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Abstract 

This work focuses on the multi-scale variability of beach profiles. This includes the spatial 
variability over a range of scales of surveyed beach profiles and the complex temporal variability 
o f beach elevation at given positions along the profile. The aims of this work are to characterize the 
variability of beach profiles in both time and space, to identify the predominant spatial and 
temporal patterns of beach profile changes, to identify the extreme profile changes due to 
infrequent storms/storm groups, to understand the nature of beach profile change in depth, to 
quantify the non-stationarity of beach profile and to provide insight into the prediction o f beach 
profiles. 

This thesis includes a critical literature review of the existing profile models, such as numerical and 
data-driven models, to predict beach profiles. Particular focus is on the data-driven models since 
they characterize the beach in a site-dependent manner. The main weakness o f the existing data-
driven approaches is that many of the techniques assume stationarity and yet the processes in 
question are non-stationary, which necessitates more advanced techniques for investigating the 
variability of beach profiles. Hence in this thesis the wavelet technique is introduced, which is a 
relatively new technique. It is also shown how the use of a wavelet basis for decomposing the 
profile signals spatially allows a more satisfactory value for the depth of closure associated with a 
data set to be defined. 

Particular interests are in the beach profile data from the Field Research Facility (FRF) at Duck, 
North Carolina, USA. The field data and previous works by other researchers are introduced and 
preliminary studies are conducted including the interpolation o f data and the empirical orthogonal 
function (EOF) analysis. A connection is established between EOF and wavelet analysis. In 
addition to the identification of basic patterns of beach profile changes, emphasis is given to the 
non-stationary investigation of beach profile changes in both time and space locally. In this way, 
the infrequent events are identified at different temporal scales. The responses o f beach profile 
changes to different wave/storm conditions are discussed. The intermittent character o f beach 
profile change is displayed in both time and space, providing much insight to the argument by 
Southgate and Mdller (2000). Also, the depth of closure is presented by analysing the local 
components o f wavelet variance in space, which is scale-dependent. The results agree with Larson 
and Kraus(1994). 

The wavelet analysis is validated on the beach profile data at the Coastal Research Station (CRS), 
Lubiatowo, Poland. Focus is on the spatial variability across the beach profile. Due to the multi-bar 
system, the spatial scale contents o f beach profile changes at Lubialowo are more complicated than 
Duck. The predominant spatial scales indicate that wave breaking may be the major factor of bar 
formation at this site. This is consistent with Pruszak e/ al. (1997). 
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Chapter 1 Introduction 

Chapter 1. INTRODUCTION 

1.1 Motivation for This Work 

Coastal areas and their resources are critically important to the development and future of 

coastal communities and nations. Almost half the world's population lives in coastal areas and 

depends directly on coastal resources for both agriculture and fisheries. People also depend 

indirectly on the benefits provided by coastal ecosystems, such as protection against sea level rise 

induced by climate change and storm damage. Sound management o f coastal systems is therefore 

vital for the enhancement of the livelihoods of coastal people. Beaches are a particularly important 

element of coastal areas that protect economic investments in coastal areas, encouraging a positive 

contribution to local livelihood development while minimising adverse environmental impacts. In 

the UK, all of the local maritime councils, the Environment Agency and Defra have responsibilities 

for developing policy on coastal management. 

Traditionally, there are many measures for protecting the shoreline. They mainly include beach 

nourishment, groynes, detached breakwaters and seawalls as suggested by Krystian (1990). 

Beaches often form a vital part o f the defences, but by default rather than by specific design. 

Considering the role of beaches in protecting the coast, the recreational opportunities, and the need 

for environmental conservation, engineers are turning to 'soft' defence options, such as beach 

nourishment (Brampton, 1992). Therefore, in addition to being fundamental to understanding the 

morphodynamics of beaches, the spatial and temporal behaviour of beach profiles have a direct 

application in coastal engineering projects involving beach nourishment and in the siting of coastal 

structures. 

Beach variability can be a major source of uncertainty in shoreline management, therefore 

clearly understanding the variability of beach profiles is of significance. Since forcing conditions 

come from several factors including astronomical tides, 'surge' due to atmospheric pressure 

variations and surface wave activity as well as human intervention, the variability o f beach profiles 

is complex in both space and time. For instance, the ripples evolve at nearly the same time as the 

orbit motions of water particles as wave passing, as argued by Traykovski et ai (1999) whereas 
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Coco et al. (2000) suggested that beach cusps evolve over periods of minutes to hours. Winant et 

ai (1975) suggested that sandbars might respond significantly to seasonal wave conditions so that 

they have an approximate seasonal cycle, and might evolve over decades (Birkemeier, 1985; 

Lippmann et al. 1993). Failure to understand the changes might result in the shoreline management 

strategies or sea defence systems being out of balance with the coastal environment. 

1.2 Features of Beach Profiles 

1.2.1 Profile configurations 

There are many ways of categorising beach profiles. According to the bar system, beach profiles 

can be divided initially into two categories: barred and non-barred. Sediment transport is an 

important process for the formation of bars. The mechanism of sediment transport consists of 

waves stirring up the sediment and currents transporting the sediment. Offshore bars can reduce 

wave energy entering the surf zone by breaking the higher energy incident waves. In this way, 

offshore bars play a role in protecting the beach. Since the importance of these ubiquitous 

topographical features has been acknowledged, a number of authors (e. g., Sallenger et al., 1985; 

Larson and Kraus, 1992; Lippmann et al., 1993; Moor et aL, 2003) have studied bar systems. 

A few typical profile configurations are shown in Figure 1.1 with the mean water level. The bar 

and trough labelled on the plot are defined relatively to the mean. For convenience, the cross-shore 

profile is divided into four zones: dune zone, inner bar zone (surf zone), outer bar zone and upper 

shoreface as indicated in Figure 1.1. The offshore distance is relative to the baseline where the 

surveys o f the profiles begin. 
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Figure I . I Cross-shore profile zone and bar sequence on profile line 62 at Duck, North Carolina 

USA (the zones are divided according to Lee at a/. 1995). 

1.2.2 Depth o f closure 

An important concept in coastal engineering is the "depth o f closure (DoC)". From a practical 

point of view, it is denoted as the water depth beyond which the beach elevation changes are 

negligible. Thus the profile is divided into two areas: a nearshore zone which is considered to be 

morphologically active and an offshore zone where morphological activity is much less and 

considered insignificant. The DoC has attracted increasing anention due to a number o f coastal 

engineering concerns such as beach-fill design, planning of beach profile surveys, siting of 

structures. However, it should be acknowledged that DoC is a relative rather than an absolute 

concept and depends on different definitions. For instance, the time interval and the critical value 

of the 'negligible' beach elevation changes to identify the DoC of^en vary in different definitions. 

The previous studies are based on the mathematical formulae o f Hallermeier (1978, 1981), who 

related DoC to the properties of incident waves, in the absence of beach profile measurements or 

physiographic indicators. In Hallermeier's formulae the DoC is a fixed depth based on extreme 

wave heights with an adjustment for wave steepness. Moreover, the parameters in the mathematical 

formulas are based on a range of sediment sizes. However, the sediment transport is due to a 

3 
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number of factors and their interaction, such as waves, currents, water level, which suggests that 

the DoC should be not be decided only by wave parameters. It is essential to examine the DoC by 

considering all these factors together. Further, the temporal and spatial scale and site dependency 

should also be considered since the scales wil l affect the results of the DoC at a particular field site. 

1.3 Previous Study of Beach Profiles and Current Problems 

The investigation o f beach profile changes is hampered by a lack o f data and by the prohibitive 

computational complexity of applying deterministic dynamic equations for f luid flow and sediment 

transport over even the relatively short periods of a single storm. Therefore, much effort has been 

focused on simplified models. Roelvink and Broker (1993) classified the different modelling 

techniques into four categories: descriptive models; empirical models; equilibrium models and 

process-based models. Progress in this area of investigation has changed from simple 

phenomenological description to sophisticated numerical models. Most present models are either 

equilibrium or process-based. 

1.3.1 Equilibrium o f beach profiles 

The principle behind the equilibrium beach description is that a beach responds to the 

environmental conditions (waves and water levels) imposed upon it and i f such environmental 

conditions are constant the beach shape should remain relatively constant. The resulting profile is 

defined as the equilibrium profile. Although equilibrium of beach profiles might never be achieved 

in nature, the topic has been investigated extensively because of the practical significance in coastal 

engineering. The conditions for equilibrium on beaches and associated slopes and profile shapes 

have been a topic of research since the 1950s. The investigation o f the equilibrium of beach 

profiles by previous researchers generally concentrated on justification of an exponential 

relationship, which was proposed by Bruun (1954) based on field data from the Danish West coast 

and from California. The empirical correlations from Brunn (1954) and Dean (1977) between a 

scale parameter and the sediment size were proposed as: 
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h = Ax]'\ (1.1) 

in which/lis the water depth at a distance Jf̂  from the shoreline and is a dimensional shape 

parameter that depends only on the sediment size. 

Vellinga (1983) investigated dune zone erosion using a wave tank test and developed the 

erosion profile that included the effect of significant wave height in deep water and sediment fall 

velocity. Dean (1991) modified the equilibrium beach profiles to quantify the shoreline response 

due to the elevated water levels and wave heights on natural and seawalled shorelines. By 

modifying the classical concave equilibrium profile (Bruun, 1954; Dean, 1977), a few more 

realistic descriptions of the equilibrium beach profile were proposed by Larson. (1991, 1996) and 

by Larson et al. (1999a). 

Further work has been carried out to develop the theory of an equilibrium profile. More 

parameters were included in the exponential beach profile shape function by Bodge (1992) and 

Komar and McDougal (1994). They considered the local incident wave and bottom sediment 

characteristics and provided greater fiexibility to the dimensional shape parameter allowing for the 

indeterminate nature of the water line. Gonzalez et al. (1999) presented a beach profile equilibrium 

model for perched beaches with the assumption that wave reflection is the most important process 

to modify Dean's equilibrium model. With the recognition of the difficulty o f parameter selection, 

Romaniczyk et al. (2005) studied the shape function of equilibrium beach profiles in conjunction 

with a Taylor expansion for the nearshore and above water portion of profiles. 

The equilibrium of profiles was presented to quantify the shoreline response due to elevated 

water levels and wave heights on natural and sea wall shorelines. However a number of 

simplifications were made by in order to obtain simple analytical expressions. First, it was assumed 

the rate of cross-shore wave energy dissipation was constant in a given water depth. Second, the 

waves were described as linear shallow water waves and the wave heights in the surf zone were 

taken to be proportional to the water depth. These simplifications in equilibrium-based models are 

inappropriate because variations of morphology about mean states are mainly the result of internal 

dynamics between the morphology and the external forcing such as waves, currents and tides, and 

not simply a linear response to the forcing. 
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1.3.2 Process-based models o f beach profile changes 

The traditional approach to studying beach profile changes relies on the cause-effect chain of 

energy transfer. The waves and currents induce sediment transport, which usually changes the 

beach morphology. On this basis of the laws of conservation of mass, momentum and energy plus 

sediment transport formulae, various process-based models can be built up. The process-based 

models have a common structure, consisting of submodels, representing: ( I ) the hydrodynamics 

such as wave propagation, tide-, wind- and wave-driven currents, (2) the associated sediment 

transport patterns and (3) bed level changes, implemented in a loop system to ensure feedback and 

dynamic interaction of the elements of the morphodynamic system. 

There are many examples o f predictive process-based models o f beach profiles, such as HR 

Wallingford COSMOS (Southgate and Nairn, 1993; Nairn and Southgate, 1993), UNIBEST-TC of 

Delft Hydraulics (Reniers et ai, 1995; Bosboom et o/., 1997), CROSMOR2000 of University of 

Utrech (Van Rijn and Wijnberg, 1994, 1996; Van Rijn, 1997, 1998, 2000), BEACH1/3D of 

University of Liverpool (O'Connor et al., 1998; O'Connor and Nicholson, 1999) and CIIRC of 

University o f Catalunya (Rivero and Sanchez-Arcilla, 1994; Sierra and Sanchez-Arcilla, 1999). 

Those process-based models generally operate on short-term scales that describe periods of up 

to a week or so, corresponding to the effect of storm events. Even in the short-term the quality and 

application of process-based models is limited by a few shortcomings such as the uncertainty and 

the calibration of parameters. However, predictions of beach profile changes are required over 

large periods of time into the future to design beaches and sea defences (typically 50 years). The 

process-based models are not sufficient to model the beach profile behaviour accurately and do not 

provide reliable and robust predictions over the time scales of 50 years, indicating that the process-

based models might not be the best choice in this case. 

1.3.3 Statistical methods 

Basic statistics can be very useful for analysing beach profile changes for deriving simple 

empirical relationship to be used for predictive purpose (Larson et al., 2003). Basic statistical 

measures such as the mean, standard deviation, range and correlation, have been employed to 
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characterize beach profile changes traditionally. A growing body of observations, suitable for 

analysing the long-term behaviour o f beaches, is now becoming available. In parallel with this, new 

statistical techniques for identifying trends, quasi-periodic behaviour and other measures of 

predictability continue to be developed. For instance, one of these methods, the empirical 

orthogonal function (EOF) was first applied by Winant et al. (1975), and is now an established 

statistical method for analysing coastal morphology. 

The non-stationarity of beach profile changes has been acknowledged recently. Lippmann et al. 

(1993) suggested that the bar system at Duck, North Carolina, USA shows non-stationary 

behaviour. However in many statistical methods, such as EOF, stationarity is assumed. Stationarity 

means that the moments of a distribution o f random variables are the same everywhere. I f all the 

moments are constant, then we have full stationarity; i f only the first and second moments, i . e. the 

mean, variance and covariance ftinction, are, then we have second-order or weak siationarity; i f 

only the spatial differences are stationary, then we call the process intrinsic (Webster, 2000). What 

we talk about often in coastal engineering is second-order stationarity, which wil l be simply 

referred to as stationarity for convenience in this thesis. 

Fourier theory assumes that a signal is stationary and periodic in nature. The EOF method 

assumes a certain separability of the spatial and temporal variation such that the spatial 

observations provide replicate information at any time and vice versa. This is a serious assumption 

that we wish to avoid. The complex variability o f beach profiles in space and time means that 

Fourier-type and EOF analyses are not always the most appropriate. Therefore, more advanced 

statistical techniques are needed. 

The recently developed wavelet transform might be appropriate since it has been formulated to 

deal with data that show various kinds o f non-stationarity. Wavelet transforms have been used 

widely in disciplines where there is a need to examine the non-stationarity processes with long data 

series or data compression, such as in signal analysis (Mallat, 1989), in geophysics (Kumar and 

Foufoula-Georgiou, 1994), in earthquake analysis (lyama and Kuwamura, 1999), in the study of 

sea ice properties (Lindsay et al., 1996) and in vibration analysis (Smallwood, 1999). Hence 

wavelet techniques are expected to provide new insight into the variability of beach profiles. 
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1.4 Objectives and Organization of This Work 

1.4.1 Scope o f this thesis 

The identification of the patterns of beach profile changes at different spatial and temporal 

scales is of significance. Therefore, the aim of this work is to investigate the long-term beach 

statistics at two sites using wavelet techniques for analysing the spatial and temporal variability of 

beach profiles. The main objectives of this thesis are as follows: 

• Review existing methods that are based on field data sets in respect o f the intended use of 

the results. 

• Introduce wavelet techniques and methods to measure changes in the variability o f beach 

profiles. 

• Gather together'data sets of long-term field beach profile surveys. 

• Analyse the long-term data sets at Duck, North Carolina USA using wavelet techniques to 

investigate both time and space statistics and examine the non-stationarity. 

• Validate the techniques on another field data set. 

• Investigate the DoC based on wavelet techniques. 

The techniques are expected to be computationally efficient so that useful input for design and 

coastal management can be provided. The methods introduced in this thesis are applied to the 

specific problems of describing the variability o f beach profiles. However, the techniques have 

some general relevance to the measurement and statistical understanding of complex processes, and 

it is anticipated that the methods might be used for problems in related fields important for the 

successful management of the environment. 

1.4.2 Structures o f this thesis 

The organisation of this thesis is as follows. The existing statistical methods that are based on 

field data are reviewed in the Chapter 2. The wavelet transforms and techniques to identify 

changes in wavelet variance are presented in Chapter 3. The prime data set at Duck is described in 

Chapter 4, together with the methods used for interpolation. Also, in this chapter the earlier work 
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of other researchers is reviewed. Subsequently, EOF analysis is performed for the sake o f later 

comparison with the wavelet analysis. This is the core work, which w i l l be presented in Chapter 5 

and Chapter 6. Scale-dependent analyses are performed to determine characteristic temporal and 

spatial scales o f beach profile changes as well as the local variability in time and space. In addition, 

an effort is made to relate the changes in wavelet variance to the most active zone and the DoC of 

beach profiles. In Chapter 7, the techniques in Chapter 3 are used to investigate the spatial 

variability of the beach profiles at Lubiatowo, Poland so that the wavelet techniques are validated 

against different data sets. In Chapter 8, the key conclusions from the above studies are given and 

discussed. Finally, possible future work based on this thesis is proposed. 
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Chapter 2. DATA-DRIVEN M O D E L S 

2.1 Comparison between Data-driven and Process-based Models 

It has been acknowledged that coastal morphology is a non-linear dissipative system maintained 

away from equilibrium, which responds to the complicated interactions, feedbacks and couplings in 

the nearshore zone (De Vriend, 1991; Larson and Kraus, 1995). This non-linear dissipative system 

can alternate between periodic and chaotic behaviour. The chaotic behaviour means that a 

deterministic non-linear dynamic system can produce random looking results. A chaotic system 

must have a fractal dimension, and exhibit sensitive dependence on initial conditions. The term 

'fractal' refers to self-similar geometric objects or time series, which means their statistical 

properties are related to the time scale used for observation. These properties suggest that it wi l l be 

difficult to predict the coastal morphology using the process-based models. 

Generally, the prior assumptions on coefficients of process-based models that are often nested 

can generate bias. The beach (foreshore) and dune zones are dominated by the tide and storm surge 

levels, low-frequency and wave run-up phenomena and 3D morphology. These factors make the 

choice of parameters in the process-based models more difficult. 

With the recent growth of available beach profile data from novel measurement technologies 

such as remote sensing (e.g. satellite imageries, aerial photos and surf zone video monitoring), the 

variability of beach profiles can be investigated with greater confidence. By analysing the data and 

establishing generic system properties, the variability of beach profiles on yearly and decadal 

timescales can be understood, modelled and predicted. This new kind of study is known as the 

data-driven model (statistical method). In data-driven models the dominant features that result from 

the interactions of couplings of different forcing conditions can be studied. The strength of this 

approach has been addressed by Rozynski (2003b), Larson et al. (2003) and Southgate et ai 

(2003). 

Data-driven modelling is more objective than process-based models considering the coastal 

morphology and forcing conditions at different field sites. This is especially important in 

comparative studies of different sites, as the patterns that characterize the data sets under study 
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provide unbiased clues on key phenomena at each site. For instance, although seasonal variation is 

a general characteristic of nearshore morphological behaviour, the degree o f seasonality varies 

widely at different field sites (Van Rijn et aL, 2003). 

However, data-driven models also have problems. Similarly to the interpretation of the process-

based models, data-driven models also need a critical examination. Therefore, the aim of this 

chapter is to review the existing data-driven models so that both their advantages and disadvantages 

can be recognized. 

2.2 Statistical Methods for Studying Beach Profile Changes 

2.2.1 Introduction 

The aim of this section is to critically review the statistical methods that are currently employed 

to study the variability of beach profiles. Basic statistical measures such as the mean, standard 

deviation, range and correlation, have been employed to characterize beach profile change 

traditionally. The standard deviation is a basic statistic that describes how tightly all the 

observations are clustered around the mean in a set of data. Lippmann et al. (1993) computed the 

monthly averaged standard deviation time series to study the bar variability at Duck, N . C. To 

quantify the variability in elevation along the profile, the standard deviations over time of cross-

shore profiles were computed at fixed locations by several authors, including Kraus and Harikai 

(1983), Birkemeier(1985), and Howd and Birkemeier (1987). 

Different kinds of Fourier transforms have also been used to study the variability of coastal 

morphology so that the cyclic behaviour can be characterized using sinusoidal functions. One such 

study was the application of Random Sine Function (RSF) by Pruszak and Rozynski (1998). They 

argued that RSF is especially useful for describing the local geometrical properties of bar 

movement. 

Rozyriski (2003b), Larson et al. (2003) and Southgate et al. (2003) reviewed the recent work on 

the statistical methods used for characterizing coastal morphology. Beach profile changes were 

previously studied using statistical methods such as empirical orthogonal functions (EOF), 

principal oscillation patterns (POP), singular spectrum analysis (SSA) and canonical correlation 
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analysis (CCA). A l l these methods are connected with the EOF method somewhat, therefore it is 

necessary to have a close look at the EOF method. 

2.2.2 Empirical Orthogonal Function (EOF) 

EOF analysis is also known as principal component analysis (PCA), which is a method that has 

been extensively used to identify spatial patterns in coastal morphology data. It was first proposed 

by Winant et al. (1975) for analysing the variability o f beach profiles. 

Beach profile data were used to generate sets of empirical eigenvectors. In order to generate 

empirical eigenvector a symmetric correlation matrix A^°*^ is formed with elements 

1 ^ 
ILK^J,.' (2.1) 

w."; TIT 

in which/i, , are the collection of beach profile measurements. The subscript jc is an index ranging 

between I and , the total number o f points along the profile, and the subscript / refers to the time 

index at which varies between 1 and , the total number of times at which profiles were recorded. 

The diagonal elements of this matrix are 

and represent the mean square value of the date in time divided byn^. The sum of the diagonal 

elements defined as the trace of A^^*" is 

ThusTr^^ is equal to the mean square value of all the data. The square matrix A *̂̂ *" possesses a 

set of eigenvalues >1„ and a set o f corresponding eigenvectors e „ ^ , which are defined by the matrix 

equation 

A'°'e„=A„e„. (2.4) 

A direct result of this definition is that the sum of all the eigenvalues is equal to the mean square 

value of all the data. Consequently, each eigenvalue represents a portion o f that mean square value. 
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K.=Z'^nje„,^' (2.5) 
n 

I f we require that: 

n 

where „ is the Kronecker delta function, a set of eigenvectors normalized to unity is formed, 

and , are orthonormal. The power of EOF lies in the fact that the choice of the eigenvector 

guarantees they best fit the data in the least squares sense. 

Resulting from the orthonormal property, the coefficients , are obtained from: 

<^n,r=^K,^n,s- (2.7) 

It can be shown that: 

(2,8) 

so i f we definecjl, = /(A„rt_,rtJ '", the functioned, form another orthonormal set: 

=^n,m- (2,9) 

Equation (2.9) consists of eigenvectors of the other symmetric correlation matrix B^^*" with 

elements 

Although the sizes of both matrices differ in general, they have the same non-zero eigenvalues. 

Winant et al. (1975) came to a few significant conclusions from studying Torrey Pines Beach 

using the method described above. The eigenvector with the largest value is the mean beach 

function. They concluded from the North Range that the first largest eigenvector apart from the 

mean accounted for 39.4% of the all variance that was referred as the bar-berm function. And the 

second largest eigenvector apart from the mean accounted for 46.7% of the all variance that was 

referred as terrace function. They gave the similar analysis to the South Range and Indian Canyon 

Range. 
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Another earlier employment of EOF in coastal engineering is by Aubery (1979) who related the 

mean profile shape, bar and berm features, and the low-tide terrace to the first, second and third 

EOF eigenvector, respectively. After these pioneering works, EOF method has become a fairly 

common method to investigate beach profile changes in time. 

EOF was performed by Hashimoto and Uda (1982) to study the response of beach profiles to 

incident waves. The analysis was based on data at Ajigaura Beach and concluded that the second 

eigenvector was associated with the beach changes due to onshore-offshore sand transport caused 

by changes of wave heights. 

Later on, Birkemeier (1985) examined the time scales of nearshore profile changes al Duck with 

EOF using over three years of surveys. It was found that the first two eigenvectors, which 

accounted for 64.8% of the variance because of two different double bar configurations, resulted 

from storm sequences. 

A Dutch data set, which included large-scale morphological changes, was investigated by 

Wijnberg and Terwindt (1995) using EOF. It was impossible to schematise the various bar systems 

with one common set of morphological empirical eigenvector. This implied that in EOF analysis 

simultaneously taking into account the alongshore and temporal variation in the whole profile 

would fail to schematise the various bar systems (Ostrowski et al, 1991). Therefore, a moving 

window approach was employed by the authors to quantify particular large-scale morphological 

features. 

Larson et al. (1999b) analysed the topographic data from three different beach nourishment 

projects using EOF to determine the response of the fills at different temporal and spatial scales at 

three fields. Most recently, EOF was used by Rozynski (2003b) to investigate the long-term 

bathymetric surveys at a coastal segment of the southern Baltic coast to determine the characteristic 

evolution patterns of multiple longshore bars. The author employed EOF to give grounds for the 

application of canonical correlation analysis that wi l l be introduced in the next section. Medina et 

ai (1991) separated the temporal and spatial variability o f the onshore and offshore sediment 

transport through laboratory and field data of beach profile changes according to the main 

components of EOF. 
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A particular employment of EOF by Reeve et al. (2001) was to investigate the 2-D behaviour of 

beaches by treating the 2-D data set as 1-D array. By this study, the long-term morphological 

behaviour at Great Yarmouth, UK was successfully investigated. 

On the basis of the model proposed by Winant et al. (1975), Hsu et al. (1994) developed a 2-D 

EOF model. They used beach profile data that were measured every two months along six 

segmented detached breakwaters to generate spatial and temporal orthogonal eigenvectors. The 

spatial and temporal eigenvectors were examined from data sets in different time intervals by Hsu 

et al. who concluded that the 2-D EOF provides a better prediction of the global changes near 

coastal structures than the 1-D EOF. 

There are some other examples of the application of the 2-D-EOF. The multi-scale shore 

variability at Lubiatowo and Cecina Mare Beach was studied by Aminti et al. (1995) employing 

EOF. They argued that for both sites better description o f shore profiles was ensured by the 1-D 

EOF while the 2-D EOF could be recommended for studies aimed at the investigation of general 

trends of shore variability. 

EOF has some very strong advantages. First o f all, spatial structure of the analysed system can 

be separated. Each eigenvector can be examined separately and an attempt can be made to assign to 

it a physical process that it should account for. Secondly, EOF permits identification of the 

dominant patterns of beach profile changes. Most variability is usually contained in a few modes 

only while the remaining ones represent either insignificant phenomena or noise. The larger 

eigenvalues explain the majority of the variability. 

EOF does have serious limitations. One problem of EOF is essentially an attempt to handle the 

non-stationarity of beach profile changes with the assumption of stalionarity. The assumption that 

the temporal series gives effectively replication of spatial series is the most serious problem of 

EOF. 

2.2.3 Canonical Correlation Analysis (CCA) 

Canonical correlation analysis was developed by Hotelling (1936) for application in the social 

sciences. It was Glahn (1968) who initialized the application of this technique to geophysical data. 

CCA was used to study i f there are any patterns occurring simultaneously in two different data sets 
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and the correlation between the two different patterns. This method is not suitable for the work in 

this thesis; therefore the CCA is given a quite short description for the background of the current 

data-driven models. 

The main idea of CCA is to form a new set of variables from the original two data sets so that 

the new variables are linear combinations of the old ones and maximally correlated. Usually, EOF 

proceeds CCA to reduce the noise in the data. With the pioneering work by Bamett and 

Preisendorfer (1987), CCA began to be used widely in geophysics, especially in meteorology and 

oceanography. Sometimes singular value decomposition (SVD) was used as an alternative to CCA. 

There are two investigations that apply CCA in studying coastal morphology. An 11-year long 

measurement time series of waves and profiles from Duck, North Carolina, was analysed by Larson 

et al. (2000) using CCA. Based on the correlation between the dominant patterns in the wave 

heights and profile changes established through CCA, a regression matrix was derive~d that related 

the profile response to wave heights. They suggested that linear statistical analysis based on data 

processing, such as CCA, are useful for analysing profile response to waves. 

Rozynski (2003a) evaluated the importance o f interactions among multiple longshore bars at a 

segment of the southern Baltic coast employing CCA. By maximizing the correlation among the 

bars, the author predict the inner bar behaviour with the outer bar. The most important conclusion 

of the study is that outer bars control the long-term variability of the inner bar by more than 60%, 

suggesting the significant interaction between the outer and inner bars at that site. 

Though the above investigation initiated application of the CCA in coastal morphodynamics, 

the critical examination of the slationarity and the transferability of the regression matrix are 

needed to forecast profile evolution using CCA. 

2.2.4 Principal Oscillation Patterns (POP) 

POP is a linearized form of the more general Principal Interaction Patterns (PIP) that was 

developed by Hasselmann (1988). Storch et al. (1988) presented a successful application of POP 

method in meteorology and concluded that POP can identify "coherent, migrating, standing or 

otherwise changing patterns of the system without prior knowledge of the system dynamics". In 

POP analysis the patterns are derived based on approximate forms of certain dynamic equations. 
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The POPs are defined as the normal modes of linear dynamical representation of the data in terms 

of first-order autoregressive vector process with residual noise. 

So far, there are two applications of this method in coastal morphology. The shoreline evolution 

in the vicinity o f Vliehors was analysed by Jansen (1997) using POP. Subsequently, this method 

was employed by Rozynski and Jansen (2002) to investigate the multi-bar system at Lubiatowo. 

The POP patterns should account for more signal variance than the EOF patterns, because they 

include lag-1 covariance. However, i i is usually accompanied by EOF analysis because of 

difficulties in the interpretation of POP patterns. POP postulates the system's (linear) dynamics in 

advance through the POP system matrix. This assumption does not make POP patterns reflect 

actual developments in coastal morphodynamics. Another drawback is that the POP panems are 

not orthogonal. Considering the drawbacks of POP, it is not employed in this thesis. 

2.2.5 Singular Spectrum Analysis (SSA) 

SSA was developed, described and tested upon artificially generated time series by Vautard et 

al. (1992). SSA can be seen as a particular application of the EOF analysis, where the column 

vectors of the data matrix contains the time series delayed in time up to the maximum shift, known 

as the embedding. The selecting of the embedding dimension d is crucial in the analysis. Vaultard 

et al. (1992) argued that in practice d should not exceed M3, where is the number of values 

recorded in time. 

SSA is useful for noise-reduction, de-trending, and identification of oscillatory components and 

deterministic chaos. Compared with the traditional EOF analysis, SSA provides information on the 

dynamics of the underlying system. The method is based on the Karhunen-Loeve expansion that 

requires stationarity of the analyzed lime series. In the expansion the covariance matrix (T.) of the 

analysed time series with lags of N/3 is utilized. SSA allows for detailed decomposition of the 

original time series. First, it is possible to separate the 'true' signal from noise by extracting 

reconstructed components (RC-s) associated with the largest eigenvalues of the matrix T,. Second, 

a pair of almost equal eigenvalues associated with two significant RC-s reflects an oscillation 

present in signals, which will not be discussed in this thesis. 
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The use of this method in coastal morphology is a very recent thing, Rozyhski et al. (2001) use 

the SSA method to analyse the temporal and spatial variation in shoreline position at Lubiatowo. 

Also, Southgate et al. (2003) used SSA to extract long-term trends from measurements of the 

variation at several beaches around the world in order to detect oscillatory behaviour in the filtered 

signals. Stive et al. (2002) investigated the causes and factors for the variability and the resulting 

possible evolutions of wave-dominated shores and shorelines, in which SSA was employed to 

extract the long-term trends. 

As mentioned above, SSA is a particular application o f EOF, therefore the stationary 

assumption still holds. It is determined that SSA is still not the appropriate choice for the non-

stationary process. Another disadvantage is the selecting o f the embedding dimension that might 

bring bias to the SSA analysis. 

2.3 Discussion 

Existing statistical methods for investigating the variability o f beach profile have been reviewed 

in the above sections. Among these methods, EOF was the earliest to be used in coastal 

morphology, and allows the dominant modes of variability of beaches to be selected. Moreover, it 

should be noted that all of the POP, CCA and SSA are based on or related to EOF, but CCA, POP 

and SSA are not as well widely used as EOF. Therefore these methods wi l l need further calibration 

on more data sets. 

Although these statistical methods discussed in this chapter are useful in specific aspects for 

understanding and predicting the variability o f beach profiles, they are essentially an attempt to 

handle non-stationarity by assuming that multiple observations at time locations give independent 

information on the spatial variation. This is actually an important motivation on the later wavelet 

analysis, since wavelet analysis is well suited for investigating non-stationary process. 

A natural step prior to data-driven model development is analysis o f the data to establish basic 

properties and degree of association between these properties (Larson et al., 2003). Considering the 

complexity of beach profile changes in both space and time over a range o f scales, it is obvious that 

the existing data-driven models have not given a comprehensive understanding of the properties of 
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data. From this point of view, wavelet analysis is highly appropriate because it allows a 

multiresolution analysis by dividing the variation into a range o f scales. 

Another common application related to the variability of beach elevation is to determine the 

DoC (Hallermeier, 1981). It is apparent that the existing statistical methods have not dealt with this 

aspect. Hence, an introduction is given for wavelet analysis and a related method to identify the 

DoC is also presented in next chapter. It is expected that wavelet analysis wi l l provide an in-depth 

understanding of the variability of beach profiles. 
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Chapter 3. M E T H O D O L O G Y D E V E L O P M E N T 

3.1 Wavelet Technique 

3.1.1 Wavelet 

In Fourier analysis, which breaks down a signal into constituent sinusoids of different 

frequencies, the signal is transformed using sine functions. For many signals, Fourier analysis is 

extremely useful because the frequency content o f the signal is of great importance. Fourier 

analysis has a serious drawback. In transforming to the frequency domain, time/space information 

is lost. When looking at a Fourier transform of a signal, it is impossible to tell when a particular 

event takes place, since a particular Fourier coefficient describes the amplitude and phase of a 

sinusoid exponent of the signal that is assumed to be constant everywhere. Hence the Fourier 

transform is not enough to study non-stationary signals. 

Wavelet technique that is suitable for analysing the non-stationary process was developed in the 

1980s by Morlet, Grossmann, Meyer, Mallet, and others. It was the work of Daubechies (1988) that 

caught the attention of the wider applied mathematics communities in signal processing, statistics, 

and numerical analysis. The most attractive property o f wavelet analysis is time (or space)-scale 

localization so that the signal variance at a particular scale is related to a particular time (location). 

Another important property is that wavelets enable a multiresolution analysis to be performed, 

which partitions the variance of a signal according to a range o f scales. Unlike Fourier analysis, 

which uses harmonic sine and cosine functions, in wavelet analysis the basis is an analysing kernel 

called a mother wavelet, which is localised in time or space. 

Wavelet analysis represents a windowing technique with variable-sized regions. Figure 3.1 

shows how the wavelet transform partitions a time (space) frequency plane so that high frequency 

components are analysed in a short window, and low frequency components in a large window. A 

wavelet represents variation over some interval of temporal (spatial) frequency defined by its gain 

function. 
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Figure 3.1 Wavelet basis. 

3.1.2 Applications o f wavelet transforms 

Though wavelet transforms have not been employed to investigate variability o f beach profiles, 

the wavelet transform has been used widely in disciplines where there is a need to examine 

intermittent or variable phenomena in long data series. Some limited applications can be found in 

relevant areas where the data set is large. For one thing, wavelet transforms have been used in 

oceanography to study wave and turbulence characteristics. Liu (1994) initialized the employment 

of the wavelet spectrum to study ocean wind waves, followed by Massel (2001) and Panizzo et al. 

(2002). The application of wavelet transforms on turbulence data can be found from the work by 

Everson and Sirovich (1989), Meneveau (1991), Farge (1992a, 1992b) and Hudgrins (1992). 

Subtidal coastal sea level fluctuations were studied by Percival and Mofjeld (1997) using the 

maximal overlap discrete wavelet transform. Rozynski and Reeve (2005) characterized the time 

series of water surface elevation and current collected at Lubiatowo using wavelet transforms. The 

only work on studying beaches was by Short and Trembanis (2004) who used the continuous 

wavelet transform to investigate the patterns of beach width (longshore variability). 

Wavelet transforms have not been previously applied to the analysis o f beach profiles, perhaps 

because the data sets are quite small. Therefore, in what follows the wavelet transforms are 
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introduced and methods for identifying changes in variance are developed. This is necessary 

considering the highly non-linear dynamic system of coastal morphology. Another aim of the 

introduction is to pave the way for other potential uses of the wavelet technique in coastal 

engineering. 

3.2 The Wavelet Transforms 

3.2.1 General properties o f wavelet transforms 

The mother wavelet, denoted b y ^ ( j c ) , belongs to families o f wavelets. There are several 

families of wavelets. The most common of these include the Haar, Morlet, Mexican hat and 

Daubechies wavelet families. They have some basic properties in common. The differences depend 

to some extent on the phenomena they are intended to describe although the subject is complicated 

by the variety of conventions and notation. 

The key properties of a wavelet are that: 

1. Its mean is zero 

[^i//(x)dx = 0. (3.1) 

2. Its squared norm is 1 

^y/ix)\'dx = \. (3.2) 

3. It has compact support, by which is meant that a wavelet damps rapidly to zero and so 

operates very locally. 

The wavelet is an analysing kernel that oscillates locally like a wave and damps rapidly to zero 

on either side of its centre. Because of the compact support the coefficient describes the local 

variation at some scale. Wavelet analysis uses a collection of analysing kernels all derived from the 

mother wavelet. They are denoted byf//•^J^(x). Each kernel is determined by two parameters A 

andk, the scale and location parameter respectively. The general formula is: 

, , 1 fx-k] 
/ l > 0 , ke'iR, (3.3) 
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where 9? is the set of real numbers that defines the set of local kernels. Changing A dilates or 

contracts the wavelet and changing^ translates it. To divide the time series into contributions from 

different frequency bands, we need to perform filtering at several different scales. I f we increased, 

then the interval over which the wavelet takes non-zero values is expanded so that the low 

frequency components of a signal over a wider time (space) interval can be investigated. 

Conventionally^, representing a translation, is centred axk = 0 for the mother wave le t (A: ) SO 

that the local variation of a signal can be investigated in different portions by increasing ^ . 

3.2.2 The discrete wavelet transform 

Broadly speaking, there are two main wavelet transforms. One is known as the continuous 

wavelet transform ( C W f ) , which is designed to work with time series defined over the entire real 

axis. Another is discrete wavelet transform (DWT), which deals with series defined essentially over 

a range of integers. The beach profile data are finite and discrete and exact reconsnoictions are 

required, therefore the DWT is introduced and employed in this thesis. 

The discrete equivalent o f Equation (3.3) is given by 

^0 J 
= A - ^ ' V ( V ^ - A x o ) (3.4) 

where j is the exponential scale and/Lpis a fixed dilation step greater than I andx^ is the sampling 

interval in time or space. Therefore the translation can be discretized in steps x = fcc^^l^ . Following 

the common convention of AQ = 2andArQ = 1, the Equation (3.4) becomes 

^ , ^ ( x ) = 2 - > ' V ( 2 - ^ ^ - ^ ) . (3.5) 

A set of wavelets that provides a complete orthonormal basis for all functions / ( x ) o f finite 

variance can be constructed. That is, every wavelet is orthogonal to its dilation and translations. 

Thus the discrete wavelet transform is: 

D j , , = { f , y f j , ) . (3.6) 

The inner products, ^ in Equation (3.6) are the wavelet coefficients. 
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Thus, any data with finite variance can be approximated as precisely as we can by the sum of 

the products of the wavelet coefficients and the wavelets as: 

CO 00 

/ W = Z Z ( / 'Vy .* )v 'M- (3.7) 
j=-a3 k=-<3o 

3.2.3 Multiresolution analysis 

We need to deal with the infinite summations of Equation (3.7) to make a discrete transform of 

data at discrete points. This is the reason that we introduce multiresolution analysis. A 

multiresolution analysis is to write / a s a limit of successive approximations, each of which is a 

smoothed version o f / with more and more concentrated smoothing functions (Daubechies, 1988). 

In practice, Equation (3.7) is approximated to include scale components larger than any arbitrary 

exponential scale m^as 

P.JM= t £ ( / ' V ' M ) V ' M - (3.8) 

This is a smooth approximation to the data, since all components corresponding to this scale or 

finer have been discarded. The discarded component, / W scale parameter 2'"° is called the 

detail. Thus, 

*=-« 

Therefore, Equation (3.7) can be expressed by Equation (3.8) and (3.9) as 

mo 

/ W = ̂ ™ „ / W + Z a / W - (3 10) 

Since the scale/w^ is selected arbitrarily, Equation (3.10) can also be written as 

and so 

P.,-JM = P.JM + Q^Jix). (3.12) 
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That is, the smooth representation at some scale is equal to the smooth representation at the next 

coarsest scale plus the corresponding detail component. 

Considering the increasingly smooth r e p r e s e n t a t i o n s / ' „ ^ / ( x ) , / ' „ ^ ^ , / ( x ) , / ' „ ^ ^ 2 / W > " Mallat 

(1989) expressed each of these as a vector belonging to the vector space Z,^(9^)of one-dimensional 

functions of jc with finite variance. The function f { x ) also belongs to this vector space. The vector 

space comprising the representations for scale parameters 2"° o f all vectors is defined 

asK^^ . Since any element ofV^^ is also an element ofZ,^(9?), V^^ is a subspace ofZ,^(9?). In 

Equation (3.12), all the information in the smooth representations for scale parameters/'^^/(jc) is 

contained in the representation F„^_ , / (x ) fo r allWo. This indicates that the vector subspaces 

corresponding to these representations are nested. Each subspace contains all those space 

corresponding to smoother representations, thus 

The important consequence here is that the scaling functions provide an orthonormal basis for 

the nested subspaces. The existence of a scaling function^was shown by Mallat (1989). The 

scaling function is the 'conjugate mirror' that corresponds to the wavelet function. That is, once we 

choose the wavelet function, the scaling function is determined. It is analogous to the wavelet 

function, in that scaling functions are generated from the basic scaling function by scaling and 

translation as expressed in Equation (3.13) 

(Pj^,{x) = 2-^"cp{2-^x~k). (3.13) 

The scaling functions and the corresponding wavelet functions together generate a 

multiresolution analysis as: 

;̂/W= lL{f'<P^.u)<Pj.u + Z(/.V'>.,*)V'.>..»- (3.14) 

Therefore Equation (3.10) can be written as: 
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This is multiresolution analysis. Using this equation, the beach profile elevations f(x)can be 

expressed as the smooth representation at the scale parameter 2"" together with the detail 

components identified by the wavelet functions with scale parameters 2'"°, 2"""' , ...and 2. 

The multiresolution analysis is carried out using the pyramid algorithm, as described by Press et 

al. (1992). In this algorithm, input data must consist o f = 2''equally spaced observations, where 

p is a positive integer. It can be regarded the input as a discrete representation of the underlying 

f { x ) where m = 0. Filtering the data separately with wavelet filters and scaling filters, we keep 

the wavelet coefficients and filter the smooth representation. The process is repeated until two 

detail coefficients and two mother function coefficients remain. The final output of the algorithm 

consists o f 2''values» the two mother function coefTtcients and! ' ' -2wavelet coefficients for 

scale 2 ' to 2''"' . The algorithm can be inverted to give an exact reconstruction of the original data" 

from all 2''coefficients. Alternatively, i f all the coefficients are set to zero before inversion, save 

for all the wavelet coefficients corresponding to scale 2'"°, then the output is simply the detail 

components, and the inversion corresponds to Equation (3.9). 

3.2.4 Wavelet choice 

The number of vanishing moments of a wavelet function, M, is a critical parameter o f a wavelet. 

As A/ increases the wavelets become smoother but also less localized. I f a wavelet has AY vanishing 

moments then 

| j c X x ) d x = 0 , c=0, 1,2,... A / - 1 . (3.15) 

The choice of wavelet and its moments was discussed by Kumar (1997). We wish to use an 

orthogonal wavelet basis with as compact a support as possible and an adaptation to the finite 

interval. For this reason the Daubechies' (1988, 1992) wavelet family with A / = 2 is chosen to 

study the local features o f beach profile changes in this thesis. There are four filter coefficients for 

the Daubechies' wavelet with two vanishing moments. This wavelet has orthogonal property and a 

compact support. This is preferred as our interest is in analysing the variance o f profile in time and 
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space. I f we were mainly concerned to compress or de-noise the data we would choose a wavelet 

with more vanishing moments for its greater smoothness. 

4-
— I 1—•—I—'—I—•—I—•—I—•—1 

9 2 4 6 8 10 12 14 

T — • — r 0 2 4 6 8 10 12 14 
location in time/space 

Figure 3.2 Translation and scaling of a Daubechies wavelet with two vanishing moments. 

The Daubechies wavelet with two vanishing moments, abbreviated as the db2 wavelet, is 

illustrated in Figure 3.2, where the wavelet in the lower graph illustrates a dilation and translation 

of the wavelet in the upper graph. Thus the latter would yield an analysis o f details in the time 

series at a coarser scale and at a different location within the data series. 

3.3 The Adapted Maximal Overlap Discrete Wavelet Transform 

(AMODWT) 

3.3.1 The M O D W T 

Daubechies (1992) argued that the DWT partitions the variance of a signal over all scales i f the 

mother wavelet satisfies certain additional conditions. Therefore, i f the sum of squared differences 

from the mean of a sequence of data u = f { x ) is denoted 5'S(,/(Jc), and the equivalent sum of 

squares for the smooth representation o f the data at scale parameter 2" \sSSjf{x), then 
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SSJ(x) = S S j f ( x ) + X I • (3-16) 

The contribution to the variance o f / / f o r scale parameter 2*" is known as the sample wavelet 

variance (Percival, 1995). 

1 

Kn.=—Y.^lj- (3.17) 

The translation step in the DWT is equivalent to subsampling the output of a convolution of 

data with a wavelet filter. This, among other conditions, ensures orthogonality of the wavelet basis. 

By not subsampling the convolution o f the wavelet with the data as in the DWT analysis, but rather 

by retaining all the values, the wavelet variances can be estimated more efficiently (Percival and 

Guttorp, 1994). This is called the maximal overlap discrete wavelet transform (MODWT). 

However, because the MODWT^coefficients are obtained withouFlh¥ subsampling steps, the new 

coefficients at any scale are no longer orthogonal to each other so it is possible to generate 

correlated wavelet coefficients within and between different scales. A major advantage of the 

MODWT is that it can be readily applied to data where N is not an integer power of 2 in number, 

which is a very important consideration for our relatively small set of beach profile data. 

The variance of die MODWT is defined as: 

This is a measure of the variance associated with dilation 2™ of one wavelet, where the tildes 

over symbols denote that the coefficients comprise the maximal overlap set and not the subsampled 

set used in the ordinary DWT. Since near the beginning and the end of the data sequence the 

wavelet filters overlap the ends. Percival and Guttorp (1994) discarded those locations simply so 

thatrt^ <N coefficients are generated. Since the MODWT coefficients are not orthogonal, the 

MO wavelet variance is estimated with an effective number of degrees of fi-eedom that is somewhat 

less thanw^. It can be referred to Percival (1995) for more details. Similarly the contribution to the 

covariance can be estimated from the MODWT as: 

C = T i - Z < „ ^ : . . (319) 
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w h e r e < i ^ „ a n d a r e the MODWT coefficients for scale2^" and locations for variablez/and v , 

respectively. 

Whitcher et al. (2000b) developed the wavelet correlation from the MODWT wavelet variances 

and covariance. The wavelet correlation between w and vat scale 2 " is estimated by 

(3.20) 

3.3.2 The A M O D W T 

Any wavelet filter will overlap the ends o f a sequence of data so that the conventional filter 

cannot be used to generate wavelet coefficients. In signal processing there are many more data than 

the features of interest, so generally the data are just discarded where this occurs (e.g. Percival, 

1995). However the beach profile data are not long enough to allow data at the end to be discarded. 

Few wavelet coefficients might remain i f we just follow Percival (1995). Therefore the adapted 

wavelet filters o f Cohen et al. (1993) were used in this thesis to generate adapted maximal overlap 

discrete wavelet transform (AMODWT) coefficients. The filters are denoted as a set of 

coeff ic ients / /= { / 7 ; j } , / = 1,2, " , 2 ' ' + 2(2^ - 1). There wil l b e c o e f f i c i e n t s for each scale 

parameter with input data by: 

^ . > = ' & o / ( * + ' - l ) . * = 1.2,. . . ,2^-l 
'=1 

2^+2(2>-I) 

= Z^-jfC"-^' +0,k-2\r +l,...N-2(r -\) (3.21) 
1=1 

where hl^j and hi'J are the filter coefficients of the right and left side respectively. The adaptation 

wil l introduce bias, which wil l not be discussed here in detail. The bias is especially obvious at the 

first two finer scales, so the first two and the first four coefficients from the adapted wavelet 

coefficients are discarded. Further details may be found in Lark and Webster (2001). 

Though these scale-specific statistics are useful, they lose the local information that wavelet 

coefficients contain because they are summed over all locations. Therefore, the local contributions 
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to the wavelet variances are also discussed. The local wavelet variance components and standard 

deviation at different scales are defined as 

, (3.22) 

and 

(3.23) 

separately in this thesis. 

3 .4 Procedures of Identifying Changes in Wavelet Variances 

3.4.1 General 

It has been generally acknowledged that the variability of beach profiles in both space and time 

is non-stationary. Therefore wavelet variances are also expected to vary with offshore distance in 

space or in time series. Identifying the locations o f discontinuous changes in spatial and temporal 

wavelet variances will provide much insight into the variability of beach profiles. For these 

purposes a method is needed to detect changes in wavelet variances. A suitable method using the 

MODWT was proposed by Whitcher et al. (2000a) who applied to the data on measurements o f the 

water level of the Nile River. Lark and Webster (2001) used the method to detect changes in 

variance of soil properties on a linear transect. Here the method is introduced briefly based on the 

AMODWT coefficients. 

First of all, the wavelet coefficients of beach profiles were computed using the AMODWT. The 

normalized cumulative sum of squares of the AMODWT coefficients at scale 2̂  is defined as: 

^JJ'=-T ' ft = 1,2,..., A ' - 1 . (3.24) 

(=1 

Under the null hypothesis, which assumes that beach profiles have uniform wavelet variances, 

Sjf^ is expected to increase linearly over A = 1,2,..., - 1 . I f there is a single change in variance at 

some point in the sequence say k=k , then the graph of^^ against k is expected to approximate a 
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bilinear piecewise function with the break point at^ . Any individual realization of a random 

process of uniform variance wil l show some breaks of slope in the5^ plot. Therefore, the strength 

of evidence against the null hypothesis can be measured using the 5-statistic with 

5 = m a x ( 5 \ 5 " ) , (3.25) 

where 

( k \ 
= max 5",̂  , (3.26) 

and 

B = max S,fr (3.27) 

For a given sequence the value o f arises from the largest change in slope ofSy^^at some A:. 

The size of B is a measure of the magnitude of the change in variance. Finding the value of A that 

gives rise to large values ofB identifies candidate a change point at which the variance change is 

significant. 

As mentioned above, the variation of beach profiles is not constant along the profile, so the 

purpose is to test and reject the null hypothesis of uniform variances, and further to identify the 

positions of changes in wavelet variances using Equations (3.25)-(3.27), To test the null 

hypothesis, a diagnostic distribution ofB under the null hypothesis of uniform variances is needed; 

however there is no tractable form for the sample distribution ofB for the MODWT. Therefore, in 

this thesis the critical values of 5 for the null hypothesis of uniform variances are estimated by 

Monte Carlo methods. In the following the method of obtaining the diagnostic statistic 

distribution B is introduced. In brief, they are: 

1. The experimental variogram of beach profiles was computed and modelled. The 

experimental variogram and some variogram functions are introduced below. The experimental 

variogram of beach profiles was computed and modelled using some combinations of variogram 

functions. 

2. A covariance matrix C is generated by employing the coefficients of variogram functions 

modelled in the above procedure of beach profile data. 
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3. A series of realizations with uniform variance of a random process was computed using the 

Cholesky factorization of the covariance matrix (Goovaerts, 1997). The random process is the 

elevation at given locations of beach profiles in time series or elevation distribution in space series 

in given surveyed beach profiles. 

4. The wavelet coefficients of the series of realizations generated in the above procedure were 

computed using the AMODWT. 

5. The B statistic was computed at each scale. Subsequently the 95^ percentile of the 

modelled scales of B are set as critical values to check the candidate change in wavelet variances of 

beach profile data at each scale. 

3.4.2 Variogram 

With reference to the above section, in the development of B statistics the variogram was used. 

U is seldom used in coastal engineering; hence the aim of this section is to introduce the concept. 

Variogram is a measure of the variance between data as a function of distance. It is used in the 

geostatistic methods, widely applied in mining, petroleum, meteorology, geology, soil science and 

ecology. The variogram function for a random variable f { x ) is defined as: 

K / ) = ^ K f l r { / ( x + / ) - / ( x ) } , (3.28) 

where f { x ) is a random function of the location, jc, and / is a lag. In this thesis, the lag may 

correspond to a spatial distance along the profile or an interval of time. 

The variogram was computed from experimental data following the estimator of Malheron 

(1962): 

1 SO) 
m - j ^ ^ ' Z { K x , + l ) - K x , ) } \ (3.29) 

where A^(/) is the number of data pairs of values in which the separation distance is equal to /. 

The experimental variogram can be modelled by appropriate continuous functions. All standard 

variogram functions will define a positive definite covariance structure. They include the linear 

model, circular model (in 1 or 2-D), spherical model, exponential model, Wackemagel function, 

Bessel function, sine function and others. In addition, the nugget variance can be used to quantify 
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the positive intercept of semivariance at|/| =0, which represents the random variation that is entirely 

uncorrelated in space. In following, the variogram models used in this thesis are introduced. 

The spherical function is one of the most frequently used models in geostatistics, in one, two 

and three dimensions. It is defined as 

.(/)= 
3/ I 3" 

la 2 (3.30) 
forl<a 

for I > a 

where c is the variance za\<\a is a distance parameter, the range of the variogram. 

If the variogram is concave upward at short lags, indicating locally smooth variation, then the 

Wackemagel model is preferred: 

r / M l 
K/)=Hl-exp (3.31) 

where a is an exponential parameter less than 2. In some instances the variogram decreases from its 

maximum to a local minimum and then increases again. This is called the hole effect, which might 

indicate periodic variation. When the hole effect is present, a sine function should be considered. A 

damped version of the sine function might also be used: 

y{l) = (c, cos e-\-c^s\x\9)IO , (3.32) 

Another model that can be satisfactorily used to describe less pronounced hole effect 

incorporates the Bessel function JQ as follows: 

= c l-exp(-//r)J, (3.33) 

Each of these functions describes simple components of variances. Usually the additive 

combination of a few models is necessary to model the variogram of real data. In order to match 

the fluctuations in the experimental variogram of beach profiles closely, several combinations of 

these models are compared to find the ideal modelling functions for every series of beach profile 

data. The combinations of these models used in this thesis are from nugget, Wackemagel, and sine 

function (WS); nugget, Wackemagel and Bessel function (WB); nugget, spherical and Bessel 

function (SB); and nugget, spherical and sine function (SS). 

The combined models of variogram are assembled in nested form as: 
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r(0 = Co+ c j , (/) + (/) + "• + c„y„ (/), (3.34) 

where CQ is the nugget variance and each ĉ ^ is a component of the model with a basic variogram 

function?'^ , such as the spherical, sine, Wackemagel and Bessel function. 

Akaike's (1973) information criterion (AlC) is adopted to identify the best models appropriate 

for the variogram so that a balance is achieved between the number of nested parameters and the 

closeness of fit. A small value of AlC signifies a more efficient fit between the modelled and 

experimental variogram. The AIC is defined as: 

AIC =-2 In (maximized likelihood) + 2(number of parameters) 

It can be estimated by 

r / 
AIC = \n, In + n,-i-2\ + n,\nQ + 2p„, (3.35) 

where n, is the number of points on the variogram, and is the number of parameters in the model. 

According to Equation (3.34), the parameter number is/7 + 1 if each variogram has one parameter. 

Q is the mean of the squared residuals between the experimental values and the modelled values 

(Webster and Oliver, 2001). 

3.4.3 B statistic development and identifying changes in variances 

The overall variance of the random function modelled from Equation (3.34) is thus 

= f^c,. (3.36) 
n 

a' 
k=Q 

The data have a covariance matrix C, in which C(i,j) is the covariance of the and datum. 

C is the matrix that was used for simulation. The covariance of datum / with datum j depends 

only on/,̂ ^ under the null hypothesis of second-order stationarity. It is given by 

^^''•''^^P-Hl.J ^l^^ise• (3.37) 

A FORTRAN program that used both C H F A C and RNMVN subroutines in IMSL (1994) was 

written to get a series of data with uniform variance based on the covariance in Equation (3.37). 
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The Cholesky factorization of the covariance matrix of a set of modelled data, which is then 

assumed to be a realization of the random process with the specified variogram of beach profile 

data, was computed using the routine CHFAC. Subsequently, the realization of 5000 random 

sequences with uniform variances was computed using the IMSL routine RNMVN with the 

Cholesky factorization. 

The 5000 sequences of data with uniform variances were decomposed into a range of scales 

using the AMODWT. Another FORTRAN program was written to compute the B statistics with 

different length of wavelet coefficients from the AMODWT at each scale. The different lengths 

were set in increments of 25 units to the full length. The 25 unites was randomly chosen 

considering the full length as well as the identifying the changes efficiently. Finally, the 95*̂  

percentile of the 5 statistics at each scale from the 5000 sequences was defined as the critical 

values for rejecting the null hypothesis correspondirigto the different length of data. 

With the critical value of the 5 statistics, the candidate changes in spatial wavelet variance for 

each surveyed beach profile can be identified. First, B for the sequence of wavelet coefficients are 

computed at a particular scale. Second, ^are tested against the critical values for a particular scale 

at full length of data. I f 5 is larger than the critical value, the location^ is considered as a 

significant change in wavelet variances. Third, the checking procedure is repeated for segments 1 

to/r - I and to until data are divided into segments of uniform variance. 

3.4.4 Specification of the procedure using beach profile data 

Before giving a detailed introduction of the data used in this thesis, we jump first to the results 

of variogram and B statistic based on the Duck data. The purpose of this is to make the work easy 

to follow. Another consideration is that these results will not meddle in the core problems 

addressed in this thesis. The experimental variograms of all the 267 surveys of beach elevation 

along the profile line 62 at Duck were computed and modelled. The envelope of experimental 

variograms of the 267 surveys along the profile is shown in Figure 3.3 against the lags in space of 

2m, 4m ... 420m. The corresponding modelled variogram is also depicted in Figure 3,3. 
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Similarly, the experimental variogram of all the 421 cross-shore profile points of beach 

elevation in the time series are also computed and modelled. The envelope of the variogram is 

shown in Figure 3.4 against the lags in time of 1 month, 2 months ...133 months. The 

corresponding modelled variograms of these are displayed in Figure 3.4 as well. The parameters 

of the modelled variograms of combined functions in Figures 3.3 and 3.4 are listed in Table 3.1. 
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Figure 3.4 Range of variogram in time for profile line 62. 

Table 3.1 Modelled variograms of combined functions. 

JuLlOOO 

Jan. 1988 
(S+B) 

122m 

884m 
(ly+B) 

Sininliition variifi^nini tunctiitns 

r(l) = 0.018 + 0.00015 X (1.5 X ^_ [_ _ ) - 0.5 x (—L—)' 

+ 0.5654 X ( 1 - c x p ( -
25.9752' '25.9752 

^ ) 
419.9968' ' ' 2 6 9 . 1 9 2 0 ' 

r ( / ) = 0.0028 + 0.000003 x (1.5 x ^ _ \ _ _ ) - 0.5 x ( 

-f-0.0307 x ( l - e x p ( 
/ 

420.0000 

264.4533 264.4533 

152.1382 

r ( / ) = 0.17666 + 0.4544 x (1.0 - exp( / 
)^°) +0.4228 X 

( l - e x p ( 
/ 

)xJo ( ) 

132.9986 

132.9981 "'84.2346 

r ( / ) = 0.0017 0.0381 x (1.0 - exp( / 

( l - e x p ( -
/ 

123.3646 )x^o( 

62.2445 
) ' ' ^* ' ) +0.004 I x 

32.6501 

0.000852 

0.000026 

0.003778 

0.000006 

Using the Monte Carlo method described in Section 3.4.3, a series of critical values for each 

survey can be obtained despite the difference between the variograms in Figure 3.3 and Figure 3.4. 

Due to the high correlation among the surveys, the critical values from them are quite similar; 

therefore the average 95% percentile of B statistic from all of the surveys was used to identify 

candidate points exhibiting significant changes in spatial variances for all the surveys. Table 3.2 

lists the average spatial critical values for segments o f different lengths under dilations 

corresponding to j = 1,2, •••,6 o f the Daubechies's wavelet w ith two vanishing moments. In Table 

3.2, S, denotes the spatial scale. For 7 = 1, the spatial scale is2' x 2 m=4m, and so on. It can be 

seen that generally the critical values decrease with the increasing o f the length of segment. 

Moreover, the critical values increase when the scale parameters increase. 
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Table 3.2 The 95'*' percentile of the spatial B statistics scale by scale 

Length of 

segments 
s, S2 S3 S4 S5 S6 

25 0.397 0.4725 0.5225 0.5815 0.562 0-507 

50 0.291 0.353 0.421 0.5065 0.5365 0.507 

75 0.24 0.341 0.3665 0.459 0.5015 0.507 

100 0.2095 0.257 0.3305 0.419 0.483 0.5045 

125 0.1855 0.2325 0.2975 0.392 0.466 0.4795 

150 0.1705 0.2135 0.283 0.375 0.4545 0.4615 

175 0.1575 0.197 0.2625 0.3535 0.4415 0.45.74-

200 0.1495 0.1875 0.254 0.341 0.4415 0-455 

225 0.141 0.178 0.2365 0.332 0.4315 0.448 

250 0.135 0.1685 0.227 0.3215 0.4275 0.448 

275 0.1275 0.159 0.2175 0.30820 0.419 0.4455 

300 0.123 0.156 0.2125 0.3025 0.4165 0-4455 

325 0.117 0.1485 0.2025 0.298 0.4105 0.4415 

350 0.114 0.1445 0.1965 0.2895 0.409 0.4385 

375 0.11 0.139 0.191 0.2885 0.409 0.436 

400 0.1065 0.1375 0.1950 0.2885 0.409 0.433 

421 0.1065 0.1375 0.1950 0.2885 0.4090 0.433 

Note: The full length segment is 421 since profile data from 70m to 910m are interpolated in 2m 

interval. 
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Figure 3.5 Plots ofSjj^ against cross-shore positions at different values of the scale parameter. 
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Table 3.3 The 95* percentile of the temporal B statistics scale by scale 

Length of 

segments 
s, S2 S3 S4 S5 S6 

25 0.3960 0.4670 0.5330 0.5665 0.5505 0.5355 

50 0.2860 0.3465 0.4327 0.5052 0-5247 0.5355 

75 0.2390 0.2925 0.3770 0.4715 0.4930 0.5355 

100 0.2045 0.2530 0.3410 0.4490 0.4805 0.5030 

125 0.1860 0.2295 0.3160 0.4310 0.4705 0.4375 

150 0.1710 0.2135 0.2950 0.4210 0.4685 0.3895 

175 0.1580 0.1995 0.2820 0.4092 0.4620 0.3540 

200 0.1480 0.1860 0.2695 0.4000 0.4555 0.3540 

225 0.1400 0.1790 0.2630 0.3975 0.4511 0.3540 

250 0.1330 0.1790 0.2630 0.3975 0.4460 0.3540 

267 0.1300 0.1790 0.2630 0.3975 0.4435 0.3540 

The survey at Duck in March 1996 was used to specify this procedure in a particular case. The 

AMODWT coefficients in the spatial series of profile data for March 1996 were computed with 

Equation (3.21), and iŜ  ^ were computed using these coefficients at different spatial scales with 

Equation (3.24). The plot of^y^ against position along the profile for different values of the scale 

parameters is shown in Figure 3.5 for reference. Subsequently, the values of 5 for the full beach 

profile data in March 1996 scale by scale were obtained by combining Equations (3.25), (3.26) and 

(3.27). Comparing the 5 values with the critical values as listed in Table 3.2 for the full length 

segment (421 observations) scale by scale, the change points in spatial wavelet variances for a 

specified scale can be identified at the first order if the 5 value was larger than the critical value. 

The identifying procedure was repeated until all the wavelet variances in the length of segments 

were uniform against the critical values. 

Following the same procedure as described for spatial analysis, we obtained the average 

temporal spatial critical values. These values under dilations corresponding to7 =1,2,-••6of the 
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Daubechles's wavelet with two vanishing moments with changing segments in time series are 

listed in Table 3.3. These critical values will be used later to identify the change survey in temporal 

wavelet variance. For7 = 1, the temporal scale is 2' = 2 months, and so on. It is obvious that the 

critical values for identifying changes in temporal wavelet variance have a similar trend as that of 

the spatial ones. 

3.5 The Discrete Wavelet Packet Transform 

3.5.1 Introduction 

The main advantage of the wavelet transform over other methods, such as Fourier analysis, is 

that it requires no assumptions of statistical siaiionarity. The obvious disadvantage of the DWT is 

that it provides a predetermined basis for the data set that does not depend in any way on the 

spatial/temporal variation of the original data. For one thing, the temporal scales of the beach 

elevation change for a fixed point along the profile are determined as an integer power of 2 

multiple of the sampling interval- They are 2 months, 4 months.-- and so on- This principal 

disadvantage of the DWT was pointed out by Si (2003) who noted that the DWT does not resolve 

variation equally at all spatial frequencies. Lark (2004) also stated this problem in the context of 

soil variability. This is the reason that the discrete wavelet packet transform (DWPT) is becoming 

more widely used in signal analysis. Although it is not necessary to have uniform resolution in the 

frequency domain, a basis that is suitable to represent the specific features of beach profile data is 

needed. 

A brief introduction to the DWPT will be presented in this section before using it in this thesis, 

since it has not been employed to analyse the variability of beach profiles before. For 

simplification, the notation for time series / ( / ) i s only used in the following when the methodology 

is introduced, but this is similarly applied to spatial variation as well. 

41 



Chapter 3 Methodology development 
3.5.2 The theory of the D W P T 

For a given orthogonal wavelet function, we generate a library of bases called the wavelet 

packet basis. Each of these bases offers a particular way of coding time series, preserving global 

energy, and reconstructing exact features. The wavelet packets can be used for numerous different 

expansions of a given time series. The DWT basis for the given function is just one selection from 

the library of possible packet basis. 

The DWPT procedure has some similarity with the discrete Fourier transform (DFT). Wavelet 

packet atoms are waveforms indexed by three naturally interpreted parameters: position, scale (as 

in wavelet decomposition), and frequency. For the Fourier transform, it is assumed that the 

amplitudes and phase of / ( / ) for some frequency is the same for any / . 

In the DWT, at each dilation of the basic wavelet, the wavelet and scaling function filters are 

applied only to the wavelet function coefficients generated at the previous dilation. This procedure 

is illustrated by the plot on the top of Figure 3.6, which presents the normal partition of 

frequencies. The function / ( / ) i s the time series of the beach elevations at given points along the 

profile, which is the input data labelled as^o o*" Figure 3.6. G( ), the transfer function of{g /} , is 

a high-pass filter corresponding to the wavelet function, and//(•) , the transfer function of{h/}, is 

the low-pass filter corresponding to the scaling function. 

In the corresponding DWPT, at each dilation of the basic wavelet, the wavelet and scaling 

function filters are applied to both the wavelet and the scaling function coefficients generated at the 

previous dilation so that the wavelet packet method is a generalization of wavelet decomposition 

that offers a richer signal analysis. This procedure is illustrated by the bottom plot of Figure 3.6, 

which shows the dilation to level three. This figure is an example of a wavelet packet basis. The 

transform that takes / (0*o^y .„ = 0> •,2-' -1 for any exponential scale7 between 0 and J is 

called a DWPT. Any such transformation is orthonormaL 

In theory, a signal might contain frequency content in each of the 8 frequency bands defines by 

the decomposition of exponential scale three, as shown in Figure 3.6. In practice, the strength of 

the frequency content in each of the band is likely to vary, and a good reconstruction of the data 
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might be possible with a subset of the bands. In this sense, the DWPT offers the advantage over the 

DWT of being able to resolve better the frequency band content of a given signal. 

Each DWPT is associated with exponential scaley, and the7'''level DWPT yields transform 

coefficients that can be partitioned into2-'vectors, namely Wj^ ,n = 0,...,2^-\. The DWPT 

effectively decomposes the frequency interval [0, 1/2] into 2^ equal individual intervals. The 

resulting standard frequency interval of the nodes in the DWPT basis (Percival and Walden, 2000) 

I S 

n w + l 
( 3 . 3 8 ) 

where/j „ indicates the frequency interval in the packet at exponential scale y of the DWPT. It 

should be noted that this standard frequency interval does not have any direct physical meaning. 

The frequencies should be decided by the basic sampling of signal, the wavelet function and the 

temporal scales (reciprocal of the standard frequency intervals). 

3.5.3 The best basis algorithm 

Many different orlhonormal transforms can be extracted from a wavelet packet table taken out 

to some level as shown in Figure 3 .6. For one thing, if the set {fTj Q, f T j , , from all of the 

wavelet packets in Figure 3.6 is selected this corresponds to the ordinary DWT. Other orthonomal 

basis could be selected from the table, for example {(^j Q , » ^ i j > ^i.i }> which is a finer partition 

on some parts than in others. Every possible orthonormal transform is a disjoint dyadic 

decomposition, which by definition is a partitioning of the frequency interval [0, 1/2]. How to 

define which one of these many transforms is in some sense optimal for a particular time series? 

Coifman and Wickerhauser (1992) tackled this problem under the name of the 'best basis 

algorithm' with respect to an entropy-type criterion, which consists of the following two basic 

steps. 
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Figure 3.6 (Top) Flow diagram illustrating the analysis ofW by the DWT. (Bottom) Flow diagram 

illustrating the analysis ofW^ into W3.0, ...W3.7 by the DWPT. 
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1. Given a WP table to exponential scale , then for every (_ / ' , / 7 ) e A' it is associated with 

IVJ ^ a cost£(W^^ J , where £(•) is an additive cost functional of the form 

i=0 

and£'( ) is a real-valued function defined on[0,oo). In the following expressions, W is the signal 

andW^^„, is the discrete wavelet coefficient in the location/of the n^ packet at exponential scale j 

oflV in an orthonormal basis. 

Furthermore, the entropy E must be an additive cost function such that E(0) = 0 and 

£ ( W ) = X £ ( M ' , , . , ) 
i 

2. The *optimar onhonormal transform that can be extracted from the WP table is the 

solution of 

min 

Classical entropy-based criteria match these conditions and describe information-related 

properties for an accurate representation of a given signal. Entropy is a common concept in many 

fields, though mainly in signal processing. The following example lists several different entropy 

criteria; many others are available. 

1. The (nonnormalized) Shannon entropy, with the convention. 

i 

2. The concentration in norm entropy with 1 < p^. 

£('̂ .>./)=zK..-r" =iK>./ir" 
3. The "log energy" entropy, with the convention/ogO = 0 

4. The threshold entropy, which is non-zero if the signal is larger than a threshold p^, with 
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^ '^-'^ [0 othenvise 

In this thesis, the Shannon entropy was used, since it is a widely used one. The best basis 

algorithm (Coifman and Wickerhauser, 1992; Wickerhauser, 1994) proceeds in the following way: 

1. We mark all costs in the nodes at the bottom of the table. We start by examining this 

bottom row of nodes. One example of the cost is the value in Table 3.4. 

2. We compare the costs of the sum of each pair of children nodes with their parent node and 

then do one of the followings: 

(a) If the parent node has a lower cost than the sum of the cost of the children nodes, 

we mark the parent node. 

(b) If the sum of the cost of children nodes is lower than the cost of the parent node, we 

replace the cost of the parent node by the sum of the costs of the children nodes. 

3. We then repeat step 2 for each level as we move up the table. The end result is shown in 

Table 3.4. 

4. Once we have reached the top of the table, we look back down the table at the marked 

node. The top-most marked nodes that correspond to a disjoint dyadic decomposition define the 

best basis transform. 

Table 3.4 Final step of the best basis algorithm (Percival and Walden, 2000). 

0.96 

0.28 0.68 

0.19 0.19 0.32 0.36 

0.12 0.12 0.12 0.12 0.32 0.0 0.28 0.28 

3.5,4 Multi-scale analysis of the D W P T and the wavelet packet variance 

Multiresolution analysis is a partition of a set of spatial data into components corresponding to 

the different scale parameters of the discrete wavelet transform. Like the DWT, the detail 

components corresponding to any wavelet packets can be obtained by conducting an inverse 

46 



Chapter 3 Methodology development 
transform of the corresponding coefficients so that the best basis can be reconstructed to represent 

the original data, / ( / ) . 

When convolving the data with wavelet functions and scaling functions on finite-length signals, 

border distortion arises. In order to deal with the border distortion, data near the border should be 

treated differently. There are a few methods that include: 

1. Zero-padding: This method iss used in the version of the DWT given in the previous 

sections and assumes that the signal is zero outside the original support. The disadvantage of zero-

padding is that the discontinuities are artificially created at the border. 

2. Symmetrization: This method assumes that signal or images can be recovered outside their 

original support by symmetric boundary value replication. This creates discontinuities in the 

derivatives of the data, but it is unlikely to lead to misleading results as long as the scale parameters 

are restricted to values less than or equal to half the shortest dimension of the sampling grid. 

3. Periodic padding: This method assumes that the signal or image can repeat itself in period. 

Discontinuities might appear at the boundary, and the benefit of localization in wavelet analysis is 

lost if we generate coefficients near one boundary using values from the opposite boundary. 

The wavelet packet variances are defined similarly to the wavelet variance. In the DWPT at 

exponential scale 7 there will be 2^ wavelet packet variances specified corresponding to the 

frequency interval. The variance of the DWPT in the n* packet at exponential scale j is shown in 

Equation (3.39), in which denotes the discrete wavelet coefficient in the location/of the n**' 

packet at exponential scale j . 

^l=^tK..- (3-39) 

3.6 Summary 

In this chapter, wavelet transforms have been introduced first by comparison with Fourier 

transforms. To investigate the local variability of beach profiles, the methodology was narrowed to 

the discrete wavelet transform. Considering the relative small data series of beach profiles, the 
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adapted maximal overlap wavelet transform was introduced for using all the available data. The 

concept of wavelet variance and local wavelet variance component were introduced to investigate 

the magnitudes of beach elevation change clearly at different scales. To identify the most active 

zone of beach profile change and the depth of closure, B statistics were developed based on the 

wavelet coefficients. During the development of critical B values, the variogram was introduced. 

However, use of the DWT requires that the sequence of spatial and temporal resolution is fixed 

as a dyadic sequence. This leads to an uneven sampling of frequency space, particularly at 

intermediate and low frequencies. This is the reason that the discrete wavelet packet transforms 

(DWPT) was introduced. It is expected the DWPT can fully solve the complex variability of beach 

profiles in both space and time. 
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Chapter 4. FIELD DATA AT DUCK AND 

PRELIMINARY STUDIES 

4.1 General 

Waves and currents interacting with bottom sediments produce changes in the beach and 

nearshore bathymetry. These changes can occur very rapidly in response to storms, or slowly as a 

resuh of persistent but less forceful seasonal variations in waves and current. Currently, there are 

only a few long-term surveys of the nearshore bathymetry in the world. Two well-known ones are 

the Coastal Research Station (CRS) at Lubiatowo, Poland, and the US Army Corps of Civil 

Engineers Field Research Facility (FRF) at Duck, North Carolina, USA. It has been acknowledged 

that the FRF data set is unparalleled with respect to high resolution in time and space of profile 

evolution so it is the main one used in this thesis to investigate the variability of beach profiles. 

In this Chapter the field site at Duck will be described in brief and the previous work by others 

will be reviewed. Moreover, the wave conditions at Duck during the study period are investigated. 

The methods of data editing and interpolation based on the Duck data set are developed for later 

use, since the surveys are not regular either in time and space. Subsequently, the standard deviation 

of beach elevation in space and the EOF analysis are presented before the detailed wavelet analysis 

in Chapter 5. These provide a general impression of the beach profile changes during the period of 

study. 

4.2 Data Set at the F R F , Duck, N . C , USA 

4.2.1 Description of the F R F 

The field research facility FRF is located along an approximately 1-km stretch of Atlantic 

Ocean barrier island beach in the village of Duck, as shown in Figure 4.1. In this section, an 

introduction of this site based on the information from the website http://www.frfusace.armv.mil/ 

is given. Some photos of this field site and the instruments used are shown in Appendix A. 
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The data set provides a good quality source of information on short, medium and long-term 

processes that affect coastal morphology. Since 1980 detailed surveys o f the nearshore bathymetry 

have been conducted by the FRF. These data now cover twenty-three years and include hundreds of 

surveys at irregular intervals. They provide quantitative measures of the dynamic nature of the 

nearshore zone, including during storms when changes are most rapid, in addition, the natural long-

term cycle of beach erosion and rebuilding, which may take many years, is well documented. These 

data are being used to refine theories o f nearshore morphologic change and to develop and test 

numerical simulations of nearshore response to changing conditions. Apart from the long-term 

surveys, some short-term experiments, such as DUCK94 experiment, have also been conducted at 

Duck. The DUCK94 experiment was designed as fundamental to improved understanding o f surf 

zone sediment transport. 

Nurtli Carulina 

Id Reswearuh Fauilrty 
k . NC 

Oregon Inlet 

1 

Cape Hatteras 

Figure 4.1 Geographic location of the FRF field site on the North Carolina coast. 

The nearshore bathymetry at the FRF is characterized by regular shore-parallel contours, a 

moderate slope, and a barred surf zone (usually an outer storm bar in water depths of about 4.5m 

and an inner bar in water depths between 1.0 and 2.0m). This paUem is interrupted in the 

immediate vicinity of the pier where a trough runs under much of the pier's length, ending in a 

scour hole at the pier's seaward end where depths are up to 3.0m greater than the adjacent bottom. 
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The maximum variation of beach elevation occur just seaward of the shoreline. The sediment 

consists of a medium to fine sand mix. Mean grain size decreases from imm on the foreshore to 

0.l-0.2mm offshore. The beach is microtidal with a tidal range between 0.7m (neaps) and 1.5m 

(springs). The beach foreshore is steep (1:12) and the bottom slope declines to 1:160 near 8-m 

depth. 

The surveys are conducted over a series of perpendicular to the shoreline "profile lines" which 

extend from the dune to approximately 950m offshore. In addition, 4 of the 26 lines (58, 62, 188 

and 190) are surveyed biweekly as part of a "4-line Survey." The locations are shown in Figure 4.2, 

together with the location of the FRF research pier. Miller et ai (1983) noted that profile lines 58 

and 62 which are separated by 90m are located about 500m north of the research pier, while profile 

lines 188 and 190 are separated by 90m are located about 500m south of the research pier, in both 

cases minimizing the location influence of pier. _ 

Ml CACE 
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Figure 4.2 Locations of *4-line Survey' relative to the FRF research pier and bathymetry on 

September 9 1988. 

51 



Chapter 4 Field data at Duck and preliminary studies 
All surveys were made using the Coastal Research Amphibious Buggy (CRAB), which consists 

of a tripod of 0.2m schedule-80 aluminium tubing, connected at the base by horizontal members 

2.1m (7ft) above the ground, and an operations platform 10.7m (35ft) above the ground. An 

instrument to determine the CRAB's location and elevation is needed. From 1981-1991, two 

instruments were used: the Zeiss Elta-2s Electronic Survey System and the Geodimeter Auto-

Tracking Survey System. The stated range of distance measurement of the Zeiss is 2km with a 

triple prism assembly as used on the CRAB. The distance accuracy is 2cm in the rapid 

measurement mode. The stated operating range of the Geodimeter is 5.5km with a single circular 

prism array. The distance accuracy is 10mm in the tracking mode. All profile elevation data are 

referred to the U.S. 1929 National Geodetic Vertical Datum (NGVD) to which elevation is 

customarily referenced at the FRF, and offshore distance is referenced to the FRF baseline. The 

NGVD and Mean Sea Level (MSL) datum at the FRF are nearly the same, with the relation given 

by MSL=NGVD+O.067m. 

The wave data used in this study were collected from three different sets of instruments, as 

noted by the staff of the FRF (http://www.frf.usace.armv.mil/frfdata.htmn. The first is an array of 

fifteen pressure gauges, collectively referred to as gauge 3111. Directional information was 

computed from these gauges using an iterative maximum likelihood estimator. The second type is a 

Baylor staff gauge (625) and a pressure gauge (641), both attached to the pier. The third is a 

Waverider buoy (630). All wave data is sampled at 2 Hertz, with five contiguous 34 minute 

records, for a total collection period of nearly 2 hours and 51 minutes. Wave height,//^q is an 

energy-based statistic equal to four times the standard deviation of the sea surface elevations. Wave 

height reported from the pressure gauge has been compensated for hydrodynamic anenuation using 

the linear wave theory. Wave period is identified from the computation of a variance (energy) 

spectrum with 60 degrees of freedom calculated from a 34-min record. Peak wave period Tp is 

defined as the period associated with the maximum energy in the spectrum. 

Wave height and period were typically recorded every 6hr but more frequently during some 

parts of the observation period, for which houriy values were recorded. Hourly values for the water 

level are available from a tide gauge located at the end of the research pier at the approximate 4-m 

depth contour. 
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4.2.2 Previous studies by other researchers on the data set at Duck 

The Duck data set is widely recognized as being of high quality and suitable for studying 

coastal changes over a range of scales. This is evidenced by the fact that previous researchers have 

studied a range of phenomena. However, most of those studies have been based on the data set 

covering 12 years from 1981 to 1992. For example, the temporal and spatial scales of beach profile 

change at Duck were described by Birkemeier (1985) using the EOF with three and half years' 

profile data. The author identified the seasonal shift of sediment from the beach and inner bar to the 

offshore. The morphordynamics of bars was examined by Larson and Kraus (1994) using the field 

data from 1981 to 1991 of Duck. They suggested that the average spring and autumn profile shapes 

were almost identical and occurred as transitional states between the summer and winter profile 

shapes. More recently. Stive et al. (2002) studied the variability of shoreline evolution in terms of a 

range of different temporal and spatial scales using three data sets, and one of them was from 

Duck, where slight accretion was observed. 

There are a few studies on the relationship between waves/storms and beach profiles based on 

the Duck data set. Lee et al. (1995) related the shoreline position, sediment volume and slope 

changes obtained from the profile data during ten and half years to storms to lest the concept fair-

weather/storm model, describing how the beach-near-shore profile undergoes long-term 

adjustments. It was suggested that the fair-weather/storm model may be a useful conceptual tool to 

examine medium- to long-term beach-nearshore profile behaviour. Subsequently, Lee et al. (1998) 

examined the medium-scale storm-driven variability of the beach in nearshore profiles at Duck, 

using the data from 1981-1991. The authors pointed out that given appropriate sequences, groups 

of storms can act as a large individual *event\ The analysis of Lee et al. (1998) was extended by 

Birkemeier et al (1999) to include data from 1981 to 1998 so that the importance and character of 

storm sequences in terms of duration, intensity, intervening time interval and profile response were 

examined. Larson et al. (2000) used the U-year data on waves and profiles measured at Duck to 

study the covariation between waves and profile response. Their results suggested that the profile 

response showed higher correlation with the nearshore wave properties as compared to the offshore 

waves. 
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Sallenger et al. (1985) studied the storm-induced response of a nearshore-bar system using the 

data set at Duck during a fourteen-day period in October 1982. They noted that with the increase in 

wave height during the storm, the bar became developed and migrated offshore at rates up to 2.2 

meter per hour. Based on intensive analysis of survey data from Duck, Larson and Kraus (1992) 

presented empirical predictive expressions describing the cross-shore movement of the linear 

nearshore bar, 

Lippmann and Holman (1990) reported that the inner bar behaves in both an equilibrium and a 

sequential manner, depending on the incident wave conditions and antecedent morphology. 

Lippmann et al. (1993) investigated the influence of a possible outer bar on the behaviour of an 

inner bar, and determined the response of the bar system to the liming of episodic extreme wave 

events with the existence and amplitude of an outer bar at Duck offshore bar systems. Especially 

those with multiple bars provide natural coastal protection by dissipating wave energy. The authors 

suggested that the time series of monthly averaged statistics revealed episodic transitions between 

one and two bar configurations and was shown to contribute significantly to the non-stationary 

behaviour of bar system. 

The observed bar behaviour at Duck during 16 years was explained by a simple heuristic model 

by Plant et al. (1999). They found that the characteristic bar response time is relatively long to the 

characteristic timescale of the forcing (waves). Ruessink et ai (2003) compared the interannual 

nearshore bar behaviour at Duck with other sites such as the Dutch coast using complex empirical 

orthogonal function analysis. They concluded that the evolution of bar amplitude with mean depth 

is similar for all sites and can be described empirically by a negatively skewed Gaussian function. 

Non-linear methods were also employed in analysing the beach profile change at Duck by 

Soulhgate (1997) who indicated the possibility of much more dynamic behaviour with systems 

being maintained away fi-om equilibrium and showing self-organised responses. More recently, 

fractal analysis techniques were applied to beach level time series collected at Duck by Southgate 

and Moller (2000), To compare with the fractal analysis results, the authors also carried out a 

spectral analysis using a fast Fourier transform. 
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4.2.3 Wave and storm conditions at Duck 

Waves and storms are usually the main forcing conditions that drive beach profile changes. 

Therefore it is necessary to examine the wave conditions at Duck. The cumulative monthly wave 

directions were in the range from 69 to 88 degree, respectively in December and July during the 

period from 1987 to 1999. The mean was 76.9 degree. This resuh was summarised according to the 

wave rose' from the website http://www.frf.usacc.army.mil/frfdata.html. 

The summary of the severe wave conditions and general wave conditions are presented in this 

section. Table 4.1 lists the storms during the course of study, when the wave height exceeds 2m. I 

analysed the storm conditions from 1999 to 2003 and filled the items with under construction'. In 

addition, the extreme storms in this thesis were defined as those of which wave heights exceeded 

4m. 

Table 4.1 Storms at the FRF. Duck (the storm data from 1980 to 1998 come from the FRF website: 

http://www.frf.usace.army.mil/storms.html) 

Storms at the F R F 

- when the wave heights at the pier end exceeded 2 metres 

1980 
• Oct 24- 25 
• Nov 24, 28 
• Dec 27-29 

1982 
• Jan 1,26-27 
• Feb 13, 17-19, 27-Mar 01 
• Mar 16 
• Apr 28 
• May 12 
• Aug 29 
• Oct 10-13,23-25 
• Nov 19-25 
• Dec 9, 12, 17-19 

1*̂ 84 
• JanOl, 11-15 
• Feb 14-15,23,28 

1981 
• Feb 11, 14 
• Mar 8-9 
• Aug 19-23 
• Sep 4, 23 
• Oct 11-16,24,29-31 
• Nov 1-2, 12-15,25-26 
• Dec 5-6, 25 

1983 
• Jan 04, 10-12,21-22,27-29 
• Feb 11-12, 14-15,18,20-22,26-27 
• Mar 01, 12, 17-19,24-27,31-Apr 01 
• Mar 24 
• Jun 09 
• Sep 15, 28-30 Tropical Storm Dean 
• Oct 10-12,20-22,25 
• Dec 12-13, 19-22,31 

1985 
• Jan 3-4 
• Feb 12 
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• Mar 13 
• May 31 
• Sep 27, 29-30 Hurricane Isidore 
• Oct 11-15 Hurricane Josephine, 17-
18 
• Nov 03. 20 
• Dec6 

1986 
• Jan 11,23-25 
• Feb 25 
• Mar 7-8, 21-22 
• Apr 18-21 
• May 9-13 
• Aug 1 7 Hurricane Charlie's eye 
made landfall 1530-1700 
• Oct 10-12, 18-19 
• Dec 1-3,24 

1988 
• Jan 3, 7-8, 14, 
• Feb 12,28 

Mar 1 I 
Apr 8, 12-14, 19 
Jun 3-5 
Oct 4, 8 
Nov 1,24 
Dec 4, 15-16 

1990 
• Feb 5 
• Mar 6, 29 
• May 22-23 
• Oct 12-13 Hurricane Lili remained 
offshore 
• Oct 25-27 
• Nov 10, 17-19,30 
• Dec 8-9 

1992 
• Jan 3-5 
• Feb 6-8 
• Mar 26-27 
• Apr 13.28-30 
• May 6-8, 19-20 

• Mar 22-23 
• Apr 14 
• May 3 
• Aug 2 
• Sep 27 Hurricane Gloria passed 
offshore at 0230 
• Oct 21-22 
• Nov 4-5 
• Dec 1-2 

1987 
• Jan 1-2, 17,25-27 
• Feb 16-18. 
• Mar 10-16,23-24,30-31 
• Apr 16,25-28 
• May 4-5 
• Aug 14-15, 
• Sep 4-5 
• Oct 12-15 
• Nov 11-12,27-29 
• Dec 29-30 

1989 
• Jan 4, 23-24 
• Feb 17-19,23-25 
• Mar 7-11,23-24, 
• A p r i l , 
• Sep 4-10 Hurricane Gabrielle well 
offshore 
• Sep 21-22 Hurricane Hugo 
• Sep 23-24, 27 
• Oct 25-26 
• Nov 23 

• Dec 8-10, 13,22, 23-25 

1991 
• Jan 7-9, 11-12 
• Feb 23 
• Mar 6-7, 29 
• Apr 20-21 
• May 18-19 
• Jun 23 
• Aug 18-19 Hurricane Bob, 48 km 
offshore Cape Hatteras 
• Aug 25 
• Sep 1-2,20 
• Oct 3, 16-17,28- 1 Nov 
• Nov 8-10 
• Dec 19.31 

1993 
• Jan 9-11, 16-17,26-27 
• Feb 1-4, 12,26-28 
• Mar 13(Stormof theCentur\). 18 
19 
• Apr 6-9. 27-30 
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• Sep 23 Tropical Storm Danielle 
• Oct 4-6 
• Dec 10-11, 12-16,29 

1994 
• Jan 3-4, 26-28, 30-31 
• Mar 2-3 
• May 4, 20-21 
• Sep 3-5, 22 
• Oct 3, 12-13, 14-17 
• Nov 7, 10, 16-19 Hurricane Gordon 
never came close. 
• Dec 8, 14-19,22-24 

u r n 
• Jan 7, 19,27 
• Feb 2-5, 16-17 
• Mar 10-13, 27-30 
• Aug 31 Aug-2Sep 
• Sep 31 Aug-2SepHurricane Edouard: 
400 km offshore 
• Sep 5-6Hurricane Fran: landfall al 
Wilmington,NC at 2000 EST on 5th 
• Oct 4-8, 22-24 
• Nov 15-18,22,26 
• Dec 14-16 

1998 
• Jan 27-29 
• Feb 3-10, 16-18,23 
• Apr 4-5, 14,22-23 
• May 12-14 
• Aug 26-28 Hurricane Bonnie. FRF 
landfall 
• Dec 14, 16 

• Aug 31-01 
• Sep Hurricane Emily 50 km offshore 
FRF at 0000 31** 
• Oct 10-11,26-27 
• Nov 25-28 
• Dec 16-18 

1995 
• Jan 15-16,28-29 
• Mar 2 
• Aug 7-9, 15-20 Hurricane Felix 
remained offshore, 28 
• Sep 19,23,29-30 

1997 
• Feb 8-9, 14 
• Apr 1-2.23-24 
• May 27-28 
• Jun 3-7 
• Sep 4 
• Oct 18-20 
• Nov 6-7, 13-14 
• Dec 27-28 

1999 under construction 
• Jan 2-3, 31 
• Feb 1,22 
• Mar 26-27 
• Apr 29,30 
• May 1-3,14-17 
• Aug 30,31 
• Sep 1-5, 15-16, 21-22 
• Nov 11-12 
• Dec 19-20 

2000 under construction 
• Jan 13-14,24-25 
• Mar 17-24 
• Apr 18-20, 25, 26 
• May 29-31 
• Aug 30 
• Sep 5-8 
• Oct 1-2,27 
• Nov 27 
• Dec 2-5 

2002 under construction 
• Jan 3-5 
• Feb 2 
• Mar 2 

2001 under construction 
• Jan 13-14,26 
• Feb 22 
• Mar 22 
• Apr 26, 27 
• May 6 
• Sep 15, 30 
• Oct 1, 14 
• Nov 7, 17 
• Dec9 

2003 under construction 
• Feb 16-18 
• Mar 14, 18-21 
• Apr 12, 16 
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• Apr 3 
• Sep 8, 10 
• Oct 16 
• Dec 7, 12 

Sep 19 

The monthly standard deviations of wave height and wave period during the 22 years were 

calculated to show the general annual variation in wave conditions, as displayed in Figure 4.3. It 

shows that the smallest standard deviation is in July and the largest one is in February. Figure 4.4 

shows that the standard deviations of wave periods during the 22 years are smallest in July and 

largest in September. At Duck the wave height exhibits clear seasonality, with lower waves 

occurring during the summer and higher waves in the winter, whereas the mean period remains 

fairly constant throughout the year. During the 22 years from July 1981 to September 2003 with the 

95% confidence interval the mean wave height is (1.03 ± 0.04)m and period is (8.68 ± 0 . 0 9 )s. 
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Figure 4.3 Standard deviation of wave heights during the 22 years. 
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Figure 4.4 Standard deviation of wave periods during the 22 years. 

4.2.4 Sediment transport and DoC 

Capobianco et al. (1995) investigated the qualitative relationships between sediment transport 

components and profile change in the medium and long term by considering 11 years of data at 

Duck. Their main conclusion was the verification of the conceptual fair-weather-storm model. 

Thomton and Humiston (1996) examined the bar formation at Duck within the framework of the 

energetic-based sediment transport model developed from the earlier work of Bagnold (1954). 

Plant et ai (2004) investigated the prediction skill of nearshore profile evolution models based on 

DUCK94 experiment. They criticized the existing sediment transport model. The longshore 

sediment transport rates were presented by Miller (1999) during storms in November 1995 and 

March and April 1996 at Duck, 

The DoC has been studied with the Duck data set by previous workers. Stauble and Cialone 

(1996) argued that the seaward of 5-m, 6-m depth most sample distributions remained unchanged 

throughout the study in DUCK94 experiment, which was an indication of the DoC. Moreover 

Larson and Kraus (1994) also suggest that the DoC is around 4-m water depth by observing the I I -

year Duck data set, Capobianco et al. (1997) argued that the DoC at Duck is time-dependent by 

investigating the DoC at different time intervals. Moreover, they also argued that the DoC is scale-
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scale dependent with respect to the different change criteria. Using the data from July 1981 to July 

1993, Nicholls et al. (1998) examined the characteristics and interpretation of the DoC at Duck. 

Both the studies by Capobianco et al. (1997) and Nicholls et ai. (1998) were developed from the 

work by Hallermeier (1981), which is an analytical DoC from the extreme wave heights. Most 

recently, Schwartz and Birkemeier (2004) also discussed the problem of profile closure at Duck. 

4.2.5 Problems of beach profile data and the pre-processing 

As in any experiment or field survey, there are inevitably errors in the Duck surveys. There are 

three error sources in beach profile survey, which are operational errors, instrument errors, and 

external errors. Operational errors include operator errors and limitation of the survey procedure. 

InMrun ênt errors result from liniitations of instruments or devices with which measurements are 

taken. External errors arise from variations in natural phenomena such as temperature, humidity, 

wind, and gravity. Those errors were discussed by the FRF staff, who published the error analysis 

in the FRF website (http://www.frf.usace.armv.mil/frfdata.htmn. Operation errors of the Zeiss 

survey system resulted from improper levelling of the instrument, mis-aiming the instrument at the 

centre of the prism cluster while taking the measurement, an error in positioning the instrument in 

coordinate space (particularly in elevation), and movement of the tripod during the survey. 

Incorrectly aiming the instrument also resulted in an error but only on individual points. The details 

of the survey methods, error determination and correction, and survey accuracy were discussed by 

Howd and Birkemeier (1987) and Lee and Birkemeier (1993). 

Errors affecting single points were found and removed in this thesis by a procedure which is 

presented in this section. Techniques for pre-processing the DUCK data have been developed with 

the data from DUCK94 experiment. When investigating the standard deviation of elevation in the 

time series for given offshore distances, it was found that there are obvious spikes in the dune zone 

for a few beach profiles. However, these spikes in standard deviations have no physical meaning. It 

is suggested that some of the points in the profile data sets are outliers, due to the error-sources 

described. One way to detect erroneous points is to compute the slope between successive 

observations. An outlier might give rise to implausibly large slopes. 
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To check the influence of slope distribution on the accuracy of interpolation, the basic 

procedure is to look for comparisons between successive observations where the absolute slope 

exceeds some threshold r . When this happens we chose which point to delete as erroneous by 1) 

deleting point , and then predicting point x,̂ , by cubic spline interpolation from all the other data 

and 2) following the same procedure after deleting point x^ î. We obtain the point with the smallest 

prediction error. 

In order to select a threshold absolute slope r for general use the mean-square error of prediction 

under a cross-validation method (predicting each value after removing it from the data) was 

computed for data edited using different thresholds (r=1.0, 0.5, 0.3, 0.2 and 0.1). Mean square 

errors of beach elevation that describe the spatially variability of the smooth interpolated surface 

from the surveyed data were computed after cutting off slopes with different thresholds. Cutting off 

the slope means deleting one of the two adjacent points between which the slope is large. If the 

slope between two points is greater than a criterion value, the check procedure is carried out twice 

separately for the two points named x, and x-^j. The mean square errors are compared between 

deletingx-andx^^i. If the mean square error is smaller when x, is deleted than the mean square 

error when x,̂ , is deleted, point x̂ ,̂ will be kept in the data set. The pointx^ is considered as 

abnormal, which might come from measure error in experiment. 

One typical curve of them is illustrated in Figure 4.5, which displays the relationship between 

the thresholds of cut-off slopes and mean square errors of beach elevation (PL=200) from 20 

surveys in the DUCK94 experiment. The figure illustrates that as the thresholds decrease the mean 

square error becomes smaller until the threshold is 0.3. However, beyond this threshold the relevant 

mean square error increases again as the thresholds decrease. The reason for the mean square error 

goes up with the thresholds of 0.1 and 0.2 is that the survey sampling in the dune zone is relatively 

sparse. The foreshore slope is around 1/12 at Duck (Lee et o/., 1998). However, if we would set the 

threshold at 1/12, it will result in losing some significant data. By compromising, one of the two 

points will be deleted if the slopes between them are greater than 0.3 in this thesis before doing 

further analysis. 
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Figure 4.5 Cut-off slope vs. mean square error for the profile line 200 in the DUCK94 experiment. 

4.2.6 Techniques o f interpolation 

Data collected from the FRF at Duck are not absolutely regular. However, regular data are 

needed for wavelet analysis by scale. The field data at Duck are dense and locally verv smooth, so 

an appropriate interpolation wil l have little effect on the variation. On this basis it was decided to 

interpolate the data to regular spacing. 

There are a number of interpolation techniques available, such as: linear interpolation; 

polynomial interpolation; rational function interpolation and cubic spline interpolation. Among 

these methods, cubic spline interpolation can fit the raw data most smoothly. The normal cubic 

spline interpolation (Press et al., 1992) was initially employed to interpolate the field data set. 

However, the interpolator might overly smooth the observations (Plant et al., 2002). By analysing 

the standard deviations of beach elevation at given offshore distances, we concurred with the 

findings of Plant et al. (2002) that the error of interpolation is highest where sampling is sparse, 

such as along the dune line (x-75m). An advanced cubic spline interpolation method was used, 

which computes a cubic spline interpolant consistent w ith the concavity o f the data. The subroutine 
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CSON (in the IMSL Library, 1994) was used to interpolate the irregular data of surveyed beach 

profiles after filtering some bad data as discussed in the above section. 

In this thesis, the investigation is focused on profile lines 58, 62, 188 and 190 since they are 

surveyed with high temporal frequency. The surveys used in this thesis span from July 1981 to 

September 2003. To maximize the number of usable surveys and to include as much offshore 

information as possible, the data were filtered within the range from 70m to 910m offshore. The 

surveyed data were interpolated onto a regular 2m spaced resolution to take advantage of the high 

resolution of survey in space. In addition to the spatial interpolation, the unequally spaced time 

series was interpolated linearly to provide measurements of beach levels at intervals of one 

calendar month. Therefore there are 267 surveys and each survey has 421 observation points in 

space along the profile line 62. The calendar months corresponding to the 267 surveys from July 

1981 to September 2003 are listed in Appendix A for later reference. - - -

4.3 Basic Statistical Analyses and E O F Analysis 

4.3.1 Basic statistical analyses of beach profile change 

Storms tend to move beach sand rapidly offshore, and sand moves onshore during fair-weather. 

Usually there are more storms during autumn and winter compared with spring and summer. At 

Duck, the profile varies from unbarred to triple-barred, though a double-barred profile with a 

narrow well-defined inner bar and a broad outer bar was often identified, as stated by Howd and 

Birkemeier (1987) and Lee and Birkemeier (1993). To have a general idea of the variability of 

beach profiles at Duck, it is necessary to present some basic statistics of the data. 

First of all, the mean profile of the profile lines 58, 62, 188 and 190 during the period from July 

1981 to September 2003 was calculated and shown in Figure 4.6. The standard deviations of 

beach elevation of the four profile lines over the survey period were computed and shown in 

Figure 4.7 against offshore distance. In Figure 4.7 there are two obvious positive peaks of the 

standard deviation along cross-shore located 120m and 260m offshore. The mean shoreline (MSL) 

during the 22 years is located 120m where the average elevation is zero. Figure 4,6 shows that 
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these four profile Hnes behave similarly in the long-term although the standard deviations for the 

profiles located south of the pier differ from those located north of the pier. In this thesis one 

representative profile line 62 are investigated in detail. The standard deviations show strong spatial 

non-stationarity, a strong motivation for the choice of wavelet analysis. 
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Figure 4.6 Mean profiles at Duck from July 1981 to September 2003. 
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Figure 4.7 Standard deviations of beach elevation against offshore distance. 
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4.3.2 Results of the E O F analysis 

The EOF analysis was conducted before the wavelet analysis because it is an established 

technique for studying the variability of beach profiles. The analysis was performed on the data 

with respect to the mean record of 22 years. The input data are the matrix with 421x267 in rows 

and columns, which represent the spatial and temporal series, respectively. A symmetric matrix 

was calculated using Equation. (2.1) with the input matrix of 421 by 267. Subsequently, EOF was 

conducted. Results of the EOF analysis based on the correlation matrix of the locations for profile 

line 62 are shown in Figure 4.8. These are the eigenvectors with the first three largest eigenvalues. 

The corresponding first three temporal eigenvectors are displayed in Figure 4.9. 

The two figures can be easily explained by first determining the effect of positive and negative 

weightings on the different eigenvectors. The first eigenvector accounts for 35.3% of the variance 

in the data from the mean function. When the first temporal weighting is positive, the beach profile 

has one bar. usually located around 260m offshore. According to the temporal weightings shown in 

Figure 4.9 the first eigenvector has larger positive weightings during the period from September 

1994 to November 1995 with the largest in April 1995. During this period, only one bar is 

identified which is located between 190m and 300m offshore. Figure 4.10 shows that the bar on the 

beach profile in April 1995 is around 260m offshore, whereas one of the two peaks in the first 

spatial eigenvector is located at 260m offshore, as indicated in Figure 4.8. This consistency again 

provides evidence that the first eigenvector characterizes the bars. 
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Figure 4.8 The first three spatial eigenvectors of profile line 62. 
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When the weighting is negative, the first eigenvector describes an inner bar just seaward of the 

shoreline and a well-defined outer bar. The two negative peaks o f the first temporal weightings are 

in September 1983 and September 2000. These two profile configurations are also displayed in 

Figure 4.10. It can be identified in Figure 4.10 that the beach profile in September 2000 has two 

bars and a deep trough between the two bars, with the inner bar located 178m and the outer bar 

located 410m offshore. In addition, the two negative peaks o f the first spatial eigenvector can be 

identified at 182m and 410m offshore from Figure 4.8. It can be concluded that the first 

eigenvector describes the change from one bar to two when the temporal weightings change from 

positive to negative. 
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Figure 4.9 Weightings of the first three eigenvectors of profile line 62. 

The second eigenvector also describes the bar movement in beach profiles. It accounts for 

25.3% of the variance from the mean beach function. As illustrated in Figure 4.9, the weightings 
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from surveys in May 1989 and March 1996 are two positive peaks, and weightings from the 

surveys in July 1982 and October 1999 are two negative peaks. Those four profile configurations 

are shown in Figure 4.11. It can be seen from Figure 4.11 that when the weightings are positive the 

beach profiles have one bar with significant bar height, and when the weightings are negative the 

beach profiles have one or two bars in the surf zone. 

In all, the combination of the first two eigenvectors account for 60.6% of the variance in the 22 

years, whereas Birkemeier (1985) explained that the first two eigenvectors accounted for 64.8% of 

the variance. The difference is a weak indication of the non-staiionarity of beach profile changes in 

time series. However, as Birkemeier (1985) also found, the first two eigenvectors can explain the 

bar movement, which actually is the essential movement of the beach profiles. 

The third eigenvector accounts for 15.3% of the variance from the mean beach function, which 

is not veTy significant when compared with the first two. By obselvihg Figure 4.9, it is found that 

the temporal weightings of the third eigenvector have a weaker annual periodicity. Hence the third 

eigenvector is responsible for the seasonal migration of bars. This result is much clearer when 

studying the data set for a shorter period. Birkemeier (1985) argued that the third eigenvector has 

well-defined annual cycles by investigating the three and half year Duck data. However, the 

eigenvectors beyond the first three become difficult to explain especially when the time series of 

data are longer. The eigenvalues and the corresponding percent of variances are summarised in 

Table 4.2 for the first five eigenvalues, which accounted for 87.6% of the variance in data set. 

Table 4.2 Results of EOF 

Eigenvector Eigenvalues 
Percentage 

variance accounted 
for 

Accumulated 
percentage variance 

1 0.047 35.3% 35.3% 
2 0.034 25.3% 60.6% 
3 0.02 15.3% 75.9% 
4 0.009 6.6% 82.5% 
5 0.007 5.1% 87.6% 
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Figure 4.10 Typical profiles with changes from one bar to two bars. 
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Figure 4.1 i Typical profiles in the second eigenvector. 

Altogether, the first three eigenvectors account for 75.9% of the overall variability of beach 

profiles. They explain the bar migration from different aspects. It should be noted that in the 

previous works most of the authors limited their studies to the first three eigenvectors since the 

other eigenvectors are much more difficult to interpret. Finally, we emphasise again the stationary 

assumption of the EOF analysis. For details, please refer to the discussion of E O F in Chapter 2. 
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Chapter 5, SPATIAL ANALYSES OF BEACH 

PROFILE CHANGES AT DUCK 

5.1 Introduction 

In this chapter, the field data sets at Duck are analysed using the methodology in Chapter 3. 

The results from one representative profile, line 62, are presented and discussed in detail. 

In Section 5.2.1, the variance of the profile is divided among six spatial scales using the 

AMODWT. The overall variance of each surveyed profile during the course of study is presented 

over six scales. The predominant variances at particular scales are compared with the temporal 

weightings in EOF analysis. In Section 5.2.2, the local variation of the profile at different spatial 

scales is presented. The advantage of wavelet analysis over the EOF analysis is shown. In Section 

5.2.3, an effort is made to link the profile changes at larger spatial scales to the wave conditions. In 

Section 5.2.4, the contours of spatial wavelet standard deviations in the temporal-spatial plane at 

six scales are presented. In this way, the general spatial variability of the profile during the course 

of study is investigated. Meanwhile, the infrequent beach profile response to severe storms is 

identified by the separated contours in deep water. In Section 5.2.5, both the most active zone of 

the profile changes and the DoC are investigated by identifying the change points in spatial wavelet 

variance. 

The principal conclusions from the results using the DWT/AMODWT in Section 5.2 are 

summarised in Section 5.3. In response to some limitations of the DWT/AMODWT in studying the 

beach profile changes both in space and time, the results from the DWPT are presented in Section 

5.4 to further identify the scale (frequency) contents at which the profile changes happen. This 

Chapter concludes with a summary. 

69 



Chapter 5 Spatial analyses of beach profile changes at Duck 

5.2 Spatial Analyses of Beach Profiles 

5.2.1 Variability of beach profiles at several spatial scales 

Prior to doing the wavelet analysis the mean profile was subtracted from the profile data to 

eliminate the profile shape effect on the results. As noted in Chapter 4, there are 267 surveys 

(months) of profile line 62 therefore 267 separate wavelet transforms were conducted on the 421 

data across the beach profile to investigate the variability in space. The local variation in the cross-

shore direction is partitioned among six spatial scales in a dyadic sequence of multiples of the basic 

sampling interval (2m). Since each wavelet is a high-pass fiher, the resulting detail components in 

physical spatial scale intervals are 4-8m, 8-16m...and 128-256m. For convenience, the lower limit 

is referred to in what follows. The spatial AMODWT coefficients^/^^ and the relevant wavelet 

variances of all of the beach profiles in the study period were computed using Equations (3.21) 

and (3.18) separately as described in Chapter 3. The overall spatial wavelet variances of beach 

elevation at all scales are shown in Figure 5.1, plotted against the survey time. The Y-axes in the 

subplots of Figure 5.1 are not in the same scales to reveal the largest variance at different spatial 

scales clearly. It can be seen that the wavelet variances of beach profiles are dominated by the 

coarser scales of 128m and 64m. 

Figure 5.1 shows that the profile in May 1996 has the largest wavelet variance at the spatial 

scale of 128m. By referring to the temporal weightings of Figure 4.9 in the EOF analysis, it is 

found that the largest weighting of the second eigenvector is for May 1996, From this comparison, 

it is clear that wavelet analysis also can identify the profile with the largest variance during the 

course of study. Another peak of wavelet variances at this spatial scale in Figure 5.1 is identified in 

September 2000, when the temporal weighting of the first eigenvector in the EOF analysis has a 

negative peak as indicated in Figure 4.9. In order to investigate the common features with larger 

wavelet variance at the spatial scale of 128m, the configurations of the first four beach profiles 

having largest wavelet variances are displayed in Figure 5.2. The profiles are from March 1996, 

September 2000, August 2000 and February 1996, ordered in decreasing variance. It should be 

noted that July 2000 is another positive peak at the temporal weightings of the second EOF 
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eigenvector. It is clear that the bars on the four surveys in Figure 5.2 are quite significant both in 

height and width. For one thing, the bar height of March 1996 was over 1.5m above the mean level. 

The profile in August 2000 and September 2000 had a deep trough and a quite wide outer bar. 
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Figure 5.1 Wavelet variance at all spatial scales during survey period (Y axes are not in the same 
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Figure 5.2 The four surveys with the largest wavelet variance at the spatial scale of 128m. 
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Similarly, it is found that the profile in April 1995 has the largest wavelet variance at the spatial 

scale of 64m as exhibited in Figure 5.1. In addition, by referring to the temporal weightings of 

Figure 4.9 in the EOF analysis, it is also found that profile in April 1995 is a positive peak at the 

temporal weightings of the first eigenvector. The profile that has the second largest spatial wavelet 

variance at the spatial scale of 64m is identified in March 1995. The plot of the four profiles, April 

1995, March 1995, December 1991 and June 1996, with the largest spatial wavelet variances at the 

spatial scale of 64m is shown in Figure 5.3. These four surveys also have significant bar crests; 

however, the four bars on these four profiles in Figure 5.3 are much narrower and further 

landward compared with the bars on profiles shown in Figure 5.2. According to the previous 

studies, bar crests might move 100m even 200m offshore during storms. For one thing, the bar 

crest was moved I65m offshore due to the severe storms in November 13-15*̂  in 1981 (Birkemeier, 

1985). Thus it can be seen that the changes in the wavelet variances at the spatial scales of 128m 

and 64m can account for the bar migration, just as the combination of the first two eigenvectors in 

the EOF analysis does. 
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Figure 5.3 The four surveys with the largest wavelet variance at the spatial scale of 64m. 
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Figure 5.1 shows that during the course of the study the largest spatial wavelet variance at the 

spatial scale of 32m occurs in December 1991, when the profile has an obvious inner bar just 

beyond the shoreline. The four profiles with the largest spatial wavelet variances at the spatial scale 

of 32m are displayed in Figure 5.4, which are from December 1991, April 2003, April 1995 and 

March 2003. By examining all of the surveys with relatively larger wavelet variance at the spatial 

scale of 32m, it is found that all of the four beach profiles change significantly in the portion 

between I lOm and 200m along the profile. Therefore, it can be conjectured that the spatial wavelet 

variances at the spatial scale of 32m can characterize the spatial dimensions of the elevation 

changes in the portion just seaward of the shoreline. 
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Figure 5.4 The four surveys with the largest wavelet variance at the spatial scale of 32m. 

The largest spatial wavelet variance at the spatial scale of 16m is in August 1989, and the 

second, third and fourth largest spatial wavelet variance are December 1991, September 1989 and 

April 2003. The four profiles are displayed in Figure 5.5 with the mean across 22 years. In 

comparison with the profiles with larger variance at the coarser scales, it is found that the four 

profiles of the largest variance at the spatial scale of 16m have much larger variation in the dune 

zone and in the region around shoreline. Therefore, the variance at the spatial scale from 4m to 
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16m can capture some of the elevation changes in the surf zone and the spatial scales define the 

dimensions of them. 

In comparison with the EOF analysis presented in Chapter 4, wavelet techniques can be used to 

identify the different spatial patterns of beach profile changes as does the E O F analysis. Further 

potential of the wavelet techniques and their superiority over the traditional E O F is demonstrated 

by tracing the specific surveys that correspond to the largest wavelet variance at different spatial 

scales. 
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Figure 5.5 The four surveys with the largest wavelet variance at the spatial scale of 16m. 

In general, the coarser scales can capture the large beach profile changes in space, and the 

changes in the steep dune zone can be captured by the finer scales. First, the wavelet variances at 

coarser scales of 128m and 64m characterize the elevation changes of bar. This result shows that 

the maximum positive (accretion) elevation changes are typically related to the formation and 

migrations of bars. Second, the spatial wavelet variances at the spatial scales of 32m and 16m 

characterize the elevation changes in the portion just seaward of shoreline. Third, some smaller 

changes in the surf zone can be captured by the spatial scales from 4m to 8m. These conclusions 

based on the case studies will be investigated further in the following sections. However, the results 

do illustrate that wavelet techniques are much more powerful than the EOF, since the EOF analysis 
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does not partition the components of variation by spatial scales, and different components of 

different scales appear to characterize better the variation of beach elevation in different zones. 

Since the profiles having larger variance at the spatial scales of 128m and 64m manifest a 

profile configuration with well pronounced bars and/or troughs, the surveys with smaller variance 

are expected to have smooth profile shape without spectacular bed-forms. This inference can be 

validated by Figure 5.6 that displays the ten profiles having smallest wavelet variance at the 

spatial scale of 128m. It is obvious that these profile configurations are quite smooth and most of 

them are surveyed in summer. During summer with low waves, the outer bar moved slightly 

onshore simultaneously with flattening, to finally disappear. Meanwhile, the deep trough was also 

filled with sediment and so flattened. 
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Figure 5.6 The ten surveys with smallest wavelet variance at the temporal scale of 128m. 

5.2.2 Multi-scale analysis of beach profile change in space 

The profile in March 1996, as shown in Figure 5.2, was used to show how readily the wavelet 

analysis decomposes the beach profile variation into different scales. The spatial wavelet 

coefficients ^ were calculated using the DWT and the wavelet coefficients were reconstructed 

to detail components scale by scale. The detail components were plotted against offshore distances 
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as shown in Figure 5.7. By this multiresolution analysis, the beach profile changes were divided to 

a range of spatial scales so that changes at different positions along the profile can be characterized 

well by different spatial scales. 
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Figure 5.7 The detail components of the profile in March 1996. 
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The locations where variation from different scales affects the profile are vividly shown in 

Figure 5.7, which cannot be identified by other statistical methods. It also can be seen that the 

variation of this profile from the mean is mainly at the spatial scale of 128m. The details at the 

spatial scale of 128m clearly show that the negative peak corresponds to the trough (220-270m) 

and the positive peak corresponds to the bar (270-400m) in this profile, as seen in Figure 5.2. 

However, in this multi-scale analysis the variation beyond 582m offshore cannot be analysed 

because the DWT requires that the input data is an integer power of 2. In what follows the 

AMODWT analysis was used to take full advantage of the profile data from 70m to 910m offshore. 

To explain the localization of the variation of beach profiles at different spatial scales, we focus 

on the profiles with the largest wavelet variance at the spatial scales of 128m, 64m, 32m and 16m 

as identified from Figure 5,1. For one thing, the surveys in March 1996 and April 1995 correspond 

to the significant peaks at the spatial scale of 128m and 64m respectively. In addition, another 

profile in March 1992 with smaller variances is also presented to compare with the characteristics 

of the profiles with larger variances. The wavelet variance at the spatial scales of 8m and 4m will 

not be investigated specifically since they contribute less to the overall variance as shown in 

Figure 5.1. 

Figure 5,8 shows the accumulated components of the AMODWT spatial wavelet variances of 

beach elevation in March 1996, plotted against offshore positions. Each layer of the graph 

corresponds to one of the spatial scales, and at any position the thickness of the layer shows the 

size of the wavelet variance component at that scale and location. On the whole, the contribution of 

wavelet variances at the spatial scale of 128m is largest landward of 450m, and there is almost no 

variance of beach elevation seaward of 450m. However, the spatial wavelet variances between 125-

150m are dominated by the spatial scale of 64m. The wavelet variance components at the spatial 

scales of 16m and finer is much obvious landward of 100m. The results indicate that the significant 

spatial scale at which profiles vary differs across the beach profile although the total variance is 

mostly dominated by the spatial scale of 128m. 

Figure 5,9 shows the accumulated components of the spatial wavelet variances of beach 

elevation in April 1995, plotted against offshore distance. The overall wavelet variance of the 

survey in April 1995 is slightly smaller than that of March 1996. Moreover, the components of 
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spatial wavelet variances at the spatial scales of 64m are much larger around 140-200m than those 

of March 1996 as shown in Figure 5.9. This result can be explained by the deep trough located in 

this area. Apart from the dominant variances at the spatial scales of 128m and 64m, the relatively 

large variance component at the spatial scale o f 32m around 230m offshore captures the narrow bar 

crest. It also can be seen that there are no significant variance components seaward of 400m at all 

spatial scales. 
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Figure 5.8 Accumulated wavelet variance component ( J^ ^ / 2 ' ) for the profile in March 1996 

(MSL intercepts at 120m). 

Figure 5.10 shows the accumulated components of the spatial wavelet variances of beach 

elevation in December 1991. Although the variance of beach elevation is mainly at the spatial scale 

of 128m, the wavelet variance componems at the spatial scale o f 32m can be identified clearly from 

Figure 5.10. The obvious region of the profile that has significant variance at the spatial scale o f 

32m is in the region from 196m to 238m offshore with two peaks at 204m and 230m, where the 

deepest trough and the highest bar crest are respectively. 
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Figure 5.9 Accumulated wavelet variance component (c7^"^ ) for the profile in April 1995 

(MSL intercepts at 120m). 
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Figure 5.10 Accumulated wavelet variance component ( / 2 ' ) for the profile in December 1991 

(MSL intercepts atl20m). 

Figure 5.11 shows the accumulated components of the spatial wavelet variances of beach 

elevation of the survey in August 1989. A striking feature from Figure 5.11 is that the overall 

variance of beach elevation in August 1989 was quite small compared with those of the above three 
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profiles. This result is not surprising since the profile in August is usually rebuilt by the milder 

summer waves. Another conspicuous feature in Figure 5.11 is that the wavelet variance 

components around 100m landward are dominated by the finer scales, especially by the spatial 

scale of 16m. This can be seen clearly from the enlarged part of the dune zone as shown in the right 

plots of Figure 5.11. This result indicates that the wavelet variance at the spatial scale of 16m can 

characterize better the profile changes in the dune zone since this zone is quite narrow and steep. 

Moreover, it is seen that even in such a narrow region 70m-150m the contribution of variances 

from different spatial scales is different. This result shows the complex character of beach profile 

changes in space. 
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Figure 5.11 (Left) Accumulated wavelet variance component {d^^ / 2 ' ) for the profile in August 

1989 (MSL intercepts at 120m). (Right) Enlarged plots in the dune zones. 

Figure 5.12 shows the accumulated components of the spatial wavelet variances of beach 

elevation of the profile in March 1992. The overall wavelet variance of beach elevation of the 

survey in March 1992 is close to that of August 1989; however the dominant spatial scales that 

contribute most to the beach profile changes are different. This difference is associated with the 

month that the profile was surveyed. It can be seen from Figure 5.12 that in March 1992 the 
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dominant spatial scales at which significant change of beach elevation occur are 128m and 64m. It 

is obvious that the profile in March 1992 presented a winter bar form whilst the profile in August 

1989 was typical summer one. Moreover, the wavelet variance component at the spatial scale of 

32m shows its maximum around 130m offshore where is the deepest point of the trough. The bar 

crest is located at 210m where the variance mainly comes from the spatial scale of 64m. This 

smaller spatial scale captures the steep bed-form seaward of the shoreline. 

The five representative case studies of spatial variances of beach elevation indicate that wavelet 

analysis can be used to both identify the local variation of beach profiles and partition the variances 

into a range of spatial scales. In this way, the smaller scale changes that are usually shadowed by 

larger scales can be identified. Generally speaking, the wavelet variance components of beach 

elevation at a range of spatial scales in the five surveys clearly show the spatial non-stationarity of 

beach profile changes, as we expect. It is also found that when the overall variance is large the 

proportion of variance at coarser spatial scales is often the largest, and vice versa. 
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Figure 5.12 Accumulated wavelet variance component (J"^^ / 2 ' ) for the profile in March 1992 

In addition, there are a few obvious features in Figures 5.8-5.12. The significant variance of the 

profile in March 1996 was in the region from 200m to 350m with the maximum at 210m offshore. 

The significant variance of the profile in April 1995 was in the region from 100m to 280m w ith the 
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maximum located 240m offshore, while the significant variance o f the profile in March 1992 was 

in the region from 70m to 180m with the maximum at 130m offshore. It is apparent that the spatial 

wavelet variance components of beach elevation are almost down to zero seaward of 450m at all 

scales for the profile in March 1996. Similarly, there is no significant variance seaward of 400m for 

the profiles in April 1995 and December 1991. In addition, no obvious variance can be identified 

seaward o f 370m from the profile in August 1989 and seaward of 300m from the survey in March 

1992. These results suggest that wavelet variances might be a means to identify the DoC of beach 

profiles. This wil l be investigated further in Section 5.2.4. 

5.2.3 Seasonal patterns o f beach profile changes 

Some tentative conclusions, which have to be further substantiated, have been drawn from the 

above case studies of the variability of beach profiles in space. On the whole, most of the surveys 

with the largest wavelet variance of beach elevation at the spatial scale of 128m and 64m are in 

February, March and April . On the other hand, the surveys with the largest wavelet variance at the 

spatial scale of 16m are in August. These results indicate the scale-dependent characteristic of 

beach profile changes might be related to the seasonal wave conditions. 

During late autumn and winter beach profiles experience high-energy waves or storms, so 

usually the dimension o f beach profile change is large and the variation o f beach elevation is 

significant. In consequence, the wavelet variances of profiles are larger at the coarser spatial scales 

in late winter and early spring (February, March and April). During spring and summer, the 

weather is calm so that beach profiles respond to mild waves. Therefore, the beach elevation 

changes are smaller in magnitude and the spatial dimensions of changes are smaller in late summer 

and early autumn spatial scales. This is supported by the wavelet variance components of the 

survey in August 1989. In addition, the variances at the finer scales are more obvious in the dune 

and surf zones than those of the other zones, because beach profiles in the surf zone experience a 

few kinds of varied forcing conditions, such as small waves as well as storms. However, in deep 

water beach profiles will only respond to strong storms. 

To validate this seasonal pattern of beach profile changes that resulted from the above case 

studies, the overall wavelet variances of beach profiles during the 22 years were averaged into 
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calendar months at all spatial scales and shown in Figure 5.13. It Is obvious that the overall 

average wavelet variance increases as the spatial scale increases. It can be seen that at the spatial 

scale of 128m the largest monthly average wavelet variance is in February and the smallest is in 

August. It also can be seen from Figure 5.13 that at the spatial scale of 64m the average wavelet 

variance is largest in December and the smallest in August. The overall trend at these two coarser 

scales is that the variance is small in June, July and August and large in December, January, 

February and March. 

The average monthly wavelet variance at the spatial scale of 32m shows a slight difference from 

that of 128m and 64m, which may be due to some delay. Figure 5.13 also shows that the average 

wavelet variance at the spatial scale of 16m is largest in April and smallest in November. In 

addition, the average wavelet variance at the spatial scale o f 8m and 4m shows an inverse temporal 

structure from that of 128m and 64m, because the largest wavelet variance at the two finer scales is 

in summer (August) and the smallest is in winter. Due to the small wavelet variance at the smaller 

spatial scales, they are not discussed further. 

It is interesting to find that the shape of the monthly wave height plot (Figure 4.3) is extremely 

similar to the wavelet variance at the spatial scales o f 128m and 64m. This may indicate that on 

average the deterministic pattern o f beach profile changes responds to the seasonal wave 

conditions. However there are still some small scale beach profile changes that cannot be explained 

by a simple correlation with the wave heights. This conclusion supports the contention that the 

beach profile change is a highly non-linear dynamic system that cannot be explained simply by the 

wave conditions. 
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Figure 5.13 Monthly average wavelet variance across 22 years at all spatial scales. 
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5.2.4 Contours o f the spatial wavelet standard deviations o f beach elevation 

In Section 5.2.2, a few case smdies have been conducted to study the variability of beach 

profiles over a wide range of spatial scales. In addition to the case studies, the spatial variability o f 

beach profiles was related to the seasonal forcing conditions by investigating the monthly average 

wavelet variances during the 22 years. To investigate the deterministic patterns at different spatial 

scales of beach profile changes further during the course of study, the spatial wavelet standard 

deviation (SD) of beach elevation was studied. This kind of study aims to identify the extt-aordinary 

events as well as the general (average) deterministic patterns o f beach profile changes. 

The spatial wavelet SD components of beach elevation of each survey were computed using 

Equation (3,23).The contours generated from the spatial SD components among all of the surveys 

were plotted on the space/time plane scale by scale. In the following plots, the vertical axis (space) 

is the offshore distance and thVhorizontal'axis (tirne) is the month when the profile was surveyed. 

The darker contours denote the larger wavelet SD components, and vice versa. 

Figure 5.14 shows the contours at the spatial scale of 4m during the course of the study. The 

maximum spatial SD at this spatial scale is 0.1. It can be seen from Figure 5.14 that most of the 

contours are distributed landward of 200m with the maximum in the dune zone. Moreover, the 

region with the largest SD is around the 48'*' month (June 1985) located 70m-120m offshore. This 

result suggests the large change of elevation in the dune zone in June 1985. Another two regions 

with larger SD in the same portion along the profile are around the 110"̂  month (August 1990) and 

198'*' month (December 1997). It is obvious that the contour patches with larger SD are centred in 

the dune zone at the spatial scale of 4m. 

Figure 5.15 shows the contours at the spatial scale of 8m. The maximum spatial SD at this 

scale is 0.14. Generally speaking, the contours at this scale are distributed in a wider portion along 

the profile than that of spatial scale o f 4m. There are a few regions with larger wavelet SD in the 

dune zone around the 24'*', 96'*' and 260'*' months, which are in June 1983, June 1989 and February 

2003. Apparently, most of the significant wavelet SD of beach elevation at the spatial scale o f 8m 

is still identified during the period from June to August. Two similar regions centred in the 148'*' 

survey (October 1993) and 235'*' (January 2001) are observed from Figure 5.15. Both o f them are 

located at 100m-180m offshore. 
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Figure 5.16 shows the contours at the spatial scale of 16m. The maximum spatial SD at this 

scale is 0.26, which is much larger than those of the two finer scales. Also, the distribution of the 

contours extends offshore further. There are three regions with relatively larger SD located 190m-

290m during the course of study, which contrasts with the smaller SD at the two finer scales. In 

addition to the above features in Figure 5.16, the SD in the dune zone still has a significant 

contribution at the spatial scale of 16m. 
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Figure 5.14 Contour of wavelet SD at the spatial scale of 4m during the course of the sftidy. 
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Figure 5.15 Contour of wavelet SD at the spatial scale of 8m during the course of the study. 

900.0(H 

800.0DH 

at 16m scale 

700.00H 

^ 600.Q0H 

^ 500.00 

g 400.00 

300.00-

0 
200.00-

100.00 

0.26 

0.24 

0.22 

0.20 

0.18 

0.16 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

120 144 

Survey month 

264 

Figure 5.16 Contour of wavelet SD at the spatial scale of 16m during the course o f the study. 

87 



Chapter 5 Spatial analyses o f beach prof i le changes at Duck 

Figure 5.17 shows the contours at the spatial scale o f 32m. The maximum spatial SD at this 

scale is 0.4S, which is almost twice of that of spatial scale of 16m. h also can be seen that the SD in 

the dune zone has become less significant in comparison with those o f the three finer scales. The 

three patches on the contours of wavelet SD at the spatial scale o f 16m are still present at this scale. 

Also, the large wavelet SD in the dune zone around the 24'*' (June 1983) is still present. 

Figure 5.18 shows the contours at the spatial scale of 64m for the period o f the study. It can be 

seen that the maximum spatial SD at this scale is 0.7. The region of the largest SD is centred in the 

128'*' month (February 1992) located at 150m-290m offshore. A small separate contour of SD is 

centred in the 228'*' survey (June 2000) around 400m offshore. This can be explained by the severe 

storms on 29'*' May 2000 with wave heights up to 5.0m and wave periods up to lOs. During the 

storms, sediment was transported offshore resulting in the formation of a distinct outer bar, which 

grew in size. In consequence, the volume of sediment on the upper shoreface increased abruptly. 

Figure 5.19 shows the contours at the spatial scale of 128m for the period of the study. The 

maximum spatial SD at this scale is as same as that of spatial scale of 64m, It can be seen that the 

contours at the spatial scale of 128m extends to 400m offshore. A number o f contours in Figure 

5.19 are identified in a narrow region around 230m offshore, therefore they are related to the 

movement o f the inner bar. The dense contours from 70m to 150m are related to the sediment 

transport between dune zone and shoreface. Apart ft-om these dense contours in the surf zone, there 

are two obvious contours of SD around 700m offshore (in deep water). One is around the 142"'* 

survey (April 1993), and another is the 228'*' survey (June 2000), which has been discussed at the 

spatial scale of 64m. The wave conditions presented in Chapter 4 show that there was a very 

severe storm on March 13, 1993 (the storm of century) with wave heights up to 4.6m and periods 

up to 12.19s. In addition, there was a storm surge o f 1.3m in height. 
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Figure 5.17 Contours of wavelet SD at the spatial scale of 32m during the course of the study. 
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Figure 5.18 Contour of wavelet SD at the spatial scale o f 64m during the course of study. 
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Figure 5.19 Contours o f wavelet SD at the spatial scale of 128m during the course of the study. 

So far, the features of the contours of spatial wavelet SD of beach elevation have been identified 

scale by scale so that both the general pattern of beach profile changes and the infrequent 

individual events have been interpreted. A l l the six sets o f contours at different spatial scales 

almost have no contours seawards o f 500m during the course o f the study. The contours in the 

region from the shoreline to about 300m offshore are especially dense, which illustrates that the 

sediment transport is most active in this zone. This result is in agreement with the findings of 

previous work such as Lee et al. (1998) who observed the vertical range o f the profile envelop 

during 1981-1991 at Duck. Moreover, the maximum wavelet SD of beach elevation increases with 

the spatial scales. This result further emphasizes that when the beach elevation changes are in 

larger magnitudes in vertical the spatial dimensions of the changes are also larger. 

In addition to the common features of the contours, the scale-dependent characteristic o f the 

beach profile changes is also quite obvious. It is found that the contours of the wavelet SD at the 

spatial scale o f 4m and 8m are quite similar and the dense patches on them are centred in the dune 

zone. The dense patches in the dune zone at the spatial scale of 4m, 8m, 16m and 32m cannot be 
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found at the spatial scales of 64m and 128m. This result indicates that beach elevation changes in 

the dune zone can be well captured at the spatial scale smaller than 32m. This finding can be 

verified by the configuration o f beach profiles that the slope in the dune zone is quite steep at 

Duck, such as example is shown in Figure 5.11. 

It is also found that the contours of wavelet SD of beach elevation at the spatial scale of 64m 

and 128m are also quite similar. The dense patches o f contours at these two spatial scales are 

centred in the later autumn or winter surveys located in the region from 180m to 270m offshore. 

Therefore the wavelet variance from these two coarser scales refiect the larger change of beach 

profiles during later aummn and winter, which is usually related to the offshore movement o f the 

bar. The bar migrations are also the key characteristic of beach profile changes, which also has 

been evidenced by the case studies in Section 5.2.2. 

"Meanwhile, the effect of the infrequent ~exh*aordinary events, such as the extreme single storm 

or storm groups, on the profile can also be identified at different spatial scales from the contour of 

wavelet SD, such as the century storm on March 13, 1993. 

5.2.5 Identifying change points in spatial variance o f beach elevation 

Al l the above results show that the local variance components o f the profile are quite indicative 

of the most important changes along the profile. Thus, to quantify these changes, locations of 

significant change in spatial wavelet variance were identified at each spatial scale against the 

critical values listed in Table 3.2 following the procedure developed in Chapter 3. 

The identified change points in the wavelet variance were plotted on the contours of SD at the 

same spatial scales. The marks 1, 2, 3, 4 and 5 on the plots are the ranked orders of identified 

changes in the spatial wavelet variance. Therefore, the points on the plots marked with a '+ 1' are 

the locations where the largest change in variances along the profile at each survey is identified. 

According to the methodology in Chapter 3, the lower orders denote the most significant change 

in the wavelet variance; therefore the changes in the first three orders are discussed. 

Figure 5.20 shows shaded contours of spatial wavelet SD with points of significant changes in 

spatial wavelet variances at the spatial scale of 4m. The first order changes in wavelet variances at 
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the spatial scale of 4m are identified in the region from 120m to 280m offshore and concentrated at 

160m offshore, as shown in Figure 5.20. It also can be seen that the identified change points in 

wavelet variances in the second order are scattered in a broad range from the dune zone to ver\ 

deep water. The results indicate the non-uniformity of variance at the spatial scale of 4m along the 

profile. 

Figure 5.21 shows shaded contours of spatial wavelet SD with points of significant change in 

spatial wavelet variances at the spatial scale of 8m. The distribution of changes in wavelet variance 

at the spatial scale of 8m is quite similar to that of 4m in that the changes in the wavelet variance 

identified in the first order are also centred at 160m offshore. However it can be seen from Figure 

5.21 that the distribution of the first order changes is concentrated in a narrower region than that of 

from spatial scale of 4m. 
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Figure 5.20 Distribution of change points in the wavelet variance at the spatial scale of 4m. 
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at 8m scale 
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Figure 5.21 Distribution of change points in the wavelet variance at the spatial scale of 8m. 
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Figure 5.22 Distribution of change points in the wavelet variance at the spatial scale of 16m. 
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Figure 5.22 shows shaded contours of spatial wavelet SD with points of significant change in 

spatial wavelet variances at the spatial scale of 16m. It can be seen from Figure 5.22 that the 

changes in the wavelet variance identified in the first order are centred at 175m offshore. 

Comparatively, the distribution of second order changes in the spatial wavelet variance is more 

concentrated at this spatial scale. 

Figure 5.23 shows shaded contours of spatial wavelet SD with points of significant change in 

spatial wavelet variances al the spatial scale of 32m. It can be seen from Figure 5.23 that the 

changes in the wavelet variance identified in the first order are also centred at 260m offshore. It is 

also found that the second order change in the wavelet variance is distributed in a narrow region 

centred at 390m offshore. Another conspicuous feature in Figure 5.23 is that the identified 

changes in the spatial wavelet variance at the third order are in the region from 400m to 600m 

offshore, which may be related to infrequent winter storms. 

Figure 5.24 shows shaded contours of spatial wavelet SD with points of significant change in 

spatial wavelet variances at the spatial scale o f 64m. It can be seen from Figure 5.24 that the 

changes in the wavelet variance identified in the first order al the spatial scale o f 64m are also 

centred at 260m offshore. It is found that the identified changes in the spatial wavelet variance at 

the second order are in a narrow region centred at 410m offshore. 

Figure 5.25 shows shaded contours of spatial wavelet SD with points of significant change in 

spatial wavelet variances al the spatial scale of 128m. It can be seen that the distributions of the 

identified change points in the wavelet variance in both the first and second order are quite similar 

to that of at the spatial scale of 64m. The identified points at this spatial scale are much more 

concentrated than those of the finer scales. Figure 5.25 also demonstrates that change points in the 

wavelet variances at the second order are in the portion from 400m to 500m offshore. It also shows 

that the variances are almost uniform seaward of 500m since there are no change points marked on 

the plot. In order to clarify, the histogram of the distribution of all points identified by changes in 

wavelet variances at the spatial scale of 128m is shown in Figure 5.26, which shows there are two 

peaks located al 260m and 4lOm along the profiles. 
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at 32m scale 
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Figure 5.23 Distribution of change points in the wavelet variance at the spatial scale of 32m. 
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Figure 5.24 Distribution of change points in the wavelet variance at the spatial scale of 64m. 
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at 128m scale 
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Figure 5.25 Distribution of change points in the wavelet variance at the spatial scale of 128m. 
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Figure 5.26 Histogram of identified changes in wavelet variance at the spatial scale of 128m 

against cross-shore position. 

As shown in Figures 5.20-5.22, the change points in spatial wavelet variance at finer scales in 

the first order are mostly concentrated from 160m to 175m along the profile, although the 

distribution seems fairly erratic. This distribution might reflect the bar migration during the course 
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of study. In general, the change points in spatial wavelet variance at the spatial scales of 32m, 64m 

and 128m are identified in the first order centred at 260m offshore and those of identified in the 

second order are located 410m offshore. According to the previous studies, the transitional bar 

appears frequently around 260m and the beach elevations do not change much seaward of 410m 

(about at 4-m depth) at Duck. On the other hand, the 4-m depth corresponds to the seaward limit of 

offshore movement of the outer bar crest (Larson and Kraus, 1994; Nicholls et al., 1998). 

Therefore, it is natural to match the bar migration and the DoC point with these two changes in 

spatial wavelet variances. 

The identified change points in the wavelet variance at the spatial scale o f 128m are specified 

with the three example survey profiles discussed in Section 5.2.2, because the wavelet variance 

components at coarsest scales are easy to observe directly. The identified changes in the wavelet 

variances at the spatial scale of l28m-from the 177'*' survey (March'1996) are located at 332m, 

466m and 510m offshore in the first order, second and third order, respectively, as shown in Figure 

5.25. These identified change points in the spatial wavelet variance are in agreement with Figure 

5.8, where the components of spatial wavelet variance are shown. The changes in the wavelet 

variance at the spatial scale of 128m from the 166^ survey (April 1995) are located at 266m and 

392m offshore in the first and second order respectively. Those sharp changes in the spatial wavelet 

variance components can be observed in Figure 5.9 also. The change in spatial wavelet variance at 

the spatial scale of 128m from the 129'*' survey (March 1992) is identified at 218m offshore, which 

can also be found in Figure 5.12. 

In general, it can be concluded that the most significant change of beach elevation (bar 

migration in the surf zone) and the closure point (no significant variation seaward of this point) can 

be obtained by identifying the change points in spatial wavelet variances at the coarsest scale. 

However, i f following the identified change points in spatial wavelet variance at finer scales, it is 

difficult to define the general DoC for all the surveys because the critical values of , as shown in 

Table 3.2, are much tighter at finer scales. However, these results do support the contention that 

the DoC of beach profiles is also scale-dependent. I f following the change points in spatial wavelet 

variance at coarse scales, the results are in agreement with Larson and Kraus (1994). 
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The procedure described in Chapter 3 provides a new statistical methodology for identifying 

and classifying features of morphologically significant locations along the profiles, which could be 

an alternative to the equation o f Hallermeier (1981). The concluding remark for the investigation is 

that the DoC of beach profiles is a relative concept in coastal morphology. The practical 

employment of it in coastal engineering depends on the scale o f interest. 

5.3 Principal Conclusions from the AMODWT Results 

Wavelet transforms have been employed to study the variation o f the profile line 62 surveyed at 

Duck. The AMODWT has been used to adapt to our relatively smaller data set as well to estimate 

the variance with higher efficiency. First of all, the wavelet variances from the AMODWT at a 

range of spatial scales were investigated and compared with the results from the EOF analysis. In 

comparison with the EOF analysis the usefulness of wavelet techniques to study the multi-scale 

variability of beach profiles has been established. Generally, wavelet techniques allow us to 

explore and quantify the non-stationary behaviour of beach variability more effectively than with 

the EOF method. 

This spatial analysis of variance, using wavelet techniques, provides an insight into the relative 

importance of variations along the profile at different spatial scales. The wavelet decomposition 

also provides a natural means o f investigating fluctuations in the beach level variability along the 

profile. This allows locations at which beach profile changes and the scales o f those changes to be 

identified. Some key fmdings from the spatial analysis are: 

• Firstly, multiresolution analysis using the wavelet transform gives a quantitative estimate 

of the relative importance of different spatial scales to the overall variability of the beach 

profile. The larger variances from the spatial scales o f 128m and 64m characterize the 

profiles with obvious bed-forms, such as bars and troughs (Figure 5.2) whilst the smaller 

variances indicate a smooth profile without spectacular bed-forms (Figure 5.6). 

• Secondly, the wavelet variance components show that the contributions from different 

scales at different parts of the profile are different, which suggests that the morphological 

evolution of the profile as a whole is dependent upon different processes along the profile. 
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The results also provide evidence o f the scale-dependent character of beach profile 

changes. 

• Thirdly, the spatial wavelet variances at spatial scales of 128m make a large contribution to 

the variation of beach profiles overall. These results are to be expected from the 

consideration that the primary agent for morphological evolution is the incoming waves. 

When there are high-energy waves, the changing portion o f the beach profile is wide and 

the spatial scale at which elevation changes occur is also larger. Additionally, variances 

coming from finer scales are more obvious in the dune and surf zones than those of other 

zones, because beach profiles in the surf zone experience small waves as well as storms, 

however in deep water beach profiles wil l only change in response to strong storms. The 

results provide new quantitative evidence to support the contention that the variation of 

beach profiles in space is not statistically stationary. 

• Fourthly, analysis of the changes in variances of individual spatial components indicates 

that this provides a useful measure for defining the DoC of beach profiles. The zone in 

which the changes in beach elevations are not significant would be expected to coincide 

with a measurable change in the spatial variance. The DoC identified by the change in 

spatial wavelet variances at the spatial scale o f 64m and 128m is more consistent with the 

findings of Larson and Kraus (1994) than with the results o f Nicholls et al. (1998), which 

is acknowledged as providing a conservative estimate. In general, by identifying the 

changes in spatial wavelet variance at different scales, the scale-dependent DoC is justified. 

The procedure described in this thesis provides a statistical method for identifying the most 

active zones as well the DoC. 

5.4 Analysis of the Spatial Variability with DWPT 

5.4.1 General 

In the above sections, the spatial variability o f beach elevation of profile line 62 at Duck were 

analysed using the DWT. The complicated variations of beach profiles in space have been 
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decomposed into several scales, and some promising results are obtained. The results have 

exhibited that the wavelet technique is a powerful tool for studying the variability of beach profiles. 

However, the obvious disadvantage o f the DWT is that it provides a predetermined basis for the 

data set that does not depend in any way on the spatial/temporal variation of the original data. The 

temporal or spatial scales of beach elevation changes are fixed as the dyadic 

sequence2^Xo,y = 1,2,3..., where jCq is the sampling interval in time or space. 

In this section, the analysis is repeated but using the DWPT and the selected best basis rather 

than the AMODWT. The non-dimensional standard frequency intervals are shown in Equation 

(3.38), and the spatial scales referred to in this thesis are multiples of the basic sampling rates with 

the reciprocal of the upper limit of the frequency interval. Daubechies's (1988) wavelet with two 

vanishing moments was employed to do the DWPT analysis. The Shannon entropy function, 

introduced by Coifman and Wickerhauser (1992), was used in the best basis algorithm in this thesis 

since it is a most widely used criterion. The beach profile data were extended symmetrically in 

order to deal with the border distortion as well as to preserve the local character of the variability of 

beach profiles. Multiresolution analysis was performed on the extended data. 

5.4.2 Spatial scale analysis using the D W P T 

Three representative surveys of profile line 62 were investigated using the DWPT and compared 

with the results fi-om the DWT in the following. The full set of wavelet packets were generated by 

six dilations and the best basis was selected from the DWPT. Table 5.1 lists all the wavelet 

packets for the profile in March 1996W^^„;7 = 1,2, ...6. The best basis was denoted by shaded 

cells. Figure 5.27 shows the best basis selected from the DWPT of the survey in March 1996, 

ordered in increasing spatial scales from bottom to top. The sum of the components on the eight 

packets in the best basis reconstructs the original variation as shown in the top plot of Figure 5.27. 

Two packets in the normal DWT were decomposed again in the best basis, where , was 

decomposed to ^ ^ 2 . 2 ^ ^ ^ 2 3 ' an^^Tj, was decomposed to ^^i^^^^e.^- Figure 5.27 indicates 

that the beach profile changes can be bener captured by the spatial interval o f 4-5.3m and 5.3-8m 
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respectively along the profile than the Interval of 4-8m in the DWT. Moreover, the variance in the 

interval of 64-128m in the DWT can be bener resolved by two intervals 64-85.3m and 85.3-128m. 

Figure 5.27 shows that the variation at the spatial scale of 64-85.3m explains the presence of the 

first bar crest well. 

Similarly, the detail components in the best basis of the survey in April 1995 were computed 

and displayed in Figure 5.28. The components denoting variation of beach elevation at the spatial 

scale of 85.3m are identified in the best basis. It can be seen that the first and third significant 

positive peaks at the spatial scale of 85.3m coincide with the locations of the two bar crests as 

illustrated on the top most plot. 

Figure 5.29 shows the detail components in the best basis of the profile in March 1992. As 

found in the AMODWT analysis, this profile has an obviously smaller overall variation than those 

of in March 1996 and April 1995. However, Figure 5.29 displays many more packets in the best 

basis in comparison to those of the other two surveys. It can be seen that the variance at the spatial 

scale of 8-16m in the DWT was decomposed to two components, 8-10.66m and 10.66-16m. The 

changing between strong and weak periodicity o f the detail components at the spatial scale o f 

10.66m along the profile shows strong intermittent character of beach elevation changes. Similarly, 

the detail components at the spatial scale of 21.3m characterize much of the two bar crest in March 

1992. 
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Table 5.1 DWPT packets for the profile in March 1996 with shaded cells denoting the best basis. 
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Figure 5.27 Reconstruction of the detail components in the best basis from the DWPT of the profile 

for March 1996 against cross-shore. 
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Figure 5.28 Reconstruction of the detail components in the best basis from the DWPT of the profile 

for April 1995 against cross-shore. 
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Figure 5.29 Reconstruction of the detail components in the best basis from the DWPT of the profile 

for March 1992 against cross-shore. 
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The spatial wavelet packet variances fi-om the best basis of the surveys in March 1996, April 

1995 and March 1992 were computed using Equation (3.39) in order to obtain the relative 

importance of the packets at different scales. The plots are displayed together with those from the 

DWT in Figure 5.30, Figure 5.31 and Figure 5.32, respectively for the purpose of comparison. 

As noted above, the spatial scales in these three figures are multiples of the reciprocal of the upper 

limit in the frequency intervals, since the spatial scales are usually used to describe the variation o f 

beach profiles in coastal engineering. 

The predominance o f the variance at the spatial scale of 128m and 64m is the common feature 

of the three figures, which is consistent with the results from the DWT. The variance at the spatial 

scale of 85.3m in the best basis is another common feature among them, although the contributions 

from these scales are not as significant as the spatial scale of 128m and 64m. In the previous 

studies using the AMODWT, the variances at these two coarser scales have been related to the bar 

migration by comparison with the temporal weightings in the EOF analysis. It is concurred that the 

length of inner bars at Duck has a mean of 95m with maximum and minimum of 280m and 35m, 

respectively (Larson and Kraus, 1994). It is obvious that the mean bar width is close to the spatial 

scale of 85.3m, therefore, the variance at the spatial scale of 85.3m provides further support for the 

conclusion that most of the variance explains the bar migrations and the dimensions of the bar are 

defined by the predominant spatial scales. 

Moreover, there are some differences in the best basis among the three profiles due to the 

various beach profile configurations. From this point o f view, the DWPT provides a more detailed 

analysis into the variability of each surveyed profile. In consequence, the understanding o f the 

beach profile variability is refined. 
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Figure 5.30 Spatial wavelet variance at different spatial scales in the best basis of the profile for 

March 1996. 
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Figure 5.31 Spatial wavelet variance at different spatial scales in the best basis of the profile April 

1995. 
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Figure 5.32 Spatial wavelet variance at different spatial scales in the best basis of the profile for 

March 1992. 

On the other hand, the bases in the best basis from the DWPT are not much larger than that o f 

from the DWT, implying that spatial scales o f beach profile changes are not so complicated. 

However, the conclusions from the AMODWT that the coarser scales characterize the bar/trough 

are substantiated further. 

5,5 Summary 

In this chapter, the variation of beach profiles has been investigated over a wide range of scales 

in time using the wavelet transforms with emphasis on the AMODWT. The most important 

contributions from the study on the data set at Duck using wavelet techniques are as follows: 

1. Providing powerful quantitative evidence for the non-stationary nature of beach profile 

changes in both time and space. 

2. Successfully characterizing the main spatial patterns of beach profile change. The scale-

dependent spatial patterns are explained by the site character and seasonal wave 

conditions. In addition, the effects of extreme events are revealed. 

3. The DoC is investigated using a new statistical method in coastal engineering. The 

results indicate a strong scale-dependency. 
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Chapter 6. TEMPORAL ANALYSES OF 
BEACH PROFILE CHANGES AT DUCK 

6.1 Introduction 

In Section 6.2, the temporal variability o f particular beach elevations is studied. In Section 

6.2.1, the locally temporal variation o f the beach elevations at the shoreline is divided among six 

temporal scales and the long-term trend is identified. Another two particular points in the time 

series are studied similarly. It is follov^ed by much physical interpretation for the three particular 

points along the profile. A particular concern about the temporal variability o f the different zones 

along the profile is shown in Section 6.2. The contours o f temporal wavelet standard deviations in 

the spatial-temporal plane are presented in Section 6.3. The general temporal variability along the 

profile is well captured by the contours at different scales. Also in this section, some physical 

explanation is given to the extraordinary response in deep water. The results of change points in 

temporal variances are presented in Section 6.4. Further investigation o f temporal variability o f 

beach elevations with the DWPT is presented in Section 6.5. 

6.2 Multi-scale analysis of beach profile change in time 

6.2.1 Local variation and long-term trend 

A similar approach to the spatial analysis in Section 5.2 was performed to investigate the 

temporal scales of the changes of beach elevation at specified locations along the profile line 62 

using the wavelet technique. As noted in Chapter 4, there were 421 observations in space series 

along the profile; therefore 421 separate wavelet transforms on beach elevations in time series of 

267 months were conducted. The results from a few representative observations of beach elevation 

along the profile are shown in detail to demonstrate the multi-scale analysis in time series of 

wavelet transforms. The first observation is located at 120m offshore which is at the mean 

shoreline of the profile line 62 over 22 years, and the second was chosen from the peak of the SD 

of beach elevation in Figure 4.7, which is located 260m offshore. In addition, the variability of 
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beach elevation in time series of the point located 410m offshore, where the elevation change is not 

significant and sometimes one outer bar is identified, is studied. The evolution of the three points 

during the course of study of 22 years is displayed in Figure 6.1. 
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Figure 6.1 Evolution of the three points during the course o f the study. 

Since the incoming wave energy is dissipated in the surf zone, the long-term trends should 

reflect the response of the shoreline to changes in the prevailing wave climate, i . e., the trends 

represent the long-term forced behaviour. Therefore, multiresolution analysis of the temporal 

variability of beach profiles using the DWT was carried out on the observations at 120m offshore 

during the course of study. The detail components and approximations at different temporal scales 

were obtained by doing the inverse transform of the DWT as described in Chapter 3. The top plots 

in both Figure 6.2 and Figure 6.3 are the beach elevation during the course o f study. 

Figure 6.2 shows the detail components of beach elevation against the survey time at the 

temporal scales of 2 months, 4 months...and 64 months, which is denoted by d l , d2 ...and d6 on 

the plots. The detail components characterize the local variation in time series which happens at 

different temporal scales. For example, the variation o f beach elevation in the 9̂ ^ month (March 

1982) is predominantly involved at the temporal scale o f 16 months, which is denoted as d4 on the 

plot as shown in Figure 6.2. 
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beach elevation at 120m offshore and detail components 
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Figure 6.2 The detail components of beach elevation 120m offshore at different temporal scales. 
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beach elevation at 120m offshore and approximations 
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Figure 6.3 The approximation o f beach elevation at 120m offshore at different temporal scales. 

The approximation components at different scales by subtracting the corresponding detail 

components from the original beach elevations are shown in Figure 6.3 during the course o f study, 

where ai denotes the approximation components at the temporal scale of 2 months. The long-term 
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trend becomes gradually clear in the approximation components with the increasing of the temporal 

scales. This result indicates that wavelet transforms provide a powerful tool to identify the long-

term trend o f the variability o f beach profiles by filtering out the short-term fluctuations which 

might correspond to events such as storms or storm groups. 

6.2.2 Wavelet variance components o f three observations 

The temporal wavelet variance components of beach elevation at 120m, 260m and 410m 

offshore were computed. The accumulated components were ploned against the survey time and 

shown in Figure 6.4, Figure 6.5 and Figure 6.6. Each layer of the graph corresponds to one of 

the temporal scales, and at any month the thickness of the layer shows the size of the wavelet 

variance component at that scale and the month that the profile was surveyed. 

Figure 6.4 shows that the wavelet variance components are distributed over a wide range of 

temporal scales from 2 months to 64 months. However, it can be seen from Figure 6.4 that the 

dominant wavelet variance scales differ over the course of the study. It can be observed from 

Figure 6.4 that the wavelet variance components during the period from August 1984 to June 1986 

is mostly at the temporal scale of 32 months, while around December 1987 the variance is 

dominated by the temporal scale of 16 months. Moreover, it is found that the wavelet variance 

component around June 2000 is dominated by the temporal scale o f 64 months. The temporal 

wavelet variance components at all scales during the period from June 1998 to December 2001 are 

quite significant during the survey time. Figure 6.4 shows that the variance during the period from 

June 2002 to September 2003 is quite obvious at the temporal scale o f 64 months. In all, the 

temporal variance components at the various temporal scales change in the time series, revealing 

the beach elevation changes are highly non-stationary at the point on the shoreline. 
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Figure 6.4 Accumulated wavelet variance at 120m offshore during the course of the study. 

Figure 6.5 shows the accumulated components of the temporal wavelet variance of beach 

elevation against the survey time at 260m offshore where there is usually a transitional bar. The 

point located at 260m is often identified as the first order change in spatial wavelet variance in 

Section 5.2.5. In general, the largest wavelet variance components of beach elevation at 260m 

offshore are at the temporal scales of 16 months and 8 months during the course of study, even 

though at times other temporal scales dominate. 
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Figure 6.5 Accumulated wavelet variance at 260m offshore during the course of the study. 
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These variance components shown in Figure 6.5 display the intermittency of beach elevation 
change at this observation. For example, the variance in October 1990 is dominated by the 
component at the temporal scale of 4 months. At this observation point, it also can be seen that the 
component of temporal wavelet variance at all scales is also largest during the period from June 
1998 to June 2001, which is similar to that o f at 120m offshore, as displayed in Figure 6.4, 
Moreover, the variance during the period from June 2002 to September 2003 is quite significant at 
the temporal scale of 32 months. In short, the variance of beach elevation at this observation is 
mainly at the temporal scales of 16 and 8 months in a descending order. The larger variance at 
temporal scale of 16 months suggests a strong interannual variation of beach elevation at this point. 
Ruessink et ai (2003) argued that the return period of the bar north of the pier at Duck amounted to 

5.9 years. However, Figure 6.5 illustrates that the six-year periodicity is quite weak and 

intermittent at 260m offshore, where a transitional bar is often present. The variance at the 

temporal scale of 8 months reflects the annual period of beach profile changes, which might be 

related to the annual signature of the wave conditions at Duck (Larson and Kraus, 1994). 

Figure 6.6 shows that the components of the wavelet variance at all scales during the survey 

time at 4 l0m offshore are much smaller than those o f 120m and 260m offshore as shown in Figure 

6.4 and Figure 6.5. The analysis of wavelet variance components illustrates the relatively small 

change of beach elevation in deep water. Moreover, the variance during the period from June 2002 

to September 2003 is quite obvious at the temporal scale o f 8 months. It can also be seen from 

Figure 6,6 that the temporal wavelet variance components at finer scales contribute much to the 

overall variances. 
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Figure 6.6 Accumulated wavelet variance at 410m otTshore during the course of the study. 

These analyses at three positions show that the temporal variance at given points along the 

profiles is the combination of variance components at several temporal scales with one or two 

dominant ones. Since the dominant scales change during the course o f study for a particular 

location, the temporal wavelet variance components provide strong evidence for the spatial non-

stationarity of the beach profile changes. The three case studies also show that during a particular 

period the dominant temporal scales var> along the profile. For one obvious period from June 2002 

to September 2003, the dominant temporal scales are 64 months, 32 months and 8 months for the 

three observations located at 120m, 260m and 41 Om offshore respectively. 

6.2.3 Physical interpretation on the typical wavelet variance components o f the 

three observations 

There are a few periods when the wavelet variance is relatively large in Figure 6.6, which 

could be explained by extreme events. One such period is between the end of 1988 and the 

beginning of 1989. The profile configurations from September 1988 to March 1989 are displayed 

in Figure 6.7, which shows the profile evolution during winter with considerable offshore 

sediment transport. It can be seen that there was a bar in September 1988 located around 190m 
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offshore and the bar crest gradually moved offshore ti l l February 1989 the bar crest was situated 

around 280m offshore. The bar migration from September 1988 to February 1989 is a typical beach 

profile response to the severe winter waves. 

Figure 6.7 also illustrates another obvious phenomenon that the bar crest moved further to 

380m offshore and a wide trough formed in March 1989. The bar moved around 100m offshore in 

a month due to the storms in late February 1989 and March 1989. On February 25^ 1989 the wave 

height was up to 4.09m and with wave period o f 11.13s and on March 11"', 1989 the wave height 

was 4.23m with wave period of 12.19s. These intense short-term phenomena explain why the 

wavelet variance at the temporal scale of 2 months was largest in February 1989 as indicated in 

Figure 6.6. 

Another striking period illustrated in Figure 6.6 is from August 2002 to August 2003, when the 

wavelet variance component is relatively large. The most significant contribution in this period is 

from the temporal scale of 8 months, which contrasts with early 1989 when the variance at the 

temporal scale of 2 months is quite large. The result can be interpreted by the unusually calm 

weather during the winter o f 2002. Therefore, the annual beach response is more conspicuous 

during this period. In all, these two special periods shown in Figure 6.6 are explained by different 

weather conditions corresponding to different temporal scales. 
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Figure 6.7 Bar migration from September 1988 to March 1989. 
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The temporal wavelet variance components at 120m offshore are very large from December 

1989 to December 1995 as shown in Figure 6.4. Therefore, a detailed discussion is given below. It 

is obvious that the annual cycle is much more apparent during this period of study. Meanwhile, the 

temporal wavelet variance components at 260m offshore also display a weaker annual cycle during 

these six years. On the other hand, the variance during this period is quite small at 410m offshore 

(mean water depth of 4.17m). The studies by previous researchers have demonstrated that the 

active zone of sediment transport is in the region seaward of 4m water depth. Therefore, this period 

shows the general seasonal change of beach profiles. 

Figure 6.8 shows a typical shoreline change after a mild summer during the six year period. It 

can be seen in July 1993 that the dune zone is obvious above the mean elevations and almost no 

apparent bar crest. Therefore, wave energy would not be dissipated much when waves were 

propagating onshore from upper shoreface to inshore. Consequently, the shoreline was vulnerable 

to any forcing conditions. This can explain that the variance was quite large at 120m offshore but 

quite small at 410m offshore from the profiles in July 1993, August 1993 and September 1993. 

After three months deposition of the sediment from the dune zone, t i l l October 1993 an inner bar 

formed as seen in Figure 6.8. Subsequently, the bar moved offshore slightly, which can be 

observed from the profile in November 1993, 

6 

4 -

2 -

I 0 
c 
o 
> 

LU -4 ^ 

-6 

-8 

-10 

mean 
Jul.93 
Aug.93 
Sep.93 
Oct.93 
Nov.93 

100 200 300 400 500 600 700 800 

Offshore distance (m) 

900 

Figure 6.8 Typical summer beach profile change. 

118 



Chapter 6 Temporal analyses o f beach profi le changes at Duck 

The three representative observation points also illustrate that in 2002 the temporal wavelet 
variance components are small. These results indicate that the beach profile change must have been 
quite small. The profile configurations of the surveys from May 2002 to January 2003 are shown in 
Figure 6.9. It can be seen that during this short period although an inner bar can be identified it 
was quite small. Apparently, the beach elevation at 410m offshore did not change much during this 
period. On the other hand, the observation end point that is located at 910m offshore was 
substantially below the mean in January 2003. The mean water depth at this observation was 
8.03m, whilst in January 2003 the water depth was 8.36m. These results reveal an unusual onshore 
sediment transport during later autumn and winter. Moreover, Figure 6.9 shows an obvious node 
at 358m during this short period. Between the node and the point at 410m offshore the beach 
elevations of these surveys were slightly under the mean profile. These can be attributed to the 
calm winter in 2002. 
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Figure 6.9 Beach profile changes in a mild winter o f 2002. 
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6.3 Scale-dependency of beach profile changes in time 

In Section 6.2, the temporal scales of beach profile changes have been studied on three 

representative observation points along a profile. Some common features and individual characters 

have been distinguished. To compare the variability o f beach elevation at different locations along 

the profile, the wavelet correlation coefficients between the three time series at different scales 

were computed using Equation (3.20). The correlation coefficients among the three points were 

plotted in Figure 6.10 against the temporal scale. 

The correlation between the changes of beach elevation at 120m and 260m decreases when the 

temporal scale increases from 2 months to 8 months. The possible explanation is that the extreme 

events affect the beach profile changes in a period less than 8 months. On the other hand, the 

correlation increases steeply from -0.197 to 0.861 when the temporal scale increases from 8 months 

to 64 months, which suggests that in the long-term the changes at 120m are highly correlated with 

those of 260m. 

The correlations between the changes in beach elevation at 120m and 410m show a different 

pattern at the longest temporal scale. The correlation coefficient at the temporal scale of 64 months 

is -0.486, which strongly indicates the sediment exchange at these two observations. The larger 

correlation at the temporal scale of 2 months between the observations of 260m and 4l0m offshore 

may imply that when there are extreme events these two observation points behave in a more 

similar way than do the two observations at 120m and 260m. Moreover, the correlation between 

260m and 4 l0m is negative at the temporal scales larger than 4 months. This result implies that 

sediment is transported between them at this temporal scale. That is, the sediment transported 

offshore from 260m will deposit at 410m and the sediment transported onshore wil l accrete again 

at 260m in the temporal interval of 4-8 months. In addition to this short term sediment transport, 

the larger negative correlation between these two points indicates the migration o f bars at longer 

terms. 
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Figure 6.10 Correlation among the three points at different temporal scales. 

The beach profile was divided into nine regions as listed in Table 6,1 in order to investigate the 

space-dependency o f temporal wavelet variance along the profile further. Subsequently, the 

average wavelet variance o f these regions at different scales were computed and shown in Figure 

6.11. To distinguish the variability more specifically, Rl denotes the dune zone, R2 and R3 denote 

the inner bar zone, R4 and R5 is defined as the outer bar zone and R6 to R9 is defined as the upper 

shoreface. 

Figure 6.11 shows that the overall average wavelet variance decreases when the observation 

points move towards the upper shoreface. However, the pattern o f variance in region R l , the dune 

zone, is apparently different from those o f other regions. It also can be seen from Figure 6.11 that 

the maximum variance at this temporal scale is located in the region of R2. 

It also can be seen from Figure 6.11 that the maximum average wavelet variances at the 

temporal scales o f 16 and 32 months are in the region o f R3. Generally, sediment eroded from the 

dune zone is often transferred past the shoreline and deposited just seaward o f the shoreline. 

However, the average wavelet variance at the temporal scale o f 64 months is largest in the dune 

zone and larger than the variance at other finer scales in the region o f R6. Therefore, a possible 

explanation is that at the temporal scale of 64 months (64-128 months, in average 6 years) there is 
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exchange of sediment between the dune zone and the upper shoreface. This interpretation is 

consistent with the argument of Wright et al. (1991) that the onshore-offshore exchange of 

sediment over years to decades is not confined to the average surf zone, where most beach profile 

studies have occurred, but extends across the shoreface. 

Table 6.1 Regions across the beach profile 

Rl R2 R3 R4 R5 R6 R7 R8 R9 

Dune zone Inner bar zone Outer bar zone Upper s horeface 
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Figure 6.11 Average wavelet variance in difTerent portion along the profile with an interval of 

100m. 

The temporal wavelet variances of beach elevation were plotted scale by scale for all the given 

points along the profile as shown in Figure 6.12 in order to give a general overview of the wavelet 

variance. The shapes of the plots of the wavelet variance at the temporal scale of 64, 32 and 16 

months are similar to that of the SD of beach elevation shown in Figure 4.7. This similarity shows 

the consistency o f wavelet analysis with traditional statistical analysis, while the different shapes at 
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the temporal scale of 8, 4, and 2 months again illustrate the strengths o f wavelet techniques that can 

characterize the short term variation of beach elevation that can be shadowed by long-term trend. 
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Figure 6.12 Wavelet variance at alt temporal scales against cross-shore position. 

It is seen that all of the peak variances of beach elevation at the temporal scales of 16, 8 and 4 

months are around 260m offshore, where inner bars usually occur. This figure further substantiates 

that change in the beach profiles seaward of 400m is negligible, indicating "closure" for the data 

set, which is consistent with the results from the spatial analysis presented in Section 5.2.4. The 

fact that the wavelet variance at a given point has similar order of magnitudes at different scales, as 

shown in Figure 6.12, give an overall view that the variances come from a combination of 

temporal scales, indicating the different coastal morphodynamic at different portions of the profile. 

Moreover, it can be seen that the dominant temporal scales vary with the locations along the 

profile. This explains the different temporal patterns of beach profile changes at different locations 

along the profile. 
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6.4 Contours of temporal M âvelet standard deviations of beach 

elevation 

The variability of the profile in time over a wide range o f scales has been studied at three 

representative observation points along the profile in the above sections. To generalize the main 

patterns of beach profile changes during the course of study at different temporal scales, the 

temporal wavelet SD components of beach elevation at each observation along the profile were 

computed using Equation (3.23). 

The contours generated from the temporal wavelet SD of all the beach elevations along the 

profile are illustrated in the space-time plane scale by scale. In what follows, the horizontal axis 

denotes the offshore distances and the vertical axis denotes the months that the points along the 

profile were.surveyed. The largermagnitudes are.denoted by-darker contours. 

Figure 6.13 displays the contours at the temporal scale of 2 months along the profile. The 

maximum temporal SD component o f beach elevation is 0.7. There are two regions o f larger SD on 

the contour located at 160m, which are centred in the 36̂ ^ (June 1984) and 90* month (February 

1989) separately. The interpretation is that the profile in June 1984 had an inner bar centred at 

160m. In contrast, the profile in February 1989 had an apparent trough centred 160m offshore 

whilst it had a conspicuous bar located 246-354m. 

Moreover, the beach elevations seaward of 360m in February 1989 were substantially below the 

mean profile, which explains the large SD shown in Figure 6.13. This beach profile responded to 

the storm group during the February 1989 and March 1989. That means another storm in March 

1989 occurred before the sediment transported to the upper shoreface during the storm in February 

1989 had enough time to transport back to the surf zone. Therefore the SD is also relatively large in 

the upper shoreface region. Another striking peak o f SD in Figure 6.13 is located in the region 

from 420m to 500m centred in the 232'"' month (October 2000), when an outer bar was identified 

around 410m offshore. 
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at 2 month scale 
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Figure 6.13 Contour of wavelet SD at the temporal scale of 2 months along the profile. 

Figure 6.14 displays the contours at the temporal scale of 4 months along the profile. The 

maximum temporal SD component o f beach elevation is 0.5. The feature centred in the 90* survey 

(February 1989) on the contour is similar to that o f at the temporal scale of 2 months. Moreover 

there is another patch located 190m offshore, where an inner bar located in the region I80m-224m 

offshore was identified in October 1996 (the 184'*' survey). Another striking patch on the plot is 

centred in the 204* survey (June 1998) during the period from April 1998 to August 1998 (the 

202"'' to 206* survey) when two bars were identified, with one situated 400m offshore. In addition, 

the contour of wavelet SD at the temporal scale o f 4 months shows the sediment transport in deep 

water during the period from June 2002 to September 2003 (the 228* to 267* survey), which may 

be related to the calm winter. 
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at 4 month scale 
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Figure 6.14 Contour of wavelet SD at the temporal scale of 4 months along the profile. 

Figure 6.15 displays the contours at the temporal scale of 8 months along the profile, where the 

maximum temporal SD component o f beach elevation is 0.7. Apparently, the patch, related to 

February 1989 (the 92"** survey) at the temporal scale of 8 months, is not as striking as at the two 

finer scales. There are two patches around the 58^ month (April 1986). The patch located 180m 

offshore explains the presence of a deep trough whilst another patch located 240m offshore 

explains the existence of an inner bar in April 1986 (the 58^ survey). 

In addition to the sediment transport in deep water during the period from June 2002 to 

September 2003 as identified on the contour at the temporal scale of 4 months, another similar 

process is identified at the temporal scale of 8 months during the period from July 1981 to August 

1982 (the I " to 14'*' survey). The adapted wavelet filters of Cohen et al. (1993) might introduce bias 

due 10 the edge effect of wavelet transforms, which is the possible explanation for this patch since 

the forcing conditions are normal during this period. 
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at 8 month scale 
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Figure 6.15 Contour of wavelet SD at the temporal scale of 8 months along the profile. 

Figure 6.16 displays the contours at the temporal scale of 16 months along the profile, where 

the maximum temporal SD component of beach elevation is 0.8. In comparison with the above two 

temporal scales, it is found that the contour patch with SD of 0.4 at the temporal scale of 16 months 

moves further offshore from October 1996 to June 1998. This result can explain that the bar crest in 

the surf zone was shifted further offshore due to the storms. Moreover, it can be seen from Figure 

6.16 that the patch of contours identified at the temporal scale of 8 months during the period from 

July 1981 to August 1982 still holds at the temporal scale of 16 months. 

Figure 6.17 displays the contours at the temporal scale o f 32 months along the profile. The 

maximum temporal component of SD is 0.7. In terms of the distribution of the large SD, the overall 

contour at the temporal scale of 32 months is quite different from those o f the finer scales as 

discussed above. A striking feature on this figure is the peak in SD during the period from February 

1987 to February 1989 with a region extending further to 680m offshore. As a matter of fact, both 

February 1987 and February 1989 were marked as storm groups by Lee et al. (1998), who defined 

storm groups as at least two storms within a period of less than 39 days both with wave 
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height H^Q > 4 m. Another large patch on this contour is related to the storm group in August 1999 

when the maximum wave height was up to 6.1m on August 31 1999. This patch of contours 

extends to 910m offshore. The two apparent large patches provide strong evidence that the beach 

profile changes over longer periods usually involves larger portions of the beach profiles. 

In addition, there are two very narrow patches on the contours in Figure 6.17. One is around 

the 144* survey (June 1993) from 500m to 650m offshore, which might be the consequence of the 

storms in March 1993. Another is around the 177*̂  survey (March 1996) from 500m to 620m 

offshore corresponding to the storm on March 1996. Referring to the results in Section 5.2.1, the 

survey in March 1996 has the largest wavelet variance at the spatial scale o f 128m. 
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Figure 6.16 Contour of wavelet SD at the temporal scale of 16 months along the profile. 

Figure 6.18 displays the contours at the temporal scale of 64 months along the profile. The 

maximum temporal SD component o f beach elevation is 0.7. The region o f the largest SD is 

centred at 120m offshore during the period from the 216̂ ^ (June 1999) to 267* month (September 
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2003). This result again highlights that beach elevation change near the shoreline involve in large 

temporal scales. 

In addition, there are a few striking patches located 460m-800m offshore in Figure 6.18, One 

representative patch spans from the 80*̂  to 156^ survey, which is during the period from February 

1988 to June 1994. During this period there were three intensive storm groups occurred in February 

1989, December 1989 and October 1991 (Lee et al. 1998). The Halloween storm in October 1991 

was most remarkable since its energy was unusually high and the wave period was up to 24s. 

Another representative patch includes the 177*̂  survey, which has been discussed for the contour at 

the temporal scale of 32 months. The difference is that the patch spans longer in time and wider in 

space along the profile. 
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Figure 6.17 Contour of wavelet SD at the temporal scale of 32 months along the profile. 
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at 64 month scale 
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Figure 6.18 Contour of wavelet SD at the temporal scale of 64 months along the profile. 
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The analyses above show that changes in beach elevation along the profile contain different 

temporal panems. For example, the striking feature that is located 400m-700m offshore along the 

profile in February 1989 on the contour of temporal scale of 2 months has no equivalent at the 

temporal scale of 8 months. This result again illustrates the nature of scale-dependency of beach 

elevation changes in time series. Moreover, the distribution of patches on the contour of temporal 

scale of 8 months is much more regular than other scales. It can be concluded that the overall beach 

profile changes shows a strong annual period since the 8 month scale is referred to the temporal 

interval 8-16 months. 

By analysing the contours of temporal wavelet SD, some extreme storm events have been 

identified. However, not all the beach profile response to storms can be distinguished by observing 

the contours of SD of beach elevation at a range of temporal scales. The first reason is that the 

onshore feed of sediment is not significantly affected by individual storms during the fair weather 

conditions. Another explanation is that beach profile change depends much on the antecedent 

profile configuration before the storms. 
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The comparison o f the contours at all temporal scales implies that the maximum wavelet SD 

component of beach elevation does not vary greatly among different temporal scales. This result is 

quite different from that of spatial pattem analysis in Section 5.2.4 where the maximum component 

of wavelet SD increases significantly with the spatial scales. No temporal scales contributing 

predominantly to the overall variance illustrate again the much more complicated variability of 

beach profiles in the time series. 

6.5 Identifying changes in temporal wavelet variance of beach 

elevation 

As in the case for the spatial analysis, the time at which changes in temporal wavelet variances 

occur can be identified according to the procedure described in Chapter 3. The critical values to 

identify the changes in temporal wavelet variance at different scales are listed in Table 3.3. 

Figures 6.19-6.23 display the identified changes in temporal wavelet variance scale by scale, where 

the different marks from one to nine denote the orders that the changes in temporal wavelet 

variance are identified. 

The identified changes in the wavelet variance at the temporal scale of 2 months are shown in 

Figure 6.19. It can be seen that most of the identified changes in temporal wavelet variance 

happen seaward of 400m (deep water), and the changes usually happen in winter. This result is not 

a surprise. In general, the occurrence of severe storms that move sediment offshore (in deep water) 

is in winter. I f much sediment is transferred offshore due to extremely severe storms, the temporal 

wavelet variance components of the observations in deep water might have a sharp change from the 

general seasonal trend. For example, in the portion from 700m to 910m across profiles, changes in 

wavelet variance at the temporal scale of 2 months are identified in the 124*̂  survey (October 1991) 

when there were severe storms with wave height up to 5m and wave period up to 20s. 

Most o f the changes in the wavelet variance at the temporal scale o f 4 months are also located 

seaward o f 400m, as shown in Figure 6.20. The difference is that the most of the changes in 

variance at this temporal scale are identified in summer. Moreover, the overall orders of identified 

changes in the wavelet variance decrease from nine to four as the temporal scales increase from 2 

131 



Chapter 6 Temporal analyses o f beach profi le changes at Duck 

months to 4 months. The reason is that the critical values B at fmer scales are stricter than those of 

the coarser scales as shown in Table 3.3. 

The number of the identified changes in temporal wavelet variance becomes less as the 

temporal scale increases. Figure 6.21 depicts the contour of the temporal SD and the change 

months in wavelet variance at which significant change occurs at the temporal scale of 8 months. It 

can be seen that the changes in temporal variance located seaward o f 750m are identified in the 8'*̂  

and 253"̂  survey, which are in Februarv 1982 and July 2002. This resuh indicates that at most parts 

of beach profiles the temporal variance al the temporal scale of 8 months is uniform. 
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Figure 6.19 Distribution of changes in temporal wavelet variance at the temporal scale o f 2 months. 
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at 4 month scale 
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Figure 6.20 Distribution of changes in temporal wavelet variance at the temporal scale of 4 months. 
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Figure 6.21 Distribution of changes in temporal wavelet variance at the temporal scale of 8months. 
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A similar trend is found in the variances o f part of the profiles at the temporal scales of 16, 32 
and 64 months. The significant changes in wavelet variance at the temporal scale of 16 months and 
64 months are shown in Figure 6.22 and Figure 6.23. The distribution of identified changes in 
temporal variance at the temporal scale of 32 months is not displayed in this thesis because there is 
only one identified change in wavelet variance. The change identified at 72m offshore in the 160'*' 
survey is in October 1994, This change is overlooked since the point is close to the boundary of 
this study. The change might be due to the edge effect o f wavelet transforms as described in 
Chapter 3. The uniformity of temporal wavelet variance at the coarser scales demonstrates that the 
beach profiles are highly correlated over these longer temporal scales. 
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Figure 6.22 Distribution of changes in temporal wavelet variance at the temporal scale of 16 

months. 
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at 64 month scale 
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Figure 6.23 Distribution of changes in temporal wavelet variance at the temporal scale of 64 

months. 

The identified change points in temporal wavelet variance can be interpreted further by 

examining the beach elevations during the course of the study at different scales. Figure 6,24 

shows the evolution of beach elevation during the course of study from 350m to 850m offshore 

with an interval of 100m. As one example, the detail components at the temporal scale of 4 and 8 

months are shown in Figure 6.25 for the beach evolution at 650m offshore. The detail components 

at the temporal scale of 4 months show an apparent change in the 92"'' month (February 1989). The 

spike on the plot of the temporal scale of 4 months interprets the change point in Figure 6.20. The 

much smoother plot of the temporal scale of 8 months explains there is no change in temporal 

variance at 650m in Figure 6.21. 

In all, the identified changes in temporal wavelet variance show a strong scale-dependency. The 

many changes at the temporal scale of 2 and 4 months can be explained by the short term storms, 

which have no long-term effect as indicated by the few changes at the coarser scales. The spatial 

distribution o f the changes in temporal variance shows that most o f the abrupt changes in variance 
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of beach elevation are in seaward of 400m. These results demonstrate again that the unusual severe 

storms or storm groups affect the profile in deep water (upper shoreface) whereas the waves during 

mild weather cannot affect the upper shoreface of the profile. 
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Figure 6.24 Beach elevations at different locations along the profile during the course of the study. 
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Figure 6.25 Detail components at the temporal scale o f 4 months at 650m offshore. 

6.6 Principal Conclusions from the AMODWT Analyses 

In an analogous way, the second wavelet analysis was applied to the temporal variation of beach 

levels at fixed locations along the profile. In what follows are some findings: 

o The results on the whole provide strong support for the contention that variations 

o f beach profiles are statistically non-stationary in time. 

o The detail components in the DWT capture the local variation in time series which 

happens at different temporal scales, and the approximation components at higher 

scales can indicate the long-term evolution of beach elevation. This provides 

information about the dominant time scales of beach elevation changes at 

particular locations along the profiles. 

o The temporal scales contrast with those from the spatial analysis in that they do not 

show the clear dominance of a few scales. The result shows that there are no 

clearly defined temporal scales of variation that dominate consistently during the 

course of study. Rather, there is a strong pattern of intermittency at most temporal 

scales, which is clear at locations across the length of the profile. 
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o However the wavelet analysis at the three representative locations along the profile 

does indicate that different temporal scales have a different balance of influence on 

the overall variance as one moves along the profile. 

o The contours of wavelet SD at different temporal scales provide much more 

general information about the beach profile changes at all observation points along 

the profile. The significant change in beach elevations occurs at the temporal scale 

over 4-16 months. Moreover, the contours of wavelet SD of beach elevation 

support the contention that the changes of beach elevation occurring over a longer 

time period usually involve a larger portion of beach profiles. 

o The relatively larger number o f changes identified in temporal wavelet variance at 

finer scales seaward of 400m has been explained by the irregular occurrence of 

extfem^sihgle^torfnTof ŝ ^̂  have ob'vious'im^cf irTdeep water. 

o The few identified changes in the wavelet variance at the temporal scales of more 

than 8 months illustrate the long-term uniformity of beach profile changes. 

So far, by analysing the variability both in space and time using the AMODWT, the basic 

temporal patterns of beach profile line 62 at Duck have been identified and some exceptional 

events have been explained. Due to the localized nature of wavelets, wavelet analysis is well suited 

for investigating non-stationary time or space series. This property makes them extremely useful as 

a tool for analyzing coastal data. 

6.7 Temporal Analysis with the DWPT 

6.7.1 Temporal scale analysis using the D W P T 

Similar analyses to the spatial scale analysis are carried out to study the beach elevation changes 

in time series using the DWPT. The time series of beach elevation at three fixed points along the 

profile line 62 at Duck were examined with wavelet packets obtained by six dilations of the 

wavelet. For information of the evolution of the three points during the course o f study, please refer 

to Figure 6.1. 
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Table 6.2 DWPT for the point at 120m offshore with shaded cells denoting the best basis. 
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Table 6.2 lists all packets from DWPT for the beach elevation of the point located at 120m 

offshore IVJ = 1,2, ...6. The best basis is denoted by shaded cells. It can be seen there are 20 

wavelet packets in the best basis, which means that variations at this point can be divided into 20 

frequency intervals. Similar analysis shows that in the best basis there are 16 packets and 10 

packets for the time series of beach elevation at 260m and 410m offshore respectively. They are 

substantially more than the 7 packets in the corresponding DWT. That is, the temporal variations o f 

beach elevation at given points have a more complicated frequency content (temporal scales) than 

the DWT can resolve. It is found that the number of packets in the DWPT decreases as the 

observation point moves from the shoreline to the upper shoreface along the profile. 

Figure 6.26, Figure 6.27 and Figure 6.28 show the reconstruction of the beach elevations 

located 120m, 260m and 410m offshore on the packets in the best basis, plotted against the survey 

time. The reconstruction shows the local variations in time at the point at different temporal scales 

as well indicates the temporal scales o f the variations. The labels on the Y axes are the lower limit 

of the temporal scales, so the plot labelled by 2 months exhibits the beach elevation changes in the 

temporal scale interval o f 2-4months. They are ordered in increasing temporal scales from left to 

right and from top to bottom. 

It is seen from Figure 6.26 that the detail components in the best basis at the temporal scale o f 

42.7-64 months explain most of the beach elevation changes during the I " to 160'*' month. The 

components at the temporal scales of 32-42.7 months explain the much variation during the period 

from the 160̂ ^ to 267'^ month. These two components together explain the variance contribution 

from the temporal interval 32-64 months in the normal DWT. It is obviously that the normal DWT 

analysis is insufficient. This result shows the temporal intermittency of beach elevation changes at 

120m offshore. Apart from this, the components at the temporal scale of 64 months display 

predominance. 

Moreover, the intermittency of beach elevation changes in time at this point is much more 

evident from the packets in the best basis in Figure 6.26, such as at the temporal scales of 7.5-8 

months and 7.1-7.5 months. In addition, the detail components at the temporal scales o f 5.3-6.4 

months capture well the variation around the 33"* (March 1984) and 220'*' survey (October 1999), 
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especially the last one. This component captures well the steep change of beach elevation at 120m 

offshore from the 215'*' to 220^̂  survey (May 1999 to October 1999), which can be seen from 

Figure 6.1. The storms with wave heights up to 6.1m from August 3, 1999 to September 5, 1999 

were a significant factor for the changes. Another factor was that before the storms the profile had a 

deep trough 240m landward. Therefore, when there were storms the dune zone was eroded. 

Figure 6.27 shows thai the components at the temporal scale of 16-18.3 months explain much 

of the overall variation o f beach elevation located 260m offshore. However, the detail components 

are not uniformly large during the course of study. The fluctuations are small from the 120^ to 

170'*' month (from June 1991 to August 1995), which is a good representation of the beach 

elevation changes at 260m offshore shown in Figure 6.1. On the other hand, these small 

fluctuations during this period can be seen almost regular from the detail components at the 

temporal scale of 25.6-32 month. 

In addition, the detail components in the best basis at the temporal scales of 64-128 months 

explain another significant variation at 260m offshore. However, the other components in the best 

basis show that the underlying temporal variation is quite interminent. Among these components, 

the details at the temporal scale of 21.3 months and 32 months are smaller from the 1̂ ' to 150'*' 

month (July 1981 to December 1993) while they contribute much to the overall variation from the 

ISO'*' to 267'*' month (December 1993 to September 2003). Especially, the fluctuations of beach 

elevation at 260m offshore from 216* to 262"^ month (June 1999 to April 2003) shown in Figure 

6.1 are well characterized at the temporal scale of 32-42.7 months. Therefore, the DWPT results 

provide a better quantitative means o f identifying the intermittency o f beach profile changes. As 

well, the significant fluctuations during different periods can be identified. 

Figure 6.28 shows the reconstruction o f the beach elevation at 410m offshore on the packets in 

the best basis during the course of study. It is found that the detail components at the temporal scale 

of 18.3-21.3 months capture well the significant variation from the 90'*' to 93"* survey (February 

1989 to May 1989) at 410m offshore in Figure 6.1. Previously the exceptional beach elevation 

changes in February 1989 have been identified and discussed on the contours o f temporal wavelet 

SD. The largest contribution for the variation is at the temporal scale o f 18.3 months. One possible 

explanation is that the recovery period of the sediment induced by ihe storms is around 18.3-21.3 
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months at this point. It is also found that the best basis at the temporal scales of 2 months and 4 

months also contribute much to the variation during the period from the 90*̂  to 93"* survey 

(December 1988 to March 1989). The possible explanation is that the effect o f storms on beach 

profiles is at a few different temporal scales. 
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Figure 6.26 Reconstruction of the detail components in the best basis from the DWPT at 120m 

offshore during the course of the study. 
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Figure 6.27 Reconstruction of the detail components in the best basis from the DWPT at 260m 

offshore during the course of the study. 

Moreover, the detail components at the temporal scale of 16 months in Figure 6.28 characterize 

well the peak of beach elevation changes at 410m offshore in Figure 6.1, The peak occurred in the 

185* month (November 1996). In contrast, this fluctuation is not obvious in the detail components 

at the temporal scale o f 21.3 months, which characterizes well the peak in the 231^' month 

(September 2000) shown in Figure 6.1. The profile in November 1996 had one inner bar and outer 

bar and between them the elevation at 290m was on the average; whilst the elevation at 290m was 

almost 2m below the average (a deep trough) in September 2000. These results suggest that 
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although the beach elevations at 410m offshore might exhibit various peaks during the course of 

study the presence and absence of them could have different temporal patterns due to the different 

fluctuation of neighbouring points. 

0.5 

0 

-0.5 
0.5 

Zmonths 

100 200 300 

-0.5 
0.5 

0 

-0.5 

Smonihs 
0 '^^^^^'•^'di^^ 

100 200 300 
l8.3months 

32months 

64months 

100 200 
Survey month 

300 

300 

0.5 

0 

-0.5 
0.5 

0 

-0.5 
I 

0.5 

0 

-0.5 

4months 

100 200 300 
16months 

100 200 300 
21.3rnonths 

42./months 

l28months 

100 200 
Survey month 

300 

300 

300 

Figure 6.28 Reconstruction of the detail components in the best basis from the DWPT at 4i0m 

offshore during the course o f the study. 

Subsequently, the temporal wavelet packet variances in the best basis at the three particular 

points were computed in order to seek the dominant temporal scales at which the beach elevation 

changes. The frequency intervals were also inversed to the corresponding temporal scales. Figure 

6.29 shows the distribution of wavelet packet variances in the best basis o f the point located 120m 

offshore, plotted against the temporal scales. It is obvious that the variance at the temporal scale of 

64 months is the largest. The second largest wavelet packet variances occur at the temporal scale o f 

42.7 months. These results indicate that at the shoreline, beach elevation changes occur over longer 

timescales. 
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Figure 6.29 Temporal wavelet variance at different scales in the best basis at 120m offshore. 
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Figure 6.30 Temporal wavelet variance at different scales in the best basis at 260m offshore. 

Figure 6.30 and Figure 6.31 show the distribution of the wavelet packet variances on the best 

basis of points at 260m and 410m offshore, respectively. Compared these two figures with Figure 

6.29, the variances are distributed in fewer scales and the overall wavelet variances become 

smaller when the points move farther offshore. IVloreover, there is a striking peak in Figure 6.30 

that corresponds to the variance at the temporal scale of 16 months (range in 16-18.3 months). This 

result indicates that at 260m offshore the predominance is the interannual variation, which contrasts 

with the main forcing conditions, seasonal wave conditions. It further supports the contention that 
145 



Chapter 6 Temporal analyses o f beach profi le changes at Duck 

the beach profile changes are not only the direct result from the forcing conditions (Southgate and 

Moller, 2000). 
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Figure 6.31 Temporal wavelet variance at different scales in the best basis at 41 Cm offshore. 

The distribution of wavelet packet variances explains the complicated temporal scale content 

and large magnitudes o f beach elevation changes in the surf zone. Also, the relatively simpler 

temporal scale content and smaller magnitudes o f beach elevation changes in the upper shoreface 

zone are illustrated. Moreover, the distribution of variances at different points again shows the 

dominant temporal pattems of beach elevation vary along the profile. 

In all, the multiresolution analysis of beach elevation at fixed points using the DWPT reveals 

many more temporal scales of beach elevation changes than the DWT analysis can resolve. This is 

because the scales in the DWT are limited to the integer power o f two whilst the beach elevation 

changes are quite complex in time. It is obvious that the DWPT is more powerful to study the 

temporal variability of beach profiles than the DWT. 

6.7.2 Discussions and Conclusions 

The variability of beach profiles in both time and space has been studied further using the 

DWPT. The DWPT with best basis selection allows us to achieve a decomposition of data on a 
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basis with a partition o f the frequency interval that best captures complex and localized spatial and 

temporal variation of beach profiles. 

Three particular surveys of profile line 62 at Duck were studied using the best basis from the 

DWPT to further identify the spatial scales, at which beach profile changed. The results indicate 

that the spatial scales o f the variation of beach profiles are not ful ly identified using the DWT. The 

variances at the spatial scale of 85.3m in the best basis selected from the DWPT might explain the 

average movement of the bar, considering thai the mean width o f the inner bar at Duck is 95m 

(Larson and Kraus, 1994). This finding refines the results fi-om the DWT analysis that the bar 

migrations at Duck might involve the spatial scales over 128m and 64m. 

The time series of beach elevation at three fixed points along the profile line 62 have been 

investigated using the best basis from the DWPT to provide further insight into the temporal scales 

of beach profile changes. The best basis from the DWPT provides more frequency (time scales) 

contents, at which beach elevation changes, than the DWT does. The beach elevation changes at 

120m offshore also show the most complex frequency (time scales) contents among the three 

points along the profile. It verifies that both the magnitudes and the range of scales o f beach 

elevation changes vary along the profile. 

In summary, the DWPT provides a more accurate way to quantify the complex beach profile 

changes. 

6.8 Summary 

In this chapter, the variation of beach profiles has been investigated over a wide range of scales 

in time using the wavelet transforms with emphasis on the AMODWT. The most important 

contributions from the study on the data set at Duck using wavelet techniques are as follows: 

1. Providing powerful quantitative evidence for the non-stationary nature o f beach 

profile changes in both time and space. 

2. The intermittency o f beach profile changes in time series is vividly illustrated. 

Apart from the intermittency, the main periods and long-term trend of beach 

profile change are identified by the wavelet approximation components. 
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3. The dominant temporal scales of beach profile changes vary within different zones 

along the profile. 

4. The primary correlation in different zones is studied over a range of temporal 

scales. The correlation between different zones again shows the scale-dependency. 

The all-around scale analyses employing wavelet techniques provide detailed information o f 

beach profile changes in both time and space at Duck. The results are expected to satisfy the 

concerns of interest in the variability at different scales in coastal engineering. An important 

implication is that the changes of beach profile over years and decades are not simply the 

cumulative results of small temporal scales. On the other hand, at smaller temporal scales, the 

storm and storm groups play an important role on the beach profile changes. 
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Chapter 7. R E S U L T S F R O M T H E DATA SET AT 

LUBIATOWO 

7.1 General 

In this chapter, the wavelet transforms introduced in Chapter 3 wi l l be applied on the data set at 

the Coastal Research Station (CRS), Lubiatowo in Poland with the aim o f demonstrating the 

general value of the methodology developed on the Duck data set. This site has a multi-bar shore, 

which is different from the two bar system at Duck. This data set is not as large as that at Duck; its 

advantage for wavelet analysis is that the sample points are regularly spaced along the profiles. On 

the other hand, the wave conditions at this site are not recorded in detail as at Duck, which makes it 

harder to interpret the results from wavelet analysis. 

First of all, the field site at Lubiatowo is described together with the morphological data 

collected. Subsequently, the previous works by other researchers based on this data set are 

reviewed. Due to the few surveys in time series, the temporal variability of beach profiles wi l l not 

be studied in this thesis, and effort is focused on the spatial variability of beach profiles. 

Characteristic features of the spatial patterns are examined quantitatively using the wavelet 

techniques and the patterns are related to the underlying physical site characteristics at Lubiatowo. 

7.2 Site and Data at the C R S Lubiatowo, Poland 

7.2.1 Description o f the site and data set at Lubiatowo 

Situated on the open sea beach about 80km northwest of Gdansk, the Coastal Research Station 

(CRS) of the Polish Academy of Sciences' Institute of Hydro-Engineering (IBW PAN) was 

established in 1969-1970 on the premises of a century-old coast-guard station. The CRS is a unique 

establishment of its kind in Europe. Figure 7.1 shows its topographical location. The bottom part 

of Figure 7.1 shows the shoreline and baseline of survey as well as the distribution of the survey 
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lines alongshore. The natural conditions occurring at the Lubiatowo beach are typical for the whole 

Polish coast. 
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Figure 7.1 Location of CRS on the Baltic Coast (Rozyriski, 2003a). 

The coast at the CRS Lubiatowo consists of fine sand with average grain size diameter 

D5o=0.22mm and is featured by multiple, predominantly four, longshore bars. A dune strip fonns 

the onshore boundary. In all, there are 27 observation points equally spaced every 100m, covering 

the longshore stretch of 2600m. The range of cross-shore measurements varies from 600m up to 

about 1500m, depending on weather conditions during records, and usually covers about 1000m. 
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The spacing of records across profiles is kept constant at approximately lOm. Profile lines 4, 5, 6 

and 7 are most intensively surveyed from 16**' May 1987 to 2P' June 2000. Therefore, they wil l be 

used in this thesis. The surveys document long-term phenomena reasonably well but they cannot 

resolve the impact of individual events. 

Long-term bathymetric surveys show that the nearshore zone at the CRS Lubiatowo is 

characterized by multiple, usually four longshore bars and a mild average beach slope of 1 - 1 . 5 % . 

The bars are very stable in the sense that they do not migrate; rather they oscillate about their 

average locations (Pruszak et ai 1997, 1999). The first innermost bar is situated about 120-170m 

from the baseline, with the water depth over the crest o f the bar being Im, the 2"̂  bar is located 

between 220-300m and the water depth at its crest is 2m, the 3"* bar is located between 400-500m 

and the water depth of its peak is 3-3.5m finally the 4*̂  is located between 600-800m and the water 

depth of its peak is 4-5m. 

For average storms the significant wave height outside the surf zone, at a depth of 20m, usually 

reaches 2-2.5m with periods of 5-7s. As the waves propagate onshore their energy is dissipated, so 

for water depths of 2-3m the average wave height is 0.5-1 m with periods of 4-5s (Pruszak et al. 

1999). Closer to the shoreline, the height o f wave during storms reduces to 0.3-0.5m. These figures 

demonstrate how much energy is dissipated during the travel of wave trains to the shore. 

7.2.2 Previous studies by other researchers on the data set at Lubiatowo 

Previous studies on coastal morphology at the CRS Lubiatowo were summarized by Rozynski 

(2003b). 1 wil l give a brief review o f the previous work before reporting the wavelet analysis. 

Ostrowski et al. (1992) tackled the problem of shoreline change using measurements of shoreline 

position from 1983 to 1990 at Lubialowo. Pruszak (1993) analysed the beach profile changes using 

EOF and investigated the equilibrium profile using Dean*s (1991) method. The author introduced 

the concept of a seabed equilibrium profile varying in time. Apart from the analysis of shoreline 

evolution, Pruszak et al. (1997) studied the bar parameters using traditional statistical tools. They 

argued that the sediment movement is not negligible in the outermost section of the profile. The 
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DoC at Lubiatowo was investigated by Rozyriski et al. (1999) who suggested that the annual DoC 

extends further offshore than Duck due to the complex multibar system. 

Rozynski et al (1999) argued that the second bar is the most conspicuous bed-form in multi-bar 

profiles with a maximum bar height up to 2.5-3m and it undergoes the strongest morphodynamic 

changes. The POP method was employed by Rozynski and Jansen (2002) to study the pattern of 

nearshore bed topography. They argued that the bed evolution is slow enough to be grasped by 

annual records. Rozynski (2003a) evaluated the importance of interactions among multiple 

longshore bars at Lubiatowo employing CCA. The author indicated that it is impractical to use 

records of more than one beach profile at a shore featured by high alongshore uniformity, because 

the geometric resemblance produces unrealistic and artificial method skills, clouding actual bar 

interaction. Pruszak and Rozyriski (2001) examined the periodic structure of the long-term trend of 

the shoreline at the CRS Lubiatowo using Fast Fourier Transforms and a spectral analysis. 

Considering the non-stationarity of the variability along cross-shore, the profile was divided into 

a few segments by Pruszak and Rozyriski (1998) to investigate the variability of multibar profiles 

by random sine functions. Rozyriski et al. (2001) used the SSA method to analyse the temporal and 

spatial variation in shoreline position at the CRS Lubiatowo. In addition, the authors tried to 

identify the forced and self-organized response of the shoreline. They justified the use of 

increasingly sophisticated techniques by arguing that the shoreline is a highly nonlinear system so 

that it could exhibit chaotic or self-organised behaviour. The very latest study on this data set is the 

long-term shoreline response by Rozyriski (2005) using the multichannel singular spectrum 

analysis. 

These previous works are important to provide basic understanding of the beach topography at 

the CRS Lubiatowo. The non-stationarity of the beach profile changes at this site also has been 

recognized. However the study on this respect is insufficient. Hence, it is expected that an 

alternative study based on wavelet techniques wil l provide further insight into the variability o f 

beach profiles at Lubiatowo. 
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Figure.7.2 Mean empirical.profiles 4, 5, 6 and 7 (Rozynski, 2003a). 

7.3 Spatial scale Analysis on the Data Set at Lubiatowo 

7.3.1 General analysis o f Profiles 4, 5, 6 and 7 using wavelet transforms 

An assumption that these four profiles behave similarly had been justified from the previous 

study by Rozynski (2003a) on the mean profiles, as shown in Figure 7.2. Since most o f the survey 

began from at 100m from the baseline, the mean profiles in Figure 7.2 were calculated from 100m 

also. Therefore in this thesis it is focused on the variability o f representative one, Profile 4. The 

AMODWT was conducted to a scale exponent of 4 on beach profile data for all the surveys after 

subtracting the mean profile calculated over the 22 surveys. Subsequently, the spatial wavelet 

variances of beach elevation were computed scale by scale. 

The spatial wavelet variances of beach elevation were computed using Equation (3.18) to 

investigate the general pattern at different spatial scales of beach profile change during the period 

of study at Lubiatowo. The wavelet variances of profile 4 at different spatial scales within surveys 

from May 1987 to June 2000 are shown in Figure 7.3. It is obvious that the variance at the 

coarsest scale, 160m, is not always the largest component of variance for this profile. This is in 
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contrast to the results of the Duck data set, in which the variance contribution from the coarsest 

scale, 128m, is the largest for all the surveys of profile line 62. For one thing, it can be observed 

that the contribution from the spatial scale o f 80m is the largest among all spatial scales in June and 

August 1990 (the 38**̂  and 40* month on the plot). In addition, unlike the Duck data set, the survey 

that has the largest variance from the coarsest scale does not have the largest overall variance 

among the surveys. It can be seen that the survey in August 1990 (the 40'*' month) has the largest 

overall wavelet variance whilst the survey in April 1988 (the 12* month) has the largest variance 

from the spatial scale of 160m. 
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Figure 7.3 The variance at different spatial scales within surveys from September 1993 to June 

2000. 

Taking the advantages of the localized character o f wavelet coefficients, the local components 

of wavelet variance were computed. Since the basic sampling is uniform with an interval of 10m, 

the components o f wavelet variance are expected to provide much more localized information on 

variation of beach elevation than those of the Duck data set does. Therefore it is worthwhile to 

investigate the wavelet variance components of beach elevation survey by survey. The components 

of wavelet variance for all the 22 surveys of profile 4 at different spatial scales are given in the 
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Appendix from Figure A l to A22, where the corresponding original profile configuration and the 

mean profile are also presented together. The mean profile in those figures is denoted by the dotted 

line. It is obvious that the wavelet variance components are distributed across the whole profile and 

do not fall to negligible values at either end of the study. These results are different from those of 

the Duck, where in the upper shoreface the variance of beach elevation is negligible. Therefore, 

with the present data the DoC cannot be identified by the wavelet variance. 

It can be seen from Figures A l to A22 that the most significant contribution of beach profile 

change landward of 700m is at the spatial scale o f 80m. This phenomenon is especially apparent in 

the surveys of June 1990, August 1990 and April 1994, as shown in Figures A7, A8 and A13 in 

Appendix. The troughs deviating largely from the mean are the common morphological feature of 

these figures. For one thing, both of the troughs between the first and second bar and between the 

third and fourth ba:r are quite "deep bh the profile configuraiiori"in "Api^il 1994. I f also 'can"be seen in 

Figure 7.3 that the largest variance component at the spatial scale o f 40m is in April 1994 (the 84'*' 

month) among the 22 surveys. In connection with Figure A13 this suggests that the variance at the 

spatial scale of 40m describes the deviation o f the sleep bed-form from the mean profile. In 

contrast, in the portion of n-oughs the profiles only deviate little from the mean in July 1999 and 

September 1999. In consequence, their variances at the spatial scale of 80m are quite small. 

Though the previous work by other researchers has been used to argue that bars at Lubiatowo 

do not migrate, their oscillation still can be captured by the wavelet variance at the spatial scale of 

160m. One representative survey is in April 1988, as shown in Figure A3, where the deviation of 

the second and third bar crests from the mean profile can be seen and the wavelet variance 

component at the spatial scale of 160m is significant. This figure again illustrates that the changes 

of the troughs between bars can be characterized well by the spatial scale of 80m. 

In general, when there are four bars on the profiles the wavelet variance components at the 

spatial scales finer than 160m are very small seaward o f 700m. It can be seen from Figures A17 to 

A21 that the fourth bar is not very apparent on the profiles during the period from November 1997 

to September 1999. The total wavelet variances of these surveys are small but the variance 

components at most spatial scales are more or less uniform across the whole profile from the shore 

to the deep water. However, the fourth bar is conspicuous on the profile in June 2000 and the 
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dominant wavelet variance components seaward of 700m is still at the coarsest spatial scale, 160m. 

This phenomenon can be explained by the huge winter storms in January and February 2000 

(Rozyriski, 2003a). Due to the huge waves, the sediment was transported offshore and deposited in 

the deep water, which resulted in the formation o f a fourth bar. 

It can be concluded from the analyses above that the variances from the spatial scale of 20m and 

40m together characterize some spatial patterns of beach profile changes at Lubiatowo, such as the 

steep slopes. It also can be concluded that the variances at the spatial scale of 80m characterize the 

general beach profile change, especially the changes of troughs. Moreover, it can be argued that the 

variance at the spatial scale of 160m can be used to characterize some very big bed-forms, such as 

outer bars, which form during extreme high waves in deep water. 

The breakpoint mechanism and infragravity waves are the two leading explanations for bar 

generation whilst O'Hare and Huntley (1994) proposed that the bar formation is due to the 

coupling of short wave breaking and long waves. It is interesting to note that for average storms the 

significant wave height outside the surf zone, at a depth of 20m, usually reaches 2-2.5m with the 

wave period of 5-7s. Using the linear wave theory, this corresponds to a wavelength 

=1.567^^ ^ 76/w (where 7"̂  is the wave period) in the deep water. As the waves propagate 

onshore their energy is dissipated, so in the water depth o f 2-3m the average wave height is 0.5-1 m 

with period of 4-5s. According to the shallow water equation, the wavelength in the water depth of 

2-3m is Z. = — « \ Am (where d is the water depth) on average. The fact is that the wavelength 

p 

in deep water is only half of the largest bed-forms, which is not in conflict with the bar generation 

due to the infragravity waves. Usually the periods o f infragravity waves are up to 20s. From 

another point of view, the spatial scales in wavelet analysis negate the bar generation results from 

the infragravity waves. Alternatively, the mechanism of the bar generation at this site might be due 

to the wave breaking, which supports the argument of Pruszak et al. (1997). 
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7.3.2 Contours o f the wavelet SD o f beach elevation o f Profile 4 

The wavelet SD of beach elevation of each survey was computed using Equation (3.23). The 

contours of the components of the wavelet SD of beach elevation in all surveys are illustrated scale 

by scale in this section. Since the surveys started and ended at different positions, the surveys were 

trimmed to a common rectilinear grid, and then the contours of wavelet SD at different spatial 

scales were ploned. To maximize the number of usable surveys and to include as much offshore 

information as possible, the minimum and maximum co-ordinates offshore were set to 100m and 

890m on Profile 4. Whh the same length o f data along the profile the relationship between 

successive surveys at different spatial scales can be investigated. Table 7.1 lists the series number 

corresponding to the surveys after trimming. 

Table 7.1 The surveys of Profile 4 filtered in the range of 100m-890m offshore. 

1 August 14, 1987 

2 Octobers, 1988 

3 May 24, 1989 

4 August 14, 1990 

5 May 21, 1992 

6 July 20, 1993 

7 October 16, 1995 

8 August 14, 1996 

9 October 6, 1996 

10 November 5, 1997 

11 June 26, 1998 

12 November 23, 1998 

13 July 4, 1999 

14 September 8, 1999 

15 June 21, 2000 
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The contours among the 15 surveys o f spatial wavelet SD components o f beach elevation are 

shown in Figure 7.4, Figure 7.5, Figure 7.6 and Figure 7.7, corresponding to the spatial scales 

from 20m to 160m. The darker areas denote the larger SD. It can be observed that the maximum 

SD rises from 0.85 to 4 as the spatial scales increase from 20m to 160m. On the whole, the SD 

increases with the spatial scales, as shown in those figures. In comparison with the spatial contours 

of SD at Duck, it is obvious that the contours at Lubiatowo are distributed across the whole profile. 

That is, there is significant spatial variation offshore. 

These results are strong evidence that the larger change in beach elevation involves larger 

portions of the profiles. In addition, it is clear that the variation of beach elevation in different 

regions can be best captured by different spatial scales. The components o f the wavelet SD of 

beach elevation are the largest around the 4*̂  survey (August 14, 1990) at all spatial scales. The 

components of the wavelet SD of beach elevation are quite small around the 13"̂  survey (July 4, 

1999). 

Moreover, the dominant morphological features in the region from 100m to 200m offshore are 

at the spatial scales of 40m and 80m, especially at 80m as shown in Figure 7.5 and Figure 7.6. it 

is generally observed at the CRS that the innermost bar is situated about 120-170m from the 

baseline. Therefore it is possible that the variation of the innermost bar is associated with spatial 

scale 80m. The components of wavelet SD of beach elevation in the region from 200m to 300m 

along cross-shore are the largest at nearly every scale. It has been observed at the CRS Lubiatowo 

that the second bar is usually located 220-300m from the baseline. Therefore it can be inferred that 

the second bar is associated with the largest variation of beach elevation among the four bars. The 

result indicates that the second bar is situated in the area of the most frequent wave breaking. This 

finding from wavelet analysis is in agreement with Pruszak et al. (1997) that the second bar is the 

most conspicuous bed-form of a multi-bar profile and the one undergoing the strongest 

morphodynamic change. 

The wavelet SD components at the spatial scales o f 20m and 40m are quite small in the region 

from 400m to 500m as shown in Figure 7.4 and Figure 7.5; while the SDs are slightly larger at 

the spatial scales of 80m and 160m as displayed in Figure 7.6 and Figure 7.7 compared to those 

in the region of from 200m to 300m. Since the third bar is usually identified 400-500m from the 
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baseline at the CRS, it can be concluded that the variation of the third bar involves larger spatial 

scales than the other two do but smaller changes in beach elevation. 

It also can be seen that in the region from 600m to 800m the wavelet SD components are small 

at the spatial scales of 20m, 40m and 80m whilst they are quite large at the spatial scale of 160m. 

This result indicates that the variation of the fourth bar also involves the largest interval in space 

along the profile at the CRS. It can be concluded that the evolution of the outermost bar is 

associated with the largest spatial scales caused by extreme storm conditions when waves break in 

the deep water. 

Moreover, in comparing with the wavelet SD at all scales, it can be found that the variability of 

the third bar is the smallest in general. That the variability of the third bar is the smallest among the 

four can be explained by the following two reasons. First of all, when there are high energy waves 

or storms the third bar is sheltered by the fourth bar since the fourth bar is situated in deepest water, 

which can be explained by the wave conditions at site. Rozynski (2003a) pointed out that the 

average surf scaling c o e f f i c i e n t , = ( ^ A '^^Mg-w^* ^̂ "̂  range from 1000 to 3000, 

which indicates that the coast at Lubiatowo is highly dissipative. High energy waves or storms can 

dissipate much energy when they propagate onshore over the fourth bar and in consequence beach 

elevations around the fourth bar change significantly. On the other hand, the first and second bars 

undergo all kinds of waves, storms and currents so the variations around these two bars, especially 

the second bar, are significant. 

So far, the variability at different scales has been assigned to different portions along the profile 

by investigating the contours of wavelet SD of beach elevation of the 15 surveys of Profile 4 at the 

CRS. First, the variation of the innermost bar is well captured by the wavelet variance at the spatial 

scale of 80m. Second, the contours of wavelet SD of beach elevation at all scales indicate that in 

the portion of the second bar the beach elevation changes most significantly. Third, the changes of 

beach elevation in the portion of the third bar are not large in magnitude but involve larger spatial 

scales. Fourth, the change of the outermost bar entitles large variation o f beach elevation in vertical 

as well as involves over larger spatial dimensions along the profile. 

The results have been limited to the multiples o f integer power of 2 with the basic sampling of 

10m so that the spatial scales are at 20m, 40m, 80m and 160m. To investigate the structure of the 
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spatial variability of beach profiles further study with the DWPT on this data set is presented in 

Section 7.4. 
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Figure 7.4 Contour of wavelet SD in successive surveys at the spatial scale of 20m. 
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Figure 7.5 Contour of wavelet SD in successive surveys at the spatial scale of 40m. 
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at spatial scale ôf 80m 
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Figure 7.6 Contour of wavelet SD in successive surveys at the spatial scale of 80m. 
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at spatial scale of 160m 
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Figure 7.7 Contour of wavelet SD in successive surveys at the spatial scale of 160m. 
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7.4 Analyses of the Spatial Variability with the DWPT 

The DWPT was conducted on all the 22 surveys of Profile 4 at Lubiatowo. The best bases 

selected from the DWPT of the 22 surveys are listed in Table 7.2 to deepen the investigation of the 

spatial patterns of beach profile change during the course of study. It is found from Table 7.2 that 

the deviation of beach elevation of the survey on 5th October 1988 has the most complicated 

spatial scale components whilst the survey on 30lh September 1993 has the most simple spatial 
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Table 7.2 Records for the best basis of Profile 4 based on 10m interval: 

May87 Aug87 Apr88 Oct88 May89 Sep89 Jun90 Aug90 May92 Oct92 Jul93 Sep93 

(4,0) (4.0) (4,0) (4,0) (4.0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (2,0) 

(4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4.1) (4.1) (4,1) 
(4,2) (3,1) (4,2) (3,1) (4,2) (4,2) (4,2) (4,2) (3,1) ( 3 J ) (3.1) 

(4,3) (4,3) (4,3) (4,3) (4,3) (4,3) 

(2,1) (3,2) (3,2) (3,2) (3,2) (2,1) (2,1) (3,2) (2,1) (2,1) (3.2) (2,1) 

(3,3) (3,3) (3,3) (3,3) (4,6) (4,6) 

(4,7) (4,7) 

(1,1) ( U ) (3,4) (1,1) (M) (1,1) (Ul) (M) ( M ) (1,1) ( I J ) 

(4.12) 

(4,13) 

(4,14) 

(4,15) 

Apr94 Oci95 Aug96 Oci96 Nov97 Jun98 Nov98 Jul99 Sep99 JunOO 

(4,0) (4,0) (4,0) (4,0) (4,0) (3,0) (4.0) (4,0) (4.0) (4,0) 

(4,1) (4.1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) 

(3,1) (4,2) (4,2) (3.1) (3,1) (3,1) (3,1) (4,2) (4,2) (4.2) 

(4,3) (4,3) (4,3) (4.3) (4,3) 

(3,2) (2,1) (2,1) (4.4) (2,1) (3.2) (2,1) (2.1) (2.1) (4,4) 

(4,5) (4.5) 

(4,6) (3.3) (3,3) (3,3) 

(4,7) 

(3,4) (1,1) (2,2) (M) (1,1) (1,1) (2,2) (1,1) (M) (1,1) 

(3.5) 

(2,3) (2,3) (2,3) 

scale components. Moreover, according to the study of wavelet variance components it has been 

found that the survey on 14th August 1990 has the largest overall wavelet variance. Therefore, we 
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focus our study on these three surveys to investigate the spatial scales that beach elevation change 

involves with the DWPT. For reference, the spatial scales, which are the multiples of the basic 

sampling interval (10m) of the reciprocal of the upper limit of the frequency intervals, are listed in 

Table 7.3. 

The top-left plots on Figure 7.8, Figure 7.9 and Figure 7.10 show the original profiles 

surveyed in October 1988, August 1990 and September 1993 respectively, and the other plots are 

the components obtained by the decomposition on packets in the best basis. The reconstruction 

components are ordered by increasing spatial scales from left to right and from bottom to top. 

Obviously the variation of beach elevation in the survey in October 1988 from the mean profile 

is distributed in a few dominant spatial scales though there are 11 packets in the best basis, as 

shown in Figure 7.8. It can be seen that the variation of beach elevation in the region from 200m 

to 400m along the profile is distributed at such a few spatial scales as 21.3m, 40m, 53.3m and 

160m. Figure 7.8 demonstrates that the elevation changes at the spatial scales of 21.3m, 40m and 

53.3m are much smaller than the change at the spatial scale of 160m. However, the variances at the 

spatial scale of 40m capture the elevation changes slightly landward of 400m where there was a 

trough between the second and third bar in October 1988. The changes of the second, third and 

fourth bar are captured well at the spatial scale of 160m. It can be seen from Figure 7.8 that the 

change of the first bar is projected strongly onto the spatial scale of 24.6m as well as the spatial 

scale of 80m. 
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Table 7.3 Spatial scales corresponding to the packets in the best basis from the DWPT: 

Scale Scale Scale Scale 

Exponential 1 Exponential 2 Exponential 3 Exponential 4 

Spatial Spatial Spatial Spatial 
Packet scale 

(m) 

Packet scale 

(m) 

Packet scale 

(m) 

Packet scale 

(m) 

(3,0) 160 
(4,0) 320 

(2,0) 80 

(3,0) 
(4,1) 160 

(2,0) 

(3,1) 80 
(4,2) 106.7 

(1,0) 40 

(3,1) 
(4,3) 80 

(1,0) 

(3,2) 53.3 
(4,4) 64 

(2,1) 40 

(3,2) 
(4,5) 53.3 

(2,1) 

(3,3)- 40 -
(4,6) 45.7 

(3,3)-
(4,7) 40 

(3,4) 32 
(4,8) 35.6 

(2,2) 26.7 

(3,4) 
(4,9) 32 

(2,2) 

(3,5) 26.7 
(4,10) 29.1 

(UD 20 

(3,5) 26.7 
(4,11) 26.7 

(UD 

(3,6) 22.9 
(4,12) 24.6 

(2,3) 20 

(3,6) 22.9 
(4,13) 22.9 

(2,3) 

(3,7) 20 
(4,14) 21.3 

(3,7) 20 
(4,15) 20 
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Figure 7.8 Reconstruction of the details on the best basis of the survey in October 1988. 
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Figure 7.9 Reconstruction of the details on the best basis of the survey in August 1990. 

It can be found from Figure 7.9 that the magnitudes of beach elevation changes of the survey in 

August 1990 are larger than in October 1988 but the distribution of the spatial scales are relatively 

simple with only 8 packets in the best basis. It can be observed from Figure 7.9 that the variation 

at the spatial scale of 106.7m contributes much to the region from 200m to 500m along the profile 

surveyed in August 1990. In addition, the elevation changes in the region of the trough between the 

first and second bar can be captured at the spatial scale of 80m as indicated in Figure 7.9. In 
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general, the survey in August 1990 illustrates that beach profile changes are distributed as a 

relatively simple spatial structure but with large amplitudes. 
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Figure 7.10 Reconstruction of the details on the best basis of the survey in September 1993. 

Figure 7.10 illustrates the simplest nature of spatial scales in the best basis from the survey in 

September 1993. There are only three packets in the best basis, which is even less than the normal 

DWT. That is the variation of beach elevation in this survey can be captured well only by spatial 

scales of 20m, 40m and 80m. The trough between the second and third bar is captured by the 

packet at the spatial scale of 40m while the trough between the third and fourth bar is captured by 

the packet at the spatial scale of 80m. 

The overall wavelet variances from different spatial scales on the best basis for the surveys in 

October 1988 and August 1990 are presented in Figure 7.11 and Figure 7.12 respectively. They 

are expected to illustrate better the relative importance o f spatial scales that contribute to the beach 

profile change in different surveys. For comparison, the variances in the two figures were plotted in 

the same dimensions. It is obvious that the variance of the profile in October 1988 at the spatial 

scale of 40m is only smaller than the variance at the spatial scale of 160m. However, the second 

largest variance is at the spatial scale of 80m for the profile in August 1990, and also there is a 

significant contribution from the spatial scale of 106.7m, which is not included in the profile in 

October 1988. These results exhibit that in general the beach profile changes in October 1988 is 
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characterized by a range of small spatial scales whilst the beach profile change in August 1990 is 

characterized by a few large spatial scales. 
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Figure 7.11 Wavelet variances at the spatial scales on the best basis of survey in October 1988. 
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Figure 7.12 Wavelet variances at the spatial scales on the best basis of survey in August 1990. 
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7.5 Summary of the Results from the Data Set at Lubiatowo 

In the above sections, the wavelet techniques have been applied to the data set at Lubiatowo to 

analyse the spatial variability of beach profiles. There are a few key findings from studying the data 

set. 

• The variance at the coarsest scale, 160m, is not always the largest component of 

variance for this profile and the survey that has the largest variance from the coarsest 

scale does not have the largest overall variance among the surveys. These results are in 

contrast with those of the Duck data set. 

• The variances at the spatial scales of 20m and 40m together are related to the beach 

profile-change of the sleep-portion.*The'general" beach pr6file~changes "can be 

characterized by the spatial scale of 80m. Moreover, there are occasions when the 

variation involves the large spatial scale at 160m. 

• The distribution of the coniours in the deep water is different from that of Duck data 

set, which has an apparent DoC. 

• The results from the contours of wavelet SD characterize the different patterns of the 

elevation change in the zones of different bars. First, most of the elevation changes 

around the innermost bar are from the wavelet variance at the spatial scale of 80m. 

Second, the contours of wavelet SD at all scales indicate that the beach elevation 

changes in the portion of the second bar are the largest. Third, the amplitudes of 

changes in beach elevation in the portion of the third bar are not significant but involve 

larger spatial scales. Fourth, the variation of the outermost bar is large as well as 

involves the largest spatial scales. 

• In conjunction with the average storm conditions, the bed-forms defined by the spatial 

scales from wavelet analysis suggest that the bar at this site is generated by wave 

breaking, which agrees with Pruszak et al. (1997). 
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• The DWPT analysis indicates that even though most of the variability of beach profiles 

in space can be characterized by the normal DWT in some cases the DWPT can 

specify the nature of beach profile changes in space bener at Lubiatowo. 

In all, it can be concluded that the variance at the spatial scale of 80m can characterize the 

general variability of beach profiles at Lubiatowo. In particular, the deviation of the troughs 

between the bars can be well characterized at the spatial scale of 80m. The larger deviations of the 

troughs than the bars from the mean characterize the multi-bar system at Lubiatowo where the bars 

do not migrate much. Moreover, when the bars/troughs on the profile are quite wide along the 

profile the variance at the spatial scale of 160m can characterize part of the elevation changes. 

In general, it is found that the structure of the spatial scales at Lubiatowo is more complex than 

Duck due to the multi-bar character at Lubiatowo. However, due to the different forcing 

environments ihe bar'crests'ai Liibiatowo db nb"i~migrate much onshore or offshore. At Duck, there 

are only one or two bars, when there are storms the bar crest can move 100m even 200m offshore. 

That is the reason most of the beach profile changes can be characterized by one or two larger 

spatial scales. The final conclusion from this study is that the most important spatial scales that 

contribute to beach profile change are determined by the site characteristic of the data set. 
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Chapter 8. CONCLUSIONS AND F U T U R E W O R K 

8.1 Conclusions 

8.1.1 Conclusions from the Duck data set 

In this work, the variability of beach profiles in both time and space at Duck has been studied 

intensively using the wavelet techniques. The wavelet decomposition also provides a natural means 

of investigating fluctuations in the beach level variability along the profile. This allows locations at 

which the variability of the profile changes to be identified and the scales of those changes to be 

identified. Multiresolution analysis using the wavelet transforms gives a quantitative estimate of 

the relative importance of different spatial scales to the overall variability of the beach profile. 

Though this work is not concerned with the prediction of beach profiles, the detailed 

investigation of the variability of beach profiles have a number of implications for prediction. 

Some key findings from the spatial analysis are: 

• The components of wavelet variance show that the contributions from different scales at 

different parts of the profile vary along the profile, which suggests that the beach 

morphological evolution as a whole is dependent upon different processes along the 

profile. The results also provide evidence about the scale-dependent character of beach 

profile changes. 

• The spatial wavelet variances at the coarsest spatial scale make the largest contribution to 

the overall variance of the profile. In conjunction with the results of EOF, these results are 

expected from the consideration that the primary agent for morphological evolution is the 

incoming waves. When there are high-energy waves, on sandy beaches the large waves 

will create a wider surf zone. Thus, the coarser scales can characterize the wider zone and 

the spatial wavelet variances at these scales describe the larger changes in beach elevation. 

In this way, the spatial wavelet variances at the coarser scales reflect the dominant 

processes, which usually involve the bar migration at Duck. 

• Variances at the finer scales are more obvious in the dune and surf zones than those of 

other zones, because beach profiles in the surf zone experience small waves as well as 
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storms, however in deep water beach profiles will only change in response to extreme 

storms. 

The scale-dependent variance across all 22 years in given calendar months provides some 

insight into the relationship between the beach profile changes and the wave conditions. They are: 

• The average monthly wavelet variances at the coarse spatial scales in a year appear to be 

correlated with the average monthly wave heights. These variances explain the strong 

seasonal beach response to the wave heights. 

• The average monthly variances at the finer scales show different patterns from the monthly 

wave heights. It supports the contention that beach profile change cannot be fully explained 

by the wave heights. 

• Only the infrequent events can have significant jmpactpn the upper shoreface. 

Analysis of the changes in spatial variance components provides a useful measure for defining 

the DoC of beach profiles. Even though the DoC is a disputed concept in coastal engineering, the 

procedure described in this work provides a statistical method for identifying changes in wavelet 

variance quantitatively. The zone in which the changes in beach elevation are not significant would 

be expected to coincide with a measurable change in the spatial variance. The DoC identified by 

the change in spatial wavelet variances at the spatial scale of 128m is more consistent with the 

findings of Larson and Kraus (1994) than with the results of Nicholls et al. (1998), which is 

acknowledged as providing a conservative estimate. The concluding remark is that the DoC is 

scale-dependent. The changes in variances also indicate the most active zones where the variance is 

the most significant and different from the other zone. 

The results from the temporal wavelet analysis contrast with those from the spatial analysis, in 

that they do not show the clear dominance of a few scales. The inlermittency of beach profile 

changes is much stronger in time than in space. The temporal variances provide information about 

the dominant time scales of the beach profile changes at particular locations along the profile. The 

key findings from the temporal analysis: 
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• There are no clearly definite temporal scales of variation that dominate consistently during 

the course of study for a given observation point. Rather, there is a strong pattern of 

interminency at most temporal scales, which is clear at locations across the length of the 

profile. This finding is different from Birkemeier (1985) and Ruessink et ai (2003) who 

suggested a three and half year cycle of beach profiles and 5.9 years return period of the 

bars respectively at Duck. 

• The wavelet variance components at the three locations along the profile indicate that 

different temporal scales have a different balance of influence on the overall variance as 

one moves along the profile. This reflects that the forced response and self-organised 

response have a different balance along the profile, which is consistent with Southgate and 

Moller (2000). The forced response usually refers to the linear response of profiles from 

the forcing conditions, such as waves. However, self-organised response refers to nonlinear 

processes so that beach profile can take the form of repeated pattems at definite temporal 

and spatial scales without depending on the forcing conditions. In the surf zone, beach 

profile changes display stronger interannually self-organized response since the main 

forcing conditions are the seasonal waves. However, around the shoreline, the self-

organized response occurs at temporal scales smaller than one year due to the storm surges. 

On the other hand, the elevation changes around the shoreline in long-term show stronger 

forced response due to the wave conditions. 

• The contours of wavelet SD have shown the general temporal variability of beach elevation 

along the profile during the period of study. The most important contribution is that some 

infrequent beach profile responses to extreme storms/storm groups have been well 

identified. That not all the beach responses to storms are identified shows that the beach 

profile before the storms has a substantial effect of the beach profile evolution. 

• The DWPT analysis shows that the beach profile changes in time series are much more 

complicated than the DWT/AMODWT can resolve. The DWPT shows that the 

observations have more frequency/scale contents in shallow water than in deep water. This 

relatively few frequency contents explain the physical process that in the upper zone beach 

profiles only respond to high waves that break in deep water. However, in the surf zone the 
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beach profiles respond to a complex nonlinear interaction of all kinds of waves and 

currents, so the frequency/scale contents in this zone are distributed across a broad range of 

temporal scales. 

• The temporal variance from the DWPT shows closer information on the time scales that 

beach elevations change. At the point 120m offshore, the largest variance component is at 

temporal scales greater than 64 months, which provides evidence for the existence of long-

term trends of the shoreline. By contrast, at 260m a large proportion of the variance is at 

the temporal scale interval of 16-18.3 months. The variation at this temporal scale interval 

corresponds to the interannual variability of the sandbars at Duck (Plant et al., 1999; 

Lippmann et ai, 1993) since the transitional bar is always present at 260m. 

• Few changes in temporal wavelet variances at the temporal scale o f 8 months and larger 

scales again indicate that there is a long-term trend o f the beach profile evolution. 

• The highly negative wavelet correlation between the point 120m and 410m at the temporal 

scale of 64 months indicates that there could be sediment exchange between the dune zone 

and outer bar zone in the long-term. This is in agreement with Wright et al. (1991). 

8.1.2 Conclusions from the Lubiatowo data set 

In this thesis, the concerns on the beach morphology at Lubiatowo are on the spatial variability. 

The key findings from the spatial scale analysis using the wavelet techniques are: 

• The beach is highly variable along the whole profile, which is illustrated by the wavelet 

variance components in deep water for most of the surveys. This implies that the survey 

should extend further offshore to identify the DoC. 

• That the second bar is the most conspicuous bed-form is illustrated by the larger 

wavelet SD components at all spatial scales on the contours. This finding is consistent 

with Pruszak et al. (1997). 

• On average, the bed-forms at Lubiatowo can be defined in the spatial interval o f 80-

160m even though at times the spatial scale larger than 160m dominates. The deviation 

176 



Chapter 8 Conclusions and future work 

of the steep bed-form from the mean, especially the trough between the first and the 

second bar, can be captured in the spatial scale interval of 40-80m. 

• The prevailing spatial scales contributing to the largest variance o f the profile suggest 

that the bar generation is due to the wave breaking at this site, which agrees with 

Pruszak et al. (1997). This result from another point supports the contention that the 

beach at Lubiatowo is highly dissipative. 

In comparison with the results of Duck, the advantage o f the DWPT for spatial scale analysis is 

more obvious due to the complex beach morphology at Lubiatowo with multiple bars. The wavelet 

packets in the best basis varying from three (the profile in September 1993) to eleven (the profile in 

October 1988) for the different profiles shows the wide range oscillations along the profile of the 

elevations from the mean. 

8.1.3 Final comments 

The conclusions from the two different data sets have been summarized above, from which the 

different set characterization can be found. The following are the common features of the results 

from the wavelet analyses: 

• The wavelet variance components characterize the magnitudes of beach profile changes 

in elevation at given points at different scales. Meanwhile, the prevailing spatial scales 

define the horizontal dimensions of the main bed-forms, such as the bars and troughs, 

along the profiles. It is mainly reflected in the bar migration at Duck and the changes o f 

elevation of troughs at Lubialowo. 

• Though the explicit interpretation is not given about the beaches response to waves, the 

results in this thesis indicate a strong relationship between waves and beach profiles. 

This is consistent with their site characterization. Both Duck and Lubiatowo are wave 

dominated. 
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8.2 Future Work 

Predictability will be low where variability is large (van Rijn et aL, 2003). Therefore, 

investigation of the variability is essential to the fliture prediction of beach profiles. This work has 

demonstrated that the wavelet techniques are very useful for analysing the non-stationary 

time/space series of beach profile data. Wavelet analyses help us to understand the multi-scale 

variability of beach profiles. It is believed that the prediction o f beach profiles can be improved 

greatly by taking into account the variability at different spatial and temporal scales. These results 

suggest how much the variation from other scales should be included when predicting beach 

profiles at specifically temporal scales. I f we want to predict the evolution o f a beach profile over 

the long term (e.g. 50 years) then we may be less concerned about short-term variations, which 

may be harder to model. Also, in space, the variability at specific scale exploits how much the 

beach can be predicted at different zones along the profile. The results indicate that the prediction 

in the outer bar zone would be easier than the shoreline zone. 

Meanwhile, there are many other systems that show strong non-stationarity in coastal 

engineering. These complex phenomena have not been fully investigated, so it is expected that 

wavelet techniques wil l throw more light on these problems. In summary, there are some research 

strategies for the future work: 

1. The long-term trend o f the shoreline can be studied further using wavelet techniques and 

compared with the results from other techniques, such as the SSA. 

2. The relationship between the wave conditions and beach profile changes needs to be 

studied further using the wavelet correlation at different scales. As well, other weather 

conditions at sites can also be related to the beach profile changes using wavelet 

techniques, it is expected that a ful l recognition of the relationship between different 

forcing conditions and the beach profile response in a wide range of temporal scales wil l 

contribute much to the beach profile prediction using the process-based models. 

3. Even though beach profiles behave similarly at these two sites studied, both the longshore 

and cross-shore variability of beach morphology could be examined simultaneously using 

the two-dimensional MODWT in the future. This kind of study is expected to reveal the 

degree of similarity among different zones at different scales. 
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The spatial variability at different scales provides us with information on the intervals of 

surveys and the most important locations in space and time when measurements should be 

conducted more intensively in field site surveys later. As for Duck, in the upper shore zone the 

survey can be considered with sampling rate of 10-20m in space annually, corresponding to the 

little contribution of wavelet variance from the smaller spatial scales. However, in the surf zone the 

survey can be conducted more intensively in space and time. The different temporal patterns along 

the profile are good indications for the coastal management, in which beach nourishment is an 

important component. Whole-profile nourishment and bar nourishment are two main nourishment 

strategies (Capobianco et al., 2002). The nourishment period can be referenced to the predominant 

temporal patterns along the profile. The specific locations for bar nourishment can be referenced to 

the spatial variability also. The main temporal patterns of the elevation changes around the bars 

suggest the nourishment period of the bars. It was found in this thesis that the transitional bars at 

Duck have a strong periodicity of 16-18.2 months, indicating the period of the bar nourishment at 

this site. The scale-dependent depth of closure can provide insight into the siting o f coastal 

structures of different dimensions by considering the relative stability o f beach profiles. 
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A P P E N D I X A: 

FRF photos 

The long pier at Duck (http: wvwv.frfusace.armv.mil/buildinizs.stm) 

Sensor Insertion System at Duck (http://www.frf.usace.army.mil/vehicIes2.stm). 

Ml 
Coastal research amphibious buggy (http://www.frf.usace.army.mil/vehicles2.stm). 
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Table A 1 : the surveys at Duck corresponding to the calendar month. 

No Survey No Survey No Survey No Survey No Survey No Survey 
1 Jul.81 46 Apr.85 91 Jan.89 136 Oct.92 181 Jul.96 226 Apr.OO 
2 Aug.81 47 May85 92 Feb.89 137 Nov.92 182 Aug.96 227 MayOO 
3 Sep.81 48 Jun.85 93 Mar.89 138 Dec.92 183 Sep.96 228 Jun.OO 
4 Oct. 81 49 Jul.85 94 Apr. 89 139 Jan.93 184 Oct.96 229 Jul.OO 
5 Nov.81 50 Aug.85 95 May89 140 Feb.93 185 Nov.96 230 Aug.00 
6 Dec.81 51 Sep.85 96 Jun89 141 Mar.93 186 Dec.96 231 Sep.OO 
7 Jan.81 52 Oct.85 97 Jul.89 142 Apr.93 187 Jan.97 232 Oct.OO 
8 Feb.82 53 Nov.85 98 Aug.89 143 May93 188 Feb.97 233 Nov.OO 
9 Mar.82 54 Dec.85 99 Sep.89 144 Jun.93 189 Mar.97 234 Dec.OO 
10 Apr.82 55 Jan.86 100 Oct.89 145 Jul.93 190 Apr.97 235 Jan.OI 
11 May82 56 Feb.86 101 Nov.89 146 Aug.93 191 May97 236 Feb.Ol 
12 Jun.82 57 Mar.86 102 Dec.89 147 Sep.93 192 Jun.97 237 Mar.Ol 
13 Jul.82 58 Apr.86 103 Jan.90 148 Oct.93 193 Jul.97 238 Apr.OI 
14 Aug.82 59 May86 104 Feb.90 149 Nov.93 194 Aug.97 239 MayOl 
15 Sep.82 60 Jun.86 105 Mar.90 150 Dec.93 195 Sep.97 240 Jun.Ol 

-16- 0ct.82 - -61— Jul .86- -106 -Apr.90- -151 - Jan.94- -196- Oct:97 241- -JuhOI-
17 Nov.82 62 Aug.86 107 May90 152 Feb.94 197 Nov.97 242 Aug.01 
18 Dec.82 63 Sep.86 108 Jun.90 153 Mar.94 198 Dec.97 243 Sep.Ol 
19 Jan.83 64 Oct.86 109 Jul.90 154 Apr.94 199 Jan.98 244 Oct.Ol 
20 Feb.83 65 Nov.86 110 Aug.90 155 May94 200 Feb.98 245 Nov.Ol 
21 Mar.83 66 Dec.86 111 Sep.90 156 Jun.94 201 Mar.98 246 Dec.Ol 
22 Apr.83 67 Jan.87 112 Oct.90 157 Jul.94 202 Apr.98 247 Jan.02 
23 May83 68 Feb.87 113 Nov.90 158 Aug.94 203 May98 248 Feb.02 
24 Jun.83 69 Mar.87 114 Dec.90 159 Sep.94 204 Jun98 249 Mar.02 
25 JuL83 70 Apr.87 115 Jan.91 160 Oct.94 205 Jul.98 250 Apr.02 
26 Aug.83 71 May87 116 Feb.91 161 Nov.94 206 Aug.98 251 May02 
27 Sep.83 72 Jun.87 117 Mar.91 162 Dec.94 207 Sep.98 252 Jun.02 
28 Oct.83 73 Jul.87 118 Apr.91 163 Jan.95 208 Oct.98 253 Jul.02 
29 Nov.83 74 Aufi.87 119 May91 164 Feb.95 209 Nov.98 254 Aug.02 
30 Dec.83 75 Sep.87 120 Jun.9l 165 Mar.95 210 Dec.98 255 Sep.02 
31 Jan.84 76 Oct.87 121 Jul.91 166 Apr.95 211 Jan.99 256 Oct.02 
32 Feb. 84 77 Nov.87 122 Aug.9l 167 May95 212 Feb.99 257 Nov.02 
33 Mar.84 78 Dec.87 123 Sep.9l 168 Jun.95 213 Mar.99 258 Dec.02 
34 Apr.84 79 Jan.88 124 Oct.91 169 Jul.95 214 Apr.99 259 Jan.03 
35 May84 80 Feb.88 125 Nov.91 170 Aug.95 215 May99 260 Feb.03 
36 Jun.84 81 Mar.88 126 Dec.9l 171 Sep.95 216 Jun.99 261 Mar.03 
37 Jul.84 82 Apr.88 127 Jan.92 172 Oct.95 217 Jul.99 262 Apr.03 
38 AuR.84 83 May88 128 Feb.92 173 Nov.95 218 Aug.99 263 May03 
39 Sep.94 84 Jun.88 129 Mar.92 174 Dec.95 219 Sep.99 264 Jun.03 
40 Oct. 84 85 Jul.88 130 Apr.92 175 Jan.96 220 Oct.99 265 Jul.03 
41 Nov.84 86 Aug.88 131 May 92 176 Feb.96 221 Nov.99 266 Aug.03 
42 Dec.84 87 Sep.88 132 Jun.92 177 Mar.96 222 Dec.99 267 Sep.03 
43 Jan.85 88 Oct.88 133 Jul.92 178 Apr.96 223 Jan.OO 
44 Feb.85 89 Nov.88 134 Aug.92 179 May96 224 Feb.OO 
45 Mar.85 90 Dec.88 135 Sep.92 180 Jun.96 225 Mar.OO 
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APPENDIX B; 

A picture from Lubiatowo 
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Components o f Wavelet Variance o f Profile 4 at Lubiatowo 
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Figure A l Components o f wavelet variance in May 1987 o f Profile 4 at Lubiatowo. 
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Figure A 2 Components o f wavelet variance in August 1987 o f Profile 4 at Lubiatowo. 
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Figure A3 Components o f wav elet variance in Apr i l 1988 o f Profile 4 at Lubialowo. 
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Figure A4 Components o f wavelet variance in October 1988 o f Profile 4 at Lubiatowo. 
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Figure A5 Components o f wavelet variance in May 1989 o f Profile 4 at Lubiatowo. 
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Figure A6 Components o f wavelet variance in September 1989 o f Profile 4 at Lubiatowo. 
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Figure A7 Components o f wavelet variance in June 1990 o f Profile 4 at Lubiatowo. 
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Figure A8 Components o f wavelet variance in August 1990 o f Profile 4 at Lubiatowo. 
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Figure A 9 Components o f wavelet variance in May 1992 o f Profile 4 at Lubiatowo. 
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Figure A10 Components o f wavelet variance in October 1992 o f Profile 4 at Lubiatowo. 
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Figure A l I Components o f wavelet variance in Julv 1993 o f Profile 4 at Lubiatowo. 
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Figure A12 Components o f wavelet variance in September 1993 o f Profile 4 at Lubiatowo. 
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Figure A13 Components o f wavelet variance in Apr i l 1994 o f Profile 4 at Lubiatowo. 
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Figure A14 Components o f wavelet variance in October 1995 o f Profile 4 at Lubiatowo. 
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Figure A I 5 Components o f wavelet variance in August 1996 o f Profile 4 at Lubiatowo. 
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Figure A16 Components o f wavelet variance in October 1996 o f Profile 4 at Lubiatowo. 
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Figure A17 Components o f wavelet variance in November 1997 o f Profile 4 at Lubiatowo. 
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Figure A18 Components o f wavelet variance in June 1998 o f Profile 4 at Lubiatowo. 
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Figure A19 Components o f wavelet variance in November 1998 o f Profile 4 at Lubiatowo. 
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Figure A20 Components o f wavelet variance in July 1999 o f Profile 4 at Lubiatowo. 
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Figure A21 Components o f wavelet variance in September 1999 o f Profile 4 at Lubiatowo. 
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Figure A22 Components o f wavelet variance in June 2000 o f Profile 4 at Lubiatowo, 
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