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Locomotor patterns and persistent activity in self-organizing neural 
1 _ i _ models 

The thesis investigates principles of self-organization that may account for the 
observed structure and behaviour of neural networks that generate locomotor behav
iour and complex spatiotemporal patterns such as spiral waves, metastable states 
and persistent activity. This relates to the general neuroscience problem of find
ing the correspondence between the structure of neural networks and their function. 
This question is both extremely important and difficult to answer because the struc
ture of a neural network defines a specific type of neural dynamics which underpins 
some function of the neural system and also influences the structure and parameters 
of the network including connection strengths. This loop of influences results in a 
stable and reliable neural dynamics that realises a neural function. 

In order to study the relationship between neural network structure and spa
tiotemporal dynamics, several computational models of plastic neural networks with 
different architectures are developed. Plasticity includes both modification of synap
tic connection strengths and adaptation of neuronal thresholds. This approach is 
based on a consideration of general modelling concepts and focuses on a relatively 
simple neural network which is still complex enough to generate a broad spectrum of 
spatio-temporal patterns of neural activity such as spiral waves, persistent activity, 
metastability and phase transitions. 

Having considered the dynamics of networks with fixed architectures, we go on 
to consider the question of how a neural circuit which realizes some particular func
tion establishes its architecture of connections. The approach adopted here is to 
model the developmental process which results in a particular neural network struc
ture which is relevant to some particular functionahty; specifically we develop a 
biologically realistic model of the tadpole spinal cord. This model describes the 
self-organized process through which the anatomical structure of the fu l l spinal cord 
of the tadpole develops. Electrophysiological modelling shows that this architec
ture can generate electrical activity corresponding to the experimentally observed 
swimming behaviour. 
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Chapter 1 

Introduction 

The thesis investigates principles of self-organization that may account for the ob

served structure and behaviour of neural networks that generate locomotor behav

iour and complex spatiotemporal patterns such as spiral waves and persistent ac

tivity. The general natural science problem which the thesis addresses is to study 

interrelations between structure and function. This classical problem will be stud

ied in the neuroscience context of finding the correspondence between the structure 

of neural networks and their function. This question is both extremely important 

and difficult to answer because the structure of a neural network defines a specific 

type of neural dynamics (which underpins some function of the neural system) and 

this dynamics also influences the structure and parameters of the network including 

connection strengths. This loop of influences results in a stable and reliable neural 

dynamics that realises a neural function. 

The thesis includes the study of spatio-temporal patterns of neural activity in 

plastic neural networks with diff'erent architectures. Plasticity includes both mod

ification of synaptic connection strengths and adaptation of neuronal thresholds. 

The study of threshold adaptations seems to be a promising approach because the 

number of adjustable parameters increases linearly with the number of network el

ements (as opposed to the number of possible connections which increases quadrat-

ically with the number of neurons). This approach is based on a consideration of 
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general modelling concepts and focuses on a relatively simple neural network which 
is still complex enough to generate a broad spectrum of spatio-temporal patterns 
of neural activity' such as spiral waves, persistent activity, metastability and phase 
transitions. Although we study these models using a computational approach, these 
relatively simple models also permit the use of mathematical methods such as phase 
plane analysis and bifurcation theory, which can provide boundaries between differ
ent dynamical regimes and allows the determination of parameter values that realise 
neural functions. Part I of the dissertation is devoted to this study. 

The question of how the neural circuit which can realize some particular function 

establishes its architecture of connections is under intensive investigation in neuro-

science. Despite this, it is not yet clear how a particular neuronal structure relates to 

a specific function. It seems that a promising approach is to model the developmen

tal process which results in a particular neural network structure which is relevant 

to some particular functionality. To demonstrate this approach in operation, we de

velop a biologically realistic model of the tadpole spinal cord. This model describes 

the self-organized process through which the anatomical structure of the full spinal 

cord of the tadpole develops. We produce the anatomical model to describe con

nections between spiking elements in the tadpole spinal cord and demonstrate that 

this new model can generate electrical activity corresponding to the experimentally 

observed swimming behaviour. Part I I of the dissertation is devoted to this study. 

1.1 General discussion of research topics 

The following three sections contain discussion of the basic topics of this thesis: 1) 

Development of anatomical structure of neural circuits, 2) Activity dependent mod

ification of neural parameters, and 3) Structure and function of neuronal networks. 

1.1.1 Development of anatomical structure of neural circuits 

Self-organizing principles are in operation in all aspects of the development of the 

nervous system. A helpful overview of principles implicated in the development of 
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brain structure can be found in (Price and Willshaw, 2000; Bayer and Altman, 2001; 
Wolpert, 2002). Important mechanisms include cell proliferation, differentiation, 
and migration; the growth of axons and dendrites; axon guidance and synaptogen-
esis; programmed cell death; and modification of synaptic connections by activity. 
We do not consider the early stages of this process which are primarily driven by 
genetic and molecular factors, instead we concentrate on the later stages which in
clude in particular axon growth and the formation of synaptic contacts. Important 
aspects of synaptogenesis include distribution of synapses along the dendrites and 
development of appropriate neurotransmitters which can control the relative influ
ences of excitation and inhibition. I t is clear that these processes are activity driven 
and the result of synaptogenesis is dependent on neural activity. 

Axon growth and formation of neursd architecture 

It is difficult to study axon growth and development of neural structure in cortical 

microcircuits (Price and Willshaw, 2000). A more workable approach is to concen

trate on a simpler neural structure such as the spinal cord. In particular, in this 

dissertation we consider the spinal cord of the Xenopus tadpole, which is a very 

simple neuronal circuit which includes only about 2000 neurons of less than 10 cell 

types. 

In the core, axial parts of the vertebrate nervous system, like the spinal cord 

and brainstem, neurons, dendrites and longitudinal axons are laid out in a dorso-

ventrally ordered array on each side of the body. At early stages in development 

a major factor influencing primary synapse formation in such regions may be the 

physical proximity or separation of axons and dendrites. If axons can recognise and 

contact dendrites, then synapses may form. 

So, in the frog tadpole spinal cord, dorsally located sensorj' axons mainly excite 

the dorsal dendrites emerging from the cell bodies of dorsal sensory pathway neurons 

but the very ventral central axons of motoneurons will virtually never contact these 
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Figure 1.1: Organization of neurons in Xenopus spinal cord. Left part of figure shows 
transverse section of the spinal cord with the left side stained to show glycine 
immunoreactive cell bodies (arrows) and axons (in the marginal zone). Di
agrammatic right side shows the main regions: neural canal (c) bounded by 
ventral floor plate (f) and ependymal cell layer (e), lateral marginal zone of 
axons (mauve), layer of differentiated neuron cell bodies arranged in longi
tudinal columns (coloured circles) lying inside the marginal zone except in 
dorso-lateral (dl) and dorsal positions. Right part of figure shows a diagram
matic view of the spinal cord seen from the left side showing characteristic 
position and features of 7 different neuron types. Each has a cell body (solid 
ellipse), dendrites (thick lines) and axon(s) (thin lines). Commissural axons 
projecting on the opposite right side are dashed. 

dendrites, so synapses will not be made. At this early, primary- stage of development 

neurons may need only to be able to distinguish neuronal dendrites from axons 

and non-neuronal processes. Detailed cellular recognition and other more subtle 

processes to specify correct connections may, therefore, not be necessary for the 

formation of primary functional networks during spinal cord development. 

If the dorso-ventral distribution of axons and dendrites is an important deter

minant of spinal network connectivity, then what are the factors that control these 

distributions? Fortunately, this is a ver>' active area of biological r€*search. Different 

dorso-ventral distributions of axons and dendrites originate with the specification 

of soma positions. In the chick and mouse, a large body of work is defining the 

transcriptional networks that regulate the formation of an ordered dorso-ventral se

ries of longitudinal neuron columns identified by the transcription factors that they 

express (Jessell, 2000: Helms and Johnson, 2003: Goulding and Pfaff, 2005: Zhuang 
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and Sockanathan, 2006). Fundamentally, around 12 neuron types are arranged in 
a consistent sequence of columns from dorsal to ventral: sensory, sensory related 
interneurons, motor related interneurons and motoneurons. 

The same basic plan is seen in the tadpole spinal cord (Figure 1.1). Once formed 

into these columns, neurons are polarized (de Anda et al., 2005) and grow processes 

in very distinct orientations. In frogs, most neurons grow axons ventrally. Growth 

cones immediately come under the influence of attractive and repulsive chemical 

gradients that control their direction of growth, for example, whether they turn or 

grow straight across the ventral surface to the opposite side before turning (Dickson, 

2002; Dickson and Gilestro, 2006; Chilton, 2006; Bourikas et al., 2005; Kennedy 

et al., 2006). In the tadpole all axons eventually grow in a longitudinal direction, 

starting in a characteristic dorso-ventral region for each neuron type. Meanwhile, 

dendrites grow from the soma or initial segment of the axon and, like the axons, 

come to lie in dorso-ventral positions characteristic for each neuron type. In contrast 

to extensive studies on dendrite development in brain neurons (Cline, 2003), there 

is little work on the mechanisms determining their growth in spinal cord. Evidence 

from zebrafish shows that dendrites play an active role in extending very short 

distances (approximately 10 ^m) towards longitudinal axons to form en-passant 

synapses (Jontes et al., 2000). 

The hypothesis examined in (Li et al,, 2007) is that axons can recognise and 

make synapses with any dendrites that they contact, so the connections formed will 

depend primarily on the distribution of axons and dendrites. If this is correct, then 

synapse formation will occur where axons and dendrites lie in the same dorso-ventral 

regions of the spinal cord. Axons make synapses with the dendrites they chance to 

contact rather than making synapses preferentially by recognising specific chemical 

markers on particular synaptic targets. The main result of the paper (Li et al., 

2007) states that simple factors such ajs morphogen gradients controlling dorso-

ventral soma, dendrite and axon positions may sufficiently constrain the synaptic 
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connections made between different types of neuron as the spinal cord first develops 
and allow functional networks to form. Detailed cellular recognition between spinal 
neuron types may not be necessary for the reliable formation of functional networks 
to generate early behaviour like swimming. We will consider this topic in more detail 
in part I I of the thesis. 

Synaptogenesis and homeostatic neural activity 

Recently, significant discoveries in neuroscience have been made which demonstrate 

the important role of homeostatic pressures in determining the development of neural 

structure. For example, studies of the developmental shift from excitatory to in

hibitory actions of GABA suggest an activity-driven feedback mechanism that pro

duces a proper balance between excitation and inhibition in the developing brain. 

At early stages of development of neural circuits, there are only a limited number of 

synapses with connection strengths that are not yet adjusted. Therefore, the neural 

activity is low and irregular. This might prevent further synaptic development which 

seems to be an activity-driven process. This suggests that a higher proportion of 

excitatory synapses is required at this stage of development. This can be achieved 

by having synapses that initially have an excitatory effect, and switch to having an 

inhibitory effect at a later stage of development. 

Accounts from Spitzer and Ben-Ari (Ben Ari, 2002) suggest the following line of 

reasoning: 

1. GABA is excitatory in the developing brain, and GABA-releasing synapses 

are formed before glutamatergic synapses across a wide range of species and 

structures. This may be what allows developing neurons to be suflBciently 

excited for growth while avoiding a mismatch between excitation and inhibition 

in the developed network. 

2. Giant Depolarizing Potentials (GDP), a primitive network-driven pattern of 

activity, generate large oscillations of intracellular calcium even in cells with 
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few synapses, allowing activity-dependent growth and synapse formation. 

3. Once a sufficient density of glutamate and GABA-ergic synapses has been 

generated, a chloride-extruding system (the KCC2 transporter) becomes op

erative which allows GABA to assume its conventional inhibitory effect. Evi

dence (Rohrbough and Spitzer, 1999) points to this transition being activity-

dependent, specifically that GABA itself promotes the transition from excita

tion to inhibition through G^B^l^-receptor mediated PSCs. 

This line of reasoning suggests an elegant mechanism where excitatory GABA 

promotes growth and synapse formation until it exists in sufficient concentrations 

to activate KCC2 and cause the switch to inhibitory action. This represents a kind 

of self-limiting positive feedback, a very powerful developmental mechanism. 

The GABA transition is not the only example of developmental processes ap

parently seeking to maintain a balance between excitation and inhibition. There is 

also strong evidence that transmitter expression at individual synapses is activity-

dependent in a homeostasis-directed manner; recent papers (Spitzer et al., 2004; 

Borodinsky et al., 2004) demonstrate convincingly the ability to influence transmit

ter expression in the neural tube of developing Xenopus embryos through pharma

cological and electrical manipulation. Particularly noteworthy is that these manipu

lations can cause excitatory and inhibitory transmitters to be expressed in the same 

cell, a phenomenon that is not obser\'ed in the unmanipulated animal. 

Another example of the anatomical structure of a neural network changing in 

response to the level of activitj' is given in Kirov et al. (2004). They demonstrate 

that homeostatic regulation of spine number in mature hippocampal neurons re

sults in more dendritic spines when synaptic transmission is blocked, providing a 

mechanism to compensate for diminished synaptic input. I t is unsettled whether 

blockade of synaptic transmission also elevates spine number during development. 

Work by MuUer et al. (1993) has demonstrated a complementary effect; chronic 
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epilepsy in hippocampal slice cultures produces a reversible loss of dendritic spines. 
It is worth noting that activity can also promote dendritic morphogenesis (Maletic-
Savatic et al., 1999), suggesting the idea that some activity level exists where these 
constraints balance each other, and that the network actively seeks this level. This 
idea is further supported by work by Lauri et al. (2003) which demonstrates that 
activity blockade (with TTX) increases the number of functional synapses in the 
hippocampus of newborn rats. 

No discussion of the role of spontaneous activity in development would be com

plete without a mention of the long-studied role of retinal waves in the organization 

of the early visual system. A well-known paper (Katz and Shatz, 1996) presents 

the idea that correlations in retinal waves drive the formation of ocular dominance 

columns, and determining the precise mechanism through which this occurs remains 

an active research area, for example see recent work by Torborg et al. (2005). It has 

also been suggested that electrotonic coupling is involved in developing the proper 

innervation of motor neurons (Handler and Katz, 1995). 

To summarize, a compelUng body of recent work suggests that the level of net

work activity in developing circuits has a strong influence on the development of 

those circuits. Of course, those developmental changes influence the level of activ

ity, creating a powerful mutual feedback loop. To investigate this loop, we study 

spatiotemporal activity of simple neural models with synaptic plasticity and adapt

able thresholds (Chapter 4). 

1.1.2 Activity dependent modification of neural parameters 

Adaptation of cell membrane properties to regulate activity level 

It has long been known that some neurons appear to modulate their own excitabil

ity, exhibiting an increasing threshold when stimulated repeatedly. This effect was 

described in (HiU, 1936), in which a mathematical model of accommodation is de

veloped that characterizes the dynamics of the threshold U as being dependent on 

8 
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two factors: a tendency to rise at a rate proportional toV -VQ (where V represents 
"local potential" and \'o represents resting potential) and a tendency to decay back 
to its original value UQ in an exponential manner. The time constant for U is much 
greater than the time constant for V and so U reflects the recent history of V. This 
model was able to reproduce the experimental finding that the threshold is greater 
for a slowly increasing current than for a quickly increasing one, and this type of 
accommodation also provides one possible explanation for the fact that a nerve can 
be repeatedly excited by high-frequency stimulation but eventually fail to respond 
after this stimulation has persisted for some time. 

Another phenomenon relating to the adaptation of neuronal excitability is Spike 

Frequency Adaptation (SFA), in which the spiking rate in response to a stimulus 

declines over time. Experiments described in Madison and Nicoll (1984) demon

strated firing rate accommodation in CAl pyramidal cells. Reductions in SFA in 

the absence of calcium and the presence of carbachol suggest that this accommoda

tion is partly due to a calcium-activated potassium current, and partly due to the 

M-current, a non-inactivating, voltage-sensitive potassium current. (Hemond et al., 

2008) report that some pyramidal cells in the CA3b subregion of the hippocampus 

exhibit spike frequency adaptation in response to strong stimuli. In an accompa

nying modelling study they also found that this adaptation was dependent on the 

M-current. Henze and Buzsaki (2001) show that decreased excitability (depolarized 

threshold) of hippocampal pyramidal cells is associated with spiking activity in the 

1 second time window previous to an action potential. They suggest that this may 

be due to sodium channel inactivation that decays with approximately a 1 second 

time constant. 

Spike frequency adaptation has also been used in computational models. For 

example, Coombes and Owen (2005) have shown that a neural field model with SFA 

can exhibit rich spatiotemporal phenomena including bumps, breathers, and waves. 

In chapters 2 and 4, we examine the use of a very simple threshold accommodation 
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rule in a network of locally coupled binary Hopfield-type neurons. 

Homeostatic synaptic plasticity and S T D P learning rule 

Generally speaking a learning rule provides conditions for increasing or decreasing 

the strength of synaptic connections. Multiple applications of a learning rule might 

result in unlimited growth of the synaptic strength; this is quite likely in commonly 

used paradigms like Hebbian plasticity and STDP because synaptic strengthen

ing makes subsequent strengthening more likely, creating a positive feedback effect. 

Therefore, a learning rule should be accompanied by some additional constraints 

to keep synaptic strength within specified bounds; this can be considered a nor

malization of the learning rule (see, for example, the normalization procedure in 

Grossberg's ART). 

Theoretically speaking, the normalization is a nontrivial and delicate procedure 

because from one side the learning rule is local and depends only on the activities 

of pre- and postsynaptic neurons, but from the other side, global activity of the 

sub-population of neurons should be taken into account for normalisation. This is 

because the incoming signal to a neuron depends on both the connection strengths 

and activities of active neurons that provide input to the postsynaptic cell. Hence, 

to provide a substantial input signal to the considered neuron in the case of a few 

active neurons, connection strength normalization should provide large values for 

connection strengths. In the opposite case where many neurons are active, the 

connection strengths should be sufficiently small that the cell is not saturated. 

Turrigiano (Turrigiano et al., 1998; Turrigiano, 1999; Turrigiano and Nelson, 

2000, 2004) and others have explored cell-level mechanisms such as synaptic scaling 

that may mitigate the potentially pathological effects of STDP. However, such local 

mechanisms may not be sufficient to prevent deleterious effects of STDP at the 

network level, for example over-excitability of neural assemblies. 

Synaptic plasticity is difficult to study and many unanswered questions remain 

10 
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about its mechanisms, however, a number of rules have been proposed that appear 
to capture important characteristics. The most well known of these are Hebbian 
plasticity and Spike-Timing Dependent Plasticity (STOP). Hebbian learning is often 
summed up by the phrase, "Cells that fire together, wire together", in other words, 
simultaneous pre- and postsynaptic firing causes synaptic strengthening. STDP 
refines this principle by stipulating that a pair of pre- and postsynaptic spikes may 
result in synaptic strengthening or weakening depending on their relative timing. 

A verj' important feature of these learning rules, especially STDP, is that synap)-

tic strengthening reinforces the pattern of activity that produced the strengthening, 

which in turn makes further strengthening more likely. This creates a destabilizing 

positive feedback (Turrigiano and Nelson, 2004) which has led some researchers to 

ask what prevents this eflfect leading to a pathological condition. 

One possible answer is synaptic scaling (Turrigiano et al., 1998; Turrigiano, 1999; 

Turrigiano and Nelson, 2000, 2004; van Rossum et al., 2000; Yeung et al., 2004). 

Under synaptic scaling, the strengths of a cell's afferent synapses are scaled by a 

cell-autonomous process in order to maintain some homeostatic level of synaptic 

input. It has also been argued that STDP can naturally stabilize postsynaptic 

firing rates while maintaining the sensitivity of the postsynaptic cell to the timing 

of presynaptic inputs (Song et al., 2000; Kempter et al., 2001). 

So far we have discussed homeostatic activity in terms of mean activity levels. 

However, we would also like to consider how variability in neuronal dynamics can be 

maintained under STDP-like learning rules, and this will be discussed in the next 

section. 

Interplay between synaptic strengths and network dynamics 

Is is well-known that the functioning of a neuronal network depends not only on 

the pattern of connections between neurons, but also on synaptic strengths, and 

further, that synaptic strengths are demonstrably plastic in many systems. Having 

11 
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established that spontaneous activity is important in the development of structure, 
it is natural to ask what effects i t may have in plastic networks. 

A number of studies have demonstrated a link between slow-wave sleep and task 

performance (Tononi and Cirelli, 2003; Huber et al., 2004; Deregnaucourt et al., 

2005). Sleep slow oscillations are travelling waves that sweep the human cerebral 

cortex up to once per second during slow-wave sleep. Tononi and Cirelli (2003) 

suggests that these patterns may induce a generalized synaptic downscaling that 

acts in opposition to the general tendency towards synaptic potentiation during 

wakefulness. It is further suggested that the amount of slow-wave sleep experienced 

is regulated by the amount of synaptic potentiation during wakefulness through a 

natural network effect, which would explain the fact that slow-wave sleep has been 

demonstrated to be more intense in areas of the brain that have been heavily used 

in experimental tasks. Several recent studies have provided further evidence which 

may support this hypothesis (Massimini et al., 2004; Ferri et al., 2008; Vajda et al., 

2008; Vyazovskiy et al., 2008). 

An interesting example of the relationship between neural dynamics and synaptic 

strengths in a developing system is the case of the spontaneous episodic activity 

observed in chick spinal cord. In this case, activity-dependent depression has been 

identified as a possible mechanism for network bursting (Fedirchuk et al., 1999), and 

a computational model of a single excitatorj^ recurrently connected neural population 

reproduces the observed dynamics (Tabak et al., 2000, 2001). This result has been 

since replicated using a network of leaky integrate-and-fire neurons (Lerchner and 

Rinzel, 2005). A recent study (Hanson et al., 2008) shows that these episodes of 

spontaneous activity influence motor axon pathfinding. 

12 
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1,1.3 Structure and function of neuroned networks 
Locomotor behaviour in the Xenopua tadpole 

A large part of the work in this thesis focuses on the spinal cord network that gener

ates swimming in developing Xenopus tadpoles. This is an attractive system, firstly 

because credible modelling is facilitated by the many anatomical and electrophys

iological studies that are available, and secondly because a number of unanswered 

questions remain that are well suited to investigation with computational models. 

Swimming in the Xenopus tadpole typically follows the following sequence (Roberts 

et al., 1997): 

1. Swimming is initiated following a brief touch to the skin. 

2. The animal swims at 10-20 Hz, with this frequency typically dropping slowly 

as swimming continues. During swimming, waves of bending pass from the 

head to the tail to drive the animal forward (and usually away from the source 

of stimulation). 

3. Swimming stops abruptly following contact with a solid object or the surface 

meniscus. 

In addition, the tadpole can produce a struggling pattern consisting of strong, 

slow (2-lOHz) bending movements with waves of bending spreading from tail to head. 

This may be elicited by repetitively stimulating the same skin sensory neurons that 

initiate swimming, for example by restraining the animal with forceps. 

The following description of how the network produces behaviour is largely based 

on (Roberts et al., 1997). 

Initiation of swimming. Rohon-Beard (RB) cells innervate the skin with 

nerve endings, and fire one or two impulses in response to touch. A single RB 

excites many sensory interneurons which amplify the excitation, and relay it to 

premotor interneurons and motoneurons on both sides of the body - a single spike 

13 
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from a single RB cell can initiate swimming. Like RBs, the sensory interneurons fire 
only one or two spikes. In addition, they are phasically inhibited, and gate sensory 
input during swimming. 

Functions of neurons active during swimming. It seems that only mo

toneurons, descending interneurons and commissural interneurons are necessary to 

generate the basic swimming pattern. All three show a ver>' similar pattern of ac

tivity during fictive swimming, in which they fire a single spike on each cycle, are 

tonically excited, and receive mid-cycle inhibition. Commissural neurons are respon

sible for mid-cycle reciprocal inhibition of contralateral motoneurons and premotor 

interneurons. Descending interneurons produce a fast AMPA excitation of ipsilat-

eral neurons as well as a slow NMDA excitation that sustains the next cyde of 

activity on the same side of the spinal cord. This may be regarded as a form of pos

itive feedback within each half-center. Motoneurons excite more caudal ipsilateral 

motoneurons as well as exciting the segmentally organized swimming muscles. 

Mechanisms of rhythm generation. Current evidence suggests that rhythm 

is sustained within each side of the spinal cord (half-center) by positive feedback 

excitation from premotor descending interneurons and motoneurons. Rhythmicity 

appears to involve three overlapping mechanisms: 

1. Within a half-center, interaction between feedback excitation and intrinsic 

membrane properties "tunes" rhythmic firing to the appropriate frequency for 

swimming. 

2. Also within a half-center, recurrent inhibition spaces firing through a hyper-

polarization that slowly decays through excitatory' input from more rostral 

neurons. 

3. A powerful reciprocal inhibition between the two half-centers produces delayed 

rebound firing and organizes the alternation of the two halves. 

14 
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Control of frequency during swimming. Roberts et al. (Roberts et al., 1997) 
suggest that many ionic, cellular, and synaptic functions may contribute to the slow 
drop in swimming frequency during a swim. What is known is that as swimming 
frequency falls, motoneurons continue to spike reliably on every cycle, but premotor 
neurons fire less and less, and may stop entirely. Experimental obser\'ation suggests 
that swimming frequency depends on the number of active premotor interneurons. 

Longitudinal coordination during swimming. In fictive swimming, a small 

rostrocaudal delay (2-5 ms mm~^) is observed in the motor output along the body, 

corresponding to the propagation of waves of movement from head to tail that can 

be observed when the animal is not restrained. Tunstall and Roberts (Tunstall 

and Roberts, 1991) proposed in 1991 that this delay might result from a head-to-

tail gradient in the synaptic drive to the neurons generating motor output; such a 

relationship was confirmed by pharmacological manipulations designed to increase 

or decrease this gradient. 

Stopping swimming. When the animal bumps into an obstruction, trigem

inal pressure receptors are excited. These project into the hindbrain and excite 

reticulospinal hindbrain neurons which leads to inhibition in spinal motoneurons. 

A few important open questions remain. The full pathway through which a stim

ulus initiates rhythmic activity in ipsilateral neurons has not been demonstrated. 

The physiological properties and degree of heterogeneity in premotor interneurons 

are not as well determined as in motoneurons. The role of ascending interneurons 

is not clear, though they are rhythmically active during swimming. Little is known 

about the connections that organize longitudinal coordination. Perhaps most in-

triguingly, it is not known how the swimming circuit produces the quaditatively 

different struggHng behaviour. 

Computational models of the swimming network 

Basic rhythm generation. In 1990, Roberts and Tunstall (Roberts and Tun-
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stall, 1990) described a computational model of four different neuronal populations 
representing descending and commissural interneurons in two halves of the spinal 
cord. Each cell was represented using a three compartment model with realistic 
properties. I t was shown that this model was able to sustain a s\\imming rhythm 
after an initial excitation in the absence of continued sensory drive. An important 
feature of the model neurons (derived from experimental observation) was crucial 
to this ability: the neurons could not spike repeatedly under tonic excitation except 
as a consequence of post-inhibitor>' rebound. This prevents the positive feedback 
specified in the network architecture from driving the network into a pathological 
state of over-excitement. 

In addition to varying cellular properties, the robustness of this network was 

investigated by varying synaptic parameters, initiating stimuli, and network con

nectivity. This showed the basic pattern-generating behaviour to be quite robust to 

changes in synaptic strengths. However, no dynamics analogous to the struggling 

pattern are observed in this network, and the network also does not capture any of 

the dynamics of the rostrocaudal axis. 

Intersegmental coordination and rostrocaudal delays. It was mentioned 

earlier in this report that a rostrocaudal gradient of synaptic drive exists in the spinal 

cord (decreasing caudally), and that pharmacological manipulations of this gradient 

can exaggerate or reverse obser\^ed rostrocaudal delays in Active swimming. In 1994, 

Roberts and Tunstall (Roberts and Tunstall, 1994) developed a computational model 

designed to investigate whether or not such a gradient might be suflBcient to explain 

the observ^ed behaviour in the animal. 

This model consists of 12 connected segments, where each segment consists of 4 

neurons and is similar to an instance of Roberts and Tunstall's 1990 model described 

above. Each segment is connected to its nearest neighbors through descending 

excitation and ascending crossed inhibition. The strengths of both within-segment 

and intersegmental connections decreased linearly in the rostrocaudal direction. On 
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the basis of this gradient, the model could be divided into 4 regions: the first 4 
segments could oscillate in isolation from the rest, the middle 4 would only oscillate 
when they received descending excitation from the upper segments, and the caudal 
4 showed no oscillator properties and were only active when driven to fire on each 
cycle-

This network demonstrated a rostrocaudal delay, and the cycle period decreased 

with increasing excitation. However, in the network rostrocaudal delay also scaled 

with cycle period, which does not happen in the animal. The paper proposed that 

such scaling could be eliminated by making intersegmental inhibition stronger than 

intraisegmental inhibition but there were no experimental data on these relative 

strengths at the time of publication. Struggling was not demonstrated in this net

work, but the paper proposes that the struggling pattern (in which the delay is 

caudorostral) may be explained by an increase in the excitatory drive to more cau

dal regions. 

Tunstall et al. (Tunstall et al., 2002) use a similar model to the one just described 

but with unidirectional coupling to investigate the mechanisms by which one spinal 

oscillator can entrain another. This is analyzed computationally for both "intrin

sic" oscillators, which can oscillate autonomously, and "potential" oscillators which 

require external drive. This work demonstrates that excitatory and inhibitory cou

pling allow entrainment in complimentary areas of parameter space in the simulated 

swimming network. 

Development of the swimming network with rostrocaudal gradients. 

Dale (Dale, 2003) uses very simple developmental rules to obtain a 400-neuron net

work (100 excitatory/100 inhibitory on each side) which can reproduce some features 

of the tadpole spinal cord. The rules of connectivity are: 

1. Neurons cannot synapse onto themselves. 

2. Excitatory interneurons can make only ipsilateral AMPA and N M D A mediated 
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synapses. 

3. Inhibitory interneurons can make only contralateral glycinergic synapses. 

4. Each neuron has an intrinsic probability of synapse formation that is a monotonic 

function of the rostro-caudal position of the soma (^L^soma)-

5. Each neuron has one rostral and one caudal projecting axon of specified length 

6. Synapses can be made only within the length of the axon en passant as the 

axon encounters other neurons within its length. A constant probability of 

synapse formation is associated with each axon ( Paxtm ) • 

The activity observed in networks generated according to these rules demon

strates important features of Xenopus swimming (cycle period, burst duration, 

rostro-caudal delay), suggesting that segmental oscillator concepts are not neces

sary to produce these characteristics. Also very interesting is that the parameters of 

the network can be changed to mimic different stages of development, and there is 

some correspondence between the development of the real network and the simulated 

network: 

1. Rhythmic activity is obser\'ed firstly only at the most rostral end of the spinal 

cord, and this activity spreads caudally as the network develops. 

2. The cycle period of swimming decreases as the network develops. 

3. The duration of swimming activity increases as the network develops. 

4. Ventral root burst durations appear longer at younger stages and the pattern 

is clearly more variable and less coordinated. 

The ability of the Dale network to reproduce all these features suggests that 

developmental approaches to network modelling with simple probabilistic rules will 
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be valuable in helping to understand the tadpole swimming network. We can suggest 

several interesting extensions to this work: 

1. Use two-dimensional developmental rules to capture the dorso-ventral struc

ture of the tadpole spinal cord - this appears to be crucial in specifying which 

types of neurons connect to each other. 

2. Investigate the performance of the network when the level of excitability is 

varied and compare this with the effects of pharmacological manipulations in 

Xenoptis. 

3. Investigate the possibility that struggling patterns may be induced by high 

levels of tonic sensory drive. 

In part I I of the thesis (chapters 5-8) a simple mathematical model of axon growth 

in the spinal cord of tadpole is developed and fitted to experimentally measured 

characteristics of tadpole axons. The fitted model of axon growth allows us to 

generate a biologically realistic reconstruction of the anatomy of the fu l l spinal cord. 

Using this anatomical structure we consider a neural network of spiking elements and 

study patterns of spatiotemporal activity; remarkably the model generates electrical 

activity corresponding to the swimming pattern of the tadpole. 

1.2 Tour of the thesis 

Here we would like to provide a bird's-eye view of the research presented in the 

thesis. For each chapter we describe the problem studied, results and contributions 

which have been achieved. 

Chapter 2 is devoted to a study of neural activity in a simple computational 

neural network model of locally coupled binar>^ elements with adjustable threshold. 

Our approach to the development of this model is based on the idea of homeostatic 

neural activity: we regulate the neuronal threshold on the basis of the level of 

incoming activity in such a way that the threshold is increased when spiking activity 
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is high, and vice versa. Our results demonstrate that this model can exhibit complex 

spatiotemporal patterns such as spiral waves and propagating waves. This kind of 

neural activity is of great interest due to similarities with known electrophysiological 

recordings. 

Chapter 3 considers the question of what neural mechanisms can generate per

sistent variable activity in the brain. In order to examine the relationship between 

neural connectivity and stochasticity, we develop a model of locally coupled binary 

elements with noise. When the magnitude of the noise is set within a certain critical 

range, this model demonstrates long-lasting persistent high activity (UP state) and 

low activity (DOWN state) with rapid transitions between the two phases. 

Chapter 4 contains a study of the relationship between adaptable character

istics of the network and neural dynamics. In the first part of this chapter, we 

consider the question of whether or not a system of local rules that allows each cell 

to adjust its threshold and synaptic connection strengths can produce a regime of 

homeostatic activity. The simulation results demonstrate that simple learning rules 

can produce a rapid reorganization of connection strengths which leads to a sudden 

phase transition. This demonstration of the possibility of phase transition effects in 

neural networks is very important for applications in neuroscience. 

In the second part of this chapter, we expand the connection architecture to 

include a few long-range connections, making i t similar to small-world connectivity. 

We found that in addition to UP and DOWN states and phase transitions, the 

system can demonstrate a remarkable phenomenon of a hysteresis-type loop between 

activity and connecti\aty. This loop exists in this system due to an increase in 

total synaptic weight during the low-activity phase, and a decrease in total synaptic 

weight during the high activity phase. We then study the mechanism of the interplay 

between neural activity and connectivity using a simple mathematical meta-model 

of this hysteresis phenomenon. 

Chapter 5 presents a set of anatomical data from the spinal cord of Xenopus 
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tadpoles on the distribution of axons and dendrites of 6 cell types related to swim

ming behaviour. This experimental evidence provides the basis for the formulation 

of a new and simple mathematical model of axon growth. The goal of the develop

ment of this model was to keep i t as simple as possible while retaining the ability to 

match the characteristics of experimentally measured axons. The important result 

of this modelling supports the hypothesis that detailed cellular recognition between 

spinal neuron types may not be necessary for the reliable formation of functional 

networks to generate early behaviour like swimming. 

Chapter 6 is devoted to a mathematical study of the axon growth model. This 

model contains three difference equations \vith a stochastic component, and we con

sider the important question of whether the variance of the stochastic model in

creases without l imit as the number of iterations is increased, or saturates at some 

value. An analytical expression is derived to describe how the variance of the cur

rent position and growth cone angle changes with the iteration number. Formulas 

provide conditions for the case when the increase of the variance is limited as well as 

an analytical expression for the saturation level. I t is remarkable that optimal para

meters corresponding to the best fitting of the model to experimental measurements 

always satisfy the condition of limited variance increase. 

Chapter 7 describes the optimization procedure of fitting the model parameters 

to experimental measurements. This optimization is based on a cost function which 

includes both fitting of the statistical distribution of the dorso-ventral coordinates 

of the axon and tortuosity. We apply the optimization procedure to each cell type in 

both ascending and descending directions. This allows us to generate a biologically 

realistic model of the full spinal cord of the tadpole which includes approximately 

1600 neurons. This is the most realistic model of the anatomical architecture of the 

Xenopus spinal cord created to date and shows great potential for use as a research 

tool. 

Chapter 8 asks the crucial question of whether or not the reconstructed spinal 
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cord generated by the axon growth model is capable of generating a spatiotemporal 

pattern of neural activity corresponding to swimming. To answer this question, 

we create an electrophysiological model of the generated anatomy, using the Morris-

Lecar model of action potential generation to represent the electrical activity of each 

cell in the network. We show that this model is able to generate activity having the 

same characteristics as the real neural network in the tadpole. This demonstrates 

that our anatomical model succeeds in capturing important features of the tadpole 

spinal cord. 
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Part I 

Theoretical and Computational 

Models of Spatiotemporal 

Neuronal Activity and 

Self-Organization 
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Introduction to Part I 

In this part of the thesis, several models are developed which demonstrate the emer

gence of global spatiotemporal patterns within networks that are predominantly 

locally coupled. In all cases, the basic element is a Hopfield-type model neuron, 

which is then subject to modifications including: threshold adjustment, noisy input, 

and synaptic plasticity. 

In the first model presented, ŵ e can see how a simple homeostasis-directed thresh

old update rule leads to spiral wwes in a model of Hopfield-type elements. This 

can be viewed as a demonstration of how large oscillations can develop in a network 

where local negative feedback operates on a slow timescale relative to the spread 

of activity which is governed by a process characterized by network-driven positive 

feedback. 

The second model shows that an interaction between positive feedback and lo

cal noise can produce large oscillations in network activity, even w^hen there is no 

negative feedback in the system. 

In the third model, we see how a rapid network reorganization can occur as a 

result of patterned activity propagating across a network with synaptic plasticity. 

This can be interpreted as a pathologically stereotyped pattern developing as a result 

of stability-directed processes. 

The last model in this part shows how the tendency towards positive feedback 

implicit in correlation based synaptic plasticity can potentially be regulated by a 

spontaneous change in the characteristic scale of network dynamics driven by a net 

increase in synaptic weights. This can be interpreted as a model o f the functional 
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consequences of emergent spatiotemporal patterns. 

Taken as a whole, these models offer some ideas as to how the emergent properties 

of networks with slightly modified Hopfield-t3''pe elements can be used to engineer 

specific spatiotemporal dynamics. They suggest ways in which the tendency of 

networks of coupled elements to demonstrate different dynamical regimes may be 

contained and exploited by the brain. 
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Chapter 2 

Neural network with threshold adaptation: 

spiral waves 

2.1 Introduction 

Spiral waves are very common patterns in many biological systems. An example of 

a classical object in which spiral waves can be observed is the Belousov-Zhabotinsky 

chemical reaction. To model spatiotemporal dynamics, the reaction-diffusion ap>-

proach can be used: a partial differential equation of diffusion is coupled with a 

non-linear equation of the B-Z reaction. The simplest mathematical model of this 

reaction consists of two nonlinear ordinary differential equations and demonstrates 

both oscillatory and chaotic behaviour (Strogatz, 2001). Such a model can demon

strate complex spatiotemporal dynamics including spiral waves. 

A similar approach based on combining the diffusion equation wi th the FitzHugh-

Nagumo nonlinear oscillator is widely used to model spatiotemporal dynamics in the 

heart (Starmer et al., 1993). The mathematical approach to the modelling of such 

a system is based on the concept of excitable media, consisting of locally interactive 

elements which can be excited by an incoming signal and generate an impulse (spike). 

Evidence from experimental neuroscience has demonstrated the existence of spi

ral waves of neural activity or associated processes (e.g. calcium waves). For exam

ple, Huang et al. (Huang et al., 2004) observed spiral waves in rat neocortex visual-
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ized by voltage-sensitive dye. The paper also describes a computatioucd model which 

exhibits spiral waves with some features similar to their experimental findings. 

Spontaneous waves of excitation, including spiral waves, have also been observed 

in the developing retina (Sernagor et al., 2003). These waves are controlled by 

neurotransmission mechanisms and various neurotransmitters may participate; for 

example glutamate was indicated as an important neurotransmitter for retinal waves 

in developing turtle retina (Sernagor and Grzywacz, 1999). A mechanism has been 

described through which neurotransmission controls waves in the developing rabbit 

retina (Zhou and Zhao, 2000). 

Our approach to the modelling of spiral waves is based on the idea of a home

ostatic level of neural activity: we regulate the neuronal threshold on the basis of 

the level of incoming activity in such a way that the threshold is increased when 

spiking activity is high, and vice versa. We believe that in developing neural tissue 

the homeostatic level of neural activity is regulated in a similar manner. Both neu

ronal parameters and coupling are subject to formation processes and may undergo 

drastic changes in short time periods (Sanes et al., 1988). Some regulatory mecha

nism which constrains the level of neural activity within some neurophysiologically 

acceptable range can provide a homeostatic level of neural activity. In our model 

we use the mechanism of threshold regulation (Henze and Buzsaki, 2001). 

To realize this idea, we develop a simple computational model of locally coupled 

elements with adjustable threshold. The idea of adaptation of neuronal parameters 

to the level of input activity appears to be promising, for example this idea has 

been used to study different dynamical regimes of neural networks such as bumps, 

breathers and waves in a neural field model (Coombes and Owen, 2005). 

2.2 Model description 

We consider a system of coupled Hopfield type binar>' neurons (Hopfield, 1982) 

arranged on the 2D square grid and coupled with local connections to their eight 
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nearest neighbours. Each neuron is also connected to itself, and has a threshold 

which is adjusted in order to achieve a homeostatic level of activity. 

The element which we use in our model is also equivalent to a binary piecewise 

linear McCulloch-Pitts neuron. Another analogy which can be made here relates to 

bingiry cellular automata which change state according to local rules, for example 

Conway's Game of Life (Gardner, 1970). This model bears some similarities to the 

Cellular Neural Network, the difference being that the latter uses real-valued state 

variables (Chua and Yang, 1988). 

We use Xi to represent the activities of the neurons, and hi to represent the 

thresholds of the neurons, i= 1, 2 , . . . , M . Here M is the total number of elements 

in the network. The states of all model neurons are updated synchronously. In order 

to calculate the state of a neuron i i t is necessary to first compute its total input: 

m = E ^jit)+^iit)^ (21) 

where yV,- is the set of indices of all eight nearest neighbours of neuron i. Updating 

the state of a neuron is then a simple matter of comparing the current input level 

with the current threshold: 

Xi{t + l)={ 
1, m>hi{t) ^^^^ 

0, Ii(t)<hi{t) 

Thresholds are updated according to the following difference equation: 

hi{t) + a, Iiit)>hiit) 
hi{t +!) = { (2.3) 

hi{t)-a, Ii{t)<hi{t) 

Here a represents the magnitude of the change in the threshold. In simulations 

we will consider cases a = 1 and a = 2 which result in different spatiotemporal 
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dynamics of neural network activity. 

Because the possible input level is intrinsically limited to the range 0-9 (8 nearest 

neighbours and a self connection) where a = 1, the threshold wi l l never drop below 

0 (because when the threshold is 0 the cell will be active at the next time step 

regardless of input level and the threshold wil l then increase) or increase above 10 

(because when the threshold is 10, even if all cells are active the total input is 9 and 

so the cell will be inactive at the next time step regardless of input level and the 

threshold will then decrease). For a = 2 the threshold wi l l maintain either odd or 

even values depending on the initial value. Therefore i t is possible for the threshold 

to take the value -1 as a step down from 1 or 11 as a step up from 9, i f the initial 

value was odd. 

An interesting property of this model is that everj^ configuration has an equiva

lent inverse configuration. By this we mean that a transformation is possible from 

any configuration { x i { t ) , hi{t)) to its inverse (x , ( i ) , hi{t)) where Xi{t) = 1 \ ( X i { t ) = 0 

and vice versa, and hi{t) is the mirror symmetry of hi{t) according to the value 5. 

For example if hi{t) = 4 then hi(t) = 6. 

2.3 Simulation results 

2.3.1 Simulation softwEire 

In order to study this model, a simulation tool, CellSimUI, has been developed 

(available on request from the author) which allows simulation of the spatiotemporal 

dynamics of the system. This tool provides a user-friendly interface for convenient 

adjustment of model parameters, initial conditions, and visualization of simulation 

results. 

Figure 2.1 shows a snapshot of the main window of the simulation software. 

There are three panels for graphical representation of simulation results and many 

controls for adjustment of model parameters, initial conditions and for controlling 

the process of simulation. In the example shown in figure 2.1 the lower left panel 
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I ^ 

Figure 2.1: User interface for simulations. 

shows the activity of the cells in the network, the lower right pane shows the thresh

olds of the cells in the network, and the upper pane shows the total activity vs time. 

From top to bottom, the left hand side of the window shows controls for setting 

initial conditions, applying perturbations, starting and stopping simulation anima

tion, advancing the simulation by a fixed number of time steps, changing simulation 

parameters (called "simulation properties' in the GUI) , resetting the network to the 

initial state and plotting sequences of frames. 

For performance reasons, the main simulation code is developed in C+-»- and 

this is interfaced to the GUI using M A T L A B s support for extensions. 

For all simulations shown here, the size of the grid is 50 x 50 elements. The 

boundary conditions are periodic: the edges of the grid connect to each other, 

forming a torus. 
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2.3.2 Uniform initial conditions 

The model is developed in such a way that all variables can take only discrete values. 

Generally speaking the dynamics of such a model converge to either steady state 

or periodic solutions. However, steady states are not possible in our model because 

the threshold is either increased or decreased at ever>' time step. 

In the case where a = 1, when all cells are given the same ini t ia l value of 

excitation and threshold, there is no breakage of symmetry and so their activities 

and thresholds wil l remain identical for all time. In this case, the dynamics is 

periodic with period 20 time steps. This is the length of time required for the 

threshold to be increased from 0 to 10 in increments of 1 unit and then decreased 

back to 0. 

In the case where a = 2, the period of the solution depends on whether the initial 

value of the threshold is odd or even. In the case where the initial value is even, the 

period is 10, in the case where the initial value is odd, the period is 12. 

2.3.3 Nonhomogeneous initial conditions for activity 

We begin by considering the situation where a = 1 and all thresholds h are initially 

set to 5. The symmetry is broken by a circular perturbation of the ini t ial conditions: 

all elements are initially in the 0 state, except for elements in a circle with radius 

r = 8 which for the purposes of easy visualization is centred at coordinates (25, 25). 

From this initial configuration, we find that the network rapidly reaches a state in 

which all elements are completely synchronized and have the same value of h. This 

is due to the fact that the propagation of activity is fast relative to the threshold 

adaptation, producing a strong synchronizing effect. 

We next consider the situation where a = 2 and all thresholds h are initially 

set to 5. The symmetry is again broken by a circular perturbation. For r < 7, the 

high degree of synchronization of the relatively large number of cells outside the 

stimulated region dominates the network dynamics, and the network again rapidly 
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reaches a configuration in which all the cells in the network have the same threshold 

value and transition between UP and DOWN states in synchrony. However, for 

r = 7. the stimulated region is large enough that a circular wave with period 8 

develops within the first 100 time steps, with the same centre as the active region 

of the initial configuration. Figure 2.2 shows the circular wave for this case. As 

r is increased further, similar results are obtained, until r = 24. At r = 25, the 

activities of elements located on the edges of the stimulated region interact with 

each other, and this produces a large synchronized region resulting in the outcome 

that the network reaches a homogeneous fully synchronized state (FSS) within 200 

time steps. 

t=200 t=201 t=202 

t=203 t=204 t=205 

t=206 t=207 t=208 

Figure 2.2: CirculcLi wave configuration, a = 2, all thresholds = 5 at f = 0, initial 
stimulus radius r = 7. 
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These results illustrate the general point that the dynamics of this model are 

substantially aflFected by the presence or absence of a large body of synchronized 

cells within the network. 

We now consider the case where the symmetry of the initial configuration is 

broken by randomly and independently assigning the activity of each element. The 

probability of an element being active in the initial state is denoted by p. In this 

case p = 0.5. Activity is therefore uniformly distributed over the network due to 

the relatively large number of model elements. Initial thresholds are all equal to 5. 

Multiple simulations of this system show that within a few hundred cycles, these 

initial configurations produce complex spatiotemporal dynamics with period equal 

to 12. All spatial configurations are different and resemble a spiral like cluster (SLC). 

Figure 2.3 shows an example of S L C behaviour when a = 1. If the simulation starts 

from an initial configuration with high activity level (p = 0.7) the system dynamics 

converges to the FSS state within a few hundred time steps. For the intermediate 

value of p = 0.6 (intermediate activity level of the initial configuration) the system 

dynamics is bistable: some initial configurations converge to the FSS state whereas 

others converge to the S L C state. Multiple simulations show that the frequency of 

FSS states is approximately 30%. It is interesting to note that the value p = 0.65 

can be considered as an approximate boundary where the system bifurcates from 

bistability to the FSS state. Simulations shoŵ  that for p = 0.65 the frequency 

of S L C states is approximately 5%. Figure 2.4 summarizes the results of multiple 

simulations. In fact we can see from this figure that the boundary bet>\'een bistability 

and the FSS state is between p = 0.65 and p = 0.7. It is interesting to note that 

the spiral-hke spatial configuration is quite different for diff'erent values of p. For 

example, for p = 0.6, a typical S L C is shown in figure 2.5. Another two examples 

for p = 0.55 and p = 0.62 are shoŵ n in figures 2.6 and 2.7. In figure 2.7, three spiral 

waves interact to produce a ring of activity that radiates outwards. 

In the case of a = 2, the dynamics of the system are similar. Figure 2.8 shows 
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t=1000 

m 
t=1003 

t=1006 

t=1009 

t=1001 

t=1004 

t=1007 

t=1010 

t=1002 

t=1005 

t=1008 

t=1011 

Figure 2.3: Sequence of frames from eventual periodic behaviour of the system where every 
cell has a 0.5 probabiHty of being active in the initial configiu-ation and a = 1. 
Period is 12. 
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Figure 2.4: Frequency of SLC states vs probability of initial activity p. Boundary between 
bistability and the FSS state is between p = 0.65 and p = 0.7 

a typical example of eventual dynamical behaviour, and an S L C configuration with 

period 8 can easily be seen. The shorter period of the a = 2 configuration in 

comparison with the a = 1 configuration is due to the faster adaptation of the 

threshold. 

2.3.4 Heterogeneous initial conditions for threshold 

So far, we have studied dynamics of the system under many different cases for initial 

conditions for the activity of the elements, but in these cases all thresholds were 

initially set to 5. If we break the symmetry of the initial conditions for thresholds 

as well, the dynamics of the system becomes even more complex. For example, in 

the case of p = 0.7 (see above) breaking the threshold symmetry in such a way that 

the initial values 5 and 6 have been independently and uniformly distributed among 

the network elements allows multistability: the FSS state coexists with several S L C 

states (SLC with period 12, 36, and 60 have been observed). An example of the 

SLC state with period 12 can be seen in figure 2.9. 

We noted above that when a = 1 and asymmetr>' in the initial configuration 

is produced by making a circular region active, this asymmetr>' is rapidly lost and 

the network becomes completely synchronized. By introducing heterogeneity in the 

initial conditions for the threshold (by randomly assigning the initial value for the 
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t=603 

t=606 

t=609 

t=612 

t=604 

t=607 

t=610 

t=613 

t=605 

t=608 

t=611 

t=614 

Figure 2.5: Sequence of fi-ames from eventual periodic behaviour of system where every 
cell has a 0.6 probability of being active in the initial configuration and a = L 
Period is 12. 
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Figure 2.6: Frame from eventual periodic behaviour of system where every cell has a 0.55 
probability of being active in the initial configuration and a = 1. Period is 12. 

Figure 2.1: Frame from eventual periodic behaviour of system where every cell hais a 0.62 
probabihty of being active in the initial configmation and a = 1. Period is 12. 

37 



2.3. SIMULATIOS RESULTS 

mm 
t=1000 t=1001 t=1002 

t=1003 t=1004 t=1005 

mm 
t=1006 t=1007 t=1008 

Figure 2.8: Sequence of frames from eventual periodic behaviour of system where every 
cell has a 0.5 probability of being active in the initial configuration and a = 2. 
The period is 8. 

Figure 2.9: Frame from eventual periodic behavioiu of system where every cell has a 0.7 
probability of being active in the initial configuration, a = 1, thresholds are 
initialized by two values of 5 and 6 with equal probabifity. Period is 12. 
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Figure 2.10: Ring-like pattern generated in the a = 1 configiu-ation by drawing initial 
thresholds randomly fi*om the set {4,5,6} and specifying a initial active region 
of radius 9. 

threshold of each cell to be drawn uniformly and independently from the set {4,5,6}), 

this synchronizing effect can be reduced and the a = 1 model can display an S L C 

with period 12 derived from a circular active region in the initial configuration of 

activity (figure 2.10). 

Next we consider the case where a = 2. We again randomly assign the initial 

value for the threshold of each cell to be drawn uniformly and independently from 

the set {4,5,6}. A region of radius 9 grid units is set to be active in the initial state 

of the network, all other cells are inactive. As shown in figure 2.11, these initial 

conditions can generate a spiral pattern of period 8. 

Again, this is the case of multistability and several S L C states with different pe

riods may be observed. While the S L C with period 8 is the most common outcome 

from these initial conditions, other outcomes are possible, including approximately 

synchronous activity, and a propagating wave pattern (PWT) (fig. 2.12) of period 

10. It is interesting to note that the initial spatial configuration of activity is sym

metrical but due to the heterogeneity in the initial conditions for thresholds, the 

final configuration of activity is not symmetrical. 
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t=1244 t=1245 t=1246 

t=1247 t=1248 t=1249 

t=1250 t=1251 t=1252 

Figure 2.11: Period 8 spiral generated by drawing initial thresholds randomly from the 
set {4,5,6} and specifying an initial active region of radius 9. Here a = 2. 
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t=1148 t=1150 

t=1151 t=1152 

t=1155 

t=1157 t=1158 t=1159 

Figure 2.12: Propagating wave generated by drawing initial thresholds randomly from the 
set {4.5.6} and specifying an initial active region of radius 9. Here a = 2. 
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2.4 Discussion 

We have demonstrated that a simple model consisting of locally coupled Hopfield-

type neurons with adjustable threshold can exhibit interesting dynamical behaviours 

which demonstrate similarities with known electrophysiological recordings. The 

propagation of activity in the network can be considered as positive feedback - the 

more active neurons there are, the easier it is for inactive neurons to become active, 

and vice versa. If there were no threshold adaptation (a = 0), the network would 

quickly reach a steady state in which all neurons were active or all neurons were 

inactive. The threshold adaptation is a type of negative feedback which prevents the 

network from reaching a steady state configuration and the interaction between this 

slow process of threshold adaptation and the fast dynamics of the activity variable 

generates a variety of spiral wave-like spatiotemporal patterns. 

Simulation results for a = 1 show that for different initiation protocols the 

resulting dynamics is of spiral wave type with typical period 12 time units. The 

number of possible spatiotemporal patterns is very large. Investigation of the effect 

of changing p revealed that the initial balance of activity vs inactivity in the initial 

state is important for the generation of spiral type dynamics. 

For the case a = 2, a new type of propagating wave pattern (PWP) appears. It 

can be a symmetrical PWP (circular wave) similar to the wave shown in figure 2.2, or 

if we break symmetry by initial random distribution of thresholds, the P W P can be 

more complex (ring-type pattern) as seen in figure 2.12. In comparison with a = 1 

the variation in the possible patterns is much higher and longer periods become 

more common. 

We have not extensively investigated the case where a = 3, but preliminar>' 

simulations indicate that interesting behaviour is also possible in this case including 

complex dynamics with long period. For example, figure 2.13 shows total activity 

vs time. This plot shows significant variation (20%) of the total activity during the 
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3 02 303 304 3 05 3 06 
Tim« (tmesteps) 

3 07 

•c 

Figure 2.13: Total activity vs time for a = 3, initialized withp = 0.5 and initial thresholds 
{4,5,6} 
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t=3416 t«34l7 t=3418 t=3419 1=3420 t=3421 t=3422 1=3423 

t=3424 t=3425 t=3426 t=3427 t=3428 t=3429 t=3430 t=3431 

t=3400 t=3401 t=3402 t=3403 t=3404 1=3405 t=3406 t=3407 

t=3408 t=3409 t=3410 t=3411 t=34l2 1=3413 t=3414 t=3415 

1=3432 t=3433 t=3434 t=3435 t=3436 t=3437 t=3438 t=3439 

t=3440 t=3441 t=3442 1=3443 1=3444 t=3445 t=3446 1=3447 

1=3448 t=3449 t=3450 1=3451 t=3452 t=3453 t=3454 t=3455 

5>> 

5) 

50 

I 

t=3456 t=3457 t=3458 t=3459 t=3460 t=3461 t=3462 t=3463 

Figure 2.14: Spiral wave produced with a = 3, initialized with p = 0.5 and initial thresh
olds {4,5,6}. The period of this spiral wave is 64. 
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period which is 232 time steps, and high frequency oscillations of the total activity 

are modulated by a lower frequency. Another example of dynamics in the a = 3 

case is shown in figure 2.14. This figure demonstrates a very clear spiral wave; the 

exact period of the dynamics is 64, but this cycle includes 8 repetitions of a very 

similar pattern. 
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Chapter 3 

Neural network with noise: persistent neural 

activity and metastable states 

3.1 Introduction 

In this section we introduce a system of locally coupled threshold elements with 

random noise on a square grid. This system was motivated by the discrete-time 

Hopfield model of associative memory (Hopfield, 1982). The rule for updating the 

state of each element contains two terms: a term taking into account the activities 

of the element's neighbours, and a noise term. The resulting dynamics appear due 

to the interaction of the deterministic term and the stochastic component. Thus, 

the dynamics of the model are richer than the pure deterministic djmamics of the 

Hopfield-type model and the pure stochastic behaviour of the Ising model (Amit, 

1989). Of particular interest are the metastable (persistent) states and phase tran

sitions which can be observed within a specific range of noise amplitudes. These 

observations are relevant to the general problem of clarifying the role of noise in 

system dynamics. 

In the typical experimental paradigm under which persistent activity has been 

observed, activity appears as a response to the presentation of a specific short stimu

lus and lasts from a few seconds up to several minutes after stimulation is withdrawn. 

This type of neural activity is traditionally considered to be a process underlying 
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memory, specifically short-term memory formation (Brody et al., 2003). Another 

possible role of persistent activity is to provide a source of excitation to drive motor 

behaviour, for example, swimming in simple vertebrates (Roberts et al., 1997). 

Recent experimental data show that persistent neural activity is observed in 

many brain systems. It has been shown (Egorov et al., 2002) that the neurons 

of the rat entorhinal cortex in the parahippocampal region demonstrate graded 

persistent activity (constant firing rate) lasting for several minutes in response to 

stimulation. The sustained activity level (firing frequency) can be either increased 

or decreased depending on the input. These findings indicate that the entorhinal 

cortex could play an important role in establishing associations between stimuli 

(Frank and Brown, 2003). It has also been found (Taube and Bassett, 2003), that 

many so-called head direction cells in the rat limbic system exhibit characteristics 

of persistent neural activity. It is likely that this type of neural activity reflects 

processes corresponding to the memorization of head direction. In vivo intracellular 

recordings from oculomotor neurons of the goldfish demonstrate persistent changes 

in firing rate following saccades (Aksay et al., 2000, 2001). This persistent activ

ity can probably be associated with short-term memorization of eye position in the 

goldfish hindbrain. Local cortical neural circuits in the prefrontal cortex and visual 

cortex of the rat are capable of generating persistent activity for periods of sec

onds or longer as well as transitions between different states of persistent activity 

such as UP and DOWN states (McCormick et al., 2003). It is possible that this 

activity indicates processes of working memory based on recurrent network activity. 

Experimental recordings from prefrontal neurons of monkeys (Compte et al., 2003) 

reveal persistent activity during a delayed response task. This study shows that 

the persistent neural activity observed in prefrontal cortex is highly irregular and 

can best be characterised by statistical measures such as inter-spike interval dis

tribution, autocorrelation function, mean, standard de\aation, and other moments. 

This irregularity is more pronounced during the mnemonic delay period than in the 
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fixation period. 

Computational models of persistent activity usually exploit one o f the following 

approaches: (1) there are features of neuronal excitability or synaptic transmission 

which allow long characteristic times of some membrane and synaptic processes 

(Fransen et al., 2006); (2) persistent activity is a collective effect and dynamical 

phenomenon which appears as the result of specific interactions between neurons 

(Constantinidis and Wang, 2004). In this study we adopt the second approach 

and consider the problem of how to obtain persistent and long lasting activity in a 

population of interactive neurons with relatively short reaction times. 

We study persistent activity in simple models of neural populations of excita

tory neurons with random noise. This study was inspired by ideas f rom statistical 

physics which generalise the bistability approach by considering phase transitions 

and metastable states. I t is well known that metastable states can be characterised 

by long lasting phases and such an approach appears to be promising for modelling 

persistent activity in the brain. A typical example of long lasting patterns is pro

vided by the Ising model which is one of the simplest examples of a system in which 

metastable states and phase transitions can be seen. 

In this chapter, we consider a model of a population of interactive neural ele

ments on a square grid with local connections and noise, similar to the Ising model. 

The neural element considered here is a simple threshold device which integrates 

the activities of its neighbours and also includes a random variable which reflects 

both neural and synaptic noise. Thus, the dynamics of the model elements depends 

on the interplay of two factors: the total activity of neighbouring elements and the 

level of the noise. We show that this simple model can demonstrate an interesting 

dynamics: metastable and persistent states of UP and D O W N activity as well as 

phase transitions. We have found that there is a critical level of noise which maxi

mizes the variance of neural activity; this is due to the appearance of frequent phase 

transitions between distinct metastable states in the vicinity of this noise level. 
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3.2 Model description 

We consider a system of interacting elements coupled on the grid where the edges 

of the grid are connected to each other, forming a torus. Each element is connected 

with eight neighboring elements. Activity is described by Xi € { 0 , 1 } . z = 1 , 2 , M 

where M is the number of elements. The firing threshold d is fixed and is the same 

for all elements. A l l connections have weight 1. 

Time is discrete and elements are updated synchronously. In order to compute 

the new activity of the element i at the moment ( t + l ) i t is necessary to first calculate 

the total input Ii{t). In the equations below N{i) refers to the set of indexes of eight 

nearest neighbours to the element i on the grid. As can be seen below, the element i 

also receives input from itself. The term represents location and time independent 

Gaussian noise with zero mean and standard deviation a. 

1, m > > , 3 . „ 

0. ii{t)<e 

I f the number of active elements in the vicinity of node i is substantially less 

than or greater than the threshold, i t is unlikely that the noise will affect the state 

of that node at the next time step. However if the level of input is close to the 

threshold, the effect of noise becomes crucial. For example, i f the threshold value 

6 = 4.5 and the standard deviation of the noise is a = 1 then the borderline cases 

are = 4 or /,(£) = 5 because they are closest to the threshold. In each case, 

we would like to find the probability that noise will not influence the deterministic 

dynamics in these cases: P{^i < 0.5} = 0.69 (we calculate this taking into account 

the normal distribution of the random variable This probability increases rapidly 

as Ii{t) takes values further away from 9; for the cases Ii{t) = 3 and = 6 
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the probability that the deterministic dynamics wil l not be influenced by noise is 

P { ^ i < 1.5} = 0.933. 

For all simulations, initial conditions are that the value of each Xi is randomized 

independently and uniformly to 0 or 1, unless stated othe^^vise. The dimensions of 

the grid are 50 elements on each side, and the number of elements M = 2500. 

Inclusion of the above-mentioned self connection makes i t possible to achieve 

symmetry between any given configuration and its inverse when the uniform thresh

old is set to 4.5. In this case we can consider two initial configurations where one 

is the inverse of the other (inactive elements in one area are active in the other and 

vice versa) and subject them to noise of the same value but opposite sign (e.g. by 

seeding our pseudo-random number generator with the same value in both cases 

and modifying Eq. 3.1 for either system to change the sign of the noise term), then 

subsequent states will also be the exact inverse. I t also follows that any steady state 

in the system appears in a pair with its inverse. 

3.3 Simulation results 

We consider a series of simulations steurting from many random initial configura

tions for a range of noise levels, with a particular interest in finding persistent and 

metastable states. 

When a = 0, the system rapidly (typically in around 18 time steps) converges 

to one of many possible steady states. When the initial conditions for activity are 

completely randomized, this steady state wil l contain distinct active and inactive 

regions (Fig. 3.1) with approximately 50% of elements active in the final configu

ration. This configuration is characterised by the presence of clusters of active and 

inactive nodes and we will refer to i t as a cluster configuration. 

I t is helpful to consider the stability of the cluster in terms of the stability of the 

locality around each point. An active cell with four or more neighbours active will 

remain active. An inactive cell with four or more neighbours inactive will remain 
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Figure 3.1: Steady state resulting from a randomized initial configuration. White squares 
represent active elements. 

inactive. These are the only possibilities for local stability and this constrains the 

set of possible stable system configurations; for example, an isolated 2 x 2 square of 

activity or inactivity cannot appear in a stable configuration because each element 

will only have three neighbours that share its state instead of the required four. 

In the case where a > 0 and small, the noise tends to destroy cluster configura

tions which are typical for the zero noise case. Starting from an arbitrary random 

configuration, the activity dynamics relatively rapidly (within a few hundred time 

steps when a = \) leads to one of three cases: (1) almost all elements are active 

(we will refer to this as the UP state), (2) almost all elements are inactive (DOWN 

state), or (3) approximately 50% of the elements are active, and a situation has 

developed where inactive and active regions exist side by side, neither surrounding 

the other. Fig. 3.2 illustrates these cases by plotting the mean activity of 20 ran

dom initial configurations which are simulated for 500 time steps. Fig. 3.3 shows 

the spatial pattern of activity for case (3), which we consider as an analogue of the 

metastable state in statistical physics. 

When case (3) develops, the borders between the two regions shown in Fig. 3.3 

are effectively neutral in the sense that they are equally likely to move in either 

direction. This means that they move according to a (very slow) random walk 
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Q> 0.4 

200 300 
Time 

500 

Figure 3.2: Mean activity trajectories from twenty randomized initial conditions where 
<T = 1. The three possible classes of outcome (UP state, DOWN state, 
metastable state) are clearly visible. 

process, and so this configuration is long lived. Eventually the system wil l converge 

to a steady UP or DOWN state (with sparse spontaneous firing/quiescence) but this 

can take hundreds of thousands of cycles in some cases. This regime of long-lasting 

activity can be considered as a possible mechanism for persistent activity in the 

brain. Also, this regime can be used for modelling of short-term memory. 

For large values of a, the noise term in Eq. 3.1 dominates the deterministic term 

and the dynamical behaviour of the model can be characterised as the independent 

appearance of active/inactive states in nodes of the grid with equal probabilities. 

Thus, the spatial configuration of the network can be considered as homogeneous 

with symmetr\' in appearance of active and inactive states, therefore the mean of 

the total activity of the network is close to 50%. A typical spatial configuration is 

shown in Fig. 3.4. 

The most interesting and sophisticated case corresponds to an intermediate value 

of (7. In this case there is a balance between the relative influences of the determinis

tic and stochastic terms in Eq. 3.1. As a is increased past about 3.6, the influence of 

noise oven^'helms the influence of the local neural activity. At this point the system 
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Figure 3.3: Long lasting intermediate activity state, in which the boundary between active 
and inactive regions moves according to a slow random walk process. 

Figure 3.4 ' Spatial configuration when a = 20. showing the lack of spatial organization in 
the system at high noise amplitudes. 

is no longer able to maintain distinct UP and DOWN states and the mean activity 

of the system oscillates around 0.5 (half of the elements are active). 

For intermediate values of a (cr % 3.3), several phenomena can be seen: 1) the 

pattern irregularity (and therefore, variance of the total network activity) increases. 

2) the transition time between UP and DOWN states is fast relative to the duration 

between successive transitions, and 3) there is an increase in the amount of sponta

neous activity and spontaneous inactivity observed. As a is increased above about 

3.3. the high activity and low activity states very rapidly lose stability and a regime 

develops where the network switches between varying about a high level of activity, 

and varying about a low level of activity. This is the regime of phase transitions 

and each phase (UP or DOWN) can be characterised as a metastable state. Fig. 3.5 

shows a typical time course of the mean activity and Fig. 3.6 shows typical spatial 
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configurations corresponding to the D O W N , intermediate, and UP phases. 

> 0.6 

10 15 
Time X 10 

Figure 3.5: Plot of mean activity with a = 3.37. The system alternates between 
metastable high and low activity states. 

I I - - -.V, s\ ^ 

a 
Figure 3.6: Low, intermediate, and high activity spatial configurations where a = 3.37. 

The intermediate configuration is highly unstable and will quickly transition 
to a high or low activity state. 

Fig. 3.7 shows a histogram of the instantaneous population activity in the regime 

of UP and DOWN alternation accumulated during a run of 10^ time steps. We accu

mulate activity values (samples) for successive time steps and use them to calculate 

the histogram, which shows a bimodal form with a small bias towards DOW N pha^rs 

due to limited run length. 

Fig. 3.8 shows the variance of the instantaneous population activity vs a. 

It shows that there is a critical value of noise which provides the biggest vari

ance. This plot also reveals the region in parameter space in which the UP and 

DOWN/metastable regime exists, and therefore the variance is high. It indicates 
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X 10 
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Figure 3.7: Distribution of instantaneous mean activity samples for a = 3.37. Run length 
is 10̂  time steps. 

that the critical level of noise for promoting metastability of the high and low activ

ity states is approximately 3.4. This result is in line with the coherence resonance 

phenomenon which has been observed in excitable media and single neuron integrate 

and fire models (Pikovsky and Kurths. 1997: Lindner et al., 2002). 

0.04 

J5 0.02 

Fi^tire 3.8: Variance of mean activity as a function of noise amplitude. Variance is maxi
mized at approximately <7 = 3.4. 
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3.4 Discussion 

To understand the spatio-temporal acti\aty in the metastable state, we study a 

simple discrete-time model of binary neurons locally coupled on the grid. This 

model is capable of producing rich dynamics including metastability when combined 

with noise. Moreover, we have noted that in this model metastability results from a 

balance between the strength of coupling between individual elements and the noise 

amplitude; i f either dominates, the spatio-temporal activity of the network rapidly 

becomes stereotyped. Thus, critical values of noise amplitude generate interesting 

dynamical behaviour in this model. In this critical region the system is flexible 

and can easily be switched between metastable states both autonomously (UP and 

DOWN phase transitions) or by a control process. 

We can suggest that such a balance between deterministic and stochastic compo

nents may be an important factor in the dynamics of coupled neural networks in the 

brain. We speculate that the working mode of the active brain is in the vicinity of the 

critical regime (Massimini et al., 2005) and modulation of this balance (for example, 

during sleep) may allow the network to act as an adaptive memory under certain 

conditions, and as a source of coherent variable activity under other conditions; such 

shifts in network dynamics may be implicated in both development (Tabak et al., 

2001) and the maintenance of sjTiaptic homeostasis (Tononi and Cirelli, 2003). 

The simulation model considered here is very simple, nevertheless i t already 

demonstrates memy important characteristics of neural activity and persistent states. 

This model can exhibit long lasting states, transitions between UP and DOWN 

states, and a critical value of noise. Further support for the usefulness of this model 

comes from a similar model with local connections but with more realistic enhanced 

integrate-£md-fire elements (Borisyuk, 2002) which demonstrates broadly equivalent 

behaviour. 

A biologically inspired generalisation of this model has been developed which 
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includes both threshold adaptation and synaptic plasticity. To obtain the persistent 

regime in a neuronal system, thresholds and synaptic weights have to be properly 

adjusted. We can expect that under some constraints the system wi th threshold 

adaptation and synaptic plasticity can self-organize its dynamical behaviour in such 

a way that the parameter values will be automatically adjusted to generate persis

tent activity. Thus, the generalization of this model wil l be considered in the next 

chapter. 
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Chapter 4 

Neural networks with synaptic plasticity 

phase transitions 

4.1 Introduction 
The traditional approach to solving the problem of long lasting activity is based on 

bistability of the population spiking rate. This bistability can appear, for example, 

as the result of positive feedback in a population model (Brunei, 2003). Suppose 

that there are two stable states of neural activity such that in one of these, activity 

is low and in the other activity is high. These two stable states coexist and the pop

ulation demonstrates a low or high spiking rate depending on the ini t ia l condition. 

If the initial condition belongs to the basin of attraction of the low state then the 

population will demonstrate a low activity level and vice versa. Let us suppose that 

the population is in the low activity state and a short external input is applied. This 

perturbation by external input can change the dynamical regime of the population 

and move i t from the basin of attraction of the low state to the basin of attraction 

of the high state. Even a short input application can be sufficient to move the 

activity of the population through the critical boundary in the phase space of the 

system which separates these two basins of attraction. In principle the system can 

return back to the low level; for example, due to habituation, fatigue, or a limited 

amount of neuromodulators or other chemicals, the system parameters can slowly 
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change their values resulting in the neural activity returning to a low level. This 
is a hysteresis phenomenon which typically appears in systems with bistability and 
its explanation is based on the appearance of the cusp bifurcation which includes 
two fold bifurcations in the dynamical system that controls the spiking rate of the 
population. 

Evidence suggests that neurons use cell-autonomous processes to regulate their 

internal level of activity (Turrigiano, 1999). I t is also well known that synaptic 

strengths are adjusted according to some correlative learning rule (Abbott and Nel

son, 2000). 

This study considers a cellular automaton in which the homeostatic condition 

for each cell is that the cell changes state (from off to on or from on to of f ) on every 

cycle. I f the cell is on for two or more cycles, i t is considered to be overactive, and 

if the cell is off for two or more cycles is i t considered to be underactive. 

We examine the question of whether or not a system of local rules that allows 

each cell to adjust its threshold and synaptic inputs can produce a homeostatic 

condition in which all cells satisfy the condition specified abovCj or whether the 

effect of slower network dynamics wil l prevent this from taking place. 

4.2 Model with nearest neighbour connections £Uid synaptic 

plasticity 

4.2.1 M o d e l descr ipt ion 

The system comprises a square grid of M discrete elements with local connections. 

Neurons are connected to their 8 immediate neighbours on the grid, and there are 

no self-connections. The edges of the network are connected to each other, creating 

a torus. 

Each neuron is described by its current state Xi{t) ( l or 0, analogous to activity 

or inactivity), and its threshold for firing, Oi{t) which is adaptable depending on the 

neural activity. A l l elements of the network are updated synchronously according 
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to the following equations: 

X 
1, ii{t)>ei{t) 

0, ii{t)<ei{t) 
(4.2) 

Oiit + 1) = Oiit) -h [1 - \xiit) - x , ( i + im2xi{t) - 1)^0. (4.3) 

Where N(i) is the set of indexes of the eight nearest neighbours of element i. 

Ii{t) is the input to a neuron i and is the amount by which the threshold Oi(t) 

changes in the event that Xi{t) is the same as Xi{t + 1) (A^ = 1). Wji{t) is the 

adjustable connection strength from element j to element i. 

Technical remark: because the rule for updating the threshold includes both 

activity Xi{t) and i , ( i + 1), i t is necessary to store both these activities for this 

calculation. After Xi{t-\-l) and 9i{t-\-l) have been calculated for a l H = 1 , . . . , M 

it is possible to discard x{i). 

In chapter 3 we introduced a rule for threshold adjustment based on the idea 

of homeostatic activity, i.e. the threshold increases i f activity is high and decreases 

i f activity is low. In this model we use another rule which is based on the same 

idea but with one significant difference: the adaptation rule takes into account two 

sequential activity states of the element. Threshold adjustments are only made i f 

the activities of the element are the same in two sequential time steps. The threshold 

will increase i f an element was active in two sequential time steps and vice versa; 

the threshold will decrease i f an element was inactive in two sequential time steps. 

Thus we can consider this rule as another variant of the idea of homeostatic activity. 

The learning rule which governs the plasticity of synaptic connections is the 

following: 
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wji{t + 1) = wji{t) + xj{t -I- l)[xi{t + 1) - Xi{t)]A^. (4.4) 

Here A^, is the magnitude of the weight change. In addition, all weights Wji are 

constrained to be in the range [wmin,Wmax]-

Technical remark: because the rule for updating the connection weights includes 

both activity Xi{t) and Xi{t + 1) . i t is necessary to store both these activities for 

this calculation. After Wji{t H-1) have been calculated for all ( j , ^) i t is possible to 

discard x{t). 

This rule can be stated as follows: when a presynaptic element is active at the 

time step before a postsynaptic element changes from the inactive state to the active 

state, the synaptic weight associated with that presynaptic element is increased. 

This is analogous to the main idea of STDP: inputs that influence postsjmaptic 

firing are strengthened. However, when a presynaptic element is active at the time 

step before a postsynaptic element changes from the active state to the inactive 

state, the synaptic weight associated with that presynaptic element is decreased. 

For results shown here = l.Wmin = - l ^ ^ m a x = 1-

To study the dynamics of the network, we introduce the following useful index 

of homeostatic activity C(t): 

M 
C i t ) ^ ^ - ^ l - \ x i { t ) ~ X i ( t - l ) \ (4.5) 

1=1 

This index shows the fraction of elements for which the threshold was adjusted 

at time t. In terms of network activity i t can be regarded at the fraction of elements 

that did not change state between the previous and current time step. Thus i t shows 

the fraction of elements that did not maintain a homeostatic level of activity across 

the two time steps. I f index C is zero, i t means that the whole network is in a state 

of homeostatic activity, i.e. each element is undergoing a period 2 oscillation. I f the 
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index is high, this means that many network elements did not change their activity 

state between the last two time steps. 

Note that because the threshold 6i is only adjusted in the event that the neuron 

remains in the same state for two consecutive time steps, i f the index is low this 

means that the thresholds of elements are kept constant and that many cells are 

w'orking in the regime of period 2 oscillations. These oscillations reflect the fact 

that the input to the cell is also oscillating with period 2. 

4.2.2 S imula t ion results 

For all simulations in this section, initial conditions are that Wji = 1 for all ( i , j ) 

related to local connections, the states of the elements Xi are randomly and inde

pendently assigned to be 0 or 1 with equal probability, and thresholds are drawn 

independently and uniformly from the set { 0 , 1 , 2 , . . . , 9) . 

Case 1: We start from a consideration of the case where there is no plasticity 

(Au; = 0). Simulations show that the typical dynamics in this case are that within 

a few hundred time steps the system activity converges to a periodic solution with 

period 6. Figure 4.1 shows the value of the index C over the first 400 time steps. 

The index converges to a relatively high value of approximately 0.84. This means 

that the activity of the network is far from the mode of homeostatic activity which 

is characterized by C = 0. 

Figure 4.2 shows an example configuration taken from one eventual periodic se

quence of the network. In this figure, white cells are active, black cells are inactive. 

Bands of activity and inactivity can be seen which travel over the netw^ork. Through 

threshold adjustments, current activity promotes future inactivity and current in

activity promotes future activity, resulting in a periodic solution wi th period 6. 

Case 2: Now we restore the value A^, = 1. First we consider typical results 

from these simulations on the qualitative level. The typical result is that the index 

C shows irregular oscillations around C = 0.5 before suddenly dropping down to a 
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50 100 150 200 250 300 350 400 

Figure ^. J.- Convergence of index C which relates to homeostatic activity 

small value C ^^0. This is shown in figure 4.3. 

Figure 4.3 shows the development of the index C in the system with synaptic 

plasticity over 100000 time steps. The addition of plastic synapses causes the sj'stem 

to take much longer to converge to periodic behaviour, but produces a significantly 

lower value of C than the non-pleistic system even before the system converges. 

Let us consider how the spatial configuration of network activity and connection 

strengths evolves as the system is transitioning from the phase where index C is high 

to the phase where C is low. Figure 4.4 shows 6 snapshots taken from the period of 

time relating to the phase transition. In these snapshots, for each element we show 

the change of activity between two sequential steps: black pixels indicate elements 

that have not changed state, white pixels indicate elements that have changed state. 

Before the phase transition the typical spatial configuration appears as randomly 

distributed black and white pixels. However in the bottom right-hand corner of 

snapshot (a), a cluster of white pixels can be seen. In this cluster, each element 

oscillates with period 2. Of course they are not in phase. I t is likely that the 

probability of such a configuration is very low because the system stays in the phase 
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with high index C for a long time. This is similar to the process of cr\'stallization 

where a small defect appears to give rise to the crystal. Snapshots (b)-(f) show how 

this initial spot of period 2 oscillation grows and involves the entire network. Thus 

the system transits to the phase of low C index with alternating activity. 

25 30 35 40 45 50 

Figure 4.2: Activity of the neural network at t=400. White pixels represent active cells, 
black pixels represent inactive cells. 

Figure 4-3: Evolution of index C which relates to homeostatic activity 

To understand the evolution in the synaptic strengths, let us consider the very 

simple case of two cells, each connected to the other with fixed weights (no plas-
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(a) t=68700 ( b ) t = 6 8 9 ( ) ( ) (c) t=69100 

(d) 1=69300 (e) t=69500 ( f ) t=69700 

Figure 4-4' Development of global organization from local phenomenon 

ticity). We will consider the case where each weight is either equal to -1 or 1. In 

fact we consider three configurations of connection strengths: mutually excitatory 

connections, mutually inhibitor}' connections, and excitatory-inhibitory connections. 

Allowing initial thresholds in the set {-1, 0, 1, 2} and initial values of activity 

in the set {0,1} gives 64 possible states of the system for each configuration of 

connection strengths. 

By simple calculations, we found that in the case of inhibitory connections, 10 

out of the 64 possible initial states lead to a 2-cycle oscillation in which the two cells 

fire in phase, and all other initial states lead to one of three 6-cycles. In the case 

of excitatory connections, 8 out of the 64 initial states lead to a 2-cycle oscillation 

in which the cells fire in anti-phase, and all other initial states lead to one of three 

6-cycles. In the case of excitatory-inhibitory connections, all configurations lead to 

one of two 4-cycles. 

This simple consideration allows us to make the following prediction: if two 

coupled cells work in antiphase, it is likely that coupling is either mutually excitator>' 

or mutually inhibitory. Furthermore, in order for any element to sustain a period 

2 oscillation, it must fire in antiphase with at least one neighbour. Therefore, we 

can predict that there will be an increased incidence of reciprocally excitatory or 
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reciprocally inhibitory connections during the phase change. 

This prediction is confirmed by simulation results. To demonstrate this, for 

each cell we calculate a measure of connection symmetry Ri(t) using the following 

equation: 

7 € .V ( . ) 

(4.6) 

Here all notations are the same as in equations 4.1-4.3. 

Since weights are limited to the set {-1, 0, 1}, Ri(t) will fall in the range [-8,8] 

whore Ri = S means that all connections are symmetrical and nonzero. R = —S 

means that all connections are asymmetrical and nonzero. Figure 4.5 shows a snap

shot of measure Rt for the whole network, taken at the time of phase transition. 

The white spot in the top right-hand corner of the figure corresponds to elements 

with Ri = S and these elements demonstrate alternating activities. 

Figure 4.5: Symmetry of afferent/efferent connections in phase change region 

4.2.3 Discussion 

These results demonstrate that simple learning rules can produce a rapid reorgani

zation of connection strengths which leads to a sudden phase transition. This phase 
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transition mechanism can be useful for modelling in neuroscience. 

This is suggestive of a need for a learning rule to be balanced with additional 

mechanisms which would serve to limit the growth of a cluster of elements that has 

become locked into a stereotyped firing behaviour. One such mechanism may be 

the modulation of excitability as observed in cortex during sleep (Massimini et al., 

2004). More experiments are needed to determine the effectiveness of this idea. 

4 . 3 Model with small-world connections and synaptic plas

ticity 

4.3.1 Introduction 

In this section, we investigate the relationship between synaptic plasticity and net

work dynamics in a small-world type network. In chapter 4, we have already 

demonstrated that a simple model with local connections and noise can demon

strate metastable states and phase transitions. In this section we consider a similar 

model of simple elements with local connections and noise but we also introduce 

a few long-range connections to make the network architecture similar to small-

world connectivity (Watts and Strogatz, 1998). Another important feature of this 

model is that synaptic connection strengths are modifiable and the learning rule 

is similar to the STOP rule (Abbott and Nelson, 2000). Model simulations show 

an interesting interplay between the total network activity and average connection 

strengths. The dynamics of these variables are arranged in a hysteresis-like loop. 

The states related to this loop can be interpreted in terms of neurophysiological 

UP and DOWN states. The system remains in each state for a long period with 

fast phase transitions. The mechanism of phase transition relates to the specific 

dynamics of connection strengths. The spatial organization of neural activity in the 

model with small-world architecture is complex, however when the system remains 

in the UP state or the DOWN state, the network dynamics demonstrate a regime of 

partial synchronization which is commonly seen in experimental studies (Borisyuk 
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and Kazanovich, 2006). 
4.3.2 Model description 

We consider a system of interacting binary Hopfield-type neurons. These are coupled 

on the grid where the edges of the grid are connected to each other, forming a torus. 

For our purposes, the distance between a node and any of its four nearest neighbours 

is defined to be one unit. The dimensions of the grid are 50 x 50 and the edges are 

connected to form a torus. 

First of all, we define the architecture of connections of the model which includes 

both local and long-range connections. Local connections include seven randomly 

selected elements in the vicinity of the element. To prescribe a set of local neighbours 

we apply the following procedure: 1) We generate a pair of independent random 

variables {D,a) where D = 1 -h 2|^| with normally distributed ^ e N(0,1) and 

random variable a uniformly distributed in the interval (0,27r). 2) We identify the 

cartesian coordinates (x,y) where x = DCOS(Q;) and y = Dsin(a). 3) We find the 

node of the grid which is closest to the point with coordinates {x,y). 

We repeat this procedure several times to find a set of seven different nodes 

which we use for local incoming connections to the considered element. We repeat 

this procedure for each element of the grid taking into account that in fact the 

grid is arranged to the torus and for elements near the boundary connections may 

cross the edges of the grid and reemerge on the other side according to the torus 

topology. In addition, each cell receives one long range input from a node of the 

grid which is calculated according to the same procedure with the exception that 

we use £> = 10 + 2 ^ with normally distributed ^ € N(0,1). 

The dynamics of activity of each element is described by x,(i) € {0.1}, 2 = 

1, 2 , M where M is the number of elements. 

Time is discrete and elements are updated synchronously. In order to compute 

the new activity of the element i at the moment ( i+ l ) it is necessary to first calculate 
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the total input Ii(t). In the equations below N{i) refers to the set of elements that 

provide input to element i. The term represents a location and time independent 

normal variable with zero mean and standard deviation a. 

Ii{t)= Y l (4.7) 

Here Wji{t) is the strength of the connection from j to i. The firing threshold 6 is 

fixed and is the same for all elements. The update rule for activity of all elements 

is given in equation 4.8. 

!

1, Ii{t) > e 
(4.8) 

0, ii{t)<e 

In the model implementation, synaptic weights Wij are updated following the states 

of model elements, and it is convenient to use the concept of a half time step to make 

the sequence of updates clear. Thus, we use time step 1/2 and update elements at 

integer moments of time t, connection strengths are updated at times t + 1/2, where 

t = 1,,... The following formulas describe the initial update rule which is used to 

calculate intermediate values of synaptic strengths Wij prior to thresholding being 

applied. In these formulas the presynaptic cell is denoted by i, and the postsynaptic 

cell is denoted by j . 

Wij{t + 1/2) + Spot. Xi{t) = 1 A { x j { t ) = 0 A xj{t + 1) = 1) 

Wij{t + 1/2) - (Sdepr, {Xi{t) = 0 A Xi{t + 1) = 1) A Xj{t) = 1 

Wij{t + 1/2) - Ssimuh ( M t ) = 1 A Xi{t + 1) = 1 ) A Xj{t) = 1 

Wij{t + 1/2), otherwise 
(4.9) 

Here A denotes logical AND. Parameter Spot represents the increase in the synaptic 

weight due to synaptic potentiation, Sdepr represents the decrease in the synaptic 
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weight due to synaptic depression, Ssimui represents a small decrease in the synaptic 
weight due to simultaneous pre- and postsynaptic activity. These three parameters 
are positive. 

This learning rule is similar to the STDP rule for synaptic plasticity (Bi and 

Poo, 1998). In this learning rule we increase synaptic strengths if the presynaptic 

cell is active one time step before the postsynaptic cell is active (potentiation), and 

decrease synaptic strengths if the postsynaptic cell is active one time step before the 

presynaptic cell becomes active (depression). Also we slightly decrease the synaptic 

strength if both pre- and postsynaptic cells are simultaneously active. This relates 

to an asymmetrical variant of the STDP rule. 

When updating the actual synaptic weight values Wij{t -h 1 H-1/2) we consider 

that synaptic strengths can be modified only within some limited range according 

to the following equations: 

w ..(4 + 1 + 1/2)= ^ 
m\n{wmax,'Wij{t + 1 + 1/2)) Wij{t + 1 + 1/2) > Wij{t -h 1/2) 

max{Wmin,Wij{t + 1 H- 1/2)) Wij{t + 1 + 1/2) < Wij{t + 1/2) 

(4.10) 

Here, Wmin and -û mox represent the lower and upper limits for synaptic strengths. 

4.3.3 Simulation results 

Initial conditions are that all weights Wij{l/2) = 0.2, and all element states a:, (0) = 0. 

Using these initial conditions we update states of elements at time t = l and connec

tion weights at time t = 3/2 etc. We choose parameter values for the simulations as 

follows: Wmin = 0.2, Wmax = 4.0, G = 1.0, Spot = O.Ol, Sdecr = 0.012, Ssimui = 0-005. 

Figures 4.6-4,10 show spatial patterns, dynamics of firing rate and average con

nectivity. It can be seen that the network exhibits distinct low activity and high 

activity states which can persist for relativel}^ long periods of time. We consider 

these states to be analogous to the UP and DOWN states described by McCormick 

(McCormick et al., 2003). Typical spatial patterns of activity in U P and DOWN 
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Figure 4.6: Spatial pattern of activity in UP state 

states can be seen in figures 4.6 and 4.7. 

Figure 4.8 shows dynamics of the firing rate of the network (fraction of active 

elements vs time). The system remains in UP and DOWN states for long periods (of 

varying length) and demonstrates very fast phase transitions between these states. 

Figure 4.9 shows the dynamics of total synaptic weight vs time. This plot shows 

irregular behaviour of total synaptic weight which can be considered in parallel with 

the dynamics of the total activity of the network (figure 4.8). 

If the total activity is low, the total connection weight gradually increases to 

reach a maximum value and suddenly drops down. This drop corresponds to a 

transition of the total activity from the UP state to the DOWN state. The slow 

increase of the total synaptic weight is due to the fact that presynaptic activity is 

correlated with postsynaptic firing and so conditions for synaptic potentiation occur 

more frequently than conditions for synaptic depression. 

It can be seen that during the period where the total synaptic weight increases 

there is a point where the synaptic weight begins to grow very rapidly as the second 

derivative becomes positive. One of these points is marked with a circle in figure 
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4.9. 

Figure 4-7: Spatial pattern of activity in DOWN state 

< 0.5 

X 10 

Figure 4 S: Total network activity versus time 

Figure 4.10 shows the total network activity vs the total synaptic weight. These 

two variables evolve according to a hysteresis-like loop. This loop can be described 

as follows: A) The total synaptic weight increases from a low level to a high level as 

total activity gradually increases while remaining at a relatively low level. B) The 

increasing synaptic weight eventually causes the total network activity to rapidly 

transition into a high activity state. C) In the high activity state, most cells fire all 

the time and so there is no longer a strong correlation between presynaptic firing 

at a particular time step and postsynaptic firing at the next time step. Under this 
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^ 6000 

X 10 

Figure 4-^' Total synaptic weight versus time 

condition, the "simultaneous firing" rule dominates, synaptic weight changes are 

I>i<"(j(.niiii;iiitlv i i r o a t i v r so \\\v ToTal s \ n a i ) T i c w v i ^ l i T (Iccrca.si'-, I) i K w u t u a l l v 

the total synaptic weight is low enough that the high activity state is no longer 

stable, and the network will eventually transit back to a low activity state. Due 

to the fact that each individual synaptic weight is constrained to not go below the 

value Wmin^ the U P state may persist for some time after the synaptic weights have 

temporarily stabilized at a low level, but the system will eventually transit back into 

a low activity state. 

4.3.4 Population model 

\\V now introduce a meta-model that describes the activity of the population of 

interactive neurons with plastic synaptic connections. The model includes two vari

ables: the variable x(t) describes average activity of the neural population and the 

variable c(t) describes dynamics of average synaptic weight in this population. The 

dynamics of these two variables is governed by the following system of two differen

tial equations: 

x = -x^cS{x) + I (4.11) 

c = €{ac - 7X -h p) (4.12) 
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Figure 4-10: Weight versus activity 

Here S(x) is a sigmoid function that constrains the overall level of activity and / is 

the input to the system. 

S(x) = 0.4 
1 

l-\-exp(-0(x-9)) 
(4.13) 

Parameters are: a = 1, € = 0.001, 7 = 5, p = 80, / = 0.5, 0 = 0.5, 0 = 20. 

Let us consider equation 4.11, supposing that variable c is fixed. Figure 4.11 

shows the steady states of the equation of population activity for different connec

tivity conditions (values of c). This figure illustrates the classical hysteresis effect. 

When connectivity is strong (c = 40, green curve), the only fixed point is a high 

activity state (e), when connectivity is weak (c = 0.1, red line) the only fixed point 

is a low activity state (a), and for an intermediate level of connectivity (c = 22, blue 

line) there are three steady states - two are stable (b and d) and one steady state 
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Figure 4-11' Hysteresis in the activity equation. The black line shows the equation y = x, 
and the other traces show the equation y = cS(x) -I- / . Steady states exist 
where these lines intersect. When c = 22 (blue line), there are two stable 
steady states representing high and low activity (filled blue circles marked 
by b and d), with an unstable steady state representing an intermediate level 
of activity (unfilled bhie circle marked by c). When c = 40 (green), there is 
a single stable steady state at high activity (filled green circle marked by e), 
and when c = 0.1 (red), there is a single stable steady state at low activity 
(filled red circle marked by a). 

is unstable (c). This unstable steady state corresponds to an intermediate level of 

activity of the neural population. By temporarily applying a strong connectivity 

condition, we can drive the system into a high activity state that will persist if con

nectivity is dropped back to the intermediate level, and vice versa, demonstrating 

the hysteresis loop. 

In equations 4.11-4.12 the variable x(t) is fast and the variable c(t) is slow because 

e is small. The simulation of the system shows typical relaxation oscillations which 

are shown on the phase plane in figure 4.12. The stable limit cycle which is shown in 

this figure is the only attractor of the system. The dynamics of the system variables 

is typical for fast-slow systems: figure 4.13 shows population activity vs time and 

figure 4.14 shows the average connectivity vs time 

Comparison of figures 4.8-4.10 which represent the complex spatiotemporal be-
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Figure 4-12: Activity of population model shown on phase plane. The isoclines for pop
ulation activity and mean connection strength are shown in blue and green 
respectively. The system can be seen falling into the limit cycle from the 
initial conditions of low connectivity and low activity. 

2500 

Figure 4-13: Population activity vs time. 
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2500 
Time 

Figure 4 14' Population connectivity vs time. 

haviour of the computational model with figures 4.12-4.13 which represent dynam

ics of the two-dimensional meta-model demonstrates that the main features of the 

computational model are nicely reflected in the population model. For example, the 

dynamical behaviour of average connectivity in the population model is very similar 

to the dynamics of average connectivity in the computational model. 

4.3.5 Discussion 

In this section we study dynamical behaviour of a computational model which in

cludes simple elements with small-world connections, modifiable connection strengths 

and noise. Simulations show complex s[)ati()Tenip()ral patterns of network activity, 

however the interplay between total activity and total connectivity can be described 

by a simple hysteresis-like process. In fact, the complex spatiotemporal behaviour 

results from three factors: specific spatial clusters, flexibility of connection strengths 

according to the learning rule, and noise. Interaction of these factors results in irreg

ular variations of spatial activity in the network, however the macro-characteristics 

of the system show simple behaviour. Total population activity and connectivity 

demonstrate irregular relaxation-type oscillations. To describe these macro-variable 

dynamics we consider a two-dimensional system of ordinary diff'erential equations of 

fast-slow type and find that the dynamics of system variables are quite similar to 

the dynamics of the macro-characteristics of the system. 

Our hypothesis is that the long range connections facilitate the UP state, allowing 
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it to persist long enough for effective synaptic downscaling to occur. Due to these 

long-range connections, long-lasting clusters of activity corresponding to UP and 

DOWN states will appear and in fact a choice of these connections (which are 

random in our model) defines spatial allocations of these specific clusters. 
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Part I I 

Computational Modelling of the 

Swimming Network of the 

Xenopus Tadpole Spinal Cord 
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Introduction to Part I I 

In this part of the dissertation, we present our research on modeUing of the anatomy 

and electrophysiology of the tadpole spinal cord. This research has been developed 

in very close collaboration with Professor Alan Roberts (University of Bristol) and 

members of his laboratory. Modelling was closely based on experimental data which 

were provided by the Alan Roberts lab. These data include multiple measurements 

of axon, dendrite, and soma anatomy, electrophysiological properties of different 

kinds of neurons, cind other important details relevant to modelling. Close collabo

ration with neurobiologists allows us to develop a biologically realistic model with 

statistical characteristics similar to the real tadpole. 

We study a simple mathematical model of axon growth in the spinal cord of 

tadpole. Axon development is described by a system of three difference equations 

(the dorso-ventral and longitudinal coordinates of the growth cone and the growth 

angle) with stochastic components. 

We find optimal parameter values by f i t t ing the model to experimentally mea

sured characteristics of the axon and using the quadratic cost function. The fitted 

model generates axons for different neuron types in both ascending and descending 

directions which are similar to the experimentally measured axons. Studying the 

model of axon growth we have found the analytical solution for dynamics of the 

variance of the dorso-ventral coordinate and the variance of the growth angle. For

mulas provide conditions for the case when the increase of the variance is limited 

and the analytical expression for the saturation level. I t is remarkable that opti

mal parameters always satisfy' the condition of limited variance increase. Taking 
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into account experimental data on the distribution of neuronal cell bodies along the 

spinal cord and the dorso-ventral distribution of dendrites we generate a biologically 

realistic architecture of the whole tadpole spinal cord. Study of the electrophysi

ological properties of the model with Morris-Lecar neurons shows that the model 

can generate electrical activity corresponding to the experimentally observed ac

tivity during Active swimming in the tadpole spinal cord within a broad range of 

parameter values. 

Material of this chapter has been presented in two recent publications (Li et al., 

2007; Borisyuk et al., 2008). 
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Chapter 5 

Experimental data on tadpole anatomical 

development and model description 

5.1 Introduction to anatomy of tadpole spinal cord 

To function properly, nervous systems rely on highly specific synaptic connections 

between neurons. This specificity is achieved during development by many mech

anisms, for example, correct neuronal specification and diflFerentiation, axon path 

finding, cell recognition and synapse conditioning by neuronal activities. At the core 

of this, what are the rules that ensure that appropriate and specific synaptic con

nections are made as neuronal circuits develop? This is one of the most intensively 

studied areas of developmental neuroscience and has generated an extensive body 

of knowledge on the chemical cues that control the assembly of neuronal circuits in 

the central nervous system (CNS) (Dickson, 2002; Munno and Syed, 2003; Cline, 

2003; Chilton, 2006; Schnorrer and Dickson, 2004). 

The vertebrate spinal cord provides a simple example where chemical mor-

phogens released from the dorsal roof plate and ventral floor plate fornn dorso-ventral 

molecular gradients. These initially control the fate of differentiating neurons to es

tablish a dorso-ventral series of longitudinal columns of distinct neurons on each 

side (Figure 5.1c) (Helms and Johnson, 2003; Goulding and Pfaff, 2005). Once a 

cell has acquired a specific neuronal fate, the next step is to grow an axon from the 
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neuron soma. The factors controlling the directions of outgrowth are beginning to 

be revealed (de Anda et al., 2005). Remarkably, the same morphogen gradients that 

control cell fates can also influence axon growth. In all parts of the CNS such early 

patterns of growth by pioneer axons, controlled by chemical raorphogens, lay down 

a basic scaffold of axon tracts that can be followed by later axons and in this way 

help to direct their growth (Wilson and Easter, 1991). Once the axons have grown 

to approximately the 'correct' area, they start to make connections (synapses) with 

the branched dendrites emerging from the cell bodies of other neurons. 

The results of the experimental study and modelling provide answers to the fol

lowing two questions about the formation of synaptic connections: how accurate 

and specific are the sjTiaptic connections formed during early stages of development 

within the CNS? Once axons have reached a suitable area to make synapses, cellular 

recognition processes (Clandinin and Zipursky, 2002) and activity-dependent mech

anisms (Stellwagen and Shatz, 2002; Gang et al., 2005; Hanson and Landmesser, 

2006; Katz and Shatz, 1996) may be needed to ensure that appropriate synaptic 

connections are made. However, the second question is: can simple factors, such 

as the broad geographical distributions of axons and dendrites, themselves generate 

sufficient specificity in synaptic connections to ensure the development of functional 

neuronal circuits? 

To investigate the specificity of early spinal cord formation, we use experimental 

evidence on connections between identified neuron types in a functioning neuronal 

network. Very few vertebrate networks are simple enough to allow this; an exception 

is the developing spinal cord of the newly hatched clawed toad {Xenopus laevis) tad

pole. Like the developing zebrafish (McLean et al., 2007; Higashijima et al., 2004), 

this spinal cord contains less than 2,000 neurons divided into very few types (ap

proximately ten) yet i t allows simple reflexes and swimming. In Xenopus, whole-cell 

recordings from pairs of spinal neurons under visual control (recordings from Roberts 

lab) have allowed us to build a remarkably fu l l picture of the morphology, proper-
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ties, synaptic connections and functions of the neurons and networks controlling 
swimming behaviour (Li , ichi Higashijima, Parry, Roberts and Soffe, 2004; L i et al., 
2001, 2003; Li , Soffe and Roberts, 20046; L i et al., 2006, 2002). This detailed knowl
edge of the anatomy and function of different types of spinal neurons in developing 
Xenopus embryos provides a remarkable opportunity to use the whole-cell recording 
method to examine large numbers of synaptic connections between different types 
of identified spinal neuron to assess the specificity of the connections between them. 

Examination of synaptic connections between spinal neurons shows that connec

tions are widespread and non-specific. We therefore examine the anatomy to see 

whether some very simple factors, like the different dorso-ventral distributions of 

the axons and dendrites of different neuron types, are sufficient to predict the con

nectivity found physiologically. We then use modelling to ask whether simple rules 

can reproduce longitudinal axon growth paths, and whether network models of the 

spinal circuits can produce swimming activity when synaptic connections are deter

mined by simple probabilistic rules. Overall, our results show that it is possible that 

the first, pioneer neuronal networks formed in the spinal cord could be generated 

without specific neuron-to-neuron recognition mechanisms playing a necessary role 

in determining synaptic connectivity. 

5.2 Neuron types in the tadpole spinal cord 

The experimental evidence has been collected from the two day old, hatchling Xeno

pus tadpole, which is 5 mm long (Figure 5.1A,B). The eyes are not yet functioning 

but the brain and spinal cord contain differentiated neurons. The spinal cord is a 

simple tube (approximately 0.1 mm diameter) with a central neural canal formed 

by ependymal cells and the ventral floor plate (Figure 5.1C). On each side lies a 

layer of nerve cells or neurons loosely organized into longitudinal columns. The neu

rons project processes into a superficial zone of longitudinal axons either directly or 

by first growing ventrally across the floor plate to the other side and then turning 
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or branching longitudinally. As in all vertebrates, newly formed neurons are posi
tioned in a dorsal to ventral sequence: sensory neurons; sensory intemeurons; other 
interneurons; motoneurons. Unlike adult vertebrates, the young tadpole spinal cord 
has remarkably few tj'pes of spinal neuron, possibly less than ten. We consider six 
types of spinal neuron involved in swimming (Figure 5. I D ) where the synapses made 
onto other spinal neurons have been defined by electrical recordings from pairs of 
individual neurons (Roberts, 2000). A l l synapses are made directly f rom longitudi
nal axons as they pass small processes emerging from the neurons called dendrites 
that protrude towards the side of the spinal cord. 

(1) Dorsal Rohon-Beard neurons ( R B ) are sensory, innervate the skin and 

respond to touch. Their central axons ascend and descend to excite other neurons. 

(2) Motorneurons (mn) have short axons which are mostly ventrally located. 

(3) Dorsolateral commissural internenrons (die) are sensory pathway in

terneurons excited by sensory RB neurons. They excite contralateral neurons and 

initiate swimming activity when the skin is stimulated (Li et al., 20O3). 

(4) Ascending interneurons (aIN) have a broad dorsal-ventral distribution. 

They inhibit neurons on the same side and i t has been found that this inhibition 

can aflfect all types of neurons. 

(5) Commissural interneurons ( c IN) are a middle dorso-ventral group of 

neurons which produce inhibition of the opposite side of the spinal cord (Dale, 

1985) to organize the alternation of activity between the two sides during swimming. 

The axons of cIN cells cross the ventral floor plate immediately after their initial 

outgrowth, and then rise dorsally on the other side where they branch to grow in 

the ascending and descending directions. 

(6) Descending interneurons (dIN) excite other neurons (L i , Soff'e and 

Roberts, 2004a; L i et al., 2006). They provide ipsilateral excitation during tadpole 

swimming (Dale, 1985; L i , Soffe and Roberts, 2004a). 

A l l interneurons grow their axons in both ascending (from the ta i l to the head) 
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and descending (from the head to the tail) directions except excitator\' dIN neurons 
which send their axons in the descending direction only. It is likely that these 
connections propagate activity from the head to the tail and form the metachronal 
wave of the swimming pattern. 

B miabrain hindbrain 
nal cord 

1mm 

dorsal 
sensory pathway 
dia die RB 

4^ 

_ — — —^ 

« c ' 
^ ^ » " " 

dIN mn ^ aIN cIN caudal 

motor arcuit 

Figure 5.1: Hatchling Xenopus tadpole, nervous system and neurons. (A) Picture of tad
pole at stage 37/38. (B) The main parts of the CNS with arrowhead at 
hindbrain/spinal cord border. (C) Transverse section of the spinal cord with 
the left side stained to show glycine immunoreactive cell bodies (arrows) and 
axons (in the marginal zone). Diagrammatic right side shows the main re
gions: neural canal (c) bounded by ventral floor plate (f) and ependymal cell 
layer (e), lateral marginal zone of axons (mauve), layer of differentiated neuron 
cell bodies arranged in longitudinal columns (coloured circles) lying inside the 
marginal zone except in dorso-lateral (dl) and dorsal positions. (D) Diagram
matic view of the spinal cord seen from the left side showing characteristi( 
position and features of 7 different neuron types. Each has a cell body (solid 
ellipse), dendrites (thick lines) and axon(s) (thin lines). Commissural axons 
projecting on the opposite right side are dashed. More details in text 

5.3 Anatomical evidence on the dorso-ventral distribution 

of axons and dendrites 

One alternative to specific cell-cell recognition mechanisms is that axons can chem

ically recognise neuronal dendrites and simply make synapses with any that they 

contact (axon-soma synapses are ver>' rare in Xenopus spinal cord). I f this hypoth

esis is correct, the probability of contact will depend mainly on the dorsoventral 

distribution of axons and dendrites, since axons run along the spinal cord, rarely 
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branch, and make synapses directly onto dendrites that they pass. We have there
fore examined these distributions for six spinal neuron types in the rostral spinal 
cord. 

Neurons having somata in the region where the electrical recordings were made 

(1 to 3 mm from the midbrain; Figure 5.IB) were selected for anatomical analysis. 

The axons are all relatively straight wi th maximum tortuosity (actual length divided 

by straight line distance) of T = 1.02 (n = 6). Figure 5.2B uses the aINs to illustrate 

the dorso-ventral distributions of axons and dendrites. 

The dorso-ventral range of dendrites was determined from the positions of the 

most ventral and dorsal dendrite for each neuron (Figure 5.2A,B). This range will 

limit the number of axons contacted. We ignore the possibility that dendrites might 

be unevenly distributed within this range. The dendrite dorso-ventral ranges were 

summed for each neuron type, except RB neurons, which do not have dendrites. 

For each 10% dorso-ventral position bin (spinal cord diameter is approximately 

100 fim so bin width is approximately 10 ^m) in the 10 thick marginal zone 

where dendrites and axons lie, we found the probability that an individual neuron 

of each type would have dendrites occupying that bin (Figure 5.3A). The dendrite 

distributions for neurons active during swimming (mns, aINs, cINs and dINs) were 

broad but all had a maximum just below the dorso-ventral midline ( in the 30% or 

40% bin) and fell away dorsally. In contrast, the dendrites of die sensory pathway 

interneurons had a maximum dorsally (in the 80% bin) and fell away ventrally 

The dorso-ventral position of axons was measured every 0.05 mm up to a max

imum of 1 mm from the neuron soma (or branching point for branching axons). 

For each individual neuron, we pooled these measurements (discarding information 

about the distance from the soma and whether the axon was ascending or descend

ing) and used them to calculate the probability of the axon occupying different 

dorso-ventral positions. These individual distributions were then averaged for all 

members of a type (Figure 5.3a). The dorso-ventral axon distributions of some neu-
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1 9 / T - T -
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I 84mm 
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Ft^tire 5.2: (A) Examples of neurobiotin filled neurons traced in lateral views of the spinal 
cord to show the dorso-ventral positions of the cell body, dendrites and part 
of the axons. Dendrites emerge from the black cell body with most ventral 
dendrite (open arrowhead) and most dorsal (black arrowhead) marked. Axons 
are on same side as cell body except for dlc^ where they cross ventrally then 
branch. Rostral to left, dorsal up. (B) Examples of axon trajectories of 
individual aINs (measured at 0.05 mm steps fi*om the cell body at 0mm) and 
dorso-ventral extent of their dendrites (vertical lines at right). 
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Figure 5.3: Axons, dendrites and synapses: A) Histograms summarise dorso-ventral dis
tribution of cell bodies, dendrites and axons of different neuron types in 10% 
bins where 0% is ventral and 100% dorsal edge of spinal cord. Distributions 
are expressed as the probabihty that a neuron will have a cell body or dendrite 
in a particular dorso-ventral position. Axon distributions are expressed as the 
probabiUty that a 50 fim segment of the axon from a type of neuron will lie 
in a p2Uticular dorso-ventral position. B) Plot of synapse probability from 
recordings vs contact probabihty from anatomy for cases shaded in Table 5.1. 
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rons are rather narrow. RB sensory neuron axons are dorsal (from 50% to 100%; 
maximum at 80%) while mns are ventral (from 10% to 30%; maximum at 20%). 
cINs, dINs and dies are all slightly biased towards ventral positions (from 10% to 
60%) while inhibitory aINs have a broad axon distribution (10% to 90%; maximum 
at 40%). 

Once the dorso-ventral distributions of ajcons and dendrites were established, 

'contact' probabilities between axons and dendrites were calculated as follows for 

each pair of neuron types. The probabilities of individual axons or dendrites occu

pying a particular 10% dorso-ventral region were those plotted in Figure 5.3A. The 

probability that a particular pre-synaptic axon and post-synaptic dendrite would 

both occupy the same dorso-ventral region in the narrow marginal zone, and could 

therefore make contact, was simply the product of these probabilities. Overall con

tact probabilities between each type of neuron were then found by summing the 

separate probabilities for the ten dorso-ventral regions (Table 5.1). The contact 

probabilities range from 0.04 to 0.91 and relate intuitively to functions. They are 

higher for RB sensory neuron contacts onto sensory pathway dies (0.65) than onto 

other neurons like dINs (0.29); they are low for die contacts with each other (0.08) 

but higher onto the neurons activated after skin stimulation (0.54-0.89 for aINs, 

cINs, dINs and mns); they are quite high for contacts between neurons active dur

ing swimming (0.5-0.91 for aIN, cIN and dIN contacts to each other and to mns). 

When contact probabilities determined from anatomy were compared to synapse 

probabilities determined directly by electrical recording (Table 5.1), the two were 

significantly correlated for pairs where the neurons were randomly chosen for record

ing (bold entries in Table 5.1; Pearson correlation coefficient 0.593; p = 0.042). This 

significant relationship based on data from both anatomy and physiolog}^ (Figure 

5.3B) was then used to predict the synaptic contact probabihty for cases with only 

anatomical data (Table 5.1). We first omitted data for contacts from RB to die 

neurons where the extensive rostro-caudal dendrites of die neurons are likely to re-
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suit in a relatively high synaptic contact probability. The slope obtained by linear 

regression for the remaining points suggests that the probability of a real synaptic 

contact is around 46% of that predicted by anatomy. In a later chapter, we wi l l use 

this probability to generate a complete model of the spinal cord by growing axons 

of each neuron: when an axon passes the dendrite of some cell the probability of 

contact is 0.46. 

We hypothesize on the basis of these results that during the formation of early 

synapses in the developing frog spinal cord, the different synapse probabilities found 

could depend simply on differences in the geographical distributions of axons and 

dendrites of different neuron types. These distributions could be sufficient to ensure, 

for example, that dorsal sensory RB axons synapsed mainly with dorsal sensory 

pathway interneurons rather than with more ventral neurons active during swimming 

(like motoneurons). This hypothesis is supported by modelling results which are 

presented in the next section. 
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DISTRIBUTION OF AXONS AND DENDRITES 

axons die aIN cIN dIN mn 
R B ipsi 
Synapse 0.63 0.13 0.09 +(0.13) +(0.02) 
Contact 0.65 0.29 0.10 0.29 0.04 
die contra 
Synapse 0-h (0-04) 0.33 0.43 0.33 0.46 
Contact 0.08 0.89 0.64 0.54 0.82 
a I N ipsi 
Synapse (0.13) 0.25 0.15 0.2 0.33 
Contact 0.28 0.72 0.57 0.60 0.50 
c I N contra 
Synapse 0-h (0.04) 0-f-h (0.40) 0.26 ++(0.24) 0++ (0.37) 
Contact 0.08 0.88 0.61 0.52 0.80 
d I N ipsi 
Synapse +(0.04) (0.42) * - f + (0.34) * + + (0.29) * + + (0.37) 
Contact 0.08 0.91 0.73 0.64 0.80 
m n ipsi 
Synapse (0.00) (0.41) (0.18) (0.10) (0.45) 
Contact 0.00 0.89 0.40 0.22 0.98 

Table 5.1: Synapse probabihties in bold are those from recordings based on more random 
sampling. Where there are no data from recordings, estimates of synaptic 
contact probabihties (in pcirentheses) are 46% of the anatomically estimated 
contact probabiUties. For each neuron type, ipsi refers to synapses made on 
the same side £uid contra refers to synapses made on the opposite side, + rare 
connections inferred from other experiments; + + , common connections but no 
quantitative data; *, connections frequent but preliminary recordings were used 
to select pairs of neurons that were connected, so connection probabilities are 
not meaningful. 
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5.4 Modelling axon growth and synaptic contact probabili

ties 

The traditional approach to modelling axon growth is based on the idea that the 

growth cone follows different molecular gradients (Goodhill et al., 2004; Krot t je and 

van Ooyen, 2007). Here we do not consider the details of growth cone navigation in 

steep and shallow chemical gradients; instead we build a simple computational model 

reflecting several key attraction and repulsion processes guiding axon development. 

Since axons grow a considerable distance along the spinal cord (often 1 to 2mm 

in a 5mm long animal) and can wander dorsal or ventral as they grow, their pattern 

of growth will have a strong influence on their potential to contact dendrites of 

different neuron types (see figure 5.2A). We concluded above that synaptic contacts 

may depend simply on dorso-ventral axon and dendrite distribution patterns. We 

therefore investigated whether a simple model, without any cell-cell recognition, 

could generate patterns of axon growth that would reproduce the observed axon 

distributions and therefore the synaptic contact probabilities. For simplicity, we 

assumed that dendrites are static and passive. 

Our computational model starts from the point when axons start to grow^ lon

gitudinally (Figures 5.ID and 5.2A). This point wi l l be determined by the position 

of the soma and the initial behaviour of the axon. In the case of R B neurons, the 

axons grow directly from the soma tow^ards the head and tail. In most other spinal 

neurons the axon first grows ventrally and then turns to grow longitudinally either 

on the same side or after crossing ventrally to the other side. We use the experi

mental observations to give us starting positions and initial growth angles of axons 

as well as their final lengths. A repetitive process of advancing the axon 1 ^ m along 

its current grow^th angle and then modifying the growth angle is then applied until 

the predetermined rostrocaudal length of the axon is reached. 

The current location and orientation of the tip of the axon (growth cone) are 
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represented by three variables: x{t) rostrocaudal position, y{t) dorsoventral position, 

and 0{t) growth angle. 6 is defined as the deviation from longitudinal growth; 

positive values of 6{t) indicate a tendency to grow dorsally while negative values 

of 6(t) indicate a tendency to grow ventrally. In our first simple model just two 

parameters, a and 7 are defined specifically for each neuron type. The equations 

are: 

x{t + 1) = x{t) + A cos{e{t)) (5.1) 

y(t + 1) = y{t) + A sin(i9(*)) (5.2) 

e{t + 1) = (1 - j)eit) + e, i = 0 , 1 , . . . , m - 1, (5.3) 

where t is the current iteration number in the process of axon growth; m is the 

ful l length of the axon; ^ is a random variable uniformly distributed in the interval 

( -a , a]; (a typically is about 2° to 5°). A is the 1 fim distance grown in each 

iteration step. The parameter 7 (0 < 7 < 1) represents the tendency of an axon to 

turn towards an angle of 0 degrees - in other words the tendency of the growth cone 

to orient towards longitudinal growth. We use aINs to illustrate our methods. Figure 

5.4A shows aIN axons generated by the simple model for parameter values optimized 

using the procedure described below together with plots of the same number of real 

axons. I t is clear that the simple model is able to generate the descending part of 

aIN axon growth (right part of the plot) but fails to fit the experimental data for 

ascending axons. This is because the descending aIN axons are mainly short with 

small turning angles while the ascending aIN axons are longer wi th larger turning 

angles. When all neuron types were considered we found that i f model axons had 

appropriate tortuosities, then their D-V distributions were too broad and they often 

ran into the edges of the spinal cord. 

The partial failure of the simple model suggested that, in life, some factors guide 

axons towards a longitudinal growth path and away from the edges of the cord. We 
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Figure 5.4: Modelling aIN axon growth and positional effects on axon turning angles. (A) 
aIN descending axons generated by a simple random growth model (red) fit 
the distribution to real descending axons (blue, to right) but model ascending 
axons do not match real ascending axons. (B and C) reed aIN ascending axon 
turning angles depend on the current growth angle and D-V position. (D) in 
a model where growth angle depends on D-V position, generated aIN axons 
(red) match real axons (blue) closely. (E and F) show that turning angles of 
modelled axons significantly match real axons* dependence on current angle 
and D-V position 
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Axons Slope of current angle 
vs turning angle 

P-value Slope of turning angle 
vs D-V position 

P-value 

R B 
Desc. -1.15 0 -0.53 0 
Asc. -1.09 0 -0.57 0 
die 
Desc. -1 0 -0.16 0.2 
Asc. -0.87 0 -0.15 0.007 
a I N 
Desc. -0.95 0 -0.17 0.008 
Asc. -0.91 0 -0.08 0.06 
c I N 
Desc. -0.71 0 -0.31 0.003 
Asc. -0.89 0 -0.12 0.031 
d I N 
Desc. -1.15 0 -0.21 0.001 
mn 
Desc. -1.25 0 -0.29 0.13 

Table 5.2: Dependence of axon turning angles on current growth angle and dorso-ventral 
position 

therefore examined the turning angles of real axons (between points 0.05 mm apart) 

and found that they depended strongly on their current angle of growth and weakly 

on their D-V position. This is illustrated for aINs in figure 5.4 parts B and C where 

both scatter plots show negative correlations made clear by fitting the points by 

linear regression. For all measured neuron types the slope of the regression lines for 

axon turning angles were negatively dependent on current axon growth angle (-0.71 

to -1.25) and dorso-ventral position (-0.08 to -0.53; see table 5.2). This remarkable 

finding means firstly that the more an axon deviates from longitudinal growth the 

more i t will turn back. Secondly, the dependence of axon growth angle on dorso-

ventral position means that for aIN axons the upper and lower boundaries of the 

cord are repulsive. 

In life many possible factors could influence axons to direct them away from 

edges (eg physical barriers to growth cone extension, D-V gradients of repellent 

signals (Bourikas et al., 2005)) and guide them to a more longitudinal growth (eg 
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fasciculation with other longitudinal axons, longitudinal gradients of attractive or 
repellent signals (Lyuksyutova et al., 2003)). We aimed to encapsulate the essence of 
such diverse mechanisms by introducing a new feature into our model: y represents 
the dorsoventral position of an attractor to which axon trajectories are drawn with a 
strength of /j,. Equations 5.1 and 5.2 are the same as above, but we replace equation 
5.3 with: 

e{t + 1) = (1 - j)e{t) + fi{y{t) - y) + * = O, l , n - 1 (5.4) 

0 < 7 < l ; 0 < g < l 

This model contains four parameters (a,7, fi and y) and to specify their values we 

used the following optimisation procedure. For each neuron type we minimize the 

cost function to find the best parameters which provide the smallest possible value 

of the cost function. We repeat the same procedure to get optimal parameter values 

for each type of neuron separately for ascending and descending axons where both 

exist. 

The revised model was able to generate axon growth patterns very similar to 

those in the spinal cord (for example aINs: Figure 5.4D). In many cases, the optimi

sation procedure was able to reach very small values of the cost function; for the few 

cases where i t did not, the generated axons were still very similar to real ones. In 

addition, the modelled axon growth angles showed the same dependence on current 

angle and D-V position as the measured axons. Full details of the optimization 

procedure as well as optimal parameter values are presented in the next section. 

Just as in the real axons, scatter plots and linear regressions showed negative slopes 

(figure 5.4E and F and table 5.2). 

The second revised model of axon growth establishes that axon growth paths and 

distributions can be generated by ver>' simple rules based only on the initial position 

and growth angle of the axons. Since these modelled axon distributions closely 
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match those measured for real axons, i t follows that their contact probabilities with 
dendrites will also be similar and we have confirmed this. 

5.4.1 M o d e l exp lana t ion 

Experimental measurements have been made for different tadpoles wi th different 

spinal cord heights which are about 100 ^ m . To reflect that in the model, we 

consider axon growth in one side of the spinal cord represented as a rectangle with 

some height H randomly chosen in the range of admissible biological height values 

(about 100 ^m) and length W = 1000/xm. Thus we consider the rectangle H x W 

and growing axons are allocated inside this field. To start an axon simulation we 

need to choose the initial position of the axon and initial angle, after that the process 

of axon generation is governed by the model equations 5.1, 5.2, and 5.4. 

Developing the model equations, we implicitly assume that chemical gradients 

experienced by the growth cone are exponential, which for a single gradient would 

produce a constant rate of turning independent of the location within the gradient 

(but not independent of the current growth angle). The dependence of axon growth 

angle on dorso-ventral position (note that dorso-ventral axis corresponds to vertical 

axis (height) of the rectangle and longitudinal location is considered to lie along 

the horizontal axis (length) of the rectangle) that we observe is assumed to be the 

consequence of interaction between at least two gradient-following processes: the 

noise in the axon growth angle and the tendency to grow towards some particular 

location. The noise component describes a random deviation of the current angle 

from the deterministic component (see equation 5.4). Thus the noise component is 

a random variable uniformly distributed in the interval ( - a , a) where parameter a 

defines the boundary for the angle deviation (Fig. 5.5). Thus, the noise is modelled 

by a uniformly distributed random variable with mean equal to zero and variance 

equal to 

The parameter 7 represents the tendency of the axon to turn towards an angle of 
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Height (dorso-ventra) position) 

• 
Length 

Figure 5.5: The deterministic direction of growth is shown by the black line connecting 
point A and the yellow dot. The angle a specifies the boundaries of the random 
deviation. The red line shows the chosen direction of growth for the next time 
step. 

0 degrees - in other words, the tendency of the axon to orient towards longitudinal 

growth. I f 7 is zero (see equation 5.3) then the deterministic part of the growth angle 

is not changed at each time step and random deviation applies to this direction. 

When 0 < 7 < 1, the deterministic component of the growth angle will decay to 

zero. This part of the model can be justified by experimental findings which show 

that this orienting process towards zero angle is dependent on the current deviation 

from longitudinal growth - the steeper the current growth angle, the stronger the 

tendency to straighten towards horizontal growth. The effect of parameter 7 can 

also be interpreted as the consequence of a longitudinal gradient-following process, 

which would be expected to produce the same dependence on growth cone angle. 

The parameter y represents the dorsoventral position of an attractor to which 

axon trajectories are drawn with a strength which can be described by parameter fi 

(see equation 5.3). Thus, parameters ^ and y characterise the interaction betw^een 

two opposing gradient-following processes. The parameter y is the dorsoventral 

position at which these processes eflfectively cancel each other out. The parameter 

/z represents the strength of the net attraction towards y. The effects of these 

parameters can be interpreted as a system with two repulsive gradients, one pushing 

from the ventral side to the dorsal side (we know that there is some drive here at 

least with the commissural neurons) and one pushing from the dorsal side to the 
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ventral direction. The relative sensitivity of the axon to these two gradients would 

determine the value of the parameter y and the absolute sensitivity of the growth 

cone to ligands would determine the value of the parameter fx. 

In the next chapter we derive an analytical expression showing how the variance 

of the growth angle and position in this model depends on time. 
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Chapter 6 

Mathematical analysis of axon growth model 

time course of the variance 

The model of axon growth is formed in terms of a system of three nonlinear difference 

equations, one of which has a stochastic term. The resulting process of axon growth 

is sculpted by a complicated interplay between the deterministic and stochastic 

components of this system of equations (5.4). On each iteration step we add a 

random variable with fixed variance. However, the variances of the three variables 

(^) ^) y) grow with the iteration number and may reach large values after some 

number of steps. Thus i t is important to calculate how the variance of the growth 

angle and coordinates depends on the iteration number. 

In particular, an important question is whether the variance is limited and sat

urates to some level when the iteration number tends to infinity or the variance 

increases without limitation. We have found the analytical solution to this problem 

which is presented below. 

100 



6.L SIMPLE MODEL 

6.1 Simple model 

We wil l start our analysis from the simple model (5.1-5.3) (with no explicit depen

dence on the dorso-ventral position). Let us restate this system: 

x{t-\-l) = x{t) + ^cos{e{t)) 

y{t-{-l)=y{t)-\-Asm{e{t)) (6.1) 

^ ( t - h l ) = ( l - 7 ) ^ ( t ) + ^ , 

where: t = 0 , 1 , 2 , 0 < 7 < 1; ^ is the random variable uniformly distributed in 

[ -a , a]. The equation for d{t -h 1) does not include x and y and may be studied 

separately. Let us denote p = (1 — 7); use the notation n to represent time steps 

instead of t and rewrite the equation for ^„+i in the following form: 

^n+i = + ^n; n = 0 , 1 , 2 , 0 < ^ < 1, 

where ^ i , - -. ,?n) • • -j are independent identically distributed random variables (with 

the same distribution as the random variable ^ ) . Starting from ^̂ '6 give the first 

few solutions of this equation: 

This can be generalized as: 

en = /3"^0 + + P'"% + + P^n-l + ^n. 
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In order to find the variance of On from this equation, we consider the variance of 

both sides: 

VariOn) = Varip-eo + ^ " " ^ f i + + ... + Kn-x + 

First we apply the property that the variance of a sum of two independent random 

variables A and B is the sum of the variances of these variables: Var{A + B) = 

Var{A)-\-Var[B). We apply this property recursively until we arrive at the following 

expression: 

Var(^„) = Varip^e^) + VaT{p-'%) + Var{0^-%) + ... + VaT{pE^n-x) + Var{^n)-

We can eliminate the first term, because P^OQ is a constant and so its variance is 

zero. In addition we apply the property that Var{ax) = a^Var{x) to all the terms 

on the right hand side, and convert all Var{^n) to Var{^) as the variance of all 

is the same: 

VariOn) = p^^^-'^VariO + ^ '^"- '^Var(^) + ... + p^Var{0 + Var (^ ) . 

Factorizing we get the following equation for variance: 

VariOn) = Kar(e)(^2(n-l) ^ ^2(n-2) _^ ^ ^2 ^ 

To sum this geometric progression, we denote the common ratio as 6 = j3 :̂ 

VariOn) = Var{^){l H- + 6̂  + ... + 6""^ + 6'^"^). 
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Applying the formula for the sum of a geometric progression, we have the final result 

which describes how the variance of 9 depends on n: 

Var{e„) = l / a r ( ? ) i — ^ 

The random variable ^ is uniformly distributed in the interval [—a, a ] . The mean 

of ^ is zero, so we can write: 

VariO = f x^f{x)dx, 

where f{x) is the probability density function of ^. As we are dealing wi th a uniform 

distribution, this is simply: 

m = { 
l/2a, X e [ - a , a] 

0, otherwise 

Substitution of this expression into the equation for Var(^) gives: 

and the fu l l expression for the variance of 0^ is: 

Substituting (1 — 7) for /3 we have the final result: 

a2 1 - (1 - 7)2" 
Var{e„) = 

3 • 1 - (1 - 7)^ 
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. This formula shows that the variance of 5„ saturates for large n in the case that 

0 < 7 < 1. In case n -> oo, (1 - 7)^" 0, therefore: 

Var{e^) = a-
3 ( 1 - ( 1 - 7 ) 2 ) ) 

(6.2) 

Recall that 0 < 7 < 1 . I f 7 = 1 then Var{e^) is minimized, and 

6.2 Full model 

We will begin by restating the full axon growth model (Equation 5.4) 

x{t + l) =x{t) + Acos{e{t)) 

y{t+l) = y{t) + Asm{e{t)) 

e{t + 1) = (1 - j)eit) + ^i{y - y{t)) + ^ 

(6.3) 

We only need to consider the last two equations because these equations contain 

only 9t and yt and not Xf In addition A = 1 so i t can be omitted^ we substitute /? 

for (1 - 7) and we also use the small angle approximation sin(a;) ^ x. We use n to 

represent discrete time instead of t and make the dependence of ^ on time explicit 

by rewriting ^ as ^„ . Thus our model is reduced to the following system of two 

linear difference equations: 

On+l = POn + M(y - Vn) + ?n+l 

2/n+l =yn+On-
(6.4) 

*The same analysis can be carried out when A ^ 1 by applying the following procedure: 1) 
Divide equation for y(t + 1) by A to give y(t + 1) /A = i / ( i ) /A + sin{$(i)) 2) Apply substitution 
Y(t) = y(t)/A to equation for y to give Y{t + 1) = Y(t) 4- sin(^(i)) 3) Apply same substitution to 
equation for $ to give 9(i + !) = ( ! - y)6(t) + fi(y - ^Y(t)) + C 4) Take A out of brackets in last 
term to give 0(1 + 1) = (1 - j)e(t) + A; i ( j / /A - Y{t)) + ^ 5) Substitute M = K = y / A to give 
e{t -f-1) = (1 - j)9{t) -h M{Y - Y(t)) + We now have a system of two equations of exactly the 
same form as equation 6.4 and can proceed in the same way. 
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Denoting the constant term in the first equation by D = fiy we have the following 

system: 
( 

(6.5) 

We will convert this system of two first order difference equations into a single 

second-order difference equation. Let us sum the first equation of (6.5) wi th the 

second equation multiplied by fx: 

On+l + fiyn+l = (/3 H- fJ')On + + ^n+l-

We define a new variable r„ = ^„ + In the first equation we can add and 

subtract On'. 

Combining terms ^y^ + we can substitute the new variable in to get a system of 

two equations for and 

^„+i = ( / ? + l ) ^ „ - r „ + + 

r„+i =( /? + M)^„ + D + e„+i. 

From the second equation we have an expression for r„ = (/3 + fi)On~i -\- D-h^n and 

substitute i t to the first equation: 

^n+l = (/? + 1)^„ - [{P + M)^n-l -\-D + ^^] + D-\-

Simplifying: 

On+i =ip-\- 1)6^ - { P + M ) ^ „ - 1 + (?n+l - f „ ) . 
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More substitutions p = p = -(/3 + /IA) lead to the final form of a second order 

linear difference equation with a stochastic term: 

^n+l = pOn + qOn-l + " ^n- (6.6) 

Our goal is to find the variance of as a function of n. Generally speaking this 

equation needs two arbitrary' initial conditions. However, from a consideration of 

the initial conditions for system (6.5) we can find: 

yi = 0̂ + yo 

Ox = pOo -fiyo + D + ^i 

where and yo are arbitrary constants. We can rewrite the second equation as: 

^1 = ^ 1 H- ^1 where A^ includes all non-random terms. Thus the ini t ial conditions 

for (6.6) are: OQ and 6i = A i w h e r e and Ai are arbitrary constants. Let us 

write several sequential solutions of (6.6): 

^0 = Ao 

ei=Ai+ ^1 

^2 = ^2 + ( p - l ) 6 + 6 

3̂ = ^3 + (P^ - P + 9)6 + {p- 1 )6 + 6 

e, = A4 + {p^ - + 2pq - g)6 + (p2 - p + q)^2 + (p - 1)^3 + 6 : 

where A Q , AI, A4 denote the sum of all non-random terms. From these equations 

we can see that any equation includes the same terms as the previous equation (with 

the index of ^ increased by 1), plus one new coefficient. Here we again denote the 

part of the equation without a random variable by A with corresponding indexes. 

Introducing coefficients Bk to give terms with ^jt the form Bn-k^k^ can write the 
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general form of the equation for 9„ : 

e„ = A„+ 5 „_ i ? i + 5 „ _ 2 6 + - + 5iC„_i + Bo^n- (6.7) 

Taking into account two sequential equations for n = A:, n = A; + 1: 

Ok = Ak + Bk-i^i+Bk-2^2 + - + Bi^t-i + Bo^k 

Sk+i = ^k+i + Bk^i + Bk-i^2 +••• + Bi^k + Bo^k+i 

We can write an equation for 6^+2 using the equation (6.6): 

= pSk+l + Q^k + ^k+2 — = 

= {pAk+i + qAk) + (pBk + 9Bfc-i)^i + (pS/t-i + qBk-2)^2+ 

+... + (pB2 + qB,)ik-i + (pBi + qBo)e.k + (pBo - l ) e t+ i + a-+2 

Now we can write iterative equations for the coefficients B^. 

Bo = l, 

B i = p - l , 

B2 = pBi + qBo, 

B3=pB2 + qBi, 

and in the general case: 

B„ = pB„_i + Q S „ _ 2 . (6.8) 

Now we will solve the second order difference equation with the ini t ial conditions 

Bo = l,Bi = p - 1. Eq. 6.8 is a linear equation, so we look for solution S „ = CA". 

Substituting: 

CA" = pCA"- ' + 9CA"-2 
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Dividing by CA" ^ we obtain the characteristic equation: 

The roots of the quadratic equation are: 

. P + \ /p^ + 4g 
Ai = ^ 

. P - \/p^ + 4q 
A 2 - ^ . 

We now have the general solution of Eq. 6.8: 

(6.9) 

where C i and C2 are arbitrary constants. Next we use the initial conditions to 

determine Ci and C2: 

n = 0 : B o = l = > C i + C2 = l . 

n = l : B i = p - l ^ CiXi + C2A2 = p - 1. 

Ci + C2 = 1 

C\Xi + C2A2 = p — 1. 

p - 1 - CiA, 

From the second equation of 6.11 we find: 

C'iA2 + p — 1 — CiAi = A23 

(6.10) 

(6.11) 
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A2 — Ai 

We can simpUfy this expression taking into account: 

Ai - A2 = \ / y + 4^, A2 - p = - A i , 

thus, 

Similarly, we substitute Ci to the first equation of (6.10); 

p - 1 - C2A2 _ 
O2 H ^ - i: 

02^1 - f /? — 1 — C2A2 = Ai 

Ai - p + 1 
C2 = 

C2 = 

Ai — A2 

A 2 - I 
V p̂2 + 49 

Substitution of Ci and C2 to equation 6.9 gives: 

D _ \n - ^ 1 - 1 A2 - 1 

B„ = [(Ai - 1)A," - (A2 - 1)A2"]. (6.12) 

We can now return to 6.7 and consider the variance of both sides: 

Var{e„) = VariO{Bn-i^ + B„_2^ + ... + B,' + Bo'] (6.13) 

109 



6.2. FULL MODEL 

We use the formula (6.12) to substitute for the coefficients Bn in (6.13): 

Varies) = ^ [ ( A . - 1)^(1 + V + + ... + ( A i ^ ) " - ' ) 

+(A2 - 1)^(1 + Aj^ + ( V f + ... + ( A ^ T - ' ) 

- 2 ( A i - 1)(A2 - 1)(1 + A1A2 + ... + (A ,A2)"-')]. 

Using the formula for summation of a geometric progression three times, substituting 

Var{^) = a^/3 and rearranging terms, we have the final formula for the variance of 

y^r{e„) = ^ , [ ^ { 1 - (A.^)") + i ^ ( l - M " ) -

- ' 'Vi . t"^ ' ( l - (AiA2)")] . 

I f | A i | < 1 and IA2I < 1 then the variance saturates for large n and we can simplify 

this expression for the case n -> 00: 

3(p2 + Aq) 
(Ai - 1)^ (A2 - 1)^ _ 2(A, - 1)(A2 - 1) 
l - A i ^ I - A 2 ' 1 - A , A 2 

6.2.1 Variance of y 

I t is possible to derive an expression for the variance of y„ as a function of n using 

the same method we used for the variance of Let us start from Eqn. 6.5 (restated 

here): 
{ 

(6.14) 

Let us sum the first equation of 6.14 with the second equation multiplied by (-/?) 

to exclude On from the right hand side. 

0n+l - Pyn-i-l = -Pyn - ^yn + D + ^„+i 

2/n+l =yn + {On " /^Vn) + Pyn 
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6.2. FULL MODEL 

We define a new variable Un = On — py^. Now the system 6.14 can be rewritten: 

w„+i = -Pyn - + I ? + ^„+i 
(6.15) 

yn+i = yn + ^̂ n + Pyn 

From the first equation we have = —pyn-i — M2/n-i + -Ĉ  + and this can be 

substituted into the second equation of (6.15) to give a single second-order difference 

equation: 

Vn^l = {P + \)yn - (/? + M)yn-1 + ^ + ^n 

We use the same substitutions as in the previous section: p = p -\-\-^q = —(/3 + /z) 

and this gives the following final form of the second order difference equation: 

2/n+l = VVn + qyn-\ + D + 

The initial conditions for this equation are yo and y i , these can be considered as 

arbitrary' constants, therefore both have zero variance. Also, we represent all terms 

containing no random variable by arbitrary constants An with corresponding indexes 

y2 = A2 + G 

y4 = >i4 + (p^ + 9)ei+P?2 + 6 

Introducing coefficients Bk to give terms with the form Bn-k^k: we can write the 

general form of the equation: 

Vn+l = An+l + Bn-l^l + Bn-2^2 + ... + B2U-2 + ^ l ^ n - l + ^O^n (6.16) 
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6.2. FULL MODEL 

A consideration of cases n = k, n = k + l, and n = k + 2 similar to that used in the 

previous section yields a general expression for Bk+i '-

Bk+i=pBk+qBk-i. 

Solving this second order linear equation with initial conditions BQ — l;Bi = p gives 

the following formula for Bk'. 

B, = 

Now we consider the variance of both sides of (6.16) and substitute the formula for 

Bk-. 

Kar(2/„+0 = [(A." - A^")^ + ( A i " " ' - A^" - ' ) ^ + ... + {X, - X^f] 

Rearranging this expression shows that i t contains three geometric progressions with 

common ratios Ai^jA2^, and A1A2: 

Var{yn^^) = ^ [ ((A,^)" + ( A . ^ ) - ^ + ... + ( A , n + ((A^^)" + - + (A2)^) 

- 2 ( ( A , A 2 r - f . . . + (AiA2))] 

Summing the geometric progressions and substituting Kor(^) = yields the 

following final expression for the variance of 

a' 
3(p2 + 4g) 

2\n 

A? 1 - M , . 2 i - ( V ) + A; 
I - A 2 ' 

2AjA: 
1 - (A1A2)" 

1 - A1A2 
(6.17) 

If I All < 1 and IA2I < 1 then the variance saturates for large n and the formula for 

the case n - 4 0 0 is: 

a' 
3(p2 + 49) 

Ai' A,2 

1 - Ai ' ' 1 - A; 
2A1A2 • 

I - A 1 A 2 . 
(6.18) 
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6.2. FULL MODEL 

Figures 6.1-6.2 show both analytical and computational variances versus iteration 

number. These figures show the variances for aIN cells with axons growing in de

scending direction. Optimal parameter values (the first row in Table 6.1) have been 

calculated according to the model fitting procedure (model fitting and parameter 

optimisation are described in the next section, in which these parameter values will 

be repeated). The analytical solution for the variance of the dorso-ventral coordi

nate yn is shown by a smooth red line on Fig. 6.1 calculated according to formula 

(6.17). This variance saturates on the level 127.5 (dotted line) and this saturation 

level has been calculated by using the formula 6.18. I t is interesting to note that 

using optimal parameters for calculation of the roots of the characteristic equation 

(Eqn. 6.2) gives | A i | < 1 and IA2I < 1 for all cell types in all directions. For example 

for aIN axons in descending direction Ai = 0.999 and A2 = 0.882. 

Computational variance has been calculated according to the following proce

dure. First, optimal parameter values of the model have been found by nonlinear 

least squares fit of the model to experimental measurements of axons. Second, us

ing optimal parameter values we generate 200 axons starting from different initial 

values of the random number generator. Each axon is generated in the interval 

X e [0, m], m = 2 ,3 ,4 , . . . , 3000. Thus, for each repetition of this procedure we gen

erate an axon and sample its D-V coordinate at the last point (A; = 1 , . . . , 200). 

So we accumulate the sample [ j / ^ , y ^ , . . . , y^^] and calculate a standard statistical 

estimate of the veiriance. I t is clear from Fig. 6.1 that the estimate of the variance 

varies in a wide range. Similar computations have been done for the variances of 

axon growth angle 6 and both analytical and computational variances are shown in 

Fig. 6.2. The variance of axon growth angle saturates much faster than the variance 

of the D-V coordinate of the axon. 

Table 6.1 also shows the roots Ai and A2 of the characteristic equation (Eqn. 

6.2), which have been used in the formulas for calculation of the dynamics of the 

variances. Al l roots are positive and less than one. Only in the case of RB cells (both 
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6.2. FULL MODEL 

ascending and descending) the roots are complex conjugates with modulus less than 

one. These facts mean that for all cell types in both directions, the variance of the 

D - \ ' coordinate is limited and asymptotically approaches the saturation level. The 

variance for growth angle also saturates with increase of iteration number. 

Figure 6.1: Analytical and computational variances of axon D-V coordinate vs. the iter
ation number. 

In the next chapter, we show how the parameters of the model can be optimized 

to match the anatomical data from the tadpole and generate a reconstruction of the 

tadpole spinal cord anatomy. 
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6.2. FULL MODEL 

2500 3i>:; 

Figure 6.2: Analytical and computational variances of axon growth angle vs. the iteration 
number. 

a 7 ^^ y 
aIN des 0.1037 0.1192 0.01182 0.5512 
aIN as 0.2373 0.08814 0.02674 0.6978 
cIN des 0.05376 0.06153 0.01392 0.7359 
cIN as 0.05905 0.08263 0.01092 0.7111 
dIN des 0.1219 0.09565 0.02109 0.3806 
RB des 0.1165 0.04534 0.05581 0.6982 
RB as 0.1224 0.04323 0.05000 0.7917 
die des 0.1419 0.09199 0.04113 0.4116 
die as 0.1136 0.1145 0.01791 0.6500 
MN 0.1048 0.4173 0.02819 0.1764 

Ai Modulus 
aIN des 0.999 0.8818 
alX as 0.9969 0.915 
" IN (l<'s 0.9976 0.9408 
cIN as 0.9987 0.9187 
dIN des 0.9977 0.9066 
RB des 0.9773 -h 0.0067i 0.9773 - 0.0067i 0.9774 
R B as 0.9784 + 0.0057i 0.9784 - 0.0057i 0.9784 
die des 0.9953 0.9127 
die as 0.9984 0.8871 
mn 0.9993 0.5834 

Table 6.1: Parameters for model axon generation and corresponding roots of the charac
teristic equation 
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Chapter 7 

Optimization of model parameters and re

construction of tadpole spinal cord 

7.1 Fitting the model to experimental measurements and 

optimal parameter values 

Our goal is to simulate an axon growth process which can generate axons that 

are similar to biological axons which have been measured experimentallj'. This 

similarity is measured using a cost function with two components: 1) similarity of 

distributions of axon projections in the dorso-ventral dimension and 2) similarity of 

tortuosities. Thus, the optimization procedure searches for a set of values of the four 

model parameters which minimize the cost function. The optimization procedure is 

formulated in detail below. 

The available experimental data provide measurements of spinal cord axons for 

each neuron type in both descending and ascending directions when both are present. 

Considering the example of aIN ascending axons, we will demonstrate how the opti

mization procedure works. Available experimental data provide measurements of 10 

axons from different tadpoles. The longitudinal dimension in the model was always 

1000 fim however axons can be shorter or longer than this fu l l length. Experimen

tal measurements of dorso-ventral axon position (in micrometers) were made ever}' 
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7.L FITTIXG THE MODEL TO EXPERIMESTAL MEASUREMESTS ASD 
OPTIMAL PARAMETER VALUES 

50 / im. An example of a measurecl axon is shown in Fig. 7.1. The horizontal 

red line (y=94.7 /im) shows the dorso-ventral height boundary of the spinal cord 

and the vertical red line shows the longitudinal boundar\' of considered spinal cord 

measurements. 

The next step is the projection of axon measurements in the dorso-ventral direc

tion and the calculation of the distribution of these projections. Because the dorso-

ventral height of the rectangles varies for different axons extracted from tadpoles 

with different spinal cord lengths, we normalise axon coordinates before project

ing them. Thus, we normalise both axes by dividing both vertical and horizontal 

axon coordinates by the dorso-ventral height of the spinal cord (in this example the 

height H=94.7). Division of both coordinates allows us to keep the angle structure 

unchanged. Of course, after this transformation a step along the horizontal axis wil l 

be different from 50 fim however the image representation wil l be the same. 

E > ^ e r i m e n t a l l y m e a s u r e d a x o n s 

4 0 0 6 0 0 
L o n g i t u d i n a l p o s i t i o n ( m i c r o n s ) 

8 0 0 1 0 0 0 

Figure 1.1: An example of axon measurements 

After normalization wo project all aIN ascending axon data to the vertical axis 

and repeat this procedure for each axon. The total number of axon measurements 

is rie {rif = 167) and these data represent the dorso-ventral distribution of axon 
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OPTIMAL PARAMETER VALUES 

measurements in the interval 0-100. We divide this interval into 10 bins, count 

the number of measurements in each bin, and normalize it by the total number rig 

to get the probability of finding an axon measurement in the bin. The resulting 

distribution is shown in Fig. 7.2. 

1 

0 9 

0.8 

0.7 

C 5 

0.5 

0 4 

0 3 

0 2 

0 1 

0 
10 

Figure 7.2: An example of the distribution of measured D-V coordinates for aIN ascending 
axons 

Moreover, we would also like the cost function to take into account the extent to 

which the path of the axon is circuitous rather than direct. Results from multiple 

model simulations suggest that tortuosity (total path length divided by straight line 

distance between start and end points) is an appropriate measure for this purpose. 

Thus, we calculate the tortuosity of each axon using the following formula: 

^ V (^ , -x ,_ i )2 -h (2 / . -z / i_ i )2 
T = (7.1) 

where (x,, y^), z = 0,1 k are measured coordinates of the axon, and k is the 

number of measurements for the axon. After that we calculate the average tortuosity 

of experimental axons T^. 

We can now describe the process of axon generation. Supposing that the values 

of the four model parameters are known, we can start the process of axon generation 
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OPTIMAL PARAMETER VALUES 

described by equations 5.1, 5.2, and 5.4. For this we need to choose initial values 
for the variables of the dynamical system, i.e. coordinates of the starting point of 
the axon (a:o>2/o) and the initial growth angle 9Q. We also need to fix the length of 
the generated axon. 

A l l generated axons have the same initial horizontal position XQ = 0. To de

termine the initial value of the vertical coordinate we first calculate the sample 

distribution (in 10 equally sized bins covering the interval 0-100) of normalised ini

tial vertical coordinates of all experimentally measured axons and generate a random 

number ran according to this distribution, thus, yo = ran. To determine the initial 

angle, we consider the bin of distribution where ran is and study the initial an

gles r?i, ...,7?q of those axons for which the vertical coordinate of the starting point 

falls into this bin. We generate uniformly distributed random angle rj in the in

terval (mm(7/i, ...,7?^) and the initial growth angle OQ = r}. Similarly, for the axon 

length we build the distribution of experimental axon lengths and generate a ran

dom number according to this distribution. We use the same procedure to generate 

the dorso-ventral height of the spinal cord: we build the distribution of experimen

tally measured dorso-ventral heights and generate the random number ranJieight 

according to this distribution; thus, we have chosen the rectangle ranJieight x 1000 

where all model generated axons wil l be allocated, i.e. we use the same rectangle to 

generate several axons and allocate them to the same rectangle. 

After fixing all initial values and axon lengths we run the system of difference 

equations 5.1, 5.2, and 5.4 and generate an axon. For axon generation we use step 

A = l ^ m . To obtain generated axon data similar to the experimental measurements 

we sample model axon coordinates every 50 /zm and use these sampled data for the 

following procedures: projection of axons, building D-V distribution, calculation 

of tortuosity, etc. Fig. 7.3 shows an example of a generated model axon for the 

optimal parameter values fitted to aIN ascending experimental measurements. The 

green line shows a generated axon with 1 ^m step, markers show measurements at 
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50 /im steps along the horizontal axis, the same sampling as in experiments. 
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Figure 7.3: Example of generated axon for optimal parameter values of aIN ascending neu
ron type. Green line shows generated axon and red line shows approximation 
with 50 fim sampling along the horizontal axis. 

It is important to note that the procedure for choosing initial values and axon 

lengths involves the generation of random numbers. This means that repetition of 

the same procedure will result in the generation of a diflferent axon with different 

initial values and a different length. Thus, we repeat this procedure r times (r = 70). 

generate r axons allocated inside of the same rectangle, and calculate the dorso-

ventral distribution (10 bins covering the interval 0-100) of all vertical coordinates 

of all generated axons. We denote this distribution by ( i /T* , t / Jo ) ' total 

number of coordinates used for calculation of the distribution is (index m here 

means relates to ^model'). Also, we calculate the tortuosity for each model axon 

and find the average tortuosity of generated axons T"^. 

Now we can define the cost function which includes both the similaritv of the 
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spatial distributions and the similarity of axon tortuosities. To measure similarities 
of distributions we use the sum of squared differences between experimental and 
modelled distributions. To interpret the values of this sum, we use a normalization 
which is traditionally used in statistics for comparing distributions and representa
tions of random variables with chi-square distribution. Thus the first term of the 
cost function is: 

It is known in statistics that the 5% critical value with 9 degrees of freedom for the 

one-tailed x^-test is 16.9. Thus, this value can serve as guidance for understanding 

the scale of cost function values and judging the quality of the optimization process. 

The second term of the cost function is the squared difference between the average 

experimental tortuosity and the average model tortuosity. The two terms of the 

cost function have very different scales and to balance them we consider a weight 

coefficient w which makes these terms consistent and with values in the same interval. 

Thus, the final expression for the cost function is: 

fcosi = fcHi + w{f' - f ' " ) ^ where w = lO' (7.3) 

I t is worth noting that the cost function includes a stochastic component, there

fore, repeated calculation for the same parameter values will always result in different 

values of the cost function. Thus, gradient based methods are not appropriate for 

optimization because they usually require the cost function to be smooth which 

it is not in our case. We use the Nelder-Mead simplex method (Lagarias et al., 

1998) which can deal with non-smooth cost functions and even with cost functions 

including a stochastic component. 
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7.2 Results of optimization and testing the optimization 

quality 

I t is important to note that the result of the optimization procedure is a random 

variable. This means that i f we have found a set of optimal parameter values and use 

them to calculate the cost function several times, we wil l get different cost function 

values, because the random number generator will start from different initial values 

resulting in generation of different axons. Thus, we would like to test the result of 

optimization studying the distribution of the cost function values generated for the 

set of optimal parameter values. 

The optimization procedure was run for each cell type and separately for their 

descending and ascending axons. The best values of model parameters and quality of 

optimization are summarised in Table 7.1. To quantitatively characterise the quality 

of optimization we define the measure Q in the following way. One tr ial of the testing 

procedure includes the generation of 300 axons for the optimal parameter values and 

calculation of the cost function. We repeat this procedure 100 times, generate 100 

values of the cost function, and build a histogram which we call the testing histogram 

(examples are given below). We denote by Q a value of the cost function such that 

the interval (0, Q) corresponds to 90% of the area of the histogram. We consider 

the optimisation procedure to be: very good quality i f Q is less than 4; good quality 

if 4 < Q < 8.5; and poor quality i f Q > 8.5. The last two columns of Table 7.1 

show the quantitative and qualitative characteristics of the optimization procedure 

for each cell type. 

Following the optimization process, we tested the sensitivity of the optimal pa

rameter values to small variations. We consider 3 levels of variation: 5%, 10% and 

20% (accordingly, the fractions of variation are Fr = 0.05, Fr = 0.1: Fr = 0.2) and 

for each level, (e.g. 5%), we consider three cases for each of the four parameters: 1) 

the parameter value decreases (e.g. by 5%) {ind = - 1 ) ; 2) the parameter value is 
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alpha gamma mu ybar quality Q 
aIN des 0.1037 0.1192 0.01182 0.5512 good 8 
aIN as 0.2373 0.08814 0.02674 0.6977 good 8 
cIN des 0.05376 0.06153 0.01392 0.7359 good 6 
cIN as 0.05905 0.08263 0.01092 0.7111 good 4.5 
dIN des 0.1219 0.09565 0.02109 0-3806 poor 21 
RB des 0.1165 0.04534 0.05581 0.6982 poor 18 
RB as 0.1224 0.04323 0.05000 0.7917 good 6 
die des 0.1419 0-09199 0.04113 0.4116 good 6 
die as 0.1136 0.1145 0.01791 0.6500 poor 17 
MN 0.1048 0.4173 0.02819 0.1764 very good 1.5 

Table 7.1: Parameters for model axon generation and quality of optimization 

not disturbed {ind = 0); 3) the parameter value increases (e.g. by 5%) {ind = -1-1). 

We calculate variations of the optimal parameters and use them to calculate the 

performance of the model for different degrees of parameter variation in terms of 

the quantitative measure Q. The results of sensitivity testing are presented in the 

Appendix. These results show that for 75% of considered cases of different variations 

at the level of 5%, the value of Q remains below 8.5 which is our criterion for good 

quality results. Variation of parameters at the 10% level shows that 42% of cases 

produce good quality results. Thus the quality of optimization is sufficient and is 

not overly sensitive to variation of optimal parameters. 

An example of generated and measured axons for the case of RB cells in ascending 

direction is shown in Fig. 7.4. Average tortuosities for generated and measured 

axons are: model tortuosity T"* = 1.01 and experimental tortuosity = 1.009. 

Fig. 7.5 shows distributions of dorsoventral coordinates of experimental and 

generated axons. Both figures demonstrate a very good correspondence between 

generated and measured axon distributions. Similar figures have been produced for 

all other cell types in ascending and descending directions; these are provided in the 

Appendix. 
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Figure 7.4: An example of axons generated by model (upper panel in red) and experimen
tally measured axons (lower panel in blue). Model tortuosity: 1.01. Experi
mental tortuosity: 1.009 
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Figure 7.5: Comparing the dorso-ventral distributions of model axons (blue) and experi
mental axons (red). 
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7.3 Spinal cord network reconstruction 

Having developed a model of axon growth that produces axons that approximate 

those observed in the tadpole, we can now use this model to generate a reconstruction 

of the tadpole spinal cord. This model allows us to make some general predictions 

about how connectivity varies with longitudin£d distance and wil l be used in the 

next chapter as the basis for an electrophysiological model of the network. 

We consider a 2000 fim section of spinal cord. This section contains 6 cell types, 

the density of which is equivalent to 7 cells of each type per 100 fim section of spinal 

cord. This is a very approximate figure provided by Prof. Roberts. This section 

corresponds to one side (e.g. left side) of the spinal cord. In fact, in our simulations 

we only need to consider one side in order to study the statistical properties of 

axons, dendrites and synaptic contact distributions. This is due to the fact that the 

statistical characteristics of one side are very similar to the statistical characteristics 

of the other side. In the biological spinal cord, interneurons of the cIN and die types 

cross the ventral floor plate and make synaptic connections with neurons of the 

opposite side. In our model, we do not consider the opposite side but instead we 

use the branching point for these cell types and grow axons starting from these 

branching points. Branching points have the same rostrocaudal distribution as the 

somas of corresponding cell types. In fact we do not consider cIN and die cells as 

special cases here; the procedure of modelling axon growth is the same as for other 

cell types. Using this procedure we can generate distributions of cell positions, 

dendrites, and axons for all cell types and by doing so we can obtain synaptic 

couplings between all cell types. These distributions wi l l be used in the next chapter 

for electrophysiological modelling. Also in the next chapter we extend this model 

to generate both sides of the spinal cord. 

The total number of neurons in the model of one side of the spinal cord is 840, 

which includes neurons of 6 types: 140 neurons labelled by 1, 140 labelled by 2 and so 
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on until label 6. These neurons are allocated uniformly with space S = 2000/840Mni: 
in the order 1,2,3,4,5,6 and there are 140 repetitions of this sequence. Then the 
distribution is randomized by randomly picking a cell and swapping i t with its 
immediate neighbour to the right, repeating this process many times. As a result of 
applying this permutation process, all the cell types become uniformly distributed 
over the length of the spinal cord. This process captures the known anatomical 
property that cells of the same type tend not to appear very close to each other, but 
avoids the artificial situation of a perfectly regularly laid out spinal cord. 

The available experimental data provide only the dorsal (dj) and ventral (vi) 

extents of the dendritic field for each cell i. Thus in our model we represent the 

dendrite by a vertical bar with coordinates in the interval {vi, di). We consider 

a two dimensional probability distribution of the two dimensional random variable 

(vi.di) where the dorsal extent is Vi and the ventral extent is di. This random 

variable is distributed in a triangle with two sides of 100 //m. We suppose that 

our experimental data gives us the ability to approximate this two dimensional 

random variable by a 10 x 10 table, where each entry contains the probability of 

a {ventral — bin, dorsal — bin) pair as found in the anatomical data set. In this 

table, cells under the diagonal contain approximate probabilities, but cells above 

the diagonal are zero, because the dorsal extent cannot be lower than the ventral 

extent. Having determined which 10% bins the dorsal and ventrad extent wil l fall 

into, the actual dorsal and ventral extents are uniformly distributed within these 

bins. 

For visualization purposes we represent the dendrite by a bar wi th width 1 ^ m 

in the longitudinal direction and the dorsoventral extent of this bar is randomly 

generated on the basis of the two dimensional distribution for this particular cell 

type. This two dimensional table was produced for each cell type, and the dorsal 

and ventral extents are generated at random according to the corresponding table. 

At this point, all 840 cells are allocated in their proper longitudinal and dorsoven-
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tral positions, meaning that the distribution corresponds to the experimental distri
bution and the longitudinal positions are uniformly distributed for all cells. 

We now apply the following procedure for each cell: 

1. Generate a random initial angle and position using the procedure detailed in 

section 7.1. 

2. Generate a length for the axon taken from the experimental distribution of 

axon lengths. 

3. Grow the axon to the determined length using the algorithm detailed in section 

7.1. When the path of the axon intersects with the bar representing the 

dendritic field of a cell, generate a random variable x uniformly distributed 

between 0 and 1 and if 3: < Pgyn then generate a synapse. If a synapse was 

made then any subsequent intersection between the axon and this particular 

dendritic field will be ignored. So it is not possible that one presynaptic neuron 

will make two or more synapses onto the same postsynaptic cell. Professor 

Roberts's data from electrophysiological studies indicate that P^yn ^ 0.46 as 

mentioned before. 

7.3.1 Ful l reconstruction of the spinal cord 

Using the procedures described above, we generate a biologically realistic model of 

the full spinal cord of the tadpole. Of course we use corresponding optimal parameter 

values to generate axons of each particular cell type and this provides us with a set 

of axons which have similar statistical characteristics to the real axons. The same 

is correct for the distribution of dorsoventral positions of dendrites: the generated 

dendrites have the same statistical characteristics as those that were experimentally 

measured. 

Figure 7.6 shows a fragment of the reconstructed anatomy of the whole tadpole 

spinal cord. Each cell type is represented by a separate colour: R B cells are shown 
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in red. dies are green, aINs are blue, eINs are magenta, dINs are brown, and mns are 

black. These colours are used to represent axons (curves), dendrites (long vertical 

bars), initial branching points of axons (squares), and synapses (circles which have 

the same colour as the presynaptic cell). In some cases the initial branch point will 

appear inside the dendritic bar of the cell to which it relates and in other cases it 

will be located outside of the bar but in all cases the longitudinal position will be 

the same. R B neurons are represented only by their axons because they have no 

dendrites - they are sensory neurons that respond to skin stimulation. 

Figure 7.7 shows a zoomed view of a 30 fim by 30 /xm section of spinal cord 

taken from the middle section of the dorsoventral axis. Many synaptic connections 

can be seen. 

From this reconstruction, a complete description of the connectivity of the spinal 

cord can be produced which can be used as the basis for electrophysiological mod

elling. 

600 650 700 
Dorsoventral position 

750 800 

Figure 7.6: 200 /im section of spinal cord reconstruction. RB cells are shown in red, dies 
are green, aINs are blue, cINs are magenta, dINs are brown, and mns are 
black. 
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Figure 7.7: 30 fim section of spinal cord reconstruction. RB cells are shown in red, dies 
are green, aINs are blue, cINs are magenta, dINs are brown, and mns are 
black. 

7.3.2 Variation of connectivity with distance 

Using the data from the reconstructed spinal cord we can generate a receptive field 

like graph for each cell type, showing how its inputs from other cell types vary with 

distance (which we measure in /im). These are shown in figures 7.8-7.12. 

To generate these figures we apply the following procedure which we repeat 

for all pairs of cell types. As an example we can consider the case of synaptic 

connections from R B cells to die cells (red line on figure 7.8. The procedure is as 

follows: 1) Select one die cell and consider all incoming connections from R B cells for 

this particular cell. 2) Count the number of connections related to some particular 

distance. Negative distance indicates a connection from a more rostral cell (closer 

to the head), positive indicates a connection from a more caudal cell (closer to the 

end of the tail). 3) Accumulate these counts for all die cells. Having done this we 

repeat the procedure for all other possible connections to die cells. 

The most remarkable feature of these receptive field-like distributions is that 

connections incoming to a particular cell are mostly local. The typical radius of 
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local connections is about 200 /im. An interesting exception is the case of aIN to die 
cells where it can be seen that connections are relatively rare when the aIN cell is 
ver>' close to the die cell and become more frequent as the distance increases, before 
reaching a maximum at about 200 fim away (in either direction) and then declining. 
This is due to the fact that the aIN axons need to grow dorsally for some distance 
from the branch point before they are able to contact the relatively dorsal dendrites 
of die cells. The fact that die dendrites are dorsally located is also why they receive 
much more synaptic input from R B cells (which have very dorsal axons) than other 
cell types. 

die RF 

-1200-1000-800 -600-400 -200 0 200 400 600 800 1000 1200 
Distance 

Figure 7.8: Variation of inputs to die cells with distance (̂ im) 

7.3.3 Discussion 

To the best of our knowledge, for the first time a complete biologically realistic 

neural circuit of the tadpole spinal cord has been generated. This model has great 

potential for further investigation. For example, probabilities of synaptic contacts 

between cells of different types can be calculated from the generated architecture and 

compared with experimentally measured probabilities of synaptic contacts between 

the same cells. Indeed, this comparison reveals that the probabilities of synaptic 
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Figure 7.9: Variation of inputs to aIN cells with distance (fim) 

contacts for the generated architecture correspond well to experimental measure

ments. 

Combined with an advanced visualization system, the anatomical model could be 

used to demonstrate many interesting properties of spinal architecture. For example*, 

for each neuron we can find and visualize all incoming connections. Identification of 

incoming connections is crucial for the development of a model of electrical activity 

and the study of the functionality of this neural architecture. 

The spinal cord reconstruction provides information about longitudinal and dorso

ventral positions of each neuron, allocation of its dendritic field, coordinates of 

its axon, and all afferent and efferent synaptic connections. This, the complete 

anatomical description of neural architecture of the spinal cord is achieved. Due 

to stochasticity in the model of axon growth, the neural architecture is not unique 

and starting from different initial states of the random number generator we can 

generate a number of anatomical circuits of the spinal cord. All these architectures 

will be similar in the sense that they have the same statistical characteristics as 

experimental measurements. 
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Figure 7.10: Variation of inputs to cIN cells with distance (/im) 
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Figure 7.11: Variation of inputs to dIN cells with distance (/im) 
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mn RF 
2000 

^ 800 

1200-1000-300 -600 -400 -200 0 200 400 600 800 1000 1200 
Distance 

Figure 7.12: Variation of inputs to mn cells with distance (/im) 
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Chapter 8 

Electrophysiological modelling of tadpole 

swimming 

8.1 Introduction 

In the previous chapter we showed how a complete model of the neural architecture 

of the tadpole spinal cord can be generated using simple developmental rules. Now 

we will go on to demonstrate that this architecture can generate a pattern of activity 

corresponding to the swimming pattern observed in the tadpole. We construct an 

electrophysiological model of action potential generation for each neuron and con

nect these model elements together according to the generated neural architecture. 

Our aim is only to demonstrate that the generated architecture can potentially re

produce the swimming pattern, and we do not attempt to model more sophisticated 

behaviours such as the initiation of swimming or transitions between swimming and 

struggling behaviours. For this purpose, it is sufficient to use a simple neural net

work model of the spinal cord, in which identiced models of spiking elements are 

used for all neuron tj'pes and the anatomy of the left and right sides of the body is 

symmetrical. 

The full electrophysiological model of the tadpole spinal cord includes 1680 neu

rons. In order to allow these simulations to take place in a reasonable time we 

ignore the details of known tadpole electrophysiology and use a simplified model 
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of the spiking element. Instead of the classical four-dimensional Hodgkin-Huxiey 
model of spike generation we use the two-dimensional Morris-Lecar model. The 
parameters of this model have been chosen so that the elements exhibit the regime 
of postinhibitorj' rebound; along with recurrent excitation, this phenomenon has 
been demonstrated to be the basis of the pattern of activity obser\̂ ed in tadpole 
swimming (Roberts and Tunstall, 1990; Sautois et al., 2007). We therefore examine 
the possibility that coupling together model elements with this property will allow 
swimming-like activity to develop. 

We begin from a consideration of two coupled Morris-Lecar neurons in the regime 

of postinhibitory rebound. This study provides the parameter range where the 

regime of postinhibitory rebound is stable. These parameters are then used in the 

full neural network to generate the pattern of swimming activity. 

8.2 Model of two coupled Morris-Lecar neurons with postin

hibitory rebound 

We would like to base our swimming model on a neural model that captures impor

tant experimentally observed features of the dynamics of spike generation. However, 

the standard Hodgkin-Huxley model contains four diflferential equations of the first 

order and we would prefer to reduce the number of dimensions in order to make 

relatively simple phase-plane analysis of the system possible and reduce the amount 

of computation that must take place when simulations of the full model of the spinal 

cord are run. 

In this section, we describe the Morris-Lecar model neuron and its derivation 

from the Hodgkin-Huxley model (as described in Gerstner and Kistler (2002)). We 

go on to show how this model can exhibit the phenomenon of postinhibitory rebound 

when its parameters are set to appropriate values. Finally we show how two cells of 

this type coupled together with inhibitory synapses can produce stable alternating 

firing. This result will form the basis of our full swimming model in the next section. 
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Let us state the Hodgkin-Huxley equations. Firstly we state that the membrane 
charging current Cdu/dt is equal to the applied current I{t) minus the sum of 
different ionic currents Ikit) (Kirchoff's law): 

fc=i 

Here u{t) is the membrane voltage at time t, Ii is the sodium ionic current, I2 is the 

potassium ionic current, /a is the leakage current and 1^ is the synaptic current. 

The next equation shows how the ionic currents depend on the reversal potentials 

^Na, ^K: and EL and their respective gating variables m{t), n{t), and h{t) govern 

the dynamics of the ionic currents. 

^ h = QNam^hiu - Er,a) + QkU^u - E^) + 9L{U - EL) + hy^. (8.2) 
k 

The gating variables evolve according to the following differential equations: 

m = am{u){\ - m) - Pm{u)m 

h = <xr.{u){\ - n) - pn{u)n (8.3) 

h = OCH{U){1 - h) - pH{u)h. 

Where am{u), a„(w), ah{u), Pm{u), Pn{u), and Ph{y) are functions which control the 

dynamics of the gating variables. Hodgkin and Huxley determined the functions a 

and P from data recorded from the giant axon of the squid (Hodgkin and Huxley, 

1952). These functions are given below: 

otn{y) = (0.1 - 0.01u)/[exp(l - O.lu) - 1 

OLm{u) = (2.5 - 0-lu)/[exp(2.5 - O.lti) - 1] (8-4) 

af,{u) = 0.07 exp(-u/20) 
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Pn{u) = 0.125 exp(-u/80) 

Pmiu) =4exp(-u/18) (8.5) 

Pn{u) = l / [exp(3-0. l7 / ) + l] 

The parameter values are as follows: £?iVa = IIO,EK = -12, EL = 10.6, g^a = 

120,5/; = 36,p^ = 0.3. 

We have a system of four variables: u, m, n, and h. In order to better understand 

the dynamics of this system, we can write the equations for n, m, and h in terms of 

time constants r„(u), Tm{u), Th{u). All these equations have the same form, which 

we give using m(^) as an example: 

m [m - mo(u)]. (8.6) 

Here: 

mo{u) = Omiu) • Tm{u) 

(8.7) 

(8.8) 

The following plot shows how the constants r depend on u. 

-20 40 60 
u(mV) 

Figure 8.1: Dependency of gating variable time constjints on u 
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It is apparent from Fig. 8.1 that the function which describes the time course for 
m is much smaller than the respective functions for n and h. Therefore the dynamics 
of m{t) is much faster. We might therefore consider 7n{t) to almost instantaneously 
approach the steady-state value of mo- The next plot shows the difTerence between 
m and mo during action potential generation: 

100 

10 15 
t(ms) 

Figure 8.2: The gating variable of the sodium channel m{t) closely follows mo with a small 
time lag 

As we can see, m(t) closely follows mo relative to the time scale of action potential 

generation. This supports our contention that we can reasonably assume Tn{t) to 

be instantaneous. In addition, notice that the time courses for n(t) and h(t) are 

reasonably close to each other, and this motivates the idea of combining these two 

factors into a single slow variable. These two ideas form the basis for the reduction 

of the Hodgkin-Huxley equations to a two-dimensional system. 

8.2.1 The Morris-Lecar equations 

The Morris-Lecar equations (Morris and Lecar, 1981) describe dynamics of voltage 

V{t) and the activation variable w{t). The equation for voltage is similar to the 

Hodgkin-Huxley model and incorporates a delayed-rectifier potassium current sim

ilar to the Hodgkin-Huxley model and a fast non-inactivating Co?'^ current which 
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is similar to the sodium current in the H-H model. The activation of the calcium 
current is so fast that in the model it is instantaneous. The Morris-Lecar model 
equations are: 

dV 
C— = -{9Camoo{V){V - Vca) + 9KW{V - VK) + SdV - Vl)) + lajrp + hyn. (8-9) 

^ = 4>Woo{V)-w\/r^{VY (8.10) 

where: 

rriooiV) = -5(1 + tanh((K - E,)IE2)) (8.11) 

y^oo{V) = -5(1 + tanh((V - E^)/E4)) (8.12) 

T^{V) = l /cosh((V - ^3)7(2^4)) (8.13) 

Parameters: Ei = -1.2, E2 = 18, E3 = 2, EA ^ 30, 0 = .04, C = 20, gca = 4, 

Vca = 120, SK = 8, VK = -84, = 2, = -60. Function hpp describes applied 

external current and function Isyn describes synaptic input from other neurons. 

Figure 8.3 shows the nuUclines of this system with lapp = 70, Isyn = 0. The green 

curve shows the nullcline of the voltage variable {V{t) = 0). The blue curve shows 

the nullcline of the activation variable (w{t) = 0). There is only one fixed point 

where these nullclines meet, and this fixed point is stable. Figure 8.4 shows the 

eflfect of a small perturbation of V from this fixed point: perturbation decays with 

time and the trajectory (red curve) immediately returns back to the vicinity of the 

stable steady state. The efltect of a larger perturbation of V from this fixed point is 

shown in figure 8.5: a larger perturbation results in more complex behaviour where 

the trajectory (red curx̂ e) makes a long excursion before returning to the vicinity 

of the fixed point. This shows how the Morris-Lecar equations are able to model 

action potential generation. 

When the current lapp is increased, an Andronov-Hopf bifurcation occurs, the 
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3 0.5 

Figure 8.3: Nullchnes of Morris-Lecar equations with lapp = 70, Igyn = 0. Green curve 
shows nullcline of voltage, blue curve shows nuUcline of acti\'ation variable. 

fixed point loses stability and a stable limit cycle is established, this produces regular, 

repetitive firing in the model neuron. The limit cycle is small for values o( lapp close 

to the bifurcation. Figure 8.7 shows the limit cycle for lapp = 120. 

8.2.2 Postinhibitory rebound in the Morris-Lecar model 

The basic mechanism of postinhibitory rebound in the Alorris-Lecar model (Wang 

and Rinzel, 1992; Borisyuk and Rinzel, 2005) is illustrated in figure 8.8. The model 

neuron is subjected to a tonic current of 80 fiA/cm^. With this input, the model has 

a stable fixed point located at the intersection of the two solid lines. Now we subject 

the neuron to an additional input current of -80 /xA/cm^ for a few milliseconds, so 

the total input is 0. The isocline for w is unchanged, but the isocline for V moves 

down, and the model transitions to the new stable fixed point. Now the inhibitor}' 

current is switched oflF and the net input is once again 80 ^A/cm^. In order to 

get back to the fixed point, the system must make a long excursion using the right 

branch of the V isocUne, generating an action potential. 
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5 0.5 

Figure 8.4: Effect of a small perturbation of V from fixed point. Green curve shows 
nuUcline of voltage, blue curve shows nuUcline of activation variable, red curve 
shows trajectory. 

8.2.3 Two coupled inhibitory cells with postinhibitory rebound 

We showed above how an inhibitory pulse can cause postinhibitorj' rebound in a 

Morris-Lecar cell. We will now consider that this inhibitory pulse could occur due 

to a synaptic input from another cell. In this case, two identical or similar cells that 

inhibit each other should be able to maintain a sustained alternating firing pattern. 

In order to describe the synaptic connection from one neuron to another, we 

consider the variable s{t) which describes the dynamics of synaptic coupling. The 

following equation (Ermentrout, 2003) describes the time course of this variable: 

^ = ak{V){l - s ) - 13s. (8.14) 

Where V is the potential of the presynaptic cell, k{V) is a sigmoid function: k{V) = 

l/[l+exp{-{V-VT)/VS)] (figure 8.9). Parameter values: a = l,P = 0.25, VT = 20, 

Vs = 2. 

Figure 8.10 shows V vs time and s vs time in the regime of repetitive firing of 

142 



8.2. MODEL OF TWO COUPLED MORRJS-LECAR NEURONS WITH 
POSTINHIBITORY REBO UND 

S 0.5 

Figure 8.5: EflFect of a larger perturbation of V from fixed point. Green curve shows 
nuUcline of voltage, blue curve shows nuUcUne of activation variable, red curve 
shows trajectory 

the presynaptic cell. From this figure we can see that s{t) is significantly different 

from zero only during a short period of time where the potential of the presynaptic 

cell is sufficiently large. 

We use the synaptic current I^yj, in equation 8.9 to describe synaptic connectivity. 

The formula for this current in the case of inhibitory connections is: 

Isyn = 9inhS{t){V{t)-Vinh) (8.15) 

where reversal potential VJn/i = —46 and synaptic conductance Qinh = 10-

We now change parameter to take the value -50 as opposed to its previous 

value of -60. This increases the value of V at the fixed point, and so postinhibitory 

rebound can be achieved more easily (Borisyuk and Rinzel, 2005). 

The equations for the djTiamics of two coupled cells are: 

= -{9Cam^{V,){V,-%a)-^9KW,{V,^V^^ (8.16) 
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100 120 140 160 180 

Figure 8.6: Action potential generation in the Morris-Lecar model. 

= (f>[woo{Vi) - vJi]/r^{Vi), 

^ = a k { V y ) { l - s O - p S i , 
at 

(8.17) 

(8.18) 

dw2 (8.20) 

(8.21) ^ = akiV,)(l - 32) - fis2. 

hyn2 = ginhSi{V2 - Vinh), 

where variables V\{t), Wi{t), Si(t), V2it), W2it), S2{i) describe activity and synaptic 

connections for the first and the second cells. The meanings of parameters have 

been described above. 

The activity in this system is shown in figure 8.11. We can see that the postin-

hibitory rebound produces alternating firing between the two cells. The initial con

ditions are chosen so that one of the two cells produces an action potential at the 
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1.4 

Figure 8.7: Repetitive firing in the Morris-Lecax model. 

start of the simulation. 
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-0.2' 
-60 -40 -20 

Figure 8.8: Postinhibitory rebound in Morris-Lecar model. 

Figure 8.9: Relationship between voltage V and threshold function k{V). 
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Figure 8.10: Relationship between presynaptic voltage V and synaptic connection func
tion s. 

Figure 8.11: Voltage vs time for two M-L cells coupled with inhibitory synapses. 
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CORD 

8.3 Full electrophysiological model of tadpole spinal cord 
8.3.1 M o d e l descr ip t ion 

The ful l neural network model of the spinal cord includes neurons of 6 different 

types relevant to swimming as described in the previous chapter. These neurons are 

arranged in two sub-networks relating to the left and right sides of the body. The 

electrophysiological properties of each neuron are described by the tw^o-dimensional 

Morris-Lecar equations. To study the neural activity related to the swimming pat

tern we only need to consider cIN and dIN cells because all other cell types are 

either related to sensory input (RBs), initiation of swimming (dies), motor output 

(mns), or struggling (aJNs). While aIN cells do fire in the swimming pattern, ev

idence suggests that they are more important for the generation of the struggling 

behavior (Green and Soffe, 1998). This subnetwork of cIN and d IN cells generates 

the pattern of neural activity related to swimming: antiphase oscillations between 

the left and right sides of the spinal cord emd a metachronal wave of activity along 

the body from head to tail. 

We use the Morris-Lecar equations to model the spike generation process for 

each element of the neural network. The equations for the dynamics of the voltage 

Vi{t) and the activation variable Wi(t) are the same as equations 8.16 and 8.17, but 

the synaptic current now includes both excitatory and inhibitory synaptic couplings 

(equation 8.22). The equations are: 

C ^ = {-9camooiVi){Vi-Vca)-^9KW,{V,-V^^ (8.22) 

^ = <l>[woo{V)-Wi]/TUV)- (8.23) 

The meanings of the variables and parameters have been explained i n the previous 

section and all parameter values relating to model elements (but not t o connections) 

are the same as in this previous case, with the exception that now lapp = 74 for all 
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cells. To simplify the model we suppose that all neurons are identical and have the 
same parameter values. 

We first use the spinal cord reconstruction procedure to generate the left side 

of the spinal cord. An exact copy of this is then created to represent the anatomy 

of the right side of the spinal cord. To bridge together the two sides of the spinal 

cord we use the following procedure for each cIN and die cell: for some neuron with 

index i we remove the existing ipsilateral connection to neuron j, and generate a 

contralateral connection to the complement of neuron j on the opposite side of the 

body. Because connections from all cell types except cIN and die are ipsilateral and 

symmetrical no modifications are necessary in this case. 

The term Isyn in equation 8.22 describes synaptic currents resulting from all 

incoming connections to some particular neuron. In the subnet of cIN and dIN 

neurons we consider excitatory connections from d IN ceils and inhibitory connections 

from cIN cells. The total synaptic input to a cell i is described by the following 

formula: 

hyn = QinmiV " Vink) + 9e.cti{V " Ve.ct)- (8-24) 

9inhi=9inh Sj{t) (8.25) 
jeisii) 

9excti = 9exct ^ Sj{t) (8.26) 

Where ES{i) is the set of all cell indexes of excitatory cells that make synapses onto 

cell f, IS{i) is the set of indexes of inhibitory cells that make synapses onto cell 2, 

and the reversal potentials for excitatory and inhibitory synapses are Vexct = 0 and 

Vinh = - 46 respectively. These sets are derived from the anatomical reconstruction. 

Maximal synaptic conductances for inhibitory and excitatory connections are 

9inh = 0.5 and Qexct = 0-2 respectively. The variable Sj{t) describes the dynamics 

of synaptic connections from cell j to other cells. The equation which governs the 
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dynamics of s{j) is the following: 

^ = a k { V j ) { l - s j ) - P s j . (8.27) 

Where Vj is the potential of the presynaptic cell j, parameter a = 1 is the same for 

all synapses, for all inhibitory synapses parameter P = 0.25 and for all excitatory 

synapses parameter P = 0.5. The sigmoid function k{V) defines the dependence on 

voltage and is defined as k{V) = 1/(1 + exp{-{V - Vt)/Vs)), Vt = 20ys = 2. 

This is a standard model for synaptic coupling as used in the previous section. 

8.4 Simulation results 

To simulate the model, we use the ODE solver rk4, which is the fourth-order Runge-

Kutta solver included as part of the Numerical Recipes package (Press et al., 2002), 

using a constant time step of 1ms. We have checked the appropriateness of this time 

step by comparing simulation results with simulations that were carried out with 

0.1ms and 0.01ms time steps; no significant differences were observed in a 600ms 

time interval. 

Initial conditions for all cells i are as follows: WiiO) = 0.125, Si(0) = 0, and 

\A(0) = -26 + ^, z = 1 , . . . , 1680 where ^ is a uniformly distributed random number 

in the interval (0,1); this is added to break the symmetry. 

For the first 50ms of the simulation, the most rostral 100 cells in the left side 

of the spinal cord are excited by an increase of applied current; they receive an 

input lapp = 100 fiA/cm^. A l l other cells receive the same input of 74 ixA/crv? for 

the entire duration of the simulation. The cIN cells within this excited population 

fire and provide an inhibitory input to cells of all types on the right side of the 

spinal cord. The cIN cells on the left side then generate spikes due to postinhibitory 

rebound. In this case the population of stimulated cells includes all cell types, 

however we have also confirmed that i t is suflBcient to excite only cIN cells in a 
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similar manner. 

I t is known (Sautois et al., 2007) that dIN cells can also fire spikes on postin-

hibitory rebound and it has been proposed that this property may have an active 

role in rhythm generation: neurons depolarized by synaptic excitation can fire on 

rebound after reciprocal inhibition from neurons on the opposite side of the spinal 

cord (Roberts and Tunstall, 1990). In the case of our simulations we use a tonic cur

rent to simulate the effect of slow excitatory synaptic input that would normally he 

needed to move neurons in this network into the regime of postinhibitory rebound, 

however the dIN cells still have a role which is to quickly propagate the initial wave 

down the spinal cord: this is enabled by their relatively long axons. I f synaptic input 

from dINs is removed from our simulations, several cycles are required before the 

wave reaches the caudal part of the network. 

c 800 

O 1000 

600 
Time (ms) 

Figure 8.12: Raster plot of voltage in 1680 neurons comprising a model of 1.9mm of tad
pole spinal cord. Cell indices 1-840 are assigned to the right side of the spinal 
cord, cell indices 841-1680 represent the left side. In both cases the index 
represents the rostrocaudal position of the cell. 

Results from this model clearly demonstrate that the model is able to produce 

a swimming pattern, as shown in figure 8.12. This figure shows a raster plot type 

visualization of spiking activity of the ful l model of the spinal cord. Cell indices 1-840 

comprise the right side (upper half of plot), cell indices 841-1680 comprise the left 
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Figure 8.13: Raster plot of voltage in cIN neurons only. 

side (lower half of plot). Within one side, the cell index corresponds to rostrocaudal 

position. Cell types are pseudorandomly distributed within these populations as 

described in the previous chapter. Brighter parts of the image correspond to higher 

voltage. Thus the spiking activity on one side of the spinal cord appears as a slightly 

skewed line of bright pixels with the skew indicating the rostrocaudal delay from 

head to tail. A bright spot is visible at the beginning of the lower half of the plot, 

this shows the 50ms of excitatory input applied on the left side of the spinal cord in 

order to initiate swimming. 

The two main features of the swimming pattern, alternation between the two 

sides and a rostrocaudal metachronal wave are clearly visible. There is no overlap 

in activity between the left and right sides, and this is consistent wi th observations 

of tadpole spinal cord (Kahn and Roberts, 1982). Moreover, the period is approxi

mately 100ms and the delay between the head and tail is roughly 20ms; these figures 

are consistent with experimental observations (Kahn and Roberts, 1982). 

Because this figure shows all cell types together it is not possible to distinguish 
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Figure 8.H: Raster plot of voltage in die neurons only. 

the different dynamics of different cell types. Figures 8.13 to 8.17 show activity of 

each cell type separately (excepting the skin sensor\' R B cells which do not receive 

synaptic input). Each of these plots shows the spiking activity of 280 cells of a 

particular type. For example, figure 8.13 shows the spiking activity of the cIN 

neurons. Along the vertical axis, we show the numbers of cIN cells (from 1-140 for 

the ri^ht side and 1 ll-iSO for thr left side). This numbering of cIN cells reflects 

the order of the cells according to rostrocaudal position - lower numbers are more 

rostral. As the level of brightness corresponds to activity, dark horizontal lines on 

the plot represent inactive cIN cells. 

Figure 8.14 shows the pattern of activity in only the die cells. I t can be seen 

that many die cells do not fire at all, and some of them have an irregular pattern of 

activity. This is due to the fact that die cells typically receive only ver>' weak input 

from eIN and dIN cells (as seen in the previous chapter) which is often not suflBcient 

for the generation of a spike. This is consistent with the fact that die cells are more 

important for the initiation of swimming than for the maintenance of the swimming 
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Figure 8.15: Raster plot of voltage in aIN neurons only. 

pattern itself. 

In contrast the activity in aIN cells following the initial propagation of activity 

from head to tail is much more reliable and regular. The activities of cIX. dIN, and 

mn cells are similar, with the mn cells being particularly consistent. 

The raster-like plots do not make the distinction between subthreshold dynamics 

of membrane potential and spiking activity clear and so we also show example plots 

of voltage against time for four different cases (figs 8.18 - 8.21). 

Figure 8.18 shows the spiking activity of a cIN cell located in the middle of the 

rostrocaudal axis, together with the activity of its complement on the contralateral 

side. The left-right alternation of this activity can be clearly seen. Figure 8.19 

shows the same situation for two complementary dlN cells in approximat(»ly the 

same position. 

Figure 8.20 shows the spiking activity in the most rostral and most caudal cIN 

cells in the right half of the spinal cord. The same case for dIN cells is shown in 

figure 8.21. In both these cases the rostrocaudal delay is clearly visible. 
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Figure 8.16: Raster plot of voltage in dIN neurons only. 
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Figure 8.17: Raster plot of voltage in mn neurons only 
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Figure 8.18: Voltage in a cIN cell and its matching cell on the other side of the spinal 
cord. These cells are located in the middle of the rostrocaudal axis. 
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Figure 8.19: Voltage in a dIN cell and its matching cell on the other side of the spinal 
cord. These cells are located in the middle of the rostrocaudal axis. 
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Ft^tire 8.20: Voltage in a rostral cIN cell (blue) and a caudal cIN cell (red). The caudal 
cell lags the rostral cell. 
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Figure 8.21: Voltage in a rostral dIN cell (blue) and a caudal dIN cell (red). The caudal 
cell lags the rostral cell. 
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8.5. DISCUSSION 

8.5 Discussion 

We have demonstrated that simple developmental rules suggested by anatomical 

data taken from the tadpole spinal cord can generate a neural network capable 

of generating a pattern of activity corresponding to the tadpole swimming pattern. 

The most important features of the pattern, left-right alternation and a metachronal 

wave travelling from head to tail are present, and the frequency of the pattern and 

rostrocaudal delay take values within the normal range of experimental observations. 

The most obvious improvement to the model would be to make sjTiapses from all 

six cell types functional. While dINs and cINs are sufficient for the maintenance of 

the swimming pattern, adding functional aINs would make i t possible to investigate 

the struggling pattern, and adding RB and die cells would make i t possible to in

vestigate the initiation of swimming through skin stimulation. More detailed neural 

models tailored to the specific characteristics of each of the cell types (as discussed 

in (Sautois et al,, 2007)) \vould almost certainly be needed to achieve useful results 

from such a model. 

A smaller project would be to implement a rostrocaudal gradient in the prob-

abihty of synapse formation as suggested in several papers (Tunstall and Roberts, 

1991; Roberts and Tunstall, 1994; Tunstall and Roberts, 1994) and implemented 

in the model by Dale (Dale, 2003), and examine the effect of this gradient on the 

stability of the swimming pattern. 
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Chapter 9 

Concluding remarks 

9.1 Homeostatic neural activity 

In the first part of the dissertation we mostly consider simple computational models 

of neural networks with local connections. These neural networks have the ability 

to adapt the parameters of neurons and/or connections according to specific rules. 

I t is important to note that all these rules are formulated in such a way that they 

facilitate homeostatic total activity of the neural net\vork. For example, a local rule 

for threshold adaptation is developed in such a way that the threshold becomes lower 

if local activity is low (to facilitate an increase in local activity), and higher i f local 

activity is high. We consider this to be an important rule for regulation of the total 

activity which allows i t to be contained within a specific range. I t is well known in 

neuroscience that an excessively high activity level can result in epileptic seizure. 

Therefore, the learning rules which we consider in the first part of the dissertation 

are designed to prevent such pathological dynamical regimes of activity. 

In a network of locally connected binary neurons with this form of threshold 

adaptation and local connections, we found that complex spatiotemporal patterns 

were exhibited by the network, including spiral and propagating waves. Although 

spiral waves are common in models of interactive FitzHugh-Nagumo elements (e.g. 

heart tissue model (Starmer et al., 1993)), i t is diflBcult to get spiral waves in tra-
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9.2. HOMEOSTATIC SYNAPTIC PLASTICITY 

ditional computational neuroscience models such as the Wilson-Cowan or Amari 

models, and additional features have to be added to the model (Huang et al., 2004). 

Our finding shows that threshold adaptation is a suitable mechanism for the gener

ation of spiral waves even in very simple neural networks. 

In fact, in part one we consider two different rules for the regulation of homeosta-

tic neural activity. The first rule is the threshold adaptation described above. The 

second is homeostatic synaptic plasticity, discussed in the next section. We combine 

these rules in a model of locally coupled elements. Simulation results demonstrate 

that simple learning rules can produce a rapid reorganization of connection strengths 

which leads to a sudden phase transition. It is remarkable that this phenomenon 

appears in a pure deterministic system without noise (the role of noise is considered 

below). 

The most interesting dynamical behaviour has been found in a network with 

small-world type connections. This neural network consists of binary elements with 

adjustable synaptic connections (local connections on the torus with a few random 

long-range connections). The activity of this network alternates between UP and 

DOWN states, and these transitions are due to a hysteresis-type loop between activ

ity and connectivity. We study this phenomenon on two levels of consideration: on 

the micro-level where we simulate a network of 2500 neurons with 20000 adjustable 

synaptic connections, and on the macro-level where we describe this phenomenon 

using only two variables - the average activity of the neural population and the 

average connection strength. There is a close correspondence between the results in 

both cases. 

9.2 Homeostatic synaptic plasticity 

The idea of homeostatic synaptic plasticity is the subject of intensive investigation. 

For example, in many papers from the Turrigiano laboratory, evidence is presented 

that scaling of synaptic strengths allows neural excitability to be regulated (Turri-
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9.3. ROLE OF NOISE AND STOCHASTIC PROCESSES IN NEURAL 
SYSTEMS 

giano et al., 1998; Turrigiano, 1999). 

In the models described in the thesis we consider an alternative perspective on 

homeostatic synaptic plasticity based on spike-timing dependent plasticity (STDP). 

In this formulation, synaptic homeostasis arises from the interaction between the 

learning rule as it operates at individual synapses and the dynamics of the network. 

This allows an interesting regime to appear where the total synaptic strength in

creases in low activity states and decreases in high activity states despite the fact 

that there is no explicit negative feedback in the model. 

A hypothesis originally proposed by Tononi and Cirelli (2003), and recently 

supported by experimental evidence from Vyazovskiy et al. (2008) states that the 

specific dynamics of slow-wave sleep may lead to a generalized synaptic downscaling 

in the cortex. It is further proposed that the amount of slow-wave sleep may be 

driven by the total synaptic weight. This would represent an elegant system where 

spontaneous changes in neural dynamics during sleep driven by neural excitability 

would have a functional role in regulating this excitability. 

Models like the one developed in the second part of chapter 4 allow the plausi

bility of such a mechanism to be assessed computationally. 

9.3 Role of noise and stochastic processes in neural systems 

Despite extensive experimental and theoretical research, the role of noise in neural 

systems is not yet well understood. For example, in vitro experiments show that 

stimuli with fluctuations resembling synaptic activity produced spike trains with 

timing reproducible to less than 1 millisecond (Mainen and Sejnowski, 1995). This 

suggests that there is a low intrinsic noise level in the process of spike genera

tion. However, in-vivo experiments indicate that the spike train that is produced 

in neurons of the extrastriate visual cortex following stimulus presentation is highly 

stochastic (Shadlen and Newsome, 1994). Development of neural structures also 

demonstrates large variability in the resulting neural anatomy. For example, Li 
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9.3, ROLE OF NOISE AND STOCHASTIC PROCESSES IN NEURAL 
SYSTEMS 

et al. (2007) shows that synapse formation may not require chemically driven ax

ons to recognize specific correct dendrites and detailed cellular recognition between 

spinal neuron types may not be necessary for the reliable formation of functional 

networks. How can a brain maintain stable behaviours when its underlying electrical 

and chemical structures are constantly changing? 

We partly address this question in chapter 3 of the dissertation, considering a 

simple network model of binary elements with local connections and noise. We 

demonstrate that this neural network with a high level of stochasticity can demon

strate metastable states and phase transitions. Remarkably there is a critical level 

of noise which provides the greatest value of the variance of neural activity in the 

network, which corresponds to metastability. The dynamics of the neural activity 

has the interesting feature of being organized (in the sense that the neurons in the 

network display a high degree of synchronization) and yet highly stochastic (the 

times of phase changes are random). This interesting finding closely corresponds to 

some other similar results in physics and computational neuroscience, for example 

the coherence resonance phenomenon reported by Pikovsky and Kiirths (1997). 

In the second part of chapter 4 we study a neural network with noise and STDP 

type small-world connections. We discovered that interplay between stochasticity 

and deterministic behaviour (which is mostly governed by the dynamical variability 

of synaptic connection strengths) results in a ver>' interesting dynamical phenom

enon which can be described by a hysteresis-type behaviour between activity and 

connectivity. When the average synaptic connection strength is low. the influence of 

noise is relatively high. At intermediate levels of synaptic strength, the activity of 

the network becomes more ordered as the dynamics becomes dominated by highly 

potentiated synapses and this leads to a rapid increase in synaptic strengths due 

to positive feedback implicit in the STDP learning rule. When synaptic strengths 

are high, almost all the cells in the network are active simultaneously, the dynamics 

are almost completely deterministic, and this leads to a net decrease in synaptic 
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9.4. DEVELOPMENT OF NEURAL STRUCTURES AND THEIR FUNCTION 

weights as in our model presynaptic firing must occur before postsjTiaptic firing if 
potentiation is to take place; simultaneous firing leads to a small synaptic depression. 

As we have already discussed above, sleep is widely recognized to be important 

for consolidation of memory traces, and adjustment of synaptic strengths. There 

is also evidence that sleep is important in maintaining the capacity of the network 

to produce variable activity which is important for learning. For example, a recent 

paper (Deregnaucourt et al., 2005) shows that in the developmental learning of bird-

song in zebra finches, the biggest improvements occur in the period of a few hours 

following sleep. These experiments show that neural song-replay may occur dur

ing sleep resulting in the adjustment of synaptic weights, creating the opportunity 

to reshape previously learned motor skills. It is likely that a similar phenomenon 

of synaptic strength adjustment has also been observed in experiments with hip-

pocampal place cells in rats (Foster and Wilson, 2006). Experimental data show 

that sequential replay occurs in the rat hippocampus during awake periods imme

diately after spatial experience. This replay has a unique form in which episodes of 

spatial experience are replayed in a temporally reversed order which closely relates 

to reinforcement learning rules for adjustment of synaptic strengths. 

9.4 Development of neural structures and their function 

As discussed above, there are many sources of noise and stochasticity in neural sys

tems. For example, in earlier phases of development of neurons, stochasticity plays 

an important role and in fact controls many intracellular and extracellular develop

mental processes (Kaern et al., 2005). The presence of stochasticitj' increases the 

complexity of neural systems and makes their functional behaviour more diverse, 

complex and controllable. In the second part of the dissertation, we model the de

velopment of the neural architecture of the spinal cord of the young frog tadpole. 

Although the development of the tadpole spinal cord includes a variety of stochas

tic processes governing the assembly of the neural architecture, this neural system 
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demonstrates extremely robust functional behaviour. In fact, the interplay between 
deterministic rules pre-wired in genetic instructions and stochastic processes of the 
growth of individual cells results in the neural circuit of the spinal cord controlling 
swimming. 

Although there is a significant body of biological knowledge regarding the chem

ical cues and gradients that control the development of neuronal circuits (Dickson, 

2002; Cline, 2003; Chilton, 2006; Schnorrer and Dickson, 2004; Wen and Zheng, 2006) 

many details of the biological mechanisms of axon growth are still unknown. The 

traditional approach to modelling axon growth is based on the idea that the growth 

cone follows difi'erent molecular gradients (Goodhill et al., 2004; Xu et al., 2005; 

Krottje and van Ooyen, 2007). For example, the mathematical model presented in 

a recent paper (O'Toole et al., 2008) takes into account forces at the growth cone, 

the viscoelastic properties of the axon, and the adhesions between the axon and 

surrounding substrate. These three factors define whether the axon elongates by 

tip growth or simply by stretching. In the second part of the dissertation we do 

not consider the details of growth cone navigation in steep and shallow chemical 

gradients. Instead, we build a simple mathematical model reflecting several key 

attraction and repulsion processes guiding axon development. Thus, our approach 

is to develop a mathematical model of axon growth which is as simple as possible 

and includes only a small number of parameters. The model allows fitting to all 

available experimental measurements of axons of tadpole spinal cord: all cell types 

in both ascending and descending directions. 

The biochemical factors controlling the direction of axon growiih are beginning 

to be revealed (de Anda et al., 2005; Shirasaki and Murakami, 20O1; Lyuksyutova 

et al., 2003; Moon and Gomez, 2005; Charron et aL, 2003; Gomez and Zheng, 2006) 

and we have included in the model several basic biological rules controlling both 

the dorso-ventral and longitudmal positions of the growing axon. For example, 

some axons start to grow ventrally and cross to the opposite side. After crossing, 
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these commissural axons are transformed and they then turn to grow longitudinally 
(Imondi and Kaprielian, 2001), either towards the head or the tail, or they branch to 
grow in both directions. Early patterns of growth by pioneer axons provide a basic 
scaffold of axon tracts that can be followed by later axons and in this way help to 
direct their growth (Wilson and Easter, 1991). Once the axons have grown to more 
or less the "right" area, they start to make synapses with the branched dendrites 
emerging from the cell bodies of other neurons. 

Our study of axon growth is based on a new hypothesis: there are no specific tar

gets in this system and the axon grows according to some general gradient following 

rules \vhich guide it to a particular Dorso-Ventral (D-V) region of the spinal cord (Li 

et al., 2007). The growing axon runs along the spinal cord (without branching) and 

makes synapses directly onto dendrites that it passes with some probability. More 

precisely: if the growing axon meets a dendrite of some other neuron allocated in 

the same D-V part of the spinal cord, then there will be some probability that a 

synaptic contact will be made. 

We have formulated and studied a simple mathematical model which is described 

by a nonlinear system of three diflference equations and includes a stochastic process. 

Fitting the model to the statistical features of experimental axon measurements al

lows us to find optimal parameter values for each neuron type in the spinal archi

tecture. Using these optimal parameters, we have generated a biologically realistic 

model of the tadpole spinal cord and demonstrated that this architecture can gen

erate electrical activity corresponding to swimming. 

To make the anatomical model more realistic, a future version could be developed 

without the current constraint that the reconstructed spinal cord is anatomically 

symmetrical. In addition, it w^ould be ver>̂  interesting to investigate the effect 

of modelling longitudinal gradients in synapse formation probability (Roberts and 

Tunstall, 1994; Tunstall and Roberts, 1994) on the longitudinal coordination of the 

swimming pattern. The current electrophysiological model of tadpole swimming 

165 



9.4, DEVELOPMENT OF NEURAL STRUCTURES AND THEIR FUNCTION 

could be enhanced by using more detailed conductance-based modelling that would 
reproduce the known characteristics of the different neuron types more accurately. 

It is hoped that in the future, a larger and more detailed data set will be col

lected that fully characterizes the typical anatomical morphologj' of individual cells, 

their axons and dendrites, as well as providing information about their longitudinal 

distributions. This would also cover cell types that are missing from the current 

data set: dla, dINr and ecIN. The availability of such data would make it feasible to 

develop an anatomical model complete and accurate enough to enable the initiation 

of swimming and the selection between swimming and struggling behaviours to be 

modelled, along with more characteristics of the basic swimming pattern such as the 

gradual decrease of frequency within a swim and the different characteristics of the 

activity of rostrocaudal sections taken from different longitudinal positions. 
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Appendix A 

Results of optimization and testing the op

timization quality 

A . l Sensitivity to parameter variation 

Following the optimization process, we tested the sensitivity of the optimal parame

ter values to small variations. We consider 3 levels of variation: 5%, 10% and 20% 

(accordingly, the fractions of variation are Fr = 0.05, Fr = 0.1; Fr = 0.2) and for 

each level, (e.g. 5%), we consider three cases for each of the four parameters: 1) 

the parameter value decreases (e.g. by 5%) {ind = —1); 2) the parameter value is 

not disturbed {ind = 0); 3) the parameter value increases (e.g. by 5%) {ind = +1). 

The following formulas show how we calculate new parameters for testing based on 

the optimal parameter values; 

park = pO'fk + indk x Fr x park, /c = 1,2, 3,4 

indk € -1,0, +1; F r € 0.05,0.1,0.2 

pari = a\ par2 = 7; pan = M; PO'U = V 

Here indj. can take any value from the designated set and Fr can also take any 

of three possible values indicating different degrees of variation. Table A . l shows 

167 



A,L SENSITIVITY TO PARAMETER VARIATION 

the performance of the model for different degrees of parameter variation in terms 

of the measure Q (described above), for the case of cIN ascending axons. The first 

column of the table shows the sequential number of the test case (1-81). the following 

4 columns show the values of ind for each parameter. For example, the first row 

shows that the values of all four parameters have been decreased, the second row 

shows the test case when the values of a, 7, /x have been decreased but the value of y 

has not been changed, etc. The last three columns show the quality of optimization 

for different levels of variation. 

This table indicates that for 75% of these cases at the 5% variation level, the 

value of Q remains below 8.5, which is our criterion for good quality results. At 

the 10% variation level, 42% of cases produce good quality results, and even at 

the 20% variation level, 20% of cases give good quality results. In the case of the 

cIN ascending axons considered here, the poorest results occur when y is reduced 

(made more ventral), especially when n is decreased at the same time, as in these 

cases the axons do not reach a sufficiently dorsal position to adequately match the 

experimental data set. 
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A.l. SENSITIVITY TO PARAMETER VARIATION 

# J^lp J-gam J jnu J_ybar Q(5%) Q(10%) Q(20%) 
1 -1 -1 -1 -1 8.76 22.05 91.55 
2 -1 -1 -1 0 4.31 4.07 4.22 
3 -1 -1 -1 1 5.77 9.55 21.39 
4 -1 -1 0 -1 5.59 10.02 39.90 
5 -1 -1 0 0 4.08 5.73 11.32 
6 -1 -1 0 1 7.34 15.99 44.83 
7 -1 -1 1 -1 4.65 5.25 16.77 
8 -1 -1 1 0 5.47 9.82 25.12 
9 -1 -1 1 1 10.00 24.63 70.43 
10 -1 0 -1 -1 13.49 53.28 288.08 
11 -1 0 -1 0 5.83 9.38 32.76 
12 -1 0 -1 1 4.44 4.83 5.91 
13 -1 0 0 -1 10.02 27.67 198.88 
14 -1 0 0 0 4.51 4.63 5.63 
15 -1 0 0 1 5.61 8.70 19.88 
16 -1 0 1 -1 6.48 15.23 129.85 
17 -1 0 1 0 4.07 5.02 8.45 
18 -1 0 1 1 7.28 14.55 38.73 
19 -1 1 -1 -1 23.36 121.69 577.93 
20 -1 1 -1 0 10.12 26.09 155.43 
21 -1 1 -1 1 4.69 5.91 11.38 
22 -1 1 0 -1 18.13 78.40 354.82 
23 -1 1 0 0 5.91 12.17 46.41 
24 -1 1 0 1 4.32 4.54 6.71 
25 -1 1 1 -1 11.36 37.27 249.86 
26 -1 1 1 0 4.81 5.04 10.61 
27 -1 1 1 1 5.01 8.40 19.29 
28 0 -1 -1 -1 7.26 16.27 50.14 
29 0 -1 -1 0 4.38 4.64 5.65 
30 0 -1 -1 1 5.84 10.10 22.15 
31 0 -1 0 -1 4.98 8.09 17.15 
32 0 -1 0 0 4.46 6.25 12.36 
33 0 -1 0 1 7.52 16.93 44.34 
34 0 -1 1 -1 4.34 3.86 6.11 
35 0 -1 1 0 5.62 9.90 25.84 
36 0 -1 1 1 9-89 24.07 68.00 
37 0 0 -1 -1 12.48 35.72 205.52 
38 0 0 -1 0 5.75 8.08 19.18 
39 0 0 -1 1 4.58 5.65 7.76 
40 0 0 0 -1 9.62 21.85 103.94 
41 0 0 0 0 4.20 4.32 4.18 

Table A.l: Sensitivity to parameter variation: part I 
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# J_alp J-gam J_mu J.ybar Q(5%) Q(10%) Q(20%) 
42 0 0 0 1 5.50 9.26 20.19 
43 0 0 1 -1 5.91 10.70 59.80 
44 0 0 1 0 4.16 4.84 8.40 
45 0 0 1 1 7.09 14.68 38.82 
46 0 1 -1 -1 20.80 80.36 380.80 
47 0 1 -1 0 9.76 18.97 103.05 
48 0 1 -1 1 4.65 5.27 8.91 
49 0 1 0 -1 12.68 43.65 274.92 
50 0 1 0 0 6.10 8.44 24.03 
51 0 1 0 1 4.32 5.12 7.74 
52 0 1 1 -1 9.19 29.89 184.43 
53 0 1 1 0 4.35 4.46 4.94 
54 0 1 1 1 5.21 8.84 19.37 
55 1 -1 -1 -1 7.36 13.29 30.91 
56 1 -1 -1 0 4.46 5.74 8.57 
57 1 -1 -1 1 6.07 11.30 23.76 
58 1 -1 0 -1 5.37 6.55 12.55 
59 1 -1 0 0 5.02 6.99 13.67 
60 1 -1 0 1 8.13 16.88 43.92 
61 1 -1 1 -1 4.34 4.03 5.01 
62 1 -1 1 0 6.11 10.57 26.03 
63 1 -1 1 1 10.36 24.55 67.62 
64 1 0 -1 -1 11.24 32.00 111.02 
65 1 0 -1 0 5.54 7.94 15.76 
66 1 0 -1 1 4.96 6.35 9.56 
67 1 0 0 -1 7.66 16.04 56.80 
68 1 0 0 0 4.15 4.78 5.52 
69 1 0 0 1 5.68 9.63 22.18 
70 1 0 1 -1 5.38 8.91 26.40 
71 1 0 1 0 4.43 5.48 9.67 
72 1 0 1 1 7.31 15.35 37.81 
73 1 1 -1 -1 16.99 59.76 291.09 
74 1 1 -1 0 8.30 17.50 58.05 
75 1 1 -1 1 4.78 5.98 9.35 
76 1 1 0 -1 12.30 35.43 180.90 
77 1 1 0 0 5.49 7.48 14.64 
78 1 1 0 1 4.69 5.56 8.48 
79 1 1 1 -1 8.56 19.83 112.91 
80 1 1 1 0 4.26 4.48 4.64 
81 1 1 1 1 5.57 9.28 20.45 

Table A.2: Sensitivity to parameter variation: part I I 
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A.2. OPTIMIZATION RESULTS FOR EACH NEURON TYPE AND 
EXAMPLES OF GENERATED MODEL AXONS COMPARED WITH 
MEASURED AXONS 

A,2 Optimization results for each neuron type and exam
ples of generated model axons compared with mesisured 
axons 

For each neuron type we have included two figures. The left side of the upper figure 

shows the test histograms, which are calculated from 100 trials where each trial 

includes the generation of 300 axons, and the caption of this figure indicates the 

quality of the optimization. In this histogram, the horizontal axis shows the cost 

function value for each bin and the vertical axis shows the percentage for the bin. 

The right side of the upper figure shows the distributions of dorsoventral coordinates 

of model axons (in blue) compared to experimental axons (in red). The lower figure 

shows the model axons (upper panel) and the experimental axons (lower panel); the 

caption gives both experimental and model axon tortuosities. 
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A:2. OPTIMIZATIOX RESl 'LTS FOR EACH NEURON TYPE AND 
EXAMPLES OF GENERATED MODEL AXONS COMPARED WITH 
MEASURED AXONS 

A.2.1 Test results: a IN descending 

For an explanation of these figures, please see page 171 

UU 
Figure A.l: Test of optimization quality: GOOD. 

Figure A.2: Model tortuosity: 1.002. Experimental tortuosity: 1.005 
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.4.2. OPTIMIZATIOX RESULTS FOR EACH ^EURON TYPE .4.\D 
EXAMPLES OF GENERATED MODEL AXONS COMPARED WITH 
MEASURED AXONS 

A.2.2 Test results: a IN ascending 

For an explanation of these figures, please see page 171. 

• 0 » 40 iO to 100 

Figure A.3: Test of optimization quality: GOOD. 

Figure A.4: Model tortuosity: 1.02. Experimental tortuosity: 1.009 
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A.2. OPTIMIZATION RESULTS FOR EACH NEURON TYPE AND 
EXAMPLES OF GENERATED MODEL AXONS COMPARED WITH 
MEASURED AXONS 

A.2.3 Test results: cIN descending 

For an explanation of these figures, please see page 171 
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Figure A.5: Test of optimization quality: GOOD. 
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Figure A.6: Model tortuosity: 1.001. Experimental tortuosity: 1.006 
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A.2. OPTIMIZATION RESULTS FOR EACH NEURON TYPE AND 
i-:\.\Mri.}:s ()!• (;/-:\7:/;.\//;/) M()1)I:L coMrMU-D wmi 
MEASURED AXONS 

A.2.4 Test results: cIN ascending 

For an explanation of these figures, please see page 171. 

Figure A. 7: Test of optimization quality: GOOD. 
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Figure A.8: Model tortuosity: 1.001. Experimental tortuosity: 1.004 
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A.2. OPTIMIZATIOS RESULTS FOR EACH NEURON TYPE AND 
EXAMPLES OF GENERATED MODEL AXONS COMPARED WITH 
MEASURED AXONS 

A.2.5 Test results: d I N descending 

For an explanation of these figures, please see page 171. 

0 20 «0 M 

Figure A.9: Test of optimization quality: POOR. 
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Figure A. 10: Model tortuosity: 1.004. Experimental tortuosity: 1.003 
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A.2. OPTIMIZATION RESULTS FOR EACH NEURON TYPE AND 
EXAMPLES OF GENERATED MODEL AXONS COMPARED WITH 
MEASURED AXONS 

A.2.6 Test results: R B descending 

For an explanation of these figures, please see page 171. 
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Figure A.11: Test of optimization quality: POOR. 
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Figure A. 12: Model tortuosity: 1.009. Experimental tortuosity: 1.009 
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A.2.7 Test results: R B ascending 

For an explanation of these figures, please see page 171. 

Figure A.13: Test of optimization quality: GOOD, 
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Figure A. 14: Model tortuosity: 1.01. Experimental tortuosity: 1.009 
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MEASURED AXONS 

A.2.8 Test results: die descending 

For an explanation of these figures, please see page 171. 

Figure A. 15: Test of optimization quality: GOOD. 
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Figure A. 16: Model tortuosity: 1.002. Experimental tortuosity: 1.005 
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A.2.9 Test results: die ascending 

For an explanation of these figures, please see page 171 
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Figure A. 17: Test of optimization quality: POOR. 

Figure A. 18: Model tortuosity: 1.003. Experimental tortuosity: 1.006 
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A.2. OPTIMIZATION RESULTS FOR EACH NEURON TYPE AND 
EXAMPLES OF GENERATED MODEL AXONS COMPARED WITH 
MEASURED AXONS 

A.2.10 Test results: mn descending 

For an explanation of these figures, please see page 171. 

Fi^tire A. 19: Test of optimization quality: V E R Y G O O D . 
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Figure A.20: Model tortuosity: 1.0001. Experimental tortuosity: 1.001 
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This book consists of 14 chapters written by different authors, aJl of which are con
cerned with the mathematical modeling of bursting neural activity. Bursting neural 
activity comprises a repetitive sequence of two events: burst generation in which a 
neuron produces several spikes (usually from 3 to 20 spikes) with relatively short 
inter-spike intervals (1-5 ms) and a relatively long quiescent interval. The book is 
amazingly focused; in all the chapters, the authors use very similar approaches to 
the development and analysis of models of bursting activity. Typically, two math
ematical theories are combined: the bifurcation theory and the theory of singular 
perturbations. 

The bifurcation theory is a tool which allows us to characterize the ways in which 
a dynamical system can undergo a qualitative change in behavior under variation of 
conditions, parameters, perturbations, etc. For example, the system is in a steady 
state and parameter variation causes a transition to another dynamical regime, 
e.g., the regime of regiilar oscillations. The bifurcation theory provides two possi
ble scenarios for such transitions: (1) Hopf (or Andronov-Hopf) bifurcation where 
the steady state becomes unstable at the point of bifurcation (or critical parameter 
value) and the oscillations that appear have small amplitude and a pre-defined fre
quency of oscillation; (2) Saddle-Node on Invariant Curve (SNIC) bifurcation where 
the stable steady state disappears by merging with the unstable one and the result
ing oscillations have a pre-defined arapUtude and a small frequency of oscillation. 
These two mathematical mechanisms of oscillation appearance are universal and 
they can be appUed to the modehng of a broad spectrum of dynamical systems in 
different scientific disciplines — a beautiful example of the generaUty of mathemat
ics. Also, bifurcation theory provides critical parameter values or critical boundaries 
in parameter space separating different dynamical behaviors. Where no bifurcation 
occurs between one set of parameters and another, we can be sure that the dynamics 
will be qualitatively the same. 
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The theory of singular perturbations (as described by Tikhonov in 1953) con
siders dynamical systems with two different time scales: some variables are fast and 
others are slow. In this case, a small perturbation of the system can result in a large 
deviation from the unperturbed trajectory, producing a response with a spike-Uke 
shape. The main idea used in the analysis of the fast-slow system is to consider the 
limiting case when the slow system is stopped completely, i.e., the slow variables 
are in a steady state. In this case, instead of the full dynamical system, we can 
consider a reduced dynamical system with only the fast variables. Analysis of the 
dynamical behavior of the fast system with fixed values of the slow variables is a 
simpler problem due to the smaller dimensionality of the reduced system. However, 
the slow variables are also present in the fast system as parameters and some values 
of these parameters may be critical values for some bifurcations of the fast system. 

The combination of the fast-slow system approach with the bifurcation theory 
provides a powerful tool for modeling bursting activity. Let us consider a simple 
example. Suppose that the model of bursting activity includes two fast variables, 
(e.g., voltage and the gating variable for the calcium current) and one slow variable 
(e.g., the gating variable for the potassium current) and the fast system is bistable, 
i.e., for some parameter values, the stable steady state coexists with a stable Umit 
cycle. In this case, the bursting regime can be described in the following way: the 
quiescent interval relates to a steady state in which activity of the fast system is at a 
low level, and the bturst corresponds to high ampHtude oscillations. The slow variable 
(parameter) periodically switches the system between these dynamical regimes in a 
hysteretic manner. 

Another idea used in the modeling of bursting activitj^ comes from the consid
eration of a model with a two-dimensional fast system and a two-dimensional slow 
system. Let us suppose that the fast system has some bifurcations in the range of 
changes of the slow variables and the slow system demonstrates regular oscillations. 
In this case, the full system will demonstrate bursting activity with a specific shape 
(e.g., eUiptic burster) which depends on the bifurcation of the fast system; bistabihty 
in the fast system is not needed to achieve bursting in this model. 

The above examples illustrate some typical mechanisms that can be used to 
describe the generation of bursting activity. Diflferent chapters of the book con
sider different systems of slow-fast variables and different types of bifurcation which 
cause the appearance and disappearance of oscillations; nevertheless, the approach 
to modeling is universal for all book chapters. 

The book is divided into two parts: the first is devoted to bursting on the single 
cell level (six papers) and the second concerns the generation of bursting in neural 
networks (8 papers). 

The first chapter of the book by J. Hindmarsh and P. Cornelius describes the 
development of the classical Hindmarsh-Rose equations in the 1980s and demon
strates that the introduction of a calcium T-current to a simpHfied version of the 
Hodgkin-Huxley equations, makes it possible to generate a bvu*sting behavior driven 
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by subthreshold oscillations which is not possible in the classical Hindmarsh-Rose 
equation. 

Chapter 2 by R. Bertram and A. Sherman is an interesting pedagogical introduc
tion to the modeling of bursting activity of insulin-secreting pancreatic beta-cells. 
The authors start from historical remarks on different models of spiking activit>^ 
based on the idea of relaxation oscillations (fast-slow equations) such as the van 
der Pol-von der Mark and FitzHugh-Nagumo models of the cardiac pacemaJcer, the 
Morris-Lecar model for barnacle muscle fibre, and a modified Morris-Lecar model 
for beta-cell activity. They formulate the Chay-Keizer model (1982) and follow the 
progression from the Chay-Keizer model to modern models of beta cell activity 
investigating the role of different factors in burst generation such as calciuni-related 
negative feedback, calcium-dependent and voltage-independent potassium channels, 
and the interplay between membrane processes and calciiun storage in the endoplas
mic reticulum. 

In Chap. 3, Roper et al present a study of autoregulation of the bursting of AVP 
(Arginine Vasopressin) neurons of the rat hypothalamus. These neurons secrete AVP 
into the blood to regulate both blood osmolality and pressure. The authors analyze 
the electrical properties of AVP cells and develop a Hodgkin-Huxley type model 
which includes five currents. An elegant reduction to a fast-slow system similar to 
the Morris-Lecar model makes it possible to model the bursting regime and clarify 
the role of calcium in regulating a fine balemce between after burst depolarization 
and hyperpolarization. 

Chapter 4 concerns bifurcation in the fast dynamics of neurons and its implica
tions for bursting. J. Guckenheimer et a/., J . Tien and A. Willms present a detailed 
two-parametric bifurcation analysis of a two-dimensional Hodgkin-Huxley reduction 
conteiining fast sodiiun and leak currents only. The authors consider this system to 
be a typical example of a fast system such as appears in many models of bursting 
activity. The two-dimensional bifurcation diagram shows a broad variety of inter
esting bifurcations including a homoclinic bifurcation when the stable and unstable 
separatrices of the saddle point coincide; a Bogdanov-Takens bifurcation point; a 
narrow region of canard limit cycles, etc. The authors use this bifurcation diagram 
as a basis for a systematic consideration of several models of bursting activity in 
different cell types: the R15 neuron of Aplysia; a thalamocortical relay neuron; a 
leech heart interneuron; and a neuron in the pre-Botzinger complex participating in 
breathing rhythm generation. 

In Chap. 5, A. Bose and V. Booth study the btu^ting regime in a Pinsky-Rinzel 
model of a pyramidal neuron in the CA3 region of the hippocampus. The model 
consists of dendritic and somatic compartments, and each of them includes active 
ionic conductances. The authors consider both the PLnsky-Rinzel model and its 
simplified version (simiW to the Morris-Lecar model). The authors discuss several 
interesting questions relating to burst generation, e.g., the role of backpropagating 
spiking activity from the somatic compartment to the dendritic compartment. A 
fine balance of the strength and timing characteristics of the interaction between 



486 Borisyuk & Cooke 

the two compartments can result in the appearance of an interesting regime of 
bursting activity named somatic-dendritic ping-pong. 

Further study of the role of active dendrites is undertaken by C. Laing and 
B. Doiron in Chap. 6 where they analyze a model of bursting activity observed in 
sensory processing neurons of a weakly electric fish. The authors discuss a novel 
type of bursting activity known as ghostbursting. A characteristic feature of ghost-
bursting activity is that the frequency of spikes within the burst increases from zero 
to some finite value (i.e., interspike intervals inside the burst become shorter and 
shorter). It is natural to model this experimentally observable phenomenon by the 
use of the abovementioned Saddle-Node on Invariant Curve (SNIC) bifurcation of 
the fast system. When the system passes close to the region of phase space where 
this bifurcation occurs, the passage is very slow. It is as if the trajectory is "sensing 
the ghost" of the bifurcation, hence the name of this bursting phenomenon. A par
ticularly interesting feature of this model is that there is no bistability in the fast 
system which is unusual for bursters with only one slow variable. 

The second part of the book is devoted to the modeling of bursting activity in 
neural networks. It begins from Chap. 7 in which C. Canavier considers the stability 
of the phase locking regime in small circuits of two interacting neurons or three 
neurons on the ring by the Phase Resetting Curve (PRC) approach. An interesting 
hybrid system of one reaJ biological and one model bursting neuron is considered 
£md the PRC method is appfied to study 1:1 locking under variation of experimental 
conditions. 

In Chap. 8, Golubitsky et al. also investigate a system of two identical bursting 
neurons. The authors' mathematical approach is based on consideration of a system 
with symmetry which appears due to the identity of interactive two-dimensional 
fast-slow systems of differential equations. Using bifurcation analysis of a general 
fast system with symmetry, the authors find a collection of interesting burster shapes 
which can be realized in such systems. 

Chapter 9 by G. de Vries is devoted to a study of models of bursting acti\aty 
based on one- and two-dimensional maps. The author reviews purposely constructed 
maps that can generate a series of points in discrete time resembhng bursting activity 
in a conventional model. For example, in the case of the one-dimensional map, the 
function is non-continuous and contains a non-linear parabolic term which generates 
irregular oscillations with increasing amplitude (the biu*st) and a linear part (almost 
flat with a small increase), which corresponds to quiescent activity. In the case of the 
two-dimensional map, the idea of fast and slow variables is used for the construction 
of appropriate maps. The fast map is bistable and the stable fixed point (quiescent 
state) coexists with a stable periodic or chaotic orbit (burst). Changes in a slow 
variable jdlow bursting activity to be generated through a hysteresis loop. The author 
analyzes (both numerically and analytically) the influence of diflferent sjinmetric 
couplings between two identical maps on the resulting dyneimics and unsurprisingly 
finds both in-phase and anti-phase locking, as well as out of phase oscillations. 
The map-based approach to burster modeling considered in this chapter is simple 
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and elegant; however, a significant disadvantage is that models are formulated in 
an abstract mathematical form without taking into account biophysical aspects of 
spike generation such as voltage, conductance, etc. 

Chapter 10 by G. de Vries and A. Sherman also studies the effect of coupHng 
between two identical neuronal models. The neuron model is of Hodgkin-Huxley 
type with square wave burster djTiamics and coupling is the so-called diffusion type 
where the difference betu'een voltages defines the influence of one cell to another. 
This type of coupling is standard for modeling electrical connections between neu
rons. The authors found that when bursters are coupled, the period of oscillations 
can increase. In the case that uncoupled neurons do not burst but are close to the 
bursting mode, coupling can induce bursting and the authors name this phenomenon 
"emergent bursting". The authors present an interesting discussion of the possibil
ity of emergent bursting in oscillators with other types of intrinsic behavior and 
synaptic connectivity. 

In Chap. 11, J . Tabak and J . Rinzel study a population rate model of spontaneous 
activity in the developing spinal cord. The model considered describes the average 
rate of a population of excitatory neurons and the evolution of synaptic eflScacy by 
both fast and slow variables, representing depression of effective connectivity. The 
authors apply the fast-slow "dissection" technique to analyze the dynamical behav
ior of this three-dimensional model. They find bistability in the slow equation and 
by combining oscillations in the two-dimensional fast system with the dynamics of 
the slow variable, the bursting regime is generated. This model explains the inter-
mittency of episodes of spontaneous activity in the spinal cord with longer quiescent 
intervals. The described mechanism of burst generation is typical for square wave 
bursting and is similar to many other models considered in the book (see, for exam
ple, Chaps. 2, 8, 10, 12, 13): a slow variable periodically switches the fast system from 
a low activity steady state to a high activity oscillatory regime. Also, the authors 
consider important parallels and similarities in the generation of bursting activity 
between coarse grain population models and conductance-based models. Finding 
such similarities makes it possible to bring results from the population level to the 
level of spiking neurons. It is worth noting that this model reproduces another inter
esting phenomenon experimentally observable in the chick spinal cord: the blockade 
of some connections results in the cessation of spontaneous activity with consequent 
recovery. The model demonstrates longer inter-episode intervals after recovery, in a 
manner that matches the experimental data. 

Chapter 12 by R. Butera et al. provides a detailed and deep review of the bursting 
activity of neurons that generate breathing rhythms in the pre-Botzinger complex 
of the brainstem. The authors consider both spike generation models and neural 
network models of bursting cells, and address important questions regarding the 
biophysical mechanism of bursting, regulators of bursting frequency, synchronization 
in a coupled population of bursting cells, etc. It is shown that coupling between 
squEire-wave bursters can result in a new type of bursting, so-called top hat bursting 
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where spiking ceases via a fold bifurcation of Umit cycles. The authors simulate a 
heterogeneous population of coupled neurons with randomly distributed parameter 
values; some neurons are silent, some are bursting, and some are tonically spiking. 
Remarkably, the introduction of excitatory coupfing of sufficient strength results in 
a regime in which all neurons participating in synchronous bursting oscillations. 

In Chap. 13, J. Best and D. Terman nicely demonstrate how the powerful tool 
of geometric singular perturbation methods can be appUed to prove mathematical 
theorems concerning the properties of bursting activity- In particular, it is proven 
that in a model with a two-dimensional fast system and a one-dimensional slow 
system under general conditions, the unique and stable solution corresponding to 
the square-wave burster can exist in a small interval of parameter values. Another 
interesting result relates to a study of propagating activity patterns in a mutually 
inhibitory chain of neuronal oscillators. Singular perturbation makes it possible to 
find parameter values corresponding to the propagation of smooth and lurching 
waves, as well as smalytical estimates for the speed of wave propagation. A neural 
network of excitatory and inhibitory cells in the basal ganglia models the shift 
from irregular firing to synchronous bursting, during the development of Parkinson's 
disease. Geometrical methods axe used to find parameter regions corresponding to 
different regimes as well as to analyze the clustering of neural activity. 

Lastly, Chap. 14 by B. Ermentrout et al. is a short and elegant report on new 
studies of wave propagation models describing spike propagation in cortical sfices 
with reduced inhibition. This relates to the extremely important question of under
standing the role of spatio-temporal patterns of neural activity, particularly, wave 
propagation, in the information processing within the brain. The neuron model con
sidered demonstrates elliptic bursting, and analysis of this system makes it possible 
to find parameter regions in which the oscillatory waves break up, as well as provide 
insight into the imderlying mechanism of wave propagation. 

In summary, the book is a good description of the state-of-the-art \vithin the 
area of computational and mathematical modeUng of bursting phenomena, con
taining contributions from many of the leading researchers in this field; experts 
in computational neuroscience are certain to find it interesting and useful. Many 
chapters are written in a review style with remarks on the history of the study 
of mechanisms of bursting generation; thus, it can also be recommended to gradu
ate students. For beginners, we can recommend first reading the introductory book 
"Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting" 
(MIT Press, 2006) by E . Izhikevich, which will allow them to familiarize themselves 
with the subject and prepare for reading the reviewed book. 
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Abstract 

A new malhematicaJ model to describe the spiking rate of a neural population is derived, which considers both the mean and 
the variance of the activity. Bifurcation analysis identities a critical interval of parameter values in which the standard bisiability 
regime coexists with an additional third attractor corresponding to the metastable state of bounded mean activity and high variance. 
To understand the structure of spatio-temporal activity in the meiastable state, we study a simple discrete-time model of binary 
elements with random noise locally coupled on the grid, which produces rich dynamics including meiastability. A critical value of 
the noise amplitude is identified; in the vicinity of this value the system is flexible and can easily generate transitions between UP 
and DOWN metastable states, either autonomously or in response to a control process. These metastable states and phase transitions 
provide a proper basis for the modelling of persistent neural activity reported in many experimental studies. 
© 2006 Elsevier Ireland Ltd. All rights reserved. 
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1. Introduction 

In the typical experimental paradigm under which 
persistent activity has been observed, activity appears in 
response to the presenialion of a specific short stimulus 
and lasts from a few seconds up to several minutes after 
stimulation is withdrawn. This type of neural activity 
is traditionally considered to be a process underly
ing memory, specifically short-term memory formation 
(Brody et al., 2003). Another possible role of persistent 
activity is to provide a source of excitation to drive a 
motor behaviour, for example, swimming in simple ver-
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lebrates (Roberts et al., 1997, also recent unpublished 
results). 

Recent experimental data show that persistent neural 
activity is observed in many brain systems. It has been 
shown (Egorov et al.. 2002) that the neurons of the rat 
eniorhinal cortex in the parahippocampal region demon
strate graded persistent activity (constant firing rale) last
ing for several minutes in response to stimulation. The 
sustained activity level (firing frequency) can be either 
increased or decreased depending on the input. These 
findings indicate that the entorhinaJ cortex could play 
an important role in establishing associations between 
stimuli (Frank and Brown, 2003). It has also been found 
(Taube and Bassett, 2003), thai many so-called head 
direction cells in the rat limbic system exhibit charac
teristics of persistent neural activity. It is likely that this 
type of neural activity reflects processes corresponding 
to the memorizauon of head direction. In vivo intracellu
lar recordings from oculomotor neurons of the goldfish 
demonstrate persistent changes in firing rate following 

0303-2647/S - see from maner ® 2006 Elsevier Ireland Lid. All rights reserved. 
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saccades (Aksay ei al., 2000,2001). This persistent activ
ity can probably be associated with short-temi memo
rization of eye position in the goldfish hindbrain. Local 
cortical neural circuits in the prefrontal cortex and visual 
cortex of the rat are capable of generating persistent 
activity for periods of seconds or longer as well as transi
tions between different slates of persistent activity such 
as UP and DOWN states (McCormick et a!., 2003). It is 
possible that this activity indicates processes of working 
memory based on recurrent network activity. Experi
mental recordings ft^om prefrontal neurons of monkeys 
(Compte et al., 2003) reveal persistent activity during a 
delayed response task. This study shows that the persis
tent neural activity observed in prefrontal cortex is highly 
irregular and can best be characterised by statistical 
measures such as inter-spike interval distribution^ auto
correlation function, mean, standard deviation, and other 
moments. This irregularity is more pronounced during 
the mnemonic delay period than in the fixation period. 

Computational models of persistent activity usually 
exploit one of the following approaches: (1) there are 
features of neuronal excitability or synaptic transmission 
which allow long characteristic times of some membrane 
and synaptic processes; (2) persistent activity is a collec
tive effect and dynamical phenomenon which appears as 
the result of specific interactions between neurons. In 
this paper we adopt the second approach and consider 
the problem of how to obtain persistent and long last
ing activity in a population of interactive neurons with 
relatively short reaction times. 

The traditional approach to solving the problem of 
long lasting activity is based on bistability of the pop
ulation spiking rate. This bistability can appear, for 
example, as the result of positive feedback in a popu
lation model (Brunei, 2003). Suppose that there are two 
stable states of neural activity such that in one of these 
activity is low and in the other activity is high. These 
two stable states coexist and the population demon
strates a low or high spiking rate depending on the initial 
condition. If the initial condition belongs to the basin 
of attraction of the low state then the population will 
demonstrate a low activity level and vice versa. Let us 
suppose that the population is in the low activity slate 
and a short external input is applied. This perturbation 
by external input can change the dynamical regime of 
the population and move it from the basin of attraction 
of the low state to the basin of attraction of the high state. 
Even a short input application can be sufficient to move 
the activity of the population through the critical bound
ary in the phase space of the system which separates 
these two basins of attraction. In principle the system 
can return back to the low level; for example, due to 

habituation, fatigue, or a limited amount of neuromod
ulators or other chemicals, the system parameters can 
slowly change their values resulting in the neural activity 
returning to a low level. This is a hysteresis phenomenon 
which typically appears in systems with bistability and 
its explanation is based on the appearance of two fold 
bifurcations in the dynamical system that controls the 
spiking rate of the population. 

In this paper we study persistent activity in simple 
models of neural populations of excitatory neurons with 
random noise. This study was inspired by ideas from sta
tistical physics which generalise the bistability approach 
by considering phase transitions and metastable stales. It 
is well known that metasiable states can be characterised 
by long lasting phases and such an approach appears to be 
promising for modelling persistent activity in the brain. 
A typical example of long lasting patterns is provided 
by the Ising model which is one of the simplest exam
ples of a system in which metasiable states and phase 
transitions can be seen. We will start by studying per
sistent activity at the macro-level using a mathematical 
stochastic model of neural activity which describes the 
dynamics of the probability density function of spik
ing neurons (Kryukov et al., 1990). From this model we 
derive a generalisation of the standard model of popula
tion activity rate. This generalised model includes two 
equations for the dynamics of the mean and variance 
of the spiking rate. A new feature of this generalised 
model is that there are three basins of attraction in this 
system. Two of them correspond to stable low and high 
activity levels and the third can be considered as an ana
logue of the metastable state in the Ising model. In this 
new attractor state, the level of mean activity is bounded 
while the variance increases without limit. This increase 
in variance means that the population of neurons demon
strates irregular spiking activity. Note that experimental 
data indicates that spiking is highly irregular during the 
persistent activity state (Compte el al., 2003). 

In the second pan of the paper, we study persistent 
activity and metastable states in a more detailed model 
which represents the micro-level. We consider a model 
of a population of interactive neural elements on a square 
grid with local connections, similar to the Ising model. 
The neural element considered here is a simple threshold 
device which integrates the activities of its neighbours 
and also includes a random variable which reflects neiu-al 
and synaptic noise. Thus, the dynamics of the model 
elements depend on the interplay of two factors: the total 
activity of neighbouring elements and the level of the 
noise. We have found that there is a critical level of noise 
which maximizes the variance of neural activity; this 
is due to the appearance of frequent phase transitions 
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between distinct metastable stales in the vicinity of this 
noise level. 

2. Population rate model of metastabilitv 

2.1. Model description 

We consider a neural network of M spiking neu
rons with homogeneous (e.g. local) connections and 
mean connection strength a. Suppose that multiple spike 
u-ains generated by the neural network are represented 
by the ^/-dimensional random point process which is 
defined by the backward recurrent times: 5 = { 5 , ( r ) } , 
/ = 1. 2 M. Here, s,(t) is the duration of the time 
interval between the last spike generated by the /th 
neuron and the current time t. Average neural network 
activity at time t is described by the random variable 
^(f) = {l/M)Y.%=\ cxp(-asj(t)) with probability den
sity function / i ( f ) . mean £(r) = E{^(r)} and variance 
V(f) = E { £ ( / ) - ( E { ^ ( / ) } ) 2 } , where E{ } denotes expec
tation, and or is the characteristic decay of spike influence 
to other neurons. The random variable ^(t) reflects the 
dynamics of the membrane potential of a typical rep
resentative element of the network activity. It has been 
shown (Kryukov et al., 1990) that the probability density 
function satisfies the Kolmogorov equation: 

du, d 1 
ot M o^" 

From the Kolmogorov equation the system of kinetic 
equations can be derived by a standard transformation, 
and we consider here an approximation based on equa
tions for the first two moments: the mean £(/) and the 
variance V(f): 

(1) d/ 2 

^ ^ = -2V{\-aS'(aE)) 
^ d/ 

where a sigmoid function 5 U ) = 1/(1+exp(-^ 
( j r - ^ ) » - l / ( l + e x p ( W ) ) ; 5' and 5" are the first 
and second derivatives of sigmoid function, respec
tively; parameter a is a characteristic of coupling 
su-ength; parameter values for simulations are: b = 3, 
0 = 2. 

2.2. Metastability and other dynamical regimes 

A typical phase portrait of the system ( I ) is shown in 
Fig. 1 for the connection su-ength A = 4. Here for V = 0 
there are three equilibria: two of these at £ = 0 (low activ
ity) and £ = 1 (high activity) are stable, and the third at 

Fig. 1. Phase portrait of system (1). The basin of attraction of the 
metastable state is indicated by shading. This region is bounded by 
incoming separatrices of two saddle equihbria. 

£ = 0.4 is unstable. Also, there are two saddle equilibria 
with V > 0 . 

The traditional simplified approach to the mtxlelling 
of bistability is based on the consideration of the aver
age activity of the neural population w ithout taking into 
account the variance and other moments characterizing 
probabilistic properties of neural activity in a stochas
tic model. In this case of zero higher order moments, 
two stable equilibria on the horizontal axis (V=0) are 
the only atlractors in the system, and this gives bista
bility. The model (1) is more sophisticated and takes 
into account both the mean and the variance of neu
ral activity. In this case we have an additional attractor 
which is shown in Fig. I . This attractor is formed by the 
two outgoing separatrices of the saddles which approach 
each other increasing the value of variance and engag
ing many other trajectories in the region of metastability. 
The basin of attraction of this metastable state is indi
cated by shading in Fig. 1. Interestingly, this new regime 
of metastability is characterised by the following prop
erty: the mean is bounded, and the variance grows to 
infinity. This reflects the experimental finding that neu
ral activity in persistent states is very irregular. However, 
unlimited growth of the variance is an undesirable feature 
of the model; in reality variance wi l l always be bounded. 
This feature appears due to the fact that the activity dis-
uibution is approximated by two moments. Of course, 
in the case that a more realistic approximation with a 
larger number of moments is used, we can expect that 
the variance wi l l grow up to some limit (Feller, 1967). 
It is important to note that the basin of attraction of this 
new regime covers a large part of the phase plane. 

Let us consider the evolution of the phase portrait 
under variation of the connection strength a > 0 . For 
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small values of this parameter there is only one stable 
equilibrium E=0 , V = 0 . which corresponds to a low level 
of background neural activity. I f the value of this param
eter increases, the system goes through two sequential 
fold bifurcations {a^ = 1.35. o f = 3) and for a > 3 the 
phase portrait is topologically equivalent to the phase 
portrait shown in Fig. 1 for a = 4. 

Let us fix initial values of variables of the system (1) 
as £ = 0.4, V=0.05 which correspond to the intermedi
ate level of the mean and small variance. Let us keep 
these initial values fixed and study the final destination 
of the u-ajectory starting from this initial point of the 
phase plane under variation of the connection su-ength 
parameter. The result is: 

• For all values a < 3.35 the trajectory tends to a low 
activity level with zero variance. 

• For all values 3.35 <a< 7.45 the u^jectory tends to the 
metastable state with limited mean and high variance. 

• For all values a > 7.45 the trajectory tends to a high 
activity level with zero variance. 

Fig. 2 illusu-ates three attractors in the system: two 
stable steady states and the metastable state. This figure 
shows three trajectories starting from the same initial 
point for different values of the connection su-ength 
parameter, resulting in three different final destinations. 
For small or large connection strengths the destination 
is a low or high level of background activity with zero 
variance, however for intermediate connection suengths 
the destination is a metastable state with limited mean 
of neural activity and unlimited growth of variance. 

025 

> 0 15 

005 

Fig. 2. Initial conditions are fixed: E = 0.4. V=0.05. Figure sbw s three 
different destinations of trajectories corresponding to different cou
pling strengths a: weak coupling (e.g. a = 3) results in low activii>; 
strong coupling (e.g. fl= 10) results in high activity: an intermediate 
coupling (e.g. a = 4) results in the meiastable state. 

3. Metastability and persistent acti>it> in Isiny 
type model with noise and homogeneous local 
coupling 

3. J. Model motivation 

In this section we introduce a system of locally cou
pled threshold elements with random noise and local 
connections in a square grid topology. This system was 
motivated by the discrete-time Hopfield model of asso
ciative memory (Hopfield. 1982). The rule for updating 
the state of each element contains two terms: a term 
taking into account the activities of the element's neigh
bours, and a noise term. The resulting dynamics appear 
due to the interaction of the deterministic term and the 
stochastic component. Thus, the dynamics of the model 
are richer than the pure deterministic dynamics of the 
Hopfield model and the pure stochastic behaviour of the 
I sing model. Of particular interest are the metastable and 
phase transition regimes which can be observed within 
a specific range of noise amplitudes. These observations 
are relevant to the general problem of characterizing the 
role of noise in system dynamics. 

3.2. Model description 

We consider a system of interacting elements coupled 
on the grid where the edges of the grid are connected to 
each other, forming a torus. Each element is connected 
with eight neighbouring elements. Activity is described 
by X | = {0 ,1} , / = I , 2 M, where M is the number of 
elements. The firing threshold 0 is fixed and is the same 
for all elements. A l l connections have weight 1. 

Time is discrete and elements are updated syn
chronously. In order to compute the new activity of the 
element / at the moment (r+ I ) . it is necessary to first 
calculate the total input / , (f) . In the equations below N{i) 
refers to the set of eight nearest neighbours to the ele
ment / on the grid. As can be seen below, the element 
/ also receives input from itself. The term represents 
location and time independent Gaussian noise with zero 
mean and standard deviation a. 

hit) = 5 1 ^j^^^ ^' 

i(r) > e \ 1, i f / . 
" \ o . if/, 

(2) 

{t)<0 

I f the number of active elements in the vicinity of node 
i is substanually less than or greater than threshold, it is 
unlikely that the noise wi l l affect the state of that node 
at the next ume step. For example, i f the noise standard 
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deviation is CT = 1 then the probability of an element hav
ing /,(r) = 4 or 5 (these are the borderline cases) changing 
state due to noise is 0.31 and this decreases rapidly as 
/,(r) takes values further away from 4.5; for /,(/) = 3 or 6 
the probability of a noise-driven switch is 0.067. 

For all simulations, initial conditions are that the value 
of each jc, is randomized independently and uniformly 
to 0 or 1, unless stated otherwise. The dimensions of the 
grid are 50 elements on each side, and the number of 
elements M = 2500. 

Inclusion of the above-mentioned self connection 
makes it possible to achieve symmeuy between any 
given configuration and its inverse when the uniform 
threshold is set to 4.5. In this case we can consider two 
initial configurations w here one is the inverse of the other 
(inactive elements in one area are active in the other and 
vice versa) and subject them to noise of the same value 
but opposite sign (e.g. by seeding our pseudo-random 
number generator with the same value in both cases and 
modifying Eq. (2) for either system to change the sign of 
the noise term), then subsequent states wi l l also be the 
exact inverse. It also follows that any steady state in the 
system appears in a pair with its inverse. 

3.3. Simulation results 

We consider a series of simulations starting from 
many random initial configurations for a range of noise 
levels, with a particular interest in finding persistent and 
metasiable slates. 

When or = 0. the system rapidly (typically in around 
18 lime steps) converges to one of many possible steady 
states. When the initial conditions for activity are com
pletely randomized, this steady slate will contain distinct 
active and inactive regions (Fig. 3) with approximately 
50% of elements active in the final configuration. This 
configuration is characterised by the presence of clusters 
of active and inactive nodes and we will refer to it as a 
cluster conliguraiion. 

It is helpful lo consider the stability of the cluster in 
terms of the stability of the locality around each point. 
An active cell with four or more neighbours active will 
remain active. An inactive cell with four or more neigh
bours inactive wil l remain inactive. These are the only 
possibilities for local stability and this consu^ns the set 
of possible stable system configurations; for example, 
an isolated 2 x 2 square of activity or inactivity cannot 
appear in a stable configuration because each element 
wil l only have only three neighbours that share its stale 
instead of the required four. 

In the case where cr>0 and small, the noise lends 
to destroy cluster configurations which are typical for 

s i l t " 
R g . 3. Steady state resulting from a randomized initial configuration 
While squares represent active elements. 

the zero noise case. Starting from an arbitrary random 
ci^nfiguration. the activity dynamics relatively rapidly 
(within a few hundred lime steps when a = 1) leads lo 
one of three cases: (1) almost all elements are active (we 
w i l l refer to this as the UP state), (2) almost all elements 
are inactive (DOWN state), or (3) approximately 50% 
of the elements are active, and a situation has developed 
w here inactive and active regions exist side by side, nei
ther surrounding the other. Fig. 4 illustrates these cases 
by plotting the mean activity of 20 random initial config
urations which are simulated for 5O0 time steps. Fig. 5 
shows the spatial pattern of activity for case (3), which 
we consider as an analogue of the metastable state in 
statistical physics. 

Fig. 4. Mean activity trajectories from twenty randomized miiial con
ditions w here a = 1. The three possible classes of outcome (UP state, 
DOWN state, metastable state) are cleariy visible. 
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Fig. 5. Long lasting intermediate activity state, in which the boundan 
between active and inactive regions moves according to a slow random 
walk process. 

When case (3) develops, the borders between the two 
regions shown in Fig. 5 are effectively neutral in the 
sense that they are equally likely to move in either direc
tion. This means that they move according to a (very 
slow) random walk process, and so this configuration 
is long lived. Eventually the system will converge to a 
steady UP or DOWN state (with sparse spontaneous fir
ing/quiescence) but this can take hundreds of thousands 
of cycles in some cases. In this regime, the system ha.s 
the interesting and biologically useful property of acting 
like a kind of memory. 

For large values of n, the noise term in Eq. (2) domi
nates the deterministic term and the dynamical behaviour 
of the model can be characteri.sed as the independent 
appearance of active/inactive states in nodes of the grid 
with equal probabilities. Thus, the mean activity is close 
to 5(K? and a typical spatial configuration is shown m 
Fig. 6. 

The most interesting and sophisticated case corre
sponds to intermediate values of rr. In this ca.se there 
is a balance between the relative influences of the deter
ministic and stochastic terms in Eq. (2). As sigma is 
increased past about 3.6 the influence of noise over
whelms the influence of the local neural connectivity. 
At this point the system is no longer able to maintain 
distinct UP and DOWN states and the mean activity of 
the system oscillates around 0.5 (half of the elements 
are active). For intermediate values of a {a is about 3.3). 
several phenomena can be .seen: the pattern irregular
ity (and therefore, variance of the total network activity) 
increases, the mean time to reach a steady state decreases, 
and there is an increase in the amount of spontaneous 
activity and spontaneous inactivity observed. As sigma 

Fig. 6. Spatial configuration when a = 20. showing the lack of spatial 
organization in the system at high noise amplitudes 

is increased above about 3.3, the high activity and low 
activity states very rapidly lose stability and a regime 
develops where the network switches between varying 
about a high level of activity, and varying about a low 
level of activity. This is the regime of phase transitions 
and each phase (UP and DOWN) can be characterised as 
a metastable state. Fig. 7 shows a typical time course of 
the mean activity and Fig. 8 shows typical spatial con
figurations corresponding to the DOWTM, intermediate, 
and UP phases. 

Fig. 9 shows a histogram of samples of the mean 
of population activity in the regime of UP and DOWN 
alternation accumulated during a run of 10̂  time steps. 
The histogram shows a bimodal form with a small bias 
towards DOWN phases due to limited run length. 

We can use a plot of variance against sigma to 
reveal the region in parameter space in which the UP 
and DOWN/metastable regime exists (Fig. 10). This 
indicates that the critical level of noise for promot
ing metastability of the high and low activity states is 
approximately 3.4. This result is in line with the coher
ence resonance phenomenon which has been observed in 

15 
Time X 10 

Fig. 7. Plot of mean activity with a = 3.37. The system alicmatcs 
between metastable high and low activity states. 
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Fig 8 Low. ,„«nn«lia«. » d high «.ivi,y spMial conflgun«io«, where <, = 3.37. T V inrennediaie co«figun«io„ is highly unsuble and wiU quickly 
transition to a high or low activity state. 

X 10 

M e a - A c t i v l y 

Fig. 9. Distribution of instantaneous mean activity samples for 
fj = 3.37. Run length is 10* time steps. 

002 

Fig. 10. Variance of mean activity as a function of noise amplitude 
Variance is maximized at approximately a = 3.4. 

excitable media and single neuron integrate and fire mod
els (Pikovsky and Kurths. 1997; Lindner el al., 2002). 

4. Discussion 

A new mathematical model to describe the activity 
rate of a neural population is derived. The derivation is 
based on a probabilistic model of multiple interactive 
point processes mimicking the interaction of neural 
spike generators. The model considers both the mean 
and the variance of the activity rate. The bifurcation 

analysis according to coupling strength variation shows 
that there is a critical interval of parameter values in 
which the standard bistability regime coexists with a 
third attractor which corresponds to the metastable stale 
which is characterised by a bounded value of the mean 
and unlimited growth of the variance of the activity rale. 

We speculate that the metastable stale is an appro
priate mathematical description of persistent activity 
in neural networks. Indeed, many properties of the 
meiasiable stale are similar to features of experimentally 
recorded persistent activity. Also» a metastable activ
ity state can be autonomously switched to another state 
without the involvement of any external influence. Thus, 
a system of interactive populations in a metastable state 
can be considered as an example of self-organized sys
tem behaviour. This self-organization process can be 
controlled by external influences which can mimic a 
learning process in a neural system. Suppose that a 
neural network consists of many interactive populations 
which are described by similar dynamical systems with 
metastable states, specifically each small population has 
three steady stales: low and high stable states and a 
metastable state. Such a network can demonstrate rich 
dynamics related to different types of information pro
cessing. For example, perturbations from the internal 
part of the network or from an inpKit signal can result in 
system transition from one metastable state to another. 
These transitions can be easily performed by the network 
due to high variability of neural activity in the metastable 
state (high variance). 

To understand the structure of spatio-temporal activ
ity in the metastable state, we study a simple discrete-
time model of binary neurons locally coupled on the 
grid. This model is capable of producing rich dynam
ics including metastability when combined with noise. 
Moreover, we have noted that in this model metastability 
results from a balance between the strength of coupling 
between individual elements and the noise amplitude: 
if either dominates, the spatio-temporal activity of the 
network rapidly becomes stereotyped. Thus, critical val
ues of noise amplitude generate interesting dynamical 
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behaviour in the model. In this critical region the system 
is flexible and can be easily switched between meiastable 
states both autonomously (UP and DOWN phase transi
tions) or by a control process. 

We can suggest thai such a balance between deter
ministic and stochastic components may be an important 
factor in the dynamics of coupled neural networks in the 
brain. We speculate that the working mode of the active 
brain is in the vicinity of the critical regime (Massimini 
el al., 2005) and modulation of this balance (for exam
ple, during sleep) may allow the network to act as an 
adaptive memory under certiun conditions, and as a 
som-ce of coherent variable activity under other condi
tions; such shifts in network dynamics may be implicated 
in both development (Tabak el al., 2001) and the main
tenance of synaptic homeostasis (Tononi and Cirelli, 
2003). 

The simulation model considered here is very sim
ple; nevertheless it already demonstrates many important 
characteristics of neural activity and persistent states. 
This model can show some long lasting states, transi
tions between UP and DOWN slates, and a critical value 
of noise. Further support for the usefulness of this sim
ple model comes from our development of a similar 
model with local connections along the grid edges but 
with more realistic enhanced integrate-and-fire elements 
(Borisyuk, 2002), which demonstrates broadly equiva
lent behaviour. 

A biologically inspired generalisation of this model 
has been developed which includes both threshold adap
tation and synaptic plasticity. To obtain the persistent 
regime in a neuronal system thresholds and synaptic 
weights have lo be properiy adjusted. We can expect 
that under some constraints the system with threshold 
adaptation and synaptic plasticity can self-organize its 
dynamical behaviour in such a way that the parame
ter values will be automatically adjusted to generate 
persistent activity. In addition, the results of studying 
simplified models, both theoretically and compuiaiion-
ally, have been used to simulate a more realistic neural 
network of enhanced integrate and fire neurons and 
demonstrate the existence of persistent activity in this 
model. Our preliminary simulations have yielded some 
promising results in this direcuon which are under prepa
ration for publication. 
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Abstract 
Background: How specific are the synaptic connections formed as neuronal networks develop 
and can simple rules account for the formation of functioning circuits? These questions are assessed 
in the spinal circuits controlling swimming In hatchling frog tadpoles. This Is possible because 
detailed Information Is now available on the identity and synaptic connections of the main types of 
neuron. 

Results: The probabilities of synapses between 7 types of Identified spinal neuron were measured 
directly by making electrical recordings fi-om 500 pairs of neurons. For the same neuron types, the 
dorso-ventral distributions of axons and dendrites were measured and then used to calculate the 
probabilities that axons would encounter particular dendrites and so potentially form synaptic 
connections. Surprisingly, synapses were found between all types of neuron but contaa 
probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. 
These results suggested that synapse formation may not require axons to recognise specific, 
correct dendrites. To test the plausibility of simpler hypotheses, we first made computational 
models that were able to generate longitudinal axon grov/th paths and reproduce the axon 
distribution patterns and synaptic contaa probabilities found In the spinal cord. To test if 
probabilistic rules could produce functioning spinal networks, we then made realistic 
computational models of spinal cord neurons, giving them established cell-specific properties and 
connecting them into networks using the contact probabilities we had determined. A majority of 
these networks produced robust swimming activity. 

Conclusion: Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite 
and axon positions may sufficiently constrain the synaptic connections made between different 
types of neuron as the spinal cord first develops and allow functional networks to form. Our 
analysis implies chat detailed cellular recognition between spinal neuron types may not be necessary 
for the reliable formation of functional networks to generate early behaviour like swimming. 
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Background 
To f u n a i o n properly, nervous systems rely on highly spe
cific synaptic connections between neurons. This specifi
city is achieved during development by many 
mechanisms, for example, correa neuronal specification 
and differentiation, axon path finding, cell recognition 
and synapse condit ioning by neuronal aaivities. At the 
core of this, what are the rules that ensure that appropriate 
and specific synaptic connections are made as neuronal 
circuits develop? This is one o f the most intensively stud
ied areas of developmental neuroscience and has gener
ated an extensive body of knowledge on the chemical cues 

that control the assembly o f neuronal circuits in the cen
tral nervous system (CNS) (1-6|. The vertebrate spinal 
cord provides a simple example where chemical morpho-
gens released f r o m the dorsal roof plate (bone morphoge-
netic protein) and ventral f loor plate (sonic hedgehog 
(Shh)) fo rm dorso-ventral molecular gradients. These in i 
tially control the fate o f differentiating neurons to estab
lish a dorso-venual series o f longitudinal columns o f 
distinct neurons on each side (Figure I c ) (7,8). Once a cell 
has acquired a specific neuronal fate, the next step is to 
grow an axon f r o m the neuron soma. The faaors control
l ing the direaions o f outgrowth are beginning to be 

B midbrain hindbrain 
\ J. spinal cord 

1mm 

dorsal rostral 
sensory pathway 
dia die RB 

ventral dIN m n ^ a l N cIN 

motor circuit 

caudal 

Figure I 
Hatchling Xcnopus tadpole, nervous system and neurons, (a) Photograph of tadpole at stage 37/38. (b) The main parts of the 
CNS with arrowhead at hindbrain/spinal cord border, (c) Transverse section of the spinal cord with the left side stained to 
show glycine immunoreactive cell bodies (arrows) and axons (in the marginal lone). Diagrammatic right side shows the main 
regions: neural canal (c) bounded by ventral floor plate (f) and ependymal cell layer (c); lateral nvirginal zone of axons (mauve), 
layer of differentiated neuron cell bodies arranged in longitudinal columns (coloured circles) lying inside the marginal zone 
except in dorso-lateral (dl) and dorsal positions, (d) Diagrammatic view of the spinal cord seen from the left side, showing 
characteristic position and features of seven different neuron types. Each has a s o n « (solid ellipse), dendrites (thick lines) and 
axon(s) (thin lines). Commissural axons projecting on the opposite right side are dashed. See the text for details. 
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revealed [9\. Remarkably, the same morphogen gradients 
that control cell fates can also influence axon growth. For 
example, the Shh gradient can at t iaa some axons to grow 
ventrally and aoss to the opposite side [10]. After cross
ing, these axons are transformed and no longer attraaed 
to the ventral floor plate 111-13). They then turn to grow 
longitudinally 114|, either towards the head or the tail , or 
they branch to grow in both directions. In all parts o f the 
CNS such early patterns o f growth by pioneer axons, con
trolled by chemical morphogens, lay down a basic scaf
fo ld o f axon tracts that can be fol lowed by later axons and 
in this way help to d i rea their growth (IS) . Once the 
axons have grown to approximately the 'correa' area, ihey 
start to make connections (synapses) wi th the branched 
dendrites emerging f r o m the cell bodies o f other neurons. 

We aim to answer two questions about the formation o f 
synaptic conneaions. Our first question is: how accurate 
and specific are the synaptic connections formed during 
early stages o f development w i t h i n the CNS? Once axons 
have reached a suitable area to make synapses, cellular 
recognition processes |16 l and activity-dependent mecha
nisms [17-20] may be needed to ensure that appropriate 
synaptic connections are made. However, our second 
question is: can simple faaors, such as the broad geo
graphical distributions o f axons and dendrites, themselves 
generate sufficient specificity in synaptic connections to 
ensure the development o f funa iona l neuronal circuits? 

To investigate the specificity o f early synapse formation, 
we need to examine conneaions between identified neu
ron types in a funa ion ing neuronal network. Very few ver
tebrate networks are simple enough to allow this; an 
exception is the developing spinal cord o f the newly 
hatched clawed toad {Xenopus laevis) tadpole. Like the 
developing zebrafish [21,22], this spinal cord contains 
less than 2,000 neurons divided into very few types 
(approximately len) yet it allows simple reflexes and 
swimming. In Xenopus, whole-cell recordings fi-om pairs 
o f spinal neurons under visual control have allowed us to 
bui ld a remarkably f u l l picture o f the morphology, prop
erties, synaptic conneaions and functions o f the neurons 
and networks controll ing swimming behaviour [23-28]. 
This detailed knowledge o f the anatomy and function o f 
different types o f spinal neurons in developing Xenopus 
embryos provides a remarkable opportunity to use the 
whole<ell recording method to examine large numbers o f 
synaptic connections between different types o f identified 
spinal neuron to assess the specificity o f the connections 
between them. 

Our direa examination o f synaptic connections between 
spinal neurons shows that connections are widespread 
and non-spedfic We therefore examine the anatomy lo 
see whether some very simple faaors, like the different 

dorso-venual distributions o f the axons and dendrites o f 
different neuron types, are sufficient t o predia the con
nectivity found physiologically. We then use modell ing to 
ask whether simple rules can reproduce longitudinal axon 
growth paths, and whether network models o f the spinal 
circuits can produce swimming activity when synaptic 
connections are determined by simple probabilistic rules. 
Overall, our results show that it is possible that the first, 
pioneer neuronal networks formed i n the spinal cord 
could be generated wi thout specific neuron-to-neuron 
recognition mechanisms playing a necessary role in deter
min ing synaptic connectivity. 

Results 
Neuron types In the hotchf/ng tadpole spinal cord 
The two day old , hatchlingXenopU5 tadpole is 5 m m long 
(Figure la ,b) . The eyes are not yet f u n a i o n i n g but the 
brain and spinal cord contain differentiated neurons. The 
spinal cord is a simple tube (approximately 0.1 m m diam
eter) w i t h a central neural canal formed by ependymal 
cells and the ventral floor plate (Figure Ic ) . O n each side 
lies a layer o f nerve cells or neurons loosely organized into 
longitudinal columns. The neurons p r o j e a processes into 
a superficial zone o f longitudinal axons either directly or 
by first growing venually across the floor plate to the other 
side and then turning or branching longitudinally. As i n 
all vertebrates, newly formed neurons are positioned in a 
dorsal to ventral sequence: sensory neurons; sensory 
intemeurons; other intemeurons; motoneurons. Unlike 
adult vertebrates, the young tadpole spinal cord has 
remarkably few types o f spinal neuron, possibly less than 
len. In this paper we consider seven types o f spinal neuron 
involved i n swimming (Figure I d ) w i t h anatomy shown 
by dye filling and where the synapses made onto other 
spinal neurons have been defined by electrical recordings 
f rom pairs o f individual neurons [29 | (see also below). Al l 
synapses are made directly f r o m longi tudinal axons as 
they pass small processes emerging f r o m the neurons 
called dendrites that protrude towards the side o f the spi
nal cord. 

Evidence from recordings on synaptic connections 
between neuron types 
To invesugate the specificity o f synaptic connections 
between the seven different types o f spinal neuron, we 
used the whole<el l patch method to make current damp 
recordings f r o m over 500 pairs o f neurons located 0.5 to 
3 m m f r o m the midbra in and usually recorded less than 
0.3 m m apart. By injecting current i n t o each neuron to 
evoke an action potenUal, we could see i f a short-latency 
posi-synaptic exdtation or i nh ib i t i on was present in the 
other neuron. After recording, the animals were fixed, the 
CNS removed and the anatomy of the recorded neurons 
revealed by neurobioi in staining. O n l y those pairs wi th 
clear anatomical identification and where the axon o f at 
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least one neuron was seen to have a possible c o n u a point 
onto the dendrites o f the other neuron were included in 
the analysis. Clearly, it was critical that we should know 
that the connections were monosynaptic. Synapses i n the 
young tadpole can be unreliable, so standard tests for 
monosynaptic connections, involving high frequency fo l 
lowing o f presynatic spikes, were not possible. We there
fore based our conclusions on measurements o f latency 
combined wi th anatomy. The young tadpole has fine 
unmyelinated axons that condua action potentials rela
tively slowly (approximately 0.3 m s-̂ ) | 30 l and latencies 
depend on the distance between the neurons (281. Most 
recordings were from pairs <0.3 m m apart and had laten
cies o f <3 ms. Latencies up to 3.6 ms were found only wi th 
larger separations, up to 0.7 m m . These latency measure
ments are i n complete accordance wi th our earlier studies 
o f monosynaptic connections [311. For known disynaptic 
pathways In the tadpole |25,261, typical latencies are at 
least 6 ms for equivalent separations, making it highly 
unlikely that the conneaions we report here were disyn
aptic. This direct evidence for connections was supponed 
by observing synaptic potentials produced by stimulating 
sensory neurons in the skin or occurring during swim
ming. 

Rohon-Beard neuron synopses 
Dorsal Rohon-Beard (RB) neurons are sensory, innervate 
the skin and resjwnd to touch. Their central axons ascend 
and descend to excite other neurons by release o f gluta-
mate to activate a-amlno-3-hydroxy-5-meihyI-4-isoxa-
zolepropionate (AMPAR) and N-methyl-D-aspartate 
receptors (NMDAR) [32,33,251. 1" paired recordings 
where there is a di rea synaptic conneaion, RB action 
potentials evoked by injeaed current lead to large excita
tory postsynaptic potentials (EPSPs; 3.4-25.4 mV) at 
short and constant latencies (1.4-3.4 ms) |25,261. Figure 
2 shows examples o f how synaptic connections were 
determined. In the first case, when the RB is stimulated, an 
ascending intemeuron (aIN) is exdted. In the second, the 
RB excites a commissural intemeuron (clN) and excita
tion can be blocked by glutamate receptor antagonists. 
Recordings from 132 pairs o f neurons showed that the 
probability o f finding synapses from Rfis to dorsolateral 
commissural intemeurons (dies) and dorsolateral ascend
ing intcrneurons (dlas) is higher than from RBs to aINs 
andcINs (Table 1). 

The inaccessibility o f more ventral descending intemeu
rons (dINs) and motoneurons (mns) prevented paired 
recordings wi th RBs, so we electrically stimulated RB neu-
riies i n the skin. EPSPs wi th shon and constant latencies 
(<6 ms), indicating direa connections, were found in 2/ 
l O d l N s and 1/12 mns. 

Oonofoteraf commfssunif fntemeuron synopses 
Dies are sensory pathway Interneurons excited by sensory 
RB neurons. They release glutamate to exdie contralateral 
neurons via AMPARs and NMDARs. They mediate a flex
ion reflex and initiate swimming aaivi ty when the skin is 
stimulated 1251- Paired recordings showed that dies can 
directly excite all four types o f neuron (aIN, cIN, d I N and 
mn; Table 1) that are active i n swimming and called cen-
ual pattem generator (CPG) neurons. Rather surprisingly, 
whoIe<el l recordings from 17 dies showed that 10 
received EPSPs fo l lowing contralateral skin stimulation 
(Figure 3a). The longer latencies o f these EPSPs (7-14 ms) 
suggested that they were not d i rea but could originate 
from dies excited by skin stimulation o n the opposite side 
o f the body. 

Dono/oteroJ ascending intemeuron synapses 
Dlas are sensory pathway intemeurons like dies that relay 
excitation from sensory RB neurons to more rostral ipsi-
lateral CPG neurons | 26 l . Paired recordings and EPSP 
t iming analyses showed that dlas could directly excite all 
types o f CPG neurons (Table 1) (261. 2/11 paired 
recordings, dlas also excited dies (Figure 2g). 

Ascending intemeuron synapses 
AINs release glycine and have a broad dorsal-ventral dis
t r ibut ion. They inh ib i t neurons on the same side i n both 
Xenopus tadpole and developing zebrafish spinal cord 
(23,341. Paired recordings made between aINs and other 
ipsilaieral neurons showed that aINs directly inhibi ted all 
types o f neurons (Table 1). 

Because aINs are active during swimming, they produce 
inh ib i t ion in neurons on the same side early in each 
swimming cycle (23,28(. Eariy cycle inhib i tory postsynap
tic potentials (IPSPs) i n RB neurons dur ing swimming are 
very rare but were seen in 3/136 RB neurons (Figure 3b). 
This connection was confirmed in 1/15 paired recordings 
between aINs and RBs (Figure 3c). Since RB neurons do 
not usually have dendrites, these synapses may be onto 
presynaptic regions o f synapses made by RB axons that 
would need to be dose to the soma for any PSP to be 
recorded. 

Commfssurof intemeuron synapses 
CINs are a middle dorso-ventral group o f glydnergic neu
rons that produce mid-cyde inh ib i t ion o f CPG neurons 
on the opposite side o f the spinal cord 135] to organize the 
alternation o f activity between the two sides during swim
ming. Since they have been studied extensively (361, we 
made few paired recordings and d N s were only shown to 
produce direa contralateral unitary IPSPs in nine d N s 
and one d I N (Table 1). However, a consistent picture is 
revealed in recordings during swimming where reliable 
mid-cyde IPSPs/inhibitory postsynapuecurrent were seen 
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aIN RB 

0.5 mm 

5mV 

100 um 
10 ms I 40 mV 

cIN RB 

0.5 mm 

control 

10 mV 
1 0 m s j 4 o 

RB 

cIN D-AP5 + NBQX 

5 mV 

wash 
10 ms 

40 mV 

current 
Figure 2 
Recording synaptic connections. (a>€) RB sensory neuron excites an aIN: (a) side view of the isolated brain and spinal cord to 
show the location of both neurons and their axons; (b) anatomy of recorded neurons with possible synaptic contacts from RB 
axons onto aIN (arrowheads): (c) injection of current into RB evokes an action potential that leads to a short latency EPSP in 
the aIN (five traces overlapped), (d- f ) RB excites a cIN: (d) location and (e) anatomy of RB and cIN pair, (f) current evoked RB 
action potentials lead to EPSPs (five traces overlapped) blocked reversibly by glutamate antagonists D-AP5 (25 /iM) ••• NBQX 
(2.5 / i l i ) . (g) Current evoking an action potential in a dia produces short latency excitation (EPSPs) in a die (four traces over
lapped). 
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Table I : Probabllldes of synaptic connections found by paired recording and data from other tests to show presence/absence of 
connections 

Pre neuron 

Post neuron 

Pre neuron RB die dla aIN cIN dIN mn 

RD ipsi 0(0/2) 0.63 (34/54) 0.35 (6/17) 0.13 (2/IS) 0.09 (4/44) + + 

die contra - 0 + (0/l) - 0.33 (2/6) 0.43(18/42) 0.33(1/3) 0.46 (6/13) 
dla ipsi 0(0/17) 0.18(2/11) - 0.25 (2/8) 0.08(1/12) 0(0/2) -
aIN ipsi 0.07(1/15) [0.81] (17/21) 0.38 (3/8) 0.25 (4/16) 0.15(6/39) 0.2 (2/10) 0.33(1/3) 
cIN contra 0 + (0/42) 0 + 0++ (0/13) 0.26 (9/35) 1 ++ (I / I ) 0 ++ (0/3) 
dlN ipsi - + 0 + (0/2) ++ (6/7)* ++ (6/7y* ++ (45/62)* ++ (27/32)* 

Figures in parentheses give synapses found over number of pairs tested. For each neuron type, ipsi refers to synapses made on the same side and 
contra refers to synapses made on the opposite side. +, rare connectmns inferred from other experiments; ++. common connections but no 
quantitative data; •, connections frequent but preliminary recordings were used to select pairs of neurons that were connected, so connection 
probabilities are not meaningful. Square brackeu indicate an artificially high value for aIN contacts. 

in all types o f CPG neurons (see figure 4 in 1241). They 
were also present in a small proportion o f recordings f r o m 
dies |281 and dlas [26], and in 1/146 RBs (Figure 3b) . 

Descending Intemeuron synapses 
DINs corelease glutamaie and acetylcholine to excite 
other neurons via AMPAR, NMDAR and nicotinic acetyl
choline receptors |31,27l. They provide ipsilaieral excita
t ion to CPG neurons during tadpole swimming |31,37). 
In paired recordings, dINs were shown to directly excite all 
four types o f CPG neurons, including other dINs (Table 
1). Recordings in sensory pathway die and dla intemeu-
rons show that 9 o f 43 dies and 1 o f 2 dlas received weak 
on-cycie excitation (Figure 3d) . The simplest explanation 
is that this excitation comes f r o m dINs. 

Overall, the results f r o m paired recordings and other 
physiological recordings summarized in Table 1 reveal 
very widespread connectivity. Where evidence is available, 
neurons wi th dendrites (all except RBs) receive synapses 
f rom all other neuron types. This was unexpeaed and 
raised the possibility that the formation o f synaptic con
nections in the developing spinal cord may be stochastic 
and not precisely determined by detailed processes o f cell-
to-cell recognition. 

Anotomfcof evidence on the dorso-ventraJ d/strfbut/on of 
oxons and dendrites 
One alternative to specific cell-cell recognition mecha
nisms is that axons can chemically recognise neuronal 
dendrites and simply make synapses wi th any that they 
contaa ( in transmission electron miaoscope studies we 
have found very few axon-soma synapses; A Walford and 
A Roberts, unpublished). I f this hypothesis is correct, the 
probability o f c o n u a w i l l depend mainly o n the dorso-
venu-al distribution o f axons and dendrites, since axons 
run along die spinal cord, rarely branch, and make syn
apses directly onto dendrites that they pass. We have 
therefore examined these distributions for sbt spinal neu

ron types i n the rostral spinal cord. Dlas fo rm a small pop
ulation [261 and there were not enough examples to 
include them in this analysis. 

Neurons for anatomical analysis were seleaed where the 
soma was in the region where our elearical recordings 
were made ( I to 3 m m f r o m the midbrain; Figure l b ) . Spi
nal intemeurons were filled individual ly wi th neurobiotin 
using sharp micropipettes inserted f r o m the dorsal surface 
of the i n i a a cord (Figure 4a; see also [241 138]). The 
axons are all relatively straight wi th max imum tortuosity 
(aaual length/straight line distance) o f 1.02 (n = 6). Fig
ure 4b uses the aINs to illustrate the dorso-ventral disui-
butions o f axons and dendrites. 

The dorso-ventral range o f dendrites was determined f rom 
the positions o f the most ventral and dorsal dendrite for 
each neuron (Figure 4a,b). Tliis range w i l l l i m i t the 
number o f axons contaaed. We ignore the possibility that 
dendrites might be unevenly distributed w i t h i n this range. 
The dendrite dorso-veniral ranges were summed for each 
neuron type, except RB neurons, which do not have den
drites. For each 10% dorso-ventral posit ion bin (spinal 
cord diameter is approximately 100 so bin wid th is 
approximately 10 ; im) in the 10 / /m thick marginal zone 
where dendrites and axons lie, we f o u n d the probability 
that an individual neuron o f each type w o u l d have den
drites occupying that b in (Figure 5a). The dendrite distri
butions for neurons active during swimming (mns, aINs, 
clNs and dINs) were broad but all had a maximum just 
below the dorso-ventral midl ine ( in the 30% or 40% bin) 
and fel l away dorsally. In contrast, the dendrites o f die 
sensory pathway intemeurons had a maximum dorsally 
( in the 80% b i n ) and fel l away ventrally. 

We measured the dorso-ventral position o f axons every 
0.05 m m up to a maximum o f 1 m m f r o m the neuron 
soma. For each individual neuron, we pooled these meas
urements (discarding informat ion about the distance 
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Figure 3 
Unexpected synaptic connections, (a) In a left die (l-dic) 
interneuron exdtation is seen after variable delays as skin 
sdmulation strength to the opposite right side increases 
(asterisk). The Inset shows the probable pathway, (b) In a RB 
neuron, IPSPs (depolarising at resting membrane potential) 
occur during swimming, shown in a motor nerve recording 
(vr). Some IPSPs are mid-cycle (open arrowheads) and oth
ers are early-cycle (filled arrowhead). The histogram shows 
the phase distribution of 148 IPSPs in the swimming cycle, (c) 
Stimulating an aIN to fire an action potential leads directly to 
depolarising IPSPs at short latency in a RB neuron, (d) In a 
dta, fast on-cycle EPSPs, presumed to come from dINs, are 
seen on 77% of cycles during swimming. 

f rom the soma and whether the axon was ascending or 
descending) and used them to calculate the probability o f 
the axon occupying different dorso-ventral positions. 
These individual distributions were then averaged fo r all 
members o f a type (Figure 5a; Table in Anatomy section 
o f Additional file 1). The dorso-ventral axon distributions 
o f some neurons are rather narrow. RB sensory neuron 
axons are dorsal ( f rom 50% to 100%; maximum at 80%) 
while mns are ventral ( f rom 10% to 30%; maximum at 
20%). CINs, dlNs and dies are all slightly biased towards 
ventral positions ( f rom 10% to 60%) whi le inhibi tory 
aINs have a broad axon distribution (10% to 90%; maxi
mum at 40%). 

1.97 mm 

0.5 mm 
2.46 mm _ ^— 

rostral 
1.31 mm 

1.84 mm dorsal 

B 

rostral 

ventral 

cell body caudal dendrites 
100%j dorsal 

0%3yentral 
1 mm 

Figure 4 
Dorso-ventral distribution of axons and dendrites, (a) Exam
ples of neurobiotin filled neurons traced in lateral views of 
the spinal cord to show the dorso-ventral positions of the 
soma, dendrites and part of the axons. Dendrites emerge 
from the black soma, with the most ventral dendrite (open 
arrowhead) and most dorsal (black arrowhead) marked. 
Axons are on the same side as the soma except for dies 
where they cross ventrally then branch. Rostral to left, dor
sal up. (b) Examples of axon trajectories of individual alNs 
(measured at 0.05 mm steps from the soma at 0 mm) and 
dorso-ventral extent of their dendrites (vertical lines at 
right). 

Once the dorso-ventral distributions o f axons and den
drites were established, 'contaa' probabilities between 
axons and dendrites were calculated as fol lows for each 
pair o f neuron types. The probabilities o f individual axons 
or dendrites occupying a particular 10% dorso-ventral 
region were those plotted in Figure 5a. The probability 
thai a particular pre-synaptic axon and post-synaptic den
drite would both occupy the same dorso-ventral region in 
the narrow marginal zone, and could therefore make con
tact was simply the p rodua o f these probabilities. Overall 
contaa probabilities between each type o f neuron were 
then found by summing the separate probabilities for the 
ten dorso-venual regions (Table 2). The contaa probabil-
iues range from 0.04 to 0.91 and relate intuitively to func
tions. They are higher for RB sensory neuron contacts onto 
sensory pathway dies (0.65) than on to other neurons like 
dINs (0.29); they are low for die contacts w i t h each other 
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Figure 5 
Axons, dendrites and synapse probabilities, (a) Histograms summarise dorso-veniral distribution of cell bodies, dendrites and 
axons of different neuron types in 10% bins where 0% is ventral and 100% dorsal edge of spinal cord. Distributions are 
expressed as the protjability that a neuron will have a soma or dendrite in a particular dorso-ventral position. Axon distribu
tions are expressed as the probability that a 50 ^ segment of the axon f rom each type of neuron will lie in a particular dorso-
ventral position, (b) Plot of synapse probability from recordings versus contact probability f rom anatomy f o r cases in bold in 
Table 2. Highest point (RB-dlc) was omitted In calculating regression. 

Table 2: Probabilities of synapses (from Table I) and of potential 'contacts* between axons and dendrites for each neuron type 

Axons die ain 
Dendrites 

ein din mn 

RB ipsi 
Synapse 0.63 0.13 0.09 + (0.13) +(0.02) 
Contact 0.65 0.29 0.10 0.29 0.04 

die contra 
Synapse 0+ (0.04) 0.33 0.43 0.33 0.46 
Contact 0.08 0.89 0.64 0.54 0.82 

aIN cpsi 
Synapse (0.13) 0.25 C I S 0.2 0.33 
Contaa 0.28 0.72 0.57 0.60 0.50 

cIN contra 
Synapse 0+ (0.04) 0++ (0.40) 0.26 ++ (0.24) 0++ (0.37) 
Contaa 0.08 0.88 0.61 0.52 0.80 

dIN ipsi 
Synapse + (0.04) *++ (0.42) *++ (0.34) *++ (0.29) *++ (0.37) 
Contact 0.08 0.91 0.73 0.64 0.80 

mn ipsi 
Synapse (0.00) (0.41) (0.18) (0.10) (0.45) 
Contact 0.00 0.89 0.40 0.22 0.98 

Synapse probabdities In bold are those from recordings based on more random sampling. \A^ere there are no daa from recordings, esumaces of 
synaptic contact probabilities (in paremheses) are 46% of the anatomically estimated contact probabilities. For each neuron type, ipsi refers to 
synapses made on the same side and contra refers to synapses made on the opposite side. +. rare connections inferred from other experiments: 

common connections but no quantitative data: *. connections frequent but preliminar/ recordings were used to select pairs of neurons that 
were connected, so connection probabilities are not meaningfuL 
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(0.08) but higher onto the neurons activated after skin 
stimulation (0.54-0.89 for aINs, cINs, dINs and mns); 
they are quite high fo r contacts between neurons active 
during swimming (0.5-0.91 for aIN, d N and d I N contacts 
to each other and to mns). 

When c o n u a probabilities determined from anatomy 
were compared to synapse probabilities determined 
directly by electrical recording (Table 2) , the two were sig
nificantly correlated fo r pairs where the neurons were ran
domly chosen for recording (bold entries in Table 2; 
Pearson correlation coeffident 0.593; p = 0.042).TTiis sig
nificant relationship based on data from both anatomy 
and physiology (Figure 5b) was then used to predia the 
synaptic contaa probabili ty fo r cases wi th on ly anatomi
cal data (Table 2). We first omitted data for contacts from 
RB to die neurons where the extensive ro s t roouda l den
drites o f die neurons are likely to result in a relatively high 
synaptic contaa probability (see Discussion). Hie slope 
obtained by linear regression for the remaining points 
suggests that the probability o f a real synaptic contaa is 
around 46% o f that prediaed by anatomy. 

We suggest on the basis o f these results that during the for
mation of early synapses in the developing frog spinal 
cord, the different synapse probabilities found could 
depend simply on differences i n the geographical distri
butions o f axons and dendrites o f different neuron types. 
These distributions could be sufficient to ensure, for 
example, that dorsal sensory RB axons synapsed mainly 
wi th dorsal sensory pathway intemeurons rather than 
wi th more ventral neurons acuve during swimming (like 
mns). 

Modetling axonal growth and synaptic contact 
probabilities 
Since axons grow a considerable distance along the spinal 
cord (often 1 to 2 m m in a 5 m m long animal) and can 
wander dorsal or ventral as they grow, their pattern o f 
growth w i l l have a strong influence o n their potential to 
contaa dendrites o f different neuron types (Figure 4a). 
We conduded above that synaptic contacts may depend 
simply on dorso-ventral axon and dendrite distribution 
patterns. We therefore investigated whether a simple 
model, without any cell-cell recognition, could generate 
patterns o f axon growth that would reproduce the 
observed axon distributions and, therefore, the synaptic 
eontaa probabilities. For s impl idty , we assumed that 
dendrites are static and passive (see Discussion). 

Our computational model starts from the point when 
axons start to grow longitudinally (Figures I d and 4a). 
This point w i l l be determined by the position o f the soma 
and the init ial behaviour o f the axon. In the case o f RB 
neurons, the axons grow directly from the soma towards 

the head and tail. I n most other spinal neurons the axon 
first grows ventrally and then tums to grow longitudinally 
either o n the same side or after crossing ventrally to the 
other side. We use the experimental observations to give 
us starting positions and iniual growth angles o f axons as 
wel l as their final lengths. A repetitive process o f advanc
ing the axon 1 fim along its current growth angle and then 
mod i fy ing the growth angle is then applied i m t i l the pre
determined rosuocaudal length o f the axon is reached. 

The current location and orientation o f the u p o f the axon 
(growth cone) are represented by three variables: x(t) ros-
trocaudal position, y( t ) dorso-venira! position, and ^ t ) 
growth angle, ^ i s defined as the deviation from longitu
dinal growth; positive values o f d{t) indicate a tendency to 
grow dorsally while negative values o f ^ t ) indicate a ten
dency to grow ventrally. In our first s imple model just two 
parameters, a and y, are defined spedfically for each neu
ron type. TTie equations are: 

x ( t + l ) = x(£) + Acos(6?0j), (1) 

>-((+ l ) = y(t) + Asin(£?(0), (2) 

0{t+\)^{\-rWt) + <^, t = 0 , l n - 1 . (3) 

where n is the length o f axon; ^ is a r andom variable uni 
fo rmly disuibuted in the interval |-cr, a | {a typically is 
about 2 "-5*) ; and A is the 1 pm distance grown in each 
l ime step. The parameter ( 0 < / <1) represents the ten
dency o f an axon to t u m towards an angle o f 0 degrees -
in other words, the tendency o f the growth cone to orient 
towards longitudinal growth. We use aINs to illustrate our 
methods. Figure 6a shows aIN axons generated by the 
simple model for parameter values opt imized using the 
procedure described below together wi th plots o f the 
same number o f real axons. It is dear that the simple 
model is able to generate the descending part o f aIN axon 
growth (right pan o f the plot) but fails to fit the experi
mental d a u for ascending axons. This is because the 
descending aIN axons are mainly short w i th small t uming 
angles while the ascending aIN axons are longer wi th 
larger t u m i n g angles. When all neuron types were consid
ered we found that i f model axons had appropriate tortu
osities, then their dorso-ventral distributions were too 
broad and they of ten ran into the edges o f the spinal cord. 

The partial failure o f the simple model suggested thau in 
life, some faaors guide axons towards a longitudinal 
growth path and away from the edges o f the cord. We 

. therefore examined the t uming angles o f real axons 
(between points 0.05 m m apart) and f o u n d that they 
depended strongly on their cuneni angle o f growth and 
weakly on their dorso-ventral posit ion. This is illustrated 
fo r aINs in Figure 6b,c where both scatter plots show neg-
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Figure 6 
Modelling aIN axon growth and positional effects on axon turning angles, (a) aIN descending axons generated by a simple ran
dom growth model (red) fit the distribution of real descending axons (blue, to right) but model ascending axons do not match 
real ascending axons. (b ,c ) Real aIN ascending axon turning angles depend on the current growth angle and dorso-ventral (d-
v) position, (d ) In a model where growth angle depends on dorso-ventral position, generated aIN axons (red) match real 
axons (blue) closely, (e.f) Turning angles of modelled axons significantly match dependence of real axons on current angle and 
dorso-ventral position. 
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Table 3: Dependence of axon turning angles on current growth angle and dono*ventral position 

Slope of turning angle versus 

Axons Current angle P-value d-v position P-value 

RB 
Descending -1.15 0 -0.53 0 
Ascending -1.09 0 -0.57 0 

die 
Descending -1 0 -0.16 0.2 
Ascending -0.87 0 -0.15 0.007 

aIN 
Descending -0.95 0 -0.17 0.008 
Ascending -0.91 0 -0.08 0.06 

cIN 
Descending -0.71 0 -0.31 0.003 
Ascending -0.89 0 -0.12 0.031 

dIN 
Descending -1.15 0 -0.21 0.001 

mn 
Descending -1.25 0 -0.29 0.13 

P = 0 means <0.0005. d-v, dorso-ventraL Non-sugnificant P values in bold. 

ative correlations made clear by fitting the points by linear 
regression. For all measured neuron types the slope o f the 
regression lines for axon turning angles were negatively 
dependent on current axon growth angle (-0.71 to -1.25) 
and dorso-veniral position (-0.08 to -0.53) (Table 3). This 
remarkable finding means, firsdy, that the more an axon 
deviates f rom longitudinal growth the more it w i l l t um 
back; secondly, the dependence o f axon growth angle on 
dorso-ventral position means that for a lN axons, the 
upper and lower boundaries o f the cord are repulsive. 

In life many possible faaors could influence axons to 
direa them away from edges (for example, physical barri
ers to growth cone extension, dorso-ventral gradients o f 
repellent signals [38]) and guide them to a more longitu
dinal growth (for example, fascicutation wi th other longi
tudinal axons, longitudinal gradients o f attraaive or 
repellent signals |13)) . We aimed to encapsulate the 
essence of such diverse mechanisms by introducing a new 
feature into our model: y represents the dorso-venual 
position o f an attractor to which axon trajeaories are 
drawn wi th a strength o f //. Equations 1 and 2 are the same 
as above, but we replace equation 3 wi th : 

6̂ (1 + I ) = (1 - y)0{t) - MHO - y ) + t = 0,1 n - 1. 

(4) 

0 < r < \;0<Y < 1 

This model contains four parameters and to specify their 
values we used the fo l lowing optimisation procedure. For 

each neuron type we first pick random values o f the 
parameters and use these to generate 70 axons. After 
measuring the generated axons we calculate the tortuosi
ties and the dorso-veniral dis t r ibut ion o f axon positions 
just as for the experimental data. We then consider a cost 
funct ion that includes the squared differences between 
experimental and generated axon distributions i n 10% 
dorso-veniral bins and the squared difference between 
tortuosities. Using the optimisation process (see Meth
ods), we find parameter values that minimise the cost 
funct ion and give the closest match f o r each type o f neu
ron. We repeat the same procedure t o get opt imal param
eter values for each type o f neuron separately for 
ascending and descending axons where both exist. 

The revised model was able to generate axon growth pat
terns very similar to those in the spinal cord (for example 
alNs; Figure 6d). In many cases, the optimisation proce
dure was able to reach very small values o f the cost func
t ion; for the few cases where it d i d not, the generated 
axons were sti l l very similar to real ones. In addit ion, the 
modelled axon growth angles showed the same depend
ence on current angle and dorso-venual position as the 
measured axons. Just as in the real axons, scatter plots and 
linear regressions showed negative slopes (Figure 6e,f; 
Table 3) . 

The second revised model o f axon growth establishes that 
axon growth paths and distributions can be generated by 
very simple mles based only on the ini t ial posit ion and 
growth angle o f the axons. Since these modelled axon dis
tr ibutions closely match those measured for real axons, it 
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follows that iheir contaa probabilities with dendrites will 
also be similar and we have confirmed this. 

Con simple connection rules specify functional spinal 
networks? 
The results from recordings, anatomy and modelling of 
axon growth together suggest that early spinal networks 
may be able to develop using very simple rules. Since dif
ferent types of spinal neurons have charaaeristic dorso-
ventral positions for their cell-bodies, dendrites and 
axons, axons may not show any selectivity but simply syn
apse with a proportion of the dendrites that they contaa. 
We therefore wanted to test if simple stochastic rules of 
connectivity could lead to functioning networks able to 
generate patterns of motor output suitable to produce 
swimming. Recent experiments in the immobilised hatch-
ling Xenopus udpole have shown that a very small part of 
the spinal cord and hindbrain, only 0.3 mm long, can 
generate long-lasting, alternating, swimming-like activity 
after a 1 ms current pulse stimulus |27|. This minimal 
preparation is not as reliable as more intaa preparations 
and, as well as swimming, can also produce long-lasting 
rhvihmic motor output that is synchronous on the left 
and right sides (SR Soffe, unpublished observations). 
Such synchronous aaivity has been seen in more intaa 
tadpole preparations (39) and is a stable sute in many 
simple reciprocal inhibitory network models (40,41|. Our 
aim was to use stochastic rules to build models of the min
imal 0.3 mm long region of the tadpole nervous system to 
see whether they could produce similar rhvihmic outputs, 
panicularly swimming. 

We used model neurons with just a single compartment. 
Sp>ecific models were used for each type of spinal neuron 
with membrane properties and firing charaaeristics based 
on measurements from whole-cell patch recordings (421 
For simplicity we used a single RB neuron that excited all 
sensory pathway die and dla INs on the right side. Apart 
from RB neurons, there were ten of each type of neuron 
and the broad network conneaions are summarised in 
Figure 7a. The network has left and right sides that inhibit 
each other reciprocally. We have shown previously in a 
simple model of the rhythm generating part of the tadpole 
spinal network (CPG), that activating left and right sides 
with a delay leads to alternating swimming, but when the 
delay is too short, synchronous activity is produced from 
both sides (43). The present network model could also 
produce swimming or synchronous activity, probably 
again dependent on the exaa timing of activity in the sen
sory pathway. In the present model, synaptic conneaions 
were probabilistic and to imiute more realistic numbers 
of neurons (30 of each type) each model neuron had 3 
chances to make a contaa. Synaptic strengths could, 
therefore, be 0 or 1 to 3 times the single synapse strength 
(see Methods). Synaptic conductances and the ratios of 
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Figure 7 
Model networks with probabilistic connectivity, (a) The net
work has a single sensory RB neuron exciting neurons in the 
right half-centre, which also has sensory pathway die and dla 
interneurons. There are ten of each neuron type in each half-
centre. The broad pattern of connections is shown by the 
axons from groups of neurons onto the half-centres (trian
gles are excitatory and circles are inhibitory synapses). The 
actual synaptic connections are determined probabilistically 
for each neuron. Resistor symbols show electrically coupled 
neuron groups, {h^d) Examples of activity of selected neu
rons in response to a single stimulus to the sensory RB neu
ron for networks with connection probabilities based on 
experiments: (b) sustained swimming; (c) synchronous activ
ity on each side; and (d) no long-lasting response. 
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NMDAR to A M PAR in gluiamate synapses were specific 
for each type o f post-synapiic neuron so that synapse 
properties matched those found in physiology (see Table 
in final Network modelling section o f Addit ional file 1). 

In the first test, 50 different networks were made where 
the synapse probabilities between different types o f neu
ron were determined by those found experimentally (syn
apse probabilities f rom Table 2). Hie response o f each 
network to a single stimulus to the sensory RB was then 
tested once. We found that 80% o f these networks gener
ated sustained activity: i n 60% this was like swimming 
where left and right mns fired single, alternating action 
potentials on each cycle and the frequency was i n the 
range o f 10-30 Hz (Figure 7b); and 20% of networks pro
duced synchronous output on each side at twice the swim 
frequency (Figure 7c). The remaining 20% failed to give 
any long lasting response to the stimulus (Figure 7d). 
Once initiated, swimming and synchronous activity con
tinued indefinitely as there is no synaptic plasticity i n 
these networks. In another 50 networks all synaptic con
nections were given the same coniaa probability, which 
was the average contaa probability of the whole network. 
Swimming was never produced by these networks, even in 
networks where the high contaa probabilities in the sen
sory pathway (connections from RB to die and dla) were 
restored. 

We then investigated whether the particular synapse prob
abilities and suengths used in our first test o f the model 
were critical to its success. Changing individual connec
tions, especially i n the sensory activation pathway, could 
reduce the percentage giving prolonged activity. For exam
ple, when the die to c lN synapse probability was reduced 
from 0.43 to 0.33, only 54% of networks produced pro
longed activity (42% swim, 12% synchrony, n = 50) . To 
see whether the broader pattern o f synapse probabilities 
were important, we rounded-up all probabilities among 
aINs, clNs and dINs to 0.33 and found that 64% produced 
prolonged activity (26% swim, 38% synchrony, n = 50). 
These results show there is some flexibility i n the values 
for synapse probabilities that can allow these stochastic 
networks to generate prolonged activity. The relatively 
high failure rates suggest that the sensory activation path
way is not nearly as secure in the model as i n the whole 
animal. The reasons for this are not clear but the model 
network, although based on current evidence, is still 
unlikely to be a complete representation o f the real net
works. 

We conclude that simple networks, where synaptic con
nectivity is determined by the broad dorso-ventral loca
tion pattern or geography o f axons and dendrites, can 
generate organised swimming behaviour. 

Discussion 
The hatchling frog tadpole can be used to study the specif
icity o f connections between different types o f neurons 
because recent technical advances have made it routine to 
record from pairs o f neurons in the spinal cord. This has 
allowed the networks o f spinal and caudal hindbrain neu
rons conuol l ing swimming to be defined in considerable 
detail (23,28,25,26,31,27). It would be rash to claim that 
all the neurons involved have been f o u n d ; on the other 
hand, the evidence suggests that we have now defined all 
the major elements i n the spinal network conuol l ing 
swimming. Our knowledge o f the neurons and connec
tions i n this example o f a func t ion ing vertebrate circuit 
producing meaningful behaviour provides a unique 
opponuni ty to ask questions about how such a circuit 
develops. We have therefore examined synaptic connec
tions between seven different types o f neuron. This 
allowed us to define the synaptic c o n i a a probabilities 
between these different neurons (Table 1). When consid
ered i n a functional context most conneaions seemed 
very reasonable but, to our surprise, we found evidence 
for almost all possible conneaions. These observations do 
not rule out specific recognition processes aa ing during 
the format ion o f synaptic conneaions. However, they 
raise the possibility that simpler processes that lead to 
some 'mistakes* still provide connections wi th sufficient 
specificity to produce a properly funct ional circui t 

The simpler hypothesis that we have examined is that 
axons can recognise and make synapses w i t h any den
drites that they contaa, so the conneaions formed w i l l 
depend primari ly on the dis t r ibut ion o f axons and den
drites. I f this is correct then synapse fo rmat ion w i l l occur 
where axons and dendrites lie i n the same dorso-ventral 
regions o f the spinal cord. Given the small scale o f the tad
pole spinal cord, which Is only about 100 um in diameter, 
we have considered axons and dendrites to be wi th in con
taa range i f they simply lie w i t h i n the same 10% dorsov-
entral position bins: approximately 1 0 / m i in the <10 / m i 
thick marginal zone o f axons and dendrites. Cleariy, more 
complex approaches are necessary i n larger scale struc
tures like the cerebral conex |44 ,45 | . O n this basis, we 
therefore determined the anatomical contaa probabilities 
o f the axons and dendrites o f dif ferent neuron types and 
compared these to the synapse probabilities determined 
directly by electrical recordings. The significant conela-
t ion between the two sets o f probabilities suggested that 
synapses fo rm i n nearly 50% o f cases when an axon passes 
through a dendritic field. 

We conclude that axons make synapses w i t h the dendrites 
they chance to contaa rather than making synapses pref
erentially by recognising specific chemical markers on 
particular postsynaptic targets. Specific examples illusuate 
this. Skin sensory RB neurons drive a suong aossed exci-
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laiory reflex by firsi exdiing sensory pathway excitatory 
die intemeurons with commissural axons |30|. We might 
predia that connections from RB neurons to reciprocal 
inhibitory cINs would, therefore, be inappropriate and 
cell recognition haors might ensure they failed to form. 
Yet we find that these connections do form, and at a prob
ability prediaed simply by the overlap of RB axons and 
cIN dendrites. On the other hand, the excitatory connec
tions between RB neurons and die intemeurons occur 
with an unusually high probability (30). Again, this is 
appropriate to drive a strong contralateral reflex and we 
might expea that this high contaa probability would 
result from cell recognition. Yet the high probability can 
be explained by the distribution of die dendrites: unlike 
most spinal neurons, where dendritic fields are very nar
row longitudinally, those of dies are unusual in being 
extended along the length of the cord [46]. This gives 
them repeated chances to make contaa with RB axons. We 
suggest, therefore, that contacts are determined by the 
geography of the spinal cord, primarily by the dorso-ven-
tral distributions of axons and dendrites. 

If the dorso-ventral distribution of axons and dendrites is 
an important determinant of spinal network connectivity, 
then what are the faaors that conuol these distributions? 
Fortunately, this is a very active area of research. Different 
dorso-venual distributions of axons and dendrites origi
nate with the specification of soma positions. In the chick 
and mouse, a large body of work is defining the transcrip
tional networks that regulate the formation of an ordered 
dorso-veniral scries of longitudinal neuron columns iden
tified by the transcription factors that they express 
(47,48,7,8,491. Fundamentally, around 12 neuron types 
are arranged in a consistent sequence of columns from 
dorsal to ventral: sensory, sensory related Intemeurons, 
motor related intemeurons and mns. The same basic plan 
is seen in the tadpole spinal cord (Figure led). Once 
formed into these columns, neurons are polarized jD] and 
grow processes in very distinrt orientations. In frogs, most 
grow axons ventrally (with the obvious exception of the 
sensory RB neurons that grow longitudinally (46)). 
Growth cones immediately come under the influence of 
attractive and repulsive chemical gradients that conuol 
their direction of growth, for example, whether they tum 
or grow straight across the ventral surface to the opposite 
side before tuming (1,50,4,38,51,52]. In the tadpole all 
axons eventually grow in a longitudinal direction, starting 
in a charaaeristic dorso-ventral region for each neuron 
type. Meanwhile, dendrites grow from the soma or initial 
segment of the axon and, like the axons, come to lie in 
dorso-ventral positions charaaeristic for each neuron 
type. In conuast to extensive studies on dendrite develop
ment in brain neurons (53], there is litUe work on the 
mechanisms determining dieir growth in spinal neurons. 
Evidence from zebrafish shows that dendrites play an 

active role in extending very short distances (approxi
mately 10 /mi) towards longitudinal axons to form en-
passant synapses [54]. 

To test the plausibility of the proposal that synapse forma
tion between different neuron types in the tadpole spinal 
cord depends on the dorso-ventral distribution of axons 
and dendrites, we have used two types of modelling. Since 
axons grow long distances along the cord, they could wan
der to reach all dorso-ventral positions unless their 
growth is regulated. We therefore asked what kinds of 
growth rules were needed to reproduce the paitems of 
axon distribution found for different neuron types. A sim
ple tendency to tum towards longitudinal growth could 
not match the real axon distributions or their active tum
ing responses, which change with growth angle. To match 
the real axons we needed to add aaive tuming towards an 
attraaor line located at different dorso-ventral positions 
for each neuron type. This attraaor models the complex 
effects of interacting attractive and repellent dorso-ventral 
chemical gradients that have been proposed to aa on 
axonal growth cones in the spinal cord (4,1]. With the 
attraaor, our simple model could reproduce real axon dis-
uibutions and, by doing this, could reproduce the synap
tic conua probabilities determined anatomically. (These 
assume that dendrite distribution is static and passive, 
which is almost certainly not the case.) 

In our second modelling test we asked whether a func
tional spinal network capable of generating swimming 
activity could be generated simply on the basis of the syn
aptic contaa probabilities established by our physiologi
cal and anatomical data on the different spinal neuron 
types. It is important to remember that in our network 
model, the different neuron types are not all alike but 
each type has their own very particular and charaaeristic 
properties |42]. Using these neurons, we show that cmde 
probabilistic contaa mles do produce networks that vnW 
generate swimming activity while networks where all neu
rons have the same connection pattems fail. Taken 
together, the modelling supports the proposal that func
tional circuits could be produced using simple mles. For 
example: excitatory dIN axons should grow uilwards, 
mainly in the ventral 50% of the cord and synapse with 
40% to 50% of any dendrites passed; reciprocal inhibitory 
cINs should cross the cord ventrally, branch on the other 
side, grow mainly in the ventral 50% of the cord and syn
apse with 40% to 50% of any dendrites passed. It is 
important to emphasise that we are not suggesting that 
chemical recognition does not exist; axons need to recog
nise dendrites. We are suggesting that detailed cell-to-cell 
recognition may not be necessary to establish which con
nections are made in the first, functional pioneer circuits. 
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Conclusion 
In the core, axial pans of the venebrate nervous system, 
like the spinal cord and brainstem, neurons, dendrites 
and longitudinal axons are laid out in a dorso-venually 
ordered array on each side of the body. At early stages in 
development a major faaor influencing primary synapse 
formation in such regions may be the physical proximity 
or separation of axons and dendrites. If axons can recog
nise and coniaa dendrites, then synapses may form. So, in 
the frog tadpole spinal cord, dorsally located sensory 
axons mainly excite the dorsal dendrites emerging from 
the cell bodies of dorsal sensory pathway neurons (dies) 
but the very ventral cenual axons of mns will virtually 
never contaa these dendrites, so synapses will not be 
made. At this early, primary stage of development neu
rons may need only to be able to distinguish neuronal 
dendrites from axons and non-neuronal processes. 
Detailed cellular recognition and other more subtle proc
esses to specify cortea connections may, therefore, not be 
necessary for the formation of primary functional net
works during spinal cord developmenL TTiis lack of specif
icity could be tested if different types of spinal neurons 
could be marked and would form synapses in culture. 
Such recognition processes surely play important roles at 
later stages of development as connection patterns are 
refined (55,I9j. 

Methods 
Phyiiology: whole-cetl patch recording 
Details of the recording methods have been given recently 
|28l. Briefly, Xenopus tadpoles at stage 37/38 (Figure la) 
were anaesthetised with 0.1% MS-222 (3-aminobenzoic 
acid ester; Sigma, Poole. UK), immobilized in 10 /Al a-
bungarotoxin saline, then pinned in a bath of saline (con-
cenaauons in mM: NaCl 115, KCI 3, CaCIj 3, NaHCOj 
2.4, HEPES 10, adjusted with 5 M NaOH to pH 7.4). 
Saline with 0 mM Mĝ * was used so NMDAR mediated 
components could be seen. Skin and muscles over the 
right side of the spinal cord were removed and a mid-dor-
saJ cut made along the spinal cord to open the neurocoel. 
Small cuts were made in the wall of the neurocoel on the 
left side to expose more ventral neurons. The tadpole was 
then re-pinned in a small 2 ml recording chamber with 
saline flow of about 2 ml per minute. Exposed neuronal 
cell bodies were seen using a "40 water immersion lens 
with bright field illumination on an upright Nikon 
E600FN microscope. Antagonists were applied close to 
the recorded neuron soma using gentle pressure to solu
tion in a pipette with a tip diameter of 10-20 /im or 
dropped into a 200 /A well upstream of the recording 
chamber. Drugs used were NBQX (2,3-d[ihydroxy-6-niuo-
7-sul£amoylbenzo- [/Iquinoxaline- [/Iquinoxaline, Toc-
ris), D-AP5 (D-(-)-2-amino-5-phosphonopentanoicacid, 
Tocris), bicucuUine, strychnine, teuodotoxin, d-
tubocurarine and mecamylamine (Sigma) and DHpE 

(dihydro-P-erythroidine; Research Biochemicals Interna
tional, Nauck,MA,USA). 

Patch pipettes were filled with 0.1% neurobioiin and 
0.1% Alexa Fluor 488 (Inviirogen, Eugene, OR, USA) in 
intracellular solution (concentrations in mM: K-gluconate 
100, MgClj 2. EGTA 10, HEPES 10, Na^ATP 3, NaGTP 0.5 
adjusted to pH 7.3 with KOH) and had resistances around 
10 MQ. Junction potentials were corrected before making 
recordings. Signals were recorded with an Axodamp 28 in 
conventional bridge or continuous single electrode volt
age clamp mode, acquired with Signal software through a 
CEO 1401 Plus interface with a sampling rate of 10 kHz 
(Cambridge Elecuonic Design, Cambridge, UK). Offline 
analyses were made with Minitab (Mlnitab Ltd, Coventry, 
UK) and Microsoft Excel. All values are given as mean ± 
standard error of the mean. Experiments complied with 
UK Home Office regulations and received local ethical 
approval. 

A n o t o m y 

Neuron anatomy in Xenopus tadpoles at stage 37/38 was 
revealed by two methods. In the first method, mns were 
backfilled by applying fluorescein dextran to their axons 
in the swimming trunk muscles. After 10 minutes, muscle 
was removed to allow access to the side of the spinal cord 
and living mns observed and photographed on a Bio-Rad 
500 confocal microscope with a x40 water immersion 
lens [561. In the second method, all other neurons were 
filled with neurobioiin through recording microelec-
irodes |57|. After fixing and processing, the CNS was 
exposed and specimens mounted on their sides between 
coverslips for observation, tracing with a drawing tube, or 
photography at k500 on a bright field microscope 128). 

Tracings of the soma, dendrites and full axonal projec
tions were made to a scale of 0.1 mm = 50 mm. We used 
these scale drawings of neurons located 1 to 3 mm from 
the midbrain to record the dorso-ventral positions of 
soma, dendrites and axons for each type of neuron. The 
distances measured were: from the soma to the midbrain/ 
hindbrain border; from the dorsal to ventral edge of the 
cord at the level of the soma; from the dorsal edge of the 
soma to the ventral surface of the cord; from the ventral 
edge of the cord to the most dorsal and most ventral den
drite. On each side of the soma, the distance of the axon 
from the ventral surface of the spinal cord was measured 
every 0.05 mm. All measurements on fixed specimens 
were multiplied by 1.28 to compensate for shrinkage dur
ing dehydration 124). 

Modelling axon growth 
The traditional approach to modelling axon growth is 
based on the growth cone following molecular gradients 
|58|. Instead, we build a simple compuutional model 
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reflecting several key attraction and repulsion processes 
guiding axon growth. Ihe model includes four parameters 
(see equations 1, 2 and 4) that should be chosen to pro
vide a maximum similarity between experimentally meas
ured axons and model generated axons. Fitting the model 
to experimental measurements is least squares based and 
the similarity measure (or cost function to be minimised) 
contains two terms: the first term compares the distribu
tion of model axon dorso-ventral coordinates with the 
distribution of experimental coordinates; the second term 
takes into account the extent to which the axon path is cir
cuitous rather than direa by comparing the model and 
experimenial tortuosities. A detailed description of the 
cost function to be minimized in order to find optima) 
parameter values is given in Additional file 1. 

We run the optimization procedure for the ascending and 
descending axons of each neuron type. This process gives 
four optimal parameter valuK that we then use to gener
ate biologically realistic axons with distributions of doiso-
ventral coordinates and tortuosities similar to measured 
axon chararteristics for each neuron type. We test ihe opti
mal parameter values to define the reliability of the opti
mization. Testing reliability is an important part of the 
modelling procedure because the model includes a ran
dom component in equation 4. If, for example, we gener
ate two sets of axons using the same optimal parameters, 
we would like to be sure that these sets are similar. We also 
ensure that the properties of generated axons are not 
affeaed by 5% to 10% changes in model parameters. 
Optimal parameter values for each cell type, a detailed 
description of the testing procedure and results of testing 
are given in the Axon modelling section of AddiiioaaJ file 
1. 

Modelling spinal networks 
Ten neurons of each type are modelled on each side (421, 
but ai the level of connectivity each neuron represenis 
three neurons that fire synchronously. Thus, effectively 30 
neurons of each type are modelled on each side. Neurons 
with an ipsilateral axon connect only to ipsiJateral neu
rons, while those with commissural axons connea only to 
neurons on the opposite side. After these restrictions, con
nections are made purely on probabilistic rules, using the 
contact probabilities from Table 2 ('synapse' probabili
ties). Since each neuron represents three synchronously 
firing neurons, each neuron has three chances to connect 
to any other neuron, where at every single attempt, there 
is the same probability of actual conurt being esiablished. 

The connection strengths of individual synapses are pri
marily based on the strengths used in l42|, where these 
strengths resulted in realistic overall conductances during 
swimming. These suengihs had to be reduced to account 
for the probabilities of contaa within the network, and 

the multiplicity of synaptic contacts between two types of 
neurons. The actual maximum conductances during 
swimming can be computed only at nin-time, and vary 
wiih the connection pattern of the network, according to 
the probabilities of contaa (the parameters used are given 
in aTabie in the Network Modelling section of Additional 
file 1). Resistive electrical synapses are established 
between dINs and between mns with a strength of 0.3, 
meaning that a change of 10 mV in one neuron will cause 
a change of 3 mV in the other one. 
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Abstract 

In ihis paper we study a simple maiheraatical model o f axon growth i n the spinal cord of tadpole. A x o n dev elopment is described by a system of 
three difference equations (the dorso-ventral and longimdinal coordinates of the growth cone and the growth angle) wi th stochastic components. 
We find optimal panmieter values by fitting the model to experimentally measured characteristics o f the axon and using the quadratic cost function. 
The fitted model generates axons fo r different neuron types in both ascending and descending directions which are similar to the experimentally 
measured axons. Studying the model of axon growth we have found the analytical solution f o r dynamics o f the variance o f the dorso-ventral 
coordinate and the variance o f the growth angle. Formulas provide conditions for the case when the increase of the variance is l imited and the 
analytical expression f o r the saturation level. I t is remarkable that optimal parameters always satisfy the condi t ion o f l imited variance increase. 
Taking into account experimental data on distribution o f neuronal cell bodies along the spinal cord and dorso-ventra] distribution of dendrites we 
generate a biologically realistic architecture of the whole tadpole spinal con j . Preliminary study o f the electrophysiological properties o f the model 
wi th Morris-Lecar neurons shows that the model can generate electrical activity corresponding t o the experimentally observed swimming partem 
activity o f the tadpole i n a broad range o f parameter values. 
® 2008 Elsevier Ireland Ltd. A l l rights reserved. 

Keywords: Axon gnnkth; Compulaiional model; Stochastic: Variance 

1. Introduction 

It is well known that there are many sources of noise and 
stochasticity in neural systems. For example, in earlier phases 
of development of neurons, stochasiicity plays an iraponani 
role and in fact controls many intracellular and extracellular 
developmental processes (Kaem et al., 2005). The presence of 
stochasticiiy increases the complexity of neural systems and 
makes their functional behaviour more diverse, complex and 
conut)lIable. In this paper we model development of the neu
ral architecture of the spinal cord of the young frog tadpole. 
Although the development of the tadpole spinal cord includes 
a variety of stochastic processes governing the assembly of the 
neural architecture, this neural system demonstrates extremely 
robust functional behaviour. In fact, tiie interplay between deter-
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minisUc rules pre-wired in genetic instructions and stochastic 
processes of the growth of individual cells results in the neural 
circuit of Uie spinal cord controlling swimming. 

The developing spinal cord of the hatched clawed toad (Xeno-
pus) tadpole is a relatively simple biological system (Li et al., 
2001, 2003). The spinal cord contains less than 2000 neurons 
divided into very few types (^10) yet it allows simple reflexes 
and swimming. Experimental measurements are available to 
support the modelling of both the anatomy and electrophysiol-
ogy of spinal circuits (Sautois ei al., 2007; Li el al., 2007). Our 
modelling is based on experimental data collected at the Lab 
directed by Prof Alan Roberts at Bristol University (Li et al., 
2002,2007). These data allow us to examine both axon growth 
and synaptic connections between six different types of spinal 
neurons. 

Although there is a significant body of biological knowl
edge regarding the chemical cues and gradients that control the 
development of neuronal circuits (Dickson, 2002; Cllne, 2003; 
Chilton., 2006; Schnon^r and Dickson, 2004; Wen and Zheng, 
2006) many details of die biological mechanisms of axon growtii 
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are still unknown. The traditional approach to modelling axon 
growth is based on the idea that the growth cone follows differ
ent molecular gradients (Goodhill et al.. 2004; Xu et al., 2005; 
Krottje et al., 2007). For example, the mathematical model pre
sented in a recent paper (OTooIe et al., 2008) takes into account 
forces at the growth cone, the viscoelastic properties of the axon, 
and the adhesions between the axon and surrounding substrate. 
These three factors define whether the axon elongates by tip 
growth or simply by stretching. Here we do not consider the 
details of growth cone navigation in steep and shallow chem
ical gradients. Instead we build a simple mathematical model 
reflecting several key attraction and repulsion processes guiding 
axon development. Thus, our approach is to develop a mathe
matical model of axon growth which is as simple as possible 
and includes only a small number of parameters. The model 
should allow fitting to all available experimental measuremenis 
of axons of tadpole spinal cord: all cell types in both ascending 
and descending directions. 

The biochemical factors controlling the direction of axon 
growth are begiiming to be revealed (de Anda et al., 2005; 
Shirasaki and Murakami, 2001; Lyuksyutova et al.» 2003; Moon 
and Gomez, 2005; Charron et al., 2003; Gomez and Zheng, 
2006) and we have included in the model several basic bio
logical rules controlling both the dorso-ventral and longitudinal 
positions of the growing axon. For examplê  some axons start 
to grow venirally and cross to the opposite side. After crossing, 
these commissural axons are transformed and they then turn 
to grow longitudinally (Imondi and Kaprielian, 2001), either 
towards the head or the tail, or they branch to grow in both 
directions. Early patterns of growth by pioneer axons provide a 
basic scaffold of axon tracts that can be followed by later axons 
and in this way help to direct their growth (Wilson and Easter, 
1991). Once the axons have grown to more or less the "right" 
area, they start to make synapses with the branched dendrites 
emerging from the cell bodies of other neurons. 

This study of axon growth is based on a new hypothesis: 
there are no specific targets in this system and the axon grows 
according to some general gradient following rules which guide 
it to a particular Dorso-Ventral (D-V) region of the spinal cord 
(Li et al., 2007). The growing axon runs along the spinal cord 
(without branching) and makes synapses directly onto dendrites 
that it passes with some probability. More precisely: if the grow
ing axon meets a dendrite of some other neuron allocated in the 
same D-V part of the spinal cord, then with some probability 
this axon will make a synaptic contact. 

We present and smdy a simple mathematical model which 
is described by a nonlinear system of three difference equa
tions and includes a stochastic process. Fitting the model to 
experimental measurements of axons allows us to find optimal 
parameter values for each neuron type in the spinal architecture. 
Using these optimal parameters, we generate a biologically real
istic model of the tadpole spinal cord and test the possibility of 
generating electrical activity corresponding to swimming. 

In Section 2 we provide a short description of the experi
mental measurements of axons which have been used for model 
development and model fitting. In Section 3 we formulate a 
dynamical model of axon growth which includes a stochastic 

process.* In Section 4 we study dynamical and probabilistic 
properties of the model to lest its suitability for modelling the 
anatomical stracture of the spinal cord. Section 5 is devoted to 
a description of the process of filling the model to experimental 
axon measurements and finding optimal parameter values. These 
optimal parameters make it possible to generate a biologically 
realistic neural architecture of the spinal cord with the same sta
tistical characteristics as experimentally measured axons which 
are described in Section 2. In Section 6 we describe a simu
lated neural architecture of a biologically realistic model of the 
whole spinal cord. In Section 7 we discuss modelling results of 
the anatomy of the spinal cord and the possibility that the gen
erated neiuTil architecture will be able to produce a swimming 
behaviour. 

2. Description of Axon Measurements 

In this Section we provide a short description of experimental 
measurements of axons which have been used for model devel
opment. A detailed description of experimental methods and 
results can be found in Li et al. (2007). 

2.1. Neurons of the Spinal Cord 

The 2-day old, hatchling Xenopus ladpole is 5 mm long (see 
Fig. 1 in publication Li et al., 2007). The spinal cord forms a 
simple tube (Rs O.I nun diameter). On each side of the spinal 
cord lies a layer of nerve cells or neurons loosely organized into 
longitudinal colunms. As in all vertebrates, the neurons form a 
dorsal to ventral sequence: sensory neurons, iniemeurons and 
motoneurons. The young tadpole spinal cord has remarkably 
few classes of neurons and in this paper we consider the six 
classes of cells: sensory and motor neurons as well as four types 
of intemeurons. 

(1) Dorsal Rohon-Beard neurons {RB) are sensory, innervate 
the skin and respond to touch. Their central axons ascend 
and descend to excite other neurons. 

(2) Motomeurons {MN) have short axons which are mosdy 
ventrally located. 

(3) Dorsolateral commissural intemeurons {die) are sensory 
pathway intemeurons excited by sensory RB neurons. They 
excite contralaieral neurons and initiate swinoming activity 
when the skin is stimulated (Li et al., 2003). 

(4) Ascending iniemeurons (a/AO have a broad dorsal-ventral 
distribution. They inhibit neurons on the same side and it 
has been found that this inhibition can affect all types of 
neurons. 

(5) Commissural intemeurons {clN) are a middle dorso-ventral 
group of neurons which produce inhibition of on the oppo-

' Model description and some details of inodel fiuing have been reported 
in addititmal file which can be downloaded f r o m our open access publication 
( U ex aj.. 2007). Howe\-er, for ihe com-enieace of the reader ft-e review here 
diis on-line publicadon and provide a conqilcce descripdon of the oiodel and 
fining technique. Section 4 on analysis of variance groftih and Section 6 on 
reconstruction of spinal coid nnaiomical architecture are entirety novel. 
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Fig. I An example of axon measurements for aIN ascending cell. 

site side of the spinal cord (Dale, 1985) to organize the alter
nation of activity between the two sides during swimming. 

(6) Descending intemeurons {dIN) excite other neurons (Li el 
al., 2004, 2006). They provide ipsilateral excitation during 
tadpole swimming (Dale, 1985; Li et al., 2004). 

All intemeurons grow their axons in both ascending (from 
the tail to the head) and descending (from the head to the tail) 
directions except excitatory dIN neurons w hich send their axons 
in the descending direction only. It is likely that these connec
tions propagate activity from the head to the tail and form the 
metachronal wave of the swimming pattern. 

2.2. Projection of Axon Measurements 

The available experimental data provide measurements of 
spinal cord axons for each neuron type in both descending and 
ascending directions when both are present. The longitudinal 
dimension in the model was always l(XX)̂ .m however axons 
can be shorter or longer than this full length. Experimental 
measurements of dorso-ventral axon position (in micrometers) 
were made every 50fjLm. An example of a measured axon for 
aIN ascending cell is shoun in Fig. 1. The horizontal red line 
(y = 94.7 îm) shows the dorso-ventral height boundary of the 
spinal cord and the vertical red line shows the longitudinal 
boundary of considered spinal cord measurements. 

Fig. 2 shows an example of nine experimentally measured 
axons for the aIN cell type in descending direction. These mea
surements have been used to characterize axon allocations in the 
dorso-ventral dimension. 

The next step is the projection of axon measurements in the 
dorso-ventral direction. Because the boundaries of the spinal 
cord vary between tadpoles, we must normalize axon coordi
nates before projecting them. We do this by dividing both vertical 
and horizontal axon coordinates by the dorso-ventral height of 
the spinal cord (in the example shown in Fig. 1 of aIN ascending 
axons the height H — 94.7^tm). Normalization of both coor
dinates allows us to keep the angular structure unchanged. Of 
course, after this transformation a step along the horizontal axis 
will be different from 50jim however all angles and proportions 
between horizontal and vertical sizes will not be disturbed by 
the normalization transformation and will be kept unchanged. 

02 0.4 0.6 0 8 

I oogitudinal position (mm) 

Fig. 2. Example of experimental measurements of aIN axons grovwing in 
descending direction. 

After normalization we project all measured axon coordi
nates of this aIN ascending axon to the vertical axis and repeat 
this procedure for each aIN ascending axon. The total number of 
axon measurements isnf(n, = 167) and these data represent the 
dorso-ventral distribution of axon measurements in the interval 
[0. 100). We divide this interv al into 10 bins, count the number of 
measurements in each bin, and normalize it by the total number 

to get the probability of finding an axon measurement in the 
bin. The resulting di.stribution is shown in Fig. 3. The same nor
malization and projection procedures have been applied to each 
cell type and for axons in ascending and descending directions 
independently and similar distributions of D-V projections have 
been calculated. The D-V axon distributions of some neurons 
are rather narrow. RB sensory neuron axons are dorsal, while 
motoneurons are ventral. cINs, dlNs and dies are all slightly 
bia.sed towards ventral positions. Inhibitory aINs have a broad 
D-V axon disuibution. These D-V distributions will be used to 
fit the model to the experimental data (see Section 5). 
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Fig. 3. Example of I>-V distribution of expcnmeniaJ measurements of aIN axons 
growing in ascending direction. 
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2.3. Measurement of Cell Bodies and Dendrites 

Similar measurements are available for D-V distribution of 
cell bodies anddendrites. Cell bodies are located mostly in dorsal 
positions except motoneurons which are located more ventrally. 

The dorso-veniral range of dendrites was determined from 
the positions of the most ventral and dorsal dendrite for each 
neuron. This range will limit the number of axons contacted. 
We ignore the possibility that dendrites might be unevenly dis
tributed within this range. The dendrite dorso-ventnU ranges 
were summed for each neuron type, except RB neurons, which 
do not have dendrites. For each 10% dorso-ventral position bin 
(the spinal cord diameter is approximately 100|im so bin width 
is approximately 10pjii)inthe 10p.m thick mai^nal zone where 
dendrites and axons lie, we found the probability that an individ
ual neuron of each type would have dendrites occupying that bin. 
The dendrite distributions for neurons active during swimming 
(MNs, aINs, cINs and dINs) were broad but all bad a maximum 
just below the dorso-ventral midline (in the 30% or 40% bin) 
and fell away dorsally. In contrast, the dendrites of die sensory 
pathway inieraeurons had a maximum dorsally (in the 80% bin) 
and fell away ventrally. 

We will use these data regarding the distribution of cell bodies 
and dendrites to generate the whole neuronal architecture of the 
spinal cord (Section 6). 

3. Model of Axon Growth 

Since axons grow a considerable distance along the spinal 
cord (often 1-2 mm in a 5 mm long animal) and can wan
der dorsal or ventral as they grow, their pattern of growth will 
have a strong influence on their potential to contact dendrites of 
different neuron types. Analysing experimental data we con
cluded that the whole neural circuit of the spinal cord and 
synaptic contacts may depend simply on dorso-ventral axon 
and dendrite distribution patterns (Li et al., 2007). We there
fore investigated whether a simple model, without any cell-cell 
recognition, could generate panems of axon growth that would 
reproduce the observed axon disuibutions. For simplicity, we 
assumed that dendrites are static and passive. 

3.1. Specification of Model Requirements and Model 
Variables 

Our computational model of axon growth stans from the point 
when axons suut to grow longitudinally. This point will be deter
mined by the position of the soma and the initial behaviourof the 
axon. In the case of RB neurons, the axons grow direcUy from the 
soma towards die head and tail. In most other spinal neurons the 
axon first grows ventrally and then turns to grow longitudinally 
either on the same side or after crossing ventrally to the other 
side. We use the experimental observations to give us starting 
positions and initial growth angles of axons as well as their final 
lengths. A repetitive process of advancing the axon Ifim along 
its current growth angle and then modifying the growth angle is 
Uien applied until the predetermined rostrocaudal length of the 
axon is reached. 

The current location and orientation of the tip of the axon 
(growth cone) are represented by three variables: x rostrocaudal 
position, y dorso-ventral (D-V) position, and Q growth angle. $ 
is defined as the deviation from longitudinal growth; positive 
values of 9 indicate a tendency to grow dorsally while negative 
values of 9 indicate a tendency to grow venirally. 

In the previous section we described experimental measure
ments which had been made for tadpoles with different spinal 
cord heights. To reflect that in the model, we consider axon 
growth in one side of the spinal coid represented as a rectangle 
with some height H corresponding lo ihe dorso-ventral dimen
sion with values randomly distributed in the range of admissible 
biological values (about lOOjxm) and fixed length W = 1000p.m 
corresponding to the longitudinal axis. Thus we consider the 
rectangle H x W and growing axons are allocated inside this 
field. 

Developing the model equations, we implicitly assume tiiat 
chemical gradients experienced by the growth cone are expo
nential, which for a single gradient would produce a constant 
rate of turning independent of the location within the gradient 
(but not independent of the current growth angle). The depen
dence of axon growth angle on dorro-ventral position (note that 
the dorso-venu:al axis corresponds to the vertical axis (height) 
of the rectangle and ihe longitudinal location is considered to 
lie along the horizontal axis (length) of the rectangle) that we 
observe is assumed to be the consequetice of interaction between 
at least iwo gradient-following processes: the noise in die axon 
growth angle and the tendency to grow towards some particu
lar location. The noise component describes a random deviation 
of the current angle from the deterministic component and is 
represented by a random variable uniformly distributed in the 
interval (—a. a) , where parameter or defines the boundary for 
the angle deviation (see Fig. 4). Thus, the noise is modelled by a 
uniformly disuibuted random variable with mean equal to zero 
and variance equal to a-/3. 

3.2. Mathematical Formulation 

We describe the iterative process of axon growth by the sys
tem of three nonlinear difference equations. Iterations start from 
initial coordinates x q = 0 and some value yo in the rectangle 
H X W and irtitial growth angle OQ. The values yo and are 

Height (dorso-ventral posilion) 

C(jf(f+2)Mf+2)) 

9 
S ( J ( ( * + t ) ^ M ) ) 

Length 

Fig. 4. The deienninistic direction of grownh is shown by ihe black line con
necting point A and the yeUow do t The angle specifies boundaries of random 
deviation. The red line shows the chosen directicm of growth for ihe itemrion. 
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derived from expcrimentaJ distributions of initial D-V coordi
nates and growth angles. The system of axon growth equations 

(3.1) 
X„^\ = X „ + d^COsiBn) 
yn^\ = > n + ^SiniOn) 
Bn+\ = ( I - + ^{y - yn) + H 

where n is ihe iteration number which represents ihe current 
position of the lip of the growing axon; ̂  is a random variable 
uniformly distributed in the interval [-a, a]; (a typically isabout 
2-5°). A is the 1 p.m distance grown in a single iteration. The 
parameter y represents the tendency of an axon to mm towards 
an angle of 0**—in other words the tendency of the growth cone 
to orient towards longitudinal growth. If y is zero (and /a = 0 
as well) then the deterministic part of the growth angle is not 
changed at each time step and a random deviation applies to 
this direciion. When 0 < y < 1, the term with y ihe equation 
for 9 will cause the angle to decay to zero. This pan of the 
model can be justified by experimental findings which show 
that this orienting process towards zero angle is dependent on 
the current deviation from longitudinal growth—the sleeper the 
current growth angle, the stronger the tendency to straighten 
towards horizontal growth. The effect of parameter y can also 
be interpreted as the consequence of a longitudinal gradient-
following process, which would be expected to produce the same 
dependence on growth cone angle. 

The parmneter y represents the dorso-veniral position of an 
attractor to which axon trajectories are drawn with a strength 
which can be described by parameter ̂  (see Eq. (3.1)). Thus, 
parameters /i and y characterise the interaction between two 
opposing gradient-following processes. The parameter y is the 
dorso-ventral position at which these processes effectively can
cel each other out. The parameter// represents the strength of the 
net attraction towards y. The effects of these parameters can be 
interpreted as a system with two repulsive gradients, one push
ing from the ventral side to the dorsal side (we know that diere is 
some drive here ai least with the commissural neurons) and one 
pushing from the dorsal side to the ventral direction (Li et al., 
2007). The relative sensitivity of die axon to ihese two gradients 
would determine the value of the parameter y and the absolute 
sensitivity of the growth cone to hgands would determine the 
value of the parameter / i . 

3.3. Discussion of Specific Features of the Model 

In life, some factors guide axons towards a longitudinal 
growth path and away from the edges of the cord. We there
fore examined the turning angles of real axons (between points 
0.03 nuD apart) and found that they depended strongly on their 
current angle of growth and weakly on their D-V position. For 
all measured neuron types the slope of the regression lines for 
axon turning angles were negatively dependent on current axon 
growth angle and dorso-ventral position (Li et al., 2007). This 
remarkable finding means firstly that the more an axon deviates 
from longimdinal growth the more it will turn back. Secondly, 
the dependence of axon growth angle on dorso-ventral posi

tion means that the upper and lower boundaries of the cord are 
repulsive. 

There are many possible factors that could influence axons 
to direct them away from edges (e.g. physical barriers to growth 
cone extension, D-V gradients of repellant signals, Bourikas et 
al., 2005) and guide them to a more longitudinal growth (e.g. fas-
ciculation with other longitudinal axons, longitudinal gradients 
of attractive or repellent signals, Lyuksyutova et al., 2003). In our 
model the essence of such diverse mechanisms is encapsulated 
by parameter y which represents the dorso-ventral position of 
an attractor to which axon trajectories are drawn with a strength 
of / i . This fact can be proved easily in case of the determinis
tic model without any stochastic component to cause deviations 
from the attracting level. It is important to understand the prob
abilistic nature of that influence and in particular whether die 
variance of y„ is limited or will grow to infinity with the iteration 
number. We will address this question in the next Section. 

This model contains four parameters and to specify their 
values we use an optinnisation procedure to fit the model to 
measured axon data and find optimal parameters. In Section 
5 we define a cost fiinction and describe the optimization proce
dure. The cost fiinction includes the squared differences between 
experimental and generated axon distributions in 10% dorso-
ventral bins and the squared difference between tortuosities. 
Optimal parameter values are found that minimise the cost func
tion and give iheclosest match for each type of neuron. We repeat 
the same procedure to get optimal parameter val ues for each type 
of neuron separately for ascending and descending axons where 
both exist. 

The model of axon growth establishes that axon growth paths 
and distributions can be generated by very simple rules based 
only on the initial position and growth angle of the axons. Since 
these modelled axon distributions closely match those measured 
for real axons, it follows that their contact probabilities with 
dendrites will also be similar and we have confirmed this (Li et 
al., 2007). 

Also, the model was able to generate axon growth patterns 
very similar to those in the spinal cord. In many cases, the opti
misation procedure was able to reach very small values of the 
cost funcfion; for the few cases, where it did not, the gener
ated axons were still very similar to real ones. In addition, the 
modelled axon growth angles showed the same dependence on 
current angle and D-V position as ihe measured axons. Just as 
in the real axons, scatter plots and linear regressions showed 
negative slopes. This significant match of model and real axons 
is important as these features of measured axons were not used 
during model development 

4. Analysis of Time Course of Variance 

The mode! of axon growth is formed in terms of a system of 
three nonlinear difference equations, one of which has a stochas
tic term. The resulting process of axon growth is sculpted by a 
complicated interplay between the deterministic and stochastic 
components of this system of Eq, (3.1). On each time step we 
add a random \'ariable, therefore, the variance of >'„ grows with 
time and may reach large \'alues after some number of iterations. 
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Thus it is important to understand how the variance of the D-V 
coordinate and the variance of growth angle depend on the itera
tion number In particular, the important question is whether the 
variance is limited and saturates to some level when time tends 
to infinity or the variance increases without limitation. We have 
found an analytical solution to this problem. We only need to 
consider two equations for y„ and 9„ because these equations 
do not include x„. In addition, we consider A = 1 and to sim
plify formulas we introduce ^ = (1 - y). In our consideration 
of the model, the angle 6„ is small and we use this fact to sim
plify the original nonlinear model and make it linear. Thus, for 
study of variances we consider the following model of two linear 
difference equations: 

+ l = yn +0rt. 

Denoting the constant term in the first equation by D = /ly 
we have the following equations: 

y„+i =e„-\-y„. 
(4.1) 

It is useful to convert this system of two first order difference 
equations into a single second-order difference equation for 9„ 
by excluding the variable yn -

en+\ \)en - (^ + /X)e„-I + ( ? „ + ! - ^„) . 

Substitutions p = fi-^\\g = -(^-1- //) lead to the following 
second order linear difference equation with a stochastic term: 

(4.2) 

We would like (o find the variance of d/, as a function of n. 
First, we define initial values. Generally speaking this second 
order equation needs two arbitrary initial conditions. However, 
from a consideration of the initial conditions for system (4.1) 
we can find: 

{ yi = 5o -1- >-o 
ei=^o- Myo + + 

where BQ and yo are arbitrary constants. We can rewrite the 
second equation as 9i = Ai-\-^i where Ai includes all non-
random terms. Thus the initial conditions for (4.2) are &o and 

= Ai + where and A\ are arbitrary constants. Let us 
write several sequential solutions of (4.2): 

Bo = Ao, 

= Ai + ^u 
^ = A2 + ( P - 1 ) ^ 1 + ^ 2 . 

Oi = Ai-{-ip^'P + q)^i -\-ip- \)$2 + ^3 . 
e^=A4-\- ip^ ~p^-\- 2pq - q)^i + (p2 - p + ^ ) |2 

+ ( P - 1 ) ^ 3 + ^ 4 . 

where i4o. A], A4 denote the sum of all non-random 
terms. 

From these equations we can see that any equation includes 
the same terms as the previous equation (with the index of $ 

increased by 1), plus one new term which is ^ with the index 
corresponding to the index of 0 in the left hand side. Now we 
can write the general fonn of equation for 0„. We denote the 
pan of the equation without a random variable by A„ and we 
introduce coefficients Bk to give terms with the form Bn-k^k-
The equation for $„ is 

6n = A„-^ Bn-i^\ + B„-2^2 + - • - + + BQ^„. (4.3) 

Taking into account two sequential equations for n = n = 
k+ 1: 

(4.4) ek = Ak'^ Bk-i^\ - I - + - - - + Bi^k-l + Bo^k 
Gk+l = At+i - f Bk^i - f Bt-ib + .. - + + Bo^k+i 

and using the Eq. (4.2) we can write an equation for 9k+2 which 
provides an iterative formula for coefficients Bk '. 

ek+2 = pOk^\ -^q9k= {pAk^\ -f flAft) -J- ipBk + ^Bjt-i)^ 

+ {pBk~i + qBk-2)t -E- . • - + {Bjp + 9Bi)^*_i 

'h(Bip-i-qBo)^t -hipBo-l)^k+l +f*-^2. (4.5) 

Now we can write iterative equations for the coefficients fi*: 

Bo= 1. 
Bi = p - 1 , 
B2 = pBi -\-qBo. 
Bi = pB2-{-qBi, 

and in the general case: 

B„ = pB„^i-\-qB„-2. (4.6) 

Solution for the second order linear difference Eq. (4.6) with 
the initial conditions Bo= \, B] = p — 1 is 

Bn = :[(x, - i ) ; . 7 - ( ^ 2 - i ) ^ 2 l (4.7) 

where X\ and X2 are roots of the quadratic equation: 

k ^ ~ p k - q = 0. (4.8) 

Let us consider the variance of both sides of the Eq. (4.3) 

Var(^„) = Var(^)lflJ_, + + -^ ^ + ^J]- (4.9) 

We use the formula (4.7) to substiiine for the coefficients Bn 
in (4.9): 

Var(^„) = 
Var($) 

3 ( / ^ - f 4 ^ ) h - ' ^ ' ^ ' ^ ' ' - ' ^ ' ' ^ ' - ' -

+ (A?)""') -f- CA2 - l)-(i + a | H- ( k l ) ^ - h . . . 

+ (^^2)""') - 2(Xi - 1)C;., - I)(I -1- A,A2 -H 

- I - ( ; . , A 2 ) " - ' ) . 
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Using three limes the formula for summation of a geometric 
progression with common ratios A^, and Aj X2 and substituting 
Var{^) = we have the final formula for the variance of 6„: 

Var<e„) = 
or 

3(/72 + 4<7) 

( A i - l ) ' 
(1 - A f ) + 

(Xa - !)• 

2(Ai - 1 ) ( A 2 - 1) 
1 

(1 - ( ^ 1 X 2 ) " ) 

If|Xil < 1 and|X2l < 1 then die variance saturates for large 
n and we can simplify tiiis expression for the case n -> 00: 

Solving this second order Unear equation with initial condi
tions Bo = \; Bi = p gives the following formula for Bk'. 

Bk = 

Here X\ and kz are the roots of quadratic Eq. (4.8). 
Now we consider the variance of botii sides of (4.12) and 

substitute the formula for Bt' 

VarO'n+i) = 
Var<̂ ) 

Simplifying this expression gives the following geomeuic 
progressions: 

Var(0oo) = 
1 - A t 3(p2 + 49) 

2(X, - 1)(X2 - 1) 

(Xi - 1 ) ^ . fe-iy 
-1 "i 

1 - X , A 2 

An expression for the variance of y„ as a function of ri can be 
derived using die same metiiod we used for die variance of ^n. 
Let us start from Eq. (4.1) and excluding the variable $„ re-write 
the system of two first order equations as the second order linear 
equation for the variable y„: 

y„+i = + l)y„ - + + 0 + (4.10) 

We use the same substimtions as above p = ^ + 1; 9 = 
+ fj,) and this gives the following second order Unear dif

ference equation: 

yn+i = pyn + qyn~i + + (4.1 1) 

The initial conditions for this equation are yo and yj , these 
can be considered as arbitrary constants. Also, we represent all 
terms containing no random variable by arbitrary constants A„ 
with corresponding indexes (A2, As,- -.)- The result of tite first 
three iterations is the following: 

y3 = A3 + + ^ 2 . 

yA = A4-h(p^-hq)^i-hph-^b' 

Introducing coefficients Bk to give terms wid) the form 
B„-t^k, we can write the general form of the equation: 

y„+l = A„+i + + B„^2h + - - . + B2^n-2 + Bi^n^i 

-\-BoU (4.12) 

A consideration of cases /i=/t, /i = A+ I,and/i = it + 2 
similar to that used above yields a general expression for Bt^i: 

Bk+\ = pBk -^-qBk-x. 

Var(>'„+,) = 
Var(^) 

p 2 + 4 ^ 

X [((X?)" + (A?)"-'+ . . . + X?) + ( ( X 2 ) % . . . 

+ X. | ) -2 ( (XiA2)" + . . . + (X,X2)) . 

Summing three geomemc progressions with common ratios 
k], kl, and X1X2 and substituting Var(f) = yields Uie fol
lowing expression for the variance of y :̂ 

Var(>-„) = 
« 2 

3(p2+4^) 

2n-2 2rt-2 

- 2X1X2 
1 - ( X 1 X 2 ) " 

1 - A1X2 
(4.13) 

If |X] I < 1 and IX.2I < I then the variance saturates for large n 
and the formula for the case n 00 is 

Var(>'«)= 3(p2-i-4g) 
2x1X2 

- 4 1 - X , X 2 
(4.14) 

Fig. 5 shows both analytical and computational variances 
versus iteration number. This figure shows the variances for 
aIN cells with axons growing in descending direction. Optimal 
parameter values (the first row in Table 1) have been calcu
lated according to the model fitting procedure (model fitting and 
parameter optimisation are described in the next Section). Ana
lytical solution for the variance of dorso-ventral coordinate is 
shown by smooth red line calculated according to formula (4.13). 
This \'ariance saturates on the level 127.5 (dotted line) and this 
sanirauon level has been calculated by using the formula (4.14). 
It is interesting to note that using optimal parameters for calcu
lation of die roots of characteristic equation (4.8) gives |Xi| < 1 
and IX2I < 1 for all cell types in all directions. For example for 
aIN axons in descending direction X] ~ 0.999 and X2 = 0.882. 

Computational variance has been calculated according to 
the following procedure. First, optimal parameter values of die 
model have been found by nonlinear least squares fit of the model 
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Fig. 5. Analytical and computauonal variances of axon D-V coordinaie vs. the 
iteration number. 

to experimental measurements of axons. Second, using optimal 
parameter values we generate 200 axons starting from different 
initial values of the random number generator. Each axon is gen
erated in the interval jc € [0. n). n = 2. 3.4 3000. Thus, for 
each iteration number n we generate a sample of D-V coordinates 
\ \ . >';^ and calculate a standard statistical estimate of 
the variance. It is clear from Fig. 5 that the estimate of variance 
varies in a wide range. Similar computations have been done for 
the variances of axon growth angle ^ and both analytical and 
computational variances are shown in Fig. 6. The variance of 
axon growth angle saturates much faster than the variance of the 
D-V coordinate of the axon. 

5. Fitting the Model to Experimental Measurements 
and Optimal Parameters 

Our goal is to find mtxiel parameter values to accurately sim
ulate an axon grouth process which can generate axons that 
are similarly distributed in space as experimentally measured 
axons. Similarities are measured using a cost function with tuo 
components and the optimization procedure looks for a set of 
values of the four model parameters which provide a minimum 
of the cost function. The first component of the cost function 
takes into account similarity of distributions of axon projections 
in the dorso-venu^l dimension. The projection procedure into 
10 bins has been described above for experimental measure-

g 0 025 

0 015 

0 0O5 

3000 

Fig. 6. Analytical and corapuuuonal variances of axon growth angle vs. the 
iteratioQ i 

ments and the same procedure was applied to generated axons. 
After that squared differences are calculated for each bin and 
summed. The second component of the cost function consid
ers the squared difference between tortuosities of measured and 
generated axons. We would like the cost function to take into 
account the extent to which the path of the axon is circuitous 
rather than direct. The results from multiple model simulations 
suggest that tortuosity (total path length divided by straight line 
distance between start and end points) is an appropriate measure 
for this purpose. Thus, we calculate the tortuosity of each axon 
using the following formula: 

Y ^ J i x , - x,.0' ^iyi-yi-^9• 
T= 1=1 (5.1) 

\/{xk - jcq)' -J- (y* - yo)' 

where (x,. y,), i = 0. 1 it arc measured coordinates of the 
axon, and k is the number of measurements for the axon. After 
that we calculate the average tortuosity of experimental axons 
T*. The same procedure can be applied to generated axons and 
the average tortuosity of experimental axons is f " . 

Now we would like to describe the process of axon gener
ation. Suppose that values of the four parameters of the model 
arc known, then we can start the process of axon generation 
described by the model equations above. For that we need to 
choose initial values for variables of the dynamical system, i.e. 
coordinates of the starting point of the axon (.to. vq) and the 

Table I 
Parameters for model axon generation 

aINdes 0.104 0.119 0.0118 0.551 0.999 

aINas 0.237 0.0881 0.0267 0.698 0.997 

cIN des 0.0538 0.0615 0.0139 0.736 0.998 

cIN as 0.0591 0.0626 0.0109 0.711 0.998 

dINdes 0.122 0.0957 0.0211 0.381 0.998 

RB des 0.117 0.0453 0.0558 0.698 0.977 •¥ 0.0067i 

RBas 0.122 0.O432 0.0500 0.792 0.978 + a0057i 

die des 0.142 0.09200 0.0411 0.412 0.995 

die as 0.114 0.115 0.0179 0.650 0.998 

M N 0.105 0.417 0.0282 0.176 0.999 

M*xlulu> 

0.882 
0915 
0.941 
0.919 
0.907 
0.977-0.0067i 
0.978 -0.00571 
0.913 
0.887 
0.583 

n Q77 
0.978 



110 

100 

9-" 

R. Bohsy uk rt al. / BioSystems 93 t20O8) 101-114 

MoOe< generated axons 

Lor>gitudinal posrtion (mm) 

Fig 7 Example of generated axon for optimal parameter values of aIN ascendmg neuron t>T)c. Green Ime shows generated axon and red line shows approximation 
with SOpim sampling along the bonzonlal axis. Lower panel shows the same axon with proportional axes; almost invisible axis marks and labels are the same as in 
the upper panel. 

initial growth angle 9Q. Also, wc need to fix the length of the 
generated axon. 

For generation of all axons wc choose the same initial point 
in the horizontal axis: XQ = 0. To choose the initial value of 
the vertical coordinate, we first calculate the sample distribu
tion (10 bins for 0-100 interval) of normalised initial vertical 
coordinates of all experimentally measured axons and gener
ate a random number ran according to this distribution, thus, 
yo = ran. After that, to choose the initial angle, we con
sider the bin of distribution where the value of ran is and 
study initial angles m^m of axons which have the 
vertical coordinate of their starting point in this bin. We gen
erate a uniformly distributed random angle T) in the interval 
min(»7i, ri2 max(;;i. 172 ^q) the initial growth 
angle ^ = r). Similarly, for the axon length we build the dis
tribution of experimental axon length and generate the random 
number according to this distribution. Also, we use the same pro
cedure to generate the dorso-venu^ height of the spinal cord: 
we build the distribution of experimentally measured dorso-
ventral heights and generate the random number (ran-height) 
according to this distribution; thus, we have chosen the rect
angle {ran-height 1000) where all model generated axons will 
be allocated, i.e. we use the same rectangle to generate several 
axons and allocate them to the same rectangle. 

After fixing all initial values and axon lengths we mn iter
ations and generate an axon. For axon generation we use step 
A = ljun. To get generated axon data similar to the experi

mental measurements we sample model axon coordinates e\er> 
50M.m and use these sampled data for the follow ing procedures: 
projection of axons, building D-V distribution, calculation of 
tortuosity, etc. Fig. 7 shows an example of a generated model 
axon for the optimal parameter values fitted to alN ascending 
experimental measurements (the second row of Table 1). Green 
line shows generated model axon w ith 1 jim step, markers show 
measurements al 50p.m steps along the horizontal axis, the same 
sampling as in experiments. The lower panel of Fig. 7 shows the 
same generated axon in the "correct" scale where vertical and 
horizontal axes are proportional and angles are not distorted. 

It is important to note that the procedure for choosing initial 
values and axon length involves generating random numbers. 
This means that repetition of the same procedure will result in 
the generation of a different axon with different initial values 
and a different length. Thus, wc repeat this procedure r times 
(r = 70), generate r axons allocated inside the same re -^ngle, 
and calculate the dorso-ventral distribution (10 bins for (U, . „. . 
interval) of all vertical coordinates of all generated axons. This 
distribution we denote by ( \ ^ and the total num
ber of coordinates used for calculation of the distribution is 
(index m here means 'model'). Also, for each model axon we cal
culate the tortuosity and find the average tortuosity of generated 
axons f". 

Now we can define the cost function which includes both sim
ilarity of distributions and similarity of tortuosities. To measure 
similarities of distributions we use a sum of squared differences 
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Fig. 8. An example of axons generated by model for RB cells in ascending direction. upper panel) and expenmentally measured axons (lower panel) Average model 
tortuosity ?^ = I.OI. Average expenmental tortuosity T* = 1.009. 

between experimental and modelled distributions. To make a 
guess about possible values of such a sum. we would like to 
use normalization w hich is traditionally used in statistics for the 
one-tailed goodness of fit /--test (Kendall et al., 1999). Thus, 
the first term of the cost function is 

, _ f ( y f - y T ) ^ (5.2) 

where , >-J" are projection counters for the /th bin for experi
mental and model results respectively, i = 1.2 10, and 
/ J m represent the numbers of measured axon points for experi
ment and model, respectively. 

It is known in statistics that the 5% critical value with 9 d.f 
for the one-tailed /--test is 16.9. Thus, this value can serve as 
guidance for understanding the scale of cost function values and 
judging the quality of the optimization process. 

The second term of the cost function is the squared difference 
between average experimental tortuosity and average model 
tortuosity r°*. The two terms of the cost function have very 
different scales and to balance them we consider a weight coef
ficient H- which makes these terms consistent with each other 
and causes both of them to have values of the same order of 
magnitude. Thus, the final expression for the cost function is 

where u- = lO' (5.3) 

The cost function is based on the standard approach of nonlin
ear least squares and belongs to the class of nonlinear regression 
models (Seber and Wild, 2003). It is worth noting that the cost 

function includes a stochastic component, therefore, repeated 
calculation for the same parameter values will always result in 
different values of the cost function. Thus, gradient based meth
ods are not appropriate for optimization because they usually 
require the cost function to be smooth w hich it is not true in this 
case. We use the Nelder-Mead simplex method, which can be 
used to minimize a non-smooth cost function, even if it includes 
a stochastic component (Lagarias et al., 1998). More sophisti
cated statistical procedures could also be examined (Stoyan et 
al.. 1995). 

It is important to note that the result of the optimization pro
cedure is a random variable. This means that if we have found 
a set of optimal parameter values and use them to calculate the 
cost function several times, we will get different cost function 
values, because the random number generator will start from 
different initial values resulting in generation of different axons. 
The optimization procedure was nin for each cell type and sepa
rately for their descending and ascending axons. The best values 
of model f)arameters are summarised in Table 1. Also, the table 
shows the roots of quadratic equation (4.8) which have been used 
in formulas for dynamics of variances. All roots are positive and 
less than one. Only in the case of RB cells (both ascending and 
descending) the roots are complex conjugates with module less 
than one. This fact means that for all cell types in both directions 
the variance of D-V coordinate is limited and asymptotically 
approaches the saturation level. The variance for growth angle 
also saturates with increase of iteration number 

An example of generated and measured axons for the case of 
RB cells with axons in ascending direction is shown in Fig. 8. 
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Fig. 9. Comparing ihe dorso-ventral distributions of model axons (red) and 
experimental axons (bltw). 

Average tortuosities for generated and measured axons are given 
in the caption. Fig. 9 shows distributions of dorso-ventral coor
dinates of experimental and generated axons. 

6. Spinal Cord Network Reconstruction 

Having developed a model of axon growth dial produces 
axons that approximate those observed in the tadpole, we can 
now use this model to generate a reconstruction of the tadpole 
spinal cord. This model allows us to make some general predic
tions about how connectivity varies with longitudinal distance 
and will be used as die basis for an electrophysiological model 
of the network. The generated anatomical architecture allows us 
to substitute a neuronal model of spike generation and provides 
all necessary connections and synapses between different cells. 

We consider a 2000 ^.m section of spinal cord. This section 
contains 6 cell types, the density of which is equivalent to 7 cells 
of each type per 100p.m section of spinal cord. This is a very 
approximate figure provided by experimental measurements (Li 
el al., 2007). This gives a total of840 neurons of 6 types; 140 neu
rons labelled by 1 (cell type #1), 140 neurons labelled by 2(cell 
type #2). and so on. These neurons are allocated uniformly with 
spacing h = (2000/840)»jLm, in the order 1-6 and there are 140 
repetitions of this sequence. Then the distribution is randomized 
by randomly picking a cell and swapping it with its immediate 
neighbour to the right, repeating this process many times. As 
a result of applying this permutation process, all the cell types 
become uniformly disuibuted over the length of the spinal cord. 
This process captures the known anatomical property diat cells 
of the same type tend not to appear very close to each other, 
but avoid the artificial situation of a perfectiy regularly laid out 
spinal cord. 

We have experimental data for each cell giving the ventral 
and dorsal extents (v, </), v < J of die dendritic field for each 
cell, i.e. for each cell we know dial die dendrite is distributed 
between two values v and J (v < y < d), where y describes the 
D-V coordinate of the dendrite. Experimental measurements do 
not provide information about the shape of the disuibution inside 

the I I , J ) inienal. We consider die distribution of the bivariaie 
random variable r; = (v, J) where the venu-al extent is v and the 
dorsal extent xsd. Each component of diis bivariate random vari
able is distributed in the interval |0 . lOOJjim and the bivariate 
random variable r} is distributed in a triangle with two perpen
dicular sides of 100 p.m. Using experimental measurements of 
dendrites for each cell type, we approximate die bivariaie prob
ability density function of the random variable by a table of 
size 10 X 10. We divide die interval (0, lOOJjun by 10 bins and 
calculate a two dimensional histogram for the (v. d) disuibution 
from experimental measures. Thus, each entry contains the prob
ability of finding the venual and dorsal dendrite extents inside 
the corresponding square (10^ 2D bin) of the histogram. In this 
table, cells under the diagonal contain estimates of probabilities, 
but cells above the diagonal are zero, because the dorsal extent 
cannot be lower than the ventral extent. These 2D histograms 
have been calculated for each type of cell and they have been 
used to determine ventral and dorsal extents of dendrites which 
have been generated at random according to the corresponding 
table. 

Having determined which 2D 10^ bin the dorsal and vential 
extent will fall into, the actual values of dorsal and venu-al extents 
are uniformly and independently disuibuted within this 2D bin. 
We repeal this procedure to adjust D-V coordinates of dendritic 
extents for each neuron. We represent the dendrite by a bar with 
w idth 1 \im in the longitudinal direction and the dorso-ventral 
extent of this bar is randomly generated on the basis of the two 
dimensional distribution for this particular cell type. 

Al this point, all 840 cells are allocated in their proper longitu
dinal and dorso-venu-al positions, meaning that the distribution 
corresponds to the experimental distribution and the longitudinal 
positions are uniformly distributed for all cells. 

We now apply die following procedure for each cell: 

(1) Generate a random initial angle and position using the pro-
c^ure detailed above. 

(2) Generate a length for the axon taken from the experimental 
distribution of axon lengths. 

(3) Grow the axon to the determined length using the algorithm 
detailed above. When the path of the axon intersects with 
the bar representing the dendritic field of a cell, produce a 
synapse with probability /'syn (i.e. generate the random vari
able X uniformly disuibuted in (0. 1 ] and \^ x < P^yn then 
generate a synapse). I f a synapse was produced then any 
subsequent intersection between the axon and this particular 
dendritic field will be ignored. So it is not possible that one 
presynaptic neuron wil l make two or more synapses onto 
the same postsynaptic cell. Experimental evidence from 
elecux>physiological studies indicates that P^yn 0.3. 

Fig. 10 shows a fragment of the generated anatomical neu
ral circuit of the whole tadpole spinal cord. Each cell type is 
represented by a separate colour: red colour corresponds to RB 
c e i l s ; green die cells; blue to aIN cells; magenta to cIN cells; 
brown to dIN cells; and black to motor neurons (MN). These 
colours are used to represent axons, dendrites, initial branching 
point of axons, and synapses (which have the same colour as the 
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Fig. 10. Generated anatomical neural circuit of spinal conl. Each cell type is represented by a separate colour, red colour corresponds to RB cells; green die cells; 
blue to aIN cells; magenu to cIN cells; brown to dIN cells; and black to motw neurons (MN). These colours arc used to represent axons, dendrites, initial branching 
point of axons, and synapses (which have the same colour as the prcsynapbc cell). 

presynaptic cell). The dendrite is represented by a vertical bar 
and the synapse is shown by a circle. The colour of the circle 
relates to the presynaptic neuron, for example, a blue circle on a 
brown vertical bar represents a synaptic connection from an aIN 
cell to the dendrite of a dIN cell. The axon branch point is repre
sented by a square. In some cases this square will be inside the 
dendritic bar but in other cases it will be located outside of the 
bar but in all cases the longitudinal position will be the same as 
the longitudinal coordinate of the neuron. RB neurons are repre
sented only by their axons because they have no dendrites—they 
are sensory neurons that respond to skin stimulation. 

Fig. 11 shows a zoomed view of the generated spinal cord 
exu^cted from Fig. 10. A squared region of the size 30^im 
X 30p.m has been taken from the middle section of the dorso-
ventral axis. Many synaptic connections (coloured circles) can 
be seen in this figure. 

From this generated neural architecture, a complete descrip
tion of the connectivity of the spinaJ cord has been produced 
which may be used as the basis for electrophysiological mod
elling of swimming activity. 

7. Discussion 

To the best of our know ledge, for the first time a complete 
biologically realistic neural circuit of the tadpole spinal cord 
has been generated. This model has great potential for further 
investigation (also, this model can be used for educational pur
poses). For example, probabilities of synaptic contacts between 
cells of different types can be calculated from the generated 
architecture and compared with experimentally measured prob
abilities of synaptic contacts between the same cells. Indeed, this 
comf)arison reveals that the probabilities of synaptic contacts 

5^5 860 

Fig. 11 Fragment of generated anatomical neural cuvuii of spmal cord extracted from the previous figure The colour coding is ibe same as m the previous figure. 
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for the generated architecture correspond well to experimental 
measurements. 

Combined with an advanced visualization system, the 
anatomical model could be used to demonstrate many interesting 
properties of spinal architecture. For example, for each neuron 
we can find and visualize all incoming connections. Identifica
tion of incoming connections is crucial for the development of 
a model of electrical activity and the study of the functionality 
of this neural architecture. 

The spinal cord reconstruction provides information about 
longitudinal and Dorso-Ventral positions of each neuron, allo
cation of its dendritic field, coordinates of its axon and all 
afferent and efferent synaptic connections. Thus, the complete 
anatomical description of neural architecture of the spinal cord 
is achieved. Due to stochasticity in the model of axon growth, 
the neural architecture is not unique and starting from different 
initial states of the random number generator we can generate 
a number of anatomical circuits of the spinal cord. All these 
architectures will be similar in the sense that they have the same 
statistical characteristics as experimental measurements. 

Now, a very intriguing question arises about the functional
ity of these neural networks. Can this neiuiil network produce 
a specific pattern of neural activity corresponding to the swim
ming pattern given that some spiking neural model has been 
used to describe the activity of each element of the anatomi
cal architecnire? How reliable and stable is this swimming-like 
pattern under variation of model parameters? What fraction of 
generated neural architectures will be able to swim? Should 
the connection strengths be adjusted according to some learn
ing rule or can the spinal cord model generate swimming for 
randomly chosen parameter values? Detailed answers to these 
questions and a complete description of the spinal cord model 
with spike generating elements will be given in a separate pub
lication which is under preparation. Here we would like to 
report our preliminary result: the generated realistic anatomical 
model can swim. To obtain this result we have used Morris-
Lecar spiking neurons cormected according to the generated 
anatomical architecture. Simulations of the neural network of 
Morris-Lecar neurons with randomly distributed connection 
strengths show that the model of spinal cord demonsuates a 
stable swimming pattern within a broad range of parameter 
values. 
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