregoing expression for $\mathrm{N}_{c e}$ it is now possible to calculate the position within a diamond at which the paramagnetic nitrogen concentration has reached 10^{20} atoms cm^{-3}. The value obtained is $11 \cdot 7 \mu$. Exchange interaction and possible pairing of spins should be observed in this region.

The reduction of width of the central resonance (ΔH in Fig. 1) may be explained if it is assumed that an exchange narrowed resonance is obtained from nitrogen in the inner regions of a diamond at a radius less than $11 \cdot 7 \mu$. There are approximately 10^{12} paramagnetio centres per cm^{3} within the 11.7μ radius sphere, and the mean concentration is $1.5 \times 10^{20} \mathrm{~cm}^{-3}$. The expression for $\mathrm{N}_{c c}$ used to fit the experimental results cannot be assumed to hold below 11.7μ but it is assumed to be valid down to this value. The fourth column in Table 1 lists calculated values of the ratio of the number of paramagnetic nitrogen centres contained within the inner sphere of radius

Fig. 2. Graph of Naee against $1 / r_{d}$ for 'MBG'-type synthetic diamonds
11.7μ to the number of such centres contained within the shell defined by the inner sphere and the surface:
and:

$$
\begin{aligned}
& \left.\mathrm{N}_{d}\right|_{11} ^{r_{d}} \cdot 7 \mu=4 \pi \int_{11 \cdot 7 \mu}^{r_{d}} \mathrm{~N}_{e c} r^{\mathrm{d}} \mathrm{~d} r \\
& \left.\mathrm{~N}_{d}\right|_{0} ^{11 \cdot 7_{\mu}}=\frac{4 \pi}{3} r_{d} \mathrm{~N}_{s c c}-\left.\mathrm{N}_{d}\right|_{11 \cdot 7 \mu} ^{r_{d}}
\end{aligned}
$$

$\left.\mathrm{N}_{d}\right|_{0} ^{11 \cdot 7 \mu}$ is constant for all samples and is of the order
10^{12}. These ratios indicate, as observed, that the contribution of an exchange narrowed signal to the total resonance is small for diamonds of $r_{d}=81.5 \mu$ but has become important for $r_{d}=29 \cdot 0 \mu$.

For the concentrations present, the line-widths are too large to be accounted for by dipolar interactions between nitrogen centres distributed randomly throughout the lattice, using the relationship $\Delta H \sim \mathrm{~N}_{c c} \times 10^{-10}$ oersteds ${ }^{7}$. Ferromagnetic inclusions appear to offer a proven explanation ${ }^{4}$.

Random orientation of a large number of diamonds will produce an asymmetrical broadening of the satellite resonances but not of the central peak. The effect, although present, is not very marked in these experiments owing to the broadening produced by the ferromagnetic inclusions which affects all three lines.

Further exporiments are in progress to reduce the size of synthetic diamonds by etching and preliminary results are in agreement with the foregoing conclusions. It should be of interest to investigate small synthetic diamonds.

We thank Captain W. B. S. Milln, Royal Navy, for permission to publish this work. We also thank Mr. L. Bullock and Mr. M. A. L. Bracegirdle of Messrs. Bullock Diamond Products, Ltd., who supplied the samples, and Plymouth College of Technology for their co-operation.

[^1]
Correlation between the Nitrogen Impurity Content and the Crystal Habit of Synthetic Diamond

The presence of nitrogen in diamond has provided an explanation for some of the variations which are observed in the physical properties of this material ${ }^{1-3}$. The nitrogen impurity can exist either as dispersed substitutional donors, in which case electron spin resonance is observed ${ }^{2}$, or as non-paramagnetic aggregates of atoms ${ }^{3}$. Absorption peaks in the infrared can be obtained from nitrogen in either form ${ }^{4}$. Peaks at $1,129 \mathrm{~cm}^{-1}$ and $1,345 \mathrm{~cm}^{-1}$, coupled by a broad saddle which is peaked at $1,290 \mathrm{~cm}^{-1}$, are characteristic of the paramagnetic centres. In contrast, aggregates of nitrogen give a single peak at $1,280 \mathrm{~cm}^{-1}$. Dyer et al. ${ }^{4}$ have shown that the two forms of nitrogen can be distinguished even if they co-exist in a particular specimen. In most cases, however, the nitrogen exists predominantly in one form and the diamond is classified either as type $1 a$ or as type $1 b$. In type $1 a$ diamond, the aggregates of nitrogen are in a majority and in type $1 b$ diamond the concentration of dispersed nitrogen is the larger.

In a recent survey of $M B S 35 / 40$ synthetic diamond (mean size 480μ) (manufactured by the General Electric Company) by electron spin resonance, we ${ }^{6}$ found that, unlike most stones which exhibited the electron resonance associated with dispersed substitutional nitrogen (type $1 b$), a small number of stones gave no detectable resonance. Diamonds of this type were invariably almost perfect octahedra whereas the usual habit for MBS 35/40 diamond is cubo-octahedral. The octahedra have now been examined both by electron spin resonance and by infrared spectroscopy.

Of the small number of octahedra which were available, only two were sufficiently free from inclusions to be investigated. The stones gave no observable electron resonance signal characteristic of dispersed nitrogen, while the infrared peaks associated with either the dispersed or aggregated nitrogen were scarcely detectable.

Cubo-octahedral diamonds which had previously been examined by electron spin resonance and were known to contain approximately 10^{17} nitrogen donors/ cm^{3} gave infrared peaks at $1,129 \mathrm{~cm}^{-1}$ and $1,345 \mathrm{~cm}^{-1}$, the amplitudes of which were several times greater than the noise level.

For MBS $35 / 40$ diamond at least, there seems to be a correlation between the nitrogen impurity content and the erystal habit. The correlation suggests that the presence of nitrogen probably encourages the growth of cube faces.

One of us (J. J. C.) thanks Messrs Industrial Distributors (1946), Johannesburg, for financial support.
B. R. Angel

Department of Physics, Plymouth College of Technology.
M. J. A. Smith

School of Physics, University of Warwick, Coventry.

J. J. Charette

Department of Physics, University of Lovanium, Kinshasa, Congo.

Received May 7, 1968.
${ }^{1}$ Kaiser, W., and Bond, W. L., Phys. Rev., 115, 857 (1959).
${ }^{2}$ Smith, W. V., Sorokin, P. P., Gelles, I. L., and Lasher, G. J., Phys. Rev., 115, 1546 (1959).
${ }^{5}$ Evans, T., and Phaal, C., Proc. Roy. Soc., A, 270, 538 (1962).
${ }^{4}$ Dyer, H. B., Raal, F. A., Du Preez, L., and Loubser, J. H. N., Phil. Mag., 11, 763 (1965).
${ }^{4}$ Smith, M. J. A., and Angel, B. R., Phil. Mag., 15, 783 (1967).

Some Electron Spin Resonance Properties of Heat Treated Synthetic Diamond

By M. J. A. Smith and B. R. Angel \dagger
School of Physics, University of Warwick, Coventry

[Received 9 December 1966]

Abstract

Three distinct and known E.S.R. spectra, which are obtained from five commercially available types of synthetic diamond, are discussed. The resonances are due to dispersed substitutional nitrogen, small aggregates and dispersions of ferromagnetic additive. Heat treatment in vacuo at $1200^{\circ} \mathrm{C}$ causes the migration of a significant amount of the additive from the interior to the surface but does not markedly affect the E.S.R. propertics.

Heat treatment in vacuo at $1500^{\circ} \mathrm{C}$ removes larger quantities of the additive and also that, resonance which may reasonably be attributed to the amall aggregates of additivo. An additional line is observed at the free-spin $g \cdot v a l u c$. In a certain selection of heated stones the line width of the nitrogen resomance is marrowed to 3 oe and the symmetry properties of the resonance may bo studied moro precisely. The behaviour of perfect octahedral stones does not appear to correspond in all respects to that of the common cabo-octahedmal diamond. The appearance and mechanical properties of heated stones aro also discussed.

§ 1. Introduction

The paramagnetism of unirradiated natural and synthetic diamond has been studied extensively using the technique of electron spin resonance. A particularly fruitful aspect of the work has been the identification and investigation of dispersed substitutional nitrogen donors in natural stones which are classified as Type Ib. The paramagnetism arises from the unpaired electron provided by the nitrogen atom which can be considered as localized predominantly in an anti-bonding orbital along one of the four C-N bond directions (Smith et al. 1959). The main feature of the spectrum is a hyperfine triplet due to interaction with the nitrogen nucleus which has a spin of unity. The g-value for the central line is 2.0024 and the interaction is partly anisotropic with hyperfine constants $A=40.8$ oc and $B=29.2$ oe (Smith et al. 1959). The separation between the central peak and each satellite line varies as $\left(A^{2} \cos ^{2} \theta+B^{2} \sin ^{2} \theta\right)^{1 / 2}$ oc, where θ is the angle between the $\mathrm{C}-\mathrm{N}$ bond direction and the applied static magnetic field. The spectrum for a single stone containing many such donors can be deduced if it is accepted that each bond direction is occupied

[^2]with equal probrbility. Only when the applied field is parallel to a [100] direction and every bond in the diamond is at the same angle to the field, are three symmetrical lines of equal intensity and separation observed.

The line width for homogeneous Type Ib natural diamond can be as small as 0.3 oc . These stones are rare compared with coated diamonds in which the substitutional nitrogen exists only in the coat and line widths vary from 2 to 60 . The narrowness of the lines combined with a sufficiently high concentration of nitrogen has enabled the above model for the donor to be further tested by permitting measurements in the regions between the main triplet. Resonances attributed to interactions with the nuclei of ${ }^{15} \mathrm{~N}\left(I=\frac{1}{2}\right)$ and nearby ${ }^{13} \mathrm{C}\left(I=\frac{1}{2}\right)$ in their natural abundances have been detected and discussed by Loubser and du Preez (1965). The existence of quadrupole interaction (Loubser and du Preez 1965), dipolar (Samsonenko 1965) and exchange effects (Loubser et cl. 1965, Smith et ol. 1966) has also been demonstrated. The basic model for the dispersed substitutional nitrogen donor seems to rest on a firm experimental basis although the complete distribution of the unpaired spin density over the nearby carbon atoms is the subject of further discussion at the present time (Every and Schonland 1965, Bower and Symons 1966). It is now realized that the spin density is greater on the carbon atom of the $\mathrm{C}-\mathrm{N}$ bond than on the nitrogen atom.

In the case of synthetic diamond, such detailed and direct measurements have not, to our knowledge, been made, although most commercially available stones are Type Ib with averaged concentrations of paramagnetic nitrogen which can be as high as 10^{20} per cm^{3}. One important reason for this is the gencrally greater line width which may obscure both variations in the hyperfine interaction and any intermediate lines. Although the small size of the stones is a factor, it is not as important as might be supposed owing to the apparent linear variation of nitrogen concentration with the reciprocal of the radius which has been reported by Smith et al. (1966). For very small stones (usually less than 100μ diameter for commercially available specimens) exchange effects will begin to affect the shape of the recorded spectrum.

The increased width has been attributed to variations of local magnetic field produced by the presence of ferromagnetic additive used in the manufacturing process. Direct evidence for the effect was presented by Dyer et al. (1965) who recorded the nitrogen resonance from a bulk sample of diamond grown with the non-ferromagnetic additive Brightray-S, which contains Ni, Cr and Fc in the proportions $78: 21: 1$. They found a width approximately the same as that obtained from natural coated stones ($3 \cdot 9 \mathrm{oe}$). The shape of the satellite resonances and the enhancement of the central isotropic line agreed with the theoretical predictions of Sands (1955) which apply to a large number of randomly orientated stones. We shall show that it is possible to obtain reduced line widths of 3 oe by suitable heat treatment and selection of commercially available samples. The symmetry properties of the nitrogen resonance may then be studied
directly in the larger single stones where the signal to noise ratio is a maximum. A further reduction in width to 2 oe can be achieved by grinding the heated stones.

Perfect octahedral MBS $35 / 40$ stones do not appear to contain detectable paramagnetic nitrogen nor do they give the isotropic resonance at low temperatures reported by Loubser and Ryneveld (1966).

In addition to the nitrogen resonance, a broad resonance is observed in synthetic diamond at room temperature which can extend from zero field to below the free spin g-value. The effect has been reported previously for bulk samples by Huggins and Cannon (1962). They showed that the characteristics of the spectrum depend on the nature of the ferromagnetic additive used. It is of interest to study a single stone to establish if a relationship exists between this resonance and a particular crystallographic axis.

The heat treatment referred to above has the effect of removing the broad resonance for each of the five types of commercially available diamond which we have investigated. The resonance may reasonably be attributed to additive in the surface and near surface regions where it exists in high concentration and from which a majority is extracted by the heat treatment. As the width of the nitrogen resonance is reduced significantly in only a limited number of stones, it appears that the form of the ferromagnetic additive which produces the broad resonance is either not the major cause of the broadening or, if it is, only a proportion is effective.

A further effect of the heat treatment, certainly in the largest MBS stones, is to produce a single isotropic line at $g=2 \cdot 0023$.

§ 2. Experdental Apparatus

A Decca Xl spectrometer operating at $9270 \mathrm{Mc} / \mathrm{s}$ with $100 \mathrm{kc} / \mathrm{s}$ field modulation was used to record the electron resonance spectra. The sample temperature could be varied continuously down to $87^{\circ} \mathbf{K}$. The magnet had flat pole faces of 6 in . diameter and was not a commercial design.

The optical micrographs were obtained with a Zeiss Ultraphot II. -

§ 3. Observations

3.1. Ferromagnetic Additive

Figures 1 and 2 show typical electron resonance spectra of bulk samples of the same weight of MBS, MBG, MDA, RVG and RDA type synthetic diamond as supplied. The MBS, MBG and RVG is manufactured by the General Electric Company and the MDA and RDA by the De Beers Organization. The numbers after the type letters refer to the size range in terms of mesh number and in microns. The largest stones of each type were used in order that any contribution to the nitrogen resonance from exchange effects in the central cores was kept to a minimum (Smith et cil.
1966). In each case a sufficient number of stones were present to ensure that the spectra did not change when the sample was rotated.

The characteristics of the broad resonance and the intensity and width of the nitrogen lines are similar for MBS, MBG and MDA diamond (fig. 1). The ferromagnetic additives are, therefore, expected to be similar for each type.

Fig. 1

Typical E.S.R. spectra of bulk simples of MBG, MBS and MDA synthetic diamond as supplied.

A qualitative indication of the identity of the additive was obtained by heating the samples in vacuo at $1500^{\circ} \mathrm{C}$ for a few minutes. A sufficient amount of the additive was cxtracted from the diamond in this way and was analysed. An alternative and somewhat more quantitative indication was obtained by oxidizing known weights of each type in air and analysing the residue.

The results of these tests suggest, as expected, that nickel and iron are present in MBS, MBG and MDA diamond. In addition a very small number of white crystallites appeared in the residue from the MDA sample. A spectrographic analysis indicated that they contained aluminium and silicon as the major constituents.

The characteristics of the spectra from RVG and RDA diamond (fig. 2) are clearly different from each other and from the MBS-MBG-MDA group. The RVG stones are known to contain predominantly nickel additive (Huggins and Cannon 1962) in similar concentrations and as the nitrogen lines at $g=2$ are narrow, it seems that the 8 oe width of the MBS-MBGMDA group is not due to nickel.

Fig. 2

Typical E.S.R. spectra of bulk samples of RVG and RDA synthetic diamond as supplied.

The residue from the RDA diamond contained a relatively high concentration of cobalt. A larger number of the same white crystallites were also obtained. We attribute the single line at $g=2$ to a resonance from dispersed substitutional nitrogen which is broadened by the additive to the extent that the component lines are not visible. Evidence for the identification was obtained from observations on smaller RDA specimens and also from the effect on the larger specimens of heat treatment in vacuo at $1500^{\circ} \mathrm{C}$. In the latter case a proportion of the additive was removed and three lines appeared. The intensity of the resonance at $g=2$ was less than for the other samples which contained between 10^{18} and 10^{19} nitrogen atoms per ce averaged over the sample volume. The aluminium probably
causes a suppression of the nitrogen resonance. In the case of MDA diamond the concentration of aluminium is not so large that the nitrogen resonance is affected in a significant way.

For single MLBS $35 / 40$ stones it is possible to observe both the nitrogen and the broad resonances. These diamonds have well-developed faces and permit unambiguous orientation by visual examination. A single cubo-octahedral stone was aligned with a [100] direction parallel to the applied magnetic field and the broad resonance was recorded for 10° rotations from this orientation. The intensity, shape and apparent g-value varied with the rotation. It has not been possible to associate the variation with the crystal symmetry. Additional tests on a number of single stones established that wide variations occur but that coincidence is not necessarily obtained at the same orientation. It seems unlikely that the centres responsible for the broad resonance have a preferential shape and lie in any particular plane.

3.2. Substitutional Nitrogen in Single Stones

The nitrogen resonance was recorded individually for $170 \mathrm{MBS} 35 / 40$ stones which had been divided into four groups according to their appearance. The stones in Croup A had a pale greenish yellow colour and only a few dark inclusions were visible. Group B were very dark, being either black or very deep green, and contained a large number of inclusions. Group C were intermediate between Group A and Group B. Group D were a sub-selection of C but with an almost perfect octahedral habit (\{111\} faces visible). There were 50 stones in Groups A, B and C but only 20 in Group D as these are comparatively rare. The stones of all groups were attracted to a permanent magnet.

Each stone in Groups A, B and C gave a three line resonance having an isotropic g-value, a line width of 8 oe and a shape which was more nearly Gaussian than Lorentzian. These parameters do not, therefore, depend on the criteria adopted for the classification of the stones. The effect of variations in orientation is not easy to measure directly with a width of this order. The intensity varied between samples by a factor of approximately 5 , but a direct correlation with the group to which it belonged did not appear to exist. The broad resonance was present in each stone but again no correlations between the groups were detected.

For Group D the broad resonance appeared on each occasion but no trace of a nitrogen resonance could be found. A sample of the 20 octahedra also failed to produce a resonance in the region of $g=2$. The number of dispersed substitutional nitrogen atoms which are paramagnetic is, therefore, at least two orders of magnitude smaller than the number in the common cubo-octahedral diamonds taken from the same batch, assuming a line width of 8 oe.

An additional resonance, which has none of the characteristics of the broad resonance, can be obtained from most synthetic but not natural diamond. A single isotropic line with a width of 6 oe appears at $g=2$ at
temperatures below about $220^{\circ} \mathrm{K}$. The resonance was observed recently by Loubser and Ryneveld (1966) and independently by ourselves. The change in intensity is particularly rapid in the region of $200^{\circ} \mathrm{K}$ but approximates to the usual $1 / T$ dependence near liquid nitrogen temperature. As a result of their measurements on stones grown with and without nickel additive, Loubser and Ryneveld (1966) attributed the line to the presence of dispersed nickel, although its form is not certain. We find that the line is present in each of the five types of commercially available diamond used in this work, with the exception of the octahedra of Group D. Although the measured width is 6 oe, the line has probably been broadened by the same mechanism which broadens the nitrogen lines, and the inherent width is less. Smaller widths have been observed in stones which have received the heat treatment referred to below.

It is possible that both nitrogen donors and dispersed nickel must co-exist to produce the isotropic resonance. Alternative speculation would be that these stones contain nitrogen in either platelet form or bound to an acceptor-like impurity, which may be dispersed nickel, or that the nitrogen concentration, as well as the concentration of dispersed nickel, is so low that they are Type IIa. At the present time we are not able to make significant measurements on the octahedra other than by electron spin resonance.

3.3. Some Effects of Heat Treatment

Approximately 70% of the ferromagnetic additive in synthetic diamond may be removed by heating the stones in vacuo (5×10^{-5} torr) at $1500^{\circ} \mathrm{C}$ for 15 min . The percentage estimate was made by comparing the weights of the residues obtained from complete oxidation of equal weights of two samples. One sample consisted of stones as supplied and the other of stones which had received the heat treatment.

The broad resonance was removed by the heat treatment for each of the five types of commercially available diamond. The effect is illustrated for a bulk sample of MBS 35/40 in fig. 3.

After the heat treatment the stones of Groups A, B and C were reclassified into Group I and Group 2. Group 1 contained stones which were still attracted to a permanent magnet whereas those in Group 2 were not so attracted. In all cases the intensity of the nitrogen resonance had not changed but the line width from Group 2 had been reduced from $8 \cdot 0 \pm 0 \cdot 5$ oe to $3 \cdot 0 \pm 0 \cdot 3$ oe. Group 1 gave a width which was slightly less at $6 \cdot 0 \pm 0 \cdot 4$ oe. Prolonged heat treatment in vacuo at $1500^{\circ} \mathrm{C}$ did not reduce the width of either group further nor did it affect the behaviour of the stones towards a permanent magnet.

Clearly any mechanism which is proposed to explain the effects of heat treatment should account for the difference in the width of the nitrogen resonance and in the attraction to a permanent magnet, between the stones of Group 1 and Group 2. At the same time it should explain the absence of the broad resonance in all heated stones.

Fig. 3

$0 \quad 1^{1}$
MAGNETIC FIELD Oe
$1^{2} \quad 1^{3}$
$1^{4 \times 10^{3}}$

The effect of heat treatment in vacuo at $1500^{\circ} \mathrm{C}$ on the E.S.R. spectrum of a bulk sample of MBS $35 / 40$ diamond, (a) before heat treatment and (b) after heat treatment.

Figure 4 shows a typical spectrum from a stone of Group 2 for three orientations with respect to the applied magnetic field. The g-value is $2 \cdot 0024 \pm 0.0005$ and the hyperfine constants are $A=41 \cdot 0 \pm 0.4$ oe and $B=28.9 \pm 0.40 \mathrm{e}$. These parameters are consistent with those obtained for natural Ib diamond.

A bulk sample of stones of Group 2 was ground by diamond powder contained in an air blast. Approximately 1% of the stones were uniformly reduced in size such that their mean diameter lay between 80μ and 100μ. Figure 5 shows the nitrogen resonance obtained from 3 mg of the sample before and after grinding. The width is reduced to $2 \cdot 0 \pm 0.3$ oe and the shape of the satellite resonances is more peaked which suggests narrower component lines. The intensity is increased after grinding owing to the increase in concentration which occurs towards the centres of the stones. The concentration of nitrogen is not sufficiently large that exchange effects are expected to modify the spectrum in a significant way. Detailed orientation checks have not been possible with these stones.

Fig. 4

E.S.R. spectra of the substitutional nitrogen in a single crystal of MBS $35 / 40$ diamond of Group 2 , at fixed orientations to the applied magnetic field, after heat treatment in vacuo at $1500^{\circ} \mathrm{C}$.

Fig. 5

E.S.R. spectra of equal weights of heated MBS $35 / 40$ diamond (a) before grinding (size range 420μ to 500μ) and (b) after grinding (size range 80μ to 150μ).

Careful examination of the nitrogen resonance in stones of Group 2 revealed a distortion on the high field side of the central peak. In order to provide better separation, five stones, which were imperfect octahedra with visible cube faces, were examined before and after heat treatment. The departure from perfect octahedral habit resulted in only a small nitrogen resonance which was used as a convenient reference. The results of the measurements show an additional line of approximately the same intensity as the nitrogen resonance. It occurs at a g-value which is the same as that for a standard carbon sample and has a width of $5 \cdot 8 \pm 0.5 \mathrm{oe}$. It is likely that this width is close to the true width as it is greater than that of the nitrogen lines, and therefore, exceeds any gross broadening effects which exist. Prolonged boiling in aqua regia did not remove the resonance but it did disappear when a small amount of the surface was removed by uniform abrasion with natural diamond powder contained in an air blast. We conclude, after paying due regard to the conditions of temperature and pressure under which the effect appeared and to the previous work on the subject (for example, Evans and Sauter 1961, Seal 1963, Evans and James 1964), that the line is a surface or near surface effect and is probably due to the usual free radical produced by carbonization. The origin of the carbon is not certain as two sources are possible. They are the diamond itself and any carbon-enriched aggregates of additive. The resonance exhibited none of the features which would be expected from graphite.

Fig. 6

Transmission optical micrograph of MBS $35 / 40$ diamond as supplied, with ground opposite dodecahedral faces.

3.4. Optical Micrographs

It is interesting to observe the appearance of the MBS $35 / 40$ stones. Figure 6 shows a transmission optical micrograph of a typical stone which had been ground to produce two opposite dodecahedral faces. A dark inclusion is visible which extends into the crystal as shown by the boundary AB . During the grinding process the crystal broke around the inclusion in a direction parallel to the grinding lines CD which accounts for the extension of the inclusion above the crystal surface. The micrograph also shows the adhesion of a pair of magnetized tweezers EF to the inclusion and indicates that it is ferromagnetic. There is no noticeable strong attraction between the tweezers and the inner regions of the crystal. The dark perimeter on the micrograph is shadow.

A number of similar stones, which had not been ground, were observed by reflected light. Figure 7 is an optical micrograph of a (111) face and is typical of all the stones observed. The dendritic structure characteristic of the solidification of the surrounding additive during manufacture, is visible. Trigons, both negatively and positively orientated, could be observed on some $\{111\}$ faces. Their signinicance has been discussed by Tolansky (1955), Frank et al. (1958), Lang (1964) and others. Figure 8 shows the same face as fig. 7 after the specimen had been heated in vacuo at $1200^{\circ} \mathrm{C}$ for a few minutes. Under these conditions some of the ferromagnetic additive is able to arrive at the surface but does not evaporate.

Fig. 7

Reflection optical micrograph of a (111) face of a typical MBS 35/40 diamond as supplied.

The dark lines $a b, c d$ and ef in fig. 8 are consistent with the suggestion that the extracted material appears where $\{111\}$ octahedral faces meet the (111) face. The line ef is at an angle of 60° to $a b$. Observations with a hot-stage microscope on a number of stones show that the diamond cracks to expose $\{111\}$ faces in nearly every case. We conclude that when

Fig. 8

Reflection optical micrograph of the same (111) face as fig. 7 but after heat treatment in vacuo $\left(5 \times 10^{-5}\right.$ torr) at $1200^{\circ} \mathrm{C}$
additive melts, the internal stresses can cause the diamond to crack along the preferred $\{111\}$ planes and in this way the additive is able to gain access to the surface. It is unlikely that diffusion through the lattice can explain the observed facts. The top of the hillock g, which is 75μ above the crystal surface, shows a pattern which we are not able to identify.

When the stone was boiled in aqua regia, the ferromagnetic additive was removed from the surface which appeared rough and pitted. The electron resonance spectrum from the dispersed substitutional nitrogen remained broadened up to this point and the broad resonance was present. Further heating in vacuo at $1500^{\circ} \mathrm{C}$ was necessary to reduce the line width to the minimum observed in similar stones and to remove the broad resonance.

Heated stones are difficult to grind on a scaife as they break easily. They can, however, be ground uniformly by diamond powder contained in an air blast, in contrast with stones which have not received the heat treatment. They are clearer than before and in many ways they have the appearance of natural grit. Such behaviour is consistent with the existence of many cracks and the products of carbonization.

§ 4. Discussion

The behaviour of the broad resonance, and the variation in width of the nitrogen resonance after heat treatment, in synthetic diamond which contains ferromagnetic additive, may be accounted for in the following way.
The additive would seem to exist primarily in the form of aggregates of varying size which, with the exception of a number of gross inclusions, are located preferentially in the outer regions of the diamond. If the broad resonance is attributed to those aggregates or particles which have at least one dimension of the order of or less than the microwave skin depth (1μ), the contribution from the larger particles and inclusions is expected to be small, as only their outer regions are effective. The attraction of the diamond to a permanent magnet and the near random distribution of the local field over all the nitrogen centres contributing to the resonance, is, therefore, a necessary consequence. Thex-ray topographic measurements of Kamiya and Lang (1965) on synthetic diamond containing nickel provide evidence that the surface metal is in the form of particles less than approximately $1 / 100 \mu$ diameter.

In addition it is interesting to note that the width of the nitrogen resonance is greater for those diamonds which show a high effective g-value for the broad resonance. The variation in magnitude of the effects under discussion amongst the five types of commercially available synthetic diamond may be explained to a large extent if the concentration and identity of the ferromagnetic additive which they contain is considered in conjunction with any previous heat treatment.

After heating in vacuo at $1200^{\circ} \mathrm{C}$, the larger aggregates are able to melt and to exert pressure on the diamond so that a distribution of cracks is produced along $\{111\}$ cleavage planes through which the additive may escape. It is important to note that although the melting points of Ni , Co and Fe metals lie in the range $1455^{\circ} \mathrm{C}$ to $1535^{\circ} \mathrm{C}$, the required depression of melting point can be obtained if the aggregates are enriched with carbon. The broad resonance from the small particles would not be expected to change significantly with the treatment, nor by the subsequent removal of additive from the surface. Heat treatment at $1500^{\circ} \mathrm{C}$ may be supposed to extend the above process in a restricted form to the small particles, which probably coalesce locally and produce microcracks containing additive. It is clearly not possible to suggest a detailed mechanism on the basis of the present results.

The broad resonance would not be expected to occur after heat treatment at the higher temperature due to the increased dimensions or possibly the different shape of the aggregates, but the stones may still be attracted to a permanent magnet and the nitrogen resonance may still be broadened. Such behaviour is pronounced for the majority of stones (Group 1). For the stones of Group 2 we presume that most of the aggregated additive has been able to gain access to the surface by any of a number of straightforward extensions of the proposed mechanism. The magnitude
of the broadening of the nitrogen resonance, or indeed any other resonance, is; therefore, correspondingly less and the stones are not noticeably attracted to a permanent magnet. Some of the additive also exists in the diamond in a more dispersed form which has quite different properties.

The apparently anomalous behaviour of perfect octahedral MBS 35/40 diamond would seem to warrant further investigation particularly as a large number of these rare stones was not available for this work.

Acknowledgments

We are indebted to Mr. W. F. Cotty of the Diamond Producers Association, London, and to Mr. E. L. Kapernaros of the General Electric Company, Detroit, who assisted in the supply of synthetic diamond. A research grant from the Science Research Council is also gratefully acknowledged. Dr. L. du Preez of the Diamond Research Laboratory, Johannesburg, kindly loaned a number of natural diamonds.

We are grateful to Mr. P. M. Butcher of Decca Radar Ltd., who arranged the loan of a spectrometer prior to the delivery of our own, to Dr. E. F. W. Seymour of the School of Physics, University of Warwick, for the use of the magnet, and to Mr. C. T. Forwood of the School of Physics, University of Warwick, for his assistance and helpful discussion.

Our thanks are also due to Dr. P. M. Moore of the School of Molecular Sciences, University of Warwick, who carried out the analysis on the oxidation residues.

References

Bower, H. J., and Smons, M. C. R., 1966, Nature, Lond., 210, 1037.
Dyer, H. B., Raal, F. A., Du Preez, L., and Loubser, J. H. N., 1965, Phil. May., 11, 763.
Evans, T., and James, P. F., 1964, Proc. R. Soc. A, 277, 260.
Evans, T., and Sauter, D. H., 1961, Phil. Maj., 6, 429.
Every, A. G., and Schonland, D. S., 1965, Solid State Commun., 3, 205.
Frank, F. C., Puttick, K. E., and Wilks, E. M.., 195s, Phil. Maj., 3, 1262.
Huggins, C. M., and Canvon, P., 1962, Nature, Lond., 194, 829.
Kamiya, Y., and Lavg, A. R., 1965, J. appl. Phys., 36, 579.
Lavg, A. R., 1964, Proc. R. Soc. A, 278, 234.
Loubser, J. H. N., and Du Preez, L., 1965̃, Br. J. appl. Plyys., 16, 457.
Loubser, J. H. N., and Van Ryneveld, W. P., 1966, Nature, Lond., 211, 517.
Loubser, J. H. N., Van Ryneveld, W. P., and Du Preez, L.; 1965, Solid State Commun., 3, 307.
Shasonenko, N. D., 1965, Soviet Phys., solid St., 6, 2460.
Sands, R: H., 195̄, Plojs. Rev., 99, 1222.
Seal, M., 1963, Phys. Stat. Sol., 3, 658.
Smith, M. J. A., Angel, B. R., and Emmons, R. G., 1966, Nature, Lond., 210, 692.

Smith, W. V.: Sorokiv, P. P., Gelles, I. L., and Lasher, G. J., 1959, Phys. Rev., 115, 1546.
Tolaysky, S., 1955, The Microstructures of Dithond Surfaces (London: N.A.G. Press Ltd.).

The reduction of electron-spin-resonance linewidths in synthetic diamond

B. R. ANGEL \dagger and M. J. A. SMITH \ddagger
\dagger Department of Physics, Plymouth College of Technology
\ddagger School of Physics, University of Warwick

MS. received 31st October 1967, in revised form 30th November 1967

Abstract

An improved method for the removal of aggregates of ferromagnetic additive from synthetic diamond is presented. Electron-spin-resonance linewidths are reduced as a consequence and may approach 0.5 Oc .

Electron spin resonance from substitutional nitrogen in diamond (type Ib) has been extensively reported (see, for example, Smith et al. 1959, Loubser and du Preez 1965). The principal feature of the resonance is a three-line spectrum due to a hyperfine interaction between the unpaired electron donated by the nitrogen atom and the nitrogen nucleus $(I=1)$. The linewidth varies from specimen to specimen and has a lower limit of about 0.3 Oe in the case of natural diamond which does not contain regions with unusually high concentrations of nitrogen donors.

Synthetic diamond, in contrast to the natural material, is invariably type Ib. Metallic inclusions are present and arise from the additives (iron, cobalt, nickel, etc.) used in the manufacturing process. The structure of the inclusions and their effect on the diamond lattice have been studied by x-ray methods (see, for example, Phaal and Woods 1966). As well as producing anomalous x-ray spikes projecting from the reciprocal lattice points of the synthetic diamond, the inclusions, on account of their ferromagnetic properties, give rise to a spread of local magnetic field and hence to a broadening of the nitrogen electron-spinresonance lines. For commerically available specimens, which have not been heated in any way except for the cleaning processes used after manufacture, the linewidths vary between approximately 5 Oe and 30 Oe , depending on the type of additive used. Dyer et al. (1965) reported linewidths of 3.9 Oe in synthetic diamond powder which had been grown with the non-ferromagnetic additive Brightray-S $(78 \% \mathrm{Ni}, 21 \% \mathrm{Cr}, 1 \% \mathrm{Fe})$. It is unlikely that this width was caused by dipolar broadening, but rather by a significant ferromagnetic effect from aggregates of additive in the grown diamond which did not reflect the original composition of the Brightray-S. Smith and Angel (1967) obtained a reduction from 8.0 to 3.0 Oe in MBS 35/40 synthetic diamond \dagger by heating the specimen in vacuo to $1500^{\circ} \mathrm{C}$. Under these conditions the larger aggregates melted and exerted sufficient pressure on the surrounding diamond to produce a distribution of small cracks along the $\{111\}$ cleavage planes through which the metal could evaporate. It was shown that, for a bulk specimen, approximately 70% of the ferromagnetic additive was removed by the heating process and that the residual width could reasonably be attributed to aggregates of additive which remained in the diamond after the heat treatment.

In recent experiments it has been possible to reduce the width to 0.5 Oe , and so to approach closely to the narrowest lines obtained from natural diamond. The reduction was achieved by crushing a bulk sample of synthetic diamond, which consisted of stones with a mean diameter of $460 \mu \mathrm{~m}$, past a 240 mesh sieve $(66 \mu \mathrm{~m})$. The sample was then heated in vacuo (50μ torr) to about $1500^{\circ} \mathrm{C}$ and cleaned in boiling aqua regia. Intermediate linewidths of about 1 Oe were observed in specimens which had been crushed, sieved and cleaned in aqua regia but not heated. It is reasonable to suppose that if the sample were crushed to smaller dimensions the width might be reduced even further.
\dagger 'Synthetic diamond with dimensions in the range $420-500 \mu \mathrm{~m}$ manufactured by the General Electric Company, U.S.A., for use in saw blades using a metallic bond.

As the broadening effect of the ferromagnetic additive is not confined to the nitrogen resonance, but extends to all other resonances, more precise electron-spin-resonance measurements can be made on synthetic diamond using the treated samples, provided that the limitation of small stones is acceptable. It has been possible, for example, to observe a variation with temperature of the linewidth of the single isotropic resonance at $g=2.0310$ which was first reported by Loubser and van Ryneveld (1966) and which they attributed to dispersed nickel. The width between maxima on the derivative of the absorption varied from $5 \cdot 7 \pm 0.4$ to $1.2 \pm 0 \cdot 1$ Oe over the range $213-133^{\circ} \mathrm{K}$, and appeared to be a linear function of inverse temperature over this range. Above $213^{\circ} \mathrm{K}$ the intensity was nearly two orders of magnitude less than its value at $96^{\circ} \mathrm{K}$, and the resonance could not be detected with certainty. In addition the low-field satellite of the nitrogen resonance tended to interfere with the measurement at the higher temperature, although its effect could be reduced by using higher values of microwave power so that the nitrogen lines were preferentially saturated. Below $133^{\circ} \mathrm{K}$ and as the temperature approached $96^{\circ} \mathrm{K}$ the linewidth tended towards a constant value determined by the small amount of additive still present in the diamond.

The success of the method presented here in reducing the widths of the nitrogen and nickel resonances in synthetic diamond provides further support for the suggestion that aggregates of ferromagnetic additive are responsible for the broadening. The results of semi-quantitative measurements by spectroscopic analysis on a range of the treated samples also agree with this conclusion. It would now be interesting to enquire if the variation in linewidth between various natural stones containing substitutional nitrogen is due to ferromagnetic impurities.

References

Dyer, H. B., Raal, F. A., du Preez, L., and Loubser, J. H. N., 1965, Phil. Mag., 11, 763-74.
Loubser, J. H. N., and du Preez, L., 1965, Brit. J. Appl. Phys., 16, 457-62.
Loubser, J. H. N., and van Ryneveld, W. P., 1966, Nature, Lond., 211, 517.
Phatl, C., and Woods, G. S., 1966, Nature, Lond., 212, 1227-9.
Smith, M. J. A., and Angel, B. R., 1967, Phil. Mag., 15, 783-96.
Smith, W. V., Sorokin, P. P., Gelles, I. L., and Lasher, G. J., 1959, Phys. Rev., 115, 1546-52.

[^0]: * Present address: School of Physics, University of Warwick, Coventry, Warwickshire.

[^1]: ${ }^{\prime}$ Smith, W. V.. Sorokin, P. P., Gelles, L. L., and Lasher, G. J., Phys. Rev., 115, 1546 (1959)
 ${ }^{\text { }}$ Samsonenko, N. D., Sot, Phyp. (Solid State), 6, 2460 (1965),
 ${ }^{\prime}$ Loubser, J. H. N., and Du Preez, L., Brit. J. App. Phys., 16, 457 (1965).

 - Dyer, H. B., Raal, F. A., Du Preez, L., and Loubser, J. H. N., Phil. Mag.. 11, 763 (1965).
 ${ }^{\prime}$ Huggins, C. M., and Cannon, P., Nature, 194, 829 (1962).
 ${ }^{\circ}$ McBrierty, V. J., and Cook, P. D., Nature, 205, 1197 (1965).
 'Kittel, C., and Abrahams, E., Phys. Rev., 90, 238 (1953).

[^2]: \dagger Present address: Department of Physics, Plymouth College of 'Jechnology, Plymouth.

