
Biodiversity and Ecosystem Processes In the Strandline: The Role of Species 

]dentit>', Diversity, Interactions and Body Size 

By 

Sally Jane Marsh 

A thesis submitted to the University of Plymouth in partial fulfillment for the 

degree of 

D O C T O R O F PHILOSOPHY 

School of Biological Sciences, Faculty of Science 

In collaboration with Plymouth Marine Laboratory 

January 2008 



University of Plymouth 
Library 

Shelfma,-1< 



Biodiversity' and Ecosystem Processes in the Strandline: The Role of Species 

ldentit>', Diversity, Interactions and Body Size 

Sally Jane Marsh 

Abstract 

In ihe current climate of biodiversity loss how species diversity and ecosystem process are 
linked is, arguably, one of the most pressing issues and greaiesl challenges currently facing the scientific 
community. Previous studies suggest that there is no universal Irajcciory for the relationship between 
diversity and ecosystem processes, the pattern depends largely on species identity and their interactions. 
Furthermore, the effect of reduced diversity on ecosystem process in multi-trophic assemblages is both 
understudied and poorly understood. Consequently, the overall aim of the present study was to investigate 
the role of species identity, diversity and interactions in determining ecosystem processes using the 
strandline as a model system. Appropriate strandline species, three species of kelp fly larvae, an 
amphipod and four rove beetles were were selected for use in laboratory manipulative experiments that 
measured decomposition as an ecosystem process. This study is one of the few to consider the affect of 
species interactions on ecosystem processes. The use of metabolic theory to make predictions of trophic 
interactions and ecosystem processes, using tractable surrogate measures of interaction strength, was also 
investigated. Finally, the importance of trophic interactions in affecting ihe connection between 
ecosystem processes and consumer species identity, diversity and interactions was examined. 

Species identity combination explained the variability in decomposition when strandlinc 
decomposer diversity and identity were manipulated. Positive and negative interactions were identified, 
and the effect of diversity on decomposition was dependent on the balance of these negative and positive 
species interactions. A mechanism of microbial facilitation and inhibition was proposed to explain the 
outcome as no previously proposed single mechanism adequately described the observed effect of species 
identity, diversity and interactions on ecosystem process found in this study. 

It was not possible to accurately predict obser\'cd predator-prey interaction strengths and 
ecosystem processes between strandline predators and prey and decomposition using body size as a 
surrogate measure of interaction strength and ecosystem processes. Although body size was an important 
factor explaining the variability in predator-prey interactions and decomposition, so too was species 
identity. The absence of a consistent relationship between size and interaction strength and 
decomposition was attributed to species-specific differences. 

The presence of trophic interactions subtly affected decomposition of wrack by strandline 
delrilivores. However, in the presence and absence of a predator the overall effect of detritivore diversity 
and interactions on decomposition remained constant. 

The results of this study have implications for the fields of biodiversity ecology, metabolic 
theory of ecology and food web ecology. Firstly, the identification of positive detritivore-resource 
interactions adds to a growing body of evidence that some detrilivore species may interact positively, 
with respect to ecosystem processes. The loss of species within a trophic group may result in a greater 
reduction in ecosystem processes than previously thought. If positive species interactions are prevalent, 
ecosystem process will decrease to a greater extent as species are lost, than that predicted from single 
species processing rates. By considering species interactions, future biodiversity ecosystem processing 
studies may better understand the effects of species diversity and identity on ecosystem process. It is also 
suggested that patterns and relationships uncovered in previous studies investigating the effects of species 
from a single trophic level on ecosystem process may still be valid in more realistic multi-trophic 
systems. If future biodiversity-ecosystem process studies are to make predictions concenning actual 
species-ecosystem process interactions in real assemblages the size of constituent species should be 
considered, as predator and prey size was shown to effect predator-prey interactions and ecosystem 
processes. 

The results of this study also suggest that allometry and metabolic theory have limited capacity 
for making predictions of predator-prey interactions and ecosystem processes, at least at the scale 
investigated here. Species specific factors are more likely to explain the patterns of predator-prey 
interactions and ecosystem processes at smaller scales. Unless food web models consider, or allocate, 
non-trophic interactions correctly, erroneous predictions of energy How and ecosystem process may 
result. Finally, the use of body size and allomelric scaling laws to quantify food web models and energy 
fiow through an assemblage must be treated with caution if these models are used to make predictions on 
interactions between species and ecosystem processes occurring at the scale investigated in this study. 
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C H A P T E R 1: INTRODUCTION 

1.1 Chapter Aims and Outline 

''The variety of life is manifestly complex...has changed dramatically 
through time and is unevenly distributed through space For many of us 
these, observations may be interesting in their own right, and the study of 
biodiversity may be largely a heuristic exercise. But this ignores a 
fundamental question that, particularly against a background of 
unprecedented losses in biodiversity, demands both an intellectual and 
practical response: Does biodiversity matter? " 

-Gaston and Spicer (1998) 

The scientific study of biodiversity, the variety of life in all its forms, is one of 

the most engaging, challenging, and urgent, activities facing humankind at the 

beginning of the twenty-first century (Wilson 1992, Heywood 1995, Gaston 1996b). 

One of the key foci over the past quarter century has been the attempt to discern the 

relationship, i f any, between what biodiversity is, and what biodiversity does, the latter 

referred to as ecosystem function or process (Heywood et al. 1995; Millennium 

Assessment 2005). This relationship is at the centre of the present thesis. Literature 

dealing with biodiversity and ecosystem process (often referred to as biodiversity and 

ecosystem function, BDEF) is now voluminous and wide-ranging. Therefore, it is not 

possible in this introductory chapter to comprehensively review that literature. Instead 

the more tightly-focused aims of this introductory chapter are to (a) highlight the 

importance of BDEF research, (b) introduce the study of biodiversity from a historical 

perspective, (c) briefly summarise our current understanding of this area, particularly 

identifying the limitations of previous investigations and current gaps in our knowledge, 

and in doing so provide a clear rationale for the experimental studies on BDEF 

presented here. 
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1.2 BiodiversitA' and Ecosystem Function - Definitions and Importance 

There are in excess of ninety difFerent definitions of the term biodiversity 

(Gaston and Spicer 2004). Perhaps the most important, and most influential, is the one 

that emerged from the Rio Convention for Biological Diversity. In the Convention for 

Biological Diversity, biodiversity is defined as; 

''The variability among living organisms from all sources including, terrestrial, 
marine and other aquatic ecosystems and the ecological complexes of which they are 
part; this includes diversity within species, between species and of ecosystems " 

- (CBD 1992). 

The notion of what a species is, and the organisational level at which diversity 

should be measured, is still highly contentious and much debated (e.g. Magurran 1988, 

Bisby 1995, Hawksworth 1995). For the purpose of this thesis biodiversity, unless 

othenvise slated, refers only to species diversity (or species richness), the number of 

different species. Species diversity is arguably a good integrator of many different 

facets of biodiversity (Magurran 1988, Gaston 1996a), it is easily measurable and 

permits comparability with existing literature on biodiversity and ecosystem 

functioning. 

Differences in understanding what '^ecosystem processes or functioning" means 

have occasionally led to confusion in the interpretation and comparison of studies, as 

there are subtle differences between the meanings conveyed by the use of the terms (D. 

Raffaelli pers. com.). However, ecosystem functioning and ecosystem processes are 

simply used interchangeably throughout this thesis and both are taken to refer to the 

processes operating in an ecosystem; 

"...the energy transformation and matter cycling resulting from the combined 
activity' of living organisms " 

- (Ghilarov 2000). 

Biogeochemical or ecosystem processes are recognized as having an economic 

value in that they provide ecological goods and services (e.g. Costanza et al. 1997, 



Pimentel et al. 1997, Millennium Ecosystem Assessment 2005 for general assessments, 

Ewel et al. 1998 for mangroves, Moberg and Floke 1999, for coral reefs). The methods 

used to quantify the value of goods and ser\'ices are, however, not well researched 

(Beaumont et al. 2007). Furthermore, the human population is dependent on many of 

these processes to provide a climate capable of sustaining human life. As the biosphere 

is a hugely complex, intricate system, encompassing 10-100 million species (Naeem et 

al. 2001b and references therein) to understand the functioning of the earth's systems 

requires not only an understanding of biogeochemical processes but also the role the 

biota plays in these systems. 

In the current climate of biodiversity loss and climate change understanding how 

species diversity and ecosystem processes are linked, is arguably, one of the most 

pressing issues and greatest challenges currently facing the scientific community. 

Current rates of species extinctions are estimated to be 100-10000 times that of 

pre-human times (e.g. Ehriich and Wilson 1991, Wilson 1992, Lawton and May 1995, 

Sala et al. 2000), however some estimates predict as much as 100000 species are lost 

annually (see Wilson 1992. for range of estimates and problems with predictions). As 

the global population is predicted to expand from the current 6.5 billion to 9.1 billion by 

2050 (United Nations 2004) it is possible that species extinctions may continue or even 

exceed these predicted rales (Millennium Assessment 2005) due to increased 

anthropogenic pressure on the earth's resources. Land converted for agriculture and 

biofuels is predicted to increase from the current 4.9 million square kilometers (in 2000) 

to 5.3-5.9 million square kilometers in 2050 (factoring in associated changes in 

consumption patterns due to additional increase in global GDP) (Millennium Ecosystem 

Assessment 2005). Habitat destruction has long been recognised as the main factor 

driving species to extinction (Wilson et al. 1992, Myers et al. 2000). Additionally a 

larger population wil l generate more waste both domestically and agriculturally, crop 



nutrient application being of particular concern (Millennium Ecosystem Assessment 

2005). 

Changes in the environment due to climate change may also exacerbate species 

extinction. Thomas et al. (2004) predicted between 15-37% of species in the terrestrial 

systems they modelled would become extinct due to climate change by 2050. (although 

see criticisms of this report by Lewis 2006). It is not just global extinctions that will 

affect biodiversity but local extinctions and the well documented reductions in species 

distribution and abundance (Ehrlich 19SS, Wilson 1988. Soule 1991. Reaka-Kudla etal. 

1997). Consequently, biodiversity losses based on current estimates of species 

extinctions are likely to be minimal and modest. 

1.3 A Brief Introduction to Biodiversity and Ecosystem Function Research 

Initial research linking biodiversity and ecosystem function was undertaken 

before species loss was widely recognised as having a potential deleterious efTect on 

ecosystem processes. Interest in linking biodiversity and ecosystem processes can be 

traced back at least as far as Darwin (McNaughton 1993, Hector and Hooper 2002). 

Most early studies focused on enhancing goods and services, specifically crop 

productivity, mainly from agriculmral research highlighting the importance of 

intercropping (growing one or more crop plants together) as a means of yield 

enhancement (e.g. Vandermeer 1989). As the rate of biodiversity loss became widely 

recognised, and of increasing concern, the last decade has seen a large increase in the 

number of studies incorporating diversity and ecosystem process in the key words or 

title (see Figure 1 in Balvanera etal. 2006). Pioneering work by Naeem et al. (1994b), 

Tilman and Downing (1994) and Tilman et al. (1996), using experimental 

manipulations of large terrestrial grassland systems found a positive link between 

diversity and some ecosystem processes, or measures of stability. In doing so they 



demonstrated a practical repeaiable methodology through which the relationship 

between diversity and ecosystem processes could be investigated. The profile of BDEF 

research rose even funher preceding the Rio Convention on Biodiversity (1992). The 

103 nations that officially signed and ratified the Convention on Biological Diversity 

document (as of June 2000) were bound with the legal obligation to; 

"(a) Identify components of biological diversity important for its conservation 
and sustainable use, (b) Monitor, through sampling and other techniques, the 
components of biological diversity identified pursuant to subparagraph (a) above, 
paying particular attention to those requiring urgent conservation measures and those 
which offer the greatest potential for sustainable use, (c) Identify processes and 
categories of activities which have or are likely to have significant adverse impacts on 
the conservation and sustainable use of biological diversity, and monitor their effects 
through sampling and other techniques,; and (d) Maintain and organize, by any 
mechanism data, derived from identification and monitoring activities pursuant to 
subparagraphs (a), (b) and (c) above. " 

- (Article 7 in CBD 1992). 

BDEF research carried out to date can be split broadly into three main 

categories, theoretical, experimental, and predictive modelling work. 

1.4 Theoretical Relationship Between Blodiverslt\' and Ecosystem Processes 

Since the early 1990s the theoretical relationship between diversity and 

ecosystem processes has been a topic of great interest (see Schlapfer and Schmid 1999 

and references therein). The Bayreuth Conference in 2000 brought together many 

recognised investigators in the empirical and theoretical fields of BDEF research. A key 

outcome of this conference was the formal recognition of the central idea that the 

relationship between diversity and ecosystem processes could be described on a 

bivariate plane (Naeem et al. 2001b). The shape of the trajectory (shape of the curve on 

the graph) linking diversity to an ecosystem process has different theoretical 

underpinnings and makes different predictions on magninade and direction of change in 

ecosystem processes relative to diversity. There is now in excess of 50 different 



trajectories relating diversity to ecosystem process (Naeem et al. 2001b, Gaston and 

Spicer 2004). They can be categorised into five main patterns (Figure 1.1 a-e). 

— 

-

Number of species 

Figure 1.1 The theoretical relationship between diversity (number of species) and 
ecosystem processes; a- the redundancy hypothesis (Walker 1992), b- the linear 
hypothesis (from Spicer and Gaston 1998), c- the keystone hypothesis (from Naeem et 
al. 2001b), d- the Rivet Hypothesis (Ehrlich and lihrlich 1981) and e- the idiosyncratic 
hypothesis (Lawton 1994). 

The differences in the trajectories linking diversity and ecosystem processes, 

between the theoretical hypotheses, depend on the relative weight given to species 

identity, the allocation of species traits and the interactions between species. 

From the redundancy hypothesis (Walker 1992) (Figure 1.1a) and the rivet 

hypothesis (Ehrlich and Ehrlich 1981) (Figure l . l d ) it can be predicted that as diversity 

decreases the remaining species are able to compensate for species loss in terms of 

ecosystem processes. In the case of the redundancy hypothesis, ecosystem processes 
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initially increase with diversity, as each additional species contributes to ecosystem 

functioning in a differeni manner, owing to differential traits and niches. However, at a 

cenain diversity level additional species are superfluous with respect to ecosystem 

processes. The rivet hypothesis predicts a step-like increase in ecosystem processes with 

diversity. It differs from the redundancy hypothesis in that it suggests that species can 

be categorised, for example, into functional groups. As diversity increases ecosystem 

processes wil l increase greatly i f there are no species of that functional group in the 

community, or to a lesser degree i f there are functional conspecifics in the assemblage. 

In the linear hypothesis ecosystem processes is a linear function of species 

diversity. This suggests that species identity is not a factor affecting ecosystem 

processes, rather each additional species processes resources in a different and 

complementary manner (niche complementarity). 

In direct contrast with the linear hypothesis, the keystone hypothesis (Naeem et 

al. 2001b) predicts that the decrease in species diversity wil l have little effect on 

ecosystem processes unless a keystone species is lost. In such an eventuality ecosystem 

processes wil l be massively reduced. Thus niche differentiation is of little importance 

and the identity of the species lost is critical. 

From the idiosyncratic hypothesis it can be predicted that ecosystem processes 

can increase or decrease with diversity to different degrees. This does not necessarily 

suggest thai ecosystem processes are diversity-independent or unpredictable; rather, all 

the process operating in the above hypotheses may co-occur. To expand; with respect to 

ecosystem processes, some species may have complementary effects owing to niche 

differentiation, some species may be redundant and some species may have relatively 

greater effects, than other species. In addition to niche differentiation and allocation of 

traits the idiosyncratic hypothesis can be interpreted as considering species interactions. 



as ecosystem processes may both exceed (Figure l . le , green circle), or be lower than 

(Figure l . le , red circle), additive species effects. 

Derived from the results of experimental and correlative observations two 

further, more recent, hypotheses are worth noting. The sampling probability or selection 

probability effect (Aarssen 1997a, Huston 1997), although it is not directly associated 

with a trajectory shape it is based on positive diversity-ecosystem process correlations. 

This mechanisms or artifact was used to explain the empirically uncovered positive 

relationship between diversity and ecosystem processes found in grassland diversity 

manipulations. The premise behind this hypothesis is that species have uneven trait 

distributions with respect to ecosystem processes. Thus as diversity increases the chance 

of including species with a disproportionally high effect on an ecosystem process 

increases. Thus this hypothesis can be viewed either an artifact of experimental studies, 

where ecosystem processes were observed to increase with diversity and diversity 

treatments were constructed by random allocation of species (of different identities) to 

each diversity treatment (Aarssen 1997, Huston 1977), or, as a real mechanistic 

explanation for natural patterns of ecosystem processes and diversity (see Leps et al. 

2001 for discussion). The second is an interference hypothesis (Jonsson and Malmqvist 

2000, 2003b, Cardinale e/ al. 2002) where ecosystem processes increase with species 

diversity to a greater degree than species additive effects owing to intraspecific 

competition and interspecific facilitation. 

Theoretical trajectories beUveen diversity and ecosystem processes do not as yet 

have a scale; consequently the quantitative effects of species diversity on ecosystem 

processes and the effects of reduced species diversity on ecosystem processes cannot be 

inferred. Theoretical work has, however, formalised a number of potential mechanisms 

behind the diversity ecosystem process relationship and as such, spurred much 

empirical investigation into either the trajectory of the relationship or the relative 
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importance of species identity, niche differenliation and species diversity for ecosystem 

processes. 

Anecdotal and/or empirical evidence for all of these trajectories now exists (see 

Schuize and Mooney 1993, Loreau et al. 2001 for reviews). Early well known studies 

manipulating diversity in grasslands all showed plant biomass or productivity to 

increase with diversity, suggesting that niche complementarily is an important factor 

governing the diversity-ecosystem process relationship (e.g. Tilman 1997a, b, Symstad 

el al. 1998, Hector et al. 1999). Likewise the well known ambitious ecotron studies of 

Naeem (1994b, 1995) also provides convincing evidence for the linear hypothesis and 

niche complementarily. Naeem (1994b) found the consumption of CO2 and plant 

biomass increased with species diversity, in microcosm treatments containing different 

species identity and diversity. However, where nine or more species were included in 

the microcosms, ecosystem processes did not increase, perhaps suggesting a form of the 

redundancy hypothesis. Furthermore long-term decomposition, nutrient retention and 

water retention showed no consistent pattern. Wardle et al. (1997b) is one of the most 

cited examples to provide evidence for the redundancy and idiosyncratic hypothesis. 

Wardle et ai (1997b) found that the ecosystem processes measured (rates of litter 

decomposition, litter nitrogen content, rates of nitrogen release from litter and the active 

microbial biomass present on the litter) did not increase with increasing leaf species 

diversity in litter bags. However, when within-functional group diversity of leaf litter 

was analysed there was evidence thai some species of leaf were redundant with respect 

to ecosystem process. However as this was not consistent for every functional group 

little support for the rivet hypothesis was provided. It is important that conclusions 

regarding the relationship beuveen diversity and ecosystem processes drawn from the 

studies examined above are interpreted with caution. They all use experimental designs 

that compare the difference between ecosystem processes at different levels of 



diversity'; they are not correlative type designs. Additionally, the experimental design 

and statistical analyses may have confounded the conclusions of studies, a point 

discussed in more detail in the following section. Furthermore, the absence of a scale on 

the theorised relationships makes generalising the results of empirically studies to fit 

any one particular hypothesised relationship tenuous at best. Nevertheless the studies 

above highlight the difficulty in categorising the data from empirical investigations into 

a single theoretical hypothesis, i f indeed such discrete trajectories exist. From just these 

few examples from the terrestrial literature it is clear that the mechanistic process 

underpinning these trajectories are not necessarily mutually exclusive, and may differ 

across species and system. 

1.5 Experimental Studies 

Many investigations have measured diversity and ecosystem process across 

natural diversity gradients, finding mainly a positive correlation, higher rates of 

ecosystem processes in areas or sites of higher diversity (see Schlutze and Mooney 

1994, Loreau et al. 2001b, for examples and reviews in terrestrial systems and Huryn et 

al. 2000, Jonsson et al. 2001 for aquatic examples). Whilst they often provide useful 

information on community and assemblage structure, (and occasionally patterns of 

succession in diversity and ecosystem processes), the relative importance of co-

variables and factors that differ with separate measures cannot be disentangled from 

diversity effects. Most experimental studies have manipulated diversity of species 

belonging to a single trophic level. This has been done by randomly allocating species 

from a regional pool to different diversity treatments and measuring the response of one 

or more ecosystem processes. Initially the majority of work came from grassland studies 

measuring productivity and occasionally nutrient fluxes (see Loreau et ai 2001b and 

Balvanera et al. 2006 for reviews). Since then a plethora of studies have investigated 
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the relationship between diversity and ecosystem processes in many systems, measuring 

a wide array of ecosystem process, and collectively using a relatively wide range of 

species; see Worm et al. (2006), and Emmerson et al. (2001) for marine examples, 

Covich et al. (2004) for marine and fresh water examples. Bell et al. (2005) for bacterial 

examples and Loreau et al. (2001b), Hooper et al. (2005) and Balvaneria et al. (2006) 

for terrestrial examples. Despite this trend, traditional terrestrial grassland manipulative 

studies still dominate the BDEF literature. 

BDEF research has also expanided to include additional variable temporal and 

spatial factors. Evidence from this research suggests that processes observed at one 

scale or in one system often do not generalise to other scales or systems and may be 

context dependent (e.g. Risser 1995, Gaston 1996a, Beck 1997, Johnson etal. 1996, 

Huston 1997, Chapin et i / / . 1998, Cardinale et al. 2004). 

There has also been debate over the correct or most suitable level at which to 

measure diversity (see Gaston and Spicer 2004 for an over\'iew). Petchey and Gaston 

(2002) and Petchey et al. (2004b) provide a convincing argument for the use of 

Rinctional diversity, the number of different traits rather than species number, as 

mechanistic explanations behind the diversity ecosystem process relationship are 

dependent upon the distribution of species traits. Although Petchey et al. (2004b) 

provides an excellent example of how species may be categorised by functional 

differences in an unbiased manner, the success of such an approach wil l be largely 

dependent upon the information available on species traits. Unless it is known a priori 

which traits can potentially affect species' ability to undertake ecosystem functions, 

subtle trait differences between species, that can influence ecosystem processes, may be 

overlooked. This latter point is exemplified in studies that have found positive diversity 

effects on processing rales amongst species belonging to the same functional group (e.g. 

Jonsson and Malmqvist 2000, 2003a). Mechanistically, the relationship beuveen 
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ecosystem processes and diversity is likely to be detennined by the functional 

differences amongst the biota. However, considering that we are rarely in a position 

where detailed knowledge of all species traits are available using the lowest common 

measure of diversity thai is easily measured may prevent underestimation of the value 

or role of diversity in maintaining ecosystem processes. 

Despite the vast amount of studies and work in the BDEF field there is still no 

general consensus on the form of the relationship between diversity and ecosystem 

process, much less a widely accepted understanding of how ecosystem process wil l 

respond to reduced species diversity. Many recent meta-analyses, reviews and large-

scale experimental studies conclude that diversity does affect ecosystem processes 

positively (e.g. Loreau et al. 2001 b,c, Emmerson et al. 2001, Covich et al. 2004, Bell et 

al. 2005, Balvanera et al. 2006, Worm et al. 2006). However, the incongruity and 

discrepancies between these and previous older smdies, suggest that the fonn of this 

relationship is far from universal. Furthermore, despite the ingenuity of previous BDEF 

studies, most have been heavily criticised in the interpretation, significance and 

generality o f their results (Givnish 1994, Lawton 1994, Johnson a/. 1996, Huston 

1997, Aarssen 1997, Huston and McBride 2001). 

1.6 Importance of Segregating Species Identih', Diversit\' and Interactions 

If, as is suggested, no universal trajectory between diversity and ecosystem 

process exists, the effect of species diversity on ecosystem processes wil l depend on the 

relative importance of species identity and interactions. Identifying species with large 

effects on ecosystem processes and species which interact positively with respect to 

ecosystem processes may help inform and prioritise management strategies help us 

understand and predict the effects of reduced species diversity on ecosystem processes. 

The link between diversity and ecosystem processes, inferred from previous studies, 
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may have been confounded by the inability of many studies to segregate the effects of 

species identity from diversity and to empirically quantify the effects of species 

interactions. In experimental studies this has been attributed to the design and 

interpretation of results. For example, when randomly assigning species from a species 

pool to diversity treatments, an increase in ecosystem process with diversity may 

depend upon the "chance" inclusion of a species with a disproportionally high effect; 

the sampling effect (Huston 1997, Aarssen 1997). The sampling effect has also been 

expanded to include species interactions; the chance of high diversity treatments 

including species that interact positively is greater than that of low diversity treatments 

(Huston and McBride 2001). The failure to segregate the effects of species identity 

from that of diversity may in part explain the divergent results of previous studies. 

Considering that many mechanistic explanations behind the diversity-ecosystem process 

relationship are based on species trait distribution (species identity). Numerous 

investigations have argued that species identity combination rather than diversity perse 

influences ecological processes (e.g. Aarssen 1997, Hooper and Vitousek 1997, Huston 

1997,Tilmane;o/. 1997a, Wardlee;^?/. 1997a, Chapin e/a/. 1998, Symstade/o/. 1998, 

Ruesink and Srivastava 2001, Jonsson and Malmqvist 2003b). To illustrate this, (a) 

Symstad et al. (1998) found plant functional group diversity to have a positive, negative 

or negligible effect on nutrient retention, depending on species identity, (b) Ruesink and 

Srivastava (2001) found leaf breakdown to be dependent on the identity of the stream 

detritivore removed and (c) Jonsson and Malmqvist (2003b) found the relationship 

beuveen diversity and processing rates in aquatic invertebrates to be directly related to 

both the species identity and interactions between these species. 

Species interactions have similarly been overlooked, despite their recognition as 

important factors in shaping plant assemblages (e.g. Crawley 1997, Callaway 1995, 

Callaway and Walker 1997, Stachowicz 2001, Bruno et al. 2003) intertidal assemblages 
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(e.g. Bertness, 1989, Beriness and Leonard 1997) and the numerous examples of 

synergisms in nature. Species interactions have been central in population and 

community ecology research, in understanding the underiying patterns of species 

distribution through species co-existence or competitive exclusion. In general, species 

interactions have been quantified, inferred or modelled based on species life history, 

population and community dynamics (see Raffaelli and Hall 1996, Laska and Wootton 

1998, Wootton and Emmerson 2005 Woodward et al. 2005b). Few studies have 

addressed this phenomenon in the context of other biotic interactions and ecosystem 

processes (Bronstein 1994, Stachowicz 2001, Bruno etal. 2003). Even in the theoretical 

BDEF literature the role of competition and facilitation has only been very briefly 

considered (Section 1.4). Theoretically resource processing may increase with the 

number of species due to species interactions. I f it is advantageous to complete a life-

cycle stage before conspecifics, species may increase processing rates, to accelerate 

ontogeny. Species may also increase the palatability of a food source for conspecifics 

via their own feeding. Alternatively, species sharing a food source may allocate time to 

protecting the resource or to antagonistic behaviour towards other species thus reducing 

time available to process the resource. Thus the balance beuveen intraspecific and 

interspecific competition and interference could determine the resource processing-

diversity relationship. This latter example may apply to species competing for other 

resources such as mates and refuge, i f the time spent undertaking ecosystem processes 

is reduced due to antagonistic behaviour. 

Although initial work on diversity ecosystem processes from intercropping 

studies demonstrated how positive species interactions can positively enhance yield 

production (see Vandermeer 1989 for examples), species interactions, in the context of 

positive diversity-ecosystem processes mechanisms are rarely investigated. When 

experimental designs have allowed the identification of species interactions, positive 

14 



interactions with respect to ecosystem processes have been found, e.g. in grassland 

studies (Loreau et al. 2001b), Fungi assemblages (Tiunov and Scheu 2005) and 

decomposer assemblages, (Cardinale et al. 2002, Cardinale and Palmer 2002, Jonsson 

and Maimqvist 2000, 2003b). 

The balance between negative and positive species interactions can affect 

ecosystem processes. In order to untangle the effects of positive and negative species 

interactions on ecosystem processes, investigations need to compare ecosystem 

processes predicted based on the additive affects of species in monocultures, to those 

obser\'ed in multi-species treatments or assemblages. This approach was initially 

proposed to segregate the niche differentiation effect from the sampling effect (Loreau 

1998, 2001a Hector 1998, Emmerson and RafTaelli 2000). The design of most BDEF 

smdies has not permitted this type of analysis. Although terrestrial grassland studies 

sometimes incorporate measures of overyielding using this type of design, species were 

often allocated from a random pool and species identity and diversity could not be 

discerned (see examples in Loreau et al. 2001b). Jonsson and Maimqvist (2003a) gave 

one of the best examples, where diversity treatments were constructed using every 

possible species combination and species interaction effects was measured. They found 

that processing rates increased, decreased or were unchanged with diversity. Overall it 

was the balance of species' negative, positive and additive interactions that determined 

the effect of diversity on processing rales was significant and positive or negative. 

Whilst the balance of negative and positive species interactions combined with species 

individual effects wil l clearly determine the resultant ecosystem process, how prevalent 

positive species interactions are relative to negative species interactions cannot be 

concluded from such a limited body of work. 

Interpreting the importance of interspecific and intraspecific interactions in 

enhancing ecosystem processes is funher confounded by the density and relative density 
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of species in difTereni diversity treatments. There are limitations in using substitutive 

and additive designs to assess species interactions (Undenvood 1978, 1984, 1986, 

Benedeni-Cecchi 2004). In substitutive or replacement designs total species density is 

kept constant as the number of different species (diversity) of a treatment changes. 

Thus, the relative density of individual species changes with diversity. Considering a 

simplistic simalion where species interactions are the only mechanism to influence 

ecosystem processes, i f ecosystem processes increased with diversity it could be due to 

either, intraspecific competitive release, or, interspecific facilitation. Substitutive 

designs will not allow the segregation of these two separate mechanisms. In additive 

designs, the relative density of each species is kept constant so that total density wil l 

increase with diversity. Again considering a simplistic simation where species 

interactions are the only mechanism to influence ecosystem processes, i f ecosystem 

processes increase with diversity it could be due to interspecific facilitation, or to total 

species-density effects. Using modelling approaches where density-dependent efTecls on 

ecosystem processes were assumed and diversity treatments were constructed using 

random allocation of species identity at each diversity level, Benedetti-Cecchi (2004) 

found large increases in the probability of increasing Type I errors using only one of 

these designs (either additive or substitutive). Using a previously proposed (Undenvood 

1978, 1984) factorial design that involved setting up diversity treatments using both 

additive and substitutive experimental designs (so that density and diversity effects and 

interactions can be segregated) reduced the probability of Type I errors occurring, when 

analysing the effect of diversity on ecosystem processes (Benedetti-Cecchi 2004). 

Unfortunately logistical constraints may limit the number of replicas and it may not 

always be possible to incorporate both types of design into BDEF experiments. As such 

it is vital that the limitations of whichever design is used are considered when making 

inferences of the possible mechanisms behind observed diversity-ecosystem process 
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relationships. A priori knowledge of the system and species used wil l enable a clearer 

interpretation of the relative importance of diversity and density effects. 

In conclusion, i f the relationship between diversity and ecosystem process is 

species and system-specific, and, the trajectory reliant on species identity and their 

interactions, then individual species' natural history information (how these species 

contribute to ecosystem process and how these species interact with other members of 

an assemblage) is vital i f the consequence of reduced diversity on ecosystem processes 

is to be understood. 

1.7 Importance of Establishing Mechanisms 

Despite the fact that the rationale and theoretical underpinnings of the 

relationship between diversity and ecosystem process depend on mechanisms which 

collectively operate between species, and between species and ecosystem processes, the 

mechanisms themselves are notably understudied empirically. And yet identifying and 

understanding such mechanisms is essential in interpreting the results of all BDEF 

experiments (Aarssen 1997, Huston 1997, Loreau 1998, Wardle 1999, Hector 1998, 

Emmerson and Raffaelli 2000, Deutschman 2001, Loreau and Hector 2001), and could 

provide information, that would be key to understanding the inconsistencies between 

species diversity-ecosystem process between and within experiments (Schlapfer and 

Schmid 1999, Schwartz et al. 2000, Loreau et al. 2001b). However, the emphasis in 

BDEF research has been in the search for a universal trajectory between diversity and 

ecosystem processes. The precise mechanism by which processes such as niche 

differentiation, negative and positive species interactions operate is rarely empirically 

investigated (Emmerson and Raffaelli 2000, Petchey 2003). Understanding how 

positive, negative or additive diversity-ecosystem processing mechanisms operate wil l 

surely enable inferences on the generality of such relationships and may even permit 
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predictions on where and when such processes may occur. With respect to conser\'ation 

effort, identifying species and systems where positive interactions are present is of huge 

importance as the loss of species in these systems may result in a reduction of 

ecosystem services below that predicted from species-additive effects alone. 

1.8 Importance of Incorporating Multi-Trophic Interactions 

Another facet of BEDF research that remains relatively under-represented in the 

literature is the effect of reduced species loss in multi-trophic systems. Few real 

assemblages are comprised of single trophic levels. Food web research has highlighted 

the importance of trophic interactions in strucmring communities, controlling 

population dynamics and determining stability (Raffaelli and Hall 1996, Laska and 

Wootton 1998, Berlow et al. 1999, 2004 and references therein). Both modelling and 

theoretical studies have generally concluded that the distribution of interactions 

strengths towards weaker interactions, promotes stability in, real (Laska and Emmerson 

1998, deRuiter et al. 1995, Roxburgh and Wilson 2000, McCann et al. 1998) and model 

systems (McCann et al. 1998, deRuiter et al. 1995, Roxburg and Wilson 2000, although 

see Kokkoris et al. 2002). 

A considerable amount of work investigating trophic cascades has either shown 

directly, or provided anecdotal evidence on, how species removal may (directly and 

indirectly) affect the remaining assemblage species persistence and abundance across 

trophic levels (see Paine 1980, Carpenter et al. 1985, for terrestrial examples, Estes and 

Palmisano 1974, Estes and Duggins 1995, Estes et al. 1998 for marine examples and 

Carpenter et al. 1987, Power 1990, Brett and Goldman 1996 for freshwater examples). 

Through trophic connectivity, loss of species can directly influence energy flow or 

affect species (at different trophic levels) that are responsible for controlling the 

ecosystem processes of interest. Further emphases on the importance of incorporating 
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multiple trophic levels into BDEF research comes from the well documented skew in 

extinction vulnerability towards species at higher trophic levels (e.g. Duffy 2003). In 

previous BDEF studies, species which are not directly responsible for resource 

processing, productivity or uptake, have been excluded from investigations (Duffy 

2003) yet arguably these species are not al the greatest risk of extinction. 

I f realistic predictions on how reductions in diversity wil l affect ecosystem 

process in real systems are to be made, then incorporating both intra- and inter-trophic 

interactions into BDEF studies is imperative. 

Difficulties associated with conducting and interpreting the results of 

experimental manipulative smdies investigating the loss of species diversity in multi-

trophic systems has severely limited research effort in this area. Currently most 

experimental work investigating the effects of species diversity in multi-trophic systems 

is confined to microbial manipulative studies (e.g. Carpenter and Kitchell 1993, 

McGrady-Sleed et al. 1997, Naeem and Li 1998, Raffaelli et al. 2002; although see 

Loreau ei al. 2001b, Cardinale et al. 2006). In microbial mesocosm experiments 

(Carpenter and ICiichell 1993, Schindler 1997, Cardinale et al. 2002, Raffaelli et 

al. 2002, Naeem and Li 1998), and pond assemblage manipulations (Downing and 

Leibold 2002) processing rates were seen to increase, decrease, stay the same, or follow 

more complex nonlinear patterns dependent on community composition, trophic 

structure and consumer diversity. In experimental manipulations of multi-trophic 

diversity there are so many variables, direct and indirect interactions, that interpreting 

the results of these studies is both difficult and ambiguous. 

It can be concluded therefore that, owing to the practical constraints and 

difficulties in interpreting diversity affects on ecosystem processes in multi-trophic 

systems, new approaches are required i f the effect of reduced diversity in real 

assemblages is to be assessed. 
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1.9 Alternative Approaches to Incorporating Multi-trophic Interactions 

Using theoretical and empirical evidence from the field of food-web ecology 

that has concentrated on trophic interactions seems an intuitive starting point i f we wish 

to incorporate multi-trophic interactions into BDEF research. This is not a novel 

concept (e.g. Brown and Gillooly 2003, Brown et al. 2004, Ives et al. 2005). However, 

logistically combining two fields with traditionally very disparate aims is not a trivial 

task. Food-web ecology has traditionally focused on the number and strength of trophic 

links in assemblages, whereas BDEF research has focused on the effects of diversity 

within a single trophic level on ecosystem processes. One recent advance in food-web 

ecology that may prove to be fruitful in predicting the effects of reduced diversity on 

ecosystem processes is that of metabolic ecology (Brown et al. 2004, Woodward et al. 

2005b). Although far from a new concept (see reviews in Peters 1983, Schmidt-Nelson 

1984), renewed interest in metabolic ecology has arisen from the work of Brown and 

colleagues (2004) who collated a vast amount of data and advocated the use of 

allometric scaling laws and body size to quantify trophic links as, 

"...species body size may provide a relatively simple means of encapsulating and 
condensing a large amount of biological information embedded within an ecological 
network" 

- (Brown et al. 2004). 

Thus, using simple and tractable surrogate measures of interaction strength, such 

as body size, the trophic links in an assemblage may be quantified, and thus the energy 

flow and potentially ecosystem processes predicted. Although body size has been 

shown to be an important factor in determining predator consumption of prey in 

empirical, field and laboratory exclusion experiments (Ekiov and Werner 2000, Hulot et 

al. 2000, Sala and Graham 2002, Ovadia and Schmitz 2002) and ingestion rate has been 

seen to correlate with body size (Farlow 1979, Cammen 1980), there are only a handful 

of cases that have empirically quantified predator: prey body size and interaction 

strength. Emmerson et al. (2005) confirmed that there were general relationships 
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between interaction strength and the ratio of predator: prey body mass based on 

allometric scaling and species trophic distributions based on empirical measures o f 

these relationships in the Broadstone stream food web. Wootton and Emmerson (2005) 

combined the results of three previous studies and found good agreement between body 

size and interaction strength, although the significance of the relationship was not 

tested. The only empirical study to relate the predator and prey body size ratio to that 

predicted by metabolic theory (Emmerson and Raffaelli 2004) provided mixed results 

on the usefijlness of body size as a surrogate measure. Species identity explained more 

of the variability in interaction strength than the relative predator and prey body sizes, 

although for some groups of organisms the regression between predator: prey body size 

and interaction strength was significant. 

Despite the importance of quantifying the effects of reduced diversity on 

ecosystem processes in multi-trophic systems there have been no studies to date that 

have empirically evaluated the use of body size as a surrogate measure for trophic 

interaction strength and, related this to predicted effects on ecosystem processes. I f 

species body size can be used as a surrogate for metabolic capacity, and species 

metabolic capacity determines interaction strength between trophically opposed species 

and between species and a resource, then the effects of reduced diversity on ecosystem 

process may be predicted by simple measures of species body sizes and trophic levels 

within an assemblage. Although this methodology provides an attractive alternative to 

incorporating multiple-trophic levels in traditional BDEF experiments the underlying 

assumptions, have not been tested empirically. Furthermore it is important that the 

plethora of information pertaining to the importance of non-trophic diversity, identity 

and interactions in affecting ecosystem process are not overlooked when predicting the 

effects of reduced diversity on ecosystem processes. 
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Before such approaches are widely employed to make inferences on how the 

bioia influences and how reduced diversity may affect ecosystem process, it is vital that 

the assumptions underlying metabolic scaling laws are empirically tested. Furthermore 

it is imperative that the relative efTects of non-irophic species interactions on ecosystem 

processes are determined in real multi-trophic systems. 

1.10 Conclusions and Thesis Aim and Objectives 

To date, no universal trajectory between diversity and ecosystem processes has 

been identified. The relationship, whilst in the main positive, appears to be species and 

system specific. The incongruity and discrepancies between previous studies may be 

due, in part, to the experimental designs used; specifically the failure to discern the 

effects of species identity and interactions from that of diversity. I f there is no universal 

trajectory between diversity and ecosystem process then identifying species and species 

interactions which have large effects on ecosystem processes is paramount so that the 

effects of reduced diversity on energy matter and material cycling can be assessed. 

Incorporating multi-trophic levels into BDEF research is vital i f predictions of the 

relationship between diversity and ecosystem process are to be made in real 

assemblages. New approaches are desperately needed to overcome the logistical and 

interpretative complications involved in empirically testing the BDEF relationship 

across multiple-trophic levels. The incorporation of food-web ecology and metabolic 

ecology may provide a means through which this can be achieved, although it currently 

lacks empirical testing. 

Consequently this thesis aims to investigate the role of species identity, 

diversity, trophic and non-trophic species interactions on ecosystem processes using the 

marine strandline as a model system. The rationale and background behind the use of 
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ihe sirandline as the model system, and the choice of strandline species is the subject of 

the following chapter (Chapter 2) and wil l not be repeated here. 

Thus the objectives of this thesis are to: 

1. Investigate the effects of species identity, diversity and species 

interactions on decomposition in four, co-occurring sirandline detritivores (Chapter 3). 

2. Investigate empirically the use of body size as a surrogate measure of 

interaction strength and assess the use of body size in a predictive capacity lo estimate 

ecosystem processes by manipulating the size of four predator strandline beetles, and 

their kelp fly prey, whilst measuring kelp decomposition (Chapter 4). 

3. Investigate the effects of a predator on diversity-ecosystem processing 

relationships, and the influence of a predator on the connection between ecosystem 

processes and detritivore identity and diversity, using three strandline larvae, and 

measuring decomposition across treatments of every possible species combination with 

and without a natural predator (Chapter 5). 

23 



C H A P T E R 2: T H E S T R A N P L I N E AS A M O D E L S Y S T E M 

2.1 Chapter Aim and Outline 

The aims of this chapter are to 1) introduce strandline systems, 2) sur\'ey, 

describe and compare with previous strandline surveys the strandline system at 

Wembury, the site which provided all of the fauna and algae used in the experimental 

manipulations presented in Chapters 3, 4 and 5 of this thesis and to 3) to present the 

rationale underlying the choice of ecosystem process, decomposition and the choice of 

species for construction of the manipulation experiments outlined in Section l.IO. 

This wil l be done using data from a preliminary sun'ey of one particular 

strandline at Wembury First Beach, Devon, UK (48.3°N, 50A''E) and comparing the 

strandline at Wembury with existing data on other strandlines in terms of their biotic 

and abiotic nature. The criteria by which we identify a good model system will be listed 

and used to show why the strandline as a habitat, and decomposition as one of its key 

ecosystem processes, is ideal for constructing experimental manipulations to conduct 

biodiversity and ecosystem process investigations. Finally a brief synopsis on 

decomposition in the strandline, and the natural history of the species used in 

subsequent chapters of this thesis wil l be presented. 

2.2 Introduction to Strandline Systems 

2.2.1 Definition of a Strandline 

The term *strandline' is often used synonymously with wrack bed and drift line. 

In many sandy beach classification systems the strandline is identified as the level of 

mean high water (MHW) the end of the zone of drying (Salvat 1964) or the seaward 

edge of the talitrid zone (Dahl 1952). Backlund (1945) defined 'wrack' as dead and 
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decayed seaweed once grown submerged in the sea now washed-up on the beach. In this 

study the slrandline refers to the area on a beach where wrack, drift wood and inert 

material of marine and/or terrestrial origin is deposited. 

2.2.2 Distribution and Composition 

Strandlines are present on all but the most exposed shores. The type and form of 

the strandline differ globally as the accumulation of material is dependent on the 

interaction between near-shore production and physical factors. Composition depends 

flindamenlally on the type of near-shore production. Strandline vegetation can consist 

primarily of kelp and fucoids, but may extend to all kinds of algae and even freshwater 

angiosperms, depending on the region. Laminarian kelps have a worldwide distribution 

in cold waters. They are an important component of strandlines forming on beaches on 

the Atlantic seaboard, China, Japan, New Zealand, Australia, South Africa, north

eastern Pacific, Peru, Chile and Argentina (Colombini and Chelazzi 2003), although 

wrack composition may differ [e.g. bull kelp in the sub Antarctic (Smith and Bayliss-

Smith 1998) and the giant kelp in the north-eastern Pacific (Dayton 1985, ICirkman and 

Kendrick 1997)]. Seagrasses also have a worldwide distribution and, as such, can form 

extensive wrack accumulations, where they dominate near-shore production, in areas as 

geographically separated as the Seychelles (Lenanton et ai 1982, Brown and 

McLachlan 1990), East Australia (Rossi and Underwood 2002) and the southern Baltic 

(Persson 1999). 

Physical factors relating to water motion vary both temporally and spatially. 

Thus the inputs of material to the strandline may also vary on temporal and spatial 

scales (Backlund 1945, Muir 1977, Koop and Field 1980, Koop et ai 1983, Stenton-

Dozey and Griffiths 1983, Brown and McLachlan 1990, Orr et al. 2005). Temporal 

changes in wrack volume have been noted as seaweed cast up on the shore settles 
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compacts and begins to decompose (Dobson 1974). The aspect of the beach wil l also 

affect the balance of wrack deposition and removal. Deposition is generally greater on 

reflective beaches that lack a surf zone, and have low near-shore primary production, 

compared to that on dissipative beaches (McLachlan 1983, Brown and McLachlan 

1990). 

Tidal movements determine the existence, persistence and placement of 

strandlines (Backlund 1945, Dobson 1974, Messana e/tv/. 1977, Grifflths and Stenton-

Dozey 1981, Ochieng and Erftemeijer 1999, Colombini et al. 2000). Strandlines have 

been observed to follow patterns of accumulation removal; according to tidal type 

(spring or neap) (Messana ef al. 1977, Ochieng and Erftemeijer 1999) and within a tidal 

cycle (Griffiths and Stenion-Dozey 1981, Colombini et al. 2000). In contrast, the 

formation of extensive and permanent wrack beds with associated depth stratification 

has been found in relatively sheltered areas where tidal influence is minimal (e.g. 

Backlund 1945). 

Other site-specific, physical factors may also interact with tidal cycles to alter 

the ephemeral nature of strandlines (Hodge and Arthur 1997, Koop et al. 1982a). 

Wrack deposition may also change seasonally. Wrack deposition has been seen 

to increase either after storms (Crafford and Scholtz 1987, Balestri et al. 2006) or in 

seasons when weather conditions are more severe (Ochieng and Erftemeijer 1999, Koop 

and Field 1980, Stenton-Dozey and Griffiths 1983, Marsden 1991). Although storms 

may deposit a greater amount of material; 12% kelp biomass can break free in storms 

(Griffins and Stenton-Dozey 1981, Jarman and Carter 1981) and 2.5% of this amount 

can be deposited annually on beaches (Koop et al. 1982a), storms may also remove the 

strandline permanently. 

On a smaller wrack can accumulate on different sectors of a beach (Koop and 

Field 1980, Hansen 1984) or adjacent to rocky protrusions (Ochieng and Erftemeijer 
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1999). With the exception of extensive permanent strandlines, there is probably much 

spatial variation within a site that is not documented in the literature as studies generally 

sample only the wrack deposits. 

Wrack can be evenly distributed or deposited along one or more drift lines, 

usually at high water springs, also in bands, or in a band, down to the level of the most 

recent high tide (Marsden 1991, Ochieng and Erftemeijer 1999) and/or in patches from 

extreme high water, to mean tide levels (Marsden 1991, Colombini et al. 2000). The 

vertical elevation of the slrandline has been seen to change following the high water 

mark through a neap-spring tidal cycle (Messana et ai 1977, Stenton-Dozey and 

Griffiths 1983, Colombini et ai 2000). 

2.2.3 Physical and Chemical Characteristics of the Strandiine 

The physical and chemical characteristics of a strandline depend primarily on 

the type and amount of wrack material and its decomposition; decomposition being 

dependent on a variety of environmental factors, discussed in Section 2.5. Thus the 

physical and chemical nature of the strandline is complex and multifaceted (see Figure 

2.1). 
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Figure 2.1 Schematic showing the key factors intluencing the physical and chemical 
strandline environment. Arrows represent the direction of an inOuence. 

2.2.3.1 Physical C hann tcristics 

Backlund (1945) classified the physical characteristic o f marine wrack beds 

recognising seven different groupings, all of which or only some of which may be 

present on a beach at any point in time and space; 

Wrack sthng'Sm-dW accumulations of wrack less than 15 cm wide and 15 cm 

deep, they do not decay and retain little moisture so become dry in dry weather. 

Wrack flakes-\\\\n carpet-like accumulations of wrack less than 5 cm deep but 

can be of any w idth, here decomposition can be rapid. 

Wrack hanksAdJgQ accumulations of wrack more than 15 cm wide they arc moist 

at the bottom and can produce 'slime' through rapid decomposition. 

Wrack banks often have distinct layers; the surface layer dries easily and retains 

its shape as decomposition is slow. Depth of the surface layer can vary from 5-12 cm. 

The deeper layers are always moist and rapid decomposition transforms algae to an 



unidentifiable state covered with slime. These two layers are separated by the border 

horizon which itself never exceeds 1 cm and is often much thinner. 

Wrack aeyja- Wrack accumulated in bay or lagoons. 

2.2.3.2 Chemical Characteristics 

The chemical environment in the wrack bed wil l depend on the marine algae 

species present and their state of decomposition. Different marine algae species have 

different chemical compositions, and within a species this may also change seasonally 

(Backlund 1945, Goncharova et ai 2004). Decomposition and the type of 

decomposition wil l release, or transform, the organic and inorganic compounds in the 

algae thus altering the humidity, gaseous environment, water availability and pH of the 

strandline environment. Thus the chemical environment in the strandline is also 

dependent on the ability of strandline species to decompose the wrack material, and the 

composition of the wrack material. As wrack material decomposes, its physical form 

alters and changes in structure on both a macro- and microscopic scale. 

The volume of wrack material may also infiuence the type of decomposition. I f 

large wrack beds are formed, decomposition may be aerobic in surface layers and 

anaerobic in compacted bottom layers. The by-products of these two layers wil l differ 

(Backlund 1945). Although it is difficult to disentangle cause and effect, decomposition 

may alter depending on the biota, e.g. high abundances of detritivores will decrease 

wrack volume and increase surface area for microbiological decomposition, wrack 

deposits with fly larvae have been cited as being anaerobic (Philips and Arthur 1994) 

and ftjngal growth on wrack was not observed in the presence of Orchestia 

gammare/lus (Bi\ck\und 1945). 

Despite its complex and multifaceted nature there are some generalisations and 

characteristics that apply to all strandline habitats. Water contained in, and trapped 
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between, marine debris wil l create a more humid environment compared with that of the 

surrounding sandy beach. Owing to the specific heat capacity of water and the heat 

generating process of decomposition, accumulations of marine debris wil l act to 

stabilise temperature fluctuations within in a patch of wrack (Backlund 1945, Moore 

and Francis 1985, Crafford and Scholtz 1987). 

2.2.4 Assemblages 

The intertidal zone of sandy beaches lack extensive vegitation so wrack deposits 

alongside nutrient input from the adjacent pelagic zone may provide the main source of 

organic enrichment (McLachlan 1985). Additionally as sandy beaches are arguably 

homogeneous environments (McLachlan 1985) the physical dismrbance caused by 

wrack deposits, and subsequent heterogeneity in physical and chemical habitat, may all 

increase overall sandy beach species diversity (in terms of the number of different 

species) and abundance. Wrack material is often cited as an environment providing 

food and refuge to a wide array of terrestrial, semi-terrestrial and occasionally aquatic 

animals (Backlund 1945, McLachlan and Erasmus 1983, McGywnne et al. 1988, Inglis 

1989, Colombini et al. 2000 and references therein). Many animals have also been 

observed directly eating wrack deposits (e.g. Griffiths and Stenton-Dozey 1981, Koop 

et al. 1982a and Griffiths et al. 1983 for amphipods, Chown 1996 for dipteran larvae) or 

prey on animals that consume marine plants deposits (e.g. Backlund 1945, E. McAfee 

pers. comm. for some beetles, Ugolini 1997, Laffaille et al. 2001, 2006, Areas 2004, 

Hample et al. 2005, Minderman et al. 2006 for predatory fish and birds). Additionally 

many studies have shown a high conrelation between species diversity and abundance 

and wrack deposits (e.g. McLachlan 1980, 1985, Bigot 1970, Polls and Hurd 1996, 

Vilas 1986, Colombini and Chelazzi 2003). Finally wrack removal through beach 
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cleaning has been seen to reduce species diversity and abundance (e.g. Smith 2003, 

SMacher et ai 2007 and references therein). 

There are few studies where the strandline assemblage has been quantified in its 

entirety. However, strandline assemblages are generally thought to be comprised of a 

few eucoenic species (species indigenous to the strandline) in high abundances, with a 

lower abundance and frequency of occurrence for many tychocoenic species (species 

which occur and are adapted to strandline conditions but also thrive in other biotopes) 

or xenocoenic species (species which cannot live and/or reproduce continually in the 

bioiope) (Backlund 1945, Bebenhani and Croker 1982, Griffiths and Sienton-Dozey 

1981, Inglis 1989, Colombini et ai 2000, Jedrezejcazk 2002). 

The opportunist Order Amphipoda has been found repeatedly to dominate 

strandline assemblages (Dugan et ai 2003, Colombini et ai 2000, Bebenhani and 

Croker 1982, Griffith and Sienlon-Dozey 1981, Inglis 1989, Smith 2003, Backlund 

1945). The relative abundance of Diptera species can be very variable. They can be 

important components of strandline assemblages in terms of abundance (Stenton-Dozey 

and Griffiths 1980, 1981, Inglis 1989, Philips and Arthur 1994, Philips e/A/. 1995, 

Hodge and Arthur 1997). Conversely Diptera may be absent at some sites (Colombini et 

ai 2000, Figure 2.4e). Similar to dipterans, the abundance of coleopterans in strandline 

assemblages differs between studies (Inglis 1989, Jedrzejczak 2002, Colombini 2000). 

Enchytraeids and other oligochaetes are considered important strandline taxa in tenns of 

abundance (Backlund 1945, Behbehani and Croker 1982); however they are often not 

counted in samples. The contribution of meiofauna and microbes to strandline 

assemblages is poorly known, although on some exposed beaches dry meiofaunal mass 

has been found to exceed that of macrofauna (McLachlan 1985). There has been a little 

work on the spatial and temporal changes in strandline assemblages; although in general 

studies have investigated the change in abundance of only a few taxa. In terms of spatial 
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distribution many strandline species have been obser\'ed to migrate with the tide 

(Colombini et al. 1996, 2000, 2002), and/or follow diurnal nocturnal migration and 

activity patterns (for amphipods see Marsden 1991, Jaramillo et ai 2003; for 

coleopterans and isopods see Koop 1982, Colombini et al. 2005; for other arthropods 

see Colombini e/fl/. 1996, 2005, Aloia a/. 1999, Jaramillo a/. 2003). Microclimatic 

conditions and prey activity may also determine strandline assemblage composition 

(e.g. Philips etai 1995 Colombini et al. 2002). Furthermore the diversity and 

abundance o f the strandline assemblage may alter with the size of the wrack patch 

(Olabarria et al. 2007) or the temperature and depth of wrack patch (Phillips et al. 

1995). 

Most documented patterns of strandline assemblages have been related to the 

temporal, usually tidal, cycle of wrack accumulation and removal. Talitrid amphipods 

and many species of kelp-fly larvae are often recorded as the first opportunistic 

colonisers of newly fornied strandlines (Griffiths and Stenton-Dozey 1981, Inglis 1989, 

Colombini et al. 2000, Jedrzejczak 2002a, b). However changes in dipteran abundance 

and dipteral life stage may be correlated to the Diptera life-cycle (Egglishaw 1960, 

Dobson 1974, Inglis 1989, Hodge and Arthur 1997, Jedrzejczak 2002b). Where 

coleopterans have been included in analysis of strandline communities over time they 

generally arrived and increased in abundance a days after the initial wrack deposition 

(Inglis 1989, Griffiths and Stenton-Dozey 1981, Colombini et ai 2000). 

2.3 Field Studies of Wembury Strandline 

2.3.1 Introduction 

The present study wil l attempt to quantify the strandline assemblage and 

physical properties of the strandline habitat at Wembury, as this strandline provided all 

32 



of the species used in the experimental manipulations in subsequent chapters of thesis. 

As the su-andline is thought to change temporally (Section 2.2) the present study wil l 

quantify the strandline assemblage and physical habitat in different seasons and within a 

season over the monthly tidal cycle. The correlation between the physical properties of 

the strandline environment and the strandline assemblage wi l l be investigated in an 

attempt to discern any underlying factors governing the faunas occurrence and 

distribution. 

2.3.1 Materials and Methods 

2J./.I Collection of Animal Material, Wrack and Sediment 

All samples were taken from Wembury First Beach, Devon, UK (48.3''N, 

50.4°E). The high tide strandline on Wembury alone was selected for study due to time 

limitations and the absence of an alternative persistent strandline. The high tide 

strandline at Wembury was fairiy persistent throughout the year with the exception o f 

October - December 2005. 

To measure any seasonal changes in the sirandline assemblage the site was 

visited in winter, spring, summer and autumn, however as there was no visible 

strandline in October-November 2005 samples were only taken in winter (16.02.05-

28.02.05), spring (02.06.05) and summer (19.08.05-31.05.08). Unfortunately due lo 

time limitations replicate samples in each season from subsequent years could not be 

made. To quantify any temporal change in the sirandline assemblage that may occur 

over the tidal cycle samples were taken a day after the highest tide in that month then 

every other day, for two weeks corresponding to the low tide in winter (16.02.05-

28.02.05) and summer (19.08.05-31.05.08). Initial plans to use a randomised block 

design to quantify spatial variability in the strandline were abandoned as the strandline 
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did not always expand across the beach in its entirety. On each sampling day, five 

sampling sites were allocated using a random numbers table (Zar 1999) to select co

ordinates. I f the tide strandline did not extend across the whole beach and the first set of 

co-ordinates fell on a patch of beach with out wrack coverage the random numbers table 

would be used to select a second set of co-ordinates, and this process repeated until the 

co-ordinates coincided with the wrack. 

2,3.1.2 Strandline Abiotic 

At each location temperature and humidity measures were taken from above the 

wrack and below the wrack above the sediment using a hygrometer (HANNA H1-8564). 

The depth of the wrack was measured using a meter ruler and the length and width of 

the wrack patch was measured using a 100m ruler, to estimate the patch area. 

In the laboratory pH paper was used on the surface of the wrack to measure pH 

before the wrack and sediment from each core were placed in the Tulgren funnels. 

1.3 Strandline Biota 

At each sample site cores (diam. = 0.25m) were pushed into the sediment to a 

depth of 20 cm, i f the core did not push easily into the wrack secateurs were used to cut 

around the outside circumference of the core before the core was pushed into the wrack 

and sediment. A l l material was carefully placed in sealed plastic bags. The bags were 

transported to the laboratory within a few hours of collection and fauna were extracted 

in the laboratory using a well-established Tulgren-funnel technique (Backlund 1945). 

The Tulgren-ftmnels used lOOW light bulbs and a 1cm sieve used. Al l extracted 

material was preserved in industrial methalated spirit (IMS) 75% and identified where 

possible to species level. Owing to time limitations Acarina, Annelida, Nematoda and 

Coleptera larvae were not identified to species level. 
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2.3.1.4 Statistics 

All statistics were undertaken using PRJMER Version 6,2. 

Multi-dimensional scaling (MDS) plots were used to graphically represent the 

similarity between strandline samples in terms of the strandline biota (diversity and 

abundance) and separately abiotic data (Wrack patch size, temperature, depth, and 

humidity). 

The similarity between the strandline abundance and diversity, from different 

sample seasons; winter, spring and winter was analysed using an ANOSIM Global test 

of similarity. A pair-wise test of similarity (ANOSIM) was then used between replicas 

of the strandline assemblage from each season to assess between which i f any seasons 

the strandline assemblage differed. Within each season a separate ANOSIM, Global 

test of similarity was used to test for significant differences between the strandline 

assemblage from samples taken on different days. 

A BIOENV analysis was used to analyse which i f any of the measured wrack 

physical characteristics best correlated to the biotic assemblage. 

The strandline assemblage was measure in terms of species abundance and 

diversity and the raw data was 4'*" root transformed; this transformation was chosen as 

this down-weights the effect of abundant species so that the contributions of rarer 

strandline species can be assessed. A Bray-Curtis similarity matrix used as this is most 

appropriate measure of similarity for biotic data (Clark et al 2006). 

The physical properties of the strandline samples, wrack patch size, depth, 

temperature and humidity was 4* root transformed, as this down-weights the effects of 

large values (e.g. humidity) so that the contribution of all physical characteristics can be 

better assessed. 

A Euclidian similarity matrix used as this is most appropriate measure of 

similarity for abiotic data (Clark et al 2006). 
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2.3.2 Results 

2.3.2.1 Observations 

After a month of easterly winds the entire beach was devoid of a sirandline for 

the whole of October - December 2005. The position of the material also altered; 

extensive wrack banks formed at the west end of the beach, due to the dominance of 

south-westerly winds and the rock protrusion off-shore (Mewstone), but also 

occasionally shifted to the east end of the beach. A week or so after particularly high 

tides in the summer months ihe high tide sirandline (which remained a relatively 

permanent feature) was accompanied by extensive wrack banks on the mid shore and 

sometime aevja (see Section 2.2.3.1 for a definition) at ihe low shore. No clear monthly 

or two weekly cycles in strandline persistence were observed between the years of 

2001-2002 and 2003-2007 (Marsh pers. obs.\ there were often fresh deposits o f 

material after parliculariy high tides. 

TTie Tulgren funnels were not as effective as previously thought, and despite 

best efforts some animals (mainly from the orders Diptera and Coleptera) escaped. 

Furthermore the use of the tulgren funnels resulted in a number of Annelida and 

possibly Nematoda worms becoming dried out and thus unidentifiable. Similarly due lo 

the dry and tough namre of the wrack the core did not always easily push into the 

sirandline and sicolters were used lo cut around the outline of the core to aid sample 

collection, this and the core itself caused a deal of disturbance in at the sample site and 

may have resulted in the "escape" of mobile animals, especially Diptera, Coleoptera, 

Amphipoda and Araneae. Furthermore pitfall traps generally contained a greater density 

of coleopteran and Amphipoda and in the case of the former a higher diversity per area. 

This suggests that the coring method used, whilst initially thought lo be quantitative 

may not measure the true diversity of the strandline. 
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2.3.2.2 Abiotic Characteristics of the Strandline at Wembury. 

On Wembury Beach, Fucus spp. and Laminaria spp. dominated the 

slrandline deposits {pers. obs.). 

pH could not be measured using pH paper as the wrack was too dry. 

Alternative measurements of pH that involved measuring the internal pH of the 

wrack algae were not taken as pH measurements were only used to ascertain the 

environment that the strandline fauna were exposed to. 

Wrack patch size was extremely variable in all seasons, and between 

samples on all days. In general wrack patch size was greatest in spring (mean 

36.3m^± I4.3m's.e.) then summer(mean I6.0m"±5.1 m"s.e.) being smallest in 

winter (mean 2.7m"± 0.8 m' s.e.). 

Wrack depth was similar between seasons, but differed between sample sites 

and days. Overall the average depth of the wrack was mean 5.1 cm ± 0.2 cm s.e. 

Maximum recorded depth was 11cm, one site in winter, 18.02.05, and minimum 2 

cm at a different site on the same sampling day (18.02.05). 

The humidity in the air was very variable within seasons, but on average was 

lower in winter (mean 53.8% ± 4.0 s.e.) than summer (mean 70.2% ± 3.7 s.e.) and was 

highest in spring (98.6% ± 1.4 s.e.) (Figure 2.2). Humidity within the wrack deposits 

was higher than that of the surrounding air and with ihe exception of winter was less 

variable than the humidity of the surrounding air; winter mean 73.2% ± 4.0 s.e., summer 

mean 95.7 ± 1.9 s.e., and mean 100% ± 0.0 s.e., in spring. Temperature outside the 

wrack deposits was lower in winter (mean 7.5 **C ± 0.54 s.e.) than spring (mean 15.6 °C 

± 0.54 s.e.) and highest in summer (mean 23.8°C ± 0.9 s.e.) (Figure 2.2). Temperature 

in the wrack deposits followed a similar patter to that of the air temperature (figure 2.2); 
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Figure 2.2 Temperature and humidity from the wrack bed on Wembury beach (Feb-
Aug 2005, n=5). Values are means ± 1 s.e. Black circle = humidity above wrack, red 
circle = temperature above wrack, green triangle = humidity under wrack, yellow 
triangle = temperature under wrack. 

In general the physical properties of the strandline where not different between 

seasons and within a season did not follow any consistent pattern from high tide to low 

tide. This is rellecled in the MDS plot of similarity between wrack properties on 

sampling dates in summer and winter, there is not clustering or obvious gradients of 

samples by date (Figure 2.3). 
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Figure 2.3 Multi-Dimensional Scaling (MDS) plot of the physical characteristic of the 
strandline by sampling date. Physical variables used are wrack depth cm, surface 
humidity %, surface temperature, humidity at depth, temperature at depth and patch 
dimensions and a Euclidean similarity matrix was used on 4"̂  root transformed data. 

J..\J.^ Hiotic C hariictcristics of the Strandlinc at M cmhury 

The strandline fauna of Weburry was highly variable by both sampling season, 

sampling day within a season and between cores taken on the same day, this is reflected 

in the exceptionally high standard error of abundance for every order when samples are 

seperated by season (Figure 2.4). Despite this there are some generalisations that can be 

made for the strandline fauna of Wemburv. 

In the preliminary survey of \\ cmbury beach, when all sampling dates are 

combined and mean abundance per core compared between orders, amphipods 

dominated numerically the strandline fauna constituting 60° o of the total abundance. In 

terms of abundance the order Diptera was the second most abundant and made up 

14.7"o of the total species abundance, followed by Coeloptera and Annelida and 

Nematode which contributed 11 .2̂ * 0 and IO.X*̂ o of the total species abundance 

respectively (Figure 2.4). Where species in each taxon were identified to species level, 

each grouping was generally dominated by one or two species (Figure 2.4). Within the 
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order Amphipoda O. gammarellus made up 95% in summer, 75% in spring and 83% in 

winter, this was followed by T. deshayessi. T. saltator only constimting more than I 

percent of the total Amphipoda abundance in winter (6.4%) (Figure 2.4). The order 

Diptera was massively dominated by C.frigida and C. pilipes. C.frigida made up 79%, 

39% and 49% of the total Dipteran abundance in summer, spring and winter 

respectively and C. pilipes 13%, 30% and 35% (Figure 2.4). Only in spring did all the 

other Dipteran species combined contribute more than 8% to the total Dipteran 

abundance (30%) (Figure 2.3b). Within ihe order Coleopiera C. xcmthoioma and 

CJinoralis dominated the order these two species respectively made up 55% & 26%, 

37% & 33% and 40% & 20% of the total order abundance in summer, spring and 

winter. Coleoptera larvae (not identified to species level) made up 15% and 24% of the 

total order abundance in spring and winter respectively all other species did not make up 

greater than 5% of the total order abundance in any season (Figure 2.4). 

2.3.2.4 Species Seasonal Trends 

At Wembury, overall species abundance was much greater in summer, then 

winter then spring (Figure 2.4). This was mainly due to the massive number of 

Amphipods collected in summer samples. The average abundance of Amphipoda per 

core in summer was 989 species compared to 294 species in winter and 161 species in 

spring (Figure 2.4). There was also a notably higher abundance of coleopteran in 

summer samples (Figure 2.4). Although spring samples had the overall lowest average 

species abundance per core, the average abundance of Diptera per core was greater than 

the other two seasons 201 species in spring, compared with 24 species in summer and 

123 species in winter (Figure 2.4). 

Despite the changes in abundance of species between summer and winter the relative 

contribution of species to an order remained remarkably unchanged (Figure 2.3) At 
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Wembury there were significant differences in the strandline assemblage bet\veen 

seasons (Global R: 0.535 significance level of sample statistic: 0.1%) although only 

samples taken in winter were significantly different from those taken in spring (Table 

2.1). However, this comparison should be viewed with caution; 1) Because there is no 

temporal replication of seasonal samples, and 2) The strandline fauna was only 

collected on one day in spring minimising the number of possible permutations to eight 

(Table 2.1). Considering the high R value and low number of possible permutations 

there may be considerable differences between the fauna in spring and summer (Table 

2.1). Considering the high R value and low number of possible permutations there may 

be considerable differences between the fauna in spring and summer (Table 2.1). 

Table 2.1 Pair-wise tests of similarity beuveen faunal samples (4'^ root transformed) 
taken from Wembury in summer, winter and spring. 

R Signiflcanc Possible Number of Number of 
Comparison e level permutation 

s 
permutation 

s 
observation 

s 
winter-spring 0.238 87.5 8 8 7 

winter-summer 0.637 0.2 1716 999 I 

spring-summer 0.565 12.5 8 8 1 
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Figure 2.4 The mean abundance and standard deviation of each taxon extracted from 
cores taken from Wembury high tide strandline during a) summer, (19.08.05-31.08.05), 
b) spring (02.06.05) and c) winter (16.02.05-28.02.05). Where species were identified to 
species level w ithin orders different coloured bands represent the abundance of different 
species within that order 

42 



2.3.2.5 Species Tidal Trends 

As previously mentioned both the diversity and abundance of species in cores 

was exceptionally variable both between cores taken on the same day and between 

samples collected from different days within a season. This is reflected in the MDS plot 

of similarity between the strandline assemblage on sampling dates in summer and 

winter, based on assemblage diversity and abundance, there does not appear to be any 

clustering or sequential gradient ot samples by sampling date (Figure 2.5). 

Stress: 0 25 '^"'"P'^ 

» 16.02.05 ' 18.02.05 '20.02.05 

• 22.02.05 ^ 24.02.05 ' 26.02.05 

28.02.05 • 02.06.05 • 19.08.05 

• 21.08.05 • 23.08.05 - 25.08.05 

. •% • • 27.08.05 • 29.08.05 31.08.05 • • • 

Figure 2.5 Multi-Dimensional Scaling (MDS) plot of the strandline assemblage by 
sampling date. A Bray-C urtis similarity matrix was used on 4*̂  root transformed data 
biotic data. 

The strandline assemblage was significantly different between samples taken on 

different dates in summer (Global R): 0.323, Significance level of sample statistic: 

0.1%, but not between samples taken in winter (Global R): -0.001 Significance level o f 

sample statistic: 46.5%. 

Although the strandline assemblage at Weinbury differed significantly between 

sampling days in summer there did not appear to be any particular pattern in species 

colonisation, in terms of the relative abundances of diflerent taxa. Again this is reflected 

in the MDS plot w here the similarity in the strandline assemblage, in terms of species 
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abundance and diversity, taken at subsequent days after high tide, in both summer and 

winter followed no clear pattern (Figure 2.5). Thus the significant change in the 

strandiine assemblage at different sampling dates in summer is most likely due to 

changes in overall species abundance rather than diversity, which changed 

idiosyncratically over the tidal cycle (Figure 2.5). 

2.3.2,6 Links between Abiotic and Biotic Characteristics of the Strandline 

As previously mentioned there does not appear to be any clear panems in the 

similarity of the strandline species assemblage or the biotic variables with respect to 

tidal cycle or season (Figure 2.3, 2.5). Furthermore the similarity between samples of 

the sirandline assemblage and physical characteristics of the strandline does not appear 

to be distributed in the same manner with respect to date (Figure 2.3, 2.5). This said, the 

stress level for the biotic data is high (Figure 2.5) and the multi-dimensional scaling plot 

must be interpreted with care as the two-dimensional distances on Figure 2.3 do not 

represent the realised similarity between samples very accurately. A BIOENV analysis 

relating the physical characteristics measured to the biotic assemblage, reflects this 

observation; all of the physical factors measured,wrack depth, surface humidity, surface 

temperature, humidity at depth, temperature at depth and patch dimensions combined 

gave the best overall correlation to the similarity between the biolic assemblage. 

However, the overall correlation, 0.250, was very low; suggesting factors other than 

those measured determine the strandline assemblage. 

2.3.3 Survey Summary 

The physical characteristics of the strandline varied, in terms of temperature and 

patch size. Although humidity and wrack patch depth was variable, humidity was 

always higher and less variable inside the wrack compared to that of the surrounding air 
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and patch depth did not vary as much as temperature. The strandline fauna at Wembury 

appeared to be greatly variable, between sample sites, sampling days and seasons. On 

average the strandline was dominated in terms of abundance by the orders Amphipoda 

and Diptera, and these orders themselves were dominated by one (in the case of 

Amphipoda) and two (in the case of Diptera) species. The strandline fauna and physical 

properties of the wrack did not appear to follow any successional temporal trends with 

the tidal cycle. There was low correlation between the physical properties of the 

strandline and the strandline assemblage, suggesting factors other than those measured 

determined the strandline assemblage species diversity and abundance. 

2.4 Discussion 

2.4.1 Wrack deposition 

Although only the high tide strandiine was sampled a number of strandlines did 

fomi at the site in the present study, consistent with previously reported strandline 

formation. Marsden (1991) and Ochieng and Erftemeijer (1999) reporting on the wrack 

deposition on beaches in new Zealand and Mombassa found a number of different types 

of strandlines ranging from those where wrack was evenly distributed or deposited 

along one or more drift lines, usually at high water springs, to those in bands, or in a 

band, down to the level of the most recent high tide and/or in patches from extreme high 

water, to mean tide levels. Similariy Messana et al. 1977, Stenton-Dozey and Griffiths 

1983, Colombini et al. 2000 observed the vertical elevation of the strandline changing 

following the high water mark through a neap-spring tidal cycle. However unlike the 

strandlines in Fennoscandia sur\'eyed by Backlund (1945) the wrack banks formed at 

Wembury did not cover the entire beach and were not permanent. The discrepancy 

between this study and that of Backlund (1945) can be explained by the tidal regime in 
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Fennoscandia the formation of extensive and permanent wrack beds with associated 

depth stratification was found in relatively sheltered areas where tidal influence is 

minimal. 

In this study the deposition of wrack was greatest in spring, then summer being 

completely absent in the aummn months. This coincides with the largest (spring) and 

smallest (autumn) tidal range for this area. Similariy, Behbehani and Croker (1982) 

reported greatest wrack deposition in the months of May to August in New England 

strandlines In New Zealand too, accumulation of drift wood, seagrass and two kelp 

species was lower in summer (Dec-Jan) than in winter (Jul) (Marsden 1991). Again 

constituent with the lowest and highest tides for the region, seasonal changes in 

strandline formation and marine debris accumulation have been observed in South 

Africa (Koop and Field 1980, Stenton-Dozey and Griffiths 1983). Ochieng and 

Erftemeijer (1999) also found greater accumulations of wrack when the tidal range was 

greatest, accumulation of seagrass along the beaches of the Mombasa Marine National 

Park and Reserve was greatest during spring tides compared with neap tides. Contrary 

to the present study and previous work (Ochieng and Erflemeijer 1999, Behbehani and 

Croker 1982) Phillips and Meredith (2002) found an increase in anthropogenic material 

deposition on South Wales beaches in summer (Jul-Sept) not spring months, however 

patterns in the volume of offshore anthropogenic material was not documented and local 

conditions may have contributed to the obser\'ed pattern of deposition. 

Wrack deposition at Wembury does not appear to follow patterns in 

accumulation and removal consistent with the monthly tidal cycle. This is in contrast to 

previously documented patterns of wrack volume; GrifTllhs and Stenton-Dozey (1981) 

found a total kelp replacement cycle of 14 days, coinciding with the spring tide, for a 

kelp-dominated su-andline in the Cape Peninsula South Africa; Messana el al. (1977) 

investigating a sheltered Indian Ocean beach also recorded the pattern in absence and 
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accumulation of marine debris resulting in the formation of sirandlines that followed a 

2-week tidal cycle; Fynes (pers. comm.) and Dobson (1974) found wrack beds persisted 

for 14-16 days respectively; On a Somalian beach, the seagrass strandline cycled over a 

! 0-day period, being notably absent at the beginning and end of the semi-lunar cycle 

(Colombini et al. 2000) and finally where tidal influence is minimal extensive and 

permanent wrack beds have been formed (e.g. Backlund 1945). 

However, as observed at Wembury, the formation o f strandlines and deposition 

of wrack does not always follow tidal regime closely; In sampling seventeen wrack beds 

in north east England between June and August 1995, nine sirandlines lasted less than a 

week, three lasted 1-2 weeks and only five lasted 25-26 days (Hodge and Arthur 1997). 

Koop et ai (1982a) estimated an 8-day cycle in strandline deposition and replacement 

as the exposed beach in their study was positioned behind an extensive reed bed 

requiring higher tides to enable transport of marine debris to the beach. Despite the 

diurnal tidal cycle in England of two high spring tides a month in this study and that of 

Hodge and Arthur (1997) factors other than tidal regime are likely to influence the 

deposition and removal of wrack material. Factors other than the tide regime have been 

seen to effect wrack deposition. Previous patterns of wrack deposition has been 

attributed to storms (Balestri et ai 2006), rough seas (CrafTord and Scholtz 1987), 

monsoons (Ochieng and Erftemeijer 1999) and the beach and offshore topography 

(Koop and Field 1980, Hansen 1984, Ochieng and Erftemeijer 1999). 

In conclusion, the strandline is cleariy an ephemeral environment. Its 

persistence and position depends on the balance of deposition and removal of marine 

debris, itself dependent on nearshore production and water motion, both of which can 

alter seasonally, the latter on smaller daily and monthly tidal cycles. Although the tidal 

regime is clearly an important factor influencing the formation of strandline in some 

areas (Dobson 1974, Messana et al. 1977, Griffiths and Stenton-Dozey 1981, Colombini 
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et al. 2000, Fynes pers. comm.) to assume all strandlines will follow tidal cycles of 

deposition and removal wil l undoubtedly lead to erroneous predictions of the strandline 

environment in some cases. 

2.4.2 Temperature and Humidity 

Owing to the deposition of wrack, the specific heat capacity of water and 

decomposition within the strandline, strandlines are thought to be environments of high 

humidity and stable temperature. The strandline environment at Wembury was one of 

consistently high humidity, at least when the humidity and the variation in humidity 

within the wrack deposit was compared with that of surrounding air. Where humidity 

within strandlines has been recorded humidity was always greater in the strandlines than 

the surrounding air (Backlund 1945, Moore and Francis 1985). 

Unlike previous studies where temperature has been less variable and generally 

higher than that of the surrounding air( Backlund 1945, Moore and Francis 1985, 

Crafford and Scholtz 1987) at Wembury beach the wrack temperature followed that of 

the air (Figure 2.2). Although, as in the present study Moore and Francis (1985) found 

temperature within wrack deposits differed between seasons and within each season 

diurnal oscillations in temperature were recorded, when they measured temperature in 

artificial strandlines placed in the supalittoral zone at a site in Scotland. However the 

temporal variability in temperature markedly decreased with depth in the wrack pile. 

The fluctuations in the temperature of the wrack deposits at Wembury may be explained 

by the smaller depth of the wrack at Wembury compared to previous studies. The 

strandiine did not exceed 11 cm at any site or time and had a median depth of 5 cm 

across replica wrack patches. Moore and Francis (1985) similarly found that the 

temperature 5 cm below the surface of the wrack fluctuated to a greater extent and 
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followed more closely the air temperature fluctuations, than the temperature in deeper 

(15 - 30 cm) wrack layers. 

2.4.3 Species Composition 

At Wembury the strandline was dominated in terms of species abundance by the 

orders Amphipoda and Diptera. Within these orders only a handful o f species made up 

the majority of the abundance. Coleoptera, Annelida and Nemaioda were the next most 

abundant orders and contributed to the overall abundance to different extents dependent 

on seasons. There are few studies where the strandline assemblage has been quantified 

in its entirety even in this study which originally aimed to quantify the strandline, in 

terms of species abundance and diversity time constraints limited the identification of 

all fauna within an order to species level. Assessing the variability and relative 

contributions of groups to slrandline assemblage diversity and abundance between 

different sites is very difficult owing to the, different sampling and extraction 

techniques employed and the timings of the sampling. This makes comparisons across 

studies of the strandline in terms of its biolic components difficult. The strandline at 

Wembury is concurrent with previous studies were a few Orders comprising of 

relatively few species appear to dominate the strandline assemblage in terms of 

abundance (Backlund 1945, Bebenhani and Croker 1982, Griffiths and Stenton-Dozey 

1981, Inglis 1989, Colombini et ai 2000, Jedrezejcazk 2002). To compare the 

percentage contribution of faunal Orders to the total abundance of slrandline fauna 

easily Figure 2.6 was constructed, where the total mean abundance of each Order 

across species and sometimes spatial and temporal factors was taken from the few 

studies in which sufficient information of the strandline assemblage could be extracted 

to permit this presentation. It is clear that the strandline assemblages investigated 

globally generally follow the same trend of species dominance as seen in the present 

49 



study and as described above (Figure 2.6). As in the present study the opportunist order 

Amphipoda have been found repeatedly to dominate sirandiine assemblages. In Westem 

Australia the strandline fauna was generally very depauperate with only amphipods in 

high abundances (Dugan et al. 2003). Similariy on a Somalian beach amphipods always 

dominated the strandline fauna and constituted 90% of the total species abundance 

between October and November (Colombini et al. 2000 Figure 2.6e). In New England, 

the strandline community was dominated by the amphipod Plaforchestia (as Orchestia) 

planiensis and oligochaetes, constituting 49.5% and 36.5% of the total assemblage 

respectively (Bebenhani and Croker 1982, Figure 2.6 b). When the relative dominance 

of species colonising litterbags over 28 days planted in the sediment o f a South African 

beach was observed, Tolorchestia overall was far more numerically abundant than any 

other species, followed by Coelopa (Griffith and Stenton-Dozey 1981). As in the 

present study diplerans and amphipods were also the most numerically important 

strandline macrofauna groups colonising litter bags buried in the sediment of a beach in 

New Zealand. Additively these two taxa constituted 78 % of the total species abundance 

(Inglis 1989, Figure 2.6c). Similariy, collection of strandline macrofauna in 1999 and 

2002 to monitor the effects o f beach cleaning activity on a site in England showed a 

massive predominance of lalitrid amphipods in the samples, across sites and tidal cycles 

(Smith 2003). Amphipods were the second most numerically dominant fauna afier 

collembolans in strandlines surveyed around the Swedish and Finnish coasts (Backlund 

1945, Figure 2.6a). 
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Fij»urc 2.6 Percentage contributions of strandline Orders in terms of abundance for 
different strandline worldwide. Percentages are calculated based on mean abundances 
taken from the data presented in the study and averaged for the entire survey, a) 
Backlund's (1945) strandline survey of the Finnish and Swedish coast (1933-1944) at 
different months. It is based on the average abundance of species in each order. Species 
were collected using cloth bags were extracted using Tulgren funnels. Although 
Annelida and Nematoda and Diptera were found in high abundances they were excluded 
from the analysis, b) Behbehani and Croker's sur\ ey (1982) of 3 sites in New 
Hampshire, sampled using 0.04m'core, each month over a year in 1975. Only species 
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with a body size > 0.5mm were picked and counted from wrack samples. The absence 
of diptera is due to the selective collection of wrack samples, c) Inglis' survey (1989) of 
species colonizing buried litter bags of Macrocystis on a New Zealand sandy beach 
(Mar-Apr 1986). The abundances are based on order averages taken from litterbags of 
different sizes, retrieved at different times over 18 d and as such probably under 
represents larger animals that would have been excluded from some of the litter bags, d) 
Jedrzejczak's survey (2002) of species colonising 0.25 mm mesh liner bags of Zostera 
spp. buried at different tidal heights and vertical depths at three Polish beaches. Species 
were collected at different seasons and at different times up to 150 d after litter bag 
placement. Black bars = samples taken in 1999, turquoise = 2000 and red = 2001. e) 
Sur\'ey by Colombini et al. (2000) of strandline species abundance from a Somalian 
beach. Only species with total abundances over 100 individuals were included. Black 
bars represent a species captures in pitfall traps collected every other day over 2 tidal 
cycles red bars represent a results of a preliminary survey where species abundances 
were calculated from the results of small cores taken randomly along the beach in 1971. 
f) Collated faunal data from this preliminary survey of Wembury beach strandline in 
2005 using the methodology described in Section 2.4. 

The relatively high abundance of collembolans in Backlund's survey (1945), 

when compared with this survey and previous studies (Figure 2.6) may be due to the 

permanent namre of the strandlines sampled by Backlund (1945) or the small size of 

many members of this order making them overlooked in samples where only visible 

fauna are extracted. In the present smdy although humidity was always high in the 

strandline, the wrack was not very deep, was often dry, and was not permanent. Any 

collembolans living in the high tide strandline at Wembury would have been at risk 

from periodical low humidity conditions and when the wrack patches moved spatially, 

predation as well as exposure. Most collembolans use tegumentary respiration and as 

such are sensitive to desiccation and may not survive long in such a spatially ephemeral 

environment as the strandline at Wembury. As in the present study when comparing the 

relative abundance of Diptera between spring, summer and winter sampling seasons the 

overall contribution of this order to totally strandline abundance can be very variable. In 

New Zealand, Diptera even constituted 48.89 % of the total macrofauna abundance 

(Inglis 1989, Figure 2.6c). Conversely Diplera may be absent at some sites (Colombini 

et al. 2000, Figure 2.6e). The presence or absence of dipterans in some studies may be 

due to the short persistence of wrack deposits dismrbing dipterans life-cycles (Blanche 
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1992). In Somalia, wrack deposits where dipierans were not found, persisted for only 10 

d (Colombini et al. 2000). Many Diptera species require between 14 - 24 d to emerge as 

flies from eggs (Hodge and Arthur 1997). There is also some limited evidence that the 

relative abundance of species within a trophic group may be influenced by interspecific 

competition. The amphipod Platorchesiiaplaiensis has been rarely found co-exsisiing 

with dipieran larx'ae (Behbehani and Croker 1982). Similarly, wrack beds on the 

Cornish coast were dominated by either amphipods or kelp-fly larvae, with the two 

groups never in equal abundances at the same time during the tidal cycle (M. Fynes and 

J.I Spicer/7er.y. cotnin.). These observations, however, must be interpreted with caution 

as the segregation of these two taxa may be due to the environmental characteristics of 

the wrack banks. Kelp-fly larvae generally show a preference for anaerobic wrack 

(Backlund 1945, Behbehani and Croker 1982) and amphipods a preference for aerobic 

surface and mid layers of the wrack bed. It cannot be ascertained from such a small 

body of work weather the segregation of Diptera and Amphipoda in previous surveys is 

unique to these habitats or the co-occurrence of Diptera and Amphipoda in the present 

survey is a unique feature of the strandline at Wembury, this discrepancy does however 

highlight the variability in strandline assemblages from different sites. 

Similar to dipterans, and between seasons in the present surveys the abundance 

of coleopterans in slrandline assemblages can differ (c.f Figures 2.6a with 2.6c, d). As 

many species of Coeloplera are xenocoenic (Backlund 1945, Joy 1976, D. Billon pers 

cotfwi.) their contribution to the overall abundance of slrandline assemblages wil l 

depend on the terrestrial environment adjacent to sU"andlines. This may explain the 

discrepancies bet\veen previous studies in the relative abundance of coleoplerans in 

slrandline assemblages. As with Diptera, the lime al which the strandlines were sampled 

may also affect the number of Coeloplera species in samples as coleopieran abundance 
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may follow cyclical patterns with either wrack deposition ( i f the species are 

herbivorous) or with prey items such as dipterans (Colombini et al. 2000). 

Annelida, Nemaioda and meiofauna are likely to have been under-represented in 

the present and previous strandline sur\'eys. Despite the fact that enchyu-aeids and 

oligochaetes are considered important strandline taxa in terms of abundance they are 

often not counted in samples, or i f extraction methods like the Tulgren funnels are used, 

their abundance and diversity may be underestimated. In this study the extraction of 

fauna using Tulgren funnels resulted in a number of oligochaete and possibly nematode 

worms becoming dried out and thus unidentifiable. The contribution of meiofauna and 

microbes to strandline assemblages is poorly known, although on some exposed 

beaches dry meiofaunal mass has been found to exceed that of macrofauna (McLachlan 

1985). 

Whilst the overall patterns of species dominance in strandline assemblages 

appears to be similar across study sites the actual contribution of species or orders to 

overall assemblage abundance, and indeed total abundance and diversity measures of 

strandline assemblages should be treated with caution. Different sampling techniques 

may perform differently. Pitfall traps wil l underestimate the abundance of non-mobile 

fauna, and coring methods will underestimate adult fly and flying beetle abundance. 

Species extraction methods wil l also introduce error. In this study using box cores 

coleopteran abundance was exceptionally low (Figure 2.4 f), yet small pitfall traps 

sometimes collected over 50 beetles in a 12 h period. Colombini (2000) also collected a 

greater abundance of coleopteran when pitfall traps were used (Figure 2.4 e). Similarly, 

greater numbers of amphipods were collected in cores than pitfalls, and vice versa for 

the relatively smaller xenocoenic coleopteran species (Figure 2.4). Furthermore, using 

box cores the amphipod assemblage was dominated by O. gammarellus > T. deshayesii 

> T. saltator (Figure 2.6 a, b). Yet when pitfall traps were laid in the high tide strandline 
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for 12-24 hours the relative abundance of O, gammarellus and T. deshayesii was more 

similar and relatively more T. saltaior individuals were found than when using the box 

core method. The low abundance of Araneae in previous strandline surveys (Figure 

2.4) may also be due to the inadequacy of box cores and pitfall traps to collect highly 

mobile species (in the case of pitfall traps Araneae may be able to escape). As 

previously mentioned for Dipiera and Coleoptera, temporal patterns in strandline 

species distribution will determine their abundance in strandlines sampled at a single 

point in time. Temporal changes in community density have been related to population 

biology o f dominant species (Veloso and Cardoso 2001) and species diurnal behaviour 

patterns have been suggested to underestimate amphipod abundance in samples taken 

during the day (Craig 1973, Cardoso 2004). Finally, different sampling efforts give 

different assemblage results (Schoeman et al. 2003). As noted previously the 

distribution of wrack deposits can be very ephemeral and variable. Thus the most 

abundant animal species of the sirandline are thought to be opportunistic and respond to 

wrack deposits by colonising them rapidly. 

2.4.4 Species Seasonal Patterns of Distribution 

At Wembury, overall species abundance was lowest in spring and greatest in 

August this is surprising as the size of the wrack was greatest in spring and previous 

studies have shown that small wrack patches had lower abundance than medium-size 

and large-size patches (Philips el ai 1995 Colombini et al. 2002). However the actual 

difference in wrack patch size be^veen seasons was not large and previous studies 

where wrack patch size has been seen to correlate with species abundance also found 

differences in the macrofaunal assemblage sampled from different sites and at different 

times (Olabarria et al. 2007). The high tide strandline at Wemburry was only sampled 

once in spring making comparisons with other seasons not statistically powerful. 
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Considering the two seasons in which the strandline was repeatedly sampled the 

abundance of species was greatest in August than February possibly reflecting the 

seasonal population cycles of many species. Lower amphipod abundance may be due to 

the fact the species found at Wembury do not mate below lO'C (Morritt and Stevenson 

1993) and display bivoltine population cycles with peaks in the spring and summer 

months (Section 2.7.1). Adult amphipods may migrate away from the strandline and 

over-winter under boulders and rocks higher up on the shore (Persson 1999). Strandline 

beetles too may also over-winter under larger rocks and boulders higher up on the shore, 

in torpid state (D. Bilton pers comm.). There is no direct evidence to suggest this is 

occurring in the beetles of Wembury strandline. However, species o{ Remus, Cafius and 

Polystoma found in high abundance under rocks and boulders during winter months 

would not feed on any food source presented in the laboratory and were exceptionally 

inactive despite constant temperatures of 25*'C and light/dark cycles ranging from 24 h 

light to 6 h light. The relatively higher abundance of Annelida and Diptera in winter 

compared to summer may reflect either the absence of predatory beetles or interspecific 

interference by amphipods (M. Fynes and J.l. Spicer/?cr5. comm.). 

2.4.5 Species Tidal Patterns of Distribution 

The change in the Wembury strandline assemblage over the tidal cycle did not 

appear to follow any particular pattern in species colonisation, in terms of the relative 

abundances of different orders or species. Contrary to the results of the present survey 

numerous studies have documented temporal changes in species assemblage 

composition and individual species abundance. Many mobile species have been 

recorded migrating with the tide (Colombini ei al. 1996, 2000, 2002), andlor follow 

diurnal nocturnal migration and activity patterns (for amphipods see Marsden 1991, 

Jaramillo et al. 2003; for coleopterans and isopods see Koop 1982, Colombini et al. 
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2005; for other arthropods see Colombini i ; / . 1996, 2005, Aloia a/. 1999, Jaramillo 

et al. 2003). Talitrid amphipods and many species of kelp-fly larvae have frequently 

been recorded as the first opporuinistic colonisers of newly deposited strandlines (Inglis 

1989, Jedrzejczak 2002a, GrifTiths and Stenton-Dozey 1981). Inglis (1989) found the 

amphipod/Diptera dominated assemblage to peak in total macrofaunal abundance 3 d 

after wrack deposition. Whilst amphipod and dipteran abundance decreased rapidly 

thereafter many species of predatory beetle and a centipede remained at the same 

abundance for 18 d. Nematodes increased in abundance rapidly after 9 d. Acarina were 

only present in the later stages of litter decomposition. Similar trends of initial 

amphipod and/ or dipleran peaks in abundance following wrack availability have been 

found at other sites, where the abundance of other strandline species remained 

consistently low or increased in abundance after 7 d (Griffiths and Stenton-Dozey 1981, 

Colombini el al. 2000, Jedrzejczak 2002b). Studies where only the dipteran larvae are 

quantified the change in dipleran abundance on a temporal scale may be related to the 

life-cycle of these species. Jedrzejczak (2002b) found a succession in dipteral life stage. 

Adult flies were most abundant between 2-4 d of litter bag placement and eggs most 

abundant between 4-10 d. Larvae increased in abundance to a ^plateau' around 8 d. 

Remarkably similar changing patterns of abundance between adult, egg and larval life 

stages of Diptera following wrack deposition have been recorded by Inglis (1989) and 

by Hodge and Arthur (1997). Other studies suggest that the kelp-fly can complete its 

larval development between successive spring tides (Egglishaw 1960, Dobson 1974, 

Inglis 1989) potentially following the cyclical patterns of wrack deposition. 

In many studies coleopterans has been send to peak in abundance ai\er many 

days or the peak in abundance of other species (Inglis 1989, Griffiths and Stenton-

Dozey 1981, Colombini et al. 2000). This has been attributed to the preceding increase 

of the abundance in their prey in wrack deposits (Colombini et ai 2002). Xenocoenic 
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and tryocoenic species of beetle may only enter into the sirandline habitat i f food is 

available. However, factors other than food may play a larger role in determining beetle 

abundance in sirandlines. The increase in beetle abundance found some period of time 

after wrack deposition has been attributed to their preference for drier wrack conditions 

following initial water loss in wrack deposits (Moore and Legner 1973, Griffiths and 

Stenton-Dozey 1981). In the present sur\'ey i f there was not successive pattern in wrack 

deposition, abundance of coleoplerans prey items, and at least the surface layers of the 

wrack were nearly always dry, this may explain the lack of a successive temporal 

pattern in coleopteran abundance in VVembury high tide strandline. 

In previous survey there were many factors that changed with the tidal cycle 

most notably deposition, resulting in changes in the chemical and physical environment 

of the strandline, species population cycles and patterns of species colonisation resulting 

from changes in species interspecific interactions all of which may have infiuenced 

species distributions. At Wembury the lack of a successive temporal pattern in species 

colonisation is maybe due to the fact that only the high tide strandline was sampled and 

that the wrack of this strandline did not follow patterns of deposition and removal with 

the tide, but rather was ephemeral in its horizontal spatial distribution. The significant 

change in the strandline assemblage at Wembury, al different sampling dates in 

summer, is most likely due to changes in overall species abundance rather than 

diversity, which changed idiosyncratically over the tidal cycle (Figure 2.5a,b) and 

between season, possibly reflecting the ephemeral horizontal nature of the wrack 

distribution at Wembury. 

2.4.6 Links Between the Biotic and Abiotic Strandline Environment 

At Wembury there did not appear to be any clear patterns in the similarity of the 

strandline species assemblage or the biotic variables with respect to tidal cycle or 
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season. This is contrary to previously thinking, whereby the physical and chemical 

properties of the strandline determined the strandline assemblage. There are few studies 

were specific chemical and physical properties of the strandline are statistically 

correlated to properties of the strandline assemblage however, wrack is often cited as an 

environment providing food and refuge to a wide array o f terrestrial, semi-terrestrial and 

occasionally aquatic animals (Backlund 1945, McLachlan and Erasmus 1983, 

McGywnne et al. 1988, Inglis 1989, Colombini et ai 2000 and references therein). 

Many animals have also been obser\'ed directly eating wrack deposits (e.g. Griffiths and 

Stenton-Dozey 1981, Koop et ai 1982a and Griffiths et ai 1983 for amphipods, Chown 

1996 for dipteran larvae) or prey on animals that consume marine plants deposits (e.g. 

Backlund 1945, E. McAfee pers. comm. for some beetles, Ugolini 1997, Laffaille et ai 

2001, 2006, Areas 2004, Hample et ai 2005, Minderman et ai 2006 for predatory fish 

and birds). Furthermore many studies have shown a high correlation between species 

diversity and abundance and wrack deposits (e.g. McLachlan 1980, 1985, Bigot 1970, 

Polis and Hurd 1996, Vilas 1986, Colombini and Chelazzi 2003). The volume of wrack 

deposit has also been shown to positively correlate with species diversity ( Olabarria et 

ai 2007). Finally wrack removal through beach cleaning has been seen to reduce 

species diversity and abundance (e.g. Smith 2003, Schlacher et ai 2007 and references 

therein). However as the species assemblages in wrack deposits are rarely compared to 

similar areas lacking deposits, explaining variation in these assemblages on the basis of 

wrack properties is problematic. Caution should be exercised when assuming species 

assemblages found in strandline samples only there due to the specific physical and 

chemical environment of the wrack as many species obser\'ed to dominate the strandline 

system have also been found in high densities on sandy beaches without wrack (e.g. 

talitrid amphipods on sandy beaches of the North Brittany Coast, France, J.I Spicer 

pers. comm.). There are a few studies where particular abiotic characteristics of the 
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strandline have been used to infer of describe the strandline assesmblage however 

Phillips e! al. (1995) did link the distribution of a particular abundant strandline species 

to specific properties of the strandline. Phillips et al. (1995) found the distribution of 

dipteran lar\'ae and amphipods to be highly aggregated and dependent on wrack depth 

and temperature. The only study to quantitatively assess the chemical and physical 

components of strandline environments and statistically compare these properties with 

the strandline species assemblage was undertaken in Australian intertidal mud flats 

(Rossi and Undenvood 2002). Here the effect of organic enrichment was tentatively 

concluded to explain more of the variation in the strandline assemblage than physical 

disturbance caused by the physical presence of the wrack. In the present study it is 

likely that factors other than those measured determined the strandline assemblage. The 

distribution of wrack horizontally along the beach was very variable and the disturbance 

frequency of a wrack patch may be correlated wiUi the strandline assemblage. As 

previously mentioned for a variety of reasons the strandline assemblage is thought to, 

and has been obser\'ed to, follow a pattern of succession preceding wrack deposition 

(Section 2.4.6), the wrack deposition following the monthly or two weekly tidal cycle. 

The strandline assemblage at Wembury may be dependent on the time lapsed preceding 

wrack deposition, and on other species arrival and distribution however wrack 

deposition and removal was not dependent on the tidal cycle but varied spatially. Thus 

at any one point in time a number of wrack patches of different ages may have been 

present on the shore, each colonised by an assemblage at a different stage of succession, 

leading to the overall variability in the strandline assemblage between sites on the same 

day. In the present study and previous studies observed seasonal changes in community 

density may have been related to the population biology of dominant species, rather 

than the change in wrack volume, or physical environment as previously reported 

(Veloso and Cardoso 2001). 
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2.4.7 Preliminary Survey Conclusions 

As in previous studies the strandline assemblage at Wembury is characterised by 

a few species in exceptionally high abundance. As with the majority of previous surveys 

the Orders Amphipoda and Diplera contributed disproportionately to the overall species 

abundance at VVembury this is despite the geographical distance, ocean currents and 

climatic conditions between previous studies. 

Unlike previous studies the strandline at Wembury did not appear to follow any 

temporal patterns in species colonization, most likely due to the pattern of wrack 

deposition which did not vary systematically on a temporal scale, but was, like the 

strandline assemblage variable on smaller spatial scales. 

The abiotic properties measured in the present survey were not correlated with 

the strandline assemblage, and it is suggested that wrack disturbance, was more likely to 

effect the strandline assemblage. 

This preliminary survey adds to a relatively small body of work that suggests 

strandlines, both in terms of the biotic and abiotic components can be exceptional 

variable, within and between studies. The strandline assemblage appears to be 

dominated by a few species but can be exceptionally transient the transient nature of the 

strandline assemblage depending on numerous factors associated with wrack deposition 

and colonisation. 

2.4.8 The Process of Decomposition 

In subsequent chapters o f this thesis decomposition is measured as an ecosystem 

process. This section introduces the process of decomposition in the strandline and 

summarises previous work in this area. 
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Decomposition is likely to have great overall functional significance in coastal 

transition zones such as the strandline (McGwynne el al. 1988, Snelgrove 1997, Levin 

el ai 2001), especially on sandy shores where the sediment mobility restricts in situ 

primary production (Brown 1964, McLachlan 1985). Detritus in the sediment serves to 

stabilise seasonal inputs of organic matter (Pomeroy 1970) providing bottlenecks to 

energy How (MacFadyen 1961). Therefore, processes like decomposition which 

mobilise particulate organic matter are crucial for ecosystem functioning (Hargrave 

1975). The decomposed material enhances secondary production (McLachlan 1985, 

McMahon and Walker 1998, Trolley and Christian 1999) and provides an energy source 

for meiofaunal and interstitial communities (Robertson and Lucas 1983, McGwynne et 

ai 1988, Camilleri 1992). Additionally the release of nutrient and organic matter from 

marine debris back into the coastal intertidal and near-shore areas can be considerable 

(see Perkins 1974 and references therein however c.f. K^oopetal. 1982a) and may 

apprently support unrelated near-shore food webs (McLachlan et al. 1981, Duggins et 

ai 1989, McMahon and Walker 1998). 

Perhaps surprisingly the contribution of detriiivores to the overall decomposition 

of wrack material is not well known, although they are thought to accelerate 

decomposition through, a) the spread of microorganisms, b) fragmentation of larger 

panicles by feeding and burrowing activities increasing the surface area available for 

microbiological decomposition (Robertson and Mann 1980, Stenton-Dozey and 

Griffiths 1980, Harrison 1982, Bedford and Moore 1984, Inglis 1989) and c) by 

selectively grazing microbial communities on the detritus leading to increased microbial 

metabolic activity and potentially microbial decomposition (Smith et al. 1982). Stenton-

Dozey and Griffiths (1981) estimated that grazers remove 60 - 80% of organic input 

from the sirandline in 2 d based on standing crop mass loss and individual feeding rates. 

Similarly Griffiths et ai (1983) calculated losses of 7 1 % of the material deposited on a 
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South African sandy beach due to grazing. As amphipods are found generally in the 

highest abundance in strandline habitats (see Section 2.3) and have one of the greatest 

consumption rates of strandline deiritivores (Griffiths et al. 1983) they are certain to be 

important macrofaunal decomposers of wrack material. There are many examples where 

amphipods feed indiscriminately on any food type availible (Backlund 1945, Agrawal 

1964) and owing to their low assimilation efficiencies (Griffiths and Stenton-Dozey 

1981) their faeces may become sites of increased microbial activity (see Hargrave 1975 

for a review), both mobilising organic matter for off-shore habitats (Griffiths and 

Stenton-Dozey 1981) and potentially providing a food source for other strandline 

species. Although dipterans may occur in high abundances in the strandline (see Section 

2.3 and Figure 2.4) their overall contribution to decomposition in the strandline is not 

likely to be as great as that of amphipods owing to their lower biomass and feeding rates 

(Griffiths 1983, Griffiths and Stenton-Dozey 1981). Griffiths <?/o/. (1983) 

calculated the amount of kelp consumed by herbivorous or detritivorous species. 

Coleopterans consumed only 3.5%, amphipods 52.7% and kelp flies 14.7% of the 

stranded kelp. However, in some regions the dipteran contribution to decomposition 

may be greater. For example, Diptera is one o f the dominant consumer groups on sub-

Antarctic islands (Chown 1996). Although the contribution to decomposition of other 

Orders was not investigated, a single species, {Paractora trichostenia), was directly 

responsible for 12% of wrack degradation in a sheltered site and 20% in an exposed site 

(Chown 1996). Antrops tritncipennis was responsible for an additional 3% loss in the 

exposed bed and 8% in the sheltered one. These fly species were therefore concluded to 

contribute significantly to kelp degradation (Chown 1996). Decomposition in the 

presence of dipteran larvae may alter the microbial assemblage which may affect 

decomposition. Although evidence is anecdotal; larval exudates have been noted as 

being wet (Backlund 1945, Egglishaw 1960, Stenton-Dozey Griffiths 1980) and wrack 
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decay in the presence of lar\'ae has been cited as being anaerobic (Philips and Arthur 

1994). Additionally the presence of larvae on Laminaria has been seen to exclude 

moulds (Backlund 1945). The contribution of adult Diptera to overall decomposition is 

less clear (c.f Chown 1996, Stenton-Dozey and Griffiths 1980, Griffiths and Stenton-

Dozey 1981, Inglis 1989), but is likely to be less significant than their earlier lar\'al life 

stages as obsen^ations of strandline faunas feeding habits have shown that adult 

dipterans consume only wet wrack exudates (Griffiths and Stenton-Dozey 1981). Adult 

dipterans may however contribute to wrack breakdown through their tunneling 

activities, presumabaly be enhancing aeration and the physical breakdown of wrack 

(Stenton-Dozey and Griffiths 1980, Inglis 1989, Chown 1996). 

Although the role that nematode species diversity plays in decomposition in 

intertidal wrack deposits has been investigated (e.g. DeMesel et al. 2003), the overall 

contribution of meiofauna to the decomposition process in strandline is largely 

unknown and so is poorly understood. 

Microorganisms clearly play an important role in the breakdown of wrack (Koop 

et al. 1982b, Haxen and Grinley 1984,). There is evidence that microorganisms in 

detritivore faeces are important to the decomposition of detritus (see Hargrave 1975 for 

review). Similarly increased wrack decay has been attributed to the presence of bacteria 

enhanced by dipieran faeces (Egglishaw 1960, Rowell 1969). Furthermore, the presence 

of bacteria and Fungi on wrack may enhance detritivores feeding rales by making the 

food more palatable or themselves providing a food source for the detritivores. 

Evidence based on assimilation efficiencies, examination of the organic content of 

detritivores food and faeces and the disparity between the nutritional needs o f the 

detritivore and that available in the detritus suggests that detritivores receive most of 

their nutritional value from microorganisms rather than the detritus itself (see Berrie 

1975, Fenchel and Harrison 1975, for reviews). There is also evidence that amphipod 
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feeding rales increase in the presence of some microbes and Fungi (Darnell 1967, Odum 

1967, Rong et ai 1995, Kneib et ai 1997) or that their assimilation efficiency increases 

with the presence of certain microorganisms (Hargrave 1970, Brenner et ai 1976). The 

importance of microorganisms for dipteran diets has been recognized for some time 

(e.g. Rowell 1969, Barnes 1984, Cullen e/o/. 1987). The importance of microbial 

(relative to macrofaunal) decomposition is not known, although there is limited 

evidence that in some systems microbial decomposition may be as important as 

detritivore degradation, in terms of wrack volume reduction. Inglis (1989) excluded 

macrofauna from litter bags of bull kelp tissue and found that standing crop mass loss 

41-64% over 18 d was linear and as great in the absence of macrofauna as without. 

Similarly, Jedrzejczak (2002a) found no significant reduction in the rate of seagrass 

disintegration in litter-bag exclusions of macrofauna. 

2.4.9 The Strandline as a Model System 

The broad aims of this thesis are to investigate the role of diversity, identity and 

species interactions in setting rates of ecosystem processes, the role of body size as a 

surrogate measure of predator-prey interactions and ecosystem processes, and the role 

of trophic interactions in influencing non-trophic-resource interactions. 

Essential to this research is that the model system must be: 

• Accessible. Most strandlines form supralittorally and as such do not 

need specialised equipment and resources in order to access and sample in these 

habitats. 

• Easily replicated in the laboratory. As discussed in Section 2.2.2 

strandlines are heavily disturbed environments that can change volume, patch size and 

location, spatially and temporally according to tidal regimes and other environmental 

factors (Figure 2.1). At least on a small time scale, realistic replicate strandlines that are 
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within the range of physical and chemical conditions to which strandline species are 

accustomed to and can be easily constructed in the laboratory. 

o Comprised of species with good survivorship under laboratory 

conditions. Strandline species live in highly disturbed conditions, and as such are 

exposed to a range of humidity, salinity and temperatures associated with the 

supralittoral zone as well as periods without wrack coverage and refuge. It is perhaps 

hardly surprising therefore that previous preliminary observations showed excellent 

survivorship of amphipods, beetles and larvae in plastic bags, tubs, and boxes of wrack 

in the laboratory. 

o Comprised of species which have a range of body sizes (intra and inter 

specifically). In order to assess the use of metabolic theory in predicting trophic 

interactions based on scaling laws it is essential that predator and prey species used in 

manipulations represent a range of body sizes. Figure 2.7 shows the range of body sizes 

selected beetles and dipteral larvae. 

• Comprised o f a number o f trophic levels. This is essential i f the role o f 

trophic and non-trophic interactions on ecosystem process is to be examined. Although 

there are no resolved food webs for strandline assemblages and the dietary breadth of 

many species is not known, the four beetles in Figure 2.7a-d, are known as adults to 

feed on dipteral larvae (Backlund 1945, Joy 1997, and pers. obs.), and the dipteran 

larvae on the wrack (e.g. Philips e/o/. 1995,Hodge and Arthur 1997). 

Additional benefits of using a strandline system for BDEF research include: 

o The range of diversity associated with the strandline. Owing to the 

ephemeral and transient nature of wrack deposits, the strandline can be either species 

rich and depauperate. Thus investigation into biodiversity ecosystem processes in such a 
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system may have implications for BDEF relationships in both low and high diversity 

systems. 

• Available species-specific natural history information. For most eucoenic 

strandline species that occur in high abundances, perhaps with the exception of the 

beetles, there is in existence an amount of natural history information, thus interpreting 

results of experimental manipulations may be less ambiguous (Section 1.8). 
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Figure 2.7 Size distribution based on wet mass of some strandline species, a) Cafius 
variolosus, based on 79 individuals taken from the strandline on the 19.10.06, b) Cafius 
xantholoma based on 53 individuals taken from the strandline on the 25.06.06, c) Remits 
sericeus based on 67 individuals taken from the strandline on the 01.10.06, d) 
Polystoma algarum based on 72 individuals taken from the strandline on the 15.07.06, 
e) Dryomyza anilis based on 64 individuals taken from the strandline on the 15.07.06, f) 
Coelopa frigida based on 52 individuals taken from the strandline on the 25.06.06 and 
48 individuals taken from the strandline on the 19.10.06. 

• Widespread distribution of strandlines. As strandline habitats can form 

all over the world (Section 2.2.2), investigations into biotic interactions and 

ecosystem process therein are not limited to unrealistic or rare habitats. 

67 



• The strandline is an important yet understudied system in its own right. 

Despite the perceived importance of sirandline habitats, the biotic interactions that occur 

and their link to ecosystem process remains a rich area of smdy, as the strandline forms 

the bridge between truly terrestrial and marine environments and as such is often over 

looked by both disciplines. 

2.4.10 Rationale Underlying Choice of Species in Manipulation Experiments 

In order to investigate the effects of species identity, diversity, trophic and non-

trophic interactions on ecosystem processes in the strandline it is important to select 

species that, a) are common in strandline environments, b) whose trophic position is 

known and c) may play important roles in ecosystem processes. The species used in the 

manipulative experiments in subsequent chapters are introduced below and their 

importance in ecosystem processes in the strandline summarised based on published 

literature. 

2.4.10.1 Amphipods 

Talorchestia deshayesii (Audouin 1826) is an ideal test organism. As one of the 

most commonly occurring members of the family Talitridae in north-west Europe, it is 

found in great numbers in the strandline (Backlund 1945, Koop and Griffiths 1982, 

Stenton-Dozey and Griffiths 1983). Aside from the widespread distribution of T. 

deshayesii, T. deshayesii showed good survivorship in the laboratory mesocosms 

(Marsh and Spicer in prep.) and readily consumed vast amounts of algae, vegetable 

matter and even tissue paper when available. Additionally, talitrids are considered to be 

important decomposers of wrack (Griffiths and Stenton-Dozey 1981, Koop et ai 1982a, 

Griffiths et ai 1983). They are thought to have fast consumption rates (Griffiths and 

Stenton-Dozey 1980, Koop et ai 1982a, Griffiths et ai 1983), and low assimilation 
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efficiencies (Muir 1977, Stenton-Dozey and Griffiths 1980). Through its feeding, T. 

deshayesii will influence the size range of particulate organic matter thus increasing the 

availability of wrack material for a wider range of detritivores. Furthermore, talitrid 

amphipods are key components of strandline food webs as they provide an important 

food source for many species of predatory fish and birds (Ugolini 1997, Laffaille ei al. 

2001, 2006, Areas 2004, Hample et al. 2005, Minderman et al. 2006). Although T. 

deshayesii may have a lower consumption rate than O. gammarellus (Dias and Hassell 

2005) and O. gammarellus was more abundant during the box-coring survey of 

Wembury strandline, T. deshayesii was selected for use in the experiments described in 

Chapter 3. Talorchestia deshayesii is the smallest of the three amphipods, and thus its 

mass was more similar to the fly larvae used in Chapter 3. Furthermore it was found in 

high, and similar, abundances to those of O. gammarellus when pitfall traps were placed 

in the high tide strandline at Wembury. There is a relatively large amount of natural 

history information on strandline amphipods in general (e.g. Bulnheim and Scholl 1986, 

Conceicao et al. 1998, De Matlaeis et al. 2000, Ketmaier 2003, Davolos and Maclean 

2005) , their taxonomy and identification (e.g. Harzsch, 2004, 2006, Spicer and Janas 

2006) . Similarly talitrid ecophysiology and tolerance have been well defined (see Spicer 

et al. 1987 and Morritt and Spicer 1998 for reviews, also; Morritt and Ingolfsson 2000 

for temperature and salinity tolerance; Ugolini et al. 2005, for heavy metal 

accumulation and tolerances; Calosi et al. 2005 for osmoregulation ability). A number 

of studies have also investigated these amphipod's orientation ability (Scapini et al. 

1992, Borgioli et al. 1999, Scapini 2006, Ugolini et al. 2006, Papi et al. 2007) and 

diurnal activity cues and mechanisms (Fallaci et al. 1999, Nardi 2000, Nardi et al. 2003, 

Ammar et al. 2006, Ugolini et al. 2007). Research into the use of talitrid amphipods as 

biomarkers has also been well investigated (Moore et al. ! 991, Marsden and Rainbow 
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2004, for O. gammareUiis, Ugolini et a/. 2004, for Talitms saltator Fialkowski et ai 

2003 for T. saUator and T, deshayesii, Rainbow et al. 1989, for all three species). 

Talorchestia deshayesii is the smallest of the three amphipod species found al 

Wembury, with an average length of 10 mm. It occurs in sandy sediment like T. 

saltator, although there may be segregation of these two species due to grain size (Dahl 

1946). When there was an absence of wrack, T. deshayesii was generally found lower 

down the shore than O. gammarellus and T. saltator (pers. obs.). 

Although the distribution of T. deshayesii is less well known the three species of 

amphipod found at Wembury are all considered to be Mediterranean-Atlantic species, 

extending from the Mediterranean to Iceland and northern Norway (Dahl 1946, Lincoln 

1979, Marques et al. 2003). Orchestia gammarellus and T. saltator are semiannual, with 

iteroparous females appearing to produce at least two broods per year, resulting in a 

bivoltine life cycle (Moore and Francis 1986, Wildish 1988, Weslawski et al. 2000, 

Marques et al. 2003, Anisimova 2004). Cohorts bom early in the reproductive period 

(spring) have been found to reproduce in the same season, but wil l not live as long and 

most will probably not survive the winter. Cohorts bom later in the reproductive period 

wil l live longer (throughout the winter) becoming sexually active and breeding in the 

next reproductive period (Marques et al. 2003). Although evidence of this reproductive 

cycle in T. deshayesii is lacking, a closely-related species Pseudorchestia (as 

Talorchestia) brito displayed the same bivoltine life cycle and breeding pattems as O. 

gammarellus and T. saltator (Goncalves et al. 2003), breeding in this species was also 

thought to be controlled by temperature (Goncalves et al. 2003). 

2,4.10.2 Dipterans 

The dipteran larva species used in the experiments presented in this thesis are 

Coelopa frigida (Fabricius, 1805), Coelopapilipes (Haliday 1838) and Dn'omyza anilis 
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(Fallen, 1820). Coelopidae and Dryomyzidae only occur on beaches with a steady 

supply of stranded kelp (Dobson 1974). 

The dipteran species used in this thesis all displayed good survivorship in the 

laboratory. As with the talitrids, all three species were found to co-occur at the sample 

site throughout the year. A l l three species are obligately dependent on decaying brown 

algae for breeding and as adults can reach such high population densities that they are of 

interest as a nuisance to beach tourists (Poinar 1977). As previously mentioned Diptera 

can make up an important part of the strandline assemblage in terms of abundance 

(Section 2.3.2), although much less is known with regards to dipteran consumption 

rates. Wrack and associated microbes and Fungi have been identified as the food source 

of the two Coelopa spp. (Rowell 1969, Cullen et ai 1987, Hodge and Arthur 1997). 

Similarly, D. anilis larvae are saprophagous and can feed, grow and mamre on dead 

animals and live fungal matter (Barnes 1984). Owing to the high abundance of C 

frigida and C. pilipes, these species have been identified as important in wrack 

decomposition (Section 2.5). As with the amphipods, dipteran larvae provide a 

potentially important food source for predatory slrandline beetles (Backlund 1945, Joy 

1976). 

Additionally, as the dipteran larvae exhibit a wide range of body sizes (Figure 

2.6 e, and f, Shuker and Day 2002, Laamanen e/ al. and references therein 2003), and 

consume wrack, they make ideal prey items with which to test the use of scaling laws to 

predict trophic interactions and decomposition in Chapter 5 of this thesis. 

Coelopa frigida is arguably the most widespread species of the kelp fly used in 

this study (Laamanen et al. 2001). Its range extends from Russia (Barents Sea) through 

the Baltic region, the North Sea, Faroe Islands and Iceland to the northernmost parts of 

the North American coast (Hennig 1937 in Backlund 1945). Dryomyza anilis is 

commonly distributed throughout Europe and North America (Barnes 1984). At 
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Wembury, all kelp-fly species aggregated in high densities in deeper anaerobic layers of 

the wrack, although D. anilis was found in slightly drier areas than the other two 

species. C. pilipes and C.fhgida larvae were found at all instar stages and ranged 

between 3-20 mm in length. D. anilis was found at all instar stages but was often 

smaller than the two species of Coelopa, rarely was it over 10 mm length. The different 

species of lar\'ae were often found in species-specific aggregations, either due to the 

divergence by species in oviposition, or due to interference, competition or 

environmental preferences. 

The majority of work concerning dipteran larvae has investigated the population 

genetic (Day ei al. 1983, Laamanen et a/. 2001). sexual selection and reproductive 

behaviour of all three species separately (Day 1983, Day et al. 1987, Dunn et a!. 2002, 

2005, Blyth and Gilbum 2005). There are, however, a few studies that have investigated 

C.frigida and C pilipes development and growth when reared in mulii-species 

environments. Reproductive output and dominance hierarchy between C.frigida and C 

pilipes have been shown to differ in response to the environmental conditions, the 

development parameters measured and density-dependent effects (Leggelt 1993, Philips 

et al. 1995, Hodge and Arthur 1997). Coelopa frigida has been seen to inhibit the 

growth and reproductive output of C. pilipes larvae when these two species are reared 

together (Hodge and Arthur 1997). Coelopa pilipes has been observed to reach higher 

abundances at warmer temperatures (Backlund 1945) and warmer temperatures have 

been shown to increase its competitive ability (Philips et al. 1995). There is relatively 

little information available on the behaviour and interactions of D. anilis although 

Barnes (1984) gives an excellent overview of D. anilis lar\'al biology and summarises 

previous obser\'ations and studies on this species. 
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2.4J0.3 Coleopterans 

The four predatory siaphylinid strandline beetles used in the experiments 

presented in this thesis belong to two sub-families; thus Cafnts xantholoma 

(Gravenhorst) Remus sericeus (Holme) and Cafius xantholoma variohsus (Sharp) are 

Staphylinninae, while Polysioma algantm (Fauvel) is a member of the sub family 

Aleocharinae. Cafius variolosus is a variety of C. xatulioloma, and is morphologically 

distinct, being slightly larger with a much larger head and mouth parts (Joy 1932). 

Cafius xanthohma vaholosus has been classified either as a sub-species, a variety of C 

xatuholoma or a distinct species. However, for the purpose of this thesis Cafius 

xanthohma variolosus is considered as a separate species from C. xatuholoma as the 

former not only has a morphology that is easily distinguishable from that of C 

xantholoma, but its size-class distribution is also distinct from that of C. xantholoma (c.f 

Figure2.7a, b). Furthermore, in preliminary laboratory feeding trials Cafius variolosus 

was observed to behave much more aggressively to both prey and handling than C. 

xantholoma. A l l species are classed as rove beetles which form one of the largest 

families of insects in the world with over 32 000 described species. Most rove beetles 

are predatory and inhabit moist environments such as decomposing organic matter (Joy 

19732, Campbell and Davies 1991). Many members o f the subfamily Aleocharinae are 

obligate external parasitoids on the pupae of Diptera encased within the puparium 

(Campbell and Davies 1991). A l l the species used have been found, and/or are 

abundant, in strandlines across central and southern Europe and Fennoscanida 

(Backlund 1945, Campbell and Davies 1991). 

Owing to their high abundance in the strandline, laboratory survivorship, 

measurable consumption rates and large range of body sizes these four species of beetle 

made ideal test organisms in assessing trophic interactions and ecosystem process in the 

strandline. The four beetle's size range, in terms of wet mass is shown in Figure 2.7. 
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The variability in body size both within and between species makes them ideal 

organisms to investigate the use of scaling laws in predicting trophic interaction 

strength in Chapter 5. Although there is little information on the feeding habits and diet 

breadth of these beetles, previous observation and preliminary trials showed them to 

consume considerable numbers of dipleran lar\'ae (e.g. Onh et al. 1977, cited in Lavoie 

1985) suggesting that they may be important in slrandline food webs and that they may 

indirectly have a large impact on processes like decomposition. However, their overall 

influence on prey dynamics and ecosystem process will also depend largely on their 

abundance, which in Wembury (Figure 2.6) and elsewhere, can be highly variable (see 

Sections 2.3 and 2.4). 

In terms of feeding behaviour only observational data on Cafius is available. 

Backlund (1945) fed individual Cafius beetles (in isolated dishes on moistened paper) a 

range of food items; Cafiits were observed to feed on all dead dipteran larvae, live C. 

frigida larvae but not Orygma luctuosa, and neither species after they had pupated, 

consuming an average of 1-3 larvae a day. Cafius was seen to consume enchytraeid 

worms and smaller sized larvae preferentially. Amphipods were only consumed once 

dead with the exception of juvenile O. gammarellus which were, "...sometime attacked 

but always unwillingly " (Backlund 1945). Feeding rales in Cafius have also been seen 

to increase after 72 h starvation and 2 h of ̂ 'settling time" (where they were placed in 

the mesocosm before introduction of prey). Using ten beetles per mesocosm more prey 

items and prey mass loss was observed for dead O. gammarellus than C pilipes. C. 

frigida had the lowest average mass loss in the experimental trials (E. McAfeepers. 

comm.). When live prey was introduced into the mesocosms larvae were preferentially 

consumed (E. McAfee pers. comm.). Increasing the density o[ Cafius also appeared to 

increase the per capita consumption rales (E. McAfee pers. comm.) although due lo 

statistical averaging this conclusion may be biased, as by chance alone more individuals 
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displaying high consumption rates would have been included in replicas with a high 

density o^Cafius. Overall consumption rates were very varied but were analogous with 

Backlund's feeding trials (1945), 1-3 larva individuals over a 20 h period (E. McAfee 

pers. comm. andpers. obs.). 

Very little natural history information is available on the beetle species used in 

this investigation and what do exist are single-point observations. Many species of 

insects may enter a state of torpor, during colder months where metabolism, activity and 

feeding are reduced (Tauber et al 1986) this has alos been obser\'ed in some species of 

rove beetles (Nield 1976). As previously mentioned (Section 2.4.2) behaviour akin to 

that expected i f beetles were in a state of torpor was observed in all four species from 

Wembury strandline. The species were observed in much lower densities in the 

strandline during winter months (c.f. Figures 2.5a,b) although Cafius spp and R. 

sericeus were found during these periods in high abundances under large flat stones 

above the high tide mark, the absence of P. algantm from the entire shore was notable 

during the winter months. The species were also observed to display massive up-shore 

migrations during flooding tides. This was especially noticeable on particulariy high 

spring tides when the entire beach was covered in migrating beetles and it was 

impossible to walk on the shore without stepping on hundreds ofCaftus and Remus. 

There is no previously reported information on the ecophysiology of these four 

beetle species. However, in preliminary mesocosm trials the physical and environmental 

conditions appeared to affect the consumption rates and feeding behaviour of all four 

species. Survival was greatest when 50ml of distilled water was added to mesocosms 

{pers. obs.) and consumption was highest when ridgid mesocosms were employed 

(Polypropylene containers 17cm* 11.5cm*4cm, 782cm^ V = 0.7821) rather than plastic 

zip seal bags (1cm by 25cm). Furthermore in many instances they did not feed 
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extensively when lar\'al density was less than 12 individuals per 0.7821 polypropylene 

container. The beetles did not feed when placed in large Petri dishes with moistened 

filter paper. In only one instance was a beetle (one C. variolosus individual) obser\'ed to 

consume a live amphipod {T. saltator). 

2.5 Concluding Remarks 

The sirandline can be broadly characterised as an ephemeral and transient 

environment playing host to a wide diversity of species although dominated by a few 

eucoenic, opportunistic species in high abundances. There are clear temporal trends in 

assemblage diversity and individual species abundances in some strandlines although 

these pattems are not universal to all strandlines where small spatial variability may be 

greater than temporal changes in species assemblages. 

The inputs to, and even the formation of, strandlines can be variable both 

temporally and spatially (by composition and volume) and the species colonizing these 

habitats are able to exploit, survive and flourish in very disturbed regimes. Thus the 

behaviour of these species in laboratory mesocosms that replicate the strandline 

environment is likely to reflect, or be within, their natural ranges. The strandline and its 

fauna provide an excellent model system to manipulate in simple laboratory 

mesocosms. 

Despite the strandline's perceived importance as a coastal transition zone linking 

terrestrial and marine environments, and the importance of process like decomposition 

in the sirandline, relatively little is known regarding the influence of the biota on 

decomposition, information on energy flow in strandline habitats is limited to a handful 

of studies and although there is some information on individual species' feeding rates, 

the trophic and non-trophic interactions of strandline species and the implications of 
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these interactions for decomposition has not been studied. Therefore investigations into 

predatory and consumer strandline species interactions and feeding wil l contribute to 

our understanding of strandline trophic and non-trophic interactions and how they 

contribute to decomposition. 
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C H A P T E R 3: T H E I M P O R T A N C E O F S P E C I E S I D E N T I T Y . D I V E R S I T Y , 

AND I N T E R A C T I O N S FOR E C O S Y S T E M PROCESS IN T H E S T R A N D L I N E 

3.1 Introduction 

Tliis chapter will investigate the effect of species identity, diversity and 

interactions on ecosystem processes, using four commonly occurring strandline 

detritivores and measuring decomposition. 

3.1.1 Rationale 

In the current climate of biodiversity loss understanding the link between 

diversity and ecosystem processes is one of the most pressing issues facing scientists 

today (Section 1.2). The vast majority of previous BDEF studies have mainly focused 

on terrestrial grassland systems and consequently the effects of faunal diversity on 

ecosystem processes are far less studied than those of plant diversity (See Section 1.5). 

Despite its importance in ecological systems, decomposition has received 

relatively less attention than other ecosystem processes (Section 2.5) and its study is 

generally confined to terrestrial habitats or stream environments, investigating the 

effects o f leaf litter diversity on decomposition rates (see Mikola et al. 2001 in Loreau 

etal. 2001b for review, Blair a/. 1990, Wardlee/cr/. 1997a, 1997b, Hector e/a/. 

2000, 2002, King et al. 2002, Madrich and Hunter 2004, Swan and Palmer 2004, for 

examples). The effects o f detritivore species diversity on detrital processing rates have 

only recently been investigated (Jonsson and Malmqvist 2000, 2002, 2003a, 2003b, 

Cardinale et al. 2002, Cardinale and Palmer 2004. Zimmer et al. 2002, 2005) and even 

then solely in terrestrial or freshwater systems. Although marine environments 

contribute a disproportionately large percentage of the world's biodiversity as measured 
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in phyla (Ray and Grassle 1991), the effect of reduced diversity on ecosystem process 

therein has been much less studied (see Emmerson et al. 2001 for a review of marine 

systems and Covich et al. 2004 forbenthic freshwater and marine systems). 

Despite the perceived importance of the strandline as a coastal transition zone 

linking terrestrial and marine environments, and the imponance of processes like 

decomposition, relatively little is known regarding the influence of the biota on 

decomposition (Section 2.5). Assemblages in coastal regions are likely to experience 

intense stress and perturbations from increasing anthropogenic activity. Nearly 40% of 

the entire world's population live within 100 km of the coastal fringe making coastal 

population densities nearly three times that of inland areas (Millennium Ecosystem 

Assessment 2005). As population density and economic activity in the coastal zone 

increase, anthropogenic pressures on coastal ecosystems wil l increase, e.g. habitat 

conversion, land cover change, pollutant loads, and introduction of invasive species and 

even 'maintenance'. Al l these pressures can potentially lead to biodiversity loss, e.g. 

current practices of beach cleaning reduce species diversity and abundance (e.g. Smith 

2003, Schlacher et al. 2007 and references therein). 

3.1.2 Importance of Segregating Species Identity, Diversity and Interactions 

The importance of segregating effects of species identity, diversity and 

interactions in BDEF research are discussed more fully in Section 1.6 and are 

summarised below. 

1) From a purely economic standpoint, i f species identity determines ecosystem 

processes then conservation effort should be directed at identifying and protecting 

species that have large influences on ecosystem processes. Conversely, i f species 

diversity (irrespective of identity) determines ecosystem processes then conservation 

effons should focus on conserving entire assemblages. Furthermore, i f species 
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interactions determine ecosystem processes then identifying species which interact 

positively and negatively with respect to ecosystem processes will enable conservation 

effort to be allocated more effectively. 

2) Without segregating the effects of species identity from that of diversity the 

importance of species diversity in determining ecosystem processes cannot be assessed 

(Section 1.6). 

3) Understanding the relative importance of species identity and species 

interactions may also enable a better understanding of the mechanism behind diversity-

ecosystem process relationships (Sections 1.6, 1.7). This is because most mechanistic 

explanations for how diversity and ecosystem processes are linked, are based on species 

identity (trait allocation between species) and/or species interactions (Sections 1.4, 1.7). 

4) If, as suggested, there is no universal trajectory between diversity and 

ecosystem processes (Schlutze and Mooney 1994, Emmerson et al. 2001, Loreau et al. 

2001b, c, 2002, Kinzig et al. 2002, Covich et ai 2004, Bell et al. 2005) then identifying 

species and interactions that have large influences on ecosystem processes is of major 

importance for future predictions of these processes as species become extinct. 

3.1.3 Detritivore Species Identity, Diversity and Interactions 

Decomposition in intertidal (ZxmxwQV et al. 2002), freshwater (Crowl et al. 2001, 

Ruesink and Srivastava 2001) and marine systems (Duffy et al. 2001) has been shown 

to differ and is dependent on the identity of detritivore species. However the relative 

importance of species diversity (Crowl et al. 2001, Zimmer et al. 2002) and species 

interactions (Crowl et al. 2001, Ruesink and Srivastava 2001, Duffy a/. 2001, 

Zimmer et al. 2002) have not been investigated explicitly. In contrast, species diversity 

rather than species identity has also been shown empirically to affect ecosystem process 
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when in situ assemblage diversity and leaf litter decomposition was measured in the 

field (Jonsson et al. 2001, Huryn et ai. 2002) and when invertebrate resource processing 

was measured in mesocosm manipulations (Jonsson and Malmqvist 2000, 2003b, 

Cardinale et al. 2002, Cardinale and Palmer 2004). However, whilst overall positive 

diversity-ecosystem process effects were found (without identifying the balance o f 

positive, negative and additive interactions) the effect of single species removal on 

ecosystem processes cannot be discerned. ' 

There are two studies, of which I am aware, that have measured the effects of 

species identity, diversity and species interactions on ecosystem processes (Jonsson and 

Malmqvist 2003a, Zimmer et ai 2005). Zimmer et al. (2005) constructed an 

experimental mesocosm with isopods and earthworms in isolation and in combination, 

with oak, alder and mixed leaf litter separately. Although detritivore diversity was 

significant for every measure of decomposition, additive and negative species 

interactions were not consistent for every measure of decomposition and depended on 

the litter substrate. Jonsson and Malmqvist (2003a) manipulated different ftjnctional 

groups of freshwater species. They found that diversity positively affected resource 

processing in only two of the four functional groups manipulated. As diversity increased 

from one to three species, two species combinations had additive negative or positive 

effects on processing rates and it was the balance of these interactions that determined 

the overall positive or negative effect of diversity with processing rates. 

'Considering the case where three species (A, B and C) are manipulated and ecosysiem processes at each 
diversity level, as an average of Ireaiments within that diversity level show an increase in ecosystem 
process with diversity. All species may have equitable, single species processing rates but at the two 
species level, A & B may interact positively, A & C, and B & C in an additive manner resulting in an 
average value of ecosysiem processing al the two species level that is greater than the average for single 
species rates. Thus despite the fact that single species identity does not effect ecosystem processes, in a 
three species assemblage whether species A, B or C is removed will have large implications for 
ecosystem processes. 
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3.1.4 Aims and Objectives 

The present study aims to investigate the combined effect o f abundant, co-

occurring detritivores from the strandline on a key ecosystem process, wrack 

decomposition. Using all possible species combinations of single, tAvo, three and four 

species permutations, in a substitutive design (maintaining constant total density and 

similar biomass) the effect of within ftjnctional group diversity, identity and species 

interactions on decomposition is tested empirically. Three dipleran lar\'a species; 

Coehpa frigida, Coelopa pilipes, Dryomyza anilis, and one talitrid amphipod, 

Talorchestia deshayesii were used. Al l four species can co-occur in, and even dominate, 

strandline communities on NW European shores (Sections 2.3, 2.4, 2.7.1, 2.7.2 ) and all 

four species are potentially key species in the decomposition of wrack (Sections 2.5, 

2.7.1, 2.7.2). Talochestia deshayesii was selected over the other two amphipod species 

that were found in the strandline as the smallest amphipod species found at Wembury. 

Thus its mass was more similar to that of the fiy larvae than the other two amphipods. 

Using all possible species combinations the effects of species identity and diversity can 

be segregated. This design also avoids problems encountered with previous designs 

where species were drawn from a regional species pool and randomly allocated to 

different diversity treatments. In previous designs positive diversity ecosystem 

processing effects may be due to the "chance" inclusion of a species with a 

disproportionally high effect (see Section 1.6 for more detailed discussion). By 

comparing obser\'ed decomposition in multi-species treatments with those expected 

based on single-species processing rates, species that interact in a positive, negative and 

additive manner can be identified and the overall contribution of species interactions to 

decomposition inferred (Section 1.6). 
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3.1.5 Rationale Behind the Use of a Substitutive Design. 

The substitutive design employed in this study wil l limit the mechanistic 

interpretation of species interactions or diversity effects (Underwood et al. 1978, 1984, 

Benedetti-Cecchi 2004). As diversity increases, the relative density of individual 

species decreases thus the effects of intraspecific and interspecific competition and 

facilitation on ecosystem processes cannot be disentangled (See Section 1.6). It was not 

logistically possible to manipulate both the relative density of individual species and the 

total density of all species at all diversity levels [as suggested by Underwood et al. 

(1978, 1984) and Benedetti-Cecchi (2004)] as a possible means of segregating intra and 

inter specific effects on ecosystem processes. Even by manipulating both relative 

density and total density of individual species, the exact mechanism operating behind 

species interactions may still be unclear i f both inu-aspecific competition and 

interspecific facilitation occur simultaneously. Furthermore, using an additive design 

where the total number of species increases with diversity, the amount of space and 

resources available for each individual wil l decrease. Thus to limit potential bias 

introduced by unequivocal resources and space, at each diversity level, mesocosm and 

resource volume would have to increase concurrently with diversity, further increasing 

the number of replicates needed. Therefore a substitutive design was chosen. It is 

suggested that whatever mechanisms are operating to determine species interactions, 

realistic patterns of decomposition at reduced species diversity can be identified using 

this design. This assumption is based on the premise that substitutive designs may have 

greater relevance in predicting real effects of reduced diversity on ecosystem processes 

if, when diversity (the number of species) declines, the remaining species in the 

assemblage compensate for this loss by increasing their abundance (density 

compensation). Density compensation has been documented in a number of species 

assemblages (e.g. see Faeth 1984 for a review of insects, Janzen 1973, Faeth and 
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Simberloff 1981, Souihwood et al. 1982, for insects, McGrady-Sieed and Morin 2000, 

Jian 2007 for microbes; Parody et al. 2001 for birds; Case 1975 for reptiles; Kohn 1978 

for aquatic gasu-opods; Tonn 1985 and Frost et al. 1995 for fish, Ernest and Brown 2001 

for plant species assemblages). Parody et al. (2001), in reanalysing an existing avian 

population data set covering 50 years, found total avian abundance to remain relatively 

constant whilst the percentage conu-ibution of individual species changed substantially 

over time. Similarly Ernest and Brown (2001) examining a long-term data set on rodent 

and plant populations found plant total abundance to be constant but the relative 

abundance of different species to change. As there was little changein overall species 

diversity (the number of different species) in either of these two studies it is impossible 

to infer whether species increased in abundance in response to other species reducing in 

abundance (density compensation) or vice versa. To expand further, Kohn (1978) in a 

study of gastropod populations in Easier Island and the Indo-West Pacific, found one 

species to have increased its abundance in sites with lower gastropod diversity (possibly 

in response to lower heierospecific abundance), and re-analysis of this data set by Faeih 

(1984) showed that total gastropod density did not differ between sites irrespective o f 

species diversity. Tonn (1985) used mark-recapture and calch-per-effort methods to 

estimate species diversity and abundance in five small lakes in Wisconsin over 3 years. 

Whilst species richness differed between lakes total densities overall were independent 

of species richness. Unfortunately in all of the examples above, exactly how an 

assemblage would compensate (in terms of abundance) to the removal of species was 

not explicitly examined, and the remaining species assemblage was not measured after 

diversity manipulations. In contrast Case (1975), Janzen (1973) and Southwood et al. 

(1982) all found total density to increase with diversity suggesting a substitutive design 

where total density remains constant does not reflect the response of natural 

assemblages to diversity reduction. Case (1975) found the number of lizard species was 
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inversely correlated with total density. However, as lizard populations were examined at 

different sites in the Gulf of California the niche space and other factors which could 

control total lizard density, such as predation intensity and insect productivity, may 

have differed by site. Similarly, Jansen (1973) found tropical insect abundance to be 

inversely correlated with species number (diversity) in different sites from Costa Rica 

and Caribbean islands and likewise Southwood et al. (1982) found arthropod abundance 

to increase with species richness when measuring the invertebrate fauna of six tree 

species in both Britain and South Africa. Again, in all of these examples how an 

assemblage would compensate in terms of abundance to the removal of species was not 

explicitly examined. 

The only empirical evidence that a reduction in diversity does not lead to a 

reduction in total species density (as assumed using a substitutive design) comes from 

microorganism and zooplankton studies. McGrady-Steed and Morin (2000) and Jiang 

(2007) set up different diversity treatments using aquatic microbes and found that 

overall bacterial biomass did not change systematically with species richness 

(McGrady-Steed and Morin 2000) or remained relatively constant (Lin 2007) 

irrespective of the species diversity in a treatment. Frost et al. (1995) manipulated the 

diversity of zooplankton in lakes using acidification and measured the biomass of 

cladocerans, copepods and rotifers. Density remained at high levels despite the 

reduction in diversity o f each component group. How microbial and zooplankton 

assemblages respond in terms of abundance to reductions in diversity may be similar in 

strandline detritivore communities. Strandline species in this system can increase their 

abundance rapidly in response to inputs in wrack (Sections 2.4.2). The notion that 

strandline detritivores may be able to rapidly increase in abundance as heterospecifics 

are lost (and thus overall abundance declines) is not inconceivable. Finally as wrack, 

when present, is unlikely to be a limiting resource in the sirandline and in these 
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experimenis, it is unlikely that intraspecific or interspecific competition for food is an 

important factor and, as it is wrack consumption that we were measuring 

(decomposition) the substitutive design was employed in this study. 

3.2 Materials and Methods 

3.2.1 Collection of Animal Material, Wrack and Sediment 

Fly larvae, C.fhgida, C. pilipes, D. aniiis, the amphipod, T. deshayesii, cast-up 

wrack Laminaria digitata and underlying sediment were collected, by hand, from spring 

tide strandlines on Wembury first beach, Devon, UK (48.3'N, SOA'E) on the 21.07.05. 

Al l material was transported to the laboratory in large plastic bags. In the laboratory 

animal material was sorted by hand according to species and maintained in a number of 

separate aquaria (vol. = 81). To mimic strandline conditions each aquarium was lined 

with sediment from the site (depth = 2cm), overlain with 2-3 fronds of decomposing L 

digitata. A paper towel soaked in dilute sea water (S = 20 PSU) was placed beneath the 

aquaria lids to maintain a high relative humidity within. Both lid and towel also 

prevented escape by larvae and amphipods. Al l aquaria were kept in the dark in a 

temperature controlled room, T = 20 ± I 'C for a maximum of 3 d before being used in 

the experiments described below. 

3.2.2 Experimental Design 

Sixteen treatments (replicates n = 5) were constructed encompassing all possible 

combinations of one, two, three and four species and a control (no animal species 

present). The total number of individuals in each treatment was kept constant (n = 12). 

Animals of similar mass were selected so that total animal mass in each treatment was 

similar (mean individual mass of each species across all treatments ± s.e: T. deshayesii 
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0.076 ± 0.009g C pilipes 0.084 ± 0.011 g, C.frigida 0.076 ± 0.009 g and D. anilis 

0.077 ±0.009 g). 

Each replicate consisted of a mesocosm constructed from a plastic container 

(diam. = 20 cm, height = 10 cm), with pin-pricked air holes around the upper rim. Each 

container was lined with Plaster of Paris (to a depth of 1 cm), saturated with dilute sea 

water (S = 20 PSU). A paper towel saturated with the same dilute sea water was 

carefully trapped under each lid to maintain the high relative humidity essential to the 

survival of many strandline species (see Backlund 1945). A 2 cm deep layer of pre-

autoclaved (30 min at T = 200°C ) sediment very-coarse sand' was placed over the 

Plaster of Paris as the amphipod species used is fossorial, and fly larvae were often 

collected interstitially. To prevent individuals interfering with the Plaster of Paris, two 

layers of muslin netting were used to separate it from the sediment layer. 

Discs (diam. = 2 cm) of pre-autoclaved L. digitata (30 min at T = 200°C) were 

cut with a cork borer and placed in each mesocosm in an overlapping pattern 

(preliminary observations showed larvae would not feed unless the discs were 

configured in this way"*). Laminaria digitata was used as it was the most prevalent alga 

in the strandline at collection times (pers. obs). Furthermore, previous observations 

(duration = 30 h) using other strandline algae {Fucus spp. and Ulva lactusa with T. 

deshayesii, C.frigida and C. pilipes) showed either a preference for L digitata in the 

case of the fly larvae, or no preference in the case of T. deshayesii (where preference 

was expressed as algal mass loss in g). 

"This is based on ihc mean grain size found at Wembury highiide strandline determined from samples 
taken at 5 difTcrenl locations (selected randolmly using a random numbers table, Zar 1999) every other 
day between, ihc 16.02.05-28.02.05 analysed using a Malvern Long-bed Mastcrsizer X with dry sample 
unit MS66 Software version: 2.19. Based on Foike and Ward's (1957) graphical parameters mean grain 
size (D = 0.276 ± 0.106 s.e, and sorting = 0.95, this equates to very course sand on the Wentworth scale. 

digitata disc configuration 
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Each mesocosm was then placed separately in a black plastic (opaque) bag in a 

temperature controlled room, T = 20*'C ± TC, 12 h light/dark cycle, for the duration of 

the experiment (40 h). Lid removal during the experiment resulted in considerable 

disturbance, not least because T. deshayesii tended to escape. Consequently, measuring 

salinity, humidity, mortality and pupation continuously throughout the experiment was 

considered impractical. Each mesocosm was left for a period of 40 h, before the 

remaining kelp discs were carefully removed and weighed using a Fisher Brand PS-10 

balance, accuracy 0 ± 0.01 mg. Decomposition was expressed as L digitata mass loss 

(g) per total initial animal mass (g) over the 40 h period. Before the mass of L digitata 

discs was determined they were rinsed in distilled water and blotted dry using absorbent 

paper towelling. This method was repeatable and introduced little error into the 

measurement of/. , digitata mass (Appendix A l ) . 

3.2.3 Analyses 

Al l statistical analyses were carried out using MINITAB (Version 13.32, 

Minitab Inc, State College PA). ANOVA tests were used to test for significant 

differences between means when Levine's test was not significant and the assumption 

of homogeneity of variance could be upheld. I f data did not initially fit the assumptions 

of ANOVA the data were transformed. If, after logarithmic transformation, data still did 

not meet the assumption o f homogeneity of variance then the non-parametric Kruskall-

Wallis test was used. To ensure variable rates of initial animals mass, pupation and 

mortality were not correlated to L. digitata mass loss, correlations were used. I f the 

assumption that data were normally distributed was verified by the Anderson-Darling 

Normality distribution test Pearson's correlation was used. I f data were not normally 

distributed, even after logarithmic transformation, then Spearman's' rank correlation 

coefficient was calculated. 
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3.2.3.1 Species Identity 

Laminaria digitata mass loss (g.g-1) between single-species treatments of T. 

deshayesii, C. pilipes. C.frigida and anilis was analysed using a one-way ANOVA 

on untransformed data. 

3.2.3.2 Species Diversity and Identity Combination 

A flilly-nested Type III (unbalanced) ANOVA model was used to separate the 

effects of species diversity from identity combination, where species identity 

combination (treatment) was viewed as a factor nested within species diversity. 

3.2.3.3 Species Interactions 

Positive, negative and additive species interactions were determined by 

comparing mean observed L .digitata mass loss rales with mean expected loss rates for 

all Uvo, three and four species combinations (See Box 3.1 below). 

A two-tailed test for interval difference was done for each multi-species 

treatment, using the global mean values of observed L digitata mass loss - mean values 

of expected L digitata mass loss ± 2.84 standard deviations (s.d.) (2.84 s.d. related to 

the Bonferroni corrected 0.05 significance level; eleven such tests were carried out P = 

0.025/11, = 0.0023 which relates to 2.84 s.d.) (Box 3.1). 
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Box 3.1 
Expected decomposition 
Two species u-ealmenls: Wei(X|/W|) + We2(X2AV2). 
Three species treatments: We,(Xi/W,) + VVe2(X2/VV2) + We3(X3/W3) 
Four species: We,(XiAV,) + We2(X2AV2) + VVe3(X3/W3) + \Ve4(X4AV4). 
Where X = global means of/ , , digitata mass loss in single species treatments; 
W = mass of individuals in the single species treatment; 
We = mass of individual species in the mixed species treatments. 

Standard deviation for observed decomposition 
= variance/ (V n). 

Standard deviation for expected decomposition 
Two species treatment = error MS/Vn * V(Wei/W|)' +(We2/W2)^ 
Three species treatment = error MS/Vn * V(Wei/W,)^+(We2/W2/+(We3/W3)^ 
Four species treatment = error MSN n* VCWeiAV,)^ +(We2AV2)^ +(We3/W3)^ 

Standard deviation for obser\'ed-expected decomposition 
Two species treatment = (Standard deviation for observed 
decomposition)*(>/(l-f((We,/W,)^+(We2/W2)') 
Three species treatment = (Standard deviation for observed 
decomposition)*(>/(l+((We,/Wi)'+(We2AV2)'+(We3AV3)') 
Four species treatment = (Standard deviation for obser\'ed 
decomposition)*(>/(I+((We,/W,)-+(We2/W2)'+(We3AV3)^+(We3AV3)-) 

Where 5 = the number of replicates, and variance was taken from the terror MS, 
Where error MS = within group adjusted means squares. 
Where n= the number of replicates. 

3.3 Results 

3,3.1 Initial Animal Mass, Larval Pupation and Mortality 

Despite best efforts initial animal mass differed between treatments (P < 0.001, 

Appendix A2) and species levels (P < 0.001, Appendix A3). There was no correlation 

between initial animal mass and kelp mass loss, (Pearson correlation = -0.107, P = 
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0.362''). Total animal mass change, was very small and varied little beuveen u-eatments 

(mean = 0.015 g ± 0.006 s.e.). 

Table 3.1 Mean ± s.e. total animal mass (g) and mass change for each treatment. 

Treatment Mean initial Mass change 
mass (g) ± s.e. (g) ± s.e. 

C. pilipes 0.336±0.019 0 .023±0 .0I2 
C fri$*ida 0.221 ±0 .016 -0.033 ±0 .023 
D, anilis 0.228 ±0.011 -0.020 ±0.004 
T. deshayesii 0 .410±0 .0 I3 0 .0 I7±0 .014 
C. pilipes & C. frigida 0.331 ±0.014 0 . 0 I 0 ± 0 . 0 I 6 
C. pilipes & D, 0.393 ±0 .007 0.031 ±0.011 
C. pilipes & T. deshayesii 0.477 ±0.035 -0.042 ±0 .029 
C. frigida & A anilis 0.534 ±0-091 0.013 ±0 .038 
C. frifiida & T, deshayesii 0.958 ±0 .019 0.060 ±0 .023 
D. anilis & 71 deshayesii 0.615 ±0 .016 0.034 ±0 .026 
C. pilipes, C. frigida & D, anilis 0.320 ±0.034 0.073 ±0.031 
C. pilipes, D. anilis & T. deshayesii 0.364 ±0 .016 0.024 ±0 .027 
C. frigida, D. anilis & T. deshayesii 0.600 ±0.020 -0.016 ±0 .009 
C. pilipes, C. frigida, D, anilis & T, deshayesii 0.451 ±0 .017 0.021 ±0 .020 

No larval mortalities were obser\'ed during the experiments. The proportion of 

laPr'al pupation events differed markedly both between treatment (P < 0.001, Appendix 

A4) and species level (P < 0.001,Appendix A5). There was no correlation between 

initial animal mass and kelp mass loss g.g-1 (Pearson correlation on Spearman ranked 

data = O.I30, P = 0.266)^ 

Talorchestia deshayesii mortality was generally very low with a median of 0 %. 

However, there was a significant effect of treatment ( P < 0.001, Appendix A6) and 

species diversity (P < 0.001, Appendix A7) on T. deshayesii percentage mortality. 

Anderson-Darling test of normal dislribution L digiiaia mass loss g.g-l. Mean = 0.8815, s.d = 0.8109, n 
= 75, AD = 5.098 P < 0.005, Log,o L digitaia mass loss g.g-1 Mean = 0.1710, s.d = 0.3131, n =75, AD = 
0.274, P = 0.656 Anderson-Darling lest of normal distribution Initial animal mass. Initial animal mass g. 
Mean = 0.4458, s.d. = 0.1885, n = 75, AD = 2.! 72, P < 0.005 Logio initial animal mass g. Mean = 0.3853, 
s.d. = 0.17723, n = 75, AD = 0.358, P = 0.445 
' Anderson-Darling test of normal dislribution % pupation. Mean =13.93, s.d. =18.25, n =70, AD =7.128, 
P <0.005 Log,o% pupation. Mean = 0.6841, s.d. = 0.7031, N = 70, AD = 6.144, P < 0.005 Hence non-
parametric Spearmans Rank correlation coefficient lest was used. 
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However, there was no correlation between T. deshayesii percentagemortality % and 

kelp mass loss (Pearson correlation of Spearman ranked data = -0.056, P = 0.633^). 

Although initial animal mass, larval pupation and amphipod mortality did differ 

between treatments, none of these factors was correlated with decomposition so they 

were not considered to be factors affecting decomposition in ftirther analyses. 

3.3.2 Decomposition 

Laminaria digitata mass loss was not observed in three of the five control 

replicates. The remaining two replicates sustained 0.001 g L. digitata mass loss over 40 

h (Figure 3.1). Thus decomposition in the absence of animal species was negligible and 

is discounted from the analyses that follow. 

The largest mean L digitata mass loss (2.398 g.g-I animal mass) was recorded 

when all three lar\'al species were placed together (Figure 3.1). Of the single species 

treatments the amphipod T. deshayesii exhibited the greatest mean L digitata mass loss 

(1.059 g.g-1 animal mass, Figure 3.1). However, treatments containing the amphipod in 

Uvo and three species combinations were generally lower than those without. Of all the 

two species treatments C. pilipes & D. aniiis displayed the greatest rates of L digitata 

mass loss (1.808 g.g-1 animal mass, Figure 3.1). This was the second highest L digitata 

mass loss observed of all treatments across all species combinations. Interestingly, when 

C. pilipes & D. aniiis were incubated in isolation, the two lowest mean L digitata mass 

losses were recorded (0.293 and 0.321 g.g-1 animal mass, respectively. Figure 3.1). 

* Anderson-Darling lest of normal disiribulion of talilrid mortalily. Talilrid morlality, Mean = 2.708, s.d. 
= 4.172, n =40, AD = 5.906, P< 0.005 Log,o% lalitrid mortalily. Mean = 0.2979, s.d. = 0.4257, n = 70, 
AD = 6.274, P <0.005 Hence non-parametric Speannans Rank corrclaiion coefficient test was used. 
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Figure 3.1 L digitata mass loss g.g ' (mean ± s.e.). Yellow = single species treatments, 
blue = two species treatments, green = three species treatments, red = four species 
treatments. 

3. V3 Spicits Idint i ty and Diversity 

When species u crc incubated individually, L. digitata mass loss differed 

between species. The desending sequence of L. digitata mass loss in single species 

treatments was; T. deshayesii > C.frigida >D. anil is > C. pilipes (Figure 3.1). The 

difference in L. digitata mass loss between single species treatments was significant (P 

= 0.0011, Appendix A8), although only the amphipod treatment displayed significantly 

greater mean decomposition values than D. anilis and C. pilipes (P < 0.05 Tukey's 

(USD) post hoc test. Appendix AS). Laminaria digitata mass loss increased as more 
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species were included in a treatment up to the three species level then deceased when all 

four species were included in a treatment (Figure 3.2). The increase in L. digitata mass 

loss g.g-1 animal mass between species level one, two and three may have been due to 

the large L digitata mass loss g.g-I in the two species treatment of C pilipes & D. 

anilis and the three species treatment including all the larval species (Figure 3.1). 

Rates of L. digitata mass loss were very variable depending on treatment (Figure 

3.1) and using a flilly-nested ANOVA only nested species treatment, not species level, 

was significant in explaining the variation in decomposition g.g-1 (Table 3.2). 

Treatment or species identity combination explained 51.2% of the total variance and 

species diversity none. 
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Figure 3.2 L. digitata mass loss g.g ' (mean ± s.e.) at each species level. 

lahk' 3.2 I ull\-nested A N ( ) \ A Type III showing the effect of species di\c'rsit>. 
and identity, nested under s p L c i i s d l M rsitN on l()<;i.,/- iliiiitata mass loss <i.g 

vSource D . I . SS MS t P \ a fiance 
components 
as " o of total 

Species 3 0.6271 0 2090 0.6499 0.1)599 0.00 
level 
Treatment 1 I 3.5378 0.3216 6.2447 <0.00l 51.20 

Error 60 3.0896 0.0515 48.80 

t o t a l 74 7.2545 

Levinc's Test for equal variances was significant for L. digitata mass loss g.g between treatment test 
statistic = 2.1%, P = 0.0IX. Levine's Test for equal variances was not sigmtlcant for logu, L. digitata 
mass loss g.g ' betv\een treatment test statistic species level test statistic =1.429 P = 0.168 and species 
level test statistic =1.046, P = 0.378. 
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When treatments containing only the lar^'al species are considered there appears 

to be an increase in L. digitata mass loss as the number of larvae in a treatment 

increases (Figure 3.1). Larval species level was significant in explaining the variability 

in L digitata mass loss g.g"' (P < 0.001) when T. deshayesii was excluded from the 

analysis. Diversity explained 41.09% and irealmeni 22.51% of the variability in L 

digitata mass loss g.g ' (Table 3.3). Although L digitata mass loss in single species 

larval treatments was significantly lower than treatments containing two or three larval 

species, treatments at the two and three species level were not significantly different 

from each other (P > 0.05 in each case, Appendix A9). 

Table 3.3 Fully-nested ANOVA Type III showing the effect of larva species diversity, 
and identity, nested under species diversity, on \og\oL. digitata mass loss g.g''. 

Source D.F. SS MS F P Variance 
components as 
% of total 

Lar\'al 4 1.14013 0.28503 4.09 0.010 22.51 
treatment 
Larval 2 2.25491 1.12745 16.19 <0.00I 41.09 
species level 
Error 8 1.95002 0.06964 36.40 
Total 4 5.34506 
Levine's Test for equal variances was significanl for/,, digitata mass loss g.g'' between Ireatmenls with 
larvae test sialislic = 3.79, P < 0.001. Levinc's Test for equal variances was not significanl for log,o L. 
digitata mass loss g.g*' between treatments with lar\'ae test statistic species level lest statistic = L52 P = 
0.137 and species level (lar\'ae only) test statistic = 11.24, P = 0.303. 

3.3.4 Species Interactions 

The trend of increasing mean L. digitata mass loss with increasing lar\'al diversity (in 

the absence of T. deshayesii) could be seen when observed and predicted rates of 

decomposition were compared (Figure 3 .3). Treatments containing only larval 

combinations generally showed higher observed values of decomposition than predicted 

using the sum of single species processing rates (Figure 3.3). Obsen'ed mean L. digitata 

mass loss g.g ' was significantly greater than expected values, at both the 95% and 
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99.54% (Bonferroni corrected) significance level for all multi-larval combinations, w ith 

the exception of C. frigida & D. anilis treatments where there was no significant 

difference (Figure 3.3). 

I 

Treatments 

Figure. 3.3 Observed and expected values of decomposition g.g for all multi-species 
treatments (mean ± s.e.) over 40h. * = significant difference at the 95% significance 
level, ** =significant difference at the 99.54% significance level. Light coloured bars = 
expected values of L. digitata mass loss. Dark coloured bars = observed L .digitata mass 
loss g.g-1, Blue= two species treatments, green = three species treatments and red = four 
species treatment, s.e = (s.d/ (V n)) (see Box 3.1). 
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Laminaria digitata mass loss g.g ' in combination treatments containing T. 

deshayesii depended largely on the other larva species in the treatment (Figure 3.3). 

Mean decomposition in treatments containing T. deshayesii were lower than expected in 

two treatments, one containing D. aniiis the other C. pilipes & D. aniiis (Bonferroni 

corrected significance level). Treatments containing T. deshayesii & C.frigida, and T. 

deshayesii, C. pilipes & D. aniiis also showed lower than expected mean L. digitata 

mass losses (this was only at the 95% significance level and thus should be treated with 

caution due to the number of inter\'al tests performed). Observed decomposition was 

only significantly greater than expected when T. deshayesii was incubated with C. 

pilipes & C.frigida (at both the 95% and Bonferroni corrected significance level, 

99.54%). For the other two treatments containing T. deshayesii, decomposition g.g"' 

rates were not significantly different. 

Owing to the large number of Students t-tests performed the chance of incurring 

a Type II error is increased (i.e. a false positive result). Therefore, the 99.54% 

significance level refiects the Bonferroni corrected significant level for the number o f 

test employed. Whilst significant differences at the 95% significance level should be 

viewed cautiously, the Bonferroni correction is an extreme correction and differences at 

the 95% significance level are likely to be the result of real difference rather than an 

artifact of the test. 

3.4 Discussion 

3.4.1 Species Identity 

Decomposition in the single species amphipod treatment was higher than any of 

the single species larval treatments. Previous experiments examining the effects of 

single species exclusions showed similar results. Litter decomposition has been shown 
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to be dependent on the identity of the excluded aquatic invertebrate (Crow! et al. 2001) 

or intertidal invertebrate (Zimmer et al. 2002). However, when all treatments are 

considered in this study, it was not the presence or absence of any single species but the 

species identity combination diat explained the variability in wrack mass loss. The 

presence or absence of any single species did not result in significantly higher or lower 

L. digitata mass loss compared with other treatments at a particular diversity level. 

Although combinations of T. deshayesii and larvae generally resulted in lower observed 

than expected values of decomposition this was not consistent for all treatments and 

depended on the larval combination in the particular treatment. In this experiment, 

species interaction effects arguably played a larger role than species identity in 

determining processing rates. The relative importance of individual species traits, 

species interactions and species diversity for ecosystem processes cannot be discerned 

from the studies of Crowl et al. (2001) and Zimmer et al. (2002), the former only 

excluded or included two species o f shrimp, the latter only investigated the effects of 

litter processing in single species isopod treatments. 

Contrary to the results of this experiment, invertebrate species identity has been 

shown 10 affect leaf litter breakdown in a consistent manner in multi-species treatments 

(Ruesink and Srivastava 2001, Du^Ty et al. 2001). Ruesink and Srivastava (2001) 

removed lar\'ae from experimental mesocosms and compared leaf breakdown in the 

resultant assemblages with that expected (due to the reduced metabolic capacity in the 

treatment). The removal of one dominant species of stonefly larva, resulted in leaf 

breakdown exceeding that expected and the removal of a caddisfiy lar\̂ a resulted in a 

much lower leaf breakdown by the remaining species, even when the remaining 

assemblage's biomass was manipulated to compensate for the loss due to species 

removal. Duffy et al. (2001) set up treatments using all possible combinations of three 

aquatic herbivorous crustacean species and found epiphyte grazing, seagrass biomass 
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and secondary production to be dependent on the species identity and their individual 

traits. The discrepancies between the results of this study and those of Ruesink and 

Srivasiava (2001) and Duffy et al. (2001) may be due to differences in experimental 

design. Ruesink and Srivastava (2001) did not measure leaf processing using all 

possible species combinations and therefore they could not assess, whether the range 

and magnitude of interactions observed in this study exist for die stream detritivores 

they used. In the current study, i f decomposition was compared between treatments 

containing all species, after C. pilipes removal, with treatments containing all species 

after C.frigida removal, similar conclusions to those of Ruesink and Srivastava (2001) 

may have been reached. Observed values of decomposition in the three larval species 

treatment, without T. deshayesii, was greater than expected (comparable with the 

removal o f the sionefly larva) and treatments of all species except C.frigida had lower 

than expected values of decomposition (comparable with the removal of a caddisfly 

larva). As in the current study, the design employed by Duffy et al (2001) involved 

treatments of all possible species combinations, however, direct comparisons of 

expected litter processing based on single species processing rates and those observed in 

mixed species treatments were not made. Again the magnitude and consistency of 

negative species interactions cannot be confirmed and compared with the results of the 

current study. Furthermore, in the two and three species diversity treatments epiphyte 

levels and seagrass biomass were not significantly different from those of controls. 

Negative interactions may have been greater between the herbivore species investigated 

by Duffy et al. (2001) than the species used in the current experiment, or processes 

other than invertebrate grazing may have played a significant role in determining 

epiphyte accumulation and seagrass biomass. 

Alternatively different mechanistic explanations behind the relationship between 

species identity and ecosystem processes may explain the discrepancies between the 
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results of the current study and those of Ruesink and Srivastava (2001). Ruesink and 

Srivastava (2001) attributed the mass loss in reduced diversity treatments to differences 

in individual species traits. As the slonefly species was a facultative, not obligate, 

shredder leaf consumption in treatments including the stonefiy may have been reduced, 

as it was feeding on alternative food sources. Differences in species traits or 

complementary resource use cannot explain the results o f the current experiment as 

species-specific n-ends in wrack processing were not consistent in multi-species 

treatments. Thus, it is unlikely that the species in the current smdy differed in traits with 

respect to resource use. I f they did, these effects were negligible when species 

interaction affects were considered. 

3.4.2 Species Diversit>' 

Overall diversity was not significant in explaining the variability in L. digitata 

mass loss. However larval diversity significantly explained the increase in L. digitata 

mass loss when treatments containing T. deshayesii were excluded. In all but one multi-

species larval treatment (C.frigida & D. aniiis combined) wrack processing was greater 

than expected. As for the lar\'ae in the current study, a positive effect of aquatic 

detritivore diversity on resource processing rates has been shown, both in the field 

(Jonsson et al. 2001, Huryn et ai 2002) and in mesocosm manipulations (Jonsson and 

Malmqvist 2000, 2003a Cardinale et al. 2002, Cardinale and Palmer 2002). Positive 

diversity-ecosystem processing relationships obser\'ed in aquatic detritivores, field 

studies should be interpreted with caution. Jonsson et al. (2001) and Huryn et al. 

(2002) measured leaf mass loss and the associated detritivore assemblage from litter 

bags placed in streams. Leaf mass loss was positively correlated with shredder species 

richness, abundance (Jonsson et al. 2001) and biomass (Huryn et al. 2002). In adopting 

a correlative approach to assessing diversity-ecosystem processing relationships 
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(Jonsson et ai 2001, Huryn et al. 2002) the effects of species diversity from that of 

species identity cannot be distinguished'. The high leaf mass loss in streams with high 

species abundance may be due to the increasing probabiHty o f including species with a 

marked influence on process rates in higher diversity assemblages; the sampling 

probability effect (Aarssen 1997, Huston 1997). This could be further exaggerated i f 

species with disproportionately high effects on leaf breakdown were also the most 

abundant. Although species dominance was not measured in either study, Huryn et al. 

(2002) noted high species dominance in most stream types, with the identity of the 

dominant species changing with stream type (as did leaf mass loss). Jonsson et ai. 

(2001) thought it unlikely that the increase in abundance of species with 

disproportionately high effects on leaf breakdown could explain the positive diversity-

processing relationship they observed as biomass was not correlated vvith 

decomposition. However, the decomposer with the highest processing rales does not 

necessarily have the greatest mass. In this present study, wrack processing rates did not 

increase in the presence of the most efficient single species wrack processor, T. 

deshayesii. It is possible that i f the density of the most efficient processor, T. deshayesii, 

in relation to larvae was increased an overall positive diversity ecosystem processing 

relationship may have been found in the current study. 

Previous mesocosm manipulations that have manipulated species diversity and 

identity, processing rates increased with larval diversity (Cardinale and Palmer 2002, 

Jonsson and Malmqvist 2000). The mechanisms operating to increase processing rates 

with larval diversity, as proposed by Jonsson and Malmqvist (2000, 2003b), Cardinale 

^ Further caution should be taken when interpreting the results of these studies as species richness and 
abundance also differed with stream order {Jonsson efal. 2001). In the case of Huyn et al. (2002) the 
efTects of shredder diversity on leaf decomposition may be an artefact of differential processing rates due 
to land use type and nitrate as taxonomic richness and shredder biomass also differed with land use type 
and nitrate was related to both land use type and leaf decomposition. 
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el ai (2002) and Cardinale and Palmer (2002) may be operating between the dipteran 

larvae investigated in the current study; this is discussed fijrther in Sections 3.4.3 and 

3.4.4. However, these mechanisms are evidently not operating between the larvae and 

the amphipod in the current study. 

Where aquatic detritivore manipulations have shown processing rates to be 

diversity independent (Ruesink and Srivastava 2001, Duffy et al. 2001) functional 

differences between the individual species were used to explain the results. However, 

for the current study it is suggested that it was not individual species identity but 

identity combination and species interactions that could explain the variability in L. 

digitata mass loss between diversity treatments (see Section 3.4.1). 

As previous detritivore diversity manipulations have not compared expected 

processing rates based on single species, additive processing rates, with observed 

processing rates for all species combinations, the range and magnitude of species 

interactions were not empirically defined. Whilst facilitative and complementary 

interactions may increase processing rates with larval diversity, the overall effects of 

diversity on processing rates wil l depend on the balance of positive, additive and 

negative interactions as seen when treatments including T. deshayesii are included in the 

analysis. 

3.4.3 Species Interactions 

In the current study it was the balance of species interactions that determined 

decomposition and also determined the overall effect of diversity and identity in 

determining decomposition. The overall non-significant effect of diversity on the 

variability in wrack mass loss reflected the range and magnitude o f species interactions. 

Species combination effects were rarely additive and were not predictable from L. 

digitata mass loss in single species treatments. As discussed in Section 3.4.1., the 
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inclusion or exclusion of any single species did not have consistent efTects on wrack 

mass loss, although general trends were evident. In all but one multi-larval treatment (C. 

frigida & D. ani/is combined) wrack processing was greater than that expected, 

explaining the increase in wrack processing as the number of iar\'a included in a 

treatment increased. The generally negative interactions obser\'ed when larvae and the 

amphipod were kept together, can explain the overall non-significant effect of diversity 

on wrack processing. Within multi-species U-eatments, observed wrack mass loss was 

generally lower in treatments containing T. deshayesii, than those without. However, 

not all treatments of larvae and T. deshayesii resulted in a significantly lower wrack 

processing rates than those expected. Treatments of C. pilipes & T. deshayesii had an 

additive affect on wrack processing and when C. pilipes and T. deshayesii were 

combined with a third species, the additive effect became positive or negative 

dependent on the identity of the third species (i.e. significantly lower L digitata loss 

was observed than expected with D. anilis and significantly higher than expected with 

C. frigida). Moreover, the significantly higher than expected wrack mass loss that was 

observed in treatments C. frigida, C. pilipes & T. deshayesii may have arisen as a 

result of the positive effect of C pilipes & C. frigida on wrack processing 

overshadowing the negative interaction between C. frigida & T. deshayesii. However, i f 

this were the case then a greater than expected wrack mass loss in treatments consisting 

of C. pilipes D. anilis & T. deshayesii should have been observed. 

The only studies that have empirically tested interactions beuveen the species 

used in the current study have been concerned with dipteran larval development and 

growth when reared in multi-species environments (Hodge and Arthur 1997, Philips et 

al. 1995, Leggett 1993). The conclusions reached with respect to competition and 

facilitation between the species was different depending on the environmental 

conditions and developmental parameters measured (Hodge and Arthur 1997, Philips el 
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al. 1995, Leggett 1993). Comparing previously found species interactions (in terms of 

their effect on population parameters) with their effect on processing rates is, at best, 

speculative. Unfortunately, unlike the studies of Hodge and Arthur (1997), Leggett 

(1993) and Philips et al. (1995) the current study could not measure individual species 

responses in multi-species treatments. However, the pattern of interspecific interactions 

between C pilipes & C.fngida found in previous studies may explain the higher than 

expected processing rates in treatments of C pilipes & C.frigida. C.frigida, C. pilipes 

and Tfwracochaeta zosterae were seen to compete. A dominant hierarchy, C.frigida > 

C. pilipes > T. zosterae, was suggested based on output population and positive species 

interactions were observed. C pilipes actually enhanced C.frigida sur\'ival and 

population output (on chopped seaweed) and irrespective of resource type C. pilipes 

survival and population output decreased in the presence of C.frigida (Hodge and 

Arthur 1997). Similar evidence of interspecific facilitation and competition is seen 

when C.frigida and C pilipes eggs were allowed to develop, both in isolation and 

together, and population density measured (Hodge and Arthur 1997). Coelopa frigida 

sur\'ival increased in the presence of C. pilipes, C. pilipes survival decreased as its own 

density increased, although mortality increased and male wing length (surrogate for 

body size) decreased in the presence of C.frigida (Hodge and Arthur 1997). In the 

current smdy when C. pilipes & C.frigida were incubated together, higher than 

expected processing rates could be a result of facilitation of C.frigida by C pilipes. 

Coelopa frigida had the highest single species wrack processing rates. Therefore, even 

i f C. pilipes was inhibited, the overall processing rates in the two species treatment may 

have been higher. This, however, cannot explain the positive effect of D. anilis & C. 

pilipes on wrack mass loss as both species had equivalent single species processing 

rates. Not all studies have found a positive effect of C. pilipes on C.frigida populations 

(Philips et al. 1995). The contrasting results of Philips et al. (1995), Leggett (1993) and 

105 



Hodge and Arthur (1997), could be due to the different parameters measured, or 

environmental conditions (Philips et al. 1995) or the increased density in multi-species 

treatments.^ 

There are only two other studies that have quantified species interactions with 

respect to processing rates using detritivores (Jonsson and Malmqvist 2003a, Zimmer et 

al. 2005). Similar to the effects of larvae on wrack decomposition recorded in the 

current study, Zimmer et al. (2005) found detritivore diversity to have a significant 

effect on leaf mass loss. The variability in measures of microbial respiration, leaf 

calcium and magnesium concentration as well as soil nitrogen, organic carbon and 

phosphorus concentrations between delritivore diversity treatments was also significant. 

The importance of species interactions in determining diversity-decomposition 

relationships in the study by Zimmer et ai (2005) is difficult to ascertain as only two 

species of detritivores were manipulated. As observed in this study with multi-species 

treatments of C. pilipes & C./rigida, leaf mass loss was greater than expected based on 

single species processing rates when alder was used as a substrate. However, additive 

species effects were observed when oak litter was used and species interactions became 

negative when the two leaf litter species were mixed. As oak is a poor quality food 

source, it is possible that when the two species were combined they preferentially fed on 

each other's faeces rather than the leaves. Unlike the current smdy, Zimmer et al. 

(2005) used an additive design, where the total species number increased but the 

amount of litter added to each mesocosin did not. Leaf liner was only in excess in 

multi-species treatments when it was of a high quality (alder). Thus, in mixed and single 

species treatments of the poor quality litter (oak), competition for the food source 

The resulis of Philips el al. (1995) and Hodge and Arthur (1997) are further confounded as the species 
density was increased wiih lan-al species number. Dcnsity-dependenl sun'ival for both C./rigida and C. 
pilipes has previously been shown, al low density survival increases with density, and then decreases at a 
critical point (Leggeu 1993, 1996). 
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increased (potentially both intraspecific and interspecific competition) and feeding rates 

were reduced as a result. This does not, however, explain why species interactions were 

negative when both litter types were combined, but additive when incubated only with 

oak. However, the importance of substrate in determining the direction of species 

interactions with respect to resource processing was highlighted (Zimmer et al. 2005). 

As in the current study, Jonsson and Malmqvist (2003a) emphasised the 

importance of species interactions in determining overall diversity-processing 

relationships. They manipulated different functional groups of species, two groups o f 

filter feeders, one grazer group, and one predator group. Mesocosms containing every 

possible combination of single, two and three species were constructed; keeping 

densities constant across species level. In all groups the increase or decrease in 

processing rates with diversity was non linear. As diversity increased from one to three 

species, two species combinations had additive, negative or positive effects on 

processing rales and it was the balance of these interactions that determined the overall 

effect of diversity with processing rales. Similar to that found for wrack processing rates 

with fiy larvae in the current study, Jonsson and Malmqvist (2003a) recorded an 

increase in processing rales with diversity in one functional group, blackfiy larval filler 

feeders. Furthermore, within the blackfiy larval group species interactions affected 

processing rates in a similar manner as those found in the current study. When two 

blackfiy larvae were incubated together, two pair-wise combinations significantly 

exceeded expected processing rates, and processing rates with one pair was not 

significantly different from predicted. The significant effect of one group of filter-

feeding larvae on processing rates was attributed to stronger intraspecific, relative to 

interspecific competition, as initially proposed by Jonsson and Malmqvist (2000). The 

diversity-independent or negative diversity-ecosystem process relationship observed in 

the other functional groups from Jonsson and Malmqvist's (2003a) study could be 
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explained by the separate interactions between species. In Jonsson and Malmqvist's 

(2003a), study grazer and predator species diversity decreased processing rates, 

although this was only significant for the predator group. In a two and three species 

combinations of grazers and predators observed processing rates were significantly 

lower than expected based on single species additive affects, with the exception of one 

grazer combination and one predator combination (both were not significantly different 

from expected). The decrease in processing rates with diversity observed in grazer 

groups was attributed to resource depression by one species. The decrease in predation 

with predator diversity was attributed to increased interference competition in multi-

species assemblages resulting in less time spent feeding. The other group of larval filler 

feeders showed no increase in processing rates with diversity. Although one pair 

combination significantly exceeded predicted processing rales, another combination 

significantly underperformed, and a third showed no difference from that of expected 

based on species additive affects. The importance of investigating species interactions 

when making inferences of the effect diversity has on ecosystem processes is 

highlighted by the current study and that of Jonsson and Malmqvist (2003a). In this 

study, when all treatments were considered, only species identity combination nested 

under diversity was significant in explaining the variability in processing rates. When 

species are segregated into separate groups [in the current study larva only treatments, 

in Jonsson and Malmqvist's study (2003a) the blackfly larvae] diversity significantly 

affected processing rates. Overall processing rates were determined by the range of 

positive and negative interactions between species. 

3.4.4 iMcchanistic Explanations 

Most mechanistic explanations for how increased species diversity affects 

ecosystem processes are based on differences in species trails (Loreau et al. 2001b, 
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Schmid et al. 2001, Norberg 2004). The niche differentiation or efficiency effect 

(Vitousekand Hooper 1993, Tilman e/o/. 1997b, Tilman 1999) is the most commonly 

used explanation for positive species diversity effects on ecosystem process. It predicts 

that each species plays a different role in ecosystem functioning, and therefore, 

ecosystem processes in the absence of a species cannot be compensated for by the 

remaining species in the assemblage. For niche differentiation to explain the positive 

relationship observed between larvae in the current study, each larval species would 

need to feed on a different, or differently on a part of the kelp. Kelp would also need to 

be limiting so that each species could only consume up to a maximum point, thus in 

multispecies treatments more parts of the kelp would be consumed resulting in greater 

mass loss. It is unlikely that niche differentiation can explain the pattern of wrack mass 

loss with the species used in the current study because L. digitata was present in excess 

in all treatments. Furthermore, wrack availability is rarely limiting in the strandline 

(Backlund 1945). No single species had a consistent positive or negative effect on 

processing rates when combined with other species, and the asymmetric interaction 

observed when T. deshayesii and larvae are considered does not support the niche 

diflerentiation hypothesis. 

The sampling effect or selection probability effect (Aarssen 1997, Huston 1997) 

provides an alternative hypothesis to explain the increase in ecosystem process in 

response to greater diversity. In essence, as diversity increases the chance of including 

species with a disproportionately high effect on ecosystem process also increases. 

Whilst this sampling effect provides a plausible explanation for why leaf decomposition 

measured in the field was seen to increase with greater species diversity (Section 3.3.3), 

it is unlikely to be an explanation for the observations of the current study. In the 

current study, all species combinations were incorporated into the methodological 
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design, and no single species was seen to be disproportionately responsible for 

increasing decomposition rates. 

Positive species interactions between larval species are more plausible 

mechanisms to explain the positive response of decomposition to larval diversity 

observed in the current study. It is possible that the inclusion of the amphipod in multi-

species treatments in some way interrupts or ameliorates positive larval interactions. 

Positive species interactions, such as facilitation, have long been cited as potential 

diversity-ecosystem process promoting mechanism (Loreau et al. 2001b, Loreau and 

Hector 2001). There are numerous examples of mutualism in the literature, as well as 

more recent evidence that facilitation between species increases a number of ecological 

processes: predation rates (Soluk 1993, Soluk and Richardson 1997), leaf liner 

decomposition (Jonsson and Malmqvist 2000), and resource capture (Cardinale et al. 

2002). More recently, intraspecific interference (Jonsson and Malmqvist 2000, 2003b) 

and interspecific facilitation (Jonsson and Malmqvist 2000, 2003b, Cardinale et al. 

2002) have been recognized as mechanisms whereby species interactions may be 

responsible for the increase in ecosystem processes with diversity. Both intraspecific 

interference (Jonsson and Malmqvist 2000, 2003b) and interspecific facilitation 

(Jonsson and Malmqvist 2000, 2003b, Cardinale et al. 2002) may explain the increase 

in wrack mass loss with larval diversity in the current study. 

The Interaction Hypothesis (Jonsson and Malmqvist 2000) predicts that 

processing rates in assemblages of lower species diversity would be hampered, due to 

stronger interactions between conspecifics. This assumes that intraspecific interactions 

are more intense than interspecific interactions (as a process of fitness-related natural 

selection). Although in a subsequent study Jonsson and Malmqvist (2003b) 

demonstrated reduced resource processing as intraspecific density increased (for some 

of the species investigated) and some evidence of increased processing rates when 
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species were removed and replaced by conspecifics, they did not explicitly show the 

relative importance of these two mechanisms for processing rates. Furthermore, in the 

species replacement experiments, processing rales also changed according to the order 

in which conspecifics were removed and replaced. Where an increase in processing 

rates was observed, one of two species used in the replacement experiments was not 

used in the original study that demonstrated an increase in resource processing with 

diversity (Jonsson and Malmqvist 2000). This said the balance of interspecific and 

intraspecific competition may explain the increase in wrack mass loss with larval 

diversity and the generally lower than expected wrack mass loss in the presence of the 

amphipod, found in the current study. Interspecific competition may be greater than 

intraspecific competition between lar\'al species and the reverse may be true for the 

amphipod. Alternatively, increased processing rales as lar\'al diversity increases may be 

due to interspecific facilitation between the three species of larvae, which, in the 

presence of the amphipod, is interrupted. 

Using the design employed here, and also in Jonsson and Malmqvisi's study 

(2000), interpreting positive species diversity ecosystem processing effects as evidence 

of facilitation or intraspecific and interspecific competition without additional evidence 

is difTicult. Using substitutive designs, where overall species density is maintained 

equal, means that, the relative density of individual species decreases as diversity 

increases. Thus, positive effects of diversity on ecosystem processes due to intraspecific 

competitive release and interspecific facilitation cannot be discerned (see Section 3.1.3 

for a more detailed discussion). Intraspecific competition between dipteran shredders 

may arise due to limited amounts of leaf detritus (Jonsson and Malmqvist 2000). 

However, in the current experiment, wrack was not a limiting resource, thus raising 

doubt on the role of species iniraspecific competition for food. Additionally, pupation 

rates were not significantly reduced in mixed larva treatments. I f pupation rates 
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increased in multi-species larva treatments, where intraspecific density was reduced, 

this would be indicative of a reduction in competition. Larvae often pupate in non-

optimal conditions (Rowell 1969). Cardinale and Palmer (2002) provided evidence that 

the positive effect of three species of caddisfiy !ar\'ae on resource capture was attributed 

to species-facilitated habitat modification (by increasing the catchnet area and thus 

increasing the amount of organic matter captured). Supporting the conclusions of 

Cardinale and Palmer (2002), that species facilitation not complementary resource was 

the mechanism underlying the positive effect of diversity on resource capture, 

increasing the diversity of the same three species increased the amount of suspended 

particulate matter (SPM) removed only when SPM was not limiting (Cardinale et al. 

2002). A similar mechanistic explanation to that proposed by Cardinale et al. (2002) 

may be used to explain the generally greater than expected wrack mass loss observed in 

multi-larva treatments found in the current study. Heterospecific larval assemblages in 

the current smdy may facilitate processing rates through resource conditioning. This is 

discussed ftirther below. However, in the presence of the amphipod either this 

facilitation process does not occur or other process are simultaneously operating to 

result in the generally lower than expected wrack mass loss when the larvae and 

amphipod are combined. 

None of the previously proposed hypotheses can adequately explain the different 

wrack mass loss in treatments of different species. The presence or absence of any 

particular species did not affect wrack processing in a consistent way and wrack mass 

loss in multi-species treatments was not predictable from single species treatments. 

Therefore, a hypothesis of microbial facilitation and inhibition is tentatively proposed, 

to explain these results. 

The positive effect of larval diversity on L. digitata inass loss may be due to 

increased microorganism diversity, i f a different microbial assemblage was associated 
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with each species of lar\'a. Thus, in multi-species larval treatments it would be predicted 

that a greater diversity of microorganisms would be found. I f these assumptions are 

correct, decomposition should be greater in treatments containing a higher diversity of 

microorganisms, through complementary resource use of the wrack by the bacteria 

and/or increased larva feeding rates induced by a higher diversity of microbes. The 

reduced L digitata mass loss in the presence of T. deshayesii and lar\'ae could also be 

attributed to the microorganism assemblage in mixed species treatments. Larvae may 

increase anaerobic conditions and anaerobic decay through the introduction of their 

faeces. Thus when larvae are present aerobic bacteria and moulds may be excluded. T. 

deshayesii feeding rates may be depressed in the absence of aerobic bacteria and moulds 

as these groups themselves may constimte an important part of the amphipod diet, 

and/or increase the palatability of the wrack for the amphipod. The evidence supporting 

such a mechanism is largely anecdotal. Microorganisms play a role in the breakdown of 

wrack (Griffiths et al. 1981, Koop et al. 1982a, Haxen and Grinley 1984). There is 

evidence that bacteria in other detritivore faeces are important to the decomposition of 

detrims (see Hargrave 1975 for a review). Furthermore, increased wrack decay has been 

attributed to the presence of bacteria induced by C.frigida and C. pilipes faeces 

(Egglishaw 1960, Rowell 1969). 

Evidence that detritivores receive much of their nutritional value from 

microorganisms rather than the detritus itself has come from examination of the organic 

content of detritivores food and faeces and the disparity between the nutritional needs of 

the detritivore and that available in the detritus (see Fenchel and Harrison 1975, Berrie 

1975 for reviews). Moreover, microorganisms are thought to constitute a major part of 

larvae diets (Rowell 1969, Barnes 1984, Cullen et al. 1987,) and microbial colonisation 

of larvae guts is thought to be essential to larvae sur\'ival (Backlund 1945, Rowell 1969, 

Cullen et al. 1987). The co-occurrence of C pilipes and C.frigida on wrack has been 
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accredited to differential digestion and absorption of wrack components (Egglishaw 

1960). I f lar\'ae defaecate different microorganism, wrack mass loss in multi-larval 

treatments may have been facilitated through differential resource use by the higher 

diversity of microorganisms. The increase in microorganism diversity may have 

stimulated lar\'ae feeding rates. A high diversity microorganism assemblage may 

encompass a wider range nutritionally, and through differential, extracellular digestion 

could have resulted in more of the L digitata becoming palatable to the larvae. The L. 

digitata used in this experiment was sterilised and thus microorganisms introduced 

through the larvae themselves would have been likely to play a large part in both the 

decomposition and nutritional value of the L. digitata for the larvae. 

Evidence that wrack decomposition in the presence of larvae results in a 

microbial assemblage that is either unpalatable or acts as a deterrent to amphipod 

feeding is again anecdotal. Larval exudates have been noted as being wet (Backlund 

1945, Egglishaw 1960, Slenion-Dozey Griffiths 1980) and wrack decay in the presence 

of larvae has been cited as being anaerobic (Philips and Arthur 1994). The presence of 

lar\'ae on Laminaha has been suggested to exclude moulds (Egglishaw 1960). 

Amphipods have been shown to have high assimilation efficiencies for mould 

(Behbehani and Crocker 1982). Fungi and mould has been seen as an important part of 

amphipod diets (Backlund 1945, Philips 1979, Rong et al. 1995) and the importance of 

fijngi for ecological performance has been empirically tested (Kneib et al. 1997). Philips 

(1979) found fungal assimilations in Orchestia grillus highly negative, suggesting 

selective ingestion of fungi. Rong et al. (1995) highlighted the importance of Fungi to 

the diet of a freshwater leaf shredding amphipod Gatwnants pseudolimnaeus. The 

amphipod had little endobacteria compared to the two larval species investigated and 

the highest food selectivity (Rong et al. 1995). As the amphipod had a gut pH close to 

7 this would enable the survival of fungi which could digest leaf protein and phenolics 

114 



(these substances themselves contain bonds that are hard to dissociate with a neutral gut 

pH). Backlund (1945) believed Orchestia gammarellus fed on mould as the growth of 

mould on various algae was negligible in its presence. Behbehani and Croker (1982) in 

laboratory feeding trials observed high assimilation efficiencies of Piatorchestia 

(Orchestia) platensis for mould. ICneib et al. (1997) found the ecological performance 

of a salt marsh amphipod to be reduced when fed on senescent sheaths of cord grass; 

only when sheaths were not washed did the male to female ratio approach 50:50. 

However the lack of moulds and nutritional value of the food is unlikely to inhibit 

amphipod feeding rates as there are many examples where amphipods feed 

indiscriminately on any food type (Backlund 1945, Agrawal 1964). Therefore, we 

suggest the absence of aerobic decay due to moulds may prevent the breakdown of 

components of/ , , digitata that act as a deterrent to amphipod feeding. The absence of 

Fungi and moulds may indirectly act as a deterrent to T. deshayesii feeding. 

Accumulation of fijngal proteins and lipids has been linked to declining concentrations 

of organic phenolic compounds (Barlocher 1985, Cargill et al. 1985, Hanson et al. 

1985, Suberkropp 1992). Barlocher and Newell (1994) found compounds that are 

feeding deterrents to Orchestia grillus and Melampus bidentatits (specifically cinnamic, 

ferulic and p-coumaric acids) abundant on cord grass, but readily decomposed by the 

dominant Fungi. Furthermore lignicolous and non-lignicolous Fungi strains that are 

able to decompose Laminaria spp. and alginate have been isolated from decomposing 

brown algae. 

If lar\'ae increase anaerobic conditions, excluding aerobic bacteria and Fungi 

which decreases the palatability of the wrack for the amphipod, why wrack processing 

in treatments of C. pilipes & T. deshayesii and C. pilipes, T. deshayesii & C. frigida are 

not significantly lower than expected is unclear. It has been suggested, albeit based on 

little hard evidence, that C. pilipes has a greater need for microorganisms owing to its 
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preference for higher temperature wrack (Philips ei al. 1995). I f C pilipes removed 

more anaerobic microorganisms this may increase the substrate available for fungi and 

moulds, thus increasing T. deshayesii feeding rates. 

Larva-induced microorganism facilitated decay and feeding rates plus 

simultaneous inhibition of T. deshayesii feeding may play a large or small part in 

explaining the positive effect of larval diversity on wrack processing and the generally 

lower than expected wrack processing rates in treatments of the larvae with the 

amphipod. The evidence is largely anecdotal and, without examination of the 

microorganism assemblage in the guts and on the wrack from single species and mixed 

species treatments, little more can be said. Complex behavioural responses may 

likewise play a large or small part in explaining the suite of interactions observed with 

respect to L digitata mass loss. ̂  

3.4.5 Conclusions and Limitations 

Using the species, and under the experimental conditions employed in this 

study,'** the importance of species interactions in determining wrack decomposition in 

9 
As individual species contributions to L. digitata breakdown in mixed species assemblages was not 

measured, reduced L. digitata mass loss g.g-I in treatments of species combinations cannot be attributed 
to the inhibition of any or all species. Therefore it is possible that T. deshayesii's feeding rates may not 
decrease in the presence of lar\'ae, but larvae may reduce theirs in the amphipods presence. If the 
amphipod induces a behavioural response in the lar\'ae similar to that of a predator, the larvae many 
allocate more time into predator avoidance than feeding in the presence of the larvae. No behavioural 
studies on the response of larvae to the amphipod or predators have been undertaken so this is hard to 
confinm. Although if this response was occurring it would be expected to be less pronounced in C. pilipes 
treatments, as previous studies show a preference of Cafnts xantholoma one of the most abundant 
predator at Wcmbury for C.fhgida over C. pilipes (Backlund 1945) and thus may explain the additive 
affects of C. pilipes and T. deshayesii, and higher than predicted affects of C pilipes, C.frigida and T. 
deshayesii on L. digitata mass loss. 
'° As with all laboratory studies the results of this study arc obviously species and system and condition 
specific, and limited by the number of replicates used in the ANOVA analysis (Zar 1999). How 
decomposition will be effected by species interactions, species identity and diversity as relative species 
densities change cannot be discerned from this study. Furthemiorc, as highlighted by Zimmer ei al. 
(2005), the diversity- decomposition response found in this study and the patterning of species 
interactions with respect to decomposition may differ when mass loss on substrates other than L digitata 
are considered. However, as L. digitata was the most abundant strandline algae al Wembury beach, 
followed closely by other Laminariales. Thus although it has not been explicitly deomonstrated it is 
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the strandline is cieariy highlighted. The decomposition in multi-larval treatments was 

higher than expected. Decomposition in treatments of the larx'ae and amphipod 

combined was equal to or less than expected, dependent on species identity 

combination. The results of the current smdy demonstrate the dangers of predicting an 

ecosystem processes such as decomposition, based on the additive effects of single 

species on processing rates. Using the species and conditions in this experiment, 

predicting decomposition based on single species rates wil l result in erroneous 

conclusions of energy fiow and available resources for secondary production in the 

system as a whole. It is suggested that in coastal transition zones such as the marine 

strandline, it is imperative that ftiture investigations (incorporating natural abundance 

and species distributions) take species interactive effects into consideration. 

This study has important implications for future diversity-ecosystem process 

studies. Whilst individual species traits may explain diversity process patterns, it is clear 

that, in the strandline system investigated in this study, species interactions are 

important in the pattern of processing rates. By empirically segregating species 

interactive affects from those of individual species, the seemingly idiosyncratic and 

unpredictable response of ecosystem processes to diversity found in previous studies 

may be accounted for and misleading conclusions regarding the effect of diversity on 

processes wil l be avoided. Furthermore, i f there really is no overall relationship between 

diversity and ecosystem process, then only by understanding the contribution of 

individual species and their interactive affects wil l the consequence of reduced diversity 

for ecosystem process be fully understood. Anecdotal evidence suggests that, in the 

current study, the presence of facilitaiive (between the lar\'ae) and inhibitory (between 

lentatively suggested that the effects of diversity, identity and species interactions on decomposition as 
found in this study will not change massively when decomposilion in the slrandlinc at Wcmbury as a 
whole is considered. 
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Iar\'ae and amphipod) species interactions determine the overall rates of decomposition. 

Irrespective of mechanism, it is clear that, under the conditions in this experiment, 

reducing lar\'al diversity reduces decomposition, and that the presence or absence of the 

amphipod wil l also have big implications for wrack decomposition. How species 

interact and the mechanisms behind these interactions may provide more useful 

information for the state of our ecosystems if current extinction rates persist, and 

species diversity declines. The role of microorganisms in wrack decomposition and how 

microbial assemblages differ with consumer diversity may prove a fruitful avenue for 

further research into understanding the link between species identity, diversity and 

interactions and ecosystem processes in the strandline. 

This current investigation also highlights the dangers of assuming non-trophic 

interspecific interactions are equal when energy flows through food webs are modelled. 

As empirical investigations into predator-prey interaction strength are beginning to 

emerge it is potentially critical that the relative importance of non-trophic interaction 

strengths are empirically defined when energy flow and ecosystem process in 

assemblages are predicted. 
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C H A P T E R 4: T H E USE O F BODY-SIZE AS A S U R R O G A T E M E A S U R E O F 

P R E D A T O R - P R E Y I N T E R A C T I O N S T R E N G T H AND E C O S Y S T E M 

P R O C E S S E S IN T H E STRANDLINE 

4.1 Introduction 

This chapter investigates the use of species body size to predict predator-prey 

interactions and ecosystem processes, using slrandline species, four beetles and their 

prey, and measuring decomposition as an ecosystem process. 

4.1.1 Rationale 

I f predictions are to be made regarding the effect of reduced diversity on 

ecosystem processes in natural assemblages, it is imperative that trophic interactions are 

considered. Little is known about the effect of species occupying higher trophic 

positions on ecosystem processes. Yet it is these species that are most at risk of 

extinction (Dobson et al. 2005). If, as suggested previously (Chapter 1) there is no 

universal trajectory linking diversity to ecosystem processes, understanding how species 

trophic interactions affect ecosystem processes is a vital step towards understanding the 

effect of reduced species diversity on those processes. 

There are a number of problems with incorporating multiple trophic levels in 

traditional BDEF studies that measure ecosystem processes at different diversity levels; 

the large number of replicates required is both time consuming and often not logistically 

possible, and the results from such experiments are often difficult to interpret (Section 

1.8). 

Alternative approaches are desperately needed i f the effect of trophic 

interactions on consumer populations and ecosystem processes are to be understood. 

Both the prediction and quantification of trophic interactions may enable the 
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consimclion of food web models in which trophic links are quantified. In the future 

such models may be used to infer the effects of reduced diversity on ecosystem 

processes, overcoming problems encountered when using traditional BDEF experiments 

to predict the effects of reduced diversity on ecosystem processes in multi-trophic 

assemblages. 

4.1.2 Species Interaction Strength 

Interaction strength is a temi used to estimate the magnitude of the effect one 

species has on another. It is commonly used in both experimental and theoretical studies 

aimed at investigating the effect of predators on their prey (trophic interactions) (Laska 

and Wootton 1998, Wootton and Emmerson 2005). The distribution of trophic 

interactions (in terms of their strength) amongst species in food webs has long played a 

central and contentious role in ecology and studies of population dynamics (Laska and 

Wootton 1998, Berlow et al. 1999, 2004 Wootton and Emmerson 2005 and references 

therein). The direct and indirect effects of interaction strength on ecosystem process are 

rarely examined. Previous research has focused mainly on the effect that interaction 

strength distribution has on population dynamics and assemblage stability. Modelling 

and theoretical studies have generally concluded that a skew in the distribution of 

interaction strengths towards weaker interactions promotes stability, in both real 

(deRuiter et al. 1995, Roxburgh and Wilson 2000, McCann 2000) and model systems 

(McCann et al. 1998, Ruiter et al. 1995, Roxburg and Wilson 2000, although see 

Kokkoris et al. 2002). 

Empirical measures of interaction strengths have been less frequently 

investigated. Wootton and Emmerson (2005) identified four basic approaches to 

estimate interaction strength based on empirical measurements; field experiments, 

laboratory experiments, observational approaches and the analysis of system dynamics. 
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Empirical measurements of interaction strength have been made between single 

predator and prey species in removal experiments. These studies have generally been 

based on comparative measurements of prey population dynamics with and without a 

predator. The majority of these studies have found predator and prey interaction 

strengths to be weak (Fagan and Hurd 1994, Navarrete and Menge 1996, Wootton 1997, 

Pain 1992, Raffaelli and Hall 1996). Although strong interaction strengths occurred 

between relatively few predator and prey species, when present they greatly altered the 

entire assemblage dynamics (Paine 1992, Navarrete and Menge 1996, RafTaelli and Hall 

1996, Wootton 1997)." 

Experimental approaches to estimate interaction strength have been heralded as 

the most accurate way to assess interaction strength (Bender et ai 1984, Pain 1992, 

Berlow et ai 1999). However, segregating direct and indirect interactions from 

experimental manipulations is difficult and has often confounded interpretation of the 

results (Wootton and Emmerson 2005). Laboratory experiments such as those 

undertaken by Abrams (2001) and Vandermeer (1969) may overcome this problem as 

they allow the isolation of single species interactions. In addition these experiments 

were undertaken over shorter time scales thus the interpretation of results may be 

increased (Wootton and Emmerson 2005). However, the validity of inferring interaction 

strengths estimated from laboratory studies that manipulate few species to those 

" The majority of expcrimemal manipulations have been attempted using intertidal rocky shores systems 
(Navarrete and Menge 1996, Woolton 1997, Paine 1992. Raffaelli and Hall 1996). As such it is possible 
that they may not reflect interaction strength distribution in other systems. On rocky shores most 
interaction strengths between species were weak, strong interaction strengths between predator and prey 
occurred between relatively few species although they greatly affected the whole assemblage dynamics 
when present (Navarrete and Menge 1996, Wootton 1997, Paine 1992, Raffaelli and Hall 1996). This 
said, similar weak interaction strengths between predators and prey have also been obscr\'ed between 
manlid predators and their arthropod prey in terrestrial open field exclusion and inclusion plots (Fagan 
and Hurd 1994). Mantids reduced or increased arthropod density to different degrees depending on initial 
arthropod density). Additionally interaction strengths have been calculated at different prey densities 
(Raffaelli and Hall 1996, Fagan and Hurd 1994, Menge et al. 2004) and attempts to quantify the 
variability in these strengths over different temporal and spatial scales have been made (Berlow and 
Naveratlec 1997). Unfortunately direct comparisons between previous studies are difficult as interaction 
strength has been defined, in a number of different ways (sec Berlow et al. 2004 for a review) (c.f 
Navan-ete and Menge 1996, Fagan and Hurd 1994, Wootton 1997, Paine 1992, Raffaelli and Hall 1996, 
Berlow and Naverattee 1997, Menge et ai 2004). 
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occurring in natural assemblages has not been extensively examined (Skelly 2002, Tyler 

etai 2002).'-

Obser\'ational information based on species-specific natural history information 

such as feeding rates, abundance and life history parameters have been used to estimate 

interaction strength (VVootton and Emmerson 2005). Wootton (1997) gives probably the 

best example of an observational approach to estimate interaction strengths. In a 

comprehensive smdy of the rocky intertidal, estimates of interaction strength were based 

on behavioural observations (mainly feeding) and were compared to population 

measures of interaction strength based on field exclusion experiments. Wootton (1997) 

found excellent agreement between observational-based measures and field exclusion 

measures of interaction strength, but the measure of interaction strength was species-

and system-specific. 

Analysis of system dynamics (modelling of interaction strength based on the 

variation in species abundance or biomass over time) has been used to model ecosystem 

parameters such as stability (Ives ei al. 1999, 2005) and is dealt with extensively by 

Wootton and Emerson (2005). Whilst good agreement has been found between 

modelled interaction strengths and actual measured interaction strengths (Laska and 

Wootton 1998) some studies (e.g. Pascual and Kareiva 1996, Ives et al. 1999, 2005) 

have not validated the measure of interaction strength that was used. Further criticisms 

of this method and possible solutions to overcome difficulties in using this approach to 

estimate interaction strengths are given by Wotton and Emmerson (2005). 

ll is worth noting here that Schmilz (1997) tested the validity of a multi-species model paramclerised 
by laboratory interactions of grasshopper feeding rates and plant nutrient uptake rales. The model that 
predicted consequences of nutrient enrichment on the species was in agreement with the long term field 
manipulations of nutrients. 

This approach is limited in its universal use and practicality as the observations were lime consuming, 
and the natural history information necessary (population dynamics) is not always available for all 
species. 
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Based on empirical measures, interaction strength has been estimated to be 

skewed towards weak interactions, where only a few species interact strongly. 

Similarly in modelling studies the stability and persistence of theoretical assemblage 

dynamics has been increased by including many weak and a few strong interactions or a 

skew in interaction strength distribution towards weak interactions (McCann el al. 1998, 

HilleRisLambers and Dieckmann 2003, Emmerson and Yearsley 2003). 

In both empirical studies and modelling studies the measure used to estimate 

interaction strength differs between studies (see Berlow et ai 1999, 2004 for review). 

The performance of these measures, e.g. their inherent bias towards estimating weak or 

strong interactions, may have influenced the conclusion reached regarding the 

patterning of strengths. 

The results of previous studies cannot be used to identify dynamically important 

species or species important with respect to ecosystem processes as, in both empirical 

and modelling studies the use of surrogate correlates of interaction strength have not 

been investigated. Modelling studies mainly consist of theoretical species and 

assemblages thus the extrapolative power of modelling studies to real assemblages and 

species is, unsurprisingly, weak. 

Finding tractable ways of measuring interaction strength between all species in 

an assemblage and realistic means to parameterise interaction strengths in model food 

webs remains a challenge. Easily measurable surrogate measures of interaction strength 

are required i f the effects of reduced diversity on species assemblages and ecosystem 

process can be determined using food web models where links are quantified. A 

different approach to predicting interaction strengths using species* body sizes has 

emerged from renewed interest in metabolic scaling and allometry. Body size may have 

great potential to be used as surrogate measure of interaction strength. 
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Using body size to predict interaction strength and ecosystem processes 

assumes, a) energy demands underpin species' interactions, b) a species* metabolic rate 

determines its rate of consumption and c) body size can be used as a surrogate for 

metabolic rate. I f these assumptions are valid, the size distribution of species could be 

used to predict consumption rales, and so indicate species interaction strengths and 

ecosystem processes such as energy flow throughout an assemblage. In the case of 

energy flux the body size of the constiment species of an assemblage may be used as a 

proxy for that assemblage's metabolic demand, thus ingestion or feeding rates can be 

determined. Metabolic theory and scaling laws may provide a useful tool to predict 

species interactions and energy flow in assemblages and may even provide a tractable 

way in which to predict the effects of reduced diversity on ecosystem processes (Brown 

and Gillooly 2003). However, the fundamental assumptions behind such an approach 

must be upheld i f such an approach is to have any predictive capacity. The following 

section examines the theory and evidence underpinning the notion that body size can be 

linked with metabolic rate and how metabolic rates may determine energy flow and 

ecosystem processes. 

4.1.3 Metabolic Theory and Interaction Strength 

4,L3.I Metabolic Theory^ Overview 

The compilation of over a decade of work by Jim Brown and colleagues (Brown 

et al. 2004) has resulted in an outline for a metabolic theory of ecology—a proposal for 

a unifying theory of ecology. Whatever else it achieved it has reinvigorated interest and 

placed body size and metabolism at the forefront of ecological research once again. 

Brown et al. (2004) statistically demonstrated that metabolic rate scaled with body size 

to the power VA, using existing data from a wide range of phyla covering a large range of 
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body sizes. Furthermore, Brown et ai. (2004) demonstrated that metabolic rate was 

temperature dependent, and also showed how stoichiomeiry can be intrinsically linked 

to species metabolism. In some ways there is little new in the conclusions reached by 

Brown et ai (2004). The idea that metabolic rate scales with body size is not new (e.g. 

Rubner 1883, Kleiber 1932- in Peters 1983, Prothero 1986, Klingenberg !998).'' There 

is a general, though not universally accepted, view that basal metabolic rate scales with 

body mass to the exponent Yi or ^'^^ ( see reviews in Peters 1983, Schmidt-Nelson 1984, 

Brown et ai 2004, Gillooly et ai 2003 and also Rubner 1883, White and Seymour 

2003). However, measurements and data compilations of body size data show a wide 

variation in exponent from 0.3 - 1.0 (Winberg 1960, Paloheimo and Dickie 1966, 

Dodds et ai 2000 White and Seymour 2003, Speakman 2005, Reich et ai 2006). 

Previous and recent work in the field of metabolic theory has invoked 

controversy and lively debate. The universal generality of scaling exponents linking 

body size to metabolic rate (Boddington 1978, Smith 1980, Dodds et ai 2000, Hooper 

and Weibel 2005, Reich et ai 2006) and the statistical analysis, interpretation, 

generality and thus significance of results relating body size to metabolic rate have been 

heavily contested (Ricker et ai 1973-from Martin et ai 2005, Smith 1980, Martin and 

Barbour 1989, Riska 1991, Harx'ey and Pagel 1994, Batterham a/. 1997, Torres oA 

2001, Clarke 2004, Savage 2004, Nagy 2005, White and Seymour 2005, Cohen et ai 

2005, Martin et ai 2005, Suarez and Darveau 2005). Furthermore, irrespective of the 

exponent used there is, as yet, no general consensus as to why metabolic rate should 

scale with body size. A number of theories have been proposed to explain such an 

important allometric relationship (McMahon 1975, West et ai 1997, 2003, Banavar et 

Originally Max Rubner (1883) empirically established that there was a relationship between body mass 
and 'basaP metabolic rate in dogs which scaled to the power In 1924, Huxley (sec Proihero 1986, 
Klingenberg 1998) proposed a more general perspective to scaling problems and set the foundations of 
what became known as 'allometry' where not only metabolism but nearly all organisms traits were shown 
to scale with body size. Kleiber (1932) later claimed thai basal metabolic rate scaled with body mass 
raised to the power not of but" 
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ai. 1999, 2002, Bejan 2000, Gillooly i?/. 2001, Darveau ei al. 2002, Hochachka e/a/. 

2003, West and Brown 2005). Nearly all the mechanisms proposed to date have come 

under hca\y scrutiny and criticism (see arguments in Bejan et ai 1999, 2002, Brown et 

al. 2002, Banavar et al. 2002, 2003, Darveau et al. 2003,West et al. 2002, 2003, 2005). 

Al l of the contention notwithstanding, the relationship between body size, 

interaction strength and ecosystem processes has not been empirically tested. 

Furthermore, species size distributions have rarely been considered as a parameter in 

BDEF studies, although species size is a factor that intuitively has the potential to affect 

both species interactions and processing rates. 

4.1.3.2 Body Size and Interaction Strength 

Theoretically the link between body size and interaction strength can be inferred 

from previous correlations between body size and factors linked to interaction strength, 

such as ingestion or consumption rate. Consistent relationships have been found 

between body size and consumption rate in arthropods (Reichle 1968) and crustaceans 

(Sushchenya and Khmeleva 1967), although the exact scaling exponent of these 

relationships was not determined in either case. Farlow (1976) is probably the most 

cited study that provides evidence for the scaling of body size with ingestion rate. To 

make inferences on the metabolic type and trophic dynamics of dinosaurs, Farlow 

(1976) marshalled data on food intake and body mass of caged and free living birds and 

mammals. The log-log relationship between body mass and food intake (expressed as 

energy equivalents -Calories) was significant and similar between carnivorous and 

herbivorous birds and mammals. The relationship could be described by the power 

exponent 0.71, for herbivorous birds and mammals (0.72 for mammals alone) and 0.71 

for carnivorous birds and mammals (0.69 for mammals alone). Similarly, Cammen 
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(1980) suggested that the ingestion rale of a range of aquatic deposit feeders and 

detritivores scaled with body mass to the exponent 0.74 (log-log relationship). 

Analyses of food web parameters and energy flow in real food webs have 

supported the use of scaling exponents to determine both energy How and quantify 

trophic interactions between species based on species body size. Cohen et al. (2003) 

constructed one of the first food webs to consider the link between food web structure, 

body size and species abundance. Cohen et ai. (2003) investigated patterns in 

abundance, body size and trophic position from previous empirical data from a pelagic 

small lake food web. Perhaps the most interesting finding was that body mass was 

inversely related to numerical abundance and energy fiow. In accordance with 

allometric theory, the conversion efficiency of prey to predator biomass was roughly 

similar over a wide range of predator body sizes, and the abundance of predators and 

prey was positively correlated to the predator: prey mass ratio, although the exact 

relationship beUveen predator; prey body size ratios, interaction strength and/or energy 

flow was not defined. 

Hulot et ai. (2000) demonstrated the importance of size in determining 

population dynamics. The effects of press perturbations (rapid nutrient enrichment) on 

the modelled assemblage were reflected accurately in mesocosm lake assemblages when 

size and diet information were used to delimit functional groups in a multi-trophic non

linear food web model. The results also highlighted the importance of indirect 

interactions and trophic level diversity in determining the assemblage response to added 

nutrients. The importance of consumer size in determining interaction strength and 

resource uptake was shown by Diehl (1993). The model showed that i f intermediate 

consumers were large, predators preferentially preyed on them and the direct impact on 

resources was reduced. When top and intermediate consumers are of a similar size, the 

impact on a resource can increase as top predators fed directly on the resource itself and 
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also removed less intermediate consumers dirough direct predation (Diehl 1993). 

However, they were unable to test this theory on empirical data as the size of organisms 

were not defined or measured. Both Cohen et al. (2003) and Woodward et al. (2005b) 

found trivariate relationships between body size, abundance and web stincture; body 

size could be used to parameterise and quantify dynamic links within a food web. 

Woodward et al. (2005b) also provided some justifcation for the use of body size for 

quantifying energy flow within a food web. In an exceptionally ambitious study 

combining previous data with field collected data, an exceptionally detailed 

connectance web for Broadstone Stream (UK) (131 species) was constructed. They 

ftirlher attempted to quantify the links in the food web using gut contents analysis of an 

impressively large number of different species from the Broadstone Stream. In 

accordance with metabolic theory when Woodward et al. (2005b) plotted log (body size 

of a species) against log (total consumption of that species by all predators within the 

web), the latter being their measure of interaction strength, the relationship between 

body size and interaction strength was negative. Smaller species suffered greater 

predation than larger species. However, the exact relationship was not quantified and 

whether it was significantly different from that predicted by metabolic theory of ecology 

cannot be determined. 

Empirical field and laboratory exclusion experiments have also shown the 

importance of body size in determining predator-prey interactions and have provided 

mixed evidence for the use of body size as a surrogate measure of interaction (Ekiov 

and Werner's 2000, Sala and Graham 2002, Ovadia and Schmitz 2002). In field 

exclusion experiments and Ovadia Schmitz (2002) found that treatments containing 

smaller grasshoppers suffered greater mortality than those containing larger 

grasshoppers when presented with a predatory spider, in accordance with metabolic 

theory (e.g. to fulf i l metabolic requirements a predator wil l eat more prey items of a 
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small size than larger conspecifics). However, contrary to metabolic theory in the 

predator-free controls the three size-classes of grasshoppers did not differ significantly 

from each other in their reduction of grass or herb biomass (Ovadia and Schmitz 2002). 

Ovadia and Schmitz (2002) suggested that this was due to increased per capita foraging 

by smaller grasshoppers that are at greater risk of not completing their development by 

the end of their annual life cycle. Furthemiore, the importance of resource identity and 

behavioural changes in resource use when predicting ecosystem processes across 

trophic levels was highlighted, as grasshoppers fed less on herbs than grasses in the 

presence of spiders. Ekiov and Wemer (2000) provide evidence both for and against the 

use of body size as a surrogate for interaction strength in an experimental investigation 

of the effects of bluegill sunfish and odonate larval predators on bullfrog and green frog 

tadpole prey. Experimental aquaria were constructed with each predator separately 

(lethal and non-lethal presence) and in combination with the non-lethal presence of the 

other. Non-lethal inclusion of a predator was maintained by its caged presence such that 

it could not consume prey. Each treatment was replicated for each prey species at 5 

different prey densities. Predation rates by both predators decreased with increasing 

tadpole size, potentially supporting the prediction that consumption decreases as 

predator: prey body size ratio decreases (the metabolic requirements of predators could 

be met by less prey items i f they were larger). However, predation rates were also 

affected by the non-lethal presence of the other predator and predator identity, 

indicating that behavioural responses of predators may be as important as size in 

determining predator: prey interaction strength. 

Counterintuitive to metabolic theory the attack rate on amphipod prey by large 

benthic isopod predators has been seen to increase with prey size (Ajetlawi et al. 2004). 

Although, as predicted by metabolic theory maximum attack rates with small prey were 

obser\Td when small predators were used (Ajetlawi et al. 2004). 
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In all of these examples (Eklov and Werner 2000, Sala and Graham 2002, 

Ovadia and Schmitz 2002, Ajetlawi et ai. 2004) predator and prey body size were not 

concurrently manipulated. Furthermore, the relationship between predator: prey body 

size and ingestion rate or, interaction strength was not investigated or compared to that 

predicted by metabolic theory (log-log relationship raised to the power 0.75 or 0.69). 

Thus, although there is evidence that size is related to interaction strength, evidence that 

predator: prey body size ratios can be used to predict interaction strength is limited. The 

exact relationship between predator: prey body size ratios and interaction strength, the 

relative importance of species identity, and non-direct interactions in affecting this 

relationship remains unclear. 

There are three examples in the literature where the relationship between 

predator: prey body size and interaction strength has been examined. Emmerson et al. 

(2005) used metabolic theory to derive three simple and general relationships between 

interaction strength and the ratio of predator: prey body mass. 1) log(trophic energy 

transfer) / log (predator prey body size relationship) should scale'"** 2) biomass flux 

from a prey species to a predator species can be calculated by predator total ingestion 

rate*relative abundance of that prey in the predator's diet, which is proportional to the 

mass of predator raised to 0.75 / mass of prey raised to I and 3) per capita effect of a 

Emmerson et al. (2005) assumed metabolic rate lo scale with body mass lo ihc power 0.75 and species 
ingestion rale scales metabolic rale to the power 0.75 thus ingestion ofa single prey item by a predator = 
predators total ingestion rale subdivided among its prey species (calculated using the relative density of 
that prey item divided by the total density of all prey items). Relative densities of prey items were 
constant such that, the ingestion rale of any one predator will scale with the total prey density. This 
assumption was confirmed by gut content analysis of predators and measures of prey density from species 
in the Broadstone Stream. Density of prey was calculated taking into account, a) thai the density of prey 
is proportional to mass raised to the power '*" (as predicted by metabolic theory), b) the energy efTiciency 
transfer across trophic levels and, c) the ratio of predatorprey body mass, so that the density of prcy= the 
mass of that species raised to the power 
assumption that log (trophic energy transfer) / log (predator prey body size relationship) should scale"^ ^^ 
was confirmed by empirical data from the Broadstone stream where log energy transfer = 0.342, and 
mean predatorprey = 0.67 thus log (trophic energy transfer) / log (predator prey body size relationship) 
scaled with the exponent ^^ -̂̂ ^ 

Combining the assumptions of scaling with body mass of ingestion rale and abundance, the ingestion 
rate of biomass nu.\ from a prey species to a predator species could be calculated by; Predator total 
ingestion rate*relative abundance of that prey in the predators diet which is proportional to the mass of 
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predator on a prey population in terms of biomass rate of prey growth can be assumed 

to follow the same equation as that of ingestion rate described in 2) ' ' . Empirical 

measures of some of the assumptions underlying these relationships were then taken 

from the species living in the Broadstone Stream, U.K. and the theoretical predictions 

were confirmed, providing strong evidence for the role of metabolic theory in predicting 

interaction strengths and energy fiow in food webs. 

Investigating the community wide distribution of interaction strengths in giant 

kelp forests, Sala and Graham (2002) found a positive relationship between herbivore 

body size and interaction strength (as defined by sporophyte density in aquaria with 

predators divided by sporophyte density without predators, accounting for experimental 

time and predator density). However, the relationship between herbivore size and per 

capita interaction strength was limited in its applicability across all body sizes. The 

relationship fitted a hypothetical Michaelis-Menten saturation curve reaching a plateau 

at high predator body sizes. Thus as predator: prey body size ratios increased, the 

efficiency at which herbivores can remove sporophytes becomes limited. Although the 

effects of herbivore identity and size could not be distinguished it is worth noting that 

small sea urchins {Strongyiocentrotiispurpuratits) removed less sporophyte than larger 

individuals and both lay on the line fitted by the theoretical Michaelis-Menten 

saturation curve. 

Emmerson and Raffaelli (2004) empirically investigated predator: prey body 

size ratios and interaction strength whilst considering both predator and prey identity. 

Four predator species, a crab, a shrimp, and two fish were split into three size-classes 

and every predator species size-class was incubated separately in mesocosms with the 

predator raised to I mass of prey raised to I. This was confirmed for each trophic link empirically 
measured in the Broadstone Stream food web. 
" Empirical data from the Broadstonc food web supported this assumption (Emmerson et ai. 2005). 
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mud-dwelling amphipod Corophium volutator. Treatments were then repeated for three 

distinct size-classes of amphipod. Additionally each predator size-class was incubated 

separately with three additional prey species (only one size-class of prey was used). In 

accordance with metabolic theory predator size and prey size were shown to be 

significant in explaining the variability in interaction strengths, however so was 

predator identity, and also the interaction between predator identity* predator size and 

predator identity * prey size. The importance of species identity was further confirmed 

by individual regression analysis of each predator with the amphipod. Predator: prey 

body size ratios scaled significantly with interaction strength for the shrimp and crab 

predators (the power regression exponents were not significantly different from 0.75). 

However, separate regressions between each fish predator: prey body size ratio vs 

interaction strength were neither significant nor positive. Emmerson and Raffaelli 

(2004) provide evidence both for and against the use of predator: prey body size 

relationships to predict interaction strength. However, the general applicability of such a 

technique cannot be determined from the outcome of just one experiment. It is unclear 

whether the fish species used were a special exception to the rule, whether fish in 

general are an exception to the rule, or whether the two crustacean predators are the 

exception, and predator: prey body size ratios cannot be widely used to predict 

interaction strength. 

Finally by combining the results of Wootton (1997), Sala and Graham (2002) 

and Emmerson and Raffaelli (2005), a smdy by Wootton and Emtnerson (2005) found a 

good agreement between body size and interaction strength. The relationship between 

per capita interaction strength and prey: predator mass was described by the equation 

per capita interaction strength **-̂ = O.I4+0.85*(prey: predator mass)**•"̂  R*= 0.50 

(Wootton and Emmerson 2005). However, when data from individual experiments were 

examined this relationship was not general. The authors suggested this trend was biased 
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towards the patterning of interaction strengths found by Wootton (1997). The bird 

species used in Wootton's experiment (1997) were of a much greater size than the 

invertebrate species in the studies of Sala and Graham (2002) and Emmerson and 

Raffaelli (2005). As previously mentioned Sala and Graham (2002), found a decrease 

in sporophyte density with increasing predator mass (relative to prey mass), and for at 

least two of the estuarine predators used by Emmerson and Raffaelli (2004) found that 

there was no relationship between predator: prey body size ratio and interaction 

strength. 

The universal nature of the relationship beuveen body sizes, interaction strength 

and ecosystem process remains unclear. The use of surrogate measures such as body 

size for determining both species interactions, and ecosystem processes therefore 

remains unproven. If, as suggested, allometric scaling principles can be used to 

parameterise the food web models that make predictions on the stability and functioning 

of assemblages (Brown and Gillooly 2003) it is important to test the validity of these 

underlying assumptions. I f easily tractable surrogate measures of interaction strength, 

such as body size, can be used to predict species interactions and ecosystem processes, 

the effect of reduced species diversity on species assemblages and ecosystem process 

may be easily ascertained. This method may offer an alternative approach to assessing 

the response of ecosystem processes to reduced species diversity, where previous 

attempts to uncover a universal trajectory have failed. 

4.1.4 The Present Study 

4.1.4.1 Aims and Objectives 

The aim of this chapter is to empirically measure the response of interaction 

strength and an ecosystem process to manipulated predator: prey body size ratios and to 
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compare these observed measures with those expected based on allomeiric scaling 

principles. The identity and size of four ubiquitous predatory strandline beetles {Cafius 

xamholoma, Remus sericeus, Polystoma algarum and Cafius vaholosus), and three 

species of ubiquitous kelp fly lar\'ae (Coelopa frigida, Coelopa piiipes and Dryomyza 

anilis) were manipulated in a laboratory-based mesocosm study. Interaction strength 

and L. digitaia mass loss (a measure of decomposition) were then measured. In this 

way the effect of predator: prey body size ratios on per capita interaction strength and 

ecosystem processes (kelp decomposition) could be measured. The interaction between 

predator and prey was measured for different predator and prey identities. The 

relationships between predator and prey size, per capita interaction strength and the 

ecosystem process were predicted based on allometric scaling laws and compared to 

those observed in mesocosm manipulations. 

The following assumptions underlying the use of predator and prey body size as 

a surrogate for interaction strength and ecosystem processes were tested; 

H | Prey mass loss scales with predator mass 

H2 Predation depends on the size of predator and prey irrespective of identity, 

H3 Predation can be predicted using predator and prey body size, 

H4 L digitata mass loss scales with prey mass after predation 

H5 L digitata mass loss can be predicted using predator and prey, 

He Prey predation is not affected by prey identity. 

4.1.4,2 Species Selection 

Species were selected primarily due to their abundance, and their survival ability 

under laboratory conditions. A l l three species of larvae naturally co-occurred in the 

Wembury strandline. At least one species of lan'a was always available in high 

abundance, and with an appropriate range of body sizes, after a large deposit of stranded 
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material on the beach. Coelopa species may be important in the decomposition of wrack 

(Sections 2.5 and 2.7.2) and have been recorded as important constituents of wrack 

beetle diets (Section 2.7.3). Preliminary trials showed that larval species repeatedly 

consumed measurable quantities of wrack material over short lime periods, without high 

mortality. Similarly all species of beetle employed here were shown, in preliminary 

trials, to consume individual larvae over similar, relatively short time periods. Using 

pitfalls traps the beetle species used were commonly found occurring in high abundance 

in the strandline at Wembury. They survived well under laboratory conditions, and 

killed and consumed larval prey in mesocosms. Furthermore, in terms of wet mass each 

species had a body size distribution which covered 1.5-2 orders of magnitude, and 

species differed from one another in ternis of body size distribution (Figure 2.7). 

4.2 Materials and Methods 

4.2.1 Collection of Animal Material, Wrack and Sediment 

Fly larvae, Coelopa frigida, Coelopa pilipes, Dryomyza anilis, and the beetles 

Cafiits xantholoma, Polystoma algantm, Remus sehceus and Cafius variolosus were 

collected by hand from within and beneath the spring tide strandline at the top of the 

shore, Wembury First Beach, Devon, UK (48.3**N, 50.4''E) (Tables 4.1 and 4.2). At the 

same time cast-up wrack L. digitata and sediment from beneath the wrack bed were also 

collected. A l l material was transported to the laboratory in large plastic bags. In the 

laboratory the animal material was separated according to species and size. The lar\'ae 

were held in separate aquaria (vol. = 8 I). To mimic strandline conditions each aquarium 

was filled (to a depth of 2 cm) with sediment, overlain with two or three fronds of L. 

digitata. A paper towel soaked in distilled water was placed under the aquarium lids to 

maintain a high relative humidity within. Both the lid and the towel also prevented the 
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animals escaping. Al l aquaria were maintained in a controlled temperature facility (T = 

20°C ± I "C) before being used in the experiments described below. In the laboratory 

individual beetles were placed in separate mesocosms, with the exception of P. algarwn 

and C variolosus used in prey preference experiments. These two species were kept for 

7 d in identical conditions to those described above for lar\'al species. Here they were 

supplied with larvae. Sufficient numbers and sizes of P. alganun and C. variolosus 

were not found in and around the strandline at Wembury immediately preceding the 

prey preference experiments that used these two species and as such previously 

collected species had to be used (Table 4.1). 

4.2.2 iMesocosm Construction 

Mesocosms used for all treatments and replicas were constructed from 

containers (17 cm x 11.5 cm x 4 cm, vol. = 782 cm^) made from polypropylene. To 

prevent beetles and larvae escaping the lids of each mesocosm were sealed to the 

containers using PVA glue. A small hatch (3 cm x 2 cm) was cut in the centre of 

the lid of each mesocosm, through which species were added to the mesocosm. 

After the addition of species the hatch was closed flush with the lid, preventing 

beetle and larval escape but also permitting a fresh air supply. As beetles and 

Iar\'ae were often found deep within wrack material or sediment, each container 

was partially-filled with sediment (vol. = 40 ml). A l l sediment had been previously 

autoclaved to remove any bacteria (30 min, T = 200°C). The sediment was classed 

as very coarse sand (see Section 3.2.2). 5 ml of distilled water was added to the 

sediment in each mesocosm. Preliminary observations showed maximum beetle 

survival when distilled water (vol. = 5 ml), was added to each mesocosms to 

maintain humidity throughout the experiment. 
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Each sediment-filled container was supplied with wrack (L. digitata, one of the 

most prevalent algae in the wrack beds at Wembury Beach). Preliminary experiments 

(duration - 30 h) using other strandline algae (Fucus spp. and Ulva lactusa with C 

frigida and C. pilipes) showed that C.frigida and C. pilipes separately showed no 

preference (determined as algal mass loss) for any particular wrack bed alga. Discs of L. 

digitata (diam. = 2 cm) were cut, using a cork borer, from sections of the blade of a 

similar thickness showing no visible signs of previous decomposition. These discs were 

placed in each mesocosm, in an overlapping circular pattern (see Section 3.2.2). 

In each treatment prey density was constant n = 12. L digitata mass loss was 

measurable at this larval density and larval pupation/mortality was minimal. 

Each mesocosm was then placed separately in a black plastic (opaque) bag in a 

temperature controlled room at T = lO'C ± TC 12 h light/dark cycle. This temperature 

was the equivalent to summer temperatures experienced on Wembury beach, and also 

promoted measurable feeding rates. 

Al l beetles were starved in isolation in the mesocosms (24 h) before prey items 

were added as this promoted feeding as soon as prey items were added to the mesocosm 

{pers. obs. and E. McAfee pers. comm.). A l l experiments ran for a period of 35 - 53 h 

(Table 4.1)"*. 

4.2.3 Interaction Strength 

There are a number of different ways of calculating interaction strength 

depending on the particular aims of the study. Each method has strengths and 

weaknesses (Berlow et ai 1999, 2004). To avoid limiting the experiment to a particular 

measure of interaction strength the number of individual larvae killed was measured. 

*̂  This enabled a measurable L ciigitaia mass loss. The beetles ate, but few Iar\'ae pupated and predator 
and prey mortality (not through consumption) was negligible. 
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Most measures of interaction strength rely on a measure of prey density in the presence 

and absence of a predator. This measure forms the basis of a number of interaction 

strength indices (Berlow et al. 1999), including those used in Lotka-Volterra equations 

to model food webs (for the use of Loika-Volterra equations in food web models see 

Pimm 1982). Furthermore, the number of individual lar\'ae killed provides a potentially 

easy way of predicting ecosystem processes from size analysis of communities. Finally 

it is possible to measure this parameter empirically. 

4.2.4 Kelp Mass Loss, Prey Mass, Prey Mass Loss, Beetle Mass 

Kelp mass loss was determined as dry kelp mass loss in grams divided by the 

experimental duration. Each disc was wet weighed after blotting before and after the 

experiment '^(Mettler Toledo AT201 balance, accuracy ± O.Olmg). To estimate dry 

kelp mass the kelp remaining at the end of the experiment was dried for 48 h at SOX. 

The relationship between wet kelp mass and dry kelp mass was determined using 

Ordinary Least Squares linear regression analysis (OLS) and the linear equation used to 

back calculate initial dry kelp mass (see appendix A10 for individual caculations). The 

inferred initial dry kelp mass and measured final dry kelp mass was then used to infer 

dry kelp mass loss g.h"'. For each replicate dry beetle mass was determined by drying 

individual beetles for 48 h at 5Q'C at the end of each experiment. Dry prey mass was 

inferred from measurements of at least 100 individuals of each larval species before 

and after drying for 48 h at 50'C. OLS regression analysis was used to determine the 

linear relationship between wet and dry mass measurements for each larva species. 

This relationship was then applied to all wet prey mass measurements taken, thus prey 

mass loss was a function of initial inferred dry prey mass-final inferred dry prey mass 

(see appendix A10 for individual caculations). 

Repetitive measures showed wet weighing after blotting was repeatable and precise (Appendix A I). 
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Owing to the large number of replicates required and lime necessary lo process 

beetles and larvae"** this study was divided into eight separate experiments. 

4.2.5 The Effect of Predator: Prey Body Sizes and Predator Identity on Prey Mass 

Loss, Interaction Strength and L. digitata Mass Loss 

The first four experiments manipulated the size of four predatory beetles and one 

prey species (Table 4.1). Predators and prey were sorted into three size-classes, large 

medium and small, based on the size range of species collected that day (Table 4.2). As 

lar\'al and beetle identity and size range on the strandline was temporally variable, each 

predatory beetle was not incubated with the same larva species. For each predator nine 

treatments were set up so that all possible pair-wise combinations of predator size and 

prey size were investigated. For each predator species five controls were also set up, 

each larval size category in the absence of predators, predators only (medium size-class 

was used here) and without predators or prey so that L digitata mass loss with each size 

category of prey, L digitata mass loss with predators only and L digitata mass loss 

without predators and prey could be ascertained. A minimum of five replicates was used 

for each treatirtent and control. A minimum of three replicas were used for treatments of 

larvae in isolation (large, medium and small size-classes) and predators in isolation 

(large, medium and small size-classes) 

4.2.6 The Effect of Prey Identity on Interaction Strength 

To investigate the effect of prey identity on per capita interaction strength four 

ftirther experiments were set up using the same four predatory beetles (Table 4.1). The 

effect of lar\'al identity on per capita consumption rales were measured for each beetle 

species when incubated separately with each larval species. It has been shown that in 

Some days not all beetle or larva species were found at Wembury in sufficient numbers and/or sizes 
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order to make valid statistical conclusions of species feeding preferences the difference 

in consumption must be analysed for each species pair separately (Liszka and 

Underwood 1990, Underwood 1997). Each beetle species was also incubated with all 

three prey items together and the effect of larval identity on per capita consumption 

rates measured. This was so that conclusions on the prey preference of beetles in their 

natural environment (when exposed to all species simultaneously) could be made. Prey 

density was always 12 individuals so that when all three prey species were incubated 

with the predator each individual prey species was present as four species. 

Table 4.1 Dates and times of species collection, predator isolation, prey addition and 
experiment termination for both experiments. 

ICxperiment Predator Prey Species 
collected 

Predators 
start 
isolation 

Prey added Experiment 
end point 

P
re

da
to

r:
 p

re
y 

bo
dy

 s
iz

e 
ex

pe
ri

m
en

ts
 

Cafnis 
xantholoma 

Cfrigicia 24.06.06 
08.00-11.00 

25.06.06 
08.00-14.00 

26.06.06 
08.00-14.00 

27.06.06 
19.00-23.30 

P
re

da
to

r:
 p

re
y 

bo
dy

 s
iz

e 
ex

pe
ri

m
en

ts
 

Remus 
sericeus 

C. piiipes 01.10.06 
10.00-13.00 

02.10.06 
08.00-14.00 

03.10.06 
08.00-15.00 

05.10.06 
13.00-19.00 

P
re

da
to

r:
 p

re
y 

bo
dy

 s
iz

e 
ex

pe
ri

m
en

ts
 

Polys loma 
algarum 

D. anilis 15.07.06 
08.00-15.00 

16.07.06 
08.30-10.00 

17.07.06 
08.30-12.00 

19-07.06 
12.30-18.00 P

re
da

to
r:

 p
re

y 
bo

dy
 s

iz
e 

ex
pe

ri
m

en
ts

 

Cafius 
variohsus 

C frigida 19.10.06 
09.30-11.00 

19.10.06, 
12.30-18.30 

20.10.06 
12.30-18.30 

22.10.06 
17.30-22.00 

P
re

y 
id

en
ti

ty
 e

xp
er

im
en

ts
 

Cafius 
xantholoma 

C frigida, 
C. piiipes, 
D. anilis 

03.07.06, 
10.00-16.00 

04.07.06 
8.00-18.00 

05.07.06 
8.00-18.00 

06.07.06 
19.00-22.00 

P
re

y 
id

en
ti

ty
 e

xp
er

im
en

ts
 Remus 

sericeus 
C. frigida, 
C. piiipes. 
D. anilis 

04.10.06 
09.30-10.00 

05.10.06 
10.30-17.00 

06.10.06 
10.30-17.00 

08.10.06 
11.30-17.00 

P
re

y 
id

en
ti

ty
 e

xp
er

im
en

ts
 

Polystoma 
algarum 

C. frigida, 
C. piiipes, 
D. anilis 

15.09.06 
10.00-13.00 
{P. algarum) 
19.09.06 
8.00-9.00 
(larva species) 

20.09.06 
08.30-16.00 

21.09.06 
08.30-16.00 

23.09.06 
12.30-16.00 

P
re

y 
id

en
ti

ty
 e

xp
er

im
en

ts
 

Cafius 
variolosus 

C frigida, 
C. piiipes, 
D .anilis 

19.10.06, 
9.30-12.00 
( C variolosus) 
31.10.06 
9.00-11.30 
(lar\'a species) 

01.11.06, 
14.00-18.30 

02.11.06 
14-18.30 

04.11.06 
14.00-18.30 

4.2.7 Statistical Analyses 

Al l non-parametric regressions were undertaken using StatsDirect version 2.3.7 

(htip://www.slatsdirect.com, Copyright 1990-2007 SlatsDirect Limited). The non-
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parametric technique is a distribution-free method for investigating a linear relationship. 

The slope b o f the regression (Y=bX+a) is calculated as the median of the gradients 

from all possible pair-wise contrasts of the data. This analysis does not assume that all 

the errors are only in the y-direction, or that either the x- or y-direction errors are 

normally distributed. Furthermore, this method is less affected by the presence of 

outlying data points (Conover 1999). The specific non-parametric technique used can be 

found in Conover (1999). The significance of the regression is detemiined using 95% 

confidence inter\'als based upon Kendall's T. 

Al l other statistical analyses were carried out using MINITAB (Version 13.32, 

Minitab Inc, Stale College FA). 

4.2.7.1 Predator Dry Mass and Prey Mass Loss 

To lest the assumption that log (predator ingestion) scales with log (predator 

mass), the relationship between predator dry mass and prey mass loss was analysed 

using linear regression techniques. In order than the results could be compared between 

experiments and with the relationship predicted by metabolic scaling theory, raw 

predator dry mass and prey mass loss (g h"') was log transformed and power regression 

used to fit the line. 

When the results from all experiments were combined and for each predator: 

prey experiment the relationship between predator mass and prey mass loss was 

investigated. The normality of residual distribution was tested using Anderson-Darling 

tests and i f significant non-parametric techniques were used. 

4,2.7,2 liUeraction Strength 

For all experiments, the combined effect o f beetle size-class, larval size-class 

and predator: prey identity (experiment) on the variability in the number of individual 
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larvae killed was calculated using a fiiliy-factorial ANOVA where initial beetle mass 

and initial larval mass are covariates. 

The effect of beetle and larval size on the number of individual lan^ae killed was 

analysed separately for each experiment using four one-way ANOVA's and Tukey's 

(HSD) post-hoc test of difference. 

To investigate the validity of using predator mass and prey mass to predict 

interaction strength or predation rate the observed relationship between the number of 

individual lar\'ae killed and predator mass was compared to that predicted by metabolic 

scaling using the Students t-test. Where there was a significant relationship between 

log(predator dry mass) and log(prey mass loss), the predicted values incorporate the 

observed y intercept from regressions of observed log(prey mass loss) vs log(predator 

mass) (Box 5.1, Equation 2). 

4,2.73 Decomposition 

Decomposition was calculated as dry L digitata mass loss divided by 

experimental duration. For all experiments combined the effect of beetle size-class, 

lar\'al size-class and predator: prey identity (experiment) on the variability in L digitata 

mass loss per hour was calculated using a fully-factorial ANOVA with initial beetle 

mass and initial larval mass as covariates. The relationship between final prey mass and 

L. digitata mass loss.h ' was analysed using linear regression techniques. In order that 

the results could be compared between experiments, and with the relationship predicted 

by metabolic scaling theory, raw data of mean final prey dry mass (g) /individual and L 

digitata mass loss (g.h"') was log transformed and a power regression used to fit the 

line. Where the relationship between log(final prey dry mass) and \og{L digitata mass 

loss) was investigated, the normality of residual distribution was tested using Anderson-

Darling tests and i f significant non-parametric regressions were used. 
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To test the validity of the assumption that prey consumption scales with prey 

mass the observed relationship of L digitata mass loss (g.h"') were compared to those 

predicted by metabolic scaling based on actual values of mean final prey using a 

Students t-test, predicted values were calculated according to Box 4.1, Equation 3. This 

comparison was only performed i f significant regressions beUveen log(final prey dry 

mass) and \og{L. digitata mass loss) where found. To investigate the usefulness of 

predator mass and prey mass in determining ecosystem process, the obser\'ed 

relationship of L digitata mass loss g.h"' were compared to those predicted by 

metabolic scaling based on predator and prey mass using a Students t-test. Predicted 

values incorporate the observed y intercept from regressions of log(observed prey mass 

loss) vs log(predalor mass) this was only calculated for those predator-prey experiments 

where there was a significant relationship between log(predator dry mass) and log(prey 

mass loss) (Box 4.1, Equation 4). 
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Box 4.1 
Equation 1. 
Predicted prey mass loss g/experimental duration = a*Predator dry mass g **"°'*'^') 
Where a = y intercept of the observed regression between log(predator dry mass g) and 
log( prey mass loss g/h). 

Equation 2. 
Predicted total number of individual l a n ae killed = (a*Predator dry mass g** ""'**^' 
)*experimental duration h/prey mass g . 
Where a = y intercept of the observed regression between log(predator dry mass g) and 
log(prey mass loss g/experimental duration). 

Equation 3. 
Predicted Ldigitata mass loss g/individual = (a*mean final prey mass g/individual 
0.67^ 

Where a = the y intercept of the observed regression between log(mean final prey 
mass/individual) and \og{Ldigitata mass loss g/h/individual). 

Equation 4. 
Predicted L.digitata mass loss g/ experimental duration = 12- ((a* Predator dry mass g 

mean prey mass g)*mean prey mass g 
Where a = y intercept of the observed regression between log(predator dry mass g) and 
Iog(prey mass loss g/experimental duration). 

((a* Predator dry mass g mean prey mass g) is rounded up to the nearest integer. 
This equation estimates the number of prey killed based on the predator dry mass and 
prey mass, then calculates the remaining prey mass, which according to metabolic law 
should predicted prey ingestion and thus kelp mass loss. 

4.2.7,4 Effect of predator and prey identity on interaction strength 

The significance o f prey identity and beetle identity in determining interaction 

strength (number of individual larvae killed) was determined by combining all 

experimental data using two iiilly-factorial ANOVAs. The first considering the number 

of individual larvae killed when the beetles were exposed to each larva species 

separately, the second when beetles were incubated with all three species together. In 

both cases beetle mass and larval mass were covariates. The significance of prey 

identity and beetle identity in determining predator predaiion (number of individual 

larvae killed) for each predatory beetle species was determined using a one-way 
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ANOVA. Where appropriate Tukey's (HSD)post-hoc tests were used to determine 

which larva species was predated on to a greater or lesser extent. 

4.3 Results 

4.3.1 General Observations, Feeding, Mortali ty, Pupation and Behaviour 

Within 5-10 min of adding any beetle predator to the mesocosms the predator 

was observed to stop skirting the mesocosm perimeter and either move underneath L 

digitata discs out of sight or commence anacking larvae. 

With the exception of y?. sericeus and large larval size-classes, all beetles in all 

replicates fed. In the case of R. sericetis and large larvae, no feeding was observed in 75 

% of medium and small beetle size-class replicas and 66 % in large beetle size-class 

replicas. 

In some instances beetles killed many larvae and did not flilly consume all 

larvae killed. 

In all experiments mortality and pupation was zero for controls. Lar\'ae in the 

absence of predators consumed more kelp and larger size-classes of larvae consumed 

more than smaller size-classes. Kelp mass loss in the presence of beetles was greater 

than kelp only controls but less than any treatment with larvae. 

Non-predatory mortality and larval pupation was low across all experimental 

treatments. In the body size experiments combining C. xantholoma and C.frigida, in 

one replicate of small beetle and small lar\'al size-classes, three lar\'al individuals 

suffered non-predatory mortality and as such were removed from further analysis. In R. 

sericeus and C pilipes experiments there was no non-predatory mortality. However in 

some replicate, larvae in the large size-class did pupate, although pupation was never 

greater than 36 %. When P. algarum and D. anilis were combined two larval treatments 
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suffered non-predatory mortality, in one replicate of a large beetle with small larva, the 

other in a replicate of a medium beetle with medium lar\'ae, in the latter replicate 50 % 

of the lar\'a species suffered non-predatory mortality. Dryomyza anilis pupation was 

much greater than for any other larvae in other treatments. This was confined to 

medium and small lar\'al size-classes, the former never exceeding 24 % in any one 

replicate, and the latter 36 %. In C variolosus and C.frigida experiments there was no 

beetle or larval mortality. Two species of larva pupated in one replicate of small beetle 

and small larval size-class, and only two other individuals pupated throughout the 

experimental duration; one in a replicate with a medium beetle and medium lar\'ae, the 

other in a replicate with a medium beetle and large larvae. 

Depending on the size-distribution of predatory beetle and larval prey on the 

date of collection, small, medium and large size-classes differed between predator and 

prey across experiments (Table 4.2). In terms of mean beetle mass this was, C. 

variolosus > C. xantholoma > P. algarum > R. sericeus. This resulted in a 6.2 order of 

magnimde difference between the smallest size-class of the smallest beetle (P. algarum) 

and the largest size-class of the largest beetle (C. variolosus). The range of size 

distributions differed between each species. This resulted in mean beetle mass 

differences of 1.56, 1.53, 1.51, 1.33 orders of magnitude between smallest and largest 

size-classes for C xantholoma, R. sericeus, P. algarum and C. variolosus respectively 

(Table 4.2). Larvae generally differed to a greater extent in terms of size; 2.76^', 2.58 

and 2.25 orders of magnitude between largest and smallest size-classes for C.frigida, C. 

pilipes and D. anilis respectively, reflecting the order of largest to smallest larva (Table 

4.2). 

2.76 reflects the mean order of magnitude difference between C.frigida smallest and largest size-
classes in experiments where C.frigida was combined with C. .xantholoma and C verilosus separately. 
When combined with C. xaniholoma C.frigida differed by 2.81 orders of magnitude between largest and 
smallest size-class and with C verilosus by 2.71 orders of magnitude. 
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Table 4.2 Mean mass (dry mass mg) and standard error for each beetle and larval 
species. 

Species Predator size-class (dr\* mass mg) Prey size-class (dr>' mass mg) Species 
Large Medium Small Large Medium Small 

C xantltoloma & 
C. frigida 

3.95 ± 0.10 3.30 ± 0.05 2.53 ± 0.08 3 .46±0 .91 2 . 2 2 ± 0 . 3 8 1 .23±0.31 

R. sericeus & 
C piiipes 

1.48 ± 0.05 1.20 ± 0.02 0.97 ± 0.02 3 . 4 8 ± 0 . 5 7 2 .27± 1.61 1 .35±0 .36 

P. algarum & 
D. anilis 

2 . 1 3 ± 0 . 0 6 1.41 ± 0 . 0 6 0 . 8 9 ± 0 . 0 6 3.04 ± 0.66 2.27 ± 1.61 1.35 ± 0.36 

C. variolosus & 
C frigida 

5.53 ± 0.12 4.52 ± 0.03 4.16 ± 0.03 6.00 ±2 .71 3.26 ± 1.09 2.21 ± 0 . 9 6 

4.3.2 Predator Mass and Prey Mass Loss 

Across all experiments prey mass loss was seen to increase as predator mass 

increased (Figure 4.1). For each individual beetle and prey combinations and when data 

from all experiments were combined, the residuals of the regression of log(predator dry 

mass g) Iog(dry prey mass loss g.h ') were not nonnally distributed as determined 

using the Anderson-Darling normality test (Appendix A l l ) . Consequently, non-

parametric regression analysis was used to obtain the line of best fit. 

When all experiments were combined logio(prey mass loss) scaled with logio 

(predator mass) to the exponent 1.076. Despite the low and high values of prey mass 

loss relative lo predator mass in replicates where the predator R. sericeus was combined 

with C. piiipes, and the very low values of prey mass loss relative to predator mass loss 

seen in two replicates, P. algarum & D. anilis, and C. variolosus & C. frigida (Figure 

4.1). This regression was significant (P < 0.05) (Table 4.3). 
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y 
r. 
O 

0.0001 0.001 0.01 

Predator dr>' mass g 

Figure 4.1 Predator dry mass g plotted against dry prey mass loss g.h for each 
separate beetle and larva species body size experiment. A l l experiments combined 
Y=O.I08491x' ° '̂'̂ ^^ (s ). Black circles = C xantholoma & C frigida Y=0.000637x' 
° (n/s), red circles = R. scriccirs & C. pilipes Y= 11.19023x' " -̂'-* (n/s), green 
triangles = P. algatum & D. anilis Y=0.021385x"*-^*'-'*(s), yellow triangles = C. 
variolosus and C. frigida Y=8.585943x '•'̂ '**^*'*(s). Where s = significant relationship, 
n/s = no significant relationship (see Table 4.3). 

The exact relationship between predator mass and prey mass loss differed 

between experiment and is refiected in the range of exponent values of the power 

regression when log-predator mass is plotted against log-prey mass loss, 0.023 - 1.960 

(Figure 4.1), with the exception of C. xantholoma & C. frigida and R. sericeus & C. 

pilipes the relationship between log-predator mass and log-prey mass loss was 

significant (Figure 4.1, Table 4.3). Whilst the relationship between predator mass and 

prey mass loss when all experiments are combined can be viewed as refiecling the 

a\ erage relationship it does not represent the relationship between prey mass loss and 

predator mass in any single predator-prey experiment. 



Table 4.3 Results of Kendall's rank correlation coefficient (on a two-sided continuity 
corrected z) and 95% confidence intervals non-parametric line of best fit of predator dry 
mass vs prey mass loss g.h '. 

Experiment 95% Kendall's rank P 
Confidence correlation 

intervals coefficient tau b 
All experiment 0.959173 0.421855 <0.0001 
combined 1.208595 
C. xantholoma & -0.785677 -0.009333 0.9342 

Ms ida 0.686252 
R. sericeus & -0.175015 0.182557 0.0798 
C. pilipes 3.253811 
/*. algarum <£ 0.493942 0.442871 <0.0001 
D. anilis 1.198914 
C variolosus & 0.658986 0.290929 0.0051 
C. frigida 3.283553 

4.3.3 Predicted Prey Mass Loss 

Where the regression between prey mass loss and predator mass was significant 

the relationship was compared with that predicted by metabolic theory. In all cases 

predicted values of prey mass loss based on a scaling exponent of 0.75 or 0.67 differed 

significantly from those obser\'ed (Table 4.4 a, b). In all cases the predicted mean dry 

prey mass loss g.h"' was significantly greater than observed. 

Table 4.4 Results of 2 sample l-test of obsen'ed dry prey mass loss g.h"' and predicted 
dry prey mass loss g.h''; a) based on the scaling exponent 0.75 and b) based on the 
scaling exponent 0.67. 

Factors it Mean Standard 
deviation 

Standard 
error 

D.F. / P 

Obser^'ed 
All species combined 

182 0.0003 0.0003 0.0000 
300 -19.97 <0.001 

Predicted 
All species combined 

182 0.0012 0.0005 0.0000 
<0.001 

Obser\'ed P. alsarum 45 0.0001 0.0001 0.0000 
Predicted P. algarum 45 0.0002 0.0000 0.0000 87 -7.30 <0.001 
Obsened C variolosus 45 0.0002 0.0001 0.0000 
Predicted C. variolosus 45 0.1548 0.0154 0.0023 44 -67.33 <0.001 
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b) 
Factors n Mean Standard 

deviation 
Standard 
error 

D.F. / P 

Observed 
All species combined 

182 0.0003 0.0003 0.0000 
361 -8.82 <0.001 

Predicted 
All species combined 

182 0.0006 0.0003 0.0000 
-8.82 <0.001 

Observed P. atsarum 45 0.0001 0.0001 0.0000 
Predicted P. algarum 45 0.0003 0.0001 0.0000 77 -14.47 <0.00l 
Obser\ed C variolosus 45 0.0002 0.0001 0.0000 
Predicted C variolosus 45 0.2374 0.0210 0.0031 44 -75.73 <0.001 

4.3.4 Interaction Strength 

The number o f larvae killed varied greatly according lo larval size-class and 

prcdalor-prey combination. Within each beetle size-class, the number of individual 

lar\'ae killed increased as lar\'al size-class decreased, however for P. algarum & D. 

anilis treatments this trend is only apparent in small beetle size-classes (Figure 4.2 a-d). 

However the actual number of larvae killed differed between experiments (Figure 4.2 a-

d). The number of larvae killed in each beetle size-class did not differ greatly and was 

inconsistent between experiments (Figure 4.2). There is some indication that the number 

of individual larvae within a size-class appears to decrease with beetle size-class, 

although this trend is not consistent for all larval size-classes in all experiments (Figure 

4.2 a-d). 
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Large Medium Small Large Medium Small 

Beetle size-class 

H^urc 4.2 a-d Number of individual larvae killed, by each predator size-class over the 
entire experimental duration (mean ± s.e.). Turquoise = large larval size-class, teal = 
medium larval size-class, dark blue = small larval size-class, a) C xantholoma & C. 
frigida, b) R. sericeus & C. pilipes, c) P. algarum & D. anilis and d) C variolosus & C 
frigida. 

The fully factorial ANOVA combining all experiments supported these 

observations. Individually beetle size, larval si/e and the identity combination of beetle 

and larva were significant in explaining the variability in the number of individual 

lar\ ae killed. However only larval size-class* identity combination were significant in 

explaining the variability in the number of individual lar\ ae killed when factors were 

combined (Table 4.5) (the number of individual lar\ae killed is standardised for 

experimental duration). 
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Table 4.5 General Linear Model showing the effects of beetle size-class, larval size-
class and beetle, larval identity combination on the number of individual larvae killed/h, 
for all predator- prey body size experiments combined where initial beetle dry mass and 
initial lan'al dry mass are covariants. 

Source of variation Number of individual larvae killed.h' 
D.F. SS Adjusted 

SS 
Adjusted 
MS 

F P 

Beetle dr>* mass 1 0.0663 0.0000 0.0000 0.00 0.982 
Larval drj' mass 1 0.0843 0.0007 0.0008 2.10 0.150 
Beetle size-class 2 0.0015 0.0035 0.0018 4.74 0.010 
Larval size-class 2 0.0171 0.0160 0.0080 2I.5i <0.001 
Identit)' combination 3 0.0148 0.0094 0.0031 8.36 <0.001 
Beetle size-class*Larval size-class 4 0.0007 0.0007 0.0002 0.47 0.760 
Beetle size-class* Identity-

0.760 

combination 6 0.0025 0.0021 0.0003 0.92 0.481 
L a r \ al size-class*Identity 

0.481 

combination 6 0.0195 0.0197 0.0033 8.79 <0.001 
Beetle size-class*Larval size-

8.79 <0.001 

class*ldentity combination 12 0.0037 0.0037 0.0003 0.84 0.611 
Error 144 0.0537 0.0537 0.0004 
Total ISl 0.2642 

The importance of beetle and larval identity in determining the significance o f 

number of lan'ae killed is exemplified in additional one-way ANOVAs d^nd post-hoc 

Tukey's (HSD) tests. These analyses also show the greater influence of larval size than 

beetle size in determining the number of prey items killed, in experiments using C. 

xantholoma and R. sericeus within each size-class of beetle significantly fewer medium 

and large lar\'ae were killed than small larvae (Appendices A12, A13). In the case of 

large R. sericeus size-class, significantly more larvae from medium size clasess were 

killed than larvae in the large lar\'al size-class (Appendix A13). Only large and small C. 

variolosus beetles killed significantly more small than large lar\'ae (Appendix A14). In 

experiments involving P. alganun only within the small beetle size-class were more 

small larvae killed than medium or large larvae (Appendix A15). Across beetle size-

classes the number of larvae killed within a certain larval size-class was dependent on 

experiment and larval size-class, and did not follow a consistent pattern. Significantly 

more small larvae were killed across large > medium > small beetle size-classes in 

experiments using C. xantholoma. Significantly more medium lar\'ae were killed 
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between large > small beetle size-classes in R. sericetts experiments. In experiments 

using P. algantm only the mean number of large larvae killed increased with beetle 

size-class and here only between large and small beetles. In C. vaholosus experiments 

there was no significant difference between numbers of individual larvae killed between 

beetle size-classes (within a larval size-class). 

4.3.5 Predicted Number of Larvae Killed 

The number of larvae killed was predicted using equations derived from 

metabolic scaling laws. This was only undertaken using experiments where there was a 

significant relationship between predator mass and prey mass loss. In all cases there was 

a significant difference between the observed and predicted number of individual lar\'ae 

killed (Table 4.6 a, b). In all cases, predicted values based on metabolically predicted 

scaling exponents of 0.75 or 0.67, were much greater than those observed. In the case of 

C. vaholosus & C.frigida experiments the mean number of predicted individual larvae 

eaten was 2554 and 3921 (based on exponents of 0.75 and 0.67 respectively) 

highlighting the sensitivity of this technique to outliers (table 4.6 a, b). Whilst there is 

no biological or a priori reason to exclude low values of prey mass loss from C. 

variolosiis and C.frigida experiment (Figure 4.1) i f they were not present the y 

intercept would be drastically reduced thus predicted values of prey mass loss and 

number of larvae killed would be considerably reduced and closer to those observed. 
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Table 4.6 Two sample t-lest not assuming equal variances for observed and predicted 
number of individual lar\'ae killed throughout the whole experiment, a) The number of 
individuals killed = ((C*predaior dry mass g ^'^^) * experimental duration)/ average dry 
prey mass and b) the number of individuals killed = ((C*predator dry mass g ** " ) * 
experimental duration)/ average dry prey mass. C is the y-intercept taken from the 
separate regressions in Figure 4.1. 

Factors n Mean Standard 
deviation 

Standard 
error 

D.F. P 

All species combined 
Observed 

182 2.54 1.64 0.12 
188 -25.46 

<0.001 

All species combined 
Predicted 

182 25 11.8 0.88 

Observed P. alsarum 45 2.56 1.27 0.19 
Predicted P. algarum 45 5.53 2.46 0.37 65 -7.20 <0.001 

Obser\'ed C variolosus 45 3.84 1.59 0.24 
Predicted C variolosus 45 2554 998 149 44 -17.14 <0.001 

b) 
Factors / I Mean Standard 

deviation 
Standard 
error 

D.F. p 

Obscr\'ed 
All species combined 

182 2.54 1.64 0.12 
203 -18.96 <0.001 

Predicted 
All species combined 

182 13.13 6.63 0.49 

Observed P. alsarum 45 2.56 1.27 0.19 
Predicted P. algarum 45 8.96 4.02 0.60 52 -10.19 <0.001 

Observed C variolosus 45 3.84 1.59 0.24 
Predicted C. variolosus 45 3921 1533 229 4 -17.13 <0.001 

4.3.6 Kelp Mass Loss 

The greatest mean L digitata mass loss was observed in treatments containing 

C.frigida (Figure 4.3). Mean L. digitata mass loss g.h ' appears lo decrease from 

treatments of larva only > treatment of larvae and beetles > beetle only > control 

without beetles or larvae (Figure 4.3). 
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Kijjure 4.3 L digitata dry mass loss g.h ' (mean ± s.e.) for each grouped treatment type. 
Blue = C. xantholoma & C. frigida, turquoise = R. sericeus & C. pilipes, teal - P. 
algarum & D. anilis, green = C. variolosus & C. frigida. 

In each separate experiment one-way ANOVAs showed that grouped treatment 

type was significant in explaining the variability in L. digitata mass loss g.h ' (Appendix 

AI6a-d). Tukey's (HSD)post -hoc test showed for each separate experiment, 

treatments without lar\'ae, control and 'beetle only' treatments were significantly lower 

than treatments w ith larvae. However, the control treatments w ith and w ithout beetles 

did not differ significantly from each other. Additionally, mean L. digitata mass loss 

g.h ' in treatments o f lar\ ae only were only significantly greater than treatments with the 

beetle and lar\ae in experiments involving C.frigida (C. xantholoma & C.frigida and 

( vuriolosus & C. frigida), although it w ould be expected that in the absence of a 

predator, L. digitata mass loss g.h ' would be higher. This may be explained by the 

relatively lower consumption rates of P. algarum and R. sericeus. These predators 

consumed fewer lar\ae than C. xantholoma and C. variolosus (Figure 4.2a-d). 

Furthermore there were only nine replicates for each larval species in the absence of a 
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predator as opposed to 45 replicates of beetle and larval treatments. Thus the variability 

in L digitata mass loss g.h ' in the absence of a predator would have been higher and 

small differences in L digitata mass loss g.h ' between these two treatment groups may 

become not significant. 

4.3.7 Final Prey Mass and Kelp Mass Loss 

In all cases log(mean final prey mass/individual) and log(mean L. digitata mass 

loss g.h'Vindividual) were not normally distributed (test of the residuals at the 0.05 

significance level) (Appendix A17). Non-parametric regressions were used to determine 

the relationship. There was a clear significant positive relationship between log(mean 

final prey mass/individual) and log(mean L digitata mass loss g.h'Vindividual) when 

data from all experiments were combined and for each individual experiment, with the 

exception of/?, sericeus & C pilipes (Figure 4.4, Table 4.7). 

When the results are segregated into separate predator and prey experiments 

there was variation in the value of the exponent depending on the predator and prey 

experiment (Figure 4.4). 

Table 4.7 Kendall's rank correlation coefficient (on a two-sided continuity corrected z) 
and 95% confidence inter\'als of non-parametric line of best fit of predator dry mass vs 
prey mass loss g.h"'. 

Experiment 95% Confidence 
intervals 

Kendall's rank 
correlation 
coefficient tau b 

P 

Al l experiments combined 0.6283 
0.9082 

0.3043 <0.00I 

C xantholoma & C. frigida 0.0840 
0.7063 

0.2647 0.009 

R. senceus & C. pilipes -0.3442 
0.5678 

0.0566 0.5905 

P. algarum & A anilis 0.1206 
I . I2 I7 

0.2551 0.0I4I 

C. variolosits & C frigida 0.1042 
0.7322 

0.2617 0.0116 
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Mean final larvae mass.individual lar\ae ' 
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Figure 4.4 L. digitata mass loss per individual lar\ae g.h ' plotted against mean final 
dry prey mass.individual larva where the number of larvae is taken from the number 
remaining alive at the end of the experiment. Where s = significant relationship, n/s = 
no significant relationship see (Table 4.7). A l l experiments combined Y=0.002549x°"^*"'^ 
(s), lilack circles = C xanthohma & C. frigida Y=0.000477x°^°' (s), red circles = R 
s t r / . t 7 / s & C.nilipes Y=0.0000202x"-^®* (n/s), green triangles = P. algarum & D. anilis 
Y=0.000891x* " ^ s ) . yellow triangles = C. variolosus and C. frigida Y=0.000605x ° 
(s). Where s = significant relationship, n/s = no significant relationship see (Table 4.7). 

The size-class of predator and prey is not significant as a single or combined 

factor in explaining the variability in L digitata mass loss g.h ' (Table 4.8). The results 

of a fully factorial ANOVA show that only the identity combination of predator and 

prey and beetle size-class * identity combination of predator and prey were significant 

in explaining the variability in kelp mass loss (Table 4.8). 
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Table 4.8 Fully factorial analysis of variance showing the effects of beetle size-class, 
larval size-class and beetle, larval identity combination on dry L digUaia mass loss g.h' 
for all predator-prey body size experiments combined where initial beetle dry mass and 
initial larval dry mass are covariants. 

Source of variation Dr>' L. digiata mass loss E/ h* Source of variation 
D.F. SS Adjusted SS Adjusted MS F P 

Beetle dry mass ! 0.0000030 0.0000000 0.0000000 1.85 0.176 
Larval dr>' mass I 0.0000009 0.0000000 0.0000000 0.59 0.442 
Beetle size-class 2 0.0000002 0.0000000 0.0000000 0.33 0.723 
Larval size-class 2 0.0000003 0.0000001 0.0000001 2.27 0.107 
Identity combination 3 0.0000004 0.0000002 0.0000001 3.03 0.031 
Beetle size-class*Lar\'al 

0.031 

size-class 4 0.0000001 0.0000001 0.0000000 0.84 0.504 
Beetle size-class* Identity 

0.504 

combination 6 0.0000006 0.0000005 0.0000001 3.51 0.003 
Larval size-class*ldentity 

0.003 

combination 6 0.0000002 0.0000003 1.64 0.139 
Beetle size-class*Larval 

1.64 0.139 

size-cla5s*Identity 
combination 12 0.0000004 0.0000004 0.0000000 1.38 0.182 
Error 144 0.0000037 0.0000037 0.0000000 
Total 181 0.0000098 

4.3.8 Predicted Kelp Mass Loss 

When all species were combined log(kelp mass loss) scaled with Iog(final prey 

mass) to the exponent 0.763, which did not differ significantly from that predicted by 

metabolic theory of ecology (0.75) at the 10% significance level (Table 4.9 a). 

The exponent describing the power regression between final prey 

mass/individual and kelp mass loss/individual in P. algarum & D. anilis experiments 

(0.613) did not differ significantly from that of 0.67 as predicted by metabolic scaling 

laws (Table 4.9 b). In all other predator- prey experiments where the regression beUveen 

mean final prey mass and L digiiata mass loss/ individual was significant, observed 

values of dry kelp mass loss g.h'/individual larva differed significantly from those 

predicted by metabolic theory (Table 4.9a, b). 
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Table 4.9 Two sample t-iesi not assuming equal variances for observed and predicted L 
digitata mass loss g.h '/individual larva, a) Predicted L. digitata mass loss g.h' 
'/individual larva = ((C*mean final dry prey mass/individual ^ '^) and b) predicted L 
.digitata mass loss g.h '/individual lar\'a = ((C*mean final dry prey mass/individual ^^^). 
C is the y-intercept taken from the separate regression in Figure 4.3. 

Factors n Mean Standard 
deviation 

Standard 
error 

D.F, P 

Obser\ed 
All species combined 

182 0.00003 0.00003 0.00002 303 2.02 0.044 

Predicted 
All species combined 

182 0.00003 0.00002 0.00000 

Obser\*ed C xantholonta 47 0.00004 0.00002 0.00000 48 12.18 <0.001 
Predicted C. xantholoma 47 0.00001 0.00003 0.00000 

<0.001 

Obser\'ed P. alearum 45 0.00002 0.00002 0.00000 49 4.37 <0.00i 
Predicted P. algarum 45 0.00001 0.00000 0.00000 

<0.00i 

Obser\ ed C. variolosus 45 0.00006 0.00003 0.00000 49 9.73 <0.00i 
Predicted C.variolosus 45 0.00002 0.00001 0.00000 

9.73 <0.00i 

b) 
Factors n Mean Standard 

deviation 
Standard 
error 

D.F. / P 

Observed 
All species combined 

182 0.00003 0.00003 0.00000 361 -5.05 <0.001 

Predicted 
All species combined 

182 0.00005 0.00003 0.00000 

Obser\ ed C. xantholoma 47 0.00004 0.00002 0.00000 54 9.69 <0.001 
Predicted C. xantholoma 47 0.00001 0.00001 0.00000 
Obser>'ed P. algarum 45 0.00002 0.00002 0.00000 59 1.39 0.170 
Predicted P. algarum 45 0.00002 0.00001 0.00000 

0.170 

Obser\ed C variolosus 45 0.00006 0.00003 0.00000 61 6.47 <0.001 
Predicted C.variolosus 45 0.00003 0.00001 0.00000 

<0.001 

As the predicted number of individual larvae killed for all experiments 

combined, or any single predator-prey experiment always included values of over 12 

individual larvae, observed kelp mass loss was not compared to that predicted by 

metabolic theory using initial predator mass and prey mass as outlined in Section 

4.2.7.3. 
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4.3.9 Prckri ' iui- I xpir imtnts 

The number of larvae killed depends on the beetle species, the identity of the 

lar\ ae and whether the lar\ ae are presented to the predator together or in isolation 

(Figure 4.5a-d). 

— 
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— 

2 

C.fhgida C.pilipes D.anilLs C.frigida C.pilipes D. anilis 

Larvae identity 

Fijjure 4.5 Number of individual larva killed throughout the experiment (mean ± s.e.). 
a) C. xantholoma, b) R. sericcus, c) P. alganim, d) C. variolosus. Turquoise = predator 
beetle species incubated with all three lar\ a species together and blue = predator beetle 
species incubated each lar\a species separately (n = 12). 

This observation is reflected in the separate fully factorial ANOVAs. When 

beetles were presented with each lar\ al species separately the variation in the number of 

larvae killed depended upon the beetle and larval identity (Table 4.10 a). Prey size was 

also a significant covariable, however as prey size is not correlated with number o f 

larvae killed h (Pearson correlation -0.056, P = 0.653), prey size is not thought to affect 

the beetles' preference but rather reflects a difference in prey size between experiments 

as temporal changes in larval size-class in the strandline on collection days resulted in 

larval size differing between experiments (Table 4.2). When beetles were presented 
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with all lar\'al species, only beetle identity was significant in explaining the variation in 

the number of larvae killed (Table 4.10b). Although beetle identity and larva identity as 

combined factors were not significant at the 5% significance level the p value of 0.055 

suggests that these two factors combined may, as in the case when beetles were 

presented with each larval species separately, be important in determining the number 

of lar\'ae killed. 

When separate one-way ANOVAs were performed on the number of prey killed 

for each beetle species when prey were presented in isolation and combination, the 

number of prey killed did not differ significantly between prey species for the beetles R. 

sericeus and C variolosus (Appendix A18 bi,ii , AI8d,i , i i ) . When prey was presented to 

P. algarum separately there was a significantly lower number of O. anilis killed than the 

other two species of larva. However, when P. alganun was exposed to all three species 

of prey together there was not a significant difference in the number of larvae killed 

between larva species (Appendix A18c, i , i i) . The results for C xantholoma showed a 

discrepancy in the number of larvae of each species killed depending on whether C. 

xantholoma was exposed to individual larva species (significantly less C. pilipes were 

killed than D. anilis or C. frigida) or all three together (significantly less D. anilis were 

killed than C. frigida, the number of C. pilipes killed did not differed significantly from 

either species) (c.f. blue and turquoise bars Figure 4.3a, Appendix A18a, i , ii). 
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Table 4.10 Fully factorial ANOVA showing the effects of beetle identity and larval 
identity on the number of individual larvae killed throughout the experiment, for all 
predator-prey body size experiments combined where initial beetle dry mass and initial 
larval dry mass are covariants. a) Only one lar\'al species was presented to the beetles in 
a given treatment and b) all three larvae were presented to the beetles. 

Number oflarvae killed 
Source 0 ,F , SS Adjusted 

SS 
Adjusted 

MS 
F P 

Beetle mass 1 
Larval mass 1 
Beetle identity 3 
Larva identit>' 2 
Beetle identity*lar\'al identity 6 

0.010440 
0.007067 
0.021787 
0.029594 
0.060486 

0.000318 
0.010467 
0.013547 
0.013250 

0.0690486 

0.000318 
0.010467 
0.004516 
0.006625 
0.010081 

0.20 
6.60 
2.85 
4.17 
6.35 

0.656 
0.013 
0.046 
0.021 

<0.001 
Error 52 
Total 65 

0.082526 
0.211900 

0.082526 
0.189157 

0.001587 2.827 

Lcven s test of equal vanance for larvae killed/h when presented to beetles seoaratelv 
0.81, P = 0.629. 

test siatistic 

b) 

Number of larvae killed 
Source SS Adjusted 

SS 
Adjusted 

MS 
F P 

0.000555 
0.001376 
0.007946 
0.003512 
0.006640 
0.025869 
0.045898 

Lcv'cn^s lest of equal variance for lar\'ae killed/h when presented to beetles together; test sialistic = -0.44 

Larval mass 
Beetle identity 
Larval identity 
Beetle identity*lar\'al identity 
Error 
Total 

1 
1 
3 
2 

6 
52 
65 

0.0000319 
0.0004520 
0.0076316 
0.0008771 
0.0066400 
0.0258693 
0.0415019 

0.0000319 
0.0004520 
0.0025439 
0.0004385 
0.0011067 
0.0004975 

0.06 
0.91 
5.11 
0.88 
2.22 

2.827 

0.801 
0.345 
0.004 
0.420 
0.055 

4.4 Discussion 

4.4.1 Results Summary 

This study set out to investigate the validity o f using body size and allometric 

scaling laws to predict predator-prey interactions and resource processing in the 

strandline ecosystem. In order for such an approach to be used a number of assumptions 

must be upheld (Section 4.1.2). Whilst this smdy showed the importance of size in 

determining predator-prey interactions and resource processing, predator and prey 

identity were also significant. Furthermore the assumptions behind the use of body size 

and allometric scaling laws to predict predator-prey interactions and resource processing 

were not always upheld. Overall interaction strength and decomposition could not be 
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predicted using the approach employed in this study. The inability of such an approach 

to accurately predict trophic interactions and ecosystem processes can be explained by 

the data failing to meet each assumption linking body size to interaction strength and 

ecosystem processes. The following sections discuss each of these assumptions in light 

of the results of the present findings and previous work. 

4.4.2 Prey mass loss scales with predator mass 0.75 or 0.67 

For body size to be used to predict trophic interactions between predators and 

prey there must be a consistent relationship bet^\'een predator: prey body mass and 

energy fiow. The mass of a predator must determine the amount of prey consumed. In 

this experiment prey mass loss was significantly correlated to predator mass. However, 

this was only significant when all experiments were combined and for two beetle-larva 

combinations, P. algarum & D. anilis and C. variolosus & C.frigida. Furthermore, 

even when significant, the relationship between predator mass and prey mass loss was 

not consistent between experiments. With C. variolosus & C.frigida the large exponent 

(1.96) relating prey consumption to predator mass is in part due to the exceptionally low 

values of prey mass loss in a few replicates with small predators. There is no a priori 

reason to exclude these individuals from the analysis but it does highlight the 

interspecific variation in consumption within this species." Contrary to the results of 

this smdy, previous theoretical and experimental work, directly and indirectly suggest 

that there is a consistent relationship between predator size and prey consumption. 

According lo metabolic theory the flux of mass from prey to predator should scale with 

predator mass on a log-log scale (Brown et al. 2004, Brown and Gillooly et al. 

" Previous work on predatory strandline beetles has been limited lo obsen'ations of their feeding 
(Backlund 1945, E . Mctxffcpers. comm., see Section 2.7.3). There is no work thai I am aware of that has 
empirically investigated feeding in strandline beetles with respect to predaiion rales or mechanisms. 
Furthermore, effects of predator body size on ingestion or consumption rales in these species remain 
wholly unexplored. 
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2003). However, in this experiment the exponent of the power relationship between 

logio predator mass and logioprey mass loss was significantly greater than that of 0.67 

or 0.75 when all predator and prey combinations were combined, and for the two 

experiments P. algarum & D. anilis, and C. variolosus & C. frigida. Similarly the 

results of this study do not follow the theoretical arguments proposed by Emerson et al. 

(2005), relating energy fiux from prey to predators, where the flux o f energy from prey 

species to a predator is proportional to the mass of predator raised to Vi I mass of prey 

raised to 1'^. Following the allometric arguments proposed by Emerson et al. (2005) 

prey mass loss should have been directly proportional to predator mass in this 

study*'*. Although empirical field measurements of energy transfer, predator: prey body 

size ratios and stomach content analysis from species in a stream food web supported 

various assumptions behind the energetic predictions made by Emerson et al (2005), 

empirical measurements of prey consumption by predators of different sizes was not 

made. 

In contrast with the data presented here previous correlative approaches based 

on empirical measurements of bird and mammals have shown ingestion rate to scale 

with predator mass to the exponent 0.72 (Fariow 1979). This is remarkably similar to 

that of 0.75 or 0.67 as predicted by metabolic theory. Physiological differences between 

birds and mammals as investigated by Fariow (1979) and the invertebrates used in this 

This is based on a scries of energetic arguments. Firstly, meiabolic rate scales with body mass ^ a n d 
species ingestion rate scales with meiabolic rate " Thus ingestion of a single prey item by a predator = 
predators total ingestion rate subdivided among its prey species (calculated by the relative density of that 
prey item divided by the total density of all prey items). The second part of reasoning comes from 
inferring the density of prey species in a real food web based on allomctric scaling principles. They 
assume (as found in freshwater and marine systems) that biomass*density is constant, i.e. 
biomass*abundancc does not scale with mass and density scales with mass. In effect the energy flow 
from any single prey species to a predator is a function of the predator meiabolic requirement / the 
relative density of thai particular prey species relative to other prey species. 

In this experiment prey density was not altered. The inieraciion between a single predator and single 
prey item was measured, thus following the allometric arguments proposed by Emmerson et al. (2005). If 
these argumenis held prey mass loss should have been directly proportional to predaior mass ° This 
was not the case. 
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present smdy may go some way to explaining the discrepancies between the results. 

The beetles and larvae used in this experiment are not endoihenns and as such their 

metabolic rates may be more variable than those of birds and mammals. As found in 

this study there is evidence to suggest that the exponent relating predator mass to prey 

consumption is higher in heterotherms (Bartholomew and Tucker 1964). Bartholomew 

and Tucker (1964), investigating the ingestion rate o f varanid lizards found in some 

species logio predator mass scaled with logioprey mass consumed ' U n f o r t u n a t e l y , 

few studies have empirically related predator body size and consumption and thus the 

generality of the exponent 0.75 to relate predator mass to prey consumed remains 

uncertain. However, the results of this study and that of Bartholomew el al. (1964) 

suggest that in the case of heterotherms exponent values may exceed that predicted by 

metabolic theory. 

One of the few studies to calculate ingestion rale between invertebrate predators 

and prey found the average total ingestion rates of predators (as measured by total 

ingestion ^the contribution o f that prey tem to predator production) was negatively 

correlated with prey size, i.e. greater numbers of smaller prey were consumed 

(Woodward et al. 2005b). However, the exact scaling of this relationship and the effect 

of predator size on prey consumed was not calculated. In the present study there was 

only a significant relationship between predator mass and prey consumed in half o f the 

predator-prey experiments, although, as found by Woodward et al. (2005b), in all cases 

the relationship was positive. 

There is no empirically-tested mechanism or even rationale lo explain why prey 

mass loss is not related to predator size in two of the predator-prey combinations 

investigated. This is especially interesting in light of the fact that prey mass loss scaled 

with predator mass in C. variolosus & C.frigida but not in experiments using C. 
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xantholoma & C.frigida. Both of these beetle species were incubated with the same 

prey species and the former beetle may be a variety of the latter. 

The notion that predator consumption should scale consistently with predator 

body size is based on two assumptions, firstly that metabolic rates scales with body size 

and secondly that consumption rate is determined by the predator's metabolic rate. Thus 

the lack of a consistent and significant scaling relationship between body size and prey 

consumption found in this study suggest that the species investigated in this study do 

not meet either, or both, of these assumptions. There is an impressive amount of 

evidence to suggest that a consistent relationship exists between body size and 

metabolic rate from species differing in size by over 21 orders of magnitude (see Peters 

1983, Calder 1984, Schmidt-Nelson 1984, Gillooly e / 2 0 0 1 , 2 0 0 2 , Bxo\\netal. 

2004). However, there are also good counter-arguments suggesting that the widely 

documented scaling relationship between size and metabolic rate does not actually exist. 

I f that was the case it is hardly surprising that no universal relationship between 

predator mass and prey mass loss was found in this study. The strongest argument 

against body size scaling relationships centres on the absence of a universally accepted 

mechanism to explain why metabolism should scale with body size; a number o f 

theories have been proposed (McMahon 1975, West et ai 1997, 1999, Gillooly et al. 

2001, Darveau et al. 2002, Hochachka et al. 2003, West and Brown 2005, Banavar et 

al. 1999, 2002, Bejan 1999, 2000) but nearly all of them have been heavily contested 

(see arguments in Bejan et al. 1999, 2002, Banavar et al. 2002, West et ai 2002. 2003, 

2005, Darveau et al. 2003, Brown 2004).'^ 

Proposed mechanism by which metabolism should scale with body size: multiple-causes of allometry 
linking cellular and whole animal metabolism (Darvaeu et ai 2002, Hochachka et ai 2003), elastic 
similarity (McMahon 1975), hicrachical branching networks (West and Brown 2005) encompasses 
previously proposed theories; such as the fractal nature of energy distributing vascular networks in 
animals (West etal. 1997, Gilloly ei a!. 2001), resource distribution through hierachial branching 
networks in plants (West el ai 1999), geometry of nutrient supply networks (Banavar ai 1999, 2002b, 
Bejan 2000) and four dimensional biology (West et ai 1999) Finally constructal law or theory, an old 
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Secondly, doubts have been raised concerning the interpretation of previous data 

sets. The previously demonstrated relationship beuveen body size and metabolic rate 

may be an artifact of ihe statistical techniques used to fit the regression and investigate 

the significance of the relationship. Specifically the regression analysis used to derive 

the exponent (Ricker 1973). The choice of best line of fit may not have been appropriate 

(Har\'ey and Mace 1982, Martin and Barbour 1989, Rjska 1991, Harvey and Pagel 

1994). Type I regression analysis is commonly used and this assumes the independence 

and normal distribution of x and y variables, both of which are unlikely to be upheld 

when measurements of species body size and metabolic rate are made (Martin and 

Barbour 1989, Batterham et ai 1997, White and Seymour 2005, Nagy 2005). 

Furthermore, when a regression analysis is undertaken on double logged axis, as 

commonly used to define allometric relationships, the influence of outliers and large 

species will have a disproportionate effect in determining the overall relationship (Smith 

1980). Finally, the significance of relationships is often undertaken using only the 

correlation coefficient and assuming its proximity to 0.75 or 0.67 without statistical 

comparisons (Smith 1980, Suarez and Dar\'eau 2005). in order to overcome some of 

the statistical artifacts commonly encountered when analysing allometric relationships 

the present study used non-parametric regression techniques (which did not assume 

normality in error distribution or that error was only present in the y axis) to relate 

beetle size to prey mass loss and the regression compared to that of 0.75 and 0.67. I f 

previous studies had applied such techniques a range of exponent values such as those 

found in this study may have been uncovered. 

concept that arguably holds many of Ihc same assumptions as the theories proposed by West ei al. (1997 
1999) and Bcjan et al. (1999, 2000). Even the constmctal law or hierarchical branching networks which ' 
forms the base of many of the mechanistic propositions laid down to explain the why metabolic rale 
should scale with body size has been questioned, in particular Makarieva et al. (2004) showed how the 
apphcalion of this approach resulted in violation of the energy conser\'ation law. 
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I f we accept thai body size does scale with metabolic rate (notwithstanding 

poorly applied statistical techniques and the additional bias introduced in analyzing the 

relationship), the difference in the range of body sizes investigated between this and 

previous studies may explain why no universal relationship was found between predator 

mass and prey mass loss in each individual experiment. In this study there was no 

relationship between predator mass and prey mass loss in two of the experimental 

predator prey manipulations and the other two predator prey manipulations scaling 

relationships were higher than predicted based on metabolic scaling laws. Most studies 

investigating the relationship between body size and metabolic rate have used species 

covering a very wide range of body sizes (e.g. Peters 1983, Calder 1984, Schmid-

Nelson 1984, Gillooly e / 2 0 0 1 , 2002, Brown et al. 2004). This may bias results due 

to data aggregation effects (Torres et al. 2001, Savage 2004, and Cohen et al. 2005). 

Such data wil l yield an average and as such may not accurately reflect the relationship 

between body size and metabolic rate within species or groups. When the relationship 

between body mass and metabolism within, rather than across, species groups has been 

examined the widely documented scaling relationship of 0.75 or 0.67 is not observed 

(e.g. Boddington 1978, Hooper and Weibel 2005, for reviews, Birchard and Arendse 

2001 on cockroaches, Darveau et al. 2002, on birds and Nespolo et al. 2003 on 

crickets). In fact, exponent values linking body size to metabolism ranging from 0.3 - 1 

have been documented; 0.6 - 0.8 for mammals (Speakman 2005), 0.8 for some fish 

(Winberg 1960, Paloheimo and Dickie 1966), 0.3 for selected mammals (Dodds et 

al.lOOX ), 0.69 for some birds (White and Seymour 2003) and 1.0 for trees (Reich e/f?/. 

2006). Thus a universal exponent linking body size to metabolism may not exist 

(vanBergen and Phillips 2005). Although this study did not explicitly measure 

metabolic rate, such data aggregation effects were seen. When the relationship between 

predator mass and prey mass loss from all predator-prey experiments was examined the 
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scaling exponent was significant, but did not reflect the scaling relationship of any 

single predator species and prey species combination. Furthermore for two of the 

predator-prey species combinations there was no significant relationship. 

Perhaps the most convincing argument to explain the lack of a relationship 

between C xantholoma and R. sericeus mass and prey consumption is that dry mass in 

these species is not a good proxy for metabolically active tissue. A significant 

relationship may exist between the metabolic rale and prey consumption of C. 

.xantholoma and R. sericeus, but the measures made in this study (dry mass) did not 

accurately reflect metabolic rate. There are many cases in the literature where mammal 

or bird body size does not scale with metabolic rale, or at least not as convincingly as 

the size of specific organs (i.e. basal metabolic rale and the digestive and melabolically 

active tissues of mice, Konarzewski and Diamond (1995); maximal metabolic rate and 

skeletal muscles in house sparrows, Chappell et al. (1999); and male basal metabolic 

rate with the intestinal tract and lung mass of Turkeys, Hammond et al. (2000)). I f 

larger beetle conspecifics contain a greater amount of metabolically inactive tissue, their 

dry mass would increase but smaller and larger individuals of the same species may 

have the same mass of metabolically active tissue and thus equivalent metabolic needs. 

This may translate to equal prey consumption between large and small beetles i f 

metabolic requirements govern their ingestion rates. Lower mass-specific metabolic 

rates in larger invertebrates, compared with smaller conspecifics, have been attributed to 

the increase in non-metabolically active tissue in larger individuals of crabs (Weymouth 

et al. 1994) and freshwater amphipods (Glazier 1991). Furthermore, it has been 

previously suggested that, within a species, smaller individuals may have higher mass-

specific rates of metabolism, than larger individuals, due to their stages of ontogeny 

stages. Young individuals (often smaller than older conspecifics) may be comprised of 

relatively fast-growing tissues whereas larger older individuals have lower metabolic 
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requirements for the maintenance of somatic growth and reproduction (Glazier 1991, 

Simcic and Brancelj 2003). There is little empirical evidence regarding how ontogeny 

may influence the scaling relationship between body mass and metabolic rate. However, 

Nespolo et al. (2004) found abdomen mass to be more closely related to metabolic rate 

in crickets than other size measurements, as head and thorax remain of a fixed size after 

maturity. Perhaps more convincingly, Simcic and Brancelj (2003) found evidence for 

the increase in non-metabolically active tissue in larger conspecifics of the amphipod 

Gammarus fossantm by investigating the electron transport system (EST) (as a proxy 

for O 2 uptake and thus metabolic rate) in the amphipod. The percentage of cytoplasm 

was greater in smaller than larger individuals, and there was a significant relationship 

between chitin mass and amphipod wet mass. However, both larval species wet and I/7 

dry mass were significantly related to \n ETS. In this smdy the non-significant 

'relationships* between prey mass loss and predator mass in treatments of/?, sericeus 

and C. xantholoma may be explained i f the mass of these species' chitinous structures 

increased with beetle size to a greater extent than in amphipods and crickets. I f small 

individuals of C xantholoma and R. sericeus had the same metabolic rate as larger 

individuals of the same species, it would follow that prey mass loss would not differ 

with size. However, this line of argument cannot explain the higher than metabolically 

predicted exponents o f P. algantm and C. variolosus body mass to prey consumption. 

Alternative explanations for the lack of difference in C. xantholoma and R. 

sericeus consumption with size come from postulated differences in feeding behaviour. 

Body size may scale with metabolic rate but factors other than metabolic rate may be 

determining consumption. Larger individuals o f C. xantholoma and R. sericeus may 

have decreased their feeding rates, below that of their metabolic requirements i f the 

larval prey were less nutritionally valuable to larger individuals of these two species; 

thus explaining the absence of a relationship between predator size and prey 
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consumption for these two beetle species and their prey. I f larger individuals of C. 

xaniholoma and R. sericeus have proportionally larger external chitinous suiictures than 

smaller conspecifics their nitrogen and phosphorus nutritional demands may be greater. 

The proportion of lar\'ae in their natural diet relative to other prey items higher in N and 

P (such as amphipods) compared with those of smaller beetles may be smaller. As the 

experiment was undertaken on a short time scale, the larger and smaller beetles may still 

be consuming prey according rates in the field. Evidence to suggest that species alter 

their feeding rates in response to their nutrient demands is largely anecdotal, however, 

feeding rates have been shown to differ depending on the nitrogen content of the 

resource in caterpillar larv'ae (Slansky and Feeny 1977) and in Daphnia (DeMott et ai 

1998). However, this does not explain why C variolosns and P. alganim mass did scale 

with prey mass loss. Additionally, why larger C. xantholotna and R. sericeiis 

individuals would have a greater nutrient demand relative to smaller conspecifics, but 

not larger C. variolosus or P. algarum beetles, is unclear. 

Finally pre-exposure conditions may explain why there was no relationship 

between predator mass and prey mass loss in one half of the predator-prey experiments 

(C. xantholoma & R. sericens) but not the other half (C. variolosus & P. algantin). I f 

C xantholoma and R. sericeus were ending a period of diapause it would seem logical 

to eat rapidly to compensate for mass loss during this period. I f small and large C. 

xantholoma and sericetis have the same maximum rate of ingestion the amount of 

prey consumed/mass may have been equable between beetles irrespective of size. 

Following a period of food scarcity hyperphagia, or increased feeding, has been shown 

empirically in some invertebrates (see Calow 1975 for freshwater gastropods; Siekmann 

et al. 2001 for parasitic vvasps). Additionally the ability to employ hyperphagia during 

periods of food abundance would be a logical behavioural and possibly physiological 

adaptation to sur\'ival in strandline environments where the deposition of wrack and 
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abundance of kelp fly lar\'ae can be ephemeral (Section 2.5). However data on wrack 

and lar\'al availability immediately preceding beetle collection are not available to 

support or refute this argument. 

4.4.3 Interaction Strength 

I f metabolic rate scales with body size, and ingestion is directly proportional to 

metabolic rate, the trophic interaction between predator and prey should scale with body 

size. The results of this study throw serious doubt on the use of predator: prey body size 

as a means to predict interaction strength in the strandline. Although the number of 

lar\'ae killed generally increased as lar\'al size-class decreased (this being especially 

pronounced from large and medium size-classes to small larval size-classes) the effects 

of predator and prey identity were as important as predator and prey body size in 

determining interaction strength. The number of individual larvae killed was affected 

both by larval size-class * predalor-prey identity combination. When each experiment 

was analysed separately the effects of beetle size-class on per capita prey consumption 

was not consistent for each predator-prey combination. For a particular larval size-class 

the number of individuals killed did not differ between every (C. xantholoma. R. 

services and P. algantm) or any (C. variolosus) beetle size-class^^. 

Interestingly where the number of larvae killed (within an individual larv ae size-class) was influenced 
10 a large extent by beetle size (C. .xantholoma and R. scriceus treatments) there was no significant 
relationship between prey mass loss and predator size. The apparent disparity between the efiecls of 
beetle size when analysed as number of individuals killed or prey mass loss in R. sericeus treatments may 
be attributable to pupation events. Although pupation rates were normally low, larvae pupation occurred 
in some treatments of /?. serx'iccus and large lar\'ae size-classes, resulting in overall prey mass loss despite 
little predation. There is no compelling evidence lo suggest why the per capita predalion of prey by C. 
.xanathohma appears to decrease with beetle size-class but prey mass loss does not decrease significantly 
with decreasing predator mass. One explanation may be the variability in prey mass within each lar\'ae 
size-class. If large size-classes of beetles eat the smallest prey within the size-class and the reverse is true 
for smaller beetles, then, although the number of individuals killed decreases with beetle size-class prey 
mass loss may not. There is, however, no empirical evidence to support this. 
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Greater per capita consumption of smaller prey items, as found in this study has 

been found previously. Woodward et al. (2005b) found a negative correlation between 

prey size and interaction strength, (interaction strength was measured as annual 

ingestion/annual production), finding smaller species to suffer greater predalion based 

on gut conleni analysis of animals from a stream food web. In field exclusion 

experiments, Ovadia and Schmitz (2002) found smaller grasshoppers suffered greater 

mortality than larger grasshoppers when presented to a predatory spider. Similarly 

Eklov and Werner (2000) showed that predation rates by both bluegill sunfish and 

odonaie larval predators on bullfrog and greenfrog tadpoles decreased with increasing 

tadpole size. The greater per capita consumption of smaller larvae (than larger larvae) 

observed in this study is concurrent with predictions based on metabolic scaling laws. 

Each individual small larva wi l l provide less energy than a larger conspecific, thus in 

order to fu l f i l metabolic energy requirements beetles wi l l need to consume more larvae 

i f they are small. 

Contrary to the results of this study predator size has been shown to affect 

interaction strength (Woodward et ai 2005a, b, Woodward and Hildrew 2001, Sala and 

Graham 2001). Woodward and Hildrew (2001) found that the larger dragonfly nymphs 

had relatively higher per capita effects on their prey. Average interaction strengths 

between species and their prey were estimated using gut content analysis and per capita 

consumption o f a predator on a specific prey item was detennined by the proportion of 

that prey in the predator's diet. Similarly, in a study designed to investigate the 

community wide distribution of interaction strengths in giant kelp forests, Sala and 

Graham (2002) found a positive relationship between sea urchin (Strongylocentrotus 

purpurattis) body size and interaction strength (as defined by; (sporophyte density in 

aquaria with predators /sporophyte density without predators/)time/predalor density). 

However, the relationship between herbivore size and per capita interaction strength 
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was limited in its applicability across all body sizes. The relationship between body size 

and interaction strength fined a hypothetical Michaelis-Menten saturation cur\'e 

reaching a plateau at high predator body sizes presumably, as suggested by the authors, 

because as predator: prey body size ratios increased the efficiency at which herbivores 

could remove sporophytes became limited. It is worth noting that sea urchins were 

separated into two size categories and small sea urchins removed fewer sporophytes 

than larger individuals of the same species (Sala and Graham 2002), a trend which was 

obser\'ed in some, but not all, predator-prey combinations in this study. Woodward et 

al. (2005c) found larger predators consumed larger prey, and smaller predators 

consumed smaller prey. This trend was not observed across all predator- prey 

combination experiments in the present study. However, the size range of predator and 

prey used by Woodward et al. (2005b) exceeded that of the present study. Woodward et 

al. (2005b) used small prey that were outside the large predator^s diet breadth and vice 

versa for large prey and small predators. When the average number of larvae killed in 

each beetle size-class was considered the results of the present study agree well with 

previous investigations. Although, on average, larger beetles killed significantly more 

larvae than smaller conspecifics, owing to subtle differences in the number of larvae 

killed due to predator and prey identity and prey size, predator size was not a significant 

factor to affect interaction strength. 

Measuring the relative body sizes of predators and prey has been advocated as 

method by which interaction strengths in an assemblage could be estimated. Theoretical 

arguments (Jonsson and Ebenman 1998, Emerson et al. 2005) and re-analysis of 

previous data (Wootton and Emerson 2005) suggest that there may be a relationship 

between predator: prey size ratios and interaction strength. This is based on the 

assumption that body size can encapsulate much of the biological information of a 

species (Brown et al. 2004). However simultaneous empirical measurements of both 
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predator and prey body sizes and interaction strength are rarely made. In all of the 

studies mentioned so far predator and prey body size have not been manipulated 

simultaneously (although there is evidence that separately both predator and prey size 

are important in determining interaction su-ength). However, only by measuring or 

manipulating either predator or prey size can subtle differences in interaction strength 

with predator or prey size, as found in this study, be discerned and the relative 

importance of species identity and non-direct interactions in affecting this relationship 

elucidated. 

One of the few empirical investigations to manipulate the size and identity of 

both predator and prey species (Emerson and Raffaelli 2004) is often cited as evidence 

for the use of predator and prey body size as predictors of interaction strength. Using a 

design similar to that used in the present set of experiments Emerson and Raffaelli 

(2004) constructed mesocosm treatments were using four predator species: a crab, a 

shrimp and two fish. Each predator was segregated into three size-classes and every 

size-class of predator incubated separately with three distinct size-classes of mud-

dwelling Corophiitm volntator. Additionally each predator size-class was incubated 

with three additional prey species (only one size-class was used). Predator prey body 

size ratios scaled significantly with interaction strength for the shrimp and crab 

predators. Emerson and Raffaelli (2004) stated that the power regression exponents 

between log(predator: prey body size) and log(interaction strength) were not 

significantly different from that predicted by metabolic theory (0.75). However 

interaction strength was calculated as a dynamic index (l//P/C*xt) where P is the density 

of prey with the predator and C is the density of prey in the absence of predator, x = 

density of predator and t = time. Thus as DI increases the number of prey consumed 

decreases. Therefore as shrimp and crab predators increase in size relative to prey, the 

number of prey they consume reduces. This is in contrast to what is predicted by 
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metabolic theory and what was obser\'ed in the current study experiment. Whether Dl 

was inverted or the data transformed so that the reciprocal o f DI was displayed is not 

known. Despite this, as in the present study, the body size-interaction strength 

relationships were dependent on the identity of the predator. There was no significant 

relationship between each fish species' predator: prey body size ratios and interaction 

strength. Additionally, although predator size and prey size were significant in 

explaining the distribution of interaction strengths, so too was predator identity (and the 

interactions between predator identity * predator size and predator identity * prey size). 

Thus the study o f Emerson and Raffaelli (2004) provides conflicting evidence for the 

use of predator: prey body size relationships to predict interaction strength. 

In the present study either beetle body size proved too be a poor surrogate 

measure of metabolic rate, or beetles were not feeding according to their metabolic 

requirements. The arguments presented in the previous section (Section 4.4.2) can apply 

here and may explain the discrepancies between the results of this study and those 

mentioned above. There is evidence that predation rates can be influenced by factors 

other than prey size. Eklov and Werner (2000) found that predation rates were affected 

by the non-lethal presence of another predator and were also dependent on prey identity. 

Although predator size and identity effects were not investigated by Eklov and Werner 

(2000), predation rates were influenced by strong behavioural responses of predators. 

Furthennore, metabolic requirements are not the only explanation for the greater per 

capita consumption of smaller prey items observed in the current study. A greater 

number of small larvae may have been consumed as they were easier to capture and 

subdue.'' 

"' During preliminary trials and ihe experiment when beetles initialed an attack on the lar\'ae, the larvae 
increased movement markedly by massive posterior- anterior contractions. If the beetles initiated attack in 
the middle of the lar\'ae they maintained a tight posterior-anierior contraciion so thai the posterior 
spiracles were touching the mouthparts and then repeatedly rolled dorsoventrally, in both cases the beetles 
were often lifted into Ihc air violently and if ihey retained their hold were often thrown violently up and 

176 



Previous work, and the results o f this study, provide evidence for the importance 

of predator and/or prey size in determining interaction strength. However, in the few 

instances where species identity effects have been segregated from those of species size, 

identity seems an equally important factor determining the distribution of interaction 

strengths. Additionally the scale at which the relationship beuveen predator and prey 

body sizes and interaction strength are examined appears to affect the relationship. 

When average interaction strength for a single species of predator is related to average 

predator: prey size, there is a good correlation. In this study the average interaction 

strengths increased across beetle size-class. However interaction strengths were not 

distributed strictly adhering to every predator-prey size-class combination; this was 

especially noticeable across beetle size-classes. 

4.4.4 Kelp Mass Loss 

If, as predicted by metabolic theory, body size predicts metabolic rate and since 

ingestion is determined by metabolic rate then, the amount of a resource consumed 

(kelp mass loss) should be related to size o f predators and prey. The size of the predator 

wi l l determine the amount of prey it wil l consume, the amount and size o f the remaining 

prey wil l determine kelp mass loss. This was clearly not the case for the species used in 

this experiment. As seen above size may not be a good surrogate measure for metabolic 

rate in general, or specifically with the species employed in this study. Altematively 

ingestion rate may be controlled by factors other than body size. The arguments for and 

against the use of body size to predict metabolic rate are discussed in detail in Section 

down and from side to side. Presumably there is an energetic cost to subduing prey in this manner, 
supported by the obser\'ation in preliminary trails with different beetle density that oficn when prey were 
subdued by one beetle many other beetles started lo feed on the lar\'ac. The cost of subduing prey may be 
proportionately less per energy gain in smaller lar\'ae where the beetles own body weight and size will 
enable easier handling. 
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4.4.2. Additional factors other than body size that may have affected kelp mass loss 

obser\'ed in this study are discussed below. 

The identity of predator and prey was arguably more important in determining 

kelp mass loss than the size of the species in a treatment. Beetle size-class and larval 

size-class did not explain the variability in kelp mass loss either as single factors or as 

combined factors. The variability in kelp mass loss was explained by the interaction of 

beetle size-class * the identity of predator and prey, and the identity of predator and 

prey on its own. The importance of predator-prey identity in determining wrack 

processing rales is further reflected in the average larva's mass-specific values of kelp 

mass loss. Rates of kelp mass loss were greatest in incubations of C. xantholoma & C. 

fiigida > C. variolosus & C. frigida > P. algarum & C. pilipes > R. sericeus & D. anilis. 

Kelp mass loss in C. xantholoma & C. frigida treatments was almost three times those 

observed in R. sericeus & D. anilis treatments. Additionally this experiment showed 

that the larvae have different processing rales suggesting that prey identity, rather than 

predator identity, is responsible for kelp mass processing rates, in the absence of 

predators kelp mass loss decreased in the sequence C. frigida > C. pilipes > D. anilis. 

The importance of predator and prey identity rather than beetle size-class in affecting 

wrack processing rates is not surprising given that prey mass loss did not scale with 

predator mass for all predator-prey combinations (Section 4.3.2), and that the number of 

individual larvae killed did not increase consistently as predator size relative to prey 

size increased (Section 4.4.3). 

Not only did prey and possibly predator identity affect kelp mass loss but there 

is evidence that kelp processing rates differ temporally. Discrepancies beKveen the 

wrack processing rates within larval species suggest that wrack processing rales are not 

consistent. In this experiment when C. frigida was incubated on 05.07.06, the obser\'ed 

wrack processing rates were 0.665 mean mg.h ' ± 0.133(s.e) (control values from 
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experiments with C xantholoma ) and 0.777 mean mg.h"' ± 0.093 when it was 

incubated on 02.11.06 (control values from experiments with C. variolostts). The 

different wrack processing rates are most likely due to temporal variability in feeding 

rates. Although species were all incubated under identical conditions they were 

collected from the strandline at different times and thus their wrack processing rates 

may reflect conditions prior to laboratory incubation."^ Despite variation in the rates of 

kelp mass loss the processing rates observed in this study were not outside the range of 

those previously reported. Wrack processing rates for C.frigida and C pilipes were 

remarkably similar to those previously reported for these species (Griffiths et ai 1983, 

Chapter 3)."^ Furthennore, despite potential variation in processing rates larval identity 

has been seen to affect wrack processing rates previously (Chapter 3). Using the same 

density of larvae and mesocosm set up, L. digitata wet mass loss was calculated for 

each species of larva separately (Chapter 3). C.frigida consumed over twice that of D. 

anilis and C pilipes although processing rates in single species treatments of C. pilipes 

and D. anilis were remarkably similar (Chapter 3). 

C.frigida controls that displayed higher wrack processing rales were collected later in the year when 
temperatures were higher, thus these species may have been processing wrack at higher rates in the field. 
Why Cfrlgida collected later in the year would continue to process wrack at a higher rate than C/rigida 
collected later in the year when laboratory conditions were identical is unclear. One explanation may be 
that it takes time for the species collected earlier in the year to increase their consumption rates with an 
increase in temperature. Another explanation may be that individual C.frigida lar\'ae produced when 
temperature and food supplies are low are physiologically different from those produced under optimal 
conditions, and as a result have lower metabolic requirements. This argument is seemingly sensible if 
heicrotherms are produced in environments with food scarcity and colder temperatures a reduced 
metabolic demand would reduce the risk of starvation and possibly increase survival. It has been shown 
previously that the larvae of adult C.frigida and C. pilipes when reared in non- optimal conditions differ 
significantly in size, and as adults in wing size, and reproductive output (Philips et al. 1995, Dobson et 
ai l974,Lcggeu 1993). 
29 

When L. digitata processing rales are calculated in terms of L digitata loss g g- 1/h for the controls 
they range between 0.029 g.g-l/h (C. variolosus & C.frigida treatments) to 0.01 g.g-l/h {R. seniceus 
and D. anilis treatments). These rates are equitable to the processing rates previously reported for these 
species, using an identical mesocosm set up and incubating 12 individuals over 40 h, C.frigida 0.026 
g.g- l/h, D. anilis 0.007 g.g- 1/h (Chapter 3). 
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Contrary to predictions based on metabolic theory (Section 4.1,3), this 

experiment clearly shows that factors other than body size, specifically prey identity and 

possibly predator identity and temporal changes in feeding rates, determine wrack 

processing rates in the species and wrack employed in this study. 

4.4.5 Prey Preference 

I f body size can be used to predict predator and prey interactions, the identity of 

species within a trophic level should not affect interaction strength. Using the species in 

this study predator and prey identity was important in affecting predator-prey 

interactions when each predator was incubated with different prey items. When the 

results o f all experiments were combined, beetle identity detennined per capita 

consumption of larva, whether beetles were incubated with a single larval species or all 

three larval species together. When beetles were incubated with a single larval species, 

lar\'al identity as a single and combined factor with beetle identity was also significant 

in explaining the variability in per capita consumption of larvae. This is mostly likely 

due to differential per capita predation rates between beetle species. When each 

individual experiment was analysed separately a significant difference in the number of 

lar\'ae killed between different species was seen only in experiments with C. 

xantholoma and P. alganim. Cafiiis xantholoma killed significantly less C. pilipes or £). 

anilis when incubated with a single larval species or multiple larval species 

respectively, P. algarum only killed significantly less D. anilis when larvae were 

incubated with the beetle separately. 

Overall there appears to be very little preference for specific lar\'ae species. 

Although larval identity may not affect interaction strength to a great extent, the 

assumption that interaction strength can be predicted by the size of a species 

irrespective of identity was not explicitly upheld. 
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4.4.6 The Use of Metabolic Scaling Principles to Determine Interaction Strength 

and Ecosystem Process. 

The methodology presented in this chapter for determining interaction strength 

and ecosystem process is novel. Using the species and ecosystem process measured here 

it has been shown that we cannot accurately predict predator-prey interaction strengths 

or ecosystem processing from the body size distributions of predator and prey. Overall 

logio predator mass scaled with logio prey mass loss for each individual predator-

prey combination the relationship was either insignificant or scaled with a different 

exponent. Therefore predictions of the number of individuals killed could not be made 

for C. xantholoma and R. sericeus. Even where the number of individuals killed could 

be predicted,"*** observed values of number of individuals killed were significantly less 

than expected. When all species were combined predicted number of individuals killed 

were 5-10 times greater than observed, for P. algarum 2 - 4 times greater than 

obser\'ed and for C. variolosus a massive 665 - 1021 times greater than observed 

depending on the exponent used^'. This technique, for predicting predator and prey 

interaction strength based on species body-size ratios is extremely sensitive to outliers. 

The degree that predicted values of the number of larvae killed overestimated obser\^ed 

values was directly related to the y intercept, which in turn was massively affected by 

the presence of low values of prey mass loss in some predator-prey manipulations^'. As 

logio prey mass loss was not related to logio predator mass '̂̂ ^ in any single 

predator-prey treatment it was not surprising that the predicted number of individuals 

When the linear regression of logiopredalor mass scaled with logio prcy mass loss was significanl. 
'̂ The number of lar\'ac killed was predicted using the equation ; (C•predator do'mass g 

)*cxperimcnial duration h)/prey mass g, and (C*predator dry mass g )*expcrimcntal duration h)/prey 
mass g, where C is the y intercept determined from the regression of predator mass and prey mass loss. 

Taking the predicted and obser\'ed number of individual lan-ae killed by C. variolosus as an example; 
owing to a few extremely low values of prey mass loss ihe y iniercepi of the relationship between logio 
predator mass and logio prey mass loss was 8.586. Incorporating this value into the equation '̂ to calculate 
number of individuals killed resulted in the mean number of individuals killed by C. variolosus over the 
experimental time period to be 2554. 
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or killed differed from those observed. As previously discussed the exponent of 0.75 

0.67 is widely contested (Section 4.4.2), however, as there was no coinmon exponent or 

intercept that related logic prey mass loss to logio predator mass the number of lan'ae 

killed in each predator- prey experiment could not have been predicted using any one 

single exponent value. Furthermore, as mentioned in the previous section, the effects of 

body-size, especially thai of predatory beetles, were not consistent and were dependent 

on the identity of both predator and prey. In this system using predators from the same 

functional group and similar lar\'a species from the same functional group the mass o f 

prey consumed or interaction su-ength between predator and prey (as measured by per 

capita number of larvae killed) could not be predicted using body-size scaling 

exponents. 

Larval mass specific rates of kelp mass loss could be significantly described by 

logiofinal prey mass ^''^ when results from all predator-prey experiments were 

combined. In this case larval size was a good surrogate of metabolic rate in accord with 

previously hypothesized scaling laws (Section 4.1.3) although it was only at the 10% 

significance level that the exponent of 0.76 did not differ significantly from the 

predicted exponent of 0.75. As larvae have little internal or external structures 

composed of non-metabolically active tissue, mass may be a good surrogate of 

metabolic rate for them. Owing to the temporal availability of wrack (Chapter 2) larvae 

would be expected to consume wrack at maximum rates in order to pupate and emerge 

before the next high tide potentially removes their habitat and food source, concurrent 

with the assumption that metabolic rate determines consumption rate. However, larval 

mass-specific rates of kelp mass loss differed beuveen predator-prey experiments, 

highlighting the danger in using average relationships to predict or describe group-

specific relationships. The individual exponent relating kelp mass loss to final prey 

mass resulted in values ranging from 0.613 (P. algarum & D. anilis), 0.415 (C. 
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variolosus & C.frigida), 0.401 ( C xaniholoma & C.frigidd) to 0.106 {R. sericeus & C 

pilipes). A l l relationships, except the latter, were significant and only the exponent 

obser\'ed in P. algantm & D. anitis treatments did not significantly differ from that of 

0.67 as predicted by allometric scaling principles. However, in the present study when 

treatments incorportating three trophic levels are considered, kelp mass loss was 

dependent on factors other than predator and prey size. The variability in kelp mass loss 

was explained by the interaction of beetle size-class * the identity of predator and prey, 

and the identity of predator and prey on its own. Owing to this disparity, kelp mass loss 

was not significantly related to larval mass in treatments containing C. xantholoma, R. 

sericeus and C vario/osus. Furthennore, ecosystem processes (kelp mass loss) could 

not be accurately predicted using only predator and prey body-size measurements. The 

predicted number of individual larvae killed for all experiments combined, or any single 

predator-prey experiment always included values of over 12 individual larvae; thus 

observed kelp mass loss could not be compared with that predicted based on the 

metabolic capacity of the lar\'ae in a treatment after metabolically predicted predator 

consumption. 

There are four main reasons why allometric scaling principles could not predict 

beetle feeding consumption and kelp mass loss from predator and prey body size in this 

system. These reasons are not mutually exclusive and they may be specific to this 

system: I) body size in is not a good surrogate measure o f metabolic rate, 2) metabolic 

rale does not scale with ingestion rale, 3) factors other than metabolic rate are governing 

interaction strength and energy flow and 4) the sensitivity of the approach used to infer 

predator and prey interactions and ecosystem processes from melabolically predicted 

relationship between body size and metabolic rale has limited predictive capability. 

Despite the beetles being closely related and presumably fitting into the same 

feeding guild, certainly the same trophic level, and the same applying for their prey, 
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both the exponent and intercept values relating predator mass to prey mass loss differed 

to such an extent that one could not be substituted for the other. Similarly in half of the 

experiments the exponent relating predator mass to prey mass loss differed significantly 

forom that predicted by metabolic theory. Furthermore, kelp mass loss could not be 

predicted from initial predator and prey mass. Factors other than size, predator-prey 

identity and in the case of lar\'a consumption possibly seasonality were as important as 

body-size in influencing predator-prey interactions and wrack processing. 

Serious doubt is raised on the applicability of this method to predict interaction 

strengths between predator and prey and ecosystem process such as wrack processing 

based on predator and prey body sizes in species that are less similar unless species 

specific information on both the constant and exponent relating prey mass loss to 

predator mass is known. Obtaining such information is both time-consuming and 

labour-intensive and undermines the value of this method as a rapid and easy way of 

determining interaction strengths. 

4.4.7 Conclusions and Limitations 

Body size is clearly an important factor determining both predatory rates and 

decomposition in a marine strandline system using the beetle and larval species in this 

experiment. Although body size may influence interaction strength and processing rates, 

the importance o f identity and lack of a general relationships between body size and 

predator-prey interactions and wrack processing in this system has implications for 

metabolic theory of ecology : a) as a general theory using allometric scaling principles 

to define interaction strengths and energy fiow in food webs and b) to predict the effect 

of reduced species diversity on ecosystem processes. 
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Using only four predators and three consumers from the strandline this study 

does not attempt to actively dispute the validity of metabolic scaling principles, but it 

does show that in this ecosystem, it has a limilated predictive capacity. 

This study also raises questions regarding the scale at which the relationship 

between body size and rates are examined. Certainly, relationships between body size 

and processing rates were found in this study. However they differed greatly according 

to species identity and presumably interactions. Studies examining the relationship 

between body size and rales should therefore consider the intraspecific variability of this 

relationship within species or groups either before allometric scaling principles are used 

in a predictive capacity, or body size is incorporated into models as a surrogate measure 

of biological rales. 

As the species used in this study were some of the most commonly occurring 

species of predators and prey found in the sirandline at Wembury beach (Chapter 2) this 

study has reveled the importance of the identity, interactions, and relative size of 

predator and prey, for the larval consumer population and wrack processing in the 

strandline, assuming the trophic interactions and processing rates measured in 

mesocosms can be extrapolated to rates in the field. 

This study also has implications for future biodiversity and ecosystem process 

research. Although it did not explicitly examine the diversity ecosystem process 

relationship, the importance of predator and prey identity in deleimining processing 

rales and energy flow in this system using these species is cleariy shown. There are few 

studies that have investigated the effects of diversity on ecosystem processes 

incorporating more than one trophic level, and this study cleariy shows the importance 

of predators in affecting consumer processing rates. The relative importance of species 

interactions between and within trophic levels needs to be addressed in future BDEF 

85 



studies i f the efTects of reduced diversity on ecosystem processes are to be accurately 

determined. 
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C H A P T E R 5: T H E E F F E C T OF L A R V A L I D E N T I T Y . D I V E R S I T Y AND 

I N T E R A C T I O N S ON E C O S Y S T E M P R O C E S S E S IN T H E P R E S E N C E O F A 

PREDATOR. 

5.1 Introduction 

This chapter investigates the difference between the effect of larval identity, 

diversity and interactions on ecosystem processes (decomposition) with and without a 

predator, using strandline larvae and a beetle predator and measuring kelp mass loss. 

5.1.1 Rationale 

Positive species interactions, where one or all species benefit from the presence 

of conspecifics, may be more prevalent than previously thought (Bruno et al. 2003). If, 

as suggested, (a) there is no universal trajectory that can describe diversity and 

ecosystem process (Chapter 1) and, (b) ecosystem process depends on species identity, 

and interactions (Chapters 1 and 3), then identifying positive species interactions, and 

factors which influence these interactions are of great importance, particulariy when 

attempting to understand the effects of reduced diversity on ecosystem processes. How 

consumer-resource interactions are influenced by factors such as predalion remains 

unknown, due to the fact that diversity across multiple trophic levels is rarely 

manipulated in BDEF studies. 

5.1.2 Evidence for Positive Species Interactions 

Identifying species interactions is important as the balance between negative and 

positive species interactions, combined with individual species effects, are likely to 

determine ecosystem processes and the diversity-ecosystem process relationship 
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(Section 3.4). Chapter 3 suggests that positive species interactions in strandline systems 

may be more prevalent than previously thought. 

Few previous studies have been designed in a manner that allows the effects of 

species interactions on ecosystem process to be tested (Section 1.6). Even so, there are 

some examples of positive species interactions, e.g. within grassland systems (Loreau et 

al. 2001b), fungal assemblages (Tiunov and Scheu 2005), and decomposer assemblages 

(Cardinale e( al. 2002, Cardinale and Palmer 2002, Jonsson and Malmqvist 2000, 

2003a). 

The presence of positive species interactions and the importance of these 

interactions for determining decomposition in the strandline were also highlighted in a 

laboratory mesocosm experiment (Marsh and Spicer //; prep.). Three talitrid amphipods 

were incubated, maintaining equable biomass and density. Every possible single, two 

and three species combination were set up and the observed kelp mass loss quantified. 

Kelp mass loss in all two and three species treatments was significantly greater than any 

single species treatment and kelp mass loss was greatest when all three species were 

incubated together. Using a similar experimental design, every possible combination o f 

three kelp fiy larvae and a single talitrid amphipod were incubated with wrack material 

(Chapter 3). When observed decomposition in single species treatments was used to 

calculate expected decomposition in multi-species treatment (based on additive species 

effects) there was evidence of positive interactions between the kelp-fly larvae. In all 

but one o f the two-species larval treatments, decomposition was greater than that 

expected, providing evidence that some larval species interact positively with each other 

to increase wrack processing. Overall diversity was not significant in explaining the 

variability in wrack mass loss and this was attributed to the negative amphipod-larval 

interactions that potentially masked the positive larval-larval interactions. This fiirther 

highlights the importance of species interactions and provides evidence to support the 
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proposition that the unpredictability and idiosyncratic effect o f diversity on ecosystem 

processes, found between and within earlier BDEF experiments, may lie in a failure to 

consider species interactions. In both cases, the observed increase in processing rates 

with taliirid and larval diversity was attributed to interspecific facilitation rather than 

niche differentiation or intraspecific competitive release (for further discussion see 

Section 3.4.4). In the BDEF literature, where a positive interaction has been found, the 

idiosyncratic effect of overall diversity on ecosystem processing rates suggests that 

competitive, negative interactions between species of the same trophic level can 

mitigate these positive species interactions. In one of the few studies to empirically 

investigate all species interactions, Jonsson and Malmqvist (2003a) provided evidence 

that competitive and additive species interactions within species of the same trophic 

level can ameliorate the overall positive diversity effect. I f predictions regarding the 

effects of reduced diversity on ecosystem processes are to be made in real multi-trophic 

assemblages, then understanding the influence o f factors such as predaiion on the 

direction and strength of non-trophic species interactions is of great importance. 

5.1.3 Effect of Biotic and Abiotic Factors on Species Interactions 

There are numerous biotic and abiotic processes that may influence positive 

interactions between species with respect to growth and population dynamics (see 

Bruno et al. 2003 for review). 

Predaiion is a key biolic factor when considering the structure and function of 

energy flows in assemblages. The importance of predator-prey interactions for 

ecosystem processes has been shown experimentally (Mulder al. 1999) and from 

analysis of a large data set (Duffy et al. 2003). Both studies provided evidence to 

suggest that trophic interactions may be more important than non-trophic diversity in 

determining ecosystem process. Mulder et al. (1999) found that removal of insects with 

189 



insecticide almost doubled plant biomass accumulation, and also removed the 

significant enhancement of plant biomass accumulation by plant species richness in 

unsprayed plots. Thus, the overall removal of insect herbivores had a stronger effect on 

biomass accumulation than a six-fold change in plant diversity. Duffy et ai (2003) also 

found thai the overall standardised effect size of consumers on primary producer 

biomass was greater than that of primary producer diversity. Despite the potential 

importance of predator-prey interactions for ecosystem processes, how predators affect 

the connection between ecosystem processes and consumer identity, diversity and 

interactions remains somewhat speculative. There is a long-standing debate on whether 

food webs are lop-down (predator) or bottom-up (resource) driven (see Raffaelli and 

Hall 1992), whether trophic interactions can affect prey populations, and whether 

predators themselves directly control specific ecosystem processes. A predator may 

indirectly impact upon resource processing by reducing the abundance of the consumer 

species. Additionally, i f predators preferentially consume certain prey species, whether 

or not that prey species has a large or small impact on the ecosystem process of interest 

will determine the overall consequences for that ecosystem process (Paine 1992). 

Similarly, i f predators preferentially consume prey species that interact positively with 

hetrospecifics belonging to the same trophic level, then not only wi l l that species' 

contribution to the ecosystem processes be lost but also the "overyielding" or positive 

effect. Furthermore, by reducing prey populations a predator may ameliorate 

interspecific and/or intraspecific competition between consumer species. The balance of 

intraspecific and interspecific competition may determine the diversity-ecosystem 

processes connection (Jonsson and Malmqvist 2003b, Section 3.4.4). How predators 

may indirectly infiuence ecosystem processes through disruption of prey species and 

their interactions wil l be dependent upon the feeding behaviour of the predator and the 

interactions amongst prey species. With respect to ecosystem processes, i f interspecific 
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competition is greater than intraspecific competition between consumer species then, in 

the absence of a predator, ecosystem functioning in diverse assemblages should be less 

than the sum of individual species effects. Conversely, i f intraspecific competition is 

greater than interspecific competition, ecosystem process in diverse assemblages should 

be greater than the individual species' contributions when predators are absent. I f a 

predator can reduce prey populations below that of the environment's carrying capacity 

then, competitive interactions with respect to the resource may be ameliorated. Thus, in 

the absence of facilitation between heierospecifics, species diversity should have an 

additive effect on ecosystem processes. Alternatively, predator species may alter prey 

behaviour; either increasing or decreasing time spent processing a resource or 

contributing to the ecosystem process of interest. By altering prey behaviour overall 

ecosystem process may decrease or increase in the presence of a predator. I f only the 

behaviour of a specific species is altered then the response of an ecosystem process to 

species identity, diversity and interactions may change in the presence of a predator. 

Despite the potential importance of predation for ecosystem processes, the effect 

of species identity, diversity and interactions on ecosystem processes in multi-trophic 

systems remains relatively understudied in BDEF research (Duffy 2002, Section 1.8). 

Therefore the effect of predators on the connection between ecosystem processes and 

consumer identity, diversity and interactions remains unknown. The logistics o f 

manipulating and replicating multi-trophic level diversity and measuring ecosystem 

process, together with the daunting complexity of interpreting the effects of trophic 

interactions, has limited the number of experimental studies investigating multi-trophic 

level diversity and ecosystem process (e.g. Loreau et al. 2001, Raffaelli et al. 2001, 

Section 1.8). 

Theoretical and modelling studies investigating the effects of species richness 

ecosystem properties in multi-trophic systems suggest that responses of primary and 
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secondary productivity vary with species richness. The variability in the response 

ultimately depends on: the degree to which, (a) the system is closed to immigration, 

emigration, and allochthonous inputs, (b) top-down or bottom-up control determines 

assemblage structure and food web connectivity and, (c) the trophic level and fiinctional 

characteristics of the species thai are gained or lost (Strong 1992, VVardle et al. 1999, 

Duffy and Hay 2000, Hooper et al. 2000, Klironomos et al. 2000, Norberg 2000, 

Stephan et al. 2000, Johnson 1996, Loreau 2001b,c, Holt and Loreau 2002, Thebault 

and Loreau 2003, Duffy et al. 2003). Bruno and O'Connor (2005) gave an excellent 

example of how the feeding behaviour o f predators can influence ecosystem processes 

and how predator diversity can indirectly influence these processes (algal biomass) by 

altering the consumer assemblage. They manipulated predator diversity in outdoor 

mesocosms and found algal biomass, composition and diversity was dependent upon the 

feeding strategy of the predator included. Obligate carnivorous predators reduced 

herbivore abundance and increased algal biomass and diversity. When all functional 

groups of predators were added to the mesocosm, algal abundance and diversity 

decreased due lo the inclusion of an omnivorous predator which directly fed on the 

algae. However, the role o f the predators in influencing herbivore identity, diversity and 

interactions with respect to algae processing was not investigated. 

In the few studies that have investigated the BDEF relationship in multi-trophic 

assemblages the average process rales were seen to respond idiosyncratically to species 

diversity and identity. In microbial mesocosm experiments processing rates were seen 

to increase, decrease, stay the same, or follow more complex nonlinear patterns 

depending on community composition, trophic strucmre, and consumer diversity (e.g. 

Carpenter and ICitchell 1993, Naeem and Li 1998, Schindler et al. 1997, Cardinale et al. 

2002, Mikola et al. 2002, Paine 2002, Raffaelli et al. 2002). However, the alteration of 
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positive, negative, or additive species interactions, with respect to ecosystem 

processing, in these multi-trophic assemblages was not explicitly examined. 

The only previous work to explicitly test the effects of predator-prey interactions 

on diversity-ecosystem process relationships was undertaken using a model system (Fox 

2004). Each plant species was modelled to use the resource in a different way 

(concurrent with complementary resource use mechanisms) and three simple 

mechanistic food-web models were constructed to predict total plant biomass (as the 

ecosystem process of interest) al different levels of plant diversity (Fox 2004). 

Excluding predators, multi-species plant systems outperformed any monoculture, as 

each plant species was assumed to use the resource in a different way. However, 

overyielding (a yield greater than predicted using single species additive yields) only 

occurred for a limited set of parameter values, when specialist herbivores mediated 

plant coexistence. Overyielding was not observed when generalist herbivores were 

modelled to mediate coexistence. However, the effect of predator-prey interactions on 

potential diversily-biomass enhancing mechanisms could not be discerned as the 

distributions of species trails (and thus interactions) were not kept constant across 

treatments, with and without predators. How predators may influence ecosystem 

processes by altering positive interactions between consumer species (with respect to 

resource processing) has not been empirically studied and, as yet, lacks an accepted 

mechanistic and/or theoretical basis. 

Understanding the relative importance of non-trophic and trophic interactions 

for ecosystem process will add to the understanding of diversity -ecosystem process 

relationships in multi-trophic natural assemblages. Additionally, investigating the 

effects of trophic interactions on consumer-resource relationships is the first step in 

understanding the relevance o f previous consumer-resource manipulations when 

determining the overall importance of species identity, diversity and interactions on 
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ecosystem processes in natural multi-trophic systems. Furthermore, investigating the 

response of ecosystem processes to changes in species identity, diversity and 

interactions, in the presence of a predator, will also contribute to elements of food-web 

ecology. Food-web ecological studies generally overlook non-trophic interactions. 

Where food webs have been modelled, non-trophic interactions are either omitted or 

have been allocated randomly between species, from a normal distribution of interaction 

strengths. Recent advances in food-web ecology (Cohen et al. 2003 Woodward et ai 

2005b, Brown ei ai 2004) incorporating principles from metabolic ecology (Brown ei 

ai 2004, Emmerson ei ai 2005) have resulted in attempts to quantify the links between 

the species in an assemblage. In quantifying these links measures of energy fiow 

through an assemblage can be inferred. I f species interactions can be accurately 

quantified and modeled, there is the potential to construct quantified food web models 

from which the consequences of reduced diversity on ecosystem process could be 

predicted. However, to enable accurate and useful predictions from quantified food 

webs, empirical experiments that assess the importance of non-trophic links with 

respect to ecosystem processes are essential. 

5.1.4 Aims and Objectives of the Present Study 

The primary aim of this chapter is to determine the effect of a predator, C. 

xantholoma, on the positive interactions between Coelopa pilipes, Coelopa frigida and 

Dryomyza ani/is with respect to decomposition. This chapter will also investigate the 

overall effect of kelpfly Iar\'al diversity and identity combination on decomposition in 

the presence of a predator. These effects were investigated in a laboratory-based 

mesocosm study. Mesocosm treatments were constructed where the identity and 

diversity of kelpfiy Iar\'ae were manipulated. Treatments of every possible single, two 

and three species combination were constructed. These treatments were replicated with 
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and without the predator, C. xantholoma. Previous experiments have shown that the 

kelpfly larva species interact in a positive manner with respect to wrack processing 

(Chapter 3). Thus, the effect of a predator on consumer species, and the subsequent 

implications for the connection between resource processing and consumer species 

diversity, identity and species interactions could be investigated. 

I f the response of ecosystem processes to species identity and diversity observed 

in previous consumer-diversity manipulations are applicable in real multi-trophic 

assemblages, the relationship between larval diversity, identity, interactions and 

decomposition should not change between treatments with and without the predator. 

I f current food-web models (which assume equal or random distribution o f non-

trophic interaction strengths) can be used to accurately predict energy flow and thus 

ecosystem processes in a system, then larval identity, diversity and interactions should 

not explain the variability in decomposition in the presence of the predator. 

5.2 Material and Methods 

5.2.1 Collection of Animal Material, Wrack and Sediment 

Fly larvae, Coelopa frigida, Coelopa pilipes. Dtyomyza anilis, and the beetle 

Cafiits xantholoma were collected by hand from wiihin and beneath the springtide 

strandline al the top of the shore, Wembury First Beach, Devon, UK (48.3'*N, 50.4*E) 

during July 2006. At the same time, cast-up L. digUata and sediment from beneath the 

wrack bed were also collected. Al l material was transported immediately lo die 

laboratory in large plastic bags. Once in the laboratory the animal material was 

separated according to species and size. The larvae were held in separate aquaria (vol. = 

8 1). To mimic strandline conditions, each aquarium was filled (to a depth of 2 cm) wiih 

sand, overiain with two or three fronds of/, , digiiata. A paper towel soaked in distilled 
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water was placed under the aquarium lids to maintain a high relative humidity within. 

Both the lid and the towel also prevented the animals escaping. A l l aquaria were kept in 

a controlled temperature environment (T = 20°C ± I °C) for a maximum of 48 h before 

use in the experiments described below. 

5.2.2 Species Selection and Mesocosm Construction 

Species were selected due to their abundance, their ability to survive under 

laboratory conditions and their co-occurrence in the strandline. The fly larvae, 

specifically selected as heterospecifics, are suspected to interact positively with each 

other to enhance wrack decomposition (Section 3.3.2) in the absence of a predator. 

Mesocosms were constructed as described in Section 4.2.2. The experiment ran for 35 

h " . 

5.2.3 Treatments and Predator Effects 

Sixteen different treatments were constructed so that every possible combination 

of the three species o f larvae was incubated with and without the predatory beetle, C. 

xantholoma (Table 5.1). 

The number of pupated, dead, fully consumed and partially consumed larvae 

was quantified for each treatment at the end of the experiment. Larvae were carefiiUy 

removed from each mesocosm and counted. As C. xantholoma does not consume the 

"husk" of the lar\'a, 12 individual larvae, or their identifiable remains, were present at 

the end o f the experiment. Where there was only a husk remaining that lar\'a was 

classed as fully-consumed. I f there was still material within the husk (i.e. larvae that had 

been killed and partially eaten), they were classed as partially consumed. Pupated and 

dead larvae are self explanatory. 

" This resulted in measurable L. digitata mass loss. The beetles ale but minimal larvae pupation and 
predator and prey mortality (in the latter case due lo causes other than predator attack). 
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Table 5.1 Number and identity of species in each treatment, n = number of replicates, 
the numbers in brackets refer to the number of larvae of that species in a treatment. 

Species and (density) in each treatment. n 
C. pihpes - (4), C. fri^ida - (4), D. anilis- (4), C. xautholoma -- ( I ) 7 
C. piltpes - (4). C frisida - (4), D. anilis- (4) 7 
C. pilipes - (12) , C xantholoma - (1) 7 
C. pihpes - (\2) 7 
D. anilis - (12) , C. xantboloma - (1) 7 
O. anilis-(\2) 7 
C. fri^ida - (12) , C. xantholoma - ( I ) 7 
C. frisida-(\2) 7 
C. pilipes - (6), D. o«/7w - (6), C. xantholoma ~(\) 5 
C. pilipes - (6), £). ow/V/̂  - (6) 5 
C. pilipes - (6). C. frisida - (6), C. xantholoma - (1) 5 
C. p////7e5 - (6), C. - (6) 5 
C. /r/j?/^/<3 - (6), D. anilis - (6), C. xantholoma ~ (\) 5 
C. fri^ida - (6), D. anilis - (6) 5 
Control, C. xantholoma - (1) 7 
Control, no species 7 

5.2.4 Kelp iMass Loss 

Actual kelp mass loss was determined as wet ^. digitata mass loss g.h"'. Each 

disc was blotted and wet weighed before and after the experiment (Mettler Toledo 

AT20I ± O.OImg). The total mass in a treatment may have differed throughout the 

course of the experiment due to C. xantholoma consumption. Therefore, L. digitata 

mass loss was also calculated per initial, final and mean larval mass. Initial larval mass 

was quantified by blotting dry each larva in a treatment and taking their collective mass. 

Final larval mass was determined for each treatment by using initial mean larval mass 

divided by the number of larvae in the treatment and multiplying this figure by the 

number of larvae remaining at the end of the experiment. Mean larval mass for each 

replica was the mean of initial and final larval mass. 

"See Section 3.2.2 and Appendix A l 
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5.2.5 Statistical Analyses 

Al l statistical analyses were carried out using MINITAB (Version 13.32, 

MINITAB Inc, Stale College PA). Where ANOVA analysis was used, Levene's test for 

equal variance was used to ensure the assumption of homogeneity of variance was 

maintained. Where ANOVA analysis detected a significant difference Tukey^spost-hoc 

(HSD) test was used to determine which treatments differed significantly from each 

other (P< 0.05). 

5.2.5J Predator Consumption 

The significance of any difference in the total number of larvae killed by C 

xantholoma between different lar\'al identity combination treatments was determined 

using a one-way ANOVA. The significance of any difference in predator consumption 

depending on different prey species was determined using separate one-way ANOVAs 

for each treatment, where the number of larvae killed was the response variable and 

larval identity the factor. 

5.2.5.2 Pupation 

The significance of any differences in the number of individual larvae pupating 

in different treatments with and without C. xanthohma was analysed using a one-way 

ANOVA by treatment. 

5.2.5.3 Actual Kelp Mass Loss 

A one-way ANOVA was used to determine the significance of any effect of 

identity combination on actual L digitata mass loss. Bonferroni-corrected Student's t-

tests were used for each larval identity combination treatment to assess the difference in 

L. digitata with and without C. xantholoma. 
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5.2.5.4 Species Diversity and Identity Combination 

A ftjily-nesled Type III ANOVA was used to test for significant efTects of 

species diversity and prey species identity combination. Species identity combination 

(treatment) was a factor nested within species diversity. The dependent variables were 

L. digitata mass loss (g-h"'), calculated per initial, final and also mean larval mass (g). 

This analysis was undertaken separately for treatments with and without C xantholoma 

(identity combination refers to treatment and species diversity the number of different 

larval species in a treatment). 

5.2.5.5 Species Interaction 

For all treatments, positive, negative and additive species interactions were 

determined by comparing the mean observed L. digitata mass loss (g.h ' ) per initial 

larval mass (g) with mean expected rates of L. digitata mass loss (g h *) per initial lar\'al 

mass for all two and three species combinations. These comparisons used Bonferroni 

corrected t-tesls (Box 5.1). Fourteen tests were carried out so a P value of 0.001786 was 

used (0.025/14). This relates to 2.91 standard deviations. 
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Box 5.1 
Expected decomposition 
Two species treatments: Wei(X|AV|) + We2(X2AV2). 
Three species treaiments: Wei(XiAV,) ^ We2(X2AV2) + WciCXjAVj) 

Where X = global means of; L digitata mass loss in single species treatments, 
W = mass of individuals in the single species treatment, 
We = mass of individual species in the mixed species treaiments. 

. Standard deviation for observed decomposition 
= variance/ (V n). 

Standard deviation for expected decomposition 
Two species treatment = error MS/Vn * V(We,AV,)^ +(We2AV2)^ 
Three species treatment = error MS/Vn * V(We,AV,)^+(We2AV2)-+(We3AV3)" 

Standard deviation for obsen'ed-expected decomposition 
Two species treatment = (Standard deviation for observed 
decomposition)*(>/(l+((We,AV,)- +(We2/W2)") 
Three species treatment = (Standard deviation for observed 
decomposition)*(V(l+((Wei/Wi)2+(We2/W2)^+(We3AV3)') 

Where 5 = the number of replicates, and variance was taken from the Verror MS. 
Where error MS = within group adjusted means squares. 
Where n= the number of replicates. 

Comparing observed and expected rates of L. digitata mass loss in multi-species 

treatments when L. digitata mass loss was calculated per initial, mean and final larval 

mass would require a large number of individual tests. When performing multiple 

analyses, the probability of falsely rejecting the null hypothesis, due to chance alone 

increases (Type I error). To account for this, the level of probability needed to 

demonstrate significance can be increased using the Bonferroni correction. However, 

the problem then arises that any decrease in the P value also increases the likelihood 

that the null hypothesis could be falsely rejected and that real differences may be missed 

(Type II error). This is especially likely i f all observed and expected rates of L digitata 

mass loss per initial, final and mean larval mass in multi-species treatments were 

200 



compared owing lo the extreme nature of the Bonferroni correction (B. Clarke 

comm.) and the large number of tests. 

5.3 Results 

5.3.1 Standardising Initial Conditions 

5,3, LI Larval Size 

Al l lar\'ae were collected from Wembury beach at the same lime (to ensure 

continuity and comparability of results). However at the time of collection, the three 

species differed in their size distributions. Despite efforts to minimise mass differences 

between treatments, the time necessary to remove enough large D. anilis and small C. 

frigida from strandline samples in order to achieve equable biomass between 

treatments, made this logistically impossible, especially as after five or more days in the 

laboratory the rale of larval pupation increased dramatically. Consequently, the larvae 

used in this experiment differed in mass (values are means with range in parentheses for 

each species' wet mass: C.frigida, 0.013099 g (0.008625 g - 0.016967 g); C. pilipes. 

0.015666 g (0.007000 g - 0.028117 g); D. anilis, 0.008747 g (0.006300 g - 0.01205 g)). 

There was a significant difference in initial lan^al mass by treatment (Table 5.2). 

However, Tukey's (HSD) post-hoc test showed that for each separate larval identity 

combination treatment, initial larval mass with and without C xantholoma did not differ 

significantly from each other (Appendix A19). Furthermore, efforts were made in mixed 

lar\'al treatments to use larvae of equitable mass. 
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Table 5.2 One-way ANOVA of the variability in total initial larval wet mass g by 
treatment. 

Source D.F. SS MS F P 
Identity 
combination 

13 0.102848 0.007911 8.51 <0.001 

Error 72 0.019977 0.000277 
Total 85 0.122825 
Levene's Test for equal variances was not significant for initial larval mass by treatment 
test statistic = 1.74, P = 0.070. 

5.i. 1.2 Initial Kelp Mass 

Although efforts were taken to standardize initial kelp mass in all replicate. 

Initial L digitata wet mass g ranged between 0.54I5-I.7269g, \i 0.982, (median 0.971 ± 

0.0167 s.e). However, initial kelp mass was not correlated with actual observed L. 

digitata mass loss (Pearson correlation = -0.058, P = 0.564) and as such is not 

considered ftirther. 

5.3.1.3 Mortality 

There was no C. xantholoma mortality in any treatment/replicate. Larval non-

predatory mortality was also very low. 

5.3.2 Effect of C. xantholoma on Lar\'ac 

Prey diversity had little effect on prey consumption, as measured by total 

consumption of larvae by C. xantholoma (Figure 5.1). Although the total number of 

larvae killed was different depending on treatment (Figure 5.1) C. xantholoma did not 

show a consistent preference for one species of larva over another. The greatest number 

of larvae killed was obser\'ed in treatments containing C.frigida and D. anilis (single 

species treatments of C.frigida \i 5.57 ± 0.92 s.e., closely followed by treatments of C. 

frigida & D. anilis \i 5.4 ± 057 s.e., and single species treatments of D. anilis \i 4.57 ± 

0.53s.e.). Single and two species treatments containing C. pilipes had the lowest 
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obser\ed number o f Iar\ae killed (single species treatments of C. pilipes ^ 1.57 ± 

0.37s.e. < C. pilipes & C. frigida ^ 2.4 ± 0.69s.e. < C. pilipes & D. anilis ^ 2.6± 0.69 

s.e.). When all three species were incubated together the number of lar\ae killed was 

intermediate 4.14 ± 0.46 s.e.). 

I I 

I 

Treat mem 

Figure 5.1 Number of larvae killed for each treatment (mean ± s.e.). Light blue = C. 
pilipes, dark blue = D. anilis. Teal = C.frigida, hatched areas represent the number of 
lar\ae partially consumed by C. xantholoma. 

Significant differences between the numbers of lar\'ae killed by C. xantholoma 

were found between species incubated separately. More C.frigida were killed > D. 

anilis > C. pilipes (Figure 5.1). Also in two species treatments more individual D. anilis 
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than C.frigida or C. pilipes were killed, and more C pilipes than C. frigida were killed 

(Figure 5.1). When all three species were incubated together the number of individual 

larvae killed decreased from C.frigida > C. pilipes > D. anilis (Figure 5.1). The 

consumption of larvae by C. xantholoma was significantly different depending on 

treatment (larval identity combination) (Table 5.3a A20). However, the number of 

lar\'ae killed of each species only differed significantly between, single species 

treatments, two species treatments of C frigida & D. anilis and when all three species 

were combined (Tables 5.3b-0-

Table 5.3 One-way ANOVA showing the variability in the total number of individual 
larvae killed, a) in each treatment, b) in single species treatments only, c) of C. pilipes 
and D. anilis in treatments of C. pilipes & D. anilis. d) of C pilipes and C.frigida in 
treatments of C. pilipes & C.frigida, e) C.frigida and D. anilis killed in treatments o f 
C.frigida & D. anilis. f ) of C.frigida. C. pilipes and D. anilis killed in treatments of C. 

frigida. C. pilipes & D. anilis. 

--.35 

Source D.F. SS MS F P 
Larval identit}' 6 91.52 15.25 5.63 <0.001 
Error 36 97.60 2.71 
Total 42 189.12 

b)̂ ^ 
Source D.F. SS MS F p 
Larval identity 2 60.67 30.33 10.27 0.001 
Error 18 53.14 2.95 

0.001 

Total 20 113.81 

0 " 
Source D.F. SS MS F p 
Larval identity 1 4.90 4.90 4.26 0.073 
Error 8 9.20 1.15 
Total 9 14.10 

" Lcvcnc's test for equal variances was nol signiflcani for lotal larvae killed in each treatment; Test 
siatisiic = 0.48, P = 0.820. 
" Levene's Test for equal variances was not significant for number of lar\'ac killed between single species 
treatments Test siaiisiic = 0.86, P = 0.440. 
" Levene's Test for equal variances was not significant for number of larvae killed between species Test 
statistic = 0.13, P = 0.724. 
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.38 

Source D.F. SS MS F P 
Larval identity 1 3.60 3.60 2.06 0.189 
Error 8 14.00 1.75 

0.189 

Total 9 17.60 

Source D.F. SS MS F P 
Larval identit>' 1 8.10 8.10 6.48 0.034 
Error 8 10.00 1.25 

0.034 

Total 9 18.10 

Source D.F. SS MS F P 
Larval identit>' 2 9.238 4.619 5.29 0.016 
Error 18 15.714 0.873 

0.016 

Total 20 24.952 

5.3.3 Pupation 

5.3.3,1 Treatments with C. xantholoina 

Pupation varied between treatments containing C xantholoma, depending on 

treatment (Figure 5.2). 

The importance o f species identity in determining overall pupation in treatments 

was seen when the pupation events o f individual larva species in each treatment were 

examined (Figure 5.2a). The highest rates of pupation occurred in treatments containing, 

C. pilipes, in isolation or when incubated with C.frigida or D. anilis (Figure 5.2). This 

was mostly likely due to C pilipes which accounted for 100 %, 86.7 % and 93.3 % of 

the pupation events in these treatments respectively (Figure 5.2a). Lowest levels of 

Lcvene's Test for equal variances was not signiHcant for number of larvae killed between species Test 
siaiisuc = 4.55, P = 0.066. 

Levene's Test for equal variances was insignificant for number of Iar\'ae killed between soecics Test 
statistic = 0.00, P = 1.000. 

Levenc's Test for equal variances was insignificani for number of Iar\'ae killed between species Test 
statistic = 0.20, P = 0.821. ^ 
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pupation were encountered in treatments containing C. frigida in isolation, or when 

combined with D. anilis and when all three species were combined (Figure 5.2a). In 

treatments where C.frigida did pupate, the number of individuals pupating was lower 

than in other fly species. 

2.0 

I 1.5 

I.O-j 

0.5 

0.0 

h 

i 
0-̂  

Treatment 

Figure 5.2 Number of individual larvae pupating throughout the entire experimental 
duration (mean ± s.e.) for each treatment, a = treatments with C xantholoma and b = 
treatments without C xantholoma. Light blue = C. pilipes, dark blue = D. anilis Teal 
C. frigida. 

206 



Total pupation differed significantly benveen treatments (Table 5.4). This is 

most likely due to the high rates of C. pilipes pupation. Pupation in single species 

treatments of C. pilipes was significantly higher than pupation in single species 

treatments o{ C.frigida and pupation in any two species treatment containing C pilipes 

was significantly higher than every other treatment except single species C. pilipes (P < 

0.05) (Appendix A2I ) . 

Total pupation for treatments containing C xantholoma was not correlated with 

L. digitata mass loss g.h'' when it was expressed in terms of initial, (Pearson correlation 

= -0.112, p = 0.473), final (Pearson correlation = 0.245, P = 0.113) or mean (Pearson 

correlation = -0.034, P = 0.829) larval mass. 

Table 5.4 Results of one-way ANOVA showing the variability in the total number of 
mdividual lar\'ae pupated by treatment, a) with C. xantholoma and b) without C 
xantholoma. 

Source F SS MS F P 
Treatment 6 56.51 9.42 0.10 <0.00l 
Error 36 47.77 1.33 
Total 42 104.28 

Source F SS MS F p 
Treatment 6 46.81 7.80 0.35 0.010 
Error 36 83.89 2.33 

0.010 

Total 42 130.70 

5.3.3.2 Treatments without C. xantholoma 

As seen in treaiments with C xantholoma, total pupation events differed 

between treatments containing different larval identity in the absence of C. xantholoma, 

(Figure 5.2 b). Total pupation was generally greater in treatments containing C. pilipes 

" Levene's test for equal variances was not significant for loial lar\'ae pupation by treatment" Test 
statistic = 2.15, P = 0.072. 

Lcvenc's test for equal variances was not significant for total larvae pupation bv trcaimenf Test 
statistic = 1.65, P = 0.161. 
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than those containing C.frigida, with the exception of the three species treatment 

(relatively low levels of total pupation) and when C. pilipes and C.frigida were 

incubated together (relatively high levels of pupation) (Figure 5.2b). 

A similar pattern of species-speciHc pupation was obser\'ed for ireaimenls with 

C. xantholoma as for those without C. xantholoma. Again C.frigida had the lowest 

mean rates of pupation and individuals of this species did not pupate in every treatment. 

However, without C. xantholoma, C.frigida individuals did pupate in treatments with 

D. anilis (Figure 5.2 a, b). More C. pilipes individuals than D. anilis individuals pupated 

when the two species were incubated together (Figure 5.2 b). As obser\'ed in treatments 

with C. xantholoma. when all three species were incubated together, there was little 

difference between the different lar\'a species in terms of the number of individuals 

pupating in treatments without C. xantholoma. 

The difference in total pupation was only significant at the 0.05 significance 

level between treatments containing only C pilipes and only C.frigida (Table 5.4b 

Appendix A22). 

Total pupation in treatments without C .xantholoma was not correlated with L 

digitata mass loss when it was calculated in terms of initial (Pearson correlation = -

0.172, P = 0.269), final (Pearson correlation = -0.283, P = 0.066) or mean (Pearson 

correlation = -0.251, P = 0.105) lar\'al mass. 

Additionally there was no significant difference in the total number of lar\'ae 

pupating with or without C. xantholoma for any single treatment (larva combination) 

(Table 5.5). 
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Table 5.5 Separate Students t-test for treatments (lar\'al identity combinations) with and 
without C xantholoma. 

Treatment (larva combination) D.F. t P 

C. pilipes 11 -0.37 0.719 
D. anilis 6 -1.43 0.203 
C. frigid a Identical 
C. pilipes & D. anilis 5 1.30 0.250 
C pilipes & C. frisida 7 0.41 0.695 
C frisida & D. anilis 6 0.43 0.685 
All three species II 0.00 1.000 

5.3.4 Kelp Mass Loss 

5,3.4.1 Actual L. digitata tnass loss 

L. digitata mass loss varied between treatments. The greatest loss was observed 

in treatments including all three species of larva without C. xantholoma (Figure 5.3). 

The lowest loss was observed in control treatments without C. xantholoma (Figure 5.3). 

The lowest actual L, digitata mass loss in treatments (excluding the controls) was found 

in single species treatments of D. anilis with C. xantholoma (Figure 5.3). 
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Figure S.3 Actual L digitata wet mass loss g (mean ± s.e.) for each treatment. 
Dark blue bars = treatments with C. xantholoma. light blue bars = treatments without C 
xanfholoma. 

The variation in actual L. digitata mass loss between treatments was significant 

(Table 5.6). As total biomass in each larva treatment varied (Table 5.6), direct 

comparisons between lar\a treatments that do not account for differences in larval mass 

arc not made here. It is important to note that L. digitata mass loss in the control 

treatment (without larv ae or C. xantholoma) and the predator control (with C. 

xantholoma) were not significantly different from D. anilis single species treatments 

with or without C xantholoma (Appendix A23). Observed L. digitata mass loss is 

lower in larval treatments with C. xantholoma than those without (Figure 5.3). This 

difference was only significant (P < 0.05) between treatments with and without C 

xanfholoma for larval combinations including, C. frigida: C. frigida in isolation, C. 

pilipes & C. frigida. C. frigida & D. anilis and all three larva species (Appendix A23). 



Table 5.6 One-way analysis of variance showing the variability in the actual log 
(K( log L digitata mass loss by treatment+1)). 

Source F SS MS F P 
Treatment 5 0.373408 0.024894 29.91 <0.00l 

Error 4 0.069923 0.000832 
Total 9 0.443330 

Levene's test for equal variances was significant for actual L digitata mass loss g by 
treatment; test statistic = 1.90, P = 0.034 so data were transformed, log((Iog L digitata 
mass loss g + l ) + l ) by treatment; test statistic = 1.62, P = 0.086. 

5.3.4.2 L digitata mass loss in the absence of C. xantholoma 

In the absence of C. xantholoma, increased larval species diversity increased L 

digitata mass loss. This was seen for all measures of lar\'al mass; initial, mean or final 

larval mass (Figure 5.4, turquoise bars). 
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Figure 5.4 L digitata mass loss g (mean ± s.e.) for each treatment (larva combination). 
Turquoise bars = treatment without C xantholoma. Dark blue = treatments with C. 
xantholoma. a) L. digitata mass loss g.h ' per initial larval mass g, b) L di^itata mass 
loss g.h per final larv al mass g, c) L. digitata mass loss g.h ' per mean larv al mass g. 



The variability in L. digitata mass loss was significantly different depending on 

the number of different species in a treatment (Species level), when the variability in L 

digitata mass loss per initial, final or mean larval mass was analysed using a Type III 

nested ANOVA (treatment was nested within species level) (Tables 5.7 a-c). 

Table 5.7 General Linear Model (GLM) showing the effects of identity combination 
nested within species level and species level on, a) L. digitata mass loss g.h"' per initial 
larval mass g ,b) L. digitata mass loss g.h"' per final larval mass g, c) L. digitata mass 
loss g.h ' per mean larval mass g. A l l without beetle predator. 

a ) _ 
Source F Sequential Adjusted Adjusted 

SS SS MS 
ldentit>' 4 0.0017113 0.0017113 0.0004278 3.86 0.010 
combination 
(Species level) 
Species level 2 0.0247952 0.0247952 0.0123976 111.75 <0 00l 
Error 36 0.0039938 0.0039938 0.0001109 
Total 42 0.0305003 

Levene's Test for equal variances was not significant f o r i , digitata mass loss g.h'' per 
initial larval mass g by species level statistic = 0.02, P = 0.982, and by species identity 
combination; test statistic = 1.25, P = 0.305. 

Post-hoc Tukey's; L. digitata mass loss g.h"' per initial larval mass g by species level 
(See Appendix A24a); 3>2>I. 

Post-hoc Tukey's; L. digitata mass loss g.h'' per initial larval mass g by larval identity 
combination (See Appendix A24b); 
Al l three species> any treatment. 
Al l singles species treatment equable. 
C. pilipes < all two species treatments except C.frigida & D. anilis. 
D. anilis < all two species treatments. 

C.frigida not significantly difference from any two species treatment, 

b) 
Source F Sequential Adjusted Adjusted 

SS SS MS 
Identit}' 
combination 
(Species level) 
Species level 
Error 

4 0.0025369 0.0025369 0.0006342 

2 0.0248282 
36 0.0236759 

0.0248282 
0.0236759 

0.I24I4I0 
0.0006577 

0.96 0.439 

188.75 <0.00 

Total 42 0.0510409 
Levene's Test for equal variances was not significant for/., digitata tnass loss g.h ' per 
final lar\'al mass g by species level statistic 0.01, P = 0.991, and by species identity 
combination; test statistic 0.22, P = 0.969. 

213 



Posi-hoc Tukey's; L digitata mass loss g.h ' per final larval mass g g by species level 
(See Appendix A25); 3>2=l. 

c) 

Source F Sequential 
SS 

Adjusted 
SS 

Adjusted MS F P 

ldentit>' 
combination 

4 0.0019580 0.0019580 0.0004895 3.05 0.029 

(Species level) 
Species level 
Error 

2 
36 

0.0272627 
0.0057819 

0.0272627 
0.0057819 

0.0136314 
0.0001606 

84.87 <0.001 

Total 42 0.0350026 

Levene's Tesi for equal variances was not signiHcant for mean larval mass by species 
level 
statistic = 0.44, P = 0.648, and by species identity combination, test statistic = 1.15, P = 
0.352. 

Post-hoc Tukey's; L digUata mass loss g.h'' per mean larval mass g by species level 
(See Appendix A26a); 3>2>1. 

Posi-hoc Tukey's; L digitata mass loss g.h ' per mean larval mass g by larval identity 
combination (See Appendix A26b); 
Al l three species> any treatment. 
Al l singles species treatment equable. 
C. pilipes < all two species treatments except C.frigida & D. anilis. 
D. anilis < all two species treatments except C.frigida & D. anilis. 
C.frigida < C. pilipes & D. anilis. 

Using separate one-way ANOVAs and Tukey's (HSD) post-hoc tests, L 

digitata mass loss in treatments containing all three larval species was always 

significantly higher than that obser\'ed in two and single species treatments combined. 

However, L. digitata mass loss only increased significantly between single and two 

species treatments when it was calculated per initial or mean larval mass (Tables 5.7a-

c). 

L digitara mass loss when calculated per initial larval mass or mean lar\'al mass 

varied significantly between treatments (species identity combination) (Table 5.7a,c) 

but not when L. digitata mass loss was calculated per final larval mass using a Type III 

nested ANOVA (Table 5.7b). 
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Using separate one-way ANOVAs and Tukey's (HSD) post-hoc tests L digitata 

mass loss in treatments containing all three lar\'a species was significantly higher than 

any uvo or single larva species treatment regardless o f how L digitata mass loss was 

calculaled.(Tables 5.7a-c). Where L. digitata mass loss was calculated per initial larval 

mass; L digitata mass loss in treatments of A anilis alone was significantly lower than 

L. digitata mass loss in any treatments containing two larva species (Table 5.7a). Single 

treatments of C. pilipes were only significantly lower than two species larva treatments 

containing C. pilipes (Table 5.7a). Also, single species treatments of C.fhgida were not 

significantly different from any two larva treatment (Table 5.7a). Where L. digitata 

mass loss was calculated per mean larval mass, the two species treatment of C. pilipes 

& D. anilis was significantly higher than any single species larva treatment (Table 

5.7a). The two lowest single species larvae treatments (C pilipes and D. anilis) were 

also significantly lower than the two species treatment of C. pilipes & C.frigida (Table 

5.7c). 

5.3 A J L digitata mass loss in the presence of C xantholoma 

The effects of larval species diversity and identity on L. digitata mass loss in 

treatments containing C. xantholoma were similar to those obser\'ed in treatments 

without C. .xantholoma. Again, increased larval species diversity increased L digitata 

mass loss. (Figure 6.4, dark blue bars). Also the variability in L digitata mass loss per 

initial, final or mean larval mass (analysed using a type III nested ANOVA), differed 

significantly between species levels (Tables 5.8 a-c). Again the increase in kelp mass 

loss with diversity was not consistent between each species level and depended on 

whether L. digitata mass loss was calculated in tenns of initial, final or mean larval 

mass (Tables 5.8a-c). L digitata mass loss in treatments containing all three larval 

species was always significantly higher than those in two and single species treatments 
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(Table 5.8a-c). However, L. digitata mass loss only increased significantly between 

single and two species treatments when it was calculated per initial or mean larval mass 

(Table 5.8a-c). 

Unlike the results for kelp mass loss without a predator, species identity 

combination was not a significant factor affecting kelp mass loss, when calculated per 

initial, mean or final larval mass (Table 5.8a-c). 

Table 5.8 General Linear Model (GLM) showing the efTects of identity combination 
nested within species level and species level on, a) transformed logio L digitata mass 
loss g/initial larval mass, b) L. digitata mass loss g/final larval mass loss g, c) logioL. 
digitata mass loss g/mean larval mass. A l l with C xantboloma, 

^ 
Source D.F. Sequential 

SS 
Adjusted 

SS 
Adjusted 

MS 
Identity 
combination 
(Species level) 
Species level 
Error 

2 
36 

0.2636 

6.9413 
6.9452 

0.2636 

6.9413 
6.9452 

0.0659 0.34 0.848 

3.4707 17.99 <0.00 
0.1929 

Total 42 14.1502 
Levene's Test for equal variances was not significant for L digitata mass loss g/inilial 
larval mass g in the absence of a predator for identity combination Test statistic = 3.09, 
P = 0.015, data were transformed, logioZ.. digitata mass loss g/iniiial larval mass g.h'* in 
the absence of a predator for species level Test statistic = 0.48, P = 0.624, and species 
identity combination test statistic = 1.69, P = 0.152. 
Post-hoc Tukey's; logio L digitata mass loss g /initial lar\'al mass g by species level 
3>2>1 (See Appendix A27). 

Source D.F. Sequential 
SS 

Adjusted 
SS 

Adjusted 
MS 

Identity 
combination 
(Species level) 
Species level 
Error 

0.0038210 0.0038210 0.0009552 0.10 0.371 

2 
36 

0.0066110 
0.0312558 

0.0066110 
0.0312558 

0.0033055 
0.0008682 

3.81 0.032 

Total 42 0.0416878 
Levene's Test for equal variances was not significant for L digitata mass loss g/ final 
larval mass by species level statistic = 0.06, P = 0.939, and by species identity 
combination; test statistic = 0.54, P =0.776. 
Post-hoc Tukey's; L digitata mass loss g /final larval mass g by species level 3 <1=2 
(See Appendix A28). 
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Source F Sequential Adjusted Adjusted F P 
SS SS iVIS 

Identity 4 0.5319 0.5319 0.1330 0.85 0.503 
combination 
(Species level) 
Species level 2 7.2280 7.2280 3.6170 23.11 <0.001 
Error 36 5.6295 5.6295 0.1564 
Total 42 13.3894 
Levene's Test for equal variances was not significant for L digitata mass loss g/mean 
larval mass g in the absence of a predator for species identity combination (Test statistic 
= 3.79, P = 0.0005, so data were transformed); L digitata mass loss g/mean larval mass 
g species level Test statistic = 0.26, P = 0.770, and species identity combination test 
statistic =1.90, P = 0.108. 

Post-hoc Tukey's; L. digitata mass loss g /mean larval mass g by species level 1 <2 <3 
(See Appendix A29). 

5.3,4.4 Species interactions. 

When obser\'ed values of L digitata mass loss per initial larval mass were 

compared with expected values, based on L. digitata mass loss in single species 

treatments, the results were similar for treatments with and without C xantholoma. In 

all multi-species treatments without C xanthohtna observed values of L. digitata mass 

loss were significantly higher than expected (Table 5.9). In all multi-species treatments, 

in the presence of C. xantholoma. expected values of Z.. digitata mass loss were 

significantly higher than expected except in the two species treatment o^C.frigida & D. 

anilis (Table 5.9). When C.frigida & D. anilis were combined in a treatment and 

incubated with C xantholoma observed values of L. digitata mass loss were not 

significantly different than expected (both with and without applying the Bonferroni 

corrected significance level) (Table 5.9). 
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Table 5.9 95% and Bonferroni corrected confidence intervals for observed-expected L 
digitata mass loss g per initial mass g. 

Treatment 95% confidence 
intcr\'als 

Bonferroni 
corrected 
confidence 
intervals 

W
it

h 
C

 
xa

nt
ho

lo
m

a 

C pilipes & D. anilis 0.0011 0.0007 0.0012 0.0006 

W
it

h 
C

 
xa

nt
ho

lo
m

a 

C. pilipes & C. frigida 0.0016 0.0012 0.0017 0.0012 

W
it

h 
C

 
xa

nt
ho

lo
m

a 

C. frigida & D. anilis 0.0000 -0.0003 0.0001 -0.0004 W
it

h 
C

 
xa

nt
ho

lo
m

a 

C. pilipes, D. anilis & C.frigida 0.0624 0.0622 0.0624 0.00621 

W
it

ho
ut

 
C

. 
xa

nt
ho

lo
m

a 

C. pilipes & D. anilis 0.0020 0.0019 0.0021 0.0018 

W
it

ho
ut

 
C

. 
xa

nt
ho

lo
m

a 

C. pilipes & C. frigida 0.0816 0.0814 0.0816 0.0813 

W
it

ho
ut

 
C

. 
xa

nt
ho

lo
m

a 

C. frigida & D. anilis 0.0019 0.0017 0.0019 0.0017 W
it

ho
ut

 
C

. 
xa

nt
ho

lo
m

a 

C. pilipes, D. anilis & C.frigida 0.0775 0.0774 0.0776 0.0774 

5.4 Discussion 

5.4.1 Main Findings 

As the first study to empirically test the effect of a predator on consumer-

resource interactions, there was little evidence to suggest that C. xantholoma changes 

the effect of larval identity, combination, or diversity on the decomposition of kelp. 

Increasing larval diversity increased L. digitata mass loss with or without the presence 

of C. xantholoma. Greater than expected rates of decomposition in multi-larval 

treatments were apparent both with and without the presence of C xantholotna. 

However, there were subtle differences in larva-resource interactions with and without 

C. xantholoma. Lar\'al identity combination was only a significant factor to explain the 

variability in L digitata mass loss when C. xantholoma was not present. Additionally, 
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greater than expected decomposition in treatments containing C.frigida & D. anilis was 

not obser\'ed when these species were incubated with the predator. 

Furthermore, despite direct consumption of larvae and possibly indirect effects 

of C. xantholoma on larval feeding, not all treatments containing the predator displayed 

significantly lower wrack processing rates than those without. 

The consumption of larvae by Cafius xantholoma was different for different 

larval species and depended on the combination of larvae in a treatment. Larval 

pupation was also dependent on larval species and similar trends were obser^'ed with 

and without C. xantholoma. 

5.4.2 Larval Identity', Diversity' and Interactions in the Absence of C. xaiUholoma 

As expected, based on the results obtained in Chapter 3, the current experiment 

has demonstrated that decomposition (L digitata mass loss) increases as the diversity of 

larva in a treatment increases. In multi-species treatments, wrack loss exceeded that 

expected based on single species additive effects. Overall processing rales in the 

current study were lower than those previously reported (Chapter 3), possibly due to the 

lower pre-experimenl temperatures in the strandline. In the current study, 

decomposition in all multi-species treatments was significantly higher than expected, in 

contrast. Chapter 3 showed that L digitata loss in treatments of C.frigida & D. anilis 

combined was not significantly higher than expected. This discrepancy between results 

may indicate that positive interspecific larval interactions only occur in the presence of 

C. pilipes with the other two larval species (Chapter 3). Whilst there is no sound 

explanation for the discrepancy between these two identical experiments, it may have 

been due to the different times in which the experiments were undertaken, highlighting 

the potential importance of pre-exposure environmental conditions for species 

interactions. 
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Similar to the results of Chapter 3, decomposition increased significantly in 

treatments containing greater larval diversity (whether L digitata mass loss was 

calculated per initial, mean, or final larval mass). Irrespective of how L digitata mass 

loss was calculated, all three species lar\'al treatments were significantly higher than any 

two or single species treatment, although subtle differences in decomposition between 

treatments containing different larval identities were obser\'ed. The identity combination 

of the larvae also significantly affected decomposition in both the current (this chapter) 

and previous (Chapter 3) studies. However, in the current study this only occurred when 

L digitata mass loss was calculated per initial or mean larval mass. The implications of 

positive larval interactions for ecosystem processes and BDEF research are discussed in 

depth in Chapter 3. The mechanisms behind the observed increased processing rates in 

multi-larval treatments are discussed in Section 3.4.5 and are applicable here. As in 

Chapter 3 (Section 3.4.5) and Marsh and Spicer (inprep.), it is proposed that the 

increase in wrack processing in these heterospecific assemblages is indicative of 

interspecific facilitation. A mechanism of microbial facilitation was proposed to 

explain the increase in wrack mass loss with lar\'al diversity (Section 3.4.5, Marsh and 

Spicer in prep.). Evidence for this hypothesis is at best anecdotal and a more complete 

reasoning can be found in Section 3.4.5. It should be reiterated that using the 

replacement design employed in this study (where larval total density was maintained 

but the relative density of each species decreased as the number of larval species 

(diversity) increased), does not allow the mechanisms behind positive species 

interactions to be discerned explicitly (Underwood 1984, 1986, Benedetti-Cecchi 2004). 

However, the positive effect of heterospecific lar\'al treatments on wrack processing, 

despite the reduction of larval density due to C xantholo/na consumption, adds weight 

to the previously proposed interspecific facilitation hypothesis used to explain the 

greater than expected processing rales in multi-larva treatments. Competitive 
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interactions should be reduced at lower densities. Thus the effects of mechanisms such 

as intraspecific competitive release, that could also explain the higher than expected 

processing rates in multi-larva treatments, should be less at lower lar\'al densities (i.e. in 

treatments with C. xantholoma). Whether the positive effect of larva species diversity 

on L. digitata mass loss was due to intraspecific competitive release or interspecific 

facilitation cannot be conclusively discerned. However, reducing the diversity o f larva 

species wil l result in reduced ecosystem processes, whether this occurs through 

increased intraspecific competitive interactions or the loss of positive interspecific 

interactions (for more in-depth discussions see Sections 3.1.3 and 3.4.5). 

5.4.3 The Effect of C. xantholoma on Larval Populations 

The consumption of larvae differed depending on lar\'al identity and the identity 

combination of larvae in a treatment. There is no unequivocal explanation for why a 

predator's preference for a particular larva species should change when the predator is 

presented with different combinations of prey species. However, differential pupation 

by larval species may in part explain the observed results. The consumption o f pupae 

by C xantholoma has never been documented, and was not obser\'ed in this experiment. 

In treatments where larval pupation rates were relatively high, according to optimal 

foraging theory, the reduced density of available prey would have increased search time 

(MacArthur and Pianka 1966), therefore time spent actually consuming prey would 

have been reduced. Preliminary experiments have shown that consumption of lar\'ae by 

C. xantholoma was either reduced or deceased when larval density was low. This would 

suggest that C. xantholoma will only eat when it encounters prey by chance, rather than 

actively searching for prey. The number of individual larvae consumed by C. 

xantholoma when incubated with a single lan'al species follows the direct inverse 

pattern of the number of pupation events in single species treatments C.frigida < D. 
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anilis < C. pilipes. Similarly, in the two species treatment of C. pilipes & D. anilis, less 

C pilipes were consumed and this species displayed a higher number of pupation 

events. Also, in the two species treatment of C. frigida & D. anilis, significantly more 

C.frigida were consumed than D. anilis pupated. However, why this trend was not 

obsen.'ed for the other multi-larva treatments is as yei unclear. 

5.4.4 Larval Identity', Diversit>' and Interactions in the Presence of C. xantholoma 

Despite the fact that direct removal of larvae through consumption and the 

differential consumption of larvae was shown to depend on both the lar\'a! identity and 

the identity combination of larvae in a treatment, the effect o f larval diversity and larval 

interactions with respect to L digitata mass loss was not greatly affected by the 

presence of C xantholoma. Additionally, the apparent positive interactions between 

lar\'al species, with respect to processing rates, seen in the absence of a predator are 

generally maintained in treatments with C. xantholoma. L digitata mass loss in all 

multi-larval treatments, with the exception of C.frigida & D. aniiis were greater than 

predicted based on additive single species processing rates. The equable processing 

rates between observed and expected decomposition in the C.frigida & D. anilis 

treatment can be explained by the high consumption of lar\'ae in this treatment (Figure 

5.1). More total larx'ae were killed in the C.frigida & D. anilis treatment than any other 

multi-species larval treatment. Calculating expected processing rales based on single-

species treatments may have resulted in an overestimalion of expected processing rates 

because rates were corrected by the initial mass in multi-species treatments (Box 5.1). 

However, the absence of a diversity effect in this treatment could also be due to C 

xantholotna interrupting the positive effect of these two species with regards to wrack 

processing, as observed in treatments without the predator. 
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Despite the possible errors in calculating mass-specific rales of wrack loss in the 

presence of a predator, wrack processing in all other multi-species ireatmems was 

higher than expected, based on single-species processing rates. This suggests that the 

positive interactions in heterospecific larval assemblages are not affected by C. 

xantholoma. interestingly, in Chapter 3, processing rales in treatments of C.frigida & 

D. anilis were not significantly higher than expected without a predator. There appears 

to be no sound explanation for this discrepancy (Section 5.4.2). Whether the positive 

effects of C.frigida &. D. anilis on wrack processing were interrupted in the presence o f 

C. xantholoma, vary generally or are dependent on factors not considered in this and 

previous (Chapter 3) studies is unclear. Although the diversity effect and, in general, the 

positive effect of larva! interactions'*^ on wrack processing, were unchanged in the 

presence of C. xantholoma, subtle differences in processing rates with respect to larval 

identity were uncovered. The effect of lar\'al identity combination was not significant in 

detennining processing rates when larvae were incubated with C. xantholoma. This was 

in contrast to the results from treatments where C. xantholoma was absent. This may be 

due to the difference in kelp mass loss observed in single-species treatments of C. 

frigida with and without the predator. L. digitata mass loss in single-species treatments 

of C. frigida was reduced in the presence of C. xantholoma. C.frigida had the highest 

single species processing rales, and in treatments without C. xantholoma this single-

species treatment was not significantly different from all two-species larval treatments. 

There are no previous experimental studies which have explicitly compared the 

effect of positive interactions (within a trophic group) on ecosystem processes with and 

without a predator. However, a number o f modelling studies have attempted to ascertain 

the effecis of multiple-trophic level diversity on ecosystem processes. Contrary to the 

results of this smdy, in theoretical assemblages, predators have been shown to greatly 

Whether ihrough iniraspccific compeiiiive release or interspecific facilitation (see Section 5 4'>) 
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infiuence ecosystem processes. Thebault and Loreau (2003) found that the relationship 

between diversity and ecosystem function (measured as plant and herbivore biomass) 

was dependent on the predator's mode of feeding and the distribution of plant traits'". 

However direct comparisons between the present study and that of Thebault and Loreau 

(2003) are difficult as the feeding mode of the predator remained constant in this smdy, 

and in their study plant species did not interact positively with respect to ecosystem 

processes in the modelled assemblage. Similarly, Thebault et al. (2007) used food web 

models that differed in diversity and incorporated four trophic levels and found that 

ecosystem process (biomass) at each trophic level depended massively on which trophic 

level the removed species belonged to**̂ . However, ecosystem processes were also 

affected by initial diversity and the presence of intraspecific and interspecific 

competition. In addition to this, trophic level was never manipulated and species were 

allowed to go extinct. Therefore, the exact effects of higher predator interactions on 

intraspecific and interspecific competition amongst prey and the consequence of this for 

ecosystem processes cannot be discerned. Similarly, using model simulations, Fox 

(2004) showed how the presence of herbivores can affect the diversity ecosystem 

process relationship in plants. Positive species interactions (overyielding) were found 

for a wide range of parameter values without predators but only for a limited set of 

parameter values with a specialist predator and not at all with generalist predators. This 

is in contrast to the results of the current study where positive species interactions 

(greater wrack mass loss than expected based on single-species processing rates) were 

obsen'ed both with and without a predator. However, the positive interactions 

(overyielding) beUveen plant species in the study by Fox (2004) was based on 

' This was based on a mechanistic model of plants, herbivores, and carnivores where plants were nuirieni 
limited and differed in iheir productivity (biomass) and herbivores and carnivores could be gencralists or 
S|)ecialists. 

Models had different amount of conneciancc, intra and interspecific variation and predator prey 
mtcraclion strength (all drown randomly and nonnally distributed). 

224 



differential resource use. As previously discussed this mechanism is unlikely to explain 

the positive species interactions observed in this study (Section 5.4.3). Thus, 

transgressive overyielding with specialist herbivores required that the inferior 

competitor takes up resources at a higher per-unit rate than the superior competitor. 

Furthermore, as the trait distributions between plant species, with and without, 

herbivores was altered (Fox 2004) the effects o f diversity and positive interactions on 

ecosystem processes with and without a secondary trophic level, could not be discerned. 

Previous studies provide mixed evidence for the effects of predators on 

consumer-resource interactions. Contrary to the results of the current study, ecosystem 

processeses have been affected by predatory interactions to a greater extent than non-

trophic interactions. Duffy et al. (2003) used data from previous studies of plant 

diversity and consumer removal experiments in terrestrial and aquatic systems to assess 

and compare the overall effect size of plant diversity and consumers on plant biomass 

accumulation'*^. These limited experimental data suggested that removal of carnivore 

species often has impacts on total plant biomass comparable with, or greater than, those 

of removing a large fraction of plant species. Although the current study did not 

explicitly compare the effect size of diversity and compare it with the effect size of 

predators on an ecosystem proces, larval diversity arguably had a larger effect than 

predators on wrack mass loss. Laminaria digitata mass loss increased from the single to 

three species level, both with and without predators, whereas the difference in L. 

digitata mass loss with and without C xantholoma was not significant for every 

treatment. The contrasting results of the current study and that of Duffy et al. (2003) 

may be explained by the differing methods of data collection. In the study by Duffy et 

al. (2003), the diversity-biomass accumulation data were taken mainly from terrestrial 

Efleci size was standardised using the log ratio of the plant biomass accumulation in the presence vs 
absence of altered diversity. The impacts of predator reductions on plant biomass were standardized from 
the meta-analysis of trophic cascade experiments by Shurin et al. (2002). 
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grassland studies, whereas the effect of predator removal for ecosystem processes was 

taken from aquatic ecosystem smdies. I f the comparison is restricted to terrestrial 

systems, plant diversity reduction yielded a mean effect whereas terrestrial predator 

removal effects did not differ significantly from zero. Either predator removal had weak 

effects on land, consistent with the argument that community-wide trophic cascades are 

rare on land (e.g. Strong 1992, Polls 1999) or, intuitively the comparison between 

studies of consumer removal in aquatic and diversity effects in terrestrial ecosystems is 

invalid. Similarly, Mulder et al. (1999) provides evidence that trophic interactions can 

have a greater effect on ecosystem process than within trophic level diversity. In 

outdoor mesocosms an increase in plant species richness increased productivity as 

measured by biomass accumulation in the absence of herbivores (plots were sprayed 

with pesticide, although not all herbivores were excluded). However the inclusion of 

herbivores (unsprayed plots) resulted in a doubling of plant biomass (Mulder et al. 

1999). In terms of effect size, predators increased plant productivity over six times more 

than did species richness (Duffy et al. 2003). However, species diversity was 

comprised of randomly drawn species identities, and biomass accumulation in 

monocultures without herbivores was not tested. Thus, the interactions between species, 

and any positive diversity effects for biomass accumulation with herbivores could not 

be ascertained. Furthermore, although the overall effect of herbivores on productivity 

cannot be disputed, it was more likely due to the alteration in plant species evenness and 

diversity in unsprayed plots rather than a direct or indirect effect on positive species 

interactions. Naeem et al. (2000), using aquatic microcosms containing three trophic 

levels of bacteria, showed how the positive effect of algal species richness on algal 

biomass was eliminated in the presence of bacteria. Bacterial consumers fed on bacteria 

instead of algae thus reducing grazing pressure on algal. Whilst demonstrating the 

importance of trophic cascades for primary producer biomass, the mechanisms behind 
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the positive diversity biomass effect were not explicitly demonstrated and how this 

mechanism was affected by increased trophic levels was not determined. 

As suggested by the results of the current smdy, there is tentative evidence that 

ecosystem processes are as reliant on non-trophic interactions as on trophic interaction. 

The conclusions reached by Setala et al. (1998), based on a review of current literature, 

on energy fiow and material cycles in soil food webs agree, in part, with the results of 

the current study. Within-functional group interactions were deemed important to 

energy processing and some groups of predator were found to have little effect on 

energy processing. However, not all non-trophic interactions were significant in 

affecting ecosystem processes and there were many other variables, such as litter quality 

that had as large an effect as species diversity. Furthermore, some predator groups 

(mesostigmatid predators) affected ecosystem process. As these conclusions came from 

different studies, none of which had experimentally assessed the effects of predators on 

the interactive affects within a trophic level with respect to ecosystem processes, the 

relative impact of between-trophic level interactions and within-trophic level 

interactions in determining ecosystem process cannot be discerned. 

In all of these examples the effect of predators on consumer-resource 

interactions was not measured or estimated empirically, making inferences on the effect 

of predators on positive non-trophic interactions difficult and limiting further 

comparison with the current study. There is some evidence from other systems to 

suggest that, as found in the present smdy, predators have little effect on consumer-

resource interactions (Downing 2005, Duffy 2005). As part of a much wider experiment 

examining the effects of species richness on ecosystem processes in ponds. Downing 

(2005) measured macrophyte biomass in treatments containing identical numbers but 

different species compositions of grazer and macroalgae species with and without 

predators. Macrophyte biomass did not differ significantly with and without predators 
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despite the predatory influence on grazer biomass. However, as species identity was not 

consistent in treatments with and without predators, the effect of predator and grazer 

species identity on resource biomass cannot be discerned, e.g. i f less efTlcient grazers 

were included in treatments without predators than those with, macrophyte biomass 

may have been similar in both treatments despite the reduced grazer biomass (due to 

predation) in the latter. However, as in the current study, within-treaiment variability in 

processing rates, owing to interspecific differences, may have masked the relatively 

smaller indirect effects of predators on processing rates due to consumer removal. 

Similarly, Duffy (2005) found some strikingly similar trends to those observed in the 

current study despite the fijndamental differences in the system and the species 

involved. Duffy (2005) manipulated species grazer diversity in seagrass mesocosms 

resulting in four single-species treatments and one treatment including all four species, 

and measured plant community biomass and composition. These treatments were 

replicated with generalist predators (three individuals of the same juvenile crab species). 

As in the current study, a positive effect of species number on ecosystem processes in 

the presence of predators was observed. Although, all multi-species interactions with 

respect to resource use were not discerned, and the effect of multi-species treatments 

compared to that expected based on single-species additive effects, as in this study the 

positive effect of species number on ecosystem processes in the presence of predators 

was obser\'ed. An increase in diversity from one to four species decreased sediment 

microalgal and macroalgal biomass, a trend that was maintained both with and without 

predators. However, there are important differences between the results of the current 

smdy and that of Duffy (2005). The current study suggests that positive diversity effects 

are not altered by predators. In contrast, Duffy (2005) suggested that positive diversity 

ecosystem process relationships are maintained by alteration of the consumer 

assemblage by the predator. With predators, epiphyte biomass decreased with grazer 
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species richness and eelgrass biomass decreased. This positive diversity effect was not 

apparent in the absence of predators. Furthermore, the mechanisms behind the positive 

diversity ecosystem process effects were not due to positive interactions as suggested in 

the current study"*' but instead, were due to differences in resource use between grazer 

species, density compensation among competing prey species and trade-offs between 

competitive ability and resistance to predation. In the current study there was only one 

food source for the consumer, whereas Dufly (2005) provided eelgrass, macroalgae and 

epiphytes. Different consumer species altered the biomass of the primary producers to 

different degrees. This combined with the different susceptibility of consumer species to 

predation, and the fact that species density compensation was allowed, resulted in a 

reduction of the most inefficient grazer and an increase in the most efficient grazers in 

the presence of predators. 

5.4.5 The Effect of C. xantholoma on Kelp Mass Loss 

L digitata mass loss in single species treatments of C pilipes and D. anilis. and 

these two species combined was not significantly lower than treatments without the 

predator, despite consumption of larvae by C. xantholoma. This can be explained, in 

part, by C. xantholoma consumption and larval pupation. When C. xantholoma was 

presented with a single larval species the predator consumed fewer C pilipes and D. 

aniliSy than C.frigida (although the difference was only significant between C.frigida 

and C pilipes). Additionally, reduced larval density through pupation may have had 

greater impact on L. digitata mass loss in single species treatments than reduction in 

density due to C. xantholoma consumption. In single-species treatments, C.frigida did 

not pupate whereas single species treatments of C. pilipes and D. anilis with and 

Whether through intraspccific competitive release or interspecific facilitation (see Section 5.4.2) 
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without C xantholoma showed high incidences of pupation. I f larvae reduce iheir L. 

digitaia processing prior to pupating then the combined effects of reduced processing 

followed by a reduction in larval density may mask the smaller effect due to larv'al 

removal through direct consumption. Variable processing rales between replicates 

within a treatment, due to differential species-specific pupation may have made 

differences in processing rates due to single or two species removal by C. xantholoma 

non-significant. Furthermore, once a single larval species pupates, the other species in 

the treatment quickly pupate in succession (pers. obs.). This is perhaps not unexpected 

as larval life-cycles have been observed to coincide with each other (Hodge and Arthur 

1997, Blanche 1992), presumably as an adaptation to the tidal cycle which supplies 

wrack material, their food source (Section 2.5.2). Ergo, owing to the short time scale of 

this experiment, i f larvae reduce processing rales prior to pupation and some species in 

a treatment pupated, the remaining species may have been close to pupating themselves 

and already be displaying reduced processing rates. However, until feeding rates 

throughout the life cycle of larvae are measured the infiuence of pupation and pre-

pupation periods on wrack processing cannot be determined. 

5.4.6 Wider Significance and Conclusions 

This current study provides some of the first empirical evidence for the effects 

of trophic interactions on positive non-trophic interactions with respect to ecosystem 

processes. Although C xantholoma consumed a considerable amount of fiy larvae, the 

presence of C xantholoma did not affect the positive effect of lar\'al diversity on wrack 

processing, or in general, the positive interactions amongst kelpfly larvae. Additionally, 

the presence of C xantholoma did not significantly reduce wrack processing rates in all 

larval treatments. The current study also provides support for the previously proposed 
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mechanisms of interspecific faciliialion used to explain the greater than expected 

processing rates in multi-larval species treatments. 

Whilst caution should be urged in extrapolating the results of this study to other 

systems, the current study does suggest that the efTecl of consumer diversity on 

ecosystem processes, as found in previous BDEF studies, may be valid in multi-irophic 

systems. The importance of positive species interactions within trophic groups on 

ecosystem processing is clear from the current study. In marine strandline systems, 

appreciating the role of species interactions is particularly relevant as ecological 

processes within such systems are relatively underrepresented in the BDEF literamre. In 

addition decomposition has large implications for the associated species and 

assemblages in strandline systems (Section 2.6). Furthermore, ecosystem processes in 

coastal transition zones have implications for adjacent systems as they link terrestrial 

and marine environments (McGwynne er al. 1988, Snelgrove el al. 1997, Levin et al. 

2001). The implications of positive species interactions, as found between the larval 

species in the current study, for future BDEF studies, conservation and predictions of 

system functioning is discussed in Section 3.4.6. The current study also raises concerns 

over the validity and predictive capacity of food-web models that only consider trophic 

interaction strengths in determining energy flow in food webs. Additionally, 

consumption of prey by C. xantholoma depended upon the prey combination with 

which the predator was presented. Although only the feeding of a single predator al 

equal prey densities was investigated this does highlight the limitation of the 

assumption made in many food-web models that predator consumption is assumed to 

correlate with prey abundance/density. Before food-web models are used to predict the 

effect o f predators on prey, and consequently ecosystem processes, it is imperative that 

the assumptions underlying these models are tested empirically. Although no definitive 

conclusion on the usefulness of metabolic theory as a unifying theory of ecology can be 
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drawn from the results o f the current study, at least in the system investigated here, 

several limitations are revealed in the use of metabolic theory in predicting ecosystem 

process using a methodology that ignores non-trophic interactions, and species identity 

within a trophic level. 
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C H A P T E R 6: G E N E R A L DISCUSSION 

6.1 Introduction and Outline 

In the current climate of biodiversity loss, how species diversity and ecosystem 

process are linked is, arguably, one of the most pressing issues and greatest challenges 

currently facing the scientific community (Section 1.2). And yet there is no universally 

accepted trajectory either between diversity and ecosystem process, or the form of the 

relationship being reliant on species identity and their interactions (Sections 1.4, 1.5). 

Despite this the role of species interactions is rarely considered (Section 1.6). 

Chapters 3-5 experimentally examined some of the assumptions underpinning 

predictions of species identity, diversity, trophic and non-trophic interactions with 

respect to ecosystem processes, using the marine strandline as a model system. 

Consequently what follows is an overall discussion of that experimental work (Chapters 

3, 4 & 5) presented both in the context of the natural history of the specific system 

investigated (Chapter 2) and a desire to understand the role species identity, diversity 

and interactions play in the relationship between biodiversity and ecosystem processes 

(Chapter 1). The wider implications of the studies in this thesis for biodiversity research 

and ecological theory are discussed. 

6.2 The Importance of Non-trophic Interactions for Ecosystem Processes 

Non-trophic species interactions are clearly important in determining ecosystem 

processes. This was demonstrated when the effects of strandline detritivore species 

identity, diversity and interactions on wrack decomposition were investigated (Sections 

3.3.4, 3.4.3). These findings have important implications for both conservation and 

future biodiversity ecosystem process research. Despite different single species 

processing rates, it was the balance of positive and negative species interactions that led 
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to the overall non signiHcant effect of diversity on ecosystem processes (Section 3.4.3), 

The species used were all from the same functional group, where redundancy, the 

ability to compensate for species loss in terms of processing rates, is predicted to be 

greatest. Not only did each single species exhibit different processing rates (Section 

3.4.1) but, processing rates in multi-species assemblages could not be accurately 

predicted from single species additive effects (Section 3.4.3). I f accurate predictions of 

the effects of reduced diversity on ecosystem processes are to be made, and 

conservation efforts prioritised accordingly, it is imperative that the manner in which 

species interact is taken into consideration. Furthermore, this study adds to a growing 

body of evidence suggesting that some detritivores may interact positively with each 

other in respect to ecosystem processes (Section 3.4.3). Multi-species larval 

combinations were greater than expected based on single species processing rales 

(Sections 3.4.3, 5.4.2). I f positive species interactions with respect to ecosystem 

processes are common occurrence, and species extinction rates continue at current or 

projected rates, ecosystem processes on which we rely may be drastically and 

irreversible reduced. 

6.3 The Prediction of Trophic Interactions and Ecosystem Process Using Body Size 

Scaling Relationships 

The methodology for detennining interaction strength and ecosystem process 

presented in this thesis is novel (Section 4.2.7). No single universal relationship was 

found between size and interaction strength and ecosystem processes that could be used 

to predict the effect of trophic interactions on ecosystem processes (Sections 4.3.2, 

4.3.3, 4.3.5, 4.3.7, 4.3.8). Using the particular species and ecosystem process measured 

in this thesis, neither predator and prey body size nor metabolic scaling principles 

proved good predictors of predator and prey interactions and ecosystem processes 
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(Section 4.4.6). The results presented in this thesis have important implications for the 

use of allometric scaling laws in a predictive capacity. The widely documented scaling 

laws that link body size with metabolic rale (Section 4.1.3) may not be as prevalent or 

applicable as previously thought, or may only apply over larger scales, such that they 

cannot be used to predict species-specific relationships between size and energy flow 

(interaction strength and decomposition) between the strandline species studied in this 

thesis (Section 4.4.6). Alternatively, size and metabolic rate may be intrinsically linked 

but factors other than metabolic rale may determine species interactions both between 

predator and prey and consumer and resource on smaller scales. At least in the 

strandline system, using species size as a surrogate measure for interaction strength, wi l l 

lead to incorrect predictions of the consequence of reduced species diversity for energy 

flow through these assemblages. This thesis also emphasises the importance of 

considering species size in biodiversity ecosystem process studies before the effects of 

reduced diversity on ecosystem process in real assemblages is inferred. In this thesis, 

predator size and lar\'al size influenced both predator-prey interactions and 

decomposition to some degree (Section 4.4.7). In real assemblages, species can vary 

both interspecifically and intraspecifically. Unless previously observed effects of 

species identity, diversity and interaction on ecosystem process are shown to be size-

independent, inferring the effects of reduced diversity on ecosystem process from 

previous studies to real assemblages, has limited validity. Furthermore, the use of 

previous diversity-ecosystem process research, which has only manipulated diversity 

within a trophic level, to predict the effect of reduced species diversity on ecosystem 

processes in real multi-trophic assemblages may also be of limited utility. 
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6.4 Importance of Trophic and iNon-trophic Interactions 

This thesis has shown that the effect of diversity on ecosystem processes can 
remain the same in ihe presence of a predator. Furthermore, positive interactions, 
between larval heterospecifics with respect to wrack processing were observed both 
with and without the predators (Sections 5.4.2, 5.4.4). Although predators generally 
depressed wrack decomposition this was not significant for all dipteran larval 
combinations. Additionally, as wrack processing in multi-species larval treatments at 
lower densities (due to predator removal) was greater than expected, the results of 
Chapter 5 provided some evidence in support of the previously proposed mechanisms of 
interspecific facilitation rather than intraspecific competitive release as an explanation 
of the greater wrack processing at higher larval diversities. From these conclusions it 
could be suggested that previous BDEF studies which have not incorporated multiple 
trophic levels may still have use in predicting the general trends associated with reduced 
diversity on ecosystem processes, even i f the values of ecosystem processes at different 
diversity levels change in the presence of multiple trophic levels. Furthermore, in the 
sirandline system used in this thesis, positive species interactions with respect to 
ecosystem processes appear to be resilient to the presence of a predator (Section 5.4.4). 
This again highlights the threat posed by species loss for ecosystem processes. The loss 
of a single species in real assemblages, via loss of positive species interactions, may 
result in a greater decrease in ecosystem processes than that attributable to the 
contribution o f the removed species. The results presented in this thesis also have 
implications for the modelling o f food webs. Current approaches to food web modelling 
are beginning to quantify the links between species to make predictions of the energy 
fiow through a system. However, unless non-trophic interactions are accurately defined, 
these models are at risk of inaccurately predicting energy flows. Similariy caution 
should be exercised when using food web models to make predictions of ecosystem 
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process, under different environmental conditions or at different levels o f diversity. At 

the scale investigated in this thesis it is clear that non-trophic interactions should not 

automatically be assumed to be either constant or follow that of a normal distribution of 

interaction strengths. 

6.5 Implications for Our Understanding of Strandlines 

The background to the experimental chapters, i.e. the ecology of the strandline 

used to supply species for experiments, turned out to be more difficult to study than was 

apparent from the literature (Chapter 2). It was difficult to achieve any temporal and 

spatial resolution due mainly to the temporal and ephemeral nature of the wrack cover 

on Wembury beach (Section 2.2.2). As in previous smdies, the strandline assemblage 

was dominated by a handful of eucoenic species (Section 2.3.2). Contrary to previous 

studies species distributions in the strandline at Wembury did not appear to follow 

temporal succession and were controlled by factors other than the chemical and physical 

properties of the wrack measured (Section 2.3.2). The strandline at Wembury may be 

unique, or factors other than the chemical and physical propertied of the wrack may 

detennine the distribution of slrandline species in other strandline systems. Unless the 

factors determining strandline species distributions are identified, inferring species 

distributions based on wrack properties alone may lead to incorrect conclusions of the 

strandline assemblage and thus incorrect conclusions on decomposition and energy fiow 

through these systems. Future studies investigating the slrandline may benefit from 

employing a range of sampling methods. In this thesis the sampling technique appeared 

to be critical in characterising the fauna of the strandline al Wembury. A higher 

diversity and abundance of beetle species were collected using pitfall trapping 

compared with box cores (Section 2.3.2.). By using a range of sampling methods the 

strandline assemblage, may be more accurately quantified. 
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6.6 The Value of Macroecologv 

Understanding and describing patterns and processes, and the mechanisms that 

produce them, is the essence of science and the key to development of principles for 

management (Levin 1992). Macroecology; 

'Uhe subfieldof ecology which deals wiih the study of relationships between 
organisms and their environment at large spatial scales to characterise and explain 
statistical patterns of abundance, distribution and diversity " 

-(Brown and Maurer 1989) 

has the potential to help progress science and prioritise environmental 

management. Understanding the complexity and variability of the patterns and process 

in the environment is a daunting task. Elucidating and describing patterns of species 

distribution and links between species and their environment by unifying underlying 

mechanisms is an extremely attractive means of approaching, and working with, this 

complexity (Levin 1992). However attractive and tractable macroecological theory may 

be, its use in a predictive capacity is both limited, and arguably fraught with problems, 

unless the assumptions underlying the theory are explicitly upheld, and the scale at 

which predictions are made carefxilly considered. 

This thesis highlights the limitations of some macroecological theories in their 

use for predicting the effects o f reduced diversity on both ecosystem processes, and 

species interactions at the small scale investigated in this study. No previously proposed 

single mechanistic relationship accurately described the relationship between diversity 

within a single species level and decomposition (Section 3.4.4). Decomposition was 

dependent on species interactions, and thus the identity combination o f species (Section 

3.4.3). Even accepting the tentatively proposed hypothesis of microbial facilitation and 

inhibition to explain the generally positive interactions between larx âe and negative 

interactions between larvae and amphipod (Section 3.4.4), larvae did not always interact 

positively with each other and not dipteran all lar\'aI-amphipod interactions were 
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negative (Section 3.3.4). Furthermore, the positive effect of C.frigida and D. anilis 

larvae on wrack processing was variable both between and within studies (Chapter 3, 5), 

As seen when comparing previous BDEF studies, there does not appear to be a 

single mechanistic explanation that can adequately explain the relationship between 

diversity and ecosystem processes. As suggested in Chapter 3 many mechanisms may 

operate simultaneously to collectively determine this relationship. Even i f a universal 

mechanism could describe the relationship beUveen diversity and ecosystem processes, 

the discrepancy in observed values of decomposition in larval treatments between 

Chapter 3 and Chapter 5 highlights the temporal variability in processing rales and 

limits the quantification of processing rate reduction due to diversity loss. 

Allomeiric scaling laws based on the relationship between body size and 

metabolic rate could not be used to accurately predict interaction strength or 

decomposition using the species in Chapter 4. Accepting that allometric scaling 

relationships do exist, the present study illustrates how general allomeiric scaling 

relationships may dilTer on small scales between species, thus limiting their use in a 

predictive capacity. Factors such as beetle feeding behaviour, pre-exposure conditions 

and lar\'al pupation, may have been more significant in determining interaction strength 

and ecosystem processes measured at this scale of observation than when interaction 

strength and ecosystem processes are measured at larger scales (Sections 4.4.2, 5.4.3). 

Although the overall effect o f diversity on decomposition did not change in the 

presence of a predator, smaller species-specific trends were mitigated (Section 5.4.4). 

Larval identity combination became a significant factor to describe the variability in 

decomposition when Cafius xantholoma was present (Section 5.3.4.3). In addition, the 

positive interaction beuveen C.frigida & D. anilis disappeared in the presence of C. 

xantfwloma. Subtle differences in the relationships between species and ecosystem 

process in the presence of a predator are not considered in previous mechanistic 
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explanations in the BDEF literature. Species-specific, non-trophic interactions currently 

are not considered in theories of metabolic scaling relationships. Food-web ecology has 

yet to provide any theoretical and /or mechanistic explanations for the distribution of 

non-trophic interaction strengths. At the scale investigated in this thesis the use of 

macroecology theory to correctly predict ecosystem processes in real assemblages, let 

alone under conditions o f reduced diversity and assemblage identity change, would 

appear to be limited. 

In this thesis understanding the role of microbes in dipteran larvae and 

amphipod feeding and identifying the microbial community associated with these 

species could have allowed the prediction of consumer-resource interactions and thus 

the effects of reduced diversity decomposition to be better predicted and understood 

(Section 3.4.4). Species-specific information on the beetle's and larvae's metabolically 

active tissue, feeding behaviour and on larval pupation and the role of environmental 

factors and ontogeny in influencing species interactions and species-resource 

interactions may have enabled accurate predictions of specific predator-prey 

interactions and larva-kelp interactions and ultimately the overall rates of 

decomposition. Whilst natural history information and species specific infonnation may 

help to make predictions on the interaction between species and species and ecosystem 

process and how both of these interactions vary temporally, these predictions wil l be 

limited in their applicability to other systems and species. The predictive capacity of 

such research in terms of informing our understanding of the effects of reduced 

diversity for ecosystem process wil l be limited in its generality. The scale at which 

patterns and process are considered and the approach that we take in trying to elucidate 

and generalise them is an age old debate (Levin 1992). Whilst large-scale, mechanistic 

explanations or laws behind ecological phenomena may set the boundaries in which 

small-scale patterns and process operate, without consideration of the process behind 
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small scale interactions, (e.g. species specific natural history information such as species 

interactions, behaviour and ontogeny and how these interact with the environment), 

predictions of the consequence of reduced diversity for energy flow and ecosystem 

process within a system will be severely limited. 

The results o f the studies presented in this thesis highlight the importance of 

rigorously testing the assumptions behind macroecological theory (and allowing key 

natural history observations to inform experimental design and interpretation) before the 

proposed relationships and mechanisms are accepted and used for the prediction of 

small-scale patterns and process. This particularly applies to the links between species 

interactions and ecosystem processes. 

In using only one system, and then only a few species from that system, making 

inferences about the efTect of species identity, diversity and interactions on ecosystem 

process across systems and species is illegitimate. Likewise deducing the suitability of 

macroecological theory to make predictions of the relationship between species identity, 

diversity and interactions on ecosystem process is system and species constrained. That 

said, this thesis represents one of only a few studies to investigate the influence of non-

trophic interactions on ecosystem process, and the role of predators in affecting these 

interactions and is the first study I know of that has explicitly tested the use of body size 

as a surrogate measure of interaction strength and ecosystem processes. 
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APPENDICES 

A I Mass of a single L digitata disc, repeated measuremcnis were taken using cither the water saturation 
method; mass of the disc was taken after being submerged in distilled water, or the blotting method; mass 
of the disc was taken after being rinsed in distilled water and blotted dry using blue roil. 

Water saturation 
method 

Blotting method 

Mass 1 0.3381 g 0.3898 g 
Mass 2 0.4591 g 0.3881 g 
Mass 3 0.3728 e 0.3899 g 
Mass 4 0.4439 g 0.3882 c 
Mass 5 0.3878 g 
Mean 0.4035 g 0.3887 g 
S.D 0.5757 g 0.0010 g 
Maximum measure 0.4591 e 0.3899 g 
Minimum measure 0.3381 g 0.3878 g 
DifTerence between 
minimum and 
maximum measure 

0.12IOg 0.0021 g 

A 2 One-way ANOVA of logio(total initial animal mass g) by treatment and Tukey's {WSD)post-hoc test 
for initial larvae mass in each treatment. 1= all three species with beetle, 2= all three species without 
beetle, 3= C. pilipes with beetle, 4= C pilipes without beetle, 5= D. anilis with beetle, 6= D. anilis 
without beetle, 7= C.frigida with beetle, 8= C.frigida without beetle, 9= C. pilipes & D. anilis with 
beetle, 10= C. pilipes & D. anilis without beetle, 11= C. pilipes & C.frigida with beetle, 12= C. pilipes & 
C.frigida without beetle, 13= C.frigida & D. anilis with beetle, \^~C.frigida & D. anilis with beetle-
Source O F ; SS MS _ F P 
Treatment 
Error 

14 
60 

1.90637 
0.29129 

0.13617 
0.00485 

28.05 0.000 

Total 74 2.19767 
Levcne's Test for equal variances was significant for total initial animal mass by treatment test statistic = 
2.1 U P - 0.024. Levene's Test lor equal variances was not significant for log,otoial initial animal mass by 
treatment test statistic = 1.594, P = 1.07 

Individual 95% CIs for mean based on pooled StDev 
Level N Mean SlDev —+ + + 

0.12126 0.01968 (-
O.I 1811 0.00372 (-
0. 
0. 
0.10636 0.00647 (-
0.10617 0.00825 (-

1 7 0.12126 0.01968 
2 7 O.I 1811 0.00372 
3 7 0.15763 0.02064 
4 7 0.15373 0.01536 
5 7 0.10636 0.00647 
6 7 O.I0617 0.00825 
7 7 0.20641 0.00808 
8 7 0.19197 0.02417 
9 5 0.14050 0.00652 
10 5 0.13186 0.00591 
11 5 0.18426 0.02211 
12 5 0.19808 0.02812 
13 5 0.16792 0.02953 
14 5 0.18982 0.00562 

—+ 
0.105 

Pooled StDcv = 0.01666 

{ - * - ) 
( -*- - - ) 

(...*. 

(-"•--) 

( - - * - ) 
(-

{ 
•*-") 
( - * - ) 

- ) 

—+-. . 
0.140 0.175 0.210 
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Tukey 95% simullancous confidence inten'als 
All pairwise comparisons among levels of 
lar\'ae treaiment 
Individual confidence level = 99.91% 

Lar\'ae ireatmeni = 1 subiracted from: 
Lar\'ae 
treatment Lower Center Upper 
2 -0.03405 -0.00314 0.02777 
3 0.00546 0.03637 0.06728 
4 0.00156 0.03247 0.06338 
5 -0.04581 -0.01490 0.01601 
6 -0.04600 -0.01509 0.01583 
7 0.05425 0.08516 0.11607 
8 0.03980 0.07071 0.10163 
9 -0.01462 0.01924 0.05311 
10 -0.02326 0.01060 0.04447 
11 0.02914 0.06300 0.09687 
12 0.04296 0.07682 0.11069 
13 0.01280 0.04666 0 08053 
14 0.03470 0.06856 0.10243 

Larvae 
treatment 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

+ +— + 
(—*"-) 

( - * - - ) 
( - - * - ) 

( - - * - ) 
( - - * - ) 

( - * - - ) 
(- . .». . . . ) 

(--*-"-) 
(--*-") 

( — * - - ) 
( - - * - - ) 

( - - * - - ) 
( - - * - - ) 

. . . .+ + + + 
•0.070 0.000 0.070 0.140 

Larvae ireatmeni = 2 subtracted from; 
treatment Lower Center Upper 
3 0.00860 0.03951 0.07043 
4 0.00470 0.03561 0.06653 
5 -0.04267 -0.01176 0.01915 
6 -0.04285 -0.01194 0.01897 
7 0.05739 0.08830 0.11921 
8 0.04295 0.07386 0.10477 
9 -0.01148 0.02239 0.05625 
10 -0.02012 0.01375 0.04761 
11 0.03228 0.06615 0.10001 
12 0.04610 0.07997 0.11383 
13 0.01594 0.04981 0.08367 
14 0.03784 0.07171 0.10557 

treatment + + -f-
3 ( — * - ) 
4 ( - * - - ) 
5 ( - • . - ) 
6 ( - * - - ) 
7 ( - . * - - ) 
8 ( - - * - ) 
9 ( .„ .* . . . . ) 
10 ( . . . . • - . ) 
11 ( - * - - ) 
12 ( - * - - ) 
13 (-...•—) 
14 ( - -* . . . . ) 

+ - ( - - - I - + 

-0.070 0.000 0.070 0.140 

Larvae treatment = 3 subtracted from: 
treatment Lower Center Upper 
4 -0.03481 -0.00390 0.02701 
5 -0.08218 -0.05127 -0.02036 
6 -0.08237 -0.05146 -0.02055 
7 0.01787 0.04879 0.07970 
8 0.00343 0.03434 0.06525 
9 -0.05099 -0.01713 0.01673 
10 -0.05963 -0.02577 0.00809 
11 -0.00723 0.02663 0.06049 
12 0.00659 0.04045 0.07431 
13 -0.02357 0.01029 0.04415 
14 -0.00167 0.03219 0.06605 

treatment — + + + 
4 ( - • - - ) 
5 ( - - * - ) 
6 ( - - • - ) 
7 ( - * - ) 
8 ( - - * - ) 
9 (--*-._) 
10 ( - . * - - ) 
11 ( . . . . *„ . . ) 
12 ( . . . - * ™ ) 
13 ( - * - - ) 
14 ( . - * - . ) 

-0.070 0.000 0.070 0.140 

Larvae treatment = 4 subiracted from; 
treatment Lower Center Upper 
5 -0.07828 -0.04737 -0.01646 
6 -0.07847 -0.04756 -0.01665 
7 0.0217? 0.05269 0.08360 
8 0.00733 0.03824 0.06915 
9 -0.04709 -0.01323 0.02063 
10 -0.05573 -0.02187 0.01199 
11 -0.00333 0.03053 0.06439 
12 0.01049 0.04435 0.07821 
13 -0.01967 0.01419 0.04805 
14 0.00223 0.03609 0.06995 
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ireaimeni + + — + 
5 ( - • - - ) 
6 (--*-...) 
7 ( . - • - ) 
8 ( - • . - . ) 
9 ( „ _ . • . . _ ) 
10 (-.-•—) 
11 (...*.-_) 
12 ( - . . - - ) 
13 ( - . * . - ) 
14 ( - - . * - . ) 

-0.070 0.000 0.070 0.140 

Lar\'ae ireatmeni = 5 subtracted from: 
ircalmenl Lower Center Upper 
6 -0.03110 -0.00019 0.03073 
7 0.06915 0.10006 0.13097 
8 0.05470 0.08561 0.11653 
9 0.00028 0.03414 0.06801 
10 -0.00836 0.02550 0.05937 
n 0.04404 0.07790 0.11177 
12 0.05786 0.09172 0.12559 
13 0.02770 0.06156 0.09543 
14 0.04960 0.08346 0.11733 

treatment 
6 
7 
8 
9 
10 
11 
12 
13 
14 

—+- + + + 

( - * - " ) 
( - * - - ) 

( - * - - ) 
( - - * - - ) 
( - - * - ) 

( - - * - - ) 
( - - * - - ) 

( - - • - - ) 
( - - * - - ) 

+ + + + 
-0.070 0.000 0.070 0.140 

Larvae ireaiment = 6 subtracted from: 
treatment Lower Center Upper 
7 0.06933 0.10024 013115 
8 0.05489 0.08580 0.11671 
9 0.00047 0.03433 0.06819 
10 -0.00817 0.02569 0.05955 
11 0.04423 0.07809 0.11195 
12 0.05805 0.09191 0.12577 
13 0.02789 0.06175 0.09561 
14 0.04979 0.08365 0.11751 

treatment + + --+ 
7 ( - * . - ) 
8 ( - • - - ) 
9 (. . .-•. . . .) 
10 ( . - * . - ) 
11 ( - . * . - ) 
12 (_-* . . . . ) 
13 ( . ._ .*- . ) 
14 ( . . . .*- . . ) 

-0.070 0.000 0.070 0.140 

Lanae treatment = 7 subtracted from: 
ireaimeni Lower Center Upper 
8 -0.04535 -0.01444 0.01647 
9 -0.09978 -0.06591 -0.03205 
10 -0.10842 -0.07455 -0.04069 
11 -0.05602 -0.02215 0.01171 
12 -0.04220 -0.00833 0.02553 
13 -0.07236 -0.03849 -0.00463 
14 -0.05046 -0.01659 0.01727 

treatment + + —+ 
8 ( - • - ) 
9 { - . • - ) 
10 ( - • - - ) 
11 ( . . . . • - . . ) 
12 ( . . . . • - . ) 
13 ( - - * - ) 
14 ( - - * - ) 

- -+ + + + 
-0.070 0.000 0.070 0.140 

Lan'ae treatment = 8 subtracted from: 
treatment Lower Center Upper 
9 -0.08533 -0.05147 -0.01761 
10 -0.09397 -0.06011 -0.02625 
11 -0.04157 -0.00771 0.02615 
12 -0.02775 0.00611 0.03997 
13 -0.05791 -0.02405 0.00981 
14 -0.03601 -0.00215 0.03171 

treatment + — + + 
9 ( - - * - ) 
10 ( - * - - ) 
11 ( - . * - - ) 
12 ( . . . . • - - ) 
13 ( - - * - ) 
14 ( . . - • - . . ) 

+ + 
-0.070 0.000 0.070 0.140 

Lar\'ae treatment = 9 subtracted from: 
treatment Lower Center Upper 
10 -0.04522 -0.00864 0.02794 
11 0.00718 0.04376 0.08034 
12 0.02100 0.05758 0.09416 
13 -0.00916 0.02742 0.06400 
14 0.01274 0.04932 0.08590 

treatment + — + + 
10 ( . . . - • - - ) 
11 ( - . * „ - _ ) 
12 (.. .-•. . . .) 
13 ( . . - * - - ) 
14 ( . . . .* . . - ) 

-t- + + + 
-0.070 0.000 0.070 0.140 
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Lan'ae ircaiment = 10 subtracted from: 
treatment Lower Center Upper 
! l 0.01582 0.05240 0.08898 
12 0.02964 0.06622 0.10280 
13 -0.00052 0.03606 0.07264 
14 0.02138 0.05796 0.09454 

Larvae treatment = 12 subtracted from: 
treatment Lower Center Upper 
13 -0.06674 -0.03016 0.00642 
14 -0.04484 -0.00826 0.02832 

treatment 
II 
12 
13 
14 

(—* ) 
{ - - * - — ) 

( — * - - ) 
(_-.* ) 

—+ + + + 
•0.070 0.000 0.070 0.140 

Lar\'ae treatment = 11 subtracted from: 
treatment Lower Center Upper 
12 -0.02276 0.01382 0.05040 
13 -0.05292 -0.01634 0.02024 
14 -0.03102 0.00556 0.04214 

treatment — + + + + 
12 ( - - * - . ) 
13 ( * - - ) 
14 (...-*-...) 

-0.070 0.000 0.070 0.140 

treatment 
13 ( - -
14 (-

-0.070 

'-"-) 
-*"") 
—+_ 
0.000 0.070 

+ 
0.140 

Lanae treatment = 13 subtracted from: 
treatment Lower Center Upper 
14 -0.01468 0.02190 0.05848 

treatment — + + + + 
14 ( - - * — ) 

- + + + + 
-0.070 0.000 0.070 0.140 

A3 Kr\iskal-Wallis lest of initial animal mass by species level and Tukey's (HSD) post-hoc lest between 
the total number of lar\'ac killed by C. xamhoioma in each treatment type: 1 = All three species together, 
3= C. pilipes, 5= D. anilis 7^ C friguh, 9= C. /rigida & C. pilies. 11 = C frigida & D. anilis, 13= C 
pilipes & D. anilis . 

H = 24, D.F. = -3, P = O.000(adjus(ed for lies) 
Levene's Test for equal variances was significant for total initial animal mass by species level lest statistic 
= 7.66, p = 0.000. Levene's Test for equal variances was significant for total initial animal mass by 
species level test statistic = 4.37, P = 0.007. 

A4 Kruskal-Wallis test of % Iar\'ae pupation by treatment. 

H = 56.95, D.F. = -13, P = 0.000 (adjusted for ties) 
Levene's Test for equal variances was significant for % lar '̂ae pupation by treatment Levene's Test 

P = 0.020. Levene's Test for equal variances was significant for log % lan-ae pupation by statistic = 2.23 
treatment Lcvene's Test statistic 2.41,P = 0.012. 

A5 Kruskal-Wallis test of % lar\'ae pupation by species level. 

H = 14.16, D.F. = -3, P = 0.003 (adjusted for ties) 
Levene's Test for equal variances was significant for % lar\'ae pupation by species level Levene's Test 
statistic = 4.69, P = 0.005. Levene's Test for equal variances was significant for log % larvae pupation by 
treatment Lcvene's Test statistic = 10.98, P <0.001. 

A6 One-way ANQVA of talitrid mortality by treatment. 
Source D.F. SS MS 
Treatment 
Error 

7 
32 

345.5 
333.3 

49.4 
10.4 

4.74 

Total 39 678.8 

0.001 

0 303"̂  ^ variances was significant for taliirid mortality by treatment test statistic = 1.26,P 
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A7 One-way ANQVA of talitrid mortality by species level. 
Source O F ; SS MS K P 
Treatment 3 111.7 37.2 2.36 0.087 
Error 36 567J I 5 J 
Total 39 678J 
Levcne's Test for equal variances was not significant for talitrid mortality by species level test statistic 
2.19, P = 0.106. 

A8 One-way ANOVA and Tukey's (HSD)post-hoc lest of L digiiata mass loss g.g-1 between single 
species treatments. 
Source D^̂ ^ SS MS F p 
Treatment 3 1.9537 0.6512 8.96 0 001 
Error 16 1.1629 0.0727 
Total 19 3Tl67 " 
Levene's Tesl for equal variances was not significant for L. digUata mass loss g.g-1 between single 
species treatments test statistic = 1.37, P = 0.287. 

Tukey 95% simultaneous confidence intervals 

AH painvise comparisons among levels of spp. single 

Individual confidence level = 98.87% 

Spp. single = 1 subtracted from: 

Spp. 
single Lower Center Upper + + + +-
2 -0.0905 0.3978 0.8861 ( • ) 
3 -0.4611 0.0272 0.5155 ( * ) 
4 0.2773 0.7656 1.2539 ( * ) 

+ + - I - + -

-0.70 0.00 0.70 1.40 
Spp. single = 2 subtracted from: 

Spp. 
single Lower Center Upper - +— + + +-
3 -0.8589 -0.3706 0.1177 ( • ) 
4 -0.1205 0.3678 0.8561 ( * ) 

-0.70 0.00 0.70 1.40 
Spp. single = 3 subtracted from: 

Spp. 
single Lower Center Upper + -̂  + - i - -
4 0.2501 0.7384 1.2267 ( * ) 

-0.70 0.00 0.70 1.40 
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A9 Tukey's (USD) post-hoc test of L digitata mass loss g.g-1 between larvae diversity treatmenu. 

Tukey 95% Simultaneous Confidence Inten'als 
All Pairwise Comparisons among Levels of larvae species level 
Individual confidence level = 98.06% 

lar\'ae species level = 1 subtracted from: 
species 
level Lower Center Upper —+ + + +-
2 0.1496 0.4289 0.7081 ( -—•- - - ) 
3 0.2715 0.6664 1.0613 ( * ) 

-0.50 0.00 0.50 1.00 

lan-ae species level = 2 subtracted from: 
species 
level Lower Center Upper —+ + + + 
3 -0.1573 0.2375 0.6324 ( • ) 

„ . + + + + 
-0.50 0.00 0.50 1.00 

AlO Individual equations relating wet mass to dry mass for each species. In each case equations arc based 

Species Equation 
C frisida X*0.2247-0.0015 0.9934 
C. pi/ipes X*0.1306+0.0245 0.9024 
D, anilis X*0.219-0.0008 0.8641 
L. digitata in C Xantholonta & C Frieida experiemtns X*0.1415+0.0141 0.9814 
L digitata in /?. sen'iceus& C pilipes experiemtns X*0.065+0.0423 0.7901 
L. digitata in P. aigarum & D. anilis experiemtns X'0.1192+0.0321 0.7117 
L. digitata in C. verilosus & C. frigida experiemtns X*0.1362+0.0263 0.8992 

A l l Anderson-Darling normal distribution test of the residuals for regrxjssions of predator dry mass (g) vs 

Experiment N A-D P 
Ail experiments 
combined 

182 1.791 <0.005 

C. xantholoma & 
C. frigida 

47 1.877 <0.005 

R. serviceus & 
C. pilipes 

45 0.741 <0.005 

P. aigarum & 
D. anilis 

45 3.470 <0.005 

C. verilosus & 
C. frigida 

45 1.667 <0.005 

A12 One-way ANOVA and Tukey's (HSD) post-hoc tests, of the effect of C xantohma*C frigida size-
class on the number of individual lar\'ae killed throughout the entire experimental duration. 33= large 
beetle, large larvae, 32=large beetle, medium larvae, 3 l=large beetle, small lar\'ae, 23= medium beetle, 
large larvae, 22= medium beetle, medium Iar\'ae, 21 = medium beetle, small larvae, 13= small beetle, 
larpe lar\'ac, 12= small beetle, medium lar\'ae, 11= small beetle, small lar\'ae 
Source D.F. SS MS F P 
Beetle*Lar\'ae 8 
si/e-class 
Error 38 

80.923 

22.567 

10.115 17.03 <0.001 

0.594 
Total 46 103.489 

each size-class combination; test statistic = 0.76, P = 0.581 
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Individual 95% CIs For mean based on pooled StDev 
Level N Mean SlDev + - f + + -
11 5 3.4000 0.8944 ( — ) 
12 6 1.6667 0.8165 (—•—) 
13 6 1.1667 0.4082 ( — ) 
21 5 4.2000 0.8367 ( — • — ) 
22 5 1.6000 0.5477 ( - — • - ) 
23 5 1.2000 0.4472 (-—•-—) 
31 5 5.0000 1.0000 ( - * . . _ ) 
32 5 2.4000 0.8944 (-—•-...) 
33 5 1.6000 0.8944 (—*—) 

1.5 3.0 4.5 6.0 
Pooled StDev = 0.7706 
Tukcy 95% simultaneous confidence inters'als 
All pairwisc comparisons among levels of beetle and larx ae size-class 
Individual confidence level = 99.78% 

Beetle and lar\'ae size-class = 11 subtracted from: 
size 
class Lower Center Upper + + + +-
12 -3.2677 -1.7333 -0.1990 (—-*—) 
13 -3.7677 -2.2333 -0.6990 ( - — * — ) 
21 -0.8025 0.8000 2.4025 ( * — ) 
22 -3.4025 -1.8000 -0.1975 (-—•—-) 
23 -3.8025 -2.2000 -0.5975 ( * — ) 
31 -0.0025 1.6000 3.2025 { — • ) 
32 -2.6025 -1,0000 0.6025 ( *—-) 
33 -3.4025 -1.8000 -0.1975 ( — — ) 

+ + + +. 
-3.0 0.0 3.0 6.0 

Beetle and larvae size-class = 12 subtracted from: 
size 
class Lower Center Upper + +-— + +-
13 -1.9629 -0.5000 0.9629 (—•—-) 
21 0.9990 2.5333 4.0677 (—• ) 
22 -1.6010 -0.0667 1.4677 (- . . . • - . . ) 
23 -2.0010 -0.4667 1.0677 (—-* ) 
31 1.7990 3.3333 4.8677 (.—•.—) 
32 -0.8010 0.7333 2.2677 ( - - * ) 
33 -1.6010 -0.0667 1.4677 (—.*.—) 

+ —+ + +-
-3.0 0.0 3.0 6.0 

Beetle and lan'ae size-class = 13 subtracted from: 
size-class 

Lower Center Upper + —+ + +-
21 1.4990 3.0333 4.5677 ( ._ .• . . . . ) 
22 -1.1010 0.4333 1.9677 (—-*-—) 
23 -1.5010 0.0333 1.5677 (.—*-—) 
31 2.2990 3.8333 5.3677 (.—•... .) 
32 -0.3010 1.2333 2.7677 (.—•—.) 
33 -1.1010 0.4333 1.9677 ( — • - — ) 

+ +- + +-
-3.0 0.0 3.0 6.0 
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Beetle and lar\'ac size-class = 21 subtracted from: 
size 
class Lower Center Upper - + + + - +-
22 ^.2025 -2.6000 -0.9975 ( — * - — ) 
23 -4.6025 -3.0000 -1.3975 {—-•—-) 
31 -0.8025 0.8000 2.4025 ( *—-) 
32 -3.4025 -1.8000 -0.1975 ( — • - — ) 
33 -4.2025 -2.6000 -0.9975 ( — * ) 

-3.0 0.0 3.0 6.0 

Beetle and lar\'ac size-class = 22 subtracted from: 
size-class 

Lower Center Upper + + — + +-
23 -2.0025 -0.4000 1.2025 ( -—*—-) 
31 1.7975 3.4000 5.0025 ( -—• ) 
32 -0.8025 0.8000 2.4025 ( • - - ) 
33 -1.6025 0.0000 1.6025 ( - - • — - ) 

-3.0 0.0 3.0 6.0 

Beetle and larvae size-class = 23 subtracted from: 
size-class 

Lower Center Upper + - - - + + +-
31 2.1975 3.8000 5.4025 ( -) 
32 -0.4025 1.2000 2.8025 ( — - * - . . ) 
33 -1.2025 0.4000 2.0025 (—-* ) 

-3.0 0.0 3.0 6.0 

Beetle and lar\'ae size-class = 31 subtracted from: 
size-class 

Lower Center Upper + — + — + +-
32 -4.2025 -2.6000 -0.9975 (-—* ) 
33 -5.0025 -3.4000 -1.7975 ( -—*-—) 

+ +-- + +-
-3.0 0.0 3.0 6.0 

Beetle and larvae size-class = 32 subtracted from: 
size-class 

Lower Center Upper —+ + + +-
33 -2.4025 -0.8000 0.8025 ( — * - — ) 

+ + + " +-
-3.0 0.0 3.0 6.0 

A13 One-way ANOVA and Tukey's (HSD) post-hoc tests of the effect o f /?. sen'iceiis*C .pilipes size-
class on the number o f individual lar^'ae killed throughout the entire experimental duration. 33= large 
beetle, large larvae, 32= large beetle, medium larvae, 31= large beetle, small lar\'ae, 23= medium beetle 
large larvae, 22= medium beetle, medium larvae, 21= medium beetle, small larvae, 13= small beetle, 
large larvae, 12= small beetle, medium lat^-ae, 11 = small beetle, small larvae. 
Source D,F^ SS MS F P 
Beetle*Lar>ae 8 80.923 10.115 17.03 <0.001 
size-class 

Er ro r 38 22.567 0.594 
Total 46 103.489 
Levene's Test for equal variances was not significant for the number of lan'ac killed by R. serviceus in 
each size-class combination; test statistic = 0.50, P = 0.848 
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Individual 95% Cls for mean based on pooled StDcv 
Level N Mean StDev — + + + +. 

( - - • - - ) I I 
12 
13 
21 
22 
23 
31 
32 
33 

2.4000 0.5477 
0.6000 0.5477 ( -
0.2000 0.4472 ( — * 
2.4000 0.5477 
1.0000 0.0000 ( 
0.2000 0.4472 ( — * 
3.0000 0.7071 
1.8000 0.8367 
0.4000 0.8944 

—+— 
0.0 

Pooled SiDev = 0.6055 

- ) 

1.0 

( - - " * - - ) 

-") 

2.0 3.0 
.+ 

Tukey 95% simullaneous confidence inter\'als 
Al l pairwise comparisons among levels o f beetle and larvae size-class 
Individual confidence level = 99.78% 

Beetle and larvae size-class 
Beetle and lar\'ac size-class 

Lower Center Upper 

1 = 11 subtracted from; 
I 

12 
13 
21 
22 
23 
31 
32 
33 

-3.0619 -1.8000 
-3.4619 -2.2000 
-1.2619 
-2.6619 
-3.4619 
-0.6619 
-1.8619 
-3.2619 

0.0000 
-1.4000 
-2.2000 
0.6000 

-0.6000 
-2.0000 

-0.5381 
-0.9381 
1.2619 

-0.1381 
-0.9381 
1.8619 
0.6619 
-0.7381 

Beetle and larvae size-class l 

12 ( - > . - ) 
13 ( . - * . - ) 
21 ( — * . . „ ) 
22 ( - . * . - ) 
23 ( . - * - - ) 
31 ( - - • - . . . ) 
32 ( - . • . . - ) 
33 ( - - * - . ) 

+ + +. 
-2.5 0.0 2.5 5.0 

Beetle and larvae size-class l = 12 subtracted from; 
Beetle and larvae size-class l 

Lower Center Upper 
13 
21 
22 
23 
31 
32 
33 

.-+-
-1.6619 -0.4000 0.8619 
0.5381 1.8000 3.0619 
-0.8619 0.4000 1.6619 
-1.6619 -0.4000 0.8619 
1.1381 2.4000 3.6619 

-0.0619 1.2000 2.4619 
-1.4619 -0.2000 1.0619 

+-
-2.5 0.0 

--) 

— - 1 - + 

( - - " • - - ) 
( . . . .* 

(•-*--") 
( - - * - - ) 

( - - * - - ) 
( " " * - - ) 

( - - " * - - ) 
• + 

2.5 5.0 

+— 

Beetle and lar\'ae size-class 1 = 13 subtracted from: 

279 



Beetle and Iar\'ae size-class_l 
Lower Center Upper + - + + 

21 0.9381 2.2000 3.4619 (-. .-*.—) 
22 -0.4619 0.8000 2.0619 ( — * — ) 
23 -1.2619 0.0000 1.2619 (—.•-—) 
31 1.5381 2.8000 4.0619 ( „ - • — . ) 
32 0.3381 1.6000 2.8619 ( - — • — ) 
33 -1.0619 0.2000 1.4619 ( — • - — ) 

-2.5 0.0 2.5 5.0 

Beetle and Iar\'ae size-class_l = 21 subtracted from: 
Beetle and larvae si2e-class_l 

Lower Center Upper 
22 -2.6619 -1.4000 -0.1381 
23 -3.4619 -2.2000 -0.9381 
31 -0.6619 0.6000 1.8619 
32 -1.8619 -0.6000 0.6619 
33 -3.2619 -2.0000 -0.7381 

Beetle and lan'ae s i2cc lass_ l 
-i- + + +— 

22 ( - . * - - ) 
23 ( - - • - . ) 
31 ( — * - - ) 
32 ( . - • „ . . ) 
33 { - . * . - ) 

-2.5 0.0 2.5 5.0 

Beetle and larvae si2e-class_l = 22 subtracted from: 
Beetle and lar\'ae size-class i 

Lower Center Upper + + +- • 
23 -2.0619 -0.8000 0.4619 ( — — ) 
31 0.7381 2.0000 3.2619 ( — - * — ) 
32 -0.4619 0.8000 2.0619 ( — * — ) 
33 -1.8619 -0.6000 0.6619 ( — - * — ) 

+ + + +— 
-2.5 0.0 2.5 5.0 

Beetle and lar\'ac size-class l = 23 subtracted from: 
Beetle and larvae size-class_l 

Lower Center Upper + ~ + + - +— 
31 1.5381 2.8000 4.0619 { — * — ) 
32 0.3381 1.6000 2.8619 ( — * — ) 
33 -1.0619 0.2000 1.4619 ( — * — ) 

+ + + +— 
-2.5 0.0 2.5 5.0 

Beetle and lar\'ae size-class_l = 31 subtracted from: 
Beetle and larvae size-class_l 

Lower Center Upper 
32 -2.4619 -1.2000 0.0619 
33 -3.8619 -2.6000 -1.3381 

Beetle and lar\'ac sizc-class_l 
+ + 

32 ( - . * - - ) 
33 ( „_ -* . . „ ) 

-2.5 0.0 2.5 5.0 
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Beeile and lar\'ae size-class i = 32 subtracted from: 
Beetle and lanac size-class_I 

Lower Center Upper 
33 -2.6619 -1.4000 -0.1381 

Beetle and larvae size-class ! 

33 ( - - • — ) 

-2.5 0.0 2.5 5.0 

A14 One-way A N O V A and Tukcy's {HSO) post-hoc icsls, o f ihc effecl o f C. verilosus*C.frigi£ia size-
class on the number o f individual lar\'ae killed throughout the entire experimental duration. 33= large 
beetle, large larvae, 32= large beetle, medium lar\'ae, 31= large beetle, small lar\'ae, 23= medium beetle, 
large lar\'ae, 22= medium beetle, medium lan-ae, 21= medium beetle, small lar\'ac, 13= small beetle, 
large larvae, 12= small beetle, medium larvae, 11= small beetle, small larvae. 
Source 0^ SS M S F P 
Beelle*Lan*ae 8 64.71 8.09 6.17 <0.001 
size-class 

E r ro r 36 47.20 L 3 I 
Total 44 111.91 
Levene's Test for equal variances was not significant for the number o f lan'ae killed by C. verilosus for 
each size-class combination; lest statistic = 64, P = 0.738 

Individual 95% Cls for mean based on pooled StDev 
Level N Mean StDev - — + + + + — 
n 5 4.600 0.894 ( * ) 
12 5 2.400 0.894 ( • ) 
13 5 1.800 0.837 ( - — * ) 
21 5 4.800 0.837 ( - — * ) 
22 5 4.000 1.225 ( * - — ) 
23 5 3.400 1.517 ( - — * ) 
31 5 6.000 0.000 ( • ) 
32 5 4.200 1.924 ( - — * ) 
33 5 3.400 1.140 ( - — * ) 

+— + + + — . 
1.6 3.2 4.8 6.4 

Pooled StDev = 1.145 

Tukey 95% simultaneous confidence intervals 
A l l pairvvise comparisons among levels o f beetle and larvae sizc-class_l 
Individual confidence level = 99.78% 
Beetle and larvae size-class_l = 11 subtracted from: 

Beetle and lar\'ae sizc-class_l 
Lower Center Upper + + — + — + 

12 ^.586 -2.200 0.186 ( * ) 
13 -5.186 -2.800 -0.414 ( • ) 
21 -2.186 0.200 2.586 ( * - — ) 
22 -2.986 -0.600 1.786 ( • ) 
23 -3.586 -1.200 1.186 ( * - — ) 
31 -0.986 1.400 3.786 ( • ) 
32 -2.786 -0.400 1.986 { * ) 
33 -3.586 -1.200 1.186 ( • ) 

+ + „ + + 
-3.5 0.0 3.5 7.0 
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Beetle and lan'ac size-class l = 12 subtracted from: 
Beetle and larvae size-class_l 

Lower Center Upper — + + + + 
13 -2.986 -0.600 1.786 ( • ) 
21 0.014 2.400 4.786 ( * ) 
22 -0.786 1.600 3.986 ( * - — ) 
23 -1.386 1.000 3.386 ( * — - ) 
31 1.214 3.600 5.986 ( *- ) 
32 -0.586 1.800 4.186 ( * ) 
33 -1.386 1.000 3.386 ( - — - * ) 

— + + + + 
-3.5 0.0 3.5 7.0 

Beetle and lar\'ae si2e-class_l = 13 subtracted from: 
Beetle and lar\'ae size-class l 

Lower Center Upper — + + + + 
21 0.614 3.000 5.386 ( • — - ) 
22 -0.186 2.200 4.586 ( * ) 
23 -0.786 1.600 3.986 ( * - — ) 
31 1.814 4.200 6.586 ( * ) 
32 0.014 2.400 4.786 { * ) 
33 -0.786 1.600 3.986 ( * - — ) 

— +— + + — + 
-3.5 0.0 3.5 7.0 

Beetle and larvae size-class_l = 2 1 subtracted from: 
Beetle and lan-ae size-class l 

Lower Center Upper + + + + 
22 -3.186 -0.800 1.586 ( • ) 
23 -3.786 -1.400 0.986 ( *- ) 
31 -1.186 1.200 3.586 ( * ) 
32 -2.986 -0.600 1.786 ( * ) 
33 -3.786 -1.400 0.986 ( * ) 

-3.5 0.0 3.5 7.0 

Beetle and larvae si2e-class_l = 22 subtracted from: 
Beetle and larvae size-class_l 

Lower Center Upper + + —-+ + 
23 -2.986 -0.600 1.786 ( * ) 
31 -0.386 2.000 4.386 ( • ) 
32 -2.186 0.200 2.586 ( * — - ) 
33 -2.986 -0.600 1.786 (- * ) 

-3.5 0.0 3.5 7.0 

Beetle and larvae size-class_l = 23 subtracted from: 
Beetle and larvae size-class l 

Lower Center Upper + + + — + 
31 0.214 2.600 4.986 ( * ) 
32 -1.586 0.800 3.186 ( * ) 
33 -2.386 0.000 2.386 ( • ) 

" + +~ + + 
-3.5 0.0 3.5 7.0 

Beetle and larvae size-class l = 31 subtracted from: 
Beetle and lar\'ae sizc-class_l 

Lower Center Upper - + — + + - + 
32 -4.186 -1.800 0.586 ( * ) 
33 -4.986 -2.600 -0.214 ( — ) 

+ + +^ + 
-3.5 0.0 3.5 7.0 
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Beetle and larvae size-class_l = 32 subtracted from: 
Beetle and lar\'ae size-class l 

Lower Center Upper -- + + + — + 
33 -3.186 -0.800 1.586 ( * ) 

-3.5 0.0 3.5 7.0 

A l 5 One-way A N O V A and Tukey's (USD) posl-hoc tests, o f the effect o f P. algarum*D. anilis size-
class on the number o f individual larvae killed throughout the entire experimental duration. 33= large 
beetle, large larvae, 32= large beetle, medium larvae, 31 = large beetle, small lar\'ae, 23= medium beetle, 
large lan'ae, 22= medium beetle, medium larvae, 21 = medium beetle, small lar\'ae, 13= small beetle, 
large larvae, 12= small beetle, medium larvae, 11= small beetle, small larvae. 
Source SS MS F P 
Beeile*Lan'ae 8 41.511 5.189 6.31 <0.001 
size-class 

Error 36 29.600 0822 
Total 44 71.111 
Levene's Test for equal variances was not significant for the number o f lar\'ae killed by P. algarum for 
each size-class combination; test statistic = 0.81, P= 0.602 

Individual 95% Cls for mean based on pooled StDev 
Level N Mean SlDev + —+ - + + -
11 5 2.8000 0.8367 ( • — ) 
12 5 1.6000 0.5477 ( * — ) 
13 5 0.8000 0.4472 ( — * ) 
21 5 3.4000 0.5477 ( • — - ) 
22 5 2.0000 1.0000 (— ) 
23 5 2.2000 0.8367 ( • — ) 
31 5 4.2000 1.4832 ( — • — ) 
32 5 3.0000 1.2247 ( — • - — ) 
33 5 3.0000 0.7071 ( — — ) 

0.0 1.5 3.0 4.5 

Pooled SlDev = 0.9068 

Tukcy 95% simultaneous confidence intervals 
A l l pairwise comparisons among levels o f beetle and lar\'ae size-class_l 
Individual confidence level = 99.78% 

Beetle and larvae size-class_l = 11 subtracted from: 
Beetle and \arvae size-class_l 

Lower Center Upper 
12 -3.0897 -1.2000 0.6897 
13 -3.8897 -2.0000 -0.1103 
21 -1.2897 0.6000 2.4897 
22 -2.6897 -0.8000 1.0897 
23 -2.4897 -0.6000 1.2897 
31 -0.4897 1.4000 3.2897 
32 -1.6897 0.2000 2.0897 
33 -1.6897 0.2000 2.0897 
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Beetle and larvae size-class_l 
+ + +— +. 

12 ( • ) 
13 ( * ) 
21 ( ™ ^ * ) 
22 ( ) 
23 ( * ) 
31 ( * ) 
32 ( * - - ) 
33 ( * ) 

-3.0 0.0 3.0 6.0 

Beetle and larvae si2c-class_l = 12 subtracted from: 
Beetle and lar\'ac size-class_l 

Lower Center Upper + ~ + + +-
13 -2.6897 -0.8000 1.0897 ( - — • ) 
21 -0.0897 1.8000 3.6897 ( --) 
22 -1.4897 0.4000 2.2897 ( * ) 
23 -1.2897 0.6000 2.4897 ( . . . . . • . . . . . ) 
31 0.7103 2.6000 4.4897 ( • - — ) 
32 -0.4897 1.4000 3.2897 ( * ) 
33 -0.4897 1.4000 3.2897 ( * ) 

- + + + +-
-3.0 0.0 3.0 6.0 

Beetle and larvae size-class_l = 13 subtracted from: 
Beetle and larvae size-class_l 

Lower Center Upper — + - + — + +-
21 0.7103 2.6000 4.4897 ( * — - ) 
22 -0.6897 1.2000 3.0897 ( • ) 
23 -0.4897 1.4000 3.2897 ( * ) 
31 1.5103 3.4000 5.2897 ( * ) 
32 0.3103 2.2000 4.0897 ( - — • ) 
33 0.3103 2.2000 4.0897 ( * ) 

+ + + 
-3.0 0.0 3.0 6.0 

Beetle and lar\'ae sizc-class_l = 21 subtracted from: 
Beetle and lar\'ae size-class l 

Lower Center Upper + + + +-
22 -3.2897 -1.4000 0.4897 ( *- ) 
23 -3.0897 -1.2000 0.6897 ( - — • - — ) 
31 -1.0897 0.8000 2.6897 ( * - — ) 
32 -2.2897 -0.4000 1.4897 ( — ) 
33 -2.2897 -0.4000 1.4897 ( • ) 

-3.0 0.0 3.0 6.0 

Beetle and larvae size-class_l = 22 subtracted from: 
Beetle and larvae size-class_l 

Lower Center Upper + + + +-
23 -1.6897 0.2000 2.0897 ( * ) 
31 0.3103 2.2000 4.0897 ( - — • ) 
32 -0.8897 1.0000 2.8897 ( • ) 
33 -0.8897 1.0000 2.8897 ( * ) 

+ + + „ + . 
-3.0 0.0 3.0 6.0 
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Beetle and lan-ae size-class l = 23 subtracted from: 
Beetle and lar\'ae size-class l 

Lower Center Upper + + - + +-
31 0.1103 2.0000 3.8897 ( * ) 
32 -1.0897 0.8000 2.6897 ( • ) 
33 -1.0897 0.8000 2.6897 ( • - - - - ) 

-3.0 0.0 3.0 6.0 

Beetle and lar\'ae size-class i = 31 subtracted from: 
Beetle and lar\'ae size-class l 

Lower Center Upper + + + +-
32 -3.0897 -1.2000 0.6897 ( * - — ) 
33 -3.0897 -1.2000 0.6897 ( - — * - — ) 

-3.0 0.0 3.0 6.0 

Beetle and larvae sizc-class_l = 32 subtracted from: 
Beetle and lan'ae size-class_l 

Lower Center Upper + — + - — + +-
33 -1.8897 0.0000 1.8897 ( - — • ) 

+ + +. 
-3.0 0.0 3.0 6.0 

Table A16a One-way A N O V A and Tukey's (HSD) post-hoc tests results, showing the effect o f C 
xantholoma & C.frigida grouped treatment type on the variability in L. digitata mass loss g .h ' . 
Source D.F. SS >1S F P 
Grouped treatment type 3 0.0000036 0.0000012 27.54 0.000 
Er ro r 68 0.0000030 00000000 
Tola! 71 0.0000066 
Lcvene's Test for equal variances was not significant for the variability in L. digiiaia mass loss g.h-l by 
each grouped treatment type; Test statistic = 2.70, P = 0.054. 
Tukey's (N HSD) post-hoc test showed control treatments without lar\'ae (no C. xaniholomas or C. 

frigida and C. xanihohma only) to be significantly lower than treatments with larvae (C. xanthohmas 
and C.frigida treatments and C.frigida only treatment). Also C.frigida only treatments were 
significantly higher than C.frigida and C. xanthoioma treatments. 

TableAI6b One-way A N O V A and Tukey's (HSD)pos/-/ioc tests results, showing the effect of/?. 
serviceus and C. pilipes grouped treatment type on the variability in L. digitata mass loss g.h''. 
Source D.F. SS M S F P 
Grouped treatment type 3 0.0000002 0.000001 7.70 0.000 
Er ro r 60 0.0000004 00000000 
Total 63 0.0000006 
Lcvene's Test for equal variances was not significant for the variability in L. digitata mass loss g.h-l by 
each grouped treatment type; test statistic = 0.98, P = 0.409 
Tukey's (N HSD) post hoc lest showed control treatments without larvae (no C.frigida or C. xantholoma 
and C. xantholoma only) to be significantly lower than treatments with larvae (C. xantholoma and C. 

frigida treatments and C.frigida only treatment). 

TableAl6c One-way A N O V A and Tukey's (HSD)post-hoc tests results, showing the effect of P. 
algarum and D. anilis grouped treatment type on the variability in L digitata mass loss g.h '. 
Source D.F. SS M S f ; P 
Grouped treatment tj 'pe 3 0.0000005 0.000002 6.21 0.001 
Er ro r 60 0.0000016 0.0000000 
Total 63 0.0000021 
Levene's Test for equal variances was not significant for the variability in L digitata mass loss g.h"' by 
each grouped treatment type; Test statistic = 1.50, P= 0 225. 
Tukey's (HSD) post hoc test showed control treatments without larvae (no P. alganmi or D. anilis and P. 
alganim only) to be significantly lower than treatments with larvae (P. alagrnm and D. anilis treatments 
and D. anilis only treatment). 
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TableAI6d One-way A N O V A and Tukey's (HSD) posi-hoc tests results, showing the effect of C 
.vehhsus and C fri^ida grouped treatment type on the variability in L. disiiata mass loss p .h ' . 
Source D.F. SS MS F p 
Grouped treatment t j p e 3 0.0000026 0.000009 13.76 0.000 
Error 60 00000037 0.0000001 
Total 63 0.0000063 
Levene's Test for equal variances was not significant for the variability in L digitata mass loss g.h ' by 
each grouped ircatmenl type; test statistic = 2.70, P - 0.054 
Tukcy's (HSD) post-hoc test showed control treatments without lar\'ae (no C. verilosus or C./rigida and 
C. verilosus only) to be significantly lower than treatments with larvae (C. verilosus and C.frigida 
treatments and C./rigida only treatment). Also C.Jrigida only treatment were significantly higher than C. 

frigida and C. verilosus treatments. 

A17 Anderson-Darling normal distribution test o f the residuals for regressions o f mean final prey dry 
mass g/individual vs mean L. digitata mass loss g.h'Vindividual (where no individuals = no alive at the 

Experiment n A-D P 
C. xantholoma & 
C frigida 

47 0.903 0.020 

R. serviceus & 
C. pilipes 

45 1.197 <0.005 

P. algarum & 
D. anilis 

45 1.205 <0.005 

C. verilosus & 
C. frigida 

45 3.359 <0.005 

A 18 One-way A N O V A and Tukey's {H^D) post-hoc test o f i) the number o f lar\'ae killed o f each 
species when they were incubated with the beetle separately, and i i ) the number o f larvae killed o f each 
species when they were incubated with the beetle in combination. Where level related to larvae species; 
\= C.frigida, 2= C. pilipes 3= D. anilis and a) C, xatholoma, b) R. serviceus, c) P. algarum and d) C 
verilosus. 
AlSa i 
Source D.F. SS MS F P 
Larvae species 
Error 

2 60.67 
18 53.14 

30.33 10.27 0.001 
2.95 

Total 20 113.81 

Individual 95% CIs for mean based on pooled StDev 
Level N Mean StDev + + + + 
1 7 5.571 2.440 ( * ) 
2 7 1.571 0.976 ( * ) 
3 7 4.571 1.397 ( * ) 

—+ + + + 
2.0 4.0 6.0 8.0 

Pooled StDev = 1.718 

Tukey 95% simultaneous confidence inlcr\'als 
A l l pairwisc comparisons among levels o f c.x prey id 
Individual confidence level = 98.00% 

c.x prey id = I subtracted from: 
c.x prcyid 

Lower Center Upper -+ + - + + 
2 -6.344 -4.000 -1.656 ( * ) 
3 -3.344 -1.000 1.344 ( * ) 

-+ + + + 
-6.0 -3.0 0.0 3.0 
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c.x prey id = 2 subtracted from: 
c.x prey id 

Lower Center Upper -+—-
3 0.656 3.000 5.344 

-+ +— 
-6.0 -3.0 

— + 

0.0 3.0 

—+. 
) 

A18aii 
Source D.F. SS MS F P 
Lar\'ae species 2 9.238 4.619 5.29 0.016 
Error 18 15.714 0.873 
Total 20 24.952 

Individual 95% Cls for mean based on pooled StDev 
Level N Mean SiDev + — + - + + -
1 7 2.2857 1.2536 ( • ) 
2 7 1.1429 0.6901 ( • ) 
3 7 0.7143 0.7559 ( * ) 

0.00 0.80 1.60 2.40 
Pooled StDev = 0.9344 

Tukey 95% simultaneous confidence inter\'als 
A l l pairwise comparisons among levels o f c.x prey id 
Individual confidence level = 98.00% 

c.x prey id = 1 subtracted from: 
c.x prey id 

Lower Center Upper -—+ + + +-
2 -2.4177 -1.1429 0.1320 ( • ) 
3 -2.8463 -1.5714 -0.2965 ( * ) 

— + + +~ + 
-2.4 -1.2 0.0 1.2 

c.x prey id = 2 subtracted from; 
c.x 
prey 
id Lower 
3 -1.7035 

Center Upper — + + — + — 
•0.4286 0.8463 { • ) 

—-+ + + + 
-2.4 -1.2 0.0 1.2 

A l S b i 
Source D.F. SS MS F P 
Lar\'ae species 2 24.13 12.07 2.55 0.119 
Er ro r 12 56.80 4.73 
Total 14 80.93 

A18bii 
Source D.F. SS MS F P 
Lar\'ae species 2 0.000 0.000 0.00 1 
Er ro r 12 9.600 0.800 
Total 14 9.600 

A18ci 
Source D.F. SS MS F P 
Lar\'ae species 2 32.13 16.07 9.84 0.003 
Er ro r 12 19.60 1.63 
Tola! 14 51.73 
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Individual 95% Cls for mean based on pooled StDev 
Level N Mean SiDev - + + + + -
1 5 5.600 1.673 ( * ) 
2 5 5.400 1.140 ( • ) 
3 5 2.400 0.894 ( * ) 

" + — + —+ + 
1.5 3.0 4.5 6.0 

Pooled StDev = 1.278 

Tukey 95% simultaneous confidence intcr\'als 
A l l pairwise comparisons among levels o f p.a prey id 
Individual confidence level = 97.94% 

p a prey id = 1 subtracted from: 
p.a prey id 

Lower Center Upper + ~ ~ + + +-
2 -2.355 -0.200 1.955 ( * ) 
3 -5.355 -3.200 -1.045 (- • ) 

+ + —+ +-
-3.0 0.0 3.0 6.0 

p.a prey id = 2 subtracted from: 
p.a prey id 

Lower Center Upper - + + + +-
3 -5.155 -3.000 -0.845 ( • ) 

-3.0 0.0 3.0 6.0 

A lSc i i 
Source D.F. SS MS F P 
Larvae species 2 1.73 0.87 0.87 0.445 
Er ro r 12 12.00 1 

0.445 

Total 14 13.73 

A18di 
Source D.F, SS MS F P 
Larvae species 2 2.80 1.40 0.43 0.658 
Er ro r 12 38.80 3.23 
Total 14 41.60 

A l S d i i 
Source D.F. SS MS F P 
Larvae species 2 2.800 1.400 1.91 0.191 
Er ro r 12 8.800 0.733 
Total 14 11.600 
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A I 9 Tukey's (HSD)post-hoc test for initial lar\'ae mass in each treatment, where 1= all three species with 
beetle, 2= all three species without beetle, 3= C. pilipes with beetle, 4= C. pilipes without beetle, 5= D. 
aniiis with beetle, 6= D. anilis without beetle, 7= C.frigida with beetle, 8= C.frigida without beetle 9= 
C pilipes & D. anilis with beetle, 10= C p/V/pe^ & D. anilis without beetle 11= C. /j/Z/pey & C.frigida 
with beetle, 12= C. /7/7/>ej & C.frigida without beeile, 13= Cfrigida. C. pilipes & D. anilis with beetle 
\4=C.frigida, C. pilipes & D. anilis with beetle. 

Individual 95% Cls for mean based on pooled StDev 
Level N Mean StDev - - + + -

(-1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

0.12126 
0.11811 
0.15763 
0.15373 
0.10636 
0.10617 
0.20641 

0.01968 
0.00372 
0.02064 
0.01536 
0.00647 
0.00825 
0.00808 

0.19197 0.02417 
0.14050 0.00652 
0.13186 0.00591 
0.18426 0.02211 
0.19808 0.02812 
0.16792 0.02953 
0.18982 0.00562 

—+ 
0.105 

„+ +— 
--) 
- ) 

(-
(--

(--

( -
• -*"- ) 

(._.*. 

' - ) 

— + . . . . 

0.140 0.175 0.210 

Pooled SlDev = 0.01666 

Tukcy 95% simultaneous confidence inter\'als 
A l l pairwise comparisons among levels o f 
larvae treatment 
Individual confidence level = 99.91% 
Larvae treatment = 1 subtracted from: 
treatment Lower Center Upper 
2 -0.03405 -0.00314 0.02777 
3 0.00546 0.03637 0.06728 
4 0.00156 0.03247 0.06338 
5 -0.04581 -0.01490 0.01601 

6 
7 
8 
9 
10 
11 
12 
13 
14 

-0.04600 
0.05425 
0.03980 
-0.01462 
-0.02326 
0.02914 
0.04296 
0.01280 
0.03470 

-0.01509 
0.08516 
0.07071 
0.01924 
0.01060 
0.06300 
0.07682 
0.04666 
0.06856 

0.01583 
0.11607 
0.10163 
0.05311 
0.04447 
0.09687 
0.11069 
0.08053 
0.10243 

treatment 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

-0.070 

- - * - ) 
( " - * - - ) 

( - - * " - ) 
* - ) 
* " - ) 

(-->, 

- - * - - ) 
•" -* - ) 

(....• 
(._.. 

( " - * - -
( . . . . -

+— 
0.000 

. . . ) 

- ) 
• - - ) 
- ) 
. . - . ) 
-— 
0.070 

+ 
0.140 

Lar\'ac treatment = 2 subtracted from: 
treatment Lower Center Upper 
3 0.00860 0.03951 0.07043 
4 0.00470 0.03561 0.06653 
5 -0.04267 -0.01176 0.01915 
6 -0.04285 -0.01194 0.01897 
7 0.05739 0.08830 0.11921 
8 0.04295 0.07386 0.10477 
9 -0.01148 0.02239 0.05625 
10 -0.02012 0.01375 0.04761 
11 0.03228 0.06615 0.10001 
12 0.04610 0.07997 0.11383 
13 0.01594 0.04981 0.08367 
14 0.03784 0.07171 0.10557 
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treatment + — + — + + 
3 ( - -"*-" ) 
4 (- . .*. . . . ) 
5 ( - * . - ) 
6 ( - • - - ) 
7 ( - - • - - ) 
8 ( - - * - ) 
9 ( . . - . . . . . . ) 
10 ( . . - • - - ) 
11 ( - • - - ) 
12 ( - • - - ) 
13 ( — * . - ) 
14 ( - - • . . - . ) 

-0.070 0.000 0.070 0.140 

Larvae treatment = 3 subtracted from: 
treatment Lower Center Upper 
4 -0.03481 -0.00390 0.02701 
5 -0.08218 -0.05127 -0.02036 
6 -0.08237 -0.05146 -0.02055 
7 0.01787 0.04879 0.07970 
8 0.00343 0.03434 0.06525 
9 -0.05099 -0.01713 0.01673 
10 -0.05963 -0.02577 0.00809 
11 -0.00723 0.02663 006049 
12 0.00659 0.04045 0.07431 
13 -0.02357 0.01029 0.04415 
14 -0.00167 0.03219 0.06605 

treatment + + + + 
4 ( - * - . ) 
5 ( . . . . • „ . ) 
6 ( - - • - ) 
7 ( - * - ) 
8 ( - > - ) 
9 (-...•_._) 
10 ( . - * - . ) 
11 ( . . . . • - . ) 
12 ( . . - * . . . . ) 
13 ( - * . - ) 
14 ( - - * - . ) 

+ + + - I -
-0.070 0.000 0.070 0.140 

Lar^'ac treatment = 4 subtracted from: 
treatment Lower Center Upper 
5 -0.07828 -0.04737 -0.01646 
6 -0.07847 -0.04756 -0.01665 
7 0.02177 0.05269 0.08360 
8 0.00733 0.03824 0.06915 
9 -0.04709 -0.01323 0.02063 
10 -0.05573 -0.02187 0.01199 
11 -0.00333 0.03053 0.06439 
12 0.01049 0.04435 0.07821 
13 -0.01967 0.01419 0.04805 
14 0.00223 0.03609 0.06995 

treatment — + + + + 
5 ( - • - - ) 
6 ( - * - - ) 
7 ( - - * - ) 
8 ( - * - - ) 
9 ( . - * - . . ) 
10 ( - - • . - ) 
11 ( - • - - ) 
12 ( . „ > . . _ . ) 
13 ( . - • . . . - ) 
14 ( . . . . • _ - ) 

+ +- +- + 
-0.070 0.000 0.070 0.140 

Lan'ac treatment = 5 subtracted from; 
treatment Lower Center Upper 
6 -0.03110 -0.00019 0.03073 
7 0.06915 0.10006 0.13097 
8 0.05470 0.08561 0.11653 
9 0.00028 0.03414 0.06801 
10 -0.00836 0.02550 0.05937 
n 0.04404 0.07790 0.11177 
12 0.05786 0.09172 0.12559 
13 0.02770 0.06156 0.09543 
14 0.04960 0.08346 0.11733 

treatment — + + + + 
6 ( - * - ) 
7 ( - > - - ) 
8 ( - * - - ) 
9 ( . . . . • - . . ) 
10 ( - - • - ) 
11 ( - - * - - ) 
12 ( - - * _ . . ) 
13 ( . - * - - ) 
14 ( - - • - _ . ) 

- I - + + _ + 
-0.070 0.000 0.070 0.140 

Lar\'ae treatment = 6 subtracted from: 
treatment Lower Center Upper 
7 0.06933 0.10024 O.I3I15 
8 0.05489 0.08580 0.11671 
9 0.00047 0.03433 0.06819 
10 -0.00817 0.02569 0.05955 
11 0.04423 0.07809 0.11195 
12 0.05805 0.09191 0.12577 
13 0.02789 0.06175 0.09561 
14 0.04979 0.08365 0.11751 

treatment 
7 
8 
9 
10 
11 
12 
13 
14 

( - * - - ) 
( - * • - ) 

( - - * - - ) 
( - - * - - ) 

(--*"--) 
(„„•_--) 

(.._*.._) 
( - - * - - ) 

+ + + + 
-0.070 0.000 0.070 0.140 
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Lar^'ae treatment = 7 subtracted from: 
treatment Lower Center Upper 
8 
9 
10 
I I 
12 
13 
14 

-0.04535 -0.01444 
-0.09978 -0.06591 
-0.10842 -0.07455 
-0.05602 
-0.04220 
-0.07236 
-0.05046 

-0.02215 
-0.00833 
-0.03849 
-0.01659 

0.01647 
-0.03205 
-0.04069 
0.01171 
0.02553 

-0.00463 
0.01727 

treatment 
8 
9 
10 
I I 
12 
13 
14 

( " - * - ) 
( - - * - ) 
( " - • - - ) 

( - - * " - - ) 
( - - * — ) 

( - - * - ) 
( - - * - " ) 

+ +_. 
-0.070 0.000 

-+- .+ 

0.070 
+ 

0.140 

Larvae treatment = 8 subtracted from: 
treatment Lower Center Upper 
9 -0.08533 -0.05147 -0.01761 
10 -0.09397 -0.06011 -0.02625 
11 -0.04157 -0.00771 0.02615 
12 -0.02775 0.00611 0.03997 
13 -0.05791 -0.02405 0.00981 
14 -0.03601 -0.00215 0.03171 

9 ( - - * - - - ) 
10 ( - * - - ) 
11 ( — * - - ) 
12 ( - - * - - ) 
13 ( - - * " - ) 
14 ( - - * - - ) 

-0.070 0.000 0.070 0.140 

Lar\'ae treatment 
Lower Center 

-0.04522 
0.00718 
0.02100 

-0.00916 
0.01274 

10 
11 
12 
13 
14 

= 9 subtracted from: 
Upper 
-0.00864 0.02794 
0.04376 0.08034 
0.05758 0.09416 
0.02742 0.06400 
0.04932 0.08590 

treatment 
10 
I I 
12 
13 
14 

—+_ 
( - -

-0.070 

( - - * — ) 
{ • " - * - - ) 

( - - * - - ) 
( " - * - - ) 

0.000 0.070 0.140 

Larvae treatment = 10 subtracted from: 
treatment Lower Center Upper 
11 0.01582 0.05240 0.08898 
12 0.02964 0.06622 0.10280 
13 -0.00052 0.03606 0.07264 
14 0.02138 0.05796 0.09454 

treatment + — + + + 
11 ( - - • ) 
12 ( . - * - - . „ ) 
13 (-._-*-...) 
14 ( . - • „ - _ . ) 

-0.070 0.000 0.070 0.140 

Larvae treatment = 11 subtracted from: 
treatment Lower Center Upper 
12 -0.02276 0.01382 0.05040 
13 -0.05292 -0.01634 0.02024 
14 -0.03102 0.00556 0.04214 

treatment + + 
( - - * - " - ) 

( •____) 

(—*- - ) 
—-+ + 
-0.070 0.000 0.070 0.140 

Lar\'ae treatment = 12 subtracted from: 
treatment Lower Center Upper 

-0.06674 
-0.04484 

-0.03016 0.00642 
•0.00826 0.02832 

treatment + + - + + 
13 ( . . - • - . ) 
14 ( . - • . . . . ) 

-0.070 0.000 0.070 0.140 

Larvae treatment = 13 subtracted from: 
treatment Lower Center Upper 
14 -0.01468 0.02190 0.05848 

treatment + + + 
14 ( - - * - - ) 

-0.070 0.000 0.070 0.140 

29 



A20 Tukcy's (HSD) post-hoc test between the total number o f lar^-ae killed by C xantholoma in each 
treatment type, where 1= all three species together, 3= C pilipes, 5= D. anilis. 7= C.frigida, 9= C.frigida 
& C. pilies. 11 = C.frigida & D. anilis, 13= C. pilipes & D. an/Vw. 

Individual 95% CIs for mean based on pooled 
SiDev 
Level N Mean StDev -f + -
.+ +. 

- - - ( * ) 

- * ) 
( * ) 

( ' 
(- *- ) 
( " - - * ) 

( ' 

4.0 6.0 

4.143 
1.571 
4.571 
5.57! 
2.600 
2.400 

1.215 
0.976 
1.397 
2.440 
1.817 
1.817 

) 

5.400 1.517 

2.0 8.0 

Pooled StDev = 1.647 

Tukey 95% simultaneous confidence inter\'als 
A l l pairwise comparisons among levels o f 
treatment/without (w/o) control 
Individual confidence level = 99.64% 

Treatmcnl/wo control = I subtracted from. 

Treat men l/wo 
control Lower Center Upper 
3 -5.316 -2.571 0.173 
5 -2.316 0.429 3.173 
7 -1.316 1.429 4.173 
9 -4.549 -1.543 1.464 
11 -4.749 -1.743 1.264 
13 -1.749 1.257 4.264 

Treatment/wo 
control + + + + 

3 ( *- ) 
5 ( — - * ) 
7 (. * ) 
9 ( * ) 
n ( • ) 
13 ( * ) 

-H + + + 
-7.0 -3.5 0.0 3.5 

Treatment/wo control = 3 subtracted from: 
Treatment/wo 
control Lower Center 

0.256 
1.256 

-1.978 
-2.178 
0.822 

3.000 
4.000 
1.029 
0.829 
3.829 

Upper 
5.744 
6.744 
4.035 
3.835 
6.835 

Treatment/wo 
control + 

5 
7 
9 
I I 
13 

+—-
-7.0 

( ) 

( * ) 
( " * ) 
( * ) 

( * - ) 

•3.5 0.0 3.5 

Treatment/wo control = 5 subtracted from: 
Treatment/wo 
control Lower Center Upper 
7 -1.744 1.000 3.744 
9 -4.978 -1.971 1.035 
I I -5.178 -2 . I7I 0.835 
13 -2.178 0.829 3.835 

Treatment/wo 
control +-

7 ( ) 
9 ( • ) 
I I ( * ) 
13 ( " " - * ) 

-7.0 -3.5 0.0 3.5 

Trcatment/wo control = 7 subtracted from: 
Treatment/wo 
control Lower Center Upper 
9 -5.978 -2.971 0.035 

I I -6.178 -3.171 -0.165 
13 -3.178 -0.171 2.835 

Treatment/wo 
control + + + + -

9 ( * ) 
11 ( - * ) 
13 ( * ) 

- i - -1- + + 
-7.0 -3.5 0.0 3.5 

Treatmcni/wo control = 9 subtracted from: 
Treatment/wo 
control Lower Center Upper 
I I -3.447 -0.200 3.047 
13 -0.447 2.800 6.047 
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Treatment/wo 
control +-

11 
13 

-7.0 -3.5 

• ) 

0.0 3.5 

Treatment/wo control = 11 subtracted from: 
Treatment/wo 
control Lower Center Upper 
13 -0.247 3.000 6.247 

Treat menl/wo 
control + 

13 
+ -

-7.0 -3.5 0.0 3.5 

A 2 I Tukey's (HSD) post-hoc test between the number o f total larvae pupating in each treatment with C 
xanthoioma. 1 = C. pilipes, 2= C. frigida, 3= D. anilis, 4= C. pilipes & D. anilis, 5= C pilipes & C. 
frigida, 6= C. frigida & D. anilis, and 7= all three species. 

Individual 95% Cls for mean based on pooled StDev 
Level N Mean StDev + - + + +— 
1 7 2.429 1.397 ( * ) 
2 7 0.714 0.756 ( • ) 
3 7 0.000 0.000 ( * - — ) 
4 5 3.000 2.236 ( • ) 
5 5 3.000 1.414 ( • ) 
6 5 0.600 0.548 ( • ) 
7 7 0.714 0.756 ( - — * - — ) 

0.0 1.5 3.0 4.5 
Pooled StDev = 1.152 

Tukey 95% simultaneous confidence intervals 
A l l pairwise comparisons among levels o f treatment 
Individual confidence level = 99.64% 

Treatment = I subtracted from: 
Treatment Lower Center Upper 

-3.634 
-4.349 
-1.532 
-1.532 
-3.932 
-3.634 

-1.714 
-2.429 
0.571 
0.571 

-1.829 
-1.714 

0.206 
-0.508 
2.675 
2.675 
0.275 
0.206 

- f - . . 

-3.0 

( 

0.0 

* — ) 
( * -
( * -

- * ) 
- * ) 
- I - — - I - -

3.0 

+. +-

6.0 

Treatment 
Treatment 

= 2 subtracted from: 
Lower Center Upper 

-2.634 
0.182 
0.182 
-2.218 
-1.920 

-0.714 1.206 
2.286 4.389 
2.286 4,389 
-0.114 1.989 
0.000 1.920 

-3.0 

- - t -

-* ) 

(--

0.0 3.0 6.0 

Treatment = 3 subtracted from: 
Treatment Lower Center Upper + +- +-
4 0.897 3.000 5.103 ( * ) 
5 0.897 3.000 5.103 ( * ) 
6 -1.503 0.600 2.703 ( • ) 
7 -1.206 0.714 2.634 ( * ) 

+ + + +-
-3.0 0.0 3.0 6.0 
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Treaiment = 4 sublracted from: 
Treaimenl Lower Center Upper + — + —+ ^ 
5 -2.272 0.000 2.272 ( * ) 
6 -4.672 -2.400 -0.128 ( • ) 
7 -4.389 -2.286 -0.182 ( — - • - ) 

-3.0 0.0 3.0 6.0 

Treatmenl = 5 subtracted from: 
Treatment Lower Center Upper + + + ^ 
6 -4.672 -2.400 -0.128 ( • ) 
7 -4.389 -2.286 -0.182 ( * ) 

+ +-- + 
-3.0 0.0 3.0 6.0 

Treaiment = 6 subtracted from: 
Trcaimenl Lower Center Upper + + - + — +• 
7 -1.989 0.114 2.218 (- * ) 

+ — + + + . . 
-3.0 0.0 3.0 6.0 

A22 Tukcy's (HSD) post-hoc test between the number o f total ian-ac pupating in each treatment without 
C. .xantholoma. 1= C. pilipcs, 2= C.frigida, 3 - D. anilis, 4=C pilipes & D. anilis, 5=C. pilipes & C. 

fngicia, 6=C./ngida & D. anilis, and 7= all three species. 

Individual 95% CIs For mean based on pooled SiDev 
Level N Mean StDev + + +— +-
1 7 2.714 1.496 ( * ) 
2 7 2.286 2.812 { * ) 
3 7 0.000 0.000 ( * ) 
4 5 1.600 0.894 ( • ) 
5 5 2.600 1.673 { • ) 
6 5 0.400 0.894 (— • ) 
7 7 0.714 0.951 ( • ) 

0.0 1.5 3.0 4.5 
Pooled StDev = 1.526 

Tukey 95% simultaneous confidence intervals 
A l l pairwise comparisons among levels o f treatment 
Individual confidence level = 99.64% 

Treatment = 1 sublracted from: 
Treatment Lower Center Upper + + +-
2 -2.973 -0.429 2.116 ( * ) 
3 -5.259 -2.714 -0.170 ( • ) 
4 -3.902 -1.114 1.673 ( • ) 
5 -2.902 -0.114 2.673 ( * ) 
6 -5.102 -2.314 0.473 ( • — ) 
7 -4.544 -2.000 0.544 ( • ) 

+ + + +-
-3.0 0.0 3.0 6.0 

Treatment = 2 subtracted from: 
Treatment Lower Center Upper + — + + +-
3 -4.830 -2.286 0.259 ( * ) 
4 -3.473 -0.686 2.102 ( • ) 
5 -2.473 0.314 3.102 ( • ) 
6 -4.673 -1.886 0.902 ( * ) 
7 -4.116 -1.571 0.973 ( • ) 

-3.0 0.0 3.0 6.0 
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Treatmenl = 3 sublracted from: 
Treatmenl Lower Center Upper — + + + +-
4 -1.187 1.600 4.387 ( *— ) 
5 -0.187 2.600 5.387 ( * ) 
6 -2.387 0.400 3.187 ( * ) 
7 -1.830 0.714 3.259 ( • ) 

-3.0 0.0 3.0 6.0 

Trcaimenl = 4 sublracted from: 
Treatment Lower Center Upper + + — + +-
5 -2.011 1.000 4.011 ( • ) 
6 -4 .2I I -L200 I . 8 I I ( • ) 
7 -3.673 -0.886 1.902 ( * ) 

-3.0 0.0 3.0 6.0 

Treatment = 5 subtracted from: 
Treatment Lower Center Upper — + + + +-
6 -5.211 -2.200 0.811 ( • — ) 
7 -4.673 -1.886 0.902 ( * - ) 

-3.0 0.0 3.0 6.0 

Treatment = 6 sublracted from: 
Trcalmcnl Lower Center Upper + + + +-
7 -2.473 0.314 3.102 ( * ) 

-3.0 0.0 3.0 6.0 

A23 Tukey's (HSD) posi-hoc test between the actual L digiiata mass loss by treatment. 1= all three 
species, \V, 2= A l l three species W/O, 3= C pilipes IV, 4= C. pilipes \V/0, S^C.frigida W. 6=C. frigid 
W/O. 7= D. anitis W 8= D. anilis W/O, 9=C pilipes & D. anilislV. 10= C. pilipes & D. anilisW/O, 
11=C. pilipes & CJrigidaW, 12 =C. pilipes & C.frigidaW/O \3=C/ngida & D. anilis W, 14= C. 

frigida & D. anilis W/O and 15=C. xanhtoloma only, 16= no species. Where W = with C. xaniholoma and 
W/0=Wilhout C. xaniholoma. 

Individual 95% CIs for mean based on pooled StDev 
Level N Mean SiDev ™ + + + + 
1 7 0.11949 0.04364 ( - * - ) 
2 7 0.21672 0.02152 ( - • - - ) 
3 7 0.05865 0.02181 ( - * - ) 
4 7 0.08910 0.02037 ( - • - - ) 
5 7 0.03977 0.00997 ( - • - ) 
6 7 0.04497 0.01387 (--*—) 
7 7 0.07520 0.02519 ( - -*- ) 
8 7 0.14530 0.04986 ( -* - - ) 
9 5 0.10148 0.05916 ( - • - " ) 
10 5 0.15658 0.03066 ( - • — ) 
11 5 0.08925 0.02466 { - - * - ) 
12 5 0.19041 0.01341 (--*—) 
13 5 0.08596 0.02707 (--*—) 
14 5 0.15660 0.02181 ( - * - - ) 
15 7 0.00889 0.01431 ( - - • - ) 
16 7 0.00201 0.02209 ( - • - ) 

0.000 0.070 0.140 0.210 
Pooled StDev = 0.02885 
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Tukey 95% simullaneous confidence intervals 
A l l pairwise comparisons among levels of 
treatment 
Individual confidence level = 99 93% 

Treatmcm = 1 subiracied from: 
Trealment Lower Center Upper 
2 0.04271 0.09723 0.15175 
3 -0.11537 -0.06084 -0.00632 
4 -0.08492 -0.03040 0.02413 
5 -0.13425 -0.07973 -0.02520 
6 -0.12904 -0.07452 -0.02000 
7 -0.09882 -0.04430 0.01023 
8 -0.02872 0.02581 0.08033 
9 -0.07775 -0.01802 0.04171 
10 -0.02264 0.03709 0.09682 
11 -0.08998 -0.03025 0.02948 
12 0.01119 0.07092 0.13065 
13 -0.09327 -0.03354 0.02619 
14 -0.02263 0.03710 0.09683 
15 -0.16512 -0.11060 -0.05608 
16 -0.17201 -0.11749 -0.06296 

Treatment + + +-

Treatment + + 
2 ( - * - ) 
3 ( - * - ) 
4 ( - • - ) 
5 ( - * - ) 
6 ( - • - ) 
7 ( - • - ) 
8 ( - * - ) 
9 ( - • - ) 
10 ( - * - ) 
11 ( - * - ) 
12 ( - * - ) 
13 ( - • - ) 
14 ( - * - ) 
15 ( - • - ) 
16 ( - * - ) 

+ + +. 
-0.15 0.00 0.15 0.30 

Treatment = 2 subtracted from: 
Treatment Lower Center Upper 
3 -0.21260 -0.15807 -0.10355 
4 -0.18215 -0.12763 -0.07310 
5 -0.23148 -0.17696 -0.12243 
6 -0.22627 -0.17175 -0.11723 
7 -0.19605 -0.14153 -0.08700 
8 -0.12595 -0.07142 -0.01690 
9 -0.17497 -0.11525 -0.05552 
10 -0.11987 -0.06014 -0.00041 
11 -0.18721 -0.12748 -0.06775 
12 -0.08604 -0.02631 0.03342 
13 -0.19050 -0.13077 -0.07104 
14 -0.11986 -0.06013 -0.00040 
15 -0.26235 -0.20783 -0.15331 
16 -0.26924 -0.21472 -0.16019 

3 ( - - •" - ) 
4 ( - * - ) 
5 (--*---) 
6 ( - * - - ) 
7 (" - • - - ) 
8 ( - - * - ) 
9 ( - • - - ) 
10 ( - * - ) 
11 (-"*--) 
12 ( - • - ) 
13 ( - * - ) 
14 ( - * - ) 
15 ( " * - ) 
16 ( - * - - ) 

-0.15 0.00 

Treatment = 3 subtracted from: 
Treatmem Lower Center Upper 
4 -0.02408 0.03045 0.08497 
5 -0.07341 -0.01888 0.03564 
6 -0.06820 -0.01368 0.04085 
7 -0.03798 0.01655 0.07107 
8 0.03213 0.08665 0.14118 
9 -0.01690 0.04283 0.10256 
10 0.03821 0.09793 0.15766 
11 -0.02913 0.03060 0.09032 
12 0.07203 0.13176 0.19149 
13 -0.03242 0.02731 0.08703 
14 0.03822 0.09795 0.15767 
15 -0.10428 -0.04976 0.00477 
16 -0.11117 -0.05664 -0.00212 

Treatment + + +— 
4 ( - • - ) 
5 ( - - * " ) 
6 { " - * - ) 
7 ( - * - ) 
8 ( - * " ) 
9 ( - * - - - ) 
10 (---*--
11 ( " - * - ) 
12 ( - * -
13 ( - * - ) 
14 ( - * - -
15 ( - * - - ) 
16 ( - - * - ) 

-0.15 0.00 0.15 0.30 
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Treatmeni = 4 subtracted from: 
Trcalmenl Lower Center Upper 
5 -0.10385 -0.04933 0.00520 
6 -0.09865 -0.04412 0.01040 
7 -0.06842 -0.01390 0.04063 
8 0.00168 0.05621 0.11073 
9 -0.04735 0.01238 0.07211 
10 0.00776 0.06749 012722 
11 -0.05958 0.00015 0.05988 
12 0.04159 0.10132 0.16104 
13 -0.06287 -0.00314 0.05659 
14 0.00777 0.06750 0.12723 
15 -0.13473 -0.08020 -0.02568 
16 -0.14161 -0.08709 -0.03256 

Treatment + + — + +-
5 ( - * - ) 
6 ( - * - ) 
7 ( - * - ) 
8 ( - * " ) 
9 ( - • - ) 
10 ( - • - ) 
11 ( - * - ) 
12 ( - * - ) 
13 ( - * - ) 
14 ( - M 
15 ( - * - ) 
16 ( - * - ) 

+ + + +. 
-0.15 0.00 0.15 0.30 

Treatment = 5 subtracted from: 
Treatment Lower Center Upper 
6 -0.04932 0.00521 0.05973 
7 -0,01910 0.03543 0.08995 
8 0.05101 0.10553 0.16006 
9 0.00198 0.06171 0.12144 
10 0.05709 0.11682 0.17654 
11 -0.01025 0.04948 0.10921 
12 0.09092 0.15064 0.21037 
13 -0.01354 0.04619 0.10592 
14 0.05710 0.11683 0.17656 
15 -0.08540 -0.03087 0.02365 
16 -0.09228 -0.03776 0.01676 

Treaimeni + + + +-
6 ( - * - ) 
7 ( - * - ) 
8 ( - - * - ) 
9 { - • - ) 
10 ( - * - ) 
11 ( . - . * . - ) 
12 ( - * - ) 
13 ( - • - ) 
14 ( - * - ) 
15 ( - * - ) 
16 ( - * - ) 

+— + + +. 
-0.15 0.00 0.15 0.30 

Treatment = 6 subtracted from: 
Treatment Lower Center Upper 
7 -0.02430 0.03022 0.08475 
8 0.04580 0.10033 0.15485 
9 -0.00322 0.05650 0.11623 
10 0.05188 0.1I16I 0.17134 
11 -0.01546 0.04427 0.10400 
12 0.08571 0.14544 0.20517 
13 -0.01875 0.04098 0.10071 
14 0.05189 0.11162 0.17135 
15 -0.09060 -0.03608 0.01844 
16 -0.09749 -0.04297 0.01156 

Treatment + - + +.~ -i 
7 ( - • - ) 
8 ( - • " ) 
9 ( - * - ) 
10 ( - * - ) 
11 ( - • - ) 
12 ( - • - ) 
13 ( - • - ) 
14 { - • - ) 
15 ( - . * - ) 
16 ( " • - ) 

-0.15 0.00 0.15 0.30 

Treatment = 7 subtracted from: 
treatment Lower Center Upper 
8 0.01558 0.07011 0.12463 
9 -0.03345 0.02628 0.08601 
10 0.02166 0.08139 0.14112 
11 -0.04568 0.01405 0.07378 
12 0.05549 0.11522 0.17494 
13 -0.04897 0.01076 0.07049 
14 0.02167 0.08140 0.14113 
15 -0.12083 -0.06630 -0.01178 
16 -0.12771 -0.07319 -0.01866 

Treatment + + + +• 
8 ( - * - ) 
9 ( - • - ) 
10 ( - * - ) 
11 ( - • - ) 
12 ( - • - ) 
13 ( - • - ) 
14 ( - • - ) 
15 ( - * " ) 
16 ( - * - ) 

-0.15 0.00 0.15 0-30 
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Treatment = 8 subtracted from; 
Treatment Lower Center Upper 
9 -0.10355 -0.04383 0.01590 
10 -0.04845 0.01128 0.07101 
11 -0.11579 -0.05606 0.00367 
12 -0.01462 0.045II 0.10484 
13 -0.11908 -0.05935 0.00038 
14 -0.04844 0.01129 0.07102 
15 -0.19093 -0.13641 -0.08188 
16 -0.19782 -0.14330 -0.08877 

Treaiment + + +— 
9 ( - * - ) 
10 ( - • - ) 
11 ( - • - ) 
12 ( - * - ) 
13 ( - * - ) 
14 ( - • - ) 
15 ( - • - ) 
16 ( - • - ) 

-0.15 0.00 0.15 0.30 

Treatment = 9 subtracted from: 
Treatment Lower Cemer Upper 
10 -0.00941 0.05511 0.11962 
11 -0.07675 -0.01223 0.05228 
12 0.02442 0.08893 0.15345 
13 -0.08004 -0.01552 0.04899 
14 -0.00940 0.05512 O.I 1963 
15 -0.15231 -0.09258 -0.03286 
16 -0.15920 -0.09947 -0.03974 

Treatment 
10 
I I 
12 
13 
14 
15 
16 

{ - - * - ) 
( - • - ) 

( - * - ) 
( - • - ) 

( - - * - ) 
( - " * - ) 

( - * - ) 
—-+ + -
-0.15 0.00 0.15 0.30 

Trcatmcnl = 10 subtraclcd from: 
Treaiment Lower Center Upper 
11 -0.13185 -0.06734 -0.00283 
12 -0.03069 0.03383 0.09834 
13 -0.13514 -0.07063 -0.00611 
14 -0.06450 0.00001 0.06453 
15 -0.20742 -0.14769 -0.08796 
16 -0.21431 -0.15458 -0.09485 

Treatment 
I I 
12 
13 
14 
15 
16 

-+-
( - - * - ) 

( - - - * - - ) 
( - * " " ) 

( - * - ) 
( - * - ) 
( - * - ) 
— + +- -
-0.15 0.00 0.15 

Treatmenl = 11 sublracied from: 
Treatment Lower Center Upper 
12 
13 
14 
15 
16 

0.03665 
-0.06780 
0.00284 

-0.14008 
-0.14697 

0 . I 0 I I 7 
-0.00329 
0.06735 
-0.08035 
-0.08724 

0.16568 
0.06122 
0.13186 
-0.02062 
-0.02751 

Treaiment + + + 
12 ( - - • - ) 
13 ( - - * - - ) 
14 ( - * - - ) 
15 ( - - * - ) 
16 ( - * - ) 

+ + + +. 
-0.15 0.00 0.15 0.30 

Treatment = 12 subtracted from: 
Treatment Lower Center Upper 
13 -0.16897 -0.10446 -0.03994 
14 -0.09833 -0.03382 0.03070 
15 -0.24125 -0.18152 -0.12179 
16 -0.24813 -0.18840 -0.12868 

Treatment + + + 
13 ( - * - ) 
14 ( - . . . * . - ) 
15 ( - * - ) 
16 ( - * - ) 

-0.15 0.00 0.15 0.30 

Treatmenl = 13 sublracied f rom: 
Treatment Lower Center Upper 
14 0.00613 0.07064 0.13515 
15 -0.13679 -0.07706 -0.01733 
16 -0.14368 -0.08395 -0.02422 

Treatment + + + 
14 ( - . * - ) 
15 ( - * - ) 
16 ( - * - ) 

+ + +— +-
-0.15 0.00 0.15 0.30 

Treatment = 14 subtracted from: 
Treatment Lower Center Upper 
15 -0.20743 -0.14770 -0.08797 
16 -0.21432 -0.15459 -0.09486 

Treatment - + + + +-
15 ( - • - ) 
16 ( - * - ) 

+ + + +. 
-0.15 0.00 0.15 0.30 

0.30 
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Treatment = 15 subtracted from: Treatment + + +— -= 
Treatment Lower Center Upper 16 (—*--) 
16 -0.06141 -0.00689 0.04764 + + + - +-

-0.15 0.00 0.15 0.30 

A24a Tukey's (HSD) post-hoc test o f variability in transformed L digitaia/\n\i\a\ larvae mass g by 
species level (Diversity) without C. xaiuholoma. 

Individual 95% Cls for mean based on pooled StDcv 
Level N Mean StDev — + + + + 
1 21 0.02181 0.01125 (-*-) 
2 15 0.04260 0.01120 ( - * - ) 
3 7 0.09035 0.01538 ( — ) 

0.025 0.050 0.075 0.100 
Pooled StDev = 0.01194 

Tukey 95% simultaneous confidence intervals 
A l l pairwise comparisons among levels o f diversity 
Individual confidence level = 98 04% 

diversity = 1 subtracted from: 
diversity lower center upper + + - +-— 
2 0.01097 0.02079 0.03061 (-*--) 
3 0.05586 0.06854 0.08122 ( - • - ) 

-0.040 0.000 0.040 0.080 

diversity = 2 subtracted from: 
diversity lower center upper + + + +-— 
3 0.03446 0.04775 0.06105 ( - - • - ) 

+™ + + — 
-0.040 0.000 0.040 0.080 

A24b Tukcy's (HSD) post-hoc lest o f variability in L. ditigata mass loss g /initial larvae mass g per 
treatment (larvae identity combination) without C. xantholoma. 2= all three species, 4= C. pilipes, 6= D. 
anilis, 8= C. frigida, 10= C. pUipes & D. ani/is, 12= C. pilipes & C. frigida, 14= C frigida & D. anilis. 

Tukey 95% simultaneous confidence intervals 
all pairwise comparisons among levels o f identity 
individual confidence level = 99.64% 

identity = 2 subtracted from: 
identity lower center upper 
4 -0.08710 -0.06954 -0.05199 
6 -0.09429 -0.07673 -0.05917 
8 -0.07691 -0.05935 -0.04180 
10 -0.05963 -0.04040 -0.02117 
12 -0.06578 -0.04655 -0.02731 
14 -0.07555 -0.05631 -0.03708 

identity —-+ + + + 
4 ( . - . * . . . ) 
6 ( - - * - ) 
8 ( - • - . . . ) 
10 ( . - * - - ) 
12 ( - • - - ) 
14 ( - - * - - ) 

-0.080 -0.040 0.000 0.040 
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identity = 4 subtracted from: 
identity lower center upper -—+ + + + 
6 -0.02474 -0.00719 0.01037 ( — * — ) 
8 -0.00737 0.01019 0.02774 ( — • — ) 
10 0.00991 0.02914 0.04837 ( -—*.„ . ) 
12 0.00377 0.02300 0.04223 ( .—•—.) 
14 -0.00600 0.01323 0.03246 ( — • - — ) 

-0.080 -0.040 0.000 0.040 

identity = 6 subtracted from: 
identity lower center upper - — + — — + + 
8 -0.00018 0.01738 0.03493 ( — • — ) 
10 0.01710 0.03633 0.05556 ( .—*._ . ) 
12 0.01095 0.03019 0.04942 ( — • — ) 
14 0.00119 0.02042 0.03965 ( — • — ) 

-0.080 -0.040 0.000 0.040 

identity ~ 8 subtracted from: 
identity lower center upper -—+ +- + + 
10 -0.00028 0.01895 0.03819 ( — • — ) 
12 -0.00642 0.01281 0.03204 ( — * — - ) 
14 -0.01619 0.00304 0.02227 (.—*.—) 

-0.080 -0.040 0.000 0.040 

identity = 10 subtracted from: 
identity lower center upper -—+ + + + 
12 -0.02692 -0.00614 0.01463 { — - * - — ) 
14 -0.03669 -0.01591 0.00486 (-—*—-) 

—-+ + - I - - — + 
-0.080 -0.040 0.000 0.040 

identity = 12 subtracted from; 
identity lower center upper —-+ + + + 
14 -0.03054 -0.00977 0.01100 ( *—-) 

—+ + + + 
-0.080 -0.040 0.000 0.040 

A2S Tukcy's (HSD) post-hoc test of variability in L digilata mass loss g/final lar^'ae mass loss g by 
species level (Diversity) without C. xantholoma. 

Individual 95% CIs for mean based on pooled SlDcv 
Level N Mean StDev -+ +— + + 
1 21 0.03320 0.02582 ( — * — ) 
2 15 0.05251 0.02242 ( — - * — ) 
3 7 0.10190 0.03122 ( • ) 

0.025 0.050 0.075 0.100 
Pooled StDev = 0.02560 

Tukey 95% simultaneous confidence intcr\'als 
all pairwise comparisons among levels o f diversity 
individual confidence level = 98.04% 

diversity = 1 subtracted from: 
diversity lower center upper + + + + — 
2 -0.00174 0.01931 0.04036 { . . . • — ) 
3 0.04153 0.06871 0.09588 ( *—-) 

-0.050 0.000 0.050 0.100 
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diversity = 2 subtracted from: 
diversity lower center upper + - + + +— 
3 0.02089 0.04939 0.07790 (—--• ) 

-0.050 0.000 0.05 
A26a Tukey's (HSD) post-hoc test of variability in L. digitata mass loss g/mean lar\'ae mass loss g by 
species level (Diversity) without C. xandioloma. 

Individual 95% CIs for mean based on pooled StDev 
Level N iMean StDev — + — + — + + 
1 21 0.02367 0.01053 ( - • - ) 
2 15 0.04622 0.01381 { - * - ) 
3 7 0.09546 0.02179 ( — • . _ ) 

0.025 0.050 0.075 0.100 
Pooled StDev = 0.01391 

Tukey 95% simultaneous confidence intervals 
A l l pairwisc comparisons among levels of diversity 
Individual confidence level = 98.04% 

diversity = I subtracted from: 
diversity lower center upper + + - + +— 
2 0.01111 0.02254 0.03398 ( - • - ) 
3 0.05702 0.07179 0.08656 (— 

+— + -h— +— 
-0.040 0.000 0.040 0.080 

diversity = 2 subtracted from: 
diversity lower center Upper + + + - +— 
3 0.03376 0.04924 0.06473 ( . - • — ) 

-0.040 0.000 0.040 0.080 

A26b Tukcy's (HSD) post-hoc test o f variability in L. digitala mass loss g/mean lar\'ae mass loss g by 
treatmenl (larvae identity combination) without C. xaniholoma. 
Where 2= all three species, 4= C pilipes, 6= D. anilis, 8= C. frigida, 10= C. pilipes &. D. anilis, 12= C. 
pilipes & C. frigida, 14= C. frigida & D. anilis. 

Individual 95% CIs for mean based on pooled StDev 
Level N Mean StDev - + + + - + -
2 7 0.09546 0.02179 (—*—) 
4 7 0.02358 0.00602 (--•—) 
6 7 0.01598 0.00559 ( " ' — ) 
8 7 0.03146 0.01275 ( — * - ) 
10 5 0.05539 0.01775 ( - * - — ) 
12 5 0.04862 0.00631 (—*—-) 
14 5 0.03464 0.00577 ( - - * — ) 

+ + —+ +" 
0.025 0.050 0.075 0.100 

Pooled StDev = 0.01267 
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Tukey 95% simultaneous confidence inter\'als 
A l l pairwise comparisons among levels o f 
identity 
individual confidence level = 99.64% 

identity = 2 subtracted from: 
identity lower center upper 
4 -0.09300 -0.07188 -0.05075 
6 -0.10061 -0.07948 -0.05836 
8 -0.08513 -0.06400 -0.04288 
10 -0.06322 -0.04008 -0.01694 
12 -0.06998 -0.04684 -0.02370 
14 -0.08396 -0.06082 -0.03768 

identity + + + — + 
4 ( . - • - ) 
6 ( - • - ) 
8 ( - * - ) 
10 ( - - • - . - ) 
12 ( — 
14 ( - - * - ) 

+ + + +— 
-0.100 -0.050 -0.000 0.050 

identity = 8 sublracted from: 
identity lower center upper 
10 0.00079 0.02393 0.04707 
12 -0.00597 0.01717 0.04031 
14 -0.01996 0.00318 0.02632 

identity +• 
10 
12 
14 

- i - — 

+ +. 
( — * - ) 

( - • - - ) 
{ - - * - ) 

• + + 
-0.100 -0.050 -0.000 0.050 

identity = 10 sublracied from: 
identity lower center upper 
12 -0.03176 -0.00676 0.01823 
14 -0.04574 -0.02074 0.00425 

identity + + + + -
12 ( . . . . * . - ) 
14 ( . . - > . - ) 

-0.100 -0.050 -0.000 0.050 

identity = 4 subtracted from: 
identity lower 
6 
8 
10 
12 
14 

-0.02873 
-0.01325 
0.00866 
0.00190 

-0.01208 

center upper 
•0.00761 0.01352 
0.00787 0.02900 
0.03180 0.05494 
0.02504 0.04818 
0.01106 0.03420 

identity +-
6 
8 
10 
12 
14 

-+ +-

( - * - - ) 
( - - * — ) 

-0.100 -0.050 -0.000 0.050 

identity = 6 subtracted from: 
identity lower center upper 
8 -0.00564 0.01548 0.03660 
10 0.01627 0.03941 0.06255 
12 0.00950 0.03264 0.05579 
14 -0.00448 0.01866 0.04180 

identity + -
8 
10 
12 
14 

-f-

( - * " - ) 
( - - * - - ) 

( . . „ * - ) 

( - - * - ) 
+ —+-

identity = 12 subtracted from: 
identity lower center upper 
14 -0.03898 -0.01398 0.01 lOI 
identity + + + +-
14 ( . . . - * - - ) 

-0.100 -0.050 -0.000 0.050 

-0.100 -0.050 -0.000 0.050 
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A27 Tukey's (HSD) post-hoc test of variability in log lOi . digitata mass loss g/initial lar\'ae mass loss g 
by species level (Diversity) with C. xanlholoma. 

Individual 95% Cls for mean based on pooled SlDev 
Level N Mean SiDev —-t- + + + 
1 21 -4.4707 0.3578 (—*--) 
2 15 -3.9979 0.5100 (—*—) 
3 7 -3.3514 0.4097 ( • ) 

-4.50 -4.00 -3.50 -3.00 
Pooled StDev = 0.4245 

Tukey 95% simultaneous confidence intervals 
A l l pairwise comparisons among levels o f diversity 
Individual confidence level = 98.04%, 

diversity = I subtracted from; 
diversity lower center upper + + — + +— 
2 0.1237 0.4728 0.8219 ( .—•-—) 
3 0.6686 1.1193 1.5700 ( * ) 

+ + + +— 
-0.70 0.00 0.70 1.40 

diversity = 2 subtracted from: 
diversity lower center upper - + + + +— 
3 0.1739 0.6465 1.1192 ( * ) 

+-— + + +— 
-0.70 0.00 0.70 1.40 

A28 Tukey's (HSD) post-hoc test o f variability in L. digifaia mass loss g/final lar\'aemass loss g by 
species level (Diversity) with C. xantholoma. 

Individual 95%i Cls for mean based on pooled StDev 
Level N Mean SlDev -+ + + + 
1 21 0.03104 0.03703 ( * - — ) 
2 15 0.03821 0.01899 ( * ) 
3 7 0.06645 0.02082 ( * ) 

- + -h + + 

0.020 0.040 0.060 0.080 
Pooled SlDev = 0.02961 

Tukey 95% simultaneous confidence intcr\'als 
A l l pairwise comparisons among levels of diversity 
individual confidence level = 98.04%) 

diversity = 1 subtracted from: 
diversity lower center upper + + + — + ~ 
2 -0.01717 0.00718 0.03153 ( * ) 
3 0.00397 0.03541 0.06685 ( * ) 

+ + 

-0.035 0.000 0.035 0.070 

diversity = 2 subtracted from: 
diversity lower center upper + + + + -
3 -0.00474 0.02823 0.06121 ( * ) 

+ + + + -
-0.035 0.000 0.035 0.070 
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A29 Tukey's (HSD) post-hoc test o f variability in loglOZ.. digitaia mass loss g/mean lar\'ae mass loss g 
by Sfjecics level (Diversity) with C. xanthohma. 

Individual 95% CIs for mean based on pooled SiDev 
Level N Mean StDev + + + +-
1 21 -4.2429 0.3525 (--*-") 
2 15 -3.7489 0.4481 ( — ) 
3 7 -3.1049 0.3797 ( • - — ) 

+ + +-_ +-
-4.00 -3.50 -3.00 -2.50 

Pooled StDev = 0.3925 

Tukey 95% simultaneous confidence intervals 
A l l pairwise comparisons among levels o f diversity 
individual confidence level = 98.04% 

diversity = 1 subtracted from: 
diversity lower center upper + + — + +-— 
2 0.1713 0.4940 0.8168 ( — * — ) 
3 0.7214 1.1380 1.5547 ( • - — ) 

-0.70 0.00 0.70 1.40 

diversity = 2 subtracted from: 
diversity lower center upper + + + + — -
3 0.2070 0.6440 1.0810 ( - — * ) 

+ + + +—-
-0.70 0.00 0.70 1.40 
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