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Neural Models of Subcortical Auditory Processing 

Susan Lynda McCabe 

Abstract 

An important feature of the auditory system is its ability to distinguish many simultaneous 

sound sources. The primary goal of this work was to understand how a robust, preattentive 

analysis of the auditory scene is accomplished by the subcortical auditory system. 

Reasonably accurate modelling of the morphology and organisation of the relevant auditory 

nuclei, was seen as being of great importance. The formulation of plausible models and their 

subsequent simulation was found to be invaluable in elucidating biological processes and in 

highlighting areas of uncertainty. 

In the thesis, a review of important aspects of mammalian auditory processing is presented 

and used as a basis for the subsequent modelling work. For each aspect of auditory 

processing modelled, psychophysical results are described and existing models reviewed, 

before the models used here are described and simulated. Auditory processes which are 

modelled include the peripheral system, and the production of tonotopic maps of the 

spectral content of complex acoustic stimuli, and of modulation frequency or periodicity. A 

model of the formation of sequential associations between successive sounds is described, 

and the model is shown to be capable of emulating a wide range of psychophysical 

behaviour. The grouping of related spearal components and the development of pitch 

perception is also investigated. Finally a critical assessment of the work and ideas for future 

developments are presented. 

The principal contributions of this work are the further development of a model for pitch 

perception and the development of a novel architecture for the sequential association of 

those groups. In the process of developing these ideas, further insights into subcortical 

auditory processing were gained, and explanations for a number of puzzling psychophysical 

characteristics suggested. 
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1. In t roduc t ion 

a) Background 

Why does music make us want to cry ? or dance ? How do we manage to listen 

to the oboe in an orchestra or a friend in a crowded room ? Questions such as 

these, and an interest in the way in which we perceive and respond to temporal 

patterns, prompted this study of processing within the auditory system. Of 

fundamental importance is the intrinsically temporal nature of sound, auditory 

images are fleeting and can't normally be re-experienced at w i l l . I t was hoped 

that by investigating the operations and structure o f the auditory system some 

insight into the way in which biological systems address the problem of 

spatio-temporal processing might be gained. 

The auditory system is primarily concerned with communication, but in 

addition, since acoustic signals have the advantage of not requiring a direct path 

to exist between observer and observed, they can be received f rom any 

direction, no matter where the animal is attending, therefore an important role 

o f this system is to provide early warning of imminent danger. Both the fleeting 

nature and the omni-directionality of sound complicate auditory processing. The 

system needs ways of prolonging short stimuli, locating sound sources and of 

dealing, without confusion, with delayed reflections o f sounds; which may 

arrive at different times and from different directions. The problem has been 

compared to that of attempting to determine the identity and location of the 



boats sailing on a crowded lake, simply by observing the motion o f a floating 

handkerchief [Handel83]. 

It is important to remember when studying sensory systems that perception is a 

creative act. The organism creates its interpretation of the world in response to 

the current stimuli, within the context o f its current state of alertness, attention, 

and previous experience. The creative aspects o f perception are exemplified in 

the auditory system. Peripheral processing decomposes acoustic stimuli, and 

since the frequency spectra of generally experienced complex sounds often 

overlap, this poses a complicated problem for the auditory system : which bits 

of the signal belong together ? And once that problem has been solved : which 

of the subgroups should be associated with each other from one moment to the 

next, given the extra complication of possible discontinuities and occlusion of 

sound signals ? 

Modelling of the processes underlying such 'auditory scene analysis', identified 

and investigated by Bregmanand others, form the core o f this thesis. Work has 

been directed at modelling auditory scene analysis in a biologically plausible 

way, with the main effort focused on preattentive operations such as peripheral 

processing, frequency representation, pitch extraction and group formation, and 

the development of sequential associations. The principal benefit o f an 

intelligent sensory system is the ability to focus on the part o f the signal of 

interest against a background of distracting signals, thereby enabling the 

perception o f significant temporal patterns. Such a system could act as a robust 

front-end for other systems, such as speech recognisers, fault detection systems. 



or any other application which required the dynamic extraction and temporal 

linking o f subsets o f the overall signal. 

b) Objectives 

There are numerous 'auditory' nuclei between the ear and cortex, and an 

enormous amount of processing occurs at subcortical levels. Therefore, in order 

to understand how the auditory cortex responds to acoustic stimuli, or how 

auditory perception is developed, it is necessary to investigate the operations of 

the peripheral and midbrain auditory system. 

Although the aims of the extended project are far-reaching, a more restricted 

and focused study of the auditory system is documented here. The primary goal 

o f this work was to understand how a robust, preattentive analysis o f the 

auditory scene is accomplished by the subcortical auditory system. Only 

monaural processes were considered in depth; and, since psychophysical 

experiments have clearly demonstrated the dominance of pitch relationships in 

this respect [Bregman90], the role of sound localisation was ignored. 

Reasonably accurate modelling of the morphology and organisation o f the 

relevant auditory nuclei, was seen as being o f great importance. The 

formulation o f plausible models and their subsequent simulation was found to be 

invaluable in elucidating biological processes and in highlighting areas of 

uncertainty. 



An important objective was the investigation and development of models o f the 

peripheral and midbrain systems. Such models can form a f i rm basis for the 

investigation o f higher level processes and have the added benefit o f embodying 

our current understanding of the corresponding auditory processes in a fairly 

concise, yet precise way. In addition, they may suggest f ru i t fu l avenues for 

further experimentation and can be improved to reflect any relevant advances. 

In building these models, the aim was to provide a secure platform for further 

modelling, and so the benefits o f conceptualisation and encapsulation offered by 

the object oriented methodology were used to advantage. 

A further goal of this study was to lay the groundwork for more detailed 

investigations into other aspects of auditory processing, such as characteristic 

sound and temporal sequence recognition, both of which require a far deeper 

appreciation o f the role of memory and learning within the auditory system. 

Other important and interesting aspects include the role of feedback within the 

auditory processing system, signal segmentation, phoneme recognition, and the 

perception of rhythm and other prosodic aspects o f speech signals. Ultimately, 

the aim is to develop a deeper understanding of the relationship between the 

auditory system and other parts of the central nervous system, such as the 

motor and visual systems, and the emotional associations which appear to result 

f rom interactions with the limbic system and right hemisphere processing which 

may be involved in attaching significance to sensory stimuli [Watts94]. 

Although, the driving force behind most work on the auditory system appears to 

be the desire to build effective artificial speech recognition systems, music may 

offer a more tractable domain in which to investigate the phenomena o f auditory 



perception [Zatorre93]. For this reason models have been formulated with the 

idea o f musical sounds in mind, and little consideration has been given to the 

specific characteristics of speech sounds. 

Ideally once the biological system has been clearly understood, it should be 

possible to extract the essential features of the system, relevant to the problem 

at hand, in order to create an effective artificial system. In addition, it is hoped 

that the excessively large run times required by current auditory scene analysis 

systems [Brown92], may be alleviated by a clearer understanding o f auditory 

processing techniques, brought about by more biologically plausible modelling. 

c) Original Contributions 

The principal contributions of this work are the further development o f a model 

for pitch perception, an exploration of the way in which the formation o f pitch 

groups may be achieved and the development of a novel architecture for the 

sequential association of those groups. In the process of developing these ideas, 

some further insights into subcortical auditory processing were gained, and 

explanations for a number of puzzling psychophysical characteristics suggested. 

The production o f a tonotopic map of the spectral content o f complex acoustic 

stimuli is described in chapter 4. For many years the controversy between place 

and temporal coding of spectral information has existed. Simple place coding 

appears to have insufficient resolution to explain known perceptive 

discrimination capabilities. On the other hand, temporal coding seems to require 



unrealistic precision in the decoding of timing information; the translation of 

such information into spatial maps is problematical, particularly since neuronal 

dynamic characteristics appear to be far too slow for these tasks. However, the 

detection o f abrupt changes in the timing o f responses across the basilar 

membrane may be a way of overcoming these problems, and a lateral inhibitory 

network based on the ideas of [Shamma89,92] was developed. The benefit of 

this approach is that the production of a tonotopic map, in which frequencies 

are represented in a distributed way, results f rom the utilisation o f both the 

frequency and temporal codes. The distributed representation o f frequency is 

shown to allow improved frequency resolution and also underlies the streaming 

model described in chapter 5. 

An important contribution is made in chapter 4, where the development o f an 

architecture for the formation of a 'map' of modulation frequency based on the 

properties o f the stellate cells is described. An attractive feature of this 

formulation is the way in which the lateral inhibitory network, already used to 

encode frequency, can be simply extended by the inclusion o f a pre-processing 

layer o f tuned stellate cells. I f the dynamical properties o f the stellates are 

systematically organised, then the stellate array functions in a similar way to the 

basilar membrane in producing abrupt changes in levels of activity at positions 

which depend on the periodicity of the signal. Lateral inhibition o f the stellate 

outputs results in peaks of activity at positions corresponding to the periodicity 

of the original stimulus. The behaviour of the model also affords a possible 

explanation o f the small but strange shifts in pitch perception with intensity. 

Finally in chapter 4, a possible explanation for the rather puzzling phenomenon 



of ratio pitch is offered; although physiological experiments would be needed in 

order to confirm or deny this proposal. 

A further contribution is made in chapter 5, where extensions to the simple 

streaming model, developed by [Beauvois9l], are proposed and investigated. 

The original model was restricted to the processing o f pure tones within two 

frequency channels. This has been extended to include complex sound and 

multichannel processing. The proposed model is capable o f emulating a wide 

range of psychophysical behaviour, including the relationships between pitch 

and time intervals, tracking of pitch trajectories, the gradual formation of 

streams, and the improved focusing of the attended stream in response to a 

more coherent 'background*. The last capability is particularly significant, as 

previous models were unable to account for this phenomenon, and it was 

accomplished by modelling the formation of, and interaction between, both 

foreground and background 'streams'. The capabilities o f the model, and its 

intimate relationship with the pitch grouping system, are demonstrated. 

A model for the grouping o f related spectral components and the development 

of pitch perception, which uses simultaneous onset as the principal grouping 

cue, is outlined in chapter 6. The proposed model would be capable o f the 

formation of an arbitrary number of groups and a means for the discovery, and 

subsequently tagging, of the pitch group components, is described. However, 

problems with the robustness and biological plausibility of a system which relies 

on the precise timing of processing pathways were identified, and simulation of 

the model awaits the resolution of these difficulties. 



Finally, some ideas about pitch invariant sound recognition are presented in 

chapter 7. The method described requires development, but i f successful, would 

offer a means for both static and dynamic timbre recognition; an attractive 

feature for speech recognition systems [Antrobus94]. 

d) Overview of the Thesis 

The thesis begins with a description of the auditory system. Knowledge o f the 

functioning of the auditory system is advancing rapidly, and in chapter 2 an 

attempt is made to bring together, in a cohesive way, the most important details 

of the structure and morphology of the auditory system, relating principally to 

auditory scene analysis. I t would be more satisfying to include 'functionality' 

here too, but this aspect can only be discussed in a very general way at best, as 

details o f the precise roles played by individual neuron types in auditory 

processing remain unknown. 

Peripheral processing is discussed further in chapter 3 where a review o f 

existing models of the peripheral system is presented. Since this part of the 

auditory system has been extensively modelled it was decided to use existing 

models of the ear, including basilar membrane [LyonSS] and inner hair cell 

[Meddis85] models, rather than developing new ones. However, some 

experimentation into modelling the effect of active outer hair cells on the 

response o f the basilar membrane was undertaken and these ideas and results 

wi l l also be presented. The basilar membrane model devised by [Lyon88] was 

extended to include a model of the outer hair cell as part of a closed loop 

8 



feedback system, which actively enhances the output of the basilar membrane at 

low intensity levels; however, since peripheral modelling was not considered to 

be a primary aim of the project, these ideas were only investigated in a fairly 

cursory way. 

In chapter 4, psychophysical results on frequency and pitch discrimination are 

presented, with the aim of highlighting some important details and puzzling 

aspects o f auditory perception. These results also set some benchmark targets 

for artificial systems. Having established the background, the topic o f frequency 

representation is then discussed. For many years it has been known that a 

tonotopic or cochleotopic organisation exists virtually throughout the auditory 

system. However, while frequency certainly has a spatial representation along 

the basilar membrane, it is not at all clear how the temporal information 

contained in the auditory nerve signals is translated into a spatial map. There 

are other puzzling aspects, for example, very small frequency differences can be 

detected between successively presented tones, but in simultaneous 

presentations, resolution accuracy is limited to much larger intervals o f stimulus 

frequency [Langner92]. 

Physiological results suggest that the stellate and multipolar cells of the 

cochlear nucleus have an important role to play in the extraction o f spectral 

information from the auditory nerve signals. For this reason, an investigation 

into stellate cell models was conducted [Hewitt93, Banks91, MacGregor87]. A 

discussion o f the frequency response characteristics o f a stellate cell model is 

described in chapter 4, where the effects of dendritic processing are also 

considered, and the approximate equivalence between the dendritic f i l tering of 



multiple stochastic spike trains and the dendritic fil tering of inner hair cell f ir ing 

probabilities is demonstrated. Frequency representation is explored in some 

detail in this chapter and a model based on the morphology o f the cochlear 

nucleus and ideas of 'edge detection' [Shamma92], is developed and simulated. 

The extension o f this scheme to the production of modulation frequency, or 

periodicity, maps is also described and the results of simulations presented. 

The formation of sequential associations between sounds is explored in chapter 

5. Competitive inhibitory interactions are thought to be crucial in this process, 

and it is shown how the patterns o f activity resulting from a distributed 

representation o f frequency could form the basis for the required inhibition. 

Segmentation of the sound space and the formation of'streams* appears to be an 

important aspect of auditory processing. Results f rom a number of 

psychophysical experiments are described early in the chapter, and these results 

are later shown to be reproduced by the proposed model. Some simulations of 

the affects o f attention on the streaming process are also included. In addition, 

the model is shown to be capable of streaming complex signals in which the 

spectral components are distinguished by simultaneous onset. 

In chapter 6 the topic of pitch perception is considered in some detail. 

Psychophysical results and previous work in modelling pitch perception are 

reviewed, and the possible morphological basis for pitch perception is 

discussed. A model for pitch perception which rests on these considerations and 

the work described in chapters 3 and 4 is outlined. This model has not yet been 

simulated because of dissatisfaction with the robustness and plausibility o f the 

current approach; however, it is thought that some of the ideas contained in this 

10 



work and the highlighting of problem areas, may be useful guides in the 

development of a better model. 

In the final chapter the work covered in the thesis is summarised, and particular 

strengths and weaknesses identified. The way forward is assessed and a number 

o f ideas on approaching some outstanding issues, are presented. There remain, 

as ever, many problems to be solved in the pursuit o f a truly intelligent sensory 

processing system; but, it is hoped that this work wi l l help to provide some 

further insights into the operation of the auditory system. 

I I 



2. Overview of the Mammalian Auditory System 

a) Introduction 

Although the details of many aspects of the operations o f the mammalian 

auditory system remain unresolved, a great deal of physiological 

experimentation has been undertaken over the years, and this has resulted in a 

good understanding of the structure and morphology o f the system, particularly 

in some species. In contrast to the visual system, there are many subcortical 

'auditory nuclei', and much processing takes place at these levels. As a 

consequence, the primary focus o f most research in the auditory system has 

been on subcortical regions. For obvious reasons, extensive physiological 

investigations into the operational human auditory system are not possible, and 

so much o f what we know is derived from animal data, principally the cat, bat 

and owl , e.g. [Schreiner88a, Imig88, Brugge88, Suga90, Konishi88, 

Simmons89]. Care, therefore, has to taken in extrapolating conclusions to the 

human system [Webster92]. In addition, important species specific features, 

such as language processing, cannot be investigated under such conditions. In 

this chapter, a summary of the principal structural and morphological features 

o f the auditory system wil l be presented, and where possible, indications as to 

human differences or similarities w i l l be given. In figure 2 .1 , average operating 

ranges for frequency and intensity perception in the human auditory system are 

summarised. 

A number o f fundamental processing principles, evident across species, appear 

to be embodied in the auditory system [Suga90]. The peripheral auditory system 

12 
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Figure 2.1 : Psychophysical characteristics of the auditory system. Humans 
can hear sounds ranging over about 10 octaves, within which about 5000 
different pitches can be distinguished. The auditory threshold is frequency 
dependent, with intensity ranges up to about ISO dB. From [Handel83]. 

responds to sound signals using cells with resonance properties which 

systematically cover the frequency range important to the species. Frequency 

tuning may be sharpened by lateral inhibition; the more important a particular 

frequency, the greater the neural sharpening for that frequency appears to be 

[Suga88]. This is particularly evident in species with auditory specialisation, 

such as the bat. The auditory nervous system appears to use coincidence 

detection to fi l ter incoming signals. The resulting cross-correlation may also 

provide a means whereby the auditory system can influence the processing of 

incoming signals within the context of intrinsic arousal levels or perceived 

salience [Suga88]; for example, cortical projections to the thalamus and 

midbrain suggest the cortical modulation of ascending activity [Phillips91, 

Granger94]. Within the human system, it has also been stressed that "sensation 

incorporates the process of analysis and synthesis of signals while they are 

still in the first stages of arrival" [Luria80]. 

13 



A fundamentally important feature of auditory processing is the tonotopic or 

cochleotopic framework, based on the systematic organisation o f frequency 

response characteristics, which is found throughout the auditory system 

[Phillips91]. Functional subdivisions specialised for the processing o f different 

types o f auditory information are generally organised relative to this structure. 

Within each subdivision, the topographic organisation o f response properties 

results in the mapping of biologically important acoustic information [Suga90]. 

Although most o f our knowledge about the auditory system comes from animal 

studies, significant evolutionary trends in primate development can be traced in 

order to understand the differences between the human and other systems 

[Moore87] . In some species particular nuclei may be very well developed, while 

others are only poorly developed; clearly indicating a change in environmental 

adaptation. 

In contrast to visual stimuli, acoustic signals are generally fleeting. The spatial 

nature o f the visual world, allows the animal some control in choosing to 

re-examine parts o f the visual scene; no such option exists for the auditory 

system. The intrinsic relationship between the unidirectional nature o f time and 

the acoustic environment, poses particular processing problems on the auditory 

system which has to guard against the loss o f information. The temporal 

structure o f sound is used in the transmission, coding and processing of these 

signals within the auditory system. In the inner ear phase-locking to a periodic 

stimulus can occur up to about 4000 Hz (though clearly not on every cycle). 

This temporal sensitivity is not maintained, however, and the temporal 

resolution o f the auditory system decreases significantly f rom the periphery to 

the cortex [Schreiner88b]. There is some hierarchical organisation o f temporal 
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resolution in the cortex, and probably in other auditory nuclei as well. In 

summary, the temporal aspects o f acoustic signals, such as envelope variations, 

appear to represent a further major organisational basis for the auditory system, 

in addition to spectral (tonotopic) and binaural organisation [Langner92]. The 

range o f temporal resolution in the cortex is roughly in line with the repetition 

and sequencing range found in speech, i.e. roughly 0.5 to 20 Hz [Langner92]. 

Overall there is a gradual shift in time-scale, ranging from an order o f 

milliseconds in the periphery, to seconds in the cortex; which may be considered 

in some ways analogous to the gradual broadening o f the visual receptive field. 

I t is interesting to note the close resemblance between the perception o f pitch 

and time patterns. I f a sequence o f pitches is shifted in frequency by an amount 

which maintains successive frequency ratios then the pattern is perceived as 

being the same; similarly, a rhythmic pattern presented at different rates wi l l be 

recognised as long as the ratios between time interval are maintained 

[Moore89]. Perhaps a common underlying process is indicated. 

Another interesting aspect of the importance of time in the auditory system is 

the gradual shortening o f the duration of response times from periphery to 

cortex [Simmons70]; which may result from the need to deal securely with 

inputs in real time. As [Barlow61] notes, sensory systems seem to respond to 

and transmit mainly novelty, particularly onset signals, and spend lit t le time in 

conveying information which has previously been signalled. In the auditory 

nerve fibres, response times essentially correspond to that o f the stimuli (with 

initial high onset firing rate and rapid adaptation), but by the cortex, responses 

are predominantly phasic, and very few tonic responses are found [LuriaSO, 

SimmonsTO]. 
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The limitations of the system are clearly demonstrated, though, in backward 

masking experiments, in which, under certain circumstances, a stimulus can 

mask one previously presented (Jeffress70]. The effect o f backward masking 

can be quite large; for example, i f a short tone is followed by white noise 1ms 

after termination, then the tone is affected by about 60 dB of masking. The 

strength o f masking drops quickly as the time interval is increased, and by 25 

ms masking is no longer detectable [JeffressTO]. This suggests that the later 

stimulus may somehow be overtaking and interfering with the processing o f the 

earlier stimulus [Jeffress70]. 

b) Overview of the Ascending and Descending Pathways 

This review o f the mammalian auditory system is rather unbalanced, 

concentrating almost exclusively on monaural processing and reflecting the 

underlying preoccupation of the thesis with pitch extraction and primitive 

streaming. Although important topics, binaural processing and sound 

localisation are only dealt with briefly. 

Information f lows between the cochlea and the auditory cortex in both 

directions in a number of parallel pathways. (Figure 2.2 shows the principal 

auditory nuclei and pathways within the human auditory system.) The so-called 

lemniscal pathway conducts the primary acoustic afferents to the cerebral cortex 

via the auditory relay nucleus of the thalamus [Nieuwenhuys88]. Within the 

lemniscal path, both focused, usually tonotopically organised, and diffuse 

projections are found. In addition, there is a parallel, multisynaptic pathway 

passing through the reticular formation, the lemniscal-adjunct [BruggeSS]. 
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Figure 2.2 : Primary nuclei in the human auditory system. A) A dorsal view 
of the nuclei and the connections between them. All, including the cortical 
areas, are drawn in the correct position relative to each other. B) A dorsal 
view of the temporal lobes. From [NieuwenhuysHS]. 
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There are also descending projections terminating in most main sensory nuclei. 

The afferent auditory pathways from the ear to the cortex pass through a 

number o f processing stages. In general, cells at lower, more peripheral levels 

tend to project to several at a higher level, resulting in an increasing number o f 

fibres, or gradual fan-out [Pickles85]. Within each auditory nucleus there is 

almost always a region of tonotopic organisation. 

Auditory processing begins with the ear, which acts as a transducer 

transforming sound pressure waves into auditory nerve signals. A l l the auditory 

nerve fibres terminate in the cochlear nucleus, where initial signal processing 

and enhancement are performed. Numerous cell types are found here and 

extensive early processing of the auditory signals occurs, with some cells 

specialised for very fast and accurate transmission, and others for the detection 

o f such features as amplitude and frequency modulation, onset and offset. 

Extensive inhibition is found. There are excitatory projections from the cochlear 

nucleus (CN) to the superior olivary complex (SOC), the inferior colliculus (IC) 

and the lateral lemniscus (LL) and inhibitory projections to the IC, L L and 

contralateral CN [Hel fe r t9 I ] . 

The connectivity o f the SOC, both external and internal, indicates a role in 

sound localisation; which may be detected by means o f interaural timing and 

intensity differences [BruggeSS]. Tontopically organised and diffuse 

projections, both excitatory and inhibitory, go from the SOC to the IC and L L 

[Cant91]. The role of the L L is unknown, but the ventral nucleus o f the lateral 

lemniscus ( V N L L ) is most prominent in echolocating mammals; while the dorsal 

nucleus o f the lateral lemniscus ( D N L L ) is phylogenetically far more stable and 
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is therefore likely to perform some commonly required function [Moore87]. The 

D N L L is also significant in humans. 

There is a massive convergence of ascending pathways onto the IC, which 

appears to be responsible for sound source synthesis, amongst other things. A 

*root' and 'belt' system is well differentiated from the IC onwards [Spangler91]. 

The 'root', or primary acoustic pathway, consists o f the tonotopically organised 

projection f rom the central nucleus o f the inferior colliculus (CIC) to the 

ventral portion o f the medial geniculate nucleus o f the thalamus ( M G N J ; and 

f rom there to the primary auditory cortex. A separate 'belt' line arises f rom the 

lateral nuclei o f the IC, passes to the medial and dorsal parts o f the medial 

geniculate nucleus (MGNj^, M G N J and from there to the secondary cortical 

auditory areas in more diffuse projections [Spangler91]. 

In considering the projections described, it must be remembered that it may be 

misleading simply to consider the projections from one nucleus to another 

without taking into account the specific cell types involved [Cant91]. Many 

different processes are conducted in parallel in the auditory system, each 

utilising the specific properties of the particular cells involved; as wi l l be seen, 

for example, in the more detailed discussion of the CN. However, in many cases 

even the response properties of particular cell types are unclear, never mind 

their functional role, and in the literature contradictory or confusing results may 

sometimes arise from the use of different classification systems, e.g. [Rhode91, 

Kolston92]. 

The efferent pathway, which runs from the cortex to the cochlea, has been less 

widely examined and it is unclear whether it is best understood as set o f local 
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feedback loops, or rather as a feedback chain f rom cortex to periphery 

[Spangler91]. The muscles of the middle ear are affected by signals f rom the IC, 

and pinna and head movements in response to acoustic stimuli are controlled by 

signals f rom the IC, superior colliculus (SC) and cerebellum. Inhibitory signals 

f rom the periolivary nuclei (PON) of the SOC are transmitted to the inner ear 

and CN, and are thought to help accentuate various aspects or ranges o f the 

acoustic stimuli [Pickles85]. In addition, this pathway may also be responsible 

for improvements in signal detection in noise, protection o f the cochlea f rom 

acoustic trauma and control o f the mechanical state o f the cochlea, i.e. by 

altering the basilar-tectorial membrane coupling [Dallos88]. Some involvement 

with selective attention is also possible. 

There are many feedback projections from the auditory cortex, primarily 

inhibitory, but some excitatory. Targets o f these projections include the SC and 

IC, the medial geniculate nucleus (MGN), the L L and the PON [Spangler91]. A 

number o f local feedback loops involving the auditory cortex, M G N and IC 

have also been identified. In general, within local feedback circuits, descending 

signals wi l l often target the area, or even the actual cells, that provided their 

excitatory input [Spangler91]. In addition, most descending projections appear 

to be tonotopic. Feedback within the auditory system is so extensive that almost 

every neuron in the system is affected, although it is interesting that some very 

prominent nuclei, such as the CIC, and the medial and lateral superior olivary 

nuclei (MSO, LSO) receive no direct extrinsic feedback [Spangler91]. The most 

extensive feedback connections are to the cochlea, CN and M G N . In his review 

o f the descending system, Spangler concludes that the organisation o f feedback 

within the auditory system may be best described as a series o f loosely 
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interconnected regional feedback loops; however, in general the precise effect 

o f the feedback signals is largely unknown. 

c) Processing in the Ear 

Processing o f auditory signals starts with the outer ear, or pinna, which funnels 

the sound pressure waves into a short tube, the auditory canal. The tympanic 

membrane or ear drum at the end of the canal vibrates in response to sound 

stimulation, setting into motion the interconnected ossicles in the cavity o f the 

middle ear. The third bone in the series interfaces directly wi th the oval window 

of the inner ear, thereby transmitting the vibrations to the cochlea [Pickles85]. 

The middle ear acts as an effective impedance matcher between the air medium 

o f the outer ear and the fluid medium of the inner ear [Wilson87]. The outer ear 

is thought to help with sound localisation and also increases sensitivity to 

frequencies in the 2.5 to 4 kHz range. The middle ear acts as a broadly tuned 

bandpass filter with centre frequency at about 1.2 kHz [Wilson87]. The 

structure o f the human ear is shown in figure 2.3. 

The inner ear, or cochlea, consists o f a snail-like tube divided into three 

longitudinal sections, separated by Reissner's membrane and the basilar 

membrane. The central compartment contains the sensory receptor structure, 

the organ o f Cort i , which is located on the basilar membrane and contains a 

large number o f hair cells. The tectorial membrane, which is connected along 

one edge to the side of the cochlea, lies over the hair cells [Pickles85]. Two 

types o f hair cells may be distinguished within the mammalian organ o f Cort i , 

inner and outer hair cells [Russell87]. The actual number o f cells varies with 
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Figure 2.3 : A) A schematic view of the outer, middle and inner ear. B) A 
detailed view of the middle ear. C) Cross-section of the inner ear. D) A 
detailed view of the organ of CortL From [Handel83J. 
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species, but they appear to be roughly in the proportion 1 IHC to 3 OHCs 

[Ryugo92]. The human organ of Corti contains between 11000 and 16000 outer 

hair cells, arranged in three rows, and 2800 to 4400 inner hair cells [Ryugo92]. 

The hairs, or stereocilia, of the outer hair cells are embedded in the tectorial 

membrane and may form a mechanical linkage between the basilar and tectorial 

membranes [Dallos88]. 

When the oval window vibrates, pressure waves are set up within the cochlea, 

travel through the vestibular canal (see figure 2.3) and back through the 

tympanic canal to the round window, via the helicotrema (a small hole 

connecting the two outer canals). The difference in pressure between the outer 

canals results in transverse vibrations of the basilar membrane [Kel ly85] . The 

basilar membrane resonates at points along its length in response to the 

frequency components o f the acoustic signal, with sensitivity ranging f rom high 

frequencies at the basal end to low frequencies at the apical end [Pickles85]. 

The resonance characteristics o f the basilar membrane, in response to the 

passive travelling wave described above, are determined mainly by its mass and 

stiffness properties [Wilson87]. 

The inner hair cells are heavily innervated and are the source o f about 95% of 

the signals transmitted to the rest o f the auditory system [Hackney87]. Inner 

hair cells release neural transmitter in response to basilar membrane motion, or 

velocity [Javel88] so their role is essentially that of transduction; they convert 

the mechanical basilar membrane motion into the electrochemical signals, which 

form the basis o f communications within the central nervous system. Studies 

have revealed very fine filaments connecting the tips o f the stereocilia on the 

inner hair cells [Pickles84]; and it has been suggested that ion channels near the 
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tips are opened when the tip links are stretched, which causes the inner hair 

cells to be sensitive to motion in only one direction [Hackney87]; essentially a 

half-wave rectification of the stimulus signal. This means that the auditory 

nerve fibres attached to a hair cell are activated synchronously with the motion 

o f the basilar membrane at that point. The inner hair cells have quite a high 

resting potential and can therefore release transmitter even at rest; which is 

probably the cause for the spontaneous f ir ing o f the auditory nerve cells 

[Russel87]. They are also at their most sensitive near the resting position, and 

can detect movements of the order of nano-metres [Hudspeth89]. Although a 

systematic relationship between the electrical resonance properties o f inner hair 

cells and their position along the basilar membrane has been found in turtles 

[Fettiplace87], it is thought that the mammalian inner hair cell properties do not 

vary much with position, and that their place along the basilar membrane is the 

principal determinant o f their responses, rather than any intrinsic frequency 

selectivity [Dallos92]. 

Bipolar cells give rise to the auditory nerve fibres which are located in the 

spiral ganglion and transfer signals from the cochlea to the cochlear nucleus 

[Helfert91]. There are two distinct types of afferent fibre : Type I fibres are 

myelinated, arise from large bipolar neurons and innervate the inner hair cells, 

about 20 per cell; Type I I fibres are unmyelinated and arise f rom smaller 

ganglion cells, and innervate about 20 outer hair cells each [Hackney87]. In 

humans, however, Type I fibres are often unmyelinated and innervate 2-3 IHCs; 

and Type I I fibres only innervate 6-8 OHCs [Webster92]. 

Type I auditory nerves have sharp tuning curves, with characteristic frequency 

determined by their position (see figure 2.4). They also display spontaneous 
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Figure 2,4 : Auditory tuning curves from equally spaced positions along the 
cat cochlea^ showing characteristic frequencies depending on position. The 
characteristic frequency of a neuron is the stimulus frequency at which the 
neuron responds maximally. From fAllenSSJ. 

activity, the level of which is correlated with their firing thresholds, and rapid 

adaptation (see figure 2.5). Three main classes o f type I fibres can be 

distinguished; high, medium and low spontaneous rate fibres. About 6 1 % have a 

high spontaneous firing rate of 18-250 spikes/sec, with a firing threshold of 

about 20dB SPL, 23% have a medium spontaneous firing rate o f .5-18 

spikes/sec, and 16% have a low spontaneous firing rate of < .5 spikes/sec, with 

a firing threshold of about 60dB [SmithSS]. Surprisingly, though, low 

spontaneous rate fibres appear to be responsible for more synaptic connections 

within the cochlear nucleus than high rate fibres [Ryugo92]. 

Type I I fibres give rise to a separate system of projections within the cochlear 

nucleus, which roughly parallels the projection of the type I fibres [Ryugo92]. 

25 



15 dB 

^9 dB 

69 dB 

Figure 2,5 : A smoothed post stimulus time histogram (see text, p27, for 
explanation), showing the firing rate of an auditory nerve fibre as a function 
of time. The high onset firing rate and rapid adaptation are clearly visible. 
From [Smith88J. 

Type I I fibres have also been found to project significantly to granule cells in 

the cochlear nucleus [HackneyST]; however, granule cells appear to be missing 

in the human nucleus [Moore87], so it is not clear whether this applies to 

humans at all. There is also some evidence that in humans the OHC - type I I 

synapses may actually be reciprocal; which may provide a mechanism for a kind 

o f fast local lateral inhibition and improved frequency resolution [Ryugo92]. 

The role o f the outer hair cells as active elements in cochlear processing is now 

well established; they appear to act as a series o f narrowband amplifiers which 
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produce a sharp peak at the point of the high frequency slope in the passive 

wave [Dallos92], and are therefore responsible for the very sharp tuning 

properties o f the system The resulting response is very non-linear; the absolute 

amplitude of basilar membrane motion appears not to change very much with 

intensity, the amplitudes near threshold are much larger than expected, and the 

amplitude-intensity relationship saturates within about 20 dB [Wilson92]. 

However, the fast positive feedback produced by the motili ty of the outer hair 

cells can lead to instability; as demonstrated by the phenomenon o f otoacoustic 

emissions. A slower acting gain control function therefore appears to be 

necessary, and is thought to result f rom 'setpoint' adjustments to the outer hair 

celts [Dallos88]. Length and stiffness changes to outer hair cell bodies in 

response to stimulation o f the olivo-cochlear bundle have been observed 

[Russel87]. The olivo-cochlear bundle consists of efferent nerve fibres which 

convey signals from the PON to the outer hair cells, and are thought to provide 

the control signals [Pickles85]. 

Neural responses may be characterised in a number o f ways, the most common 

being post stimulus time histograms (PSTH), inter-spike interval histograms 

( ISI) , period histograms (PH), and synchronisation indexes. PSTH's are 

constructed by counting the number of discharges falling within each discrete 

time interval f rom stimulus onset. The time interval size chosen determines to 

some- extent the periods which can be detected by this method. ISI's are 

similarly constructed, although here the time intervals between successive 

firings are used (see figure 2,6). PH's are constructed by analysing the timing o f 

the discharges within each cycle o f the stimulus [Javei88]. By counting and 

plotting the number of discharges falling at each part o f the cycle, activity 
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Figure 2.6 : Period histogram and inter-spike interval histograms obtained 
from a single auditory nerve fibre in response to a pure tone. From 
fJavel88/. 

which tends to occur at the same phase of the stimulus cycle is indicated by a 

peak in the plot. 

The synchronisation index most commonly used is based on the vector 

summation o f unit vectors extracted from the PH data [Hewitt92, Goldberg69]. 

The resulting value is a measure of the coherence o f the neuron discharges, and 

ranges f rom 0 (unsynchronised) to 1 (synchronised). Since the histogram bins 

are constructed with respect to the stimulus period, this is also a measure of 

how well the neuron response is synchronised to the stimulus. 
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The synchronisation index, s, is given by the fol lowing expression 

[1 Rtcos In^f + [Y RkSin 2n^]^ 
Tir-^ [2.1] 

where K is the number of discretisation intervals in the period histogram, and 

is the number of vectors falling in the k'ih interval [Hewit t92] . 

The spectral content o f the acoustic signals is extracted by the cochlea and 

frequency information is encoded in the auditory nerve signals. However, a 

number o f complications exist and for many years there have been arguments as 

to whether a place or a time coding system is used. Clearly some sort o f place 

coding system exists, since it is well known that characteristic frequency is 

determined by basilar membrane position (see figure 2.4). However, simple 

place coding can lack precision due to the spread o f excitation along the basilar 

membrane with intensity and the saturation o f auditory nerve fibre responses 

[Sachs88]. 

Others have therefore argued that the temporal discharge patterns, or 

synchronisation, of the auditory nerve signals are o f fundamental importance in 

the processing o f complex acoustic signals [Langner92]. However, this method 

is not without its drawbacks, since it is known that in humans, for example, 

phase locking to acoustic stimuli, and good frequency discrimination, occurs up 

to about 4000 Hz; but it is difficult to see how neurons with much slower 

dynamics could manage to extract such timing information accurately. The topic 

o f frequency decoding and representation wi l l be explored in more depth in 

chapter 4, where some ideas for resolving the place/time dilemma and producing 

tonotopic maps wi l l also be presented. 
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Another unresolved problem concerning the auditory nerve signals is how they 

encode intensity [Smith88]. The saturation of auditory nerve f i r ing rates over a 

range o f about 20 dB is well documented, however, it is also known that we can 

resolve intensity differences over more than an 80 dB range [Pickles85]. 

Various theories have been proposed to explain how the auditory system copes 

with the problem. Post stimulus time histograms show a large initial peak, 

followed by a decay to sustained fir ing (see figure 2.6). Although the sustained 

f i r ing level exhibits low saturation levels, the initial peak continues to grow 

wi th intensity. Therefore, it has been suggested that the onset f i r ing rate could 

encode the fu l l intensity range [Smith88]. A related phenomenon observed is an 

increase in onset synchrony across responding units with increasing intensity. 

So perhaps units in the cochlear nucleus sensitive to synchronisation o f spikes 

could encode intensity [Smith88]. Another suggestion, which depends on the 

varying thresholds o f the auditory nerve fibres [Smith88], seems less tenable i f 

the basilar membrane motion also saturates, as is now thought to be the case 

[WiIson92]. An alternative intensity coding strategy, shown in figure 2.7, has 
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Figure 2.7 : A method for decoding intensity information from auditory nerve 
fibres. Cells in the cochlear nucleus with onset chopper (0^) responses have 
wide receptive fields which perhaps allow them to respond to large intensity 
ranges as more of their inputs become activated by the signal as intensity 
increases. From [Rhode91]. 
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been suggested by [Rhode91], who has found cells in the cochlear nucleus with 

rate intensity functions spanning at least 80 dBs. These cells have very wide 

receptive fields and so may be deriving intensity information from the increasing 

'recruitment' of auditory nerve fibres in response to the spread o f excitation 

along the basilar membrane with increasing intensity [Rhode91]. 

d )The Cochlear Nucleus 

A l l auditory nerves, carrying signals from the cochlea, enter the cochlear 

nucleus, the first auditory nucleus in the processing path f rom periphery to 

cortex, which acts as a powerful front-end processor, extracting a variety o f 

parameters from the incoming acoustic signals. The structure and morphology 

o f the cochlear nucleus is very complex, Lorento de No described it as a 'brain 

with its own cerebellum' [Rhode91]. There are three main subdivisions, the 

anteroventral cochlear nucleus (AVCN) , the posteroventral cochlear nucleus 

(PVCN) and the dorsal cochlear nucleus (DCN). Tonotopic organisation is 

found within each o f the three main subdivisions, f rom low frequencies ventrally 

to high frequencies dorsally [Rhode91]. 

Many different types o f cells are found in the cochlear nucleus, each with 

different characteristic temporal behaviour and connectivity, and presumably 

different functions. The distribution of some of the principal cell types is shown 

in figure 2.8. Neurons in the ventral cochlear nucleus tend to have simple 

responses often very similar to that of auditory nerve fibres, while those in the 

dorsal cochlear nucleus generally have far more complex behaviour. 
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Figure 2.8 : The projections of type I (thick lines) and type II (thin lines) 
auditory nerve fibres within the cochlear nucleus. The distribution of 
important cell types within the cochlear nucleus is also shown. Abbreviations 
: fusiform cell (Fus), granule cell (Gran), octopus cell (Oct), globular bushy 
cell (Glob), multipolar cell (Multi), spherical bushy cell (Sph), cochlear 
nerve root (CNR), From [Helfert91J, 

There are a number o f ways in which the behaviour o f the neurons can be 

characterised. One way is by means o f the PSTH's and ISPs, discussed the 

previous section. Another useful method is the response map which displays the 

regions o f inhibition and excitation in a plot o f frequency against sound level 

[Rhode91]. In the following discussion, a PSTH and response map wi l l be given 

for each ceil type where possible; however, a clear association between PSTH, 

response map and cell type is very diff icul t to establish, and is not always 

known with certainty. 

There, are three main routes out o f the cochlear nucleus, the ventral, 

intermediate and dorsal acoustic stria (VAS, IAS, DAS) [Rhode91]. Targets for 

external projections include the ipsi- and contralateral SOC and PON, and 

contralateral CN, L L and IC [Helfert91], however, there is no direct feedback 

connection to the cochlea [Spangler91], (see figure 2.9). There is also extensive 
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Figure 2.9 : Projections of the cochlear nucleus (1), originating from specific 
cell types, and projecting to the SOC (2), LL (3), and IC (4), The strength of 
the projection is indicated by the darkness of the lines. Abbreviations : 
fusiform, octopus, globular bushy, and spherical bushy cells (Fus, Oct, Glob, 
Sph), dorsal, intermediate and ventral acoustic stria (DAS, IAS, VAS), 
dorsolateral periolivary nucleus (DLPO), lateral and medial nuclei of the 
SOC (LSO, MSO), medial, ventral and lateral nuclei of the trapezoid body 
(MNTB, VNTB, LNTB), ventre- and dorsomedial periolivary nuclei (VMPO, 
DMPO), dorsal, intermediate and ventral nuclei of the LL (DNLL, INLL, 
VNLL), central nucleus of the IC (CIC), dorsal cortex of the IC (DCx), 
cochlear nerve root (VIII). From fllelfert91 J. 
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intrinsic connectivity within the cochlear nucleus, and some cells in the V C N 

receive heavy inhibitory inputs from cells in the DCN [Rhode91]. Feedback 

connections to the cochlear nucleus arise bilaterally f rom the PON and 

contralaterally from the IC [Spangler91]. 

Response characteristics of the most important cell types w i l l now be 

summarised. The neurons included all project externally and are found in all 

mammals. The human cochlear nucleus, however, has some significant 

differences f rom other mammals; primary pathways through the cochlear 

nucleus are similar, but local processing circuits vary considerably [Moore87, 

Adams86, Webster92]. The functional implications o f these differences are not 

clear, but they fol low a clear pattern o f development through primate species, 

and indicate a definite change in intrinsic processing [Moore87], 

Large spherical bushy cells, located in the A V C N , receive input f rom only one 

auditory fibre each. The end bulbs of the auditory nerve fibre make 

multi-synaptic contacts, usually on the somata, enabling large synaptic currents 

to activate the cell [Rhode91]. This causes their responses to closely resemble 

those o f the auditory nerve fibres, including short onset latency and sharp 

tuning, and they are classified as primary-like (PL) (see figure 2.10). Strangely 

enough, it can be seen from staining studies that these cells also receive a large 

number o f inhibitory inputs, f rom unknown sources [Cant92]. As [Kolston92] 

notes, it is odd that cells with primary-like responses to tone stimulation have 

more extensive inhibitory input than cells with onset response, like the octopus 

cell. Intuitively one would assume that cells with much shorter response 

durations than auditory nerve fibres would exhibit this behaviour as a result o f 

delayed inhibition, but this seems not to be the case. 
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Spherical bushy cells are excitatory and send tonotopic projections bilaterally 

to the medial superior olivary nucleus and ipsilaterally to the lateral superior 

olivary nucleus [Spangler91]. They appear to be specialised to provide fast and 

accurate transmission o f auditory nerve signals and are involved in the circuit 

for interaural timing difference detection [Brugge88]. Both spherical and 

globular (next paragraph) bushy cells have type I I I response maps and also 

show the phase-locking behaviour evident in auditory nerve fibres [Rhode91]. 
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Figure 2.10 : Poststimulus time histogram (PSTH), inter-spike interval 
histogram (IH), and type III response map, characteristic of a cell with 
primary-like response (PL), such as spherical bushy cells. From {Rhode91J. 

The globular bushy cells of the AVCN are very similar to the spherical bushy 

cells, also providing very fast transmission. They receive 1 to 4 auditory nerve 

inputs and have primary-like with notch response (PL^ ) PSTH's [Carney90]. 

The notch is a short pause after the initial spike (see figure 2.11), and may be 

related to the cell's refactory period [Carney90]. Globular bushy cells are 

involved in the circuit which detects interaural intensity differences, and send 

excitatory signals to neurons in the contralateral medial nucleus of the trapezoid 

body ( M N T B ) . However, in humans this circuit appears to be less important, 

and globular bushy cells are far less prominent in the human cochlear nucleus 

[Moore87]. 

35 



ISO 

90 

30 

0 

P L N 

] D 70 30 ^'J SC 

P L 

^jjiAiii.j.L 
'.7 IK :o 

TIME (msec) 

Figure 2,11 : Poststimulus time histogram (PSTH) and inter-spike interval 
histogram (IH), characteristic of a cell with primary-like with notch (PLJ 
response, such as globular bushy cells. From fRhode91/, 

Stellate cells are found throughout the ventral cochlear nucleus and have a 

number of characteristics which enable them to amplify the amplitude 

modulation patterns in complex acoustic signals. They respond to excitation 

with a sustained depolarisation, the level of which reflects the intensity level of 

the stimulus [Rhode91, Carney90, Frisina90]. This can be seen in studies in 

which current is injected into the cells and induces a repetitive discharge (often 

termed chopping) with rate proportional on the current level [Frisina90]. In 

type 1 stellate cells the depolarisation causes the production o f a regular series 

of discharges, the characteristic sustained chopper pattern (Cg) (see figures 

2.12, 2.13), and in type I I cells, a more irregular set of spikes, the transient 

chopper pattern (C^) [BIackburn89]. 
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Figure 2.12: Poststimulus time histogram (PSTH) and inter-spike interval 
histogram (IH), characteristic of a cell with a sustained chopper (CJ 
response, such as stellate cells. From [Rhode91 J, 
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Figure 2.13 : A plot of the intercellular response of a sustained chopper cell 
(CJ, showing sustained depolarisation and regular discharges. D,E,F) 
response to pure tone stimuli of the frequency indicated at 80dB SPL. G) 
response to a swept tone. From {Smith89J, 

Although most auditory nerve fibres have a fairly high spontaneous rate of 

f i r ing (> 18 spikes/second), the stellate cells exhibit l i t t le or no spontaneous 

f i r ing, which may indicate a coincidence detection operation, and is consistent 

with the relatively long latency of these cells [Young88]. Stellate cells have 

fairly narrow receptive fields which generally have prominent inhibitory 

sidebands, (type I I I response map, see figure 2.10), but the chopping response 

is not a result o f inhibition and exists even when the cell is artificially 

stimulated by a sustained depolarising current. 

Stellate cells are thought to be excitatory and project as far as the inferior 

colliculus [Rhode91]. They do not phase-lock well to frequencies above 1000 

Hz [Rhode86a], but tend to synchronise to the amplitude modulation peaks in 

the signal (see figure 2.14). Stellate cells appear to be tuned to detect specific 

modulation frequencies and have low and bandpass modulation transfer 

functions [Frisina90]. Therefore a best modulation frequency (BMF) , analogous 

to characteristic frequency (CF), can be defined for these cells [Schreiner88a]. 
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There may even be a topographic organisation of stellate cells within the 

cochlear nucleus, based on the modulation frequency response properties of the 

cells, which would effectively result in a mapping o f modulation frequency 

[FrisinaQO]. 
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Figure 2.14 : Plots showing the encoding of amplitude modulations (AM) by 
stellate cells. At high intensities, the natural discharge rate is unaffected by 
the stimulus AM, but at lower intensities, the AM pattern is amplified in the 
stellate output From /Frisina90J. 

Multipolar cells are also found scattered throughout VCN; they vary in size, 

and have long dendrites which extend across multiple iso-frequency laminae. 

They are often confused with stellate or octopus cells, and have very similar 

response characteristics, but are probably inhibitory [RhodeQl]. They have 

extensive axonal collaterals within the cochlear nucleus as well as projections to 
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the PON, L L and IC (see figure 2.9) [Helfert91]. Multipolar cells appear to be 

responsible for the onset chopper (O^) response (see figure 2.15), which 

consists o f an extremely well-timed initial spike, and 2 to 4 regular chopping 

modes followed by more irregular behaviour [Rhode91]. 
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Figure 2.15 : Poststimulus time histogram (PSTH) and inter-spike interval 
histogram (IN), characteristic of a cell with an onset chopper (OJ response, 
such as multipolar cells. From lRhode91J. 

Multipolar cells show a sustained depolarisation very similar to stellate cells, 

but although they appear to have little inhibitory input and the depolarisation 

levels are maintained, irregular chopping ensues after the initial response 

[Rhode86a], see figure 2.16. This feature is very puzzling and has not yet been 

well explained [Blackburn89]. Multipolar cells have also been shown to encode 

amplitude modulations very well [Frisina90]. 

Multipolar cells have very broad tuning curves and wide dynamic ranges, up to 

90 dBs, which may result from a recruitment process, see figure 2.7 [Rhode91]. 

Multipolar cells also have the shortest average latency of any cells in the 

cochlear nucleus [Young88]; it is interesting to note that the first reaction to an 

acoustic stimulus, and one which encodes the fu l l dynamic range, is an 

inhibitory one. The function of these cells is not yet clear, but in chapter 4, the 
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Figure 2.16 : A plot of the intercellular response of a multipolar onset 
chopper cell (OJ^ showing sustained depolarisation and gradually more 
irregular discharges. D,E,F) response to pure tone stimuli of the 
frequency indicated at 80dB SPL. G) response to a swept tone. From 
fSmith89J, 

possible roles of multipolar cells in the production o f tonotopic maps of the 

spectral content and periodicity of acoustic signals is discussed. 

Octopus cells are found concentrated in the PVCN near the IAS. They are 

characterised by very thick dendrites which span a wide frequency range 

[Rhode91], but one which generally appears to exceed 4000 Hz [Ryugo92]. 

Octopus and multipolar cells are sometimes confused and have many similar 

response properties, but octopus cells are thought to be excitatory [Kolston92]. 

Octopus cells have few inhibitory inputs and very short onset latency. The 

well-timed onset spike followed by little activity, is classified as an O^ response 

(see figure 2.17) [Rhode9I]. Both multipolar and octopus cells have fast 

dynamics and can entrain well (i.e. fire 1 spike per cycle) to frequencies up to 

1000 Hz [Rhode91]. Octopus cells have intrinsic connections as well as 

projecting to the PON and L L [Helfert91]. 
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Figure 2.17 : Poststimulus time histogram (PSTH) and inter-spike interval 
histogram (IH), characteristic of a cell with an onset response followed by 
little activity (OJ, such as octopus cells. From [Rhode91]. 

Octopus cells are very good at coding amplitude modulation and can enhance 

synchronisation by 10 times [Frisina90], where ; 

modulation gain = 20 log TT- [2.2] 

and .v̂  and are the response and input synchronisation indexes, respectively. 

The DCN in most mammals is a layered structure and contains a variety o f cell 

types, which generally exhibit more complex responses. Latencies here can be 

up to 100 ms [Rhode86b]. The principal cell in the DCN is the fusi form or 

pyramidal cell [Shofner85]. In most mammals they are located in the middle 

layer, and are oriented radially, with their apical dendrites receiving inputs f rom 

cells in the molecular, or outer, layer, and from auditory nerve fibres via the 

basal dendrites [Rhode86b]. In humans, however, there is no layered structure 

and the fusiform cells lie parallel to the surface [Nieuwenhuys88, Moore87, 

Adams86]. Although apparently significant, the implications of these changes 

are not known. 

Fusiform cell responses can vary depending on signal intensity and frequency; 

pauser (P), buildup (B) and chopper responses have all been recorded 

[RhodeQl] They have type IV response maps, which means they are only 
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activated by tones near their characteristic frequencies near threshold, and by 

wideband noise [ShofnerSS, Rhode91] See figure 2.18 for various 

characteristic fusiform response patterns. Fusiform cells are excitatory 

[Kolston92] and can have non-monotonic rate/intensity functions. They project 

tonotopically to the contralateral L L and IC [Rhode91]. 
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Figure 2.18 : Typical fusiform post stimulus time histograms and inter-spike 
interval histograms showing A) buildup B, and B) pauser P responses. C) 
Fusiform cells have type IV response maps, with excitatory islands 
surrounded by extensive areas of inhibition. This behaviour can perhaps be 
more clearly understood by examining D) which shows the fusiform response 
to wideband noise (dotted line) and pure tone stimuli at various sound levels. 
From /Rhode91J. 

Other cells in the DCN are mostly small and inhibitory and are involved in local 

circuits; these include granule, cartwheel, small stellate, fan and radiate cells 

[Rhode91]. 

A prominent cell type, found throughout the cochlear nucleus is the giant cell 

[Shofner85]. Giant cells can code for onset and offset and have 'onset with 
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graded activity' ( O q ) PSTH [Rhode91]. They have a type I I response map and 

are probably excitatory [Kolston92], but their function is unknown. The 

response characteristics of giant cells are shown in figure 2 . 1 9 . 
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Figure 2.19 : A) Post stimulus time histogram (PSTH), B) inter-spike 
interval histogram (IH), C) type 11 response map, and D) (no) response to 
wideband noise (dotted line), characteristic of a cell with graded onset 
response (OJ, such as giant cells. From [RhodePlJ. 

Another cell found throughout the cochlear nucleus is the granule cell 

[Rhode91]. They are prominent in most mammals, but are rare in humans, and 

the granular layer normally covering the VCN and DCN is missing [Moore87]. 

As can be seen from this review of the cochlear nucleus, it is clear that 

extensive processing of the auditory signals takes place here, however, although 

the cochlear nucleus has been intensively investigated, much of its processing 

still remains a mystery. 
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e) The Superior Ol ivary Complex 

The ventral cochlear nucleus projects bilaterally to the superior olivary complex 

(SOC), which appears to be involved in the processing o f binaural stimuli for 

the purposes o f sound localisation [BruggeSS]. Principal nuclei o f the SOC are 

the lateral and medial superior olivary nuclei (LSO, MSO), and the lateral and 

medial nuclei o f the trapezoidal body (LNTB, M N T B ) [Cant91]. There are also 

many smaller nuclei, called the periolivary nuclei (PON) which play an 

important role in auditory feedback circuits, and give rise to the olivo-cochlear 

bundle [Helfer t91] . The extrinsic connectivity of the SOC is shown in figure 

2.20. 

MNTB MNTB 

Cochlear Input 

Figure 2,20 : Diagram showing the connectivity between CN spherical and 
globular bushy cells and the SOQ presumed to underlie the interaural 
timing and intensity difference circuits. Open circles : excitatory 
connections, filled circles : inhibitory connections. From fCant91J, 

There are two principal cues used by the auditory system to help in localising 

sound; at high frequencies, the head casts a 'shadow', creating interaural 

intensity differences; and at low frequencies (and low frequency amplitude 

modulated signals) interaural time differences are apparent [Brugge88, Yost91]. 
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The LSO, is the largest nucleus in the complex in most mammals and is 

organised tonotopically [Cant91]. Principal cells are fusiform or pyramidal 

neurons with dendritic fields which run parallel to iso-frequency planes. The 

LSO receives excitatory ipsilateral, and inhibitory contralateral input and their 

output is therefore dependent on the relative intensity of the acoustic signal at 

the two ears. Globular bushy cells of the contralateral cochlear nucleus project 

to the trapezoid body, where they activate the inhibitory neurons which connect 

to the LSO; effectively 'reversing the sign' o f contralateral signals [Cant91] 

[Brugge88]. Ipsilateral input originates f rom the spherical bushy cells. Most 

principal neurons o f the LSO connect to either the contralateral or ipsilateral 

inferior colliculus, but a small number project bilaterally. These projections 

appear to be inhibitory [Helfert91]. In humans the interaural intensity difference 

(globular bushy : MNTB : LSO) path is far less prominent, implying a greater 

reliance on interaural timing differences [Moore87]. There is even some doubt 

as to the existence of the MNTB in humans [Webster92]. 

Interaural timing differences may be detected f rom onset time and ongoing 

phase disparities; auditory neurons are sensitive to both cues. Large spherical 

bushy cells in the cochlear nucleus are activated by single auditory nerve fibres 

via large synapses and provide a very fast and accurate transmission path to 

bipolar cells in the MSO where interaural time differences, of the order of 

microseconds, are decoded [Brugge88]. The very fine resolution indicates that a 

large number o f inputs may converge on these cells. Both contralateral and 

ipsilateral inputs are excitatory. The bipolar neurons in the MSO effectively act 

as coincidence detectors, cross-correlating input spike trains from the two 

sides. The output spike rate is maximum when the interaural inputs are in phase; 
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a lag or lead in the signals from either ear reduces the output rate, (see figure 

2.21). The MSO projects excitatory signals mainly to the ipsilateral central 

nucleus o f the inferior colliculus, and the dorsal nucleus of the lateral lemniscus 

[Helfert91]. 
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Figure 2,21 : Plot showing interaural phase sensitivity of an MSO bipolar 
cell From [BruggeSS], 

The PON are implicated in feedback and reflexive paths and appear responsible 

for regulating operational setpoints [Helfert91]. They receive inputs f rom the 

multipolar, octopus and globular bushy cells and project bilaterally to the 

inferior colliculus and lateral lemniscus in a diffuse way. Their feedback signals 

modulate the type I fibres innervating inner hair cells and also make direct 

contact with outer hair cells [Spangler91]. 

0 The Lateral Lemniscus and Nuclei of the Central Acoustic Tract 

The lateral lemniscus ( L L ) forms a chain of nuclei running from the SOC to the 

IC, see figures 2.2 and 2.7. Three nuclei can be distinguished within the L L , the 

ventral ( V N L L ) , intermediate ( I N L L ) and dorsal ( D N L L ) nuclei o f the lateral 

lemniscus [Helfert91]; although, in humans, only the V N L L and D N L L appear 
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to be found [Nieuwenhuys88, Schwarz92]. Projections to the L L nuclei include 

second order axons from the VCN and DCN, third order axons f rom the MSO 

and fourth order axons from the LSO; the L L , therefore, receives at least three 

waves o f signals in response to an acoustic stimulus [Webster92]. The function 

o f the L L nuclei is not well understood, although some idea as to their role may 

be deduced f rom the relative prominence of the nuclei within various species. 

The V N L L appears to be sensitive to variations in temporal features and is 

prominent in echolocating mammals [Helfert91, Schwarz92]. The nucleus is 

tonotopically organised and forms part o f the circuit f rom the CN to the 

reticular formation, which is implicated in the short latency acoustic startle 

response [Schwarz92]; in humans, however, the nucleus is much less compact 

and the cells are shrunken looking [Moore87]. Projections f rom octopus cells in 

the contralateral VCN terminate in the V N L L , which also receives projections 

f rom the D C N and SOC. The V N L L also sends strong projections to the IC 

[Schwarz92]. 

The I N L L appears to be associated with monaural processing, but has not been 

identified within the human system [Schwarz92]. The I N L L in other species 

receives strong projections from the LSO and M N T B , just the nuclei which are 

poorly formed in humans, and projects to the IC [Schwarz92]. 

The D N L L is prominent in all mammals, and therefore probably has some role 

common to most species. I t appears to be involved in binaural processing, and 

receives its principal inputs from the MSO and LSO. The D N L L projects to the 

inferior and superior colliculi (IC, SC) [Schwar292]. The SC connections are 

within the deep layers of the SC, where auditory space maps have been found in 
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the guinea pig and owl [Helfert91, Konishi88]. The SC appears to be involved 

in co-ordinating head, ear, and neck movements in response to sound stimuli 

[Helfert91]. 

The central acoustic tract runs parallel to the L L and IC; axons here bypass IC 

and project directly to the medial division of the M G N [NieuwenhuysSS], and 

deep layers of the SC [Schwarz92]. In the bat this pathway is involved in 

multimodal sensory processing [Suga90]. 

g) The Inferior Colliculus 

The inferior colliculus (IC) is a major midbrain auditory structure, which plays 

an important role in both the ascending and descending pathways 

[NieuwenhuysSS], and is an obligatory target for the vast majority o f ascending 

fibres [Cai rd9I ] . I t consists o f a large, dense, tonotopically organised central 

nucleus (CIC), and more diffuse lateral zones, the paracentral nuclei, and the 

dorsal cortex (DCx) [Caird91]. The structure and morphology of the IC is very 

similar across mammals, although differences in emphasis in frequency 

representation have been found [Oliver91]. The convergence of many parallel, 

and functionally distinct, pathways on a single nucleus is a source some 

puzzlement [Webster92], and it is argued that in order to understand the 

processes within the IC it may be necessary to think in terms o f a fairly fine 

functional distinction between synaptic domains, which may be formed by the 

overlapping input projection patterns of the various peripheral processing 

pathways, rather than the coarser, more commonly identified, subdivisions 

[Oliver92]. 
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The organisation o f the CIC is very complex. Within the CIC most cells have 

disc-shaped dendritic fields, effectively creating iso-frequency sheets 

[Oliver91], which it has been suggested may be the basis for psychophysical 

critical bands [Caird91]. The remainder of the cells are stellate type, with oval 

or spherical dendritic fields which usually cross several laminae. Characteristic 

frequency responses do not vary smoothly through the CIC, but are found to 

change in steps or jumps [Aitkin85, Caird91]. There are about 40 iso-frequency 

laminae in the CIC, but within each a grading of frequency response is found 

[Langner92]. 

Within each iso-frequency sheet there are a number o f systematically organised 

parameters including threshold, binaural sensitivity, sound localisation, onset 

latency, sharpness of tuning, and modulation frequency [Aitkin85, 

Schreiner88a]. There are also neurons which detect specific time delays and 

have characteristic delays, corresponding to interaural phase differences 

[Caird91]. A number o f parameters are arranged in concentric contours within 

the iso-frequency sheets, for example, modulation frequency, latency and 

sharpness o f tuning [SchreinerSSa], see figure 2.22. In contrast, binaural 

sensitivity is organised such that regions with the same binaural response 

properties, principally EE, E I and EO, form wedge shaped regions within the 

sheets [Schreiner88a]. 

Within the CIC systematic organisation of stimulus periodicity, or amplitude 

modulation ( A M ) , sensitivity is found [Schreiner88b]. The best modulating 

frequency (BMP) o f a neuron is defined as that which elicits the highest firing 

rate, with carrier frequency equal to the characteristic frequency (CF) o f the 

neuron [Schreiner88a, 88b]. The organisation of modulation frequency, within 
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Figure 2,22 : Diagrams showing A) sharpness of tuning (Qj^ ) and B) 
modulation frequency contours within an iso-frequency sheet of the C / C . 
From [Schreiner88aJ. 

each iso-frequency lamina, consists o f a concentric arrangement o f iso-BMF 

contours, with the highest frequency at the centre. BMF sensitivities in the 

range f rom 30 to 1000 Hz have been found, with the upper limit approximately 

one quarter of the characteristic frequency o f the sheet [Schreiner88b]. 

For a given BMF, the diameter of the contour increases with increasing CF, and 

sites o f equal BMF lie on conically shaped surfaces within the ICC (see figure 

2.23> [SchreinerSSb]. I t is thought that correlated activity may be used by the 

auditory system to group components in complex signals in order to form sound 

source percepts [Langner92, Rees87]. The output from iso-BMF cones may, 

therefore, carry information about which frequency components form part o f the 

same harmonic complex and so should be associated [Langner92a]. 
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i so-BMF contour 

Figure 2.23 : Schematic representation of the conical surfaces formed by 
isO'BMF contours within the CIC From [Schreiner88bJ, (This diagram is 
based on a slightly different subdivision classification than the one used in 
the text; ICC is roughly equivalent to CIC, ICP to the dorsal cortex, and ICX 
to the lateral nucleus of the paracentral nuclei [Caird91, Oliver92J,) 

In the C I C most cells are sharply tuned, although some broad or multipeaked 

ones are also found [Caird91], A significant level of spontaneous firing, 

averaging about 14 spikes/sec, is generally evident [Bock72]. Sustained firing 

patterns in response to acoustic stimuli are less common than in the periphery, 

and most activity is concentrated during the early part of the signal (see figure 

2.24) [Bock72, Aitkin85]. 

While onset responses are most common, inhibitory, offset and primary-like 

responses are also found (see figure 2.24) [Bock72, Aitkin85]. Inhibitory 

sidebands are common, and there are many intrinsic inhibitory circuits 

[0Iiver91]. Both non-monotonic and monotonic rate intensity functions are 

found, with intensity ranges generally from 10 to 30 dBs [Caird91]. 

The C I C receives direct monaural signals emerging from the stellate cells of the 

contralateral V C N , and fusiform and giant cells of the contralateral D C N 
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Figure 2,24 : Examples of PSTH's found in the CIC, showing A) onset, B) 
primary-likey C) inhibitory and D) offset firing patterns. From [Bock72J. 

[Caird91], as well as binaural inputs from the MSO. L S O and D N L L [Oliver91]. 

Focused inputs to the inferior colliculus, relating to tonotopic organisation, 

terminate in discrete fields or bands; and diffuse inputs terminate more widely 

[01iver91]. Contralateral signals generally have shorter latency than ipsilateral 

ones, presumably largely due to shorter processing paths, however, the means 

for synchronising the signals originating from the various sources is unknown 

[Aitkin85]. Significantly, the C I C receives no direct extrinsic afferent inputs, 

and feedback to the IC from the auditory cortex appears to be directed at the 

paracentral nuclei and the DCx [Spangler91]. 

The C I C projects to the dorsal cortex (DCx) of the contralateral I C , the ventral 

MGN and the ipsilateral paracentral nuclei, particularly the lateral nucleus 

[01iver9I]. From the inferior colliculus onwards the ascending system has two 

distinct pathways, the 'core' and the 'belt', named for their separate cortical 
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targets. The C I C , MGN^ and primary auditory cortex form the 'core' pathway, 

and the DCx and paracentral nuclei of the IC, the MGNp and secondary auditory 

fields, comprise the 'belt' path [Nieuwenhuys88]. There is also a so-called 

•widespread' path which originates from cells around the IC and goes via the 

MGNj^ to all auditory cortical fields [Oliver91]. 

The DCx is a layered structure with some tonotopic organisation. It receives 

afferent inputs from both the primary and secondary auditory cortex, efferent 

signals from the AVCN, DCN, PON and D N L L . as well as somatosensory inputs 

[Oliver91]. Connections are targeted on specific layers [Oliver91]. The DCx 

generally has sensitivity to the lower frequencies in the auditory range 

[Caird91]. Neurons here usually have broad complex tuning curves, but some 

have very sharp tuning curves with no low frequency tail [Aitkin85]. They tend 

to be less sensitive to noise and artificial stimuli than those in C I C , but appear 

to respond best to stimuli of significance to the animal [Caird91]. These 

neurons are also affected by barbiturates [Caird91]. The integration of 

somatosensory and acoustic information is likely to be one function of this 

region, but little detail of this aspect is known. 

There are many paracentral nuclei, the most well known being the lateral 

nucleus, which receives a particularly heavy projection from the C I C , as well as 

cortical, somatosensory and spinal column inputs [0Iiver91]. The inputs from 

the C I C are spread across a range of frequencies, which may indicate that the 

neurons in the lateral nucleus are involved in analysing the output of arrays of 

C I C cells, across the characteristic frequency range [Caird9l]. Connectivity of 

the paracentral nuclei differ, indicating different processing functions 

[01iver9l], but details are scarce. The paracentral nuclei (and D N L L ) project to 
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the deep layers of the superior colliculus which contains an auditory space map, 

which may be directional rather than spatial, and is used in head, pinna and eye 

movements [Oliver91]. Paracentral nuclei also project to the MGN^ in the 

thalamus [Oliver91]. 

From its connectivity and complex intrinsic organisation, it is clear that the I C 

is of fundamental importance in the auditory system. Although the functional 

role(s) of the I C remain unclear, it has been suggested that the grouping of the 

components of complex sounds [Langner92], and the preliminary identification 

of important sounds [Poon91] and directions [Oliver91], may be performed 

here. 

h)The Medial Geniculate Nucleus of the Thalamus 

The thalamus consists of a large number of nuclei, and the principal ones 

involved in auditory processing are the medial geniculate nucleus (MGN) and 

lateral part of the posterior group (Po) [Imig88]. The MGN consists of three 

divisions the ventral (MGNy), dorsal (MGN^) and medial ( M G N ^ divisions; 

and each of these contains a number of distinct nuclei [Rodrigues-Dagaeff89]. 

As mentioned previously, there are two distinct pathways connecting the I C , 

MGN and auditory cortex - the tonotopic and diffuse pathways. In the main, 

parallel operation is maintained, but some mixing of the two paths is achieved, 

firstly by the widespread connectivity of MGN^ which overlaps both paths, and 

secondly by projections from the primary auditory cortex, part of the tonotopic 

path, to the MGN^, actually part of the diffuse path [Winer91]. 
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Nuclei of the diffuse pathway are dominated by broadly tuned neurons with 

radiating dendrites, and which also respond to non-auditory stimuli [Winer91]. 

Nuclei of the tonotopic pathway are generally characterised by a tonotopically 

organised layered structure like that found in the C I C [Rodrigues-Dagaeff89]. 

Although the tonotopic organisation of the auditory system is probably not 

determined by learning and is not significantly affected by anaesthesia, rapid 

adaptation can take place in some areas [Weinberger88], and the diffuse 

pathway is affected by learning. In the subcortical system there generally seems 

to be an inverse relation between the accuracy with which neurons encode 

information and their plasticity [Weinberger88]. 

The MGNy is organised tonotopically and contains lateral laminae of 

characteristic frequency (CF) and ovoidal laminae of best modulating frequency 

(BMF) [Imig88]. It has been found that most neurons respond to acoustic 

stimulation with short latency (10-20 ms), are sharply tuned and often have 

transient responses [Rodrigues-Dagaeff89]. The MGN^ is connected 

reciprocally to the primary auditory cortex, with projections topographically 

organised with respect to C F and binaural sensitivity [Imig88]. 

The posterior group (Po) is very similarly organised [Imig88]. Temporal 

resolution is maintained up to about 300 Hz, and phase-locking to clicks has 

been detected to this frequency [Rodrigues-DagaefF89]. As in the C I C , 

systematic organisation of a variety of parameters such as latency and BMF, is 

found within the iso-frequency laminae; which seems to indicate that a number 

of parallel processing subsystems exist within the tonotopic pathway 

[Rodrigues-Dagaeff89]. Some neurons have also been found which respond 
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preferentially to species specific vocalisations centred around their C F 

[Winer91]. 

The dorsal (MGN^) area is quite different and forms part of the diffuse 

pathway. Many neurons are insensitive to auditory stimuli, while others only 

react to complex sounds [Rodrigues-Dagaeff89]. They can have much longer 

latencies (sometimes up to several hundred ms) and tend to be broadly tuned 

[Imig88]. The MGN^ has no obvious laminar or tonotopic organisation 

[Winer91]. However, projections to the cortex do seem tonotopically arranged 

to some extent; high frequency projections originate from areas separate from 

those which project low frequency information [Imig88]. The MGN^ projects to 

the secondary auditory fields, principally A l l , and unusually, non-reciprocal 

projections between the MGN^ and cortical fields are prevalent [Winer91]. 

The medial MGNj^ appears to act as an interface between the tonotopic and 

diffuse pathways; and neurons here have very diverse behavioural 

characteristics [Winer91]. Topographic organisation of frequency and latency 

are found [Rouiller89]. The MGNj^ projects reciprocally and tonotopically to all 

fields in the auditory cortex and therefore has widespread influence 

[Rouiller89]. Inputs to the MGN;^ originate from at least 11 subcortical 

sources, including I C , SC, L L , the vestibular system, the thalamic reticular 

complex, the spinal cord, and visual and somatosensory inputs [Rouiller89], and 

polysensory sensitivity can be displayed by single cells [Rouiller89]. 

In addition to cortical projections, MGNj^ also projects directly to the 

amygdala, an important limbic forebrain structure, involved in the coupling of 

emotional responses to acoustic stimuli [Rouiller89, Winer91, LeDoux94, 
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Winer92]. The amygdala receives inputs from all sensory modalities, usually 

from cortical associational areas [Nieuwenhuys88]. It projects strongly to the 

input and output centres of the hippocampus and to a considerable number of 

hypothalamic and brain stem centres, and forms an essential part of the 

structural basis of emotion [Nieuwenhuys88]. The amygdala has many 

sensorimotor connections and appears to be instrumental in providing the 

emotional drive for movement in defence or 'flight' behaviour [Nieuwenhuys88]. 

The subcortical acoustic signals transmitted directly from the MGN may, 

therefore, provide the means for reacting rapidly to threatening noises without 

the need for slower cortical recognition to first occur [LeDoux94]. 

i) The Auditory Cortex 

The auditory cortex occupies the superior temporal gyrus and temporal 

operculum (see figure 2.25) [Nieuwenhuys88]. Primary auditory areas (41,42) 

are connected to auditory association areas with sets of short fibres. Area 22, 

Wernicke's speech area, and other auditory association areas surrounding the 

primary areas, are interconnected and, in addition, have long range connections 

to other cortical association areas, such as the visual, somatosensory and 

premotor regions [Nieuwenhuys88]. 

The marked asymmetry in the human auditory system, in which the left lobe is 

specialised for language, is also physically visible; including differences in the 

size and number of convolutions of the superior temporal region, and a doubling 

of Heschl's gyrus in the right, but not the left hemisphere [Nieuwenhuys88]. 
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\ 

Figure 2,25 : The cortex. A) Subdivision of the right cortical hemisphere, 
according to Brodman. B) Lateral view of the right cortical hemisphere 
showing the names generally used to identify the various regions. From 
[NieuwenhuysSS], 
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To some extent, each cortical hemisphere predominantly represents 

contralateral sounds, and callosal connections are found between tonotopically 

organised areas [Wong91]. 

Since a great deal of preprocessing takes place in the auditory system, and the 

discrimination of many parameters occurs at subcortical levels, a question arises 

as to the role of the auditory cortex [WhitfieldSS]. It has been suggested that 

its principal function may lie in detecting similarities between signals 

[WhitfieldSS]. For example, auditory cortical ablation affects sound localisation 

in animals if the animal has to move relative to the sound, but not if it remains 

still. This may arise because as the animal moves around, sounds originating 

from the same source, will tend to vary slightly, e.g. in direction, or intensity. 

The animal needs to be able to recognise and associate similar sounds from one 

instant to the next in order to perceive the identity of the external sound source. 

'Stimulus equivalence' is also necessary, for example, if animal vocalisations 

from the same species, or same individual, are to be recognised; as they will 

never sound precisely the same [Whitfield85]. 

Studies of the effects of human temporal lesions also indicate this role in 

similarity detection [Luria80]. People with superior left temporal lesions have 

great difficulty in identifying like sounds; nor can they recognise rhythmic 

patterns or phonemes [Luria80]. Their ability to read and write (except when 

copying) is also impaired, which implies that the auditory imagery areas may be 

used in many facets of language [Luria80]. 

The auditory cortex also appears necessary for the perception of temporal 

patterns or orderings, learning difficult auditory tasks, and prolonging the 
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effects of short stimuli [LuriaSO]. While the discrimination of sounds varying in 

one dimension is not seriously affected by the ablation of the primary auditory 

cortex (AI), discrimination on the basis of combinations of parameters is 

severely impaired [Phillips91]. 

Auditory association areas in the middle part of the temporal lobe have a 

different role and connectivity. These areas are well-developed in humans and 

are closely connected with visual regions and the limbic system [Luria80, 

Nieuwenhuys88]. Their close involvement with the emotions is evidenced by the 

strong emotional effect of mid-temporal lesions, which have been shown to 

cause emotional disturbance, dreamy states, and hallucinations [Luria80]. 

People with lesions in this region can hear and understand individual words but 

have serious problems in remembering or understanding even short series of 

words [LuriaSO]. 

The principal input to the auditory cortex comes from the MGN of the 

thalamus. As discussed in the previous section, the cortico-thalamic projections 

tend to connect regions with similar characteristics, usually reciprocally; and 

these connections preserve the tonotopic and binaural organisation already 

established. In cats it has been found that while the tonotopic organisation is 

invariant across individuals, the layout of binaural bands, although roughly 

orthogonal to the iso-frequency contours, varies widely; indicating that these 

may be established as the result of experience, while the tonotopic arrangement 

is 'hard-wired' [Brugge85]. 

The normal six layer structure of the cortex is also present in the auditory 

cortex [Wong91]. The main cortical cell type is the pyramidal cell 
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[Braitenberg91]. In tonotopically organised areas, the dendrites of the 

pyramidal cells run parallel to the cortical surface along iso-frequency contours 

[Wong91]. Other types of cells tend to have spherical dendritic fields. The 

connectivity of the auditory cortex suggests that considerable local processing 

takes place. As [Churchland92] notes, topographic organisation is a standard 

processing technique in sensory systems, and may provide an effective way for 

minimising the communication times between co-operating areas and the 

connections (or 'wiring') required. 

Thalamo-cortical projections have a number of distinctive characteristics, some 

are specific and localised, while others, as discussed in the previous section, are 

more widespread and may have a role in the regulation of attention, arousal, 

and perhaps consciousness [Herkenham85]. Non-specific thalamic nuclei receive 

many convergent inputs from diverse sources and can therefore assimilate 

information from a range of modalities. They have been shown to be involved in 

mood-movement control; for example, behaviour such as freezing with fear, has 

been generated artificially by appropriate thalamic stimulation [Herkenham85]. 

Neurons in the auditory cortex have widely varying response characteristics, 

with many tuning curve shapes, complex temporal patterns of response, and 

differing temporal sensitivity [Brugge85]. Cells with the same characteristic 

frequency can have widely varying tuning curves, some very narrow tuning is 

found, but usually cortical tuning is broader than in the MGN. Most responses 

to pure tones (short or long) are transient, or phasic, onset responses [Luria80, 

Phillips91], with onset latency as short as 10-12 ms [Phillips91]. A few 

sustained and offset responses are also found. However, in response to complex 

sounds, for example, harmonic complexes, phasic responses seem to change to 
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become long, rhythmic responses [LuriaSO]. In addition, some cells only 

respond to sounds which are meaningful, indicating the convergence of inputs 

from emotional sources [LuriaSO]. This is consistent with the idea that tonal 

analysis is concluded in subcortical regions, and that the cortex is engaged in 

integrating auditory information [Luria80]. 

Cortical neurons generally have small intensity ranges (10 to 30 dBs) 

[PhiUips91], and intensity sensitivity is not usually reflected in cortical 

responses [Luria80]. It is possible that by this stage intensity has been mapped, 

as in the bat [Suga90], but ampliotopic maps have not yet been found in 

humans. Both monotonic and non-monotonic rate intensity functions are found, 

however, and a few neurons have wide intensity ranges [Phillips91]. 

No systematic organisation of sensitivity to best modulating frequency (BMP) 

has yet been found in the cortex, except in bats, although BMF's can certainly 

be determined [Schreiner88c]. Amplitude modulation tests on the cat auditory 

cortex have shown neurons in AI to have BMF's up to about ISHz, in A l l up to 

lOHz, and in AAF up to about 28 Hz; it is suggested that the difference in BMP 

sensitivity may be related to the functional role of the various cortical fields 

[Schreiner88b]. 

The scale of temporal resolution found in the human auditory cortex is roughly 

in the range of speech rhythms, which are around 4 Hz [Langner92]. This means 

that there is a clear change in response time scale from periphery to cortex of 

almost three orders of magnitude, and the detailed temporal information 

contained in the peripheral signals is probably extracted and organised 
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topographically. (Interaural phase differences generate binaural beats, which 

may require a similar decoding mechanism [Phillips91].) 

The differences in temporal resolution across cortical fields suggest that 

changes in temporal resolution are not merely the result of synaptic blurring, 

but may refiect processing strategies inherent in the auditory system 

[Schreiner88b]. Perhaps the process can be usefully viewed as one of perceptual 

'chunking', in which the temporal continuum is rearranged into discrete 

perceptual events. This topic will be considered further in chapter 4. 

The temporal resolution of the cortex with respect to transient events, however, 

is quite precise, with little jitter evident [Phillips91]. The increasing importance 

of transient representations along the auditory pathway [Bock72, AitkinSS, 

Simmons70], may be an emergent property of central auditory processing 

[Phillips91]. Some cortical neurons are very sensitive to frequency modulations, 

including the direction and speed of frequency sweep, and also as to whether 

the sound is initiated within or outside the cell's static response area 

[Shamma92, Phillips91]; these neurons clearly have a sensitivity to temporal 

sequences of activation. This sensitivity to transient features means that cortical 

neurons are not simply responding to long term averages, but are able to encode 

the transient behaviour of individual components of complex sounds 

[Phillips9l], an essential part of characteristic sound recognition. The spectral 

fluctuations of natural sounds and changes caused by movement, for example, 

make this ability to represent transient information absolutely crucial. 

An important feature of sensory systems, in general, is their ability to 

reorganise throughout life in response to significant changes, e.g. loss of a limb. 
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This plasticity is an important aspect of intelligent systems, allowing them to 

cope flexibly with changing circumstances and priorities, both intrinsic and 

extrinsic. Learning enables the relative significance of all the available stimuli to 

be judged, and can thereby influence the subsequent behaviour of the system. 

Learning is also apparent in the auditory system, particularly in the diffuse 

pathway [Weinberger88]. In classical conditioning experiments, in which 

auditory signals are paired with pupil dilation, rapid, stimulus specific, 

adaptation to the conditioned stimulus is evident in the auditory cortex 

[Weinberger88]. The storage of long term, learning induced responses, where 

changes persist until explicitly reversed by reversal training, is also found 

[Weinberger88]. Neurons in A l l show most plasticity with about 95% of cells 

affected and adaptation is rapid (< 10 trials). Roughly half of the neurons 

examined exhibited increased activity, and the other half decreased activity, in 

response to the conditioned stimulus. In some cells alterations are frequency 

specific, i.e. changes are only apparent at the stimulus frequency, while in 

others, generally increased activity is evident. In AI about two thirds of neurons 

show some plasticity, and adapt within 6-20 trials. It is suggested that the 

existence of two, essentially parallel, processing systems, one very accurate and 

the other more diffuse may be a good way for coping with the ambiguity 

learning might otherwise induce [Weinberger88]. 

In conclusion, although the auditory cortex is not necessary for discrimination, 

it does seem to be necessary for the transfer of training, the formation of 

concepts of external sound sources, understanding the nature of auditory 

problems, for the attachment of appropriate responses to stimuli, and for the 

high level recognition of specific sounds, such as speech signals. 
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3, Modelling the Auditory Periphery 

a) Introduction 

Computational neuroscience has a vital role to play in advancing our 

understanding of the central nervous system. The modelling of neural systems 

can help to clarify the processes involved, and simulation is an invaluable tool 

in a field where the complexity of the behaviour generally means that analytical 

solutions are not available [SejnowskiSS, Koch89]. The process of formulating 

and simulating models of neural processes can also serve to highlight areas 

where experimental results are weak or contradictory, and can provide a 

valuable guide to further experimentation [Schouten?!]. 

The modelling of the nervous system can be approached at many different 

levels, ranging from detailed models of the chemical processes within cells, e.g. 

[Hodgkin52], to high level cognitive behaviour, e.g. [McClelland86]. 

[Churchland88,92] identifies seven distinct levels of modelling : molecular, 

synaptic, neuronal, network, map, system, and central nervous system levels; 

where the appropriate level clearly depends on the problem being tackled. In 

developing models, one is ideally aiming to incorporate the minimum detail 

necessary in order to achieve, and understand, the desired behaviour. 

Simplification is a very important part of the modelling process; otherwise, 

simply reproducing the original system by artificial means would result in an 

artificial system which is as difficult to understand as the original 

[Sejnowski88]. However, care has also to be taken to avoid losing important 

aspects of the system's behaviour in the simplification process. In this thesis, 
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the models examined and developed are generally consistent with known 

morphology, and modelling is aimed at a level which allows an exploration of 

the temporal characteristics of neural behaviour without excessive complication. 

Another motivation for the development of artificial neural systems, is the 

possibility of being able to capture some of the power and flexibility of 

biological systems; the goal being to create more powerful and efficient 

artificial devices, such as intelligent sensory systems which could enable 

machines to interact with the world in real time; robots capable of navigating in 

natural environments, for example, or automatic speech recognition systems. A 

deeper understanding of the nature of the signals used in biological systems can 

also assist in the development of artificial aids, e.g. cochlear implants 

[Ainsworth92]. 

Over the years, some aspects of auditory processing, particularly those 

concerned with spectral analysis in the peripheral system, have been extensively 

modelled; but processing within the auditory midbrain has received relatively 

less attention. Most current auditory research appears to be concerned with 

speech recognition, where it is thought that more detailed biological models 

may help to overcome the limitations and brittleness of current techniques 

[Rouat94, Rudnicky94]. It has been argued that one of the shortcomings of 

artificial auditory systems is the way in which the considerable intermediate 

processing in the auditory system is largely ignored [Cooke93, Antrobus94], 

and in many models an attempt is made to implement speech perception by 

directly using peripheral spectral information, e.g. [Kohonen88]. The formation 

and gradual assembly of intermediate feature maps seems more biologically 

plausible, and may ultimately be of benefit in enabling the production of more 
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robust artificial systems [Brown92]. This approach has long been adopted in 

modelling the visual system where Marr's ideas have been influential [Cooke93], 

but is less common in auditory modelling, and to some extent this thesis 

attempts to redress the balance. 

In this chapter I intend to present a brief review of some important cochlear 

models, concentrating principally on basilar membrane and inner hair cell 

models. The operation of the outer hair cells is not yet well understood, but 

some consideration of the effects of the inclusion of active feedback, thought to 

originate from the outer hair cells, will be included. Finally, more extensive 

results from the composite cochlear model, used as a basis for the rest of the 

work in the thesis, will be presented. 

b)The Outer and Middle Ear 

The outer and middle ears are not generally modelled very much, although it is 

thought that the sharp notches produced in spectral patterns by the outer ear, 

may help in sound localisation [Shaw83, Allen85, Spirou92]. The effects of the 

middle ear are also largely ignored, although a transfer function of middle ear 

processing for anaesthetised cats has been developed [Guinan66]. Generally, 

most models only consider auditory processing from the oval window onward; 

although sometimes the combined effect of the outer and middle ear is modelled 

as a bandpass filter, which attenuates frequencies above 5 kHz and below 1 kHz 

[Hewitt92, 0'Mard94]. In the work in this thesis, the effects of the outer and 

middle ears have been ignored. 
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c) The Inner Ear - Basilar Membrane 

There are many models of basilar membrane response to acoustic stimulation, 

e.g. [Li Deng92. Shamma86, AllenSS, Zwicker90, Patterson82, Lyon88], or 

more specifically oval window motion; however, only two representative models 

will be examined here. Early models of the basilar membrane were based on the 

concept of a transmission line analogy to the process in which oval window 

displacements give rise to travelling pressure waves in the cochlea, thereby 

causing basilar membrane displacement [AllenSS]. Variations on this basic 

approach in 1, 2 and 3 dimensions are found; however, these models are 

generally linear and do not match the very sharp tuning and nonlinearities of 

biological basilar membranes [Allen85, Lyon88]. The 'transmission line' 

approach is also computationally expensive [Cooke93]. L i Deng's basilar 

membrane model, although having the advantage of greater accuracy conferred 

by explicitly including the effects of outer hair cell stiffness and lateral 

coupling, is extremely complicated, and involves the solution of a large set of 

non-linear partial differential equation [LiDeng92]. 

An attractively simple formulation of the 'transmission line' type model 

described in [Lyon88], consists of a cascade of second order filters; where the 

output from each filter is used as the input to the next filter and also forms the 

basilar membrane response at that point (see figure 3.1). Each filter is of the 

form : 
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where x is the filter time constant and Q is the parameter which determines the 

sharpness of tuning of the filter. Suitable time constants are chosen to cover the 

audible frequency range. 

Acoustic 

Signal 

1 1 1 

1 f 1 

Responses 

Figure 3,1 : Filter cascade basilar membrane model [Lyon88],' 

A computationally more tractable approach may be to approximate the basilar 

membrane response by means of a bank of overlapping filters, where filter 

characteristics are chosen to match known psychophysical characteristics 

[Moore83,90]. The overlapping filter bank described in [Glasberg83,90, 

Patterson87a,92], consists of a set of roex(p,r) filters with centre frequencies 

distributed according to the ERB-rate scale (see figure 3.2), which is similar to 

critical band rate [Zwicker90, ScharfZO]. (See section 4e for further discussion 

of critical bands and auditory frequency scales.) The filter weighting in response 

to an input stimulus is given by : 

W(g) = {\'r){\+pg)e'P^+r [3.2] 

where g is the deviation of the stimulus frequency from the centre frequency of 

the filter, p determines the spread of the filter passband, and r the point at 

which the shallower tail becomes effective, (often omitted) [Moore83]. The 

excitation pattern of the basilar membrane model can then be found, as 

illustrated in figure 3.3. 
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Figure 3,2 : ERB-rate and Bark (critical band-rate) auditory scales, where 
ERB-rate=2L 4logJ4.3 7f+l) [Glasberg90J, 
Bark=13atan(0, 76f)-^3,5atan((F/7.5) fCompernoile91J, 
f=Frequency(Hz)/1000, 
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Figure 3.3 : The derivation of an excitation pattern from a set of 
overlapping filters. The filters are symmetrical and spaced according to the 
ERB-rate scale, (similar to the critical band-rate scale). From [Moore83J. 
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Modifications to the filters have also been suggested to account for basilar 

membrane nonlinearities and the spread of excitation with increasing intensity 

[GIasberg90]. In this case, the parameter p is held constant on the high 

frequency slope of the filter but is varied with intensity on the low frequency 

slope, giving a more realistic asymmetric filter [Glasberg90]. 

The equivalent rectangular bandwidth (ERB) of each filter is chosen to match 

psychophysical behaviour [Glasberg90]. The relationship between filter 

bandwidth and centre frequency, f, is summarised by the equation : 

£/?B = 24.7(4.37/+!) [3.3] 

In computational models, these filters are commonly implemented in the form of 

gammatone functions, with impulse response : 

^ 0 = t^^e-^'cos{m)u{{) [3.4] 

where n is the order of the filter, co the centre frequency, and b is related to the 

filter bandwidth [Patterson87b, Cooke93, Hewitt92, 0'Mard94]. 

The gammatone model is now widely used and is included and documented in 

the LUTEar software package, together with a number of, as yet undocumented, 

non-linear extensions [0'Mard94]. 

d) The Inner Ear - Outer Hair Cells 

The behaviour of the outer hair cells (OHCs) is not well understood and 

consequently details of OHC influences are seldom included in peripheral 

models; although, a few models of the effect of OHC activity on basilar 

membrane response have been developed, e.g. [Lyon88, Neely86, LiDeng92]. 
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Lyon describes an automatic gain control scheme for adjusting the damping 

term in response to intensity, which is intended to model the influence of the 

OHCs on the sharpness of tuning of the basilar membrane [Lyon88]. In this 

model the damping term, Q, is adjusted dynamically by : 

^ 2(1-a) [3.5] 

where a is a function of intensity, found by subtracting the sum of the activity 

across a number of channels from the total possible output of those channels. In 

the biological system, however, OHC feedback loops appear to be frequency 

specific [Rhode91], and so an adjustment to the damping level, based on local 

intensity may be more realistic. 

In [LiDeng92] and [Neely86], OHC feedback is included as a modification to 

the damping term. In both cases, the effect is to create regions of the operating 

range with negative damping; in Neely's model the behaviour is both place and 

frequency specific, but LiDeng omits frequency dependence aspects in order to 

overcome excessive complexity. 

In [Wit92] an OHC model intended to account for otoacoustic emissions, which 

appears to display fairly realistic OHC behaviour is presented. Otoacoustic 

emissions are thought to be generated by oscillations within the ear which can 

be initiated by suitable external stimuli, and were one of the earliest conclusive 

demonstrations of active elements within the inner ear [Pickles85]. Otoacoustic 

emissions may, therefore, provide a useful indicator as to the characteristics of 

OHC behaviour [Zwicker90, Fastl92]. 

The input to the OHC may be modelled as a time delayed version of the 

compressed basilar membrane output [Wit92]: 
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[3.6] 

[3.7] 

[3.8] 

where G is the compressed function of basilar membrane output, y. F is the 

driving force on the O H C , x is the O H C output, and a, p. r. andtoo are constants 

[Wit92]. See figure 3.4 for an example of the model's response. 

K riQooo 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 
Time($) 

Figure 3,4 : Response of the OHC model to a stimulus of 100 Hz, where y, 
G(y)> F(0 ond X are as described above. Constants used : a = i , T=3ms, r=03, 
fi=10, m=T-\ 

e) The Inner Ear - Inner Hair Cells 

The inner hair cells (IHC) are the principal source of auditory nerve signals and 

form an interface between the mechanical action of the basilar membrane and 

the neural activity of the central nervous system. As described in section 2c, the 

movement of the IHC cilia in response to basilar membrane motion appears to 

cause ion channels in the IHC to open, which results in the release of 
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neurotransmitter in the synaptic clefts between the IHC and auditory nerve 

fibres. In most models of the IHC, the output is the probability of firing of the 

auditory nerve spiral ganglion cells. In some cases the input to the model is 

taken to be the basilar membrane movement at the position with which the IHC 

is associated, e.g. [Meddis85,90, Cooke93]; in other cases the cilia interface is 

also modelled, e.g. [Shamma86]. 

The basilar membrane - cilia coupling can be expressed by : 

x . | . « = x . c f [3.9] 

where w is the basilar membrane motion, u is the displacement of the IHC cilia 

which is then used as the input to the IHC model, Xc is an appropriate time 

constant (0.3ms), and C a gain constant (=.1) [Shamma86]. There is a highpass 

relationship between cilia displacement, w, and frequency. This model can, 

therefore, account for experimental results of the phase relationships between 

outer and inner hair cells [Shamma86, Dallos92]; the IHC response being driven 

by velocity up to ^ Hz, and by displacement beyond that. 

The essential feature of IHCs is the half-wave rectification of the input signal, 

and occasionally this is the only aspect used [Beauvois91]. All other models are 

based on this primary effect, but also include other features of neurotransmitter 

depletion and replacement [LiDeng92, Cooke93 Meddis85, Shamma86]. In 

some models this can involve the use of very large numbers of intermediate 

•transmitter stores*, e.g. [Payton88]. 

There are so many IHC models to choose from that it is difficult to know which 

to use, although the evaluation of the behaviour of eight IHC models in 

[Hewitt91], goes some way to solving the dilemma. In this study it was 
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concluded that the Meddis model offered the best compromise between 

accuracy and computational efficiency. The model is summarised in the 

equations below : 

m = G^^UJ^. for (5(0 +A) > 0, else 0 [3.10] 

^ = k{t)q{t)-{L + R)c{t) [3.11] 

J = /(/;; - q{t)) +Xw{0 - k{t)q{i) [3.12] 

^=Rc{t)~X^.(i) [3.13] 

where; k(() is the release fraction, s(i) the signal, q(i) the amount of free 

transmitter in the pool, w(i) the transmitter being reprocessed, G, A, B, Y, m, X, 

and L are constants, and c(t) is the transmitter in the synaptic cleft, which 

determines the firing probability of associated auditory nerve fibres [Meddis90]. 

f) Auditory Nerve Signals 

The output from the IHC is a function of the neural transmitter released into the 

synaptic cleft and is generally used to determine the probability of firing of the 

auditory nerves connected to the IHC. The firing probability generated by the 

IHC model may be calibrated to match the biological spontaneous and saturated 

firing rates. Auditory nerve dynamics are generally not modelled, except for the 

setting of a suitable refractory period. However, it is known that the 

spontaneous rate of auditory nerve fibre firing varies, and parameters suitable 

for simulating medium and low spontaneous rate fibres have been suggested 

[Meddis90]. 

75 



In many cases, it is often simpler and more appropriate to use the firing 

probabilities directly rather than going through the intermediate step of 

generating a large number of stochastic spike trains having a mean activity 

which reflects the original firing probabilities [Shamma89]. In the next chapter, 

where it is shown that the dendritic filtering of IHC firing probabilities matches 

the dendritic filtering of a set of spike trains generated by those probabilities, 

the validity of this approach is further supported. 

g) The Composite Peripheral Model 

As has been discussed, there are a large number of alternatives to choose from 

in building a composite model of the cochlea, and to some extent this choice is 

fairly arbitrary, since most of the component models are well documented and 

appear to display the required behaviour. In making such a choice one is 

therefore guided by the essential aspects of the problem being considered, and 

the simplest model which exhibits the required behaviour may be selected, even 

though it may not be the 'best' model in absolute terms. Details of the models 

used are contained in Appendix B. . ' 

Initially, the model of the basilar membrane used in this work was derived from 

the [Lyon88] model, which was chosen due to its conceptual simplicity and easy 

extensibility. Later a version of the gammatone filter bank was also used. In 

both cases, the tuning the component filters depends on the number of channels 

and the frequency range required, and since psychophysical experiments provide 

support for this approach, an appropriate range of time constants is generated 

using the ERB-rate/frequency relationship from [Glasberg90] : 
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ERB, 
/ = 1 0 0 0 * 1 ^ ^ 1 ^ and x,= ' 

4.368 271/; 
[3.18] 

where / . is the centre frequency of the filter in Hz, ERB. 'is incremented linearly 

in the ERB rate scale over the frequency range required, and i / is the time 

constant of the /'th filter. The same distribution of filter frequencies was used in 

both basilar membrane models. An example of the distribution of centre 

frequencies found by this method is shown in figure 3.5, where the basilar 

membrane model consists of 30 channels in the range 50 to 2000 Hz. 
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Figure 3,5 : Filter centre frequencies for a SO channel basilar membrane 
model. The frequencies are generated at equally spaced intervals on the ERB 
rate scale in the range required, in this example SO to 2000 Hz . 

The IHC model used is that described in [Meddis85,86,90], and was chosen as a 

result of Hewitt's investigations, which concluded that this model offered both 

accurate behaviour and reasonable computational efficiency [Hewitt91]. 

However, this model is quite sensitive to the integration interval used and 

becomes unstable much above 0.05 ms, which sets a rather small upper limit on 

peripheral simulation time steps. It may be that a model which permits larger 

time steps to be used, even i f less accurate, may be more useful in some cases. 
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but in peripheral processing, the maximum step size is also determined by the 

range of frequencies required to be processed, and so a small step size is likely 

to be required under most conditions. Since the role of different spontaneous 

rate nerve fibres is unclear, only high spontaneous rate auditory nerve fibres are 

modelled, and any number of these can be connected to each IHC. 

In summary, the composite cochlear model, consists of a number of 

interconnected elements (equal to the number of frequency channels required), 

each consisting of a basilar membrane filter, an IHC and a number of auditory 

nerve fibres. Input to the model is a waveform with amplitude in dBs. and the 

output is the basilar membrane response, IHC firing probability and auditory 

nerve spike trains, for each frequency channel defined. 

An example of the behaviour of the model, which uses the Lyon filter cascade 

(without automatic gain adjustments) to model the basilar membrane behaviour, 

may be seen in figure 3.6. These results show the important features of cochlear 

processing, particularly the preliminary spatial mapping of the spectral content 

of the stimulus; and the regions of sensitivity to the 1000 and 400 Hz 

components are clearly visible. Also clear in these plots is a definite onset 

impulse in all channels, and the decay of activity in frequency channels which 

are not sensitive to any of the spectral components present. The increase in 

onset latency across the frequency range, from high to low frequencies, is also 

clear, however, these latencies are not accurately modelled, as it appears that 

the onset latency at 50 Hz should be about 5 ms [Aitkin85], and in the 50 

channel model, shown in figure 3.6. onset latency is more like 25 ms. 
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Stimulus [400,1000] Hz. onset 5 ms 

\ i 
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Time (s) 
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Figure 3.6 : Response of the composite cochlear model, with second order 
filter cascade 'basilar membrane', to a complex stimulus with components of 
400 and 1000 Hz. The model consists of 50 frequency channels in the range 
50 to 2000 Hz, distributed linearly over the ERB-rate scale. 
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In addition, modelling the basilar membrane by means of a filter cascade, means 

that the number of channels directly affects the onset latencies in progressive 

channels, making the model inconvenient to use. See figure 3,7, where 10 

channels cover the same frequency range as in the previous example. In this 

case, the onset latency in the 50 Hz channel is about 5 ms. As a further 

comparison, the 50 Hz channel response for a gammatone filter bank model, 

with a peak latency of 15 ms, is also plotted. A significant advantage of this 

model is that the response latency is not influenced by the number of channels 

used. 
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Figure i . 7 ; A) Response of 10 channel cochlear model with filter parameters 
spanning the range SO to 2000 Hz to a complex stimulus with components 
400 and 1000 Hz, B) Plot showing the differences in onset latency betyveen 
the SO channel filter cascade (A), the 10 channel filter cascade (B) and the 
SO channel gammatone filter bank (C), Stimulus onset is at Sms, 

For the reasons outlined above a gammatone filter bank basilar membrane model 

was implemented. An example of the behaviour of this version of the composite 
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model may be seen in figure 3 8 The behaviour this version of the model is 

similar to the previous one, but the regions of activity are more clearly defined. 

Basilar membrane response 

0.05 

Time 
IHC finng probabilities 

0.05 
Time 

Figure 3.8 : Response of the composite cochlear model, with gammatone 
filter bank 'basilar membrane', to a [400, 1000] Hz stimulus. The model 
contains 50 channels in the range 50 to 2000 Hz-

In figure 3.9, where the responses across the basilar membrane at 0.5 ms 

intervals are plotted, the two models may be further compared. Both models are 

linear, and do not exhibit non-linear effects such as saturation or the spread of 

excitation with increasing stimulus intensity, which are known to exist in the 

biological system, clearly an area where further improvements can be made. 

In earlier work, the filter cascade model was extended to include O H C 

feedback, using the O H C model described in [Wit92] The output from a basilar 

membrane filter is used as input to an O H C model and the output from the O H C 

is added to the basilar membrane filter input at each cycle, where the basilar 
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Figure 3.9 : A comparison between the second order filter cascade and 
gammatone filter bank responses at 0.5 ms intervals^ to a stimulus of 
[400,1000] Hz. The view shows the response across the 'basilar membrane' at 
each time step. 

membrane-OHC connections are, in effect, a simplification of the 

A N - > C N - > P O N - > O H C - > B M pathways thought to exist in the mammalian 

auditory system, A representation of the extended cochlear processing element 

can be seen in figure 3 10. 

Acoustic >. 
Stimulus 
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W BM Filter 

Sum Basilar membrane 
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IHC 

nner Hatr Cell 

W AN 

Auditory Nerve 
Fibres 

Figure 3.10 : A diagrammatic representation of a cochlear processing 
element, consisting of a basilar membrane filter, inner and outer hair cells, 
and a number of auditory nerve fibres. The number of processing elements 
used can be specified, as can the frequency range to be spanned by the 
model. 
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Preliminary investigations have shown that the OHC can help to enhance the 

basilar membrane response to low intensity signals while leaving high intensity 

response unaffected (see figure 3.11), however, this work is at a very early 

stage and far more wil l be required in order to assess whether the inclusion o f 

such OHC feedback offers a significant improvement in performance. 
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Figure 3.21 : Response of composite mode! processing element to signals of 
varying intensity, with '*' and without 'o* the OHC feedback signal, showing 
the enhanced response of the model to low intensity signals when OHC 
feedback is included. 

I t was decided to reconsider the need for improvements in peripheral processing 

in the light of the experience acquired with the simulation o f subsequent 

processes, such as the formation of tonotopic maps, pitch extraction and 

preattentive streaming. 
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4. Frequency representation 

a) In t roduc t ion 

Organisational maps are used extensively in the central nervous system to 

encode important parameters in terms of spatial location, i.e. the locus of 

activity within the map indicates the value of the parameter [Churchland92], 

[SugaSS]. The parameter ranges are generally those of biological interest to the 

species and are therefore often species-specific. Some maps are determined by 

fairly well-defined connectivity and appear to be more or less 'hard-wired', for 

example the numerous frequency maps in the auditory system; while the 

variability o f others, such as binaural and binocular maps, between individuals, 

indicates that they are more likely to be established by experience [Brugge88]. 

'Combination sensitive' neurons may be used to detect relationships between 

parameters, thereby enabling the formation of higher level maps, at succeeding 

processing stages [Suga88]. 

In the auditory system, other parameters are often organised orthogonally with 

respect to the fairly rigid tonotopic framework; for example, onset latency, 

tuning bandwidth, binaural sensitivity and modulation frequency [Brugge88, 

Langner92, Caird91, Phillips91, Pantev89]. Evidence f rom other species 

suggests it is probable that many such maps, although not yet found in humans, 

may in fact exist. In the bat auditory system, for example, numerous maps are 

found which allow the bat to compare the sounds it emits with echoed sounds, 

and to acquire information about its environment and target, such as range, size 

or relative velocity [Suga88]. 
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In speech, frequency modulation transitions and combinations of transitions are 

very important; a fundamental feature of speech being the enormous number o f 

combinations o f transitions possible. I t would seem likely that speech 

recognition is based on the perception of spatio-temporal patterns within the 

topographic mapping system. Given the prevalence o f topographic organisation, 

it is important to consider exactly how it might operate within the auditory 

system, and how sensory signals might be processed within this structure. In 

this chapter, I wi l l focus on the representation o f frequency and periodicity 

within the auditory system. 

b) Place and Time Coding 

The first stage in the spectral analysis of acoustic signals occurs in the inner ear 

where the basilar membrane resonates at points along its length determined by 

the frequency components in the signal [Pickles85]. Resonance points are 

ordered f rom high frequency, at the basilar end near the oval window, to low 

frequency at the apical end [von Bekesy60], as can be seen in figure 4 .1 . This 

effectively results in a 'place' coding of frequency, since the frequency 

information contained in auditory nerve fibre activity depends on the position of 

the basilar membrane which the fibre innervates. 

The question as to whether the sharpness of tuning o f the auditory nerve fibres 

could be due to the sharpness of basilar membrane tuning was in doubt for many 

years, but this appears to have been resolved, and it is now thought that basilar 

membrane resonance tuning indeed resembles that o f the auditory nerve fibres, 

as can be seen in the results displayed in figure 4.2 [Wilson87]. 
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Figure 4.1 : Diagram showing responses at points along the basilar 
membrane to a range of frequencies. The position of measurement relative to 
the basal (oval window) end of the basilar membrane is indicated above each 
curve. From [PicklesSS, (from von Bekesy)]. 
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Figure 4.2 : Diagram comparing the basilar membrane velocity and 
displacement tuning curves with that of an auditory nerve fibre. From 
[Wilsons 71 

However, it is also the case that temporal coding of auditory stimuli occurs, and 

auditory nerve fibre activity is phase-locked to basilar membrane motion up to 

about 4000 Hz [Rhode91]. This aspect of the temporal pattern o f auditory nerve 

discharges can perhaps best be illustrated by means o f the synchronisation 

index, discussed in section 2c, and shown in figure 4.3. The temporal coding of 

86 



the stimulus may be important, since activity spreads across the basilar 

membrane with increasing stimulus intensity, and consequently, at higher 

intensities, place coding becomes less precise [Sachs88]; in addition, the effects 

of saturation and noise also degrade 'place' coding. I t is argued that the 

peripheral auditory system is, therefore, highly likely to make use of both place 

and temporal modes o f representation [Sachs88, LickliderS 1]. 
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Figure 4.3 : Diagram of synchronisation index against frequency, showing 
the ability of the auditory nerve fibres to phase-lock to acoustic stimuli up to 
about 4000 Hz. The synchronisation indices for various response types found 
in the cochlear nucleus are also plotted and show a marked reduction in the 
maximum synchronisation frequency. Abbreviations : auditory nerve (AN), 
chopper (C), primary-like+noich (PJ, onset responses (O^ O^)- From 
fRhode91J. 

However, although the temporal patterns o f neural activity appear to be 

important for the accurate reception o f frequency information, a transformation 

f rom the cochlear temporal-place coding to a rate-place coding, or topographic 

mapping o f frequency, gradually occurs [Schreiner88b,c]. This transformation is 

a fundamental process within the auditory system and is evident in successive 

stages. Temporal resolution due to phase-locking in the periphery may be as 
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fine as 0.25 ms, but this gradually declines and synchrony resolution decreases 

to about 0.6 ms in the cochlear nucleus, to about 2 ms in the inferior colliculus, 

and in the auditory cortex phase-locking is found only up to about 30 Hz (a 

resolution o f 30 ms) [Schreiner88c]. 

In some ways this process is analogous to the gradual broadening o f receptive 

fields in the visual system. In the auditory system, peripheral 'receptive fields', 

corresponding to very small time intervals, gradually broaden to encompass 

increasingly larger time frames. This should not be seen as a simple averaging 

process, however, as information about frequency transitions and ordering 

within time windows may also extracted [Schreiner88c]. 

c) The Role of Convergent and Divergent Processing 

Processing in the auditory pathways consists o f repeated convergence and 

divergence and allows the gradual building o f relational maps [Suga88]. The 

tonotopic organisation inherent in the auditory system means that space and 

frequency are roughly equivalent. In this section I would like to consider the 

implications o f convergent and divergent processes, both within the space and 

time domain. 

In the first case, consider 'spatial' convergence onto a cell. Here the input 

consists o f signals from a range o f frequencies, (or basilar membrane positions), 

and the output is some function o f the activity within this frequency range, 

depending on factors such as the cell's intrinsic temporal properties and the 

dendritic filtering of the inputs. I f the cell is acting as a coincidence detector, 
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then it is effectively implementing an AND operation. This means that its 

characteristic frequency tuning curve, which results basically from the 

intersection of the receptive fields of its inputs, may consequently be quite 

narrow [Carney90]. For this reason, a narrow tuning curve does not necessarily 

imply that the cell has a narrow receptive field, and only receives inputs from a 

restricted frequency range; although this case is not excluded. The AND 

function may result from a high firing threshold; and the effective level of the 

threshold may be manipulated by suitable inhibitory inputs. 

I f , on the other hand, output activity results from activity in virtually any o f the 

inputs, then the behaviour of the cell may be represented by an OR operation, 

and the cell's characteristic tuning curve, which is therefore effectively a union 

o f the input receptive fields, can be broad. A low f i r ing threshold, fast time 

constants, and lit t le or no inhibition would tend to produce such an effect. 

In general, the output from a cell is determined by its internal state and the 

input activity spanning some period of time. This may be considered in terms o f 

convergence within the temporal domain. An OR operation in this context, 

amounts more or less to a replication of the convergent input activity, with 

some limitations introduced by intrinsic membrane time constants and the 

refractory period. 

An A N D operation can detect a build-up of activity and so reflect the level o f 

activity in the inputs, i.e. the intensity level, over the time frame o f a temporal 

window, the extent o f which is determined by the cell's internal dynamics. I f the 

threshold were dependent on the average intensity level, then cells with this 

behaviour would be sensitive to amplitude modulations in the signal. 
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Temporal convergence in neural processing is, o f course, unavoidable, although 

the extent o f the 'time window' may differ; the resulting temporal 'receptive' 

field is determined by the membrane time constants and intrinsic cell dynamics, 

and underlies the process o f transforming the peripheral temporal fine detail 

into the cortical activity patterns, which are segmented on a much larger time 

scale. 

In reality, spatial and temporal convergence interact, and neural processing is a 

result o f both. This interaction allows an additional operation to be 

implemented, that o f ordering. The position o f input signals on the dendritic 

tree is significant [Rall89, Rhode91]. In the case o f spatial convergence o f 

systematically arranged inputs, the temporal ordering o f the inputs is reflected 

in the cell's output activity. For example, i f the inputs furthest f rom the soma 

are low frequency and nearest, high, then the output is greatest i f frequency 

input activity is ordered from low to high. I f high frequency inputs arrive first 

then the low frequency inputs have to travel though dendrites which are already 

depolarised and the output activity is reduced [Rall89]. Spatial and temporal 

convergence with systematic connectivity could therefore encode the frequency 

transitions within the corresponding time window. 

A similar arrangement could also be used to produce robust onset detection. 

Since auditory nerve fibres are very noisy, an onset detector should have some 

way o f ignoring the noise, while at the same time retaining the capability o f 

reacting rapidly and sensitively to true signal onsets. Since noise is random, and 

genuine onset activity always starts at the high frequency end o f the basilar 

membrane before progressing downwards, dendritic ordering o f inputs from 
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high to low could result in robust onset detection, i f the cell has suitable 

membrane time constants. 

Convergence has some other interesting effects; for example, j i t ter in a set o f 

signals may be sharply reduced by means of convergence and coincidence 

detection, and appears to underlie the discrimination o f very small, 

sub-microsecond, temporal differences [Carr94, Simmons94]. The extent o f 

'time windows' can be affected by input activity; i f input signals are synchronous 

then the result is a much shorter effective time window [Abeles82]. Maintaining 

a threshold as a function o f global intensity in order to detect relative amplitude 

fluctuations, may also result in the regulation o f effective time windows, 

perhaps an important side-effect, which could be useful in the synchronisation 

o f the various processes. 

The role o f convergence in producing progressively larger temporal receptive 

fields is an important facet o f auditory processing. In the cortex, the temporal 

receptive fields are generally fairly coarse (> 30 ms). and any important 

temporal fine detail must be extracted and encoded in some other way by this 

stage; for example, frequency, pitch, and transient patterns such as frequency 

and amplitude modulations, all appear to be organised topographically, or 

mapped, in the higher auditory system. This temporal 'telescoping' behaviour, 

also continues in the perception and cognitive 'chunking' o f temporal patterns o f 

speech and music. 

So far in this discussion, all inputs have been assumed to be excitatory, but a 

further aspect o f great importance is the role o f inhibition within this context. 

Inhibition is clearly crucial in the operation of the central nervous system, and 
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within the auditory system is found both in feedforward and feedback modes. 

Inhibitory inputs can be used to effectively manipulate a cell's firing threshold, 

which may be important for a number of reasons, such as the regulation o f the 

cell's activity relative to global activity levels, manipulation o f the cell's 

effective time window, and enhancing or diminishing the cell's activity in 

response to some intrinsic requirement o f the organism (attention). 

There is massive divergence in the auditory system [Handel83], a feature which 

undoubtedly underlies the creation o f the numerous organisational maps known 

to exist. The role o f divergence within the subcortical auditory system, appears 

to be principally aimed at distributing information so that i t can be processed in 

parallel by distinct cell groups specialised for extracting and mapping particular 

types o f information. Divergence of excitatory signals in the auditory system 

does not generally seem to involve the mixing o f frequency channels; perhaps 

this is a way o f avoiding the synchronisation problems which may arise f rom 

differences in onset latency or path lengths, across the frequency range. 

However, divergence o f inhibitory signals, across channels is probably very 

significant, for this would enable competitive interactions amongst channels. 

The importance o f lateral inhibitory connections is well known, and numerous 

workers have shown how such interactions can be used to to heighten activity 

at positions of change across groups of cells. Once again, these interactions 

may b6 considered both from a spatial and a temporal point o f view, and the 

enhanced focusing o f activity may be achieved both within the spatial and the 

temporal domain. This wi l l be discussed further later in this and in the next 

chapter. 
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d) Tonotopic Organisation 

In the auditory system the fundamental organising parameter is frequency, or 

perhaps more accurately, cochlear position. Tonotopic, or cochleotopic, 

organisation is found throughout the auditory system, and is often repeated 

within each subdivision of a nucleus [Aitkin85] . However, this mapping is not 

smooth, and many researchers have found evidence for step-like changes in 

frequency sensitivity [Aitkin85, Langner92, Clopton74]. In probe tests, the 

characteristic frequency o f neurons remains roughly constant for periods as the 

probe advances, before an abrupt change occurs. This is consistent with the 

underlying physical structure, in which iso-frequency layers are formed by 

disc-like dendritic fields; for example, in the central nucleus o f the inferior 

coUiculus (CIC) [Caird91], or ventral division of the medial geniculate nucleus 

[Winer91]. The relatively small number of such layers, (about 40 in the CIC 

[Langner92]), and a number o f psychophysical results, suggest that frequency 

may be represented by means o f a discrete set of'channels'. 

Representing frequency within the auditory system as a pattern of distributed 

activity across a small number of frequency channels, each channel consisting o f 

many nerve fibres, has a number o f advantages, including robustness, fault 

tolerance, enhanced signal to noise ratios, and the ability to represent and 

detect fine frequency differences as a function o f the relative activity levels 

across the frequency channels. The main problem wi th such a scheme is a 

limitation on its capability for simultaneously resolving frequencies which are 

close together, i.e. wi thin the same channel. As wi l l be seen in the next section, 

there is a marked difference in the acuity of frequency discrimination between 

tones presented simultaneously and those presented successively. 
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e) Psychophysical Behaviour : Cr i t i ca l Bands and Ratio Pitch 

A characteristic feature o f auditory processing, the neuronal basis for which has 

not yet been well established, is the critical band. As [Tobias70] points out, 

"NoMfhere in auditory theory or in acoustic psychophysical practice is there 

anything more ubiquitous than the critical band. It turns up in the 

measurement of pitch, in the study of loudness, in the examination of acoustic 

annoyance, in the investigation of the intelligibility of speech, in the analysis 

of masking and fatiguing signals, in the perception of phase, and even in the 

determination of the pleasantness of music". Consistent critical band widths, 

characterised by sharp changes in behaviour, are found across numerous 

experiments [Scharf70]. For example, i f the bandwidth o f a band o f noise with 

constant pressure level is gradually increased, its loudness remains constant 

unt i l the noise bandwidth exceeds the critical bandwidth, at which stage its 

perceived loudness starts to increase [Rossing82], as can be seen in figure 4.4. 
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Figure 4,4 : The perceived loudness of a band of noise, centred on 1000 Hz, 
as a function of bandwidth. As can been seen, the loudness only starts to 
increase once a bandwidth of about 160 Hz is exceeded, and this is true 
across a wide range of intensity levels. From fScharflO], 
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It is also the case that components o f complex sounds which differ by less than 

the corresponding critical bandwidth, cannot be separately resolved 

(Ro5sing82]. So, although fine frequency discrimination is possible between 

successively presented tones, the resolution accuracy for simultaneous sounds, 

is limited to only 10-20% of stimulus frequency, roughly a critical bandwidth 

[Langner92, Rossing82]. See figure 4.5 for examples o f such bandwidths. 

Center Critical Lower cutoff Upper cutoff 
Number frequency band frequency frequency 

(Hz) <Hz) (Hz) (Hz) 

1 50 100 
2 ISO 100 100 200 
3 250 100 200 300 
4 350 100 300 40U 
5 450 110 400 510 
6 570 120 510 630 
7 700 140 630 770 
8 840 150 770 020 
0 1.000 160 020 1.080 

10 1.170 100 1.080 1.270 
11 i;j70 210 1.270 1.480 
12 1.600 240 1.480 1.720 
13 1.850 280 1.720 2.000 
14 2,150 320 2.000 2.320 
IS 2.500 380 2.320 2.700 
16 £.000 450 2.700 3.150 
17 3,400 550 3,150 3,700 
18 4,000 700 3.700 4.400 
10 4.800 000 4,400 5.300 
20 5.800 1.100 5.300 6.400 
21 7.000 1.300 6.400 7.700 
22 8.500 1.800 7.700 0,500 
23 10.500 2.500 0.500 12.000 
24 1 3 ^ 3.500 12.000 15.500 

Figure 4.5 : Examples of critical bandwidths spanning the auditory range. 
From [ScharfVOJ. 

Critical bandwidths vary with frequency and appear to correspond to equal 

distances along the basilar membrane, roughly 1.3 mm, (see figure 4.6) 

[Zwicker90], I t seems most likely, therefore, that critical bands arise as a result 

o f physical properties of the organ o f Corti , or from immediate subsequent 

connectivity; although [Caird91] has suggested that the iso-frequency laminae 

found in the CIC may be the physical basis for critical bands. Whatever the 
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case, the process underlying perceptual discontinuities remains puzzling. 

Interestingly, critical bands are also found in other animals such as the cat, rat, 

and ferret [Scharf70]; which implies that they must originate f rom some 

fundamental process within the auditory system. 
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Figure 4,6 : Diagram of the uncoiled basilar membrane, showing how scales 
of pitch correspond to positions along its length. As can be seen, the mel 
scale, in contrast to the physical Hz scale, corresponds to a linear scale of 
distance. From fZwicker90, Fastl92], 

Another perplexing psychophysical characteristic, ratio pitch, was investigated 

extensively by Zwicker, who developed and proposed the use o f the mel scale as 

the basis for perceptual pitch measurements. The mel scale is derived f rom 

experiments in which subjects are required to adjust a variable frequency sound 

to be an octave lower than a given tone; giving rise to the term 'ratio pitch'. The 

mel scale is organised so that a doubling o f mels corresponds to a doubling o f 

stimulus frequency [Rossing82], (see figure 4.7). 

At fairly low frequencies ratio pitches correspond to physical stimulus 

frequencies, for example, 200 Hz is perceived to be an octave lower than 400 

Hz, but at higher frequencies this relationship is not preserved. Given an 8000 

Hz signal, on average, people choose an octave match o f 1300 Hz rather than 
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4000 Hz ! Coincidentally, although they are derived differently, the mel scale 

and critical bandwidths appear to be related; 100 mel corresponds to a critical 

band and the human auditory range is covered by about 24 critical bands or 

2400 mel [Rossing82]. This correspondence can be clearly seen in figure 4.6. 

P 800 

12kHz 
frequency 

Figure 4, 7 : Ratio pitch as a function of stimulus frequency. The dashed line 
shows the plot that would be expected from a linear relationship between 
stimulus frequency and perceived pitch. From [Zwicker90]. 

Since frequencies up to about 4000 Hz produce significant phase locking in the 

auditory nerve signals, the question arises as to whether the auditory signals are 

phase-locked to the frequency of the physical stimulus, or to the perceived 

frequency. The response frequency of linear systems is determined by the 

driving frequency, and so in linear models o f the basilar membrane such 

behaviour cannot be produced. However, the behaviour o f the basilar membrane 

is known to be highly non-linear [Wilson92], and so may not necessarily 

oscillate at the same rate as the stimulus. A non-linear damping function which 

exerts a force always opposed to the velocity results in a system which behaves 

like a linearly damped system. But i f the non-linear damping function sometimes 

acts in the direction of the velocity then 'relaxation' oscillations can result 
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[Thomson86]. Whether this could account for the phenomenon o f ratio pitch is 

unknown and further investigation is required. However, i f this is the case, such 

'frequency compression' would have practical benefits for the auditory system; 

for example, the diff iculty in decoding the temporal information contained in 

high frequency synchronisation by relatively slower acting neurons, would be 

greatly eased. 

An alternative explanation for ratio pitch may derive from the spatial 

characteristics o f basilar membrane resonance. Suppose, for argument, 

frequency were place coded logarithmically, then the spatial distance between 

two points would encode the ratio of the respective frequencies. The distance 

between the areas of activity would determine a unique frequency ratio, or 

interval, in a way which was position invariant. However, i f resonance positions 

were to correspond to the distribution indicated by the mel scale, then the 

logarithmic organisation would approximate the relationships only at low 

frequencies, and high frequency resonances would be much closer together than 

suggested by the logarithmic scale. I f auditory perception were, in some sense, 

based on the assumption that equal distances represent equal intervals, then at 

low frequencies, perceived interval relationships would correspond to physical 

stimulus intervals; but at high frequencies, perceived intervals, would actually 

be smaller than the physical interval required to produce the percepts. I t would 

be interesting to perform experiments to determine precise resonance positions 

on the basilar membrane, but these may be impractical at the moment, because 

o f the extreme delicacy o f the organ o f Corti [Dallos92]. 

The model o f frequency representation, described in the fol lowing section, 

would satisfy the requirements o f this explanation for ratio pitch. The 
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explanat ion w o u l d be invalidated i f frequency decoding in the aud i to ry system 

were f o u n d to be based on absolute t ime intervals; i n w h i c h case, the f i r s t 

explanat ion may be more accurate. However , i f f requency is determined 

p r inc ipa l ly by place, and temporal coding or synchronisat ion is s imply used to 

determine the re la t ive phase shifts between adjacent pos i t ions , as suggested by 

[Shamma89] , then this explanation may be val id . 

f ) M o d e l l i n g F r e q u e n c y Represen ta t ion and the F o r m a t i o n o f a T o n o t o p i c 

M a p o f t he S p e c t r a l C o n t e n t o f Acous t i c Signals 

As discussed in chapter 2, the cochlear nucleus is the f i r s t aud i tory nucleus in 

the processing path f r o m periphery to cortex. I t s organisa t ion and complex i ty 

suggest that a great deal o f in fo rmat ion is extracted f r o m the incoming acoustic 

signals even at this early stage. Many d i f fe ren t types o f cells are f o u n d in the 

cochlear nucleus, each w i t h d i f fe ren t characteristic t empora l behaviour and 

connec t iv i ty , and presumably d i f fe ren t funct ions . I t is here that at least the f i r s t 

stage in the t r ans fo rmat ion o f temporal i n f o r m a t i o n in to the f o r m o f 

t ono top i ca l l y organised ac t iv i ty in a wel l defmed and d i s t r ibu ted f requency map 

is f o u n d . 

I n this sect ion, the way in which the cochlea nucleus migh t f o r m tono top ic 

representations o f the spectral content o f acoustic s t i m u l i is considered, and 

s imulat ions in support o f these ideas are presented. I t seems l ike ly that, 

i n i t i a l l y , maps o f the spectral content o f the s t imu l i and o f the s t imulus 

pe r iod ic i ty are developed separately; al though they appear eventual ly to be 

combined i n some way, probably in the audi tory midbra in . A model f o r the 
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spatial mapping of spectral content will be discussed here, and that for 

periodicity in the next section Details of all the models used in this chapter may 

be found in Appendix C . 

I f we suppose the frequency mapping process does depend on the detection of 

phase shifts which occur at positions of resonance on the basilar membrane, as 

proposed by [Shamma92], or on sudden changes in the nature of the activity 

(see figure 4.8) or on the rate of change of activity level [von BekesyTO], then 

the next step is to discover how the morphology of the cochlear nucleus may be 

suited to the task of finding what amounts essentially to the spatial derivative of 

activity along the basilar membrane [Shamma, personal communication]. 

40 (msec) 

Figure 4.8 : The displacements (normalised) of a basilar membrane model in 
response to a complex stimulus, clearly showing a number of distinct regions 
of differing behaviour. The stimulus consists of two 70 dB tones, of 1000 
and 1600 Hz; and resonant positions are indicated by the arrows. Frequency 
channels are logarithmically spaced and arranged from high frequency 
response, at the top of the diagram, to low frequency response, at the bottom. 
Also clearly visible is the increasing onset latency with basilar membrane 
position. From fLiDeng92/. 
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The fundamental idea o f using lateral inhib i t ion to extract spectral i n fo rma t ion 

is described in [Shamma85,89]. The lateral inh ib i to ry ne tworks ( L I N s ) , 

proposed by Shamma to compute the spatial der ivat ive o f ac t iv i ty across the 

t ono top i c axis, require very rapid inh ib i t ion f o r their correct opera t ion 

[Shamma89] . M u l t i p o l a r cells have the shortest latency o f any cells in the 

cochlear nucleus and are thought to be inh ib i to ry [Rhode91] ; they may, 

therefore , be the cells responsible f o r the lateral i nh ib i t ion . 

The exc i ta tory cells in the spectral decoding ne twork are not k n o w n , but are 

perhaps stellate cells, which are commonly found in the cochlear nucleus. 

M u l t i p o l a r cells have widespread intr insic project ions, and stellates have been 

iden t i f i ed among their targets [Rhode91] . The result o f lateral i nh ib i t ion is that 

the changes in ac t iv i ty , which occur at resonance points along the basilar 

membrane, may be detected in regions o f heightened ac t iv i ty . 

I n p roduc ing the f o l l o w i n g results, the supposed ne twork o f cells has been 

great ly s imp l i f i ed . The behaviour o f the mul t ipolar cells has been model led in 

terms o f f e e d f o r w a r d inh ib i t ion , generated by the f i l t e r i n g o f the I H C f i r i n g 

probabi l i t ies , and mul t ip l ied by a suitable inh ib i to ry weight p r o f i l e ; and the 

exc i t a to ry input to the ne twork is the I H C f i r i n g p robab i l i ty i n each channel, 

s imi la r ly f i l t e r ed . The f i l te rs used, are intended to simulate the e f fec t o f 

dendr i t ic processing, and w i l l be described in the next section. 

The weigh t p rof i les used, are the factors by which the signals f r o m the next n 

channels, centred on the channel in question, are mul t ip led , in order to generate 

the i nh ib i t o ry input f o r each channel, see f igure 4.9. Since the to ta l i nh ib i to ry 

fac tors sum to a to ta l o f 1, this means that zero e f fec t ive ac t iv i ty w i l l result 
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f r o m a perfec t ly level section since excitatory and inh ib i to ry inputs w i l l cancel 

each other out . 
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Figure 4.9 : A) The lateral inhibitory weight profile used in the results, 
which resembles to some extent the 'mexican hat' profile, described by 
[Kohonen88] and others, B) Filter centre frequencies for the 50 channel 
cochlear model used in the following results. 

I n the f o l l o w i n g plots , the ef fect o f lateral inh ib i to ry processing on the ac t iv i ty 

across the tono top ic axis, is shown. I t is envisaged that an array o f cells w i t h 

appropr ia te propert ies , perhaps stellates, receiving inputs w i t h such patterns o f 

ac t iv i ty , w o u l d respond w i t h levels o f ac t iv i ty which ref lec t the input ac t iv i ty 

levels; so f o r m i n g a tono top ic map o f the spectral content o f the acoustic 

signal, in w h i c h the spectral components are evident f r o m peaks in ac t iv i ty . 

Examples o f the result o f this process are shown f o r pure tone and complex 

signals in f igures 4.10 and 4 . 1 1 . 
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A) IHC Firing Probabilities 

OS 

H) Spectral map resulting* 
from lateral inhibition 

Time 
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Figure 4,10 : The formation of a spectral map of the acoustic signal from 
cochlear activity. Response to a pure tone stimulus of 1000 Hzj processed by 
a 50 channel cochlear model with frequency range 50 to 5000 Hz. A) A plot 
of the IHC firing probabilities across the basilar membrane at 1 ms intervals, 
B) The development of the spectral map at 1 ms intervals, resulting from the 
inhibitory weight profile shown in figure 4,9. The output has been low pass 
filtered in order to show the activity levels more clearly, C) The steady state 
spectral map (solid line) and the instantaneous IHC firing probability (dotted 
line, scaled), both at ,5 s after stimulus onset. 

The inhibitory weight profile used in these examples is somewhat arbitrary, and 

in practice would have to be carefully chosen to produce the resolution 

required The effect upon spectral resolution of different weight profiles can be 

seen in figure 4.12. 

The advantage of the representation of frequency as a distributed pattern of 

activity, is that the number of frequencies that can be respresented is not limited 
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A) IHC firing probabilities Spectral map resulting from lateral inhibition 

Time (s) 

C h a n n e l s 
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Figure 4.11 : The formation of spectral maps from cochlear activity. 
Response to a complex signal of 1500,1600] Hz, processed by a 50 channel 
cochlear model with frequency range as shown in figure 4.9. A) Plot of IHC 

firing probabilities across the basilar membrane at time steps of 1ms. B) Plot 
showing the development of a spectral map, resulting from lateral inhibition, 
at 1 ms intervals. C) Steady state spectral maps after one stage of lateral 
inhibition (solid line), and after a second stage of lateral inhibition (dotted 
line), showing how peaks in activity can be enhanced if required. (Both are 
plotted at .5s after stimulus onset.) D) Plot showing the development of a 
spectral map at 1 ms intervals, resulting from a second stage of lateral 
inhibition. Weight profiles for both stages are as shown in figure 4.9. 

Steady state spectral maps resulting from different inhibitory weight profiles 

\ y 

H frequency Channe ls 

V 

L 

Figure 4.12 : Spectral maps formed in response to a stimulus of 1000 Hz, 
showing the e f f e c t of different inhibitory weight profiles. The profile used to 
generate the solid line is that plotted in figure 4.9; that for the dotted line, 
although similarly normalised, has a far narrower spread. 
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by the number o f frequency channels used. This pr inciple is i l lus t ra ted in f i gu re 

4.13, where i t is shown that frequencies o f 1000, 1050, 1100 and 1150 H z are 

resolved at s l ight ly d i f fe ren t positions across the map, a l though the f i l t e r centre 

A) 

B) 

C) 

Activfty patterns for stirmiD of 1150,1100,1050 and 1000 Hz 

5 10 15 20 25 30 35 40 45 

Activity patterns for stimuD of 1150.1100,1050 and 1000 Hz : dose up 

15 20 25 30 

Activity patterns for a complex stimulus of (1000.1100] Hz 

50 

35 

1000.' 

Figure 4,13 : Plots showing the difference in frequency resolution when 
components are presented sequentially and simultaneously, A,B) Plots 
showing that the representation of frequency as a distributed pattern of 
activity across the tonotopic axis, enables frequency resolution to be finer 
than the distribution of filter centre frequencies, (The relevant filter centre 
frequencies are approximately : [1300,1210,1130,1050,980,910],) C) Plot of 
the response of the same model when frequencies of 1000 and 1100 Hz are 
presented simultaneously (solid); they cannot be separetely resolved in this 
case. The response to a 1000 Hz stimulus is shown for comparison (dotted 
line). 
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frequencies in this range are spaced at intervals o f about 80 Hz . However , this 

only applies when these s t imul i are presented sequentially; when presented 

simultaneously they cannot be separately resolved, wh ich is also consistent w i t h 

psychophysical results. 

g) O u t l i n e o f a Means f o r F o r m i n g a T o n o t o p i c M a p o f P e r i o d i c i t y 

The result o f processing the audi tory nerve signals by a lateral i nh ib i to ry 

ne twork , as described in the previous section, appears to provide robust and 

f a i r l y instantaneous coding o f the spectral components i n the input s t imulus, in 

terms o f re la t ive ac t iv i ty levels in the frequency channels. However , i n the case 

o f complex signals, a l though the spectral components can be resolved i n this 

way, the per iod ic i ty o f the signal is lost. The pe r iod ic i ty i n f o r m a t i o n wh ich is 

contained in the high frequency channels, does not result in any s igni f icant 

phase shif ts or sudden changes in ac t iv i ty at high f requency posi t ions; wh ich is 

not surpr is ing, since the per iod ic i ty frequency resonance poin t is towards the 

other end o f the basilar membrane. So, another method must be f o u n d f o r 

ex t rac t ing per iod ic i ty i n fo rma t ion . 

This basic idea o f detecting changes in ac t iv i ty levels can also be used to detect 

ampl i tude modulat ions in the f o l l o w i n g way. I n the cochlear nucleus i t is 

thought that there may be systematic organisat ion, w i t h respect to resonance 

propert ies , o f sets o f stellate cells [ H e w i t t 9 4 ] , and stellates have been shown to 

respond preferent ia l ly to part icular modula t ion frequencies [ K i m 9 0 ] . [ H e w i t t 9 4 ] 

proposed that high frequency channels send signals to banks o f tuned stellate 

cells, but those invest igat ions were focused p r imar i l y on the reproduc t ion o f 
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chopper ac t iv i ty synchronised to signal per iodic i ty , and the subsequent rate 

coding o f per iod ic i ty as a result o f the convergence o f large numbers o f stellate 

signals. 

I n this w o r k , a s l ight ly d i f fe ren t v i ew o f the role o f a tuned bank o f stellate cells 

in the decoding o f per iodic i ty , is taken; and the speed o f their in t r ins ic dynamics 

is considered to be o f s ignif icance rather than their resonance propert ies , 

a l though these are clearly related. I t is suggested that the impor tan t feature o f 

the stellate f requency response is the existence o f a high f requency c u t - o f f 

po in t , and that the stellate array is organised systematically w i t h respect to this 

proper ty . I f the array o f stellates has a dynamic range suitable f o r cover ing the 

range o f per iodic i t ies required, (up to about 1000 H z in humans), then g iven 

some frequency w i t h i n this range, the stellates w i t h su f f i c i en t ly fast dynamics 

w i l l be able to entrain to the s t imulus, wh i l e in t r ins ica l ly s lower cells w i l l only 

be able to fire at a lower rate. 

The precise tun ing o f each cell may not be par t icu lar ly c r i t i ca l , jus t so long as 

the tun ing o f the cells is systematically organised across the array. Then the 

nature o f the ac t iv i ty in response to an acoustic s t imulus, w o u l d change at some 

pos i t ion across the array, and this pos i t ion w o u l d vary systematically w i t h the 

f requency o f the signal. I f the input to the array were f r o m the high f requency 

channels, where per iod ic i ty i n f o r m a t i o n is retained, then the array o f stellates 

cou ld decode per iod ic i ty in a way similar to that in w h i c h the basilar membrane 

decodes frequency. Therefore , processing the ou tpu t f r o m these stellate ceils in 

the same way as the audi tory nerve signals are processed, w o u l d result in a 

system which is capable o f detect ing the pe r iod ic i ty o f complex signals, and o f 

reinstat ing the 'missing fundamental ' . 
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The outputs f r o m the spectral and per iodic i ty mapping models, described above, 

f o r m tono top ica l ly organised maps o f the spectral content and per iod ic i ty o f the 

acoustic s t imul i , encoded in the f o r m o f distr ibuted patterns o f ac t ivat ion across 

the tono top ic axis. In this way, the models give rise to separate sets o f signals 

w h i c h may resemble the signals which project to the characteristic frequency, 

and modu la t ion frequency maps in the C I C ; and w i l l be used as a basis f o r the 

p i t ch ex t rac t ion model to be described in chapter 6 . 

The next stage in the development o f the model f o r pe r iod ic i ty decoding is to 

characterise the properties o f the stellate cell model to be used. Then, the 

n e t w o r k f o r the decoding o f per iodic i ty in fo rma t ion , and f o r the f o r m a t i o n o f a 

t o n o t o p i c map o f per iodic i ty , w i l l be discussed. F ina l ly an assessment o f the 

feas ib i l i ty and plausibi l i ty o f this approach w i l l be made. 

h ) C h a r a c t e r i s t i c s o f the Stel la te C e l l M o d e l 

The stellate cell model to be used is essentially the one described in 

[ M a c G r e g o r 8 7 ] and [ H e w i t t 9 2 , 9 3 , 9 4 ] , where the model was shown to be 

consistent w i t h a wide range o f experimental stellate cell data. However , in this 

w o r k , the soma model was s impl i f ied s l ight ly , and the unnecessary compl ica t ion 

o f the variable threshold removed. The dendri t ic f i l t e r i n g o f the inputs is 

accomplished by means o f the dendri t ic f i l t e r developed by [ H e w i t t 9 2 ] , and the 

model used is summarised in the f o l l o w i n g set o f equations : 

S o m a : ^ ^ d ^ m ^ G m E . - E m , j 

[ 4 . 2 ] 
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s= I if£(/)>eo, else5 = 0 [ 4 . 3 ] 

KO = £ ( / ) + - £ ( / ) ] [ 4 . 4 ] 

Dendr i t i c f i l t e r : /i(0 = y ^ I M O + M ' - ^ 0 - ( l - a ) I , { t - d O ] [ 4 . 5 ] 

a = j ^ [ 4 . 6 ] 

where E(t) is the membrane potent ia l , GJt) the potassium conductance, and 

are the membrane and potassium conductance t ime constants, s is the 

sp ik ing variable, p f t ) the output o f the ce l l , Go is the threshold , and G, E^, 

and b are constants; I / t ) is the current applied to the soma. I / t ) is the dendri t ic 

current , and / . i s the dendri t ic filter c u t - o f f frequency [ H e w i t t 9 2 , 9 4 ] . 

The behaviour o f the soma model in response to a depolar is ing current is shown 

in f i g u r e 4 .14. A depolar is ing current causes the membrane potent ia l to rise 

gradual ly u n t i l some threshold is exceeded, at which stage the cell Tires'. This 

ini t ia tes a sharp response in the potassium conductance level , wh ich in tu rn 

forces the membrane potent ia l sharply downwards . The potassium conductance 

level decays f ree ly af ter the spike is in i t ia ted , and the cycle begins again. I n this 

way a repeated f i r i n g pat tern is obtained f r o m a steady input current ; and the 

rate o f firing is a f u n c t i o n o f the input level . 

I n order to investigate the frequency response o f the stellate model , the effects 

o f the dendrites and the soma were in i t i a l ly considered separately. T o s imp l i fy 

the s imula t ion o f the act ion o f the stellate array, i t was decided to use the I H C 

firing probabi l i t ies d i rec t ly , rather than go ing th rough the intermediate step o f 

generat ing and then summing a large number o f stochastic spike trains, based on 

those probabi l i t ies . This approach is argued in [Shamma89] , and in figure 4.15 

i t can be seen that the approximat ion is not an unreasonable one to make. 
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Figure 4,14 : Response of the stellate soma model to a steady depolarising 
current of 0,2nA, with T^=5ms and r^^lms. (G=.002 , b=2,5, E=-10, E=60) 

Dendritic filtering of IHC probabQities 
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Comparison of dendritic filter outputs 
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Figure 4,IS : Comparison between the dendritic filtering of IHC firing 
probabilities and the sum of 60 stochastic spike trains generated from those 
probabilities, showing the similarity of the dendritic filter output in the two 
cases. Responses in the 400 Hz channel to a stimulus of 1000 Hz are plotted. 
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The f requency response o f the dendri t ic f i l t e r , is essentially l o w pass in nature, 

and the high frequency c u t - o f f point is a parameter o f the model . The frequency 

response o f the f i l t e r , f o r three d i f fe ren t c u t - o f f frequencies, is p lo t ted in f igure 

4 .16, where the l o w pass behaviour is clearly evident. 
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Figure 4.16 : Frequency response of the dendritic filter used in the stellate 
model, using half-wave rectified sin wave stimuli in the range SO to 1900 Hz-
Filter cut-off frequencies are as indicated, 

[ H e w i t t 9 4 ] showed that the sensit ivi ty o f the stellate cel l model to signal 

per iodic i t ies cou ld be modi f ied by means o f adjustments to the membrane and 

potassium conductance t ime constants, and this aspect o f the model is 

considered now. F rom the previous descr ipt ion o f the soma model behaviour, i t 

can be seen that a smaller membrane t ime constant a l lows the membrane 

poten t ia l to rise faster, and a smaller potassium conductance t ime constant 

a l lows the potassium conductance level to decay faster , thereby r emov ing the 

suppression o f the membrane potential more qu ick ly . 



I n f i gu re 4 .17, the f i r i n g rate o f the soma model f o r a range o f t ime constants is 

p lo t ted against the frequency o f the input signals. 
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Figure 4,17 : Frequency response of the stellate soma model, showing 
regions of multiple discharges per cycle (dotted line), regions of entrainment 
and then the gradual loss of entrainment as the stimulus frequency becomes 
too fast for the model dynamics. 
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As can be seen, the region o f entrainment o f the cell can be varied by means o f 

adjustments to the t ime constants, and above some input f requency the cell 

begins to 'miss' st imulus cycles. In f igure 4.18 the response o f the soma to three 

d i f f e r en t frequencies is p lo t ted , showing mul t ip le f i r i n g per cycle, entrainment, 

and missed cycles. 

stimulus 100 Hz 

0.01 0.02 0.03 

Stimulus 600 Hz 

0.04 0.05 

0.01 0.02 0.03 

Stimulus 1200 Hz 

0.04 0.05 
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Figure 4,18 : Response of the soma model to different stimulus frequencies, 
showing multiple firing per cycle, entrainment, and intermittent firing, with 

=5 ms and Tctrl ms. Stimulus (scaled) is shown o f f s e t (dotted line). 

In summary, the stellates appear suited to the detect ion o f pe r iod ic i ty patterns 

contained in high frequency channels; having dendrites w h i c h act as l o w pass 

f i l t e r s , . ' smoothing out ' the high frequency components in the signals, and soma 

wh ich f i r e in response to dendri t ic currents at a rate l imi t ed by their in t r ins ic 

dynamics, w h i c h in the model are determined by the membrane and potassium 

conductance t ime constants. These processes are summarised in f i g u r e 4 .19. 
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Figure 4,19 : Diagram summarising the processes involved in periodicity 
detection. A) Peripheral response to a complex signal of (1800,2000 2200] Hz 
in a high frequency channel (5000 Hz). B) Resulting auditory nerve signals 
(*60). C) Dendritic filtering of auditory nerve signals (filter cut-off 

frequency 300 Hz). D) Stellate cell output (r^ -Sms, r^=2ms). 

i ) T h e F o r m a t i o n o f a T o n o t o p i c M a p o f P e r i o d i c i t y 

By systematically varying the intrinsic dynamics of an array of stellate cell 

models, the periodicity in the signal can be detected from the position in the 

array at which a sudden change in the level of activity occurs. This is illustrated 

in the following series of plots, in which an array of 10 stellates with membrane 

constant of 5 ms, and potassium conductance time constants ranging from .75 

to 10 ms are used. The time constants used and the frequency response 

characteristics of the array are illustrated in figure 4.20, where the natural firing 
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frequencies of the soma in response to constant applied somatic currents of 0.2, 

0.6 and I nA are plotted as a function of potassium conductance time constant. 

Also shown are the entrainment cutoff frequencies in response to periodic 

current stimuli. (It should be noted, that in this figure dendritic processing is 

excluded, and only the characteristics of the soma are examined.) 
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Figure 4,20 : Natural firing frequencies of the stellates in the array with the 
potassium conductance time constants shown, as a function of applied 
somatic current. Also shown are the stellate cutoff frequencies Co*), given a 
rectified sine wave stimulus, amplitude 1, (T^ =Sms, integration interval=0.02 
ms.) 

The results obtained from the stellate array for pure tone and complex stimuli of 

100, rSO and 200 Hz are plotted in figures 4.21 to 4.23; similar results are 

obtained for both pure and complex stimuli. A clear change in the level of 

activity is evident in most cases, although the tendency for stellates with fast 

dynamics to fire more than one per cycle in response to low frequency signals 

may cause problems for subsequent lateral inhibitory processing. 

115 



A) 

B) 

Stellate array response to a 100 Hz stimulus 
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Figure 4,21 : Response of the stellate array to A) a pure tone stimulus of 100 
Hz, and B) a complex stimulus of [1700,1800,1900] Hz, periodicity 100 Hz. 
The results are plotted for a period of 0.5s, some time after the start of the 
run to avoid the onset transient effects. At the bottom of each graph, the IHC 
firing probabilities (scaled) are plotted, the stellate response are plotted 
(offset) above. The points at which entrainment ceases are indicated by 
arrows and at which multiple firing ceases by **s. Integration step size .02ms, 
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Figure 4.22 : Response of the stellate array to A) a pure tone stimulus of ISO 
Hz, and B) a complex stimulus of [1650,1800,1950] Hz, periodicity 150 Hz. 
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A) SteDate array response to a 200 Hz stimulus 
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Figure 4,23 : Response of the stellate array to A) a pure tone stimulus of 200 
Hz, and B) a complex stimulus of [1600,1800,2000] Hz, periodicity 200 Hz. 

It is possible that this stage of periodicity decoding is actually performed by 

octopus cells, which exhibit onset responses followed by little activity, and can 

entrain to stimuli up to 1000 Hz. It is also known that they receive inputs 

exclusively from high frequency channels [Ryogo92] in which the periodicity of 

signals is preserved. Their onset type behaviour may ensure that multiple firing 

per cycle is eliminated. However, a model of the octopus cell behaviour remains 

to be developed; and it is not known whether there is any psychophysical 

evidence of a systematic organisation of frequency response properties of 

octopus cells. 

In order to assess the mean level of activity in each of the channels, the stellate 

outputs were passed through another set of dendritic filters, which effectively 

sum the activity in their inputs; the output from those filters plotted in figure 

4.24. 
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SteOag Array 

Figure 4,24 : Mean levels of activity across the stellate array in response to 
stimuli of A) 100 Hz, B) 150 Hz and C) 200 Hz; pure tone levels (solid line), 
complex levels (dotted lines). The position at which the activity change is 
fairly clear in each case, and the 'edge' formed in this way can be enhanced 
by means of lateral inhibition. 

It should be noted that in the previous figure, and in all the results which 

follow, simple linear interpolation has been used in order to show the response 

patterns across the tonotopic axis. In addition, no special tuning was required 

to produce these results, and the time constants used in the earlier part of this 

chapter were retained throughout. 

An interesting feature visible in these plots is a secondary 'bump' caused by loss 

of entfainment to every second cycle. I f lateral inhibition is used to heighten 

activity at positions across the array where sharp changes in level of activity 

occur, then peaks from these secondary 'bumps' also result. These positions 

correspond to frequencies which are an octave lower than the pitch of the 

118 



signal, and may perhaps explain the wide prevalence across all cultures of 

octave equivalence [Sloboda85, Storr92]. 

It was found during these investigations that the position at which a particular 

periodicity was encoded varied with intensity. Higher intensity levels caused 

cells at lower periodicity positions to continue firing at every cycle, and lower 

intensities had the opposite effect; see figure 4.25. Clearly this effect is 

undesirable, and a tonotopic map of periodicity which is stable across the 

intensity range is required. Since multipolar cells are known to respond 

monotonically to intensity at least up to a range of 90 dBs, they may be used to 

normalise the inputs to the cells encoding periodicity, by supplying inhibitory 

inputs reflecting global intensity levels. 
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Figure 4,25 : The variation of unnormalised periodicity sensitivity with 
intensity levels. The position of sharp change in activity level, presumed to 
encode periodicity, moves to towards higher frequencies with decreasing 
intensity, and vice versa. 

This finding is very interesting, however, since if the inhibitory normalisation is 

not quite accurate, then the pitch percept could vary with intensity. Small 
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variations of pitch perception with intensity are, in fact, known to occur. As can 

be seen in figure 4.26, below 1000 Hz. the pitch percept falls with increasing 

intensity, and that is precisely what this model predicts. 

2000 Hz 

L, (dB) 

Figure 4.26 : Diagram showing the effect on the perception of the pitch of 
pure tones as a result of variations in intensity. From [Rossing82]. 

Above 1000 Hz, pitch percepts are found to rise with increasing intensity, but 

frequencies in that range do not give rise to periodicity pitch, and presumably a 

different mechanism is responsible for these cases. In fact, a tendency for the 

peaks in spectral maps to move towards the high frequency end with increasing 

intensity was noticed when simulating the process of spectral map formation. 

However, intensity invariance of tonotopic mapping (both spectral and 

periodicity), and the slight imperfections in this process, are important 

properties which remain to be investigated and modelled further; although the 

qualitative match between these simulations and the psychophysical data are 

encouraging. 

I f the output of the stellate array is processed by means of the L I N described in 

section 4f), then a tonotopic map of periodicity may be formed. In the plots 

which follow, figures 4.28 to 4.30, the stellate bank has been extended to 50 
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cells, with potassium conductance time constants in the range from .75 to 10 

ms, the distribution of which is shown in figure 4.27. The formation of 

periodicity maps is fairly successful, however, the network is very sensitive to 

odd 'bumps' in the activity levels, as can be seen particularly in the 200 Hz map, 

figure 4.30, and has been discussed above. 
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Figure 4,27 : Distribution of the potassium conductance time constants for a 
stellate array of 50 channels. A membrane time constant of r^-Sms, was 
retained throughout. 

Problems in forming a clear periodicity map may also arise from multiple firing 

per cycle, as is seen in figure 4.28, where the high response in channels with 

fast dynamics is evident. The tendency to pick out the point at which the 

transition from firing at alternate cycles is made, see figure 4.29, is evident; and 

may cause problems in subsequent processing. Similar, though less 'clean', 

results are obtained for complex stimuli; however, further work is needed in 

order to establish an inhibitory weight profile which is suited to picking out the 

required level of detail. At present, the 'mexican hat' weight profile, similar to 

that used previously, is retained. 
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x l O Periodicity mapping of a 100 Hz stimulus 
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Figure 4.28 : A) Periodicity map (solid line) formed in response to a 100 Hz 
stimulus, showing how the sharp change in stellate activity (dotted line) gives 
rise to a pattern of activity across the tonotopic axis in which the periodicity 
is represented by a peak. The pattern of lateral inhibitory input at each point 
is also shown (dashed line). The activity levels plotted are those at 100 ms 
after stimulus onset. B) The development of the periodicity map at time steps 
of 2 ms. 
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Figure 4.29 : Periodicity map formed in response to a 150 Hz stimulus, (see 
4.28 for full description). Also clearly visible here is the response generated 
at the point where the stellates cease to fire on alternate cycles. 
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X 10" Periodicity mapping of a 200 Hz stimulus 
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Figure 4.30 : Periodicity map formed in response to a 200 Hz stimulus, (see 
4.28 for full description). Also clearly visible here is the response generated 
at the point where the stellates cease to fire on alternate cycles and the 
undesirable sensitivity to irregularities in stellate activity levels. 

j ) Conclusion 

In this chapter the subject of frequency representation within the auditory 

system was explored, and it was argued that frequency is represented by means 

of distributed patterns of activity across a tonotopic map. The plausibility of 

this idea was demonstrated by considering how maps of characteristic frequency 

and periodicity might be developed in the cochlear nucleus. It was shown that a 

lateral inhibitory network, perhaps formed from stellate and multipolar cells in 

the cochlear nucleus, can transform the temporal-place representation of 

frequency produced by the cochlea into a topographically ordered 

representation. It is suggested that such a network of stellate and multipolar 

cells, deriving their input from restricted portions of the basilar membrane, 

could be used to form the relatively small number of 'frequency channels' 
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thought to exist. It was also shown how a distributed encoding of frequency 

enables fine frequency resolution, which is not restricted to the number of 

frequency channels used. 

The creation of periodicity maps was also considered at some length. In the 

formation of periodicity maps the periodicity information contained in the high 

frequency channels first has to be extracted before a tonotopic map can be 

formed. A systematically ordered array of stellate cells was proposed for this 

task, and the way in which the stellate activity could be used to decode 

periodicity was demonstrated. 

Other significant aspects of this chapter include the possible explanations for 

ratio pitch perception, the variation of pitch perception with intensity, and 

octave equivalence. In addition, a clearer understanding of the importance of 

inhibition within auditory processing has been obtained. Inhibition was seen to 

provide a means whereby pitch representations could be stabilised, 'temporal 

processing windows' could be regulated, and peaks in activity could be formed. 
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5. Preattentive streaming 

a) Introduction 

In the process of creating auditory perceptions of the world, or 'auditory scene 

analysis', it appears that the auditory system partitions the sound space into 

subgroups, and makes sequential associations from one moment to the next 

between sounds which are judged to come from the same source [Bregman90]. 

The distinction is made in the literature between a sound source, the physical 

event that produces an acoustic signal, and a sound stream, which relates to the 

perceptual organisation of the signals into a temporal pattern sequence 

[Bregman90]. Sounds which are allocated to the same stream are said to be 

'temporally coherent', and the process of segregation is referred to as 

'streaming* [Bregman90]. 

The sequential association of sounds enables the perception of coherent patterns 

over extended time frames. The basic aim of streaming is, of course, to 

associate those sounds emitted from the same source, while excluding others. It 

is argued, that streaming should therefore be seen as an accomplishment, rather 

than the breakdown of some integration mechanism [van Noorden75]. The 

formation of streams is important in allowing the auditory system to recognise 

significant patterns and relationships within the signals from each source 

without being confused by accidental coincidences between unrelated signals. 

Emergent temporal patterns including rhythm, melody and speech generally 

arise within and not across streams [Bregman90]. 
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Interestingly, music is constructed and notated in ways which reflect these 

streaming effects [Anstis85, Bregman90], where a number of streams run 

simultaneously in the horizontal or time dimension, and are periodically 

integrated (vertically) in the harmonic dimension. Sequential grouping 

determines melodic and rhythmic patterns, and vertical grouping determines the 

harmonic relationship between the streams. In the baroque style, a single 

melodic line for one instrument often contains notes separated by small steps, 

interspersed with notes separated by big jumps. This can create the ambiguous 

impression of two instruments playing together because the .high and low 

frequency notes can be segregated into separate streams [Dowling73, Rasch78]. 

Another grouping cue, which relates both to the formation of pitch groups and 

to sequential association based on timbre, is exemplifled in the use of vibrato. 

Vibrato results in a similar and distinctive amplitude and/or frequency 

modulation of all the frequency components originating from an instrument 

[Bregman85]. This enables its sound to be easily distinguished from other 

concurrent sounds, and is a technique commonly employed by concerto soloists, 

for example, allowing them to *stand out' from the orchestral background even 

when cues such as pitch proximity and direction are of no use. 

In the next chapter, further characteristics of pitch group formation will be 

discussed; but here we will be concerned with the development of sequential 

associations between sounds, both pure and complex. While it is clear that the 

auditory system employs many clues in order to refine its perception of the 

auditory scene, and the interactions between the pitch grouping and sequential 

association mechanisms are important, only the initial stages of preattentive 

streaming, based on pitch proximity, will be modelled here. Considerations, 
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such as the recognition of characteristic sounds, or of sounds which appeared in 

the recent past, and the effects of pitch grouping and streaming upon each 

other, remain to be included in future work. In this chapter, some important 

psychophysical results on stream formation will be discussed, and relevant 

models reviewed, before a proposed model for preattentive streaming and some 

preliminary simulation results are presented. 

b) Psychophysical Characteristics of Preattentive Streaming 

Stream formation has been investigated through numerous experiments which 

exploit the use of auditory illusions in order to investigate the process. This has 

allowed researchers to develop a clearer idea of the principles employed by the 

auditory system in establishing an interpretation of the sensory input 

[Bregman78]. It has been suggested that by default, the auditory system seems 

to assume that all sounds emanate from the same source; and that gradually, 

evidence to the contrary causes the sound to split into one or more streams 

[Bregman90]. The tendency towards stream segregation increases markedly 

with time [Anstis85], and streams take roughly 4 seconds to form or to die 

away [Bregman90]. Novelty and the number of onsets in the signal also appear 

to be correlated with stream formation [Bregman92]. 

Principal factors determining the assignment of sounds to different streams 

include pitch proximity, timbre, spatial origin and pitch trajectory; however, 

pitch proximity appears to dominate preattentive streaming considerations 

[Bregman90]. A very important relationship is that between pitch and time 

intervals. The tendency to segregate streams increases both with increasing 
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frequency differences and presentation rates [DowIing87, Bregman90]. For 

example, if a series of tones alternating between high and low pitch (H L H L ..) 

are received, then at a low presentation rate the subject will perceive a single 

oscillating sequence, but as the rate increases the sounds will eventually split 

into separate streams, one consisting of H H H. . . and the other L L L . . . 

Segregation is also promoted by larger pitch differences between successive 

sounds. In the example above, if the presentation rate is held constant and the 

interval between the high and low notes adjusted, then it is found that small 

intervals result in the perception of a single oscillating stream, and larger 

intervals cause the stream segregation described above [Bregman90]. 

The effects of presentation rate and pitch interval size on the formation of 

streams, are illustrated in figure 5.1. An interesting feature of figure 5.1 is the 

large area of ambiguity within which stream segregation appears to be an option 

but not compulsory. This perhaps indicates the realm in which attention can 

exert significant influence. The effects of attention on the formation of streams, 

and on the 'fission' boundary between regions of coherence and streaming, have 

been extensively investigated, e.g. [van Noorden75,77, Dowling 73,87]. The 

'fission boundary' indicates the frequency difference beneath which stream 

segregation is impossible, and the 'temporal coherence boundary', that beyond 

which temporal coherence is impossible. It has also been found that people find 

it far easier to extract or select parts of streams than to force the integration of 

sounds which are tending to segregate [Bregman90]. 

It is not clear whether unattended sounds are also organised into streams or 

whether there is simply one attended stream plus background sound. 

[Bregman75] argues that multiple stream formation does in fact occur. In 
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Figure 5.1 : Streaming and coherence existence regions, showing the 
relationship between presentation rate and pitch interval. From 
[Beauvois91J. 
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Figure 5.2 : Experiment to demonstrate the formation of multiple streams. 
The subject is required to identify whether the tones A and B appeared in the 
same order in the comparison sequence as in- '-the initial standard 
presentation. The task is straight forward when only A and B are presented. 
Introduction of distractor tones, X, degrades performance, but the additional 
introduction of the tones, C, helps to improve performance. From 
[Bregman75]. 
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experiments in which subjects have to decide on the relationship between 

sounds A and B (see figure 5.2), this judgement is relatively easy when A and B 

are presented in isolation, but is hampered by the inclusion of distractor tones, 

X. However, the distraction can be reduced by the inclusion of captor tones, C. 

Therefore, it is argued that the C stream strips the X's from the A/B stream 

thereby restoring the pre-distraction judgement performance, and that since the 

A/B stream remains the attended stream, this effect implies that the unattended 

sounds are also organised into streams [Bregman75]. However, there is not 

much other information to back this claim, and it remains to be investigated 

whether multiple unattended streams are formed. 

[JonesSl] criticises Bregman's results because of the, largely undocumented, 

use of rhythmic cues in distinguishing the AJB pattern, and argues that a model 

of 'rhythmic attention' would explain these results more accurately. There is 

further support for the idea of attention which can be focussed both in time and 

pitch in the work of Bowling, who investigated these aspects in experiments 

where subjects were required to detect interleaved melodies [Dowling73,87]. 

When the pitch ranges of the melodies overlapped, the task proved impossible 

unless the subject knew which melody was present; in addition, misplaced notes, 

lying outside a 'pitch/time window' of expectation were perceived to be 'missing' 

[Dowling87]. 

As has already been mentioned, the formation of streams is not instantaneous; 

the segregation of the sound space into separate streams takes some time to 

develop, and, in addition, there may also be random fluctuations in perception 

between streaming and coherence [Anstis85]. The increasing tendency towards 

streaming is illustrated in figure 5.3. In these investigations, a square wave 
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Figure 5,3 : The probability of perceptual coherence as a function of time in 
response to two alternating tones, with presentation rates indicated. As can 
be seen, this probability decreases and the tendency towards streaming 
increases. Random fluctuations in the percepts are also apparent. From 
/AnstisSSJ, 

frequency modulated (FM) stimulus signal, effectively two alternating pure 

tones, was used, and the probability of coherent perception related to the 

duration o f the stimulus. As can be seen this probability decreased markedly 

with time. I t was also found that the tendency towards streaming was frequency 

specific, and that i f the F M range was moved significantly at some point in the 

test, the streaming tendency, already developed, did not carry over into the new 

frequency region. Nor, i f the streaming tendency was developed by means o f 

stimuli to one ear, did it carry over to stimuli presented to the other ear 

[Anstis85]. 

I t was argued that in contrast to Bregman's emphasis on cognitive processes, 

the latter result seems to implicate peripheral processes in stream formation 

[Anstis85]; however, it may also be the case that any novel information, in this 

131 



case a change in ear, causes the system to reset and begin stream formation 

again [Bregman92]. 

Other factors determining the assignment o f sounds to different streams, such as 

timbre or spatial origin, appear to be dominated by the pitch relationship, as has 

been demonstrated by numerous experiments in which the various parameters 

have been placed in conflict with one another [Bregman90]. 

For example, when two scales, one ascending, the other descending, are 

presented simultaneously, one to each ear, then the perception is that o f two 

scale fragments, as shown in figure 5.4 [Bregman90]. From this experiment i t 

can be seen that sequential associations made by pitch clustering appear to 

override the directional clues. The model proposed in section 5d), can account 

for this effect. 

Pre s entati on Pe rcepti o n 

J j j . 1 i ^ ^ r ^ ^ ^ ^ 

Figure 5.4 : Experiment to demonstrate the relative importance of pitch and 
directional clues. From [Bregman90J. 

c) Review of other Streaming Models 

Over the years, investigations into the phenomena o f streaming have been 

largely dominated by Bregman and his co-workers, who are, therefore, primarily 

responsible for the development o f the conceptual model o f streaming which 
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appears to be most commonly accepted. There are, however, some other models 

which wi l l also be discussed. 

The approach adopted by Bregman has been to concentrate on understanding 

the streaming phenomenon and on formulating a model o f streaming at a fair ly 

high, behavioural level; with l i t t le attention devoted to the possible underlying 

biological processes. The principal, guiding idea is that the auditory system 

employs Gestalt principles or heuristics, (such as common fate, proximity, 

similarity, good continuation, etc.), in deriving an interpretation o f the sensory 

input [Bregman90]. In this model, streaming is seen as a multistage process, in 

which an init ial , preattentive process partitions the sensory input over short 

time spans, causing successive sounds to be associated depending on the 

relationship between. pitch proximity and presentation rate [Bregman90]. 

Further refinement o f these sound streams is thought to involve the use o f 

attention and memory in the processing o f single streams over longer time spans 

[Bregman90]. 

Preattentive streaming is seen to be automatic, unlearned, and data driven; 

generally resulting in the exclusive allocation o f signals to one stream or 

another [Bregman90]. However, there are some counterexamples to the 

exclusive allocation principle, such as the possibility o f perceiving two 

simultaneous vowels wi th the same fundamental frequency, as discussed in 

[Meddjs92]. 

Later processing is viewed as being schema based, or hypothesis driven; where 

stored knowledge and attention are utilised in order to produce a coherent 

percept, principally by means o f the extraction o f relevant data f rom the 
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attended stream [Bregman90]. Schemas, in this context, are understood to be 

complex processes which embody knowledge about various features o f the 

sensory stimuli or lower level, internal representations, and operate to build 

further descriptions o f the sensory space [Bregman90]. Their operation appears 

to be constrained by mutual consistency, rather than exclusive allocation 

[Bregman90]. 

Another processing strategy which appears to be employed is an 'old + new' 

heuristic [Bregman90], This concept is motivated by the observation that i f any 

part o f the signal has appeared before in the recent past, then that portion is 

extracted from the signal, and the remainder is analysed. This provides a way o f 

explaining phenomena such as the perception o f occluded sounds, and the 

enhanced 'hearing out' of individual components of a harmonic complex, i f they 

are sounded before the rest of the sound; a feature first noticed by Helmholtz 

[Bregman90]. 

A slightly different approach is adopted by [Jones76], who argues that it is 

useful to visualise sound in terms of three dimensions, relative pitch, loudness 

and time. Whenever a sequence is translated along any o f the axes, then the 

amount o f change tolerable in the other dimensions without provoking stream 

segregation is dependent on the extent o f this translation. This gives rise to the 

concept o f an existence region for temporal coherence in pitch-loudness-time 

interval space [Jones76]. A cognitive model of auditory perception based on 

rhythmic organisation, synchronisation and expectancy, an important feature of 

which is the anticipation o f the trajectory of the pattern within the three 

dimensional space described above, is proposed [Jones76,81]. 
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As discussed in 5b. [Dowling73,87] favours the idea o f a 'window' o f 

expectation in both pitch and time dimension in which successive notes must fal l 

in order to be perceived as part o f the attended pattern. In addition, i t was 

found that the presence o f background sounds served to focus this window 

more sharply [Dowling87] . A model o f rhythmic pattern recognition and the 

generation o f rhythmic expectations is described in [Torras85,86], but no 

attempt is made there to apply it to the streaming problem. 

The experiments described by [Anstis85] were aimed at investigating the 

temporal development o f the streaming process. In analysing their results, 

Anstis and Saida argued that they could be explained by a progressive 

degradation o f temporal ordering information, or, alternatively, by means o f the 

adaptation o f some sort o f frequency jump detectors [Anstis85]. The precise 

mechanisms were, however, not identified. I t has subsequently been shown that 

the streaming tendency is strongly correlated with the number o f onsets within a 

frequency channel [Bregman92]; and i t is argued that adaptation or 'fatigue' o f 

jump detectors is not consistent wi th this effect [Bregman92]. 

More recently, some attempts have been made to implement the concepts o f 

streaming in computational models [Cohen87, Williams90, Beauvois91, 

Cooke92, Brown92, Wang95]. An important goal o f such work is to try to 

develop more robust acoustic processing systems, in which the ability to extract 

and focus attention on the complex signal of interest, against any reasonable 

background sounds, is seen as paramount. The concept o f a 'masking field ' , f i rs t 

introduced in [Grossberg78], in which percepts, based upon the current sensory 

input, context and prior learning, are developed, has been proposed [Cohen87]. 

The model also uses ideas f rom the basic A R T l architecture, developed and 
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described by Carpenter and Grossberg in numerous papers, e.g. [Carpenter85]; 

and in a sense, performs high level streaming based on the recognition o f input 

patterns. In further work on speech recognition, masking fields are used as part 

of a combined phoneme recognition - articulatory system [Cohen87]. 

A model o f streaming in which 'synchrony strands' are developed by means o f 

associations f rom one moment to the next between sound groups is proposed by 

[Cooke92,93]. In this model sequential associations are made on the basis o f 

pitch trajectories, although the alternative cue o f pitch proximity described by 

Bregman and Ciocca is also mentioned [Cooke92]. In related work, [Brown92] 

uses data-driven grouping schema, based on Bregman's ideas for preattentive, 

low level streaming, in order to develop sequential associations. 

A model o f preattentive streaming which reproduces some aspects o f 

psychophysical behaviour, primarily the existence o f temporal coherence and 

streaming ambiguity regions in pitch-time interval space, has been developed by 

[Beauvois91]. I n this model, acoustic signals are processed by a f i l te r bank 

cochlear model, half-wave rectified to simulate the gross effect o f IHC 

processing, and artificially perturbed by noise in order to reproduce the 

variability in stream formation found in behavioural experiments. The resulting 

signals interact competitively, resulting in an output which indicates the 

dominant channel. The gradual formation o f streams is achieved by means o f 

lateral inhibition which penalises those channels not part o f the dominant stream 

and the time course o f stream formation is modelled by means o f leaky 

integrator neuron models. In a signal composed o f two alternating tones, 

dominance switches i f the frequency difference is small or the presentation rate 

slow enough; otherwise, one o f the channels eventually dominates the output. 
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The model is, however, restricted to two channels and to the processing o f pure 

tones. 

In recent work, [Wang95,90] describes an approach in which simultaneous and 

sequential grouping, (i.e. pitch grouping and streaming), are treated within the 

same framework. Act ivi ty is seen to propagate through a matrix o f laterally 

coupled oscillators, the activity o f which is effectively a map o f frequency 

channel against time. Sounds belonging to the same stream, whether 

simultaneous or successive are distinguished by synchronous activity, and those 

f rom different streams are desynchronised by means o f a 'global inhibitor*. The 

duration o f a sound is encoded in the length o f its activity along the time 

dimension. Simulations are used to show how the presentation rate affects 

streaming and coherence, depending on the amount o f overlap o f signals within 

the time map. The relationship between frequency proximity and time in stream 

formation is modelled by the degree o f coupling between oscillators. I t is not 

clear whether distant frequency components can be successfully linked by this 

method, nor how the competitive interactions between the various grouping 

possibilities are resolved. However, the ideas o f linking successive sounds f rom 

the same stream by means o f synchrony, and o f forming topographic maps o f 

the temporal progress o f activity patterns, are very interesting. 

d) Proposed Model f o r Preattentive Streaming - Firs t A t t empt 

Initially, an extension to the basic streaming model developed by [Beauvois91], 

which included the capability for multichannel streaming and the processing o f 

complex sounds, was proposed. In developing these ideas for a preattentive 
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streaming model, it was considered unnecessary to complicate the process 

further by including the facili ty for producing an arbitrary number o f streams; 

and since the details o f multiple stream formation are unclear anyway, the scope 

of the proposed model was limited to the production o f a single stream plus 

background. The enhancements to Beauvois* model w i l l be briefly discussed in 

order to establish the context for the subsequent work. However, two particular 

further insights have led to a substantial reworking o f the original model, and 

more attention w i l l be devoted to an analysis o f the behaviour o f this new 

version o f the streaming model. 

In Beauvois' model only two frequency channels are used, and so inhibitory 

weighting in the competitive net is simply a constant o f 0.5. The obvious way to 

extend this scheme to model the relationship between pitch proximity and 

presentation rate across the entire frequency range, is to incorporate a system 

of graded inhibition; where channels further f rom the currently dominant 

channel receive stronger inhibition than those closer to it . However, problems 

arise when complex sounds are to be processed, since frequency components 

from the same group inhibit each other. In particular, remote harmonic 

components strongly inhibit frequencies close to the fundamental o f the same 

pitch group, thereby interfering w i t h the 'pitch proximity' streaming property. 

The difficulties arising f rom competitive interactions between components o f 

the same group, and the need to resolve grouping ambiguities, suggest that the 

formation o f preattentive streams may be an integral part of the pitch grouping 

process, and not a later process as first thought. This is also more in line wi th 

the conclusions about interactions between the grouping and streaming 

processes drawn f rom experimental results [Bregman78]. I t was therefore 
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proposed to model stream formation based on competitive interactions between 

the fundamental frequencies, or periodicities, of complex sounds in the acoustic 

signal, rather than between all the spectral components, and to use the 

periodicity, or modulation frequency maps, presented in chapter 4, as a suitable 

source o f input to the streaming network. No problems with cross inhibition 

arise from these signals, since only information corresponding to the 

fundamental frequencies is included; therefore all signals can be assumed to 

belong to different pitch groups, and competitive interactions and mutual 

inhibition are appropriate in forming streaming percepts. A lateral inhibitory 

network ( L I N ) , as described in chapter 4, may be used to implement the 

necessary competitive interactions. In this case, however, i t was proposed that 

the inhibitory links be graded so that those channels closer together inhibit each 

other less than those further apart, (See figure 5.5 for a diagram o f the 

processes envisaged.) 

Modelling the temporal aspects o f streaming behaviour can be achieved by 

means o f the dendritic f i l ter ing o f inhibitory signals which ensures that the 

inhibition on any cell w i l l decay over a time determined by the f i l ter 

characteristics and the magnitude o f the inhibition. Therefore, i f the strength o f 

the inhibitory signals is proportional to distance, subsequent inputs w i l l be able 

to activate channels closer to previously active ones sooner than more distant 

ones, thus producing the observed pitch-time interval relationship [Bregman90]. 

The output f rom the streaming array can then be used to gate the activity o f 

corresponding pitch groups, enhancing the dominant one relative to the rest. 

Primitive modelling o f attentive effects can also be included in this model by 

selectively increasing activity in the section o f interest in the streaming array. 
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Figure 5.5 : Diagram of a preattentive streaming model A) Overview of the 
processing involved, B) Connectivity within the streaming network, showing 
an array of neurons (nl„nS), with graded inhibitory connections, (for the 
sake of clarity, weights : -gl, -g2, \g2\>\gl\), are drawn for one neuron only). 

This model, being a simple extension of the one described by [Beauvois91], can 

account for a number o f behavioural results, including the relationship between 

pitch intervals and presentation rate, random fluctuations between streaming 

and coherence, due to inherently noisy spike trains, and an increasing tendency 

towards streaming with time, caused by the time needed for the inhibition to 

strengthen. The major difference between the proposed model and that of 

Beauvois is the extension to multiple channels, and the suggestion as to how 

complex sounds might be processed. 

Subsequently it was realised that the experimental results, illustrated in figure 

5.2, could not be accounted for by either of these models, since both models 

concentrate on the formation o f a dominant stream, and ignore the possible 

effects o f background sounds. Because of the competitive interactions between 

the neurons within the single streaming net, the coherence of the background 

can only serve to weaken, and not strengthen, the dominant stream. Although 
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there appears to be no f i rm evidence for the formation o f an arbitrary number o f 

streams, as argued by [Bregman75], the psychophysical results do at least 

indicate that the organisation, or coherence, of the background sounds can 

influence the strength o f the foreground, or attended, streaming percept. The 

streaming model has therefore been considerably altered in order to take into 

account possible interactions between the dominant or foreground sound, and 

background sounds. In particular, it w i l l be shown how the coherence o f the 

background can improve the coherence o f the foreground stream. 

Another dissatisfactory aspect o f the model described above, is the proposed 

use o f graded inhibition to model the pitch-presentation rate relationship; a 

solution which does not appear to be particularly robust or biologically 

plausible. However, i f the characteristics o f the distributed activity patterns 

across tonotopic maps are considered, as shown in chapter 4, then it can be 

seen that the effect o f graded inhibition with distance, may result quite 

naturally. 

The model now proposed, includes both the interaction between the foreground, 

attended stream, and the background activity, and the production o f graded 

inhibition directly f rom the tonotopic activity patterns. In the next section, the 

model w i l l f irst be described, then an account o f its behaviour in response to a 

number o f experimental conditions wi l l be discussed in some detail, in order to 

clarify its operation. 
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e) A Second Model of Preattentive Streaming 

This model o f preattentive streaming consists of two sets of neurons, the 

foreground, F, and background networks, B . The output from F indicates the 

activity, i f any, in the foreground, or attended stream, and the output from B 

reflects any other activity. The neurons within each net essentially form a one 

dimensional array, intended to represent the frequency channels; they do not 

interact with each other, but simply perform a summation o f their input activity. 

A simple model neuron, wi th dendritic filtering o f the inputs would suffice for 

this purpose. 

The important interaction occurs between the two networks, F and B ; the aim 

of the processing is to ensure that those signals appearing in the output f rom F, 

i.e. in the foreground stream, do not appear in the output f rom B, the 

background; and vice versa. As w i l l be seen, strengthening o f the organisation 

of the background, or unattended sounds, results in the 'sharpening' o f the 

foreground stream due to the enhanced inhibition produced by a more coherent 

background. The connectivity o f the networks, F and B, is shown in figure 5.9, 

but in order to understand the operation o f the model, further explanation o f the 

signals w i l l be necessary. 

The analysis o f the model's behaviour rests on the abstraction o f the tonotopic 

activity maps. As shown in figure 5.6, and discussed in chapter 4, the 

representation o f frequency is seen as a distributed pattern o f activity across the 

map. In these diagrams, the probability o f f i r ing is plotted against frequency. In 

the diagram, no assumption is made about the nature o f the outputs, which may 

be excitatory or inhibitory. However, the output o f inhibitory signals gives rise 
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of Fir ing 
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of Fir ing 

F r e q u e n c y F r e q u e n c y 

Figure 5.5 ; A) A diagrammatic representation of the pattern of activity 
across a tonotopic map in response to an acoustic stimulus of frequency F, 
showing the probability of firing as a function of place, B) A diagrammatic 
representation of the pattern of graded inhibition required to model the 
relationship between pitch interval and presentation rate in response to the 
inclusion of frequency F in the dominant stream^ showing the strength of 
inhibition as a function of place. 

to the concept o f a 'mask'. Consider figure 5.7, where the signals are considered 

to be inhibitory. I f these signals are used as input to an array o f neurons, such 

as those described for F or B, then those neurons which receive input from the 

region o f high activity wil l be more strongly inhibited than those receiving 

inputs from less active regions. Interactions between the excitatory tonotopic 

patterns o f activity reflecting stimulus periodicity, and the inhibitory tonotopic 

masking patterns, form the basis for this model. 

A) 

Probability 
of Firing 

B) 

Probability 
of Firing 

F r e q u e n c y F r e q u e n c y 

+mF -mF 
Figure 5. 7 ; Diagram showing typical tonotopic masking patterns. 

In the model the outputs from F and B are considered to be inhibitory. The 

output from F, termed +mF, can therefore be considered to be a mask o f 

foreground activity. In some cases, the inverse o f this mask is also required, and 

wi l l be termed -mF. Typical examples o f these patterns can be seen in figure 

5.7. Similarly, the output from B and its 'inverse' w i l l be referred to as +mB and 
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-mB. The ' inverse' masks required can be created, as shown in figure 5.8, from 

the summation o f excitatory, evenly distributed spontaneous activity, and an 

inhibitory mask. The inhibitory output f rom the summation net, is the required 

'inverse'. The connectivity between the two networks is illustrated in figure 5.9. 

Probability 
of Fir ing 

eiidilalofip;.:-:.:- Piobabi l i ty 
of Fb ing 

S p e n t a n e c u 
Activity 

SumniaticOT Net 

Probability 
of Fir ing 

F r e q u e n c y 

Figure 5,8 : Diagram showing the production of an 'inverse' mask. 

The behaviour o f this streaming model may be best understood by examining the 

development o f its responses to a series o f stimuli and considering the resulting 

activity within the various tonotopic masks. In the first case, the model's 

behaviour in response to a standard streaming stimulus wi l l be analysed. The 

input to the streaming model i s : H L H _ H L H _ where H and L are high 

and low tones, respectively, and _ is an equal period o f silence. The perception 

o f this sequence is initially one o f a galloping rhythm, but gradually, depending 

on the presentation rate and pitch interval, the perception o f two streams 

develops, one H _ H _ H _ . . . , the other L L L .... The progress o f the 

model's operation can be seen in figure 5.10. 
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Figure 5.9 ; -4^ Connectivity of the streaming netyvorks. Input signals to both 
foreground and background nets are supplied by the spectral map. In 
addition, foreground and background masking signals are used to build 
regions of inhibition and to sharpen the focus of the foreground stream. 
B) The basic neuron model used within the streaming nets. 
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Figure 5.10 : A series of diagrams illustrating the behaviour of the streaming 
model in response to the stimulus H L H_ H L H_ ... 
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At the start we assume that the model is at rest and no traces o f previous 

activity remain. At time, t^, the signal H is received, and as the other inputs to F 

are silent, the output f rom F is simply a mask o f the input. The input to B is the 

inhibitory output from F and the current signal, H , which tend to cancel each 

other out, the result is that B remains inactive. 

A t the next time step, t,=t(,+dt, the signal L is received, and at this stage 

previous activity has to be taken into account. Inputs to F are the current 

signal, L , the inverse mask o f the previous activity on F, -mF, and the mask o f 

the previous activity on B , which is still zero. Since the current excitatory 

region does not coincide wi th the previous one, i t w i l l tend to be inhibited. The 

degree o f inhibition wi l l determine how much o f the current signal is reflected 

in the output f rom F. The output f rom F, +mF, w i l l therefore have a region o f 

some activity corresponding to the current input. The input to B w i l l consist o f 

this mask, a reduced trace o f the previous +mF mask, due to dendritic f i l tering 

effects, and the current excitatory signal, L . Since the output from F in this 

case, w i l l not entirely cancel the excitatory input, the output mask from B 

contains some activity in response to L . 

A t time t2=t ,+dt , the input to F w i l l again be excitatory H , as well as the inverse 

mask o f previous activity on F, and a mask o f the previous activity on B. 

Clearly, the current signal w i l l fall into the foreground stream, in addition, the 

background activity has started to provide some inhibitory sidebands around the 

currently dominant region. The further development o f activity within the net 

can be seen in the diagrams. From this illustration it can be seen that the degree 

to which the regions o f activity in response to the two signals, H and L , 

overlap, determines how quickly and how strongly the region o f activity 
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associated with the dominant, attended, stream wil l form; this is in accord with 

experimental results [Anstis85]. I t can also be seen that i f the two tones are too 

close together, segregation wi l l impossible, since the excitatory signal wi l l 

always overlap the dominant region significantly. The effect o f presentation rate 

is accounted for by the dendritic filtering of inputs to the nets, and the rate of 

decay o f previous input activity. Clearly the filter time constants can be 

adjusted to match the required behavioural characteristics. 

Since the original motivation for the inclusion o f foreground and background 

nets was the experiment shown in figure 5.2, where the coherence o f 

background activity had an effect on the strength o f the foreground percept, it 

is now intended to consider how the model might behave in response to that 

stimulus. In order to do this, however, a further input to F is required, namely, 

an attentive input, which may be modelled as either a sustained region o f 

excitation around the pitch of interest, or a sustained inhibitory mask, at all 

other regions. The initial 'standard' presentation, allows the subject, and the 

model, to create the attentive input. Apart from the attentive input the model is 

considered to be at rest at the start of the test stimulus. In the first case, the 

presentation o f A and B alone would result in both signals falling into the 

dominant stream, since both tones are close together, and in any case, the 

inhibitory masks would not have enough time to develop in any strength. In the 

second case, when the stimulus X A B X is presented, the inhibitory masks once 

more would have no time to develop, and the X signals would tend to fall into 

the dominant stream, and so confuse the later judgement required. In the third 

case, when the input is C C..C C X A B X C C..C C, and attention is once more 

focused on the region centred on A and B, the coherence o f the background 
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sounds would allow inhibitory masks to form, which would permit the grouping 

o f X wi th the background rather than the foreground stream, thus enhancing the 

required judgement. 

In this section the basic ideas behind the model have been outlined. In the next 

section the model w i l l be described more ful ly and some results o f simulations 

presented. (Details o f the streaming model can also be found in Appendix D.) 

0 Simulation of the Streaming Model 

The pattern o f activation across the tonotopic axis may be represented in terms 

o f a Gaussian function : 

i(x)^Aef^^''-^' [5.1] 

where A and a are constants which determine the level and spread o f the 

activation, / is the stimulus frequency, x is the position on the map, roughly 

corresponding to frequency, and i(x) is the probability o f f i r ing at position x. A 

simplified neuron model given by equations 5.2 and 5.3, wi th output 

representing the probability of f ir ing, is used. 

P(:c,0 = a(SvAO) [5.2] 
J 

where p(x,t) is the probability of activity at position x, at time /, a is the 

sigmoid function, k a constant, and v.(x,0 is t h e / t h input at position x, and . 

vj(x, t) = / - dt){ I - f ) + dt. Vjijix, 0 [ 5 - 3 ] 
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In this equation the i f x . t ) are the inputs to the array, e.g. in the foreground case 

the inputs are the input pattern, the inverse foreground mask, the background 

mask and the attentive pattern; and the are the respective weights. 

The current activity in response to the acoustic stimulus forms an excitatory 

input to both the foreground streaming array, F, and the background streaming 

array, B. In addition, F receives inhibitory inputs reflecting the current 

background activity, and the inverse o f the o f the current foreground stream. 

An attentive input is also used to indicate the area o f the frequency range o f 

interest; at present this is modelled by an inhibitory mask. The inputs to the 

foreground and background streaming arrays are summarised in the fol lowing 

equations, and the probability o f output activity is calculated as shown in 

equation 5.2. 

Inputs to F : 

v,(x,/) = vi(x,/-ty/)(l-^)+^/[K,/«/7w/(x ,0+/i/^e«^^^^ [5.4] 

v^ixJ)^v^ixJ-dt)^^-^;)^dty^mF-ixJ-d() [5.5] 

v3 (x , 0 = V 3 ( x , / - t / / ) ( l - ^ ) + ^ / .F3 ;w5^(x , / - t /0 [5.6] 

mF^(x,/) = a ( i ; v , ( x , 0 ) [5.7] 

mF-{xJ)^meanx{mF^{xJ))-mF^{x,t) [5.8] 

(InputfxJ) and Attend(x,t) are of the form of i(x), shown in equation 5.1) 

Inputs to B : 

w,{xJ) = w^{xJ-dt){\-^) + dt.WxInput{x,t) [5.9] 

W2{xJ) = W2{x,t-dt){\-^)+dtW2mB-{x,t-dt) [5.10] 

W2{x,t)^w^{xJ-dt){\-^)+dt.WzmF'{xJ) [5.11] 

mB\xJ) = odw^ixJ)) [5.12] 
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[5.13 

The interplay between the excitatory and inhibitory activities causes the model 

to gradually focus the foreground stream and exclude extraneous stimuli. For 

example, consider figure 5.11 which shows the responses o f the model to the 

stimulus H L H H L H . initially with no attentive input. The progress in 

developing the foreground and background masks may be influenced by the 

speed o f presentation; in figure 5.12 the effect of presentation rate on the 

streaming process is illustrated. 

L Foreground 
Activity 

l_ Background 
Activity 

Figure 5,11 : Response to 10 presentations of the stimulus HLH_HLH_,,. 
with no attentive input The foreground stream A) eventually focuses on the 
H tones (centred at position 70), and the background stream B) focuses on 
the L's (centred at position 30). 

. Foreground 
Activity 

L Background 
Activity 

Figure 5,12 : Response to 10 presentations of the stimulus HLH_HLH_... 
showing the effect of stimulus presentation rate on the formation of the 
foreground stream. The rate used to generate A) is slower than that used for 
figure 5,11 and B) is faster, 
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I f one considers the relative responses to the H and L tones in the foreground 

map to be indicative of the probability of coherence or streaming, then the 

relationship between presentation rate and streaming found by [Anstis85] can be 

reproduced by the model, as can be seen in the fol lowing two figures 

Effect o( presertaoon rate in streaming 

Figure 5.13 : The probability of perceptual coherence as a function of time 
in response to two alternating tones, with presentation rates indicated. Model 
parameters used are as given in appendix D. 
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Figure 5.14 : The probability of perceptual coherence as a function of time 
in response to two alternating tones, with presentation rates indicated. 
Model parameters used are as given in appendix D; includes small additional 
perturbations to the input signal. 
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An 'attentive input' can be used to switch the foreground percept from one set 

of tones to the other as shown in figure 5.15 where attention is switched from H 

to L halfway through the plot. The level of the attentive input influences the 

rate at which the new foreground stream forms, as shown in figure 5.16. 

Foreground 
Activity 

Figure 5.15 : Response to 20 presentations of the stimulus HLH_HLH_... 
The focus of the foreground activity can he switched by means of an attentive 
input, here altered to focus on L halfway through the run. 

A=0 3 

A=0.4 

A = 0,5 

A = 0 6 

Time 

Figure 5.16 : Response to 10 presentations of the stimulus HLH HLH ... 
The rate at which the foreground stream is formed can be influenced by the 
level of the attentive input. Plotted is the position of maximum foreground 
activity for 4 runs (offset). Initially the responses can be seen to switch 
between H and A, but attention is centred on L and eventually the foreground 
comes to focus exclusively on the L signals. 
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Contrary to findings in experiments on the earlier streaming simulation model, it 

was found with this model that complex stimuli could successfully form 

coherent streams. As argued in the next chapter, simultaneous onset may be the 

principal cue used to distinguish the components of a complex stimulus. In 

figure 5.17 it can be seen that the streaming model picks out and groups the 

components o f the two complex signals, even when some of the 'competing' 

harmonics are quite close together. 

A) 

B) 

Foreground Activity 

Foreground Activity 

Figure 5.17 : The model can use simultaneous onset to distinguish and group 
components of complex stimuli as shown in these responses to 10 
presentations of complex stimuli HLH_HLH_..,, where the first 5 harmonics 
of L and the first 2 harmonics of H were used. For A) no attentive input was 
present, and for B) there was a small attentive input centred on H, 
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The psychophysical results from the 'crossing scales' experiment, illustrated in 

figure 5 4, can also be qualitatively reproduced by the model, as can be seen in 

figure 5.18. The initial position of the attentive input determines whether the 

upper or lower set of 'notes' is followed; the attentive input is then simply 

A) B) H 

Position 
of maximum 
activity 

Foreground Activity 

X 

Background Acttvrty 

3 4 I I 10 t l 14 IS IB 2C 

Scale Steps 

Foreground Activity 

D) 
H 

Position 
of maximum 
activity 

Foreground Activity 

Background Activity 

Foreground Activity 

Figure 5.18 : Response of the model to 'crossing scales' stimuli. In A) and B) 
a small attentive input was initially focused on position H and was then 
allowed to track the position of maximum foreground activity; in C) and D) 
the attentive input was initially focused on L. As can be seen the position of 
maximum activity remains focused on the upper or lower tone of the pair, 
depending on where it started. 
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allowed to track the position of maximum foreground activity. The competing 

localisation cue was not simulated, however. 

Finally the experiment illustrated in figure 5.2 is simulated. In the original 

experiment [Bregman75), subjects received an initial priming AB stimulus, 

followed by a set o f 10 tones : CCCXABXCCC. The frequency o f the captor 

tones ' C was manipulated to show the proximity of 'captor ' to 'distractor' tones 

affected the required AB order judgement. In figure 5.19 it can be seen 

A) 

B) 

Q 

qualitatively, that the formation 

o f a coherent background stream 

allows the model to pick out the 

AB signal more clearly. 

Figure 5.19 Plots 
(superimposed) of foreground 
responses to the tones X-A-B in 
the CCCXABXCCC experiment, 
showing the effect of the captor 
tones on the response to the 
distractor tones. A) Response 
when no captor tones are 
present, B) Response when the 
captor tones were centred on 
position 30, with the distractor 
tones at 50. C) Response when 
the captor tones and distractor 
tones are all centred at position 
50. (All parameters, except for 
the position of the captor tones, 
remained the same for all three 
tests, A small attentive input, 
centred on the A-B region, was 
also used throughout. ) 
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g) Conclusion 

In this chapter, the way in which the auditory system performs sequential 

associations has been investigated. The concepts o f temporal coherence and 

streaming were described and a number of psychophysical results discussed. A 

review o f some models of streaming were presented, and finally a new model of 

streaming in which foreground and background processes interact in order to 

segment the sound space, was presented together with simulation results for a 

number o f well known psychophysical experiments. 
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6. Pitch Perception 

a) Introduction 

The pitch o f a sound is defined as "that attribute of auditory sensation in terms 

of which sounds may be ordered on a scale extending from low to high*' [ANSI 

1960]; a rather vague definition which reflects the subjective nature o f pitch. 

The perception o f pitch can vary from person to person, and even f rom ear to 

ear in a condition known as binaural diplacusis [Rossing82]; and, as discussed 

in chapter 4, the pitch percept does not seem to be linearly related to stimulus 

frequency. The purpose o f this chapter is to examine the role o f pitch in 

auditory processing, and to discuss a model o f pitch perception which is in 

accord wi th the known behavioural and morphological details of biological 

auditory systems. 

As has already been outlined, one of the fundamental problems in processing 

acoustic stimuli, is to distinguish the various sound sources contributing to the 

auditory signal at any time [Nordmark70]; a di f f icul t task which is thought to be 

accomplished by means o f several stages o f processing. Primitive, or 

preattentive, auditory scene analysis appears to consist o f two interacting 

processes; one, in which associations between various simultaneously active 

spectral components are formed, resulting in the perception o f pitch groups, and 

another, in which sequential associations are made between the pitch groups 

f rom one instant to the next [Bregman90]. The grouping o f spectral components 

enables the perception of the world in terms of discrete sounds [Cooke93]; and 

the sequential association of these sounds results in the perception o f coherent 
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temporal patterns over extended time frames. The result is the perception of 

'streams' of complex sounds each of which is presumed to come from a separate 

source. Segregation o f the composite sound presumably allows the auditory 

system to apply preferential processing to selected subsets. 

Clearly there are many ways in which the auditory scene can be partitioned and 

somehow the 'correct' set o f combinations has to be determined. There may be, 

for example, a number o f simple sound groups, or perhaps fewer, more complex 

groups. Some help in resolving this ambiguity may be obtained by considering 

the temporal evolution o f the auditory scene and favouring the reformation o f 

sound groups which appeared in the recent past, or those which comprise 

recognised sound patterns [Bregman90]. However, these cues may act at a later 

point in the 'grouping and streaming' hierarchy than the low level processes 

considered here, and perhaps are used to refine and improve the products of the 

initial processes. 

Essentially, whatever the mechanism, a number o f spectral components are 

associated in some way, and the sound of the group as a whole is perceived to 

have some pitch. The perceived pitch o f a complex tone is approximately the 

frequency o f repetition or periodicity of the wave form [Small70]. Complex 

communication signals contain periodicities ranging from a few to several 

hundred events per second; for example, vowel sounds consist of an envelope or 

modulatory frequency, ranging from 100 to 400 Hz, and higher formants or 

harmonics which act as carrier frequencies [Langner92]. The pitch grouping 

mechanism usually prevents the higher harmonics from being perceived 

separately, although they do affect the character o f the sound [Rossing82]. 
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In this chapter, the psychophysical characteristics o f pitch perception wi l l be 

discussed, and a number of the previous models, devised to account for the 

behavioural results, reviewed. The morphological characteristics o f the 

mammalian auditory system and the way in which they might contribute to the 

formation o f pitch groups wil l then be considered; and finally, a model o f pitch 

perception, based on these considerations, wi l l be outlined. 

b) Psychophysical Characteristics of Pitch Perception 

The sensation o f pitch can be induced in a number o f ways, such as periodic 

amplitude modulations (periodicity pitch), series o f clicks or pulse trains, or 

even by a signal consisting of noise plus a time delayed version o f that noise 

(repetition pitch) [Bilsen71, Rossing82]. The mapping o f pitch to frequency is 

highly ambiguous and the same pitch percept can be generated in many different 

ways [Langner92]. Complex sounds in which all components are integer 

multiples, or harmonics, of some fundamental frequency, give rise to 

particularly strong pitch percepts. This is true even i f there is no sound energy 

at the fundamental frequency; hence the term 'virtual pitch'. In general, only two 

frequency components are necessary to produce a pitch percept, although this 

sensation may not be very strong; the pitch o f a complex tone is often, but not 

always, equal to the smallest difference between the component frequencies 

[Langner92]. In harmonic series the lower harmonics can often be resolved 

separately, but the higher components merge to form one subjective component, 

known as the residue. Periodicity pitch is also sometimes known as residue 

pitch [Schouten7l]. 
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Although harmonicity may be an important grouping cue, groups containing 

non-harmonic components can also be formed, for example, the sound of a bell 

contains many components which are not harmonically related [Houtsma87]. 

Simultaneous onset, is seen by some as offering an alternative basis for the 

formation of sound groups [Bregman90], while others argue that simultaneous 

onset is the primary grouping cue, and that pitch is an emergent property of the 

group thus formed [Brown92]. However, the use of onset synchrony is 

problematical for pitch extraction models based on temporal coding, since there 

are significant differences in onset latency between signals originating from 

different parts o f the basilar membrane [Young88, Ai tk in85] , as can be clearly 

seen in figure 6.1. 

_ iPQO _ 

2000 

Time in m s e c 

Figure 6.1 : The response of the basilar membrane at various points to a 
series of broadband pulses, showing the difference in onset latency with 
position. From [RitsmallJ. 

Sinusoidally amplitude modulated signals (SAMs) are frequently used in 

psychological experiments and are useful in allowing the investigation of the 

perception o f both harmonic and inharmonic sounds [Schouten71, Ritsma71, 
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Zwislocki71]. SAM signals consist of the frequency components f-g, f , 

where / is known as the carrier frequency and g as the modulation frequency; 

see figure 6.2. In the harmonic case, where / i s an integer multiple o f g, a pitch 

o f g is perceived. However, i f this is not the case, and / is not an integer 

multiple o f ^ , the perceived pitch alters approximately as shown in figure 6.3. 

1/f 

f = 1 0 l g 

Figure 6.2 : A sinusoidally amplitude modulated signal (SAM), where f is the 
carrier frequency and g the modulation frequency; f=10.25g. The perceived 
pitch of the signal corresponds to the periodicity, p, indicated. From 
[Ritsma?!]. 

Small, 'second order' effects on pitch perception have also been identified. I t 

has been found that i f the modulation frequency is kept constant and the carrier 

frequency is varied, that the perceived pitch is not precisely f /n , the slope o f the 

relationship is actually a little greater than 1/n. I f the carrier frequency is kept 

constant and the modulation frequency varied, then the perceived pitch 

decreases slightly with increasing modulation frequency [SchoutenTl, 

Lazzaro89], see figure 6.3. I t is thought that these effects may be caused by 

cochlear distortion tones. 

Phase shift can also have some effect on pitch perception, for example, i f the 

phase o f the centre frequency in a SAM signal is shifted by 90 degrees then the 

161 



pitch is ambiguous and can be perceived as either g or 2g, (see figure 6.4) 

[Smoorenberg71, RitsmaTl]. 
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Figure 6.3 : A diagram showing the perceived pitch of sinusoidally amplitude 
modulated signals, where the carrier frequency, g, is held constant, 200 Hz, 
and the carrier frequency is varied, (n-f/g). Dashed lines indicate the basic 
predictions of the equation p=f/n, while the solid lines include second order 
effects, and are modelled by p=(f-cg)/n-c), where c is an empirically 
determined function of n. From [RitsmaJl], 

A) 

B) 

Figure 6.4 : Sinusoidally amplitude modulated signals, both formed from the 
frequencies f=2000 Hz and g=200 Hz, however, in B) the centre frequency is 
shifted by 90 degrees relative to that in A). 

162 



In investigations using SAM signals, it has been possible to determine that the 

pitch percept only arises under certain circumstances, and there is in effect a 

psychophysical 'pitch existence region'; see figure 6.5. In humans, pitch is only 

perceived in response to a SAM signal i f the fol lowing hold: the carrier 

frequency, / is less than 5000 Hz, the modulation frequency, g, is greater than 

60 Hz, and f / g < 20 [Schouten?!]. As a rough guide, 3 components below 3000 

Hz are needed before virtual pitch can be securely detected; and virtual pitches 

are best perceived below 700 Hz [SmallTO]. 

1000 

<80 <I00% 

? 400 

2000 4000 
Center frequency — 

6000 

Figure 6,5 : Diagram showing the virtual pitch existence region, within 
which it is possible to perceive periodicity pitch. From fSmallJOJ, 

Frequency components around the fourth harmonic have been found to induce 

the pitch percept most strongly, even though lower harmonics are usually louder 

and more easily resolved [Ritsma71]. This means that i f pitch information is 

available along a large part o f the basilar membrane, the auditory system 
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primarily uses the information from the narrow band, positioned at 3-5 times the 

pitch value [Ritsma71], and i f this information is in conflict with that f rom other 

regions o f the basilar membrane, even that o f the fundamental, it w i l l still tend 

to dominate [Plomp71]. 

Pitch perception also varies between individuals. For example, given two 

successive complex signals, [750,1000] Hz and [800,1000] Hz, some people 

hear a falling signal with the pitch going from 250 to 200 Hz, while others 

perceive the rise f rom 750 to 800 Hz far more strongly [Smoorenberg71]. These 

two contrasting approaches are termed holistic and analytic listening 

[Rossing82, Houtsma87]. I t is sometimes possible to switch from one to the 

other at w i l l , although, people do seem to be more predisposed to one mode or 

the other [Smoorenberg71]. The difference between the two approaches may 

simply amount to a difference in emphasis as to which attribute o f the sound is 

important; the periodicity, or the position o f maximum activity on the basilar 

membrane [LickliderS 1]. 

The perception o f pitch arising from the interference pattern between a noise 

and a delayed repetition o f the noise is termed repetition pitch, and is equal to 

the inverse o f the time delay [Ritsma71, Bilsen71, Rossing82, Houtsma87]. 

Repetition pitch cannot result from a 'temporal envelope' in the way that 

periodicity pitch does, because there isn't one [Bilsen71]. Masking the region of 

the basilar membrane corresponding to the pitch does not affect the perception 

o f repetition pitch, but presenting the signal to one ear, and the delayed signal 

to the other, does prevent its perception [Bilsen71]. 
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Mechanisms involved in the lateralisation of sound are also intimately connected 

to those o f pitch extraction. [Fourcin71] found that lateralisation can occur for 

a very wide range o f interaural time differences, but i f attention is directed to 

pitch then, for those subjects sensitive to pitch, the perceived pitch is always 

centrally located; conversely, i f attention is directed towards lateralisation then 

no pitch is perceived. 

The basic conclusion reached from psychological experiments is that pitch 

perception is based roughly on the periodicity of the signal, and is correlated 

with the reciprocal value of the time distance between major positive peaks, but 

that the temporal fine structure o f the waveform is also influential. 

c) Overview of Pitch Extraction Models 

Modelling o f pitch perception has a long history, including [(Helmholtz 1865), 

Lickl iderSl , Schouten71, Goldstein73, Duifhuis82, Terhardt82a,b, 

Langner81,83,87. Hermes88, Lazzaro89, and Meddis91a,b]. Many o f the 

proposed models are algorithmic, while others have closer links with biological 

auditory processing. However, most attention has been directed towards 

obtaining pitches consistent with psychophysical results and the way in which 

the components may subsequently be associated has largely been ignored. As 

[Nordmark70] argues, the focus on the analysis of a single complex tone may be 

very misleading, since the primary goal o f the auditory system in analysing the 

auditory scene, is to find some way of distinguishing the different sound 

sources. While the spectral analysis of single sounds certainly occurs, it may 

well be simply a side effect of the need to analyse the composite sound 
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produced by many overlapping sound sources, and to partition the components 

o f the complex sound into suitable subgroups. 

The number o f sounds that can be simultaneously distinguished is surprisingly 

large, considering that the ability of the peripheral system to resolve the upper 

harmonics o f a complex tone is quite limited [Plomp71]. Given the extensive 

overlap in their position on the basilar membrane, it is dif f icul t to see how the 

auditory system manages to partition the upper harmonics into separate groups 

[NordmarkTO]. However, in the bat it has been found that the acuity with which 

range is perceived by delay tuned neurons improves systematically with 

response onset [Dear93, Simmons94]. This means that the position o f a target is 

detected by neurons tuned to the same signal delay but which vary in their onset 

timing and sharpness o f tuning; combining to provide a multi-resolution system 

[Dear93]. I t is possible that a similar arrangement exists in the human auditory 

system, allowing the resolution of higher harmonics at later stages o f 

processing. 

In models o f pitch perception, a basic dichotomy exists between those models 

which derive pitch f rom spectral and place information and those which utilise 

timing and periodicity. There has been considerable argument as to the relative 

merits o f the two approaches. Some models are based exclusively on a spectral 

analysis o f the signal, e.g. [(Helmholtz 1865), Goldstein73, Terhardt82a,b,], 

while others utilise temporal clues and correlation functions, sometimes in 

combination with spectral analysis, e.g. [LickliderS 1, Meddis91a,b, Lazzaro89, 

Langner81,83]. 
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Helmholtz favoured a frequency analysis approach and proposed that pitch 

arose as the result of difference tones [SmallTO]. von Bekesy suggested a model 

in which the spectral analysis of the basilar membrane was sharpened by lateral 

inhibition in a way dependent on rate o f change of activity, (similar to the Mach 

bands in the visual system) and also thought pitch arose f rom difference tones. 

However, the difference tone theory was conclusively disproved in a number of 

experiments, such as those which showed that pitch could be perceived even i f 

the appropriate part of the basilar membrane was masked [Rossing82], and by 

the variation o f the pitch percept with carrier frequency, even when the 

difference tones are held constant [Schouten?!]. 

Many analytical models, in which pitch is derived from a spectral analysis of the 

sound, have been devised, e.g. [Terhardt82a,b, Goldstein73, Ritsma71]; and 

these can become quite complicated i f all the details of pitch perception are to 

be modelled. [Terhardt71] proposed that the pitch o f a complex signal is the 

subharmonic o f the lowest frequency component which lies nearest to the 

envelope frequency. He later added many refinements to the basic model and 

showed that it produced results consistent with many behavioural 

characteristics, such as the virtual pitch existence region, the pitch of 

inharmonic complexes and chords, and so on [Terhardt82a,b]. In this model, the 

spectrum o f the acoustic signal is first obtained by means o f a Fourier analysis, 

and the prominent tonal components extracted. The masking and shifting effects 

o f the components on each other are evaluated and 'weights' assigned to each. 

Candidate virtual pitches are then extracted f rom coincident subharmonics and 

are weighted according to the weights o f their associated components. Finally, 
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the salience of each pitch is determined in order to arrive at a conclusive 

percept. 

Goldstein's central processor and Duifhuis' harmonic sieve are also based on the 

idea o f selecting the best subharmonic. This approach was refined further by 

[Hermes88], in developing an algorithm for pitch perception based on 

subharmonic summation. 

In contrast to these spectral pitch models, it has been argued that the temporal 

aspects o f the acoustic signal can be used to derive pitch. In an influential 

paper, [LickliderS 1] proposed the use o f a running autocorrelation function, in 

which a neuron chain acts as a delay line and coincidence detectors monitor the 

outputs at points along the line in order to determine the periodicity o f the 

signal. The result is a period to place converter. 

A pitch extraction circuit, which is essentially an implementation o f Lickiider's 

idea, and exhibits human-like pitch perception in some classical pitch 

experiments, has been implemented [Lazzaro89]. The circuit operates on the 

output from cochlear model circuit developed by [Lyon88], and described in 

chapter 3. The spike trains produced by the cochlear model are fed into a set o f 

delay lines, one per frequency channel, each containing a series of similar 

delays. The original signal and resulting delayed signals are fed into correlator 

neurons which effectively compute autocorrelation functions for each delay. 

The outputs from the correlator neurons with the same associated delays are 

summed across all the delay lines, and the resulting vector is integrated with an 

adjustable time constant to give a stable representation over a number o f cycles. 

The result is then fed into a competitive network which finds the dominant 
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pitch. The circuit produces approximately the 'correct' pitch percepts but does 

not exhibit the second order effects described previously [Lazzaro89]. 

Another very similar model, also based on Licklider's work, has been described 

by [Meddis91a,b]. In this case, running autocorrelation functions found within 

each frequency channel are combined to give a summary autocorrelation 

function, and pitch is determined from peaks in the summary function. The 

model was shown to satisfy various psychophysical results, including virtual and 

repetition pitch perception, existence and dominance regions, and realistic 

sensitivity to phase [Meddis91a,b]. 

In an extension to this model, some o f its inherent limitations, such as the 

requirement to know beforehand the number o f pitch groups in the sound space, 

are overcome [Brown92]. Brown's model rests on the prediction o f pitch for 

each channel, and the grouping of those channels with the same predicted pitch. 

A fundamental change in perspective is that in this model the pitch percept is 

seen to arise from the perceptual grouping, rather than being the cause o f it 

[Brown92]. 

There are problems with the exclusive dependence on either spectral or timing 

information in modelling pitch perception, and most workers now conclude that 

pitch is derived from more than one aspect o f the signal. This has taken rather a 

long time to establish, since the idea that both frequency and periodicity are 

important was advocated by Licklider, who pointed out that the fact that 

frequency and time are inversely related does not necessarily mean they are 

redundant or that the central nervous system does not use both; and, in 
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addition, suggested that the nonlinearities in the transformation f rom frequency 

to timing in the biological system may be significant [Licklider51]. 

A serious problem for pure frequency theories is the limited resolution o f the 

basilar membrane and the contorted processes necessary to derive 

psychophysically accurate pitch percepts. Temporal theories are not without 

difficulties either, and as von Bekesy argued, one o f the main problems with 

pure periodicity theories is to explain how pitch and loudness are separated in 

the auditory system [Nordmark70]. Another largely unresolved problem in 

temporal processing models is the synchronisation o f processes across the 

frequency range and different processing paths. Even in peripheral models this 

can cause problems for some models, in that the delay introduced by basilar 

membrane action between the high and low frequency ends has to be taken into 

account in interchannel processing; see figure 6.1. Some workers explicitly 

remove it , e.g. [Brown92]; although, in other models, such as [Meddis91a,b] or 

[La2zaro89], which compute autocorrelation functions within channels, and 

include interchannel processing only on the basis o f time delays, and not 

absolute time, the problem does not arise. 

d)The Morphological Basis for Pitch Perception 

A very important feature of the auditory nerve signals as far as pitch is 

concerned, is that the basilar membrane does not perform a precise spectral 

analysis of the sound wave; but that the low frequency tails and spread of 

excitation along the basilar membrane, ensure that many frequencies are not 

resolved separately, and that signals originating f rom the high frequency end in 
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particular, retain information of the complex waveforms and stimulus 

periodicities. It is also known that pitch can result f rom high, unresolved 

frequencies as well as low ones which are separately resolved; and in both cases 

the periodicity information is contained in high frequency channel signals. 

A possible biological basis for pitch detection was proposed by [Langner81,83] 

and rests on the periodicity of the interference patterns produced in the 

cochlear output as a result of the limited frequency resolution o f the basilar 

membrane. The periodicity of a complex signal amounts to an amplitude 

modulation o f the signal, and in a previous chapter, it was shown how a 

tonotopic map o f periodicity could be obtained f rom high frequency channel 

signals. 

The central nucleus o f the inferior colliculus (CIC) receives focused inputs, 

relating to tonotopic organisation, which terminate in the discrete fields or 

bands created by the disc-shaped dendritic fields o f the principal cells in the 

nucleus [Caird91]. I t is known that a number o f parameters, including 

modulation frequency, are organised within this tonotopic structure, and it has 

been suggested that pitch extraction is based primarily on the resulting 

orthogonal relationship between characteristic frequency and modulation 

frequency [Langner92]. 

As described in chapter 2, within each iso-frequency lamina, modulation 

frequency is systematically organised in the form o f concentric contours; with 

sensitivity to the highest modulation frequency at the centre. For a given 

modulation frequency, the diameter of each contour increases with increasing 

characteristic frequency, which results in a conical distribution o f modulation 
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frequency sensitivity within the CIC [Schreiner88a]. Therefore, simultaneous 

activity o f cells with the same characteristic modulation frequency may indicate 

which frequency components are associated with that modulation frequency. 

Psychophysical experiments suggest that each frequency component is generally 

associated with one pitch group at a time [Bregman90]. Competitive interaction 

and lateral inhibition within iso-frequency sheets may effectively isolate the 

dominant modulation frequency within each sheet; thereby implementing the 

'exclusive allocation* principal described by [Bregman90]. 

The view that common onset is the primary grouping cue and that the pitch 

percept arises from the periodicity of the grouping formed by common onset, 

may also be supported by the morphological organisation o f the CIC; since an 

orthogonal organisation of onset latency wi th respect to characteristic 

frequency is also found here [Schreiner88a]. Unfortunately, the use o f common 

onset to determine spectral grouping is not without problems, since 

complications such as the difference in onset latency across the frequency range 

introduced by the basilar membrane processing, or the varying length of the 

processing pathways within the auditory system, must be resolved. I t is possible 

that the concentric organisation o f onset latency in the CIC may provide a way 

for resolving the first diff iculty and perhaps feedback signals have an important 

role to play in synchronising processing channels. Licklider's advice that i f there 

are two ways of doing something, the auditory system wi l l probably choose 

both may be true for the pitch grouping problem as well . The model of pitch 

perception, outlined in the next section, depends both on periodicity and 

concurrent activity. 
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Inputs that cells in the paracentral nuclei receive from the CIC are spread 

across a range of frequencies, allowing them to analyse the output o f arrays of 

CIC cells across frequency channels [Caird91]. I f the signals originate from 

cells with common modulation frequency sensitivities, then this could form the 

basis for pitch extraction. 

I f cells in the paracentral nuclei detect common periodicities of signals across 

the frequency range, then their outputs could be used to modulate the activity in 

frequency channels which form part of the same group. The linking of 

associated frequency channels may be achieved by tagging them in a way similar 

to that suggested by [Niebur93] for linking attentive processes in the visual 

cortex; where the synchronous modulation of related channels indicates group 

membership. This process would allow for the formation o f an arbitrary number 

of ' sound groups', and i f the activity in each channel associated with a particular 

modulation frequency is synchronised in some way, then higher processes could 

use this cue to recognise components of the same group. 

Synchronous modulation may be achieved in a number o f ways; including 

feedforward 'gating' methods, as suggested by [Niebur93], or, alternatively, by 

means o f inhibitory feedback signals [Kammen89], or lateral excitation 

[Wang95]. 

Although it seems feasible that the morphology o f the auditory midbrain, as 

outlined above, may underlie pitch perception, there are still a number o f 

difficult ies to be resolved. For instance, details o f the way in which the 

alignment o f interchannel processes is achieved, the way in which information 

contained in characteristic frequency and periodicity maps can be combined, the 
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way in which the appropriate spectral components can be linked in order to 

render a pitch percept, or in which simultaneous pitches with component 

frequencies which fall into the same critical bands can be resolved, remain quite 

unclear. In the next section a model o f pitch perception which overcomes some 

of these difficulties is discussed, however, implementation of the model remains 

to be undertaken. 

e) A Model of Pitch Perception 

As discussed previously, in the problem of auditory scene analysis, perhaps the 

most significant point about the pitch percept is not the pitch itself, but the 

reasons for its extraction. The crucial process appears to be the linking, or 

association, o f the frequency components arising f rom the same sound source. 

The pitch o f the group thus formed, may then be used as a perceptual group 

identifier for the frequency components comprising the pitch group. Another 

very important requirement, and one which may depend on the involvement of 

the auditory cortex [Whitfield85], is to be able to recognise the same (or 

similar) timbral pattern at different pitches. This aspect wi l l be considered 

further in chapter 7, where an idea for a means for pitch invariant sound 

recognition is described. 

I t is considered that the pitches o f sounds correspond to (dominant) peaks in 

the periodicity or modulation frequency maps described in chapter 4; effectively 

achieving pitch extraction in a way analogous to the autocorrelation methods 

described earlier. The principal diff icul ty now to be tackled is how to combine 
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the information contained in the characteristic frequency and periodicity maps, 

in order to form appropriate groups. 

The underlying assumption here is that group formation is triggered by 

concurrent activity, and the ability of the streaming model to cope with complex 

signals and to separate out the spectral components o f on pitch group from 

another on this basis was illustrated in figure 5.17. 

The resolution o f differences in onset latency may be achieved by a topographic 

organisation o f time, perhaps achieved by 'delay lines', a idea originally 

suggested by Jeffress. The existence o f the systematic organisation o f 

characteristic delay in the midbrain of the bat has been well documented, e.g. 

[Suga88, Simmons94], and in various other species a topographic organisation 

o f sensitivity to onset latency is found within the CIC. The existence of maps of 

time may be particularly important in the auditory system, where problems with 

fleeting stimuli have to be dealt with [Wang95]. I f we plot the progress of 

signals arriving across the frequency range, then it is clear that loci of 

simultaneous onset wi l l have a characteristic shape, see figure 6.6. I f these loci 

are imagined rotated about the x axis, then, in three dimensions, they would 

form roughly conical loci of onset latency. The existence o f such loci is implied 

in the findings o f [Schreiner88c], where he describes the organisation o f onset 

latency within the CIC. I f such temporal maps exist, as argued by [Wang95], 

then monitoring activity across a simultaneous onset locus would allow the 

identification o f those signals with common onset. 

However, there are some problems with this idea. Firstly, the initial onset 

impulse appears to be found across the entire frequency range in the peripheral 
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Figure 6,6 : Plot showing loci of simultaneous onset when signals from all 
freqency channels are propagated steadily though a set of delay lines, 
resulting in a topographic representation of temporal activity. Activity at the 
bottom of the map is considered to be current, while earlier activity is found 
further up the map, 

models investigated; although whether this is the case in biological systems is 

unknown. Secondly, i f activity continues for some time, then it wi l l be 

impossible to distinguish onset activity from continuous activity i f signals are 

examined only from some locus across the tonotopic axis. These two aspects 

are linked, in that together they imply that the signals used for spectral 

grouping, should be onset signals, and that this activity should be quite 

localised, both within the time and frequency dimensions. The perceived 

importance o f onset activity is in accord with the finding that phasic activity 

becomes predominant as signals progress through the auditory system, (see 

chapter 2). 

The question then arises, that i f concurrent activity can be used to form groups 

o f components, what role does periodicity have in the process, and how is the 

pitch percept created? It is suggested that a pitch group may be formed when 

inputs f rom the periodicity map, which project orthogonally to the spectral 
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channels, bias the competitive interactions within each iso-frequency sheet, so 

as to isolate areas o f heightened activity in response to particular modulation 

frequencies, and that the spectral components of a common pitch may be 

detected by monitoring concurrent activity along iso-modulation frequency 

contours. In this way, the periodicity information, extracted previously, helps to 

identify the spectral components with a common pitch. The subsequent linking 

o f these components may be achieved by modulating the activity in those 

channels found to be simultaneously active; perhaps by means o f synchronised 

feedback inhibition. 

The aim o f this work is to produce a model which can account for the formation 

o f pitch groups, including those resulting from virtual and repetition pitch. The 

grouping o f non-harmonic complexes could be achieved in a similar way to 

those o f harmonic components since the model outlined doesn't explicitly rely 

on the resolution o f all frequency components nor on their harmonic 

relationships; although non-harmonic components would give rise to a far 

weaker response in the periodicity map. The use o f synchronous activity to 

indicate grouping would allow the model to form an arbitrary number o f pitch 

groups, however, the problems of dealing with overlapping components from 

different simultaneous sounds has not yet been addressed. 

The processing o f simultaneous sounds and resolution o f ambiguity in the 

formation of pitch groups requires further consideration. In general, since 

precise onset synchrony would be rare for unrelated sounds, onset coding may 

be a useful cue. In reality, synchronous components would generally originate 

f rom a common source and should form one pitch group, unless a subset o f the 

components matched some recently processed or well-recognised pattern. This 
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aspect has not yet been explored, although clearly feedback connections which 

facilitated the re-formation of previously encountered sound groups would 

improve the system's performance. 

0 Conclusion 

In this chapter, various aspects of pitch perception have been discussed. The 

perception o f pitch is a subject which has been extensively explored over the 

years and some o f the important psychophysical results have been presented. 

The role o f pitch in auditory perception was discussed and its importance 

argued. Various models o f pitch extraction were discussed, however, there 

appear to be very few models which attempt to include the grouping o f the 

components, and perhaps none which do this in a biologically plausible way. 

This topic is clearly o f great importance, and some ideas on the way in which 

pitch percepts might be created and pitch groups formed and recognised, have 

also been presented. 
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7. Conclusion 

a) A summary of the thesis 

A detailed study of the auditory system, particularly the peripheral and midbrain 

regions, has been undertaken. The principal focus has been on trying to 

understand the biological basis for the early stages of auditory scene analysis. 

For this reason modelling has been restricted to monaural, subcortical 

processing. 

The physiology of mammalian auditory systems was used, as far as possible, to 

guide the formulation of the models. The gradual extraction of primitive 

features and construction of auditory percepts which result from this approach, 

seem more realistic than the commonly adopted strategy of attempting to 

proceed directly from the peripheral spectral information to the recognition of 

language. 

To some extent a 'building block' approach towards modelling was adopted. 

Since there are already a number of models of various aspects of auditory 

processing, particularly models of the periphery, a review of these models was 

undertaken, existing models were used if possible, and developed further as 

required. 

A method for utilising both the place and temporal information, encoded within 

the auditory nerve signals, in the formation of tonotopic maps, was developed. 

As far as known, von Bekesy originally suggested the use of 'rate of change of 

activity' in the extraction of the spectral content of a signal [von Bekesy70]. It 
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was shown that this could be achieved by means of a network with lateral 

inhibitory connections, which effectively finds the spatial derivative of activity 

across the basilar membrane, a kind of'edge' detector [Shamma92]. These ideas 

and aspects of the morphology of the cochlear nucleus were used in the 

development of a lateral inhibitory network, and it was demonstrated that the 

spectral content of complex signals could indeed be mapped in this way. 

The detection of periodicity by means of tuned banks of stellate cells had 

previously been suggested by [Hewitt92]. In the thesis this idea was extended to 

show how the periodicity information extracted by these cells, and effectively 

encoded both in place and temporal form, could be mapped in the same way as 

the spectral information obtained from the basilar membrane. The result is a 

topographic map of amplitude modulation frequency. 

The sequential associations which form between successive sounds were also 

investigated, and an architecture for primitive streaming, capable of 

reproducing a number of psychophysical behavioural results, was developed. 

Partitioning the sound space in this way and organising the resulting groups into 

temporal sequences, is seen as an essential precursor to further processing in 

the auditory system, which allows the system to deal with discrete sound 

streams as a basis for further analysis and processing. The problem of pitch 

group formation, as opposed to pitch extraction was identified as being of 

fundamental importance, and a means for dynamically creating such groups was 

discussed. 

In this final chapter, the limitations and achievements of the work undertaken 

will be discussed. In addition, subjects for further investigation will be 
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highlighted and some ideas relating to a number of specific topics, not yet 

tackled in this project, will be presented. 

b) Strengths and weaknesses of this work 

The broad scope of the project has meant that many aspects have received only 

cursory investigation, however, an advantage of such breadth is that a lot of 

ground was covered in. a field where little local expertise previously existed. 

Clearly, though, there are many avenues for future work. 

The level of modelling used, allowed an exploration of the temporal aspects of 

neural processing. This immediately served to highlight the problems of 

synchronisation inherent in such a system. The ascending auditory system has 

numerous parallel pathways, onset latency varies across the frequency range, 

the pathways can take different routes, (for example, the direct CN-IC 

connection, or C N - S O C - L L - I C ) , and to further complicate matters there is also 

extensive feedback throughout the system how are all these signals 

synchronised ? The importance of timing is also apparent at the neuronal level, 

where the positions of synapses are certainly significant. The topic of the timing 

and synchronisation of signals within the organisation of the auditory system 

has only been touched upon within this project. The subject does not appear to 

have been extensively addressed elsewhere either, but is undoubtedly of great 

importance. 

In this project, problems of simulation times have not been addressed, and the 

detailed models used here are rather slow when simulated. I f practical 
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performance times are required, then two possible approaches spring to mind; 

simplifying the models to retain only the essential features, and producing 

analog V L S I models. It is not known whether the first approach will offer 

sufficient speed, but the parallelism of the proposed architecture may make the 

second alternative an attractive option. However, the implementation of the 

model within a practical real time system has not been addressed here at all, and 

would require a lot more work to achieve. 

The inclusion of an active outer hair cell processing element within a closed 

loop feedback system to increase the sharpness of basilar membrane tuning, and 

to model non-linear basilar membrane response characteristics, may provide 

some improvement to the cochlear model. However, the behaviour of the 

composite model has not been investigated sufficiently and offers yet another 

line for future work. 

Although some progress has been made in understanding frequency 

representation within the auditory system, the issue is far from resolved. The 

auditory system is capable of incredibly subtle discriminations which the model 

has no hope of achieving; but whether this is simply as a result of practical 

limits of the model, such as the number of processing elements, or stems from 

other more significant processing differences, is uncertain. The work on 

developing an topographic representation of periodicity is seen as an important 

step forward, but further investigation is needed to ascertain whether the 

periodicity detected in this way corresponds, as suggested, to the perceived 

pitch of the complex sound, and is consistent with the various psychophysical 

results on pitch perception. The modelling of frequency representation did 

provide some insight into the reasons for the variation of pitch perception with 
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intensity, and the importance of inhibition in regulating processing within the 

auditory system. 

The model for preattentive streaming has been enhanced in some important 

ways, and the proposed model can process complex stimuli across the entire 

frequency range. Another important feature of the model is that it in developing 

the percept of a dominant stream, the effect of the organisation of the sounds 

not falling into this stream is also modelled. It is unclear whether multiple 

streaming of unattended sounds occurs, but if so, then this may be a limitation 

of the model. 

Possible attentive effects on stream formation were also examined, but this 

topic remains to be explored properly. Aspects of stream formation other than 

pitch proximity have not been included in the model. The interaction between 

the grouping and streaming processes also remains to be explored, and it would 

be very interesting to investigate how the recognition of characteristic sounds, 

or particular temporal sequences, influences the grouping and streaming 

process. Learning and experience must clearly have a significant effect on 

operations at this level of the auditory system, and offer an intriguing topic for 

further research. 

Some ideas towards a model capable of forming an arbitrary number of 

simultaneous spectral groups, which underlies the perception of pitch, were 

discussed, however, the entire process has not yet been fully worked out, and 

the model remains to be simulated. It is not yet clear how the periodicity and 

characteristic frequency maps are merged, or what happens when the 

components of different groups fall within the same critical band. The 
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underlying physiological basis for critical bands is still undecided, and in 

general, resolution of frequencies under these circumstances requires far more 

investigation. The formation of separate groups with similar fundamental 

frequencies and simultaneous onsets, such as the concurrent vowels described 

by [Meddis92], would cause a problem for the model, and may require the 

additional assistance of higher level processes in order to extract 

well-recognised subgroups from such complex sound groups; but that is beyond 

the scope of this project. 

No attempt has been made yet to process real sound signals with the composite 

model, although clearly this task must be undertaken if the model is to be fully 

proved. It is to be expected that the processing of realistic sounds will bring to 

light further problems, not yet encountered or envisaged within the limited 

range of stimuli used so far. However, the use of simplified stimuli has enabled 

a clearer understanding of the behaviour of the model to be gained, which will 

be of great use when attempting more ambitious processing tasks. It is hoped 

eventually to develop a robust system, capable of partitioning and streaming the 

sound space efficiently, which could be put to practical use as a front end in 

speech recognition systems, or in systems for tracking or extracting particular 

sounds from within a larger group of sounds. 

c) Future Work 

In modelling the auditory system, there remain many possible topics for further 

research. Although a great deal is known of the physiology and psychophysical 

behaviour of the system, much remains unanswered and as new discoveries are 
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made it will be possible to build better models. In the previous section, a 

number of topics, arising from my work and requiring further investigation, 

were highlighted. In this section, some ideas on approaches to various 

outstanding problems will be presented. The list is rather selective and reflects 

my interests rather than any balanced judgement on the importance of the 

topics. 

Pitch invariant sound recognition 

Pitch invariant sound recognition is an important problem, for speech 

recognition, where the variability of the fundamental pitch of voices can cause 

problems for existing systems. Characteristic sounds can be recognised on the 

basis of timbre. Sound quality, or timbre, has both static and dynamic aspects; 

determined both by the relative amplitudes of the associated components within 

the sound group, and by their characteristic transient temporal patterns 

[Zatorre93]. A model for the pitch invariant recognition of such patterns will 

now be outlined. 

Since static timbre is determined by the spectral content of the signal, this will 

result in a characteristic pattern of activation across the tonotopic map. The 

pattern may be shifted across the map but if frequency is assumed to be 

represented on a logarithmic scale, as it appears approximately to be, then the 

distances between the various components will remain constant as the whole 

pattern is shifted. 

The dynamic timbral pattern is determined principally by onset characteristics of 

the signal, as well as slower decay and rise times in some cases. At onset the 

amplitudes of the various components generally rise or fait quite rapidly in some 
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characteristic way, see figure 7.1, for example, and there are also important 

frequency transitions in this phase. Frequency modulations are detected first in 

the cochlear nucleus and are subsequently found mapped in the cortex 

orthogonally to the tonotopic axis [Shamma94]. Frequency modulations 

represent transients in the acoustic signals. A fairly structured organisation of 

these transients is found within the cortex, where the systematic ordering of 

cells, sensitive both to the direction and speed of modulation, have been found. 

It appears, therefore, that a spatial representation, or map, of frequency 

transitions also exists. 

== .0 

40 
Time (ms) 

60 80 

Figure 7,1 : Characteristic changes in the amplitude of the first five 
harmionics of an organ diapson pipe. From [Rossing82], 

It is as yet unknown whether a similar map of amplitude and amplitude 

transitions is created by the auditory processing system, but given the 

importance of such a representation, this seems quite feasible. If such is the 

case, then both the static and the dynamic aspects of timbre could have a 

characteristic spatial, or topographic, representation. Therefore, the timbre of a 

sound may be represented by means of a characteristic spatial pattern of 

activation within the auditory cortex. The problem of pitch invariant recognition 
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would then become one of shift invariant pattern recognition, similar to that 

encountered in the visual system. And so the techniques and knowledge 

developed with regard to visual shift invariance may be equally applicable 

within the auditory system. 

If we assume a log frequency/space relationship then shifts in pitch simply 

involve shifts of the two dimensional timbral pattern within the map(s). Spatial 

Fourier or wavelet transforms are often used for shift invariant pattern 

recognition [Casasent94]. It may be that cortical processing results in similar 

transformations, thereby allowing association areas to recognise "characteristic 

patterns of activity independent of their absolute position within the map(s). 

The recognition of characteristic sounds would enable the further refinement of 

sound streams to be modelled. Perhaps something akin to the following occurs. 

A stream first begins to form as a result of pitch proximity, recognition of the 

dominant characteristic pattern of the sounds within the stream enables other 

sounds to be excluded from the stream and expectations to be created. This 

would allow the perception of a particular sound source to develop, and would 

help to bridge the intervals between successive occurrences of the stream more 

effectively. 

Attention and Learning 

The role of learning within the auditory system has not been widely considered, 

and little is known about how learning affects subcortical processing, although 

learning has been demonstrated in parts of the auditory cortex, thalamus and 

inferior colliculus [Weinberger88]. The tonotopic organisational backbone of 

the system appears to be largely genetically determined, but the precise 
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distribution of other parameters can vary between individuals, and so this is 

assumed to be developed from experience. 

After birth (in cats) high frequency sensitivity only develops gradually, as the 

position of basilar membrane resonance for a particular frequency slowly shifts 

apically, and the high frequency end stiffens and becomes sensitive to higher 

and higher frequencies. The way in which the sensory system gradually 

configures itself may provide many clues as to its final organisation, but this 

topic remains largely unexplored. 

Another very interesting and important aspect of the auditory processing system 

is the extensive feedback within the system. It appears that attention focused on 

a particular sound source could cause the transmission of signals associated 

with that source to be facilitated, presumably mediated by means of the 

appropriate feedback connections. In the visual system the enhancement of parts 

of the scene falling within the fovea is well known, however, the analogous 

enhancement of parts of the auditory scene is largely unexplored. Modelling the 

feedback connections within the auditory system and exploring the ways in 

which attentive effects could modify peripheral and midbrain processes, may 

provide important insights into the development of active sensory processing. 

It was shown in chapter 5, how attention might affect the streaming process, 

and how the switching of attention from one stream to another could be 

modelled. However, this is probably at best a very crude approximation to what 

actually happens, and it would be interesting to use psychophysical and 

physiological results to guide the development of this aspect of the model. 
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Temporal sequence processing 

Temporal sequence processing is an important topic in its own right, and one 

which has been extensively explored by many people, e.g. [Dehaene87, 

Williams89, Waibel89, Elman90, Heskes92, Reiss92, De Vries92, 

Wang90,93,95]. The recognition and learning of temporal sequences is clearly 

particularly relevant to the auditory system, where both the patterns and their 

timing or duration are significant. It is also interesting to note that a 

phenomenon of time interval invariance, analogous to that of pitch invariant 

pattern recognition appears to operate within auditory perception. For example, 

a particular tune can be recognised if it is transposed to a different key, or if it 

is speeded up or slowed down, as long as the relative pitch and time intervals 

are retained. 

An important step in the development of a model of auditory perception would 

be to extend it to include the learning, recognition and retrieval of sequences of 

patterns. Effective partitioning and streaming of the sound space is an important 

prerequisite for the process as it is known that the auditory system is primarily 

required to learn to recognise patterns arising from the same source. The 

recognition of temporal pattern sequences can be used to guide expectations, 

such as rhythmic or melodic expectations, and the information thus developed 

may be used to facilitate the processing of the relevant parts of the acoustic 

signal. 

As [SlobodaSS] has pointed out, both language and music are universal and 

uniquely human characteristics. An important feature of both modes of 

communication is the possibility of producing an unlimited number of novel 
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sequences. It is unsurprising, therefore, that processes for the recognition and 

retrieval of temporal pattern sequences should be so highly developed in 

humans. 

Emotional links with the auditory system 

If one wishes to develop a complete understanding of auditory perception, then 

a further consideration of fundamental importance is to discover how the 

organism attaches significance to the acoustic stimuli it receives. Sound clearly 

has a profound and direct effect on the emotions and this aspect of auditory 

perception would form a challenging topic for further work. 

The role of music is puzzling; although music like language is universal, its role 

in terms of survival is unclear [Sloboda85, Storr92]. Music bears very little 

relation to natural sounds, but has a profound effect on the emotions, an 

important aspect of which appears to be the tension generated between 

expectation and surprise [Sioboda85]. It is possible that music and language 

evolved from the same source but split subsequently into separate branches, one 

to convey rational thought, the other to convey emotion [Storr92]. Music can 

co-ordinate group activity and synchronise arousal to a far greater extent than 

appears to be the case with other modalities [Storr92]. For these reasons music 

may be an ideal experimental domain in which to investigate the emotional 

effects of sound [Zatorre93]. 

The neural basis for the emotional effects of sound has been investigated in 

studies of fear responses in rats, in which it has been shown that subcortical 

centres are of prime importance [LeDoux94]. The amygdala appears to be the 

central site for the formulation of emotional responses to auditory stimuli, and 
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receives direct sensory input from the thalamus as well as slower more 

informative signals from sensory association areas in the cortex. This 

organisation enables a rapid response to be generated even before the explicit 

recognition of the source of danger occurs. It has also been shown that 

connections with the hippocampus allow the amygdala to play an important role 

in 'modulating the strength and storage of memories' [LeDoux94]. 

The importance of the emotions in guiding our behaviour is argued by 

[Cytowic93]. Although the limbic system is sometimes known as the 'reptilian 

brain', this is rather misleading, as there are large species differences evident in 

limbic centres such as the amygdala, hippocampus, raphe nuclei and 

hypothalamus [Niewenhuys88], and as with the neocortex, the evolution of the 

limbic system appears to have reached its height in humans [Cytowic93]. The 

central nucleus of the amygdala projects directly to a large number of 

hypothalamic and brain stem centres and these projections are considered to 

contribute significantly to the organisation of intrinsic responses and behaviour 

such as defence or flight [Niewenhuys88]. 

A deeper understanding of the physiological basis for the emotional impact of 

sound although interesting in its own right, may also provide a better 

appreciation of the therapeutic aspects of sound and music, and help in the 

development of less invasive therapies. Such insights may also be an important 

facet in the development of more intelligent speech recognition systems, which 

are capable of some degree of'understanding'. 
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d) Conclusion 

In this thesis some progress has been made towards a deeper understanding of 

the processing within the auditory system. The modelling of auditory processes 

has been of great benefit in highlighting a number of important questions. 

Clearly much work remains to be done, however, many ideas have been 

stimulated by these investigations, and it is expected that this work may be 

useful in a wide range of applications, and will form the basis for many further 

developments. 
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Appendix A. Abbreviations 

AI : primary auditory cortex 

A l l , AAF : association areas of the auditory cortex 

AM : amplitude modulation 

A R T l : adaptive resonance theory, version 1 of Grossberg's series of models, 

uses binary inputs 

A V C N : anteroventral cochlear nucleus 

B M F : best modulation frequency 

Cg : sustained chopper response 

C F : characteristic frequency 

C I C : central nucleus of the inferior colliculus 

CN : cochlear nucleus 

CNR, V I I I : cochlear nerve root 

DAS, IAS, VAS : dorsal, intermediate, ventral acoustic stria 

DCx : dorsal cortex of the inferior colliculus 

D C N : dorsal cochlear nucleus 

D L P O : dorsolateral periolivary nucleus 

D N L L , I N L L , V N L L : dorsal intermediate, ventral nucleus of the lateral 

lemniscus 

DMPO, VMPO : dorso- and ventromedial periolivary nuclei 

E E : excited both by contralateral adn ipsilateral stimulation 

E I : excited by contralateral and inhibited by ipsilateral stimulation 

E O : excited by contralateral and unaffected by ipsilateral stimulation 

E P S ? : excitatory post synaptic potential 

I C : inferior colliculus 
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E R B : equivalent rectangular bandwidth 

F M : frequency modulation 

IH : interspike interval histogram 

IHC : inner hair cell 

I N L L : intermediate nucleus of the lateral lemniscus 

ISI : interspike interval histogram 

L I N : lateral inhibitory network 

L L : lateral lemniscus 

L S O : lateral nucleus of the superior olivary complex 

M G N , MGB : medial geniculate nucleus/body of the thalamus 

MGBy,, MGEp , MGBj^ : ventral, dorsal and medial divisions of the MGB 

L N T B , M N T B , VNTB : lateral, medial, ventral nucleus of the trapezoidal 

body 

L S O , MSO : lateral, medial nucleus of the superior olivary complex 

OCB : olivo-cochlear bundle 

Oc : onset chopper 

O L : onset with little further activity 

OHC : outer hair cell 

Po : posterior group of the thalamus 

PH : period histogram 

P L : primary-like response 

PL^ : primary-like with notch response 

PON : periolivary nuclei of the superior olivary complex 

PSTH : post stimulus time histogram 

P V C N : the posteroventral cochlear nucleus 
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. centre frequency 
Q,o : a measure of sharpness of tuning, 2.0 = io^_Wv/V///i 

SAM : sinusoidally amplitude modulated signal 

SC : superior colliculus 

SOC : superior olivary complex 

VAS ; ventral acoustic stria (intermediate and dorsal IAS, DAS) 

VCN : ventral cochlear nucleus 

VLSI : very large scale integration - chips... 

VNLL : ventral nucleus of the lateral lemniscus 

195 



Appendix B. Peripheral Models 

a) Basilar membrane models: 

Centre frequencies are distributed at equal intervals along the ERB-rate scale. 

where / = 1000 * a n d T , = ^ 

i) Filter cascade [LyonSS] : 

Consists of a cascade of n filters of the form : H{s) =-^^r^^^:^. Filter frequency 

response properties are determined by the time constants, 1/ = ^ ; Q is a 

constant which determines the sharpness of tuning, and the output from each 

filter is multiplied by an amplifaction factor, A. (Generally, in the 50 channel 

model, Q=2, .) 

ii) Gammatone filter bank [from M.SIaney*s Matlab Auditory Functions] : 

The output from each filter is found from the following difference equation : 

4 8 

XO = S bix{t - i.dt) - Z ajy{t - j dt) 
r=0 ^ 1 

where 

L _ A _ -4tff*oos(/'J/) , _ 6rfr*cos(2/rfj) , _ -Adt*oosOfdt) , dt*Qos(,Afdt) 

^» - ^ = — . ^ » 3 = -8 ; a4 = 2 

B= 1.019 * 2 n ^ ^24.7 and gam='-^^^^ 

g\ = -Z /̂ê -̂ '̂ + 2dte^-^'^%zos(fdt) - sin(/W/) ^ 3 - 2 ^ 

gl = -2^/^2/rf' + 2dte^-^^%cosifdt) + sin(/2//) ^ 3 - 2 ^ 

^3 = -2J/ê ^ '̂ + 2dte^-^'^\cos(fdt) - sm{fdO J T ^ ) 
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^5 = I :^ -2ey^ ' + 2 ^ r 

b) Inner Hair Cell Model [!Meddis901 : 

m = G^^iy+Q^ for (sit) +A) > 0. else 0 

^ = y(m - qiO) +Xw(t) - k{t)q{t) 

where: sfi) is the input signal, kfi) is the release fraction, g(t) the amount of 

free transmitter in the pool, w(i) the transmitter being reprocessed, G. A, B, Y, 

m, X, R, and L are constants, and eft) is the transmitter in the synaptic cleft, 

which determines the firing probability of associated auditory nerve fibres. 

Constants : G=2000, ^=5, 5=300, 7=5.05, /w=l, A^=66.31, i?=6580, L=2500. 

The auditory nerve 'fires' i f the time since last firing exceeds ths refactory 

period (0.001s), and h.c(t).dt > r, where /i=50000, and r is a random number in 

the range [0,1]. 

c) Outer hair cell model (Wit92] : 

where G is the compressed function y, the basilar membrane output from the 

corresponding position. F is the driving force on the OHC and x is the OHC 

output. X is the filter time constant chosen to match the position of the OHC 

along the basilar membrane, cOo,= (27it)"*, a = l , r=0.03, and p=10. 
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Appendix C . Cochlear Nucleus Models 

a) Stellate cell model [Hewitt92,94] 

Dendritic filter 

1+ ' 

where I/O >s the current applied to the soma, I/O is the dendritic current (the 

input to the model), and / . is the dendritic filter cut-off frequency (generally 300 

Hz). In the simulations in chapter 4, the IHC firing probabilities were multiplied 

by .6 in order to calculate I/O-

Soma : 

^ dt ^ ^ G 

s= 1 if£(O>0o, else5 = 0 

p(0=E(t)-^s[E,-Eit)] 

where E(0 is the membrane potential, G/0 the potassium conductance, and 

X Q ^ are the membrane and potassium conductance time constants, set as 

discussed in the text, s is the spiking variable, p(0 the output of the cell, is the 

threshold, and the constants used were generally : 

G^.002, £t=-10, £,=60, =6, b^2.5. 

This version of the stellate model has a problem with firing rate dependence on 

sampling rate. Although the problem was recognised, it was considered 

irrelevant to the simulations undertaken, as the same fixed integration interval 
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was always used, and in the periodicity mapping model it was the relative firing 

rate between the cells which was of interest, and not the absolute firing rate. (In 

the latest release of LUTEAR, the problem is dealt with by setting s=l/dt, not 

s=l.) 

b) Lateral inhibitory network for the formation of a spectral topgraphic 

map : 

lateral 
inhibitory 
network 

output: 
w peaks at 

spectral 
components 

dendritic 
filters > 

AN 
(probabilities) 

Spectral Mapping Model 

Various inhibitory weight profiles were used in the lateral inhibitory networks. 

The weight on the central input was always 1, and the sum of the lateral inputs 

was - 1 , to give a zero output in regions with even activity. In the 50 channel 

model results in chapter 4, generally the lateral weights used were 

{.65,-.l,-.25,-.3,-.2,-.15,.l,-.05}. 

The output from channel / is given by : 

where y. is the output and x. the input to the L I N at position /, and are the 

lateral weights. 
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Inputs to the LIN were the outputs from the cochlear model, which were 

low-pass filtered (filter cutoff frequency 300 Hz) in order to simulate the effect 

of dendritic processing. The output from the LIN was low pass filtered (with 

filter cutoff frequency of 10 Hz) in order to illustrate the level of activity in 

each channel. 

c) Lateral inhibitory network for the formation of a topgraphic map of 

periodicity: 

BM I H Q 

w stellate dendriUc 
> array filters 

AN 
(probabilities) 

stimulus 

lateral 
inhibitory 
network 

Periodicity Mapping Model 

output: 
^ peaks at 

periodicity 

In the 50 channel stellate array, the membrane time constant, X£=5ms, and the 

potassium conductance time constant, Xf^^. ranges from .075 to 10ms, as shown 

in figure 4.27. The integration interval is .02ms for all these results. The 

outputs from the stallate array are processed by the LIN described above, using 

the same weight profile and filtering processes described above. 
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Appendix D. Streaming Model 

The streaming model, described in chapter 5, was investigated under a number 
of different conditions; and initially, simulations were conducted for illustrative 
purposes using a simplified version of the model which did not take account of 
the sampling rate. The model detailed below, however, takes explicit account of 
time and sampling intervals, and allows a more direct comparison to be made 
with psychophysical results. 

Attentive 

Spectral 
-HTF 

Forsgnxnd 
Streanuig Net 

FoTB^TXfid Mask 

Backgond 
StrBamrigN€i 

-fT6 

^ B 
•KTfi 

BackgoirdMask 

Figure Dl : Connectivity of the streaming netyvorks. 

Inputs to the foreground net : 

vi(x, 0 = V,(x, / - ^̂ 0(1 - ^ T ) + m,dt[VxInput{x, t) +Aiiend(x, t)] 

where : x is the position across the tonotopic map, /, the time, dt, the sampling 

interval, x,, a time constant, m and are level constants, and Input and Attend 

are given by : 

Input(x, t) = Ae^^"^' ^ Attend(x, t) = Be^^^"^' 

where a determines the spread of excitation, / is the position of the centre of 

excitation and A and B are level constants. 

V2(x, 0 = V2(x, / - dt){\ ~^) + m.dt. V2mF-{x, t - dt) 

V3(x, 0 = V3(x, / - dt){\ - §) + m.dt. V^mB^x, t - dt) 
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Foreground activity 

3 
mF^(x,0 = a(2:v,(x,/)) 

r = l 

Inverse foreground mask : 

mF^(x, t) = meanx{mF^{x, /)) - /w/^(x, /) 

Inputs to the background net : 

y^2{x, 0 = ̂ ^x, t -dt){\ - ^) + dL WimB-{x, t - dt) 

û sCx, 0 = >V3(x, / - ^0(1 - 6 + di. W^mF'ix, t) 

Background activity : 

mB^{xJ) = o{iwj{xJ)) 

Inverse background mask : 

mB-{x, t) = mea}i^{mB''{x, t)) - /n5+(x, 0 

In order to generate figures 5.13 and 5.14 and draw a comparison with the 

results described by [Anstis85], the following parameters were used : 

dt = 0.0045,^ = 1,5 = 0, ̂  = 5, /n = 100, 

Xi = 0.01, X2 = 0.5, T3 = 0.5,14 = 0.5, T5 = 0.5, 

K, = 1 , K 2 = 0 . 1 , 1 / 3 = 0 . 1 , 

f̂̂ , = l,^2=0.1 ,^^3=0.1 
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