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Abstract 

Use of Depth Perception 
for the 

Improved Understanding of 
Hydrographic Data 

by 

Runar Ostnes 

This thesis has reviewed how increased depth perception can be used to increase the 

understanding of hydrographic data First visual cues and various visual displays and 

techniques were investigated. From this investigation 3D stereoscopic techniques prove to 

be superior in improving the depth perception and understanding of spatially related data 

and a further investigation on current 3D stereoscopic visualisation techniques was carried 

out. After reviewing how hydrographic data is currently visualised it was decided that the 

chromo stereoscopic visualisation technique is preferred to be used for further research on 

selected hydrographic data models. A novel chromo stereoscopic application was 

developed and the results from the evaluation on selected hydrographic data models clearly 

show an improved depth perception and understanding of the data models. 
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Chapter 1: Introduction 

Practically unchanged for several hundreds of years, hydrographic and nautical 

information has been presented on a 2 dimensional (2D) paper chart. With the advances in 

computer- and information technology, new techniques of presenting spatial data have 

emerged. In the '̂nautical world" electronic charts have revolutionised navigation and the 

collection of digital hydrographic data is increasingly efficient. 

The International Hydrographic Organization (IHO) defines hydrography as (IHO, 1994); 

"The branch of applied science which deals with the measurement and 
description of the physical features of the navigable portion of the Earth's 
surface and the adjoining coastal areas, with special reference to their use 
for the purpose of navigation." 

Computerised visualisation techniques are now developed in several fields, the aim of this 

research is to analyse their application to hydrography. The authors experience in 

navigation and hydrography led me to investigate visualisation of data in the water column 

and seabed, with particular reference to the resource exploration industry and bathymetric 

charting. Thus, the project will investigate visualisation techniques especially suited to 

improve the image depth perception and thus the presentation of hydrographic data, as for 

example coastal navigation, offshore subsea operations and analysis of complex datasets or 

other scientific purposes requiring improved spatial perception of the data. An accurate 

digital terrain model will be used to present depth information. 

1,1 Aim and Objectives 

The aim of the project is to investigate opportunities and benefits of improved visuzdisation 

of hydrographic data and develop a new technique founded on these. 

The objectives are: 

• To determine appropriate hydrographic datasets for a broad approach to marine 

navigation and other activities (e.g. electronic charting, interpretation and analysis 
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of a wider hydrographic dataset; tidal streams; fishery sonar or sounding) suitable 

for assimilation into available software. 

• To compare available visualisation methods for suitability and opportunities (with 

due regard to digital stereoscopic viewing techniques such as auto-stereoscopy (free 

viewing); complimentary filters; alternating images and chromo stereoscopy). 

• To discuss the results and select a sub dataset and scenario of particular interest to 

focus the project. 

• To develop a novel visualisation technique for hydrographic data and analyse the 

effectiveness of the technique. 

• To conclude v^th a discussion of developments in current techniques and future 

areas of development. 

1.2 Thesis Overview 

Chapter 2 investigates and discusses monocular and binocular visual cues and their effect 

on the perception of depth in an image. In chapter 3 visual displays and techniques are 

investigated. The advantages and disadvantages of 2D, three dimensional (3D) perspective 

and 3D stereoscopic displays are evaluated. In chapter 4 the 3D stereoscopic display 

techniques are explored and a possible technique for further work is identified. Cxirrent 

trends in the presentation and visualisation of hydrographic data is investigated in chapter 

5 and based on this investigation the hydrographic data are classified into 5 different 

classes. The findings of chapter 4 and chapter 5 concludes that the chromo stereoscopic 

technique is a suitable and interesting technique for the further developmental and 

experimental work of this study and chapter 6 presents current colour theory and gives an 

in depth study of the chromo stereoscopic technique. Chapter 7 gives a detailed description 

of the chromo stereoscopic application development and in chapter 8 the chromo 

stereoscopic application is tested on hydrographic data models from each of the classes 

identified in chapter 5. The generated chromo stereoscopic effect and the amount of 



increase in depth perception are then evaluated. Finally chapter 9 concludes the work and 

gives recommendations for further work. 



Chapter 2: Depth Perception and Visual Cues 

Having established the ground for the investigation, this chapter reviews depth perception, 

and the visual cues used to enhance depth perception. 

2.1 Depth Perception 

A basic limitation of a conventional visual display is that the surface of the display screen 

is 2D whereas the natural world is 3D. In order to improve the visualisation of 

hydrographic data amongst other, it is necessary to represent depth or distance perception 

as a third dimension along the line of sight. Therefore, this section discusses the 

characteristics of human visual perception of depth and distance. 

Depth and distance perception is achieved through the combination of several depth cues. 

The term, cues, has been utilized to formalize the specification of stimulus conditions for 

space perception (Carr, 1935). To distinguish between perceived and physical space the 

relation between distal stimuli and proximal stimuli is important. Any physical objects and 

scenes are distal stimuli where distal stimuli rouse our nervous system by patterns of 

energy (e.g. light energy, sound waves). Patterns of energy that reach and affect our sense 

organs are termed proximal stimuli and by projecting the energy patterns from distal 

stimuli onto a surface (e.g. a screen or retinal surface) the proximal stimulus patterns can 

be observed. 

Hochberg (1978) defined a depth cue as a pattern of proximal stimulation that contains 

information about the spatial location of distal objects. Depth cues can be classified into 

two types: monocular and binocular. Monocular depth cues require the activity of a single 

eye; binocular depth cues require the use of both eyes. Pictorial depth cues are a subset of 

monocular depth cues and include linear perspective, relative size, known size, 

interposition, shadow distribution, aerial perspective, height in picture plane and gradient 

of texture-density (Hochberg, 1978; Hershenson, 1999). Motion parallax is also described 
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as a monocular depth cue and is also relevant in this review. Binocular depth cues include 

accommodation, convergence and stereopsis (Hershenson, 1999). 

Depth Cues 

Monocurar Depth Cues \-

Linear Perspective 

Relative Size 

Known size 

Interposition 

Light and Shadow Distribution 

Binocular Depth Cues 

Aerial Perspective | 

Height In Picture Plane 
Accomodation 

Texture Gradient 
Convergence 

Stereopsis 

Motion ParaDax 

Figure 2.1: Block Diagram portraying the different Depth Cues in two classes, 
Monocular and Binocular Depth Cues. 

2.1.1 Monocular Depth Cues 

This section describes each of the monocular depth cues: 

2.1.1.1 Linear Perspective 

I f the size of a distal object is fixed, the visual angle will be inversely proportional to the 

distance from the object: this is called linear perspective or outline shape (Kantowitz and 

Sorkin, 1983). A constant distance between points subtends a smaller and smaller angle at 

the eyes as the points withdraw from the eye. For example, railway tracks appear to 

approach each other (i.e., the retinal images of die lines converge) as the distance from the 

eyes increases although they are parallel. Therefore, converging lines are a cue that they 

are parallel and receding in depth (Wickens, 1992). Figure 2.2 shows the linear perspective 

of a cube in relation to the horizon. 

Vanishing point 

Horizon 1. 
Vanishing point 

Figure 2.2: Linear Perspective of a Cube (Source: Hershenson 1999) 



2.1.1.2 Relative size 

Two similar shaped objects with different size will affect the relative perceived distance to 

the objects. The larger object will appear closer tiian the smaller. By comparing the 

apparent size of a distant object with that of a similar, much closer object, the relative 

distance of the distant object can be approximated (Hershenson, 1999). Relative size is also 

tied directly to linear perspective. In figure 2.2 the more distant side of the cube can be 

observed as relatively shorter than the nearest side. 

2.1.1.3 Known size 

We can use an object's known size to deduce relative depth. Figure 2.3 shows that i f the 

object has known size (S) the distance (d) can be deteraiined as (Coren, S., Ward, L.M., 

Enns, J.T.. 1993): 

d = - ^ (2.1) 
tana 

For example, a man is taller than a boy. However, i f they produce the same size of retinal 

image, then the brain deduce the man is located farther away than the boy. This is often a 

weak or ineffective cue because cognitive factors influence the perceived distance. 

d 

Figure 2.3: Distance from known size 

2.1.1.4 Interposition 

When a closer object (B in figure 2.4) interrupts the outline of a farther (overlapped) object 

(A in figure 2.4) it appears to be closer to the viewer. This is an effective depth cue, but it 

can only indicate which object is in fi-ont, not the distance separating them (Hershenson, 

1999). 
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A 
B 

Figure 2,4: Interposition of Objects 

2.1.1.5 Light and shadow distribution 

Shadows provide some information about the orientation of the objects and their three-

dimensional shapes (Ramachandran, 1988). Objects may appear to lie at different distances 

and have different dimensions as combinations of shadow and highlight change (Graham, 

1965). I f objects have a light source from one direction, they will have shadows xmique to 

their shape and orientation. 

2.1.1.6 Aerial Perspective 

Atmospheric scattering of light by molecules (also termed Rayleigh scattering) causes de-

saturation of an object's colour, resulting in a more bluish colour and less contrast. This 

affects the perceived depth of an object (Hershenson, 1999). Hence a more distant object 

will appear in a more bluish colour and have less contrast. Underwater this would be 

termed veiling light and is caused by the light scattering from water molecules. 

2.1.1.7 Height in picture plane 

An object's vertical position in the display can act as a depth cue. Farther away objects 

appear higher on the display. It is assumed that the ground plane is extended outwards 

horizontally to the horizon. An object on the same vertical height on the display is 

perceived to be at the same distance from the observer (Berbaum, K., Tharp, D., Mroczek, 

K., 1983). 
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2.1.1.8 Gradient of texture-density 

A gradient is the rate of some measured property changing over a continuous, extended 

stimulus. The surface of most objects is likely to be covered with a reasonably uniform 

texture or pattern. When looking straight ahead at a textured surface, the gradient of 

texture-density is zero; as the slant increases, the gradient increases. The gradient of 

texture-density can provide precise and relatively unambiguous infomiation about the 

distances and sizes of surfaces and objects in the world (Hochberg, 1978). The crossed 

squares in the front in figure 2.5 have the same dimensions as the ones placed in the back 

in the figure, but as they are located farther away from the observer they appear smaller, 

hence giving a finer texture. 

. ^ _ , 

Figure 2.5: Texture density variation as function of distance (Source: Brassard, 1998). 

2.1.1.9 Motion parallax 

When a subject's eye moves with respect to the environment, or vice versa, there exists a 

differential angular velocity between the line of sight to an object (fixated) and the line of 

sight to any other objects. This relative lateral movement of objects at varying distances 

from the viewer is called motion parallax (Hershenson, 1999). By observing the amount 

and relative direction that a given image moves on the retina, its distance can be 

approximated (Clark, M., Jackson, P.L., Cohen, H.H., 1996). 
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2.1.2 Binocular Depth Cues 

This section describes each of the binocular depth cues: 

2.1.2.1 Accommodation 

When adjusting the focal length of the eyes lens to bring objects at different distances into 

focus, a muscular strain is present in the ciliary body. This strain is called accommodation, 

and is effective up to a range of up to two metres (Coren et. al. 1993). 

2.1.2.2 Convergence 

The eyes are capable of convergence, in which both eyes turn inward toward the medial 

plane (Brown, 1965). The convergence is proportional to the convergence angle, y in figure 

2.6). 

Figure 2.6: Convergence angle, y = convergence angle, A = inter pupillary distance 
and D = distance to fixation point (Source: Hershenson 1999) 

A large convergence corresponds to near objects and a slight convergence corresponds to 

far objects. The convergence angle y varies with the distance to fixation point. The ocular 

muscles control the angle of convergence. The brain receives messages from the ocular 

muscles about the degree of convergence. By analysing the information received, the brain 

can approximate the angle of convergence (Hershenson, 1999). In this way, convergence 

may serve as a depthTcue. A large convergence may lead to the response "nearer",'while a 



slight convergence may lead to the response "far-off'. 

2.1.2.3 Stereopsis 

The human brain only interprets theinonoscopic picture as 3D space (Kim, W. S., Ellis, S. 

R., Tyler, M.E., Hannaford, B., Stark, L.W., 1987), and does not provide true depth 

perception. Patterson and Martin (1992), reviewing the basic literature on stereopsis, 

presented functional factors important for the design of stereoscopic display systems. 

These factors include the geometry of stereoscopic depth perception, visual persistence, 

perceptual interaction among stereoscopic stimuli, and the neurophysiology of stereopsis. 

For the purpose of understanding the ability of humans to perceive stereoscopic depth, 

section 2.1.2 reviews the geometry of stereoscopic depth perception presented by Patterson 

and Martin (1992) and Chapter 3.2 further discusses stereopsis with regard to visual 

displays. 

2.1.2.4 Retinal Disparity and Horopter 

Stereopsis is produced by horizontal retinal disparity, which results from an inter ocular 

difference in the relative position of corresponding monocular images. Figure 2.7 shows 

the concept of retinal disparity. F is the fixation point in figure 2.7. Object A produces 

corresponding retinal points; point a in the left eye and point a' in the right eye. These two 

points are equally distant from f and f on the retina, respectively. Therefore, A has zero 

disparity with respect to F. Object B in front of the horopter (described in the next 

paragraph), however, produces non-corresponding retinal points; point b in the left eye and 

point b' in the right eye. These two points are not equally distant from f and f ' , 

respectively. Therefore, B has a certain amount of disparity with respect to F (Patterson 

and Martin,'1992). 

The horopter in figure 2.7, represented by the line through F (fixating point) can be formed 

by connecting points, which give zero disparity. Any images from objects on the horopter 
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stimulate corresponding retinal points in the two eyes (Patterson and Martin, 1992). In 

other words, for every point on the retina of the left eye, there is a corresponding point on 

the right eye. Therefore, the horopter can be defined as the locus of all points, which have 

zero disparity (Hershenson, 1999). 

Ponums p ^ Panum's 

Horopte 

Right Eye Left Eye 

Figure 2.7: Longitudinal Horopter and Panums Fusion Area (Source: Patterson and 
Martin, 1992) 

2.1.2.5 Crossed and Uncrossed Stereopsis 

Disparity ahead of the horopter is "uncrossed" when an object falls in fi-ont of the horopter 

(point B in figure 2.7), and disparity behind the horopter is termed "crossed". From Figure 

2.7, considering the spatial relationships of images within each eye's view (monocular), it 

is possible to make geometrical distinction between the crossed disparity and the uncrossed 

disparity. For crossed disparity, the disparate image is right of the fixation (i.e., b* is right 

of the b) in the left eye and left of fixation (i.e., b is left of b') in the right eye. For 

uncrossed disparity, the disparate image falls to left of fixation in the left eye and right of 

fixation in the right eye (Hochberg, 1978; Patterson and Martin, 1992). 

Some people do not show good stereopsis for the crossed or uncrossed direction with brief 

exposure. Therefore, to improve the visual perception, it is necessary to provide prolonged 

exposure of stereoscopic stimuli (Patterson and Martin, 1992). 
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The crossed and uncrossed disparity above is defined based on the corresponding retinal 

points and horopter. Considering design applications, Patterson and Martin (1992) noted an 

important factor about the definition. In many applications, the horopter is considered to be 

placed on die surface of the display screen, then the disparity is defined based on the 

screen. This definition may create problems in designing accurate stereoscopic displays, 

because, i f the viewer converges to a depth plane other than the defined horopter (i.e., the 

surface of the screen), the intended relevant disparities become inaccurate. 

2.1.2.6 Panum*s Fusional Area 

Fusion is the perceptual process of blending the two corresponding images into a single 

image. The range in which the resulting disparity can be fusible (i.e. the area surrounded 

by the boundary of the limit of the disparity fiision) is called Panum's fiisional area (see 

Figure 2.7). Diner and Fender (1993) explained this extended fiisional area as: 

"There is a range of locations on the left retina such that an image formed 
anywhere within the range will ftise with an approximately matching image 
formed on a fixed location on the right retina. This process is reciprocal 
between the retinae". 

Objects within Panum's area result in small disparities, which are fijsible. Objects outside 

Panum's area result in large disparities, which are not fiisible, producing double images. 

The limit of disparity fiision is the largest disparity that is fiisible. Factors affecting the 

limit include stimulus size, spatial frequency, eccentricity, and temporal modulation of 

disparity information (Patterson and Martin, 1992). The disparity limit for fiision increases 

as the stimulus size increases (e.g. large disparity can be fiised with large stimuli), and 

decreases as the spatial frequency increases. The disparity limit increases with eccentricity 

(i.e. degrees away from the fovea). The fovea is the most light sensitive area of the retina 

near its centre. This is the focal point of the retina, and vision is optimal in this part of the 

retina. The disparity limit also increases as the temporal frequencies of modulation 

decrease. These factors must be careftiUy manipulated in order to improve the binocular 
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frjsion in designing stereoscopic displays. 

2.13 Effects of Depth Cues 

Figure 2.8 illustrates the effectiveness of the different depth cues depending on the distance 

from the viewer. It is clear that the interposition, described as occlusion in the figure, is the 

most powerful depth cue at any distance. Retinal disparity (binocular disparity in the 

figure) is one of the most important depth cues at close ranges, gradually decreasing in 

effect up to approximately 800 metres. The convergence and accommodation depth cues 

have medium effect at close ranges and are reduced up to approximately 10 metres. The 

binocular depth cues are most effective in the personal space (up to approximately 2 

metres). The motion parallax depth cue is also powerful in the personal space. 
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Figure 2.8: Depth Cue effectiveness as a function of distance (Source: Wickens and 
Hollands, 2000) 

2.1.4 Discussion on Depth Cues 

It is interesting to note that, except for interposition and stereopsis, most of the depth cues 

discussed can not be applied to an orthogonal (i.e. parallel projection) 2D display format 

(e.g., a plan-view) that conveys information in two dimensions at once. A perspective 

display format can utilize most of the depth cues except for binocular disparity, which can 

only be provided by using a stereoscopic display. Pictorial depth cues are patterns that can 

occur not only in the picture plane but also in the proximal stimulation at the eye when 

13-



objects are scattered around in a three-dimensional landscape. Consequently, such 

indications of three-dimensional space are necessarily ambiguous. Therefore, any theory 

that bases our perception of space on pictorial depth cues must consider space perception 

to be ambiguous. Any pattern in the optic array is much more ambiguous than that. A 

number of different three-dimensional arrangements can produce the same proximal 

stimulus pattern at the eye (Hochberg, 1978). Binocular disparity in itself can be a 

powerful depth cue. However, it cannot be the basis of all space perception. Interestingly, 

it has been known that one-eyed individuals may show good depth perception, even at a 

very early age (Hochberg, 1978). At distances of less than 2 metres the binocular depth cue 

is one of the most effective depth cues. 
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Chapter 3: Visual Displays and Techniques 

A visual display system with appropriate format can provide an efficient Man-Machine-

Interface (MMI). Many applications' of visual displays and their evaluations are reported in 

the literature about advanced teleoperation, aircraft cockpit display, and air traffic control 
* 

displays as for example the different aircraft cockpit displays illustrated in the squares in 

figure 3.1. There have been various types of information displays. These include 

traditional 2D plan-view, 3D perspective, and stereoscopic displays with or without visual 

enhancements. 

This section reviews the basic literature related to 2D, 3D perspective (monoscopic) and 

stereoscopic displays. First, the basic geometry of 2D, 3D perspective, and stereoscopic 

displays is reviewed; factors that are considered to be important for the design of these 

displays are also reviewed. Second, for the purpose of evaluating 2D, 3D perspective, and 

stereoscopic displays, various experimental studies related to the application of 2D, 3D 

perspective, and stereoscopic displays are reviewed. Based on this review, a comparison of 

2D, 3D perspective- and stereoscopic displays is presented. 

3.1 Geometry of 2D and 3D Perspective displays 

In order to understand the mechanism of visual spatial judgments, it is necessary to define 

relevant coordinate systems. Howard (1993) listed the basic fi-ames of reference as: 

"An egocentric fi*ame of reference is defined with respect to some part of 
the observer. Four major egocentric fi-ames of reference include: a 
station-point fi^e associate with the nodal point of the eye, a 
retinocentric fi-ame associate with the retina, a head centric fi-ame 
associated with head, and a bodycentric firame associate with the torso. 
An exocentric firame of reference is external to the observer" (p. 338). 

The evaluation of an egocentric display and three different exocentric displays in pilot 

navigational performance has been discussed by Prevett and Wickens (1994). Figure 3.1 

illustrates the four different displays. The results of this study are presented in Section 3.3. 
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Figure 3.1: Four different display viewpoints from a pilot's point of view, (a) is fully 
ego referenced, (b) is ego referenced >vith expanded geometric field of 
view, (c) is an exocentric presentation (camera above and behind) the 
aircraft and (d) is a split display 2D co planar presentation. (Source: 
Wickens at. al, 1996). 

3.1.1 Dimensionality 

In addition to the choice of reference frame, the choice of dimensionality (2D vs. 3D) is 

important when presenting data on visual displays. A 3D perspective display can be 

achieved by projecting an object onto the view plane (projection plane) and then mapping 

the view plane onto the display screen. There are two methods to generate the perspective 

projection: the viewpoint-transformation and the object-transformation (Kim et al. 1993). 

In central projection, projection lines emanate from the centre of the projection 

(viewpoint). The intersection of the projection line with the view plane forms a projected 

image of an object. I f the viewpoint is set at a infinite distance, a parallel projection is 

obtained. 

A perspective projection can be obtained by setting the viewpoint at a finite distance. In 

general, two processes are performed to generate a perspective display: 

(1) Perspective projection onto the view planes and 

(2) Mapping of the view plane window onto the display screen. 

- 16 



Basic parameters specifying the view plane include the view reference plane, the view-

plane normal, and the view-plane distance. The view reference plane is set near the object 

to be viewed (Ellis, 2000). 

Wickens et. al. (1994, a) examined the effectiveness of 2D versus 3D perspective displays, 

which were designed to present a series of 3D data sets. In Wickens et. al.'s study, subjects 

required focused attention or integrative attention to complete the tasks. Focused attention 

requires low information integration, focusing in one dimension on only one object, 

hitegrative attention, in contrast, requires high information integration, focusing on several 

objects across more than one dimension. Results showed that 3D perspective displays were 

superior to 2D displays for the task that required integrative attention. 

Wickens et. al. (1994, b) presented a study that contrasted a 2D display, a 3D egocentric 

display (i.e. the display is presented from the perspective of the pilot sitting in the cockpit) 

and a 3D exocentric display (i.e. presented from the perspective of the pilot viewing the 

aircraft fix)m a certain distance from the aircraft) for terminal area navigation. 

They discussed the benefits and costs of 3D perspective displays, as compared to 2D 

displays. Based on this discussion, the use of 3D perspective displays requires less visual 

scanning effort than that of two (or three) orthogonal plan-view displays. Furthermore, a 

3D ego-referenced display is capable of providing visual information that is congruent both 

with the pilot's view and control axes. 

Costs associated with these benefits include "position distortion", "display resolution 

inconsistency", and "ambiguity along witii line-of-sight" (Wickens et. al. 1994, b). 

Figure 3.2 shows the geometry of a perspective display. The left figure is referenced to 

X Y Z worid coordinate system with the field of view (fov) from COP (Centre Of 

Projection). Q is projected into Qp in the picture plane. If E Y E is not located at COP, Qp is 

observed to be originating from somewhere along LOS (Line Of Sight). VRP: View 

Reference Point, VUP: View Up Vector, VPN: View Plane Normal, VPD: View Plane 
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Distance, D: Distance. The right figure is referenced to a left-handed X y Y v Z v coordinate 

system where 0,(D and 4' are pitch, roll and yaw respectively. 

Yv 
j l > * C O P X 

VIEW 
PLANE Projection of 

V A A O B 

Figure 3.2: The geometry of perspective displays (Source: Ellis, 2000). 

Comparing 3D perspective displays and 2D displays, these costs will be presented in detail 

in Section 3.3. 

3.1.2 Geometric, Symbolic, and Dynamic Enhancements 

To understand how spatial information can be communicated, it is necessary to know the 

difference between spatial displays and spatial instruments. A spatial display can be 

considered as any dynamic, synthetic, or schematic mapping of one space onto another. A 

picture or a photograph is an example of spatial displays. A spatial instrximent, however, is 

a special form of spatial display, which is enhanced by three different techniques: 

geometric, symbolic, and dynamic techniques (Ellis, 1993). 

3.13 Geometric Enhancement 

Manipulating the choice of projection can enhance the communicative purpose of a 
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display. Geometric enhancements, in general, are achieved through an appropriate 

transformation of the metrics of either the displayed space or o f the objects (i.e., 

projection). The projection is chosen depending on the spatial property o f importance. A 

typical factor for assuring geometric enhancement includes the choice o f the position and 

orientation of the eye coordinate system used to generate perspective projection. Here, the 

selection of azimuth, elevation, field of view angle, and object distance is important (Ellis, 

1993; Kim et al., 1987; Kim et al., 1993; Prevett and Wickens, 1994). 

For example, Kim, et al., (1993) investigated the effects o f varying visual parameters on a 

three-axis tracking task. The results showed that excessive elevation angle (near 0 degree 

or -90 degree), and azimuth angle (outside -45 degree to 45 degree) appeared to degrade 

the tracking performance (see Section 3.3 for details). 

3.1.4 Symbolic Enhancement 

Symbolic enhancements, in general, consist of objects, scale, or metrics combined into a 

spatial display to improve the communicated information (Ellis, 1993). A symbol itself is 

not an actual object. The overlaying of latitude and longitude lines on a map are good 

examples of symbolic enhancements. Using symbolic enhancements, for example, a target 

aircraft's position relative to pilot's own aircraft on a perspective display can be presented 

by drawing a horizontal grid at a fixed altitude below an aircraft symbol and vertical 

reference lines from the aircraft symbol to the grid (Bemis, S. V. , Leeds, J. L., Winer, E. 

A., 1988; Ellis, 1993; Ellis and Hannaford, 1987; Endsley, 1995; Kim et al., 1993). In 

addition, i f predictor lines showing future position are given, a second vertical reference 

line can be drawn from the ends o f the predictor lines (Ellis et al., 1987). In these 

examples, the grid, vertical reference lines, and predictor lines are not actual objects. These 

lines are utilized to enhance the conmiunicative purpose o f displays. 

3.1.5 Dynamic Enhancement 

Dynamic enhancements are achieved through computational enhancements in shaping and 
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placing objects in interactive spatial instruments. Due to limited computational resources, 

the resources should be allocated to ensure that the image is computed in a timely and 

appropriate manner (Ellis, 1993). An example of dynamic enhancements can be found in 

the study of the interactive, proximity-operations and orbital-planning tools (Grunwald and 

Ellis, 1993). ̂ In this study, they noted that long delays could occur when the orbital 

dynamics were continuously updated while the operator manipulated the cursor to a new 

waypoint. The unworkable long delays associated with constant changes in waypoints were 

eliminated by computationally setting a waypoint. 

3.2 Stereoscopic Displays 

Utilizing the human stereoscopic vision capability of fusing two retinal images into one 

image, the stereoscopic display generates the powerful additional depth cue called 

stereopsis described in chapter 2.1.2. However, it should be noted that stereopsis has its 

limitation as discussed by Clark et al. (1996): 

(1) Stereopsis is effective only within short distances, about 200 metres or less; 

(2) Stereopsis provides information about distance between objects but cannot provide 

information about the distance between any objects and the observer; and 

(3) Using stereopsis, people tend to imderestimate depth at close distance, and 

overestimate at far distance. 

The stereoscopic display presents two slightiy different views of an object on the display. 

In the 3D world, the view each eye receives is somewhat different because the two eyes 

see the object from slightly different positions. Differences in these views give two 

possible depth cues: double image (each eye contributes a different image of the far object 

when viewing near, and vice versa) and binocular disparity (Hochberg, 1978). The 

disparity is the difference between where a target falls on the right eye and the left eye and 

is discussed in detail in section 2.1.2. 

The disparity can generate a powerful depth cue (Hochberg, 1978). This depth cue can be 
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obtained by taking two photographs of a scene (a stereoscopic picture pair, a 

"stereogram"), one from the position of each eye (65 mm apart on average), and presenting 

each picture to its appropriate eye, and then viewing such photographs with special devices 

called stereoscopes. The stereoscope is composed of two converging lenses and a 

supporting frame that simply separates right and left views. Different stereoscopic 

techniques wi l l be reviewed in chapter 4. 

Patterson and Martin (1992) discussed the geometry of binocular vision applied to 

stereoscopic displays. Figure 3.3 shows two drawings, one presented to the left eye and 

the other to the right eye, and their geometrical relationship to binocular vision. 

A B A' B' 

Left Eye 
b' 0' 

Right Eye 

Figure 3.3: Top view depicting two drawings, one presented to each eye (Source: 
Patterson and Martin,1992) 

In this figure, A and A' result in corresponding retinal points (a and a*) while B and B' 

result in disparate retinal points. This difference between the two eyes and the binocular 

fiision cause depth perception (i.e. B appears behind A) . 

The magnitude of disparity in stereoscopic displays can be computed as: 

r (degree) = 57.3 *S/D (3.1) 

where r is the disparity of visual angle (degrees), S is the separation between hal f-images 

(A and A ' i n Figure 3.3),"and D is the viewing distance. ~ 
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The magnitude of depth can be predicted as (Cormack and Fox, 1985): 

d = S * D/(I + S) for crossed disparity (3.2) 

d = S * p / ( I - S) for uncrossed disparity (3.3) 

where d = depth interval of the object predicted from the display, and 

I = inter pupillary distance (average is 65 mm). 

Patterson et al., (1992) performed a study to investigate several factors that affect depth 

perception in stereoscopic displays. These factors include: 

(1) half-image separation magnitude (i.e., the magnitude of separation between the 

stimuli, one for the left eye and the other for the right eye), 

(2) direction of separation (crossed or uncrossed), 

(3) viewing distance, 

(4) stimulus size 

(5) extended versus brief stimuli: exposure. 

Results showed that perceived depth in the crossed separation direction was frequently 

close to the prediction, while that in the uncrossed direction was frequently less than the 

prediction. The perceived depth was close to predictions for both the crossed and 

uncrossed direction only for large stimuli for a long duration. 

Other experimental studies regarding the applications of stereoscopic display and their 

effectiveness (Kim, et. al., 1987; Kim, et. al., 1993; Yeh, 1992; Barfield and Rosenberg, 

1995) are presented in section 3.3. 
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3.3 Evaluation of 20, 3D perspective, and 3D stereoscopic 
displays 

Chapter 3.3 wil l first evaluate 2D versus 3D perspective displays, then 3D perspective 

displays are evaluated against 3D stereoscopic displays. 

3,3.1 2D versus 3D Perspective Displays 

Ellis et al. (1987) conducted an experiment to compare a conventional 2D plan view with a 

3D perspective air traffic information display for an identical traffic situation. The subject's 

task was to decide i f an avoidance manoeuvre was needed while monitoring the traffic 

display. He or she was then to select an avoidance manoeuvre i f needed. In this study, no 

significant difference in manoeuvre decision time between the conventional and the 

perspective display was found, except in a head on traffic situation where decision time 

with the perspective display was much shorter. The mean number of selecting avoidance 

manoeuvres between the two display situations was not significantly different; however, 

more manoeuvres with a vertical component were found using the perspective display. 

Bemis et. al. (1988) performed a similar experiment to evaluate operator performance on a 

perspective and a conventional naval tactical display. The display provided the operator 

with relative position information on both enemy and own aircraft. Results showed that 

operators had fewer errors and shorter response times for selecting a closest interceptor 

when using the perspective display. However, no significant difference in detection latency 

was found, although the errors in detection were reduced using the perspective display. 

Prevett and Wickens (1994) compared pilot navigational performance using a 2D planar 

display (consisting of a 2D map and profile view) with four 3D perspective displays. The 

four perspeptive displays included an egocentric and three exocentric displays which were 

varied with viewpoint location distances (near distance exocentric, middle distance 

exocentric and far distance exocentric; see Section 3.1). The results showed that the 

egocentric perspective display was better in a tracking task than the others including the 
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planar display, while the middle distance exocentric display resulted in better performance 

in the global awareness tasks than the others. This advantage of the perspective displays 

was varied with the viewpoint location distances. However, these results support the 

advantage o f perspective displays over planar displays. In these studies, the use of 3D 

perspective (Jisplays resulted in relatively better performance than for 2D displays. Forty 

aviators were tested and the results were measured by statistically evaluating data from 

questionnaires for the global awareness performance and vertical and lateral deviation 

from flight path was recorded to measure the tracking performance. 

However, this superiority of perspective displays can be degraded by the following factors 

as discussed by Wickens et. al. (1994, b): 

(1) Position distortion - The perspective display presents the world from a 

non-orthogonal angle (e.g., views other than looking straight forward or down). 

Therefore, certziin portions of the world wi l l be covered more predominant than 

others. The potential remedy of this problem is to widen the field of view. 

However, such a technique produces the distortion of the real position; 

(2) Display resolution inconsistency - Distances not orthogonal to the line of sight wi l l 

be presented with less resolution than those orthogonal to the line of sight; and 

(3) Ambiguity along with line of sight - The representation of a 3D world (or objects) 

on a 2D display surface is inherently ambiguous. 

In another study, Nemire et al., (1994) performed an experiment to investigate the effect of 

a pitched optic array on the perception of gravity-referenced eye level (GREL; the eye 

level is decided by the reference plane perpendicular to the direction o f gravity, Stoper and 

Cohen (1993)) in a virtual environment display. In this experiment, subjects were asked to 

indicate GREL while viewing three-dimensional boxes which were generated by different 

independent measures including box pitch angles (5 levels) and optic structures (simple 

box with no grid, transverse partial grid, longitudinal partial grid, and fiill grid). They 
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found that the judgment of eye level was biased significantly by the longitudinal, but not 

the transverse structure. The result indicates that the longitudinal information is actually 

more functional than others in the perspective displays. 

3.3.2 3D Perspective versus 3D Stereoscopic Displays 
* 

A comparison of 3D perspective and 3D stereoscopic displays in a simulated tracking task 

has been presented by Kim et. al. (1987). Kim et. al.(1993) performed two experiments to 

investigate the effects of varying visual parameters on a three-axis tracking task. In the 

perspective parameter experiment, four perspective parameters were manipulated using a 

monoscopic perspective display. These parameters were azimuth, elevation, field of view 

angle and object distance. In the visual enhancement experiment, three visual enhancement 

depth cues (horizontal grids, vertical reference lines and stereoscopic disparity) were used 

widi both perspective and stereoscopic displays. Independent measures were normalized 

root mean square (rms) tracking errors. 

The results showed that excessive elevation angle (near 0° or -90°), and azimuth angle 

(outside -45 ° to 45 °) appeared to degrade tracking performance. The vertical reference 

lines resulted in significantly improved tracking perfonnance with the perspective display. 

However, this was not the case for the horizonted grid. The stereoscopic display resulted in 

lower tracking error over all visual conditions. However, the perspective display with 

appropriate visual perspective parameters (such as 0° to 45 ° azimuth angle, -45 ° elevation 

angle) and visual enhancement depth cues (such as vertical reference lines) resulted in 

equivalent performance as compared with the stereoscopic display. 

Kim et al., (1993) also reported the results of a similar experiment performed for a three-

axis pick-aud-place task. The effects of varying visual parameters reported for this pick-

and-place task were identical to three-axis tracking task experiments (Kim et al., 1987). 

Yeh (1992) investigated spatial judgments (relative depth and altitude) with monoscopic 

and stereoscopic presentation of perspective displays. The results showed that the presence 
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of binocular disparity in the stereoscopic view improved the spatial judgment. In another 

study, McLean et al., (1994) compared a 3D perspective video display (one camera view 

without visual enhancement) with a stereoscopic video display for a peg in a hollow task. 

The results showed that the stereoscopic video was superior to the 3D perspective video. In 

these studies^ visual enhancement cues such as vertical reference lines were not provided. 

Therefore, the performance benefits of stereoscopic displays may be decreased with such 

enhancement cues as presented by Kim et al.(1993). However, Yeh (1992) argued that 

such enhancement cues are not natural in perspective display formats and may cause 

unacceptable display clutter. He also discussed the problem associated with perceptual 

distortions in perspective projection resulting from the enhancement cues. 

The benefit associated with using stereoscopic displays was further reported by Barfield 

and Rosenberg (1995). They perfonned an experiment to evaluate judgments of relative 

elevation and azimuth angle between the reference and target cubes using either a 

perspective or stereoscopic display. Results showed that the stereoscopic display was 

superior to the perspective display (monoscopic) in judging the relative elevation. 

However, the judgments of relative azimuth angle were not improved by the use of the 

stereoscopic display. 

3.4 Discussion on visual displays 

Studies performed in the mid 1990's comparing 3D perspective with 2D displays show that 

the use of 3D perspective displays results in relatively better performance than that of 2D 

displays. More recent and relevant studies are not found in literature searches. 

However, Prevett and Wickens (1994) note that previous studies comparing 2D with 3D 

formats have not provided 2D displays with a fair comparison, presenting vertical 

information (e.g., altitude data) in 2D display symbolically or digitally (e.g., data tag), 

rather than in analogue form. The perspective display, in general, provides poor control in 

the vertical dimension, while providing better control in lateral dimensions, as compared to 
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2D displays (Wickens et al., 1994). 

Other studies comparing 3D perspective with stereoscopic displays show that monoscopic 

displays, i f provided with appropriate visual perspective parameters (such as 0 to 45 deg. 

azimuth angle and -45 deg. elevation angle) and visual enhancement depth cues (such as 

vertical reference lines) are nearly equivalent to stereoscopic displays (Kim, Tendick and 

Stark, 1993). In addition, the advantage of stereoscopic displays over 3D perspective 

displays may be reduced by disruption (vibration and poor viewing conditions) and the 

cost associated with implementing the stereoscopic displays (Wickens, 1992). However, 

the enhancement cues added in perspective displays may be unnatural and cause 

unacceptable display clutter. Furthermore, the problem associated with perceptual 

distortions in perspective projection resulting from the enhancement cues remains 

unproved (Yeh, 1992; Wickens et al., 1994). Chapter 2.1 3 establishes that the binocular 

depth cue is one of the most effective clues at close ranges. Including this stereoscopic 

depth cue in the presentation on a computer display is hence of significant value as the 

display is part of the personal space. 
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Chapter 4: 3D Stereoscopic Display Techniques 

3D effects and depth perception in a display system can be achieved in a number of 

' different ways. The simplest method is to apply one or several of the monocular depth cues 

discussed in section 2.1.2. In order to establish stereoscopic effects, to further enhance the 

depth perception, a binocular depth cue has to be applied. The left eye image and the right 

eye image of the stereo pair have to be channelled to the respective eye. An exception is 

the chromo stereoscopic technique described in 4.1.7 that only needs one colour-coded 

image. A large number of stereoscopic display techniques have been developed over the 

years, the principal ones reviewed in this chapter. They can generally be classified as 

stereoscopic and auto-stereoscopic techniques. The major distinction between stereoscopic 

and auto-stereoscopic display techniques is that the former requires the observer to use 

some form of viewing aid whereas the latter provides free viewing. 

The advancement in stereoscopic display technology continues as a result of both computer 

power and display technology which have evolved by orders of magnitude over the last 

decades. The latest stereoscopic display techniques include virtual retinal displays, which 

project the stereo pair directly onto the eye's retina and the latest auto stereoscopic 

techniques include electro holography and complete virtual environments with immersive 

large format environments like the CAVE (CAVE Automatic Virtual Environment). The 

scope of this section is to give a short description of the current and most accepted 

stereoscopic and auto stereoscopic techniques, and a brief discussion on different display 

characteristics. Finally a technique suitable for further work wil l be selected. This 

technique wi l l be selected based upon the novelty of the method, the feasibility to 

implement and the usability in an operational environment. The suitability of the method 

wi l l be further examined in the discussion of how digital hydrographic data is presently 

presented at the end of chapter 5, and a final decision on which method is best suited for 

further work wil l be made: " -
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4.1 Stereoscopic Display l echniques (Aided Viewing) 

While viewing stereoscopic displays the observer normally wears glasses that may have 

near complimentary colour filtered lenses, polarised lenses or lenses that occlude one eye 

sequentially in order to channel each of the images in the stereo pair to their respective 

eyes Figure 4 I gives an overview of the stereoscopic techniques described in this text 

1 I 1 ^ 1 
Coklur Tune SaquanMhr 

CoMtvM MarMkon Localnn 

Figure 4.1: Block diagram describing stereoscopic display techniques 

4.1.1 Colour Multiplexed (Anaglyph) 

Colour multiplexing or anaglyph is perhaps the most familiar stereoscopic technique The 

technique is widely used to display stereoscopic images in books, movies and on the 

Internet The anaglyph consists of a stereo pair with near complimentary colours, red and 

green or blue are the most commonly used The two images in the stereo pair are 

transparent The observer views the stereoscopic image through a pair o f near 

complimentary filters corresponding to the colours used in the stereo image Each fiher 

will exclude the corresponding image in the stereo pair and in that way give the required 

separation of the left and right image for stereoscopic viewing (Diner and Fender, 1993) 

Figure 4.2: A typical anaglyph of the Terrain on Mars, where the near 
complimentary images are merged. 
(Source: National Aeronautics and Space Administration (NASA)) 
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The advantages of this method are that it is inexpensive to implement, it can accommodate 

for multiple observers and the stereo image wi l l be of the same resolution as the display. 

Translation of the anaglyph onto hard copy (e.g. paper) is also an uncomplicated process. 

The method has been limited to produce monochrome (black and white) images, however 

resent develQpments have shown that a limited colour rendition in the stereo image is 

possible (Wei et al., 1998). 

Colour rivalry occurs under some instances when an illuminated area o f one colour 

presented to one eye appears to rival a similar area of another colour presented to the other 

eye. Colour rivalry limits the application of the anaglyph method. Another restrictive 

phenomenon is transitory shifts in the chromatic adaptation. The viewer wil l experience 

unpleasant after effects such as headaches and nausea from wearing the anaglyph filters. 

The hue of a perceived colour is dependent on the adaptation of the viewer. I f the viewer 

has been subjected to high intensity red light (e.g. anaglyph filter) the effect on the viewer 

wi l l be that red colours wi l l appear to shift in hue towards the complimentary colour cyan. 

(Pastoor and Wopking, 1997). Stereo crosstalk is a significant problem; this is when the 

image meant for one eye is faintly visible to the other eye. The image becomes blurred as a 

phenomenon called ghosting is created. Crosstalk can create difficulty in fiising the two 

images together. Viewed without the colour coated glasses, the image wi l l appear blurred 

and interpretation is impeded. 

4.1.2 Polarisation Multiplexed 

In order to separate the left and right image this method applies linear or circular 

polarization techniques. Polarization glasses are used in combination with orthogonally 

polarised images presented on two displays. In the two display setup, the displays are 

covered with orthogonal polarisation filters and arranged at a 90 degrees angle. A beam 

splitter (semi reflector) is used to channel the left and right images to the observer. The 

observer is wearing appropriate polarisation glasses to separate the images. This 
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stereoscopic technique is still widely in use, however the hardware requirement makes the 

technique more expensive compared to comparable techniques (Lipton, 1997). An 

alternative method to combine the stereo images is to interlace the images on the display 

by row or column; this method will only require a single display Cross polarization o f 

alternating areas of the display wi l l separate the images. Common to the muhiplexing 

techniques in general is that the observer is able to view the stereo image at full colour and 

full resolution, the technology is becoming fairly inexpensive and the technique provides 

for multiple viewers, each with their own headset The multiplexing methods are also 

compatible with non-stereoscopic presentations, unlike anaglyphs, which distort the colour 

perception of other presentations Polarisation multiplexing has the disadvantage that the 

efficiency or transmission is poor, the intensity o f the light emitted from the display is low. 

With a light intensity loss of up to 70% the image will appear dark The interlacing 

techniques wil l reduce the resolution by 50%. To maintain an acceptable, flicker free 

presentation, the frame rate should not decrease below 120 Hz (Macdonald and Lowe, 

1997). 

(efleclof 

Polarising glasses 

Polafising screens 

Figure 4.3: A two-display polarisation multiplexed arrangement (Petrie, G., 2001) 

4.1.3 Time Multiplexed 

By displaying the left and right eye images alternately at high speed (50-60 Hz / image) on 

a single display it is possible to obtain stereoscopic effect The observer must wear electro-
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optical shutters, one for each eye, the shutters are synchronised with the alternating images 

on the display. When the left eye image is displayed, the \efi eye shutter is open allowing 

the left eye to observe the image; the right eye shutter is closed. 

It is the human visual system's ability to store and merge stereo pairs with a time lag of up 

to 50 ms. that makes this technique possible (Hershenson, 1999). To avoid display flicker, 

the technique requires that the display refresh rate is relatively high, more than 60Hz 

(Diner and Fender, 1993), and closer to 120Hz for reasonable quality, similar to the 

requirements of the interlacing polarisation multiplexed method. 

Figure 4.4: A t>'pical time multiplex stereo kit with shutter glasses, synchronisation 
cable and software (Source: Stereographies Corporation) 

The temporal resolution wi l l be halved, as each eye only perceives the image half the time. 

This results in a reduction in the display brightness. The relatively heavy glasses may be 

cumbersome to wear. More advanced work bench systems such as the Fakespace 

Immersadesk R2 (Fakespace Labs Inc.) are also available. These systems are portable and 

equipped with active shutter glasses, however the cost of obtaining such systems is a major 

disadvantage. 

4.1.4 Time Sequentially Controlled Polarisation 

This method combines the polarisation - and time multiplexing techniques by displaying 
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alternating polarised images to the viewer. The display screen is covered with a Liquid 

Crystal (LC) layer, which functions as a polarizer. The alternating left-eye and right-eye 

images on the display have different polarisation patterns (clockwise / anti-clockwise). The 

observer wearing glasses with appropriate polarisation for each eye is able to separate the 

left and righ; image. The key advantage of this method is that the observer only needs 

simple, inexpensive and lightweight polarising glasses that require no extra 

synchronisation devises (Pastoor and Wopking, 1997). The main disadvantage of this 

technique is also display flicker and reduction of display brightness due to halved temporal 

resolution. 

4.1.5 Location Multiplexed 

In photogrammetry, analytical stereo plotters have been widely used. These instruments 

are very complex, expensive and require special skills to operate. A photographic stereo 

pair is placed on the workbench and the left and right images are separately channelled to 

the viewer's corresponding eyes through a complex arrangement of optics. 

Figure 4.5: The L H Systems A M 2000 analytical stereo plotter (Source: L H Systems) 

These systems provide high precision and high resolution stereo images, however they are 

cumbersome to use and provide only a fixed perspective image. 
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A more familiar and simple location multiplexed technique is used by the View-Master® 

stereoscope that many children have used as a toy for decades. 

Figure 4.6: The View-Master® stereoscope (anaglyphic presentation) 

4.1.6 Head Mounted Displays 

Head Mounted Displays (HMD) which is a further development of the location 

multiplexed technique is increasingly used in Virtual Reality (VR) and stereoscopic 

visualisation. An HMD consists o f a miniature display system, (two displays, one in front 

of each eye) and optics to focus the display at a comfortable distance in front of the eyes. 

6T 

Figure 4.7: A typical Head Mounted Display. (Source: Wearcam) 

The HMD can simply be a pair of goggles or a frill helmet. The viewer's immediate 
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surroundings are usually occluded by the HMD, giving a feeling of total immersion in the 

displayed scene. A head-tracking device is included in the system allowing the system to 

respond to head movements. This ftinction is particularly important when the observer is 

immersed in a VR environment where changes in viewing direction will alter the picture 

displayed (SJiibata, 2002). One of the major constraints of HMDs is their limited volume of 

activity due to cabling, and overall weight. The considerable amount of computing power 

required for the displayed image to be updated in accordance with the head movement may 

introduce a delay in the displayed image, this delay has a tendency to cause motion 

sickness in HMDs. "See-through" HMDs are also developed, to free the observer from 

immersion, and is particularly suited for augmented reality applications where the 

stereoscopic image is merged with the real world. The disadvantage of see-through HMDs 

is that when the observer focus on the displayed image the background will be diffused. To 

free the observer from wearing HMDs, a further development of the location multiplexed 

technique, Binocular-Omni-Orientation-Monitor (BOOM) display, was developed in the 

late 1980's. Two miniature displays are installed in a casing attached to an arm. 

Figure 4.8: BOOM Display on arm with 6 degrees of freedom. 

(Source: Fakespace Labs Inc.) 
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4.1.7 C hromo Stereoscofn 

Einthofen (1885) found that it is possible to place objects with difTerent colours at different 

depths of view when the objects are placed at the same distance (chromo stereopsis) In the 

early 1990s researchers found renewed interest in this method to create a stereoscopic 

effect from colour coding images However, later the interest for this method has 

diminished The principle of chromo stereoscopy is relatively simple As white light is 

refracted through a glass prism, it is separated into the colours of the visible spectrum, the 

different colours have different refraction angles (Figure 4.9). 

INFRARED 

OPTICAL P R I S V 

Figure 4.9: White light refracted through a glass prism. (Source: University of 
Toronto) 

A red object has positive chromo stereopsis and will appear closer than a blue object at the 

same distance By viewing a colour coded image with double prism eyeglasses to enhance 

the chromo stereopsis effect, the required depth perception is achieved Figure 4 10 

illustrates the effect When the observer is wearing single prism glasses the object appears 

closer to the observer than desired, double prism glasses has been developed to place the 

image at the correct distance from the observer (Toutin, 1997) The main disadvantage by 

using the chromo stereoscopic technique is that it is not possible to view the image in its 

true colours. However, the chromo stereoscopic image is easy to translate to different 

mediums such as paper, overhead projectors, and to non-stereographic presentations This 

is the only stereoscopic technique where only one image is required for stereoscopic effect; 

this will increase the readability of the image in non-stereoscopic presentations, increase 
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resolution and decrease the need for extra computer power and advanced display 

technology 

Figure 4.10: An example of a Colour Coded Image prepared for Chromo 
Stereoscopic viewing using Chromadepth spectacles (Source: Toutin, 
1997) 

4.2 Autostereoscopic Display Techniques (Free Viewing) 

As stated earlier, the research and development of different auto stereoscopic techniques 

are proceeding at an ever-increasing speed Figure 4 11 summarizes the more common 

current techniques in autostereoscopy Pastoor and Wopking (1997), Bomer (1999) or 

Okoshi (1976) give more detailed descriptions 

1 1 1 1 
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Figure 4 . I I : Block diagram summarizing current auto stereoscopic techniques 
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4.2.1 Direction Multiplexed Displays 

Direction multiplexed displays are the most common auto stereoscopic displays and are 

most compatible with computer graphics. The observer directly views the same display 

area with both eyes. The left eye image is presented only to the left eye and the right eye 

image is presented only to the right eye. The difference in viewing angle is caused by the 

separation of the eyes, and vertical bars or lenses are built into the display, permitting or 

blocking certain parts of the underlying display from view of certain angles from the 

display. The images are interlaced in a way comparable with lenticular or barrier strip 

stereograms. 

Several techniques based on the physical principles of diffraction, refraction, reflection and 

occlusion have been developed (Pastoor and Wopking, 1997). The most established 

refraction based method is lenticular imaging. 

Sterao toiages 

Ftal panel 
display LeoxIcuUr pUto Eyes of 

left viewsr 

Figure 4.12: Principle of the lenticular imaging technique. (Source: Borner, 1999) 

An array of long narrow lenses (lenticules) is built into the display screen as shown in 

figure 4.12. Each lens focuses on the image information located behind it and directs the 

light in different directions (Bomer, 1999). In order to view the stereo image, the observer 

must be located in particular locations relative to the display (stereo zones). I f not the 

stereo image may be blurred or the stereoscopic effect may be lost. However, certain lens 

arrays will allow more than one observer to view the stefeo~ image. The main "disadvantage 
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of this technique is that the display resolution is effectively halved Interpretation of the 

image without the lenticular plate is also inhibited 

Kigure 4.13: Lenticular image interlaced stereo pair (Source: Bomer, 1999) 

4.2.2 Electro-Holography 

Electro Holograms store wave front information about an object as microscopic 

interference fringes during the holographic exposure process When the developed 

hologram is illuminated the interference fringe pattern acts as a complex diffractive lens 

that reconstructs the object light's direction and intensity (Benton, 1985) 

Progress in electronics, electro optics and computers has renewed the interest in 

holographic techniques to present stereographic images However, the extremely high 

display resolution requirement and the enormous amount of information needed to 

represent a holographic image is a major challenge for the research establishments, 

regarding display technology and data transfer, for this technique to develop further 

(Trayner and Orr, 1996) Sato (2001) gives an overview of recent research development on 

the topic of electro-holography 
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4.2.3 Volumetric Displays 

Volumetric displays work by filling a volume of space with image points, efTectively a 3D 

pixel (Voxel) display The image points originate at a real point in space and hence take up 

a three-dimensional volume A large variety of volumetric display techniques such as fibre 

optics, lasers, oscillating screens or stacking transparent LCD screens have been 

developed The volumetric display image is visible from a wide range of viewpoints, even 

permitting a viewer to walk around the display However, the volumetric displays are non-

occluding, i e they have an appearance of transparency (Favalora, G. E., Napoli, J , Hall, 

D M , Dorval, R K , Giovinco, M. G , Richmond, M. J , Chun, W S , 2002) Occlusion is 

an important depth cue, often stronger than even stereopsis Consequently volumetric 

displays are not a suited technique to display photo realistic images The amount of 

information these images are able to represent is also limited because the viewer is 

confused by the absence of hidden surface elimination Another disadvantage has been that 

the plotting of the images are not sufficiently fast to produce the points on an 3 D object 

Hence volumetric displays have been limited to wire frame rendering presentation 

Figure 4.14: An example of a volumetric spherical display. A pink Tighter airplane is 
visualised above the green terrain. In the right picture the flghter plane 
is visualised in side view. (Source: Actuality Systems Inc.) 
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4,3 Discussion on 3D stereoscopic display techniques 

The majority of the auto stereoscopic techniques are still at a developmental stage; they are 

expensive and require a vast amount of computer power to produce a 3D image (Javidi and 

Okano, 2002). The lenticular imaging technique is currently the most accessible. This 

technique does however have limitations, the most significant being the reduction of the 

display resolution by 50%, and interpretation of the image without the lenticular display is 

inhibited. 

The aided viewing techniques are as earlier described more established and is presently, to 

some extent, employed in fields of scientific visualisation such as medical imaging, 

photogrammetry and geological imaging in the petroleum exploration industry. The 

polarisation and time multiplexing techniques are most common (Macdonald and Lowe, 

1997). The major disadvantages such as, the light intensity loss, flicker and loss in 

resolution will improve as display technology and computing power develops, making 

these techniques well accepted for scientific visualisation. The fiirther development of 

HMDs will also gain fi-om increased computer power and display technology, eliminating 

most of the present disadvantages in this technique. The technique will probably be less 

expensive over time and thereby more available. Despite its simplicity and economical 

advantage, the anaglyph technique's major disadvantages make it less probable as a 

contender in the further development of stereoscopic visualisation techniques (Javidi and 

Okano, 2002). 

The chromo stereoscopic technique has several advantages that can be advantageous when 

visualising scientific data, although except for Toutin's application to remote sensing data, 

it has not been possible to find examples where this technique is applied. Thus, 

• the easy translation into different mediums, 

• only the single image required for stereoscopic effect, 

• the inexpensive glasses, 
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• no reduction in resolution, 

• low demand on computer power, 

are all desirable qualities, especially in a semi-operational environment such as 

hydrography. 

The major disadvantage, a non realistic colour scheme, can simply be overcome by present 

display technology that allows switching between different 3D model textures. For the 

purpose of selecting a technique for this project the chromo stereoscopic method appears 

intriguing because of the advantages described above. The novelty of the technique and the 

relatively low cost of equipment makes this stereoscopic display technique advantageous 

for further investigation. After investigating the presentation of digital hydrographic data in 

chapter 5, the best-suited technique for the experimental work of this thesis will be 

selected. 
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Chapter 5: Presentation of Digital Hydrographic 
Data 

As described in chapter 2, depth perception increases with an increasing number of visual 

depth cues. The effect of the binocular depth cues is powerfiil and beneficial to include in 

die presentation of spatial data to increase the comprehension of the dataset. This is 

especially true concerning complex datasets with a number of spatially interrelated objects. 

As explained in chapter 3 the powerful binocular depth cue stereopsis is presented in a 2D 

display by using stereoscopic display techniques. Despite the large number of stereoscopic 

techniques available, surprisingly few are employed in scientific visualisation today. 

However some scientific branches such as medicine, chemistry, the petroleum exploration 

industry and complex mechanical engineering include stereoscopic techniques to a greater 

extent to gain increased perception and understanding (Heam and Baker, 1997). 

This chapter will give an overview of the current trends in scientific visualisation with 

respect to stereoscopic techniques and examine how digital hydrographic data is currently 

presented. Further it will investigate how suitable this data is to visualise using 

stereoscopic techniques. Hydrographic datasets for a broad approach will be examined; 

however the focus will be on digital hydrographic data that are three dimensional in nature. 

In essence data that is volumetric in nature, or data, where position is determined in a 

volumetric model. The datasets will be classified, and appropriate datasets representing 

each of the established classes will be selected for the visualisation presentations including 

the stereoscopic depth cue, these presentations are part of the data analyses chapter. 

In general, hydrographic data is presented as 2D images with few or no visual depth cues, 

or as 3D perspective models including several, of the monocular visual cues to increase 

depth perception. Presently, to the author's knowledge, only one sofhvare developer with a 
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base in an academic establishment specialising in hydrography has developed 

hydrographic software applications where stereoscopic display techniques are available 

(Interactive Visualization Systems, 2004). However the stereoscopic display techniques are 

limited to anaglyphs and time polarizing multiplexing explained in chapter 4. 

In compliance with the definition of hydrography (chapter 1) the data investigated will be 

limited to the volume between the water surface and the seabed. Further only data that can 

be spatially referenced in the volume or constitute the limiting surfaces of the volume will 

be investigated. 

5.1 Current trends in Scientific Visualisation data presentation 

As a result of the computer revolution, visualisation of data has evolved at an ever 

increasing rate and in areas like advanced engineering and medical science advanced 

visualisation techniques including stereoscopic viewing is included. The computer gaming 

industry has vastly contributed to the development of computer visualisation. One of the 

major models of the visualisation process was introduced by Haber and McNabb (1990). 

The model represents a general classification of data that comes from numerical 

simulations; however it is more generally applicable to computer visualisation. Figure 5.1 

show that the model identifies three major processes, data preparation, visualisation 

mapping and presentation. 

The first process, data preparation, creates a model of the raw data. Based on the derived 

data, a visualisation mapping process is conducted, and an Abstract Visualisation Object 

(AVO) is created. Each quantity of the derived data is mapped to an attribute of the AVO 

such as space, time and colour. The third process, presentation, produces a picture on an 

output device, in most cases on a computer screen. 
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Figure 5.1: The Haber McNabb visualisation model (Source: Haber and McNabb, 

1990) 

When investigating the developments of the presentation process of the model it is evident 

that scientific branches dealing with complex spatially related data are including 

stereoscopic viewing to enhance the presentation process. As discussed in the chapter 4 

multiplexing techniques are still most accepted with a growing interest in advanced Virtual 

Reality (VR) presentations, however the cost and computer power required for the 

advanced VR systems are still a limiting factor. 

As earlier mentioned scientific fields such as medicine, advanced engineering, the 

petroleum exploitation industry and meteorology where high volume and complex datasets 

are analyzed presentiy applies stereoscopic presentations to enhance the data perception. 

Suthau et. al. (2002) have developed an application, ARION (Augmented Reality for Intra 

Operative Navigation), to assist medical surgeons during liver transplantations. The real 

scene viewed by the user is combined with a virtual scene generated by the computer 

where additional information is augmented (figure 5.2). Optical, see-through, head 

mounted displays as described in chapter 4.1.6 are used to stereoscopically enhance the 

presentation. 
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Figure 5.2: The Arion computer application is developed to enhance visualisation 
during liver transplantations (Source: Suthau et. al., 2002) 

Figure 5 3 illustrates a numerically 3D modelled severe storm animation which was 

developed at the National Centre for Super Computing at the University of Illinois The 

model is stereoscopically presented using the time multiplexing technique described in 

chapter 4 13 

Figure 5.3: Scientific visualisation of a numerically modelled severe storm (Source: 
University of Illinois, 2004) 

Photogrammetry and remote sensing have applied stereoscopic presentation techniques to 

increase the depth perception of images to extract height information In state of the art 
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computer applications such as the Erdas Stereo Analyst (Erdas, 2004) it is possible to add 

stereoscopic depth to the image data However, only anaglyph and time multiplexing 

techniques are available The advanced 3D Visualisation system, Fledermaus from IVS can 

generate a wide range of impressive data presentations of hydrographic data, where colour 

stratification along the vertical axis is widely applied, stereoscopic viewing is available 

through the time multiplexing techniques (Interactive Visualization Systems, 2004) 

Figure 5.4: A typical presentation output from the Fledermaus application. A 
visualisation of Lake Tahoe seabed colour stratified along the z axis, with 
monochrome mountains in the background. (Source: Interactive 
Visualization Systems, 2004). 

5.2 Sonar Sensor data 

Sonar (SOund Navigation And Ranging) was used for the first time in Germany in 1912 

Technological development has brought enormous improvement in transducer and signal 

processing technology According to Kjerstad (2002) the technology has branched into 3 

main groups of sonar systems. 

• Offshore industry and survey related systems employed for accurate relative 

positioning and to gather bathymetric data, 

• Military systems that consist of both active and passive systems used for submarine 
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detection navigation and underwater communication, 

• Fishery systems employed for fish finding, navigation, biomass measurements and 

acoustic sensors on fishery tools. 

In active sonar systems the returned acoustic signal determines the range from the 

transducer tq the detected object. The object's location in the sonar beam can be 

determined, and the shape and direction of the sonar beam is manipulated to get desired 

information on the object's relative location, shape and size (Kjerstad, 2002). The surface 

texture of the object can also be classified by some of the systems. Passive sonar systems 

record and analyse the received sound by transducers or hydrophone arrangements. Using 

advanced signal correlation techniques, both bearing and distance to registered targets is 

calculated. The passive systems are also capable of classifying targets; these systems are 

primarily used in military systems where stealth is often a requirement. Military systems 

used in submarine warfare and similar operations will not be discussed further in this text 

because of the difficulties involved in obtaining information on the latest developments in 

relevant technologies. 

The following sections of chapter 5.2 will describe how hydrographic sounding data are 

currently presented and what visual cues are used in the current presentation of sounding 

data. First, the data fi^om offshore surveying and mapping systems are investigated; 

thereafter the soimding data fiom today's advanced fishery sounding systems is examined. 

5.2.1 Offshore survey and mapping systems 

The main objective of a bathymetric survey is to produce a terrain model or relief of the 

seabed. This can be accomplished by correlating a position with a depth measurement in a 

regular grid, or a Triangulated Irregular Network (TIN) giving x, y, z coordinate sets, 

where x and y refer to the horizontal position and z to the depth measurement (sounding) 

(Brouns et. al., 2001). Until the early 1980s hydrographic originals were edited and hand 

drawn (figure 5.5) by hydrographers from echograms and the depth contours were 
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extrapolated fi-om the dataset. 

Figure 5.5: Hand drawn hydrographic original in scale 1:20000 (Source: Kjerstad, 
2002). 

Today this process is automated and positional data is merged with depth soundings to 

create a Digital Terrain Model (DTM) of the seabed. In recent years multibeam sounders 

have improved the hydrographic survey of an area by producing a relatively high 

resolution DTM in a corridor extending each side of the survey ship's track. 

The traditional way of presenting the seabed and its features in an operational nautical 

context is still in 2 dimensions on a paper chart, or electronic charts digitised or scanned 

fi-om paper charts. The bathymetric details are still presented as spot depth numbers and 

contour lines. Figure 5.6 shows a computer display presenting an electronic navigation 

chart (ENC) (IHO, 2000). Contour lines and spot depths deeper than the set safety depth 

are excluded fi"om the presentation to improve the readability of the chart, however areas 

with depths less than the safety depth is colour coded (shades of blue in figure 5.6). With 

the underlying DTM a perspective view of the seabed is easily computed and several 

commercial software packages are capable of presenting a perspective view of the seabed 

in a selected area to give the viewer better perception of the bathymetric data (figure 5.7). 
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Figure 5.6: Computer display presenting a electronic vector chart (Source: 
Kongsberg Norcontrol AS) 

By including a perspective model and shading most of the monocular depth cues are 

included In order to increase the depth perception even further, stereoscopic depth cues 

can be integrated Figure 5.7 gives an example of a presentation including a perspective 

model Contour lines, spot depths and colour coding are also included to increase 

perception of the local bathymetry. 

Figure 5.7: Perspective view of selected area as presented in an electronic chart 
software package (Source: Chartwork Ltd.) 
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In the offshore industry and other areas requiring a high-resolution presentation of a 

smaller area of the seabed with its features, high resolution multibeam sounders and Side 

Scan Sonars (SSS) are common data sensors today By attaching the SSS to a towed fish, a 

ROV or an autonomous underwater vehicle (AUV) the sonar frequency can be increased to 

enhance the resolution By bringing the side scanning sonar close to the seabed and with 

the sonar beams radiating more horizontally across the seabed it is also possible to get a 

side view of the seabed features This increases the detection of features pointing upwards 

from the seabed and will provide better classification of the roughness o f the seabed like 

stones and sand waves, and as shown in figure 5 8 it is possible to get perspective images 

of ship wrecks and other features Note that figure 5 8 also includes the light and shadow 

distribution monocular depth cue to increase perception 

Figure 5.8: Typical SSS image (500 kHz) of a shipwreck on a 75-mctre range 

collected with a Klein Side Scan Sonar System 3000. 

(Source: Klein Associates Inc.) 

Several specialised hydrographic software packages such as Eiva Navipack, Reson 

Navisoft and Trimble HYDROpro are available and a product survey was presented in 

Hydro International (2002) These software packages are often comprehensive, in the sense 

that they are used in the planning of hydrographic operations, collecting the hydrographic 
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data from multiple sensors and processing and presenting the data output The most 

sophisticated software manufacturers such as QPS QINSy provide specialised 3D 

visualisation tools to improve presentation of data even further The visualisation tools are 

capable of generating 3D surface models or 3D contour models presented in perspective 

view Depth colour coding is also available by most of the visualisation tools and is to an 

increasing degree used to enhance the perception of depth along the vertical axis Figure 

5.9 gives an example of a typical presentation of a hydrographic dataset, a colour coded 

DTM where the colour coding is a function of depth (z-axis) 

Figure 5.9: A typical example of multibeam bathymetry data presentation, including 
colour stratiflcation of the data combined with sun-illumination shading. 

I he shading shows added relief detail and texture, both of which arc 
valuable for increased perception of the dataset (Lockhart et al., 2001). 

The QPS QINSy software also includes a Virtual desktop environment with a perspective 

model of a DTM and objects such as ROVs, divers, SSS fish and structures are presented 

in real time. Several of the monocular depth cues listed in chapter 2 are included in the 

presentations; however only one o f the software packages presently available provides 

stereoscopic display techniques to further enhance the depth perception Figure 5 10 gives 

an example of a presentation from one of the most sophisticated commercial software 

packages currently available on the market 
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Figure 5.10: QINSy 6 hydrographic software package contains a virtual environment 
manager. This figure displays an extract f rom a ROV flying over a 
colour-coded seabed D T M in real time (Source: Quality Positioning 
Services BV (QPS)). 

Hydrographic applications such as RoxAnn GD (Sonavision, 2005) also classify the 

properties of the seabed, but this property is not of great concern for 3D presentation, 

rather a matter of the texture or colour you place on the bathymetric surface 

5.2.2 Fishery systems 

This section investigates how data from acoustic systems related to fisheries are visualised 

Fish finding sonars and echo sounders have a wide range of purposes depending on the 

type of fishery. In general the differences are in presentation of data, signal range and 

resolution of data The fishery system technology has also developed rapidly during the 

last decades Current data visualisation is developed mainly by the sonar system 

manufacturers and is in general limited to traditional 2D sonar images with colour coding 

as illustrated in figure 5 11 
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Figure 5.11: Two presentations of data on the Puruno CH-37 colour sector scanning 
sonar. The left hand picture shows a more traditional sonar display of a 
horizontal sweep, colour coded to enhance the interpretation. The right 
hand picture contains an oblique perspective presentation of the seabed 
from the vertical fan beam mode. The perspective image is overlaid with 
real time fish and bottom echoes (Source: Furuno Norge AS). 

However one innovative software provider (ICAN) is presently developing a software 

package that presents the fishing vessel and fishing gear in a 3D perspective model with a 

bathymetric DTM to visualise the seafloor (figure 5 12) The model is colour coded along 

the z-axis (depth) as can bee seen in figure 5 12 

Figure 5.12: The Fishing Information Navigation System (FINS) is currently under 
development by the Canadian company ICAN. The vessel and the trawl 
"float''' over the colour coded surface model of the seabed (Source: 
International C ommunications and Navigation Ltd . ( ICAN)). 
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5.3 Remote Sensing data 

Stereoscopic display techniques described in chapter 4.1 have been used by other sciences 

and technologies to enhance the display of digital geo-referenced models such as DTMs, 

Software packages used in remote sensing (Lillesand and Kiefer, 2000) and in 

photogranin>etry (Wolf and Dewitt, 2000) such as Erdas Imagine Stereoanalyst (Leica 

Geosystems, 2004) can easily generate stereoscopic models fi*om DTMs or stereo images. 

The stereoscopic display techniques used are mainly anaglyphs or time-polarisation 

multiplexing. 

The remote sensing contribution to hydrography is summarised in Lavender (2001). 

Section 5.3 reviews the different remote sensing systems and techniques available to 

collect hydrographic data where remote sensing includes systems mounted on airborne or 

satellite platforms. The systems can be categorised in two main groups, active and passive. 

5.3.1 Active systems 

The active systems include radar systems and LIDAR (Light Detection And Ranging) 

systems and Synthetic Aperture Radar (SAR). Several of the spacebome platforms are 

equipped with accurate radar altimeters. 

Along the platform footprint the radar altimeters are able to measure the sea surface height 

to a maximum accuracy of approximately 2 cm provided an ideal reference ellipsoid is 

available. Radar altimeter systems collect point measurements; these are then interpolated 

to produce a global map as shown in figure 5.13. 
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Figure 5.13: Radar altimeter data f rom the ERS satellite showing sea surface height 
anomalies f rom an average anomaly map on a global scale. The 
anomalies are colour coded using the visual spectrum. (Source: 
European Space Agency (ESA) Earthnet Online) 

The minute vertical variation over a relatively large area makes the data well suited for a 

2D presentation with elevation variations indicated as elevation contour lines or as 

coloured areas of equal elevation (figure 5.13), however less suited for 3D presentations 

unless the dataset is of a local area The sea surface height will frequently constitute one of 

the vertical limiting surfaces, and in a local area model the vertical variations in sea surface 

height may be of such magnitude that a 3D presentation is favourable 

In order to increase performance of the radar systems on space-borne platforms SAR 

technology is generally used (Lillesand and Kiefer, 2000) Through modified processing 

techniques the characteristics of a very long radar antenna is synthesised. By recording the 

signal travel time and the strength of the returned signal it is possible to measure the sea 

surface roughness (Lavender, 2001) By analysing the sea surface roughness data it is also 

possible to detect oil spills (Troms0 Satellite station, 2003). 
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Figure 5.14: SAR image illustrating oil spills f rom oil platforms in the North Sea. The 
sea surface roughness increases f r o m dark to light colour in the picture. 
(Source: European Space Agency / Tromse Satellite Station (ESA/TSS)). 

SAR images from several platforms, e.g. Radarsat and ERS are employed to detect, map 

and classify icebergs, measure the ice concentration in an area and to monitor the extent of 

the ice border (Lillesand and Kiefer, 2000). Figure 5.15 shows the arctic ice cover limit 

with colour coding to categorize different types of ice. 

By developing ship detection software algorithms and applications it is possible to use 

SAR images to detect and track ship traffic in an area for instance for fisheries 

enforcement activities (Wahl, 1998). 
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Figure 5.15: Image illustrating the Arctic ice cover in March 1993. The ice cover (in 
% ) is colour coded f rom blue (ocean) to white 100% solid ice. (Source: 
Nansen Environmental and Remote Sensing Center (NERS( H . 

LIDAR systems are mounted on airborne platforms and are able to produce a high 

resolution bathymetric DTM of the covered area The systems are limited to maximum 

depth measurements of approximately 50 metres depending on water turbidity (de Jong et 

a l , 2002). Several national hydrographic offices are using this method to collect 

bathymetric data in shallow and less accessible coastal areas Sinclair (1999) provides an 

overview of the capabilities and performance of the Australian LIDAR system. Laser 

Airborne Depth Sounder (LADS) Figure 5 16 shows a LIDAR data generated digital 

bathymetric model The model includes surface rendering with colour coding of the z-axis 
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Figure 5.16: High accuracy and high-resolution bathymetric model f rom LIDAR data 
collected by LADS in Norwegian waters. The model is colour coded 
using the visible spectrum (Source: Sinclair, 1999). 

5.3.2 Passive systems 

The passive remote sensing systems used to collect hydrographic data are optical sensors 

mainly on airborne platforms, however optical imagery from space borne platforms such as 

Landsat is also used (Lavender, 2001) The optical data collection finds a place primarily 

in the transition zone between land and sea To include stereoscopic visual clues to the 

optical images traditional photogrammetric techniques are used to create 3D stereo models 

Digital photogrammetry software packages make it possible to produce DTMs from 

scanned optical imagery (Wolf and Dewitt, 2000), and to drape orthophotos on top the 

DTM to get a terrain model that includes the surface details 

Remote sensing data from passive sensors on space borne platforms are used to collect a 

variety of marine biological data in the surface layers of the oceans (Lavender, 2001) 

However with reference to the IHO definition of hydrography these data will not be 

discussed in this text 

5.4 Tidal model data 

High-resolution tidal models based on mathematical tidal dynamics computations and tidal 
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gauge observations are available (Moe et a l , 2002) Tidal data are traditionally presented 

in a tabular format and on charts containing bathymetric features overlaid with a grid of 

isolines connecting spots with equal sea surface elevation (figure 5.17). 

350 

Figure 5.17: Isolines for amplitude (2 cm separation) and phase (2 degrees 
separation). Tidal stations marked with red dots. Colour shading depicts 
water depth. (Source: Moe c t al., 2D02). 

Today computerised modelling techniques provide for animations of the propagation of 

tides Figure 5 18 shows a picture from an animation of sea level changes associated with 

the M2-tide in the Nordic Seas. The light blue area depicts the areas of high sea level and 

during the animation the area changes according to the mathematical model The tidal 

height will constitute the limiting surface of the hydrographic model in many 

circumstances and, particularly for local models where the vertical and horizontal scale is 

more similar, it can be of value to present it in 3D. 
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Figure 5.18: Figure from Animation of the sea level change in the Nordic seas (2 
frames). Light blue colour depicts area of higher elevation (Source: 
University of Oslo, Department of Mathematics) 

5.5 Ocean and tidal current data 

Ocean and tidal current data is traditionally presented as 2D vector charts where each 

vector represents the local direction of the current and local current velocity is depicted by 

the length of the vector These presentations are of\en based on a combination of current 

measurements from current meters or Acoustic Doppler Current Profilers (ADCP) and 

mathematical models The models are frequently layered, each layer containing a vector 

chart representing the currents at different depths Computer modelling has supplemented 

animations and perspective views to the presentations Figure 5 19 shows a presentation of 

the tidal current in the Drobak Sound, in the Oslo fjord in southern Norway 

This presentation is an animation showing the temporal variations of the tidal currents in 

the sound By presenting the current layers at different depths in a model volume in 3D an 

increased perception of the water movement can be achieved It is possible to visualise 

models of temperature layers and variations of salinity in the hydrographic model in a 

similar fashion 
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Figure 5.19: Computer model presentation of tidal currents in the Oslo Fjord. 
Picture is based on animation that shows the temporal changes of the 
currents (2 frames). (Source: University of Oslo, Department of 
Mathematics). 

Figure 5 .20 presents an animation of a 2D (only one layer) tidal current vector field model 

By introducing more layers at different depths the tidal current variations as a result of the 

ship and the bathymetry can be visualised and a stereoscopic presentation would increase 

the perception of the model 

Figure 5.20: This picture is a snapshot of an animation that demonstrates the results 
from a 2D tidal current model in the vicinity of an unloading dock on 
the east coast of Canada. It also provides a demonstration of the ability 
to fly through a transparent water surface for another perspective of 
the surrounding bathymetry (Source: Baird Software). 
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5.6 Man-made Object data 

Man-made objects constructed or operated subsurface are mainly positioned in the water 

volume by hydro acoustic systems. An object's attitude and movement can, in many , 

instances, be determined by sensors mounted on the object (e.g. gyro and Doppler log on a 

ROV (Remo'tely Operated Vehicle)) or by tracking the objects. This m\\ allow for a 

dynamic presentation. The size and shape of the object can either be known, as is the case 

for an ROV, or it can be unknovm, as is the case for an unidentified sonar target. I f the 

object size and shape is known it can be modelled using a CAD software package or 

similar. 

An example of this is a ROV positioned by a Super Short Base Line (SSBL) Hydro-

acoustic Positioning Reference (HPR) system. The relative position of the ROV is 

determined by using a composite transducer consisting of a multitude o f transducer 

elements. By measuring the phase difference o f the received signal at the receiving 

transducer elements, the ROV's position can be determined. I f the absolute position and 

attitude o f the transducer is knovra, the ROV's absolute position can be derived. The object 

shape, size, attitude and 3D position in the water volume can be included in the visual 

presentation. Underwater positioning principles are further discussed in Ingham and 

Abbott (1992). 

Today the visual presentation of man made objects is generally presented in a 2 

dimensional Computer Aided Design (CAD) fashion as a situational display with the 

altitude o f the dynamically positioned object above the seabed terrain numerically 

displayed. However the visual presentation is evolving towards 3D perspective models, 

and the most advanced software packages such as QINSy and MakaiLay includes this form 

of presentation. Figure 5.21 illustrates a 3D presentation of a cable laying operation. 
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Figure 5.21: 3D presentation of a cable laying operation, including water volume, 
bathymetry, cable, surface vessel and also a 3D current profile. (Source: 
Makai Ocean iLngineering Inc.) 

5.7 Discussion on Digital llydrographic Data 

The hydrographic data presented in this chapter can be classified into 5 different classes 

• Bathymetric data 

• Biological/organic data in water volume 

• Sea Surface data 

• Ocean and Tidal Current data 

• Man-made Objects data 

Data that has been labelled to be 2D in nature and not well suited for stereoscopic 

presentation can in some instances be modified by employing vertical exaggeration 

(expanding the z-axis) This will create more volume in the model and may make the 

model more appropriate for stereoscopic presentation, but the spatial relations will not be 

correct and can either lead to increased perception for the viewer, or i f not carefully 

implemented, to misperception of the data 
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This review of hydrographic datasets reveals that the bathymetric data fi^om Sonar or Lidar 

systems are suitable for stereoscopic viewing; the data is 3D in nature and in general 

available as computer models (i.e. DTMs). However it is important to have some variations 

and features in the bathymetry to get the effect of the stereoscopic techniques. Especially 

when combii;ied with datasets of man made objects in a more complex model, a better 

perception of the model can be achieved. In general the more spatially complex the model 

is, the greater is the benefit of the stereoscopic presentation. Operating vessels in confined 

waters or an ROV manoeuvring around subsea structures are examples o f suitable 

operations where stereoscopic presentation of the increasingly complex datasets would be 

valuable. 

Biological or organic features can be modelled as closed volumes inside the data model. In 

figure 5.12 the fishing vessel and the trawl is located in the computer model. I f the fishery 

sonar data (e.g. a shoal of fish) is implemented in the model, a stereoscopic presentation 

wi l l increase the perception of the trawls location relative to the shoal o f fish. An increased 

perception of the trawls location relative to the seabed features is also accomplished. 

Biological matters (such as algae) in the upper layers of the water column identified by a 

remote sensing system can be presented in the same fashion, though this data is generally 

more 2D in nature and not suited for stereoscopic presentation. 

The Sea Surface height data is composed fi^m remote sensing radar altimetry and tidal 

models. The data is in general less suitable for stereoscopic presentations due to the 2D 

nature of the data. However by increasing the scale along the z-axis (vertical exaggeration) 

the data model becomes more 3D and a stereoscopic presentation can be valuable). Sea 

surface height data at a local scale would be useful as in many cases it would constitute 

one of the limiting surfaces of the model. The remote sensing detection of oil spills by 

analysing the texture of sea surface roughness (figure 5.14) vAW not be appropriate for 

stereoscopic viewing as it only describes the surface characteristics of the sea. The 
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detection of icebergs and the ice border from remote sensing systems supplies data that can 

be used to find a vessePs relative position to these surrounding features. A stereoscopic 

presentation wi l l however not be valuable. A 2D radar picture would give a better 

representation. 

Ocean or tid^l current data at a specific depth is generally 2D in nature, however i f data 

from several layers of depth is merged into the water volume a 3D vector field is formed. 

An example where this would be the case, is in a presentation of the water flow passing a 

feature in the water volume. By employing stereoscopic techniques to the 3D vector field 

of the currents, an increased perception of the variations in the dataset would be gained. 

Man-made Objects such as subsea structures in a port or in an offshore oilfield are 

currently modelled in Computer Aided Design (CAD) and 3D modelling applications. 

Some of these applications already include stereoscopic presentations using the 

multiplexing techniques. These objects are often well suited for stereoscopic visualisation 

due to the often complex nature of these data objects. 

5.8 Conclusions 

It is well established that stereoscopic depth cues wi l l increeise the perception of 3D 

datasets, in particular more complex datasets. In chapter 4 the currently most accepted 

stereoscopic techniques were reviewed. The multiplexing techniques are the most 

widespread and accepted techniques. These techniques are relatively easy to implement but 

they are rarely used when presenting hydrographic data. The major drawbacks are the loss 

in light intensity and reduction of resolution. The advances in enhancing the present 

techniques and developing new techniques are rapid and wi l l surely introduce alternative 

methods in-the future. 

The chromo stereoscopic technique has several advantages as described in the discussion 

of chapter 4. When presenting hydrographic datasets chromo stereoscopy is an interesting 

alternative. Colour coding along the vertical axis is widely used on hydrographic datasets 

- 6 6 -



(e.g. bathymetry in figure 5.9). By employing the colour coding scheme along the line of 

sight axis, instead of along the z-axis as widely used today, and by using appropriate 

eyewear a stereoscopic effect is produced. 

When presenting increasingly detailed and complex digital hydrographic datasets used in 

increasingly .complex operations, the stereoscopic techniques can supply the viewer with 

the desired enhanced perception. With relatively simple means stereoscopic techniques can 

be implemented in the software tools currently available to present hydrographic data. 

Chapter 6 will further investigate the chromo stereoscopic technique and chapter 7 will 

present a novel and simple application that includes a chromo stereoscopic texture on a 

hydrographic dataset. 
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Chapter 6: Further analysis on Chromo 
Stereoscopy 

Chapter 4 concluded that the chromo stereoscopic technique, even though a relatively 

simple and low cost technique to implement, has several advantages when visualising 

scientific data Chapter 5 further concluded that the chromo stereoscopic technique has 

several qualities that can be advantageous when presenting hydrographic data Based on 

these conclusions this project will perform experimental work and develop a novel 

software application that applies the chromo stereoscopic effect on selected hydrographic 

data models These models will cover the classes presented in the previous chapter 

First a short introduction to colour theory is given to aid the comprehension of the chromo 

stereoscopic method and as well to better understand the use of colour in the application 

development Then a more in depth discussion on the chromo stereoscopic technique will 

be performed In chapter 7 the chromo stereoscopic application development will be 

described 

6.1 Colour Theory 

Colour describes the eye's perception of light at different wave lengths Visible light is the 

part of the electromagnetic spectrum with wavelengths between approximately 380 nano 

metres (nm) (violet) to approximately 730 nm (red), see figure 6 1 

I igure 6.1: The electromagnetic spectrum comprising the visible range (Source: 
Gonzales and Woodŝ  2002) 
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The dominant frequency or dominant wavelength of a light source is called the hue or 

colour of the light I f the dominant wavelength of a light source is 730 nm the viewer will 

perceive the light as red in colour (Gonzalez and Woods, 2002) Other properties are 

necessary to describe the properties of light Saturation or purity of light describes how 

washed-out the colour is Pastel colours are less pure The brightness of a colour is the 

perceived intensity of the light Chromaticity is used to describe the colour characteristics, 

dominant wavelength and saturation When mixing two or more colours (primary colours) 

a wide range of other colours (secondary colours) are formed These three characteristics, 

dominant wavelength, saturation and brightness are used to describe the properties of a 

light source The spectral range for a device describes how much of the visible spectrum 

the device is capable of representing (Pender, 1998) Figure 6 2 shows a comparison of 

spectral ranges for different devices, it is obvious that a typical colour monitor only 

represent a limited amount of the visible spectrum compared with the capabilities of the 

human eye It is important to select a proper colour model to optimize the colour 

representation 

Human eye 

PhoUigraphic film 

RGB monitor 

4 colour 
presi. 

Figure 6.2: The spectral ranges for different applications (Source: Pender, 1998). 

Colour models are used to specify colours in a standard, generally accepted way They 

represent a method to explain the properties of colours in a particular context A wide 
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range of colours are created in each colour model (typically from 3 primary colours), this is 

termed the colour gamut or colour scale A multitude of colour models exist, the models 

are either oriented towards hardware (e g colour monitors) which emit light or applications 

which reflect light, such as all forms of prints Different models are developed to describe 

different characteristics of colours. This text will focus on the hardware orientated RGB 

(Red, Green, Blue) and the HSV (Hue, Saturation, Value) colour models which is used in 

the development of the chromo stereoscopic application 

The RGB colour model uses three primary colours (red, green and blue) to produce the 

colour gamut It is an additive model which means that contributions from each primary 

colour is added together to get the resuhing colour This colour model is commonly used 

and corresponds to the input data of a Cathode Ray Tube (CRT) colour monitor where the 

parameters are the amount of red, green or blue light to emit Figure 6 3 shows the RGB 

colour cube 

Bkm - (0. 0. 1) Cyan - (0. 1. 1) 

Maganta - ( 1 . 0 . 1) 

» (0. 0. 0) 

(1 .1 . 1) 

Qraan - (0.1. 0) 

(1.0.0) Yallow - (1. 1. 0) 

Figure 6.3: The RGB colour Cube. The left side shows the cube in a Cartesian 
coordinate system. The right side shows one side of the cube in colours. 
(Source: Foley, J . D., van Dam, A., Feiner, S. K., Huges, J . F., 1990) 

A strength of the RGB colour model is that the colour space is within a unit cube This 

makes the computer programming less complicated, in that range checking is more 

convenient it is then easier to link distance from the viewer along the line of sight to a 

colour in the visible spectrum, this is a valuable property when developing the chromo 
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stereoscopic application 

A major limitation of the RGB model is that the colours are not perceptually uniform and 

therefore it is not sensible to measure colour differences in the RGB colour space 

Specifying colours in the RGB colour space is more convenient if hue, saturation and 

brightness are separate parameters The HSV colour model achieves this (Gonzales and 

Woods, 2002) 

The major diagonal from black at (0,0,0) to white at (1,1,1) in the RGB colour model 

forms a grey scale (figure 6 3 left) The HSV colour model is created if the cube is rotated 

so the white comer points towards the viewer and the black comer points away from the 

viewer, then a hexagon is formed with hues radiating around the Gray scale axis (Foley et 

al ). The HSV colour model uses this concept to define a hue angle, saturation and value 

(the latter corresponds to brightness) 

Figure 6.4: The HSV colour model, at left the model in a polar coordinate system, al 
right represented in colours (Source: Foley et. al., 1990) 

It is easier to mix colours in the HSV colour model than in the RGB colour model because 

the three parameters are more closely to perceptual attributes 

6.2 Chromo stereoscopy 

Chapter 4 17 briefly described how the chromo stereoscopic technique is used to convert 

colour into a stereoscopic effect The chromo stereoscopic effect can easily be observed 
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without any aids in a 2D image with bright red and blue areas scattered against a black 

background. The effect appears mainly from the natural chromatic dispersion of the eye 

acting on the off-axis component of the light entering it (Sundet, 1972). In essence light 

with a short wavelength (e.g. blue) is more refracted than light with a long wavelength 

(e.g. red). Tl̂ ere is a direct relationship between the position of a colour in the spectrum 

and the perceived depth. The physiological fact that the pupil centre and the visual axis in 

most cases are non coincidental enhances the chromo stereoscopic effect. These two 

factors will result in a slight retinal disparity between the red and blue areas. Kishto (1965) 

found that the chromo stereoscopic effect is affected by the amount of illumination 

introduced to the model. Most people will get an increased chromo stereoscopic effect i f 

the model is properly illuminated. I f the illumination is reduced some people Qess than 

12%) experience a reversal of the stereoscopic effect. 

Visual 

Blue Uoht 
Rsd Ugm 

Figure 6.5: The figure shows the offset of the pupil centres and the visual axes 
(broken line). It also shows how the difference in refraction between red 
and blue light rays results in retinal disparity. The angles in this figure 
are exaggerated in order to portray the effect 

Although present, the auto chromo stereoscopic effect can only create a limited amount of 

depth perception to the viewer. It is necessary to use optical devices to increase the retinal 

disparity and thereby get a useful depth perception. 
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6.2.1 Single Prism Glasses 

Kohler (1962) and Kishto (1965) experimented with an arrangement of single prisms to 

enhance the chromo stereoscopic effect. The single prisms are placed in the line of sight of 

each in order to increase the dispersion of the light reaching the eye's retina (figure 6.6). It 

is apparent that the prisms in figure 6.6 are converging, bringing the blue colours of the 

spectrum to the front, and thus reversing the previously described and natural colour 

scheme. 

' * ' ~ O B J E C T DISTANCE 

LEFT EYE 
PRISM 

APPARENT IMAGE 
LOCATION 

— IMAGE DEPTH 

PRISM 

© ACTUAL LOCATION 
- - ^ OF RED AND BLUE 

B) OBJECTS 

RIGHT EYE 

AVERAGE 
IMAGE DISTANCE — i 

Figure 6,6: Converging single prism arrangement to increase the chromo 
stereoscopic effect. (Source: Kishto, 1965) 

This is an alternative to the natural presentation accomplished by arranging the prisms in 

such a way that the light rays diverge (figure 6.7). There might be applications where a 

reversed colour scheme is desired; however this text will focus on the natural colour 

scheme with the red end of the visual spectrum closer to the viewer which after all is both 

the natural psychological and physiological colour scheme. 
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Figure 6.7: Diverging single prism arrangement to increase the chromo stereoscopic 
effect (Source: SteenbUk, 1987) 

The use of single prisms causes the line of sight from the viewer to the image to be 

diverted (figure 6.6 and figure 6.7). This will cause the viewer to adjust the eyes inwards to 

fiise the image when viev^ing the object through converging glasses. This will introduce 

strain to the eyes and visual distress (Steenblik, 1987). The resulting image will appear 

closer than the object because the lines of sight converge to a point closer in space. 

However, the focus of the eyes must remain at the distance of the original object. The 

difference in convergence distance and focal distance causes the visual distress resulting in 

headaches, vertigo and nausea. As the viewer moves the head the visual distress is 

increased, the image moves in an urmatural way because it appears closer than it actually 

is. The optimal effect would be i f the image distance is equal to the object distance, i f not, 

the perceived depth is not as great. This can be explained by the fact that when the image 

distance increases, the angular difference between the red and blue will amoimt to a much 

larger perceived depth difference (Kishto, 1965). Increasing the prism angle will not 

increase the image depth. It will increase the angular separation between the red and blue 

images; however it will also force the fused image to appear even closer to the viewer. The 

result is the gain is lost to the increase in angular separation, which acts over a smaller 

distance. The natural colour scheme with a diverging prism arrangement will not improve 

the situation. The viewer will need to adjust the eyes outward to fuse the images, resulting 

in a similar visual pain. 
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6.2,2 Double Prism Glasses 

In order to improve the effectiveness of the chromo stereoscopic technique and to 

overcome the problems with visual distress, Steenblick (1987) investigated the approach to 

use a double prism arrangement. By introducing an extra set of prisms, more specifically a 

super chromatic prism, he found that the image space could be put in the centre of the 

object plane and at the same time retain the colour dispersion. Super chromatic optics are 

designed to maximize colour dispersion and minimize other refractive effects. A single 

colour in the visible spectrum is then selected to correlate with the object plane. This single 

colour is often yellow as it is located in the middle of the visual spectrum. The other 

colours of the spectrum are then distributed to place the parts of the image in front or 

behind the object plane. By employing the double prism two goals were achieved. First the 

difference between focal distance and convergence distance is greatly reduced, resulting in 

almost entirely eliminating the visual distress. Secondly the chromo stereoscopic effect 

was enhanced. The desired properties of the super chromatic prism is to increase the 

refractive index (i.e. maximize the dispersion of light penetrating the prism). The prisms 

are assembled as illustrated in figure 6.8. 

HIGH DISPERSION PRISM 

LOW DISPERSION PRISM 

YELLOW 

EXITING RAYS 

BLUE 
YELLOW 
RED 

ENTERING RAYS 

Figure 6.8: The Super chromatic prism. The prism arrangement in this figure uses a 
reversed colour scheme with blue colours in front (Source: SteenbUk, 
1987). 
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One of the prisms forming the super chromatic prism has a high refractive index resulting 

in high dispersion of the light. Further it introduces the undesired deviation of the light 

rays. The second prism coxmteracts this undesired deviation by applying an equal deviation 

of the selected colour in the opposite direction. The result is that the path of the selected 

colour, yellojv in figure 6.8, is parallel before and after penetrating the super chromatic 

prism. However the path of the light ray is displaced to correlate the object distance and 

the image distance (figure 6.8). The colours of the light ray on each side of the selected 

colour are highly dispersed to produce the enhanced chromo stereoscopic effect. 

The super chromatic glasses can be made by several optical materials, such as glass, 

plastics and liquids. The earlier glasses were often made of liquid filled glass cells, because 

of the high refractive index property. In the early 1990s binary optics (microptic film) were 

developed at Massachusetts Institute of Technology (MIT). Binary optics can be used to 

mass produce inexpensive chromo stereoscopic glasses with optical properties that closely 

match the liquid optics glasses (Steenblik, 1987). Using binary optics, Steenblik produced 

a very effective plastic blazed grating super chromatic prism that is used in the chromo 

stereoscopic glasses. Figure 6.9 shows a cross section of the prism from above. The grating 

has a saw tooth profile. 

Light ray 

Eye side 
^ (left eye) 

Refraction Angle 

Figure 6.9: Cross section profile of the super chromatic blazed grating prism 
(Source: Lipson, 199S). 

Tuneable depth glasses are also developed. These glasses are made by arranging two super 

chromatic prisms in front of each other for each eye. The super chromatic lenses are 
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mechanically linked in such a way that they can counter rotate. By rotating the prisms the 

viewer can select any desired image depth. 

6.2.3 Applications 

Chromo stereoscopy is well suited to be applied in several different mediums such as the 

computer graphic display or hardcopy printed images. After the discovery of the chromo 

stereoscopic effect by Einthofen (1885) some studies on the effect has been performed by 

researchers such as Kishto (1965) and Sundet (1972). As Steenblik made it possible to 

manufacture large quantities of low-cost super chromatic glasses in the early 1990s one 

should expect that this simple to employ stereoscopic technique would become an 

alternative to other stereoscopic techniques, especially the more established multiplexing 

techniques. However, except for Toutin (1997), it has been impossible to find any 

documentation or examples that this method is used in any scientific woric or implemented 

in any software application that presents scientific data. The only material found is simple 

demonstrations of the technique. 

Toutin (1997) performed some tests using chromo stereoscopic techniques to enhance the 

depth perception on remote sensing data. Data from multiple remote sensing sources such 

as aerial photographs, images from Landsat TM-3, ERS-1 and Radarsat was merged with 

the corresponding Digital Elevation Model (DEM) and colour coded according to the 

chromo stereoscopic principles. The images were ortho-rectified, the line of sight vertical 

and hence the colour coding is a direct fionction of the z-axis of the DTM, (figure 4.10). 

Toutin concluded that this is an interesting and simple technique to enhance depth 

perception of remote sensing data. 
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Chapter 7: Chromo Stereoscopic Application 
Development 

This chapter will initially give a short description of the computer modelling techniques 

that the chromo stereoscopic (CS) application is developed on, then the actual CS 

application development is described in detail. 

The Haber and McNabb (1990) visualisation model that was briefly discussed in chapter 

5.1 describes the data preparation process as the first major process in the scientific 

visualization pipeline. The raw data is merged and processed to create a model fi*om which 

new data can be derived. In this project, raw data from the classes defined in chapter 5.7 

are employed. Chapter 8 describes, in more detail, the different datasets used to create and 

evaluate the chromo stereographic application. 

The software selected for the data preparation process is the 3ds max 6 (Discreet, 2004) 3D 

modelling software, which is one of the world's leading professional 3D modelling 

applications. It has a powerful import function that can supply the upcoming model with 

raw data from various sources. Among the more popular import formats are AutoCAD 

(DXF, DWG) files, Initial Graphics Exchange Standard (IGES) files, Adobe Illustrator 

files and Virtual Reality Modelling Language (VRML) files that make it possible to import 

files from web browser applications (Murdock, 2003). For the data preparation phase of 

this project's experimental work the raw data is imported into 3ds max 6, merged and 

refined to prepare a computer model suitable for the CS application. Some of the objects 

can, i f necessary, be created in the 3ds max 6 application. A man made object can, for 

example, either be imported from a CAD application, or it can be created directly in the 

3ds max 6 application. Figure 7.1 illustrates the data preparation process for this project. 
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Figure 7.1: Data preparation process for the experimental work 

The focus of the experimental work in this project is on the visualisation mapping and 

presentation process of the visualisation model. Consequently, the work on the import of 

the data will not be covered to the same level of depth. It is possible to make data objects 

in the 3ds max application itself and include them in the model, which is a process similar 

to building an object in a CAD application and exporting it to 3ds max 6. All the objects 

that constitute the model, either imported fix)m external applications or produced in 3ds 

max are merged into one complete data model. It is out of the scope of this project to 

describe, in detail, the computer modelling techniques used in the 3ds max application 

when building the models. Watt (2000) and Heam & Baker (2004) give a detailed 

description of current computer modelling techniques. Murdock (2003) describes how 

these stages are implemented using the 3ds max 6 application. This text will only briefly 

describe the stages relevant to the CS application. Foley et. al. (1990) and Watt (2000) give 

comprehensive descriptions on the general theory of how to create the objects, setting up 

the scenes and the rendering process. The 4 major stages in the rendering process of a 

computer model are as illustrated in figure 7.2 (Angel, 2000). 
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Figure 7.2: Major tasks when rendering geometric objects (Source: Angel, 2000) 

The first stage, modelling, includes the creation of objects and building the scene. In this 

experiment, the modelling stage is completed in the 3ds Max 6 application as described 

earlier. The three other stages are completed by the developed OpenGL (Open Graphics 

Library) application described later in this chapter. The second stage, geometric 

processing, determines which objects appear on the display and also integrate colour and 

shades to the objects. The first step of geometric processing is to normalize the model 

projection. This is done in order to make the process of clipping the lines around the 

viewing volume more calculation efficient. By applying a normalization transformation, 

the model projection view volume is transformed into a canonical view volume where the 

X and y boundary planes are equal to -1 and 1, and the z boundary planes are 0 and -1 

(Foley, 1990). The clipping process establishes which objects, or parts of the objects, to 

display. The objects or parts of objects which fall within the specified viewing volume will 

be accepted, the parts that are rejected in the clipping process will be excluded fi^m the 

display during the hidden surface removal process. The final stage in the geometric process 

is the lighting / shading computations. In the rasterisation stage the 3D model is 

transformed into a 2D picture through the projections. In the scan conversion process each 

pixel on the display is assigned a characteristic value computed earlier based on geometric 

shape, lighting / shading colouring and texture. Finally in the display stage the picture is 

taken from the fi-ame buffer in the computer memory and presented on the computer 

display. 
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A parallel process in OpenGL is the pixel (picture element) operation process. This process 

merges with the geometric rendering process at the rasterisation stage (figure 7.3) and 

work on the pixel level and not the vertices level as is the case for the geometric rendering 

process. Several operations are accessible in the pixel operation process, however only the 

texture mapping process will be addressed here. Vertices are mapped to the texture 

coordinates and the texture value for each pixel is determined through interpolation. The 

surface texture is in this way merged with the geometric object. 

The refining of the model v^ll however be described to some depth as it has direct 

influence on the visualisation mapping process. Finally, before the refined model is 

exported from the 3ds application into the CS application, the data is saved in the 3ds 

format. 

7.1 Application Development 

Another advantage of selecting 3ds max 6 in the data preparation process is that it supports 

the OpenGL hardware acceleration graphics language. The Microsoft Visual C++ 

programming language and OpenGL are used to develop the chromo stereographic 

application; these applications are briefly described in chapters 7.1.1 and 7.1.2. 

All the work in making the models and developing the CS application is performed on a 

Dell Precision M60 laptop PC with an Intel Pentium M processor (the internal clock speed 

is 1.6 MHz ). The size of the internal physical memory is 512 MB, the hard disc drive has a 

storage capacity of 60 GB and the graphics card is a Nvidia Quadro FX Go700 with a 

memory capacity of 128 MB and hardware supported OpenGL. 

7.1.1 Open G L 

OpenGL is the leading programming environment for developing graphics applications. It 

,has, since it was introduced in 1992, become the industrial standard 2D and 3D graphics 

-API (Application Programming Interface). OpenGL is a software interface to computers 
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graphics hardware (Woo et. al., 1999). One of the major advantages of OpenGL is that it is 

platform independent (i.e. OpenGL can run on all platforms, laptop, desktop or 

workstation) and in a wide range of software environments such as Mac, OS/2, Unix, 

Linux and MS Windows. The graphics library consists of several hundred distinct 

conomands tĵ at are called upon by the progranmiing language in use; for this project the 

Microsoft Visual C-H-, described in chapter 7.1.2 is the programming language. 

Figure 7.3 shows a schematic diagram of the OpenGL process. The commands are entered 

into the graphics library on the left side of the figure. Some of the commands specify 

geometric objects to be drawn while others control how the objects are handled by the 

various stages. Most of the commands may be accumulated in a display list for processing 

by OpenGL later. Otherwise, commands are effectively sent through a processing pipeline. 

Display 
List 

Per-Vertex 
Operations Rasteriz Pen-

Evaluator Primitive ation Fragment 

Assembly Operations 

Pixel 
Operations 

Framebuffer 

Texture 
Memory 

J 

Figure 73: Schematic presentation of the OpenGL pipeline (Source: Woo et. ah, 
1997) 

The first stage provides an efBcient way to approximate curve and surface geometry by 

evaluating polynomial functions of input values. The next stage operates on geometric 

primitives described by vertices: points, line segments and polygons. In this stage, vertices 

are transformed and lighting included. The objects are clipped to a viewing volume in 

preparation for the next stage, rasterisation. This stage produces a series of frame buffer 
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addresses and values using a 2D description of a point, line segment or polygon. Each 

fragment so produced is fed to the next stage that performs operations on individual 

fragments before they finally alter the frame buffer. These operations include conditional 

updates into the frame buffer based on incoming and previously stored depth values (to 

effect depth })uffering), blending of incoming fragment colours with stored colours, as well 

as masking and other logical operations on fragment values (Woo et. al. 1999). 

The vertex processing portion of the pipeline, to send a block of fragments directly to the 

individual fragment operations, can be omitted, to write a block of pixels directly to the 

frame buffer; values may also be read back fix)m the frame buffer or be copied from one 

portion of the fi^e buffer to another. These transfers may include some types of decoding 

or encoding. This ordering is meant only as a tool for describing the GL, not as a strict rule 

for how the GL is implemented, and it is presented only as a means to organize the various 

operations of GL. Objects, such as curved surfaces for instance, may be transformed before 

they are converted to polygons. 

There are several related libraries that are used. When Microsoft Visual C-H- was set up for 

this experiment, the Graphics Library Utility (GLU) and GL Utility Toolkit (GLUT) 

libraries was also installed. The GLU library only uses the functions contained in the 

OpenGL library, but contains codes for common objects relieving the programmer from 

writing standard code repeatedly. The function of GLUT is to provide the minimum 

functionality required in a windows system. It is designed to hide the complexities of the 

window system API in use, here Microsoft Windows. In essence, it will create a window 

on the display screen where the output of the OpenGL application is displayed (OpenGL, 

2004). 

7.1.2 MS Visual C++ 

OpenGL is as described in 7.1.1 an API, an interface to the computers graphics hardware. 

This implies that the software application needs to be developed using a computer 
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programming language that calls upon the desired GL functions, OpenGL supports a wide 

range of programming languages, such as Ada, C, C-H-, Fortran and Java. For this project 

the Microsoft Visual C-H- .NET programming language environment was selected because 

the author has some previous programming experience in C-H-. The GLU and GLUT 

libraries waŝ  downloaded from the World wide web (WWW), installed and made available 

for visual C-H- as described in appendix 2 (Taylor University, 2004). 

7.2 Application Structure 

The model developed in 3ds max 6 is imported to the chromo stereoscopic OpenGL 

application using a 3ds file format import library. Details about the import library are 

found in appendix 3. In order to generate a chromo stereoscopic effect, a suitable surface 

texture has to be draped over the model. The aim is to create a coloured surface texture that 

distributes the colours in the visible spectrum onto the model, where the part of the model 

closest to the viewpoint will be red and the part of the model farthest away from the 

viewpoint will be blue. A colour ramp function for a 1D texture from red to blue was 

developed, the ramp starts where the closest part of the model crosses the line of sight, the 

ramp ends where the line of sight vector exits the part of the model farthest away from the 

model as illustrated in figure 7.4. 

Db 

Blue ^ i 

Colour Spe(^um 

Red } 

Model space 

Figure 7.4: Colour ramp function for one dimensional texture. The visual colour 
' spectrum is distributed along the vertical axis. The model space, front to 

back of model along the line of sight axis, is distributed from the 
distances Df to Db along the horizontal axis. 

The HSV colour space model is used to create the colour ramp function. One of the 
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advantages of using the HSV colour model is that by setting the saturation and brightness 

values equal to 1 the saturation and brightness of the texture will be fixed (Watt, 2000). 

The HSV colour model is then converted to the hardvî are oriented RGB colour model, and 

the hue values from 0° (red) - 240° (blue) are interpolated in the range between Df and Db 

for an optimal colour distribution. I f the start and end point of the ramp function is 

improperiy set, the chromo stereoscopic effect will not be optimal, as the colour spectrum 

does not properly envelope the model. 

As the colour of the pixels along the Hne of sight is established, the texture coordinates 

have to be generated. OpenGL has a dedicated automatic function for this operation. As a 

texture-mapped scene is drawn, both object coordinates and texture coordinates for each 

vertex must be provided. After transformation, the object coordinates determine where on 

the screen that particular vertex is rendered. The texture coordinates determine which texel 

(texture element) in the texture map is assigned to that vertex. A texel represents the 

smallest graphical element in 2D texture mapping to "wallpaper" the rendition of a 3D 

object to create the impression of a textured surface. In exactly the same way that colours 

are interpolated between two vertices of shaded polygons and lines, texture coordinates are 

linearly interpolated between vertices. 

Texture coordinates can comprise one, two, three, or four coordinates. They are usually 

referred to as the s, t, r, and q coordinates to distinguish them from object coordinates (x, 

z, and w). For ID texture the s coordinate is used; for 2D textures, s and t are used. 

Equation 7.1 specifies the generated texture coordinate (Heam and Baker, 2004): 

texture coordinate (s) = pjXo + Pzyo + P3Z0 + P4 (7.1) 

where pi to'p4 are the texture parameters for the coordinate (xo,yo;Zo). Usually the texture-

coordinate values range between 0 and 1. 

As the chromo stereoscopic texture is 1D, the s texture coordinate is required to be 
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specified for each coordinate on the model surface; hence the parameters pi to p4 must be 

defined. The automatic texture generation function can differentiate between an object 

model referenced coordinate system or a coordinate system where the z axis (model depth) 

is defined as the line of sight. For the CS application it is preferable to apply the latter. The 

generated texture coordinate (s) value at the closest point where the line of sight axis 

crosses the model surface (Df) must equal zero (red), and the generated texture coordinate 

value at Db must equal one (blue). The one dimensionality of the texture along the z axis 

results in pi = P2 = 0. The following simplified equation is then derived fi*om equation 7.1. 

S = P3Zo + P 4 (7.2) 

Evaluating the ramp function in figure 7.4 we get the following equation. 

S ^ ^ ^ ^ ^ (7.3) 

The parameters for the automatic texture generation function in equation 7.1 can then be 

derived. 

P, = P 2 = 0 

- 1 
P 3 ^ 

- D f 

How Df and Db should be set for optimum performance will be discussed in chapter 8. 
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7.3 Program description 

In the following section each main module in the source code of the CS application will be 

described in detail. Figure 7.5 describes the main tasks of the modules in the applications 

and how the modules interact. The modules are developed and programmed by the author 

using C++ and OpenGL except the HSV2RGB function module which is adapted fi*om 

Foley et. al. (1990), and the Load3ds model import library (appendix 3) which is 

downloaded fi-om internet and adapted. 

tntUal Setup 
Includes headerfiles 
Define datatypes 
Declares variables 
Defines parametres and 
function prototypes 

HSV2RGB Function 
Converts the HSV colour 
model to the RGB colour 
model 

)1|P 

GLUT Main Loop 
Check initialisation argument 
Initialises display 
Create vnndow 
Defines and executes the 
GLUT main loop 

Ramp_func Function 
Makes the cotour ramp for 
the ID texture 

Display Function 
Defines the viewing transformation 
Constructs the model transformation 
Builds texture information 
Defines the rotation parameters 
Calls draw surface function 
Displays new memory buffer 

Draw3d5 Function 
Sets up initial colour and 
shtniness of the model 
Imports 3DS model using the 
3DS file loader library 
Draws triangles and meshes 

IJght_tex Function 
Sets up the overall light data 
with attributes and the texture 
map I 

Reshape Function 
Defines the window where 
the model image is mapped 

2 
Keyboard Function 
Defined keys for rotation of 
model 

(Animation Function) 
Prompt the GLUT main loop 
to redraw current window 

Keyboard Function 
Defined keys for rotation of 
model 

(Animation Function) 
Prompt the GLUT main loop 
to redraw current window 

Figure 7.5: Application modules description and interaction. 

7.3.1 Initial setup 

The initial program setup includes relevant header files, defines data types, declares 

variables and defines parameters and fiinction prototypes. A header file is used to create 

libraries of code that can be used over and over, the header files can be recognised by the 

-h extension to the filename (almost all C-H- programs.require some header files to be 
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included). When the compiler finds a reference to a header file it writes the contents of that 

header file into the executable code of your program. The #include directive tells the pre 

processor to treat the contents of a specified file as i f those contents had appeared in the 

source program at the point where the directive appears. An overview of the header files 

for this application is included in appendix 4. 

s t a t i c c h a r ch; This code declares a character array called "ch" and initializes it with 

the filename that is being compiled. The array contains the characters from the keyboard 

that controls the rotation of the model. When modifying a variable, the s t a t i c keyword 

specifies that the variable has static duration (it is allocated when the program begins and 

de-allocated when the program ends) and initializes it to 0 unless another value is 

specified. Type c h a r is an integral type that usually contains members of the execution 

character set — in Microsoft C++, this is ASCII. 

The " 1 " and "2" keys rotate the model clockwise and counterclockwise around the x-axis. 

The "3" and "4" keys rotate the model clockwise and counterclockwise around the y-axis. 

The "5" and "6" keys rotate the model clockwise and counterclockwise around the z axis. 

The character array is used in both the display function (7.3.6) and the keyboard function 

(7.3.7). 

s t a t i c G L f l o a t s a v e s t a t e [ 16] declares the model view matrix that is a 4 by 4 matrix 

used to specify the viewing, modelling and projection transformations. This matrix is then 

multiplied by the coordinates of each vertex in the model to accomplish the 

transformations (Woo et. al. 1999). The v i e w P r o j [16] declares an array where the 

original viewing projection is saved and the transformation is held. These two arrays are 

used in the display function (7.3.6). t= 0 sets the time variable to zero, to initialise the 

animation function. 

The L3DS scene command loads the model file (scene) in 3ds format into the application. 

The data type f l o a t vp defines the distance of the viewpoint to the model (figure 7.6). By 
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changing the data type value the viewpoint is moved closer to or further away fi-om the 

model (floating data types are capable of specifying values that may have fractional parts). 

The variables Df and Db defines the front and back limits of the ramp function (i.e. the 

start and stop points of the colour texture, see figure 7.6). Chapter 8 will demonstrate how 

important it is that these values are set correctly to get the desired stereoscopic effect. 

Df Db 

vp Viewing distance Model 
space 

Figure 7,6: Viewing distance and ramp start and endpoint variables. 

The 'textureparameters* and 'texturename' data types are defined and later applied in the 

display function to calculate the colour texture map. GLuint defines texturename as an 

integer value in OpenGL. The data type ramp is defined with 256 steps and 3 values 

specified (h,s and v). 

The list of function prototypes are defined using the statements of the form format void 

name ( ). The parenthesis defines the required arguments. I f the parenthesis contains void, 

the function requires no argument and no values are returned from the function. The 

unsigned character argument in the keyboard function indicates an input argument fi-om the 

keyboard is expected without a sign extension. 
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Table 1: Initial Setup 
# i n c l u d e "stdafx.h" 
# i n c l u d e "13ds.h" 

U f d e f _WI^332 
Hnclude <windows.h> 
#en d i f 

# i n c l u d e <GL/glut.h> 
^ i n c l u d e < s t d l i b . h > 
Hnclude <stdio.h> 
# i n c l u d e <math.h> 

s t a t i c c h a r ch; 

s t a t i c G L f l o a t s a v e S t a t e [ 1 6 ] = {1.0,0.0,0.0,0.0, 
0.0,1.0,0.0,0.0, 
0.0,0.0,1.0,0.0, 
0.0,0.0,0.0,1.0}, 

v i e w P r o j [ 1 6 ] , 
t=0.0; 

L3DS scene; 

f l o a t vp = 100.0; 
f l o a t Df, Db; 
f l o a t t e x t u r e p a r a m e t r e s [ 4 ] ; 
s t a t i c G Luint texturename; 
f l o a t r a m p [ 2 5 6 ] [ 3 ] ; 

v o i d r a m p _ f u n c ( v o i d ) ; 
v o i d HSV2RGB{float, f l o a t , f l o a t , f l o a t *, f l o a t *, f l o a t * ) ; 
v o i d l i g h t _ t e x ( v o i d ) ; 
v o i d draw3ds( v o i d ) ; 
v o i d d i s p l a y ( v o i d ) ; 
v o i d reshape( i n t , i n t ) ; 
v o i d keyboard(unsigned char, i n t , i n t ) ; 
v o i d a n i m a t i o n ( v o i d ) ; 

7.3.2 Setup Colour ramp function 

In table 2 the ramp_func function makes the colour ramp for the 1D (linear) texture, the 

ramp values spans from 0 to 240 in 256 steps. Each step is defined by the integer value 

variable i . Further the hue, saturation, value, red, green and blue variables are defined as 

floating point values. The 'for loop' processes the hue value for each step (i = 0 to 256). 

The saturation and value (brightness) are constant and set to 1. The loop then calls the 

HSV2RGB function and converts the colours from the HSV to the RGB colour model for 

each ramp step. The ramp is then put together with the computed RGB values 

corresponding to each ramp step. 

Table 2: Ramp function 
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v o i d rainp_func (void) 
{ 

i n t i ; 
f l o a t h, s, V , r , g, b; 

f o r (i=0; i<256; i++) { 
h = ( f l o a t ) i * 2 4 0 . 0 / 2 5 5 . 0 ; 
s = 1.0; V = 1.0; 
HSV2RGB( h, s, v, &r, &g, &b ) ; 
ra i n p [ i ] [0] = r ; r a m p [ i ] [ l ] = g; r a m p [ i ] [ 2 ] 

} 

= b, 

7.3.3 HSV to R G B colour model conversion function 

The function that converts fi"om the HSV colour model to the RGB colour model is 

adapted from Foley et. al. (1990) figure 13.34, where the function is fully explained. It is 

not of significant value for the reader of this text to understand in detail how the 

conversion is performed; the detailed description of this function is thus omitted. The 

function is used by the ramp function to output RGB data. 

Table 3: HSV to RGB conversion function 
v o i d HSV2RGB( f l o a t h, f l o a t s, f l o a t v, f l o a t * r , f l o a t *g, f l o a t 
*b) 
{ 

f l o a t f, p, q, t ; 
i n t k; 

h = h/60.0; 
k = ( i n t ) h ; 
f = h - ( f l o a t ) k ; 
p = v * (1.0 - s ) ; 
q = V * (1.0 - (s * f ) ) ; 
t = V * (1.0 - (s * (1.0 
s w i t c h (k) { 

c a s e 0 
c a s e 1 
c a s e 2 
ca s e 3 
ca s e 4 
ca s e 5 

* r = v; *g = t ; 
* r = q; *g = v; 
* r = p; *g = v; 
* r = p; *g = q; 

p; 
p; 

r = t ; *g 
r = v; *g 

f ) ) ) ; 

*b = p; break, 
*b = p; break, 
*b = t ; break, 
*b = v; break, 
*b = v; break, 
*b = q; break, 

7-3.4 Light and texture setup function 
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Figure 7.7 shows a flow diagram of the main processes of the light and texture setup 

function. 

Set GL variables for function 

Set up overall lightdata 

Enable and define lighting for model 

Set up texture map 

Figure 7.7: Flow diagram of the light and texture setup function. 

The light_tex fiinction sets up the overall light data with attributes and the texture map, see 

table 4. First the variable i is declared and set equal to I , it is used later as a parameter 

when establishing two sided lighting on the model. Next, three GL floating point variables 

are defined. The Iight_pos0 variable positions the light source and supplies the 

GL_POSITION parameter with the light source coordinates (x, y, z) and sets the light 

source to be non directional (value of 1.0). The Iight_col0 variable supplies the parameters 

GL SPECULAR and GL_DIFFUSE with values for the specular and diffuse intensity of 

the light. GL_SPECULAR affects the specular light effect from an object, which is often 

the same colour as the light shining on it. To produce a realistic specular effect, the values 

for the GL_SPECULAR and GL_DIFFUSE parameters should be set equal. GL_DIFFUSE 

(1.0, 1.0, 1.0, 1.0) produces a bright white light. The four values define the RGB A colour 

of the light. The A value is not used without effects such as blending or transparency is 

desired. The amb_colO variable supplies the GL_AMBIENT parameter with values for the 

intensity of the ambient light that a light source supplies to the model, with the default 

value being zero (RGB) meaning no ambient light present (here 0.3). The GL float variable 
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mat specular is put into the glMaterialfv command, the four values define the RGBA 

colour setting. The command glClearColour clears the colour buffer and defines the 

clearing colour. The command glShadeModel specifies the shading model to be used when 

drawing Hnes or filled polygons. The GL SMOOTH parameter interpolates the colour 

between the vertex colours resulting in a smooth shaded model. The glMaterialfv specifies 

the material properties to use for the lighting calculations. The properties are applied to 

both the front and back of the model. The specular reflection property makes the reflection 

from the model dependent on the position of the viewer, and the reflection becomes 

brighter as the viewing angle approaches the direct viewing angle. The glLightfv command 

define the light source as described by the corresponding variables above. The 

glLightModeliv command sets up two sided lighting. When using two sided lighting the 

back facing polygons will also be illuminated. This is important, as in more complex 

models the back faces can be visible. 

The next section, where each line starts with the command glenable, enables and defines 

the lighting for the application. The attribute GL_LIGHTING enables the lighting, and 

GL_LIGHTO enables the light source (in this application only one light source is defined). 

The attribute GL_DEPTH_TEST enables the depth buffer. The depth buffer (or z-bufTer) 

establishes the distance from the viewpoint to each pixel in the model. This is an important 

function in this application and will be used later to define the colour coded texture applied 

to the model. The GL_NORMALIZE attribute will nonmalize the vectors after 

transformation. The normalized vectors are perpendicular to the model surfaces and will 

define the spatial orientation of the surface. It is important to establish this orientation to 

achieve correct lighting characteristics within the model. 

The last section in light_tex function (table 4) sets up the texture map. When an object, or a 

model, is texture mapped, patterns are added to increase the detail of the object or model. 

In this case the desired colour coded ID texture is added to the model. First the ramp_func 
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function is called. The command glPixelStore specifies the storing mode for the pixels in 

the memory, with the parameter GL_UNPACK_AL1GNMENT specifying the alignment 

requirements for the start of each pixel row in memory and value 1 setting the mode to 

byte alignment. The glTexEnv command sets the texturing function to be applied to the 

model. The GL MODULATE parameter multiplies the object colour values with the 

texture values, in this instance the object colour is set to white resulting in the desired 

colour coded texture replacing the white colour. 

The next three glTexParameter commands are executed, with the GL TEXTURE l D 

parameter defining the model texture as ID. The first command contains the parameter 

GL_TEXTURE_WRAP_S with the value GL_CLAMP. The S in the parameter refers to 

the s-coordinate value in the ID texture space, which specifies that the RGB colour in the 

texture is wrapped around the model. The GL_CLAMP value forces the s-coordinate 

values to range fi-om 0.0 - 1.0, this range is used when wrapping a single (not a repeating) 

image onto a model. The second and third command contain the GL TEXTURE 

MAG_FILTER and the GL_TEXTURE_MIN_F1LTER parameters, both with the value 

GL LfNEAR. These commands will magnify or minimise the texture elements in order to 

align these elements with the boundaries of the pixel areas. The GL LFNEAR value forces 

the function to calculate the pixel colour as a linear combination of overlapping texture 

colours instead of selecting the nearest texture colour to a pixel. 

The glTexlmagelD command defines the one dimensional texture image. The first 

parameter defines the texture as a ID texture, with the four following numbers describing 

the level of detail (0); the internal format for describing a texture element (3) which is 

GL_RGB format; the width of the texture image (256); the length of the ramp and the 

height of the texture image (0) because it is ID (a straight line). The format parameter 

GL RGB defines the texture colour data input format as RBG and the data type is floating 

point (GL_FLOAT). The description of the texture colours are stored in the parameter 
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ramp, which is called from the ramp_func function. At last the GL_TEXTURE_GEN S 

parameter turns on texture coordinate generation for the s-coordinate and the 

GL_TEXTURE_1D parameter enables ID texture generation. 

Table 4: Light and texture function 
v o i d l i g h t _ t e x ( v o i d ) 
( 

G L i n t i = 1; 

G L f l o a t l i g h t _ p o s O [ ] = { 0.0, 100.0, 100.0, 1.0 }; 
G L f l o a t l i g h t _ c o l O t ] = { 1.0, 1.0, 1.0, 1.0 }; 
G L f l o a t amb_colorO[]={ 0.3, 0.3, 0.3, 1.0 }; 

G L f l o a t m a t _ s p e c u l a r [ ] ={ 0.8, 0.8, 0.8, 1.0 }; 
g l C l e a r C o l o r ( 0.1, 0.1, 0.1, 0.0 ) ; 
glShadeModel(GL_SMOOTH); 
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, m a t _ s p e c u l a r ) ; 
glLightfv(GL_LIGHTO, GL_POSITION, l i g h t _ p o s O ) ; 
glLightfv(GL_LIGHTO, GL_AMBIENT, a i T i b_colorO ) ; 
glLightfv(GL_LIGHTO, GL_SPECULAR, l i g h t _ c o l O ) ; 
glLightfv(GL_LIGHTO, GL_DIFFUSE, l i g h t _ c o l O ) ; 
glLightModeliv(GL_LIGHT_MODEL_TWO_SIDE, &i ) ; 

glEnable(GL_LIGHTING); 
glEnable(GL_LIGHTO); 
glEnable(GL_DEPTH_TEST); 
glEnable(GL_NORMALIZE); 

g l P i x e l S t o r e i ( GL_UNPACK_ALIGNMENT, 1 ) ; 
g l T e x E n v f ( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE ) ; 
gl T e x P a r a m e t e r f { GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP ) ; 
gl T e x P a r a m e t e r f { GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ) ; 
glT e x P a r a m e t e r f ( GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ) ; 
glTexImagelD( GL_TEXTURE_1D, 0, 3, 256, 0, GL_RGB, GL_FLOAT, ramp ) ; 
g l E n a b l e ( GL_TEXTURE_GEN_S ) ; 
g l E n a b l e ( GL TEXTURE ID ) ; 

7.3.5 Draw3ds function 

The Draw3ds function sets up the initial surface colour and shininess of the model, and 

draws the model surface triangle mesh. Figure 7.8 shows a flow diagram of the main 

processes of the draw3ds function. The data type used for the drawing of the 3D vertices 

was defined as poinG in the initial setup. The integer variables i and j are defined for 

calculations within the function. The GL floating variables white[], yellow[] and 

mat_shininess[] are defined and specified for later use as parameters in the glMaterialfv 

command. The white[] and yellow[] variables are specified with the corresponding RGBA 
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values. The mat_shininess variable is set to 30, but the value can range from 0 to 128 and it 

controls the extent and brightness of the light (a higher value results in a brighter and more 

concentrated highlight). 

Set GL variables for function 

Define model material properties 

Draws the triangles and meshes of the 
model 

Figure 7.8: Flow diagram of the draw3ds function 

The glMaterialfv command defines the properties of the object's material. GL FRONT, 

GL_BACK and GL_FRONT_AND_BACK define what faces of the model the material 

property is applied to. The front face material is attached with a white diffuse colour. The 

material facing back is attached with a yellow diffuse colour. The diffuse colour property 

of the material makes the colour of the model a function of the colour and angle of the 

incoming light. Both front and back faces are attached with a shininess or specular 

exponent of 30. 

The remaining part of this function contains two loops to draw triangles and meshes, which 

are imported using the L3DS import library (appendix 4). First, the variable j is set equal to 

the L3ds method GetMeshCount that returns the number of meshes in the loaded 3DS file. 

The j variable is then set to mesh. GetTriangle Count Q, which gets the number of triangles 

in the model and multiplying by 3 gives the total number of vertices in the model. The next 

line loads the actual 3DS model triangle mesh. The gIBegin function with the 

GL_POLYGON argument executes a list of glVertex commands that constructs the actual 

polygons of the model from the vertices. The glNormal3fv comm^d calculates the normal 

vector of each of the loaded triangles, which is important as explained earlier in 
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establishing the orientation of the surface of each triangle in the mesh. The gIVertex4fv 

command specifies the x, y and z coordinates of the vertices of the loaded model. The 

function terminates with the glEnd Q command. 

Table 5: Draw3ds function 
v o i d draw3ds(void) 
{ 

i n t i , j ; 

G L f l o a t w h i t e [ ] = {1.0, 1.0, 1.0, 1.0}; 
G L f l o a t y e l l o w [ ] = {1.0, 1.0, 0.0, 1.0}; 
G L f l o a t m a t _ s h i n i n e s s [ ] = { 30.0 ) ; 

glMaterialfv(GL_FRONT, GL_DIFFUSE, white ) ; 
glMaterialfv(GL_BACK, GL_DIFFUSE, y e l l o w ) ; 
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, m a t _ s h i n i n e s s ) ; 
j = scene.GetMeshCount0; 

f o r ( u i n t i = 0; K s c e n e . G e t M e s h C o u n t ( ) ; i++) 
{ 

LMesh &mesh = s c e n e . G e t M e s h ( i ) ; 

j ~ mesh.GetTriangleCount() * 3; 

f o r ( i = 0; i < m e s h . G e t T r i a n g l e C o u n t { ) ; i++) 
{ 

L T r i a n g l e t r i = m e s h . G e t T r i a n g l e ( i ) ; 

glBegin(GL_POLYGON); 
g l N o r m a l 3 fV ( ( c o n s t G L f l o a t * ) & m e s h . G e t N o r m a l ( t r i . a ) ) 
g l V e r t e x 4 f v ( ( c o n s t G L f l o a t * ) f i m e s h . G e t V e r t e x ( t r i . a ) ) 
g l N o r m a l 3 f v ( ( c o n s t G L f l o a t * ) S m e s h . G e t N o r m a l ( t r i . b ) ) 
g l V e r t e x 4 f v ( ( c o n s t G L f l o a t * ) S m e s h . G e t V e r t e x ( t r i . b ) ) 
g l N o r m a l 3 f v ( ( c o n s t G L f l o a t * ) S m e s h . G e t N o r m a l ( t r i . c ) ) 
g l V e r t e x 4 f v ( ( c o n s t G L f l o a t * ) S m e s h . G e t V e r t e x ( t r i . c ) ) 

g l E n d O 

7.3.6 Display function 

The Display function defines the viewing transformation, constructs the model 

transformation, builds the texture information and defines the rotation parameters before 

calling the draw3ds function and finally displaying the model, figure 7.9 illustrates the 

main processes of the display function in a flow diagram. 
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Construct model transformation 

Include viewing transformation 

Build texture information 

Define rotation of viewing transformation 

Apply model transformation and save it 
on stack 

Rebuild the model view matrix by first 
multiplying by the viewing 

transformation, then by the model 
transformation 

1 

Call for draw3ds function 

Display new memory buffer 

Figure 7.9: Flow diagram of the display function 

First, the type name angle is defined for use in the rotation routine of this function. Then, 

the colour and depth buffers (which holds all the pixel depth values of the model) are 

cleared to the background colour (black) for the drawing of the model to be displayed. The 

projection-transformation matrix is generated by first setting the OpenGL projection mode 

(glMatrixMode (GL PROJECTION). The glLoadldentity command clears the current 

modifiable matrix and sets it equal to the identity matrix to erase the effect of any current 

viewing transformation. The gluPerspective command generates a perspective projection' 
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matrix and the parameters are set for optimal viewing of the model. In this application, the 

parameters have to be adjusted manually in the programming line for each model loaded. 

The four parameters set the vertical field o f view angle (fovy), the aspect, which is die 

width of the view divided by the height of the view (1.0 specifies a square), and the near 

and far valuep along the depth axis. Figure 7.10 illustrates the gluPerspective parameters. 

kamera 
aspect=w/h 

near 
far 

Figure 7.10: The gluPerspective parameters. (Source: Root.cz, 2005) 

Next, the modelling transformation mode is set (GL MODELVIEW). The modifiable 

matrix is cleared again before the texture information is built. As in the Light_tex 

functions, the I D texture generation and texture coordinate (s-coordinate) generation is 

enabled. The glTexGeni automatically generates the texture coordinates, in this case the s-

coordinate that specifies the RGB colour in the texture to be wrapped around the model. 

The texture generating mode is set to GL_EYE_LINEAR that specifies the fimction to be 

used when generating the texture coordinate. GL_EYE_LINEAR calculates the texture 

coordinate in an "eye referenced" coordinate system, which use the positions of vertices 

after all modelling and viewing transformations are performed (i.e. they use the positions 

of the vertices on the screen). The function generates a field of texture coordinates that is 

favorable when producing dynamic contour lines on moving objects, in this case dynamic 

color contours on the model. The next four lines o f code define the ramp limits (Df and 

Db) along the z-axis with respect to the eye point (ep) and the texture generating 

parameters as described in chapter-7.2. The ramp function values have to be manually -
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adjusted for each model loaded, and may also require adjustment as the model is rotated to 

ensure the optimal fitting of the ramp function to the model. The texture vectors are then 

generated using the glTexGenfv function with the input of the textureparametres. The 

glBindTexture routine creates the new I D texture object and names it texturename. 

The viewing,parameters are specified by the gluLookAt function. First the viewpoint 

coordinates are specified (vp, vp, vp/4), then reference point coordinate at which the 

camera is pointing are defined (0.0,0.0, 0.0) and finally the view up vector (0.0, 0.0, 1.0) 

that defines what way is up in the viewing volume. The glGetFloat querying routine gets 

the value of the model transformation matrix and stores it in the parameter viewproj as the 

current matrix. The glLoadldentity command clears the current modifiable matrix and sets 

it equal to the identity matrix to erase the effect of any current viewing transformation. 

The next section defines the rotation o f the model according to the assigned keys on the 

keyboard. The glRotate routine is used and the first parameter, angle, defines the increment 

of rotation around the axis. As the angle is set to 5°, the rotation wi l l move 5 degrees for 

each time you press the designated key. A negative angle reverses the direction of the 

rotation. The next three parameters define which of the axes (x, y or z) the model wi l l 

rotate aroxmd. After the desired rotation is performed the remaining modelling 

transformation is applied by multiplying it with the stored matrix using the glMultMatrix 

routine, the resulting matrix is stored again as the current matrix (savestate). 

glLoadldentity then clears the current modifiable matrix again. The modelview matrix is 

rebuilt by first multiplying with the viewing transformation (viewproj) and then with the 

modelling transformation (savestate). The drawsurface fimction is called upon and finally 

the top matrix of the stack is erased promoting the second matrix on the stack list (viewing 

transformation matrix) to the top. Finally, the glSwapBuffers routine refi-eshes the display 

and allows the new memory buffer to be completely displayed. 
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Table 6: Display function 
v o i d d i s p l a y ( v o i d ) 
{ 
#de f i n e Angle 5.0 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
glMatrixMode{GL_PROJECTION); 
g l L o a d l d e n t i t y ( ) ; 
g l u P e r s p e c t i v e ( 7 5 , 1.0, 1.0, 500.0); 
glMatrixMode(GL_MODELVIEW); 
g l L o a d l d e n t i t y ( ) ; 
glEnable(GL_TEXTURE_1D) / 
g l E n a b l e ( GL_TEXTURE_GEN_S ) ; 
gl T e x G e n i ( GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR ) ; 
Df = vp - 50.0; Db = vp + 150.0; 
t e x t u r e p a r a m e t r e s [ 0 ] = t e x t u r e p a r a m e t r e s [ 1 ] = 0.0; 
t e x t u r e p a r a m e t r e s [ 2 ] = -1.0/{Db-Df); 
t e x t u r e p a r a m e t r e s [ 3 ] - -Df/(Db-Df); 
glTexGenfV( GL_S, GL_EYE_PLANE, t e x t u r e p a r a m e t r e s ) ; 
glBindTexture(GL_TEXTURE_1D, text u r e n a m e ) ; 

gluLookAt( vp, vp, vp/4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1 . 0 ) ; 
g l G e t F l o a t v ( GL_MODELVXEW_MATRIX, vi e w P r o j ) ; 
g l L o a d l d e n t i t y ( ) ; 

s w i t c h ( c h ) 
{ 

c a s e '1 *: 
g l R o t a t e f ( Angle, 1 0, 0. 0, 0 .0) ; break; 

c a s e '2*: 
g l R o t a t e f ( -Angle, 1. 0, 0. 0, 0 . 0 ) ; break; 

c a s e '3': 
g l R o t a t e f ( Angle, 0 0, 1. 0, 0 . 0 ) ; break; 

c a s e * 4': 
g l R o t a t e f ( -Angle, 0. 0, 1. 0, 0 . 0 ) ; break; 

c a s e '5': 
g l R o t a t e f ( Angle, 0 0, 0. 0, 1 .0) ; break; 

c a s e •6 *: 
g l R o t a t e f ( -Angle, 0 0, 0. 0, 1 .0) ; break; 

} 
ch = ' •; 

g l M u l t M a t r i x f ( s a v e S t a t e ) ; 
g l G e t F l o a t v ( GL_MODELVIEW_MATRIX, s a v e S t a t e ) ; 
g l L o a d l d e n t i t y ( ) ; 

g l M u l t M a t r i x f ( viewProj ) ; 
g l M u l t M a t r i x f ( s a v e S t a t e ) ; 

dr a w 3 d s ( ) ; 

g l P o p M a t r i x O ; 
g l u t S w a p B u f f e r s ( ) ; 

7.3.6 Reshape function 

The reshape function requires the input of two integer values for the width and height (w 

and h) of the OpenGL window; these are specified in the main loop. The gIViewport 
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routine defines a window where the model image is mapped. The first two parameters (0,0) 

define the lower left comer of the window and the w and h parameters define the width and 

height of the window in pixels. 

Table 7: Reshape function 
v o i d r e s h a p e ( i n t w,int h) 
{ 

g l V i e w p b r t ( 0 , 0 , ( G L s i z e i ) w , ( G L s i z e i ) h ) ; 
} 

7.3.7 Keyboard function 

The keyboard function requires input fi'om the specified keyboard keys. The integers x and 

y indicate the present location (x and y coordinates) o f the mouse cursor. This function is 

specified by the glutKeyboardFunc in the main loop and is part of the OpenGL Utility 

Toolkit. The desired keys for rotation of the model, in both directions and around three 

axes, are specified and when the keys ( 1 , 2, 3, 4, 5, and 6) are pressed and the 

corresponding ASCII value is generated. Pressing the capital letter E wi l l exit the 

application. 

Table 8: Keyboard function 
v o i d keyboard{unsigned c h a r key, i n t x, i n t y) 
( 

ch = ' ^• 
s w i t c h (key) 
{ 

c a s e 
c a s e '2» 
c a s e '3' 
c a s e '4' 
c a s e '5' 
c a s e '6* 

ch = key; breaks-
c a s e 'E* : 

e x i t ( 0 ) ; break; 

7.3.8 Animation function 

This function is provided for animation functionality, which was tried out on simple 

models in the early part of the project. As the 3DS model loader was implemented, the 

animation fiinctionality became too demanding for computer resources and of little 
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significant value to explore the stereoscopic effect. It w i l l , however, be interesting to 

pursue the animation functionality in the application development stage following this 

project. It is not removed firom the application because it is used as an argument in the 

glutldleFunction in the GLUT main loop (7.3.9). The glutPostRedisplay function prompts 

the glutDisp\ayFunc in the GLUT main loop that the current window needs to be redrawn. 

Table 9: Animation function 
v o i d a n i m a t i o n ( v o i d ) 
{ 

( 
t += 0.1; 

} 
i f ( t > 1) t-= 1; 
g l u t P o s t R e d i s p l a y ( ) ; 

} 

7.3.9 GLUT Main loop 

The first part of the GLUT main loop initialisation checks i f GLUT can be properly 

initialised, in essence i f an invalid file or command line option is attempted to be executed. 

The argc variable contains the number of arguments passed to our program, while argv is a 

pointer to the arguments. I f the 3DS file has an invalid format, the error message "Unable 

to open file, filename" wi l l be printed in the window. I f no argument is passed to the 

program, the error message 'The program requires 1 command line argument" wi l l be 

printed in the window. The rest o f table 9 consists of a standard GLUT initialisation. The 

glutlnit function initialises the glut fimnework library. The glutlnitDisplayMode function 

specifies double buffering (GLUT_DOUBLE), which enables the application to finish 

drawing the model before sending it to the display window. The GLUT RGB flag 

specifies that a RGB colour buffer is to be used and the GLUT DEPTH flag specifies that 

a depth buffer is applied. The depth buffer ensures that objects in the model closer to the 

viewer wi l l be displayed in fi*ont o f the objects farther away. The glutlnitWindowSize sets 

the initial window size to be 500 by 500 pixels, and the glutlnitWindowPosition places the 

lower.lefl comer.of the windowJO pixels to the right and 70 pixels up from the lowerleft _ 
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comer of the display. These are initial settings; the window can be moved and resized in a 

traditional windows way. The next two lines wil l create a window title "Model read fi-om 

file: Filename" where glutCreateWindow wil l actually create the specified window 

including the window title. The glutDisplayFunc is a call-back function which GLUT wi l l 

call in response to a specific event (in this case it wi l l call for the display function when 

GLUT decides that the window display has to be updated). The glutReshapePunc call-back 

function wi l l call for the reshape function when the window is moved or reshaped. The 

next function, glutldleFunc, continuously calls the animation function when other events 

are not received enabling the application to perform continuous animation or background 

processing tasks. The keyboard function is called fi-om glutKeyboardFunc every time a 

keyboard key press is generates an ASCII character. The light_tex function is called, 

before finally, the glutMainLoop routine enters the GLUT event processing loop that w i l l 

call, as necessary, any registered GLUT call-back function. 

Table 10: Main loop initialisation 
i n t m a i n ( i n t a r g c , c h a r * a r g v [ ] ) 
{ 

i f (argc > 1) 
i f ( ! s c e n e . L o a d F i i e ( a r g v [ l ] ) ) 
{ 

f p r i n t f ( s t d e r r , "Unable t o open f i l e % s \ n " , a r g v [ l ] ) ; 
r e t u r n -1; 

) e l s e ; 
e l s e 
{ 

f p r i n t f ( s t d e r r , "The program r e q u i r e s 1 command l i n e 
argument\n"); 
r e t u r n -2; 

) 
g l u t l n i t ( & a r g c , a r g v ) ; 
g l u t l n i t O i s p l a y M o d e (GLUT_DOUBLE I GLUT_RGB | GLUT_DEPTH); 
g l u t I n i t W i n d o w S i z e ( 5 0 0 , 5 0 0 ) ; 
g l u t I n i t W i n d o w P o s i t i o n ( 7 0 , 70) ; 
cha r w i n d o w T i t l e [ 1 0 0 ] ; 
s p r i n t f ( w i n d o w T i t l e , "Model r e a d from f i l e : % s " , a r g v [ l ] ) ; 
g lutCreateWindow(windowTitle); 
g l u t D i s p l a y F u n c ( d i s p l a y ) ; 
g l u t R e s h a p e F u n c ( r e s h a p e ) ; 
g l u t l d l e F u n c ( a n i m a t i o n ) ; 
g lutKeyboardFunc(keyboard); 

l i g h t _ t e x ( ) ; 

— glutMainLoop() ;- - - _ - _ 

104-



7.3.10 Summary 

This chapter has described the OpenGL pipeline and the software packages used in the 

application development. Further the application structure is described, followed by a 

detailed description of the application programming development. The chromo 

stereoscopic texture is applied to the imported 3ds Studio Max 6 model in a satisfactory 

manner, however the user interface is laborious and it makes the chromo stereoscopic 

process time consxmiing. The user interface also makes it difficult to set the optimal 

parameter settings for chromo stereoscopic texture. It is, however, not the scope of this 

study to develop an optimal user interface for the application. The important result is the 

chromo stereoscopic texture appHed to hydrographic models. It would be an important task 

for further work to develop the user interface. 
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Chapter 8: Data analyses and Results 
Chapter 8 wi l l describe the different 3ds max models created to evaluate the CS 

application. Further the chapter wi l l assess i f the chromo stereoscopic effect, which is 

added to the models when processed in the CS application, wi l l improve the perception and 

understanding of the hydrographic data in the models. 

Chapter 2 concluded that the visual perception wil l improve with an increasing nxmiber o f 

visual depth cues present. When a model is processed by the CS application six of the eight 

monocular depth cues are included. These are: 

• linear perspective 

• relative size 

• known size 

• interposition 

• light and shadow distribution 

• height in picture plane 

The aerial perspective and texture gradient monocular depth cues are not present, and the 

motion parallax depth cue is only present when the model is examined directly in the CS 

application where the model is rotated. The aerial perspective depth cue would affect the 

colouring and contrast of the model and greatly decrease, or render the chromo 

stereoscopic effect impossible. 

nvtaulteid 
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Figure 8.1: Depth Cue effectiveness as a function of distance (Source: Wickens and 

Hollands, 2000) 
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Figure 8.1 clearly shows that the binocular disparity depth cue (included within chromo 

stereoscopy) is far more effective on short distances than the aerial perspective depth cue. 

It is also obvious from figure 8.1 that the texture gradient is a powerful depth cue at any 

range. Therefore, it would be desirable to include this depth cue in a further development 

of the application. It is clear fix»m figure 8.1 that a rotating view of the model, including the 

powerful motion parallax depth cue, wi l l increase the depth perception. 

It is important to emphasize that the viewer should wear the super chromatic prism glasses 

attached to the inside the back cover o f the thesis in order to experience the desired effect 

when observing the chromo stereoscopic figures in chapter 8 or observing the models 

directly on the computer screen. Chapter 8.2 describes how to install the CS application 

and hydrographic models on a computer. 

The assessment method for the chromo stereoscopic technique and subsequent increase of 

depth perception was qualitative rather than quantitative; it was proved in the earlier 

chapters that including stereoscopic depth cues theoretically increases the depth 

perception, and in general the increase of depth perception is obvious when viewing the 

hydrographic models with the eyewear. As a usability assessment from people external to 

the project, 20 staff and students at Aalesund University College have observed figures 8.3 

to 8.22 with the eyewear and thereafter answered the some simple questions. Description 

and results from this assessment are implemented in chapter 8.3.3. 

8.1 Description of the hydrographic data models used 

Hydrographic data are classified into 5 different classes in the discussion of chapter 5. The 

models developed in the 3ds max 6 application reflect these classes with the exception of 

the sea surfece class. I f the sea surface is included as an object in the models and the 

viewer observes the model through the sea surface object the rest o f the model would be 

obscured. It is not possible to make the sea surface transparent, with red as the nearest 

object, and show the objects behind with a proper chromo stereoscopic colour coding. A 
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model of only the sea surface is possible to build, but it would be similar to a bathymetric 

model with relatively minute variations along the vertical axis. A frame, and for some of 

the models a ship, is added to the models to establish the sea surface reference plane. 

Figure 8.2 illustrates the different models created including both the frame and the ship. 

Figure 8.2: The 4 models created in 3ds max 6. The bathymetric data model (upper 
left), Biological/organic data in water volume (upper right), ocean - and 
tidal current data (lower left) and man made objects data (lower right) 

The bathymetry is the same for the 4 models and it is imported into the 3ds max 6 fi-om an 

AutoCAD (.dwg) drawing file in 3D format. The file is the product of an as-left survey 

performed by Stolt Offshore AS on the Gam West oil field in the North Sea for Norwegian 

Shell in 2003 (Norwegian Shell, 2003). The bathymetry shows a segment of the area 

extending approximately 190 metres by 170 metres horizontally and approximately 70 

metres vertically. The trench, clearly visible in the model, is vertically exaggerated to 

expand the vertical limits of the model. This improves the variation in the depth o f the 

scene resulting in a better model to illustrate the chromo stereoscopic effect. 
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The sea surface reference frame and the ship are simple objects created directly in 3ds max 

6. The shoal of fish illustrating organic data in the water volume, the tidal current vector 

fields and the man made objects (ROV's and oil production manifold) are all objects built 

in 3ds max 6. In a more refined and developed version of the application the data for these 

objects woul^ possibly be imported directly into the application. It is not considered 

necessary to include this functionality, in order to examine the chromo stereoscopic effect 

on the models. The ocean- and tidal currents vector field (arrows in layers with 15 metres 

of vertical separation) is not easy to distinguish from the rest of the model in figure 8.2. 

The models are built by adding the different objects to the scene, but before the models 

were processed by the CS application all the objects in each separate model were merged 

into one object. The origin of the model's coordinate system is set in the geometric centre 

of each model. A l l distances in the CS application referred to in this chapter are referenced 

to this point. 

Table 11: Details of the model Hies 
File name File size Number of polygons 
Bathymetry.3ds 314 kilobytes 17693 
Organic.3ds 672 kilobytes 33367 
Current.3ds 683 kilobytes 26623 
Rov.Sds 385 kilobytes 18892 

Table 11 gives an overview of the names of the different 3ds files imported into the CS 

application with the respective file size and the number of polygons that each model 

contains. The relatively small file sizes are achieved by processing the bathymetry model 

through simplifying routines in 3ds max 6 and making relatively simple additional objects 

in the models. This is done to increase processing speed, and has little, i f any, effect on the 

chromo stereoscopic presentation. 

8.2 Evaluation of chromo stereoscopic effect on models 

Each of the 4 models is evaluated in the following text. Before running the CS application 

in Microsoft Visual C++, the model to be imported had to be identified ahd'the different 
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viewing parameters set. The observer view point (vp) (figure 7.5) is generally set to 100 

metres (table 1) to keep the vp outside the model and to enable a good view of most o f the 

model when rotating it. The vp was reduced for some of the processing runs to zoom in on 

details. The limits of the ramp fimction (Df and Db) in figure 7.5 were adjusted (table 6) 

for each processing pass to achieve the optimal colour distribution in the model. A CD 

containing the figures in chapter 8.2 in the Microsoft Word format (.doc) and executable 

program files of the CS application is attached to the back cover. The 4 program files 

contain compilations of the 4 models with fixed values for vp distance and colour ramp 

fimction limits, this due to the limited user interface functionality of the application. Read 

the readme.txt file on the attached CD for instructions on how to nm the application. 

8.2.1 Bathymetric data model 

The bathymetric data model is integrated into all the other models; however it is evaluated 

independentiy to focus only on the bathymetric features. Four different views are produced 

o f the bathymetric model. In figiu'e 8.3 the direction of view is nearly horizontal looking 

into tiie model from the comer (the values of vp = 100, D f = 70 and Db = 230). The front 

ramp limit D f = 70 is apparent in the transition between the dark solid red colour and the 

rest of the colour spectrum. The back ramp limit (Db) is set such that the blue end of the 

colour spectrum is located in the distant comer o f the model. The fi-ame is the reference o f 

the sea surface. In this side view, however, the chromo stereoscopic effect wi l l not enhance 

the depth perception of the sea surface in relation to the bathymetry. The chromo 

stereoscopic effect on the closest ridge in relation to the trench is clearly improving the 

depth perception. The chromo stereoscopic effect on the ridge on the opposite side of the 

trench is also clear and the depth perception is increased, particularly in relation to the 

areas behind the ridge. This is because you get a more distinct transition between colours 

widely separated in the colour spectrum. This gives a greater chromd stereoscopic effect 

than a gradual transition between the colours. 
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Figure 8.3: Bathymetric data model, corner side view 

in figure 8 4 the model is viewed from the opposite side with the model slightly tilted The 

vp, Df and Db values are unchanged From this viewpoint the colour separation between 

the major features, the elevated area in front (yellow) to the even more elevated area 

(green) and to the ridge wall in the back of the scene (blue), is greater than in figure 8 3 

Consequently, the chromo stereoscopic effect is increased and the depth perception and 

understanding of the spatial relations in the model is enhanced 

Figure 8.4: Bathymetric data model, side view opposite corner 
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In figure 8 5 the model is viewed vertically down along the z axis The values of vp - 100, 

D f = 115 and Db = 165 By setting these values for the ramp function D f is set closer to the 

viewer than the model, resulting in a dark red fi-ame representing sea level The area with 

dark blue colour at the bottom of the trench is just outside the Db limit. 

Figure 8.5: Bathymetric data model vertical vien 

The ramp function is thus made somewhat narrower than the model, this is done to make 

more of the colour spectrum covering the actual bathymetry of the model I f the ramp 

function is set to exactly enclose the model, the bathymetry would be covered by only the 

blue band of the colour spectrum and the bathymetric features would not be effectively 

represented by chromo stereoscopy The chromo stereoscopic effect clearly places the sea 

surface frame closer to the viewer giving a good perception of the height of the water 

column In figure 8 6 the view point is elevated and the model is observed from above at 

approximately 30"̂  downward angle 
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Figure 8.6: Bathymetric data model elevated comer view. 

The sea surface ft^ame does not lie at the same distance from the viewer, the chromo 

stereoscopic effect will in this case only give a true representation of the distance between 

the sea surface and the bathymetry along the line of sight At the nearest comer in figure 

8 6 the effect is good, but in the far side comer both the frame and the bathymetry is the 

same colour (blue) which is expected since they are located at the same distance from vp 

It is obvious that it is important to select the right viewing direction in order to get the 

desired chromo stereoscopic effect between objects 

8.2.2 Biological / organic data in the water volume model 

Five different views and colour ramp settings are selected to elevate the biological / 

organic data in the water volume In figure 8 7 the shoal of fish is located approximately in 

the middle of the model between the bathymetric model and sea surface reference frame 

This object constitutes the outer limits of the shoal, similar to the presentation on the state 

of the art fishery sonars The values of vp = 100, Df = 70 and Db = 230 are set for both 

figures 8 7 and 8 8 The chromo stereoscopic effect gives a good perception of depth in the 
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figure and the green shoal is clearly perceived at a closer distance that the blue bathymetry 

behind it In figures 8 7 and 8 8 the ramp function limits are set wide and therefore the 

entire shoal is located in the green section of the colour spectrum The whole object is then 

at the same distance ft^om the view point with respect to chromo stereoscopy 

Figure 8.7: Biological / organic data modeL corner side view 

When rotating the model in the CS application the chromo stereoscopic effect and motion 

parallax gives an excellent sensation of the shoal floating above the bathymetry 
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Figure 8.8: Biological / organic data model, elevated comer view 

Figure 8 8 gives similar results in the improvement of the depth perception This is because 

the distance from the shoal to the background bathymetry is similar, resulting in the same 

colour contrast between the shoal and the bathymetry 

Figure 8 9 shows a vertical view looking down on the shoal The view point vp = 100 and 

the ramp fiinction limits are set to Df = 115 to Db = 165. This view gives excellent 

perception of the relative depth of the shoal in relation to sea surface and the bathymetry 

As in the vertical view of the bathymetric data model, the ramp function is compressed 

such that the entire colour spectrum is shown over a distance o f 50 metres This is done in 

order to make the contrast between the colours of the shoal, bathymetry and the sea surface 

reference frame optimal. 
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Figure 8.9: Biological / organic data model, vertical view 

Figure 8 10 shows a horizontal side view in the direction down along the trench with the 

ramp function approximately enclosing the outer boundaries of the model with vp = 100, 

Figure 8.10: Biological / organic data model, side view along trench 
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Df 70 and Db = 230 The depth perception in this view is also excellent, and the location 

of the shoal in the trench is obvious From this point of view the shoal is extending into the 

yellow part of the colour spectrum, resulting in a two coloured shoal, this helps in 

perceiving the horizontal extent of the shoal (or depth of view) 

Figure 8 11 shows a comer side view of the biological / organic data model The particular 

difference on this model, compared to the previous ones, is that the ramp function limits 

are considerably narrower than the entire model The ramp limits are enclosing a desired 

object within the model in order to distribute the colour spectrum over that particular 

object The viewer will then get a more detailed perception of the depth of that particular 

object. 

Figure 8.11: Biological / organic data model, corner side view with narrow colour 
distribution 

In figure 8.11 the vp = 100, the Df = 85 and Db = 160 By setting the ramp with these 

values most of the colour spectrum is represented on the desired object, the shoal In 

addition the depth perception of the shoal with respect to the dark blue bathymetry behind 
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is increased However, in the dark red band in front of Df and in the dark blue band in the 

back of Db there are no difference in the chromo stereoscopic effect and the image depth 

for the entire model is not correctly illustrated The viewer must be aware of this effect 

when examining the model The narrow ramp function limit view is further illustrated in 

figure 8 12 where the viewpoint is elevated, vp and the ramp function limits are the same 

as for figure 8 11 In figures 8 7 and 8 8 the shoal of fish object is almost mono colour 

(green), and the shape along the sight axis of the shoal itself is not that easy to determine 

In figure 8 11 and figure 8 12 the front end of the shoal, orange in colour, are clearly closer 

to the viewer than the back part of the shoal, green in colour The viewer will get a better 

understanding of the shape of the shoal in figure 8 12 where the chromo stereoscopic effect 

increases the depth perception of shoal In figures 8 7 and 8 8a better understanding of the 

relations of depth between the different features in the complete model is achieved 

Figure 8.12: Biological / organic data model, elevated comer view with narrow colour 
distribution 
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8.2.3 Ocean - and tidal current data model 

Four different views of the ocean - and tidal current data are used to examine the chromo 

stereoscopic effect on this model An extra reference object, a vessel, is added to the sea 

surface reference frame to increase the perception of the sea surface layer Vector fields 

illustrate the currents at different layers of depth In this model the spacing between layers 

is approximately 15 metres, three layers are presented at approximately 15, 30 and 45 

metres The great advantage of presenting the current data in this way is that the viewer 

will be able to view the complete dataset in one image, where the chromo stereoscopic 

effect will increase the viewer's ability to separate the layers at different depths 

Figure 8.13: Ocean - and tidal current data model, vertical view 
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Figure 8 13, the vertical view looking down on the model, has an unchanged vp = 100 and 

the ramp fijnction limits are D f = 115 and Db = 175 The sea surface reference frame and 

vessel is dark red because it is just outside the nearest ramp limit The first current layer is 

orange, the second layer is light green and the third layer is light blue The layers are 

homogenous in colour, i e all the colours in a layer have approximately the same colour It 

is easy to separate the different layers, and the chromo stereoscopic effect effectively 

places the layers at the appropriate depths The arrows in the vector field are selected to be 

fairly small, this prevents the arrows in the upper layers obscuring the arrows in the lower 

layers To enhance the presentation further different ways to present the vector information 

should be investigated This is however not covered by the scope of this thesis. 

I . I . .1 -1 l - > I tl H,. I l l - I I . . 1 . - I M'. 

Figure 8.14: Ocean - and tidal current data model, elevated comer view 

- 120 



The elevated comer view of the data model uses the viewing parameters vp = 100, Df = 70 

and Db = 230. It is clear that the vectors in each current layer are not homogenous in 

colour, this is because the vectors in each layer are not equally distant to the view point 

The effect is confusing and it is not easy to differentiate the data at each layer The chromo 

stereoscopic effect will separate the layers to some extent at the nearest parts of the model, 

because the view is relatively vertical However, as the view is moved further away in the 

model vectors in different layers will have the same colour, because they are at the same 

distance from the view point The chromo stereoscopic effect on the rest o f the model, 

bathymetry and reference frame is effective and the vessel increases the sea surface 

reference plane 

Figure 8.15: Ocean - and tidal current data model, corner side view 
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Figure 8 15 shows a comer side view of the data model looking nearly horizontal through 

the model The line of sight is approximately in line with the layer at 15 metres depth. The 

vp = 100, Df = 70 and Db = 230 The vector fields are poorly presented from this angle, 

which is not unexpected since the data is distributed in horizontal layers The 15 metres 

layer is barely visible represented by small scattered dots along the line o f sight The layers 

at 30 and 45 metres are more visible but the size and orientation are not recognizable for 

the majority of the vectors The nearest vectors can be placed relative to the bathymetry 

and surrounding vectors water volume with the presentation somewhat increased by 

chromo stereoscopy The non homogenous colours in the different layers will however 

make the presentation confusing. 

Figure 8.16: Ocean - and tidal current data model, elevated side view, narrow colour 
distribution 
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The view in figure 8.16 is as figure 8.14 an elevated side view. However, the colour 

distribution band is narrower (Df = 85 and Db = 165, vp =100). The fi-ont ramp fiinction 

limit (dark red) is intersecting the vessel, making all the vectors closer to the view point 

dark red, and fi-om a chromo stereoscopic point of view, at the same distance fi-om the view 

point. This i§ obviously not correct, and makes the presentation of the red vectors in fix)nt 

of the view confusing. When looking at the current vectors in the middle of the figure, a 

good chromo stereoscopic effect is present when looking along the line of sight at different 

depths. Separating the currents at the different layers, as in figure 8.14 and figure 8.16, is 

difficult because of the non homogenous colours in the respective layers. 

8.2.4 Man made objects data model 

To illustrate a typical man made object data model an offshore construction vessel is 

presented in the following figures. Attached to the vessel through "umbilical cords" are 

two ROVs operating in the water column, and placed on the seabed, in the trench is an oil 

production manifold. The manifold can be seen on the seabed between the ROVs. The 

objects are built in the 3ds Max 6 application. 
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Figure 8.17: Man made objects data model, corner side vien 

In figure 8 17 the colour ramp function approximately encloses the entire model, the Df = 

70, Db = 230 and vp = 100. The chromo stereoscopic effect clearly places the surface 

vessel closer to the viewpoint than the two ROVs, making it easier for the viewer to judge 

the relative position between the vessel and the ROVs Because the ROVs, the manifold 

and the surrounding seabed are all in the green band of the colour spectrum, chromo 

stereoscopy cannot increase the understanding of depth between these objects. The chromo 

stereoscopic effect is very apparent with the umbilical cords and the highest ROV in 

relation to the seabed wall in the background 

Figure 8 18 is similar to figure 8 17, the ramp function settings and vp is the same and the 

wide colour ramp is also here nearly eliminating the chromo stereoscopic effect between 

the nearest ROV, the manifold and the adjacent seabed The chromo stereoscopic effect 
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between the vessel, the more distant ROV and the bathymetry increases the depth 

perception between these objects. 

Figure 8.18: Man made objects data model, elevated comer view 

The colour ramp function limits in figure 8.19 are adjusted to make the colour spectrum 

cover a shorter distance in the model. The colour separation between the different objects 

thereby increases and the chromo stereoscopic effect is enhanced. Df = 90, Db = 200 and 

vp = 100 The increased depth perception along the trench is obvious and the ROVs , the 

umbilical cords, the vessel, the manifold and the bathymetry can easily be placed at the 

correct depth in the figure 
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Figure 8.19: Man made objects data model, side view 

As in the previous vertical views of the models, the ramp function limits in figure 8 20 are 

closer (Df = 115 and Db =180), in order to distribute most of the colour spectmm over the 

desired objects in the model (here the two ROVs in relation to the manifold, bathymetry 

and the vessel) Again the chromo stereoscopic effect is clear and it is easy to establish the 

relative altitude between the two ROVs in the water column and the manifold on the 

seabed 
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I iuure 8.20: Man made objects data model, vertical view 

In figure 8 21 the colour ramp function is set narrower (80 metres wide), D f = 85 and Db '-

165, for the colour spectrum to cover the desired objects in the model The objects of 

interest in the model then get a greater separation in the colour spectmm, resulting in an 

increased chromo stereoscopic effect, the relative depth between the features in the 

bathymetry outside the ramp function limits are not subject to chromo stereoscopic 

enhancement. Compared to figure 8 17 and figure 8 18 where the ramp function is 160 

metres wide, the chromo stereoscopic effect and the understanding of the spatial relations 

between the objects of interest is increased 
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Figure 8.21: Man made objects data model, corner side view, narrow colour 
distribution 

In the side view of figure 8 22 the view point distance is reduced (vp = 40), the view point 

is now within the model, 60 metres closer to the objects of interest The ramp function 

limits are adjusted to enclose the scene of interest (Df = 0 and Db = 80). The relation 

between the objects with regards to the image depth is clear and the chromo stereoscopic 

effect apparently increases the depth perception By zooming in on the objects of interest 

the relative distances between the objects becomes greater compared to the distance to the 

view point This increases the image depth o f the scene making it more suitable for the 

chromo stereoscopic technique. 
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Figure 8.22: Man made objects data model, side view and zoomed in 

83 Results of evaluation 

The results from the evaluation of the chromo stereoscopic effect on the models can be 

divided into two groups, the general results which are common for all the models, and the 

model specific results which are particular to each of the four model groups. 

8.3.1 General results 

The sea surface reference frame is used in all the models and it defines the upper and outer 

limits of the model The chromo stereoscopic effect by using the frame is obviously best in 

the vertical, or near vertical views of the model, where the frame defines the closest parts 

of the model When looking at the model in the horizontal or the elevated views the 

chromo stereoscopic effect on the frame has little value in increasing the depth perception 

of the model. An elevated view can give a confusing effect on the sea surface reference 
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frame. The reference frame constitutes a 2D layer in the model, and as in figure 8.6 the CS 

application distributes the colour spectrum along the frame. The yellow parts of the fixmie 

in the upper right hand comer of the model are computed to be at the same distance from 

the view point as the yellow parts of the bathymetry, but when observing the model from 

this view it ŝ eems to be further away from the viev^oint. 

The chromo stereoscopic effect depends on the viewing direction, it is important to use 

effort in selecting the optimum viewing direction to get the best possible depth perception 

of the model. Figure 8.3 and the opposite view (figure 8.4) illustrate this. In figure 8.4 

there is greater distance in the colour band between the features in the model and thus the 

depth perception is increased. A more gradual change in the colour spectmm does not 

induce the same chromo stereoscopic effect. The effect of the motion parallax depth cue 

also increases the depth perception when changing the viewing direction by rotating the 

model. 

The colour ramp is decreased in some of the views in order to isolate the distribution of the 

colour spectrum to objects of particular interest. This enhances the chromo stereoscopic 

effect on that object, giving a better perception of depth in that particular area of the model. 

Figure 8.11 is an example of a narrow colour ramp on a model. The viewer must be aware 

of the effect on the entire model, in the areas of dark red in front of, and dark blue behind 

the object of interest the chromo stereoscopic effect is absent. The narrow colour ramp is 

also used to increase the colour spectrum separation, and thereby the chromo stereoscopic 

effect, between objects that with a ramp function enclosing the whole model would lie in 

the same colour band. 

More complex datasets or models with several objects of interest are better suited for 

chromo stereoscopic enhancement to increase the depth perception. The relative depth 

between objects of interest are easily determined i f the ramp limits are properly set. In 

figure 8.20 it is easy to establish the relative distance between the vessel and the two 
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ROVs. 

A better representation of the colours in the model wi l l increase the chromo stereoscopic 

effect. A high quality colour print paper wi l l translate the colours better than a low quality 

paper, and thereby provides a better chromo stereoscopic effect. A high resolution 

computer display with good and bright colour representation wi l l probably give the best 

chromo stereoscopic effect. 

The current application has a poor user interface. The user first has to enter the name and 

directory path of the model file, then the values for the view point distance, and the ramp 

limits have to be entered into the source code before the source code is debugged and run 

fi-om Microsoft Visual C-H-. The whole process has to be repeated for just a slight change 

in the parameters. It would greatly improve the application to be able to change the ramp 

function limits and view point distance instantly when having the model in view, without 

running through the whole process. It would then be much easier to apply the correct cut 

and colour distribution on the model, ensuring optimal chromo stereoscopic effect. 

8.3.2 Model specific results 

The depth perception in the views of the bathymetric model is clearly improved by the 

chromo stereoscopic effect, especially in areas where the bathymetric model has distinct 

variation and a distinct separation between the colours exists. In the vertical view the sea 

surface reference fi-ame gives a good indication of the depth of the water column (figure 

8.5). I f the distance fi-om the highest point of the seabed to the surface is large compared to 

the vertical extent of the bathymetry, the ramp limit should be adjusted to only enclose the 

bathymetry. I f not, the coloiir distribution over the bathymetry wi l l not be sufficient to 

reveal its features. For this reason the optimal colour distribution for vertical views through 

the entire water column are generally not evenly distributed across the model due to the 

nature of the dataset. 

The chromo stereoscopic technique is very well suited to enhance the depth perception of 
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models with objects of interest such as biological or organic features in the water column. 

The relative placement of the shoal in the model in relation to the bathymetry and the sea 

surface is easy to establish. With the narrow colour distribution in figure 8.11 and figure 

8.12 the horizontal extent o f the shoal itself is clearly perceived. 

The ocean - ^ d tidal current data model is a complex multiple layered data model. It is 

clear that the vertical view is excellent when viewing all layers o f data at the same time 

(figure 8.13). The chromo stereoscopic technique separates the layers in depth, giving the 

viewer a very good comprehension of the entire dataset. The vessel also provides increased 

reference to the surface layer. It is also clear that layered datasets can be confijsing to 

observe using chromo stereoscopy when the viewing direction is not normal to the layers 

(figure 8.14). A viewing direction parallel to the feature of interest's extent wi l l of course 

not give an increased understanding o f the dataset (figure 8.15). 

The man made objects data model is a more complex model with more objects of interest. 

Generally the chromo stereoscopic effect increases the depth perception of this model very 

well. The objects of interest's relative positions and relative distance fijom the view point 

are easily determined by the viewer. The ramp fimction limits must however be adjusted to 

get the desired colour separation between the objects of interest in the data model. 

8«3.3 Usability assessment 

Nielsen and Landauer (1993) proved that with only a number of 5 test users it is possible to 

find approximately 85% of all usability problems in a user interface design. The number of 

usability problems found is established by the Poisson model and is given by equation 8.1. 

Found(i) = N(l- ( l -X)*) (8.1) 

Where i is the number of evaluators, N is the total number of problems in the interface and 

X is the probability of fmding the average usability problem by using a single evaluator. 

Nielsen and Landauer (1993) found that in average 1 = 31%. The 20 students and staff 
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used as evaluators in this usability assessment found 99.9% of the usability problems (eq. 

8.1). The number of evaluators was set that high because it did not present any noticeable 

extra workload to get the results. 

After evaluating figures 8.3 to 8.22 the evaluators answered the following simple 

questions: , 

• Did you experience the chromo stereoscopic effect? 

• Does the chromo stereoscopic effect enhance the depth perception of the model? 

• Which of the figures gives best chromo stereoscopic effect? 

• Is the chromo stereoscopic effect influenced by the viewing direction? 

A l l 20 staff and student evaluators experienced the chromo stereoscopic effect and stated 

that the depth perception of the models in general was increased, giving a better 

understanding of the spatial relations in the hydrographic models. A l l 20 evaluators said 

that the effect of the chromo stereoscopic technique is dependent of the viewing direction, 

which supports the results in chapter 8.2. 13 were of the opinion that the vertical view of 

the ocean - and tidal current data model (figure 8.13) gave the best chromo stereoscopic 

effect and 7 believed that the man made objects data model (figure 8.22) gave the best 

chromo stereoscopic effect. This supports that more complex data models with several 

spatial objects are better suited for chromo stereoscopic presentation. 
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Chapter 9: Conclusion and discussion 

This chapter draws together the earlier chapters, discusses the chromo stereoscopic 

technique and the results from the evaluation of the CS application. Then issues for further 

work are discussed. 

9,1 Review of study 

The aim of this thesis has been to investigate opportunities and benefits of improved 

visualisation, through increased depth perception of hydrographic data and to develop a 

novel technique to improve the visualisation of hydrographic data. 

It is clear from this study that an increasing number of depth cues present in the display 

image wi l l increase the depth perception and understanding of a 3D dataset. The binocular 

depth cue is one of the most powerful depth cues at close ranges and hence including this 

depth cue in the presentation on a computer display is of significant value for increased 

depth perception as the display is part of the personal space. 

Current 3D stereoscopic display techniques were reviewed and the chromo stereoscopic 

technique was identified as a technique that has several advantages when visualising 

hydrographic data, especially in a semi operational environment. Except for presentation of 

vertical view remote sensing data (chapter 4.1.7), it has not been possible to find cases 

where chromo stereoscopy is applied to visualise scientific data. 

After reviewing how digital hydrographic data is currendy presented, i t was clear that 

stereoscopic presentation of hydrographic data is almost non existent, but 3D perspective 

presentations are increasingly popular in the hydrographic community. Four classes were 

identified as especially suited for stereoscopic presentation due to the general 3D nature of 

the data. The four classes are; bathymetric data, biological/organic data in water volume, 

ocean- and tidal current data, and man made objects data. I t was decided to investigate,the 

chromo stereoscopic technique fijrther and apply it to the presentation o f appropriate 
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hydrographic datasets. An application that applies a chromo stereoscopic texture on 

datasets was developed and the application performs well in distributing the chxomo 

stereoscopic texture over the model. However, the user interface is very simple, making the 

processing and parameter determination complicated and time consuming. 

Four hydrogj^phic data models were built, each representing one of the previously 

identified digital hydrographic data classes. These data models were used to evaluate the 

chromo stereoscopic effect on relevant hydrographic data models. 

Generally, the chromo stereoscopic technique enhances the depth perception and 

understanding of the spatial relations in the models examined. However the stereoscopic 

effect is dependent on the viewing direction and amount of 3 dimensionality in the model. 

The depth perception is increased i f the viewing angle is selected such that the main 

features in the model are separated in the colour band. It can be confusing to interpret 

layered datasets i f the viewing direction is not normal to the layers. As established in the 

earlier stages of the study, more complex datasets (i.e. datasets with an increasing number 

of objects or features o f interest) wi l l profit even more from a chromo stereoscopic 

presentation, enhancing the understanding of the relative spatial location between the 

features or objects. 

The quality of the colour representation in the chromo stereoscopically textured model also 

affects the chromo stereoscopic effect. When transferred to paper copies it seems like the 

chromo stereoscopic effect is somewhat reduced, according to the quality of paper used. A 

high definition colour display with bright colour representation and backlight gives the best 

chromo stereoscopic effect. 

9.2 Issues for further work 

It would be very useful to develop the application user interface. The ability to set the ramp 

function limits and view point distance directly when viewing the model would greatly 

improve the user interface. Slide bars to adjust D f , Db and vp would make it much easier 
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to set optimal values for these parameters, an optimal solution for the viewing angle and 

zooming functionality would be a "fly-through" capability where the viewer could more 

easily move relative to the model. A functionality where the viewer could toggle between a 

natural texture and a chromo stereoscopic texture would compensate for the negative 

aspect of the.unnatural colouring of chromo stereoscopic models. These extended 

functionalities were not necessary to include for the investigation on the chromo 

stereoscopic effect, however for a further investigation into optimal parameter settings and 

viewing direction it would be necessary. 

Further usability testing during the application development wi l l provide quality assurance 

and deeper insight of the development process (Nielsen and Landauer, 1993). 
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vtsuu! d i i p b i y Is r l u t t l i c suribcc of the 
diapby s c r e e n b 2 D w h e r c M the nauiral 
w o r l d . ID . I n nrdrr t u impruve the 
\-uu3lL<ia[ion t>r h > - J m ^ p h i c data, tr i s 
ncccsinry t o nrprc5cnt J r p t h o r dL^tnncc 
pcr«r r i«^n i » a J imcnsinn along 
the l ine o f s i ^ t . W h e n prescntinf; 
h^-dnigmphiL- d: ini , perspective mndcU 
ffvqucni ly include several visual c u e j t u 
i i K r e a i C the depth perrcptltm. Howe%-<T 
one o f chc most p o » T r f u l v u a a l c u e s , 

sicreopsis ( i . e . the cfTccc cenenited 
t h r u u ; ; l i b inocubr v i s i o n ) , b mrciy u s e d . 

T h b p ; i p c T n:\'i(.-ws the clt^rocterLiiics 
(if h u i m n vlsu?.\ pcr tcpt inn nf depth and 
dii tuncc. Including! the d i f t r r cn t visual 
can t o incirase depth p t T c c p r i o n . I t wi l l 
compare 2D, 3 D pcrspccriv* ond 3D 
stereoscopic d i ^ b y s aivi rcvicvf the 3 D 
stereoscopic di fpLiy rechniquc& avnibbte. 
As t h i i paper focuses o n the basic 
c h a r B C t c r i s r i c s o f depth pctccption and 
different displny« the r e a d e r mieht miss a 
(jrrater hyJ ro jn iph ic (c i t ing , h o w e \ ' c r the 
authors Itnd i t p c r t i n a i t to e sob lbh the^e 
rcLitkinshfps b e f o r e odvancing funher. 
The strcond p a p e r w i l l d i s c u u how to 
improve the p c i c c p i i o n o f relevant 
h y d r o [ 7 i i p h i c danibeia and t h i n u f ; h 
relevant examples expnnd the overall 
h>-dro ( .Tap luc relevance to the reader. 

Depth Perception and Visual 
Cues 
Depth and dbLince perception Is achieved 
th toujdi the u i m b i i u t t n n o f bcvcnil depth 
cues. The terra, cues, hss been utilised t p 
t ' u n n a l L s c the apccification o f stimulus 
cotiditions f o i sjxice perception (Curr, 
1W5). To dbiinEiiiah between pci rc ivcd 
and ph^-sical epsce the r e b t i o n between 
distal s t imuli and proxi ina l atimuli t i 
important . A n y phv:iical objects and 
dcenes are distal s t imu l i , wheiv dlsinl 
s t imul i r o u s e our n e r \ - o u s system by 
patterm o f encr i^ (e-g. l i g h t er»ctg>-. sound 
w^-cs). Pancnis o f encrpy iha i re=ch and 
offcct our sense orqans arc tcnned 
p T t u i i n a l s t imuli and hy projecting the 
energy patterns f h i i n distal s t imuli onto a 
surface (e.p. u screen or retinid surface) 
the proximal stimulus patterns can be 
(>h«;r%"cd. 

Hocl ibcf^ (1978) d c i l n e d a depth cue 
as a p u i e m of proximal srimuliit ion th:it 
Ciwuins in f t j imat iun about the spatbl 
location o f d i i m l objects. Depth cues a m 
be cbssificd t n t t i ĉ '̂o t y p e s : munucubr 
and b inocubr . M o n t K u l a r d e p d i cues 
i c i j u i i e t h e ac t iv i ty u f a M i i g l e eye; 
binocular depth cues require t h e u s e o f 
both eyea. Pictorial depth cues u t e a u i b x t 
o f monix-ubr d e p t h cues and include 
lineiir perspective, rebr ive siic, k t w w n 
size, bticrposition, i l ta i low distribution, 
aerial peirpeccive, hciAhr i n picnite pbrw: 

C 
Cxi 

LA 

I l u n r IVr-.prcnvt 

I ^ i l . i t ive :stw 

Kn.nvn Si;t-

li'^n is. l>Mnbuiiun 

Depth Cue5 

MoniK u b r Dct<Ui Cuc?> 

Ai.Ti:i] Peni^ccttve 

Hey;li i i n Picmrc Pbi ie 

f - W Tc\nuir ( J r j J i a i t 

Imcrpvj^uit 'ii M - l Mot ion F- i rJUx 

i l i n o c u b r Depth Cues 

Acci i i i i iv i i t l i>n 

.^mvcrr^L-nce 

i"ietci-T-*i< 
O < 

i . 

I 

T H E H Y 0 R ( X 3 R A P H 1 C J O U R N A L N o . 113 July 20M 

148 



: i iu l p r : t J i tn i i r t lcxturtf-J[M»sitv 

Ntnthm p;*wil«x L* UIMJ JcstriNxl as a 
nuiruK-ular Jcp:h <u<e aivl Ls also fvlc \ ; inr 
111 r e v i e w . Ginociilsr Jcprh c i i o 
i i icluJc Jcco imiuKbt io i i , i : t i n v c r K f n « 
unJ Mciix^-ois (llcrshciwt>*». 19W). Figure 
1 i l l i i s r n n « t h 6 Uiffcrent l icptK cues 

Monocular Depth Cues ^ - . ̂  
Tlii» s c i u m Jvicribv-i each."of j he . 
diHercm nmiKKubr Jt-yrth ciwn. , . 

L n i r a r Prrspectiwe • ".V : - ' 
If (IK- t in : i>t a J L S U I ohfrc t 1» BxcJ. 
v i s u a l anylr ft-ill be inverscW p r o p o n i o o a l 

u» the diitancc (mm the object: ihis is 
c.illed linear pc r*pcL t f \ - e i<f oudi iw shape 
( K a n t o w i i : anJ Soc lm . 19S}) A 
t o m i a n i (lisuiiice l H , r w f c n [ x M n W 
NihTrnkU J smAk-i dnJ smaller Mni;k' M 
the eye a j rhc p ^ n n i i withtlr.iw fn i in the 
eye Fur cx.implc, railway i r . K - k s j | 'pear ir» 
jppn>*-h each uthcr t lh< retinal loutftes 
of ihe lines t i W i v c i t , - * ) a» the dii tancr 
from tht eye mcrr ;»e* al(!u>inili tltey ate 
parallel. TKCTCT'ITC. ajnverKins lines «rr a 
ctic thai ti\e\ are puraltel and ivcct l in^ i n 
t\cf>th (Wickem. 1992>. Fi,,n»re 2 »1U>WN 
t lw linear pcr>pccti'-c t»t' w Cube in rel .uit i i i 
t:> the h\>riwn. • 

hiterpotuiori 
When a v J o w ohtcci ( B i n fipirr J ) ' 
in icrnipts the (nit l inc «)f n - lur thcr 
(mvi4;i[>peJ) ithject ( A m figure i) ir 
:ipixnini ti> be ck'ser u) the «ie%ver- Tl i i s is 
an cttecfive depth ciic. hm o m only 
imhcatc which i.»bicci is i n !roni , ntit the 
dtsijince xpara r in^ thcra ( H e n h c n w i ^ . 
1999). • 

- 4 

1 
A \ 

\ H 

LirK* and shutU* ^atTSbiai^^ ~ r ' 
S l i ^ i w a pnn jJc i o i i K intiirtTUitK>n ; i l»ui 
th<? oncT^rat icm t)i »ibjetrs iirkl then l O 
v h j p o {K. i in , ic l ianJ i . i i i . 1988). O b | t v » 
may :ipi-«.tr to l i e ar differcii t d i n i i u i c c * 
anJ have d i f fe ren t . i tmensioin as 
U ) i i i b t n : i t u 9 f c > i>f > l i A i . n K ' and hichliRht 
chanfic (Orahj i in , 1965). It i^bjecn h i i v e ,T 
I I K I U <ic>urcc frora otw" directu>n. rhry w i l l 
have diadowt tiniciuc w their siuipc ami 
ottcntation. - • ' " - ' N - . ' X ' 

O 
< 

I 

Vanlsrang f>aw« 

ReUtfh-c v :̂  , 7 .:-^ , 
Two w m i b r ^uipe<l'ohtect< V i r h ^ i f i t ^ t 
siic w i l l afTeci the r tL i i ive perceive! 
distaiH;e to the object*- The brt.'er i>b) t i i t 
i * i l l appe-at Lt<»cr than tlie smaNer Bv 
ciimpaniif: the u { ^ \ i n . i i t ioe uf u d i s t a n t 

obtccr H i t h that o f a f iu i iL i / . m iKl i CIOMT 
o l ' j c c t , the relative d i s t a t K C of the d u C a n i 

object c a n he ufiproxinuiieil ( l icrJien.-<jn. 
1 9 ^ ) . Kclative 4 t» is nUo tied direcrlv t o 
linear per\pet i ivt . I n figure- 2 tlk.- n M « c 
distant i iJc o f i h c cube c ; i n be o b ^ e ^ v e d a» 
relattvely s h o r t e r t h a n the, neAre»l side. . 

Known 'shi i ^ " ..• ^ r ; ' ^ - V r - ' 
We c i t t i ^ u s e ^ s i n o b l e c t " * known rite to 
deduce relative Jepri> i f the objevi l iai 
Li«>«-n sue (S) die distance (d) cam^bc, 
.IcremiinevI ; i i ( t^wen ct al. 1993); 

- , V , F o i example, a man H lallei t lwn a bo>'. 
S^'r' H ' - w e v c r . i l t h e > produce rlie same aia.-iH' 
" ' hrtin;il iiii:i)je. i l u n the brain ile\iin.ei i l i e 
• * . man i * kuratixl ftirthtT awjty lhai i tlte U'v 
^. • ; Til l? IS o f u i i a weak m it*effectiv< cxie 
.i/ '' b e o » o i « t v i L H i i t i v e faclom i r i i l u c f K c the 

' pctceived dtstanc^. . . , . ^ . - ; 

: ^ . - ' N o ' 115 ]ii1v 2004 • v • i ^ . -:: 

A e i u i l Peti|>ectiv< ; 
AimiK-i ihet ic *c:4ttcTing 'of l i g h i b y ' 
m o l L i T o l c s • (aUo termed Rnyk i c h . 
fcat ter i i i f ; ) cauK^ d e - s i t u r a i i o n 4if an • 
.)b)cct'!. ci-«I(Xir, r e M i l t i n p i n a rTKWv bluiUl " 
colour and lew ci>nirast. T h i * affect* 
the perceived d f j u h ot an vibjcci 
(Hcrs l icni tMi, 199*5) HcnwC a moie--̂ , 

. distant object w i l l a|ir»"»>r in a m o r e lAuvh 
in coIiHir a i i t l have Icsi contrast.-

. Uiu.lerwaier. this wxndd be termed v c i l i i ^ . 
lt(Hit AIKJ U caused by the l i ^ t »GUterins-
f fo tn »-atcr ifi.>lcciilev : ̂  "'̂  1.":.-I.. 

Height r n ptctxre p l m i r . V : ; . 
A n object's verrical p«>M»k)n - i n ' i W , 
dttptay caii act as . i dcpti) cue. Dik(.inC 
t>bjccrs a i^x» i r hi>;het on t iw display*;' 
where i t i-̂  .ivMimed that the i f t o t i t ^ plarw". 
h cxiomlcd hortzonially i * ' ihc l u i n i o n . ' 
Two objecf. i l l the . M I I H ' vcn ical heiKht 
tl«: dLvpl j \ - an [-crccived to be :ir the iame, 
dinviuix l iofn. the obtcfvcr (Hcibuiifn c t ' ^ 

Qradicm of texturt'dcnxHy : . 
A ct-*dicm is the laie o f K M I K rrw3Mirol 
prttpenv 1 h a n g i n g o \ e r a contmuous.T 
C K t c n d c - d airmidu*. The Mirlace i-4 ttu.«t^ 

. ' - - . V . > 4 It* . • • J ; - . > ^ ~ , • . • - . —« . - »V , . n . . . -

i i > K x i ' I * - likely m be a H v r r J w i t h a 
rtn«Ainjbiv u n i t o r i u t e x t u r e or pattern. 
Whoi i Ixtfcint; .srr.iii:ht ah r .K i a t a icxtiirciJ 
Mirtiwe. the- Kf^Klient ol l e x m r c - ^ i e n M t y i» 
: e n . > . a* the • i t a i U i T K r c - a - i t i ! . the j i r a J i e n t 

i t w r a i s c s . TI ic i ; r , u l n . i i i o f t c x l u i e - d c n M l y 
c a n provide p t e c L s e and relatively 
u n i i i j i h i g w j u s i n U - n n u c i i m about ihc 
d i i r T m c e > a n d sut̂ a ot' iurt'aco a n v l o b j c c i > 

m the w o r l d ( l lochbere . 197.'^} T h e 
c r . w r d Amiari-s i n t iu: lr<,>ni (»t i i ^ i r e -4 
h a v e the saiiic diineiwionN a> l l w i>ne8 
p b c t i l i n t h e b : K k i n tltc f i ^ i t n ; . Init a s 
t h e y ; ) r e kK:uted t u r t l w r a^^ay from rhe 

( ibMrrvtT i h e y - appear smaller, hence g i ^ Vnt; 

Vt'hen a -rfilijeirt's cye:nKnres w f l j i respect 
w the e i iv imnnient . or vice vena, there 
exists d di f ferent ia l a i i f ^ j l a i vcl .x ' i ty 
between the line of ii]jht to an v>bject 
(l ixaied) ;UvJ the lii\e of sipht ti> any othiT 
»ibjec[>. T h i i i relative l a i c n l m i n c m r n t 
o( ol^jccts at varyinp dU(a^K-e^ Iroin 
the viewer n ta i l ed mottcm (\ir<il!ax 
(Her^henM>n. I9*W>. I V observing the 
;ntniiint and rclaiivc direction that a given 
im;iije moves mi (lie re i i ru . its disiarwr 
c m be approximated (Clark rt ef, I99ol . 

Binocular Depth Cues 
THL- Inrux-iiUr hle|iil) •.lies l i M c * . ! i n t i p i r e 

1 . \,-_^ - . 4 * 

AcromnuMiotiaffl - -; ' '••̂  
^ X ' l i c n a d j u M i n y ihe t t v a l Icinnh - i t t h e eyes' 
li.-n!*3 t o brir^»Jij^vi.v iit d i f f e r e i u J i s o i K e * 

i i M i > l ( x n » , a m i » * . i i l a f » t r a t n i i p r c w i i in the 

c i l u i r y b o t h . TIn> s t r a i n i> » , a l l e d 

a L C o m m i x l a t i u i i . a n d is e f f e U r v e i i j i t o a 
Tai« .T o f a few m e t r e s ( O w n a 'al 199?),i, ^, 

Cam>ergmce ' \ • ' 
T I K ' ;«re C a p a b l e n4' c o n v e r j f c n c c , r t a . 

w h i d i K . n h -eyv* m m i n u - i r d i t - o ^ - a r d rfir 
U K - d i a l p l a n e ( rVowii , 19651. Tlu- ^ - o n -
verf."ei>cc u | f » v » t ' C ' n a i to tl*c c o n v e i w . - n c f 
a i i c i e . C r i n l i i t i i r r 5) with a tiwyc v i v i v c r - " 

V - e n t e cc>nesp>.»rvJmi{ tt> r ie-ar oiijcct-. <UH1 H 
SIIKIM v o n v e r j K ' i K C t o J I N U I H u b f c c L v The 

b r a m receive* iness^vii inm I I K - (x-itbu 
nuLSclc> aKnit IIR.- dej^ee i4 c t i n v c r j j c n c c . 

uiwi b y a n a l Y ^ i l : > : t h e i n l i - n i u U 1011 c a n 

i i p j ^ i x u n a t e rlie effect iM ihc ch i i nv ' * - " 

l H e n i i c n » i i . 19*^1. I n this w a y . c o n -
v e f v e n c e i iuv *cfve M a J e i t i i * . \ i e . A Liiye 
i . o n v c r j . - e n c e m a y Ic^hl to t l i c r e ^ I ) ^ H l ^ c 

*ry;arcr ' . while n Ji^ilu CiJiucnccixc n u y 
U-avl to d i e r e s f x t i s e ' h i r - t i f r . " . , . . . v ^ 'J:-^. 
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P o r u m s 

RjqhJ Lye 

. ^ i " " • • '•' c '.I . 
S u r t t ^ i " * - , . . i . : ; / - j ^ -
The tacton iin(Kvtiint~for the <le»ij{n of 
Merrtwcopic JUplay iysteiav i i K l i k i t ; ilu* 
K c o i n e t r y - u f i t t - r e o s t i i p i c d c r t h 

p e i t e i H i t K V vw.a\ peniscciKr, pcfccptuwl 
m t e r - t c r i t m a n w r n j i i i e r « » c o p k s i i m u l i , 

- j n J t h e i w i i f o p h y s i o k w y of i t e r o ^ t s . 

Th'n •cctitm review* t h e gcomett>- o* 
jrtrtfofCi-tpk Jcpth percfpti tm prescmcd 
In- p A t i n v w and Mar t i n ( I W 2 1 . 
S t c n M f i s M w i t h t o v t H u l ^bspUy? 

' wi l l b e d w c i M c J h m h c r , = * 

Retitwi dixparity and harnfHrr 
Ste ie t j f ib u producctl by horUtml i i l 
m i r u i l i i u p a n t > . w h k h r e s u l t ; f t i x n an 

inrcrocular d i f f e r e n c e i n the relative 
p i w t t i o n o f corrcspi^nJing nuin^K'uUr 
i n n p r s . FiKure 6 sK^ws t h e concept <rf 
retirwl Ji*(wnry w h e r e F is i lw fixatiuii 
p w i u i a n d objecr A o n t h e h twip tc r 
p r c x i i K c a con t ipo i»d ing n r t i n a l pi^ints 
point a i n t h e l e f t eye a n d ptTtnt a" i n ibc 
r i j i h t eye. TW-ve two ( x j i n t s a r e e ^ i K i l l y 

d i f i u iu Crura f and C tm the r c i i n H , 

respettivcly. Therefore, A h a s i c r u 
J i > p a r i t y wirh r r ^ p r t i t o F. CM)jec i B i n 

fnini i4 t h e h i w j p t e t . however, pnxtuces 
n o n - C i v r f s p o n d i i i t ; r e t i n n l ( > o i n u ; puini b 
i n t h e left eye a i x l point b ' i n i l w riyht 

cyv-. These t w " pttini* arc mH e q i i a l l v 

d i s t a n t f n > m f a n d f , TctpcciiveU. 

Thcrcft>re, B h a s a c t r r r a i n amixint U 
disporitv w i t h r e s p e c t t o F (rstlerstxi and 
Martin. 1W2). 

The hofopref i n fiHure 6, represcrueil 
by t h e tine i h r t t u d i F ( rua i inc point) can 
.be fiimied l^y ct^uieciinf; { x n n l a . w h i c h 
g h - c ;ero duparity. A n y l i n a g e s f rom 
objecu on ihc h c r \ » p t n s i i m i i i a t c 

corresponding nirinal p o i n t s in tlie t w o 

evo ( r a t i e r w u i a n d Mimin. I W 2 ) . In 
. y h e r ttiwvh. ftv every p<MiU on t h e r e t i n a 

ol t h e left eye. rherc i s n c o r r c ^ x > t M J i n s 

p e w i t I 'n the n i ^ t eye. Thereloce, dwr 
h n f i f H e r c a n be defined a i t h e locui of ull 
[ i n i n u . which have :ero di>panty 

. ( H » h e p i u i » , l W ) . . . 

' . , . •• .; J * . 1 ' . J ;•• 

• T H E H Y D R c i G R A r H l C J O U R N A L 

In nuuiy i i p j ^ l i c a i i o t M , i h c horopter vs 
ajrusidc-ml l u be pluced o n the b i i r f i K X of 
ih i ; display s c r e e n ; t h e dispurity is then 
^)ejiiM:il w i t h respect u> the .M:iret\ Tins 
d e f m i l k m m a y create p r o b l e m * i n 
doitcnin},' a c c i n M C M c r e c a c o p i c dispb>"«, 
h c c a u s e . if t in : viewer c i - * i v c i i p » to a t l e p r f i 

plam- ixhiT than the defined h<ir^tp»er ( i . e . , 

the sur&ce of the i^reeo), the intended 
relcx-ant dlspuritinhecmnc K u c c u r a t e . . 

Pimum's pMiono l Area 
Fusion b d i e p e n ^ - i H u a l p r o t c w of b l o u h n K 

I m i axrrspkKvlinf: imaj.vs into » •imjU-
i n t a i < e . The ntnue » which the R n k t l t i n c 

disparity c a n b e f i e t b l c ( i e. tite area 
KintKindcd bv iltc btiundary t 4 the l imif ot 
t h e dtsf^ority fw»*w\) i » called Panum's 
f i i sK*\a i area (aec Fyjure 6) . Thi> dc5«crit»5 
iin a r e a w l w r e t h e viewer cai^ f.vce f i K i i x i 
d e ^ i p i i e nil o l f > e t in the t i b j c t u ' k K J l K m a 

(Diner d i x i r i - n . l e r . l W ) V 
Tlius o i j j e c t i w i t h i n Panum'n a r e a 

resuU i n small J u i p u r t i i e s . w h i c h a r v 

f t u i b l e . O b j c c n witsute Panum'* a r e a 

r v M j I t i n Urge d i i p n r i t K ' ^ which are n o r 

t i i s i h i c . imxluciii); dtxiHc i r i iM}feA. Fiictors 
affccritv: the extent o f t i n : a r e a i t H r l i k J e 

M i m i i h i i s i t e . s p a t i a l I r e q u e n c y , 

e t c o n t n c i t y . a r u l icmi^wnl nnxlubtMin of 
d i ^ p m t y mforTnatit>n (Parterson a n d 
Mar t in . 1992) T l > e di5paf(T>- l imi t for 
tu i ion tncreaNO a.< t h e stimulus t i j c 
i t w r e a s c s (c^i. l a r p e d L N p u r i r y can be fu^ed 
wi th l a r v c s i i r a u l i ) . a m i i l c c r c a s r * as the 
jipatiid f r e q u e n c y i n c r e a v ? . The dispanrv 
l imi t increa^^ w i t h e c c e n t r i c i t y (i.e. 
d c y n ^ a w a y fnwn die fovea). Tl>e I w e u i i 
r h e imwf l i j . ' h r ' .VM^Mt ivc -trca o*' the retina 
f>ea r its c e n t r e . This is t h e t i x a l p o i n t <>l' 
the r e i i i w . - i r w l vision is optimal in this 
p a r t of the rc t i iu . T l w di>rnritv l i m i t nUo 
iiKicases 0 5 the [cmpi>ra l f r e t ^ n e n c M ^ A 
m o d u l a t i o n dcv.re-.Me- The«c fe*ci(>t« inurt 
be c a r e f u l l y m a n i p u l a t e d i n o r d e r to 

unpr^nx the binDOibr Uoiun in jks i spunf t 

. t r e r c r t c u p i c d i v i ) l i i y » -

OUCM.UKTII 
l i ts i n t c r e ^ t i i i } ; tK»ie t l w i . e x c e p t f i x 

i n t e r i - i i w i t i i i o and stereopsi<. tiu*il die 
depth c u e s discuswd canntit be applied to 
an <»rthi>gonaI (i.e. p H n l l e l pn>jixtii«») I D 
dispby t'urnwt (e.u-. A chart) rhiU c o n v e y s 

i n f o m u i t K M i m t w o diineruKms at n n c c . A 
pertpectivc display fiimuir can utiibe H K I « 
of the depth c u e s except for binixnilar 
disparity, w h i c h can only Ix- pnrnded by 
ut in j ; a sterciacoim: d i s p l a y Pictcmal depth 
ciiCB a r c p . t t t e r t r ' thai \:sa\ • icxur not o n l y in 
the pcturc pUne. K M *W\ i n dw pn)xmi.il 
M i m u l a t i i . > n at t h e eye when ob)ecn< are 
i c j t t t r e J a n n i n d m a three-ditrvcttf ional 
larvbiupe Cx>n*e<jucntlv, s»h-h i t x d i c a t K i t t t 

ol 31) space arc i v c c s s a r i l y w n b i g t H H i j i . 

Therefore, any thcv»ry t h a t bases our 
perception o f spnce on p i c t o r i a l depth cues 
mu»t consider •^pace pereeprum to be 
ambipK)ur^ ,^ny p a i t c m in die optic array 
» m t i c h i n o r e a n d H j i u i x n t h a n t h a t . A 

number of d i f f e ra i r thr»^-%limeiuional 
arrangements can, [ H o d u c c t h e ^ T \ e 
pn^xunal s t i m u l u s pattern AX die e>e 
(Ht)chl>erK. 1 9 7 S ) . Binocular di*furicy i n 
I t se l f is a powerful depth cue. Hviwevcr, i t 
c a n i v j i be the basu of al l upacc percepriixi. 
Oiie-e^-vd i T K l i v i d u . i b n t a y slwiw tpvxl 
tlepth pcrrepci" »\. e \ T n ;« a wn earfy aiS«. 
(H.K-hbcTK, 1978). 

Visual Displays and . ' t.: -: 
Techniques 
A visual dispLiy system w i t h a p p n j p r i a t e 
fon iu i l t a n p r o v i i k - ai \ cfTicient Man-
Machine-Interface Many applicatiw* of 
VL«ual Juplays and their c v a l i i a t t o r u arc 
r r p i M T v - d i n the l i t r n H i i r e c-g advanced 

t e l e o p e r u t H x i . aircraft c<ckpil d i s p l a y , and 
air truffic c^'nt^oI di>i»bv5. Vanu»* types of 
i n fon tu t ion i l i s p b i y * in t lmle tr.»diti<"»mil 
2D p l a n - v i e w , \ D p e r s p e c t i v e . aiwJ 
< t t c r e o K t > p i c dispbivi w i t h i i r w i t h i w t visual 
c n h a n c e i n e n t s . 

This j t x E i v * n reviews the UMIC literature, 
d»e bafifc peomciry and f j c t o r t thw are 
c t M V - i i l e T r i l to he i n i p i 4 T > i n i die desifni *rf 
t h e s e displavj- A c o m p i m s o i i o t 20 . 

per%peciive and M e r e t > t c o p ' t dL-<plav» b 
pru*ei i tcd wi rh ccfetcncr t o experTnient.il 
studies 

Qcometry <̂ f ZD and 3/> /wrspeclK-c 
divpUni 
Tl ie lueclianism t i f v i « u a t a(xitial ju t^ne i i ia 
usc« one o f a variety o ^ U M t r d l t v i t c systetiu 
Howard (1993) di»cu«>ed the teierence 
fnimrs: 

»i'(t/i idipect lo s<>Tnf fiiirt cij l/ie ufescnw. 
Four ma^n c^-jcennic /frt>nr< u] reftrenix 
mcfudt:: a jitiiim-/>.«ni frtanc it^stKiaa; • 
urth the T u i d u i ;x»Tit of the eye, o 
rrdnocfnirrc fromr oisiidaK wifh 
rama. a head a-nir t /ramc assodaad vaOi 
head, j n d a bfiJ^..mt7>c fctmr M^tctsir 
ttirfi the totso. A n exvccntric frtmic 
reference is exitnud tn dv o^sertci ' . 

o ' 
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i 
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Ttu' t.-v:Wu:i(UMi nf . u i ^ i J t c i i t m tli'«pljy 
J I K I ihrct- liilTrrcni c x t X i C T U r k Ji.N]>liy> m 
piltif iwvitpi[i.m«l (icrt.trmarwc ha» been 
JLSCUS»^ hy Pnrvcit .itui Wick inu {19<>4}. 
Tl ic re5tJts s i K i w c d t h a t th< cgotentrk 
pcr>p«ctix-t: dispUv was I>cUer i n 
t r i K k l n ^ tMk than i l ic o thcn iiicliKlinit 
[ h e planar displiiv, w h i l e H mickHU- Jwiantc 
e x t x : c n ( r i c Jli^plnv rcsuhtrd in better 
pcrfonnanct* In ihc itkilial n^^'arcnt^ t»>kii 
i l v m r h * : iMticn. T l i u »jv4nrat,-c o f tlx; 
I'cripectivc di-^ptjj-s was v d r k d with dtc 
vifwTxunt I<K- t i t u>n d t M a n c o , H i w r v c f , 

t h o * ICMllu S U p p i H T [he i K l v r t U l a U * i-if 

perspective d u p l a p tmt planar JtspUy^. 

DimenuonaUty 
In i K l d U i o n u> the choice tA retcrcnce 
t r ime. the choice v)f dimen.<.iunalirv ( 2 0 
va. 5D) Ls impuf t j in i when p r c a c n t i i ^ c d j t i i 

t i l l vtBUdl dbpUiyi . A p e r ^ j i c c f i v c 
Juplay c a n h e i i t c h i c v c d hy p n i j c c t i n i ; 

\>b|eci i H i t n the view (projeciion) p l a n e 

aixi then mapptne the view plane otito 
tlw dL<>)>Liy w n ; * m - Ttieic are t»\> i i H t h i i d s 

t i n K . i M r r a t c the p c r » p e c i i v e p r o j e v I K ^ : tlic 
vicv^Tioint-irdtW'ttrmation : m d die v*)et;t-
t rd i \»Av[n ; i [ i< in (K im ct 1991). In a 
central proj(r».-rum. p r o j e c [ u > n lines 
eninnaie (roin the centre of t lw p m j e c t i o n 

( v i e w p o i n t ) . "n>e i n t e r M : c t i o n of the 

p r u j c c t i ^ w i liiR- w i t h the view pLuw f i tmu 
A pni)cctcd imaire «rf a n ohjecr. U the 
VKTWfKrtm is SCI ai an i n t ' i n i t c diM4ncc, H 
p a t a l l c t pni jcc iKjn U t.ibt»itted. 

A [x:r>ix-(;tive pmjecr t im can be 
^»b^:^i^ed seltini; the viewpoint at a 
finite Jhtance. i n Ktmeral, two p n K i f b e t 

are perfivmed to geticratt a penpecilve 

m ^ i e w p U i i e j i i n d 

iiF M j p p i n p o f the v i e w pbiiL-
w i n d c i w on t i i d i e d i s p l a y s c iwn . 

Wkkcns ct al (1Q<M, a} examined the 
effectiveness o f 21) v e r s u s 51") p c T s f * c t i v e 
displays, w h k i \ were d e ^ i p n n l U ) present a 
»ehe» (.4 31) d a t a x n . Rcaulni thowed t h a t 
M3 j w n ^ M i c t i v c displays were nipenor ri> 
10 dii^Uys for the r.isk that l u q u i r u d 

integrative attention (i.e. f o i i a i n i j on 
scvend objcct t A^nvs m t a e d i a n i m c 
diineruiun). Wicke tu et A (1994, h ) also 
l»v^cllt«^d n ttiiJ)- that c i M i t r a s t c d a 2D 
ditplay. a eijioccniric dispbiy (i.e. the 
d i s p l a y t » p^esimted hoca tht perspective 
o f the p i W A i i t i i i K i n t h e C i x k p i t ) a r u l a 

U">cxi>centhc d i > | ' b y (i.e. presented from 
die perqwctivc (»f t h e piL>t viewing rhe 
aircraft f n m a cenain diataiice fn i fn the 
Mircraft) for tentiinal arm navip i l ion . 
Gcncd on ihiit diKLiiwivtn. the u s e uf 3T> 
{•rrspeclive diipl;i>a rcxjuurs less viMial 
'icanniii<; etfun dian t h a t t w o (or t h r r ^ ) 

o ^ h o ( ^ > n a l plaivview display's. Furthei-
more, a 31^ ego-n- fc rcnccd display i s 
capable irf providinK visual i i i lormation 
thai IS c < i n K n i e n t bodi wi th t h e piker's 
view and c w i t r o l i u i c i . , - . 

S t e r e o s c o p i c D i s p l a y s 
Uulisuut i l ic human i t c r e o s c i i H C vision 
capnhihry i-4 fusing two rcnnal im:it,*es into 
o n e imat,>c, the ucrcoscopic di jplay 
Ecneratts the p w c r f i i i addi t iotul dcpih 
cue called stereopiits. However, i t should 
he iwHed that srciTx.v>is l u o i t t l imitat ion 
a* di«.u>M.-d by Clark fl ol ( I ' m ) . 

• Stcrcopsis i i effective swly wntlun 
shtijT distancci". .il«nil 200 m i i u s 
c:r les.*; 

• StercopMi proviji-s iiif.>riii.itio!i 
ahout dlnancc betu-em object--
l u t caitnoL provide t i ifonnntioi; 
.ib.>ut the distance hetwccn An: 
i.bjccts and rhe oh^crvftr; 

9 Usini; stereofisis, pd-^Ie tetid i 
tmderestmiati: depth a r cl--^^ 
dLstnncc, and overescimate at f.u 
distance 

The sterc^tstopic d b p l a y present? two 
slightly diKen.*nt view^ of ; in object tm the 
display, tn the i P H I V U I , the view ca ih 
rye receives w vai iewtwi different bcc:»iie 
die two eyes « e dw object I r . M U Jii,4i[ly 
different p<isitioiis. Difference* i n these 
view> give i w o pi»,isihle depth cues: dtKibIc 
imace (each eye c o n i r t l M i e * a difTcreut 
i n i a K C of ihe hu object when viewnj£ near 
arvJ vice versa) a i x l b i r u x u l a r disparity 
(Hochbem. 197B). The d i s p a r i t y u d w 
d i f f c r c T K e Ix-twccn wliere a rarpet tails on 
tlie rij.'ht eye and the left eye as dis<ais!«d 
earlier. 

The d i i i M T t r y c a n ^ n e n i u - a powerful 
deiHl. ^uc (HiKhbeis , 1978). This depth 
cue can be obtained hy taking two 
(ilvKtyraphs of a scene ( a .stere<iscopic 
picture pair, a 'stereogram'), »ine (rwn the 
posititm of each eye (65mm ^ a n on 
avcraj.'c), AnJ presentinf; i^ach picture to 
iL> aptwoiiriate eye, and then viewing noch 
phtHocniplw w i i f i special dexiccs called 
5tcrvi.>»copei The steret)sct>i>e is composed 
of twti c i j n v t r p i i c lenses a ix l a supporiinj; 
frame that simply separates riKht arxl left 
v i e w . Different stere^>s<ofic tcchiuque* 
w i l l be revtcwvd i n Part 2. » U - . 

ZD v e r n u J D pcnpcctax ^ptays 
EIILS <t a! {19H7) owKJucretl an experiment 
t o c:»iiparc a conventional 2D plan view 
w i t h a I D perspective air trafhc 
infomiat ion di&play nn identical traffic 
situation. N o significant differimce in 
manoeuvre decision time between the 
Convenii<)nal .^rnl the purK|>tx;tive display 
was f i H i m l , except in a head i>n trattic 
s i tu j t i im where decision ritTU.- wi rh the 
persc>ective d i s p l ^ -WM much shortrr- The 
mean number o f selectir^^ avoidance 
manoctjvres between the two display 
situatiotv. was I K U liivniftcantly differeni; 
however. o»orc manoeuviw wi th a vci t ical 
cumponent were found usii\fr the 
per.pettive display. 

Bemis « nl (1968) pcrfi»n«ed a sunihit 
cvpcnmenl t o e\'alutitc operator 

peifor inajwe on a penpe t t iv r and a 
cun \en t io i i a ! l u v a l u c i i c a l display. 
Retults •vhv>wcd ttuil operators h>id fewer 
etrtKi arvj «htiner resp^vue u i w a when 
mirtii t l ie pcrs^'etlive dis-]>lay 

Prtvert and W i t k c n " (1994) aimpareil 
pilot navii^j tit null jieituniiance usiiH! a IV) 
pbnai du^iay (consistinit of a ZD n u p and 
i m j f i l e view) wi th Ifnjr ) P perspective 
displays. The results diowed rliat d»e 
epocentnc peispectivc display was better 
in a t racking t a s k than the i ^ l i t r s 

iTurKxIiiis the planar di?f>ldy, while ihe 
middle distance cxocentiic d i 5 p l a y 

rou l tcd i l l belter i ^ e r f o r m a i K X in the 
global awarcTK-s& tasks t K i n rhe others. 
This .-nK-anrai^- o f the pe[specn\'c displays 
was va iwd wi th rhe vicwpouit kx-atbtn 
dLitanci:* Xowevcr, the results support 
the jd\-3ntaKe o f perspective display* *fver 
p l a i w ^hl•plJY^. 

In these studies, the use of I D 
perspective displays resulted in relatively 
better pcifonnancc than fiw 2P d i ^ a y s . 
KMWIVCT. the Mipenonty of perspective 
diNplays can he d<*eraded by the fo lkwin t ; 
fa<.toii> Hs Jisbuucd by Wickcnx ct al 

kjsttioTT d j s t D r t i o n - i n e 
. ccttvt: display prts^nn; rhc world 
irtMn a noii-ordK^ymal anjile (c 
vio*n othci di. in l ix ik i iu ; srrai»':i 
forward or down). T h t r e f i U i 
cirnain purrions iit the wiivld wi l l 
l>c covered in a Brcarer detail :h;in 
f ' thcrr . T i l t potential remedy <»f 
t i l ls problem ia to widen d»c field 
o f view. However, such a 
levtuiitiuc [mKJuci» the dt^tonion 
o f the renl ptjsiriiwi: 

R fJ^^Ioy rciolurjfm i T u o j u i i i e r u j -

["HstitrKts not orrhi't"*''*!'! t'* die 
l ine ot sj^Itt Ht l l be prtiienuxt 
w i t h Ici^ n-solutkm titan i b i > « . ' 

i)nho{;ooal to rhe l i m : of si^'bt: 

• AmtHgiiity slmig Inw d* iij;fir -
T l i e reprcMinidti.Hi of a 3D world 
(or oh jec t i ) on a 2 0 dtspLy 
surface is inheaTitly anihiphtiis. 

>0 /irT\(»<-i (n r ^\'^^ui }D sti ri-incopic 
dupioys 
A compwrixm o f i P pen.pecr i \x arid I P 
sterei*scopic d i^^ la i^ m a mmulated 
irackine Task b a a l)een presented [>y K im cc 
(d (19S7). Tltc stereoscopic display 
resulted tn Itnver Inickini; emvr over a l l 
visual conditioi\>. However, the 
perspective display wirh arpn>pnarc vmral 
fvrspeci ive paraiTicter> (i.e. opi iuial 
x-iewiiiK a l l e l e s i n both d>e venicat arvl 
huniontat plune) u n i l visual cnhanceipent 
depth cues (such as vertical reference 
l i T K s ) resulted i n equivaleiu petforiitance 
as coitiparcd wid i the stereosciTpic display. 

Yeh (1992) investigated spatial 
judqments (relative depth and altitude) 
w i t h raonoscopic and srereo-icopit 
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proenutHMi t>f perspev-tive Jispbv*- T l ic 
ftsuliH ^ l l o w c d that the presence o f 
bi[K«:iibr Jiipariry in ihi- ••terui isi o f i c 
view improved the s f i a t i a l judpncnt- I n 
anodict i t u d y , McLean ct at. (1994) 
comp.ired A 3 D perspective video d i j p b y 
(oti< camcni view wi thout visual 
enhancement) wi th a stcrev»!<:t>pic vnleo 
JiipUy iof a pen i n a ht)lltjw task. The 
results ihowcd th.t(*the strrroscopic Wdcn 
wa* M j p e r i o t to the SP perspective \ - i ik -o . 
Yeh U * * : ) JiMiusattl the pr.^bK-m 
associated with pcrccpnial vli&riwti<^t> i n 
pcnpectTve projectujo tesnliing frtjm the 
cnhancemeot cues. The beiie)u iw-ocuitod 
w i t h u*ing sterevtscopic di^pl3>'• wa» 
further reported by Barlield a n d 
Kowrnhcrg ( I 9 ' ' 5 ) . Tl te i r experiment 
^h<nvcd that the steieoscupic display wtis 
superujr to the perspective dis-pUy 
([tu>m)8copic) i n juJttint! the rcbcLve 
elevarinn. However, the jud>, 'Tnent> ot 
rcUnve aumiidi anRle were m-yi impraved 
hy the use itf the sreretwcopic d i ^ l ay . .•;„;;. 

Intermediate Conclusion 
In i h « p a p e r the different m o r u K u i a r arid 
bimxiular depth cue* havir been 
investigated. Visual dispbvT» « n d 
rechniques have hccn dimuwieJ w i t h 
s p c t i i d t - i n p h a > b tni utercoscoplc diupbys. 
The dbcusfion has e*rnbli9licd th*u 
(tereop^ts i t a pimrcrfiil i lepdi tue . and K-
employing .U") sreretiNc.-vpii: d ispby 
t K l i n K | u « l h e |x*n.epij(>n t if the dispbyeJ 
d:ita wilt he e o l w K i ^ J in iiuuiy i t L - i i a i t c c H . 
Part 2 w i l l r e v i e w . J D . i tenx>scopM; dL'«i)li i>-

techniques in the context i>f how 
h v d r [ ^ . i p h i c data b tin:<«ntcd currently. 
Port I w i l l al*) invesfigiil-r l i y d n » g n i p h i c 
dataseu available with . i distuaion o n the 
H i i t a h i l i t v . o p p o T T u n i c i e ^ .inJ lx i ic t i t> o f 

invludit»g stcreiscv^itc depth cue* when 
prtKnrin}: livdrtp^rapiiic d.tt^ . 

The corKluilint; pan wi l l be publisIieJ in 
The Hjiln>grafhk Journal No . I H . 
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A b s t r a c t 
Thret: dimensional (3D1 e f f e c t S -

a n d depth perception i n a display 
system c a n b e achieved i n a 
numl 'e r of ddfereni ways, which 
w e r e d i K u « > e d i n Purt i of this 
p.iper T l i c simplest method is m 
apply one or more mon*>cijlar 
depth c u e s , but to establish 
nereiAC'ipic effeiTts. and f t inher 
enhance depth perception; a 
binocuUir d e p t h cue has i n be 
applied. T i l t l e f t a n d right eye 
iiiiaccs of a stereo pair have to be 
Khamtf lied to t h e respective eyes 
w i t h t h e exception of t h e 
chromo » t e t r o s c . i p i c technique 
(only n e e d s ivte colour 'coded 
image - to establish ""the 
*iereosc<ipic e t t c c c ) . 

T l l i t paper deicr ibr \ the n u 
accepted 3 0 s t c r L M s c o j i i c displ jy 
i cchniquc i presently available 
and s u m m a r i f e : . ^ h a w hydro-
(n ' . '»phK data i * c u r r e n t l y p t* ' -
scnted, Ir then discusses t l i c 
•aiitabili iy. opportunit ies ant l 
I v n e t i f j of implcmenrinp --tcreo-
« o p i c technique-* when pr-
. v e n t i n g h v d c o g r a p h i c d.i 

(."(•ncJudin,^ i h a i " wi th relatives 
*imple m e a n s , n e r e o v i o p i t . tech-
n i ( ] U i ' » can be impletnetiled i n 
i l ie sofiware tr ioU prc-.wnclv 
available and u M : d to mipnwe 
hydr<>i,'rapbic data vijiuatisations. 

Introduction to 3D Stereoscopic Display Techniques 
A larse number ictht iKiuc* liavc been developed l A - c f the years; they can KencraHy 
be classified a» %tcns£vcnptc and autiv-'iteretncopic techniques. Tl»e [najt.>r distlnctloa'.. 
between stereoLiCt^ic and a u t ^ - s t e n ^ » u l l ? l c di>pbiy (cchniijuet is that the fonner . 
requires the vhmzrvej t u uac tome htm of vKwing aid w h c n » » the b u e r p n w k l n &vr=>. 
viewing. 

The advancement i n c t e r e o K k i p t c display teclmoln|i;y cnnitnucs as a m u l t o f -
i ncR:a . \ cd computer p i i w e r and display technoU>pv that have evolved by order* aC-
tna^giitude o%'er the l i s t decade*. The laieM M e f c o 5 c t > p i c d i i pUv techniques include^ " 
virrual retinal displays (hat project the stctei^ p a u directly on to the cyn' retina* and the_. 
West auui jttercoscopic techniques include e l e i t r o h o l i j i m p h y and complete virtual-* 
environments w i t h immersive lar^^ format c n v i r t T o m c n t s l ike the C.A\ 'E Automat ic ; . 
Virtual Environt iuml (NaiKmal Center fot Supercompuiin^ Applicariorv. , 1004)- v 

Stereoscopic Display Tectiniques (Aided Viewing) H^ '? " 
W l u l e vicwirm «cre f»c( ip tc displays the observer rKtrmally ivear* slasaes that may have 
near c^Knplimenrary cokMjr fil tered leiv<e5, polarised len.<«s or leiL-io i l iat t*ccludc onC '̂  
eye .sequentially in o r d e r to channel each ol* the iinages i n the scereo jwir to iheir 
respective eyes. Figure 7 gives an o\'ervicw of rhe MKIC^I viewing stcreuKOfic tccluiiques 
d c » c r i b t r d m t h i s 4ectii>tv _ , , - . • ' ^ - ^ 

OAom nmlltptexed (Anaglyph) ' J - ' * - ' . • . . ' • 
O i l o u r mul i ip iex in j ; or anajjlyph is perhaps the mosr (amiUar sierc«.->sccfVK* technKfiie. 
The tecluiiqite i » widely used to dteplav siere\iscopic imaecs i n Kxilcs, mtivies arxl ^an ihc 
IntcTiMrt. T l w an»i{Iyph consi*t« ct a stereo pair w i t h neat compiunentary a^loun, red 
3twl grvcn or re«l arvi Hue are the t i K x t commonly used. T l i e two unatte^ in die stervu 
pair j r c transparent and d i e ohjervxr \ n c w s the stereoscopic inuige i h n m i ) ^ a pair of near 
cotiiphmentary f i l t t r ) . corresponding l o t h e colonp- i&t-d i n the M e r e * * t i i v » ( N ' . Each fiUer 
wi l l exclude the corn.-s(x>«idliiK irreu,'c i n the stereo p - t i r and m t h a i way civc t h e refi i i i reJ. 
sep.irauon of the left and ncht i m a ^ tor stereukcoric viewing (Diner a i K l Fender. 199j),:_ 

T h f advanci t jo of i h i i methtxl are t l u i it L* incxpcrwive u i implemen!. can'; 
aca>mmixljte multiple ubfter^'crs and the stereo image wi l l he nt the s imc resolution sn'. 
(he di*pLry. Trani la t ion i i f ' the af«(j lypli ont*) hanJ c i ^ (e.R p a j x r ) is aW^ a n ' 
tmcomplicatei-l proccm. GcrKTally the method h a s been UmileJ to in>-inix:hrume (black-: 
and white) miagca: K 'wcver recent developments liave sitown lhat a l imi ted coUmr 
rcnJir ion i n t h e srereo image is possible (Wei et d , 1998). 

O i L x i r rix-alry ( x x u n t under iionie irtotance» when an i l lumirwted a r e a i > t xw colour* 
p n ; K n t c d to o r ^ eye appears to rival a similar aiea of a i K i t l i e r c\.ilour pn.-sentvd to d i e ; 
o the j e>e. CA-vUitir rivalry hioits the apptlcatKVi o f t l ic anaglyjib rocih<xl its t h e \ T e w e x * 
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wi l l e x p e r i c T K C u n p l e a s t i n t sifter e f f e c t s 

auch â  h c i K l a c h e s : I IK] ivausea frtMn 
w e a r i n j i the anas'vpb fil ter>. Stereo 
. .n»4:dk i» a signd'ic^uu p r o b l e m : this 
iKCi i r s when the i m a j ^ meant for o i w e '̂r 
i> faintly visible to the other eyc- T l ic 
imnitc be«nt»es blurred as a pheiwmcrhm 
<a))cd Khostiim created (^n>tstalk can 
create diff icul ty i n fusing the two images 
loRcihct. Vic-wcvl w i t l v i u t the colour 
coaled clas-ics, (he image wi l l appeor 
blurred and i n t e r p r e t a t i o n i t impeded. 

f*t»lansation muUif>Iejed 
i n i v d c T t o Separate the left a t k i r i g h t 

ima};>.' this method a p p l i e s linear or 
circular polarisation tecliniiiucn. 
PolarisatiiMi sla.'iscs are used m 
tombin.iri<>n with orthciijdrwlly i^daitsed 
im;igcs prcsenrcd on two d i « p b i y v I n rhe 
two-ili»play set-up, the d i ^ p l a y 5 arc 
Ct^vered w i t h orthttgonal p i < l a r i . s a r i o n 
f i l U T ^ aiul arranged at a 90 d e g i e e i an^le 
(Figure 9 } . A b e u m splirter (*erai 
reflector) used to ch.mnel t in: Irfr ar>d 
right im.'jjKi to the oKserver. The ohn-T\ei 
wear? a p p r o p r i a t e l y [xdansatKm glassy to 
s e p a r a t e die unage;.. This iiem»»c.>pic 
ievhnitp»e Is s t i l l widely in use. h o w e v e r 

the liardwarc requin'mcnt makes the 
technique i i i . » r r e x p e n s i v e cTonipared t o 
comparable teibniLpjcs (Lipt .wi. 1997). 
A n alternative tnethod of ci>nibming the 
stereo images is to interlace I I M ! i i i u g i r * > ^ 

the display h y mw or ci.ilumn; on ly 
ttri)uire<* a single d i s p l a y - C'n>*s 
pi>l;irisarit>n of alrejnatir\g areas the 
disyJay w i l l s e p a r a t e du: imaect. For the 
multiplexing TecJinimies, the o b s e r v e r can 
vww- the stereo image at f u l l c o l o t i r and 
l u l l fesi>iu[ion, the technology ^ 
becoming fair ly irtexpcnsive and the 
rechoi^iue can have mult iple v i ewcn 
(each w i t h their own hciidset) Tl ie 
inul[iple*itu{ methodo ore als«t companble 
w i t h n o n - s i c r t r o s t t T p i c p r e s e n t a t i o n s 

PolarisatiiHi mul t ip lex ing has the 
dis;idvanr:iges that tl>c efficiency *ir 
t r a P M r u M H m is JXHH; t̂ ^e intensity o f the 
light einitied tnjm the dLsptav ia low ( w i l h 
a l ipli t inicrtMly leas ot up to ICX. the 
image ftill ji[ipe-.ir dark); the interknit ig 
Icchnimic^ wi l l rtxluce die resolutuwi b y 
Kl'^u. To iiuiiniaii) an a c c e p t a b l e , f l id ic r 
tnx [»rt!seniation. i l ie l T . 3 i n e M i e shoukl 
not d . -c r ia«- K l o w I20Hr (Mai.di«wkl 
anJ Lowe. IV*J7). 

mtiiiiftlcud 

Time muUipUxcd 
Rv Ji-piaying die lett a r ^ right eye images 
alieniacely at higlt spcetl (SO-hOH:/ 
inuigc) on a single di»|>lay it m pocisibic lo 
t^ ' t i i i n a vle?o*»>Lopic effecX- T l i e oli»erver 
must wear electro-optical shutiei? (Figute 
tO). one lor each eye. which are 
s\'nchronised wi th the altcrnatini; images 
on the display Vt-'hen the IsA eye iiiuige is 
dispbiyed. the left eye shutter is open 
ulKming ihc left eye (o obxrve the ittiage; 
the tight eye shuitcr n c!osi\). 

It i> the human vLsual >y5tcm's ability 
u i store and merge siercii pairs wi ih a time 
lag <)f up to >0m> that makes this 
tcchnit|ue poMible (HcrihcriMm, 1 9 ^ ) . 
To ;rvoid di.«pL'y 'licker. du* rwhnimK-
rt\iuires Uuit I I K - display tefrcsh rate is 
cU** '̂ to l 2 0 H i ft iT rc;i.s(jndl4e q u j l i i y . 
simitar to tlie re\iuir^:iiienta ni die 
interlacing pi ' larisation mult iplexed 
method. 

FifWTT IC. A typtr^ imn-
mnUipifX u r r c t i l o t w u a 
j f t w i e r f i a v s . 

i T i v V o n i » r t i o » i caWe and 

The temporal re*olution wi l l be halvevl, ns 
t . ich c\e v>nlv perceives die iin.>ge k d f the 
t ime which c;in r e s u l t in a r c d i K - t i . > n of 
t h e display b r i g h t i K - > s . T h e relatively 
hciivv i;U*s<.-> m a y he c n m b e r M n i i e t o w e - a r . 

hilt nu're advaoceil w o r k b c i K h s y s t e m s 

s.fch aa the Fakespace Imaierv».lcsk R2 
( b a k e s p - i c e U b s Inc . lOOA) are ALMJ 
avaiLible. These sysieuis are ponabie b u t 
the c.xcts o f obta in i r^ such sysrinns are 
hich 

Tune a c q w e n l u t l l y cvruruUrd 
poUiTiieaiim 
This m e i h t K l ctimbine> K i t h t h e 

P<ilaii>ation aruJ time mul t ip lex ing 
techni i iu t^ by displaying al ternat ing 
polnnsed images to t h e v iewxr The 
i l i s p l a v screen co\-ercd wi th a l.kiiii»i 
('ryst5il (l.C;) l a y t T . which hjnciH«w u s a 

rsil;tri*.x The a l t e n K U i i i g left-eye and 
light-eye iinai.'eN t m the t l i s p l a v h a v e 

ditfer\-nt polarisation partcrrts 
(cU».kwis*.-/on[i-clockwiss')- The observer 
wearing glasses wi th appi^priate 
polaris.it K>n fi>r each eye is able [o j^pari te 
the left arid right image. The key 
adv~antagc to this metU 'd i« that the 
(fcbven-er only ntv<.ls simpUv ine\p»rnsive 
and lightweighr polarisiri^ gla5sa* that 
retiiiire no extra Kyruhroniciiion devisee 
(Paj.u«)r and WOpkmg, 1997). The main 
diiuidv-annige is di-play fl icker ur>d a 
reductum of display bnglitness due u i 
halved temptwal resolution. 

Locotirm multiplexed 
In photi>grainmetry, analynical stereo 
pk'ttcfs have been widely used. Tht-?« 
ii)<uniitieiits are v t T y cianplex, exjH'iiiive 
and require .special skilL to operate. A 
•norv famil iar aitd simple ItX-'ultcm 
multiplexed technique is used by- t l jc view-
master' stereoKupc that many chiDren 
have i»ed as a toy f̂ w decades. 

Hewi Mounted Pisplav^ ( H M D ) which 
are a furrh*"! dev t l i ^ ine i i t of the locatntn 
n i i i l t jp lexcd technique are incrcasmnK 
usexl i n V i r t i w l Reality ( V K ) and 
stereosCi>pic v i M j a l i s a i R H i (Figure U ) . A n 
H M D Cv i rwi s l* of a miniature display 
•tystem itwo diH»lay5, orw i i ' . tront . i e a c h 
eye) arvi t^pric* to fixus the display at a 
ct»mfort:»b!c dustarwc ict t r o r t of the eyes. 

The HhiVi o n simply be a p a i r i rf" B iw ; l e> 
o r a f u l l h e l m e t . Tl ic v i e w e r ' s i n u n c s l i i U t 

s u r X T i u r v d i n g s a r e u s u a l l y ixicludcd by t h e 

H M D , g i v i n R a Icelini; <•! ( t»ul i m m e r s i i M i 
m t h e dL'^lav\-d *:ejic. A h c i d - r j ^ x k i n j ; 

d e v i t c IS includctl in the syittem, w h i c h 
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o l l o w i the <V3tviTi u i asHx-in^l to h t - j d TiuivL-irtcnt^, t h a t is p a r i t c u l a r l v iinp»irtant when 
the o b s e r v e r in iiiimervcd in a VR e : i v i r ( ; n i i K : : i t where cli;in},f?: in vicwint; d i r e c t i o n w i l l 

alter the pictiirt ditphyed ( S h i l \ i r a , One &>c m: i )or c o n > T n i i n r s of H M l > i i s 
llieir limited vnlunic of i icl ivity t h i e to cablitiK a n d overall w e i ^ i l . T l i c conaidetablc 
ai iKt t in t .>t a i m p ^ i t i n } ; power r e q u i r e d for the diiplaxetl iiuatn: l o be updatL-d m 

accuntiiKe wi lh the head movement m a y i n t n x l u c c a d e l a y which l u a a tenJcncv t o 
c i u s e i n o t M K i siclnesi i n H M D s "See-thriHinir H M I X h a v e als*' l>een devel«iped, t * i free 
the nhM.-tver turn immei^ion. and are p i u T i c u l n r l y M i i t c d fur au]>inented r e a l i r y 

a p p l i c a t i o f i s where the slcrct«ici>pic i m a j j c i> i )KT)(cd w i t h the rval w \ t r l d . T h e 
disadv-jntajze ct se^'thr.xi^.'h l-IMDs t« thut tlie hack|{nMJtkl of the dtH>li>yt-'d Imaice wil t 
b e J i H W . 

Oiromn stereosc«|*y 
EifHlhohm Ufl851 f i w i v l t h a t i t t» p o s s i b l e t o place objects w i t h differeiu colour? at 
different d e j H h s » l » e n the i»biects are p l a c c t j at the a a m e i.lwat>ce { c h n » m o " ( e t e i v s i s ) -

In t l i e cariy l99v"V. researcliejs foiiiKl renewo.1 i n t e r c M m thts m e t l M x J c r r a t i n u a 
sterevMCupic ettcvt f r o m coInur-coJinn i m a g e s , but the i n U T i - M r h e n d i m i n i s l u - d . The 
p r i n c i p l e t*f c h n M i i - 1 i t c r e t i e c t i p ^ ' t » r e l u t i v c i v simple- As white h^l i t U r e f n u r i e - . ! t l m ^ i i y h 
a clas* pitsm. it is * e p a r a r c d i n t o the coknit* *^ the v i i iMc spectrum; the d i f f e r e n t c o l o u r s 

h a v t duTereru re t tac t ivHi arylcs ( F i ^ r v 12). 

QPTICAL PRISW 

i2. \ t W refr^tnl iM.wgfigfctv prittn f -Wce CtmznUt ar>l 2002) 

Fume a bdow ntfct. Chtima ««rt»>c-fWc luaif dirtnadcfA"' aftfcu^-ia and •« oMifU uf a 

i 
J 

. J 9 

A r e d o b j e a h;ts | x » i [ i % - e c h r o m o s t e r e t ^ i i and 

Will a p p e a r CUWCT lhan a b l u e o l i j e c i a t t h e same 
d i s t a n c e . h> v i e w i n t ; a coU<ui-cc>Jed iitvixe wi th 
d o u b l e p T u m c y i ' i ; L i > » e s l o e n h a n c e t h e c h n w r u i 

f t e r c o p s i s e f f v v t . die rcmiirt.-d depth p c r c c p t K > n h 
a c h i e v e d (Fipire H ) . NX^en t h e o b s e r v e r n 
w»nDg 5inx!e p n u m KL^SCS the o b j e c t ajipeai'* 
c k i s t r r to t h e o h s e r v w t h a n d e s i r e d , so iVnible 

p r i s m t j k w x - i h a i b e n i JescIopeJ i T ' K i t i n . 1997). T l i e main disAK-Tntaee u thut i t n m ' t 
possible [o vTcw t h e i n u i g e in its t r x K c t i l o u r ^ l himcver, t h e im in r i s e i M i l > c r m s l a t e d 

into diHcn-nl m c d i u n v s . CJui-*mo S t i T V f w c t J p y i a t h e only M i - n - i w c c ^ i c l e c l u i K i o c w h e r e 

otdy t H i e inuj.'c i-! required f* ' rs te te t>JC<t^c cfreci; i h u w i l l i n c r e a s e t h e r e a t . i a h i l i t y of d>e 
i m a g e in m m - i r e m x c o p i c p r c s c n r a t i o n s . i n c r e i i > e r e s o l u t i o n ami d c v a i i . s e the twrcd tor 
o x t r a c o m p u r v T j x ' w e r ; i i K i . t d v : i i K e i I i ! i ^ p l j > tethm^Uvv-

Autostereoscopic Display Techniques (Free Viewing) 
As s t a t e d e a r l i e r , d i e r e n e a r c h l u u i d c v c k i j i m e n t n ( d i f f e i e n i a u t o s t c r e i « s c ( > p K " 

tcchnu(u<» a r e c o n t i n u i n g . FiRure 14 H i m m a r i . ' w . - s t h e more common c u r r e n t t e c h n i q u e s 

lu a i i l ; « i c t e i x c i ) p y . V-a^uxn and W u t * i n « (1997). Botner (1999) and C^ .whi (1976) 
i ; i v e m o t e d e t a i l e d dc t s c r i p f i oa i s . 

T i l l * p : t p c r w i l l t t K u i on Lenticular 
l inaf-ini; technique o n l y . The electro 
h o l i ^ j j n i p h y and volumetr ic display 
te^-hnique* > t i l l t c p r c M r n t a m a j o r 

c l i a lk - i i £e l o ihe rc?e ; in :K csiabli«4iiiicnt> 
due t o the c n o r i n * K » ainiHini o f 
coiiipuriny ( X i w e r aiul d:»ta traiialer tdtet 
required. .As rlwse techniques i i r e i t i l l not 
widely available <HJ»I,JC the ieiH.'atch 
e\rablishrru-nts d > e y w i l l nut he covered i n 
ihih t e x t . 

Direct ion >m(Uif>lexed d u p f u r * 
DirectKwi multiplexed di>plavs ate the 
m^»t C t i m n i o n a u t o ! i t e ^ e ^ » s C l J p t c di*pl.i>-» 
a iv l arc m t - s t c w i i w i i W c w i t h < m t i p i t c r 

jirapiiicv The i » b * r v e r dtrectly VIOH-S tlie 
s a m e disf lay area with I x n h e y e » . The left 
in-c imajje » presented i m l v t o the l e f t c y x 
aiul t h e r i t . 'h t e y e imajie i i preaenled o n l y 

t o the ripht e y e . T l ie dillerence in viei*'iug 
an^ le LS caused b y t h e st.*i>.irati>ti> •.>! [he 
c y e 5 , a t K l vertical bar* \H Ictvses are built 
i n t t i the diapby. permi l t inc or i-Uvkinj ; 
certain pnrts t j f the tirwlcrlyinit J '^rkiy 
f i i M u view. 

Several t e c h i u q u c » bax-'d o n i h e 
pbv>ic;il principles i»f d i f l r i i c l i o n , 
r e f ' r ^ t i o n , reflection diid ( K c l u i H « n liave 
been deveUipcd (Pa-s t ivw atvJ Wopki t ig . 
I ' J y ? ) The mvTst cstabhihed r e f i - . K t i . ' n 
bu<et l i i K t h o i l I * lenticuLir mviRini;. A n 
a r r a y (\f kwY^ narrow l c r » c s (leniicules) ta 
built i n t o t h e d i ^ l a y s c r e e n (Fiyutv 15). 
where each lens f o c u x s o n t h e i m ; i ^ 

i i U o r m a t i t H i iocuted b e h i i x l it . i n d directs 
t h e li>fhl in differeni Jirecriotb ( B t ' t m e r , 
199^1. In ^it^k-r t o v i e w t h e i t e r e o iniats.-. 
tl>e observer must K- p l . i . . « l i n particuLtr 
locatit>n< l e l i i t i v x t o t in : display ( f l e r e o 

r o o c s ) . i f n o t t h e M c t v t > imaisc m a v be 

blurred i»r rhc s i c r c t w c i s p i c cfft.-ct m a y be 
kc-l. H ' t w c \ " e T . certain lens array? wi l l 
alk»w n x i r e t h a n o n e i»Kersei to view t h e 

d t e r e i ) iinn»^. Tf tc main disiKh-antiiKca of 
this technique a r c t h a t t h e d i s p l i i y 

resolution IS e f f c t . " t n ' e l y I K I I V L J atul 
interpret a ti<,>n o f t h e innige without t h e 
leiiticuUir p l a t e i f i n h i b i c * . - d 

Fi-tire (5- rniiriHf 
of thi- tentx-uLrr 

( S . w n t f : Bi)m.-r. 

I A u t o Stern6c<Tl'ic U-ciniique; 

l - . k n : r n ) Holo^ . iphy VOIL riispiji' r > i T e c t i \ i t i Mult iplexed Tcchiiimur*; 

K^-traciion l^a^al i Reflecrioii B^ised 
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Discussion on 3D Stereoscopic 
Display Techniques 
The majoniy of auio itcrciKtcopic 
technique* arc still 31 a dcvcliipmental 
iUge; they are expen-Mvc and requite a vast 
: « i u ) u i u of compmcr pi^wej- m prrxluce j JD 
imaiie (Javidi aiul Okano. 2002). Thtf 
Icnucubr iina|>in|{ tcdinique is oi i rondv 
the laost accessible, b u t doei have 
lirAitatuMtt. Rfwever the ifrcai advantage 
u f free v K w i r ^ j ; ( e s p e t i a l l y i n npctatk>nal 
applicaikms) witl prctbably make these 
techniques p a n K u l a r l y mteieHins when 
funhcr developed 

Tl ic aided vicwmg technk|ucs nre niore 
established, ujid to « jmc extent, empkjyed 
in the hekk u f iciamtific visuaU«ation such 
!» medival ima(,'in^ p h o t D ^ m m m y a n d 
i^ological iiiia>,'inj; i n t h e pcnoleutt^ 
e » p ] o t a r i o n iruJustry. It i s i i u in ly die 
pobrisation a i K l time muli iplcxinc 
techniques that are presently emplo^-ed 
(MacdonaU and Lowe, 1997). The major 
d i s i i d v a j i i a g M wi l l improve as dispby 
techib^lo^ u f v j computing powxr Jevekipi, 
n iak t t^ ihe&e techniques 5Uit.ible f u r 
sfienti t ic visualisation. The further 
development ot' HMDs w i l l aL-iO ^ain trom 
increased computer p o w e r and dispby 
technoloy*'. eliminating mw^t of t h e pirient 
di.'KKl\-atudge*, Over iimc ttic KN'hniques 
w i l l also become less expensive and dierdiy 
mote available. Despite it> simplicity and 
ecorviunkal ^K-anra^, the d i 9 a d ^ - a n t I ^ t e s 

of the anaijtyph technique, make i t lest 
prohaUe as a future contender (Javidi and 
Okano. 2002) 

T l w chromo K e T e o s o o p i c technique ha.*^ 

icvcral a i l v a n i a ^ , h u t except for Tounn's 
application t o remote xnsirv: - - la ra . i t has 
n o t been piwible t o f ind examples where 
this technique hat been itpplicd. f h e eai\ 
i ra i t f tb l ion into different mediums, 
requirement f o r only one image, 
inexperuivc gbssck, no \ues i n resoIuDon 
and no need for extra computer pt>wcr arc 
a l l desirable quiJitie*, especially i n a semi-
tipeiatior\al cnvinmment such as 
hyctToeraphy. The major d&adviintase ot a 
n o n - r e a l i « i c a > l < x i r scheme can be 
overcome by presejit dispby t e c h i K i l o ) f > ' , 
sitnply by fwi iching between Jl> model 
textures wi th ruiiural colours and with a 
chiTMTKi s r c r e t t o c o f n c a i l ixir scheme. 

Presentation of Digital * 
Hydrographic Data 

dcicnbcd i n t h e f i rs t part t h i i paper, 
depth pcrccction increases w i t h an 
i i K T m s i i n t otimber o f visual depth c u e * . 
T I K effect t* the binocular depth cues is 
powerful atv\ beneficial to i t K l u d c in the 
p r e ¥ m t 3 i i < w i spatial data t o incrca-sc i h e 
ci»mprehcrwion the daraset. This 
especially mie when displayir\g c o m p l e x 

darasets with a number of spatially 
interrelated objecoi- tJespitc the large 
number of stereo.'iCi>pic techniques 
available, surprainijly t e w are empk»y<d i n 
scientific vtsuiilisation ttxiay. However 

> I o . 114 October 20(H 

Mime 'icicntiitc a|>^ili^atKR^ ( M K K .a il\c 
petroleum expkmi i ion induMr^' and 
complex mechanical engineennn) a r e 
starting to ijiclude tfiesc tecliniquct (Heam 
a n d Baker. 1997). Multiple-tint! 
technique*, and ui an incixTAia^g decree, 
advanced virtual reality techniques 
doniiivue the p n a e n n u i i i f » . The ii>ll«wir\g 
»ecnoi\i review how d i ^ i a ] hydrodraphic 
d a n IS currently prevf i ted and invcstitrate 
I x N P a p p l K a i K M i Ntereoacoptc techniques 
a r c to this data. The fixrui is o t i diitiial 
hydio^aphic i L i a t h a t are 3P) in nature, in 
e s i i c n c e data tliat n voliunetnc in nature, at 
where position is determined i n a 
viiliimetric iiMxlcl. 

In funera l , hydrographic data U 
F«e»enied a» 2 D unafics wi th few or n o 
v i M M i depth cues, or as 3D pet^pectiv-e 
ntodds including !<%-eral <.*' the irwuwcubr 
v w n l cues to increase depth p e r c c p t K ^ . 

One sc*twate dcvckiper w i t h a Iwse in .in 
academic esiahltsbineni speciahsit\g in 
hydn>yrjphy h « developed 3 D 
presenratioiu where stercotcopic ditplay 
techniques are available (Interactive 
Visualization SyKcms, 2CXH). However the 
nereoacfipic di-ipUy tcchiuques are limited 
to a tuglyphi v%d t ime polarii inf! 
mulnplczinn 

The Intcrrwtiiinat Hydrciiraphic Orjpini-
s a i K i n ( I H O ) defuses hydrography as 
{I^^O, 1994): 

The {jKOKh of applied science u^iidi 
deals u « h die m ^ u r e m e n t and 
dcJcnptjon of the ptnsicA /ecturrj of dir 
nai^joWe ptrtton of dte Eanh'i nafaix 
and the tidfoinme oxuiol urea, wtth 
speciol reference to their v^e far the 
purpose of iutv^niaon..' 

In cotnpliartcc w i t h ihL> L k - t i i i i c i i > n . ibc 
data invcstigared wi l l be l imned U ) t h e 
volutnc I x K w e e n the water surface at»d t h e 

s*-abed w i t h Tpcci i i l r e f e r e i K c lo navigation. 

S o r u i r s e m o r d o C a 

Sonar (SOond Navij ja tkxi A n d Rantfin*:) 
was u « d foe the f i r a tune in l912 , and 
technok^Kical development h a s hn>uxht 
e i K H i T t o u s m i p f o v e a » e n i in rransdiicer and 
M j f i u i l pr t iccving toihuolotfY (Kjetsiad. 
2002). In a c t i v e *jnAi systems rhe returned 
a c H i s t i c signal dciLTmtncs the nii\|{e fr txn 
the trsnsdiK-ej to the detected reject, and 
d K o b f e c i kxarii-tn i n the soruir beam can 
b e determined t o ^ h c t with the objects 
relative kx:ation. s h a p e and sire The mam 
(»h]ccti\-e of a bathymetnc *urvey is t^» 
pnxloce a t e r r a i n model ut lelicf of the 
•«abcd. which can be accomplished by 
a ) r T e l a t i n > ; a position (x. y) a n d depth ( i ) 
measunrmcnt in a reyuLir } .Tid. or a 
Tr i anp ib t e J Irregular Network ( T I N ) 
givinc X . y. ; ctxirdinaie seta (Bimins a oL, 
2001) U n t i l the early 19H0i h v d r ^ v r a p l i K 
ongiruls (Figure 16) were edited and harvl 
dmwn bv hyiln>grap!Mrts tT<<m cchopams, 
and die depth c o r U Q u n were cxRapokiced 
from the dataset. ' . -

Today this process i» automated a n d 
positional data is mei^ed w i t h depth 
soundingi to creore j Digi ta l Terrain 
MixJel ( D T M ) o f the seal>ed. More 

j recently multibeam *om-»deTS have 
i improved dw hydtographic survey of an 

area by producing a i c U l i v e l y hi>th 
T«soliitit'>rt D T M in a corridor critetuliotC 

j each s i d e of the survey ship's track 
j (Kjcryiad, 2002). 

The c i a d i t K v ^ a l way U ptesenting the 
seabed ai^J i L s teaturcs in an operational 
nautical context is m 2 0 on a paper chan. 
or < lec i rwic chart (digitised i c a n t K - d 

f rom paper chart*). The baihvmetric 
details a r e presented aa •pot depth 
n u m l t r ^ and contour lines. Figure 17 
shows a computer dispby presenting an 
electronic vector chart. Contour l i t ^ arid 
spot deprhs deeper than the * e t safety 
depth are excluded from the presentation 
to iinpnivc the readability of the clian, 
however area* with depdu lew than the 
safety depth are colour-ctxled (shades of 
blue i n Fiifure 17). W i t h the undcHving 
D T M , a perspective view of rhe seabed î i 
easily computed and several commercial 
iofrwaie packages are capable of 
presenting this view of the .seabed that 
gives a better perception o f the 
batbymeuic data (Figure 18). Dy 
including a perspective model and 
shading « k » t ol' the monocular ilepth cues 
arc inchiJed. In order to tr»crea.%e Hie 
depth perception I'urther, steieoscopic 
depth C u e s can be integrated. 

T F I E H Y D R C X J R A P H I C J O U R N A L 
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In the offJ«»rv i n d u ' t r v arvi i>rhcr areas 
re|4uirir>g a h igh - r e s»> lunon preseniatiun 
irt 11 smaller area o f the seabed w i l h its 
tca tun». higb-reMduiion mtihiheam 
•sounders and side scan sonar (SSS) are 
common acquisition sy«iein.v By hringintt 
rhc SSS c l o s t - t o the seabed, w i t h the 
ssinar beams nuliaiing more horizontally 
acnms the seethed, i t is a U i posuble to get 
a side view i4 ihe^ . - ibcd fcat i tn^. This 
iivrrases the iletection i>f features rumg 
trsmi the seabeil luni wi l l pnwide a iK'tter 
cLM-siHcation of tl\e rsiuRhncs* o f the 
seabed a* shi>wn in Byiire 19 Note that 
Figure 19 also i i K l u d c s the l ight arvj 
shadow distribution to. ms'reasc 
percept tiwi. 

sSipmTa.k o n a 75-̂ ii.TTif oJkttnl H*A a 
tilm a^ic S f - v n S s w m iCCC I S . w v , ( s l c m 

A i X K M o a !•*(-) 

Several tpeciali.s«l bydrographic v>lVw-are 
packages are wni lab lc and a pnxjuct 
surrey was presented i n i lydro 
Interruitirtuil (2002). These u4tw.ire 
packages a r e often comprelicnsivc, i n that 
they are used in the p l a n n i n g , collectir^i. 
pt»'<«sing and presentation irf" 
liydnigrapltic data Irom multiple sensi»& 

The most sophisticated ss'ftware 
maiuifacturcn provide specialised 3 0 
visualisation tools ro improve 
prrscnian»«\ of data even funKer. Tl>c 
visualisation t i u l s a r c capable o f 
generating 3D uirfacc models or JP 
contour m<yk:ls presented in perspective 
view, i fK ' lw l tng depth c u h A i r - a x l i t i g along 
the :-axis. Virtual desktcrp environments 
j i e j\-ailablc with a perspective tnodcl of a 
tTTM and object* aich a» ROVs. divets, 
SSS fish arwl structures are presented i n 
real litne. Several of the i i H M H K u l a r depth 
cues ILSUTJ in the prevhius part i»f t h i s 

paper a r e inclmleil in the presentations; 
however mine tjf t h e sottware |>.n:k;iBes 
presently available pntvidc -ttcres'scopic 
display techniques to further c n h a r H : e t h e 
depth [>erceptirm. Figure 21 gives an 
example ot a presentation fn>in o n e o f t h e 
more 'opliiiiik'ated cmmcnr ia t M^rw-aie 
packages currenrly avnilable o n t h e 
market. 

KemoCe sensing 
Stcycu«;<Ji>K d i T p l a y techniques tleachbcd 
eadier have liecn used b y other jcicnctrs 
and tecluiok»gics to cnli.-wu:e t h e du))Iuy 
of digital p-o ivferctvrixl mixleU such as 

Figint 2C. The QIN^ hryintKraphc ^ l u w n -
padugt c o n w w i a t w r t i a f ^-mtnmment mmittr 
This fyun Jiffilayi an vxtract fnm a ROV . " I s i r ^ 

os<er a CutjWK.JrtJ ><u*vri DTW m rrU now 
f^wrcr: QmJiri P;«im«i>y( S e n ^ BV. tJ^^J 

D T M * . Software packages used i n r e i T K x e 

s e n s i n g (Lillesand and Kiefer, 2000) an^l 
i n [>htta)grainmetrv ( W i j f a n d Dewitr, 
20CC) easily generate M c r c o * c o p i t tmxlels 
friHn PT.Hs O f stereo images. The mam 
stea-ostnpic display techniqueii a r e 
anaglypKi or t i m e - p u l a r i M t i o n 
multiplex I fig. 

The remote i c t u i n g ctnilt ibuliiwt t o 
hydriigraphy i * sunuiwriscd in Laverxler 
(2(X?1). a n d thus section reviews the 
different remote sctuing systems aitd 
techniques available to collect 
hydriigrapl>*<^ d a t a where r e n K ) r c s<:n.-ing 
includes systems nscxinted on u i r K K T W o r 
satellite p l a t f o m w . The systetiut can be 
c;itcgortted in t w o main gnxip*. active 
ar>d passive. 

The « : i i v e sy^Tcma i r K l u d c radar 
s y s t e t T u . a l i imctry a n d L I D A R (Light 
Detection At»d Ranging). AlonK the 
pb t fo rm footprint the r a . . l a r ahimeters a r e 
able to m c a M i n : the s e a surface heiglit to a 
i tuxtmuin accuracy o f appmxiinately 2cn» 
p n i v i d c d an ideal r e f e r e i K c ellipsoid is 
available. Radar altimeter x y s t i r t n s collect 
p o i n t mcastircments; t h e x : are 

i n r c r p i > b T e d D I produce a gloljul map as 
shown i n Figure 21. The si tul l v c r t K a l 

v a r i a t i i N t over a relatively l.irge a r e a 

maks-s die d a t a ten Hiiiable f o t i D 
prestmrationj. - ; ' ."*" 

Fifwrr 21. HrAn aftimet.t diUH / r . w i fiv F.RS 
wtlbu i f c u c s n j t MO flti^jce ktrifjlu a w n a b f j /rrmi 
on a-Mrntf jiionwb' Tnnf* un a jkAoi icde. The 
fXiumvSin M< cf-lfur-rudcd nsntjt Ax wsinil 
sprttrw. f W . t : Kinapea*! ."JpsM Arncy (ESAJ 
KnrtJmrttMbnel • ' 

LID.AR sy-aejiw (tniKiined on a i rUinw 
plaiforms) are able to produce a high 
resolutit^n bathvmctnc P T M . btit the 
systems are l imited to depths t>f 50 ntetres 
ui clear wtirer (dr J . i ig « aJ, 2002). 

Sevcnd natioruil hvdn»graphic oHiccs arc 
using d»i* nicilnxJ to collect baihymctric 
data in shallow atul less accessible co-tstal 
arciis. Sinclair ( H 9 9 ) provides an 
overview o f the capabilities ond 
perfonmuice of the Australian U D A R 
system, Liscr Airborne LVpth Sounder 
( L A P S ) Figure 22 shims a L I P A R data 
generated digi ta l hathymctr ic model, 
which tiKludes surface rendering w i t h 
Cs'4i<ur'C(xling aloiig the 7 -ax i^ 

Ftgm 22: Hijth flccimicy orW *«j(*i r.-«ilwnim 
haskymtTK Tnadcl fnm UDAH dnia coikxvi bs 
L-\f)S w S<intKffan inatm. The model a cdow-
n d t d a r w vtAU tpermnn (Sower- Sifc-lao 

The passive rennite sensing lysiems a s e d 
to collect iiydrogmphic data are optical 
sensors mainly on aitb«.«n>e plarfoims; 
however tiptica! imageiY f r o m space borne 
p l a t t i t H m s l u c h as LatKlsat is a l s o it>ed 
(LavervJct. 2001). To u K i l u d c stereosci»pic 
v i M i a l clues to the *tpiical images 
traditional p h « * t o R r a m m e t r R - techniques 
are used to ctcate 3L> stereo m<HicU. 
Digi ta l photogrammctry wiftware 
package* tnake it pviMiblc to [HSXJUCC 
D T M s f f o m scanned opiic-tl imagery 
(Wol f and Pewirt. 20O01. nn.1 lo drape 
o n h o p l K » t s * s over D T M s to tlevelop a 
terrain nwKlel that include* the >urfx:e 
details, 

Tulul modA diXta ' 
Hii;h-rcH>luti(m rislnl mtxleU based un 
mathematical t ida l ilynamic* 
cvimpuiaiitms and tidal gauge 

Fijpnv 2i ijolmci jar a t H j j I i i i i d c (.'cm s*pfwai"nJ 
and p/w« il JiTr<*'< iiixtntmn) TtM muaw 
.iwrkeJ wtt^rtAJna CMlna sWrigi Ainrti ii>ok^ 
J f (Kt i (Scnmre; Moe af, 2002) 

£ 1 ; 

O 
Z 3 

O 
< 
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c i c M K H M (S.Mta LuKrTMTj i.>»iu, tViM'^ 'ncw M * « f c « i K i n n ) 

(ibnefvarions arc available <Moe et a/, 
2002). Tid,i l d a t a are t r : H l i t i < i i u i l l y 
proiented ui a labubir furmar and on 
charts conCiitiinK Kiihymetiit . leaturcs 
overlaid with a i ; i i d ot Lsoliiies connecting 
»(nHfl w i d i equal m Hirf jce elevation 
(Fijairr 2'0-

Today t i i i n i H i i e i i a c d modelling 
fcchuiques pmvid*' fix animiitiiM)* die 
prupaearHin i i f lides. hfiure 24 dtcws a 
>njr»lMW ironi o n animation \4 »ea l e v e l 
vhaiiKcs a«n )c i ; i t cd wiih die M2-lide in 
tlie Nordic Se-.ti. The l i ^ l u blue aii:a 
dcpK.t'- the arc.w of Kit:h .<ic:t U ' ^ v l . ami 
dunni; t h e .mimntion die area Ltianpn 
accoidiiie TO ihc inarliejnniicil model 
The tidal l u - i B l i l w i l l , i n many 
circumstances, c*Histitute the l i i u i i i n f l 
wriavc of r h e hydrnKmphii; Hk>dcL and 
panicularly f<<r local m.xlcU il can b e of 
value to present i t i n 10. . - • 

CXcun and tidal currmi data -
t X e a n and t i d a l current d a t a is 
tradinonally prt-senied as 2 U vect«iT 
charts, w l w r v cavh vccror fTi>n*>enis rlie 
local ciirreni d i rec i i im and velocirv 
tkpictcd by tlie onent j t ion aitd Iciifith i ^ ' 
a v - e U O f . These p r w n r « t i o i L s aic of ie j i 
based on a c i K i t b i n a i i o n of currc-nt 
n > e : » . M n e m e n u frnrn t u n e n i merit* or 
Ac^iustic Di»|>pler Cairreiii r rofi lcrs 
( A I X T ) and m,uhcin:itic,il mcxlcls; w i t h 
t l i e tiwxteh hcin^ frequently liiytrred (each 
layer containi i iu u v e i t i K chan 
rcpfc-sentin^ the cun-ent> al dif lctent 
depth^). Fitftire 25 . s l w i w s a pfcsentiUion o f 
the tidal current in the DrutKik S H I I K I . m 
rfic Oslo fftwd i n * » i i t h f n i Norwav, w h i d i 
t h o H * the tcmpond vari.4riotv. of t h e tidal 
cunents in t h e Soufvl. I h prcM.-imni; die 
current layers at Jillercnt depth* in a 
iiiodo] volume in JO an increased 
p c r c c p i i i H i o f die w a t e r moveTuent can be 
a«,hie\-ed. l i is powible t o v i M t i l i * h id to 
dynamic-il models .J temixrrature .ind 

wl inuy vari i i l ioni in a Miiiilat lashion. 
Such a representation C T u l d have 
i m | f o \ e d licpt)-! r ^ < - T " ' * " ' 7 . - - • 

I 

i 

FigHTw 25 O-Hpmrr m,M h r v i i u i t t m .if i>J>*l 
curr^mi m the f M.i i jurrl. The pu-turr a tsiwJ an 
nmiwmvii that ti^i the Ui f^ -urJ chmtjtc^ ,4 ihr 
i w r a n D (Si*nre. t?nifervt> j f lJ»io. IJepmmu-itt 
t i / SHa^temuiks} 

Man-TTuide abject data 
.Stib-Nurface man-niaiie .ibjccrs .nrc mainly 
pv«i[i i>rK\l u.'.int; hydro aCiXL\nc sysiemi>, 
with die object's attitude and m i A e i i i v n t 

determined by j e t w i n i T u x m r o i l o n t l i e 
objcvt (e-K H ^ n i . i l «ysteiiLv. uyn: and 
Oitpplcr l o t on an K O V ) that allow* lot a 
dyn . i nu t |>rcscntiiruin. Tl ie and * l i ; i i « 
ii< the *»bjoct c:m be known, as is the caw 
.« nil ROV. o r unknown, in the case an 
unidenliJied *oiiar l a rwt . 

Visual p r c M - n l . i t i i t n o l ni. in made 
objects have penemlly been j T c s e n t c d in a 
2 0 Computer Aidvd I X M I ; . ^ ( C A O ) 
tavbiini. it* il MtUiiru>n.tl tli-play with the 
alritude of' the dynjimicallv positi>ntei.l 
obj«:T altove the seabed l e m n n 
niimcTically disphyed. Today, the visual 
prp.>cntation is evolv ing towards U ) 
per»pect' .vc rmx.lel». and the m . t t l 
a d v B D C c ^ ,«ill«nint pwlu<Kn induJe tfain 

f i m u tW p f c - f m r t l i . > i i (Fiv-'iiv 20). A n 
ROV pi)Hi(i.in(.-d \TV h ^u|x-r Slion l i o s t 
L u » vSSEU,) H\dri>act>u>tM.- IVisiiHiimis 
RcJtrence ( H P K ) s y M c n i , wi l l a l l o w l o r 

t h e o b j e c t s s h a p e . s i : e a t t i t u d e s m l 31) 

p o s i t i o n i n t h e w a t e r v o l u m e to be 

i i w l i k l e d i n tlie v i s u a l p r c ^ e i i t a l i o i v .' 

Discussion on Digital ' ' ' f r 
Hydrographic Data i : 
T h o r t v K - w . I t i i v . l r . - t t a i i h i c lUlascU 
r r v e a l i t h a t t h e w m a r u-n^ot i l a t i i s • 

s u i t a b l e l o r ML-ret>Nuipic vicwir.4;. i i is H> • 
i n n d i u r e and u e n c r ^ l j v j i h i b t l i i y a s • 

c o m i x i i e r nKKieli ( i . c . O T \ U ) . l l o u x v c r i t ' 
is i m p o r t u n i lo l u v e . ^ o m e vanatic<ru a n d 
f e a r u a > i n t h e b . i rh>i iK.- t ry tu } ( e i the fu l l 
e M e c r u f t h e s r i t e i»< j» | i c l e c h n u ^ u e s . A n • 

i m p r o v e d p e r c c t x i o n can be a d i i e v e d 

when t h » I * a w n b i n e d with m a n m a d e 

o b j c c w in a imiie c o m [ ) l c x v t s i j a l i*an<»n . I n 
j S - t i c r a l t h e ini<e j p a i i a l l v c o m p l e x t h e 

m o d e l Ls, t h e i . T e a t c r t h e b e n e f i t o f a 

s r c r c o * c » i p K p r c > e n f a n o n . Operai ins 

v e s s e l s i n c o n I i n « l w a t e i s or an ROV -

m : u v ) e u v n n j ; imiumi ' u l ^ - a irnKlures a r c . 
o p e n i L K v ^ a l i-s-miples where s r e n n M C u f n c 

preienr.itifM\ winild be voliiabic. KciikXc 
s e r i M n f t d ^ a i% i n B e n c r . i l l v U-N;. s u i t a b l e f o r 

s t c r c o i i c » « p i c p r c i c n t a t i o m d u e l o i l i 

p f t t l - M i i i n a n t l y 2 0 n a t u r e w i d i e x c c t X K X t s 

heins U O A R u i x l t o t o m e e x t e n t r a d : t r •-

altiineity o l s e a s u r f a c e t i c i c l i t . l..4X-al l i d a l ' 

mi>del data woiikl . in m a n y ca«c«. 
CLVWiit i iu- »Mte «jf t h e l imiimc M i r l : i c o . i f 
d i e U K d e l Ouplayuijj ixeon and l i d . - * ! ' 

c o r r r n i d a i a at d i t l e r e n t d e p i h s 

SI m i l Ita net NIX I y wouM : iU) Rive b e t t e r -

percciXKin iV the x-anaiK^u i n t h e i a t a i K t . ' 

Conclusion 
In t h e first p-iri . J ih i» paper it wa« 
e s t a b l i t h c d t h a t s t c r e « n c u p i c d e p t h c u e * 

c a n u i c r v a s e i h e p c i c e p i i o i i v>t 3 D 

d a t a M - i ^ in p a r t i c u l a r n u i r e c o i i i p l c t 

d a i i M e i ^ I n t h i s p a r t t h e iin»»t w i ^ l c l y u*cd 
s t e r e o s c t i p i c i c c h n i q i u s ha^•c K-ci i 
r e v i e w e s l . a n d t h e m u l t i p l e x i n g 

t t a : h n i q u e s is p n i b a b l y b e s t s t u t e d k f 

c u r i v n t h y d r ^ i g n i p h t c i i n p l e i i i e n t a t i - n i s t>f 

s t c r e i M t ^ i c d e p t h c u e s , l u m e v o r t h e 

a d ^ - a t w e i n e n i t e c h n i q u e * i s ra(>id a n d w i l l 
s u r e l y i n r n x J u c e al lcmatue m e t l v i d s in 

t h e f u t u r e . The c h r o i i i o t i e r e « > 4 c o p i v 

r e c h n i q u e w an inreresiini; a l t e r n a t i v e : » 

C^Juur-ctxJins aJot^ r t i c v e r t i c a l axis i ) . 

w i d e l y ip<d i m hydr.'n.'nipliK: dar . i»i- t4 ( c . t ; . 

b a r h y t n c t r y i n FiKure 11). Uy c i i i p l o v i t i K 

t h e c o l l i i r - c o i l i n ^ scheme a l o n g the l i i K 
o f i i ^ t a x i s a n d e n h a n c e s b y u s u i g 

a p p r o p r i a t e e y e w e a r a Mereii»C4>pic effect 
is p n i d u c x ' d 

Wlien ( i f e i e n t i n R im rea^intily derailed 
and C o m p l e x d i g i t a l h y d r o g r a p h i c 

d a l a s c t s , t h e »ierc<»»Ct»i>ic t e c h n u | u c s c a n 

M i p p l y d i e v i e w e r w n l i rh'* dtL*irx.-d 

e n h a n c e d p c i c c p i i i M i . W i t h r e l a t i v e l y 

sample mc:ui> <4eTe<cAi>pic [ « , x h n K { u e s a i t i 
b e i m p k ' i n e n t e d i n t h e •mh^-uv U x i l » 

c u r r e n t l y a v a i l a b l e . i t u l iwcd l o u i ^ » * v 

h y d t i i g i r a t p h i c d a t a v i H M l i i * u t ^ ^ 
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Appendix 2 

OpenGL, G L U and G L U T implementation to Microsoft 
Windows XP and Visual C - H - . NET 

Text and files downloaded from: 
http://wwwxss.tavlom.edu/~btoll/resources/graphics/opengyxp/visualc.html 

If you are compiling from the CSS labs, the library, dll, and header files are installed 
properly. 

To create a Visual C - H - project for an OpenGL program using the G L U T or GLUI toolkits: 

1. Select "New" from the "File" menu 
2. Select "Win32 Console Application" and give your project a name/location 
3. Select "Empty Project" 
4. Add the source code for the application to the "Source Files" section of the project 

The necessary .lib, .dll, and .h files are available below. The suggested installation 
locations are valid for a default installation of Visual C (VC6). All files are installed 
correctly on the CSS lab machines. If you wish to compile on your own machine, only the 
glut and glui files need to be copied as outlined below. If you wish to compile only glut 
applications, the glui files are not needed. If you wish to compile glui applications, the glut 
files are needed as glui is based on glut. 

HEADER F I L E S 

glut.h installed in ..\Microsoft Visual Studio\VC98\IncIude\Gl 

£luLh_installed in ..\Microsoft Visual Studio\VC98\Include\Gl 

The following files should already exist in the proper location: 

glu.h installed in ..\Microsoft Visual Studio\VC98\Include\Gl 

gLLinstalled in ..\Microsoft Visual Studio\VC98\Include\Gl 

g l a i D c J i i n s t a l l e d i n ..\Microsoft Visual Studio\VC98\Include\Gl 

L I B R A R Y F I L E S 

glut32.1ib installed in ..\Microsoft Visual Studio\VC98\Lib 

glui32.1ib (VC6) installed in ..\Microsoft Visual Studio\VC98\Lib 

glui32.1ib (VC71 - VisualStudio.Net 

Zip file of complete GLUI project for VisualStudio.Net ' 

The following files should already exist in the proper location: 
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glu32,lib installed in ..\Microsoft Visual Studio\VC98\Lib 

glaux.lib installed in ..\Microsoft Visual Studio\VC98\Lib 

Opengl32.lib installed in ..\Microsoft Visual Studio\VC98\Lib 

D L L F I L E S 

gluG2.dll installed in C:\WINDOWS\system32 

There is no glui dll file. 

The following files should already exist in the proper location: 

glu32^installed in C:\WINDOWS\system32 

Opengl32.dll installed in C:\WINDOWS\system32 

NOTE: 

In order to make your application link properly, the following modification needs to be 
made to your project. 

1. Select "Settings..." fi-om the "Project" menu 
2. Select the "Link" tab 
3. Scroll to the end of the "Object/library models:" text box and add the following 

additional libraries: glu32.1ib glut32.1ib opengl32.1ib glaux.lib glui32.1ib 

Your program should now find all the code it needs fi'om the libraries included in the 
settings, and remain portable to the UNIX environment. 

Visual Studio .Net 

Zip file of complete GLUI project for VisualStudio.Net 
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Appendix 3 

3ds Import library with documentation 

This text is downloaded from www.levp.de/3d/3ds in May 2005 

L 3 D S documentation. 

This is a L3DS documentation. It can only be distributed as a part of L3DS package, which 
includes the library itself[source code), this documentation and example programs. 

Reference. 

Introduction, basic usage 
Simple data types, structures and enimierations 
LMaterial class reference 
LLight class reference 
LMesh class reference 
L3DS class reference 

What is L 3 D S and how to use it? 

L3DS is a set of classes that implement a loader for .3ds files. The classes are quite easy to 
use and have no external dependencies. Basic usage: 
To use the library you have to include the file 13ds.h and add the file I3ds.cpp in your 
project. 

This piece of code shows the basic fiinctionality: 

L3DS loader; 
loader.LoadFile("scene.3ds); 
Now the file is loaded and you can access the data: 

printf("Number of meshes in the file %u\n", loader. GetMeshCountQ); 
printf{"Number of lights in the file %u\n", loader.GetLightCountQ); 
printfl["Number of materials in the file %u\n", loader.GetMaterialCoimtQ); 

To access the mesh, light or material data, there are 3 classes: LMesh, LLight and 
LMaterial. 

In addition to the normals, also tangents and binormals are computed, they can be used for 
tangent space lighting. 

Known problems. 

There are some known problems with the 3ds loader: 
Normals are not computed correctly of there are triangles that are assigned to more than 1 
smoothing group 
Some meshes may be placed incorrectly. 
Depending on the mesh, tangents and binormals are either useable or not. There*s nothing I 
can do about it. 
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Simple data types and structures 

This file describes simple data types and basic structures that are used by 13ds. 

enum LShading {sWireframe, sFlat, sGouraud, sPhong, sMetal}; 

This is an enumerate for shading types of a material, 

struct LVector4 
{ 

float x; 
float y; 
float z; 
float w-

}; 

struct LVector3 
{ 

float x; 
float y; 
float z; 

struct LVector2 
{ 

float x; 
float y; 

}; 

struct LColorS 
{ 

float r; 
float g; 
float b; 

}; 

This structures defines a 4 component vector(used for vertices), 3 component vector(used 
for normals), 2 component vector(used for texture coordinates) and a 3 component RGB 
colour 

struct LTriangle 
{ 

unsigned short a; 
unsigned short b; 
unsigned short c; 

}; 

This is a triangle, a, b and c are the indices of the actual vertices, normals etc. in the 
corresponding arrays. 

struct'LTriangle2 
{ 
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LVector4 vertices[3]; 
LVector3 vertexNormals[3]; 
LVectorZ textureCoords[3]; 
LVector3 faceNormal; 
uint materialld; 

}; 

This is another triangle structure. The difference to LTriangle is that LTriangle2 provides 
vertices, normals and texture coordinates direcdy, and not as indices in an array. 
faceNormal is a triangle normal which could be used for flat shading, materialld is a 
number of a material used for this face. 

struct LMap 
{ 

float strength; 
char mapName[255]; 
float uScale; 
float vScale; 
float uOfFset; 
float vOffset; 

}; 

This is a structure that represents a "map". Maps are a part of a material. A material has a 
diffuse map, a specular map etc. 
Here's a description of members: 

strength - the opacity of the map, it is 1 for opaque maps and 0 for completely translucent 
maps. 
mapName - this is a name of texture file that should be used with the map. 
uScale, vScale - the scaling factors of the texture coordinates. 
uOffset, vOffset - the translation of the texture coordinates. 

LMaterial reference 

const std::string& GetNameQ 
This method returns the name of the material. 

uint GetlDO 

This method returns the material ID associated with the material. 

LMap& GetTextureMaplO 

This method returns a reference to the first texture map. 

LMap& GetTextureMaplO 

This method returns a reference to the second texture map. 

LMap& GetOpacityMapO 

This method returns the reference to the opacity map. 

LMap& GetSpecularMapO 
This method returns the reference to the specular map. 
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LMap& GetBumpMapO 

This method returns the reference to the bump map. 

LMap& GetReflectionMapO 

This method returns the reference to the reflection map. 

LColorS GetAmbientColorO 

GetAmbientColor returns the ambient colour of the material. 

LColor3 GetbiffiiseColorO 

This method returns the diffuse colour of the material. 

LColor3 GetSpecularColorO 

This method returns the specular colour of the material, 

float GetShininessO 

This method returns the shininess of the material, 

float GetTransparencyO 
This method returns the transparency of the material, ranging from 1 (transparent) to 
O(opaque) 
LShading GetShadingTypeQ 
This method returns the shading type of the material. 

LLight reference. 

const std::string& GetNameQ 
This method returns the name of the light. 

LVector3 GetPositionQ 
Returns the position of the light source. 

LColor3 GetColorO 
Returns the colour of the light source. 

bool GetSpotlightO 

This method returns true i f the light is a spotlight and false i f a light is a point light. 

LVector3 GetTargetQ 
Returns the position of the target of the spotlight, only makes sense i f GetSpotlight 
returned true. 
float GetHotspotO 

This method returns the hotspot value, 

float GetFalloffO 

This method returns the falloff value. 

LMesh reference. 
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This method returns the name of the mesh, 

uint GetVertexCountO 
This method returns the number of vertices in the mesh. This is also the number of 
normals, texture coordinates, tangents and binormals. 

uint GetTriangleCountO 

This method returns the number of triangles in the mesh, 

const LVector4& GetVertex(uint index) 
This method returns the reference to the vertex with a given index. Index must be smaller 
than a value returned by GetVertexCount. 
const LVector3& GetNormal(uint index) 
This method returns the reference to the normal with a given index. Index must be smaller 
than a value returned by GetVertexCount. 

const LVector2& GetUV(uint index) 
This method returns the reference to the texture coordinates with a given index. Index must 
be smaller than a value returned by GetVertexCount. 

const LVector3& GetTangent(uint index) 
This method returns the reference to the tangent with a given index. Index must be smaller 
than a value returned by GetVertexCount 

const LVector3& GetBinormal(uint index) 
This method returns the reference to the binormal with a given index. Index must be 
smaller than a value returned by GetVertexCount. 

const LTriangle& GetTriangle(uint index) 
This method returns the reference to the triangle with a given index, index must be smaller 
than a value returned by GetTriangleCount. 

LTriangle2 GetTriangle2(uint index) 
This method returns a triangle with a given index, index must be smaller than a value 
returned by GetTriangleCount. 

uint GetMaterialCountO 

This method returns the number of materials that are assigned to the mesh, 

uint GetMaterial(uint index) 
This method returns the material ID of the material with a given index, index must be 
smaller than a value returned by GetMaterialCount. 
L3DS reference 

bool LoadFile(const std::string &ampfilename) 
This method loads a 3ds file. Call it before you call any other method. 

uint GetMeshCountO 

This method returns the number of meshes in the loaded 3ds file, 

uint GetLightCountO 
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This method returns the number of lights in the 3ds file, 

uint GetMaterialCountO 

This method returns the number of materials in the 3ds file. 

LMesh& GetMesh(uint index) 
This method returns the reference to the mesh with a given index, index must be smaller 
than a value returned by GetMeshCount. 
LLight& GetLight(uint index) 
This method returns the reference to the light with a given index, index must be smaller 
than a value returned by GetLightCoimt. 

LMaterial& GetMaterial(uint index) 
This method returns the material with a given index, index must be smaller than a value 
returned by GetMaterialCount. 

167-



Appendix 4 

Header files used in the CS application 

stdafx.h - This header file is used to build a precompiled header file as an include file for 

standard system include files and for project-specific include files that are used fi^uently 

but are changed infrequently. 

13ds.h - This header file is used to implement the 3ds file import library, 

windows.h - The Windows.h header file is the one essential include file required in all 

Windows source code. The reason for this is simple: Windows.h contains all of the 

definitions for Windows messages, constants, flag values, data structures, macros, and 

other mnemonics that permit the programmer to work without having to memorize 

thousands of hexadecimal values and their fimctions. 

The #ifdef _WIN32 and #endif specifies that the windows header file shall be included i f 

the Windows 32 bit API is used. 

GL/gluth - This is the header file for the GL utility toolkit (GLUT), 

stdlib.h - This header file was developed as a file to declare certain standard library 

fiinctions. These include the memory management fimctions, communication with the 

environment and others. 

stdio.h - This is the header file for the standard Input/Output devices such as keyboard, 

mouse and display. The file contains the prototypes and macros needed to use the I/O 

library. 

math.h - This is the header file for the Windows Math library, it defines math subroutines 
and constants for floating point arithmetic. 
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