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Abstract 

The Mersey Estuziry has received significant quantities of industrial wastes and sewage 

over several decades. Although contaminant loads are reducing and the estuary is showing 

signs of recovery, the sediment reservoir remains a repository of historical contamination 

and still contains high concentrations of trace metals and organic compounds. 

A combination of hydrodynamic, sedimentary and geochemical processes are responsible 

for maintaining trace metal concentrations at present-day levels. The distributions of trace 

metals in bed sediments reflect changes in granulometry, differences in POC content and 

the magnitude o f past inputs rather than the locations o f point sources in the estuary. The 

association of contaminant metals with SPM varies not only with axial changes in salinity 

and particle concentration but also in response to the relative magnitudes of freshwater and 

tidal inflows and cyclic variations in water and particulate chemistry that occur on 

intratidal, intertidal and seasonal timescales. The most influential of these arise from axial 

changes in dissolved oxygen and the delivery of organic carbon from both external and 

internal sources which modify the relative degree of sorptive control exerted by Fe, Mn 

and organic C at different locations in the estuary and at different times. These factors, 

combined with the efficient trapping of sediments and possible salting out of neutral metal-

organic complexes, assist in the retention and internal recycling of particles and associated 

metals between the bed and water column. Geochemical reactivity is suppressed in Mersey 

SPM and metal decontamination is not predicted to occur through the loss o f particulate 

metals to the surrounding coastal zone. Rather, it is envisaged that sediment resuspension 

and the desorption of metals into fresh and low salinity waters, supplemented by the 

release of metals from tidally stirred diagenetically modified sediments, are more likely to 

be important long term cleansing mechanisms, v^th the latter occurring particularly during 

the summer months when bacterial numbers and the degradation o f accumulated organic 

detritus becomes more pronounced. 

Future declines in metals from bed sediments have been estimated using two methods and 

two independent data sets. Resulting values are not only metal-dependent but also vary 

with sediment location. Losses of Cd, Co, Cu, Hg, Ni and Zn are predicted to take up to 40 

years, whilst removal of substantially elevated concentrations of Pb in sediments in the 

upper estuary could span hundreds of years. 
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Chapter 1 

Introduction 



1 Introduction 

This work investigates how a combination of hydrodynamic processes and biogeochemical 

transformations alter the distribution, reactivity and transport of trace metals in the Mersey 

Estuary. The findings allow a holistic assessment of how spatial and temporal variations in 

particulate and water chemistry affect metal recycling and the consequences of this in 

terms of current and future progress in restoration. 

1.1 Cstuarine management and the regulatory framework 

1.1.1 Management issues 

Many competing issues and activities affect the coastal environment and inshore waters 

and with increasing pressures on coastal resources, the need for sustainable management is 

internationally accepted (JNCC, 2000). Almost two thirds of the global population reside 

near the coast (Huntley ei a/., 2001) and within the UK, at least one third of the population 

lives in towns and cities that are situated on estuaries (Davidson et a/., 1991). Britain has 

28% of the estuarine resource of the North Sea and Atlantic coasts of Europe, two thirds of 

which occurs in England. 

Estuaries support high population densities, concentrate a diverse range of industrial sites 

and provide major components in the industrial and transport infrastructure. They can also 

supply safe anchorage, resources of fish and shellfish and abundant grazing in adjacent 

marshes. Productive intenidal flats and fringing saltmarshes support internationally 

important numbers of wintering wading birds and wildfowl, while sand and shingle bars 

provide breeding grounds for seabirds and seals. A measure of the significance of estuaries 

for nature conservation in England is that 250 000 hectares have been notified as Sites of 

Special Scientific Interest (SSSI), equating to 30% of the total area of SSSIs notified 

(English Nature, 1992). 

Estuaries, and coastal waters in general, have traditionally provided convenient disposal of 

domestic and industrial effluents from onshore developments and water quality in some of 

the more developed estuaries in the UK (e.g. the Severn, Thames, Mersey, Ribble, Tees 

and inner Clyde) has suffered as a consequence (JNCC, 2000). Recognition of the extent of 

impact of anthropogenic activity on estuarine, coastal and marine environments has led to 

the creation of a wealth of environmental legislation. The enforcement of national and 

European Directives has resulted in increased pre-treatment of effluents and waste 

reduction at source through changes to products and waste minimisation. Changes to the 



industrial structure has occurred in some areas, with reduced operation or closure of 

manufacturing works and a move to lighter industries also helping to curb pollution. The 

overall effect has been the gradual improvement in water quality in memy estuaries and 

promotion of more healthy and balanced ecosystems. Increased tourism, waterside 

regeneration and sustainable development additionally mean that socio-economic benefits 

can extend far beyond the immediate local community (Mersey Basin Campaign, 2002). 

As gross pollution o f industrial rivers is reduced, there is greater focus on intermittent and 

diffuse sources of pollution such as that arising from runoff of agricultural chemicals and 

fertilisers, and on dealing with past legacies such as contaminated land and sediments and 

minewater pollution (Edwards, 2001). Key partnerships forged between the research 

community and environmental management allow greater understanding of processes 

operating in estuarine environments which can then be incorporated into effective solutions 

to problems. Computer-based tools for predicting the behaviour and environmental impact 

of contaminants are being increasingly developed and used and provide important decision 

support for coastal and estuarine management, as evidenced by the increased use of 

simulation models by industry and its regulators (Punt, 2000; Jones, 2000, 2002; Spanou 

and Chen, 2000, 2002). 

1.1.2 Legislative control 

A range o f legislation is in force to control discharges to the aquatic environment in 

Britain. Information most pertinent to the preservation of water quality has been drawn 

extensively from the Environment Agency of England and Wales (EA) and UK Marine 

Special Areas of Conservation Project websites (www.environment-agency.gov.uk and 

www.ukmarinesac.org.uk, respectively) as well as published sources (NRA, 1995; EA, 

2003; JNCC, 2000). Present regulatory drivers that aim to reduce or prevent the pollution 

of marine, coastal and fresh waters in the UK from industrial, agricultural and domestic 

activities are provided together with outlines of their main features in Table 1.1. 

Table I . I refers to the derivation of Environmental Quality Standards (EQS), which are set 

by the European Union for List I substances and by individual member states for List 11 

substances. Table 1.2 gives current EQS values for dissolved metals appearing in List 1 and 

List II for the UK. Values correspond to annual average total dissolved metal 

concentrations that must be achieved for compliance. Maximum total dissolved metal 

concentrations reported for a number of major European estuaries are provided for 

comparative purposes in Table 1.3. 



Table L I Table summarising the main legislative drivers for the preservation of water quality in the UK. 

Driver Main features 
Dangerous Substances Directive (76 /464 /EEC) TTic cstablishmcni of iwo lists of dangerous subsiaoces: 

• List I: toxic, persistent and bioaccumulative (includes Hg, Cd, HCH. CCU and DDT). Pollution by List I substnnces must be eliminated. 
• List II: less dangerous than List 1 but still have deleterious effects on the aquatic environment. Pollution by Usi II substances must be reduced. 

The application of unified emission standards (UESs. also known as limit values) and Environmental Quality Standards (EQSs). Most E U members have adopted UES. whereas 
EQS is favoured in the UK. Values for EQS are developed on a national level. In the UK. these have been implemented by the Surface Water (Dangerous Substances) 
(Classification) Regubtions 1997 and 1998. Currcm EQSs for dissolved metals in List I and Ust II are provided in Table 1.2. 

Water Resources Act 1991 Primary statute in England and Wales for conu-olling the discharge of sewage and industrial or agricultural effluents into freshwater courses and estuaries. 

Two groups of activities: pollution prevention and control (including waste regulation and water quality) and the management of water resources. 

Nitrates Directive ( 9 I / 6 7 6 / E E C ) Requires member states to identify waters that are actually or potentially affected by nitrate pollution from diffuse sources and include: 

• Surface waters, particularly those used for drinking water absu^ction where concentrations exceed the mandatory standard of 50 mg r' nitrate; 
• Groundwaters actually or potentially containing > 50 mg 1"' nitrate; 
• Freshwater lakes, other freshwater bodies, estuaries, coastal and marine waters which are. or may in the future be, eutrophic. 

Member suites had to designate all areas draining into such waters by 19 December 1993 and establish Action Programmes to control the liming and rate of application of 
manures & chemical fertilisers in these areas. Sixty-eighi Nitrate Vulnerable Zones were duly identified in England and Wales. 

Urban Waste Water Treatment Directive 
(91/271/EEC) 

To ensure that all significant discharges of sewage are treated prior to discharge to inland surface waters, groundwater, estuaries or coastal waters. Secondary treatment should 
normally be provided but discharges to eutrophic-sensitive areas to receive more suingcnt processing (c.g. removal of N in coastal waters and P in freshwaters). The timetable for 
the implementation of improvements to estuarine and coasuil waters is: 

• Provision of 2" treatment for discharges > 15 000 population equivalents (pe) by 31 December 2000; 
• Provision of T treatment for discharges of 2 000 - 15 000 pe in estuaries and 10 000 - 15 000 pe in coastal waters by 2005; 
• Appropriate treatment for smaller discharges by 2005. 

Convention for the Protection of the North-East To prevent and eliminate pollution and to protect the maritime area against the adverse effects of human activities. Entered in to force in 1998. Application of the precautionary and 
Atlantic ( O S P A R Convention) 'polluter pays' principles, best available techniques (BAT) and best environmental practice (BEP). including clean technology. A series of annexes deal with the prevention and 

elimination of pollution from land-based sources, offshore sources and through dumping or incineration, the assessment of quality of the marine environment and the protection and 
conservation of ecosystems and biological diversity. 

Integrated pollution prevention and control Within the E U environmental policy since 1996. Attempts to address pollution in a holistic way. taking account of releases to air. water and land and focuses on the preveniioo, 
where practicable, of emissions from industrial processes and assists in establishing BEP in industry. 

Water Framework Directive (2000/60/EC) Expansive legislation that anempts to establish a new common management for the delivery of water policy and is anticipated to have a fundamental impact on existing and 
proposed legislation. Limit values and EQSs to be applied to the control of discharges and in controlling abstractions of surface and groundwaters. Many previously-adopted 
Directives addressing individual issues (e.g. the control of sewage effluents or dangerous substances) will be drawn together in this Direcdvc, thus enabUng an integrated approach 
towards sustainable water management. Imponantly, the Directive will also provide a framework for the inclusion of ecology-based E C legislation such as the Habitats and 
Biodiversity (conservation) Directives. The WFD was incorporated into UK legislation at the end of 2003 and good water status has to be delivered for most waters by the end of 
2015. River basin management plans must be developed (with coastal waters being assigned to the relevant river basin disuici) and these must register all Protected Areas in the 
river basin district. 



Table 1.2 Environmental Quality Standards for List 1 and List II metals. 

Metal Annual mean concentration (^g 1" ) 

List I 
Cd and its compounds 
Hg and its compounds 

List 11 
As 
Cr 
Co 
Cu 
Pb 
Ni 
Zn 

5.0 
0.5 

25 
15 

3.0 
5.0 
25 
30 
40 

Table 1.3 Maximum estuarine concentrations of dissolved trace metals in a number of 
major European estuaries. 

Dissolved metal (^g l ' ) 

Estuary Cd Cu Ni Pb Zn Reference 

Forth 0.017 2.5 0.98 0.38 2.5 Balls a/. (1994) 

Humber 0.48 10 12 - 20 Comber et al. (1995) 

Loire 0.033 1.4 - - - Waeles et al. (2004) 

Mersey 0.070 2.4 10 2.5 17 Comber a/. (1995) 

Scheldt 0.15 1.6 11 0.29 13 Paucot and Wollast (1997); 
Baeyense/ a/. (1998b) 

Seine 0.21 2.3 2.9 - 13 Chiffoleau et al. (1994) 

Severn 0.42 4.9 - 0.60 18 Apte et al. (1990) 

The data in Table 1.3 indicate that dissolved metal concentrations comply with regulatory 

standards for a number of the most heavily industrialised estuaries in Western Europe. The 

only estuary for which non-compliance is suggested is the Humber, where dissolved Cu 

reaches a concentration that is double the current EQS whilst in the Severn, dissolved Cu 

concentrations approach the acceptable limit. 

The EQSs in Table 1.2 are only applicable to the water colimin and currently no equivalent 

standards have been set for sediments in the UK. Attempts to classify sediments according 

to contaminant concentration and toxicity thresholds have been made elsewhere however 

and Table 1.4 gives current Canadian interim sediment quality guidelines for trace metals 

(CCME, 1999). Also provided in Table 1.5, are mean trace metal concentrations (available 
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to concentrated HNO3 from the < 100 | im grain size fraction) in a survey of 19 UK 

estuaries conducted by Bryan and Langston (1992). The data demonstrate that considerable 

exceedance of these quality guideline limits could occur in sediment-dominated estuaries 

where: (1) metal inputs are considerable and (2) physical or biogeochemical conditions 

allow the long-term retention of particles and any particle-reactive contaminants associated 

with them. Thus, whilst metals in the dissolved phase do not generally pose any 

environmental concern, the same cannot be said for those in estuarine sediments. This 

indicates that for some estuaries, substantial measures would be necessary to adequately 

reduce metals that have accumulated within the sediment reservoir, especially those that 

have a strong association with estuarine particulate material. 

Table 1.4 Interim marine sediment quality guidelines (ISQGs) and probable effect 
levels (PELs). 

Metal ISQG 
(Mg g*') 

PEL 
(Mg g ') 

As 7.24 41.6 

Cd 0.7 4.2 

Cr 52.3 160 

Cu 18.7 108 

Hg 0.13 0.70 

Ni - 42.8' 

Pb 30.2 112 

Zn 124 271 

Value taken from Buchman (1999). quoted in Spencer and MacLeod (2002). 

Table 1.5 Mean metal concentrations (ng g"') in sediments from a selection of UK 
estuaries. Figures in bold denote the highest concentrations observed in a 
total of 19 estuaries. 

Estuary Cd Co Cu Fe Hg M n Ni Pb Zn 

Gannel 1.35 26 150 25420 0.08 649 38 2753 940 

Humber 0.48 16 54 35203 0.55 1015 39 1 13 252 

Mersey 1.15 13 84 27326 3.01 1169 29 124 379 

Reslronguet Creek 1.53 21 2398 49071 0.46 485 58 341 2821 

Severn 0.63 15 38 28348 0.51 686 33 89 259 

Tamar 0.96 21 330 35124 0.83 590 44 235 452 

Thames 1.30 - 61 28228 0.60 552 34 179 219 

Tyne 2.17 11 92 28206 0.92 395 34 187 421 

Data arc from Aitrili and Thomcs (1995) and relate to digestion of < 63 j im sediments with HNO3/H2O2. 



Care needs to be exercised in the adoption of sediment quality values (SQVs) in the UK, as 

recent research has suggested limitations to current practice. These include the need to 

examine vertical metal profiles in estuaries with low sediment accumulation rates, where 

historically contaminated sediments are in the shallow subsurface zone and where erosion 

or dredging may occur. Also, the use of total rather than labile metal concentrations may 

over- or under-estimale the ecotoxicological risk to biota in geochemically dissimilar 

estuarine sediments (Spencer and MacLeod, 2002). The adoption o f regional SQVs in a 

tiered sediment hazard/risk assessment approach such as an ecological risk assessment may 

prove more useful but these should also incorporate site-specific data including 

background concentrations and factors that may influence metal bioavailability (Chapman 

et a!., 1999). 

1.1.3 The classification of estuarine status 

The UK Environment Agency's General Quality Assessment (GQA) scheme is intended to 

enable consistent and quantitafive comparisons of water quality, both over time and 

between different geographic areas. The components used in this classification are basic 

water chemistry, nutrients, biology and aesthetics. 

For chemistry and nutrient determinations, around 7 000 sites, representing around 40 000 

km of rivers and canals and 2 800 km of estuaries, are sampled 12 times each year 

(EA, 2002a). Classification is based on the combination of results for three years. Samples 

are analysed for three indicators of organic pollution: ammonia, biochemical oxygen 

demand (BOD) and dissolved oxygen (DO). Results for each location are averaged and 

percentiles are calculated. These are compared with limits set for each of six grades. A 

grade is assigned to the reach from which the sample was collected and this corresponds to 

the lowest grade achieved by any of the three chemical determinands. Grading is based on 

the ability to support salmonid and cyprinid fisheries, the suitability of water for 

abstraction and perceived perturbation to the ecosystem. Samples are also analysed for 

nitrate and orthophosphate and grades are assigned according to mean concentrations. 

For biological quality, around 6 500 sites are sampled twice by kick sampling during 

survey years, usually in the spring and autumn. Macro-invertebrates are identified and 

species diversity is compared to an expected range in a river that is not polluted or 

physically damaged. This takes account of natural differences in geology and fiow and one 

of six grades are allotted to each stretch. 



Around 450 popular tourist sites are sampled for aesthetic quality. Both the water surface 

and banks accessible to the public are considered. The amount and type of each factor 

(litter, oil, scum, foam, sewage fungus, colour and odour) are considered separately to 

assign a class. Individual classes are then combined after weighting for perceived 

importance to give an overall grade. Oil , scum, foam, sewage fungus and ochre are 

classified on percentage cover of the water surface, colour by its hue and intensity and 

odour, by its type and intensity. 

Estuarine water quality classifications as determined by the EA for all estuaries in England 

and Wales in 1990, 1995 and 2000 are shown in Figure 1.1. The percentage of estuarine 

waters receiving each classification between 1980-2000 is also provided in Table 1.6. The 

quality of many of the UK's estuaries improved in the 1960s and 1970s as a direct result of 

investments in sewerage networks and sewage treatment works (STW), the construction of 

new long sea outfalls to aid the advection and dispersion of effluents away from coastal 

areas and the diversion of industrial discharges to sewers or treatment plants. Estuary 

quality stabilised between 1980-1985, but a small deterioration in overall quality was 

observed between 1985-1990, which was partly explained by prolonged dry spells in 1989 

and 1990 causing reduced fluvial inflows into the majority of estuarine systems (EA, 

2002a). By 1995, some improvement was made and by 2000 water quality was 

significantly better than in 1980. Further progress is expected in the next decade as around 

800 water company discharges to estuaries will be further improved between 2000-2005 

(EA, 2002a). 

Tabic 1.6 Water quality in the estuaries of England and Wales, 1980-2000. 

Class 1980 1985 1990 1995 2000 
km % km % km % km % km % 

Good 1 870 68 1 863 68 1 805 66 1 824 66 1 997 72 
Fair 620 23 637 23 655 24 738 27 663 24 
Poor 140 5 132 5 178 7 108 4 67 2 
Bad 110 4 89 3 85 3 115 4 48 2 
All classes * 2 740 ICQ 2 722 ICQ 2 722 100 2 785 100 2 775 100 

* Total csiuarial length changed in 1995 as a rcsuh of re-classification and revised measurements. Source: DEFRA (2003) 

Salmon and sea trout have returned to many estuaries in Britain. For example, water 

quality in the Tees has continually improved since 1970, when the estuary was virtually 

dead. Discharges of high BOD wastes have substantially declined from over 500 I d"' in 

1970 to around 35 t d"' in 2000 and inputs of toxic substances such as 



I 

Figure 1.1 Estuary quality in England and Wales, 1990, 1995 and 2000. Source. EA (2002a). 



ammonia, organic chemicals and trace metals have also fallen (EA. 2002a). The main 

estuary is now classed as good or fair quality (Figure 1.1) and the EA estimates that 

approximately 7 000 salmon and 13 000 sea trout migrated through the Tees Estuary in 

2000. 

1.2 Processes affecting trace metal behaviour in estuaries 

An estuary is a semi-enclosed coastal body of water which has free connection to the open 

sea, extending into the river as far as the limit of tidal influence, and within which seawater 

is measurably diluted by freshwater derived from land drainage (Dyer, 1997). Estuaries are 

both physically and chemically dynamic regions where the mixing of fresh and saline 

waters results in the production of sharp gradients in the estuarine master variables of 

salinity, temperature, dissolved oxygen, pH, particle character and concentration. The 

spatial and temporal variability in physico-chemical conditions encountered throughout an 

estuary influences the extent to which biogeochemical processes such as sorption, 

flocculation and the redox cycling of contaminants can take place (Millward and Turner, 

1995). as exemplified in Figure 1.2. 
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Figure 1.2 Significant processes affecting the transport and reactivity of trace metals in 
estuaries. 
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1.2.1 Hydrodynamic processes and particle transport 

Estuaries may be classified according to topography and salinity structure, although the 

limits of each estuarine type are not well defined (Dyer, 1997). The degree of vertical 

stratification is controlled by circulation and mixing which, in turn, depend on the relative 

proportions of riverine and tidal forcing in any given system. The extent of mixing has 

important implications for the physical transport of material and the time available for 

heterogeneous chemical reactions to take place. 

Highly stratified (salt wedge) estuaries are dominated by high and variable fluvial input 

relative to tidal inflow (Dyer, 1991) and the flow ratio (the ratio of river flow per tidal 

cycle to the tidal prism) is > 1.0 (Simmons, 1955). Lower density freshwater flows out of 

the estuary over a denser seawater layer flowing landward near the estuar>' bed. A sharp 

halocline exists between the two water masses and there is little entrainment of salt water 

into freshwater. Rapid increases in salinity and a distinct freshwater-seawaler interface 

(FSI) results (Dyer, 1994). The position of the salt wedge varies with river flow and the 

tidal range is usually microtidal (< 2 m). 

Partially mixed estuaries tend to be mesolidal, having tidal ranges of 2-4 m (Dyer, 1994). 

Being slightly less influenced by freshwater flow than highly stratified estuaries, flow 

ratios of 0.25 are observed (Simmons, 1955). The entire water mass moves up and down 

the estuary in response to tidal oscillation. Friction at the bed caused by tidal currents 

creates turbulence and this stimulates mixing between river water and seawater. Axial 

salinity profiles are typically S-shaped, with seawater and freshwater salinities separated 

by a zone of mixing (Dyer, 1997). The intensity of the salinity structure varies with the 

spring-neap cycle - stronger tidal currents during spring tides encourage vertical 

homogeneity in salinity, whilst stratification can occur during less energetic neap tides 

(Dyer, 1991; Peters, 1997). 

Macrotidal estuaries with tidal ranges in excess of 4 m can be well mixed. These estuaries 

are usually tidally dominated and correspondingly, low flow ratios of < 0.1 are produced 

(Simmons, 1955). Here, the tidal range is large compared to the water depth and the 

turbulence produced by the velocity shear on the bed may be significant enough to mix the 

water column completely and make the estuary vertically homogeneous. Although 

gravitational circulation is produced by denser water attempting to flow landwards beneath 

the fresher water, it is insufficient to overcome the strong vertical mixing induced by tidal 

currents and stratification is impeded (Dyer, 1997). 
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Increased river flows cause a more rapid circulation of water. Exchange of freshwater with 

the sea is increased but the volume of freshwater accumulating in the estuary does not 

increase at the same rate as the fluvial supply. The flushing time (or water residence lime), 

T, is the time required to replace the existing freshwater in an estuary (or segment thereof) 

at a rate equal to the river discharge (Officer and Lynch, 1981; Dyer, 1997) and is given 

by: 

V 
T = — Equation 1.1 

where Vf is the volume of freshwater accumulated (m^) and Q is the river flow (m"' s"') 

(Dyer, 1997). The cumulative flushing time for the entire length of an estuary is usually of 

the order of tens of days (Dyer, 1997). As the total volume of water in an estuar>' increases 

with distance from the head due to widening cind deepening, the flushing time also 

increases (Uncles et a/., 1985) and this is additionally influenced by the tidal state (Uncles 

and Stephens, 1996). The flushing time exerts a key hydrodynamic control on estuarine 

chemical reactivity by directly influencing the amount of time that can be allowed for the 

establishment of thermodynamic equilibrium conditions. Approximately 99% conversion 

of reactanls to products can only be achieved i f the ratio of the first order reaction half-life 

to flushing time is < 0.1 (Morris, 1990). Thus, chemical equilibria are more likely to be 

attained in estuaries with long flushing times. However, realistic estimations of river-ocean 

fluxes are more complicated in such systems. This is because the actual freshwater 

discharge at any given time is unlikely to be representative of that when the constituent of 

interest entered the estuary and this could lead to considerable errors in flux calculations 

(Paucot and Wollast, 1997; Regnier et a/., 1997, Baeyens et aL. 1998a). The characteristics 

of four British estuaries, including tidal range, flushing time and stratification are listed in 

Table 1.7. 

Table 1.7 Physical characteristics of four contrasting British estuaries. 

Characteristic Tweed' Tamar** Humber'^ Mersey** 

Catchment area (km^) 4900 900 18100 5000 
Mean river flow (m^ s'') 50 19 284 30 
Typical tidal range (m) 2-4 2-5 3-7 3-10 
Flushing time (d) 0.5-3 7-14 40 20 - 50' 
Stratification salt wedge/ partly mixed partly/well mixed well mixed 

partly mixed 
Turbidity (mg 1"') <0.1-10 10-450 10-5000 15-700^ 
Sediment discharge (l a ') * 4.5 X 10' 1 X 10' 12.6 X 10' 4.6 X 10' 

' Uncles and Stephens (1996. 1997); " Uncles and Stephens (1993): Gameson (1982): ^ NRA (1995): ' Jones (1978): 
^his study: * derived from y = 6 0 x ° " (Wilmot and Collins, 1981) where y = sediment flu.x (t a ') and .\ = catchment area 
(km^). 
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An area of enhanced turbidity, the turbidity maximum zone (TM2) exists in the low 

salinity region of macrotidal estuaries (Uncles ef al., 1985; Bale et al., 1985). This is 

generated by estuarine gravitational circulation (Dyer, 1997) and maintained by tidal 

resuspension of cohesive bed sediment and the upestuary 'pumping' of resuspendable 

material by tidal asymmetry (Uncles et al., 1985; Ackroyd ei a/., 1986; Uncles and 

Stephens, 1989; Dyer, 1994). Concentrations of suspended particulate matter (SPM) are 

considerably higher in the TMZ than in riverine or marine end-members (Muller ef ai, 

1994) and the zone is generally one of pronounced geochemicai reactivity due to the 

physical selection and chemical modification of estuarine particles (Morris et al., 1982a, 

1986; Morris, 1990; Turner et ai, 1991). The TMZ is usually located at, or near to, the 

freshwater-saltwater interphase (FSI), but can shift up- or downestuary in response to low 

or high river flows, respectively (Uncles and Stephens, 1989). However, its position also 

varies semidiurnally and with the fortnightly spring-neap cycle (Dyer, 1997, Guezennec et 

al., 1999). The TMZ is pushed further upestuary during springs than neaps due to 

increased mean water level at the head of the estuar>' caused by the higher tidal range 

during spring tides. Guezennec et al. (1999) have shown that maximum downestuary 

fluxes of SPM could occur during the spring-neap transition (Figure 1.3). 
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Figure 1.3 Spring-neap variations in particle transfer in the upper Seine Estuary during 
low river discharge. Source: Guezennec et al. (1999). 

Fine-grained mobile particles in the FSl/TMZ may originate as either river-borne sediment 

or as tidally-advected particles of marine origin. Particle size is governed by turbidity, 

turbulent shear, salinity and organic content. Particles flocculate upon contact with saline 

water, forming larger aggregates. As effective particle size increases, densities decrease but 
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settling velocities increase. The specific surface area (SSA) is a conceptual measure of 

particle reactivity (Turner et al., 1991). It has been demonstrated in the Elbe, Humber and 

Tamar estuaries that significant maxima in SSA of particles exist and each lime a TMZ is 

formed, the total SSA lies between 5 and 20 m^ 1"'. This represents a considerable amount 

of active surface and therefore implies the favoured removal of dissolved constituents 

(Millward el al., 1990). In situ laser particle sizing experiments in the Tamar Estuary (Bale 

el oL, 1990), have shown that peak current velocities assist in the generation of the highest 

SPM concentrations and that this SPM is composed of relatively small, rapidly setding, 

discrete particles with a median size of 10 - 30 ^m. When current velocity decreases to a 

minimum, such as occurs at slack water, the particle population is comprised of much 

larger (median size of 100 |im) fragile, low density aggregates. This transition from one 

particle type to another has been interpreted as reflecting selectivity in the behaviour of 

grains resuspended from the bed combined with the destruction of fragile aggregates 

through tidal shear. 

These studies have led to the hypothesis that physical processes in the TMZ may combine 

to generate two particle types - permanently suspended particulate matter (PSPM), which 

tends to predominate at low SPM concentrations and temporarily suspended particulate 

matter or TSPM, the prevalence of which increases as turbidity increases (Williams and 

Millward, 1998). PSPM is thought to be a major carrier of trace constituents and is 

composed of small, low-density detrital material with high SSAs and low settling 

velocities. It is suggested that these particles could therefore undergo significant seaward 

advection and pass the estuarine freshwater-saltwater interphase. Conversely, TSPM is 

composed of larger, denser material with smaller specific surface areas, is derived from the 

resuspension of bed sediment by tidal shear and exists as floes as well as discrete particles. 

These particles are usually higher in mineral content, have higher settling velocities and 

could consequently be subject to a more limited axial transport. A full understanding of the 

physical and chemical nature and mobility of these different particle types is therefore 

essential for accurate determinations of land-ocean fluxes of contaminants and to quantify 

the exchange of components between dissolved and particulate phases (Turner et ai, 

1994). 

Repeated alternating cycles of erosion (during the flood and ebb) and deposition (during 

periods of slack at high and low water) promotes the regular cycling of particulate material 

and associated particle-reactive contaminants between the bed and water column. A feature 

of considerable importance in muddy estuaries lies in the fact that these particles become 
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trapped and can remain associated with the TMZ for considerable lengths of lime (Dyer, 

1997). For example, in the Tamar Estuary, particles are estimated to be retained in the 

TMZ for 1.4 years (Bale ei a/., 1985) compared to a flushing fime of 7-14 days (Uncles et 

a!., 1985). Similarly, the residence time of SPM in the Humber Estuary is estimated at 18 

years, whereas that for water is up to 40 days. Thus, estuaries are often sinks for sediment 

(e.g. Calmano et a/., 1996; Ridgway and Shimmield, 2002; Spencer et ai, 2003). The 

possession of high surface areas and long residence times allow the composition of fine 

estuarine particles to reflect both contemporary and historical inputs (Turner, 2000), 

although some evidence suggests that particle reactivity diminishes with age (Moore and 

Millward, 1988). Nevertheless, substantial periods may be required for decontamination of 

estuarine sedimentary regimes that have been impacted by human activity (Cato et al., 

1980). This is likely to be significant in some estuaries in the UK where metal 

concentrations in bed sediments are considerable, such as those shown in Table 1.5 for 

example. 

1.2.2 Estuarine trace metal distributions 

Rivers transport trace metals to the ocean in dissolved, colloidal and particulate forms. The 

estuarine reactivity of dissolved elements are usually described by comparing its 

concentration against that of a (quasi-) conservative element (typically salinity), to 

generate a mixing curve (Morris, 1990) as in Figure 1.4. The theoretical dilution line 

(TDL), joining two end members of constant composition, signifies conservative 

(noninteractive) behaviour where the distribution of a dissolved constituent is simply the 

result of mixing and dilution. Positive and negative deviations from the TDL imply inputs 

Addition 

Removal 

Theoretical dilution line 

Salinity 

Figure 1.4 Representation of the estuarine distributions of a dissolved constituent under 
steady-state conditions. 
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to the dissolved phase (from anthropogenic sources, tributaries, porewater infusion or 

desorption from contaminated particles) or removal onto the particulate phase, 

respectively, arising either from non-conservative behaviour or temporal variability in end 

member composition (Cifuentes et al., 1990). 

Axial distributions of trace metals can exhibit considerable interestuarine variability in 

response to the unique biogeochemical and hydrodynamic conditions of individual 

systems, as illustrated for dissolved and particulate metals in Tables 1.8 and 1.9. 

Table 1.8 Field observations of dissolved metal behaviour in the estuaries described in 
Table 1.7. 

Estuary Metals Behaviour References 

Tweed Cd, Cu 
Mn 
Pb 

Ni, Zn 

Conservative 
Addition 
Removal at low salinity, 
addition/conservative at higher 
salinities 
Unresolved 

Tappin et al., 2001 
Tappin et al., 2001 
Tappin et a!.. 2001 

Tappin et al., 2001 

Tamar Cd, Cu, Mn,Ni, Zn Removal at low salinity, 
Midestuary addition 

Morris e/a/., I982b,1986; 
Ackroyd etal., 1986; Liu, 1996 

Humber As. Cu 
Cd, Ni,Zn 

Conservative/ slight addition 
Addition 

Comber e/iv/., 1995 
Campbell et al., 1988; 

Comber e/a/.. 1995 

Mersey Cd, Cr, Cu, Zn 
Ni, Pb (inorganic) 

Removal at low to mid salinities 
Addition 

Comber 1995 
Riley and Towner. 1984; 

Comber e/ti/., 1995 

Table 1.9 Concentration ranges (where available) of selected dissolved and suspended 
particulate trace metals for three of the estuaries described in Table 1.7. 

Estuary Cd 
Metal concentration 

Cu Ni Zn 

Tamar'' Dissolved (^g r') 
Particulate (/Jgg ') 

0.0050-0.12 0.50-13 
150-760 

0.40-2.5 2.50-12 
260-1100 

Humber̂  Dissolved (fig t') 
Particulate (ftgg^) 

0.060-0.48 1.8-10 
32, 34, 62 

3.0-12 
3.5-45 

3.5-20 
180, 280, 280 

Mersey^ Dissolved (/Jg r') 
Particulate (fig g ') 

0.015-0.070 
0.49-1.2 

0.90-2.4 
24-56 

2.3-10 
19-55 

7.5-17 
310-450 

' Morris et al. (1986). Particulate data refer to total metals released by aqua regia + HF. Data for dissolved metals are 
from Comber et al. (1995). Data for particulate Ni (available to IM HCI) arc for samples taken from the Humber plume 
by Millward et at. (2002). Data for particulate Cu and Zn are mean concentrations (available to IM HCI) in winter, spring 
and summer respectively, in SPM sampled near the mouth of the Humber where S>30 from Turner and Millward (2000). 
' Data for dissolved metals arc from Comber ctat. (1995). Data for particulate metals are from Lasletl (1995) using cone. 
HNO3. 
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The concentration and geochemicai composition of particulate matter, which naturally 

varies both in space and time, fundamentally influences the cycling of trace metals in 

estuaries (Ackroyd et al., 1986; Balls, 1990; Turner et al., 1992a,b; Wood et al., 1995; 

Millward and Turner, 1995; Tipping et ai, 1998). Estuarine particles are derived from 

catchment and coastal erosion. Consequently, underlying lithogenous phases may comprise 

a heterogeneous mixture of clays, quartz, feldspars and carbonates. Flocculation in slightly 

saline water and in situ biological production can produce further phases (Millward and 

Turner, 1995). Hydrous Fe and Mn oxide precipitates coat mineral phases, have high 

adsorptive capacities and are therefore important for the sequestration and transport of 

trace metals in natural waters (Turner, 2000). Particles also possess surface coatings of 

organic compounds, which can be of marine or terrestrial (including anthropogenic) origin. 

Organic matter is able to modify the solubility, redox potential and precipitation behaviour 

of trace metals and this occurs primarily through the complexation of metals with 

sedimentary humic compounds (Sholkovilz, 1976; Duinker, 1980). Unlike Fe and Mn 

oxides, which are implicated in enhancing the SSAs of particles (Martin et al., 1986; Glegg 

et al., 1987), the presence of organic carbon reduces SSA (Millward et al., 1990), although 

this is dependent on the nature and reactivity of organic matter present, the latter of which 

can be altered by masking effects (Garnier et al., 1993). 

The transfer of metals to and from the dissolved phase via desorption and adsorption from 

particulate matter is critically dependent on the speciation, colloidal interaction, redox 

sensitivity, microbial mediation, pre-existing particulate metal loading and particle 

composition (Oakley et al., 1981; Morris, 1986; Millward et al., 1990; Wen et aL, 1997; 

Tipping et al., 1998: Benoit and Rozan, 1999; Zwolsman and van Eck, 1999; Martino et 

al., 2002). Each of these factors may additionally be subject to temporal (intratidal, 

intertidal and seasonal) and spatial variations (Church, 1986; Morris, 1986; Chiffoleau et 

al., 1994; Zwolsman ei aL, 1997; Uncles et al., 1998b; Veyssey ei al., 1999). To avoid 

repetition, a description of processes affecting the extent of recycling or elimination of 

trace metals in estuaries is provided later in Section 1.3. 

1.2.3 Solid-solution partitioning 

Central to the prediction of trace metal behaviour in estuaries is the use of the conditional 

distribution coefficient, K D , which defines the ratio of adsorbed or particulate 

concentration (P, w/w), to dissolved concentration (C, w/v) of a chemical constituent: 

= Equation 1.2 
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Partition coefficients are often derived from field measurements of particulate and 

dissolved metal concentrations in estuaries and coastal waters (Valenta et al., 1986; Balls, 

1989; Turner et al, 1992b; Balls et aL, 1994; Paucot and WoUast, 1997; Achlerberg et al., 

2003; Zhou et al, 2003). However, there are several limitations to their use. Firstly, 

analytically determined particulate concentrations are highly dependent on the acid digest 

employed and resulting total or partial extractions often over-represent the fraction of 

exchangeable meial that is naturally available for solid-solution interaction (Turner, 1996). 

Secondly, a wide variety of acid leaches are used and this presents difficulties when trying 

to elucidate inter-estuarine differences in metal partitioning. Conventional filtration 

techniques can lead to the inclusion o f colloidal metals within the dissolved fraction, thus 

introducing another bias in the quantification of K D (Benoit and Rozan, 1999). The 

speciation of dissolved components may also have an effect on K D as can the natural 

variability of SPM concentration. With the latter, changes in suspended load are often 

accompanied by changes in particle character and this often produces an inverse 

dependency of KD on particle concentration (Turner, 1996). The so-called 'particle 

concentration effect' has been demonstrated both in the laboratory and in the field for a 

wide variety of chemicals and sorbent phases and is likely to result from an assortment of 

physical and chemical mechanisms including colloidal interactions, sorption reversibility 

and experimental artefacts (Turner and Millward, 2002). Alternatively, particle-water 

interactions may be replicated by using radioisotopes in laboratory experiments where 

salinity and turbidity are controlled (Li et cr/., 1984a,b; Jannasch et a/., 1988; Turner et aL, 

1993; Millward et al., 1994). This possesses several advantages over field KDS including 

the direct measurement of immediately reactive components, but the commonly employed 

batch mixing experiments do not account for the often considerable natural in situ 

variability of both water and particle composition (Turner, 1996). 

The comparison of KDS determined in short-term sorption experiments and those of 

constituents in the natural environment is a critical domain. Li et al. (1984b) found a 

difference of two orders of magnitude between radiotracer and stable element KDS as 

demonstrated in Figure 1.5. This contrariety is primarily due to a high exchangeability of 

surface-available constituents with radionuclides against elements that are held less 

exchangeably within the particle matrix. Similarly, Balls (1989) found that field and 

laboratory partition coefficients for Cd and Zn, using samples obtained from a number of 

coastal environments, varied by 1-2 orders of magnitude. In contrast, KDS were more 

similar for stable Hg and ^^"'Hg, suggesting that this metal exhibits a greater particle 

affinity which allows for differences in analytical methodology to be overcome. 
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The distribution of trace metals between dissolved and particulate phases is primarily 

controlled by variations in salinity and particle concentration (Turner, 1996) . Whilst ICDS 

are estuary-specific and metal-specific, they also vary with more localised changes in 

temperature, pH, solution composition and the physical and chemical properties of SPM 
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Comparison of the natural partition coefficient for some elements (x-axis) 
with 'adsorption' KQS (y-axis) determined for various radiotracers and a red 
clay suspension of particle concentrafion 400-1700 mg 1"'. Source: Li et al. 
(1984b). 

(Li et g/., 1984a; Turner et a/., 1992b; Wood et al, 1995). Temporal variability in both 

SPM type and concentration induced by short-term events such as tidal resuspension or 

longer-term seasonal variability, will influence the capacity of SPM to adsorb dissolved 

trace metals although in turbid systems, metals are mainly carried in the particulate phase 

(Turner and Millward, 1994). Seasonal variations in determinands are linked to changes in 

river flow, temperature and biological processes such as diatom and algal growth (Robson 

and Neal, 1997; Luoma et ai, 1998). Thus, apparent relationships may not hold al different 

times of year in the same estuary. Also, it should not be assumed that the extent of metal 

partitioning in any one system can be anticipated in another experiencing entirely different 

hydrodynamic and biogeochemical controls (Koelmans and Radovanovic, 1998). 

Ackroyd et al. (1986) have used Kps to evaluate the relative contributions to midestuarine 

dissolved metal inputs from porewater infusion and desorplion from resuspendable 

sediment. Equilibrium sorption models have been used to describe salinity-induced 

desorpfioii (Li et aL, 1984a; Williams and Millward, 1998) and desorption from and 

adsorption to resuspending sediments (Martino et aL (2002) and Morris (1986), 
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respectively) in the vicinity of a TMZ. It is assumed that sorption processes are effectively 

instantaneous and ftjlly reversible and that chemical equilibrium has been achieved (Li et 

al., 1984a; Srivastava and Srivastava, 1990; Turner et aL, 1993). Whilst this theory may 

hold for certain chemical reactions, others are slow to reach equilibrium or be only 

partially reversible. In rapidly flushed estuaries and/or those receiving subsidiary metal 

sources or where compositionally distinct particle populations take part in sorption 

reactions, disequilibrium may occur between dissolved and particulate phases (Morris, 

1990; Turner ei aL, 1992b, Turner, 1996). Thus, in these systems, a more complex 

approach to sorption modelling may be necessary such as the inclusion of chemical 

kinetics and/or multiple steps (Nyffeler et aL, 1984; Comber et al., 1996). Appropriate 

experimental protocols may also need to be revised to take account o f seasonal variations 

in particulate and water chemistry, thus enabling more accurate determinations of sorption 

constants for predictive model use. 

The wide use of K-D by trace metal geochemists and numerical modellers signifies its 

usefulness in predicting the flux and fate of esluarine contaminants. As partitioning 

controls the fate, transport, bioavailability and potential toxicity of trace metals to aquatic 

life, it is crucial to accurately define specific sorption components so that environmental 

models are adequately parameterised and specific objectives such as the setting of EQSs 

can be met (Comber et aL, 1996). Defining relationships of as functions of salinity and 

turbidity are vital in the development of coupled hydrodynamic-chemistry models which 

can be used to evaluate dispersion of contaminants from diffuse or point sources, an 

approach that has had successful applications in several instances (Ng et aL, 1996; 

Falconer and Lin, 1997; Wu et aL, 1998). 

1.3 Estuarine decontamination 

Trace metals may be introduced into estuaries from a variety o f sources, particularly in 

areas experiencing high urban pressure. The superimposition of anthropogenic signals 

from direct and indirect discharges from industry, contributions from municipal works in 

surrounding conurbations, atmospheric deposition and the re introduction of historical 

contamination from sediment resuspension and porewater diffusion to natural background 

trace metal concentrations can assist in maintaining the pollution burden o f an estuary i f 

conditions allow. 
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1.3.1 Mechanisms of decontamination 

Sediment decontamination, through decreasing, diluting or embedding pollutants, is 

generally a slow process. Several factors can affect the contaminant content of estuarine 

sediments (Cato et al., 1980): 

• A decrease or cessation of the pollutants discharged; 

• Good ventilation of the water mass; 

• Mixing-in of uncontaminated sediments; 

• Physical and biological re-working of sediments, including dredging; 

• Physico-chemical and/or microbiological mobilisation and subsequent release of 
contaminants to the overlying water column; 

• Persistence of different pollutants; 

• Sedimentation of uncontaminated sediments with subsequent embedding of the 
contaminated sediment cover. 

• A decrease in pollutant loading 

The reduction or abatement of an effluent would naturally be anticipated to have a positive 

effect on pollution within an estuary. Evidence of increased contamination has been 

illustrated in many studies utilising sediment cores to reconstruct historical trends of 

intensified anthropogenic disturbance in the sedimentary record. Vertical profiles of 

contaminants and in some instances, a knowledge of industrial production chronology, 

have been used to assess sediment accumulation rates, the dating of significant discharge 

events and the identification of pre-industrial background concentrations (e.g. Zwolsman et 

al., 1993; Hutchinson and Prandle, 1994; Fox et al., 1999). The accurate delineation of 

cores provides a useful tool for gauging the enrichment of contaminants relative to both 

peak or baseline concentrations and can thus give a measure of the effectiveness of input 

reduction. However, bioturbation, sediment granulometry, smearing of the core sample 

during collection and sediment erosion can lead to perturbation of the sedimentary record 

(Fletcher et al., 1994; Mudge et al., 2001). Inconsistencies in sampling, analytical 

measurement and choice of extraction technique present further difficulties (Grant and 

Middleton, 1990). Appropriate evaluation or minimisation of these factors is necessary i f 

any trends are to be defined accurately. 

• Adequate ventilation 

Tides, meteorological forcing and estuarine circulation generally ensure good ventilation 

of the water mass and exchange with adjacent seas. Consequently, a contaminated water 

mass is unable to maintain itself in an estuar>', although several of the mechanisms 
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mentioned earlier (e.g. the flocculation and deposition of colloidal species and fine-grained 

particles and the existence of flood dominance and tidal pumping in macrotidal systems), 

can assist in holding the suspended load or transporting it back into the estuary on flood 

tides. This can have significant implications in muddy estuaries where the majority of any 

escaping dredged material may quickly resettle within the estuary (van den Berg et al., 

2001). Under such conditions, the greatest loss of contaminants to the coastal region is 

predicted to occur through transport in the dissolved phase rather than by association with 

SPM (Turekian, 1977; Duinker, 1980). 

• Mixing-in of uncontaminated sediments 

The mixing-in of uncontaminated particles has been used to explain seaward decreases in 

the trace metal content of sediments (particularly in the lower reaches) in some estuaries. 

For example, declines of 65-98% of bed sediment metal concentrations in the Elbe (Muller 

and Forstner, 1975) and 20-60% of leachable Cu, Fe and Zn in SPM from the Rhine 

Estuary and southern Bight (Duinker and Nolting, 1976) were attributed to the dilution of 

sediments by less contaminated particles entering from the North Sea. Other evidence for 

this process has been provided by Cato (1977) who demonstrated that C:N ratios reduced 

with progression towards the mouth of the Valen Estuary, due to a concomitant decrease in 

terrestrial organic matter with a steadily increasing presence of marine humus. Similar 

patterns have since been observed in the Humber-Ouse (Uncles et aL, 2000) and Tay 

(Thornton and McManus, 1994). 

• Physical and biological re-working 

Bioturbation during feeding, burrowing or tube construction increases the release and 

mixing of contaminants in sediments. Biological re-working can lead to either the burial or 

upward migration of contaminants, from the direct transfer of sediment particles or by 

aiding dissolution, and bioaccumulation in benthic fauna can also release particle-bound 

pollutants (Sharma et al., 1987; Gagnon ei aL, 1997). The degree of bioturbation is likely 

to reduce up an estuary as salinities decline and the benthic fauna composition is altered 

(Cato et ai, 1980). Remobilization may also occur through physical re-working induced by 

dredging (Tramontano and Bohlen, 1984; Petersen et aL, 1997; Simpson et al., 1998; van 

den Berg et aL, 2001), the venting of sediments by tidal action (Campbell et al., 1988; 

Martino et al., 2002) and erosion (Harland et al., 2000; Spencer et al., 2003). 

• Diagenetic and microbial processes 

The decomposition of aquatic detritus in bed sediment results in changes in pH, redox 

potential, DO, sulphide and organic molecules. This may lead to changes in the chemical 
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form in which trace elements are associated wi th sediment particles, possibly shift ing them 

into more exchangeable positions and increasing their availability to the overlying water. A 

further result o f diagenesis in organic-rich sediments is the increase in dissolved metal 

concentrations in interstitial waters and considerable evidence points to the existence o f a 

relatively large reservoir o f dissolved trace metals in the upper layers o f reducing 

sediments (Elderfield and Hepworlh, 1975; Gaillard et al., 1986; Ciceri et a/., 1992). 

Elderfield and Hepworth (1975) proposed that metal enhancement o f around 10% can 

occur in surface muds simply through diagenetic processes alone. 

The majority o f trace metals tend to be adsorbed to or occluded wi th in hydrogenous and 

biogenic coatings on natural particle surfaces (Turner et ai, 1991; Thomas and Bendell-

Young, 1999, Dong et ai, 2003). Oxyhydroxides o f Fe and M n are significant phases for 

trace metal sequestration as they have high adsorptive capacities. Microbial decomposition 

o f sedimentary organic matter results in the bacterial utilisation o f O 2 and other electron 

acceptors such as N O 3 " , Mn02, Fe(0H)3, and S04^' (Farmer, 1991; Buckley et aL, 1995). 

The reduction o f Fe"*"*" and Mn' '^ species results in the mobilisation o f these (and any other 

metals associated with them) as oxide precipitates become reduced and solubilised 

(Duinker et al., 1979). Reprecipitation o f Fe and M n oxides occurs under increasingly oxic 

conditions at the sediment-water interface or in the water column (Morr is et al., 1982b). 

Other metals (e.g. Co) may be co-precipitated with M n (Zwolsman and van Eck, 1999). 

Autocatalysis can also take place whereby the presence o f M n on particle surfaces 

promotes the adsorption o f dissolved M n . Repeated cycles o f oxide dissolution and 

precipitation reduce their crystallinity and thus aid the incorporation o f metal ions (Chao, 

1984) but it is important whether the species to be adsorbed is present during hydrous 

oxide formation as the amount adsorbed on freshly precipitated oxides is considerably 

greater than on aged precipitates (Duinker, 1980). Elevated p H , existing wi th progression 

along a salinity gradient or resulting from phytoplanklon blooms, has also been linked with 

removal o f Fe and M n from solution ( L i et al., 1984a; Admiraal et al, 1995; Zwolsman et 

al., 1997; Guieu et ai, 1998). 

Metal concentrations in interstitial waters may be many orders o f magnitude larger than the 

solubility values o f sulphides, even in the presence o f H2S wi th in the sediment column. 

Metals may be solubilised f rom their precipitated sulphides by aerobic bacterial activity. 

Alternatively, mobilisation can also occur through redox alterations induced by high 

nutrient supply. The formation o f stable complexes between trace metals and an excess o f 

dissolved organic molecules is believed to be a major contributing factor as metals such as 
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Cu, M n , Co, N i and Zn can be solubilised f rom their carbonate and sulphide species by 

interaction wi th organic matter (Rashid and Leonard, 1973; Emerson et al., 1983). Vertical 

concentration gradients in dissolved organic matter therefore provide an important pathway 

through which upward ionic or molecular diffusion can lake place. Whilst Fe and M n can 

be released to bottom waters under reducing conditions, elements such as Cd, Cu. N i , Pb 

and Zn are removed from seawaler as sulphides. Competition can therefore exist between 

inorganic precipitation and organic complexation. 

In addition to the effects o f microbial and photosynthetic activity on oxygen saturation and 

pH and the consequences o f these on the precipitation or dissolution o f Fe and M n oxides, 

metals may also be adsorbed by particulate organic carbon (POC) (Church, 1986; Paulson 

ei al., 1994). High concentrations o f POC may originate f rom the introduction o f organic-

rich soils eroded f rom the catchment during high river f lows (Neal et al,, 1997), f rom 

phytoplankton blooms or f rom anthropogenic discharges. These factors w i l l assume greater 

or lesser importance at different limes o f year and can induce seasonal changes in particle 

composition (Balls, 1990; Zwolsman and van Eck, 1999). The coagulation or salting out 

o f neutral organic compounds f rom solution at higher salinities promotes the adsorption o f 

organic carbon (and any associated contaminants) onto SPM (Turner and Rawling, 2001). 

Removal o f metals f rom the dissolved phase in this manner could represent an important 

additional pathway for particulate trace metal retention in estuaries such as the Beaulieu 

and Mersey which experience high concentrations o f dissolved organic carbon (DOC) 

(Turner et ^//., 2001b, 2002). 

In macrotidal estuaries, the tidal pumping o f metal-depleted particles may provide the 

appropriate thermodynamic drive for the adsorption o f trace metals f rom the water column 

when these particles are resuspended by strong tidal action (Ackroyd et al., 1986; Morris, 

1986,1990). Instead, dissolved metal maxima have often been observed in many turbid and 

moderately contaminated macrotidal estuaries throughout western Europe (Duinker et al., 

1985; Apte et aL, 1990; Turner et al., 1992; Chiffoleau et aL, 1994; Laslett and Balls, 

1995; Kraepiel et aL, 1997). Desorption, rather than adsorption, may be favoured in the 

low salinity region or T M Z in these estuaries, i f resuspending particles are loaded with 

metals compared to SPM at equilibrium with metals dissolved in the water column 

(Martino et aL, 2002). 

Controls on the phase distribution o f trace metals may also arise f rom changes in salinity 

during estuarine mixing due to the coupled processes o f chloride compiexalion and cation 
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competition (Comans and Van D i jk , 1988; Chiffoleau et ai, 1994; Paalman et al., 1994; 

Kraepiel ei aL, 1997). Metals may enter the dissolved phase by the formation o f highly 

stable complexes with C l \ S04^' and COa^' and competition wi th seawater ions such as 

Na"*", \C, Câ "*" and Mĝ "*" for active sites on particles. As the ionic strength o f seawater 

increases, so the effectiveness o f these processes is enhanced and metal readsorption is 

progressively hindered, although the extent o f metal release is variable (Hegeman et al., 

1992; Paalman 1994). 

Q Persistence 

The stability or persistence o f a contaminant w i l l also influence the recovery process. 

Certain trace metals (e.g. Cu, Hg and Pb) lend to exhibit a high a f f in i ty for particulate 

matter, especially i f organic carbon or biopolymers are present on particle surfaces 

(Paulson et al, 1994; Turner et a/., 2001b; Guibaud et al., 2003). These metals are more 

likely to be retained unless physico-chemical alterations to the sediment or water column 

intervene. Elements such as Cd, which generally shows weaker associations with estuarine 

particles, is more readily released to the dissolved phase, largely as a result o f salinity-

induced desorption (Kraepiel et aL, 1997). The rate at which sediment may be cleansed o f 

trace metals w i l l , in part, vary simply as a consequence o f the relative ability o f individual 

elements to bind with particulate matter. Microbial methylation provides an additional 

pathway for the release o f Hg, Pb and As (Wood, 1984), but these are very slow processes 

and are limited to the upper layers o f deposited sediments where bacterial numbers are 

considerably higher than at depth (Gagnon et al., 1997). However, the environmental 

consequences o f such processes are significant. For example, CHsHg is more toxic than 

inorganic H g and is readily accumulated by aquatic organisms (Bloom, 1992; Morse, 

1994). 

• Sedimentation and burial 

The introduction o f a steady supply o f sediment either f rom catchment erosion or offshore 

sources w i l l allow an almost continuous deposition o f fresh uncontaminated (or less 

contaminated) material that w i l l cover polluted layers. Wi th time, and sufficiently high 

rates o f deposition, contaminated strata are withdrawn f rom the sediment-water interface 

and embedded. The vertical redistribution o f pollutants may then only arise through 

bioirrigation or other, more energetic, physical disturbances. 

1.3.2 Examples o f estuarine remediation 

It is through the increasingly stringent control o f domestic and industrial discharges in 
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combination with some o f the above processes that significant improvements in the quality 

o f waters and sediments o f many European estuaries have been observed. The Scheldt and 

Thames estuaries are two such examples. 

The Scheldt basin, draining over 20 000 km^, covers one o f the most populated and 

industrialised areas o f Europe (Paucot and Wollast, 1997). it is characterised by a small 

mean annual river discharge, which is subject to large seasonal fluctuations (Paucot and 

Wollast, 1997), a tidal range o f 4-5 m and a residence time o f 2-3 months under normal 

river f lows ( - 120 m^ s"') (Regnier et a/., 1997). The estuary is generally well mixed but 

the upper estuary may become partially mixed during peak fluvial discharges. 

The Scheldt has experienced a high degree o f both organic and inorganic contamination, 

arising from a large number o f domestic, industrial and agricultural waste inputs entering 

the upper estuary. The decomposition o f substantial organic loads contributed to the 

development o f an anoxic water column at low salinities at most times o f the year 

(Zwolsman and van Eck, 1999). However, the same authors have shown dramatic 

reductions in the particulate metal burden o f the estuary in the period 1980-1995, with 

decreases o f 88% for Cd, 85% for Hg, 74% for As, 59% for Cu and 50-54% for Cr, N i , Pb 

and Zn in fluvial SPM. Most notably, the M n content o f riverine particles has more than 

doubled between 1974-1996, reflecting the gradual increase in riverine DO concentrations. 

Metal loss was largely attributed to the mixing o f fluvial and marine particulates, 

porewater infusion from and resuspension o f reducing sediments, co-precipitation o f N i 

and Co wi th M n oxides and the uptake o f Cd and Zn by phytoplankton. Desorption o f 

metals such as Cd, Cu and Zn was considered a relatively minor effect compared to 

particle mixing. Particulate metal concentrations in the Scheldt were sti l l relatively high 

when compared to those in a number o f other impacted estuaries (Baeyens, 1998). 

The Thames basin covers an area o f 10 000 km^ and includes large urban and industrial 

centres (Habib and Minski , 1982). The Thames is also macrotidal and water level is 

regulated by a series o f weirs along its length. Minor stratification has been recorded, but 

for most purposes the system is considered well mixed. Freshwater flows o f < 10 m^ s"' are 

common in summer and large quantities o f water are abstracted f o r potable supplies. 

Consequently, dilution is reduced and a net seaward movement o f only 2 km d"' has been 

estimated which strictly limits the polluting load that can be accepted under such 

conditions (Lloyd and Whiteland, 1990). 
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Numerous industrial sites, storm overf low drains and STW are sited along its banks 

(O'Rei l ly Wiese et aL, 1997a) and the main source o f metal input into the estuary is f rom 

the final effluent discharged f rom STW which contain both urban and industrial wastes 

(Rossin et aL, 1983). Significant organic loads led to < 5% DO being recorded for around 

half the length o f the estuary in 1950 and much o f this was completely anaerobic in 

summer (Wood, 1980). At t r i l l and Thomes (1995) demonstrated (see Table 1.5) that 

concentrations o f most metals studied in surficial sediments o f the Thames were 

comparable to or elevated above those observed in other contaminated estuaries in the U K 

in the late 1980s (Bryan and Langston, 1992). 

Reduction in the pollution load has largely occurred through the updating o f major STW in 

the area in 1959 and 1963 and water quality began to improve in the 1960s (Wood, 1980). 

Analysis o f 10 m sediment cores collected f rom a disused dock basin in the lower estuary 

indicate that a 30-50% decrease in A g , Cd, Cu, Pb and Zn and a 70% decrease for Hg 

concentrations occurred in the period 1944-1966 (O'Rei l ly Wiese et aL, 1997a). In 

addition, through-core distributions o f M n implied that sediments were deposited under 

anoxic conditions prior to 1960 but that after this date M n concentrations have increased 

up to a factor o f 2, demonstrating the effect o f increased DO levels in estuarine waters due 

to the increased efficiency o f STW. Whilst metal concentrations at depth agree with the 

findings o f A t t r i l l and Thomes (1995), surface concentrations now place the metal 

contamination status o f the Thames in a more favourable position compared to many o f the 

estuaries studied by Bryan and Langston (1992). In a concurrent study uti l ising the same 

cores, O 'Rei l ly Wiese et aL (1997b) found that metal mobil i ty fo l lowed the order Cd > A g 

> Cr > N i , Zn > Co, Cu, Pb. Cadmium and A g also showed a tendency (at surface and at 

depth) to partition towards the exchangeable phase indicating the potential for long-term 

leaching o f these metals from the sediments. Evidence to support this theory has been 

provided in saltmarsh sediments situated 25 km downstream in the outer Thames Estuary, 

which are shown to be enriched with Cd (Fletcher et aL, 1994). 

Whilst overall improvements in water oxygenation have occurred, occasional short-term 

rapid declines in DO concentrations occur. These are induced by large quantities o f storm 

sewage entering the estuary, which arise during periods o f heavy rainfal l onto a highly 

impermeable catchment and such incidences resulted in several fish mortalities in the 

1970s and 1980s. The solution was the introduction o f a rapid-response vessel capable o f 

pumping oxygen directly into the water column to prevent the formation o f lethal DO sags 

(Lloyd and Whiteland, 1990). The Thames has now become a major nursery ground for 
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key economic and conservation fish species, including eel and salmon (Colclough ei o/., 

2002), attesting to the success o f restorative measures over the last 4 decades. 

The effects o f remediation in the Scheldt and Thames show some commonality between 

the two systems. Overall, despite the fact that the quality o f inputs has improved over 

many years, both estuaries may be considered as partially rather than fu l ly restored at the 

present time and similar rates o f progress would therefore be anticipated in other similarly 

impacted estuaries. 

1.4 The study area 

1.4.1 Physical parameters o f the Mersey Estuary 
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Figure 1.6 Map o f the Mersey Estuary, showing the locations o f tributaries and major 
towns. Adapted from N R A (1995). 

The Mersey Estuary (Figure 1.6) is approximately 50 k m long f rom the tidal l imi t to the 

mouth and can be divided into four main sections. The upper estuary is a narrow 

meandering channel that extends for 17 km between Howley Weir and the 

RuncomAVidnes Gap, where the channel widens brief ly upstream o f a North to South 

sandstone ridge constricting the estuary. Surface sediments in the upper estuary possess a 

moderate silt content (20-60%) wi th the remainder being very fine sand (Harland and 
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Riddle, 1997). The estuary rapidly widens below Runcorn and Widnes and forms a large, 

shallow basin known as the inner estuary. This basin is 20 km long and has a maximum 

width o f 4.8 km, wi th extensive intertidal mudflats and saltmarshes on its southern margin, 

almost all o f which dries out at low tide. The bed here is largely sand wi th silt located on 

both the northern and southern banks which are unstable and evidence suggests that 

mobilisation o f previously consolidated sediments is taking place (Harland and Riddle, 

1997; Hariand et al., 2000). Further downstream in the Narrows, the estuary changes to a 

straight, narrow channel approximately 1 km wide and 10 km in length wi th depths 

reaching 30 m even on low spring tides. The unusually narrow mouth gives rise to tidal 

current velocities in excess o f 2 m s"' during spring tides, resulting i n a strong tidal scour 

and high concentrations o f SPM (NRA, 1995). Silt content here is generally low but a large 

silt bar does exist (Harland and Riddle, 1997). The outer estuary begins at New Brighton 

and extends out into Liverpool Bay. It consists o f a large area o f intertidal sand and mud 

banks through which the navigation channels are constrained by 16-km long training walls 

and are continuously dredged to keep them navigable. A submerged sandbank at the 

seaward end o f the channels represents the physical l imi t o f the estuary. The mean sih 

content o f the estuary was found to be around 26% in 1997 (Harland and Riddle, 1997). 

The Mersey Estuary is a highly energetic system. For example, on exceptionally high 

spring tides (9.2-10.7 m), saltwater incursion frequently overtops the weir, an artificial 

tidal l imit in Warrington, some 50 km f rom the mouth. High dynamicity is also evident at 

the seaward end, wi th an estuarine-type circulation extending for 22 km f rom New 

Brighton out into Liverpool Bay (Bowden and Sharif el D in , 1966; Abdullah and Royle, 

1973). Tidal bores are frequently observed on spring tides. Under favourable conditions 

and particularly during periods o f dry weather, upesluary progression o f the bore is rapid 

such that it may reach Howley Weir just prior to high water at Liverpool (Proudman 

Oceanographic Laboratory, 2003). Freshwater f l o w is relatively small for the size o f the 

estuary catchment. The subsequent flushing time is around 32 days under normal 

conditions but increases to about 50 days at times o f low flow (Jones, 1978). This 

represents a considerable residence time for chemical components in the estuarine 

environment and could lead to the establishment o f equil ibrium conditions for sorptive 

reactions in the upper estuary (Mi l lward and Turner, 1995). 

The generation o f a turbidity maximum in the upper estuary is most pronounced during 

spring tides, when SPM concentrations can reach as high as 2 g l ' (Taylor, 1986). Prandle 

et al. (1990) estimated a net transport into and out o f the estuary o f around 15 000 m^ o f 

29 



suspended sediment for a mean tide. The mean SSA o f Mersey SPM is 9.6 m^ g ' ' , is 

relatively constant throughout the whole estuary and is lower than the average SSA 

measured in a number o f other macrotidal systems (Mi l lwa rd et ai, 1990). It has been 

suggested that the low SSA o f Mersey SPM could be attributed to a greater amount o f 

organic carbon, possibly in the form o f humic acids or anthropogenically-derived carbon 

which themselves have very low SSAs and which act to reduce the amount o f active 

surface available for adsorption by blocking the pores (Mi l lwa rd et al., 1990). 

1.4.2 Inputs into the Mersey Estuary 

The Mersey Basin drains an area o f 5 000 km^ including the major conurbations o f 

Liverpool and Manchester and supports a population o f over 5 mi l l ion . The estuary is an 

important interface coupling a heavily industrialised area wi th the Irish Sea. Significant 

inputs o f water f rom riverine sources are listed in Table 1.10. The two main freshwater 

sources are the River Mersey, entering the estuary at Howley Weir in Warrington and the 

Manchester Ship Canal, which receives additional water f rom the River Weaver. 

Table L I O Significant freshwater inputs into the Mersey Estuary. Data adapted f rom 
N R A ( I 9 9 5 ) . 

Watercourse Mean flow (m^ s ') 

River Mersey 19 

Manchester Ship Canal (including River Weaver) 12 

Sankey Brook 4 

Dilton Brook 1 

River Go\vy 1 

Holpool Gutter <1 

Dibbinsdale Brook <1 

River BirkeU <l 

The source o f the River Mersey is in Stockport and is formed by the confluence o f the 

Rivers Tame and Goyt. It then f lows through a number o f densely populated areas before 

entering the Manchester Ship Canal. The river and canal separate and run parallel to each 

other as far as Eastham (Figure 1.6). Water f rom the canal enters the estuary via two locks 

and associated sluiceways at Eastham or through the Weaver Sluices below Runcorn 

(Figure 1.6). Unti l 1989, excess water brought into the canal by high spring tides was 

levelled and this effectively flushed the canal between Eastham and the Weaver Sluices. 
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Since then, additional gates at Eastham have been used to close o f f the canal f rom the 

estuary thereby eliminating levelling, reducing siltation and lowering the average salinity 

o f the canal 

The estuary has received significant quantities o f industrial wastes, sewage and run-off 

from agriculture and contaminated land into its tidal and non-tidal reaches over the last two 

centuries, adding a considerable polluting load into the estuary (NRA, 1995; DoE, 1996). 

The estuary and its hinterland saw the start o f the British chemical industry and the growth 

o f major manufacturing centres at Ellesmere Port, St. Helens, Warrington and Widnes 

(Figure 16) It continues to be a focal point for a wide range o f manufacturing activities 

and retains its status as a major port Evidence o f past industrial contamination is found in 

its salt marsh sediments (Fox et a l , 1999) 

Improvements in the water quality o f the Mersey and Ribble estuaries have been slower in 

comparison wi th other industrialised systems like the Tyne, Tees, Severn and Thames and 

for the Mersey in particular, little apparent change is observed between 1990 and 2000 (see 

Figure 1.1). However, this evidence is somewhat misleading as gradual improvements 

have been achieved Between 1995-2000, the 16 km stretch from Howley to Runcorn 

(Figure 1.6) improved from a position o f historically bad quality and the entire estuary is 

now classified as being either o f fair or poor quality (Figure 1.7) This amelioration is 
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Figure 1.7 Water quality in the Mersey Estuary, 1985-2000 Source: E A (2002a). 



primarily due to the investment o f more than £60 mi l l ion by United Utili t ies L td . (formeriy 

North West Water) to improve the quality o f waste discharged from STW at Davyhulme, 

Widnes and Warrington, which between them serve over 1.5 mi l l ion people. The effect o f 

systematically reducing concentrations o f ammoniacal nitrogen entering the estuary at 

Howley Weir for example, has been to significantly reduce B O D and subsequently 

increase oxygenation o f the water column (Figure 1.8). In total, more than £1.5 bil l ion has 
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Figure L 8 Annual trends in ammoniacal nitrogen concentration, biochemical oxygen 
demand and dissolved oxygen levels at Howley Weir, 1962-1992 (Jones, 
2000). 

been spent to date on related projects located wi th in the estuary catchment. Due to the 

successful partnership forged between the E A and its predecessor, the National Rivers 

Authori ty, water companies, local industry and the Mersey Basin Campaign, D O levels are 

now high enough to support fish populations throughout the estuary. The operation o f 

humane fish traps and catches by anglers indicate that the numbers and diversity o f fish 

species in the River Mersey and its estuary have risen steadily in the last decade and now 

includes salmon, brown trout, sea trout, lamprey, dace, bream, cod and whit ing (EA, 

2003). Some parts o f the Mersey and Wirral foreshore are designated as SSSI and 

R A M S A R sites and part is a candidate for designation as a Special Protection Area under 

the Conservation o f Wi ld Birds Directive (79/409/EC) ( N R A , 1995). 

Despite the aforementioned improvements, DO saturation still varies quite considerably at 

all points along the estuary and significant differences exist on seasonal, inter-tidal and 
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inlra-tidal timescales (Figure 1.9). Higher water temperatures prevailing during the 

summer months can lead to a decrease in the amount o f DO retained in the water. This, 

combined with the degradation o f organic matter f rom continuing effluent discharges can 

produce a distinct oxygen sag, which is especially evident in the upper reaches o f the 

estuary where occasional anoxia can be observed. Dissolved oxygen minima are 

discernible, to greater or lesser degrees, at most times o f the year ( N R A , 1995). Thus, since 

1980, the majority o f routine surveys o f the Mersey Estuary by the Environment Agency 

(and hence this work) have been performed monthly on spring tides in order to record 

conditions when DO is anticipated to be at a minimum. 
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Figure 1.9 Typical observed differences in dissolved oxygen (a) between spring and 
neap tides and (b) during a single tidal cycle in the Mersey Estuary. Source: 
N R A (1995). 

Trace metal concentrations and fluxes have been widely investigated in the Mersey and its 

environs in recent years (Bartlett and Craig, 1981; Airey and Jones, 1982; Langston, 1986; 

Campbell et al., 1988; Bryan and Langston, 1992; Camacho-Ibar et aL, 1992; Lasleii, 

1995; Comber et al., 1995; Williams et al., 1998). Bryan and Langston (1992) reviewed 

the bioavailability, bioaccumulation and biological effects o f several heavy metals in 

sediment-dominated U K estuaries, with the Mersey showing relatively high concentrations 

o f Cd, Cu, Z n and, in particular, Hg (Table 1.5). Highest Hg concentrations o f all estuaries 

studied were consistently found in the Mersey. Sources o f Hg to the Mersey are numerous 

and diverse (Table L ! I ) but the overall distribution in sediments is consistent w i th known 

major emissions in the area (Taylor, 1986; Harland and Riddle, 1997; Harland et aL, 

2000). Complexation by organic matter and rapid adsorption onto particles means that Hg 

becomes predominantly (80%) associated wi th particulate material in the polluted upper 

estuary (Airey and Jones, 1982). 

Discharges o f metals to the estuary have decreased significantly over the last 30 years 
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(NRA, 1995) and the metal loads reported for 1998 and 1999 in Table 1.11 (P. Jones, EA, 

pers. comm.) register further declines in metals delivered to the system. A general 

reduction in contaminant concentrations is now evident for a range o f organic pollutants 

and metals due to large financial investments in sewage treatment and tighter controls on 

industrial discharges (Taylor, 1986; Fox et al., 1999; Harland et al., 2000; Jones, 2000). 

Table 1.11 Mersey Estuary dangerous substances load data (t a"') and percentage 
contributions f rom different sources in 1998 and 1999. 

Discharge Cd Cu Hg Ni Pb Zn 

1998 
Rivers 
Mersey % 54 57 10 62 28 60 
Weaver % 38 24 36 23 8 16 
Sew(if*e works 
Warrington % 2 9 <1 3 <1 8 
Widnes % <I <1 <1 1 <1 1 
Liverpool % 6 10 2 11 5 15 
Industry 

0 0 ICI % 0 0 47 0 0 0 
Octel % 0 0 5 0 57 0 
T O T A L (t a ') 0.44 246 0.55 16.2 52.8 888 

1999 
Rivers 
Mersey % 43 57 6 54 23 49 
Weaver % 27 23 19 27 5 13 
Sewdfje works 
Warrington % 1 2 <1 1 <1 5 
Widnes % <1 1 <1 6 < i <1 
Liverpool % 10 15 1 11 9 31 
Industry 

0 ICI % 0 0 72 0 0 0 
Octel % 19 2 2 1 63 <I 

T O T A L (t a ') 0.37 18.7 0.50 15.0 38.6 80.2 

Examples include the chlor-alkali industry which now discharges a mercury load o f less 

than 1 tonne per year compared to nearly 60 tonnes in the mid 1970s ( N R A , 1995). The 

number o f point sources for N i , Zn, Cr, Cd and Cu has diminished and inputs are now 

dominated by non-tidal riverine contributions ( N R A , 1995; Jones, 2000). However, 

sediments still contain relatively high concentrations o f pollutants and much o f the estuary 

experiences poor water quality, particularly in the summer ( N R A , 1995). Importantly, 

perturbations in metal reduction trends in the Mersey have been reported in recent years 

with dissolved and particulate concentrations showing evidence o f stabilisation rather than 

a continuance o f the rapid declines that were previously observed in the 1980s (Laslett, 
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1995; Fox et aL, 1999; Hariand et aL, 2000). The focus o f this research therefore is the 

investigation o f causative mechanisms that may be responsible for the apparent slow-down 

in metal decontamination in the estuary. 

1.5 Study aims 

The overall aim o f this project is to investigate factors affecting the temporal and spatial 

variability o f estuarine water and particulate chemistry and the consequences o f these in 

terms o f the medium- to long-term cleansing o f trace metals f rom sediments in the Mersey 

Estuary. Variations in the axial distribution, phase partitioning, reactivity and transport o f 

trace metals w i l l be understood in relation to changing estuarine physico-chemical 

parameters and the hydrodynamic regime and used to assess the underlying mechanisms 

controlling the cycling and fate o f trace metals in the estuary. Specific objectives o f the 

study are as follows: 

• To undertake a co-ordinated programme o f measurement o f estuarine master variables 

and selected trace metals in the Mersey Estuary; 

• To investigate seasonal axial distributions o f total and non-detrital particle-associated 

concentrations o f the priority pollutant metals Cd, Co, Cu, N i , Pb and Zn in SPM and 

surface sediments; 

• To examine any preferential associations o f stable trace metals wi th different particle 

populations derived f rom settling experiments and inference thereof to subsequent 

esluarine transport processes; 

• To integrate data on seasonal axial distributions o f dissolved Cd, Co, Cu, N i , Pb and Zn 

in collaboration wi th other works; 

• To incorporate complementary archived data f rom the Environment Agency's Marine 

Monitoring Programme surveys to assist in defining the undeHying geochemical 

conditions present in the estuary; 

• To use other techniques for the geochemical characterisation o f estuarine particles such 

as the analysis o f Fe, M n , C and N and measurement o f SSA; 

• To undertake key particle-water interaction experiments designed to study the in situ 

partitioning o f ^°^Hg onto bulk and density-separated fractions o f SPM to investigate the 
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reactivity o f Hg toward different particle types; 

• To evaluate recent progress in trace metal decontamination in the Mersey and to assess 

the implications for further restoration based on the knowledge gained in relation to key 

hydrodynamic and biogeochemical controls operating wi th in this complex system. 
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Chapter 2 

Sampling and Analysis 
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2 Sampling and Analysis 

Field studies have been undertaken to characterise the distributions o f trace metals in 

waters (Martino, 2000), sediments and SPM in order to draw inferences on their transport 

and reactivity. Process-orientated studies using a radiotracer were employed to investigate 

variations in the sorptive behaviour o f different suspended particle types. 

2.1 Field studies 

2.1.1 Overview o f the sampling campaign 

A f l o w diagram summarising the sampling strategy and overall experimental protocol o f 

the surveys is given in Figure 2 .1 . Sampling normally took place on the same days as the 

routine monthly monitoring surveys o f the Environment Agency ( E A ) . The EA water 

samples were collected for a wide variety o f routine analyses, including organic 

contaminants, trace metals and nutrients. In situ determinations o f the estuarine master 

variables, salinity, temperature, pH and dissolved oxygen were also made. 

Contemporaneous sampling allowed coherence between the EA and University o f 

Plymouth datasets, including archival data held by the EA. Contiguous sampling by the 

University o f Liverpool research group working on organic contaminants was also 

achieved, thus providing even greater unity between project partners. This was o f vital 

importance for the validation and subsequent implementation o f a geochemical model o f 

the Mersey Estuary developed at the University o f C a r d i f f 

Seven axial surveys were performed on the Mersey Estuary between July 1997 and July 

2000 and covered the seasonal cycle. Details o f the f ie ld campaign pertaining to the 

collection o f water samples are shown in Table 2 .1 . Field measurements and near-surface 

water sampling were undertaken for the collection o f SPM at EA designated stations 

(Figure 2.2). Boat surveys were usually carried out at high water (± 2 hours) during spring 

tides on board the EA vessel 'Seajet' or the EA RIB 'Seafury' , enabling optimum access 

along the entire length o f the estuary wi th in tidal time constraints. This approach 

minimised the effect o f tidal stale when comparing estuarine constituent distributions. It 

also meant that sampling was performed under conditions when relatively low 

concentrations o f DO were anticipated (see Section 1.4.2). The resulting f ie ld data were 

consistent and allowed systematic tidal corrections to be made, thereby interfacing wi th the 

modelling component o f the research programme. 
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Figure 2.1 Flow diagram illustrating the sampling strategy and experimental protocol adopted. 



Table 2.1 Summary of the axial transects, hydrological conditions and analyses performed on the water samples collected. 

Dnte Q ( i n V ' ) Survey Tidal state Tidal range 
(m) 

n S ssc T pH DO Nutrients Chl-fl Carbon 

P D 

Metals 

P D 

Settling 
experiments 

Radiotracer SSA 
studies 

15-Jul-97 17.6 Axial transect HW-ncaps 5.0 12 • / / EA • / / / 

I6-Dec-97 28.5 Axial transect H\V-springs 8.9 12 • • EA • • • MM • 

30-Mar.98 47.2 Axial transect HW-springs 10.9 18 • • EA EA EA EA • • • • MM 

25-Jun-98 29.1 Axial transect HW-springs 9.2 21 • EA EA EA EA • / MM / 

20-OCI-98 82.4 Axial transect HW-springs 8.2 20 • EA EA EA EA MM • / 

04-May-OO lO.I Axial transect HW-springs 9.4 21 • / EA EA EA EA • • / 

03-Ju!-00 30.5 Axial transect HW-sprlngs 9.6 8 • / EA EA EA EA • • / 

Q = mean river flow; HW = High water; n = number of stations sampled; S = Salinit>'; SSC = determination of suspended solids conceniraiions; T = Temperature; DO = dissolved oxygen; EA = measured by 
Environment Agency personnel; P = particulate; D = dissolved; MM = analysed by M. Manino, Univcrsit>' of Plymouth (Manino. 2000); SSA = specific surface area measurements. 

The symbol *̂  signifies measurements conducted as pan of this thesis. 
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The December 1997 survey was abandoned at EA station 11 due to adverse weather 

conditions. Subsequent samples were taken from the shore at locations approximating to 

EA stations 16, 19, 22 and 2 km below the weir. Riverine water and sediments were 

always gathered approximately 100 m above the artificial tidal limit at Howley Weir in 

Warrington (Figure 2.2). 

In July 1997, bed sediments were sampled at discrete points along the estuary (Figure 2.3) 

that were assumed to represent a variety of contaminant sources and sediment types 

(P. Jones, EA, pers. comm.). On this occasion, samples were obtained from the boat using 

a van Veen grab. In July 1999, surface sediments were collected from the shore, 

concentrating on sampling within the upper estuary (Figure 2.3). 

2.1.2 Equipment preparation for field studies 

During sample collection, attempts were made to minimise sample contamination. 

Disposable plastic gloves were worn throughout all sampling and experimental work. High 

purity reagents, including high purity water (purified by reverse osmosis, Mill i-RO, 18 

MQ cm resistivity, followed by ionic exchange, Mil l i -Q, Millipore) were employed for 

sample preparation and washing. Where possible, sample manipulation was carried out 

under a Class-100 laminar flow hood. 

Unless stated otherwise, all plastic materials used were first cleaned in 5% Decon for 24 

hours then, after rinsing, transferred to 10% HCl (AnalaR, BDH) for a fiirther 24 hours and 

rinsed three times with Mill i -Q water before being dried in a laminar f low hood. Cellulose 

acetate filters (47 mm, 0.45 |im pore size, Sartorius) were washed in 0.1 M HCl (AristaR, 

BDH) for 24 hours before being rinsed thoroughly with Mil l i -Q water. Each filter was 

transferred to an acid-washed petri dish and dried to constant weight in a laminar flow 

hood. Glass bottles for the collection of DOC samples and a Millipore glass filtration unit 

were soaked in 5% Decon for 48 hours, then rinsed thoroughly with Mil l i -Q water and 

ashed in a muffle furnace for 8 hours at 450 °C. After cooling, the glassware was wrapped 

in combusted A l foil and stored until use. Aluminium foil inserts were made and placed 

underneath the plastic bottle caps from the collection bottles, in order to prevent any 

contamination of the water samples with organic carbon from the caps. Glass fibre filters 

(Whatman GF/F, 47 mm, 0.7 ^im pore size) for the retention of suspended particulates for 

total C analysis were also ashed in a muffle ftimace at 450 **C for 8 hours, before being 

weighed and stored in pre-combusted A l foil until required. 
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Figure 2.2 Location of the Mersey Estuary and Environment Agency monitoring stations used for the collection of water samples. Rl is the sampling 

point for riverine water. 
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Figure 2.3 Location of the sampling positions for sediments obtained in July 1997 (•) and July 1999 (* ) . Rl is the sampling point for riverine sediments. 



2.1.3 Sample collection and pre-treatment 

2.1.3.1 Water 

Samples of SPM for trace metal analysis were collected in Decon- and acid-washed lO-I 

plastic ceu-boys. The closed carboys were each opened under the water so as to avoid 

surface microlayer contamination and rinsed three times with the sample before being 

filled. In order to preserve in situ solid-solution partitioning, filtration was performed as 

soon as possible after collection. This was achieved either immediately after a survey, in 

the Life Sciences Department at the University of Liverpool or exceptionally, upon return 

to Plymouth (within 24 hours of sample collection). 

Distinction between particulate and dissolved phases is operationally defined by the 

nominal pore size of the filter used, which is conventionally 0.45 ^im. However, a variety 

of metal species such as metals bound in colloids with clay, Fe and Mn oxides and humic 

acids in the size range 10-450 nm; metal-organic complexes at 1-10 nm; inorganic 

complexes such as metal hydroxides and chlorides; and free inorganic ions at <1 nm 

diameter may pass through the filter (Hall et ai, 1996). In addition, it is now recognised 

that a number of other factors may contribute to significant variability in the 'dissolved' 

concentrations of elements such as A l , Co, Cu, Fe, Ni , Pb and Zn (Horowitz et al, 1992, 

1996; Hall et al, 1996). Differences in the pore size, pore type, diameter and type of filter 

used, the volume of sample processed, sample turbidity and the amount of organic matter 

present in the sample for example, have all been shown to affect resulting dissolved metal 

concentrations. Nevertheless, the majority of variations in dissolved element 

concentrations are thought to be due to the inclusion/exclusion of colloidal metals in the 

filtrate (Horowitz et al., 1996). One method that may be employed to minimise the 

presence of colloidal artefacts is to use 'exhaustive filtration' of natural water samples, 

whereby the aliquot of filtrate retained for dissolved metals analysis is retrieved after 

several portions of water have passed through the same filter (Shiller and Boyle, 1987; 

Taylor and Shiller, 1995). The volume required to initially pass through the filter would be 

dependent on such factors as the turbidity and organic matter content of the native sample. 

Pre-loading the filter in this way reduces the effective pore size of the filter and 

consequently limits the amount of colloidal material being incorporated into the final 

dissolved sample and is the favoured technique in this study. Additionally, the same make 

and type of filters have consistently been used for the capture of dissolved and particulate 

trace metals in order to help achieve consistency in sample preparation throughout this 

analysis programme. 
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Native water samples were gently turbidised and vacuum-filtered using Nalgene 

polycarbonate filtration units through 47 mm, 0.45 | im pore size Sartorius cellulose acetate 

filters. Filtrate volumes were recorded, allowing the estimation of SPM concentrations. 

Between 200-500 ml of water sample were typically filtered before a sub-sample of filtrate 

was taken for the measurement of dissolved metals. Filtrates were collected into acid 

washed HOPE bottles and acidified to pH < 2 with concentrated HCl (AristaR, BDH) and 

stored at 4 °C to prevent hydrolysis of the metal ions, deter microbial action and reduce 

adsorption onto the container walls (Millward and Turner, 1995). After filtration, the SPM 

was rinsed with 20 ml of Milli-Q to remove any sea salts, although it is acknowledged that 

this may potentially desorb loosely bound metals (Millward and Turner, 1995). The 

washing step was included so as to (a) remove the contribution of salts to dry weight 

determinations, and (b) reduce spectral interferences in the spectroscopic measurement of 

trace metals. After drying under vacuum, the filters were replaced in petri dishes and left to 

dry to constant weight in a laminar flow hood before being re-weighed and later stored at 

-18 °C until analysis. Some filters were retained as blanks. Operational blanks were 

prepared by filtering a known volume of Mill i -Q before and after filtering each batch of 

samples in order to assess the cleanliness of the protocols (Martino, 2000). It is important 

to note that in this investigation, the measurement of dissolved and particulate metals was 

always achieved from the same original whole water samples. 

Near-surface water samples for dissolved and total suspended particulate carbon analysis 

were collected in 250 ml Decon-washed and pre-combusted glass bottles in the same 

manner as described earlier for sampling with carboys but additional care was taken not to 

introduce any air into the bottles. Turbidised samples were vacuum-filtered using glass 

filtration units through 47 mm, 0.7 ^m pore size Whatman GF/F filters. The filters were 

then air-dried in a laminar flow hood, re-weighed, wrapped in A l foi l and fi-ozen until 

required. Filtrates were collected in ground glass-stoppered glass bottles and acidified with 

concentrated H 3 P O 4 (300 ^1 per 100 ml of sample, AristaR, BDH), wrapped in A l foil and 

stored at 4 °C until analysis (Tupas et al., 1994). The operational blank consisted of 

Milli-Q water treated in exactly the same way as the samples. Concentrations of DOC in 

H 3 P O 4 were always below the detection limit. 

Near-surface water samples were also filtered through unashed GF/F fillers for chlorophyll 

a analysis with the volumes of water filtered being recorded each time. 
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2.L3.2 Settling experiments 

Suspended particulate material from some of the water samples was separated into two 

components, permanently suspended particulate material (PSPM) and temporarily 

suspended particulate material (TSPM), based on differences in their settling 

characteristics. A maximum of six settling experiments were performed for each survey, 

with samples selected to cover a broad salinity and turbidity range each time. Samples 

were homogenised by gentle agitation of the carboy and a I litre sub-sample was 

immediately transferred to a measuring cylinder, in which the particles were allowed to 

settle under gravity for 30 minutes. This period was selected as it is representative of the 

water residence time within the upper half of the estuary where most of these samples 

originated. After 30 minutes, the majority of the suspension was carefully siphoned off, 

giving a decanted fraction containing only PSPM. The remaining settled material therefore 

consisted of TSPM, together with a residual portion of PSPM. For trace metal analyses, the 

decanted PSPM-only sample was filtered through cellulose acetate filters as described 

previously. The filtrate volume was recorded, after which the filtrate was added to the 

small volume of TSPM in order to resuspend the settled particles, which were then also 

filtered using a second cellulose acetate filter. The volumes of water filtered at each stage 

of the process were recorded, thus allowing the determination of PSPM and TSPM 

concentrations in the original sample. For example, by knowing the concentration of PSPM 

in the decanted sample, it was then possible to correct the TSPM concentration for residual 

PSPM. The same procedure was adopted for the separation of PSPM and TSPM for total 

suspended particulate carbon determinations, the only differences being that the bulk water 

samples were collected in glass bottles and filtered through ashed GF/F filters (see 

Sections 2.1.2 and 2.1.3.1). 

2.L33 Sediments 

Surface sediment samples were collected either by van Veen grab from the boat in mid-

channel (July 1997) or by hand from the shore (July 1999) (Figure 2.3). In each case, the 

surface (1-2 cm) layer was removed using a polyethylene spatula and stored in plastic 

containers. In the laboratory, the sediments were fractionated into <63 ^im and >63 | im 

components prior to acid digestion. Approximately I g o f sample was wet sieved through 

an acid-washed 63 nm nylon mesh using a few mis of Mi l l i -Q. The sieving was aided 

manually by gently stirring the sediment with a plastic spatula. The mesh was placed on 

the top of a 47 mm filtration unit and a few drops of Mil l i -Q added around the edge to 

create a vacuum seal around the top of the cup. The fine-grained fraction was received into 
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the filtration unit and instantly filtered through a cellulose acetate filter. On completion of 

the sieving, the filter was washed with 20 ml of Mill i -Q and dried to constant weight in a 

laminar flow hood. The coarse-grained sediment portion was washed from the mesh, 

filtered through another cellulose acetate filter and similarly dried. The sediment samples 

were stored at -18 °C until required. 

2.1.4 Master variables 

2.1.4.1 Measurement of temperature, salinity, pH and dissolved oxygen 

Temperature, salinity, pH and dissolved oxygen were measured using previously calibrated 

instruments viz\ an MC5 T-S bridge, a Hanna pHOX 52E pH meter and a Clandon YSl-58 

dissolved oxygen meter, respectively. Where necessary, conductivity measurements were 

made using a WPA CM35 conductivity meter. 

2.1.4.2 Analysis of dissolved organic carbon 

Dissolved organic carbon was determined immediately after filtration using an automatic 

Shimadzu Total Organic Carbon-5000 analyser. The instrument was calibrated with 

standard solutions of NaHCOs for inorganic carbon and potassium hydrogen phthalate for 

total carbon, to provide a working range o f 0-20 mg C I " ' . 

2.1.4.3 A nalysis of chlorophyll a 

Glass fibre filters loaded with SPM were analysed for chlorophyll a. Each filter was placed 

in a boiling tube to which 20 ml of methanol was added such that the filter was covered. 

The tube was then stoppered and the contents warmed in a hot water bath kept at 65 **C. 

The methanol was boiled for 10 seconds, and the stopper periodically removed to release 

pressure inside the tube. The tube was then removed from the water bath, re-stoppered and 

kept in the dark for 5 minutes. The filter paper was careftilly removed and squeezed to 

minimise solvent removal and the solution consequently centrifijged at 3500 rpm for 7 

minutes to yield a clear solution. The solution was carefully decanted into a glass cuvette 

having a path length of 2 cm and the absorbance of the solution was measured in a 

UV/visible spectrophotometer zeroed on methanol (Strickland and Parsons, 1972). 

Absorbance measurements were made at two wavelengths, 665 nm, the absorbance 

maximum of chlorophyll a, and 750 nm to compensate for background turbidity. The 

chlorophyll a concentration was calculated as: 
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Chi a = Equation 2.1 
d • V 

where A = the difference in absorbance (units) at the two wavelengths; v = volume of 

methanol (ml); V = volume of filtrate (1); d = cell path length (cm); units are fig 1'*. The 

constant (13.9) is the reciprocal of the specific absorption coefficient o f methanol x 10"'. 

2.1.5 Analysis of particulate trace metals 

2.1.5.1 Digest method for extractable trace metals in SPM and surface sediments 

Some of the cellulose acetate filters and retained SPM were digested at room temperature 

for 24 hours in covered PTFE reactors using 25 ml of I M HCl (AristaR, BDH made up 

with Mill i-Q). Three filters were separately digested for each station. For fine- and coarse

grained sediment fractions, approximately 0,7 g of material was digested in each reactor. 

Digests were performed in triplicate on both grain-size fractions from each sediment 

sampling site. 

The I M HCl digest removes weakly bound trace metals, believed to correlate more closely 

with bioavailability than other extraction methods (Luoma, 1983; Bryan and Langston, 

1992). This digest also attacks amorphous oxides and clays, although recoveries of lattice-

bound metals are low compared to a total extraction (Millward et al., 1996). It is noted 

therefore that the metal component liberated by I M HCl cannot be truly allied with any 

specific particulate phase (Luoma and Bryan, 1981) and possibly over-estimates the true 

fraction available to aquatic organisms. Enzymatic digestion techniques aimed at 

simulating conditions in the gut are now under investigation for the evaluation of 

'bioavaifable' or 'gut soluble' fractions of carbon, nitrogen, mineral and trace metaJs from 

contaminated sediments (Turner et al., 2001a). However, consistent use of the I M HCl 

leach within the research group (Williams, 1995; Millward et al., 1996; Sands, 1997; 

Dixon, 1998) and by other workers in the UK (e.g. Langston, 1986; Tappin et al., 1995), 

allows for direct comparisons between data sets for different estuaries. 

After digestion, each sample was filtered through a 47 mm, 0.45 | im cellulose acetate filter 

contained within a Nalgene polycarbonate filtration unit. The filters and PTFE beakers 

were rinsed with a few mis of I M HCl and the leachate transferred to a 50 ml polyethylene 

volumetric flask which was then made up to the mark with I M HCl. Procedural blanks 

were prepared in the same manner using unused filters. Reagent blanks were also prepared 

each time a batch of filters or sediments were digested by placing 25 ml of acid alone in a 
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Teflon beaker and continuing as for a normal sample, including filtration. The resulting 

digest solutions were stored in high density polyethylene (HDPE) bottles prior to analysis 

by Flame Atomic Absorption Spectrophotometry (FAAS) and Graphite Furnace Atomic 

Absorption Spectrophotometry (GFAAS). Samples of Certified Reference Materials 

(CRMs) BCSS-1 and PACS-1 supplied by the Canadian National Research Council 

(CNRC) and an in-house standard prepared firom <63 (im grain size North Sea sediment 

were co-digested (in triplicate) with each batch of estuarine samples. Approximately 0.7 g 

of material was used in each instance and treated in exactly the same manner as the Mersey 

sediment samples. The results of these analyses are presented in Section 2.2. 

2.1.5.2 Digest method for total metals in SPM 

An HF digestion method was employed for the extraction o f total metals (Williams, 1995). 

Weighed filters and associated SPM were placed in PTFE reactor vessels to which 1 ml of 

aqua regia and 1 ml of HF was added. The vessel was then placed in a boiling water bath 

for 1 hour, after which the remaining sample was evaporated to dryness. The vessel was 

washed several times with small volumes of I M HCl (AristaR, BDH) and the washings 

transferred to a 25 ml polyethylene volumetric flask. The digest solution was then carefully 

made up to the 25 ml mark with I M HCl before being filtered through pre-weighed 

cellulose acetate filters in order to remove charred remains of the original filters, (shown to 

produce interference in preliminary analysis by GFAAS). The resulting filtrates were 

stored in HDPE bottles for later analysis by FAAS and Inductively Coupled Plasma 

Atomic Emission Spectophotometry (ICP-AES). Blank filters, reagent blanks and the 

Certified Reference Sediments BCSS-1 and PACS-1 (approximately 0.7 g) were also 

digested in the same manner, to provide Quality Assurance data, the results of which are 

discussed in Section 2.2. 

2.7. J . 3 Analysis of extractable trace metals in SPM and surface sediments 

Flame AAS determination of particulate Fe, Mn and Zn in the digests was made using a 

PTFE microcup attached to a Varian SpectrAA 300/400 Plus flame atomic absorption 

spectrophotometer connected to an on-line printer. The instrumental parameters and 

standards used for each metal are given in Williams (1995). Deuterium background 

correction was applied for the measurement of Zn to reduce spectral interference caused by 

scattering. Samples were injected manually into the air-acetylene flame via the microcup 

using 200 | i l volumes. Sample absorbance was recorded digitally by the instrument and 
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was based on peak height. Concentrations of Fe, Mn and Zn were calibrated using linear 

calibration and a minimum of four standards prepared from Spectrosol standards (BDH) 

made up in I M HCI (AristaR, BDH) to maintain a consistent matrix between estuarine 

digest samples and standards. A l l standards were analysed in triplicate and a calibration 

curve fitted using the mean absorbance for each standard. The acceptance criterion for all 

calibrations was R > 0.995. Samples were analysed in triplicate and the batch analytical 

precision, as relative standard deviation of the method was <10% for each determined 

concentration. Samples were diluted i f necessary using I M HCI (AristaR, BDH) so that 

their absorbance readings fell within the linear ranges of the calibrations and re-calibration 

was performed after every 10 samples. Detection limits were taken as being three times the 

standard deviation of the blank values and these, along with the blank concentrations 

obtained for Fe, Mn and Zn using FAAS are reported in Table 2.2. 

Surface sediment and SPM samples digested with I M HCI were analysed for Cd, Co, Cu, 

Ni and Pb by GFAAS using a Perkin Elmer 4100ZL with Zeeman background correction 

connected to a Perkin Elmer AS-70 autosampler. Optimisation of the GFAAS temperature 

programmes was performed so as to identify the temperature that gave maximum 

absorbance and smoothest peak profile. Calibration was by the linear method using a 

minimum of four standards made from Spectrosol standards (BDH) made up in I M HCI 

(AristaR, BDH). A l l standards were analysed in triplicate and a calibration curve was fitted 

using the mean blank corrected peak area for each standard. The same acceptance criteria 

were employed for calibrations and sample measurements as described previously for 

FAAS. 

The analysis of marine and estuarine samples is often complicated by an array of matrix or 

'salt' effects (Sturgeon, 1989). Matrix interferences arise when the physical characteristics 

of the sample and standard differ considerably, i.e. a high salt content within estuarine or 

marine samples compared to acidified standards. This may occur, even i f measures are 

taken to remove seawater salts by extensive washing of the particles upon initial filtration. 

The use of matrix modifiers combined with selection of the correct instrumental conditions 

can reduce or eliminate such effects (Tsalev et a/., 1990). Matrix modifiers work by 

reacting with the analyte, stabilising the metal so that higher pyrolysis temperatures can be 

used to obtain smoother peak profiles. 

Full details of the ftimace programmes used, instrument operating parameters, standards 

and maU-ix modifiers employed are given elsewhere (Williams, 1995). Optimisation of the 
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Table 2.2 Blank concentrations and detection limits for Fe, Mn and Zn determinations using FAAS. 

Survey Jul/97 Dcc/97 
Blank concentration 
Mar/98 Jun/98 Oct/98 Jul/99 Jul/97 Dec/97 

Detection limit 
Mar/98 Jun/98 Oct/98 Jul/99 

SPM 

I M H C I 
Fe (mg r') 0.07 nd nd nd nd # 0.92 0.31 0.68 0.16 0.27 
Mn (mg r') 0.09 nd nd nd 0.06 0.83 0.16 0.33 0.10 0.16 
Zn (mg r') nd nd nd 0.01 nd # 0.02 0.05 0.05 0.02 0.12 

SPM 

HF 
Fe(mg r') # nd 0.15 nd nd # 0.31 0.32 0.62 0.56 
Mn (mg r') nd 0.02 nd nd 0.16 0.13 0.18 0.23 
Zn (mg r') # 0.02 0.17 0.01 0.01 # 0.03 0.26 0.03 0.03 U 

SEDIMENT 

I M H C I 
Fe(mg 1') 0.13 # 0.07 0.38 U U # U 0.44 
Mn (mg r') 0.39 nd 0.27 # u n u 0.28 
Zn (mg !•') 0.03 # U # nd 0.02 u # # 0.02 

nd = below limits of detection; # = not part of sampling/analytical programme 
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Table 2.3 Blank concentrations and detection limits for Cd, Co, Cu, Ni and Pb determinations using GFAAS. 

Blank concentration Detection limit 

Survey Jul/97 Dec/97 Mar/98 Jun/98 Oct/98 Jul/99 Jul/97 Dec/97 Mar/98 Jun/98 Oct/98 Jul/99 

SPM 

I M H C I 
Cd (ng r') 0.17 0.10 0.01 nd 0.01 # 0.95 0.15 0.07 0.23 0.21 
Co(^g r') # nd nd nd nd # 1.18 2.76 2.59 1.65 
cu(ng r') 0.42 nd nd nd 0.09 u 1.98 1.02 1.75 1,19 0.61 
Ni(Mg 1-*) # nd nd 0.43 nd # # 1.25 3.14 4.02 3.01 
Pb(Mg !•') nd 1.79 0.28 nd 0.09 # 3.98 3.75 1.73 4.38 1.28 

SEDIMENT 

I M HC! 
Cd (^g !••) nd U U # # nd 0.12 U # # 0.11 
Co (Mg I-') # # U # 1.02 # # # # # 1.61 
Cu (Mg r') 0.27 # nd 3.95 # # 1.50 
Ni(Mgr') # # # nd # # 0.89 
Pb(Mg !•') 1.67 # U u 0.02 3.01 # 1.41 

nd = below limits of detection; # = not part of sampling/analytical programme 
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furnace programmes was performed as necessary for each metal, by cycling through 

different combinations of char and atomisation temperatures. Detection limits (determined 

as 3a of the blank) and blank concentrations obtained for particulate Cd, Co, Cu, Ni and 

Pb using GFAAS are provided in Table 2.3. 

The HF-extractable trace metals were analysed by ICP-AES on a Varian Liberty 200. The 

acceptance criteria for the determination of total trace metal concentrations were the same 

as for FAAS and GFAAS. Blank concentrations and detection limits for measurements of 

total particulate Cd, Co, Cu, Ni and Pb by ICP-AES are given in Table 2.4, 

Table 2.4 Blank concentrations and detection limits for Cd, Co, Cu, Ni and Pb 
determinations using ICP-AES. 

Blank concentrations Detection limits 

Survey Dec/97 Mar/98 Jun/98 Oct/98 Dec/97 Mar/98 Jun/98 Oct/98 

Cd (lig 1') 1.46 1.01 2.29 2.16 2.43 3.43 1.76 3.26 
Co(^g 1-') 4.49 1.58 1.07 0.84 4.98 4.74 4.99 4.98 
Cu (ng r') 3.96 1.17 1.56 2.89 4.64 2.14 3.67 4.48 
Ni (Mg r') 2.46 1.16 2.10 1.69 3.25 1.50 3.28 2.71 
Pb(^g r') 1.71 1.45 1.59 1.42 4.93 3.02 3.12 2.73 

2.1.6 Particulate carbon analysis 

Particulate organic carbon was initially estimated by the loss on ignition (LOI) method for 

the July 1997 and December 1997 surveys. Filters (OFF) and size-fractionated sediments 

were ashed at 450 °C for 8 hours and the percentage weight loss calculated. However, this 

method has previously been reported to overestimate POC by around 10% al this 

temperature. It is thought this is due to the loss of structural water associated with clay 

lattices and other inorganic materials at or below 450 °C (Mook and Hoskin, 1982). The 

results were used only to provide a guide for subsequent analyses and are not reported 

ftirther here. The carbon and nitrogen contents of fi-eeze-dried sediment and SPM samples 

collected in later surveys were measured using a Carlo Erba E A l 110 Elemental Analyser, 

calibrated with acetanilide, cyclohexanone and EDTA standards. 

Reliable determinations of elements such as C and N in sediments are requisite for 

biogeochemical and partitioning studies. Accurate elemental concentration data are 

essential for the validity of C:N ratios, for example, that help to identify the origins of 
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organic matter in estuarine and marine systems (Matson and Brinson, 1990; Meyers, 1994; 

Thornton and McManus, 1994, Hellings et al., 1999). It has been suggested that 

differences in analytical methods may explain much of the observed variability in oceanic 

C concenu-ations (King et al., 1998). Percentage organic carbon contents of sediments are 

traditionally achieved through the removal of carbonates by acidification of the sample, 

either by the direct addition of concentrated acid or by vapour acidification (Ryba and 

Burgess, 2002 and references therein). The direct application of I M HCl has been 

recommended for the accurate determination of organic carbon in marine sediments (Ryba 

and Burgess, 2002) but should not be used for H , N , O or S measurements. However, after 

much consultation it was decided that filming would not be used to remove CaC03. The 

analysis of SPM on filters therefore represents that of total C. 

For bulk SPM, PSPM and TSPM loaded on GF/F filters, small discs were cut with an 

8 mm diameter metal cork borer. Three discs were removed from each filter and three 

filters were used for each station and each sample type. This was done to account for any 

differences in SPM distribution across individual filter surfaces. Thus, a total of nine discs 

representing every station or sample type were analysed by CHN. The discs were 

individually placed in weighed tin foil capsules and the combined weight of each capsule 

and disc recorded. Correction was made for the contribution to the total mass made by the 

portion of filter material present before the sample mass was entered on the computer 

program. The tops of the capsules were carefiilly sealed and the capsules squeezed with 

metal tweezers to make them as small as possible for loading into the autosampler 

carousel. 

For the last two surveys (May 2000 and July 2000), water remaining in the carboys after 

sub-sampling for filtration, was allowed to settle out over a period of 3 hours. The settled 

material was then careftilly harvested, filtered and freeze-dried. This procedure is therefore 

not the same as that described for the routine settling experiments in Section 2.1.3.2 but 

was performed so that as much SPM as possible could be recovered. The same carbon 

analyses could then be performed upon both this material and size-fractionated bed 

sediments as follows. 

Small portions (typically around 10 mg) of freeze-dried size-fi-actionated sediments and 

bulk settled SPM were carefully introduced into the foi l capsules using a small metal 

spatula and then treated in the same manner as the SPM samples. These samples were 

prepared in triplicate and measurements made upon them therefore relate to total carbon 
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and nitrogen present in unaltered (natural) samples. The remaining bulk settled SPM and 

fractionated sediments were subjected to a sequential digest as used by Thomas et al., 

(1994) and adapted by Bayon et al., (2002). In this method, a combination of 

hydroxylammonium chloride and acetic acid is used to remove both carbonate and Fe-Mn 

oxide fractions from sedimentary material, thereby allowing the measurement of organic 

carbon in a sample. It is the preferred digest in this study as it is thought to be less 

destructive than I M HCl (Ryba and Burgess, 2002) but just as effective at eradicating the 

Fe and Mn oxyhydroxide and inorganic carbon phases. Approximately 2 g of each natural 

sample was digested for 24 hours with 0.05M NH2OH.HCI in 25% CH3COOH. The 

samples were filtered, washed, air-dried and then freeze-dried before aliquots were taken 

for further CHN analyses. Of the remaining material, approximately 0.5 g was ftjrther 

digested in 30% H2O2 at 85 °C for 2 h to oxidise any organic matter prior to measurement 

of C, H and N . Resiilts from this material provided data on any residual particulate carbon 

remaining that was resilient to the initial (moderate) and second (harsh), acid digests 

employed. 

Triplicate analyses of the samples and blanks gave consistent coefficients of variation of 

within ± 5% (typically < 2 % ) , the precision being maintained regardless of sample type 

(i.e. SPM on filters, bulk material, total C, organic C and residual C). The total carbon 

contents of the CRMs BCSS-1 and PACS-1 were also measured in order to assess the 

accuracy of the technique and the results of these analyses are given in Section 2.2. 

2.1.7 Specific surface area analysis of SPM and sediments 

Natural and digested samples of bulk settled SPM and sediments arising from the July 

1999, May 2000 and July 2000 surveys were analysed using the multi-point BET 

N2-adsorption technique (Millward et al., 1990). This was done to assess the effects of 

removing inorganic and organic carbon (as outlined in the previous section) upon the 

amount o f 'active* surface present on Mersey particles. As the material was relatively fine, 

only around 0.2 - 0.3 g was used each time and the evacuation rate was lowered to 

50.0 mm Hg min'' to prevent loss from the sample tube. The instrument, a Micromeritics 

Gemini 2360 Surface Area Analyser was calibrated using kaolinite standards, the specific 

surface area of which was consistently found to lie within 4% of the certified value, 

2.1.8 Dissolved metal analysis 

Dissolved trace metals were determined by voltammetry using either a |i-Autolab 

55 



(Ecochemie) voltammeter connected to a Metrohm 663VA mercury drop electrode, or an 

Autolab (Ecochemie) voltammeter connected to a PAR 303A mercury drop electrode 

(Martino, 2000). Al l reagents for sample analysis were of AristaR analytical grade (BDH 

and Sigma); details of the reagents and analytical procedures are found elsewhere (Turner 

et al., 1998). Briefly, the acidified samples were UV-irradiated for 4 hours with a 400 W 

high-pressure Hg-vapour lamp to destroy organic matter, and analysed according to 

established methods (Martino, 2000). The accuracy of the technique was assessed by 

replicate analyses of CRM CASS-3 (coastal water) and SLRS-2 (river water), the results of 

which are provided in Table 2.10. 

2.2 Quality Assurance 

During analysis of trace metals arising from the first two surveys, an in-house reference 

sediment, originating from the North Sea was co-digested with each batch of sediment and 

SPM samples. The results of these quality control samples are provided in Table 2.5. This 

material had been analysed previously within the laboratory using the same leach and thus 

provided a historical data set of 'certified' values (Williams, 1995). Cobalt and nickel 

determinations were not made for the first (July 1997) survey. Concentrations o f Fe, Mn, 

Cd, Cu, Ni and Pb determined in this study were all within 10% of historical values. A 

two-tailed t-test was performed on the data in Table 2.5. As Ccilculated values for ( are less 

than tabulated values in all cases, the results of the test indicate very highly significant 

agreement at the 99.9% confidence level between the means of observed and historical 

concentrations for all metals. 

Table 2.5 Certified and detected concentrations of trace metals available to I M HCI in 
an in-house reference sediment, where n = number of determinations, and 
tcaic and tcrit are calculated and critical values for / obtained in a t-test. 

Observed Concentration Historical Concentration 

Metal Mean RSD n Mean RSD D fcalc 

Cd(ngg-') 0.40 ± 0.08 20 6 0.38 ±0.08 20 8 0.18 4.32 

Co(Mg g') 7.9 ± 0.4 14 6 7.6± 1.1 14 8 0.26 4.32 

Cu(Mg g-') 26.4 ±3.5 13 6 28.6 ±4.5 16 8 0.39 4.32 

Fe (mg g') 18.3 ± 1.8 ID 8 16.8 ± 1.9 I I 11 0.57 3.97 

Mn (fig g ') 691 ±46 7 8 675± 121 18 10 0.12 4.02 

Ni(^gg-') 22.6 ±3.7 16 6 22.4 ±7.8 15 8 0.02 4.32 

Pb(figg') 117± 10 9 6 119± 12 10 8 0.13 4.32 

Zn (ng g*') 141 ±23 13 8 130± 12.6 10 10 0.42 4.02 

56 



For subsequent surveys, the CRMs BCSS-1 and PACS-1 were analysed after being 

subjected to the I M HCI leach, the results of which are presented in Table 2.6, 

Unfortunately there are no certified concentrations for I M HCI-extractable trace metals 

available and therefore the accuracy of these analyses cannot be fully assessed. However, 

comparisons of the percentages of each metal recovered using this digest to that yielded 

using a total digest indicates variability, not only between metals but also the sediments 

themselves, thus highlighting the selectivity o f I M HCI as a leaching agent. Moreover, the 

percentage recoveries closely match those determined in two other studies. 

Table 2.6 Percentage metal recovered by I M HCI on the certified reference sediments 
BCSS-1 and PACS-1, where n = number of determinations. The values 
indicate the mean of observed recoveries compared to the mean of the 
certified total metal concentration. 

CRM n Cd Co Cu Fe Mn Ni Pb Zn 

BCSS-1 
This work 12 80 41 46 22 24 24 92 49 
Sands(1997) 4 - - - 22 23 30 - 42 
Dixon (1998) 5 105 - 45 24 26 - 104 -

PACS-1 
This work 12 77 46 64 35 28 46 94 83 
Sands(1997) 4 - - - 37 28 47 - 82 
Dixon (1998) 5 105 - 67 37 28 100 

Quality Assurance for the measurement of total metals was provided by analysis of the 

same CRMs (BCSS-1 and PACS-.l) using ICP-AES, the results of which are provided in 

Table 2.7. 

Table 2.7 Total metals analysis of BCSS-1 and PACS-1 by ICP-AES. Number of 
determinations made in this study for each CRM = 9. Concentrations are in 
|ig g'*, apart from Fe (mg g"'). 

CRM Cd Co Cu Fe Mn Ni Pb Zn 

BCSS-1 
Measured 0.29 ± 1.0 I2 .6± 1.9 17.3±2.5 3 I . 7 ± 1.3 2 2 0 ± 2 5 5 I . 4 ± 3 . 8 3 I . 5 ± 3 . 0 136± 19 

Certified 0 .25±0 .04 l l . 4 ± 2 . ! 18 .5±2.7 32.9 ± 1.0 2 2 9 ± 1 5 55.3 ± 3.6 2 2 . 7 ± 3 . 4 n 9 ± 1 2 

PACS-1 
Measured 2 .40±0 .40 18 .9±1 .2 4 7 3 ± 4 0 44.6 ± 1.7 468 ± 66 4 3 . 8 ± 2 . 4 4 I 0 ± 2 6 777 ± 56 
Certified 2 .38±0 .20 17.5±1.1 4 5 2 ± 1 6 4 6 . 9 ± 0 . 8 4 7 0 ± 1 2 44.1 ± 2 . 0 404 ± 20 824 ± 22 
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The results indicate that generally, detected concentrations are within 10% of certified 

values. There is evidence of slight sample contamination resulting in over-estimations of 

Pb and Zn for BCSS-I, which is believed to be due to the preparation o f 3 BCSS-1 samples 

coinciding with a period o f laboratory refurbishment at the University o f Plymouth. A 

t-test is not possible on the data in Table 2.7, as the number of determinations made on the 

CRMs by CNRC in order to derive the certified metal concentrations is not indicated on 

the certificate accompanying the CRM samples. 

Accuracy of the CHN analyses was also checked. This was achieved by the measurement 

of total particulate carbon in BCSS-1 and PACS-1, the findings of which are presented in 

Table 2.8. The results show that the analytical protocols employed were highly 

reproducible, with measured values being consistently within 4% of the certified values. A 

t-test is not possible on the data in Table 2.8, as the number of determinations made on the 

CRMs by CNRC is not indicated. 

Table 2.8 Analyses of total carbon in BCSS-1 and PACS-1, where n = number of 
determinations made in this study. 

BCSS-1 PACS-1 

n 18 18 
Measured (%) 2.10 ±0.07 3.54±0.13 
Certified (%) 2.19 ±0.09 3.69 ±0.11 

The dissolved metal analyses were tested against two CRMs, CASS-3 and SLRS-2, which 

give a range o f concentrations normally encountered in estuarine waters (Martino, 2000). 

Again, as for BCSS-1 and PACS-1, a statistical comparison of measured and certified 

metal concentrations in CASS-3 and SLRS-2 cannot be made as the number of 

determinations made on the CRMs by CNRC is not known. 

Table 2.9 Analysis of CRM CASS-3 and SLRS-2 (nM), where n = number of 
determinations; nd = below the limit of detection (Martino, 2000). 

CRM Cd Co Cu Ni Pb Zn 

CASS-3 
Measured (n =6) 0.35 ±0.07 0.51 ±0.14 8.0 ±0.75 5-8 ±0.50 nd 22.4 ± 1.3 
Certified 

=6) 
0.27 ± 0.02 0-70 ± 0.08 8.1 ±0.50 6-6 ± 0.50 0.06 ±0-01 19.0 ± 1.5 

SLRS-2 
Measured (n = 5) 0.56 ±0.06 0.85 ± 0.04 40.2 ± 1.8 19.8 ±0-7 0.64 ± 0.02 49.6 ± 1.4 
Certified 

= 5) 
0.25 ± 0.02 1.0±0.10 43.4 ± 1.4 17.5 ±0.9 0.62 ± 0.03 50.9 ± 1.2 
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2.3 Laboratory studies 

Radiochemical experiments were performed in the laboratory using native water samples 

from the March, June and October 1998 surveys (Figure 2.1). The high specific activity 

Y-emitting radioisotope ^°^Hg (E = 279 keV; tm = 47 days) was used to examine the 

extent of metal uptake by estuarine SPM. The method assumes that the very small amount 

of radioactive Hg introduced behaves in the same way, chemically, as stable Hg and does 

not perturb the pre-existing chemical equilibrium of the sample (Anderson et aL, 1987). 

2.3.1 Preparation of equipment for radiochemical experiments 

Al l bottles, carboys, filters and filtration units for the collection, filtration and storage of 

water samples used in these experiments were cleaned as described in Section 2.1.2. In 

addition, a small Millipore glass filtration unit capable of taking 25 mm filters and 60 ml 

Nalgene polycarbonate bottles were soaked in 5% Decon for 24 hours, rinsed thoroughly 

with Mill i -Q water and soaked in I M HCI (AnalaR, BDH) for 48 hours. They were then 

rinsed with Mill i -Q and dried in a laminar flow hood. Cellulose acetate filters (25 mm, 

0.45 iim pore size, Sartorius) were washed for 24 hours in O.IM HCI (AristaR, BDH) 

before being rinsed in Milli-Q and placed in individual acid-washed petri dishes. The 

filters were dried overnight in a laminar flow hood and then weighed. 

2.3.2 Sample collection and pre-treatment 

Near-surface water samples were collected in acid-washed 10-litre carboys as described in 

Section 2.1.3 (see also Figure 2.1). Some of the SPM used in the radiotracer experiments 

was derived fi-om settling experiments, the procedures for which are also outlined in 

Section 2.1.3. (Figure 2.1). A l l samples set aside for incubations were stored in the dark at 

4 °C until use. 

2.3.3 Incubation experiments 

The sorptive behaviour of inorganic mercury has been investigated by undertaking 24 h 

uptake experiments using the radiotracer ^ '̂•'Hg. Incubation times may be varied according 

to the reactivity of the metal being applied. For instance, a period of five days has been 

utilised in studies using ^^Zn, ***̂ Cd and '"''Cs, when added to samples taken from estuaries 

with considerable flushing times (Turner et a/., 1992a). In these instances, results indicated 

that five days was a suitable timescale for these metals with low particle reactivities to 
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achieve equilibration between dissolved and particulate phases. However, Hg has a strong 

affinity for particles and the uptake of ^°^Hg is virtually instantaneous, with almost 

complete adsorption occurring within one minute (Le Roux, 2000). Therefore, incubations 

with unfiltered water samples were accomplished for the calculation of 1-day KdS, the 

procedures for which are illustrated schematically in Figure 2.4. 

Laboratory studies are often conducted in discrete, parallel experiments which 

inadequately reproduce the in situ variability of salinity, turbidity, the chemical 

composition of SPM and the relative dominance of different particle types in suspension. A 

batch mixing method is often employed in radiotracer partitioning experiments, whereby 

freshwater sediment slurry of known turbidity is added to waters that are made up of 

combinations of filtered river and marine end-member water samples that have been 

previously equilibrated with radioisotope. Under such conditions, turbidity and salinity are 

controlled. The investigations made in this study have involved the addition of radiotracer 

to ambient water samples of naturally varying compositions. It is envisaged that results 

will therefore indicate the degree of in situ radiotracer partitioning under more realistic {i.e. 

natural) estuarine conditions. 

Natural water samples fi-om all 18 stations sampled during the March 1998 survey were 

used for initial incubation studies but because of the large number involved, this batch of 

experiments was only performed in duplicate. However, this did allow a study of ̂ **'*Hg 

uptake by SPM samples fi-om the entire axial transect. For the June and October 1998 

surveys, only water samples from sites used in settling experiments were utilised. These 

sites were chosen primarily to cover a wide range in salinity and turbidity and the smaller 

number of samples allowed for each set of assays to be performed in triplicate. 

Prior to the incubation experiments, acid-washed polycarbonate bottles were conditioned 

overnight with the estuarine samples and stored at 4 '̂ 'C thereby limiting adsorption of 

radiotracer to the container walls. Fresh sample (40 ml) was then introduced and spiked 

with 20 \i\ of ̂ °^Hg solution previously prepared using filtered river water and radioisotope 

stock supplied by Amersham International (HgCb/HCI). A final activity of the isotope of 

approximately 100 Bq ml ' ' was achieved in the reaction vessels. These concentrations 

were in the nanomolar range i.e. close to those encountered in the marine environment-

The samples were shaken at 300 rpm for 24 hours at a constant temperature of 20 °C 

before filtration through pre-weighed cellulose acetate filters- The pH of each sample was 

monitored before and after addition of the spike and at the end of the incubation period. 
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Settled SPM Unsettled SPM 
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Incubate in triplicate for \ 
24 hours @ 20 °C. J 
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Settling after 
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Fi tration 

Filtrate 

24 h in I M HCl 

Automated y-counting 

Calculation of Kp 

Figure 2.4 Protocols for radiochemical experiments. 

Sample pH was virtually unaltered by the addition of the radioisotope, only varying by 

± 0.2 pH units. The filters and 20 ml of the filtrates were then placed into acid-washed 

scintillation vials to measure particulate and dissolved *̂*̂ Hg activity. Gamma-energies 

were counted using a high performance Wallac 1480 'Wizard 3' Gamma Spectrometer 
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with Nal detection; each sample was counted three times for 1 000 s and automatically 

background corrected. After counting, filters were dried and re-weighed. Radioactive 

decay correction was calculated for all activities measured due to the relative length of the 

experiments and the short half-life of the radioisotope. The range of counting errors was 

usually < 1% for filters and < 5% for filtrates. Partition coefficients ( K q s , 1 kg"') were 

calculated as follows (Turner et al., 1993): 

= Equation 2.2 

where Ap and As are the blank corrected activities on the filter and in solution respectively; 

Kis the volume of solution in ml; m is the dry mass of SPM on the filter in mg; and/is the 

geometric correction factor, determined from the ratio of measured activity per spike 

absorbed in a blank filter and dissolved in 20 ml of ultra-pure water. 

Samples of PSPM and TSPM from the March, June and October 1998 transects were 

isolated by settling and also incubated with ^ '̂̂ Hg in the same manner as previously 

described, thereby allowing an examination of radiotracer uptake by the two different 

suspended particle populations. Another experiment was undertaken using the March 1998 

samples in which bulk SPM was differentiated by settling for 30 minutes after the 24-hour 

incubation period (Figure 2.4). After 30 minutes, the PSPM was carefully removed using a 

dropping pipette and filtered. The filter was replaced with a new one and the TSPM 

remaining in the polycarbonate bottle was then also filtered. Both filters and 20 ml of the 

corresponding filtrates were then counted as described earlier. Comparison of the results 

issuing from this experiment and that conducted v^th previously fractionated SPM showed 

very little difference in results between the two protocols. Therefore, the post-incubation 

settling experiment was not repeated for later surveys. 

Half of the samples in each type of experiment performed in March 1998 were poisoned 

with 5% (w/w) NaN3 (10 ^ l per 10 ml of sample) in order to assess the effect of potential 

biological activity upon ^̂ '̂'Hg uptake. Normally, HgCb would be used as a metabolic 

inhibitor but its use in these experiments was avoided, as the presence of additional Hg 

would have negated the findings. Insignificant differences in partitioning were observed 

between poisoned and unpoisoned samples, indicating that biological activity appeared 

minimal in March 1998. Nevertheless, the use of NaNa was continued in subsequent 

experiments in case microbial or photosynthetic activity became more prevalent for other 

seasons. 
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After counting, the dried and weighed filters from experiments conducted in June 1998 and 

October 1998 were placed in acid-washed 20 ml Sterilin tubes and subjected to a partial 

acid digest. 5 ml of I M HCl (AristaR, BDH) was added and the filters left for 24 hours, 

after which time the digests were carefiilly re-filtered using the same filter. Filters and 

leachates were placed into scintillation vials for y-counting. The filters were then dried at 

room temperature and re-weighed. Leachable *̂̂ ^Hg fractions were calculated from the 

activities measured in leachates after the extraction and the activities on the filters used for 

mass balance calculations. 

The relative standard deviation for three replicate experiments ranged from 4 - 27% and 

average ^''"'Hg recoveries were around 80%. Owing to its high particle reactivity, losses of 

*̂*̂ Hg by wall adsorption were sometimes observed during the overall experiment despite 

pre-conditioning the reaction vessels (after L i et al., 1984a). Washing out the containers 

with I M HCl after incubation and filtration has indicated that wall adsorption can account 

for up to 15% of the lost ^^^Hg (Le Roux, 2000). However, percentage loss was 

significantly reduced with increasing salinity and also the increased presence o f suspended 

material. Turbidities of the ambient samples used in this study varied widely from 

30 - 580 mg r ' , which leads to the hypothesis that i f the number of particles present is 

relatively low, then loss of radiotracer to the container walls may be increased. Results 

showed that this could indeed be the case where SPM concentrations were below 

100 mg r \ as recoveries o f the radioisotope were generally lowest and rsd values were 

highest in these less turbid waters. 

Recoveries of particulate radioisotope after the acid leach were calculated from the initial 

activity on the filters and the sum of the activities on the filters and in the leachates after 

the extraction. Reproducibility of the procedure was better than ± 2% (n = 3) and an 

average radiotracer recovery of 96 ± 2% was attained. 

63 



Chapter 3 

The Chemical Framework 

64 



3 The chemical framework 

The purpose o f this chapter is to defme the prevailing biogeochemical conditions existing 

within the Mersey Estuary in order to support interpretation of the trace metal data. Results 

from the axial surveys, pertaining to the measurement of surface water master variables, 

particulate carbon and nitrogen and specific surface areas of estuarine particles are 

presented here. River flow data and estuarine nutrient concentrations kindly supplied by 

the EA have been incorporated to complement the discussion. 

3.1 Freshwater input to the estuary 

The River Mersey has a total catchment area of 2 030 km^ (Davidson et aL, 1991), a mean 

annual flow of 31 m"* s'' (Buck, 1993) and is the dominant source o f fresh water to the 

estuary (see Section 1.4.2). Mean daily flow data, provided by the EA, have been used to 

construct an episodicity curve for the River Mersey (Figure 3.1) covering the period 

01/01/1997 - 01/10/2000. Flow measurements were taken at the same time each day (0900 

hrs) at the river flow gauging station in closest proximity to the 'normal' tidal limit at 

Howley in Warrington. At Howley, a mechanically operated weir can be used to regulate 

freshwater input. It is also notable that the weir may be overtopped during extreme spring 

tides, pushing the limit of saline intrusion upstream of its usual position (P. Jones, EA, 

pers. comm.). The gauging station, *Westy Flow' (NCR SJ629884), is situated 

approximately 2.5 km upstream from Howley Weir and covers a catchment area of 

660 km^ (Davidson etal., 1991). The episodicity curve is fairly platykurtic, suggesting that 

40 50 

Cumulatj\e % time 

Figure 3.1 Episodicity curve for the River Mersey. The triangle represents the lime for 
50% of the cumulative flow. 
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the flow of the River Mersey is generally relatively low and consistent- The profile 

indicates that 50% of the flow occurs within 25% of the time. This is in contrast to the 

River Tamar for example, where analysis of long-term data reveals that 50% of the fluvial 

flow takes place over 17% of the time, resulting in a more pronounced curve. 

The same flow data have been utilised for the calculation of mean daily and monthly flows 

for the River Mersey between January 1997 and September 2000 (Figure 3.2). Daily mean 

flows were highly variable, ranging fi-om 2 m"* s"' on 24 June 1999 to 132 m^ s"' on 

03 December 1999 (Figure 3.2a). The average mean daily flow for the period covering all 

surveys within this study (July 1997 - July 2000) was 43 m^ s''. River flow gradually 

decreased through the spring and summer then rapidly increased again in the autumn. 

Spring and autumn were generally characterised by frequent, but short, periods of flood. 

The most persistent drought and flood events occurred between June 1999 and June 2000. 

The range of flows within each month (indicated by the error bars in Figure 3.2b) also 

varied and was usually greatest in the winter and spring compared to the summer. 

Comparing the monthly ranges (Figure 3.2b) to mean daily flows recorded on the days of 

axial surveys of the estuary (see Table 2.1, Section 2.1-1) confirms that neariy all field 

sampling during this project was conducted v^thin flow regimes that were typical for those 

months. The only exception to this was during the 16 December 1997 survey when the 

flow (28.5 m^ s'') was only half that of the average discharge for that month (59.4 m-* s'*). 

In general therefore, surveys were accomplished under normal flow conditions for the 

different times of year. 

3.2 Master variables 

Figure 3.3 displays the master variables plotted as a fiuiction of distance from the normal 

limit of saline intrusion. Data for chlorophyll a and dissolved organic carbon have also 

been included as these parameters help to fiirther characterise underiying chemical 

conditions present within the water at the times of sampling. Salinity (Figure 3,3a) shows 

an exponential increase with movement downestuary. The plots generally lack the 

characteristic S-shaped profiles normally indicative of a partially mixed system (Dyer, 

1997). Assuming the freshwater flow, Qf, into the Mersey generally ranges between 25 and 

200 m*̂  s"', this produces a mean flow ratio (Qf x 12.42 h/volume between high and low 

water) of approximately 0.01 (Prandle et al, 1990). As the flow ratio is < 0.1, the estuary 

tends towards a well-mixed type (Dyer, 1997). However, during part of the tidal cycle, 

certain sections only undergo partial mixing. This is thought to be due to the unusual 
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Figure 3.2 Mean (a) daily and (b) monthly, river flows in the River Mersey at Westy 
Flow river flow gauging station during the period January 1997 to 
September 2000. Source: Environment Agency. The timing of surveys is 
indicated by • in (a). 

morphology of the estuary, which has a narrow entrance channel broadening into a wide 

and shallow inner basin (Figure 1.4). Similarly, when river flow is relatively high, as in 

October 1998 (82 m"* s"*), the waters in the upper estuary become only partially mixed. The 

most prominent feature of Figure 3.3b is the presence of a turbidity maximum located 

almost 10 km fi-om the tidal limit. Highest concentrations of SPM, at around 700 mg l ', 

occur here in December 1997. The TMZ is shifted seawards during October 1998 due to 
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the higher river flow. This is a common feature of macrotidal estuaries, where ebb tides 

generally extend for longer periods than flood tides. Higher current velocities generated 

during flood tides compared to ebb tides effectively 'pump' erodable bed sediments and 

other particulate matter into the upper reaches of the estuary, particularly when freshwater 

input is low (Uncles et aL, 1985; Morris et aL, 1986; Uncles and Stephens, 1989). Further 

upestuary advection of particles is prevented when fluvial flows balance tidal pumping 

which occurs at the estuarine null point. By contrast, during periods of spate, tidal pumping 

is repressed and the TMZ relocates fijrther down the estuary (Morris et aL, 1986; 

Uncles et al., 1994). Lyons (1997) found that variation in tidal velocities during the spring-

neap tidal cycle altered the degree of tidal pumping, producing oscillations in the position 

of the TMZ in the Ribble Estuary. Temperature (Figure 3.3c) exhibits obvious seasonal 

differences. Highest water temperatures are recorded in July 1997, June 1998 and July 

2000 and the lowest in December 1997, whilst intermediate temperatures are measured in 

March 1998, October 1998 and May 2000. Dissolved oxygen saturation is lowest in July 

1997, June 1998, May 2000 and July 2000 (Figure 3.3d) and there is evidence of an 

oxygen sag in the upper-middle reaches, extending over a distance of approximately 30 km 

before gradually improving in the lower estuary. This trend is most marked during July 

2000. The broad oxygen sag coincides with a general decrease in pH (Figure 3.3e) and is 

due to the bacterial degradation of organic loads from effluent discharges combined with 

tidally-resuspended, organic-rich bed sediments and decaying plankton (NRA, 1995; Jones 

2000). A smaller sag, apparent at - 2-7 km from the tidal limit during the March 1998, 

June 1998 and May 2000 surveys, is most likely associated with either the T M Z or the null 

point. However, it is notable that oxygen saturation has dramatically improved since the 

start of the clean-up campaign due to reductions in oxygen consuming wastes entering the 

estuary (NRA, 1995; Jones, 2000). Comparisons of chlorophyll concentrations measured in 

Liverpool Bay in December 1997 with measurements made for the other surveys suggests 

the presence of phytoplankton blooms in the estuary in Jime 1998, May 2000 and July 

2000 (Figure 3.3f). Phytoplankton populations detected in the estuary are expected to 

derive from both riverine and marine end-members, transported by freshwater and tidal 

inflows to the null point, where marine and fluvial fronts converge. Here, increased 

sediment resuspension would result in the release of degraded and/or aged mineral-bound 

organic material from sediment matrices, thus aiding the release of nutrients into the 

dissolved phase and hence into a form readily accessible for uptake by phytoplankton 

(Komada et al, 2002). However, nutrients are anticipated to be unlimited in the Mersey due 

to the number of effluent discharges and the potential for significant diffuse inputs issuing 

from an extensive catchment. The UK interpretation of the EC Urban Waste Water 
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Treatment Directive (91/271/EEC) suggests that an exceedance of 10 |ag 1' chlorophyll a 

is indicative of the presence of algal blooms, although not necessarily characteristic of 

eutrophication. Concentrations in excess of this value have been found in the Dee and 

Mersey estuaries, the Ouse, Wash, Tees and Thames with highest chlorophyll a 

concentrations occurring on the largest scale in the South-Eastem Irish Sea (EA, 1999). 

Restricted circulation in the Irish Sea produces an extended flushing time in Liverpool 

Bay, which is estimated to be between 7-16 months (Gowen et al., 2002). It is thought that 

the high concentrations of estuarine suspended sediment largely inhibits the growth of 

microalgae in estuaries such as the Thames, Mersey, Humber and Severn due to light 

limitation (EA, 1999). Even so, a fairly strong relationship exists between chlorophyll a 

and turbidity as, and with the exception of October 1998 when = 0.13, values of 

> 0.86 (where P < 0.01) are obtained. The apparent 'blooms' observed in the Mersey in 

this study are therefore more likely to originate in Liverpool Bay and be tidally advected 

into the estuary rather than being produced in situ. Riverine DOC concentrations (Figure 

3.3g) are high compared to other UK. estuaries (Table 3.1). 

Table 3.1 End-member concentrations of dissolved organic carbon (mg l ' ) for six UK 
estuaries. REM: Riverine End-Member (S < 0.3); M E M : Marine End-
Member (S>30). 

Estuary R E M M E M Distribution Reference 

Beaulieu 9-18 1.2-2.3 Removal Turner et al. (1998) 

Humber 3.6-7.1 0.96-1.32 Conservative/addition Alvarez-Salgado and Miller (1999) 

Mersey 9.1 - 10.6 1.0-5.5 Conservative/addition This study 

Severn 3.1-7.8 0.7-2.2 Conservative Mantoura and Woodward (1983) 

Tamar 5.7 1.3 Conservative/addition Miller (1999) 

Tweed 3.1-5.8 1.3-3.1 Conservative Martino (2000) 

Previous authors (Turner et a/., 2001b, 2002; Martino et al., 2002) have proposed that a 

significant fraction of Mersey DOC is likely to be of anthropogenic origin, mainly arising 

from the discharge of domestic and industrial effluents into the River Mersey. By way of 

contrast, the Beaulieu estuary is rich in natural dissolved organic matter and this is 

reflected in the elevated DOC concentrations found there. Small localised inputs combined 

with a more general trend of DOC removal at distances of 5 - 50 km from the tidal limit 

during the March, June and October 1998 surveys are suggested in Figure 3.3g. However, 

i f these distributions are plotted against salinity, largely conservative behaviour is 

exhibited (Figure 3.4), with data from the March, June and October 1998 transects showing 
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little seasonal variability. In contrast, axial DOC profiles from May 2000 and July 2000 

reveal that considerable addition is taking place throughout the mixing zone. This was 

initially thought to correlate with the growth and decay of phytoplankton blooms with 

autolysis, mechanical breakage or active excretion of metabolites releasing DOC to the 

surrounding water. However, Cole et al. (1982) have shown that photosynthetically 

produced dissolved organic carbon (PDOC) is an important carbon source for planktonic 

microbes and that the metabolism of PDOC is rapid, proceeding at almost the same rate at 

which it is produced by algae. Miller (1999) proposed that DOC addition in the Tamar 

Estuary arose from the mixing of organic-rich porewaters, desorption from particles, 

and/or disaggregation of macroaggregates by the tidal scouring of bed sediments. In the 

same paper it was implied that these mechanisms could also assist in explaining occasional 

non-conservative behaviour of DOC in the Humber (Alvarez-Salgado and Miller, 1999) 

and it would appear reasonable to suggest that the same processes could be occurring in 

May and July 2000 in the Mersey. 
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Figure 3.4 Axial concentrations of dissolved organic carbon as a function of salinity. 

3.3 Nutrients 

3.3.1 Estuarine nutrient distributions 

Dissolved nutrient species often display seasonal and shorter-term variability in 

concentrations and distribution patterns in estuaries. These arise ft-om changes in a variety 

of temporally and spatially variant controls, such as rates of input and export, 

homogeneous and heterogeneous chemical transformations, biological uptake and 
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regeneration processes (Morris et al., 1985). Estuarine distributions o f dissolved nitrate, 

nitrite, ammonium, phosphate and silicate from the six surveys conducted between 

December 1997 and July 2000 are presented in Figure 3.5. 
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Salinity-dependent distributions of the main nitrogen species (Figures 3.5a-c) exhibit little 

seasonal variability. Estuarine NH4* concentrations (Figure 3.5a and measured as NH3) 

ranged from 3.5 - 190 (0.060 - 3.2 mg 1'') with a mean concentration at S < 5 of 

150 \iM (2.5 mg I'*). This latter figure is relatively high compared to estuaries such as the 

Clyde, Delaware and Thames where average riverine concentrations have been reported as 

1.5, 0.77 and 0.04 mg \ ' \ respectively (Church, 1986; Muller et ai, 1994; Neal et ai, 

1998). Axial profiles of NH4"*" in the Mersey do not indicate conspicuous biological 

utilisation or nitrification. It is generally thought that the rate of nitrate uptake by 

phytoplankton is greatly diminished in the presence of ammonium and occurs either 

through 'inhibition' of nitrate uptake by ammonium or 'preference' for ammonium 

(Pennock, 1987; Dortch, 1990 and references therein). Moreover, at its most extreme, this 

mechanism is believed to operate such that no nitrate uptake occurs i f a threshold N H / 

concentration of - 1 j i M is exceeded. The in-depth study conducted by Dortch (1990) 

concluded that preference for ammonium would be maximal with low light and nitrogen 

deficiency, whereas inhibition of nitrate uptake would be favoured under conditions of 

nitrogen sufficiency and low light. Concentrations of nitrate, ammonium and suspended 

solids in the estuary are all high and it is anticipated that nitrate assimilation by 

phytoplankton would therefore be somewhat inhibited by ammonium. Slight removal of 

NH4* is suggested in both June 1998 and July 2000. For other surveys, conservative 

behaviour is observed (ignoring the outliers for October 1998 and June 1998 which are 

suspected to be analytical anomalies). Nitrite concentrations (Figure 3.5b) are low 

compared to ammonium and nitrate and represent an intermediate between nitrate 

reduction and nitrification. Addition of N02' occurs in Jime 1998 and July 2000 and it 

could be this rather than phytoplankton uptake which may explain the slight removal of 

NH4^ at these times. Further suggestion of nitrification in June 1998 is seen in Figure 3.5c 

as an overall positive deviation of NO3* from the theoretical dilution line but the same 

pattern is not apparent in July 2000, when highly conservative behaviour for NO3* is 

observed. Nitrate has previously been shown to behave conservatively with respect to 

salinity, particularly in small estuaries with short flushing times (Morris et al, 1981, 1985; 

Balls, 1994). In contrast, in the tidal reaches of the Mersey and with the exception of July 

2000, NO3' displays non-conservative behaviour for almost all surveys, tending towards 

alternating patterns of addition and removal throughout the salinity gradient. Nitrate 

concentrations at salinities < 10 are noticeably higher in July 2000 than for other surveys. 

Nitrate concentrations (measured as N) at salinities approaching zero appear to be 

independent of river flow and range from 240 - 320 \xM (3.4 - 4.5 mg 1"'), with a mean of 

280 | i M (3.9 mg I"'). Samples with salinities > 30 are still high in nitrate and consistently 
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contain up to 70 | i M (1 mg I ' ' ) N03'. Dissolved nitrate concentrations in the Mersey are of 

the same order of magnitude as those found in the Clyde (Muller et al, 1994) and 

Delaware (Church, 1986) estuaries. However, they are distinctly lower than those in the 

Thames, which experiences considerable nitrate enrichment of up to around 30 - 50 mg 1"* 

in its upper reaches (Johnes and Burt, 1993; Neal et al, 1998) and also the Humber-Ouse, 

which € 

1998a). 

which experiences a mean nitrate maxima of approximately 32 mg 1"' (Uncles et al.. 

Overall, whilst phytoplankton blooms may be present in the estuary at certain times of the 

year (Figure 3.3f), significant uptake of the two main nitrogen species is not readily 

observed. The implication of this is that concentrations of ammonium and nitrate are so 

high that seasonal depletion by algal populations is largely masked and that the observed 

deviations from conservative mixing may instead be due to other (possibly more 

significant) processes. Morris et al, (1985) measured ammonia maxima in the mid and 

upper estuarine regions of the Tamar, which were attributed to sediment release aided by 

tidal sediment disturbance. They demonstrated that the Tamar Estuary T M Z is a region of 

net catabolism of organic nitrogen and a source of N H / , brought about by the oxidative 

degradation of organic detritus accumulated and trapped within the region. Thouvenin et 

al. (1994) showed that the greatest contribution to total O2 demand in the vicinity of the 

Loire Estuary TMZ was associated with the amount of organic material present, whilst 

contributions from urban and industrial effluents were comparatively small. Owens (1986) 

conducted a study on nitrification in the water column of the Tamar Estuary and found a 

connection between nitrification and the turbidity maximum. Periodic tidal resuspension of 

inactive nitrifying bacteria located in anaerobic sediment horizons into oxic waters was 

thought to accelerate the nitrification rate. It was also postulated that i f the residence time 

of particles in the TMZ is sufficiently long then the number of particle-associated bacteria 

could have adequate time to increase. Uncles et aL (1998a,b) showed that bacterial 

numbers and SPM concentration are linearly related in the Humber-Ouse and have 

suggested that 3.3 x lO' bacterial cells could be present per mg SPM. These factors were 

responsible for the formation of peaks in the concentration of NO2" observed at, or 

proximal to, regions of highest turbidity. The findings were also in agreement with field 

data for the Ems-Dollard Estuary (Helder and De Vries, 1983). Maximum turbidities 

recorded for the Mersey in July 1997, June 1998, May 2000 and July 2000 are associated 

with significant depletions of DO in the first 20 km of the estuary and range from 350 -

610 mg r * . Bacterial numbers associated with the TMZ for these surveys could reach as 

many as 1.2 x 10'° - 2.0 x 10'° cells. Such sizeable bacterial populations would be 
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expected to exert a marked DO demand and produce distinct DO lags such as those shown 

in Figure 3.3, either through heterotrophic respiration or autotrophic ammonium oxidation. 

In common with the Tamar, the Mersey TMZ may possibly considered to be a 'fluidised 

bed reactor'. The accimiulation and retention of suspended particles and organic matter 

would assist in the multiplication of particle-associated bacteria in the Mersey TMZ and 

this has important consequences for estuarine geochemical processes as particles from the 

turbidity maximum are advected and dispersed along the salinity gradient. Prior to the 

onset of the Mersey clean-up, denitrifying processes were dominant in the estuary but 

improved oxygenation over the last 20 years has now turned the system into one where 

nitrification is gradually becoming more evident over time (Wither, 2003). 

Dissolved phosphate in the Mersey Estuary also shows some deviation from conservative 

mixing, with fairly consistent removal at salinities < 15 (Figure 3.5d). Balls (1994) showed 

that dissolved P is affected by adsorption onto SPM. Supporting evidence for this is the 

consistent loss of dissolved P04'*' at either the TMZ and/or FSI in the Mersey, a trend that 

has also been observed in the Humber Estuary by Uncles et al. (1998a). Interactions of P 

with freshwater sediments can include: (a) the coprecipitation of phosphate with calcite in 

lakes during phytoplankton blooms and with^benthic algal biofilms on river sediments and 

(b) the formation of vivianite (Fe3(P04)2-(H20)8) in anoxic bed sediments (House, 2003). 

Phosphate adsorbed to ferro-manganese oxides on particle surfaces may be re-dissolved 

when depression of dissolved oxygen causes reduction of Fe (III) to Fe (II) , (Prastka et al., 

1998). It is debatable whether O2 concentrations in the Mersey are low enough to support 

this phenomenon but the data suggest that dissolved P04'*' concentrations are lower in 

December 1997, March and October 1998 when there is more DO to maintain P in the 

particulate phase (Figure 3.5d). Similarly, higher concentrations of dissolved POa '̂ were 

measured at salinities <10 during June 1998, May 2000 and July 2000 in response to 

depleted oxygen levels in the water column. At higher salinities, phosphate concentrations 

generally decrease in a linear fashion. These trends have also been observed in the 

Delaware (Church, 1986) and the Seine (Chiffoleau et ai, 1994). Seasonal differences 

between axial profiles also result from changes in the amount of fresh water entering the 

estuary, producing variations in riverine concentrations of the nutrient (assumed to be 

approximate to those measured at salinities < 5). During periods of low flow, point source 

inputs issuing from sewage treatment works assume more importance than diffuse sources 

such as runoff from agricultural land which tend to prevail during freshet conditions 

(Robards et aL, 1994). The range of concentrations encountered in the Mersey (measured 

as P) lie between 0.68 - 32 | i M (0.021 - 0.99 mg I"'). These are analogous to those in the 
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Delaware and both systems show phosphate enrichment compared to the Tamar (Morris et 

al., 1981) and Seine (Chiffoleau et al., 1994), where concentrations are around one and 

two orders of magnitude lower, respectively. However, riverine concentrations are lower 

than estuarine concentrations of P04^' in both the Thames (Neal et aL, 1998) and Humber 

(Uncles et aL, 1998a) estuaries, which can experience maxima o f 1.4 mg dissolved 

phosphate. 

Diatoms require significant quantities of silica for their cell walls and Si can be limiting 

where diatoms are the prominent algae. Seasonal changes in silicon concentration are 

therefore primarily due to biological production. The dominant silicon species occurring in 

natural waters is reactive silica, i.e. soluble Si04^' <md its short chain polymers but it may 

also be present as longer polymers and inorganic and organic fractions of SPM. Reactive 

silica is probably the only form that is readily available for assimilation by diatoms. Other 

forms such as alumino-silicate clays and colloidal silica also play an important 

physicochemical role by providing sorption sites for phosphate and ammonium (Robards et 

aL, 1994). Silicate inputs into estuaries are relatively independent of anthropogenic 

influences but rather reflect catchment mineralogy (Conley et aL, 1993; Hessen, 1999; 

Gowen et aL, 2002). However, discharges of silicate from at least one point source within 

the Mersey catchment are known (Allen et aL, 1998; Kennington et aL, 1998). 

Morris et aL (1981) and Uncles et aL (1998a) have illustrated that silicate can exhibit 

prominent geochemical reactivity, becoming associated with the FSI and TMZ in the 

Tamar and Humber estuaries, in common with NO3', NO2", NRj^ and P04^'. Silicate data 

for the Mersey does not appear to agree with these findings. Dissolved silicate (Figure 

3.5e) has shown no clear seasonality throughout the duration o f this project and displays 

conservative behaviour during mixing. Concentrations (measured as Si02) are consistent, 

ranging between 5 - 1 7 0 ^ M (0.30 - 10.4 mg 1'*), and are approximately tv^ce that 

measured in the Tamar Estuary by Morris et al. (1981). Blooms o f Phaeocystis spp,, 

Gyrodinium spp., Gymnodinium spp. and Alexandrium tamarense are known to occur in 

nearby coastal waters (EA, 1999) but there is no evidence to suggest significant uptake of 

Si04^' by diatoms in the estuary. In common with the other nutrients, blooms in the estuary 

are seen to have little effect on the distribution of dissolved silicate. 

3.3.2 Evidence of impact of nutrient inputs 

Total inputs of nitrogen compounds into the estuary are largely dominated by sewage and 
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agrochemical inputs. Low load estimates of total nitrogen received by waters of the Mersey 

Estuary are comparable to those of the Severn and Thames which in 1997, was around 

16 000 tonnes (EA, 1999). The improved quality of industrial effluents has resulted in 

reductions of the direct input of ammonia to the estuary so that the major contribution is 

now from the non-tidal Mersey. However, due to substantial reductions in organic loads, 

ammoniacal nitrogen at Howley Weir has reduced from 12 mg 1"' in 1962 to approximately 

3 mg r* in 1992 (Jones, 2000). Nedwell et al. (2002) have calculated an ammoniacal 

nitrogen load of approximately 1 000 Mmol N y"' for the Mersey, the highest figure for all 

93 major estuarine systems on mainland Britain. In addition, only 6% of this input is 

estimated to issue from sewage treatment works below the tidal limit. Anthropogenic 

inputs of ammonium are not apparent in the lower estuary (Figure 3.5a). Further 

alleviations in the ammonia load carried by the river are expected once nitrification is 

installed at a major sewage treatment works in Manchester (NRA, 1995). The annual 

fluvial load of total oxidised nitrogen, TON, (NO3' + NO2') entering the estuary in 1995 

and 1996 has been estimated at approximately 5 000 Mmol y' ' , with only 0.3% originating 

from direct discharges into the estuary from sewage treatment works (Nedwell et a/., 

2002). Load estimates were comparable to those for the Severn, Clyde, Humber and 

Thames which all drain catchments with nitrate-rich soils and have high population 

densities. 

The growing utilisation of synthetic detergents and phosphate fertilisers has resulted in 

increased concentrations of inorganic phosphorus in aquatic systems. Similarly, rises in 

organic phosphorus levels are primarily due to anthropogenic sources such as domestic 

sewage, plant and animal wastes and industrial effluents. The estimated PARCOM 

orthophosphate load to the Mersey Estuary in 1997 was of the order of 2.2 million tonnes, 

less than half that entering both the Humber and Thames in the same year (EA, 1999). 

Annual riverine phosphate loads for 1995 and 1996 have been calculated for the Mersey 

that are akin to those for the Clyde, Humber, Severn, Thames and Tyne estuaries (Nedwell 

et al., 2002). Estimates of around 200 Mmol P y ' are thought to be introduced by the 

Rivers Mersey and Weaver with a contribution o f only 6.3% coming from sewage 

discharges into the estuarine mixing zone. 

Figure 3.6 shows the atomic ratios of estuarine nutrient concentrations compared to the 

ratios required by algae for balanced growth, as indicated by the Redfield ratios of 

106 C:16 N : l P:16 Si (Harris, 1986). Where N03' is the dominant nitrogen species, 

N03*:P04"'" ratios are commonly used (e.g. Jordan and Joint, 1998) but in areas where NH4^ 
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also constitutes a significant portion of available N , it is more appropriate to compare total 

inorganic nitrogen (TIN, nitrate + nitrite + ammonium) and phosphate (Nedwell et al., 

2002). The dissolved nutrient ratios in Figure 3.6 are expressed as TIN:P, as TIN:Si and as 

P:Si. The ful l horizontal lines indicate the Redfield values for each of the ratios. 
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Figure 3.6 Atom ratios of (a) TIN:P, (b) TTN:Si and (c) P:Si as a function of 
distance along the Mersey Estuary. Full horizontal lines indicate Redfield 
ratios. The broken horizontal line in (b) represents the threshold ratio for 
TIN:Si for adverse effects in coastal waters as recommended by CSTT 
(1997) and NRA (1996). 

Guidelines for the assessment of coastal waters with regard to the Urban Waste Water 

Treatment Directive are given in a Comprehensive Studies Task Team report (CSTT, 

1997) which states that coastal waters are adversely affected by nutrient inputs if; 

a) Winter concentrations of Dissolved Available Inorganic Nitrogen (DAIN = TIN) 

exceed 12 ^mol l ' in the presence o f at least 0.2 jimol I* ' o f Dissolved Available 

Inorganic Phosphate (DAIP) or; 
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b) Summer concentrations of chlorophyll a exceed 10 ^g I ' ' . 

I f levels of DAIN:DAIP or summer chlorophyll a concentrations exceed those 

recommended by the CSTT then a water body is termed hypemutrified. It has also been 

suggested (CSTT, 1997; NRA, 1996) that a winter molar N:Si ratio > 2 is indicative of 

waters prone to fiiture eutrophication. The threshold for TIN:Si is therefore also indicated 

on Figure 3.6b. 

Combined data for dissolved NRj"^, NO2' and NO3" in Figures 3.5a-c in December 1997 

produces concentrations of TIN in the range 50 - 470 | i M . Corresponding data for P04̂ " in 

Figure 3.5d range from 2.3 - 15.5 | i M . Thus the CSTT thresholds outlined above are 

greatly exceeded at all points along the estuary in winter. Nedwell et aL (2002) implied 

that TrN;P atomic ratios of fluvial loads into the Thames, Mersey, Severn, Clyde, Humber 

and Colne indicated P limitation for the production of algal biomass during the winter 

(TIN:P > 16:1) but N limitation during summer (TIN:P < 16:1). This is supported by data 

in Figure 3.6a, which shows that the greatest excess of N compared to P occurs in 

December 1997 (but is also quite clear during March and October 1998), whilst N is 

limiting at discrete points along the estuary in June 1998, May 2000 and July 2000. 

However, when P:Si ratios are compared throughout the seasonal cycle (Figure 3.6c), P is 

only potentially limiting at a few sites in March 1998 and October 1998. Increased N 

limitation in the summer may be significant as regulation of diffuse N sources in a 

catchment may be far more difficult to achieve compared to the control of point sources of 

P from sewage treatment works and industrial sites. It is likely that diatom growth is 

limited by a lack of silicate availability compared to other nutrient salts in the Mersey 

(Figures 3.6b,c). More significantly, TIN:Si ratios exceed the CSTT guideline of 2 for the 

majority of the time. Unfortunately, measurements of TIN, P and Si were not made by the 

EA on the same samples in December 1997 and winter TrN:Si ratios cannot be determined. 

Similarly, TIN:Si ratios are not available for Liverpool Bay in December 1997 

(Kennington et al., 1998), or for the winter period in either 1998 (Kennington et aL, 1999) 

or 2000 (Kennington et aL, 2001). However, it can be assumed that those recorded during 

March 1998 would represent near maximum ratios after some modification of the nutrient 

pool by any phytoplankton present. Given this assumption, it is clear that TIN:Si ratios for 

this survey are above that recommended by the CSTT and could only have been higher 

during December 1997. Allen et al. (1998) have demonstrated a clear increase in winter 

maxima of N:Si over a 25 year period and it is popularly held that this trend could lead to a 

shift away from diatom-dominated populations, with a possible increase in the abundance 

of toxic or nuisance algal species (Egge and Aksnes, 1992; Conley et aL, 1993). 
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It has already been shown (Figure 3.3f) that chlorophyll a concentrations surpass the CSTT 

maximum recommended concentration for most of the surveys in this study. This, and the 

fact that winter TIN and P04''' concentrations and winter TIN:Si ratios also exceed CSTT 

guidelines indicate that the Mersey is hypemutrified and could be liable to future 

eutrophication. 

The classification of nutrients according to the EA*s GQA scheme is provided in Table 3.2. 

Data for the Mersey (Figures 3.5c,d) indicates that in July 2000, Grade 2 classification was 

produced for NO3' at salinities < 5, but at other times. Grade 1 applied to waters in the 

estuary. In contrast, relatively high concentrations of dissolved PO4"'" in waters of low 

salinity would produce a classification of Grade 5 in June 1998 and July 2000. At other 

times of year and with progressive movement downestuary, dissolved PO4'*' concentrations 

decline but are still high enough to warrant GQA grades of 4-5. Thus, based on this 

evidence it would seem that high phosphate concentrations are certainly implicated in 

reducing GQA status in the Mersey whilst nitrate is not. 

Table 3.2 GQA nutrient classifications. Source: Envirorunent Agency. 

Classification 
for P04^ 

Grade limit 
(^mol P 1 * ) 

Average 

Description Classification 
for NOj 

Grade limit 
(^mol N r ' ) 

Average 

Description 

1 0.6 Very low 1 -360 Very low 
2 1-9 Low 2 --710 Low 
3 3.2 Moderate 3 - 1430 Moderately low 
4 6.5 High 4 -2140 Moderate 
5 32 Very high 5 -2860 High 
6 >32 Excessively high 6 > 2860 Very high 

Despite tighter control of sewage discharges, nitrate concentrations have increased in 11% 

of English rivers in the period 1995-2000 (Wither, 2003) and 80% of N03' is now believed 

10 originate from agricultural sources (Gaskell, 2003). This demonstrates the importance of 

tackling the problem of dififtise sources of nutrients to the aquatic environment and 

especially in the North West of England, as the Irish Sea is likely to be officially 

designated as a nitrate-sensitive area in the near future (Wither, 2003). The issue is 

additionally complicated by the fact that episodic pulses of NO3" and PO4''' from high flow 

events are not necessarily captured in the EA's routine surveys and load estimates to 

Britain's estuaries may therefore be significantly underestimated (Gaskell, 2003). The 

effects of global climate change therefore need evaluating in this regard. 
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3.4 Particulate carbon 

Axial transects were undertaken in order to collect SPM, some of which was settled prior 

to the determination of particulate carbon species. Bed sediments taken from the estuary in 

July 1999 were also subjected to the same protocols as the settled SPM (Figure 2.1). This 

section presents a discussion on the distribution and possible origins of POC in the estuary. 

3.4.1 Sediments 

Sediment grain size is a controlling factor in the distribution of trace metals and it is 

generally accepted that trace metaJs are mainly concentrated in the clay/silt fraction, i.e. 

particles < 63 ^m in diameter (Araujo et al., 1988). Smaller particles possessing a larger 

surface area will necessarily have the ability to sequester trace metals more effectively than 

coarser grained material with lower surface areas. It is of prime importance therefore, to 

have knowledge of the grain size distribution of sediments as this reflects the overall 

adsorption capability of sediment particles at any one locality. 

Significant dredging operations have been carried out regularly over the last century in 

order to keep the main channel navigable and an average of 5 x 10*̂  m^ a ' of sediment have 

been removed from the Mersey (Prandle et al., 1990). This figiu-e is around 100 times 

greater than the calculated sediment yield for the estuary (see Table 1.7) and based on this 

information alone, siltation would not be anticipated to be a problem. Despite this, the total 

volume of the estuary (650 x 10^ m^) is reducing at a rate of approximately 10* m** a"' with 

a large percentage of fine-grained dredged material being returned relatively quickly 

directly back into the estuary (O'Connor, 1987). In common with other macrotidal 

estuaries such as the Ribble, Thames, Humber and Tees, the Mersey is therefore a zone of 

net sediment accretion. 

The percentage mass of the fine (< 63 ftm grain size) fraction of surficial sediments were 

determined and the results are plotted against distance from the tidal limit in Figure 3.7. A 

relatively stable interannual sediment grain size distribution is observed. Around 40% of 

freshwater sediment is composed of fine materials such as clays and silts. This proportion 

increases to aroimd 60-80% in the first 12 km downstream of the weir, covering the sector 

where the TMZ is usually situated during spring tides. Silt/clay content declines 

progressively over the next 25 km, approaching --0 - 10%, confirming the presence of a 

large sandbank 28 km from the weir. Af^er this point there is a substantial increase in silt 

content which is likely to be connected to the mobilisation of material from intertidal mud 
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banks and saltmarshes along the inner estuary shoreline (Hariand et aL, 2000). With 

progression towards the estuary mouth, sandy material originating offshore begins to 

influence sediment composition and the proportion of fine-grained material present falls. 

These findings tend to agree with the description of sediment distributions given by 

Hariand and Riddle (1997). 

100 Jul/97 

J u /99 

0 20 30 40 

Distance from tidal limit (km) 

Figure 3.7 Distribution of fine-grained sediment along the Mersey Estuary. 

Sediments fi-om July 1999 were subjected to a sequential leach as described in Section 

2.1.6 and the results of CHN analyses are presented for both fine- and coarse-grained 

components in Figure 3.8. Total carbon allied with fine-grained bed sediments indicates 

effective mixing of carbon-rich river water with carbon-depleted marine particles in the 

uppermost 2-5 km of the estuary (Figure 3.8a). Further downestuary, total C initially 

reaches a plateau and then peaks slightly in the vicinity of Runcorn (15.4 km fi-om the 

weir) and also in the Manchester Ship Canal/Eastham Locks area (~ 32 km). Total and 

organic C content generally declines in > 63 | im sediments sampled fi-om the first 22 km of 

the estuary, but remains relatively imchanged over the same distance in the fine-grained 

material. Up to half of the carbon associated with < 63 | im sediment is removed by the 

partial digest (NH2OH.HCI + CH3COOH). The same spatial variation for total carbon is 

repeated for POC, indicating that the percentage contributions made by inorganic C and 

that associated with surface deposited ferromanganese oxides are quite consistent 

throughout the upper and inner estuary. Largest differences in the total and organic C 

contents of > 63 ^m fi-actions are probably due to the dissolution of calcareous shell 

fragments, the presence of which was noted diuing sample manipulation. Further digestion 

of the particles to remove organic matter reveals that a small amount o f C (typically up to 
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2%) is composed of a highly resilient 'residual' fraction, which is only detectable in 

sediments obtained fi-om the upper 10-15 km of the estuary. This highly resistant POC is 

assumed to be locked deep v^thin particle matrices and therefore held in a relatively 

unavailable form. 
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Figure 3.8 Total, organic and residual carbon contents (as percentage contribution to 
dry mass) of (a) < 63 | im and (b) > 63 \im sediment fractions as a function 
of distance along the estuary in July 1999. 

As the Mersey basin is not an organic-rich catchment (the underlying geology being 

dominated by limestone grit), the majority of carbon present in the estuary is thought to 

derive firom allochthonous plant material and/or have anthropogenic sources such as 

industrial effluents and partially treated domestic sewage (e.g. Norton et aL, 1984; 

Campbell et aL, 1988; Turner ei aL, 2001b, 2002; Martino et aL, 2002). Partial 

identification of organic compounds includes surfactants (Blackburn et al., 1999) including 

linear alkyl benzenes (Preston and Raymundo, 1993), phthalate esters (Preston and A l -

Omran, 1986), volatile organohalogen compounds (Rogers et aL, 1992), polycyclic 

aromatic hydrocarbons (PAHs), polycyclic aromatic ketones, nitro polycyclic aromatic 

compounds, 'Triclosan' found in health and beauty products and the hospital disinfectant 

'Clorophene' (Thomas et aL, 2002). However, vrith a significant proportion of organic 

contaminants in the Mersey remaining unresolved and the majority of studies only 

providing qualitative results, it is not possible at present to estimate what fraction of the 

sedimentary organic carbon pool is comprised of compounds such as these. 
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The use of elemental ratios as indicators of organic matter source is a common approach in 

estuarine biogeochemical studies. This typically involves the derivation of C : N ratios 

(Miiller, 1977; Hedges et aL, 1986; Meyers, 1994) whilst the use of C:P ratios is less 

common (Ruttenberg and Goni, 1997). Atomic C : N ratios (as Corg:N) of fine-grained 

sedimentary material fi*om July 1999 have been investigated, and the fmdings are 

presented in Figure 3.9. Lines have been superimposed to indicate atomic C:N ratios of 

> 20 for vascular terrestrial plants (Meyers, 1994), which coincides with that for well 

humified material (C:N = 21, Ferreira et aL, 1997) and 12.6 for sewage effluent from 

Invergowrie Bay determined by Thornton and McManus (1994). The C:N ratio for 

phytoplankton of 6.63 has also been included and is derived from the Redfield atomic ratio 

(106 C: 16N: 1 P: 16 Si). 

terrestrial plant material 

phytoplankton 
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Figure 3,9 Atomic C:N ratios in <63 ^im sediments from July 1999 after sequential 
digestion. Also shown are the mean atomic C:N ratios for phytoplankton, 
sewage and terrestrial plant material. 

With removal of organic C by H2O2, C:N ratios decrease and increasingly nitrogenous 

material remains. The mean C:N ratio for samples taken from the REM and uppermost 5 

km o f the estuary was found to be 19.1. This value approaches that of well-humified 

organic matter (C:N = 21.5) and has been identified for Ouse Estuary SPM (Ferreira et aL, 

1997) and it has previously been suggested (Millward et aL, 1990) that a large portion of 

the Mersey sedimentary carbon pool is either humic or humin in nature. Further away 

(> 10 km) from the tidal limit, the presence of sewage may be indicated as C:N approaches 

12.6. Data for POC suggest that determinations have been made on samples containing 

carbon that may principally originate from a mixture of natural and anthropogenic sources. 

It is notable, however, that certain signatures can become obscured over time. For 
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example, there is a tendency for vascular plant tissues to preferentially gain N during 

microbial decay and for degrading marine plankton to lose N in preference to C (Meyers, 

1994). The additional use of carbon and nitrogen isotopic compositions is therefore 

required i f organic matter sources are to be more effectively distinguished from one 

another (Prahl et al., 1994; Hedges et al., 1997). The mean ratio of Cres:N in freshwater 

sediment approximates to that of bacterial C : N (4-6) and labile organic matter (Gofii and 

Hedges, 1995; Hedges et ai, 1997) whilst algal and sewage signatures are visible in the 

first 5 km of the estuary. After the first 5 km, Cns-N ratios rapidly decrease to fall below 

Redfield values. Such low values tend to be attributed to high inorganic ammonium 

content, but may also be due to organic nitrogen compounds sorbed to clay particles 

(Muller, 1977). Whilst ammoniimi concentrations have not been measured in Mersey 

sediments, surface waters do contain high concentrations of N I L ) ^ and clays/silts account 

for up to - 80% of surface sediment mass and together, would lend support to this idea. 

3.4.2 Suspended particles 

As with bed sediments sampled in July 1999, some of the SPM from the May 2000 and 

July 2000 campaigns were treated with a sequential leach (after bulk water samples were 

allowed to settle for 3 hours). Variations in the total, organic and inorganic carbon contents 

of the suspended solids with changes in turbidity during both surveys in 2000 are 

combined in Figure 3.10. Corresponding data for the Tamar Estuary in August 1980 

(Morris et al., 1982a) are also provided for comparison. Morris et al. (1982a) proposed that 

a sub-population of PSPM persisting within the TMZ of the Tamar had an organic carbon 

content which was intermediate between the high concentrations characteristic of the 

inputs and the low values shown by TSPM. In contrast, the inorganic carbon content of 

PSPM was lower than that in resuspended particles and those originating from the marine 

and freshwater end-members. It was suggested therefore that organic carbon remained 

associated with PSPM whilst inorganic carbon was preferentially lost from suspension to 

become allied with recycled TSPM. Oxygen demand exerted by particles remaining in 

suspension may therefore produce a reduction in DO concentrations seaward of the limit of 

saline intrusion due to the slow degradafion of organic matter trapped within the turbidity 

maximiun. Suspended particles from the two estuaries contain similar amounts of carbon, 

but those in freshwater and waters of low (< 50 mg 1"') turbidity are higher in the Tamar 

than the Mersey. Fractional contributions made by organic and inorganic carbon to the 

suspended load are just as variable in both estuaries. Organic carbon in Mersey SPM 

remains relatively constant throughout the turbidity range but the inorganic carbon content 
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increases. This implies that whilst PSPM and TSPM in the Mersey are not as dissimilar in 

composition in terms of organic carbon as they are in the Tamar, the two populations do 

however contain different proportions of inorganic carbon. 
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Figure 3.10 Total, organic and inorganic carbon contents of suspended particles in (a) 
the Mersey Estuary and (b) the Tamar Estuary (from Morris et al., 1982) as 
a function of total suspended load. 
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Quantification of total particulate carbon associated with filtered SPM from the March 

1998, June 1998 and October 1998 surveys were also made on unfiimed filters. 

Comparison of total carbon data with that reported by Millward et al. (1990) indicates that 

the amount of total carbon (as % composition by weight) in Mersey Estuary SPM has 

reduced from 6.4 ± 1.6% in November 1987 (range = 4.7 - 9.4%) to 1.5 ± 0.7% (range = 

0.2 - 3.3%) in this study. Ongoing measures to improve water quality therefore appear to 

include substantial reductions in, or improved treatment of, organic effluents discharged 

into the estuary and its rivers. 

Pooled estuarine POC data in Figure 3.10 in May and July 2000 reveal that a mean of 

approximately 81% of C is present in organic form (80.7 ± 7.4, rsd = 9.2%, n = 27) and it 

is proposed that this could be used as a proxy to estimate the POC content of SPM 

collected in other surveys. The results of this conversion are presented graphically in 

Figure 3.11. It can be seen in Figure 3.1 la that with procession down the estuary, patterns 

in the axial distribution of POC are fairly consistent between surveys and tend to mirror 

turbidity (Figure 3.3b) and the distribution of fines in surface bed sediments (Figure 3.7). 
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Figure 3.11 Variation of POC in SPM with (a) distance along the estuary and (b) 
suspended load (riverine data excluded in (b)). The lines represent the mean 
± 1 G of POC content in < 63 | im sediment samples from July 1999. 

Persistent carbon peaks associated with SPM in the first 10 km below the weir are thought 
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to correspond with the position of the estuarine null point where tidalLy pumped organic-

rich sediments undergo accelerated decompositiop^O^bril.e/ a/.,^1999). Less significant 

peaks in SPM carbon also occur near sites where freshwater enters the estuary, namely in 

the vicinity of the Weaver Sluices just below Runcorn (16 km) and Eastham Locks at the 

entrance to the Manchester Ship Canal ( - 30 km), a trend which follows that already 

observed in bed sediments (Figure 3.8). The overall downestuary decrease in POC may be 

related to: (1) differences in the distribution and geochemical composition of SPM; (2) 

siting of natural and anthropogenic inputs in the non-tidal rivers and upper tidal estuary; 

and (3) spatial variability in the biological utilisation of POC. The highest levels of POC 

are encountered where turbidity is greatest when POC in SPM approaches that observed in 

< 63 ^im sediments (Figure 3.1 la,b). Highly significant correlations (where P < 0.005 or 

better, n = 8 - 19) are consistently found between SPM load and estuarine POC (March 

= 0.37, June = 0.83, October R^ = 0.71, May R^ = 0.85 and July R^ = 0.72) and is 

consistent widi the findings of other authors (e.g. Tipping et al., 1997). 

Axial trends are comparable between seasons but SPM POC at some sites in the first 

20 km of the estuary during June 1998, May 2000 and July 2000 are slightly higher overall 

than those measured in March and October 1998. It is possible that phytoplankton blooms 

may be contributing to the higher POC values observed in June 1998 and May and July 

2000 and this can be assessed by obtaining POC:Chl a ratios (Wienke and Cloem, 1987; 

Cifuentes et ai, 1988; Taylor et aL, 1997; Abril et al., 2002; Bouillon et al., 2003). The 

POCrChI a ratio varies from about 12 - 200 g g"' in phytoplankton (Parsons et al,, 1977; 

Cifuentes et al., 1988, Taylor et al., 1997). This ratio is minimal at high temperatures and 

low irradiances in a nutrient replete environment and increases at high irradiances, 

especially at low temperature and under nutrient-limiting conditions (Geider et al., 1997). 

POC:Chl a ratios have been determined and are plotted as a function of distance along the 

estuary in Figure 3.12 (a). The lowest POC:Chl a ratio was found to be 24, occurring in 

May 2000 near the estuary mouth (46 km) in water of relatively low turbidity (36 mg I"') 

and moderate chlorophyll a concentration (16 \xg I ' ' ) . Multiplying observed concentrations 

of chlorophyll a at each site by the minimal ratio of 24 (after Abril et al., 2002) then 

provides an estimation of the amount of POC that could be due to the presence of algae. 

Finally, the percentage contribution of algal POC to known values of total POC was 

calculated for each sample and these data are also given in Figure 3.12 (b). 

Ratios of POC:Chl a (Figure 3.12a) ranged from 24 - 734 (mean = 142) and as the majority 

of values are < 200, phytoplankton predominance is suggested in May and July 2000. 
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Figure 3.12 (a) POC:Chl a as a function of distance along the estuary, and (b) algal POC 
as a percentage of total POC against SPM load. The broken line in (a) 
represents the maximum ratio (200) of POC:Chl a exhibited by 
phytoplankton. 

Detrital material, having POC:Chl a ratios of > 200 are only identified for a few samples. 

However, chlorophyll a data are more limited than that for POC (particularly in March, 

June and October 1998) so relatively little can be inferred from this interpretation. Algal 

POC (Figure 3.12b) is estimated to constitute between 3 - 99% of seston POC and declines 

markedly with increases in suspended load. This pattern is to be expected in a highly turbid 

system such as the Mersey where low light levels would somewhat inhibit primary 

productivity even when nutrient concentrations are usually more than adequate to support 

phytoplankton groulh. Despite the scarcity of actual chlorophyll a data, highest 

contributions to total POC by algae occur in June 1998, May 2000 and July 2000. Along 

with the POC:Chl a data it would appear that the aforementioned slight increases in POC 

measured during these surveys may be linked to phytoplankton blooms, although the 

evidence is not unequivocal and another means of assessing SPM organic carbon 

provenance, such as the use of C:N ratios is also required. 

Atomic CorgiN ratios in SPM have therefore been investigated and the results are presented 

in Figure 3.13. Samples of SPM from March 1998 have C:N ratios of 5.6 - 18.4 and those 

from May 2000 range from 4.2 - 8.2. As explained earlier (Section 3.4.1) lower than 

Redfield values may indicate the presence of bacteria, labile organic matter, inorganic 

ammonium or organic nitrogen sorbed to particles. These low values tend to be restricted 
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lo the upper estuary up to a distance of 18 km from the tidal limit. Elsewhere in May 2000, 

and at certain sampling sites in July 2000 (and less so in June 1998), samples demonstrate 

ratios approximating to that of the Redfield ratio and this reinforces some of the earlier 

discussions regarding the presence of phytoplankton blooms and their contribution to total 

POC in SPM. At various locations during March 1998, June 1998, October 1998 and July 

2000, ratios are elevated to different extents above the Redfield value. These samples 

imply mixed composition along the transects of possibly sewage-related and terrestrially-

derived organic matter from either C3 or C4 plants (which may also include humic acids). 
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Figure 3.13 Variation of atomic C:N ratios in suspended particles as a function of 
distance along the estuary. Also shown are mean atomic C:N ratios for 
phytoplankton, sewage and terrestrial plant material. 

Tipping et aL (1997) observed major POC peaks associated with the first increase in 

freshwater discharge following the low-flow summer period in the Humber rivers. 

Autumnal peaks were thought to arise from enhanced catchment erosion and re-

entrainment of particulate material accumulated in the riverbed over the preceding months 

(Tipping et al., 1993). Veyssy et al. (1999) proposed that the greatest seasonal variation in 

riverine POC is due to the increased flux of riparian litter entering rivers and streams after 

vegetation die-off in late summer and early autumn. This has also been indicated in the 

Humber Estuary where POC generally varies by just a factor of 2, but where the most 

marked increases relate to inflows of poor quality terrestrial POC later in the year (Uncles 

ei al., 2000). In the Mersey, this same effect may explain the high C:N ratios measured in 
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October 1998, as during that month, the mean monthly freshwater discharge was 68 m"* s ', 

approximately double that for September 1998 (32 m"* s'') even though an overall increase 

in POC was not observed at the time (Figure 3.1 la). Some C:N ratios measured in June 

1998 were also high and could have occurred for the same reason because on average, river 

flows in June, rather than declining from those in May (monthly average = 20 m^ s"*) 

actually rose to a monthly mean of 45 m^ s''. 

The POC content of suspended particles from a number of riverine and estuarine sources 

are compared to those from the Mersey from the five surveys conducted between March 

1998 and July 2000 (combined data) in Table 3.3. Mersey Estuary SPM has comparable 

POC concentrations to those from the Delaware, Ems, Garonne, Gironde Humber and 

Sado estuaries, San Francisco Bay and Tolo Harbour. As previously exemplified in Figure 

3.11, POC varies by only 2.5% throughout the mixing zone in the Mersey, reflecting that 

SPM in this system is more chemically homogeneous with respect to organic carbon than 

suspended particles from the Douro, Rhine, Scheldt and Thames. Seasonal independence 

of POC% of SPM in the TMZs of the Gironde, Loire, Elbe and Ems was explained by 

Abril et aL (2002) as being due to the POC being almost refractory. In contrast, data for 

POC% in the Mersey TMZ varies by approximately 2% throughout the sampling 

programme and ratios of POC:Chl a and C:N have already indicated that for the majority 

of samples analysed, POC is mostly dominated by forms that would be prone to more 

complete microbial degradation (algal, sewage, other labile organic matter) than poor 

quality terrestrial detritus. 

For the majority of estuaries in Table 3.3, including the Mersey, riverine POC exceeds that 

in the turbidity maximum. This is due to mineralisation of labile riverine POC with 

simultaneous dilution of POC-rich riverine SPM by a pool of relatively POC-impoverished 

particles in the TMZ. The loss of POC in the river-estuary transition zone was investigated 

by Abril et al (2002) for a number of estuaries and the results from that study are 

presented with corresponding data for the Mersey in March 1998, June 1998, October 

1998, May 2000 and July 2000 in Table 3.4. The same order of loss o f POC for estuaries 

other than the Mersey in Table 3.4 has also been reported for pC02 in inner estuarine 

zones. This is believed to correlate with differences in the buffering capacities of those 

estuaries with respect to dissolved inorganic carbon and the degree of nitrification affecting 

pC02 in those systems (Frankignoulle et a/., 1996, 1998). Abril et al. (2002) also showed 

that mineralisation efficiency is a function of flushing time and that a flushing time in 

excess of 20 days provides sufficient time for the mineralisation of the majority of labile 
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Table 3.3 Suspended particulate organic carbon (as percentage dry mass SPM) in a variety of estuarine systems. 

P O C (%) 

Estuary Riverine TMZ Estuarine range Estuarine mean Reference 

Cochin Backwater Estuary 0.7-3.8 1.6 Sankaranarayanan and Panampunnayil (1979) 
0.2-6.2 3.6 Seralathan et (1993) 

Delaware Estuary 9.0 2.3 Biggs et flf/. (1983) 
Douro Estuary 11.9 7-17 7-20 Abriler al. (2002) 
Elbe Estuary 10.5 4.0 4.0-8.3 Abril et al. (2002) 
Ems Estuary 6.1 2.8 Eisma et al. (i982a) 

7.0 Cad6e(1987) 
4.5 3.5 3.5-5.1 Abril et al. (2002) 

Garonne Estuary 1.5-14.6 1.5 Etcheber(1983) 
Gironde Estuary 3.0 1.4-1.5 1.4-2.9 Veyssy et a/. (1999) 
Humber Estuary ^5.0 ^2.0 --2.0-5.0 2.6 ±0.6 Uncles et al. (2000) 
Loire Estuary 7.9 3.0 Meybeck et a/. (1988) 

20.1 3.8 3.8-4.6 Abrii et al. (2002) 
Mersey Estuary 1.79-3.54 0.92-2.85 0.19-2.85 1.35 ±0.53 This study 
Mississippi River Estuary 1.8 Trefryer a/. (1994) 
Rhine Estuary 5.7 5.0-5.7 5.0-12.2 Abril etal. (2002) 

5.6 Eisma et al. (1982b) 
Sado Estuary 2.9-3.8 2.0-2.6 2.0-3.3 Abril e/ al. (2002) 
San Francisco Bay 1.0-4.0 Schemel et a/. (1996) 
Scheldt Estuary 11.2 4.0-11.2 2.6-11.2 Abril al. (2000) 
Tamar Estuary 5.0 2.5 Morris et a/. (1982a) 
Thames Estuary 6.0 3.5-7.5 1.6-7.5 Abril e/ al. (2002) 
Tolo Harbour, Hong Kong ^2.0 Thompson and Yeung (1982) 
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Table 3.4 Calculation of POC loss in the river > estuary transition. 

Estuary River POC% 
(%SPM) 

Estuarine POC% 
(%SPM) 

POC% loss 
(%SPM) 

Percentage of riverine 
POC mineralised 

Scheldt 11.2 2.1 9.1 82 
Thames 6.0 1.7 4.3 72 
Sado 3.7 2.0 1.7 59 
Mersey July 2000 3.14 1.32 1.82 58 
Ems 7.0 3.0 4.0 57 
Mersey June 1998 2.29 1.02 1.27 56 
Loire 7.9 3.8 4.1 52 
Mersey May 2000 3.54 1.79 1.75 49 
Gironde 3.0 1.5 1.5 49 
Mersey March 1998 2.75 1.51 1.24 45 
Elbe 6.5 4.0 2.5 38 
Mersey October 1998 1.79 I.I5 0,64 36 
Rhine 5.5 5.3 0.2 4 
Douro 11.9 11.9 0.0 0 

POC to occur. The flushing time of the Mersey ranges from 20-50^ days, with a mean of 

32 days (Jones, 1978) and this, combined with possible evidence for nitrification in the 

Mersey may also assist in explaining why mineralisation of POC increases by more than 

20% between surveys. Mineralisation is lowest in October 1998 when the POC content of 

riverine and estuarine SPM are most similar and POC largely arises from inputs of detrital 

material during high run-off In the warmer months, mineralisation of POC steadily 

increases as water temperatures increase, freshwater discharge is progressively lessened 

and riverine and estuarine SPM have more distinct compositions in terms of their organic 

carbon content. This is due to changes in the type and biodegradability of carbon present, 

with phytoplankton and sewage accounting for more of the POC entering the estuary in 

other surveys. For example, algal contributions to POC are high at some locations in the 

estuary in June 1998, May 2000 and July 2000 and sewage inputs are noticeable during 

March 1998, June 1998 and July 2000. Both types of material would be rapidly 

remineralised, thereby contributing to the higher mineralisation efficiencies reported in 

Table 3.4. 

Values for riverine DOC and POC for the five surveys between March 1998 and July 2000 

have been combined and plotted against inhabitants/discharge ratios (Figure 3.14). Data 

from Abril ef al. (2002) are provided for comparison. The estuaries fall into four distinct 

categories. Concentrations of TOC in the Gironde and Douro are at or close to natural 
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Figure 3.14 Classification of estuarine systems by TOC as a function of the number of 
inhabitants (normalised with freshwater discharge). D = Douro, El = Elbe, 
Em = Ems, G = Gironde, L f= Loire, M l = Mersey March 1998, M2 = 
Mersey June 1998, M3 = Mersey October 1998, M4 = Mersey May 2000, 
M5 = Mersey July 2000, R = Rhine, Sa = Sado, Sc = Scheldt and T = 
Thames. Adapted from Abri! et al. (2002). 

levels, TOC in the Gironde being elevated due to soil erosion in the Pyrenees. Population 

density is low around the Sado but the region has low sewage treatment. The Loire is 

eutrophised and consequently experiences high algal POC contributions in the summer. 

Increased population density in the Thames region and the presence of food processing 

plants in the vicinity of the Ems means that a large fraction of the TOC is likely to come 

from sewage inputs. Like the Mersey, Scheldt and Thames, the Elbe and Rhine basins are 

highly populated. The latter two estuaries have essentially become decontaminated due to 

recent improvements in sewage treatment. Consequently, TOC concentrations are 

approaching natural levels, as exemplified by the Douro. The Mersey has the highest 

population density and despite a factor of eight difference in freshwater discharge between 

the five surveys, riverine TOC concentrations are very similar. Results from this study 

have already shown that the amount of total carbon associated with SPM in the Mersey has 

reduced in the last decade. In time, it is anticipated that i f the quality of effluents entering 

the tidal and non-tidal reaches of the Mersey continues to improve, then TOC 

concentrations will approach those currently seen in the Elbe and Rhine. 
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3.5 Specific surface areas of estuarine particles 

3.5.1 Sediments 

Specific surface areas of July 1999 sediments are given as a function o f distance along the 

estuary in Figure 3.15. The term 'natural' refers to samples that were measured prior to 

digestion with N H 2 O H . H C I in 25% CH3COOH, i.e. containing total carbon, whilst 

'organic + residual' describes the particulate fraction remaining after inorganic carbon and 

< 
C/5 

(a) 
20 

15 

10 • 

^ • • • 

1 1 1 1 1 1 1 

0 5 10 15 20 25 30 35 

Distance from tidal limit (km) 

DA 

E 

(b) 
20 

15 

10 

SB 
1 1 1 1 

0 5 10 15 20 25 30 35 

Distance from tidal limit (km) 

natural • organic + residual 

Figure 3.15 Specific surface areas of (a) < 63 | im grain size and (b) > 63 fim grain size 
sediments before and after digestion with hydroxy I ammonium chloride in 
acetic acid. 

ferromanganese oxides have been removed. The SSAs of unaltered < 63 ^m grain size 

sediments (Figure 3.15a) are consistently around 2-3 times greater than that of the 

> 63 nm material (Figxu-e 3.15b). The SSA in finer particles remains consistent throughout 

the very low salinity region despite a rapid decrease in P O C content in the first km from 

the tidal limit (Figure 3.8). This suggests that riverine sediment particles are 'saturated' 

with P O C and that the loss of two thirds of the carbon does not therefore affect the SSAs of 

those particles. The same patterns of changing SSA v^th distance are exhibited for natural 

and altered particles. Thus, SSA appears to be largely a reflection of Corg and Crcs content. 

3.5.2 Suspended particles 

Settled SPM samples from the May 2000 and July 2000 transects, were Ueated in the same 

manner and the resulting measurements are similarly displayed in Figure 3.16. The SSAs 
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of suspended particles are approximately twice that of fine-grained sediment particles. 

Surface areas of SPM are more consistent than for the sediment and remain almost 

unchanged over distance, a feature noted by Millward et al. (1990). Smaller SSA peaks 

exist for SPM than for the < 63 jim sediment at the same locations in the upper estuary. 

However, SSA in SPM falls by the same proportion as seen in the fine sediments following 
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A May/2000 
natural 

.A . - .May/2000 
organic + 
residual 

Jui/2000 
natural 

Jul/2000 
organic + 
residual 

Figure 3.16 Specific surface areas o f bulk settled SPM fi-om May 2000 and July 2000 
before and after digestion with hydroxy 1 ammonium chloride in acetic acid. 

digestion. This implies that both bed sediment and suspended particle surfaces have very 

similar compositions in terms of the amounts of Fe-Mn oxide and inorganic carbon 

present. Again, as for bed sediments, the results infer that organic and residual forms of 

particulate carbon are essentially determining the SSA of SPM and that other surface 

sorbent phases may play a comparatively minor role in determining the amount of active 

surface available for contaminant binding. 

2 ^ - I The mean specific surface area of May 2000 SPM and July 2000 SPM are 11.0 + 1.6 m^ g" 

and 15.1 ± 1.3 m^ g'', respectively (Table 3.5). Both mean values exceed that previously 

reported for Mersey SPM (9.6 ± 2.4 m^ g"*) by Millward et al (1990). Thus, the reductions 

in SPM carbon may have resulted in less pore-blocking (Vdovic et al., 1991), producing a 

consequent overall rise in specific surface areas of Mersey Estuary suspended particles 

compared to those determined in 1987. The SSA of Mersey EsUiary SPM is low compared 

to that of suspended particles from some other major European estuaries (Table 3.5). 

Anthropogenic Fe in the Humber and elevated Mn in the relatively clean Weser and Elbe 

(refer to Figure 3.14) promote an increase in SSA, but in the moderately polluted Thames 
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Table 3.5 Specific surface areas of suspended sediments in a selection o f European 
estuaries. Mean ± one standard deviation and range, R, o f n sample analyses 
are given. 

Estuary Sampling 
date 

Statistical 
parameters 

SSA (m' g ") Reference 

Dee, upper Dec 1991 n 
Mean ± o 

R 

4 
4.4 ±4.1 

(0.5-9.3) 

Tumer et al. (1994) 

Dee, lower Dec 1991 n 
Mean ± a 

R 

3 
8.3 ± 1.7 

(6.4 - 9.5) 

Turner et ai (1994) 

Elbe Jun 1988 n 
Mean ± a 

R 

10 
25.6 ±8.6 

(7.2 - 35.5) 

Tumer et (199!) 

Humber Jan 1988 n 
Mean ± a 

R 

18 
24.0 ±6.5 

(9.8-38.3) 

Turner et o/. (1991) 

Humber Jul 1989 n 
Mean ± a 

R 

11 
25.2 ±3.9 

(16.3-29.5) 

Turner et al{\99\) 

Mersey Nov 1987 n 
Mean ± a 

R 

10 
9.6 ± 2.4 

(6.0- 14.9) 

MilKvard et a/. (1990) 

Mersey May 2000 n 
Mean ± a 

R 

7 
l l . 0 ± 1.6 

(7.8-12.5) 

This study 

Mersey Jul 2000 n 
Mean ± a 

R 

8 
15.1 ± 1.3 

(13.4-16.8) 

This study 

Scheldt Feb 1987 n 
Mean ± a 

R 

12 
9.7 ± 1.5 

(7.3- 11.6) 

Turner et a/. (1991) 

Scheldt May 1987 n 
Mean ± a 

R 

13 
6.2 ± 2.9 

(< 1 - 10.3) 

Tumer et o/. (1991) 

Scheldt Aug 1987 n 
Mean ± a 

R 

12 
10.5 ±2.2 

(6.8-13.7) 

Turner et a/. (1991) 

Thames Feb-Mar 
1989 

n 
Mean ± a 

R 

14 
12.3 ±4.0 

( < 5 - 19.2) 

Tumer et cr/. (1991) 

Weser Aug 1989 n 
Mean ± a 

R 

15 
18.8 ±6.3 

(9.3-28.2) 

Tumer et a/. (1991) 

and severely polluted Scheldt, which have both received high organic loadings and where 

Fe and Mn are relatively low due to reduced oxygenation (Section 1.3.2), SSAs are 

lowered. Data for Mersey SPM tend to resemble those from the Thames Estuary rather 
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than the more impacted Scheldt. 

3.6 Summary 

Waters in this tidally dominated energetic system tend to be well mixed apart fi-om when 

increased freshwater runoff produces only partial mixing in the upper estuary. On spring 

tides, a turbidity maximum is formed at around a distance of 9 km from the tidal limit but 

this becomes broader and is shifted seawards in response to higher river flows. Seasonal 

variations in temperature, DO and pH are apparent and chlorophyll a concentrations were 

highest in the TMZ. A persistent broad oxygen sag corresponds with a reduction in pH and 

arises from C O 2 production due to the respiration of organic-rich bed sediments by what is 

believed to be an extensive bacterial population. 

Evidence for nutrient cycling is restricted and no clear pattern emerges to suggest obvious 

seasonal nutrient uptake by phytoplankton, largely because nutrient inputs are very high. 

As a result of improved oxygenation and reduced ammonia loads, former evidence of 

substantial denitrification in the Mersey has since been replaced by partial nitrification but 

estuarine NO3" concentrations do not appear to pose any concern to the regulators. In 

contrast, dissolved phosphate concentrations are high, particularly in the summer months, 

and along with low DO, contribute to the EA's classification of poor water quality in the 

estuary. The use of nutrient ratios gives some indication that N may become limiting in the 

spring and summer, whilst P could be limiting in autumn and winter. Silicate is likely to 

limit diatom growth unless river runoff is sufficient (> 40 m^ s"') to recharge estuarine 

waters with the nutrient though enhanced catchment erosion. CSTT (1997) guidelines are 

exceeded for winter concentrations of DATN (12 | iM) and DAIP (0.2 | i M ) and, apart fi-om 

in December 1997, chlorophyll concentrations also transcend the recommended value of 

10 | ig 1"' as set down under the EC Urban Waste Water Treatment Directive. In addition, 

winter molar N:Si rados > 2 are produced for the majority of sites along the estuary at 

different times of year and together, these facts point to hypemutrification in the Mersey. 

Concentrations of DOC are relatively high and CHN analyses of suspended and bed 

sediment particles has revealed that the organic carbon pool is derived from a mixture of 

anthropogenic and natural sources. The amount and type of POC present in the estuary 

varies throughout the year in response to changes in fi*eshwater runoff, vegetative die-off, 

the relative magnitude of wastewater inputs compared to the dilution capacity of the 

estuary as well as the incidence of bacterial and photosynthetic activity. Phytoplankton 
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blooms occurred, the most prominent of which were in May and July 2000, although some 

evidence of heightened photosynthetic activity was also produced at discrete locations in 

March and June 1998. It is likely that the blooms originated in Liverpool Bay and were 

advected into the estuary by strong tides. Once in the estuary, bloom activity increased due 

to high nutrient availability and algal POC contributed from 20 - 99 % of total POC in 

SPM, but became progressively reduced due to poor light availability at turbidities greater 

than - 100 mg 1"*. 

Carbon in bed sediments is largely a ftinction of sediment granulometry, which itself 

reflects the hydraulic sorting and energetic dispersal of bed sediment particles within the 

system. Carbon associated with SPM tends to follow the same spatial trends as that in bed 

sediments and reflects the position of freshwater inputs and the regeneration of labile 

organic matter at the estuarine null point. A long average flushing time and partial 

nitrification alter the buffering capacity of the estuary and consequently, around 35 - 60% 

of seston POC is rapidly mineralised. Analysis of POC:Chi a and atomic C:N ratios 

indicates that this is dependent on the type of POC predominating in the estuary at the time 

of sampling. Reduced mineralisation occurred in October 1998 when high river discharge 

lead to significant inputs of terrestrial organic matter but increased when more labile POC 

sources such as phytoplankton, bacteria and sewage inputs became more prominent. 

Mersey SPM is fairiy chemically homogeneous with respect to organic carbon and 

cleansing of the estuary with respect to organic contaminants is strongly suggested as the 

total carbon content of SPM has reduced by approximately 75% between 1987 and 1998 

due to improved treatment of sewage and organic industrial effluents. This has assisted in 

producing an increase of up to 57% in the average SSA of SPM over the same period, 

although SSAs are still lower than those in less impacted systems. 

Hence, the underiying chemical conditions in the Mersey Estuary have been identified. 

These observations wi l l facilitate the holistic interpretation of spatial and temporal 

alterations in the distributions, reactivity, cycling and particle-water interactions of trace 

metals in the Mersey, which wil l be described in subsequent chapters. 
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4 Trace metal distribution and reactivity in the Mersey Estuary 

This chapter reports the seasonal distributions of trace metals associated with bed 

sediments and suspended particles in the Mersey Estuary. The discussion covers an 

interpretation of physical and geochemical processes affecting the transport and behaviour 

of a number of trace metals which have been selected for their differences in geochemical 

interaction with particulate matter. The advances made to date of metal decontamination in 

the estuary wil l be evaluated using data from this work and those from previous studies. 

4.1 Particulate trace metals 

4.1.1 Axial trace metal distributions in bed sediments 

Estimates of non-detrital trace metal concentrations (available to I M HCl) have been 

determined for fine- (< 63 ^m) and coarse-grained (> 63 | im) surficial sediment fractions 

sampled during July 1997 and July 1999. In July 1997, bed sediments were collected from 

almost the entire length of the estuary (Figure 2.3), at locations of net sediment accretion 

that were assumed to represent a range of contaminant sources and sediment 

granulometries. By way of contrast, the July 1999 survey focussed primarily on sampling 

within the upper estuary (Figure 2.3). This was done: (a) because the first survey had 

identified an accumulation of fine-grained material backed up against the mechanical weir 

in the uppermost 10 km of the estuary resulting from the winnowing and upesluary 

advection of fines by strong tidal action and (b) because previous work on sediment metal 

concentrations has focussed on sampling in the mid and lower estuary (Taylor, 1986; 

Harland and Riddle, 1997; Harland et al, 2000), leaving the upper estuary largely 

unaccounted for. Sampling for trace metals in July 1999 therefore concentrated on 

collecting sediments in the 5 km labyrinth between the tidal limit and EA station 22 (refer 

to Figure 2.2 for EA station locations). 

Trace metal distributions in sediments sampled in both surveys are plotted together against 

distance from the normal tidal limit in Figure 4.1. Each metal shows variable affinity for 

the two grain size fractions. Highest metal concentrations tend to occur in freshwater 

sediments and those from locations where sediment composition is dominated by silts and 

clays (see Figure 3.7). Conversely, the lowest concentrations of trace metals were found at 

stations where surface bed sediments were largely composed of sandier material (Figure 

3.7). Metal distributions are therefore reflecting physical sediment characteristics and this 

confirms the findings of other researchers (Taylor, 1986; Harland et al, 2000; Turner, 

2000). 
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Figure 4.1 Concentrations of non-detrital (available to I M HCI) (a) Fe, (b) Mn, (c) Ni , 
(d) Co, (e) Cd, (f) Pb and (g) Zn in fine (o) and coarse ( • ) sediment 
fractions from July 1997 and July 1999 as a function of distance along the 
Mersey Estuary. Missing data points indicate concentrations that were 
below the limits of detection, rather than a lack of analysis at that location. 
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Iron and Mn affect particle properties and are commonly used to geochemically 

characterise particulate matter in estuarine systems (Turner et al., 1991; Turner, 2000). The 

amount of Fe in the < 63 jim fraction (Figure 4.1a) is relatively uniform overall, with 

sediments exhibiting common geochemical composition throughout the estuary. Iron 

concentrations are fairly lov^ in the labyrinth, are generally the same in both size fractions 

and only show a difference 5 km from the weir. Here, concentrations have fallen by around 

30% compared to those in riverine sediment. The largest differences in concentrations 

between the two fractions are observed at locations where silt content is reduced. 

Manganese is a redox sensitive element and is transferable between the dissolved and 

particulate phase in response to physicochemical changes. Even though Mn is particle 

reactive, the concentration of Mn in sediments is relatively low in the region of the TMZ 

(Figure 4.1b), which on spring tides is usually located at a distance of around 8-9 km from 

the tidal limit. Here, depressed oxygen levels could cause the dissolution of Mn from 

particle surfaces (Duinker et al., 1979). Particulate Mn increases in the middle and lower 

regions of the estuary as oxygenation of the water improves, causing the re-precipitation of 

manganese oxides although the oxidation of Mn^^ slows in seawater (Morris et al., 1982b). 

Turner et al. (1993) also showed that the partition coefficient of Mn increases with 

increasing salinity. Additionally, strong tidal disturbance of surface sediments leads to 

porewater infusion of Mn and subsequent oxidation to Mn (IV) on particle surfaces. The 

autocatalytic reaction ensues whereby the presence of Mn on particle surfaces promotes the 

adsorption of dissolved Mn. Manganese concentrations in the < 63 ^m fraction almost 

exclusively exceed those in the > 63 [xm fraction. The only exceptions to this are at the 

TMZ where the concentration is higher in the coarse-grained material and midway along 

the estuary where Mn in undetectable in the fine-grained fraction. 

Nickel and Co concentrations have only been determined in sediments from the top of the 

upper estuary (Figure 4.1c and Figure 4.Id, respectively) in 1999. Particulate Ni rises 

slightly in the first 5 km from the tidal limit and correlates well with independent 

measurements of dissolved Ni which have shown maximum concentrations in this area 

(Marlino, 2000). Other researchers have cited industrial inputs as the main source of Ni in 

this region (Jones, 1978; Campbell et al., 1988; Comber et ai, 1995). Although discharges 

of Ni into the estuary have been reduced and the major manufacturer responsible for the 

production of Ni catalysts is no longer operating, the sediments at this location do appear 

to be retaining an historical accumulation of the metal. The fact that both size fractions 

contain equivalent Ni concentrations may indicate that past Ni inputs were so large that 
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any grain size effects are overcome. This could be achieved either through: (a) strong 

binding of Ni v^ith organic carbon including residual POC, which was only detected in 

sediments from the top of the estuary (Figure 3.8), or (b) through the co-association of Ni 

with Fe as the latter also occurs in almost equal proportions in both size fractions in the 

first 5 km of the estuary (Figure 4.1 a). 

Particulate Co (Figure 4.Id) shows the same trend as Ni , but is more exaggerated, with 

concentrations in the silt fraction experiencing a 3-fold increase a short distance from the 

weir. However, concentrations in the two fractions diverge as distance increases, 

suggesting that inputs of Co may not be as large as those for Ni . 

Concentrations of Cd in < 63 ^m sediment (Figures 4.1e) at distances of 1-5 km from the 

weir increase above those found in the corresponding riverine sample. It was originally 

thought that this could be attributed to the close proximity of a sewage treatment works 

and associated outfalls in the extreme upper estuary. Supporting evidence is somewhat 

limited (Figure 3.8); whilst a clear signatiire for sewage is demonstrated for residual POC 

at a distance of 5 km, C:N ratios tend to suggest that humic substances are the dominant 

source of organic carbon in bed sediments in this region. Cadmium concentrations are 

below the limits of detection throughout most of the tidal estuary, the exception to this 

occurring some 35 km from the tidal limit. Here, the ratio of C:N again approaches that for 

sewage derived material (Figure 3.8). 

The trend for Cu shows an equal or greater tendency toward the coarser sediment (Figure 

4 . I f ) at locations where silt content is high. This again could imply that past inputs of Cu 

were substantial enough to reduce the normal effects of sediment granulometry. Elevated 

concentrations of Cu occur in < 63 |im sediment at around 8 km from the tidal limit. Here, 

there could be significant binding of Cu with labile organic carbon generated through the 

decomposition of organic matter at the estuarine null point, the location around which 

highest SPM POC is observed (Figure 3.11). 

Estuarine Pb and Zn concentrations are high (Figure 4.1g and Figure 4.1h, respectively) 

and once more seem to be preferentially associated with the coarser sediment in the upper 

estuary and at a distance of 35 km. Common (and large) sources may therefore exist 

between these two metals as well as Cu. Riverine sediment, sampled from above the weir 

is shown to contain exceptionally high concentrations of Pb which are assumed to originate 

from both diffuse and point sources fuilher up the river, although the exact nature of inputs 
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giving rise to these levels are at present unknown. It may be that the relatively minor river 

flow passing through such an extensive catchment is insufficient to adequately dilute the 

load and this leads to a gradual accumulation of the metal from several large conurbations. 

As mentioned already, in addition to the magnitude of inputs and grain size distributions, 

another contributory factor affecting trace metal contents in sediments is thought to result 

from the amount of organic carbon present (see Figure 3.8). Maximum esluarine 

concentrations of metals and carbon generally occurred at both the T M Z and near the 

entrance to the Manchester Ship Canal at Eastham some 35 km downstream from the tidal 

limit. Elevated concentrations at Eastham may be due to the flux of metal- and organic 

carbon-laden sediments from the canal being flushed into the estuary upon operation of the 

lock gates. Away from the upper estuary, it is at this station alone that Cd was detected in 

the sediments at a concentration of 0.7 ^g g"'. Apart from these two locations, it appears 

that metals in both sediment fractions are tending towards a gradual decline in 

concentration as distance from the head increases. It appears therefore, that a mixture of 

geochemical and physical processes influence trace metal distributions in Mersey 

sediments. 

Mean trace metal concentrations in fine-grained sediments from a number of UK estuaries 

are provided in Table 4.1. Comparisons of data from this study with those from Williams 

(1995) reveal that, except for Fe, Humber and Mersey sediments show similar degrees of 

Table 4.1 Mean trace metal concentrations in fine-grained surface sediments from a 
variety of UK estuaries. Concentrations are in |ig g'' (dry wt.) except for Fe 
(mg g'*). 

Site Cd Co Cu Fe Mn Ni Pb Zn 

Humber Estuary" 0.5 16 50 35 1000 39 no 250 

Humber Estuary** 1-2 >6 20-40 >20 > 1500 - > 150 >200 

Liverpool Bay** >5 <2.5 20-40 10-12.5 > 1000 - > 100 > 150 

Mersey Estuary^ 1.7 16 40 13 1200 57 250 380 

Severn Estuary^ 0.6 15 40 28 700 33 89 260 

Solway Firth^ 0.2 6 7 15 600 17 25 59 

Tamar Estuary^ 1.0 21 330 35 600 44 240 450 

Tyne Estuary^ 2.2 I I 90 28 400 34 190 420 

Wyre Estuary" 0.4 8 20 17 600 17 44 120 

' < 100 \im fraction, cone. I-INOj digest (Bryan ai.d Langslon, 1992); " < 63 îm fraction, IM HCI digest 
(Williams, 1995):' This study. < 63 tim fraction, IM HCI digest. 
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contamination for all the trace metals studied. Humber sediments possess higher non-

detrital Fe due to inputs into the estuary from titanium dioxide processing plants (Grant 

and Middleton, 1990, 1993). Data for the Mersey are also largely in accord with that of 

sediments originating from the adjoining coastal area. Metal concentrations offshore may 

be attenuated (or even augmented in the case of Cd), by high trace metal contents in dredge 

spoil, sewage sludge and industrial waste deposits dumped at various sites in Liverpool 

Bay (Norton et al., 1984). Mersey surface sediments are similarly contaminated, for 

different metals, as sediments in the Tamar, Severn, Tyne and Humber estuaries but show 

considerable metal enrichment compared to sediments from the Wyre and Solway. 

4.1.2 Axial trace metal distributions in bulk and settled SPM 

Axial distributions of non-detrital metals available to I M HCI in bulk SPM, and PSPM and 

TSPM components separated from bulk SPM by settling are reported in Figure 4.2. Total 

metal concentrations determined by extraction of bulk SPM with HF are also provided in 

Figure 4.2. It should be noted that the removal of riverine concentrations from plots (i) and 

(ii) in Figure 4.2 produces no appreciable change in the shape of the profile for any of the 

metals studied. 

Apart from its concentration in riverine particles, non-detrital suspended paniculate Fe 

does not appear to exhibit seasonal variability, but instead gives relatively uniform trends 

along the estuary (Figure 4.2a). This indicates that these particles are homogeneous in 

terms of Fe content and therefore also, to a certain extent, their reactivity is also invariable. 

Around 50% of total Fe is released from bulk SPM by HCI. Results demonstrate that 

PSPM consistently possesses slightly higher concentrations of Fe than TSPM, which is 

important in terms of the longer-range transport of metals by those particles 'permanently' 

in suspension, especially for any metals that may bind strongly with Fe oxyhydroxides. 

Williams and Miliward (1998) demonstrated that the same trend exists for I M HCl-

leachable Fe in PSPM and TSPM from the tidal reaches of the Ouse and Trent rivers. 

Non-detrital particulate Ni concentrations (Figure 4.2b) are highest in the upper 2 km of 

the estuary followed by relatively constant concentrations further downstream. This profile 

is analogous to that given by Fe. Nickel may therefore be closely associated with iron 

oxyhydroxides (and possibly organic phases) at the particle surface. The concurrence of Ni 

with Fe in estuarine SPM has also been reported for the Humber and Mersey estuaries by 

Comber et al. (1995) and for SPM from the Humber mouth and plume by Sands (1997). 
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Approximately 35% of total Ni is removed from estuarine SPM by the HCl digest. Some 

seasonality is observed with total particulate Ni , as concentrations are elevated in the 

upper-mid estuary region in June 1998. Non-detrital N i in settled SPM varies throughout 

the estuary, with concentrations in PSPM and TSPM generally becoming closer at higher 

turbidities and diverging when suspended solids loads are below around 300 mg 1''. Nickel 

is undetectable in TSPM samples from low turbidity (< 100 mg 1'') water samples. 

Equivalence of Ni concentrations in the two settling fractions may imply that bed sediment 

concentrations of Ni are highest at these locations. Riverine concentrations of total 

particulate Ni range from 30-220 jig g"' depending on flow conditions and variations in 

anthropogenic inputs into the River Mersey. As for Fe, an inverse relationship exists 

between river flow and particulate Ni concentrations, as dilution of point source Ni inputs 

becomes more effective with an increase in freshwater discharge. Inputs of nickel in the 

estuary originate from industrial sources (Campbell et a/., 1988) and are thought to be due 

to continuous and pulsed discharges occurring both above and below the weir in 

Warrington. One of the major inputs into the upper estuary located approximately 1.6 km 

from the tidal limit ceased in 1996 and other Ni-containing industrial effluents are now 

treated (P. Jones, Environment Agency, pers. comm.). Historic loading of Ni in upper 

estuary sediments may now be more important than direct anthropogenic loads of the 

metal, representing a reversal of the conclusions of previous studies conducted when 

industrial inputs were considerable (Campbell ei al., 1988). 

In contrast, the particulate Mn profiles in Figure 4.2c do not show the same degree of 

uniformity as those observed for Fe and Ni . Concentrations of non-detrital Mn in SPM 

account for around 75% of the total concentration. Manganese is not usually regarded as a 

contaminant metal and the fact that three quarters are present in the non-detrital fraction 

infers that Mn in the Mersey is dominated by natural sources (Zhou et al., 2003). In the 

vicinity of the TMZ, where DO levels are lower, some resuspension of slightly oxygen 

depleted bed sediments may cause reduction of Mn (IV) to Mn (II) which then enters the 

dissolved phase. As salinity increases and oxygenation increases, so suspended particulate 

Mn concentrations in bulk and settled SPM populations rise to form broad mid-estuarine 

maxima in waters of intermediate turbidity before declining again to those observed at the 

TMZ at stations in the lower estuary and beyond, into Liverpool Bay. This trend appears to 

be enhanced in July 1997 and June 1998 and is likely to be linked to the broad oxygen sag, 

which begins only a short distance in from the mouth (Figure 3.Id). Higher concentrations 

in mid-estuary could be due to tidal resuspension of bed sediments releasing Mn from 

porewaters which is then subject to oxidative precipitation onto the surface of SPM. 
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Cobalt is not included in the suite of metals routinely monitored by the Environment 

Agency and this study is the first known investigation of suspended particulate 

distributions of this element in the Mersey. Particulate Co (Figure 4.2d) appears to follow 

the same distribution patterns as those shown for Mn. Positive relationships have 

previously been established between the two metals in the Scheldt and Weser by 

Turner et al. (1991), Scavenging of Co with insoluble Mn (IV) under oxic conditions is 

released into sediment pore waters during reductive solubilisation of Mn (IV). Disturbance 

of sediments by strong tides encourages the injection of Co and Mn (II) into the water 

column, which are then concomitantly oxidised and adsorbed onto suspended particles. 

This phenomenon has also been implied in the distribution of suspended particulate Co in 

the Seine Estuary (Chiffoleau et al., 1994). Concentrations of dissolved Co in the Mersey 

REM are an order of magnitude higher than those for other estuaries with a similar 

pollution history such as the Scheldt, which strongly suggests an anthropogenic source for 

Co in the tidal and non-tidal reaches of the Mersey (Martino, 2000). Particulate Co was 

only detected in REM suspended particles when these were digested with HF. Generally 

around 50% of total Co is removed by the weaker leach. A persistent and localised input 

occurs which is coincident with the TMZ and moves with the T M Z in response to 

variations in the volume of freshwater entering the estuary at Howley Weir. The highly 

variable Co concentrations observed in bulk SPM are repealed in the data for settled SPM. 

Differences in non-detrital concentrations in the separated populations were more apparent 

for this metal than all the others studied. Cobalt in PSPM was consistently greater than that 

in TSPM, which often contained undetected concentrations of non-detrital Co. However, at 

sites where bed sediments were dominated by fine-grained material and in the TMZ, Co 

concentrations in PSPM and TSPM are considerably closer. 

Particulate Cd (Figure 4.2e) and Cu (Figure 4.2f) available to I M HCl show significant 

declines in concentrations in suspended particles in the region of the TMZ. Turner et al. 

(1991) also noted co-distribution of the two metals in the Scheldt and Weser estuaries. 

Reduction in particulate Cd is most likely caused by complexation with chloride anions in 

seawater. As salinity increases, desorption of Cd is enhanced due to the formation of 

thermodynamically stable chloro-complexes with competing chloride ions from seawater. 

Peaks in the lower estuary may be due to contaminated particles entering from the 

Manchester Ship Canal. Chlorocomplexation also occurs as salinity rises for Cu and this is 

coupled with competition from Ca^* and Mg^^ for active surface sites (Comans and Van 

Dijk, 1988) and this has previously been observed in the Mersey by Comber et al. (1995). 

The ability of both metals to form strong complexes with chloride ions is reflected in the 
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fact that HCI is shown to remove the majority of apparently largely surface-bound Cd and 

Cu (up to 75% of the total metal content). After reaching waters of increasing salinity, the 

distributions of both metals generally become more uniform throughout the rest of the 

estuary. However, freshwater concentrations do change considerably with season and 

corresponding changes in river flow. For example, variations are seen for Cu, with higher 

concentrations occurring, especially for REM SPM, in July 1997 and March and June 

1998. Copper has a high affinity for surface organic ligands (e.g. Paulson ei a/., 1994). 

Changes in particulate Cu distributions along the salinity gradient may also result from 

solubilisalion and pore water infusion due to the degradation and recycling of particulate 

organic matter (Church, 1986) and/or desorption from seaward-advected particles 

(Chiffoleau etaL, 1994). 

Pb concentrations in SPM (Figure 4.2g) are not as seasonally independent as those for Fe 

and Ni or as exaggerated as those displayed by Mn and Co. Up to around two thirds of 

total Pb is available as non-detrital metal. A significant discharge of stable, water-soluble 

organic lead species is known to enter the estuary via the Manchester Ship Canal (Riley 

and Towner, 1984; NRA, 1995). Riley and Towner (1984) performed a dissolved Pb 

speciation study and found that highest estuarine concentrations of alkyl lead compounds 

occurred primarily near the Weaver Sluices, with a secondary source emitted from the lock 

gates at Eastham. Tetra-alkyl lead compounds are rapidly lost by both evaporation and 

hydrolysis. From the results of this study, it would appear that these locations are still 

experiencing some of the highest lead concentrations in the estuary. Further studies by 

Riley and Towner indicated that di- and tri-alkyi components were considerably less 

particle reactive than inorganic lead ions and proposed that the former compounds could 

form the bulk of dissolved lead species occurring within the mid and lower estuary. The 

predominant form of particulate lead is therefore thought to be inorganic, as rapid removal 

of dissolved inorganic lead ions has previously been demonstrated throughout the estuarine 

mixing zone (Riley and Towner, 1984). Lead concentrations in PSPM and TSPM are more 

similar than for the other metals discussed so far and this indicates that bed sediments are 

sufficiently contaminated with Pb that equivalent concentrations are sustained in both SPM 

types. Concentrations of Pb in bulk SPM from the outer estuary tend to agree with the 

findings of Laslett (1995), 

Seasonal axial profiles for Zn (Figure 4.2h) are fairly analogous to those of most of the 

other metals. There are however, several small additional inputs, which tend to appear 

more exaggerated in June and October 1998. Zinc concentrations, like those for Cd and Pb, 

are again elevated slightly in the lower estuary and Liverpool Bay (at a distance of - 40 -
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55 km) in June 1998. These data could be suggesting an offshore 'hot spot' for these three 

metals, possibly in the form of sewage outfalls, dumped sewage deposits or, alternatively, 

contaminated spoil from constant dredging of the navigation channels which is also 

dumped in Liverpool Bay (Norton et al., 1984). Campbell et al. (1988) concluded that zinc 

in the estuary primarily arose from sewage inputs. Since 1988, improved sewage treatment 

combined with the reduced use of Zn in the plating industry have led to a decrease in the 

load of anthropogenic zinc (NRA, 1995). Variations in the distribution of Zn are now 

thought to result from current effluents being advected upestuary by strong incoming tides 

or salinity-induced desorption from SPM. Historical metal burdens in deposited sediments 

may be released by desorption from resuspending sediments and possibly by the injection 

of metal-rich porewaters into the overlying water column. The resulting dissolved Zn is 

then either adsorbed onto SPM that is relatively depleted in Zn or remains freely in 

solution. Up to 65% of total Zn present in SPM is leached by I M HCI. As for Pb, Zn 

concentrations in PSPM and TSPM appear to correspond more closely than for some of the 

other metals which again implies considerable enrichment of this element in bed 

sediments. 

Metals data obtained from the analysis of settled SPM are quite ambiguous and difficult to 

interpret from the plots in Figure 4.2. Apart from Co (and possibly Mn), non-detrital metal 

concentrations do not reveal any obvious differences in geochemical reactivity between the 

two particle types. To investigate this further, the data have been statistically re-evaluated 

by means of a two-tailed t-test (assuming unequal variances), the results of which are given 

in Table 4.2. Statistical analyses, performed at the 95% confidence level, indicate that 

calculated values of / are greater than critical values of t for Cd, Co, Fe, Mn, Ni and Pb. 

Table4.2 Metal concentrations (mean ± l a ) in PSPM and TSPM and t-test results 
where p = 0.05. Concentrations are in jig g"' except for Fe (mg g''), v = 
degrees of freedom, tcaic = calculated values of t, tcru = critical values of t. 

Metal V PSPM TSPM ^catc tcrii 

Cd 36 1.32 ±0.53 0.84 ± 0.42 3.13 2.03 

Co 34 11.2 ±3.6 3.4 ±3.8 6.33 2.03 

Cu 38 30.7 ± 14.9 24.2 ±9.7 1.76 2.02 

Fe 44 19.3 ±3.1 14.1 ±3.1 5.64 2.02 

Mn 41 1915±497 1460 ±671 2.61 2.02 

Ni 36 28.0 ± 11.8 I5.8± 11.4 3.22 2.03 

Pb 44 134 ±53 93 ±48 2.73 2.02 
Zn 44 529± 196 419± 181 1.96 2.02 
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Therefore, concentrations of these metals in PSPM and TSPM are significantly different. 

This pattern reinforces the concept of permanently suspended particles having a greater 

adsorptive capacity for trace metals than those only temporarily in suspension (e.g. 

Williams and Millward, 1998; Liu, 1996; Liu et al., 1998). The same trend does not hold 

for Cu and Zn, which show a lack of distinction between the two sub-populations of SPM. 

Where bed sediments are substantially enriched with metals, concentrations in 

resuspending particles approach those determined in seaward-fluxing particles. Further 

evidence for this may be provided in Figure 4 . I f and Figure 4 . ih , with higher 

concentrations in the > 63 ^m fraction being recorded more consistently for Cu and Zn 

throughout the estuary than for the other metals itnder scrutiny here. The fact that 

distributions of particulate metals in the settled fractions reflect those of the bulk 

suspended population, indicates that independent measurement of trace metals in separated 

SPM fractions is both procedurally and analytically viable. 

Settling experiments were used to simulate natural physical processes in the TMZ. The 

proportion of PSPM in each undifferentiated (bulk) SPM sample used for settling was 

calculated from the established concentrations of particles in the TSPM and PSPM 

fractions and these results are presented graphically in Figure 4.3. A clear and statistically 

significant (n = 23, /* < 0.0005) inverse relationship exists between PSPM concentration 

and total suspended solids concentration. At low SPM loads PSPM predominates, 

accounting for around 80% of all suspended particles. As turbidity increases, TSPM 

becomes the major component due to the increasing occurrence of tidal disturbance of bed 

sediment and the amount of PSPM correspondingly falls to around 30% of the total 

suspended particle population. These results support the findings of Duinker (1983), 

Bale et al. (1990) and Williams and Millward (1998). It appears that PSPM could comprise 

the major constituent of SPM in the middle-lower reaches of the estuary where suspended 

solids concentrations are consistently around 200 mg 1"' (Figure 3.3b) and this is 

adequately demonstrated in Figure 4.4. Here, concentrations of PSPM and TSPM have 

been estimated for all stations sampled using the regression equation in Figure 4.3 and 

known concentrations of the total suspended solids load. Figure 4.4 shows that axial 

changes in the concentrations of the two SPM populations reflect the distribution of fine

grained bed sediments in the estuary (Figure 3.7) as well as relative changes in the 

magnitude of tidal and freshwater inflows (refer to Table 2.1 for river flows and tidal 

ranges for the respective surveys). 
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Assuming that the concentrations of particulate trace metals in the bulk SPM are only a 

consequence of the mixing of PSPM with TSPM, the data has been fitted using the particle 

mixing model in Equation 4.1: 

[Mce]: [MCTSPM ] * % T S P M +[MepspM ] * % P S P M 

% T S P M + % P S P M 
Equation 4.1 

where MCE is the predicted concentration in whole SPM; MexsPM is the concentration of 

metal in TSPM; MCRSPM is the concentration of metal in PSPM and % TSPM and % PSPM 

are the relative proportions of settled SPM components. Measured concentrations have 

been plotted against those predicted by the equation above in Figure 4.5. Regression 

statistics are provided in Table 4.3. 

Table 4.3 Regression analyses of the data in Figure 4.5, where v = degrees of freedom. 

Metal Slope Intercept P 

Fe 21 1.02 ±0.14 -0.30 ±2.41 0.71 < 0.0005 
Ni 17 1.23 ± 0.44 1.22 ±8.48 0.31 <0.01 
Mn 21 0.86±0.14 338 ±236 0.64 < 0.0005 
Co 15 0.62 ±0.18 2.80 ± 1.68 0.44 < 0.005 
Cd 18 0.80 ±0.14 0.21 ±0.17 0.66 < 0.0005 
Cu 21 0.85 ± 0.09 2.46 ±2.88 0.81 < 0.0005 
Pb 21 0.93 ±0.13 5.06 ±33.9 0.72 < 0.0005 
Zn 21 1.23±0.18 -53.0 ±80-4 070 ^ 0.0005 

Application of the mixing equation seems to have worked reasonably well in predicting the 

observed particulate metal concentrations in bulk SPM, producing statistically significant 

regression coefficients in the range 0.31 - 0.81. Theoretically, a perfect relationship 

between calculated and observed concentrations would pass though the origin and produce 

a gradient of 1, Errors on the gradients and intercepts indicate substantial variability in 

these parameters, the degree of which varies considerably between metals. However, 

overall, concentrations of metals in PSPM and TSPM can be used fairly successfully to 

predict metal contents in the total suspended particle population. Interestingly, this method 

works for Cu and Zn, despite the fact that mean concentrations of these two metals were 

not shown previously to differ significantly in PSPM and TSPM (Table 4.2). Predictions of 

particulate Co and N i by this method were also significant, but significance was slightly 

reduced due to the fact that several TSPM samples had concentrations o f Co and Ni below 

the limits of detection. Particle-water interactions are not accounted for in the particle 
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mixing model. The extent of sorption processes (affected by axial and temporal changes in 

particulate or water chemistry) wi l l affect the observed trace metal concentrations and this 

may account for some of the deviations shown between observed and predicted data. 
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The relatively constant concentrations observed in the axial distributions of some of the 

trace metals studied indicate that the lower 45 km of the estuary are well-mixed, due to 

strong tidal transport, in turn leading to a complete re-dispersal of suspended particles and 

their associated metals throughout the estuary. Uniform suspended particulate trace metal 

concentrations have also been observed in the Gironde Estuary by Kraepiel ei al. (1997) 

and were thought to result from a particle residence time in excess of 12 months. This was 

supported by the reduced organic carbon contents of the particles compared to those from 

the REM, indicating that estuarine particles were oxidised and therefore aged. Similarly, 

this work has already demonstrated (Table 3.3, Section 3.4.2) that the mean POC content 

of estuarine SPM is 1.35% (w/w), which is around half that associated with riverine SPM 

(1.79 - 3.54%, mean - 2.70%). In addition, POC in SPM varies only by around 2.5% 

throughout the mixing zone and between - 35 - 60% of riverine POC is mineralised in the 

estuary. This collective evidence suggests that, as with the Gironde, SPM in the Mersey 

Estuary is also aged. 

The I M HCI digest used in this study probably over-estimates the concentrations of 

exchangeable metals and therefore gives an upper limit to the amount of desorbable metal 

that could be contributed to the dissolved phase. However, it is presupposed that both 

chemically and biologically available fractions are present in the resulting analyte solutions 

(Luoma and Bryan, 1981; Turner and Millward, 2000). Concentrations of non-detrital trace 

metals in Mersey Estuary SPM are compared to those from two other estuaries in Table 

4.4. As discussed previously, seasonality in trace metal distributions in Mersey SPM are 

linked to variations in fluvial flow and biogeochemical processes affected by seasonal 

fluctuations in pH, DO and carbon availability. For example, co-precipilation of Co and 

Mn on SPM becomes elevated in the presence of an oxygen sag (Zwolsman and van Eck, 

1999) and additional metals may become available in the dissolved phase after being 

released from organic detritus by bacterial oxidation and sediment mobilisation. The data 

for Cu associated with Mersey SPM suggests that Cu may be strongly complexed with 

POC as estuarine Cu concentrations hardly vary during the year. Investigations into 

relationships between metals and POC have been made in this work and are reported later 

in Section 4.2.2. Concentrations of non-detrital Mn are higher in the Mersey than in the 

Humber and Thames, possibly indicating the effect of successful reoxygenation of the 

Mersey in recent years. This concurs with the findings of Zwolsman and van Eck (1999) 

where gradual reoxygenation of the Scheldt produced a doubling in the Mn content of 

fluvial SPM between the early 1970s and mid 1990s. Particulate Mn has also increased in 

the Thames in response to long-term improvements in water quality (Section 1.3.2). Non-
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Table 4.4 Mean non-detrilal trace metal concentrations (available to I M HCI) in SPM 
from Ihr 
(mg g ' ) 
from three UK estuaries. Concentrations are in \xg g"' (dry wt.) except for Fe 

Site Cd Co Cu Fe Mn Ni Pb Zn 

Humber Estuary, - - 32 36.1 1020 - 102 177 
winter'' 

Humber Estuary, - - 34 33.0 1480 - 104 275 
spring^ 

Humber Estuary, - - 62 24.6 1280 - 81 270 
summer̂  

Mersey Estuary, 1.2 7.0 26 18.8 1530 35 109 369 
winter 

Mersey Estuary, 1.0 11.1 26 16.2 1530 15 40 381 
spring 

Mersey Estuary, 0.98 12.0 29 16.4 1830 23 81 436 
summer 

Thames Estuary, - - 51 22.8 697 - 143 165 

Sampling performed near the mouth of (he Humber Estuary (S>30) and in the lower Thames Estuary 
(S>20) (Turner and Millward, 2000). 

detrital Zn in the Mersey is considerably higher than in the other two estuaries however, 

and this implies that bed sediments in the Mersey may be retaining this metal as inputs of 

Zn have dramatically reduced in the last 20 years. Equivalent concentrations of Pb are 

observed between Mersey and Humber SPM, whilst suspended particulate Fe in the 

Mersey is intermediate between that of the Thames and Humber. 

4.2 Geochemical controls on trace metal reactivity 

4.2.1 Metal-metal relationships in Mersey Estuary particles 

The majority of trace metals tend to be adsorbed to or occluded within hydrogenous and 

biogenic coatings on natural particle surfaces (Turner et al, 1991; Thomas and Bendell-

Young, 1999; Dong et al., 2003). Iron and manganese oxyhydroxides are often significant 

in this respect as they have high adsorptive capacities. Additionally, repeated cycles of 

oxide dissolution and precipitation reduce their crystallinity and thus aid the incorporation 

of metal ions (Chao, 1984). Turner (2000) surmised that intra-estuarine variations in Fe 

and Mn concentrations are a reflectance of local alterations in redox conditions and the 

hydraulic sorting of sediments. Inter-estuarine differences could be explained by the 

presence of different industrial activities, catchment geologies, pH and Eh conditions (the 
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latter affecting Fe and Mn oxide precipitation rates). Following work performed by Turner 

(2000), regression analyses have been applied to Mersey sediment and bulk SPM data to 

allow exploration of the role of Fe and Mn in regulating contaminant metal concentrations. 

I f the trace metal concentration, Me, is controlled by the concentration of either Fe or Mn, 

then the data follows one of the following equations: 

Me] = fl[Fe] + c Equation 4.2a 

[Me] = a[Mn] + c Equation 4.2b 

where a and c are constants. Alternatively, i f accumulation of trace metals is controlled by 

Fe and Mn acting synergistically, and effects of the two host phases are independent of 

their relative contributions by mass, then metal data can be defined thus: 

[Me] = ^i[Fe] + b[Mn] + c Equation 4.3 

Models according to Equations 4.2 and 4.3 were tested against metals data for Mersey 

< 63 |im sediments and bulk SPM using single and multiple regression analyses 

respectively, and the results are reported in Table 4.5. Iron appears to be the significant 

oxidic phase for Cu in fine-grained sediments, whilst both Cu and Zn show a more marked 

dependence on Fe when it is present in combination with Mn. Close associations between 

Cu and Zn in fine-grained sediments from a variety of estuaries have previously been 

reported by Turner (2000). In the same work it was found that Fe was the dominant phase 

for both Cu and Zn in sediments of the Mersey. Results from the present study would tend 

to agree with this observation for Cu but not for Zn, which may possibly be explained by 

the fact that different digests have been used in the two investigations. Weaker 

correlations, especially for Pb and Zn, suggest that the impacts of diagenetic release or 

anthropogenic discharges are buffered by the dispersion of fine-grained sediments by 

energetic tidal stirring. For bulk SPM, significant relationships are produced for all metals 

with Fe whilst Mn is only implicated in the uptake of Ni onto suspended particles. The 

application of Equation 4.3 to SPM and sediment data improved the significance of the fits 

in almost all cases (seen as an increase in R^) and a complex interplay between Fe and Mn 

in the regulation of contaminant metal concentrations is implied. However, it should be 

noted that although many of the relationships in Table 4.5 are statistically significant, they 

explain little of the variability, as indicated by the estimated errors on the gradients and 

intercepts of the individual regression lines. 
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Table 4.5 Results of regression analyses of trace metal concentration versus Fe or Mn (Equation 4.2) or Fe and Mn (Equation 4.3) for < 63 \im 
sediments and bulk SPM from the Mersey Estuary. P values are given where estimates are statistically significant. 

Substrate/ 
metal 

Equation 4.2a Equation 4.2b Equation 4.3 

n a c P a c P A b c R' P 

< 63 ftm 
sediments 

Cd 4 -0.0000504 ±0.000175 2.59 ±2 .14 0.05 0.00362 ± 0.00383 -1.61 ±3.76 0.31 0.00388 ±0.00510 -7.59 X 10 ' ± 1.98 X lO-" -0.959 ±5.25 0.40 

Co 4 -0.00146 ±0.00107 3 I . 7 ± 13.2 0.48 -0.00859 ±0.0378 22.6 ±37.1 0.03 -0.00359 ±0.0392 -0.00144 ±0.00153 35.0 ±40.4 0.48 

Cu 15 0.00402 ±0.00199 -5.81 ±28 .0 0.24 5 0.05 -0.0145 ±0.0169 66.2 ± 19.9 0.05 -0.0369 ±0.0143 0.00629 ±0.00188 4.53 ±23.7 0.51 5 0.00S 

Ni 4 -0.000496 ±0.000887 63.1 ± 1 0 . 9 0.14 -0.0271 ±0.0153 83.7 ± 15.0 0.61 -0.0259 ±0.0197 -0.000360 ±0.000767 86.8 ±20.3 0.68 

Pb 15 0.000939 ± 0.0277 292 ± 390 0.00 -0.171 ±0.205 499 ± 2 4 2 0.05 -0.224 ± 0.240 0.0I47±0.0315 355 ±398 0.07 

Zn 15 O.On7±0.OI05 2 5 8 ± 148 0.09 -0.0764 ± 0.0808 506 ± 95.0 0.06 -0.151 ±0.0833 0 .0210±0.0110 300± 138 0.28 5 0.025 

SPM 

Cd 69 O.I53±0.0157 -1.48 ±0 .289 0.59 5 0.0005 -0.000432 ±0.000358 1.28 ±0.589 O.OI -0.000356 ±0.000229 0 .157±0.0156 -0.971 ±0.436 0.60 5 0.0005 

Co 52 0.718 ±0.280 •2.51 ± 4 . 6 0 0.12 5 0.01 0.00273 ±0.00175 4.85 ±2.81 0.05 0.000822 ±0.00195 0.651 ±0.324 -2.72 ±4 .66 0.12 5 0.01 

Cu 80 2.47 ±0 .236 -14.5 ±4.53 0.58 5 O.OOOS 0.00537 ±0.00635 21.2 ± 10,5 0.01 -0.000137 ±0.00417 2.47 ±0.239 -14.3 ±7 .68 0.58 5 0.0005 

Ni 70 4.21 ±0 .202 -50.3 ±3 .96 0.87 5 0.0005 0.0228 ±0.0119 -9.62 ± 19.2 0.05 5 0.05 0.00140 ±0.00466 4.20 ±0.209 -52.2 ±7.61 0.87 5 0.0005 

Pb 81 7.76 ± 0.796 -36.3 ± 15.8 0.55 S 0.0005 0.0141 ±0.0228 83.2 ±38.0 0,01 -0.0124 ±0.0157 7.88 ±0.810 -18.2 ±27.8 0.55 5 0.0005 

Zn 81 15.6± 1.74 167 ±34.7 0.50 5 0.0005 0.0214 ±0.0478 4 I 8 ± 7 9 . 7 0.00 -0.0322 ±0.0343 15.9 ± 1.77 2 I 4 ± 6 1 0.51 5 O.OOOS 
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Several difficulties arise in the assessment of metal contamination of marine and estuarine 

sediments. These include the choice of extraction technique, adjustments for grain size 

effects, the presence of a natural background concentration and inconsistencies in 

analytical procedures (Grant and Middleton, 1990; Clifton et al, 1999). Additionally, the 

choice of sites and methods for sample collection should be carefiilly considered in order 

to achieve the selection of samples that are truly representative of that area (Mudge et al., 

2001). 

Grain size effects may be reduced by normalising concentrations to those of an element 

that is abundant in a range of minerals having different granular and textural forms and 

which should not be anthropogenically altered. Constituents commonly used for this 

purpose are A l , K and Fe (Loring, 1991), Cs (Ackermann, 1980) and Li (Loring, 1990) 

although other elements such as Co may be substituted i f more appropriate to the study site 

(Matthai and Birch, 2001). Another example of this is provided by Grant and Middleton 

(1990, 1993) using Rb as a grain size proxy in place of A l , Fe and Ti which are all 

contaminants in the Humber Estuary. 

The effects of sediment granulometry can alternatively be accounted for by sieving the 

sample prior to metal analysis. Subsequent calculation of metal contents is then possible by 

normalising values with respect to an averaged grain size distribution. For the Mersey, a 

mean estuarine value of 40% silt content (w/w) has been ascribed by previous researchers 

(Taylor, 1986; Harland and Riddle, 1997; Hariand et a/., 2000). This value has been 

subsequently confirmed by both this study and laser particle size determinations performed 

by the Environment Agency for surface sediments collected in July 2000 which produced a 

mean value of 41.2% silt (EA, unpublished data). The following discussion of sediment 

trace metal concentrations therefore refers to data normalised to 40% silt. Relationships 

between metals have been explored for the two bed sediment surveys in this study and the 

findings are pooled and presented in Table 4.6. 

Higher regression coefficients are reported for Fe with Cu, Pb and Zn and for Mn with Cu 

and Zn in Table 4.6 than those given in Table 4.5. This implies that > 63 fim particles 

supply an important contribution of these metals in bed sediments. Other evidence of this 

has previously been given in Figure 4.1, where concentrations of Cu, Pb and Zn in coarse

grained sediments exceeded those in the fine-grained material. Analysis of the data in 

Table 4.6 suggests that Fe could be the main carrier for Pb and Cu. Zinc appears to be 

equally associated with both oxide phases. Common anthropogenic sources may be 
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indicated for Pb with both Cd and Cu whilst the negative value produced between Zn 

and Ni negates a common input for these two metals. 

Table 4.6 Correlation matrix indicating only significant R^ values {P < 0.025, n = 16 
for Cd, Cu, Fe, Mn, Pb and Zn, n = 4 for Co and Ni) for I M HCl digestion 
of Mersey Estuary surface sediments. Sediments have been normalised to 
40% silt content. The figure in bold denotes an inverse relationship. 

Cd Co Cu Fe Mn Ni Pb Zn 

Cd * 

Co • 

Cu * 

Fe 0.77 * 

Mn 0.28 0.37 * 

Ni * 

Pb 0.56 0.38 0.32 * 

Zn 0.35 0.36 0.96 * 

Statistically significant contaminant metal relationships in bulk SPM are similarly reported 

in Table 4.7. Data for Fe and Mn are omitted as these have already been displayed in Table 

4.5. A larger number of significant associations are observed in SPM than in bed sediments 

which will be due in part to the larger sample size for SPM samples. However, some of 

these relationships may also be due to geochemical modification of estuarine particles. 

Table 4.7 Correlation matrix indicating only significant R^ values (P < 0.0005, n = 71 
for values involving Co and Ni , n = 82 for all other metal combinations) for 
I M HCl digestion of Mersey Estuary bulk SPM. 

Cd Co Cu Ni Pb Zn 

Cd * 

Co * 

Cu 0.47 * 

Ni 0.58 0.44 * 

Pb 0.35 0.37 

Zn 0.21 0.16 0.58 0.33 0.38 * 

This is strongly suggested for Ni and Zn for example, which have an inverse association in 

bed sediments but a positive one in SPM. For this and other metal combinations, trace 
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metal binding to POC may be more significant in sediments whilst reduced POC and 

proportionately more Fe and Mn in suspended particles means that trace metals would tend 

to bind instead with oxidic phases in SPM. 

4.2.2 Metal-POC relationships in Mersey Estuary particles 

As with Fe and Mn in the previous section, i f the amount of POC present in the particulate 

phase is involved in the regulation of trace metal concentrations, the following equation 

can be used: 

[Me] = a[POC] + c Equation 4.4 

Corresponding data describing relationships between metals and particulate organic carbon 

are provided in Table 4.8. Data are shown for regressions of POC% (w/w) against metal 

concentrations determined by extraction with I M HCI for a limited number of sediments 

collected in July 1999 and bulk SPM sampled in March, June and October 1998. Rather 

than pooling the data for SPM, separate analyses have been performed for each survey. 

This has been done in order to try and establish whether or not seasonal differences in 

sources of POC to the estuary (Section 3.4.2) have any impact on the amount of non-

detrital metal adsorbed to suspended particles. 

As reported earlier for the analyses of Fe, Mn and Fe+Mn against the other metals (Table 

4.5), there is a considerable amount of scatter in the data in Table 4.8 as indicated by the 

errors estimated for a (the gradient) and c (the intercept) for each regression line. Despite 

this, and also the fact that only four sediments were co-analysed for metals and POC in 

July 1999, positive and statistically significant relationships are produced between POC 

and Cu, POC and Fe and also POC with Pb. The statistical data produced for SPM display 

even greater variability than that for bed sediments and no clear patterns can be discerned. 

The relationship between POC and Co in March 1998 is significant but the negative 

gradient indicates that this is an inverse one, with Co concentrations declining in SPM as 

POC content increases. The same trend occurs for Co and POC in June 1998 but is more 

marked than in the earlier survey. Copper on the other hand, is shown to co-vary positively 

with POC at this time and has the same degree of significance as POC-Co. Particulate 

organic carbon and Cu were also shown to be positively correlated in Weser SPM by 

Turner ei al. (1991). Significant co-associations are also produced in October 1998 

between Co, Fe, Ni , Pb and Zn with POC, but with the exception of POC-Co, the 

relationships are all negative. 
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Table 4.8 Results of regression analyses of non-detrital (available to I M HCI) trace 
metal concentration versus particulate organic carbon (Equation 4.4) for 
< 63 |im sediments and bulk SPM from the Mersey Estuary. P values are 
given where estimates are statistically significant. 

Equation 4.4 

Substrate/ metal n a c R' P 

< 63 ///;/ sediments July J 999 
Cd 4 -0.07 ± 0.47 2.12± 1-33 0.01 
Co 4 -4.24 ±2.51 25.6±7.I5 0.59 
Cu 4 23.3 ±2.88 -14.0 ±8.20 0.97 <0.01 
Fe 4 2.62 ± 0.22 5-01 ±0-62 0.99 < 0.005 
Mn 4 18.7±71.2 927 ± 202 0.03 
Ni 4 -1.64 ±2.23 61.5 ±6.34 0.21 
Pb 4 219±22.9 69.8 ±65.2 0.98 < 0.005 
Zn 4 5.62 ±23.0 3I2±65.5 0.03 

SPM March J 998 
Cd 17 0.15 ±0.24 0.73 ±0.36 0.03 
Co 17 -2.55 ± 1.22 14.8± 1.88 0.22 <0.05 
Cu 17 -1.60 ±5.25 28.5 ± 8-07 0.01 
Fe 17 -I.14± 1.07 17-9± 1.65 0.07 
Mn 17 -32.4 ± 155 1579 ±239 0.00 
Ni 17 -2.08 ± 2.06 18.4±3.17 0.06 
Pb 17 -I9.7± 13.2 69.0 ± 20-3 0.13 
Zn 17 -34.0 ±35.0 431 ±53.8 0.06 

SPM June 1998 
Cd 17 -0.09 ±0.35 1.I9±0.38 0.00 
Co 13 -3.70 ± 1.00 16.4 ± 1.28 0.55 < 0.005 
Cu 19 8.75 ±2.69 16.5 ±3-01 0.38 <. 0.005 
Fe 19 1.50 ±0.94 l5-2± 1.06 0.13 
Mn 19 -84.7 ± 152 1843 ± 171 0-02 
Ni 19 -3.91 ±4.38 27.1 ±4-90 0.04 
Pb 19 -17.1 ± 13.0 75-7 ± 14-5 0.09 
Zn 19 -22.3 ±43-9 472 ± 49-2 0-01 

SPM October 1998 
Cd 16 -0.30 ±0.38 1-13±0.39 0.04 
Co 13 2.85 ± 1.56 2-32 ± 1.79 0.23 <0.05 
Cu 19 -6.36 ±7.49 27.3 ±7.47 0.04 
Fe 19 -3.95 ± 1.38 20.4 ± 1.38 0.32 <0.01 
Mn 19 46.2 ± 192 1331 ± 191 0.00 
Ni 18 -5.92 ±2.45 23-4 ±2.50 0.27 < 0.025 
Pb 19 -26.9 ± 14.1 172 ± 14-0 0.18 <0.05 
Zn 19 -233 ±85.2 692 ± 84-9 0.31 <0.01 

Earlier in the thesis, it was demonstrated through the use of C:N and POCrChl a ratios, that 
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the type of POC present in the estuary varies in both space and time. The presence of algal 

blooms, particularly in May and July 2000 were readily identified and ratios also suggested 

the increased presence of terrestrially-derived organic matter in the estuary in October 

1998 when freshwater runoff was high (see Section 3.4.2 and Figures 3.12 and 3.13). At 

other times, and at different points along the estuary axis, the type of POC present was 

more mixed and also suggested the presence of other organic materials such as sewage, 

bacteria and labile organic compounds. 

Paulson et al. (1994) proposed that Cu partitioning in estuarine and coastal waters is likely 

to be controlled by chemical competition between dissolved and particulate organic matter. 

More specifically, they showed that Cu complexed with dissolved organic matter from an 

industrialised estuary had a reduced affinity for adsorption onto esluarine particles than 

inorganic species. The only positive regression between POC and Cu occurred in June 

1998 when 'terrestrial' POC and phytoplankton POC contributions tended to dominate 

over that from sewage. It may be that during March and October 1998, a greater proportion 

of POC consisted of anthropogenic compounds arising from industrial and municipal 

sources. The resulting complexes formed between anthropogenic ligands and Cu may in 

fact be partially resistant to the HCl digest, particularly i f Cu binds with any residual 

organic carbon present in the particles (see Figure 3.9). Such resistance to acid extraction 

has previously been demonstrated by Turner (2000) using a weaker digest 

(hydroxylammonium chloride-acetic acid) to release reducible Cu (and other metals) from 

Mersey sediments. Additionally, Comber et al. (1995) demonstrated that Cu was 

concentrated in the residual and organic phases of Mersey SPM. These factors may help to 

explain the two poor correlations observed between POC and Cu in March and October 

1998. The inverse relationships and low R^ values observed between POC and other metals 

may be due to the same mechanism and/or preferential binding or co-precipitation with 

hydrous oxides of Fe and Mn. 

4.2.3 Control of particle reactivity by Fe, Mn and POC 

It has previously been demonstrated (Section 4.2.1) that oxidic phases of Fe, Mn or a 

combination of both these elements are important for the carrying capacity of contaminant 

metals by bed and suspended particles in the Mersey. The derivation of Fe/Mn ratios can 

be used to assess spatial and temporal intra-estuarine variations in the relative dominance 

of these two major sorbent phases. Ratios have been calculated for Mersey SPM and the 

results are displayed graphically in Figure 4.6. Also shown are the mean and standard 

deviations of Fe/Mn ratios in < 63 |im sediments. Ratios in riverine and upper estuary SPM 
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change with fluctuations in freshwater discharge, tidal range and the extent of water 

oxygenation. Riverine signals become rapidly dispersed in the estuary, particularly in 

spring and summer. The upestuary advection of particles by tidal pumping is combined 

with a fresh supply of riverine material, which may be more or less enriched with iron or 

manganese than that already present in the estuary. 
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Figure 4.6 Fe/Mn ratios (available to I M HCI) in Mersey Estuary bulk SPM as a 
function of distance along the estuary. Also shown at 70 and 80 km are 
mean ± 1 standard deviation of Fe/Mn ratios in < 63 jam sediment from July 
1997 and July 1999, respectively. 

Mixing of the two particulate pools leads to some elevated Fe/Mn ratios close to the tidal 

limit. Ratios are lowered around the TMZ in July 1997, March 1998 and June 1998 where 

lowest DO levels promote the release of both Fe and Mn into the dissolved phase (Duinker 

et al., 1979). With increasing distance from the main freshwater influence, Fe/Mn ratios 

begin to stabilise due to increased oxygenation of the water column. A relatively 

homogeneous distribution of Fe/Mn is observed throughout the remainder of the estuary, 

although fluctuations do arise from localised alterations in hydrochemistry. These appear 

to alter the amount of Mn present (see Figure 4.2c(ii)) but do not produce similar changes 

in Fe, the axial distribution of which is more consistent (Figure 4.2a(ii)). Ratios in SPM 

from the majority of the estuarine mixing zone tend to agree with the range of Fe/Mn ratios 

measured in fine-grained sediments. 

Millward et al. (1990) investigated the particle microstructure and chemical composition of 

suspended solids from four large estuaries - the Elbe, Humber, Mersey and Tamar. They 

128 



found that the mean SSA of SPM from the Mersey was reduced in comparison to that 

originating from the other estuaries and proposed that this was due to the relative 

proportions of carbon (total) to iron and manganese in the samples. For instance, the high 

SSA in the Humber (24.0 m^ g ' ) was associated with a C/Fe + Mn ratio of 4, whereas that 

for the Mersey, (mean SSA = 9.6 m^ g*') was found to be around 11. The lack of an 

apparent turbidity maximum during the Mersey survey in 1987 resulted in uniform SSAs 

throughout the salinity gradient and the authors implied that the removal of dissolved 

constituents at low salinity would not be favoured in this estuary. When the findings of 

Millward ei al. (1990) are compared with relevant data from this study, a number of 

interesting features arise (Table 4.9). As stated in the preceding chapter, SSAs of 

suspended particles appear to have increased as a consequence of reductions in the amount 

of SPM carbon present. This effect may have been exacerbated by the additional increase 

in Fe/Mn ratios observed between 1987 and 1999. Different digests have been used in the 

two studies to extract Fe and Mn and it is not clear what effect this may have on the 

relative contributions of both metals in relation to each other. The consequence of higher 

Fe/Mn ratios and lower carbon therefore provides a substantial reduction in the 

carbon:ferromanganese contents of Mersey SPM. The adsorptive capacity of suspended 

particles could thus be enhanced compared to that existing in 1987, with a greater chance 

of irreversible adsorption taking place, i.e. the migration of metal ions into the particle 

matrix. It also appears that fine-grained (< 63 |im) sediments could be a reservoir for 

carbon as well as metals. Mersey Estuary bed sediments and SPM now exhibit 

characteristics approaching those of Tamar Estuary bed sediments determined in 1985-6 

(Millward et aL, 1990). 

The mean combined concentrations of Fe and Mn are plotted against mean SSA for 

Mersey Estuary fine-grained sediments from July 1999 and compared to corresponding 

data for SPM from a variety of European estuaries (Turner el al., 1991) as demonstrated in 

Figure 4.7. Inclusion of the Mersey data point reduces the significance of the linear fit of 

the data from an of 0.91 (n = S,P< 0.005) to an of 0.44 (n = 9, < 0.05). The SSA 

of Mersey particles is limited even though Fe+Mn are analogous to that in Humber SPM. 

In the preceding chapter (Table 3.3) it was shown that less particulate carbon is present in 

most of the Mersey mixing zone compared to corresponding data for the Humber (Uncles 

et al., 2000). This may suggest that the form of amorphous Fe and Mn oxides on particle 

surfaces differs between the two estuaries and/or that Mersey particles are more degraded 

and aged than those from the Humber, as the latter would reduce the amount of effective 

surface available for trace metal sorption. 
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Table 4.9 Characteristics of Mersey Estuary particulate material, where n = number of stations sampled and R = range of values. 

Survey dates & Statistical Turbidity SSA Fe Mn Total carbon Fc/Mn C/Fe + Mn Reference 
matrix parameters (mg r ' ) (m' g *) (mg g"*) (mg g*') (%) 

Nov/87 Mean ± a 86 ±36 9.6 ±2.4 4.8 ±0.9 1.2 ±0.3 6.4 ± 1.6 4.0 10.7 Millward et al. 
SPM N 10 10 9 10 10 (1990) 

R 50- 155 6.0-14.9 3.5-6.5 0.7-1.6 4.7-9.4 
Jul/97 Mean ± a 180± 158 - 15.7± 1.6 2.0 ±0.6 - 8.0 _ This study 
SPM N 10 - 10 9 _ 

This study 

R 19-461 - 13.7-18.6 1.2-3.2 -
Dec/97 Mean ± a 243± 191 - 18.8 ±8.9 1.5 ±0.2 - 12.3 _ This study 
SPM N 11 - 11 11 -

This study 

R 15 - 702 - 14-8-45.6 0.9-1.8 -
Mar/98 Mean ± a 228± 141 - 16.2 ±2.0 1.5 ±0.3 1.8 ±0.6 10.6 1.05 This study 
SPM N 17 - 17 17 17 

This study 

R 88 - 579 - 13.1-20.1 0.9-2.0 0.9-3.3 
Jun/98 Mean ± a 139± 136 - 16.7 ±2.0 1.8 ±0.3 1.2 ±0.6 9.5 0.67 This study 
SPM n 20 - 20 20 19 

This study 

R 10-581 - 10.3-20.0 1.2-2.3 0.2 - 2.6 
Oct/98 Mean ± a 144 ±84 - 16.8 ±2.9 1.4 ±0,3 1.1 ±0.5 12.2 0.66 This study 
SPM n 19 - 19 19 19 

This study 

R 31 -347 - 11.9-25.4 0.9-2.0 0.4-2.7 
Jul/99 Mean ± a - 9.3 ±3.0 10.6 ±0.9 I.0±0.1 3.0 ±0.3 10.6 2.58 This study 

< 63 |im n - 9 3 3 3 
This study 

sediment R - 6.6-15.0 9.6- 11.4 0.8-1.1 2.6-3.2 
May/00 Mean ± a 212± 115 11.0± 1.6 - - 2.0 ±0.5 - _ This study 

SPM n 7 7 - - 16 
This study 

R 39- 371 7.8-12.5 - - 1.1-2.9 
Jul/00 Mean ± a 175± 108 15.1 ± 1.3 - - 1.8 ±0.5 - This study 
SPM n 8 8 - - 8 

This study 

R 60 - 345 13.4-16.8 - - 1.3-2.5 
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Figure 4.7 Relationship between mean specific surface area and mean combined 
concentrations of Fe and Mn in estuarine particles. Estuary key: HW = 
Humber, winter; HSu = Humber, summer; T = Thames; SW = Scheldt, 
winter; SSp =Scheldt, spring; SSu = Scheldt, summer; W = Weser; E = 
Elbe; M = Mersey < 63 |im sediment from July 1999. 

Turner (1996) also investigated the effect of chemical composition of riverine particles on 

the key partitioning variables Ko^ (describing metal partitioning in freshwater) and b (the 

rate of change in with changes in salinity) for Cd and Zn for a number of estuaries. The 

results are plotted with corresponding data for the Mersey in Figure 4.8. Data from Turner 

(1996) refers to the partitioning of radioisotopes instead of stable metal isotopes. 

Correspondingly, values for '^CdKo** and ^^ZnKo" for June and October 1998 (for the 

same survey dates as in this study) have been taken from Le Roux (2000). However, 

different leaches have been used to obtain Fe and Mn in Turner (1996) and this work. 

However, it can still be seen that the proportion of Fe+Mn:C in Mersey SPM always 

exceeds that for the other rivers. Additionally, wide temporal variations are evident for 

Mersey REM particle composition and the freshwater partitioning of Zn (although not for 

Cd). Inclusion of the Mersey data reduces the correlations for both Cd and Zn with 

Fe+Mn/C from those provided in the other sttidy {R^ = 0.81 for Cd, R^ = 0.50 for Zn 

(excluding the data point for the Dee)). Turner (1996) was able to demonstrate that the 

freshwater partitioning of Cd and, to a lesser extent of Zn, were the result of competing and 

additive effects of multiple sorbent phases such as ferromanganese hydroxides, carbonates 

and organic carbon. Results for the Mersey indicate that whereas in previous years, the 

abundance of POC (including that arising from direct anthropogenic sources) probably led 

to it being a more significant phase for trace metal sequestration, hydrous oxides of Fe and 
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Figure 4.8 Relationships between (a) '̂ '̂ Cd and (b) ""Zn freshwater partition 
coefficients and the chemical characteristics of riverine particles from a 
number of UK rivers. Key; C = Clyde; D = Dee; H = Humber; Ta = Tamar; 
Tw = Tweed; M = Mersey in June (MJ) and October (MO) 1998. Equations 
of the two lines are (a) y = -O.I2Ln(x) + 10.42 (R^ = 0.05) and 
(b) y = -0.38Ln(x) + 9.60 (R^ = 0.38). 

65-

Mn are currently assuming a greater importance in the adsorption of metals to SPM. This 

change in sorptive control fluctuates however in response to cyclic changes in 

instantaneous freshwater flow recharging estuarine waters with terrigenous organic carbon, 

the presence of phytoplankton blooms and the tidally-mediated injection of organic-rich 

interstitial waters from a sedimentary reservoir of organic carbon in the estuary as well as 

localised alterations in pH, DO, salinity and suspended load. 

4.2.4 The partition coefficient, K D 

The measurement of particulate metals conducted in this study was supported by 

complementary analyses of total dissolved trace metals, the results of which are described 

in full in another text (Martino, 2000). It is important to note that measurement of 

dissolved metals was performed on the same water samples used to obtain the suspended 

particulate metal data discussed in Section 4.1.2 and all filtration was completed within 24 

hours of sample collection. As estuarine systems are naturally complex and heterogeneous, 

the approach taken in this work therefore allows the most accurate insight into natural in 

situ metal partitioning. 

Conditional distribution coefficients for stable metal isotopes (field K D S ) have been 

calculated from the ratio between dissolved and non-detrital (available to I M HCI) 
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particulate trace metal data according to Equation 1.2. To test the variation of K Q with 

salinity, logioKp values are plotted against logio(S+l) according to Bale (1987) in 

Figure 4.9. Linear regressions have been applied to seasonal data for Cd, Co, Cu, Ni , Pb 

and Zn and logio values of KD**, the freshwater partition coefficient and the constant the 

rate of change in Kp with respect to salinity are also provided. Regressions have been 

forced through the y-axis when riverine data is available. The seasonal variability of trace 

metal partitioning is also shown graphically in Figure 4.10, which has the percentage of 

non-detrital particulate metals vs. the total suspended solids concentration, calculated using 

the following algorithm: 

100 
% Particulate Metal = 100 -

I + K D * [ S P M ] * 10' 
Equation 4.5 

Increased dilution is apparent for Cd (Figures 4.9a and 4.10a) under the high fiow 

conditions of the October 1998 survey. At this time, K D S are reduced throughout the 

estuary, KD** is more than an order of magnitude lower than that determined during 

December 1997 and a maximum of only 40% of Cd is in particulate form. Values of h 

indicate that the extent of desorption of Cd in December under low flow conditions is more 

significant than at other times. For other surveys, up to 90% of Cd can be held on particles, 

particularly in December, when the highest turbidity was recorded. Desorption of Cd along 

the salinity gradient is always indicated but is somewhat reduced in both March and, more 

especially, in June. Kuwabara et al. (1989) and Tumer et a/. (1991) have previously shown 

correlations of particulate Cd (and Zn) with organic carbon released from phytoplankton 

blooms whilst Valenta et al. (1986) reported increases in KpCd during blooms. 

Alternatively, intensification of pH minima in the spring and summer months may 

destabilise soluble metal-carbonate complexes including those for Cd, leading to metal 

precipitation (Sarin and Church, 1994) and consequently, less desorption. This may hold 

true in the Mersey in March 1998 when pH values tend to be lower than for other seasons, 

but do not clearly explain the results for June. 

In contrast to Cd, values for b are always positive for Co, indicating progressive uptake 

onto SPM as salinity increases (Figure 4.9b). However, it should be noted that for three of 

the surveys, Co concentrations in riverine SPM were below the limits of detection. 

Correspondingly, freshwater K D S have been estimated on these occasions by extrapolating 

the regression line. The lack of particulate data in the REM also accounts for the apparent 

loss of some of the data at low turbidities in Figure 4.10b. It has already been established 

in previous sections in this chapter, that reduced water oxygenation promotes the release of 
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Figure 4.9 The variation of field K Q S for (a) Cd, (b) Co and (c) Cu with salinity in the 
Mersey Estuary. 

dissolved Co from sediment porewaters and/or the desorption of Co from resuspending 

sediments followed by subsequent adsorption of Co to SPM in waters where DO is 

replenished. The extent of Co uptake by SPM is thus greatest when temperatures are low 

(e.g. b = 0.99 in December) and reduced when DO levels and pH are progressively 

depressed as in March and June {b = 1.14 and 1.26, respectively). At all times of year 

K D C O rapidly increases in the mid-outer estuary (S > 17.4) as pH rises and DO is 

replenished. A l least 60% of Co is present in the particulate phase in October 1998 and 

December 1997 but this can fall to 30-40% in the upper-mid estuary in March and June 

1998 (Figure 4.10b) when temperatures are higher and DO saturation is lowered. 
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Figure 4.9 Continued - The variation of field K D S for (d) N i , (e) Pb and (f) Zn with 
salinity in the Mersey Estuary. 

Copper (Figure 4.9c) exhibits only limited seasonal changes in its phase distribution. 

Overall trends of salinity-induced desorplion, whilst always indicated, are generally less 

pronounced than for Cd. A moderate inverse relationship between K D C U and pH in June 

{R^ = 0.20) may indicate the uptake of Cu onto SPM after release of the metal from tidally-

resuspended organic-rich detritus in the TMZ. The value of K D ^ for Cu is highest in June 

and a noticeable decline in KQ occurs at a low salinity at this time. The highest amount of 

Cu in the particulate phase is consistently observed in the TMZ for all surveys except 

October 1998 when the turbidity maximum is forced downestuary and overall turbidities 

are slight!y reduced (Figure 4.10c). 
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Figure 4.10 The variation in percentage non-detrital particulate (a) Cd, (b) Co, (c) Cu, 
(d) Ni , (e) Pb and (0 Zn with SPM concentration in the Mersey Estuary. 
The isopleths represent lines of constant K D for which the logioKp values 
are indicated. 

The solid-solution partitioning of Ni is quite variable (Figure 4.9d). In December, March 

and June KoNi is reduced at low-moderate salinities. The salinity range over which Ni 

desorption ensues varies between surveys: <1 - 14.4 in December; 1.1 - 19.7 in March; 1.0 

- 22.7 in June. Desorption of Ni is most significant during low flow in December (seen by 

the highest negative value for b) whilst slow but progressive adsorption predominates 

along the salinity gradient during October when runoff is considerable. Moderate to strong 
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inverse relationships occur between KoNi and DOC in March, June and October {R^ = 0.41 

- 0.72) and indicate that Ni readily combines with labile dissolved organic matter. This 

serves to reduce KD*^ and estuarine KQS in March and June compared to December by 

helping to keep Ni in solution. However, a high negative correlation exists between KoNi 

and chlorophyll-fl in March {R^ = 0.67), suggesting that Ni may be assimilated by 

phytoplankton, for which there is some evidence in the estuary in both March and June 

1998 (e.g. see Figure 3.12). A maximum of 80% of the metal is associated with the 

particulate phase in waters of moderate turbidity in June and October 1998 (Figure 4.10d). 

In common with Ni , Pb is desorbed from SPM at low-moderate salinities in December, 

March and June with the trend being most exaggerated in March (Figure 4.9e). Freshwater 

K D S are highly consistent and is only slightly reduced under the high flow conditions in 

October. Partition coefficients for Pb correlate positively with DO in March and June (R^ = 

0.58 and 0.21, respectively). More than 50% of Pb is held in the particulate phase at all 

times of year (Figure 4.10e) but particulate lead is lowest when suspended solids and 

chlorophll-a concentrations are high and DO concentrations are low. Under these 

conditions the presence of Pb in the dissolved phase increases in the upper-mid estuary 

including the TMZ region reflecting the position of the DO sag, after which KoPb 

increases rapidly with higher salinity and higher DO concentrations. Away from the low 

salinity zone and the TMZ, at least 85% of Pb is associated with SPM. During October and 

December, the presence of more stable geochemical conditions such as greater DO 

saturation mean that only relatively minor variations are seen in Pb partitioning. This is 

particularly evident in the data for October when high runoff produces a homogeneous KQ-

salinity distribution for Pb. 

Overall trends of desorption are indicated for Zn for all surveys, being most obvious in 

June but limited in March and more particularly in October (Figure 4.9f)- Freshwater KpZn 

responds to changes in freshwater flow. The same Ko^ is observed in December and June 

when flows are minimal and declines as runoff increases in March (moderate Qf) and 

October (high Qf). Uptake of dissolved Zn has been attributed to incorporation of the 

element in the opaline exoskelta of diatoms (Hunter and Tyler, 1987). The partition 

coefficient of Zn would be expected to increase under such conditions but there is no 

obvious demonstration of this process in the data for the Mersey. In June, only around 30% 

of the metal is present in the particulate phase in the REM (Figure 4.1 Of). At least 90% of 

Zn is held by SPM in the TMZ for all surveys. The relationship between KpZn and DOC in 

June (R^ = 0.24) is in fact negative and suggests that as for Co and Ni at this time, Zn 
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adsorption is reduced and this may be due to a high concentration of natural organic 

ligands in the water column. Conversely, in October, the partition coefficient of Zn 

changes positively with DOC concentration (R^ = 0.36), possibly implying that interaction 

between DOC and SPM promotes the migration of Zn deeper inside the particle matrix in 

some samples. However, overall, as for Cu, localised physicochemical conditions in the 

water column (including salinity) appear to be less important to the phase distribution of 

Zn than for those of Cd, Co, Ni and Pb. Turner (1996) demonstrated that reductions in the 

magnitude of b for Weser Estuary SPM followed the same order as the reduction in 

stability constants of the respective metal chlorocomplexes of Cd, Cu and Zn {i.e. Cd > Zn 

> Cu, Tumer et al. (1981)). A review of the data given in Figure 4.9 indicates that in the 

Mersey, different patterns emerge for different surveys and that the behaviour of all three 

metals is somewhat modified in the Mersey compared to the Weser. 

Figure 4.10 also indicates K D S as isopleths, with partition coefficients given as logio 

values. The data for Cu and Zn tend to follow a uniform value of K Q . Millward and Glegg 

(1997) found that Cu and Zn partitioning were similarly seasonally independent in the 

Humber and proposed that this was connected to the invariant physico-chemical 

composition of suspended particles in the estuary. Considering previous discussions 

regarding the relative uniformity of Mersey SPM, it is somewhat surprising that seasonal 

differences in geochemical behaviour occur for other metals. Primary productivity affects 

oxygen saturation, water pH and the amount and type of organic carbon available for metal 

complexation and could be associated with some seasonal changes in the phase association 

of metals other than Cu and Zn. High POC concentrations may be associated with 

phyloplankton blooms leading to seasonal variations in overall SPM composition (Balls, 

1990; Zwolsman and van Eck, 1999) and this can also influence metal uptake by lithogenic 

particles. The preferential incorporation of some elements by phytoplankton has also 

shown to result in seasonally variable removal of metals from the dissolved phase (Balls, 

1990). The derivation of POC:Chl-a ratios in Section 3.4.2 is restricted for surveys other 

than May 2000 and July 2000 due to a lack of chlorophyll-a data, but does provide some 

evidence for phytoplankton blooms in March and more especially in June 1998 (see Figure 

3.12). As K D S for Cd, Co, Ni and Pb increase at mid-high salinities during June, uptake of 

these metals in the dissolved phase by primary producers could be the mechanism 

responsible for this. Thus, it appears that the reactivity of Cd, Co, N i and Pb are more 

readily influenced by periodical changes in the amount and possibly more significantly, the 

chemical nature and specificity of DOC and POC present at the time of sampling, 

particularly i f this coincides with cycles of primary production. However, the elevated 
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degradation of organic matter in bed sediments in the warmer months and the subsequent 

release of this material to the water column by tidal stirring could also be an important 

mechanism affecting metal phase partitioning in the Mersey. 

The magnitude of K D gives an indication of particle affinity for metals. The following 

sequence of decreasing particle reactivity has been generated by calculating the average 

estuarine partition coefficient for each metal: 

P b > Z n > C o > C u , N i > C d 

Trends closely follow those observed in two other historically-contaminated turbid 

estuaries, the Scheldt and the Seine, where ranges in field K D S for each metal are generally 

similar to those in the Mersey even though different mineral acids have been used to obtain 

the data (Table 4 .10) . This may indicate that some geochemical equivalence may exist in 

Table 4.10 Comparisons of ranges of field K D S (logio values) for trace metals in 
estuaries and coastal waters. 

Study site C d C o C u Ni Pb Zn 

British coastal waters'* 3.5-5.0 _ 4.0-5.0 4.0-4.5 5.0-7.0 4.0-5.0 

Conwy Estuary'* - - 4.5-6.5 4.3-6.0 - 4.2-5.2 

Forth Estuary*^ 3.8-5.9 - 4.4-4.9 4.4-5.0 5.2-6.2 4.5-5.3 

Lena Estuary** - - 4.6-5.0 4.6-4.9 - 5.7-5.8 

Mersey Estuary' - - - 3.8-4.7 - 4.5-4.9 

Mersey Estuary*^ 2.2-5.1 2.9-5.2 3.4-4.2 2.8-4.7 3.5-5.9 4.0-5.2 

Rhone Estuary^ - - 4.5-4.6 4.4-4.5 - -

Rio Tinto^ 1.0-2.3 - 1.4-3.7 - - 0.9-2.7 

Scheldt Estuary' 4.5-5.0 - 4.8-5.0 - 6.2-6.5 -

Scheldt Estuary 3.9-6.3 - 4.2-5.7 3.5-4.2 - 4.3-5.2 

Seine Estuary^ 3.9-4.0 5.0 4.5-4.7 4.2-4.4 6.1-6.3 4.4-4.7 

• Balls (1989);" Zhou et al. (2003); Balls et al. (1994);" Martin ei ai (1993);" Campbell et at. (1988):' This study; 
Regnier et al. (1990); *• Achterberg et al. (2003);' Valenia et al. (1986); ^ Paucot and Wollasl (1997); ^ Chiffolcau ei al. 
(1994). 

the three systems. The Rio Tinto is substantially affected by acid-mine drainage. The low 

K D values there result from waters of very low pH (2.5 - 6 .6 ) promoting strong competition 

between protons and metals for binding sites on SPM and Achterberg et al. ( 2 0 0 3 ) have 

estimated that consequently > 9 9 % of Cd, Cu and Zn are transported in the dissolved 

phase. Partition coefficients for the nearby Conwy Estuary in North Wales are generally 
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higher than for the Mersey, and this could be indicative of differences in particle character 

or the amounts of organic carbon present in the two estuaries. Comparison of historical and 

present-day data for the Mersey suggests that the decrease in lowest values of KoNi and 

K[>Zn result from recovering conditions in the estuary over a period of 25 years, including 

the loss of suspended particulate carbon effected by reductions in organic effluents. 

4.3 Evidence of recent trends in recovery 

So far in this thesis, variations in particle compositional properties and the distributions of 

estuarine master variables, nutrients, carbon and trace metals have been assessed over 

short-term (seasonal) timescales. Relevant data for these parameters have been compared 

to other major estuaries experiencing varying pollutant burdens and degrees of 

anthropogenic pressure in order to assess the relative contaminant status of the Mersey. At 

this juncture it is also necessary to evaluate the advances made to date of metal 

decontamination in the Mersey, the details of which comprise the next three subsections of 

this chapter. 

4.3.1 Comparisons with metals data from the literature 

Numerous studies have undertaken determinations of particulate and dissolved trace metal 

concentrations in the Mersey Estuary in the last 25 years. A compilation of published data 

from these investigations is presented in Table 4.11, which also incorporates data from the 

current programme of work (including dissolved metal concentrations from Martino 

(2000)). 

Several major difficulties arise when comparing temporal changes in trace metal 

concentrations in estuarine sediments and these are captured in Table 4.11. Firstly, only 

Harland et al. (2000) and this study report concentrations that have been normalised to the 

mean estuarine silt content of 40%. The effect of grain size normalisation is demonstrated 

clearly when comparing data for 1974 from Taylor (1986) with that of Hariand et al. 

(2000). These values refer to mean concentrations in exactly the same sediment samples 

taken from the same transects. However, those from Taylor (1986) are not adjusted for silt 

content (which varied from 0.04 - 99.0% in 1974), whereas those for Hariand et al (2000) 

were corrected. Reported values are additionally complicated by the use of different acid 

digests, which leach varying quantities of metals from particulate matter and consequently 

directly influence the value recorded. Thirdly, the number and locations of sampling 
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Table 4.11 Particulate and dissolved trace metal concentrations measured in the Mersey Estuary. 1974-1999. Mean values and concentration ranges are provided where available. 

Trace metal concentration 
Phase Year Cd Co Cu Hg IWn Ni Pb Zn Reference 

Sediments (mg kg'') 1974 0.7 8.6 49.7 1.7 332 16.1 82.2 319 Taylor (1986)' 
(0.1-4.0) (2.0-22.3) (0.9-219) (0.05-9.2) (0.8-2054) (1.0-115) (10.8-316) (8.8-944) 

Taylor (1986)' 

1983 0.8 5.3 33.1 1.0 - - 60.8 221 Taylor (1986)" 
(0.2-5.8) (1.0-19.0) (4.0-150) (0.02-4.2) (1.0-209) (7.0-684) 

1980-1984 1.3 - 94 3.01 1251 31.5 138 422 Langston(1986)*' 
(0.2-3.9) (31-144) (0.4-6.2) (633-2183) (17.7-44.0) (67.6-205) (217-627) 

1974 2.44 11.1 71.5 2.04 - 20.5 113 410 Hariand et ai (2000)' 
1998 0.65 5.99 21.8 0.60 - 11.2 51 181 Harlaiid a/. (2000)' 
1997 - - 24 - 787 - 110 532 Turner (2000)'' 

(13-31) (301-1160) (70-331) (122-997) 
1997 • - 35.8 - 783 - 160 441 This study* 

(11.6-68.5) (454-1104) (64-422) (234-639) 
1999 1.5 14.3 38.0 - 837 55.9 476 284 This siudy^ 

(1.1-1.8) (8.6-18.0) (18.9-51.3) (655-941) (53.9-59.9) (355-542) (260-298) 
This siudy^ 

SPM (mg kg ') 1980 - - • • • 50-130 - 300-1000 Campbell er ai{\mf 
1991 0.49-1.2 - 24-56 - 280-970 19-55 33-140 310-450 Laslett(1995)'' 

1997-1998 1.0 9.2 26.0 - 1604 21.6 93 425 This study' 
(0.10-5.4) (2.3-16.0) (7.9-61.1) (880-2572) (4.6-175) (3.0-240) (250-810) 

This study' 

1997-1998 1.4 15.9 55.8 - 1803 48.3 170 505 This study* 
(0.1-7.0) (5.2-26.5) (31.1-95.2) (1151-3150) (17.0-195) (51.0-319) (267-929) 

This study* 

Dissolved (ng 1'') 1980-1984 - - - - • 0.8-17.4 - 4.2-56.0 Campbell A / . (1988) 

1982-1984 0.06-1.7 - 0.20-13.3 0.0005-0.17 - 1.0-13.3 0.13-53.1 8.6-50.0 Cole and Whitelaw (2001) 
1991 0.009-0.052 - 1.4-3.3 - 0.1-11.0 0.80-9.4 0.032-0.460 1.5-16.0 Laslett(1995) 

1991-1992 0.015-0.070 - 0.9-2.4 - - 2.3-10.4 0.65-2.5 7.5-17.0 Comber et a/. (1995) 
1997-1998 0.03-0.48 0.04-2.39 1.5-5.5 - - 0.46-11.9 0.06-1.24 2.8-32.0 Martino (2000) 

* Not shown as only one sample was above LOD; Digests used:' aqua regia, whole sediment (not normalised to average silt content);" cone. HNOj, < 100 um;" Aqua recia, normalised to 40% silf " 0 05M 
MU r i u ur*! -xo' nr\r\i i ^ c-i e i 1 1: • Aexn, -i. __ . 1 _ . . r- . . . - . . . r .. . . . . ° ' NH2OH.HCI in 25% CH3COOH, < 63 pm;' IM HCI, normalised to 40% silt, samples taken from axial transect of most of the estuar>' 
csiuar>' only; ̂ digest not stated; ^conc. KNO3;' IM HCI;' HF digest. 

IM HCI. normalised to 40% silt, samples taken from extreme upper 
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stations may vary considerably, depending on the means of access (whether from shore, 

boat or hovercraft) and the selection of specific regions of interest. Therefore, for all the 

reasons outlined, care must be exercised in interpreting the data in Table 4.11. 

The most comparable studies of sediment metal concentrations (in terms of grain size 

normalisation and acid digests used) are those of Hariand et al. (2000) and this work and 

the results from these are highlighted in Table 4.11. The former study is the most 

comprehensive and consistent data set on intertidal sediment metal concentrations in the 

Mersey in existence and demonstrates that sediment metaJ concentrations have generally 

declined by a factor of 2-3 for the elements studied (and almost a factor of 4 for Cd) 

between 1974 and 1998. This is to be expected given the reductions in metal loads to the 

catchment from changes in industrial practice, the tightening of discharge contents and 

improvements in sewage treatment (Jones, 2000). 

Comparison of metal concentrations in SPM is made slightly easier as all data refer to 

samples collected during axial transects. However the selection of acid digest again varies 

between studies. Between 1980 and 1991, maximum concentrations of suspended 

particulate Ni and Pb have halved in response to the initial clean-up and volume reduction 

of direct discharges into the estuary. Assuming that the amount of metal liberated by 

concentrated H N O 3 as used by Laslett (1995) is intermediate between that of the I M HCI 

and HF digests used in this study, it can be deduced that for most metals, concentrations 

have stabilised or even slightly increased since 1991. The amount of Mn in SPM has at 

least doubled due to overall improvements in DO, a feature also noted in the Thames and 

Scheldt estuaries in response to the clean-up of oxygen-consuming organic effluents 

(Section 1.3.2). Concentration ranges for other metals have widened and maximum values 

have risen between 1991 and the late 1990s. Thus, earlier reductions in SPM-associated 

metals do not appear to have been sustained. 

Data for dissolved metals in Table 4.11 show that the same trends are apparent for some 

dissolved metals as for metals in SPM. Reduced concentrations of dissolved Cd, Cu, Ni , Pb 

and Zn are observed in 1991 compared to 1980-1984. Concentrations then appear to reach 

a plateau between 1991-1992. Later, in the period 1997-1998, the trend appears to be 

reversed for dissolved Cd, Cu, and Zn which all begin to increase slightly, whilst Ni 

concentrations remain approximately the same and those for Pb continue to fall . Despite 

recent trends, the latest measurements made by Martino (2000) give dissolved metal 

concentrations that are well within current EQS values (see Table 1.2). 
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From studying the data in Table 4.11, it seems that decreases in both the number and 

concentrations of metal inputs into the Mersey which began in the 1970s, resulted in steady 

declines in metal concentrations in the estuary up until the early 1990s. Subsequent 

declines have slowed or even possibly begun to reverse in the last few years and this 

implies that processes occurring within the estuary itself are assisting in attenuating metal 

concentrations at present day levels. 

Additional evidence for an apparent slow-down in metal reduction trends has been 

provided in sediment core studies. For example, differences of up to x3 for Cu, x22 for Pb 

and x5 for Zn exist between apparent 'pre-industrial' concentrations in saltmarsh cores 

(Fox et al., 1999) and contemporary concentrations in surface sediments from the extreme 

upper estuary (this study). Examination of core maxima indicates that for these three 

metals, contamination has retumed to intermediate, rather than baseline, levels. 

Additionally, these intermediate values appear to have been consistently retained since 

1992 when the core was taken. This suggests that contaminant concentrations of Cu, Pb 

and Zn in deposited sediments have reached a plateau in the last decade after previously 

rapid declines had taken place over the preceding 40 years. This continuance could result 

either from metals issuing from point discharges or from dispersed sources. The latter 

could include the introduction of fresh contaminated sediment from fluvial inputs, the 

redistribution of reworked contaminated sediment from elsewhere in the estuary or the 

return of relatively metal-rich particles from the immediate Irish Sea area {i.e. Liverpool 

Bay). It is important however, to first assess the significance of any variations in external 

metal loads before observed temporal patterns are primarily aUributed to the recycling of 

trace metals from internal sources. 

4.3.2 Metal loads 

Abatement of trace metal loads from industrial sources to the Mersey has occurred over 

many years, with generally the most significant improvements to effluent quality taking 

place in the 1970s and 1980s (NRA, 1995). For example, Cd inputs have lowered through 

improved operational practices and the use of alternative specifications and disposal 

methods since new EU legislation conceming its control were implemented in 1985. In 

1985, 10 industrial sites (mainly electroplaters) discharged 0.282 tonnes of Cd to untreated 

sewers but by 1991, this had fallen to 0.052 tonnes (NRA, 1995). This was achieved by a 

combination of the factors above, along with improved wastewater treatment. The most 

notable reduction has been for Hg, the loads of which have fallen by more than two orders 
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of magnitude since peak inputs in the mid 1970s, constituting a reduction of 90% (Hariand 

et al., 2000; Jones, 2000). One of the major inputs of Ni into the upper estuary, located at 

approximately 1.6 km from the tidal limit and responsible for the manufacture of Ni 

catalysts, ceased production in 1996 and other Ni-containing industrial effluents are now 

treated (P. Jones, Environment Agency, pers. comm.). Currently, there are few remaining 

major point sources of Cu, Ni and Zn and inputs into the estuary are now dominated by 

contributions from tributaries and the non-tidal River Mersey (NRA, 1995). 

The loads of five metals entering the estuary from 1990-1999 have been obtained from the 

Environment Agency website (EA, 2002b). The data are presented graphically alongside 

corresponding mean sediment metal concentrations (averaged over a depth of 2 cm) 

determined by Hariand et al. (2000) for the same period in Figure 4.11. Load data refer to 

high load collective inputs from industrial, riverine and sewage sources. Discharges of 

some metals (Hg, Pb and Zn) show marked fluctuations compared to other metals (Cd, Cu) 

in Figure 4.1 la. The most obvious increase was more than a trebling for Hg between 1990 

and 1992. A very significant decline in Zn loads (and to a lesser extent for Pb) in 1991 

were followed over the next 1-2 years by increased inputs. After this date, metal loads 

either slowly reduced or remained relatively stable until 1998. Discharges then rose by 

varying degrees for all five metals (by only 25% for Pb but 50-70% for other metals) 

compared to those for the previous year. With the exception of Pb, all metals had smaller 

loads in 1999 than in 1990. 

Monitoring was not performed for metals other than Hg in 1992 and 1993 by Hariand and 

his co-workers, and the sharp inclines for Pb and Zn loads were not captured in the their 

measurements. A response to increased Hg inputs to the estuary in 1991 and 1992 is 

observed in the sediments in Figure 4.1 lb. Quoting less accurate load data at the time of 

publication, Hariand ei al. (2000) ascribed the rise in sediment Hg in three successive 

surveys between 1989 and 1992 to the remobilization of Hg-contaminated sediments 

derived from the erosion of previously consolidated saltmarsh. This theory can now 

effectively be ruled out for the 1992 rise in sediment Hg, which is almost certainly due to 

elevated loads instead. However, higher bed sediment concentrations o f Cd, Pb and Zn in 

1995 and of Hg in 1996 are not consistent with the corresponding trends in load data at 

those times. The possible reintroduction of contaminated saltmarsh sediments throughout 

the monitoring area during 1995 and 1996 could therefore explain the observed rise in 

sediment-bound Cd, Hg, Pb and Zn. The rise in all metal loads in 1998 do not produce any 

appreciable increases in sediment metal concentrations, most notably not even for Zn. 

Thus, any signal from enhanced inputs is effectively quenched in 1998. This is 
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Figure 4.11 (a) OSPAR reported discharges to sea, 1990-1999 (Environment Agency, 
2002b) and (b) mean concentrations in bed sediments in the Mersey Estuary 
(normalised to 40% silt) of Cd, Cu, Hg, Pb and Zn, 1991-1998 (Hariand et 
ai, 2000). 

possibly aided by the introduction of minimally metal-enriched particles from offshore or 

an increase in the amount of larger particles such as sands present in estuarine sediments. 

In conclusion, the overall correspondence between metal inputs and sediment metal 

concentrations are neither clear nor predictable. In fact, the only statistically significant 

correlation produced between annual input and sediment concentration data between 1991 
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and 1998 is for Hg (R^ = 0.69, P < 0.01, n = 8). 

Examination of the above data indicates that whilst a direct relationship could be discerned 

between elevated sediment Hg concentrations and Hg loads in 1992, at other times and for 

other metals, sediment metal concentrations do not simply reflect changes in the amount of 

metal released from various sources within the catchment. 

Disparity between trends in sediment metal concentrations and metal loads are likely to 

result from strong hydrodynamic and sedimentary as well as geochemical control. The 

sheer dynamicity of the Mersey actively promotes the dispersion of erodable sedimentary 

material from elsewhere in the estuary and this sediment may be more (e.g. in 1995/1996) 

or less (e.g. in 1998) contaminated than the ambient sediment contained within the fixed 

monitoring area continually used by Hariand et al. (2000). Saltmarsh erosion continues in 

the estuary, contrary to the belief of Hariand et al. (2000) that erosion has significantly 

lessened since the mid-1990s. Surveys performed in 2000 by the British Geological Survey 

for example, have shown that the position of the mean high water mark on the South bank 

of the Mersey has changed since 1992 as a result of significant retreat of parts of the Ince 

Banks saltmarsh development (Ridgway and Shimmield, 2002). In common with many 

other macrotidal estuaries, the continuous re-working and flux of particulate matter within 

the Mersey allows the redistribution of mobile sediments and any associated contaminants 

which are then made available for extended periods of intemal recycling. Importantly, the 

physical removal of topmost layers of consolidated marsh deposits wi l l establish a new 

redox gradient and thus promote the vertical diffiasion of diagenetically modified metals 

towards the sediment-water interface. The mobilisation of previously unavailable metals 

buried within the sediments would result in a new reservoir of metals able to take part in 

geochemical interactions either at the sediment surface or in overlying waters and this 

could also assist in explaining some of the patterns observed in the published data. 

4.3.3 Recovery of Mersey sediments from metal contamination 

Long-term monitoring performed by Hariand et al. (2000) has demonstrated continual 

declines in the concentration of most metals in sediments of the Mersey Estuary over a 25-

year period. This has proceeded despite perturbations in reduction trends induced by 

fluctuating metal inputs, the occasional introduction of sedimentary material possessing 

higher trace metal burdens from other regions of the estuary and any additional 

contributions emanating from diagenetic processes. 
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The provision of a relatively comprehensive and temporally extended data set can be used 

to derive approximations of sediment metal residence times. The time-dependent dechnes 

for metals in sediments (normahsed to 40% silt content, the validity o f which is explained 

in Section 4.2.1) from Hariand et al. (2000) are shown in Figure 4.12. Data for Ni has not 

been included, as consecutive annual measurements have only been made since 1995. 

Exponential trendlines have been fitted to the data for Cd, Cu, Pb and Zn and the equations 

describing them are also provided. This was not possible for Co, where an apparently large 

injection of the metal occurred in 1994 and consequently a declining trend is not observed. 

For metals where a curve is generated, values for R^ are excellent (P < 0.005 or better) and 

the metals exhibit strong exponential declines over time. The exponents in the equations 

for Cd, Cu, Pb and Zn are the time constants for the evolution of sediment metal content 

and have units of years'*. The reciprocals of these values offer an approximate residence 

time for each metal, which are given in Table 4.12. The corresponding value for Hg has 

also been included due to the fact that its historical elevated presence in the estuary has 

always been of significant interest and also because this work has investigated the sorptive 

behaviour of Hg in the Mersey (Chapter 5). 

Table 4.12 Sediment metal residence times in the Mersey Estuary as estimated from 
data in Hariand et al. (2000). 

Cd Cu Hg Pb Zn 

Residence time (y) 23 23 23 27 37 

The figures above indicate that removal of metals from the monitoring area could be 

achieved within the next 20-40 years, providing that extraneous sources are minimised. 

Hence, and based on the data from Hariand et al. (2000) alone, it could be said that in 

2003, sediment recovery from metal contamination is anticipated to have reached an 

approximate halfway stage. 

However, it should be noted that Figure 4.12 provides additional data on mean sediment 

metal concentrations obtained in this study during 1997 and 1999 which are higher than 

published values for around the same periods. The strength of digests used in both studies 

can effectively be considered comparable and both data sets have been normalised to an 

estuarine mean silt content of 40%. Disagreement between this research and the end-point 
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Figure 4,12 Reduction of sediment metal concentrations, 1974-1998 (from Harland el 
al., 2000). Data are for (a) Cd, (b) Co, (c) Cu, (d) Pb and (e) Zn available to 
aqua regia. Equations describing the lines are: (a) Cd = I.7e"*'"^ '̂' (R^ = 
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concentrations available to I M HCl determined in this study from sampling 
throughout the estuary in 1997 (X) and samples taken from the first 5 km of 
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of the monitoring series performed by Hariand et al. (2000) therefore comes primarily 

from the choice of sampling location. Sampling for the purposes of this study focussed on 

areas accreting larger quantities of fine, mobile, contaminated sediments. Hariand et al. 

(2000) used a fixed monitoring grid throughout their campaign, taking relatively few 

samples from the upper estuary and excluding the top 14 km downstream of the tidal limit. 

Interestingly, this work has shown that concentrations of most metals studied herein are in 

fact elevated in the upper reaches compared to sites downestuary (Figure 4.12). As such, 

the results from Hariand et al. (2000) may under-represent the true extent of metal 

contamination in Mersey sediments and more time may be required for significant metal 

loss to occur. The implications of enhanced metal levels in upper estuary bed sediments 

and predictions of their future recovery from metal contamination will be addressed later in 

Chapter 6. 

4.4 Summary 

This chapter has established that a combination of hydrodynamic, sedimentary and 

geochemical processes are responsible for maintaining trace metal concentrations at 

present-day levels in the Mersey Estuary. Bed sediments, particularly those in the upper 

reaches, remain substantially enriched for most metals studied. Evidence suggests that 

historical metal loadings were high, as coarse-grained sediments are as equally 

contaminated with Cu, Ni , Pb and Zn as the < 63 (im grain size fraction at some locations. 

Further indication of this is provided by the equivalent contamination of PSPM and TSPM 

by Cu and Zn. The incidence of peak concentrations of trace metals in bed sediments is not 

thought to be closely linked to the position of inputs but to result instead from the 

hydraulic sorting and energetic dispersal of particles in a highly dynamic tidally dominated 

system. The metal content of bed sediments therefore mainly reflects sediment 

granulometry but is also affected by differences in sedimentary POC. 

Distributions of PSPM and TSPM are related to that of bed sediments and respond to 

changes in tidal range and river flow in line with conventional theory. Apart from Cu and 

Zn, metals in PSPM tend to exceed those in TSPM, especially for Co and Fe and 

concentrations of most metals in bulk SPM have shown to arise simply from the mixing of 

naturally differing amounts of PSPM and TSPM at any one locale. Apart from Cu and Zn, 

the phase partitioning of most metals studied herein is quite variable and is primarily 

exerted by esluarine gradients of salinity and particle composition and concentration. 

Partial restoration of water quality in the estuary means that Fe and Mn are now probably 
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more important for trace metal sequestration than organic carbon. However, spatial and 

temporal changes in DO and the delivery of organic carbon (from external and/or internal 

sources) influence concentrations of Fe, Mn and C in SPM. Sorptive control may shift 

slightly between these phases such that the extent of uptake and subsequent retention of 

metals varies depending on the time of year, in addition to longitudinal changes in salinity 

and suspended load. Nevertheless, the overall effect is to maintain high concentrations of 

metals in the particulate phase. 

Metals are retained very effectively in Mersey particles as a consequence of increasing 

adsorptive capacities and the fluctuating but continued (although now somewhat reduced) 

presence of particulate organic carbon (see Chapter 3). Particulate metal concentrations in 

the Mersey are similar to those in other moderately contaminated systems such as the 

Severn, Tamar, Tyne, Humber and Thames. However, regulation of metal uptake by the 

physical (SSA) and chemical properties (Fe, Mn and C content) of SPM and the relative 

uniformity of metal concentrations throughout the mixing zone for many of the metals 

studied mark Mersey SPM as being significantly different to that of other estuaries. It is 

postulated that efficient sediment trapping generates a well-mixed pool of aged and 

modified suspended particles in the Mersey. As a consequence, it is anticipated that only 

small contributions of particulate metals are permanently flushed out of the estuary into the 

surrounding coastal zone. 

Comparisons of metals data from this study with those from the literature have shown that 

continuous and relatively rapid declines in particulate and dissolved metal concentrations 

occurred over a period of almost 20 years. Since 1991 however, the momentum has slowed 

and metal concentrations in both phases have effectively stabilised. Examinations of metal 

load data and corresponding bed sediment metal concentrations from Harland et al. (2000) 

during the period 1990-1998 reveals a lack of coherence between the two data sets. The 

attenuation of sediment metal concentrations has instead been attributed to the internal 

cycling of metals in the estuary, including the redistribution of formerly consolidated and 

contaminated saltmarsh sediments. Sediment metal residence times have been calculated 

using long-term monitoring data in Harland et al. (2000). Assuming that metal inputs and 

underlying physico-chemical conditions in the estuary remain unchanged, then 

decontamination of Cd, Cu, Hg, Pb and Zn in bed sediments from the inner and outer 

Mersey Estuary is predicted to take a further 20-40 years (from 1998). However, this work 

has shown that higher Cd, Co, Cu and Pb concentrations occur in bed sediments in the 

upper estuary, a region that is not wholly accounted for in the Harland et al. (2000) study. 
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Although direct intercomparisons between studies are not straightforward due to 

differences in sampling and/or analytical methodologies, it is envisaged that the amount of 

time required for significant sediment metal loss may vary for different stretches of the 

estuary as well as for different metals. 
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Chapter 5 

Implications of Metal 
Sorption 
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5 Implications of metal sorption 

The first half of this chapter gives an account of the solid-solution interaction of Hg with 

different SPM fractions in controlled laboratory radiotracer uptake experiments. 

Environment Agency data for stable dissolved and particulate Hg from the same axial 

transects are included for comparative purposes. The effects of salinity, turbidity and 

seasonal changes in water column and particulate matter chemistry on Hg partitioning are 

discussed. Subsequent sections describe mechanisms by which a number of metals, 

experiencing different degrees of interaction with particulate matter, may be mobilised and 

transported within the Mersey Estuary. Complementary data for dissolved trace metals are 

included to facilitate the interpretation of metal phase partitioning and the derivation of 

sorption models that may be used to describe observed dissolved metal profiles in the 

estuary. 

5.1 Radiochemical experiments 

5.1.1 The use of radioisotopes to study metal uptake by natural particles 

Partition coefficients derived fi-om field measurements of dissolved and particulate 

constituents rely on total or partial extraction by mineral acids (Millward and Turner, 

1995). However, these techniques are often not adequately selective toward the 

immediately reactive components (i.e. the truly exchangeable metal fraction), with the 

analytical particulate fi-action resulting from a combination of physico-chemical reactions 

occurring over different timescales (Turner, 1996). Instantaneous particle-water 

interactions may be replicated instead by using radioisotopes in controlled laboratory 

experiments, allowing a more direct insight into trace metal estuarine reactivity (Li ei aL, 

I984a,b; Turner el al., 1993; Millward ei al., 1994). Resulting analysis of only the 

adsorbed metal fraction is relatively simple and reproducible and contamination problems 

art largely avoided. The use of radioisotopes to simulate the behaviour of their stable 

analogues possesses additional advantages. These include the possibility of working at 

ultra-trace (pico- to nano-molar) concentrations offered by the low detection limits of 

gamma spectrometry, accurate mass balance determinations and the direct analysis of 

particulate and dissolved samples (Amdurer e/ al., 1983; Anderson et al., 1987; Turner et 

al., I992a,b). Short-term incubation studies have however failed to identify how reaction 

kinetics may affect the ultimate location of metal on particles, although recent efforts have 

attempted to discriminate between non-specific sorption reactions such as ionic exchange, 
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with more specific interactions between surface ligands and trace metals by modelling 

coupled kinetic and salinity elTects (Ciffroy et al., 2003). 

5.1.2 The phase partitioning of mercury in the Mersey Estuary 

The general physico-chemical characteristics of water samples and SPM used in 

radiochemical partitioning experiments are provided in Table 5.1. Distribution coefficients 

derived from the incubation of ^°^Hg with natural water samples containing bulk SPM, 

PSPM and TSPM from the March 1998, June 1998 and October 1998 surveys are plotted 

against salinity in Figure 5.1. Also shown are stable ICpS derived from measurements of 

dissolved (R = 0.010-0.031 ng 1') and particulate (R = 0.35 - 19.9 ^g g"') Hg made by the 

Environment Agency from a limited and variable number of sites. Upon first inspection, a 

number of features may be discerned. 

Table 5.1 Characteristics of estuarine water samples employed in radiotracer 
experiments. 

Survey Salinity SPM pH DO (%) POC (%) DOC C\x\-a 

(mgl- l ) (mgl- l ) (Mgl-1) 

March 1998 0.3-29.0 36-579 7.3-7.7 65-94 0.76-2.75 2.7-10.6 11.2-20.9 

June 1998 1.0-27.0 62-581 7.5-7.7 50-61 0.76-2.08 2.8-8.6 19.5-44.6 

October 1998 0.3-31.2 34-347 7.2-7.9 77-92 0.56-2.15 1.9-9.3 8.6 - 15.2 

Strong coherence between radiotracer and stable K^s are generally achieved, with any 

discrepancies between the two data sets arising from the different analytical methods 

employed. Secondly, overall, the results for ̂ ^^Hg concur with the trends for stable Hg. For 

example, a general trend of enhanced K p with with increasing salinity is observed for both 

in March 1998. Thirdly, individual radiotracer KpS derived from triplicate analyses of 

dissolved and particulate fractions, show limited variability, indicating the high 

reproducibility of the technique. Additionally, as for other contaminant metals in Chapter 

4, differences in the sorptive capacities of PSPM and TSPM are seen, with more 

exchangeable ^°^Hg tending to become associated with PSPM rather than TSPM. This is 

especially evident at salinities < 10 in the upper estuary during June. Further along the 

salinity gradient, the two particle types appear to become less distinct from each other in 

their ability to adsorb the radiotracer. The preferential association of Hg with PSPM may 
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Figure 5.1 Variation in the solid-solution partitioning of ^"^Hg and stable Hg with 
salinity in (a) March 1998, (b) June 1998 and (c) October 1998. 

be partly explained by the fact that estuarine PSPM is richer in carbon (estuarine mean = 

3.1 ± 0.7%) than estuarine TSPM (1.0 ± 0.9%), much of which is present in organic form. 

Turner and Millward (1994) reported a magnitude of difference in 5-day K^s between 

PSPM and TSPM from the nearby Dee Estuary with increased metal (Cd, Cr, Cs, Fe, Mn, 

and Zn) IC ŝ measured for the permanently suspended fraction. This has significant 

implications in the Dee, for passage of PSPM past the estuarine freshwater-saltwater 

interface would allow considerable down-estuary transport of metals bound to and 

subsequently released from these particles. Unlike the Dee, the *̂*̂ Hg data for this study do 

not show as dramatic a difference in the ability of PSPM over TSPM in the Mersey to 

sequester even as highly particle reactive a metal as Hg. Despite the close proximity of the 

two estuaries, and the fact that both receive the same material from Liverpool Bay, 

evidence suggests that SPM pools in the two estuaries may be physically and/or 

geochemically quite dissimilar. 

To further explore the relationship between and salinity, logioKp values are plotted 
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against Iog,o(S+l) according to Bale (1987) in Figure 5.2. Linear regressions have been 

applied to the ^"Hg data for bulk SPM and equations describing the lines of best fit which 

include the freshwater partition coefficient, K^, and the constant, b, are included in the 

figure caption. It has long been recognised that Hg has a strong affinity for organic matter 

(e.g. Nyffeler et al., 1984; Gagnon and Fisher, 1997; Turner et al., 2001b). For this reason, 

POC data are also shown in Figure 5.2. 
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Figure 5.2 Linear regressions of logi^Ko ^°^Hg versus Iog,o(S+l) and POC data ( • ) for 
bulk SPM in (a) March 1998, (b) June 1998 and (c) October 1998. 
Equations for the regression lines are: (a) logKo^^^^Hg = 0.17 (± 0.11) 
log(S+l) + 5.13 (± 0.14), iR2 = 0.18); (b) logK^^'^Hg = -0.38 (± 0.36) 
log(S+l) + 5.41 (± 0.37), {R2 = 0.22); (c) logK^'^'Mg = -0.28 (± 0.12) 
log(S+l) + 5.33 (± 0.12), {R2 = 0.58). 

The relationship between the partitioning of ^"Hg and salinity, both spatially and 

temporally, is somewhat erratic. Results from the March survey (Figures 5.1a and 5.2a) 

indicate that distribution coefficients for bulk SPM lie between 1.05 x 10' - 4.09 x 1OM kg ' 

and that Hg increasingly favours the particulate phase as salinity rises. However, the error 

on the gradient of the regression line is quite large and indicates rapid changes in either 

aqueous or particulate chemistry along the estuary axis. Similar trends of increases in 

for Hg with salinity have been noticed for Hg(ll) by other authors (Li et ai., 1984a; Stordal 
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et ai, 1996) and further comment upon this is provided later. Estimated values for of 

1.35 X 10^ 2.57 x 10̂  and 2.14 X lOM kg ' are produced for the March, June and October 

surveys, respectively. The relatively low K̂ ** for March coincides with the highest 

freshwater DOC concentration for the three surveys (10.6 mg 1'), suggesting that Hg is 

retained more effectively in the dissolved phase in the REM by complexing with dissolved 

organic ligands. Sorption enhancement in the presence of dissolved organic matter has 

been observed in natural systems due to the greater affinity of organic complexes of Hg(ll) 

(compared to inorganic species) for mineral surfaces (Xu and Allard, 1995). In contrast, for 

the Mersey in March, K^s increase as salinity rises and DOC concentrations 

simultaneously decline, which is reflected in a statistically significant negative correlation 

between estuarine DOC concentrations and K^s {R^ = 0.45, P < 0.01). Thus, it may be 

implicated that the binding of Hĝ "̂  to specific dissolved organic ligands is sufficiently 

strong at low to mid salinities to inhibit adsorption of *̂*̂ Hg to particle surfaces. However, 

the observed pattern in correlates positively with dissolved oxygen concentrations 

during March {R^ = 0.38, P < 0.025) suggesting that K Q S are repressed due to high BOD 

exerted by bacteria in the upper estuary. The same general trends are exhibited for and 

POC (Figure 5.2a), as general sorptive properties of particle surfaces are ameliorated by the 

presence of adsorbed organic matter (Zhou et al., 1994), although the relationship between 

the two parameters is not statistically significant in this instance. 

In June, when river flow is reduced to 29 m^ s"', the influence exerted by salinity on Hg 

partitioning appears to be stronger although as in March, the strength of this relationship 

varies considerably throughout the mixing zone. Bulk SPM K^s range between 0.42 x 10̂  -

3.4 x lOM kg"' (Figure 5.1b). Estuarine K^s show a generally declining trend with salinity, 

although increased adsorption of Hg occurs between salinities of 8.2 - 11,7. These samples 

are taken from the TMZ where chlorophyll and suspended solids concentrations are at a 

maximum, DO is reduced and POC concentrations are enhanced. Significant positive 

correlations exist between and turbidity (7?-̂  = 0.90, P < 0.005) and and POC 

{R^ = 0.82, P < 0.01). Although data are limited, it could suggest that the inverse of the 

'particle concentration effect' described by Turner (1996) is occurring. Dov^estuary of the 

TMZ, KpS decline again due to reductions in POC and increasing interaction between Hg 

and seawaler ions. 

In October 1998, the distribution of ^°^Hg is more uniform, with K^s for bulk SPM only 

varying between 0.69 x lOM kg ' and 2.05 x lOM k g ' (Figure 5.1c). A continuous trend of 
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declining with increasing salinity is observed. The relationship between and POC 

(Figure 5.2c) is not as clear as for the other surveys (R^ = 0.34). This could be due to either 

enhanced dilution of estuarine waters by a high river f low of 82 m ' s ' or increased 

uniformity in the amount or form of organic carbon present compared to the other two 

surveys. The high fluvial input promotes more effective mixing of fresh and saline waters 

and encourages the downesluary transport of SPM from which Hg is progressively lost to 

the dissolved phase. 

Overall trends of declining with increasing salinity as shown in Figures 5.lb,c and 

5.2b,c imply that Hg uptake by SPM becomes progressively hindered as ionic strength of 

estuarine waters rise. This is due either to an increasing tendency for Hg(II) to form highly 

stable, soluble chloro-complexes with CI', competition between Hg and other seawater ions 

or changes in the concentration and/or composition of estuarine particles. Jones (1978) 

suggested that intra-estuarine variations in K^Hg were predominantly due to dilution of the 

estuarine SPM pool by differing amounts of uncontaminated (marine) particles. It was also 

implied that estuaries that are inadequately mixed or which receive numerous and complex 

input sources will contain water masses having the same salinity but very different mixing 

histories and that this would also affect Hg partitioning along the salinity gradient. 

The non-detrital fraction of ^"Hg held by Mersey SPM was determined by digesting bulk 

SPM, PSPM and TSPM from the uptake experiments performed in June and October 1998 

with I M HCI. The resulting data from these experiments are plotted against salinity in 

Figure 5.3. Results show that up to around 60% of the radiotracer is held in a leachable 

form (available to I M HCI) on Mersey Estuary particles. The proportion of Hg released by 

the digest varies throughout the salinity gradient. The same pattem is produced for both 

June and October, despite the existence of underlying differences in particulate and water 

chemistry between the two surveys. On the whole, changes in salinity of < I - > 27 units 

causes an approximate 30 - 40% increase in the amount of non-detrital Hg leached from all 

SPM types. Chlorocomplexes are increasingly formed between mercury and chloride ions, 

leading to more efficient removal of Hg by the acid under increasingly saline conditions. 

Loss of the metal appears to be impeded at low salinities, the range of which varies 

seasonally (3.8 - 8.2 in June and 2.2 in October) and are related to the position of the TMZ 

in response to the magnitude of freshwater discharge. Given the analytical uncertainty, it 

can be seen that no real differences in leachable metal content exist between the two settled 

fractions of SPM, although there is a suggestion that at salinities exceeding 2 - 4 , the 
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radiotracer is held more effectively by TSPM than PSPM. This may indicate that Hg is 

bound to more inaccessible higher energy sites in TSPM, but is predominantly associated 

with surface (including orgemic) phases in PSPM. A maximum of 40% of ^°^Hg is present 

in a leachable form and the majority of the metal is presumed to remain irreversibly bound 

to highly active sites located deep within particle matrices (and possibly in association with 
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Figure 5.3 Percentage of ' " 'Hg released from bulk SPM, PSPM and TSPM by I M HCl 
as a function of salinity in (a) June 1998 and (b) October 1998. 

residual POC). This factor, combined with a long flushing time, the cyclic tidal pumping of 

particles into the upper estuary labyrinth and the dominance of TSPM in the TMZ 

contribute significantly to the long-term retention of Hg within the Mersey sediment 

reservoir as indicated in Section 4.3 of the previous chapter. 

159 



Other workers have interpreted the rise in *̂*̂ Hg K^s with increasing salinity (as observed in 

March 1998), in different ways. L i et al. (1984a,b) for example, ascribed this behaviour to 

the formation of hydroxide colloids through hydrolysis, possibly in combination with 

adsorption onto pre-existing colloids after which resulting radiocolloids coagulate into or 

onto suspended particles. Later, Turner et al. (2001b) attributed the same pattern observed 

in mixing experiments using samples from the Beaulieu, Mersey and Plym estuaries, to the 

process of salting out (a reduction in the solubility of Hĝ "̂  or Hg(ll)-organic complexes) 

via electrostriction or destabilisation-coagulation. They concluded that the biogeochemical 

behaviour of Hg resembled that of a neutral organic chemical rather than an inorganic ion 

and that the organically complexed species of Hg(ll) salted out was dependent on the 

nature and concentration of DOC and POC available. For the Mersey, data indicated that 

Hg(ll) complexes salted out were more hydrophobic than those from the Plym and 

Beaulieu. Large, alkylated molecules containing 16-26 C atoms and Hg-binding functional 

groups such as thiols (Loux, 1998), were presented as candidates. More specifically, 

industrially produced anthropogenic compounds are anticipated to exert a key role within 

the organic pool in the Mersey. These compounds would have greater aromaticity and 

contain more sulphur than naturally occurring ligands prevalent in the other two estuaries. 

An empirical sorption model was used by Turner et al. (2001b) to successfully describe the 

salinity-dependent salting out of Hg(ll) in the presence of organic matter and the same 

approach was attempted in this work for the March survey data. However, this method 

proved inadequate in describing the observed variance in ̂ "Hg partitioning, which could be 

due to experimental differences between the two studies (Turner et al. (2001b) employed 

batch mixing experiments where salinity and turbidity were controlled and only riverine 

particles were used, whilst the current study used in vivo water samples of naturally 

varying water and particle composition). 

The salting out theory has more recently been applied to interpret the phase distributions of 

other metals in the Mersey Estuary (Turner et al., 2002). In this paper, salting constants 

were estimated for a number of classes of organic compound, including selected aromatic 

and aliphatic hydrocarbons, natural ligands such as humic acids, anthropogenic ligands, 

sedimentary organic matter and transition metal complexes. However, it was not possible 

to identify any specific organic ligands that may be responsible for the salting out effect in 

the Mersey. The seasonal changes observed in C:N ratios and metal partitioning data from 

this work (Figure 3.13) would tend to suggest that the metal behaviour ascribed to salting 

out is likely to be controlled, at least partly, by the periodicity of different pools of organic 
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ligands in the estuary throughout the year. 

As seen previously in Figure 5.2, the extent of ^°^Hg uptake is linked to the amount of 

organic carbon on particles. Figure 5.4 further illustrates the effect of POC concentration 

on the sorption of inorganic Hg(ll) to natural particles in seawater (S > 30), including 

results from this study. It is clearly demonstrated that sorption of Hg(II) to mineral 

surfaces is enhanced in the presence of organic matter. For example, Gagnon and Fisher 

(1997) demonstrated a 30-foid enhancement of Hg(II) sorption to montmorillonite in 

seawater when the clay had a coating of fiilvic acid. Similariy, removal of POC from River 

Mersey bed sediment by 30% H2O2 (shown as the open and filled triangles in Figure 5.4) 

reduced Hg(II) sorption by 1 -2 orders of magnitude (Le Roux, 2000). 
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Figure 5.4 K^s defining the sorption of inorganic Hg(Il) to natural particles in seawater 
versus POC concentration (after Turner et al., 2001b). Data are from the 
following references: carbonate ooze, silicious clay and deep-sea sediment 
(Buchholtz et al., 1986); Narragansett Bay (Nyffeler et al., 1984); Long 
Island Sound (Gagnon and Fisher, 1997); Beaulieu, Plym and River Mersey 
sediments (Le Roux, 2000); Mersey Estuary SPM (this study, where S = 
29.0 in March, 27.0 in June and 31.2 in October). The equation defining the 
trendline is y = 52.23x + 13.42 {R^ = 0.67). 

The association of Hg(II) with sedimentary organic matter is signified by the strong 

relationship between seawater K p and POC content. Inclusion of data for Mersey SPM 

reduces the value for by as little as 2% and the correlation retains the same level of 

significance (P < 0.005) as in the original graph in Turner et al. (2001b). The degree of 
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scatter implies that the chemical nature of POC (age, polarity, and aromaticity) is highly 

variable between aquatic systems. Data for Mersey SPM indicate that seasonal alterations 

in the amount of POC available are fairly minimal, but that the type of POC present 

(whether allochthonous, autochthonous or anthropogenic in origin) may be critical to the 

partitioning process. 

The partitioning of ^°^Hg (expressed as logKo) in bulk SPM, PSFM and TSPM, as a 

function of total suspended solids concentration is presented in Figure 5.5. Each data point 

represents the percentage of added Hg present in the particulate phase (calculated from the 

measured activities of *̂*"*Hg in filtrates and on filters) found by using Equation 4.5 

(Chapter 4, Section 4.2.4). Also shown are the Environment Agency data for stable Hg. 
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The solid-phase partitioning of stable Hg (Figure 5.5a) is generally in accord with that for 

^°^Hg (Figure 5.5b,c) and any differences can be explained by the different methodologies 

used. The trends exhibited are notably uniform, with the data consistently fitting a of 

approximately 10^ which rises to 10̂  when suspended loads approach those in the TMZ. 

This constancy is particularly striking, as the data have been obtained over three seasonally 

distinct survey periods when environmental conditions have varied significantly. A 

consistently high particle affinity of Hg similar to that of Pb (Figure 4.10e) is 

demonstrated. Regardless of the time of sampling, at least 70% (increasing to 99.9% in 

highly turbid waters) of Hg present is in the particulate phase and this, together with other 

indications in Chapters 3 and 4, may be reaffirming the presence o f aged and relatively 

homogeneous SPM. Adsorption of Hg generally rises as turbidity increases and higher (but 

variable) adsorptive capacities are repeatedly expressed by PSPM over TSPM. It should be 

noted that incubation studies used a total of 25 separate water samples for bulk SPM whilst 

16 were used in settling experiments and this explains apparent 'missing' data when 

comparing Figures 5.5b and 5.5c. Deviations from the line describing a of 10̂  occur 

when SPM concentrations are relatively low and/or particulate carbon is reduced. For 

example, the two points in June that lie to the right of the 10' isopleth in Figures 5.5a,b 

correspond to samples containing the least POC (0.76% and 1.17%). The relationship 

between POC and the fraction of particulate Hg in Mersey SPM is fiirther illustrated in 

Figure 5.6. The dependence of particulate Hg on particulate organic carbon is highly 
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Figure 5.6 Seasonal variations in percentage particulate ^°^Hg in bulk SPM as a 
function of particulate organic carbon content. 
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significant in June (low flow, = 0.92) and October (high flow, R^ = 0.86), but far 

weaker in March (intermediate flow, R^ = 0.24). Phytoplankton contributions to total POC 

are fairly high in June 1998 (Figure 3.12b). Detrital POC, largely exhibited by higher C:N 

ratios indicative of terrestrial organic matter such as decaying higher plant material, humic 

and fulvic compounds have also been identified in both June and more especially, in 

October 1998 (Figures 3.12a and 3.13). As discussed previously, salting out of Hg is 

suggested in March. This mechanism may be responsible in some way for producing the 

lack of correlation between particulate Hg and particulate organic carbon. Specifically, the 

nature and elevated concentrations of dissolved ligands (Table 5.1) may be more crucial at 

this time. Carbon:nitrogen ratios in SPM from the March 1998 survey show a dominance 

of sewage-related POC (Figure 3.13) and this may be contributing to the salting out 

process. Thus, the prevalence of any one type of POC in the estuary at the time of sampling 

or even at a given location appears to play a major part in the phase partitioning of Hg in 

the Mersey. 

The radiotracer experiments described in this work have shown that salinity, particle 

concentration and the nature and concentration of POC and DOC all have a role in 

influencing the transport and sorptive behaviour of inorganic Hg(II) in the Mersey Estuary. 

Results indicate that both salting out and reduced uptake of Hg can occur with increasing 

salinity, depending on the specific environmental conditions encountered at the time. 

Experiments have shown that due to its high particle reactivity, the loss of Hg from SPM 

traversing the salinity gradient would, in theory, be minor compared to, for example, Cd. In 

addition, any dissolved Hg released into solution could be highly susceptible to salting out 

via. electrostriction or coagulation and particularly i f raw or partially treated sewage is 

present, to subsequently become (re-)adsorbed to sedimentary organic matter and therefore 

be largely retained within the system. Comprehensive monitoring of Hg has been 

performed in the Mersey since significant reductions in Hg loads to the estuary began in 

1974 (Harland et al., 2000). However, the authors describe inconsistent declines in bed 

sediment Hg concentrations, which have partly been attributed to the mobilisation of Hg 

from subsurface layers of previously consolidated saltmarsh sediments. The additional Hg 

recycling mechanism outlined above, combined with the near-field deposition of 

resuspendable TSPM and upestuary accumulation of fines by vigorous tides may provide 

additional explanations as to why the loss of particulate Hg from estuarine sediments is not 

proceeding as rapidly as expected (see Section 4.3). 
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5.2 Mechanisms of metal remobilization in the Mersey Estuary 

So far in this thesis, work has largely concentrated on identifying the underlying physical 

and geochemical conditions in the Mersey and how seasonal and axial changes in a range 

of estuarine parameters influence the distribution and reactivity of particulate trace metaJs. 

Waters and particles have been characterised and the data have provided insights into the 

means by which the attenuation of trace metal concentrations at current levels has been 

allowed to occur. More specifically, it has been suggested that the loss of particles and 

associated contaminants from the estuary is likely to be relatively insignificant. As the 

continuing removal of historical metal burdens in the estuary is more likely to occur from 

loss via the dissolved phase, the discussion in this section focuses on three routes by which 

this may be achieved and assesses the relative importance of each in terms of further 

progress in restoration. 

Analyses of total dissolved metals (Cd, Co, Cu, Ni , Pb and Zn) collected during some of 

the same axial transects as this study, demonstrated that with the exception of Cu, metals 

displayed positive deviation from conservative behaviour (Martino, 2000). Furthermore, 

the positions and magnitudes of peaks varied between metals, due largely to differences in 

their reactivity and the rate of fluvial input on the day of sampling. Using data from 

Martino (2000) and this work, it has since been suggested that internal metal sources could 

supply additional dissolved metals to the water column (Martino et al., 2002). This is 

thought to arise because fine-grained (< 63 ^m) bed sediments show up to a 6-fold 

enrichment of Cd, Co, Cu, Ni , Pb (and C) compared to SPM, which is exemplified in the 

summary diagram provided in Figure 5.7. Higher trace metal concentrations would 

normally be expected to occur in SPM since suspended particles are significantly enriched 

with Fe and Mn (by a further 60%) compared to those at the bed. Thus metal on SPM is at 

equilibrium with dissolved metal in the water column, whilst the bed sediment supports a 

surplus of metal, which is upheld by physico-chemical conditions occurring near or within 

the bed. 

5.2.1 Porewater processes 

One possible source of dissolved metals is the interstitial waters of heavily contaminated 

sediments in the upper 5 km of the estuary. Depending on the prevailing wind, the saline 

intrusion penetrates as far as Howley Weir in Warrington when high water elevations at 

Liverpool are predicted to be at least 9.2 m whereas the tidal excursion on neap tides barely 
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Figure 5.7 Field diagram summarising the mean non-detrital trace metal content 
(available to I M HCl) of Mersey Estuary particles. Carbon data refer to total 
particulate carbon and are expressed as the percentage contribution to dry 
mass. 

approaches the tidal limit (P. Jones, EA, pers. comm.). It is feasible that early sediment 

diagenesis may occur during the considerably smaller and less energetic neap tides, 

particularly during the summer months when DO saturation is more effectively repressed 

in the upper estuary. Subsequent sampling and analysis of water samples collected during 

springs may, in part, contain elevated concentrations of dissolved metals that have been 

mobilised through early diagenesis and then released from sediment porewaters by 

vigorous tidal stirring. For this mechanism to support the observed dissolved metal maxima 

reported by Martino (2000), porewater concentrations must exceed ambient concentrations 

in the overlying water column, as illustrated below. 

The upper 5 km of the estuary has an average depth of 5 m and width of 100 m, giving rise 

to 5 m^ of water per unit area of water surface. The same area of sediment has a porewater 

volume of 0.04 m^, asstuning that the tidal incursion mixes sediments to a depth of 20 cm 

and the sediments have a porosity of 80%. This results in a tidally induced water column: 

porewater mixing ratio of the order of 125. Porewater concentrations of dissolved metals 
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must therefore exceed concentrations in the water column by at least two orders of 

magnitude for porewater inputs to account for the observed dissolved metal maxima. Table 

5.2 shows the derivation of porewater concentrations of dissolved metals based on known 

maximum observed deviations of dissolved metal concentrations from the TDL, Here it is 

assumed that porewater infusion alone, accoimts for dissolved metal addition. Porewater 

concentrations are simply estimated by multiplying the maximum concentration above the 

TDL by 125 (e.g. for Cd: 0.45 \ig V x 125 = 56.3 ^g I ' ) . 

Table 5.2 The estimation of sediment porewater concentrations in the extreme upper 
region of the Mersey Estuary. 

Metal 
Parameter Cd Co Cu Ni Pb Zn 

Maximum concentration 0.45 1.47 1.27 2.94 0.84 9.81 
above TDL (ng |-1) 

Porewater: water column < 125 > 
ratio 

Estimated porewater 56.3 184 159 368 105 1226 
concentration (\ig 1"̂ ) 

The resulting porewater concentrations probably describe the maximum concentration of 

each metal in interstitial waters as they have been based on the greatest positive deviations 

from conservative mixing of total dissolved metals from the four campaigns conducted 

between December 1997 and October 1998. It is unlikely that these concentrations would 

be maintained when they are being diluted down to a depth of 20 cm on successive tidal 

cycles. Nevertheless, it is believed that the abundance of metals contained within mobile 

and predominantly fine-grained sediments in this section of the estuary, combined with 

earlier evidence for processes that could support the onset or maintenance of diagenesis, 

could supply the necessary conditions for producing the observed dissolved metal maxima. 

Additionally, as explained earlier, this mechanism is only anticipated at the onset of large 

spring tides (and especially during the warmer months), rather than being a frequent 

occurrence, thus providing a longer time scale for the re-equilibration of metal 

concentrations in sediment porewaters. 

Estimated porewater concentrations for the upper Mersey are compared with those 

measured in other areas in Table 5.3. The data suggest that porewater metal concentrations 
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Table 5.3 Trace metal porewater concentrations in bed sediments from a variety of 
aquatic environments. 

Site 
Mean porewater concentration (̂ g 1'̂ ) 

Cd Co Cu Ni Pb Zn Reference 

Ansedonia Bay, 
Tyrrhenian Sea 

0.21 2.89 1.72 5.87 l.iO 23.5 Ciceri et a/. (1992) 

Conway Estuary - 490 210 490 300 260 Elderfleld et o/. (1971) 

Gullmarsfjorden, 
Sweden 

0.0044 0.071 0.13 0.76 0.17 0.58 Sundby et ai (1986) 

Upper Mersey Estuary 
(estimated) 

56.3 184 159 368 105 1226 This study 

Quartermaster Harbour, 
Puget Sound 

3.03 - 5.66 3-05 - - Emerson et al. (1984) 

Sabin Point, 
Narragansett Bay 

- - 4.45 2.35 - - Elderfield et a/. (1981) 

Tees Estuary - 46.0 365 - - 62.1 Elderfield et o/. (1971) 

in Mersey sediments could be more comparable to those of the Tees and Conway estuaries 

than the other systems. The tidal Tees was described in the 1970s as 'grossly polluted' by 

the Northumbrian River Authority (Elderfield and Hepworth, 1975), whilst the Conway is 

relatively free of anthropogenic inputs but does receive trace metals from mine spoil tips 

and Pb-Zn mineralisation in the catchment (Elderfield et al., 1971). A notable feature of 

Table 5.3 is the exceptionally high estimated Zn porewater concentration in Mersey 

sediments, which is a factor of 5 greater than that in the Conway and 20 times that of 

sediments in the Tees Estuary. For the Mersey, this could signify an important route for the 

reduction of Zn in sediments as energetic disturbance of surface sediments and the 

replacement of large tidal volumes during spring tides could lead to substantial declines in 

Zn concentrations over a relatively short time. Porewater concentrations of Co, Cu, Ni and 

Pb in the Mersey are consistently lower than in the Conway, but the difference between the 

two estuaries is highly variable. Concentrations of Co in Mersey porewaters are 

intermediate between those of the Tees and Conway whilst Mersey Cu porewater 

concentrations are low compared to the other two estuaries. For Mersey sediments, the 

magnitude of porewater concentrations follows the sequence Cd < Pb < Cu < Co < Ni < 

Zn. Elderfield and Hepworth (1975) showed that the relative stabilities of metal complexes 

in sediment porewaters from the Conway and Tees matched the Irving-Williams series of 

metal-ligand stabilities, implying that trace metal mobility in estuarine sediments is 

controlled by organic matter. Data for the Mersey do not follow the same order and this 
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may be reinforcing the concept that organic ligands in the Mersey are chemically different 

to those in other estuaries. It is nevertheless suggested that in the Mersey, the importance 

of metal release from porewaters differs between metals. For example, for those metals in 

the second half of the series above, porewater infusion may assume increasing importance, 

whilst those to the left supply metals to the water column via another mechanism, such as 

desorption from resuspending sediments, as described in the following section. 

5.2.2 Desorption from resuspending particles 

Desorption (and dissolution) of metals from SPM could also give rise to the dissolved 

metal maxima observed in the Mersey by Marlino (2000). Desorption from pre-suspended, 

advected or resuspended particles can occur in a variety of ways (Gamham ef al., 1991; 

Paalman et aL, 1994; Schlekat et al., 1998; Turner et ai, 2002). Particles traversing the 

salinity gradient may release metals as dissolved seawater ions compete for sorption sites 

or complex with sorbed metals. Resupending particles that are enriched with metals 

compared to ambient particles in the water column (as shown for Cd, Co, Ni and Pb in 

Figure 5.7), may also release metals and this may be assisted by local changes in redox 

conditions and pH or by bacterial or chemical breakdown of particulate organic matter. 

Manino et al. (2002) tested the likelihood and extent of metal desorption from 

contaminated resuspending particles by applying an empirical sorption model, that was 

originally used by Morris (1986) to predict the extent of trace metal removal onto 

resuspended bed particles in the vicinity of the Tamar Estuary TMZ: 

C [| + K O * S P M J _ . = 7 ^ 2 u Equation 5.1 
C , [l + K„ •SPM, + *SPM, (1 - a ) ] 

In the model, the ratio of dissolved metal concentration in a zone of high turbidity to that in 

river water, C/CR, is determined by the concentration of additional (resuspending) particles, 

SPMn, above the background turbidity of river water, SPM,, the particle-water distribution 

coefficient, K^, and the term a, which defines the extent of metal depletion on 

resuspending particles compared to those at equilibrium in the overlying water column. 

Resuspending particles may hold an over-abundance of metals relative to equilibrium in 

the water column if: (a) less readily exchangeable metals are held on binding sites of 

slightly higher energy; (b) metals are adsorbed on multiple layers; and (c) the particles 

have temporarily equilibrated in a dissolved metal-rich environment such as the interstitial 
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waters of contaminated bed sediment (as discussed in the previous section). This study and 

those of Harland et al. (2000) and Turner (2000), have demonstrated that the accumulation 

and retention of trace metals in bed sediments and the hydraulic dispersal of bed particles 

within the Mersey are highly consequential and could favour application of the model to 

explain dissolved metal distributions in the low salinity zone. 

Dissolved Co and Pb showed greatest addition in the estuary and these two metals were 

modelled using Equation 5.1 by Martino ei al. (2002). The model has been developed 

further in the present work by the inclusion of a 'mixing factor' to account for changes in 

C/CR caused by mixing and dilution by seawater along the salinity gradient. This is 

equivalent to the fractional freshwater concentration used by Dyer (1997): 

M i x i n g — = — * " ^° Equation 5.2 

where S^^ corresponds to the maximum surface salinity measured by the EA during 

quarterly tracking surveys in Liverpool Bay (from the EA NACOMS data archive) and 

corresponds to the ambient salinity in any given segment of the estuary. Equations 5.1 and 

5.2 have been used together to calculate estuarine-riverine dissolved metal concentration 

ratios for Cd, Co, N i , Pb and Zn for the four axial transects from which dissolved metal 

concentrations were measured. Ratios for Cd, Co, Pb and Zn were determined using 

radiochemically-generated equilibrium K^s from the literature whilst those for Ni 

employed equivalent K^s from Martino (2000). Values for SPM^ were taken as mean 

particle concentrations above the tidal limit for each sampling occasion and SPMj, values as 

the difference between estuarine particle concentrations and SPM^. Values for a were used 

that gave the closest fits to measured concentration ratios and, as such, therefore do not 

describe any changes in equilibrium sediment-water partitioning induced by alterations in 

salinity. The results for Cd, Co, N i , Pb and Zn are presented collectively in Figure 5.8. 

Generally, observed and predicted peak concentrations of dissolved metals are shown to 

occur in freshwater or the low salinity region, where salinity-induced desorption is 

anticipated to play a minor role. Agreement between measured and modelled C/CR ratios 

tend to decline with progression dovm the estuary due to changes in equilibrium sediment-

water partitioning and maximum values of measured and modelled C/CR are not always 

coincident. This is presumed to arise partly because desorption occurs more slowly than the 

rates of particle resuspension and settling. Furthermore, axial gradients in pH, DO and 
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Figure 5.8 The extents of desorption of (a) Cd and (b) Co, as dissolved estuarine to riverine concentration ratio, C/CR, as a function of distance from the tidal limit. 
Measured ( • ) and modelled (thick line) C/CR ratios are given. Modelled C/CR ratios for Co from Martino et al. (2002) are indicated by the thin line. 

The full line forCd is predicted using = 1.7 x 10̂  1 kg"' (L'letaL, 1984) and (in sequence) a = 1.016 (December 1997);a= 1.055 (March 1998); a = 
1.008 (June 1998); a = 1.030 (October 1998). 

The full line for Co is predicted using K D = 3.1 X 105 Ikg"' (Lie/o/., 1984) and (in sequence) a = 1.010 (December 1997); a = 1.025 (March 1998); a = 
1.007 (June 1998); a = 1.070 (October 1998). 
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Figure 5.8 The extents of desorption of (c) Ni and (d) Pb, as dissolved estuarine to riverine concentration ratio, C/CR, as a function of distance from the tidal limit. 
Measured ( • ) and modelled (thick line) C/CR ratios are given. Modelled C/CR ratios for Pb from Martino et al. (2002) are indicated by the thin line. 

The full line forNi is predicted using K D = 2.93 x 10̂  I kg-^ (Martino, 2000) and (in sequence)a = 1.004 (December 1997); a = 1.030 (March 1998); a 
= 1.005 (June 1998); a = 1.030 (October 1998). 

The full line for Pb is predicted using = 1.0 x 10̂  I kg-^ (Baskaran et aL, 1997) and (in sequence) a = 1.010 (December 1997); a = 1.035 (March 
1998); a = 1.008 (June 1998); a = 1.050 (October 1998). 
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Figure 5.8 The extent of desorption of (e) Zn as dissolved estuarine to riverine concentration 
ratio, C/CR, as a function of distance from the tidal limit. Measured (•) and 
modelled (thick line) C/CR ratios are given. 
The full line forZn is predicted using = 1.2 x 10^ 1 kg'l (Li ei al., 1984) and 
(in sequence) a = 1.008 (December 1997); a = 1.030 (March 1998); a = 1.005 
(June 1998); a = 1.040 (October 1998). 

carbon can produce changes in water or particulate chemistry resulting in shifts in metal 

solid-solution partitioning as previously discussed in Sections 4.2 and 5.1. The extent of 

metal enrichment required to produce dissolved metal maxima appears to be directly 

related to river flow for some metals. Regression analyses of a values against river flow 

rates for the day of sampling gave rise to values of 0.99 for both Zn and N i , and 0.95 

for Co (where P < 0.05, n = 4). This implies that due to natural dilution effects resulting 

from elevated freshwater volume flows, higher concentrations of available Co, N i and Zn 

need to be present on bed particles in order to favour desorption and give rise to the 

observed dissolved metal peak concentrations. 

Minimal metal enrichment of bed sediment relative to SPM (< 7%) is necessary to 

reproduce the magnitude of observed dissolved metal peaks in the upper reaches of the 

estuary. Thus, desorption from resuspended fine-grained mobile sediment in the Mersey 

could supply a sizable and persistent source of metal to the water column and it is likely 
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that decontamination of bed sediments in this way could take many years (refer to Table 

4.12 for example), despite reductions in the number of direct metal sources into the estuary 

mixing zone. This mechanism is predicted to occur in moderately to highly contaminated 

estuaries that are physiographically and hydrographically similar to the Mersey and where 

dissolved metal addition is reported. Conversely, for macrotidtil estuaries where metal 

contamination is relict, partly mineralised or insignificant and bed sediment is depleted in 

trace metals relative to SPM, adsorption of dissolved metals in the TMZ would be 

observed, as demonstrated by Ackroyd et al (1986) for the Tamar. 

5.2.3 Desorption from seaward-fluxing particles 

Application of the desorption model outlined above appears to have worked reasonably 

well (especially for Co and Pb) in predicting the locations and magnitudes of dissolved 

metal concentrations but, as mentioned previously, cannot account for salinity-induced 

desorption from seaward-fluxing SPM. Axial variations in suspended particulate metal 

concentrations are relatively minor in the Mersey for most of the metals studied (see 

Figure 4.2). Consequently, loss of labile metal from any particles traversing the salinity 

gradient may be negligible. Nevertheless, a secondary diffuse (and desorptive) source of 

dissolved metals may be responsible for the deviations in conservative behaviour observed 

in the mid-outer estuary (Figure 5.8) and requires investigation. By way of example, 

Williams and Millward (1998) showed that it was theoretically possible for the desorption 

of Zn from PSPM to contribute significantly to mid-estuarine dissolved Zn maxima in the 

Humber Estuary. 

Salinity-induced desorption of metals is dependent on the condition that a proportion of the 

adsorbed metal is held reversibly or exchangeably (Li et al., 1984a; Turner et al., 1993). 

The extent of desorption can be quantified from mass balance of labile metals on SPM 

encountering the salinity gradient (Li et al., 1984a), as given by Equation 5.3. The salinity 

dependence of is given by Equation 5.4 (Turner and Tyler, 1997). 

S P M * + 1 
CR S P M * + 1 

and 

Equation 5.3 

K D ' = * (S + 1)-' Equation 5.4 

The ratio C/CR again corresponds to the increase in concentration of metal in solution 
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relative to that in river water, SPM is the concentration of suspended particulate matter, 

is the partition coefficient in river water, K^^ is the partition coefficient in estuarine 

water of salinity S and b is the slope factor. Values of K̂ ® and b obtained from 

radiochemical experiments involving the adsorption of "**Cd and " Z n (Le Roux, 2000) and 

" N i (Martino, 2000) onto Mersey SPM as a function of salinity are reported for June and 

October 1998 in Table 5.4. 

Table 5.4 Values of the parameters K^^ and b obtained from radiochemical 
experiments. 

Survey Radiotracer K D ^ O kg-l) b 

June 1998 109cd 41 700 -0.46 
63Ni 2 930 -0.018 
65zn 6 000 0.23 

October 1998 I09cd 37 440 -0.55 
63Ni - _ 

65zn 12 100 0.028 

Using Equations 5.2, 5.3 and 5.4 in combination, the extent of desorption from seaward-

fluxing PSPM can be estimated. Dissolved metal concentration ratios have been calculated 

using data from Table 5.4, the known salinity distribution, the maximum surface salinity in 

Liverpool Bay and PSPM concentrations at each sampling site for the June 1998 and 

October 1998 surveys and these are displayed alongside measured ratios as a function of 

distance along the estuary in Figure 5.9. Salinity-induced desorption is only suggested for 

Zn in June 1998 (Figure 5.9c(i)). In October 1998, the freshwater for Zn is doubled, 

which signifies an alteration in particulate chemistry. Concentrations of Fe and Mn in 

riverine SPM are reduced in October 1998 due to the high river flow (Figure 4.2a,c). 

Increased sorptive capacity results instead from a > 20% decrease in REM particulate 

organic carbon in October 1998, compared to that of June 1998 (Figure 3.11a), 

Concomitantly, the slope factor describing the change in partitioning with increasing 

salinity is reduced by almost an order of magnitude from June to October 1998. 

Due to the nature of the calculations used, changes in K^^ do not affect the final C/CR ratio 

but C/CR will be affected by a change in b, and it is this which produces the lack of 

agreement between measured and modelled C/CR for Zn in October 1998 as b approaches 

zero. The calculations assume that estuarine K^s are a function of salinity alone and are 
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independent of any other factors that may be influencing either particle character or water 

chemistry, which as this study has already shown, is unrealistic. As values of b for Cd and 

Ni are negative, C/CR values < 1 are generated by the model. 

A comparison of modelled C/CR ratios describing desorption of Zn from both resuspending 

and seaward-fluxing particles in June 1998 is provided in Figure 5.10. The magnitude of 

maximum modelled C/CR is the same for both models (1.28) but occur at slightly different 

locations. As axial changes in salinity are only accounted for in the second model, 

(a) (i) 
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Distance from tidal l imit (km) 

(i i) 

10 20 30 40 SO 60 
Distance from lidal l imit (km) 

(b) 

0 10 20 30 40 SO 60 
Distaoce from tidal I f m i l (km) 

(c) 
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10 20 30 40 SO 60 
Distance from lidal l imit (km) 

Figure 5.9 The extent of desorption, expressed as the dissolved estuarine to riverine 
concentration ratio, C/GR, of (a) Cd, (b) Ni and (c) Zn from seaward-fluxing 
SPM in (i) June 1998 and (ii) October 1998 as a function of distance from 
the tidal limit. Measured ( • ) and modelled (—) C/CR ratios are given. 
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agreement between measured and modelled ratios using a variable population of seaward-

fluxing PSPM is better with distance along the estuary than for the first model, although 

the latter does partly account for the removal of dissolved Zn in the upper estuary. 

Maximum C/CR due to desorption from PSPM is predicted to occur at a salinity of 3.8 and 

2.5 km upstream of the TMZ, where in June 1998, salinity reached 11.7. It is feasible 

therefore that either or both desorption mechanisms may be responsible for producing the 

observed dissolved Zn profile measured for the June 1998 survey. Whilst it is 

acknowledged that desorption from resuspending particles in the TMZ and low salinity 

zone is likely to produce the most prominent dissolved metal peaks in the upper estuary, it 

is proposed that a smaller secondary input may be provided through salinity-induced 

desorption i f geochemical and/or hydrodynamic conditions are favourable for a particular 

metal at that time. 

10 20 30 40 SO 60 

Distance f rom tidal l i m i t (km) 

Figure 5.10 The extent of desorption of Zn from resuspending sediments (—) and 
seaward-fluxing PSPM (-—) as a fiinction of distance along the estuary in 
June 1998. Measured C/CR ratios are also given ( • ) . 

Unfortunately, application of the sorption models could not be extended to include Hg. 

This was because EA measurements of dissolved Hg in the estuary are sparse and the REM 

is not sampled at all during their routine surveys (see Figures 5.1 and 5.5a). Hence C/CR 

ratios cannot be calculated at the present time. Further work could therefore assess the 

relative importance of mechanisms (2) and (3) in relation to Hg in the Mersey. 
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5.2.4 Model sensitivity testing 

Results of the previous section indicate that desorption from SPM traversing the salinity 

gradient is predicted to be virtually non-existent in the Mersey. However, there are 

limitations to the model, four of which are described in the following text. 

The model relies on an assessment of the equilibrium partitioning of trace metals between 

the dissolved and particulate phase. Using a similar approach to describe trace metal 

partitioning in other energetic, tidally influenced estuaries, Turner (1996) proposed that the 

inability to adequately reproduce metal distributions in some environments was due to 

subsidiary metal contributions (including porewater inputs), chemically different 

resuspending SPM populations and disequilibrium between sorbed and dissolved 

components. It was argued that good fits between field and modelled distributions in 

the Weser for example, were due to reduced extraneous trace metals from anthropogenic, 

porewater and tributary sources and a high flushing time of up to 50 days (Grabemann et 

al., 1990) which would allow chemical equilibria to be approached. Whilst the mean water 

residence time of the Mersey Estuary is 32 days, it can increase to over 50 days at times of 

low freshwater flow (Jones, 1978) and it is envisaged that near equilibrium conditions are 

reached in the Mersey, particularly during the summer. Unlike the Weser however, 

additional trace metal sources are probable in the Mersey, including that from tidally 

disturbed sediments releasing elevated metal concentrations from interstitial waters. As 

Turner (1996) suggested, it is important to accurately define two key partitioning variables, 

and b, i f a more predictive framework for the study of trace metal behaviour in 

estuaries is to be developed. 

Martino (2000) investigated the effect of pre-equilibrating " N i with dissolved organic 

ligands on the reactivity of " N i . Freshwater was collected from above the tidal limit of the 

River Mersey during the June 1998 survey and pre-equilibration times of 0, 24 and 120 

hours were used prior to radiotracer uptake experiments. A longer pre-equilibration time 

would be expected to result in increased complexation of " N i with dissolved organic 

ligands, thereby increasing the resistance of Ni to association with the particulate phase. 

Interestingly, and significantly for N i , pre-equilibration time made virtually no difference 

to the value of Kp which was shown to be independent of salinity (Figure 5.11). Whilst 

seemingly unimportant for Ni , the pre-equilibration of other metals over a suitable period 

may be necessary in incubation experiments in order to produce values of and b that 

are capable of adequately describing and replicating measured dissolved metal 
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concentration ratios. Further investigations could therefore be made to determine the 

seasonal effects of pre-equilibration time on the value of b and to see how the importance 

of this varies between metals. 
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Figure5 . i l The effect of pre-equilibrating " N i with dissolved organic ligands on the 
sorption of " N i to Mersey SPM. 

The salinity-dependent constant, b, is found by the use of linear trendline equations 

describing the best fit between and salinity data. However, deviations from linearity 

naturally occur due to changes in particulate and water chemistry along the ful l salinity 

gradient which (as this work has shown) are induced by alterations in such variables as pH, 

DO, DOC, POC and particulate Fe+Mn. Thus b relates to an 'averaged' change in 

partitioning with salinity. In reality therefore, the rate of increase/decrease in equilibrium 

metal partitioning is likely to vary at several locations along the estuary axis. 

The effect of changing the magnitude of b is demonstrated in Figure 5.12, where the 

relative change in C/CR is again assessed for Zn. Here, the same empirically derived values 

for ¥ ^ in both June and October are used as in Figure 5.9, but the value of b is increased 

by factors of 5 and 10. The influence of high/low flow conditions is clearly identified. In 

the summer (Figure 5.12a), reduced riverine input allows chemical equilibria to be 

approached and the effect of increasing b is to induce significantly greater desorption. 

Conversely, during periods of high runoff (Figure 5.12b), a shorter flushing time does not 

allow sufficient progression toward equilibrium conditions and b is reduced by an order of 

magnitude compared to summer low flow conditions. Subsequently, more significant 
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increases in b are required (exceeding 10 times the original radiochemically-derived value) 

i f model calculations are to be commensurate with measured C/CR in the mid-outer estuary. 

Desorption of Zn from PSPM is inhibited when flows are high but is predicted under 

summer low flow conditions. The importance of this demonstration is that i f suspended 

particles in the Mersey underwent future compositional changes due to continued 

improvements in water quality and also became more heterogeneous over distance then in 

theory, values of b would be increased. This would mean that desorption from seaward-

fluxing SPM could become a more significant mechanism for metal loss than is observed 

at present. 
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Figure 5.12 The effect of changing the value of b on the extent of salinity-induced 
desorption (expressed as C/CR) of (a) Zn in June 1998 and (b) Zn in October 
1998. Measured C/CR ratios are also given ( • ) . 

5.3 Summary 

Due to large, historical discharges and a strong affinity for particulate matter, mercury is 

the most persistently measured and reported trace metal contaminant occurring in the 

Mersey Estuary. Radiotracer uptake experiments have been used to examine the phase 

partitioning of this element in order to ascertain the major factors affecting its geochemical 

behaviour within the estuary. As for other metals in Chapter 4, the main controls exerted 

on the phase distribution of Hg were salinity and turbidity. At least 70% of Hg (rising to 

100%) was present in the particulate phase at all times of sampling. The importance of 

turbidity was highlighted, with Hg concentrations rising when associated with a strong 

increase in SPM concentration. A significant association exists between particulate carbon 

and Hg in line with the findings of many other researchers and this exerts a third restraint 

on Hg availability. Organic ligands, some of which may be highly specific to the Mersey, 
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are believed to be salted out of solution by either electrostriction or destabilisation-

coagulation at higher salinities. The presence of sewage-derived organic matter may also 

be implicated in the process of salting out. By this mechanism, organic carbon and 

associated Hg are both retained very effectively in the particulate phase. This supports the 

findings of other researchers who have demonstrated that despite drastic reductions in Hg 

inputs in the last 20 years, the loss of Hg from bed sediments is not proceeding as rapidly 

as expected. 

Bed sediments remain substantially enriched for carbon and some metals (by up to a factor 

of 6) compared to SPM. There is no pronounced removal of dissolved metals in the TMZ; 

indeed addition of a number of metals is consistently observed. The magnitude and 

location of peaks in dissolved metal concentrations vary depending on fluvial flow and 

differences in chemical reactivity. Broad peaks in dissolved metal concentrations may in 

part be due to slow desorption kinetics induced by elevated DOC concentrations. It is 

proposed that the cause of consistent addition of dissolved metals throughout the mixing 

zone may arise from three routes, listed below in order of perceived significance: 

1. Desorption from particles resuspending from the bed, which are rich in trace metals 

compared to ambient SPM in the water column. Values for a (defining the extent of 

metal depletion in particles at equilibrium in the water column compared to those 

resuspending from the bed) suggest that sediments need to be contaminated by as little 

as 7% (and often as low as < 2%), in order for desorption to occur. Contaminated 

sediments could therefore supply a persistent source of dissolved metals for as long as a 

suitably high concentration gradient exists between metals in SPM and metals in bed 

sediments. Decontamination of the most heavily metal-polluted bed sediments in the 

upper and mid estuary by this mechanism is anticipated to take decades. 

2. The release of metal-rich porewaters upon tidal disturbance of bed sediments. This 

mechanism is possible i f early diagenesis, ameliorated by the presence of sufficient 

organic matter, is allowed to occur in the upper estuary during neap tides. Under 

suitably quiescent conditions of low tidal energy, low flows and reduced DO 

(particularly in the summer months) degradation of organic detritus by large bacterial 

populations would release labile metals to interstitial waters in the sediment. Vigorous 

tidal stirring during spring tides would cause porewater infusion o f dissolved metals to 

the overlying water column. Estimated porewater concentrations are comparable to 

other moderately contaminated UK. estuaries and would be sufficient to produce the 
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dissolved metal maxima determined by Martino (2000). 

3. A third contribution to dissolved metal addition could arise from metals desorbing from 

seaward-fluxing SPM although this source currently appears to be o f minor importance 

in the Mersey. Based on the data available, desorption from PSPM is only indicated for 

Zn for one survey. However, the release of dissolved metals via this mechanism may 

become more prevalent i f compositional changes to Mersey SPM occur in the ftiture 

(e.g. further increases in Fe or Mn combined with reductions in organic carbon). These 

alterations could favour an overall increase in sorptive capacity and allow the 

accommodation of metals in more readily exchangeable forms. This would help to 

reduce the potential for the long-term accumulation of metals by aiding their release at 

higher salinities. Suggestions have also been made for refining the derivation of 

salinity- and metal-dependent constants used in predicting dissolved metal 

distributions. This is vital for the correct application of chemical partitioning codes and 

subsequent interpretation of empirical model results, particularly i f applications such as 

these are to be incorporated into numerical models. 

This chapter has allowed further insights into seasonal factors affecting trace metal 

behaviour and mechanisms of both metal retention and loss have been proposed. Together 

with the findings from the previous two chapters, these results wil l be used to provide 

conclusions regarding the current and future status of the estuary in Chapter 6. 
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Chapter 6 

Conclusions: The Current 
and Future Status of the 

Mersey Estuary 
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6 Conclusions: the current and future status of the Mersey 
Estuary 

The purpose of this chapter is to draw together the findings of previous sections and 

illustrate how a combination of hydrodynamic, sedimentary and biogeochemical processes 

may be determining the present outcome of ongoing remediative measures to improve 

water quality in the Mersey Estuary. Implications of these mechanisms in terms of ftirther 

progress in recovery from trace metal contamination wil l also be given. 

6.1 Predictions of metal loss from upper estuary bed sediments 

Sediment metal residence times have been calculated for Cd, Cu, Hg, Pb and Zn using the 

25-year data set in Harland et al. (2000) and are provided in Table 4.12, Section 4.3.3. The 

results are derived from data for sediments sampled in the inner and outer estuary. 

However, higher concentrations of some metals exist in sediments in the upper estuary, 

which have not been accounted for in the aforementioned study. Sediments in the top 5 km 

are enriched with metals compared to those from the inner and outer estuary zones (by 

only l.6x for Zn but by 9x for Pb, see data for 1997 and 1999 for this study in Table 4.11). 

A clear requirement therefore exists for an additional assessment of sediment metal 

residence times in the upper reaches. As there is no available long-term time series of 

metal concentrations in sediments for the upper estuary, an alternative calculative approach 

is required. 

The capacity of part of an estuary to be cleansed of metals may be alternatively established 

by calculating a sediment renewal time. The method is based on estimating the amount of 

dissolved metal released from bed sediments of known contaminant concentration in the 

region of interest and subsequent transport out of the estuary. The plausibility of porewater 

inflision from contaminated sediments has already been established in Chapter 5 and could 

represent a significant means of dissolved metal addition in the upper estuary, al least at 

the onset of large spring tides. Three major assumptions have been made here: (1) the 

absence of additional inputs and/or scavenging of dissolved metals by particles, (2) the 

complete downestuary advection of dissolved metals for two tidal cycles per day with no 

return of dissolved metals into the estuary and (3) the homogeneous distribution of metals 

in bed sediments throughout a given area. Relevant information pertaining to the 

calculations are listed below: 

• Distance from the tidal limit to EA station 22: 4 800 m 
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• Estimated width of section: 100 m 

• Mixing depth of sediment: 0.2 m 

• Estimated depth of water: 5 m 

• Sediment density: 2 500 kg m"̂  

• Volume of sediment: 96 000 m^ 

• Porosity of sediment: 80% 

• Mass of sediment: 192 000 t 

• Estimated volume of water per tide: 2.4 x lO' 1 

Mean sediment metal concentrations relate to sediments normalised to 40% silt content 

collected as part of this study in 1999. Dissolved metal data are from the companion study 

by Martino (2000) and refer to concentrations that give maximum deviations from the 

theoretical dilution line. Results are presented in Table 6.1 and have been calculated as 

follows, taking the data for Cd as an example: 

I f the mean Cd concentration in surface sediments equals 1.49 |ig g ' and the total mass of 

sediment amounts to 192 000 tonnes, then the total mass o f Cd in sediment 

= 1.49 * 192 000 / 1 X 10̂  = 0.29 tonnes. The maximum observed deviation from the TDL 

for Cd was 0.45 ^g 1"'. I f 2.40 x 10^ 1 of water are exchanged per tide, then the mass of 

dissolved Cd potentially advected per tide equals 0.45 * 2.40 x 10^ / 1 x lO'^ = 0.00108 

tonnes and the mass of dissolved Cd advected per year = 0.00108 * 2 * 365.25 = 0.79 

tonnes. The half life is determined as the mass of particulate Cd (0.29 t) divided by the 

mass of dissolved Cd lost per year (0.79 t) and equates to 0.37 years. Finally, the sediment 

renewal time is equivalent to 6 half lives, which for this metal amounts to 2.22 years. 

Table 6.1 Renewal times for metals in grain size-normalised sediments from the upper 
reaches of the Mersey Estuary. 

Metal 
Parameter Cd Co Cu Ni Pb Zn 

Mean particulate concentration (^g g ') 1.49 14.3 38.0 55.9 476 284 

Mass of metal in sediment (t) 0.29 2.75 7.30 10.7 91.4 54.5 

Maximum dissolved concentration (^g 1'') 0.45 1.47 1.27 2.94 0.84 9.81 

Mass of dissolved metal advected per year (t) 0.79 2.58 2.23 5.15 1.47 17.2 

Half life (y) 0.37 1.07 3.28 2.08 62.1 3.17 

Sediment renewal time (y) 2 6 20 13 372 19 
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As a consequence of the assumptions made, the sediment renewal times probably represent 

the minimum amount of time required for complete metal removal from sediments at the 

head of the estuary providing this is the only mechanism in operation. Renewal times 

imply the following trend of decreasing affinity of metals with particulate matter: Pb > Cu 

- Zn > Ni > Co > Cd. The data suggest however, that decontamination of sediments in the 

region may be achieved relatively soon i f there are no additional inputs of Cd, Co and Ni 

into the estuary. Similarly, substantial reductions in bed sediment concentrations of Cu and 

Zn could occur within the next 20 years. The notable exception is for Pb, a highly particle-

reactive element occurring in very high concentrations in bed sediment located in the first 

5 km of the Mersey. It is suggested that a relatively minor amount of dissolved Pb is 

evacuated from the estuary each year compared to the other metals, contributing to a 

sediment renewal time for Pb in excess of 350 years. 

This work has shown (Section 5.2) that both the injection of metal-laden interstitial waters 

and desorption from tidally-resuspended particles are the two most likely processes that 

could be responsible for the generation of dissolved metal maxima reported by Martino 

(2000). Higher dissolved metal concentrations relative to those occurring in freshwater 

regularly occur in the first 5 km of the estuary (see Figure 5.8). Desorption from 

resuspending particles is likely to proceed as long as a gradient exists between metal 

concentrations in bed sediments and SPM that is at equilibrium with ambient dissolved 

metals in the water column. This work has shown that such gradients do occur, as bed 

sediments are loaded with metals (except for Zn) compared to SPM, particularly in the 

upper estuary (Figure 5.7). As a result, the renewal times given in Table 6.1 could be 

substantially reduced i f desorption from metal-rich resuspending particles in the low 

salinity zone £ind TMZ is also taken into account. However, the approach required to 

quantify the effect that the two mechanisms operating in tandem would have on the 

renewal times in Table 6.1 is at present unclear. 

Comparing the two sets of data in Tables 4,12 and 6.1, it can be seen that equivalent 

sediment renewal/metal residence times are reached for Cu whilst values for other metals 

differ widely. The estimated time for recovery of sediments from Cd contamination is an 

order of magnitude lower in the upper estuary than for sediments located significantly 

downestuary. Similarly, reduction of Zn is predicted to take half the time in the upper 

estuary compared to the inner and outer estuary. This is a little surprising considering that 

upper estuary sediments generally have higher burdens of these metals than those sampled 

by Harland et al. (2000). The opposite tendency is exhibited for Pb however, as loss of Pb 

from sediments near the weir is estimated to take 14 times longer than in other regions. 
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The reasons for these discrepancies possibly relate to differences in the level of sediment 

enrichment, which is partly controlled by grain size, and also the relative affinity of 

individual metals for particulate matter and POC. This is demonstrated in two ways. 

Firstly, with a Kp of-10^, Pb is highly particle reactive and exhibits substantially elevated 

concentrations in upper estuary sediments. Persistent dissolved Pb peaks occur in the low 

salinity zone (see Figure 5.8d) but the release of Pb, either through desorption or porewater 

infusion is minor compared to the amount of Pb present in the particulate phase, which 

could be held strongly on binding sites of higher energy. Conversely, the magnitude of 

dissolved Cd and Zn maxima relative to their concentrations in bed sediments is 

considerably greater (e.g. see Figure 5.8a for Cd). These metals have low (Cd) to moderate 

(Zn) affinities with estuarine particles and are likely to be present in more readily 

exchangeable forms. Correspondingly, evacuation of these metals from sediments is 

achieved more quickly. The erratic axial profiles for dissolved Cd imply that Cd is largely 

lost through salinity-induced desorption, whereas the behaviour of dissolved Zn is 

effectively moderated by fluctuations in organic carbon along the salinity gradient. 

6.2 Particle retention 

Sediment dynamics in the Mersey are complex. The Crosby and Queens channels are 

constrained by extensive training walls and navigability is maintained by dredging (Price 

and Kendrick, 1963). In the past, dredging was performed upstream as far as Widnes, but 

with declines in traffic, the upstream limit for dredging is now at the entrance to Eastham 

locks on the southern shore and at the corresponding point on the North shore at Garston 

Docks (Taylor, 1986). However, a large percentage of dredged fines are returned directly 

back into the estuary (O'Connor, 1987). The position of the low water channel is 

continually changing (P. Jones, pers. comm.) and the presence of strong tidal currents leads 

to considerable redistribution and hydraulic sorting of sediment in the estuary (Harland et 

ol., 2000; Turner, 2000). Sand is transported landward through the Narrows from 

Liverpool Bay to be deposited in the inner estuary (Price and Kendrick, 1963) and the 

estuary is believed to be gradually accreting sediment (Liverpool Bay Study Group, 1975). 

Murdock (1995) described the exchange of fine sediments of the estuary with that of 

Liverpool Bay and the Irish Sea as follows: 

'Fine sediments entering or leaving the estuary tend to oscillate with the ebb and flow of 
tidal movements and may only disperse into Liverpool Bay during exceptionally wet 
weather and large spring tides. As a result of this physical process the estuary may be 
described as an accretion zone for sediments.' 
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An accretion rate of 1.0 x 10^ t a"' was estimated by Price and Kendrick (1963) which has 

since been amended by Taylor (1986) to a gross value of 4.0 x 10* t a"' to also account for 

significant dredging operations. In an investigation of metal and SPM fluxes through the 

Mersey Narrows, Cole and Whitelaw (2001) demonstrated that for the majority of tidal and 

river flow conditions, a net seaward transport existed. However, during spring tides of high 

tidal range (> 8.14), calculations indicated a tendency for a reduction or even reversal of 

this seaward transport. Harland et al. (2000) hinted that the retention time of fine sediment 

was likely to be of the order of decades, although no exact figure had yet been proposed, 

and concluded that even i f metal loads to the estuary were lowered further, a considerable 

time would be required for the reduction of many metals to background concentrations. 

The high surface areas and long residence times exhibited by fine-grained deposited and 

suspended particles means that their geochemical composition may reflect both 

contemporary and historical inputs into an estuary system (Turner, 2000). Evidence from 

this work has consistently pointed to the possibility that SPM in the Mersey is aged and has 

become relatively uniform in terms of its geochemical reactivity and physical 

characteristics. In light of this and the presumed high sediment retention capability of the 

Mersey, it is therefore pertinent to consider the derivation of a 'particle residence time'. 

The particle residence lime is calculated by dividing the weight o f suspended material 

present in the water column throughout the estuary (in tonnes) by the sediment yield 

(tonnes per annum). The total mass of SPM in the Mersey can be estimated by multiplying 

the volumes of 2 km estuary segments by the actual turbidities measured in this study at 

each EA sampling station. For a limited number of sections where a suitable EA station 

cannot be readily identified, linear interpolation has been used to estimate SPM 

concentration. The data produced for the March 1998 survey are given as an example in 

Table 6.2. Sediment yield due to catchment erosion was calculated according to the 

method used by Wilmot and Collins (1981), producing a value of 4.6 x lO'* t a"' (see Table 

1.7). In addition, a substantial amount of material (3 x 10^ t a"') is regularly removed from 

the estuary (Camacho-lbar et al., 1992) and also needs to be accounted for in the 

calculations. Particle residence times have only been calculated for surveys where 

complete axial coverage of the estuary was achieved and the findings are displayed in 

Table 6.3. 

Thus, for the March 1998 survey: 

Total estimated mass of SPM in the estuary = 77 348 tonnes. 
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Table 6.2 Segment volumes and an estimation of SPM tonnage in the Mersey Estuary 
on 30/03/1998. 

Distance from tidal 
limit (km) 

Volume (1) ' SPM (mg l ') SPM in segment (t) 

0 - 2 8.00E+07 36 2.88 
2 - 4 1.20E+08 105 12.6 
4 - 6 1.70E+08 107 18.2 
6 - 8 2.10E+08 343 72.0 
8 - 1 0 2.70E+08 579 156 
1 0 - 12 5.40E+08 115 62.1 
12 - 14 1.26E+09 287 362 
1 4 - 16 1.63E+09 430 701 
16-18 2.08E+09 275 572 
18-20 3.59E+09 414 1 486 
2 0 - 2 2 7.10E+09 303 2 148 
2 2 - 2 4 7.96E+09 247 1 964 
2 4 - 2 6 1.07E+I0 191 2 040 
2 6 - 2 8 1.75E+10 150 2 624 
2 8 - 3 0 2.08E+10 88 1 826 
3 0 - 3 2 3.48E+10 109 3 795 
3 2 - 3 4 2.99E+10 121 3 615 
3 4 - 3 6 3.20E+10 133 4 251 
3 6 - 3 8 3.28E+I0 163 5 330 
3 8 - 4 0 3.55E+10 177 6 285 
4 0 - 4 2 3.48E+10 185 6416 
4 2 - 4 4 3.20E+10 192 6 142 
4 4 - 4 6 4.43 E+10 167 7 403 
4 6 - 4 8 5.I0E+I0 142 7 236 
4 8 - 5 0 6.I7E+I0 208 12 827 

TOTAL = 77 348 

Segtnent volumes based on calculations for mean tides (Jones, 1978) 

Catchment erosion supplies 4.6 x lO** t a"' of sediment to the estuary. 

Dredgings equate to 3 x 10* t a"'. I f 40% of this is silt, then the mass of silt removed each 
year = 1.2 x 10* tonnes. 

The particle residence time is then calculated by dividing the total amount of 

resuspendable material present both in the water column during the survey and that 

physically removed through dredging, by the catchment sediment yield, i.e.: 

(77 348+ 1.2 x 10*)/4.6 X 10''= 27.8 years. 

Consistent estimates for particle residence time are produced despite variations in tidal 

range and river flow generating large differences in the amount o f SPM present in the 

estuary at the time of sampling. This is because the incorporation of dredged sediment 

confers a substantial control on the calculation. The resulting value is of the order of 27 
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years. Residence times for suspended particles of 18 months and 17 years have previously 

been calculated for the Tamar and Humber estuaries, respectively (Turner, 1990) and 2 

days for the Sabine-Neche Estuary in the United States (Baskaran et a/., 1997). Whilst the 

retention of particulates within the Mersey exceeds that of the other estuaries mentioned. 

Table 6.3 Estimates of SPM tonnage and suspended particle residence times for the 
Mersey Estuary. Q = river flow for the River Mersey at Howley Weir. 

Survey Tidal range (m) SPM (t) Residence time (y) 

March 1998 47.2 10.9 77 348 27.8 

June 1998 29.1 9.2 39 793 27.0 

October 1998 82.4 8.2 65 442 27.5 

May 2000 10.1 9.4 27 842 26.7 

this value is likely to be underestimated, for several reasons. Firstly, surveys were 

performed on spring tides when segment volumes wi l l be larger than those used in the 

calculations. Secondly, it has been assumed that surface turbidities could be extended 

throughout the water column. Whilst these turbidities will be approaching maximal 

concentrations for the above spring tide surveys, and the waters of the estuary are generally 

well mixed, some vertical heterogeneity would exist with higher SPM loads occurring 

nearer the bed. Prandle et al. (1990) estimated that an extreme spring tide could produce an 

SPM tonnage ( - 205 000 t) that is 80 times greater than during an extreme neap tide 

(-- 2 560 t). Values for spring tides in Table 6.3 are up to 7 times lower than those produced 

in the literature. Bearing diese factors in mind, it is suggested that a more realistic 

residence time for suspended particles in the Mersey may be around 40-50 years, a 

timescale that is in apparent agreement with the recent (2002) findings of other researchers 

(D. Prandle, Proudman Oceanographic Laboratory, pers. comm.). 

Given such a considerable timescaie, it would appear reasonable that particle character 

(e.g. C content and SSA) is relatively constant throughout the estuary and that trace metal 

concentrations in suspended particles are largely independent of the time of sampling. 

Thus, the long particle residence time would seem to be implicated in the buffering 

process. Adequate assessments of estuarine pollution should therefore not only rely on 

particulate metal measurements but also the degree of internal cycling within the system 

including turbidity and particulate variability in terms of geochemical reactivity. Thus, in 

dynamic macrotidal estuaries such as the Mersey, Humber and Thames, contemporary 
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pollution is somewhat masked by high suspended particle concentrations, the dynamic 

exchange of historically contaminated particles between bed sediments and the overlying 

water column and the relatively high levels of POC and DOC. The net result is a retention 

of current and historical inputs into the system, at least in the medium term, which would 

assist in explaining the slow-down in trace metal decontamination reported by Laslett 

(1995), Fox et al. (1999) and Harland et al. (2000). 

Newly published research (Thomas et al., 2002) suggests the Mersey has recently evolved 

towards a morphologically steady state. Computational hydrodynamic model results and 

the analysis of bathymetric data indicate that peak accretion occurred between 1906 and 

1977. This has been related to training wall construction and dredging in Liverpool Bay 

causing changes in sediment transport patterns outside the estuary which both acted to 

increase the supply of non-cohesive sediment to the estuary mouth. In particular, flood 

tidal flow over a large sandbank (the Great Burbo Bank) in Liverpool Bay became 

increasingly dominant and enhanced the transport of fine sands towards the estuary mouth. 

The authors derived the Dronkers parameter for the estuary upstream of New Brighton for 

a number of individual years spanning the period 1871-1997. The Dronkers parameter (y) 

is a method of relating estuarine geometry to theoretical tidal asymmetry using 1-D tidal 

equations (Dronkers, 1998): a value of 1 signifies an approximate balance between ebb and 

flood tides, figures < I indicate ebb dominance and figures > 1 indicate flood dominance. 

In 1871, Y was found to equal 1.41, rising to 1.58 in 1906 and declining to 1.34 in 1977 and 

1.31 in 1997. Bathymetric adjustment in Liverpool Bay changed hydrodynamic flow 

patterns and reduced flood tida! transport of offshore sands over Great Burbo Bank thereby 

diminishing the capacity for sediment importation into the estuary. In the period 1977-

1997, a net sediment flux of approximately zero was calculated. 

Reduced fluxes of non-cohesive marine sands into the estuary implies that the mixing in of 

marine particles with metal-contaminated estuarine particles could be lessened over time 

and to some extent, could slow dov^ the observed trends of reducing sediment metal 

concentrations. Conversely, i f morphological changes are induced that serve to reduce 

flood dominance further, then net exports of particulate matter and a lowering of 

suspended particle residence limes could occur which would assist metal decontamination. 

6.3 Overall Conclusions 

The increased regulation of effluent discharges entering the tidal and non-tidal Mersey has 
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produced slow but consistent improvements in the water quality of the estuary in terms of 

basic water chemistry, biology and aesthetics. Significantly, in 2000 no part of the estuary 

was any longer classified as being of bad quality. Previous researchers have documented 

fairly rapid declines in dissolved and particulate trace metal concentrations since 

restorative measures were initiated to control the magnitude and quality of metal inputs in 

the 1970s. This study has established that particulate and dissolved contaminant metal 

concentrations have now stabilised and that a combination of prevailing hydrodynamic, 

sedimentary and biogeochemical conditions are responsible for maintaining trace metals at 

present-day levels in the Mersey Estuary. The major objectives of this research have been 

accomplished, in particular: 

^ A co-ordinated and extensive seasonal field sampling programme and controlled 

analytical experimentation have allowed a comprehensive insight into the processes 

affecting trace metal biogeochemistry in the Mersey Estuary. Measurements of SSA, 

particulate metal concentrations, the differentiation of particle size (sediment 

granulometry and the separation of sub-populations of SPM based on variations in their 

settling characteristics) and carbon content have enabled compositional changes in 

SPM and bed sediments fi-om the entire mixing zone to be evaluated. Access to 

archival data held by the EA and results from companion studies performed by Martino 

(2000) and Le Roux (2000) have further assisted in the interpretation of trace metal 

transport and behaviour in the Mersey. This work is therefore the first study of the 

estuary to offer a holistic assessment of how chemical and physical processes operating 

within it are affecting its recovery from a legacy of historical trace metal 

contamination. 

>^ Estuarine dissolved nutrient concentrations are high and as such no obvious seasonal 

depletion by phytoplankton was displayed. Limited non-conservative behaviour was 

demonstrated for dissolved nutrients, with slight removal occurring for NRj^ 

accompanied by addition of NO2" in June 1998 and July 2000. Nitrate displayed 

alternating patterns of removal and addition along the estuary axis. It is postulated that 

the trapping of particulate material and the accumulation of substantial amounts of 

organic matter in the region of the TMZ/estuarine null point supports the growth of 

high numbers of nitrifying bacteria (~ lO'^ cells). The oxygen demand exerted by these 

bacteria creates a DO sag, which is present at all times of the year and extends for 

almost the entire length of the estuary. Depression of DO becomes particularly evident 

during the summer months (the lowest value recorded during the axial surveys being 
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42% saturation in the upper estuary in July 2000) and the most pronounced region of 

the sag corresponds with peaks in dissolved NO2'. Long-term monitoring by the EA 

and its predecessor the National Rivers Authority has proved that the Mersey has 

changed from a denitrifying system to one where partial nitrification exists, although 

estuarine NO3" concentrations do not pose any significant environmental concern at the 

present time. This shift has largely been the result of improved oxygenation and 

reduced ammonia loads. Seasonal variations in riverine phosphate concentrations result 

from changes in fluvial inflow, with point sources assuming greater importance during 

periods of low flow and diffuse sources such as agricultural runoff dominating during 

higher flow events. Phosphate concentrations are consistently high in the estuary and 

are undoubtedly implicated in the current GQA designations of poor/fair water quality. 

Dissolved silicate shows little seasonality but removal in May 2000 and addition in 

July 2000 could be indicaUve of the respective growth and decay of diatomaceous 

blooms during those periods. Dissolved nutrient ratios indicate that N may become 

limiting in the spring and summer whilst P could become limiting in autumn and 

winter. CSTT (1997) guidelines are exceeded for winter concentrations of DAIN 

(12 \xM) and DAIP (0.2 \xM) and, apart from in December 1997, chlorophyll a 

concentrations also transcend the recommended value of 10 lig 1"' as set down under 

the EC Urban Waste Water Treatment Directive. In addition, winter molar N:Si ratios 

> 2 occur for the majority of sites along the estuary at different times of year and 

together, these facts point to hypemutrification in the Mersey. 

Freshwater concentrations of DOC are high compared to many other estuaries. Axial 

distributions of particulate organic carbon in bed sediments and SPM tend to reflect 

changes in sediment granulometry and position relative to fluvial inputs and the null 

point. The total carbon content of SPM has reduced by 75% between 1987 and 1998 in 

line with the increased control of sewage inputs. Data for TOC, when obtained as a 

function of inhabitants/discharge ratios, indicate that the estuary shows evidence of 

organic decontamination approaching that seen in the Rhine and Elbe. As a 

consequence of declines in particulate C, the mean SSA of SPM has increased by up to 

57% during the same timeframe but SSAs are still low compared to those of SPM in 

other major estuaries and this has implications for metal sorption processes. 

>^ Analyses of the POC and N contents of estuarine particles reveals that atomic C:N 

ratios approaching that of the Redfield ratio occurred most consistently in May and 

July 2000 (and less frequently in March and June 1998) and confirm the existence of 
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phytoplankton blooms. During these surveys, algal contributions to total POC in SPM 

ranged from 20 - 9 9 % in waters of low turbidity but became progressively reduced due 

to poor light availability when SPM concentrations exceeded - 100 mg l '. At other 

times/locations, C:N and POC:Chl a ratios were elevated, implying that the organic 

carbon pool is comprised of a mixture of other natural as well as anthropogenic 

ligands. The amount and type of POC in the estuary varies throughout the seasonal 

cycle in response to changes in freshwater runoff, vegetative die-off, the relative 

magnitude of waste inputs compared to the dilution capacity of the estuary as well as 

the incidence of bacterial and photosynthetic activity. 

Estuarine POC concentrations show limited axial variation compared to other systems. 

A long average flushing time (32 days) and partial nitrification alter the buffering 

capacity of the estuary and calculations indicate that 35 - 60% of seston POC is rapidly 

mineralised. Ratios of POC:Chl a and C:N indicate that the efficiency of this process 

can also be attributed to the type of POC predominant at any given time. For example, 

the high flow conditions in the River Mersey in October 1998 delivered significant 

inputs of terrestrial organic matter to the mixing zone and mineralisation was reduced. 

Mineralisation efficiency rose however, when increasingly labile sources of organic 

carbon such as sewage, bacteria and phytoplankton assumed more prevalence in the 

estuary. 

Metal partitioning has been elucidated by analysis of field and laboratory distribution 

coefficients (KDS). The phase distributions of Cd, Co, ^^^Hg, N i and Pb are largely 

controlled by salinity and particle concentration. However, additional control on 

partitioning was mediated by cyclic variations in organic C (especially for Hg) and 

bacterial and photosynthetic production producing localised changes in water and 

particulate chemistry. For Co co-associated with Mn, this occurred through axial 

changes in DO causing reductive dissolution in the upper estuary followed by 

progressive re-adsorption of Fe-Mn hydroxides in the inner and outer estuary. The 

phase partitioning of Cu and Zn were largely independent of the time of sampling, 

although removal of both metals in the upper estuary in March 1998 (Martino, 2000) 

suggests phytoplankton uptake. The salting out of metal-organic complexes at higher 

salinities is believed to be a major factor contributing to the retention of metals in the 

particulate phase. For Hg (and possibly other metals) this process could be assisted by 

the presence of sewage, as experiments involving the uptake of ^^•'Hg showed an 

increase in K D with salinity at a time when C:N ratios consistently identified the 
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association of sewage-related material with SPM throughout the estuary (March 1998). 

The same effect was not observed in either June 1998 or October 1998 when natural 

POC ligands were predominant. 

^ Bed sediments remain substantially enriched in carbon and most of the metals studied 

relative to pre-industrial concentrations. The extent of enrichment is partly dependent 

on sediment location, which itself reflects the action of physical mechanisms such as 

dispersal and hydraulic sorting and supports the findings of previously published 

research. Sediment trapping produces an essentially well mixed suspended particle 

population which has become substantially (physically and chemically) modified over 

time due to repeated cycles of Fe-Mn (hydr)oxide dissolution and reprecipitation and 

the presence of large quantities of organic C in the system. This culminates in the 

generation of an SPM pool, which has relatively uniform chemical reactivity and 

significantly different bulk characteristics (e.g. SSA and the relative proportions of Fe, 

Mn and C) to that occurring in other moderately contaminated macrotidal estuaries. A 

residence time of - 40-50 years has been estimated for SPM in the Mersey and it is 

anticipated that only very small contributions of particulate metals are permanently 

flushed out of the estuary into the surrounding coastal zone. 

^ The results of settling experiments showed that overall, PSPM possesses higher 

concentrations of trace metals (Cd, Co, Fe, Mn, Ni and Pb) than TSPM. The largest 

variance occurred for Co and Fe but for other metals the differences, whilst statistically 

significant, were much smaller. Data for Cu and Zn revealed a lack of distinction in 

geochemical reactivity between the two pzirticle types. Thus, evidence suggests that 

PSPM and TSPM in the Mersey are not as geochemically or physically dissimilar as in 

other macrotidal estuaries such as the Humber and Tamar and that this is probably 

linked to the long residence time of SPM in the Mersey and the magnitude of past 

discharges. Metal concentrations in unsettled (bulk) SPM were shown to be almost 

exclusively the result of mixing naturally varying quantities of PSPM with TSPM and 

this demonstrates that separation and measurement of the two settling populations is 

both procedurally and analytically viable. 

^ Relatively invariant suspended particulate Cd, Cu, Ni , Pb and Zn concentrations 

throughout the Mersey mixing zone suggest that salinity-induced desorption of these 

metals is largely repressed at present. This is possibly to be expected since the 

adsorptive capacity of PSPM is not significantly enhanced over that in resuspending 
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particles. The data also imply that complex and significant changes in sorptive control 

may be exerted by the relative presence of Fe, Mn and POC in Mersey particles and 

that this is important in the regulation of contaminant metal concentrations along the 

salinity gradient. However, desorption of metals at high salinity may become more 

prevalent in the future i f restorative measures are continued which enable further 

increases in Mn and/or reductions in C in PSPM than those already observed to date. 

^ There is no pronounced removal of dissolved metals in the TMZ. Instead, broad peaks 

in dissolved metals occur in the region of the FSI and TMZ which may in part be due 

to slow desorption kinetics induced by elevated concentrations o f DOC. The use and 

refinement of empirical sorption models has demonstrated that the cause o f consistent 

dissolved metal addition is likely to be dominated by desorption o f metals from tidally 

resuspended sediments. This is possible because resuspending particles are rich in 

metals compared to ambient SPM that is al equilibrium with dissolved metals in the 

water column and because the flushing time of the Mersey is sufficiently long to allow 

chemical equilibria to become established. A secondary source of dissolved metals has 

been identified. It is thought that infusions o f metal-rich porewaters from sediments in 

the upper extremes of the estuary could arise during the onset of spring tides following 

the occurrence of sediment diagenesis during more quiescent neap tides, especially 

during the summer months when DO saturation is most repressed. 

^ Calculations of future metal loss from bed sediments have been made by two 

independent methods. The resulting data indicate that decontamination may be 

achieved for Cd, Co, Cu, Hg, Ni and Zn within the next 2-3 decades or even less, 

provided that metal inputs continue to decline or at least remain at present-day levels. 

The rate at which this proceeds wil l vary between metals due to differences in for 

example, particle reactivity, their affinity for organic matter and redox-sensitive 

elements such as Fe and Mn and speciation and wi l l also vary depending upon the 

location and physical characteristics of the sedimentary material. The prevalence of 

high concentrations of Pb in upper estuary bed sediments means that elimination of this 

element is likely to proceed at a far slower rate and may take as long as -350 years. In 

contrast, the loss of Pb from intertidal sediments located further downestuary is only 

predicted to take up to 20-30 years. 

6.4 Suggestions for further work 

An integrated scientific approach is necessary in order to gain a suitable understanding of 
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the physical, biological and chemical processes operating in dynamic estuarine systems. 

Furthermore, from an estuarine management viewpoint, appropriate identification of 

contaminant sources and sinks and how these are influenced over a range of timescales is 

critical for reliable assessments of historical and future trends and the modelling of 

estuarine fluxes. 

This study has established an effective baseline against which further progress in 

restoration of the Mersey Estuary can be assessed. Other areas of work that could warrant 

future study are; 

1. The settling of particulate trace metals requires further investigation. It has been shown 

that bulk SPM comprises particles of various origins al different times of year. Settling 

experiments were performed for four seasonally distinct periods but settling times were 

not varied. The inclusion of plankton, sewage-derived and riverine particles are all 

likely to affect the settling characteristics and metal contents of PSPM and TSPM. It 

would be useful to identify the trace metal contribution that each particle type makes to 

each of the two settling fractions and how this may vary according to alterations in the 

settling time employed. 

2. Porewater concentrations of trace metals in sediments in the uppermost 5 km of the 

estuary have been estimated based on observed deviations of dissolved metals from 

conservative mixing. There are no known porewater metal data for the Mersey and the 

existing gap in present knowledge would therefore be bridged by performing these 

measurements. Such data could confirm or deny the existence o f sediment diagenesis 

in the extreme upper estuary during neap tides and indicate the relevance of 

conservative calculations made in this work. 

3. In the absence of any other data, contemporary metal concentrations determined for 

surface sediments in this study have briefly been compared to 'pre-industriaP 

concentrations from the base of saltmarsh cores taken from the upper estuary by Fox et 

al. (1999) in Section 4.3.1. The cores however only extended to a depth of 1 m and are 

unlikely to have reached horizons exhibiting true background levels. Since 1999, 

significantly more core sampling has been undertaken by the British Geological Survey 

but the results are as yet unpublished (J. Ridgway, BGS, pers. comm). These samples 

have penetrated to a depth of 9 m and metal concentrations determined at this depth 

therefore are more likely to represent background concentrations from which more 

realistic enrichment factors can be estimated once the data becomes available. 
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4. Pre-equilibration of " N i by Martino (2000) prior to laboratory incubation studies did 

not show any appreciable differences in the partitioning of the radioisotope with 

respect to salinity. However, this may not be true for other metals in the Mersey and 

should be investigated. Experimental protocols of this kind should be refined to match 

the prevailing conditions in the estuary under study (e.g. adjustment for long or short 

flushing times, those experiencing high/low DOC concentrations) in order to generate 

more accurate coefficients for modelling purposes. 

5. The continuance of measurements made in this study would enable further 

quantification of the ongoing restoration of the Mersey. Analyses o f particulate carbon, 

SSA and Mn for example, could determine how further declines in organic inputs 

would affect the sorptive capacity of estuarine particles. Salinity-induced desorption of 

metals may become more prevalent over time i f organic coatings on particles are 

further reduced and this should be monitored. The effect of slow changes in estuarine 

morphology such as a continued reduction in flood-dominance and how this may assist 

or prolong the clean up of the estuary also warrants investigation. 

An impacted ecosystem may require several decades at least before noticeable progress in 

restoration is achieved. Charting the recovery of marine ecosystems to acute incidents or 

chronic contamination sustained over long periods inevitably requires long-term 

monitoring. Al l too often, concem over a short-term accidental release fades very quickly. 

Similarly, once improvements are established in the control of one polluting material, the 

regulatory authorities are under pressure to switch their attention to other forms of chronic 

inputs. It is appropriate therefore to echo the sentiments of Hawkins et al. (2002) and call 

for the extended monitoring of impacted water bodies like the Mersey. More specifically, 

long-term observational programmes like that of Hariand et al. (2000) should be performed 

in tandem with the types of measurements made herein so that a more holistic picture of 

the efficacy of legislation can be attained. 
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