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Links and Graphs

Israa Tawfik

Abstract

In this thesis we derive some basic properties of graphs G embedded in a surface deter-

mining a link diagram D(G), having a specified number µ(D(G)) of components. ( The

relationship between the graph and the link diagram comes from the tangle which re-

places each edge of the graph). Firstly, we prove that µ(D(G))≤ f (G)+2g, where f (G)

is the number of faces in the embedding of G and g is the genus of the surface. Then we

focus on the extremal case, where µ(D(G)) = f (G)+2g. We note that µ(D(G)) does not

change when undergoing graph Reidemeister moves or embedded ∆ ↔Y exchanges. It is

also useful that µ(D(G)) changes only very slightly when an edge is added to the graph.

We finish with some observations on other possible values of µ(D(G)). We comment

on two cases: when µ = 1, and the Petersen and Heawood families of graphs. These two

families are obtained from K6 and K7 respectively by using ∆ ↔ Y exchanges.
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Chapter 1

Introduction

1.1 Introduction

The subject of this thesis is the relationship between the graph theory and knot theory.

Graph theory is a part of combinatorics, while knot theory is a part of geometric topology.

As usual, we hope that ideas from each of these two disciplines will help the other.

Our study focuses on diagrams of unoriented links in R3 and the corresponding graphs

embedded on surfaces. We start with a graph embedded on R2 and calculate its link

diagram, and we study the properties of this link diagram by looking at the embedded

graph. The simplest such property of the link diagram is µ , the number of components.

We want to understand those graphs in which µ has the largest possible value.

We also look at the embeddings on other surfaces, and at values of µ other than the

maximum value.

1.2 Topological background

In this section we briefly review some important topological information that we need in

this study. A surface is a topological space in which every point has a neighbourhood

homeomorphic to an open set in R2. A surface is orientable if it has two sides. A sphere

which has g handles added is called a surface of genus g. We need to work with em-

bedded graphs. An embedding f is a one to one continuous function from a topological

space X to a topological space Y . X and f (X) are then homeomorphic.

1
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1.3 Links

In this section we introduce the basic concepts in knot theory which will be used later.

A link is an embedding of µ disjoint copies of S1 in R3, each circle of the link is a

component, and the number of components is called µ . A knot is a link when µ = 1.

A link diagram is the image of a projection of a link from R3 to R2 in which the only

singular points are double points. This means the inverse image of each point in a link

diagram either one point or two points in S1. If the inverse image of the point in a link

diagram is two points in S1 means the link diagram has a crossing.

The connected sum of two links is an operation to join them and obtain one link. This

allow to us to define a connected sum of knots (composition or knot sum) as in (1). Let

J and K be two projections of knots. The connected sum of J and K is a knot that is

obtained by cutting one arc of both J and K then joining the four endpoints to create two

new arcs, denoted by J#K.

Since each link has many diagrams, we need to find the relationship between any two

of these diagrams. This is done by using Reidemeister moves. The first Reidemeister

move, wherein an untwisted strand of any component of link becomes twisted and vice

versa, is designated Reidemeister 1, as shown in figure 1.1 (A).

The second Reidemeister move is designated Reidemeister 2, and is shown in figure

1.1 (B).

The final type is called the third Reidemeister move. Here, there is a crossing in the

projection and a strand which slides from one side of the crossing to the other. This type

is designated Reidemeister 3, and is illustrated in figure 1.1 (C).

Theorem 1 Any two diagrams of a link are related by a finite sequence of Reidemeister

moves.

Proof

See (6). �

Let C1 and C2 be two individual circles of a link in R3. Then the number of times
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Figure 1.1: The three types of Reidemeister move: (A) Reidmeister 1, (B) Reidmeister 2, (C)
Reidmeister 3.

mod(2) that C1 crosses over C2 in the link diagram is called the mod 2 linking number

of C1 and C2, denoted by lk(C1,C2).

1.4 Graphs
A graph G is a pair of sets. The first, a non empty set of vertices, V , is denoted by V (G),

and the second, a non empty set of edges, E, is denoted by E(G). Each edge joins a pair

of vertices vi, v j. These vertices are called the endvertices of edge (vi,v j). If V (G) and

E(G) are finite then G is called finite graph. A graph H is called a subgraph of G if

V (H) ⊂ V (G) and E(H) ⊂ E(G). A subgraph H of G is called a spanning subgraph of
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graph G if V (H) =V (G). Suppose that e(G) is the number of edges in G, and v(G) is the

number of vertices in G.

Let G be a finite graph, then G is a sub topological space induced in R3. Where we

can represent each vertex of a graph as a point in the topological space and each edge of

a graph as a closed set. An embedding of graph G is a one to one continuous function

from graph G to a surface. Then G and f (G) are homeomorphic. The component of the

complement of an embedded graph G is a face, a non empty set of faces of the embedding

graph G denoted F(G). Suppose that f (G) is the number of faces in G,

A plane graph is a graph embedded on a sphere.

The relationship between the graph and the link diagram is through the tangle which

replaces each edge of the graph. A tangle in a link projection is defined as a region within

the projection plane. This region can be surrounded by a shape (usually a rectangle) which

is crossed precisely four times by the link.

Figure 1.2: The general tangle

A medial graph M(G) of a plane graph G is a plane graph whose vertices are the

edges of G, any two of the vertices of M(G) being connected by an edge whenever they

are located in the same face of G, on two adjacent edges of G.

Using the medial construction, a graph G embedded on a surface determines a link

diagram D(G), which has a certain number µ of components of a link diagram, as in

figure 1.3.

Let us consider the following three cases for the tangle, which appear in figure 1.4:

1. Strand a is joined to c, and b is joined to d. In this case the number of components of

the link diagram can vary, but it does not depend on the detail of the tangle. So, we
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Figure 1.3: The medial graph of an embedded graph, and the link diagram which is got from the
medial graph

may as well draw this as though each edge of the graph were replaced by a simple

crossing in the link diagram.

2. Strand a is joined to b, and c is joined to d. In this case µ is always equal to the

number of faces f of the embedded graph.

3. Strand a is joined to d, and b is joined to c. In this case µ is always equal to the

number of vertices V of the embedded graph.

Evidently, the first case is the only one of interest, where µ depends on the structure of G.

We sometimes work with cellularly embedded graphs, in which each of the faces of

the embedded graph is homeomorphic to a disc. This definition is significant because we

investigate µ on a connected embedded graph.

Example

Figure 1.5 is the embeddings of one graph. One is a cellularly embedded and another

is embedded but not cellularly.

Deleting an edge or contracting an edge e in a graph G are operations used often in
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Figure 1.4: A tangle replacing an edge. The dotted lines marked a, b, c, and d are strands of the
link diagram, and the straight line joining the two vertices is the edge of the graph
replaced by the tangle T.

this thesis. The notation G \ e denotes the graph G with edge e deleted. It has the same

vertex set as G, but one less edge. The notation G/e denotes the graph G with edge e

contracted. Here the edge e is deleted and its endvertices identified. It has one less vertex

and one less edge than G.

If G is a plane graph, the dual graph G∗ is defined as having a vertex corresponding

to each face of G, and an edge joining two vertices corresponding to neighbouring faces

in G. We note the following:

1. f (G) = v(G∗).

2. E(G)∼= E(G∗).

3. v(G) = f (G∗).

Lemma 1 If G is a plane graph, then D(G) = D(G∗).

Proof

Any pair of edges e ∈ E(G) and e∗ ∈ E(G∗) related by the isomorphism in 2 above

give rise to the same crossing in the link diagram. �

If two edges have the same endvertices they are called parallel edges. If two edges

have one common vertex of degree two they are called series edges.

We denote by Ik the dual graph of the cycle Ck having k edges and k vertices, where Ik

is a graph of two vertices and k edges which are all parallel.
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Figure 1.5: Two different embeddings of one graph in the tours. (A) is a cellularly embedded
graph, where (B) is embedded but not cellularly.

Some of our results deal with a bridge, which is an edge whose deletion increases

the number of components of the graph. Moreover, we deal with a loop which is an edge

whose end vertices are equal. The definition of blocks refers to a cut vertex, which is

a vertex whose deletion increases the number of components of the graph. A nontrivial

connected graph which does not have a cut vertex is called a nonseparable graph. A

subgraph H of graph G is called a block if it is a maximal nonseparable subgraph.

The Reidemeister 1 move on a link diagram corresponds to a bridge or a loop, as

in figure 1.6 (A). The Reidemeister 2 move on a link diagram corresponds to a pair of

parallel edges or series edges, as in the figure 1.6 (B). The Reidemeister 3 move on a link

diagram corresponds to a Y↔ ∆ exchange on the graph, as in the figure 1.6 (C).

This replaces a “Y" (which is a vertex of degree 3) by a triangle, or vice versa, as in

figure 1.7.
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Figure 1.6: The graphs of Reidemeister moves.

For our purposes, we need the graph to be embedded in a surface and the triangle to

bound a disc on that surface. Then we refer to the Y↔ ∆ exchanges as embedded.

We are also interested in working with graphs embedded in the torus, or indeed any

orientable surface of genus g.

1.5 Previous studies

The relationship between a graph and the number of components in the corresponding

link diagram has been studied by several people.

In 1978, Martin published an article (18) on this relationship for any connected plane

graph. This article studied the Tutte polynomial for a special value of x = y =−1, where

the Tutte polynomial is defined as in the following:
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Figure 1.7: Y ↔ ∆ exchanges.

T (G,x,y) =






xT (G/e,x,y) if e is a bridge;

yT (G\ e,x,y) if e is a loop;

T (G/e,x,y)+T (G\ e,x,y) otherwise.

Martin shows the following relationship between the Tutte polynomial and µ:

T (G;−1,−1) = (−1)q(G)(−2)µ(D(G))−1, (1.1)

where q(G) is the number of edges in G. In (16), equation (1.1) is generalised to the

projective plane and the torus.

Mphako, in (20), actually calculated T (G;−1,−1), and hence µ , but only for fans,

wheels, and 2-sums of graphs which is defined in Chapter 3 Section 3.3. (An n-fan graph

is a plane graph consisting of K1 joined to each vertex of a path of n vertices. An n-wheel

graph is a plane graph consisting of K1 joined to each vertex of a cycle of n vertices.)

The number µ is the same as the number of “straight-ahead" walks in medial graphs,

as described in (23). The focus in (15) is to characterise the plane graphs G whose

µ(D(G)) is as large as possible, which is the nullity plus one; these are the “extremal"

graphs. The nullity, denoted n(G), is defined by

n(G) = |E(G)|− |V (G)|+ k(G),

where k(G) is the number of components (maximal connected subgraphs) of G.
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Maximising µ is also our principal interest here, although we will study graphs em-

bedded on various orientable surfaces.

The background material can be found in (3), (4), (6), (9), (13) and (1).

1.6 Overview of thesis

In chapter 2 we give some background properties of µ for graphs embedded on any ori-

entable surface. Section 2.1 shows how µ depends on the blocks of the graph G, which

corresponds to undoing a connected sum operation on D(G). We note that µ does not

change when the graph undergoes a graph Reidemeister move or an embedded Y↔ ∆

exchange. The resulting relations are given in sections 2.2, 2.3 and 2.4. In section 2.5, we

show that µ changes only slightly when an edge is added to the graph.

Chapter 3 introduces some results of extremal graphs in three sections. In section

3.1, we identify the upper bound of the number of components of the link diagrams of

cellularly embedded plane graphs. Some of our results replicate those in (15), but our

emphasis is different because we are preparing to work on other surfaces.

Section 3.2 introduces the definition of extremal plane graph by using the number of

faces of the embedded graph instead of the nullity (as in (15)). We find various properties

of extremal graphs. In section 3.3 we describe ways of constructing new extremal graphs

using the operations of 2-sum and tensor product.

Chapter 4 extends the idea of an extremal graph to surfaces of genus g. We restrict our

results to cellularly embedded graphs. In section 4.1 we define a pseudo-tree, which is a

spanning subgraph, comprising a single face, of a graph cellularly embedded in a surface

of genus g. In Chapter 2 Corollary 1 we prove that each plane tree has µ = 1, while in

this section we prove that the number of components of the link diagram of a pseudo-tree

embedded in the torus is less than or equal to three. This allows us to prove further that

the number of components of the link diagram of a pseudo-tree embedded in the surface

of genus g is less than or equal to the double the genus plus one. Then we find the upper

bound of µ for cellularly embedded graphs in surfaces of genus g.

In section 4.2 we define extremal graphs embedded in surfaces of genus g. This leads
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us to the discovery of some new properties for this type of graph. Not all pseudo-trees are

extremal, but each extremal graph has a spanning pseudo-tree which is extremal, which

is a useful property. For example, we show that the degree of any vertex in an extremal

graph is equal to the number of components of the link diagram passing close to that

vertex. The final section in this chapter considers special properties and conjectures in the

case of a cellularly embedded graph in the torus.

In chapter 5 we investigate graphs having µ = 1.

Chapter 6 focuses on two interesting families of graphs, the Petersen family and

the Heawood family. All the graphs in these two families are cellularly embedded in

the torus, but these embeddings are not unique. Our first section centres on previous

studies of these families. Almost all are focused on another relationship between knots

and graphs. This concerns the intrinsically linked and intrinsically knotted graphs. A

graph G is called intrinsically linked (IL) if in any embedding of G in R3 there is a pair

of disjoint cycles (C1,C2) with lk(C1,C2) �= 0. A graph G is called intrinsically knotted

(IK) if any embedding of graph G in R3 contains a nontrivial knot. In this section we

derive some new results using abstract ∆ ↔ Y exchanges.

Section 6.2 has two subsections studying the embedding process of the Petersen and

Heawood families. Embedded ∆ ↔ Y exchanges restrict the abstract ∆ ↔ Y exchanges

to an embedded triangle bounding a disc. We find different subfamilies of embedded Pe-

tersen and Heawood families by restricting to embedded ∆ ↔Y exchanges, and choosing

specific embeddings of K6 and K7. We use the fact that ∆ ↔ Y exchanges do not alter the

value of µ , which is proved in chapter 2, to deduce that those sub-families have fixed µ

values.
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Chapter 2

Background properties of µ(D(G))

In this chapter we derive some of the underlying properties of the number of components

of the link diagram of a graph. These theorems apply to graphs embedded on any surface.

We will find them useful in subsequent chapters. The results of this chapter investigate the

properties of a purely local of the embedded graph. These results deal with an embedded

graph in any surface, and work with a cellularly or not cellularly embedded graph.

2.1 Connected sum
Splitting a connected embedded graph at a cut vertex corresponds to undoing a connected

sum operation on the link diagram. The next theorem uses this fact to calculate the num-

ber of components of the link diagram of a graph containing k blocks. The specific case of

the following theorem was proved in (15) for a plane graph. Here, the result is generalised

to apply to any surface.

Theorem 2 Let G be a connected embedded graph with blocks B1,B2, . . . ,Bk. Then

µ(D(G)) =
k

∑
i=1

µ(D(Bi))− (k−1).

Proof

For any two adjacent blocks Bi and Bi+1 of G with common vertex v, splitting G at v

into two graphs increases the number of components of a link diagram by one, as in figure

13
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2.1. So splitting G into k blocks increases the number of components of a link diagram

by k− 1, and hence the result. (This is a purely local operation, and it therefore applies

on any surface.) �

Figure 2.1: The dotted curved lines are two strands of a single component of the link diagram
because v is a cut vertex of the graph, which separates blocks Bi and Bi+1. The straight
lines are edges of the graph.

2.2 Reidemeister 1 moves

The number of the components of the link diagram of an embedded graph is invariant

number Reidemeister 1 moves. This involves the graph having a bridge.

The following theorem is from (15), but it was proved for the plane graph.

Theorem 3 Let G be a connected embedded graph with a bridge e. Then

µ(D(G)) = µ(D(G/e)).

Proof

Let G1 and G2 be the two components of graph G \ e, and let B be the block in G
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containing e. Then by Theorem 2

µ(D(G)) = µ(D(G1))+µ(D(G2))+µ(D(B))−2

= µ(D(G1))+µ(D(G2))−1,

because µ(D(B)) = 1. However, G/e consists of blocks G1 and G2, so by Theorem 2

again

µ(D(G/e)) = µ(D(G1))+µ(D(G2))−1,

and hence the result. �

The following corollary appears in (15) as a lemma. Here it is an elementary corollary;

we generalise it in chapter four to cases of surfaces with any number of genus.

Corollary 1 Let T be a tree embedded in the plane, then µ(D(T )) = 1.

Proof

We contract all the edges in T until we obtain the graph U having just one edge. By

Theorem 3,

µ(D(T )) = µ(D(U)) = 1.

�

2.3 Reidemeister 2 moves

µ(D(G)) is not affected by the Reidemeister 2 moves. What do these moves correspond

to in the graph? We are interested in graphs containing a pair of parallel edges bounding

a disc or graphs which contain a pair of edges (not parallel) having a common vertex of

degree two.

The following two theorems are proved in (15), but for the embedding of the graph in

the plane. Here they are proved for a graph embedded on any orientable surface, as we

mentioned earlier in this chapter.
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Theorem 4 Let G be an embedded graph. If a1 and a2 are edges incident with a common

vertex of degree 2, but not parallel, then

µ(D(G)) = µ(D(G/a1/a2)).

Proof

This result follows from Reidemeister 2 moves, as in figure 2.2. �

Figure 2.2: The contraction of two non-parallel edges incident with a vertex of degree two does
not change the number of components of a link diagram.

The following example shows a pair of edges having a vertex of degree two parallel.

When they are contracted, then the number of components of a link diagram decreases.

Example:

See figure 2.3

In a plane graph parallel edges always bound a disc, but for graphs embedded on other

surfaces this is not always going to happen. To generalise this case as in the following

theorem, we need to focus on the case of two parallel edges which do bound a disc.

Theorem 5 Let G be an embedded graph. If b1 and b2 are two parallel edges bounding

a disc in S, then

µ(D(G)) = µ(D(G\b1 \b2)).

Proof
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Figure 2.3: The contraction of two parallel edges changes the number of components of a link
diagram.

This result follows from Reidemeister 2 moves too, as in figure 2.4. �

Figure 2.4: The deletion of a pair of parallel edges bounding a disc does not change the number
of components of a link diagram.

The following example shows that when a pair of parallel edges not bounding a disc

is deleted, the number of components of a link diagram changes.

Example:

Let G be a graph embedded in the torus, where G = K5 + e1, and e1 with its parallel

edge e2 does not bound a disc. Then µ(D(G)) = 1, but µ(D(G\e1 \e2)) = 3, as in figure

2.5.
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Figure 2.5: The graph on the left has a pair of parallel edges which does not bound a disc. In
the graph on the right the deletion of these parallel edges has changed the number of
components of a link diagram.

2.4 Reidemeister 3 moves
There is another move which keeps the number of components of a link diagram un-

changed, the Reidemeister 3 moves. This move is discussed in the following theorem.

Theorem 6 Let G be an embedded graph. Graph H is derived from G using embed-

ded ∆−Y exchanges. Then both graphs have the same number of components of a link

diagram.

Proof

The result follows from the Reidemeister 3 moves, as in figure 2.6. �

Figure 2.6: The embedded ∆−Y exchanges do not change the number of components of a link
diagram.
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2.5 Other moves
In this section the operations on the graph do not always keep the number of components

of a link diagram unchanged. They will nevertheless be useful to us in later chapters.

The idea of the next proof comes from (15).

Theorem 7 Let e be a new edge connecting two vertices in the same face of a connected

embedded graph G. Then

µ(D(G))−1 ≤ µ(D(G+ e))≤ µ(D(G))+1.

Proof

If e is a loop and it bounds a disc then

µ(D(G)) = µ(D(G+ e)),

so the result holds.

If e is a loop which does not bound a disc, or e is not a loop then there are two cases:

1 If the arcs α1 and α2 are contained in different components of D(G), then

µ(D(G+ e)) = µ(D(G))−1,

as in figure 2.7.

Figure 2.7: Adding a new edge to the vertices of different arcs decreases the number of compo-
nents of a link diagram.
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2 If the arcs α1 and α2 are contained in the same component of D(G), then there are two

further cases.

a Along this component of a link diagram, if the order of the four endpoints of the

two arcs α1 and α2 is 1,2,3,4 then µ(D(G+e)) = µ(D(G)), as in figure 2.8.

Figure 2.8: The number of components of a link diagram does not change, if the endpoints of the
arcs α1 and α2 come in the order 1,2,3,4 in the component of a link diagram.

b If the order of the four endpoints of the two arcs α1 and α2 is 1,2,4,3 then

µ(D(G+ e)) = µ(D(G))+1.

�

Figure 2.9: The number of components of a link diagram is increased, if the endpoints of the arcs
α1 and α2 come in the order 1,2,4,3 in the component of a link diagram.



Chapter 3

Extremal plane graphs

In this chapter the upper bound of the number of components of the link diagrams of

cellularly embedded plane graphs is identified. This number depends on the number of

faces in the graph. We also introduce the definition of extremal plane graph, as in (15). In

(15) the authors do not use the number of faces. They use instead the nullity.

Some of our results can be found in (15), and we will refer to them as appropriate.

3.1 Connected plane graphs

Theorem 8 is the main theorem in this section. It relates the number of components of

the link diagram to the number of faces in the graph.

Theorem 8 Let G be a connected plane graph. Then

1 ≤ µ(D(G))≤ f (G).

Proof

Let T be a spanning tree of the graph G. Then f (T ) = 1, and by Corollary 1 we have

µ(D(T )) = 1, which means the theorem is true for T .

Now add, one by one, edges to T in order to obtain G.

We obtain a sequence of graphs

T = G0,G1, . . . ,Gs−1,Gs = G.

21



22 Chapter 3. Extremal plane graphs

The insertion of an edge increases the number of faces by exactly one, so for i = 0, . . . ,s−

1 we have

f (Gi+1) = f (Gi)+1 = f (G0)+ i+1.

By Theorem 7

µ(D(Gi+1)) ≤ µ(D(Gi))+1 (3.1)

≤ µ(D(G0))+ i+1. (3.2)

Since µ(D(G0)) = f (G0), we must have µ(D(Gi+1))≤ f (Gi+1) for each i, which means

that µ(D(G))≤ f (G). �

If G∗ is the plane dual of the graph G, then v(G) = f (G∗). Also, by Lemma 1 D(G∗) =

D(G).

Corollary 2 Let G∗ be a connected plane graph. Then µ(D(G))≤ v(G).

Proof

From Theorem 8

µ(D(G∗))≤ f (G∗) = v(G).

Since D(G) and D(G∗) are same by Lemma 1, then µ(D(G)) = µ(D(G∗)) and the result

follows immediately. �

The following theorem is important in finding some special significant cases. These

will be introduced throughout this chapter in the next section, when we will define the

status of µ(D(G)) = f (G). This status is impossible in the condition of a connected graph

containing a pair of parallel edges, if the deletion of this pair keeps the graph connected.

Theorem 9 Let G be a connected plane graph with a pair of parallel edges a and b. If

G\a\b is connected, then

µ(D(G))≤ f (G)−2.
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Proof

Since a and b are parallel edges, by Theorem 5

µ(D(G)) = µ(D(G\a\b)).

But G\a\b is connected, so

f (G) = f (G\a\b)+2.

Therefore

µ(D(G)) = µ(D(G\a\b))≤ f (G\a\b) = f (G)−2

�

The following two lemmas are helped in proof of Theorem 10.

Lemma 2 Each component of the link diagram of a graph traces an even cycle in the

graph.

Proof

Suppose that γ is one component of the link diagram of the graph G. γ determines a

cycle C in G. We need to prove that C is an even cycle.

Since γ crosses the edges of C from left to right and vice versa, we can label the ver-

tices of cycle C by R and L, as in figure 3.1. No two consecutive vertices have the same

Figure 3.1: A component of link diagram of a cycle in the embedded graph.
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label, and so the cycle C must be even. �

Lemma 3 Each component of the link diagram of a graph has an even number of odd

faces.

Proof

Suppose C is an even cycle in the embedded graph G. We can choose one side of this

cycle which has an even number of odd faces. If a new edge is added to one face of C

then the number of odd faces is increased either zero or two. If the new edge is added to

an even face then the number of odd faces either increased two or does not increase. If

the new edge is added to an odd face then the number of odd faces does not increase. �

3.2 Extremal plane graphs

If G is a connected plane graph then G is called extremal if

µ(D(G)) = f (G).

A face of a plane graph is called even if it has an even number of edges.

Theorem 10 was proved in (15), but using a different method.

Theorem 10 If G is extremal then each face of G is even.

Proof

Let T be a spanning tree of G, and let

T = G0,G1,G2, . . . ,Gs = G,

be a sequence of graphs as in the proof of Theorem 8. Since T and G are extremal

then each Gi in the sequence is extremal. Otherwise µ(D(Gi)) < f (Gi), and then from

Theorem 7 we would have µ(D(Gi+1))< f (Gi+1) and eventually µ(D(G))< f (G).
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T has one even face because each edge in T counts two times. Suppose that there is a

graph in this sequence with an odd face, and let Gi+1 be the first such graph. Gi+1 =Gi+e,

where e has been inserted into a necessarily even face in Gi, creating two odd faces f1 and

f2 in Gi+1.

Because all the graphs in the sequence are extremal, we must be in case 2b of Theorem

7.

Choose a component of D(Gi+1) containing face f1 and including arc 13, as in figure

3.2. This component of a link diagram defines an even cycle in the edges of Gi+1. But the

faces inside this cycle are all even except f1, because all except f1 come from Gi, which

is a contradiction by Lemma 2 and Lemma 3. �

Figure 3.2: Adding a new edge to produce an extremal graph.

By the definition of the dual graph and the previous theorem we can deduce that the

following corollary. This corollary has used the relationship between eulerian cycles and

even faces of the graph, where (9) has proved “ a connected graph G is eulerian if and

only if every vertex of G is even.

Corollary 3 If G is extremal then G∗ is eulerian.

Proof

From Theorem 10 each vertex in G∗ has even degree, so G∗ is eulerian. �

The converse of this corollary is not true. For example, let G be the dual graph of
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K2,2. Then G∗ is I4 and it is eulerian but G is not extremal because µ(D(G)) = 2 when

f (G) = 4.

The relationship between eulerian cycles and bipartite graphs has been given in (14),

where each plane graph is eulerian if and only if its dual bipartite, and given us the fol-

lowing corollary.

Corollary 4 If G is extremal then G is bipartite.

Proof

This follows from Corollary 3 and the well known result that the dual of an eulerian

graph is bipartite (14). �

Define δ (G) to be the minimum degree of G.

The following theorem was proved in (15) by showing that the embedding of any

plane graph is not extremal if δ (G)≥ 3.

Theorem 11 If G is extremal, then δ (G)< 3.

Proof

Let

T = G0, . . . ,Gi−1,Gi, . . . ,Gs = G

be a sequence of extremal graphs, where each of

G0, . . . ,Gi−1

has δ (G)< 3 and each of

Gi, . . . ,Gs

has δ (G) ≥ 3. In this case Gi−1 has δ = 2. When we add an edge to Gi−1 to get Gi we

get a contradiction with Theorem 8, because the number of faces increases in Gi but the

number of components does not, as in figure 3.3. �

We can use Theorem 11 to determine whether or not a plane graph is extremal. The

following theorem uses a simple plane graph which means a connected plane graph

having no loops and parallel edges.
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Figure 3.3: (A) is an extremal graph with δ (G) = 2. (B) has a new edge which makes δ (G) = 3
and does not increase the number of components of a link diagram

Theorem 12 Let G be a connected plane graph with at least one edge, then G is simple

if and only if G∗ is not extremal.

Proof

Suppose G is a simple connected plane graph with at least one edge. G∗ cannot have

a vertex of degree 0, because G has at least one edge. It cannot have a vertex of degree 1,

because G does not have a loop. Finally, it cannot have a vertex of degree 2, because G

does not have parallel edges.

So by Theorem 11, G∗ is not extremal. The same method yield the converse. �

The idea of the previous theorems can be developed in two ways. First, we can provide

a specific case of the relationship between the number of components of the link diagram

and the number of vertices of any connected plane graph. We use the facts that f (G) =

v(G∗) and µ(D(G)) = µ(D(G∗)).

Theorem 13 Let G be a connected plane graph with at least one edge. Then µ(D(G))<

v(G) if and only if G∗ is not extremal.

Proof

If G∗ is not extremal then by Theorem 8
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µ(D(G∗))< f (G∗),

which means that

µ(D(G))< v(G).

�

Secondly, the idea of Theorem 12 is further developed in order to obtain another bound

for µ .

Theorem 14 If G is an extremal simple plane graph with at least two edges then

µ(D(G))≤ v(G)−2.

Proof

Since G is extremal then by Theorem 10 each face in G is even.

Let Fi be the number of faces with i edges. Simple counting arguments give

f (G) = F4 +F6 + . . .

2e(G) = 4F4 +6F6 + . . .

and

4 f (G) = 4F4 +4F6 + . . .

Therefore

4 f (G)≤ 2e(G),

which means that

f (G) ≤ e(G)/2, (3.3)
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By using the Euler equation for the plane graph

f − e+ v = 2,

we have

f (G) = 2+ e(G)− v(G). (3.4)

By 3.3 and 3.4

e(G)− v(G)+2 ≤ e(G)/2,

e(G)(1− (1/2)) ≤ v(G)−2,

(1/2)e(G) ≤ v(G)−2,

f (G) ≤ v(G)−2.

Since G is extremal then

µ(D(G))≤ v(G)−2.

�

We can get the following corollary for a graph with the same properties as Theorem

14 to prove the dual of it is not extremal.

Corollary 5 Let G be an extremal simple plane graph with at least two edges, then G∗ is

not extremal.

Proof

Since G is extremal then by Theorem 14

µ(D(G))≤ v(G)−2,

which means that

µ(D(G∗))≤ f (G∗)−2.
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Hence the result. �

Theorem 15 has an interesting relationship between the extremal graph and the struc-

ture of the dual graph (as proved in (15)).

Theorem 15 Let G be a simple connected plane graph with a non-trivial dual. Then G is

extremal if and only if there is an even non-negative number of edges between each pair

of vertices of G∗.

Proof

Let G be extremal and suppose that G∗ has an odd number of edges between a pair of

vertices. When we delete each pair of parallel edges and loops in G∗, we get H, a simple

plane graph with at least one edge. By Theorem 5

µ(D(G∗)) = µ(D(H)),

by Theorem 12 H∗ is not extremal and by Theorem 13

µ(D(H))< v(H) = v(G∗),

this gives

µ(D(G∗))< v(G∗).

By Corollary 2 G is not extremal and this is a contradiction.

Now, if G∗ has an even non-negative number of edges between each pair of vertices,

then we delete all pairs of parallel edges in it, to obtain a graph with an empty set of edges.

By Theorem 5 this does not change the number of components, and so

µ(D(G)) = µ(D(G∗)) = v(G∗) = f (G).

Therefore G is extremal. �

Furthermore, Theorem 16 gives important and useful relationships between extremal
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graphs.

Theorem 16 Let G be a connected plane graph. Then the following statements are true.

a Let e be a bridge of G. Then G/e is extremal if and only if G is extremal.

b Let v be a vertex of degree 2 with exactly one adjacent vertex. Then G\ v is extremal if

and only if G is extremal.

c Let v be a vertex of degree 2 with two different adjacent vertices x and y. Then

G/(v,x)/(v,y) is extremal if and only if G is extremal.

d G is extremal if and only if each block of G is extremal.

e Let G be extremal, and e not a bridge in G. Then G\ e is extremal.

Proof

a Let G be extremal. By Theorem 3

µ(D(G/e)) = µ(D(G)) = f (G) = f (G/e).

Therefore G/e is extremal. The same method gives the converse.

b Let G be extremal. G\ v is a connected plane graph, and by Theorem 5

µ(D(G)) = µ(D(G\ v))+1.

Also,

f (G) = f (G\ v)+1.

So G\ v is extremal. The same method yields the converse.

c Let G be extremal. G/(v,x)/(v,y) is a connected plane graph, and by Theorem 4

µ(D(G)) = µ(D(G/(v,x)/(v,y))).
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Also,

f (G) = f (G/(v,x)/(v,y)).

So G/(v,x)/(v,y) is extremal. The same method gives the converse.

d Let B1,B2, . . . ,Bk be the blocks of G, and suppose that G is extremal. Then from

Theorem 2 we have

k

∑
i=1

µ(D(Bi))− k+1 = µ(D(G)) (3.5)

=
k

∑
i=1

f (Bi)− k+1. (3.6)

Therefore
k

∑
i=1

µ(D(Bi)) =
k

∑
i=1

f (Bi),

because µ(D(Bi)≤ f (Bi), so each Bi is extremal. The converse is proved similarly.

e Since e is not a bridge, G\ e is a connected plane graph and

f (G) = f (G\ e)+1.

By Theorem 7

µ(D(G))≤ µ(D(G\ e))+1,

but

µ(D(G)) = f (G) = f (G\ e)+1,

and so

µ(D(G\ e))≥ f (G\ e).

Hence by Theorem 8 G\ e is extremal. �

In the next theorem we show that all plane extremal graphs can be obtained from K1

through the use of some processes on the graph. Note that this theorem was proved in (15)
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by using the same idea of the following proof; in this proof we need the graph Gi/(xi,yi)

which means graph Gi obtained from G by identifying the vertices xi and yi. First we need

to give the following example which contains some details of equations 3.7 and 3.8.

Example

Let G be an extremal graph has µ = 4 and f = 4, as in figure 3.4.

Let G1 be an extremal subgraph of G has µ = 2 and f = 2, and G2 be an extremal

subgraph of G has µ = 2 and f = 2, as in figure 3.4. Then G1/(x1,y1) is an extremal

graph having µ = 3 and f = 3, and G2/(x2,y2) is an extremal graph having µ = 3 and

f = 3. The splitting of the new vertex obtained by identification gives the components of

link diagram as it appear in figure3.8.

Figure 3.4: The case of an extremal graph without a bridge. G1 has two distinct vertices each one
adjacent to a vertex in G2 to obtain G, where the two vertices in G2 are distinct.
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Theorem 17 Let G be a plane graph. G is extremal if and only if it satisfies one of the

following criteria:

1 G = K1

2 G has an edge e whereby G\ e consists of two disjoint extremal graphs.

3 G has edges ex = x1x2, ey = y1y2 whereby G\e1 \e2 consists of two disjoint graphs G1

and G2 with xi,yi ∈ v(Gi) and Gi/(xi,yi) is extremal, for i = 1,2.

Proof

Denote by f , f1, and f2 the numbers of faces of G, G1, and G2 respectively. Similarly,

denote by µ , µ1, and µ2 the numbers of components in their link diagrams. Let G be an

extremal graph, so that µ = f , and suppose that G has at least one edge.

If G has a bridge e, then

f = f1 + f2 −1,

because G1 and G2 share a common face. Now by Theorem 2

µ = µ1 +µ2 −1.

Since G is extremal

µ1 +µ2 −1 = µ = f = f1 + f2 −1.

Therefore

µ1 +µ2 −1 = f1 + f2 −1,

which means that

µ1 +µ2 = f1 + f2.

Since µi ≤ fi for each i, we now have

µ1 = f1
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and

µ2 = f2

as required.

Next, let G be an extremal graph without a bridge. By Theorem 11 it must have a

vertex v with degree less than 3. However, if d(v) = 0 then G = K1, and if d(v) = 1 we

have a bridge. So d(v) = 2. Now there are two cases.

a If v is adjacent to two distinct vertices x1 and y1, as in figure 3.5, then x1 �= y1 in G1and

G2 = K1 (the vertex v) . Clearly µ2 = f2. Suppose µ1 is the number of components

of the link diagram of G1/(x1,y1), and f1 is the number of faces of G1/(x1,y1).

Then µ1 = µ and f1 = f because the identification of x and y does not affect the

number of components of the link diagram of G1 or the number of faces of G1,

which means that G1/(x1,y1) is extremal.

Figure 3.5: The case of an extremal graph without a bridge. G1 has two distinct vertices adjacent
to G2 = K1.

(b) If v is a vertex adjacent twice to another vertex, as in figure 3.6, then G2 = K1 as

before, and since x1 = y1 then µ = µ1 +1 and f = f1 +1. Since G is extremal then

G1/(x1,y1) is extremal.

Conversely, suppose that one of the three conditions holds. Then we will show that G is
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Figure 3.6: The case of an extremal graph without a bridge. G1 has a vertex adjacent twice to
G2 = K1.

extremal.

(1) If G = K1 then G is extremal because µ(G) = f (G) = 1.

(2) If G consists of the two extremal graphs G1, G2 and the bridge e between them,

then µ1 = f1 and µ2 = f2 and since e is a bridge then µ = µ1+µ2−1. There is a common

face between G1 and G2, so f = f1+ f2−1, which gives f = f1+ f2−1= µ1+µ2−1= µ .

Therefore G is extremal.

(3) Suppose that the plane graph G is constructed from two connected plane graphs

G1 and G2 by adding two new edges e1 and e2, where e1 = (x1,x2), e2 = (y1,y2) and xi,

yi ∈ V (Gi), as in figure 3.7. Let µi be the number of components of the link diagram of

Gi/(xi,yi) and fi the number of faces of Gi/(xi,yi). Then

f = f1 + f2 −2 (3.7)

because we will get two new faces, one in f1 and another one in f2, when we identify xi

and yi. In order to count the components in the various link diagrams, start with Gi/(xi,yi)
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Figure 3.7: A graph G, constructed from two graphs G1 and G2 joined by two edges.

and then “split" the vertices into xi and yi, obtaining the arrangement shown in figure 3.8.

Hence

µ = µ1 +µ2 −2. (3.8)

From equations (3.7) and (3.8), µ = f . �

Figure 3.8: The two components a and b of a link diagram, moving from G1 to G2.
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3.3 Two sum and tensor product

This section describes ways of constructing new extremal graphs using the operations of

2-sum and tensor product.

The following two definitions are given in (12) in terms of matroids, but here they are

defined for any embedded graph. Let G and H be two graphs. Then:

1. If G and H have distinguished edges a ∈ E(G) and b ∈ E(H), the 2-sum G⊕2 H is the

graph obtained by identifying a with b (and hence their end vertices) and deleting

this new edge. Note that there may be two different ways of doing this.

2. If H has a distinguished edge b ∈ E(H), the tensor product G⊗H is obtained by

applying the two sum successively to all edges of G with b ∈ H.

The tensor product of any connected plane graph with a triangle gives a“2-extended”

graph, as defined in (21).

Theorem 18 Let G be a connected plane graph, and let H be a triangle. Then G⊗H is

extremal.

Proof

By applying Theorem 4 many times to G⊗H, we obtain K1, which is extremal. Hence

by Theorem 16(c) G⊗H is extremal. �

The tensor product of any graph G with I3 gives a “2-thickening” graph, which is also

defined in (21), but this graph is not extremal.

Theorem 19 Let G be an extremal bridgeless graph. Then G⊗ I3 is not extremal.

Proof

Suppose that H = G⊗ I3. Then H is a graph has an even number of edges between

each two adjacent vertices in G.
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Since G is extremal and bridgless then H \ e1 \ e2} is a connected plane graph, where

e1 and e2 are two parallel edges in H. By Theorem 9

µ(D(H))≤ f (H)−2.

Hence H = G⊗ I3 is not extremal. �

We can extend Theorem 18 to any odd cycle as in the following theorem. We can

prove it by using the same idea of the proof of Theorem 18.

Theorem 20 Let G be any connected plane graph and H be an odd cycle. Then G⊗H is

extremal.

Proof

By applying Theorem 4 many times to G⊗H, we obtain K1, which is extremal. Hence

by Theorem 16(c) G⊗H is extremal. �

If the distinguished edge in the following theorem is a bridge then the theorem is false.

Theorem 21 Let G be a tree and H be extremal. Then the tensor product G⊗H, in which

the distinguished edge in H is not a bridge, is extremal.

Proof

Suppose e is not a bridge in H, and H is extremal, then by Corollary 16(e) H \ e is

extremal.

G⊗H is a connected plane graph consisting of extremal blocks, each block in G⊗H

being H \ e. Then by Theorem 16(d) G⊗H is extremal. �

The following example shows why e ∈ H must not be a bridge in the above theorem.

Example
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Let G be a tree of two edges and H be an extremal graph consisted from two pairs

of parallel edges linking by bridge b, then G⊗H on b is not a connected plane graph, as

in the figure 3.9, and it is not extremal. If we choose another edge in H then G⊗H is

extremal.

Figure 3.9: Example of the tensor product on a bridge b of extremal graph.



Chapter 4

Extremal graphs on surfaces of genus g

This chapter deals with cellularly embedded graphs on a surface of genus g. Sometimes,

we call them c.e. graphs.

We use two different cycles in the torus the surface of genus one, which are called the

longitude and the meridian. These two cycles are defined in (24) and are the generators

of the first homology group Z⊕Z of the torus.

Figure 4.1: The generators of the first homology group Z⊕Z on the torus.

4.1 Connected graphs

A cellularly embedded graph ψ of one face is called a pseudo-tree. The spanning sub-

graph of a cellularly embedded graph G is a pseudo-tree. In chapter two we proved that

µ(D(T )) = 1 where T is a tree, but in the next proof we show that

µ(D(ψ))≤ 3,

41
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where ψ is a pseudo-tree embedded on the torus. ψ embedded on the tours can have two

cycles around the handle which is not bounding a disc. The following example has two

diagrams one for a pseudo-tree and another one for an embedded graph which is not a

pseudo-tree.

Example

Figure 4.2 show us an example and non-example of a pseudo-tree.

Figure 4.2: (A) is a diagram for a pseudo-tree, and (B) is a diagram for a cellularly embedded
graph which is not a pseudo-tree.

Theorem 22 Let ψ be a pseudo-tree on the torus. Then

µ(D(ψ))≤ 3.
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Proof

There are several steps in this proof.

1 In this step each bridge, and each pair of non-parallel edges incident with a common

vertex of degree two, are contracted. From Theorem 3 and Theorem 4, this step

constructs a graph λ , with one face and the same number of components of a link

diagram as ψ .

2 Since λ is got by contracting edges, which is a purely local operations on ψ , then

these contractions preserve faces bound discs. Therefore λ is a cellularly embedded

graph on the torus, and so it must have at least one meridian cycle and one longitude

cycle. If λ had two or more meridian cycles, then it would have two or more faces,

and this is a contradiction. So it has just one meridian cycle. Similarly, it has just

one longitude cycle.

3 Let M and L denote the meridian and longitude cycles, and let p and q be the end

vertices of the path M ∩L. If M ∩L were not connected then there would be more

than one longitude or meridian. If λ has more than one longitude or meridian that

makes new faces bound discs, which is a contradiction.

4 We show that each vertex in λ has degree 2, except for p and q which have degree 3

or 4. By step 1 M∩L is either one vertex or a path of one edge, because more than

one edge in this path would allow for further contractions. If M ∩L is one vertex

then p = q. If the degree of p were more than four then there would be at least five

edges incident with p. Four of these five edges are accounted for: two for M and

two for L. The fifth edge, if it exists, cannot be a bridge because of step 1, so it

must be connected with another part of λ , which makes a second face, which is a

contradiction. If M∩L is a path of one edge then the degrees of p and q are three.

Otherwise, we arrive at the same contradiction as in the previous case. Also for this

reason, any another vertex in λ must be of degree two.

5 Suppose λ contained more than three vertices. In this case we can find pairs of edges,
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each pair incident with a common vertex of degree two. But in step 1 we removed

all such pairs.

6 There are just four possible graphs λ , as in figure 4.3. �

Figure 4.3: Just these four diagrams of λ satisfy Theorem 22.

Theorem 23 is a most important theorem. It gives an upper bound for the number

of components of the link diagram of a pseudo-tree embedded in the surface of genus g.

This number depends on g.

Theorem 23 Let ψ be a pseudo-tree embedded on a surface of genus g. Then µ(D(ψ))≤

1+2g.

Proof

We are going to complete the proof by induction on the number of genus.

Suppose that g = 0. Then by Theorem 1 µ(D(ψ))≤ 1; ψ here is a tree.

Let ψi be a pseudo-tree embedded in a surface Si of genus g, we have µ(D(ψi)) ≤

1+2g.

Let Si+1 be a surface of genus g+1, and ψi+1 be a pseudo-tree embedded in Si+1. We

are going to prove:
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µ(D(ψi+1))≤ 1+2(g+1) = 3+2g.

This means that we will prove that ψi+1 has at most two more components than ψi.

Consider one of the handles of Si+1, and let L and M be the longitude and meridian

cycles in ψi+1 for this handle, see figure 4.4.

Figure 4.4: L is the new longitude cycle and M is the new meridian cycle of Si+1 surface, where
eL is an edge in L, but not in M. eM is an edge in M not in L.

Choose one edge eL in L, but not in M, and then delete this edge. By Theorem 7

µ(D(ψi+1))≤ µ(D(ψi+1 \ eL))+1.

Repeat the same process with M by choosing one edge eM in M, but not in L, and we get

µ(D(ψi+1))≤ µ(D(ψi+1 \ eM))+1.

These two deletions yield a graph which is no longer ψ a pseudo-tree on Si+1, but is a

pseudo-tree on the surface of genus g obtained from Si+1 by removing the handle under

consideration, as in figure 4.5. This gives

µ(D(ψi+1))≤ µ(D(ψi))+2.



46 Chapter 4. Extremal graphs on surfaces of genus g

�

Figure 4.5: ψi+1 \ eM \ eL.

The following theorem finds an upper bound for the number of components of a link

diagram in a cellularly embedded graph by finding the relationship between the number

of components of the link diagram and the number of faces in any c.e. graph.

Theorem 24 Let G be a cellularly embedded graph on a surface of genus g. Then

1 ≤ µ(D(G))≤ f (G)+2g.

Proof

Suppose that G is a cellularly embedded graph in the surface of g = 0. Then G is a

connected plane graph, and by Theorem 8

1 ≤ µ(D(G))≤ f (G)+2g.

The theorem holds.

If this theorem is correct for any cellularly embedded graph in a surface of genus g−1,

then assume G is a cellularly embedded graph in surface S of genus g. Now we need to



47 Chapter 4. Extremal graphs on surfaces of genus g

prove that

1 ≤ µ(D(G))≤ f (G)+2g.

Let ψ be a spanning pseudo-tree of G, where ψ is a cellularly embedded graph with one

face. Then by Theorem 23

µ(D(ψ))≤ 1+2g

This means the theorem holds, because ψ has one face. One by one, edges are added to

ψ in order to get G. This insertion increases the number of faces by exactly one each

time, because each new edge joins two vertices in ψ , where we have two types of new

edges one when this edge is round a disc and it is clear there is a new face, another type

when this edge is around a handle the new face would be bounded between two meridian

or longitude cycles. Then this addition of edges gives the following sequence of graphs

embedded in S.

G0 = ψ,G1, . . . ,Gs−1,Gs = G.

So when i = 0, . . . ,s−1

f (Gi+1) = f (Gi)+1 = f (G0)+ i+1 = f (ψ)+ i+1,

and

µ(D(Gi+1)) ≤ µ(D(Gi))+1 (4.1)

≤ µ(D(G0))+ i+1. (4.2)

Since µ(D(G0))≤ f (G0)+2g, we have

µ(D(Gi+1)) ≤ µ(D(G0))+ i+1 (4.3)

≤ f (G0)+2g+ i+1 (4.4)

≤ f (Gi+1)+2g. (4.5)

µ(D(Gi+1))≤ f (Gi+1)+2g
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for each i, which means that

µ(D(G))≤ f (G)+2g.

�

We use the fact of v(G) = f (G∗) again in a c.e. graph to prove the following corollary:

Corollary 6 Let G∗ be a cellularly embedded graph on a surface of genus g, then

µ(D(G))≤ v(G)+2g.

Proof

By Theorem 24

µ(D(G∗))≤ f (G∗)+2g,

f (G∗) = v(G),

and

µ(D(G)) = µ(D(G∗)),

then

µ(D(G))≤ v(G)+2g.

�

µ(D(G)) = f (G)+2g

is impossible in the case of any graph containing parallel edges bounding a disc, where

deleting this pair of parallel edges will produce a connected graph. This case will be

proved in next theorem.

Theorem 25 Let G be a cellularly embedded graph on a surface of genus g with a pair

of parallel edges a and b. If a and b bound a disc and G\a\b is a cellularly embedded
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graph, then

µ(D(G))≤ f (G)+2g−2.

Proof

If a and b are parallel edges bounding a disc, and G \ a \ b is a cellularly embedded,

then by Theorem 24

µ(D(G))≤ f (G)+2g

and

µ(D(G\a\b))≤ f (G\a\b)+2g,

but

f (G) = f (G\a\b)+2,

which means that

µ(D(G)) = µ(D(G\a\b))≤ f (G\a\b)+2g = f (G)−2+2g.

�

4.2 Extremal graph

If G is a cellularly embedded graph on a surface of genus g, then G is called extremal if

µ(D(G)) = f (G)+2g.

Theorem 25 helps us to distinguish some properties of extremal graphs as in the following

theorem:

Theorem 26 Let G be extremal, with a pair of parallel edges a and b bounding a disc.

Then G\a\b is not a cellularly embedded graph.

Proof
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Suppose G has a pair of parallel edges bounding a disc (a and b), and G \ a \ b is a

cellularly embedded graph. By Theorem 25

µ(D(G))≤ f (G)+2g−2,

but this is a contradiction because G is extremal and

µ(D(G)) = f (G)+2g.

�

The same argument as in Theorem 16 is used in the following theorem.

Theorem 27 Let G be a graph cellularly embedded in a surface of genus g. Then the

following statements are true.

a Let e be a bridge of G. Then G/e is extremal if and only if G is extremal.

b Let v be a vertex of degree 2 with exactly one adjacent vertex with these two edges

bounding a disc. Then G\ v is extremal if and only if G is extremal.

c Let v be a vertex of degree 2 with distinct adjacent vertices x and y. Then G/(v,x)/(v,y)

is extremal if and only if G is extremal.

d See Conjecture 1 in Chapter 7.

e Let G be extremal and e not an internal edge in G. Then G\ e is extremal.

Proof

a We use the same method of proof as in (a) in Theorem 16.

b We use the same method of proof as in (b) in Theorem 16.

c We use the same method of proof as in (c) in Theorem 16.



51 Chapter 4. Extremal graphs on surfaces of genus g

e Since e is not an internal edge, G\ e is a cellularly embedded graph and

f (G) = f (G\ e)+1.

By Theorem 7

µ(D(G))≤ µ(D(G\ e))+1,

but

µ(D(G)) = f (G)+2g = f (G\ e)+2g+1,

and so

µ(D(G\ e))≥ f (G\ e)+2g,

and hence G\ e must be extremal. �

The following lemma has a role in the proofs of many of our later theorems.

Lemma 4 Let G be extremal. Then a component of D(G) only ever crosses itself on a

bridge of G.

Proof

Suppose e is an edge in G, not an internal edge, and suppose a component of D(G)

crosses itself on this edge.

By Theorem 27-e, G\ e is extremal.

When we delete e we get two arcs α1 and α2 at the end vertices v1 and v2 of e. There

are two cases:

Case 1. If α1 �= α2 then the number of components of a link diagram has increased but

the number of faces has dropped. This is impossible because G\ e is extremal.

Case 2. If α1 = α2 then

µ(D(G)) = µ(D(G\ e)),
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and

f (G) = f (G\ e)+1,

but this is a contradiction because G\ e is extremal. �

Now, we can show that no extremal graph has a loop bounding a disc.

Corollary 7 Let G be extremal. Then G does not have a loop bounding a disc.

Proof

If G had a loop bounding a disc, then G would have an edge on which a component of

D(G) crosses itself. �

Theorem 28 Let G be extremal and ψ be a spanning pseudo-tree of G. Then ψ is ex-

tremal.

Proof

Since G is extremal

µ(D(G)) = f (G)+2g . . .(1)

If one edge e on G is deleted, where e is not an internal edge, then

f (G\ e) = f (G)−1 . . .(2),

and by Theorem 7

µ(D(G\ e))≥ µ(D(G))−1.

By (1) and (2)

µ(D(G\ e)) ≥ f (G)+2g−1,

≥ f (G\ e)+1+2g−1,

≥ f (G\ e)+2g.

By Theorem 24

µ(D(G\ e))> f (G\ e)+2g
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is impossible, and so

µ(D(G\ e)) = f (G\ e)+2g.

Hence by Theorem 27-e deleting any edge e from G which is not an internal edge which

keeps G\ e a cellularly embedded graph gives an extremal graph.

If we continue with this operation we will get a sequence of extremal graphs

ψ = G0,G1, . . . ,Gs = G,

where G0 is a spanning pseudo-tree ψ . �

We suppose µ(v) is the number of components of a link diagram which pass close

(this means the local arcs of the components of a link diagram on the neighbours of v) to

v. The following proof deals with an internal edge, an internal edge is an edge incident

with only one face. The next theorem gives a local consequence of G being extremal.

Before the proof we would like to clarify the meaning of the internal edge through the

following example.

Example

The diagram on figure 4.6

Figure 4.6: e1 is an internal edge, where e2 is not a internal edge.

Theorem 29 Let G be an extremal graph and v ∈ V (G) not a cut-vertex. Then d(v) =

µ(v).
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Proof

Note that in any case d(v)≥ µ(v).

Suppose d(v)> µ(v), where v is one end vertex of the edge e in G. We also suppose

that v is not a cut vertex, and that e is not an internal edge (so that G\ e is still cellularly

embedded ). Let

G0 = ψ, . . . ,Gs = G,

be the sequence of extremal graphs arising from the previous theorem.

Suppose that arcs α and β in figure 4.7 come from the same component of a link

diagram. If one edge is deleted, we will get an extremal graph. When we continue with

Figure 4.7: α and β are arcs coming from the same component of a link diagram and passing
close to vertex v.

this deletion of the edges, we will get the case of edge e where the component of a link

diagram crosses itself. If e is deleted then the number of faces decreases, as in figure 4.8,

but the number of components of a link diagram remains unchanged. By Theorem 27-e

this is a contradiction. Therefore this graph will not be extremal. �

4.3 Torus theorems
Theorem 22 and Theorem 28 allow to us to take into consideration the intersection path

between a longitude cycle and a meridian cycle in an extremal graph which is cellularly
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Figure 4.8: α and β are arcs of the same component of a link diagram passing close to vertex v
and crossing at edge e.

embedded on the torus. A length of path is the number of edges on a path.

Theorem 30 Let G be an extremal graph on the torus. Then each longitude cycle and

meridian cycle intersect in a path P with odd length.

Proof

Let P be the intersection of a longitude cycle and a meridian cycle in G. Suppose P

has an even number of edges, then we have several cases to consider.

Case (1) : Suppose P has zero length, which means that M∩L = {v1}, where v1 ∈V (G).

Then there is a spanning pseudo-tree of G having a path of zero length. If we make

all possible contraction we obtain λ which is one graph in figure 4.9. This λ has a

zero path of M∩L which is not extremal, then by Theorem 28 this is a contradiction.

Figure 4.9: Types of λ which are not extremal.
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Case (2) : Suppose P is a path of length two, then P contains three vertices. Let the

middle vertex be v. Then there are two possibilities:

(a) If v is a vertex of degree 2, then by Theorem 4 P has zero length. By Theorem

28 this is a contradiction, as in Case (1).

(b) If the degree of v is greater than two and there is a bridge incident with v which

is not in P, then by Theorem 27-a we can contract this bridge and get a new

torus extremal graph.

Now if there is an edge incident from v which is not a bridge, then by Theorem

27-e when this edge is deleted the new graph is an extremal graph.

We continue with these contractions and deletions in order to get a case of v

with degree 2, which is a contradiction as we have already seen.

Case (3) Suppose P is a path of length n−1, where n is the number of vertices of P.

For any internal vertex of P of degree greater than 2, we can proceed as in Case (2).

�

We can distinguish the extremal graph on the torus through the longitude cycle and merid-

ian cycle.

Theorem 31 The meridian and longitude cycles in an extremal graph are even.

Proof

Suppose G is an extremal graph with an odd meridian cycle. By Theorems 27-(e)

edges are deleted in order to get a spanning pseudo-tree with this meridian cycle, which

is not extremal. Because by Theorems 3 and 4 the new pseudo-tree has a zero length of

path. Then by Theorems 30 and 28 this is a contradiction. �

Corollary 8 There is no loop in any of the extremal graphs embedded on the torus.
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Proof

Since G is extremal, then by Corollary 7 G does not have a loop bounding a disc.

Since G is extremal, then by Theorem 31 G does not have an odd meridian or longitude

cycle. Since any loop is an odd cycle then G does not have a loop which not bounding a

disc. �
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Chapter 5

Graphs with µ = 1

In this chapter we are going to study the case of embedded graphs with the minimum

number of components of a link diagram, µ(D(G)) = 1. We try to discover as many such

graphs as possible.

5.1 Reidemeister 2 moves
The most obvious graphs with µ = 1 are the trees and the odd cycles. We have proved

that trees have µ = 1. Now we need to prove that odd cycles µ = 1.

Theorem 32 Every odd cycle has µ = 1.

Proof

Suppose O is an odd cycle.

If O is a loop then the theorem holds.

If O has more than two edges, then contract each pair of adjacent edges. By Theorem

4 this process does not change the number of components of a link diagram of the original

graph. We obtain a loop. Hence the theorem holds. �

The dual graph of the odd cycle is a graph consisting of an odd number of parallel

edges, it is In with n odd number. This fact helps us to find another case of a graph with

one component of a link diagram.

Theorem 33 For any odd positive integer n, µ(D(In)) = 1.

59
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Proof

Since the dual graph of In is an odd cycle and µ(D(In)) = µ(D(I∗n )), then by Theorem

32 µ(D(In)) = 1. �

By deleting a pair of parallel edges or contracting a pair of edges incident with a vertex

of degree two in a graph, we do not change µ . Hence the following theorem

Theorem 34 Let G be an embedded graph with µ = 1. If a1 and a2 are parallel edges a

and b bounding a disc, then

µ(D(G\a1 \a2)) = 1.

If b1 and b2 are edges incident with a common vertex of degree 2, then

µ(D(G/b1/b2})) = 1.

Proof

This follows from Theorem 4 and Theorem 5. �

The next theorems are consider the 2-sum. We can not use any graph containing one

component in the link diagram in this theorem because this case is not guaranteed with

any graph has µ = 1 just with cycles.

Theorem 35 Let G be a cycle and H be In where n is odd and each pair of parallel edges

of In bounds a disc. Then

µ(D(G⊕2 H)) = 1.

Proof

Graph G⊕2 H has even number of parallel edges arising from In. If Theorem 5 applies

many times and all these pairs of parallel edges are deleted, then we get a tree. Hence, the

theorem holds. �

In the next theorem we can use any graph with µ = 1, but the n in In has to be even.
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Theorem 36 Let G be a graph with µ(D(G)) = 1 and H be In, where n is an even number

and each pair of parallel edges in In bounds a disc. Then µ(D(G⊕2 H)) = 1.

Proof

When each pair of parallel edges of G⊕2 H in the distinguished edge (this means just

in graph G⊕2 H, but not in graph G) is deleted, this work gives a graph G. Then by

Theorem 5

µ(D(G⊕2 H)) = µ(D(G)) = 1

�

The following theorem is true because (G⊕2 In)∗ = G∗ ⊕2 Cn. Where Cn is a cycle

and In is a dual graph of Cn.

Theorem 37 Let G be a graph with µ(D(G))= 1 and H be an even cycle. Then µ(D(G⊕2

H)) = 1.

Proof

Suppose e ∈ G and e = (v1,v2), graph G⊕2 H on edge e. Then e on graph G⊕2 H

becomes an odd path. If each pair of edges in this path is contracted, then we get graph

G. Hence the theorem holds. �

5.2 Connected sum

The connected sum of knots is the composition of knots. This composition is the link

diagram of a graph consists of blocks. In this section we restrict Theorem 2 to the case of

graph consists of blocks, where each block has µ = 1.

Theorem 38 Let G be a connected embedded graph. Then µ(D(G)) = 1 if and only if

µ(D(Bi)) = 1 for i = 1, . . . ,k, where {Bi}k
i=1 is the set of all the blocks comprising G.

Proof
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Firstly, let µ(D(G)) = 1. Then by Theorem 2

1 =
k

∑
i=1

µ(D(Bi))− k+1,

which means that ∑k
i=1 µ(D(Bi)) = k. Now µ(D(Bi))≥ 1, and hence µ(D(Bi)) = 1.

Secondly, if µ(D(Bi)) = 1 for each i = 1, . . . ,k, then by Theorem 2

µ(D(G)) = k− k+1 = 1

�

We can use Theorem 38 to study the case of a graph whose blocks are trees or odd

cycles.

Theorem 39 Let G be a graph whose blocks are trees or odd cycles. Then µ(D(G)) = 1.

Proof

Let G be a graph whose blocks are trees or odd cycles. By Corollary 1 each tree T has

µ(D(T )) = 1, and by Theorem 32 each odd cycle O has µ(D(O)) = 1. Then by Theorem

38

µ(D(G)) = 1.

�

Theorem 40 Let G and H be graphs with µ(D(G)) = µ(D(H)) = 1, and let H have

a vertex v of degree one. If v is identified with any vertex in G, the new graph F has

µ(D(F)) = 1.

Proof

F has three blocks: B1 = G, B2 = H \v, and B3 = K2. Each of these blocks has µ = 1.

�
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5.3 Reidemeister 3 moves
Since the embedded ∆−Y exchanges for any graph do not alter the value of µ , we have

the following theorem.

Theorem 41 Let G and H be related by embedded ∆−Y exchanges and µ(D(G)) = 1.

Then µ(D(H)) = 1.

5.4 Other moves
In the following theorem we have a case of µ(D(G+ e)) = 1 where µ(D(G)) = 1 and e

is a new edge added to G to get the new graph.

Theorem 42 Let G be a graph with µ(D(G)) = 1, v1,v2 ∈V (G) are two different vertices

and the component of a link diagram of G is organised as in figure 5.1. Then a new edge

joins v1 and v2 does not change the number of components of a link diagram.

Proof

This theorem is case 2a in Theorem 7. �

Figure 5.1: µ(D(G+ e)) = 1, if the endpoints of the arcs α1 and α2 come in the order 1,2,3,4 in
the component of a link digram of G, where µ(D(G)) = 1.
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Chapter 6

Petersen family and Heawood family

In this chapter we work with two interesting families of graphs. These families have a

constant value of the number of components of the link diagrams, neither the maximum

nor the minimum. The first family is Petersen family P and the second is Heawood family

H. All the graphs in these two families are embedded in the torus.

Figure 6.1: The Petersen family

Each graph in P can be obtained from K6 by a finite sequence of abstract Y → ∆ or

65
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Figure 6.2: The Petersen family scheme.

∆ → Y exchanges, figure 6.1.

This set P contains exactly seven graphs. Note that:

1. There are five elements of this family obtainable from K6 by ∆ →Y exchanges only.

2. One of these five graphs, which contains ten vertices, is called the Petersen graph.

3. K3,3,1 is an element of this family. It is derived from K6 by two ∆ → Y exchanges

and one Y → ∆ exchange.

The set of all graphs that can be obtained from K7 by finite sequences of abstract Y → ∆

or ∆ → Y exchanges is the Heawood family H, figure 6.3.

This set contains exactly twenty graphs. Note that:

1. There are fourteen elements of this family reached from K7 by ∆ → Y exchanges.

2. One of these fourteen graphs, which contains fourteen vertices, is called the Hea-

wood graph.

3. Another six graphs of this family are obtained from K7 by ∆ → Y exchanges and

Y → ∆ exchanges.

We have used the graph names for P and H given in (8).
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Figure 6.3: The Heawood family as it appeared in (8). Each arrow refers to ∆−Y exchange.
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Figure 6.4: The Heawood family scheme.

6.1 Intrinsically linked and intrinsically knotted graphs

6.1.1 The Petersen family

There are many studies which deal with the Petersen family. Almost all of these studies

are focused on the important property that each member is intrinsically linked (IL) which
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is defined in Chapter 1. A graph G is called intrinsically linked (IL) if in any embedding

of G in R3 there is a pair of disjoint cycles C1 and C2 with lk(C1,C2) �= 0.

We state below the key results.

Theorem 43 K6 is IL.

Proof

See (5) �

By using the same method as in the proof of Theorem 43, the following theorem can

be proved. The graph K3,3,1 is defined as follows. Its vertex set is the disjoint union of

three subsets V1, V2 and V3. V1 contains one vertex, while V2 and V3 each contain three

vertices. The two endpoints of every edge in G lie in different subsets, and every pair of

vertices taken from different subsets have an edge joining them.

Theorem 44 K3,3,1 is IL.

Figure 6.5: K3,3,1.

Proof

Let λ = ∑ lk(C1,C2) so that λ ∈ Z2.
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There are infinitely many ways of embedding K3,3,1 in R3. These are all obtained

from each other by crossing changes on a plane diagram of the embedding. We need to

discover what happens to λ when a crossing change is made.

There are 9 different pairs of disjoint cycles in K3,3,1.

Firstly, let the crossing be of an edge with itself as in figure 6.6. This means that for

any pair of disjoint cycles (C1,C2), lk(C1,C2) remains unchanged when we change this

crossing, and this leads to λ being unchanged.

Figure 6.6: The edge crossing itself.

Secondly, if the crossing is of adjacent edges, as in figure 6.7, this means again that

for any pair of disjoint cycles {C1,C2}, lk(C1,C2) remains unchanged when we change

this crossing, and this leads to λ being unchanged.

Thirdly, consider a crossing of nonadjacent edges. There are two cases: in the first

case, these two edges are in the same cycle, as in figure 6.8. This means yet again that

for any pair of disjoint cycles {C1,C2}, lk(C1,C2) is unchanged, which leads to λ being

unchanged.

In the second case, let the edges of this crossing be in two disjoint cycles, as in figure

6.9. Now we show that for the specific embedding of K3,3,1 shown in figure 6.5, λ = 1.

We see a crossing of the edges and two pairs of distinct cycles containing this crossing.

The linking number of just one of these two pairs is equal to one and all other linking

numbers of disjoint cycles in this graph are equal to zero. Hence λ = 1.
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Figure 6.7: The adjacent edges are crossing.

Figure 6.8: The crossing of non adjacent edges in one cycle.

Let the pair with linking number be (C1,C2), the first edge be A1 ∈ C1, and the sec-

ond edge be A2 ∈ C2. We can always find another pair of distinct cycles (C3,C4) such
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Figure 6.9: The crossing of non adjacent edges in two cycles.

that A1 ∈C3 and A2 ∈C4. It can be noted that if lk(C1,C2) = 1 then lk(C3,C4)=0. When

changing this crossing, we get lk(C1,C2)=0, and lk(C3,C4) = 1; therefore λ is unchanged.

�

Theorem (45) below is proved in (19). Here, we give a slightly modified version. We

need before introduce the following definition. If K1 and K2 are two knots,

H : R3 × [0,1]−→ R3,

is a continuos function where H(x,0) = K1 and H(x,1) = K2, x ∈ R3, then K1 and K2 are

ambient isotopy.

Theorem 45 If G is IL, and G
�
is a graph obtained from G by abstract ∆ → Y exchanges

then G
�
is IL.

Proof

Suppose that H
�

is a linkless embedded graph of G
�
. We use this embedding to con-

struct an embedded graph of G, denoted H, which is linkless. This would be a contradic-

tion.
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Let (u,x), (v,x) and (w,x) be the edges in H
�
as in figure 6.10 (A). By changing these

edges to double edges as in figure 6.10 (B), then deleting x and joining these edges as in

figure 6.10 (C), we then obtain the triangle uvw and construct H. This operation does not

change the linking structure of H
�
by ambient isotopy.

Figure 6.10: (A) is a Y in H � , (B) replaces each edge in (A) by a double edge, and (C) removes the
vertex x in (B) to get a triangle.

Since H
�

is a linkless embedding of G
�

then the triangle uvw can not be linked with

any other cycle in H. Let C1 and C2 be two linked cycles in H, and suppose C1 uses the

edges of this triangle, but not as a cycle. Assume C1 enters into the triangle at v and leaves

it at w. This can be done in two ways: C1 can use the edge (v,w) or the other two edges

(v,u) and (u,w). There is the same cycle in H
�
as C1 and this cycle is denoted C

�
1 but uses

the edges (v,x) and (x,w).

This gives us the relationship between C
�
1 and C2 in H

�
which is the same as one ex-

isting between C1 and C2 in H. This is a contradiction. �

From Theorems 43, 44 and 45 we obtain the following.

Theorem 46 All the graphs in P are IL.

Proof
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The Petersen family has seven different graphs. The first is K6, which is IL by Theo-

rem 43. Another member of the Petersen family is K3,3,1, and this graph is IL by Theorem

44. The remaining five graphs in the Petersen family were obtained from K6 by ∆ → Y

exchange, and this means that these graphs are IL by Theorem 45. �

6.1.2 The Heawood family

Almost all of the research into H studies the intrinsically knotted (IK) features of some

members in this family. (IK) is defined in Chapter 1.

Theorem 47 K7 is IK.

Proof

See (5). �

Theorem 48 If G is IK and G
�
is a graph obtained from G by ∆ → Y exchanges, then G

�

is IK.

Proof See (19). �

But if G
�

is obtained from G by Y → ∆ exchanges, then G
�

is not always IK. Graph

N11 is one example of this case.

6.2 The number of components of a link diagram in the
Petersen and Heawood families

Embedded Y ↔ ∆ exchanges do not alter the value of µ , as we saw in Theorem 6. But

if we restrict to embedded Y ↔ ∆ exchanges then we may not get the same families

of graphs, of course. So in this section we explore this question by studying particular

embeddings of K6 and K7.

6.2.1 Embedded Petersen families

We know that all of the (abstract) graphs P can be cellularly embedded in the torus. These

embeddings are not unique, however. Therefore, we have different values of µ depending
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on the embedding. We start with K6, and we restrict to the embedded of Y↔∆ exchanges.

Choosing particular embeddings of K6 give us subfamilies of P whose members all have

the same value of µ .

The summary of preliminary results can be found in the table below, where we use the

graph names given in (8). We prove these results in the theorems following.

the choice of µ the family obtained using

embedding embedded Y↔ ∆ exchanges

(a) 3 P

(b) 3 P\{Q8}

(c) 3 P\{P10,Q8}

(d) 5 P\{P10,Q8}

(e) 5 P\{P10}

(f) 7 P\{P10}

In the following theorem we obtain three subfamilies of P from the embedded ∆ ↔ Y

exchanges, where µ = 3.

Theorem 49 Consider the embedding of K6 given in figure 6.11. The embedded ∆ ↔ Y

exchanges on this embedding give rise to the following three subfamilies of P:

1. P.

2. P\{Q8}.

3. P\{P10,Q8}.
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Figure 6.11: One embedding of K6 in the torus.

Proof

Figure 6.11 of the embedding of K6 contains eight triangles, each bounding a disc.

There is a disjoint pair of these triangles, {v1,v5,v6} and {v2,v3,v4}. Suppose triangle

{v1,v5,v6} is chosen to be changed to Yx1 ( where x1 is the new vertex added to the graph)

to get the embedding of Q7 shown in figure 6.12.

This embedding of Q7 has four triangles. One of these is {v2,v3,v4}, and when it is

changed to a Y the embedding of Q8 is obtained as shown in figure 6.12.

Now we have three members of P. If we choose any one of the three remaining

triangles in Q7 to change to a Yx3 , we get an embedding of P8. Suppose the triangle

chosen is {v4,v2,v5}, as in figure 6.12.

The embedding of P8 has three vertices of degree three, one of these vertices being v5.

Let Yv5 be changed to the triangle {v3,x1,x3}, which yields the embedding of K3,3,1 as in

figure 6.12, to increase the number of members P to five.

Now, if triangle {v3,v2,v6} is changed to Yx4 , then the embedding of P9 is obtained, as

in figure 6.12.

The embedding of P9 has one triangle and when this is changed to Yx5 the embedding

of the Petersen graph is acquired, as in figure 6.12.

So our subfamily is in fact P.

Return to the embedding of K6 and choose any other triangle which is not one of the
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Figure 6.12: The embedding of a Petersen subfamily in the torus.

pair of the disjoint triangles {v1,v5,v6} and {v2,v3,v4}. Let this triangle be {v2,v5,v4}.

Then we get the embedding of Q7 when this triangle is changed to Y , as in figure 6.13.

To get the embedding of Q8 we would need triangle {v1,v3,v6}, but this does not

bound a disc. So far we have two members of P. The embedding of Q7 has five triangles

bounding a disc. If we choose any one of the following triangles {v1,v5,v6},{v2,v3,v6},
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Figure 6.13: The embedding of a Petersen subfamily in the torus.

or {v1,v3,v4} we obtain members of the subfamily P\{Q8} as in figure 6.13.

Now, let us return to the final embedding of Q7 in figure 6.13 and choose either triangle

{v1,v4,v6} or {v5,v3,v6}. We get an embedding of P8. Then from this we can obtain the
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embeddings of P7 and P9, but P10 needs triangle {v1,v2,v3}, which is impossible , as

shown in figure 6.14.

Figure 6.14: The embeddings of three members of Petersen subfamily in the torus.

Hence we have the third subfamily in the statement of the theorem. �

The following theorem is for another embedding of K6 having µ = 3, different from the

Figure 6.15: An embedding of K6 in the torus.

embedding of the previous theorem. It gives rise to two subfamilies of P.

Theorem 50 Consider the embedding of K6 given in figure 6.15. The embedded ∆ ↔ Y

exchanges on this embedding give rise to the following P:
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1. P\{Q8,P10}.

2. P\{Q8}.

Proof

Figure 6.16: The embeddings of a Petersen subfamily in the torus.

The embedding of K6 in figure 6.15 has seven triangles each bounding a disc. These

seven triangles do not include a pair of disjoint triangles. Therefore, an embedding of Q8

cannot be reached by embedded ∆ ↔ Y exchanges.
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Figure 6.17: An embedding of Q7 in the torus.

Figure 6.18: The embedding of some members of a Petersen subfamily in the torus.

We now choose one of these seven triangles. Suppose triangle {v1,v6,v5} is chosen,

where each edge in this triangle is an edge of another triangle. In this case we obtain the

embedding of Q7 with three triangles, as in figure 6.16. Two of these three triangles share

an edge, they are {v2,v3,v6} and {v2,v4,v6}. If one of these two triangles is changed to

Y we get the embedding of P8 which will contain just one triangle bounding a disc, as



82 Chapter 6. Petersen family and Heawood family

in figure 6.16. This triangle is {v1,v3,v4}, and when it is changed to Y we get P9, as in

figure 6.16. P10 is impossible because it needs triangle {v2,v3,v5} which does not bound

a disc. We can get the embedding of P7 from the embedding of P8, and hence obtain the

subfamily P\{Q8,P10}.

Figure 6.19: The embedding of some members of a Petersen subfamily in the torus.

The same result can be obtained by choosing triangle {v1,v6,v4} or {v1,v3,v4} in the

embedding of K6. However, if we choose triangle {v1,v2,v5} from the embedding of K6,

where this triangle has a common edge with triangle {v1,v6,v5}, we get the embedding
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of Q7 having five triangles, as in figure 6.17.

Figure 6.20: The embedding of some members of a Petersen subfamily in the torus.

This embedding of Q7 can give two subfamilies. The first is P \ {Q8,P10}, when we

choose either {v1,v4,v6} or {v2,v3,v6}, as in figure 6.18.
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The second subfamily is P \ {Q8}, when we choose one of the following triangles

{v1,v3,v4}, {v3,v5,v6}, or {v2,v4,v6}, as in figure 6.19.

Figure 6.21: The embedding of some members of a Petersen subfamily in the torus.

Each of the remaining three triangles of the embedding of K6 has two common edges

with two different triangles. If any one of these three triangles is changed to a Y , as in fig-

ure 6.20, then the embedding of Q7 has four triangle, one of which has a property where

it shares two edges with other triangles. If it is changed we obtain the embedding of P8

having one triangle which means that the embedding of P9 is possible. It is easy to get the

embedding of P7 from the embedding of the last P8, and hence the family P\{Q8,P10} is

achieved. But when we choose another triangle of the embedding of Q7 in figure 6.20 we

obtain the subfamily P\{Q8}, as in figure 6.21. �

The following theorem is for another embedding of K6, which has µ = 5. It gives a
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different collection of Petersen subfamilies.

Theorem 51 Consider the embedding of K6 given in figure 6.22. The embedded ∆ ↔ Y

exchanges on this embedding give rise to the two following subfamilies of P:

1. P\{P10}.

2. P\{Q8,P10}.

Figure 6.22: An embedding of K6 in the torus.

Proof

The embedding of K6 in figure 6.22 has a pair of disjoint triangles bounding a disc,

which are {v1,v3,v6},{v2,v4,v5}. If a change is made to one of these triangles, we obtain

Q8. Suppose triangle {v1,v3,v6} in K6 is changed to Y , then the embedding of Q7 is

obtained as in figure 6.23. This embedding has three triangles bounding a disc.

One of these triangles is {v2,v4,v5}, having two common edges with the other trian-

gles. Changing this triangle gives Q8 as in figure6.23. Let us return to Q7, choosing any

other triangle and changing it to Y . The embedding of P8 is acquired and it contains one

triangle. If this triangle is changed to Y , we get the embedding of P9, but in this case the

embedding of P10 is impossible as in figure 6.23.
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Figure 6.23: Embeddings of some members of Petersen subfamily in the torus.
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To get P10 we need triangle {v4,v5,v6} in P9, which does not bound a disc. The

embedding of P7 is clear. Hence we obtain the subfamily P\{P10}. The same subfamily

can be obtained by making changes to triangle {v2,v4,v5}.

Figure 6.24: An embedding of Q7 in the torus.

Figure 6.25: Embeddings of some members of Petersen subfamily in the torus.
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To achieve the subfamily P\{Q8,P10} we need to start by choosing another triangle,

which is not one of the pair of disjoint triangles. Let triangle {v1,v3,v4} be chosen. When

it is changed to Y , the embedding of Q7 is obtained as in figure 6.24. This embedding has

three triangles. Changing any of these gives P8, which has one triangle, as in figure 6.25.

This means P9 and P7 are achievable, but P10 is not. �

In the next theorem we have an embedding of K6 having µ(D(G)) = 7 and six trian-

gles. Each triangle belongs to a pair of disjoint triangles, which means this embedding

has three pairs of disjoint triangles.

Theorem 52 Consider the embedding of K6 given in figure 6.26. The embedded ∆ ↔ Y

exchanges on this embedding give rise to the subfamily P\{P10}.

Proof

This embedding of K6 has six triangles, each bounding a disc. The properties of these

triangles are as follows: They are three pairs of disjoint triangles and each triangle has

two common edges with two other triangles. Therefore, changes made to any triangle will

give the same family. Suppose we are starting with triangle {v1,v2,v4}, where the other

triangle in this pair is {v3,v5,v6}. An embedding of Q7 is obtained and it contains three

triangles. One of these three triangles is {v3,v5,v6}, and when this is changed to Y , we

will obtain an embedding of Q8. If we choose any other of the two remaining triangles in

Q7, we get the same result. Where the embedding of P8 has one triangle the embeddings

of P9 and P7 are possible. To obtain the embedding of P10 in this subfamily we need tri-

angle {v4,v5,v6} in the embedding of P9, but this triangle does not bound a disc which

make the embedding of P10 is impossible, as in figure 6.26. �

6.2.2 Embedded Heawood families

As we mentioned at the beginning of this chapter this family consists of twenty members

obtained from K7 by abstract ∆ ↔ Y exchanges, and all are cellularly embedded in the
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Figure 6.26: Embeddings of some members of Petersen subfamily in the torus.
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torus. These embeddings are also not unique, but in cases where we have discussed

always get µ = 3. It is harder to find the embedding of K7, therefore it is not easy to find

construct the embedded Heawood families graphs like the embedded Petersen families

graphs.

In this section we study two different embeddings of K7, each giving rise to a different

subfamily of the Heawood family.

In fact, other subfamilies could also be obtained, even for just these two embeddings of

K7, by making different choices of triangles. But the Heawood family is more complicated

than the Petersen family, so we limit ourselves to these result as illustrations of what can

happen.

Theorem 53 Consider the embedding of K7 given in figure 6.27. A choice of embedded

∆ ↔ Y exchanges gives rise to the subfamily

H1 = {K7,H8,H9,F9,H10,E10,H11}.

Proof

In this embedding of K7 all faces bounding a disc are triangles.

Let us start with triangle {v1,v3,v7} and change it to Yx1 to get the embedding of H8

shown in the figure 6.27.

If triangle {v2,v4,v5} is then changed in the embedding of H8 to Yx2 , then an embed-

ding of H9 is obtained, in which this triangle is separated from {v1,v3,v7} in K7. To get

an embedding of H10 we need to change triangle {v1,v2,v6} to Yx3 , as in figure 6.27. If,

instead, we change triangle {v3,v4,v6} in H10 to Yx4 we get an embedding of H11. If the

triangle {v7,v5,v6} were changed by an abstract ∆ ↔ Y exchanged to Y in the embed-

ding of H11, an embedding of H12 would be acquired, but this case is impossible because

triangle {v7,v5,v6} does not bound a disc, as can be seen in figure 6.27.

So far, we have five members of this subfamily. Let us return to the embedding of

H8 and choose triangle {v1,v2,v6}, which bounds a disc and has a common vertex with

triangle {v1,v3,v7} in K7. Change this triangle to Yx5 to get an embedding of F9. From
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Figure 6.27: An embedding of Heawood subfamily in the torus.



92 Chapter 6. Petersen family and Heawood family

this embedding we can get an embedding of E10 by changing triangle {v4,v3,v6} to Yx6 ,

as in figure 6.27. Other members are not possible because they need triangles which do

not bound discs. Hence is the desired result. �

The following theorem constructs another subfamily of H containing all members ex-

cept N11. We mentioned at the beginning of this section, all members of this subfamily

also have a constant µ = 3.

Theorem 54 Consider the embedding of K7 is given in figure 6.28. A choice of embedded

∆ ↔ Y exchanges gives rise to the subfamily

H2 =H \{N11}.

Proof

We omit the details of the proof of this theorem. They are similar to those in the pre-

vious theorem, and can be reconstructed from figure 6.28. �
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Figure 6.28: An embedding of Heawood subfamily in the torus having the embedding of all mem-
bers of the Heawood family except the embedding of N11.
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Chapter 7

Conclusion and further work

This thesis studied one relationship between knot theory and graph theory, constructed

by embedding a graph G in an orientable surface and determining the corresponding link

diagram D(G) via the medial graph of G.

This link diagram has µ(D(G)) components, and we proved that for any connected

embedded graph G on an orientable surface of genus g

µ(D(G))≤ f (G)+2g.

A cellularly embedded graph G is called extremal if it has the maximum value of µ:

µ(D(G)) = f (G)+2g.

We derived some properties of extremal plane graphs. Some of these properties

seemed also to be correct for embedded graphs on the torus, in that we found no counter-

examples, but we could not prove them. Therefore we have put them here as conjectures.

Conjecture 1 Let Bi be the blocks of a graph G cellularly embedded on a surface of

genus g. Then for each i, Bi is a graph which can be cellularly embedded on a surface of

genus gi, where ∑i gi = g.

If the graph is embedded on the torus, then the conjecture simply says that one of its

blocks is cellularly embedded, and its other blocks are plane graphs.
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If this conjecture were true then we would be able to prove (d) in Theorem 27

d G is extremal if and only if each block of G is extremal.

The following conjecture was proved in the plane. We thought is true for the extremal

graph embedded in the torus, but we so far have not been able to prove it.

Conjecture 2 Let G be an extremal graph on the torus. Then each face of G is even.

The converse of this conjecture is not true, as can be seen from the following example.

Example

Figure 7.1: An example of a graph having even face but not extremal.

If conjecture 2 is true, then by (9) the dual graph of any extremal graph embedded in

the torus is eulerian, because the dual graph of each extremal graph embedded in the torus

is a graph having an even degree in each vertex.

Conjecture 3 Let G be an extremal graph on the torus. Then G∗ is eulerian.

The converse of this conjecture is also not true.

Example Figure 7.2 show this example.

Figure 7.2: An example of a graph which is eulerian but not extremal.

In (9) it was proved that “ a graph is bipartite if and only if al its cycles are even.�� By

using this result the following conjecture will be true if Conjecture 2 is true.
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Conjecture 4 Let G be an extremal graph on the torus, then G is bipartite.

We also investigated embedded graphs having µ = 1.

Finally, we were interested into two families of graphs, the Petersen and Heawood

families. All graphs in these two families are embedded on the torus. We identified

subfamilies on which µ took a constant value, neither the maximum nor the minimum.

We obtained several subfamilies of the Petersen family depending on the embedding of

K6, and also for Heawood family depending on the embedding of K7. In the Peterson

family we discovered that the value of µ depended on the embedding of K6.

In further work we aim to study extremal graphs on non-orientable surfaces such as

the projective plane and the Klein bottle. We could also investigate graphs with other

values of µ(D(G)) on these surfaces.

We plan to continue to study the Petersen and Heawood families where our conjectures

and questions are the following:

1. There are cases of embeddings of K6 which have the same value of µ(D(K6)). We

will try to find common properties among these embeddings.

2. We could try to find all possible values of µ taken by different embeddings of K6.

3. We will try to find an embedding of K7 with µ(D(K7)) �= 3.

4. Is there an embedding of K7 having a face bounding a disc which is not a triangle?

Furthermore, it may be possible to develop this study through the use of polynomial

invariants of knots or graphs.
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