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ABSTRACT 

MULTIVARIATE CALIBRATION FOR ICP-AES 

MICHAEL L E E GRIFFITHS BSc. (Hons) 

The analysis of metals is now a major application area for ICP-AES, however, the technique suffers from 

both spectral and non-spectral interferences. This thesis details the application of univariate and multivariate 

calibration methods for the prediction of Pt, Pd, and Rh in acid-digested and of Au, Ag and Pd in fusion-

digested autocatalyst samples. 

Of all the univariate calibration methods investigated matrix matching proved the most accurate 

method with relative root mean square errors (RRMSEs) for Pt, Pd and Rh of 2.4, 3.7, and 2.4 % for a series 

of synihelic lest solutions, and 12.0, 2.4, and 8.0 % for autocatalyst samples. In comparison, the multivariate 

calibration method (PLSl ) yielded average relative errors for Pt, Pd, and RJi of 5.8, 3.0, and 3.5 % in the test 

solutions, and 32.0, 7.5, and 75.0 % in the autocatalyst samples. 

A variable selection procedure has been developed enabling multivariate models to be built using 

large parts of the atomic emission spectrum. The first stage identified and removed wavelengths whose PLS 

regression coefficients were equal to zero. The second stage ranked the remaining wavelengths according to 

their PLS regression coefficient and estimated standard error ratio. The algorithms were applied to the 

emission spectra for the determination of Pt, Pd and Rh in a synthetic matrix. For independent test samples 

variable selection gave RRMSEs of 5.3, 2.5 and 1.7 % for Pt, Pd and Rh respectively compared with 8.3, 7.0 

and 3.1 % when using integrated atomic emission lines. Variable selection was then applied for the prediction 

of Au, Ag and Pd in independent test fusion digests. This resulted in RRMSEs of 74.2, 8.8 and 12.2 % for 

Au, Ag and Pd respectively which were comparable to those obtained using a more traditional univariate 

calibration approach. 

A preliminary study has shown that calibration drift can be corrected using Piecewise Direct 

Standardisation (PDS). The application of PDS to synthetic test samples analysed 10 days apart resulted in 

RRMSEs of 4.14, 3.03 and 1.88%, compared to 73.04, 44.39 and 28.06 % without correction, for Pt, Pd, and 

Rh respectively. 
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calculated as an overall average. 

Lowest quantifiable concentration 

Form of preprocessing, making the mean 
equal to zero, thereby making differences in 
the sample spectra more discernible 

Regression using multiple variables 

Not available 

Below limit of detection 

Algorithm which attempts to solve the 
eigenvalue problem 

A vector space in which the vectors are at 
right angles to one another 

1 part in 1 X 10^ parts (ng ml"') 

1 part in 1 X 10^ parts {\ig m f ' ) 

Multivariate techniques used to compress data 
and also perform multiple regression 

Multivariate technique used to standardise 
instrumental output using a partial spectrum 

XX 



Principal component (PC) 

Principal components analysis (PCA) 

Principal components regression (PCR) 

R 
Relative standard error (RSE %) 

Relative root mean square 
error (RRMSE %) 

A projection of points in multidimensional 
space onto a line in two dimensional space 

Multivariate technique used to compress 
complex data into a set of PCs 

See PLS (note, there exist major differences 
in these two regression techniques) 

Error relative to the mean as a percentage 

Used in multivariate regression as an 
assessment of overall error using all predicted 
values and expressed as a percentage of the 
true mean value 

Relative root mean square of 
cross validation (RRMSECV %) 

Used in multivariate regression as an 
assessment of overall error by using a LOO 
strategy and expressed as a percentage of the 
true mean value 

Root mean square of cross 
validation (RMSECV %) 

Relative root mean square error 
of calibration (RRMSEC %) 

Relative root mean square error 
of prediction (RRMSEP %) 

Used in multivariate regression as an 
assessment of overall error by using all 
samples and expressed as a percentage 

As in RRMSE but for the calibration 

As in RRMSE but for the prediction 

Segmented fiill spectrum (SFS) 

Standard error (Se) 

Stepwise multiple linear regression 
(SMLR) 

Spectral output from the Perkin-Elmer 
Optima 3000 is in the form of disjointed 
regions of the spectrum, i.e. 194-195 nm, 196-
197 nm, e.t.c The ful l spectrum is covered in 
terms of limits (190-782 nm) but portions are 
missing, i.e. it is segmented 

The standard deviation of a statistical 
parameter, e.g. a 

As in MLR, but with variables, but using only 
those variables that match some specific 
criterion 

U 
Uninformative variable elimination 
by partial least squares (UVE-PLS) 

Multivariate technique used to remove 
uninformative variables 
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Type I error variables {Varrypei) 

UVE-PLS datasets (Varsei) 

Informative variable degradation 

X 
X-Ray fluorescence (XRF) 

A variable which is the result of a type I error 

The dataset selected by UVE-PLS 

The ratio of a variables regression coefficient 
to the standard error of the regression 
coefficient 

A branch of spectroscopy 
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C H A P T E R 1 - I N T R O D U C T I O N 

1.1 The Determination of Metal Concentrations m Industrial Samples by 

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) . 

1.1.1 Inductively Coupled Plasma Atomic Emission Spectroscopy ( ICF-AES) 

Of the various plasma sources used for elemental analysis during the past 25 years, 

the inductively coupled plasma (ICP) has had the most significant impact on the field of 

atomic spectroscopy (1). Other plasma sources, such as the direct-current plasma (DCP) 

and the microwave induced plasma (MIP) have been found useful for spectrochemical 

analysis, however, the ICP continues to be the primary source for assay and trace level 

metals analysis. In 1980, Stanley Greenfield, one of the prominent pioneers of ICP atomic 

emission spectrometry (ICP-AES) presented a plenary lecture at the Fifth International 

Conference of the Society for Analytical Chemistry, in Lancaster, England. In his talk, 

"Plasma Spectroscopy Comes of Age"(l), Greenfield reflected on the growth of ICP-AES 

and stated that the technique had achieved respectability and had indeed "come of age". 

In practice, all but a few elements (e.g. noble gases, some halogens e.t.c.) can be 

determined by commercially available equipment. The analysis of metals is now a major 

application area for ICP-AES (2), and the technique offers several important advantages 

for the analysis of these materials. Speed of analysis, relatively free of chemical 

interferences, high sensitivity, the range of determinable elements and the ability to 

measure simultaneously trace, minor and major constituents by virtue o f the plasma's high 

excitation temperature compared with the flame, are significant factors in its popularity. 

There are various situations where ICP-AES is especially well suited. 



i) Segregated samples which require a dissolution procedure to render them 

homogenous. 

i i) The relatively low cost of the equipment compared with, for example, ICP-MS 

systems. 

iii) Elements which posses very few isotopes (e.g. Rh) and which cannot be analysed 

using ICP-MS due to matrix complexity. 

The analysis of metals in industrial products is a necessary step for manufacturers 

to verify and control the quality of products and services. The rsmge of metals, and 

consequently the range of matrices, is vast. These include such materials as aluminium and 

aluminium alloys, tableted powder products for aluminium and copper processing, copper 

based alloys, ferro-alloys, boron-containing alloys, hardmetals, chromium metal, magnet 

alloys, refractory products, precious metals, steels and ferrous metals. 

There are many examples of the need for determining trace level (<5 | ig mr'(3)) 

concentrations of elements within industrial samples. An example is the recovery of 

Platinum Group Metals (PGM's), such as Pt, Pd, Rh, Au, Ag, Ir, and Ru from materials 

like spent catalytic converters (used in vehicles with internal combustion engines to 

convert toxic gases into less harmful gases), electronic and jewellery scrap. Johnson 

Matthey Pic (Industrial partners to this project), a UK-based precious metals group, 

processed approximately £400 million worth of precious metal in 1994/95. 

The most commonly used techniques for the determination of trace elements are 

based on atomic spectrometry (GFAAS, ICP-AES, ICP-MS and XRF), which involve the 

absorption or emission of electromagnetic radiation (GFAAS, ICP-AES, XRF) or the 

determination of mass/charge (m/z) ratio (ICP-MS) so that meaningful quantitative and 

qualitative information about a sample can be obtained. 



1.2 Inductively Coupled Plasma - Atomic Emission Spectroscopy ( ICP-AES) 

Inductively Coupled Plasma - Atomic Emission spectroscopy (ICP-AES) is well 

established as a powerful technique for multielemental analysis (4). The high temperature 

of the inductively coupled plasma (ICP) minimises matrix effects and produces adequate 

sensitivity for most metals and some non-metals (e.g. Si and C), in concentrations ranging 

from percent to ppb. 

Reviews of ICP-AES give credit to Babat (5, 6) as the individual who first 

succeeded in sustaining induction heated plasmas at atmospheric pressure. The 

stabilisation of an inductively heated plasma operated at atmospheric pressure in gases 

flowing though an open-ended tube wasn't achieved until 1961/62 by Reed(7-9). Fassel 

(10, 11) and Greenfield (12) recount their independent analytical studies of ICP's, in 1962, 

the first results of which were communicated in 1964 (13) and 1965 (14). Major efforts by 

the groups of Fassel (14-17) and Greenfield (18-21) during the 1960's established the 

viability of the ICP as a spectrochemical source. A paper published in 1969 by Dickinson 

and Fassel (15) heralded a new era in ICP-AES by reconfiguring the torch geometry. These 

authors succeeded in reducing the detection limits to the 0.1-10 ng ml'* range for many 

elements, which meant an improvement by two or more orders of magnitude compared to 

the results achieved previously. This report stands as a major landmark in ICP progress 

(22). 

1.2.1 Atomic Emission 

When ground state atoms absorb energy, this can result in either an increase in 

kinetic energy or excitation to a higher energy state causing an electron to become 

promoted from its ground state to one with a higher energy. This makes the atom less 



stable and it will decay back to the ground state by emitting a photon, the wavelength of 

which is dependent upon the energy difference between the two energy levels and is 

characteristic of the element. If the energy absorbed by the atom is sufficiently high, an 

electron may become dissociated from the atom, leaving a positively charged ion. The 

energy required for this process, known as the ionisation potential, is different for each 

element. Ions also possess ground and excited states through which they can absorb and 

emit energy by the same excitation and decay processes as neutral atoms. 

When a system is in thermodynamic equilibrium the level population, i.e. the 

number of atoms A'̂  in the excited state, is given by the Boltzman distribution law: 

N =N„^exp[-(E^-E,)/kT] Eqn. 1.1 
^ 0 

where A'̂  is the number of atoms in the ground state with relative energy EQ=0, EJ is the 

energy of the excited state, and g^dJt the statistical weights of theyth (excited) and 

ground states, respectively, (where g = 2J +1, 7 is the third quantum number), k is the 

Boltzman constant and T '\s the temperature. 

The difference in energy between the ground and excited state of a radiative 

transition defines the wavelength of the radiation that is involved in that transition. Figure 

1.1 shows the excitation, ionisation and emission processes schematically. The horizontal 

lines of this highly simplified Grotian diagram represent the energy levels of an atom. The 

vertical arrows represent energy transitions. 
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Figure 1.1 Highly simplified Grolian diagram showing energy transitions where a and b 
represent excitation, c is ionisation, d is excitation, e is ion emission, and f, g and h are 

atom emission 

The relationship between the energy difference and wavelength can be derived 

through Planck's equation, Eq 1.2 

AE = h Eq 1.2 

Where E is the energy difference between the two levels, h is Planck's constant, and v is 

the frequency of the radiation. Substituting clX for v, where c is the speed of light and X is 

the wavelength, we arrive at 

he 
Eqn. 1.3 



Each element has its own characteristic set of energy levels and thus its own unique set of 

emission wavelengths. It is this property that makes atomic spectrometry useful for 

element-specific analytical techniques. 

1.2.2 ICP-AES Instrumentation 

1.2.2.1 Sample Introduction 

Most samples are introduced into the plasma as a liquid in the form of an aerosol 

generated using a pneumatic nebuliser. Two commonly used pneumatic nebulisers are the 

concentric and cross-flow nebuliser. However, these nebulisers can only tolerate solutions 

containing less than 0.1-1% dissolved solids (23), as such precautions must be made to 

prevent 'clogging' of the tip. A pneumatic meinhard concentric glass type nebuliser is 

shown in Fig. 1.2. The analyte solution is fed through the central channel of the nebuliser 

and the nebuliser gas flows around it. The rapidly flowing nebuliser gas creates a low-

pressure region at the end of the capillary (the venturi effect), which results in the liquid 

being drawn and * fragmenting' into droplets. The aerosol is then swept through a spray 

chamber, the primary functions of which are to remove the larger aerosol droplets and 

smooth out pulses that occur during nebulisation, and then into the injector which directs 

the sample into the ICP. 
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Figure 1.2 Meinhard concentric glass nebuliser 

In general, spray chambers for the ICP are designed to allow the droplets with diameters 

of around 10 |im or smaller into the plasma. With typical nebulisers, this droplet range 

constitutes about 1-5% of the sample that is introduced to the nebuliser, the remaining 95-

99% going to waste (24). 

1.2.2.2 Plasma Generation 

Figure 1.3 is a schematic drawing of an ICP torch, which consists of an assembly of 

three concentric tubes, most frequently made of silica or quartz. The torch is placed within 

a water-cooled radio frequency (RF) generator coil. When RF power (typically 700-1500 

W) is applied to the load coil, an alternating current oscillates within the coil, at a rate 

corresponding to the frequency of the supplying generator, typically 27 or 40 MHz. An 

argon gas fiow is introduced tangentially into the intermediate and outer tubes and the 

application of a spark causes electron collision and partial ionisation of the argon. The RF 

oscillation of the current in the coil generates oscillating magnetic fields with lines of force 

axially oriented inside the coil. These induced oscillating magnetic fields generate in turn 

high frequency, armular oscillating electric currents in the conductor, which accelerate the 



stripped electrons which then heat the gas conductor as a result of its Ohmic resistance thus 

forming an inductively coupled plasma. 
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Figure 1.3 Schematic of an ICP Torch(l) 

The torch consists of three concentric tubes designated the 'outer tube' (plasma 

gas), 'intermediate tube' (auxiliary gas), and ' inner tube' (nebuliser gas). Thermal 

isolation of the plasma is achieved by using a tangentially introduced argon gas flow, 

which also has the added beneflt of stabilising the position of the plasma. The gas flowing 

through the inner tube, the carrier gas, is used to carry the nebulised sample to the plasma, 

whereas the auxiliary gas maintains the plasma at the appropriate height above the injector, 

preventing it from melting the delicate injector tip. 

A major advantage of the ICP compared to other emission sources is its ability to 

efficiently vaporise, atomise, excite, and ionise a wide range of elements present in many 

different sample types. One of the important reasons for the superiority of the ICP over 

names and furnaces is its high temperature in the region of 6800 K, compared to 3000 K. 



for a flame. The high temperature also eliminates many of the chemical interferences found 

in flames and furnaces, such as analyte depression caused by the formation of less volatile 

compounds which are difficult to dissociate or analyte depression due to occlusion into 

refractory compounds. 

An important advantage of the ICP as an emission source arises from the torch 

design and the so-called skin effect. RF coupling occurs mostly in the outer part of the 

discharge, so sample aerosol can be directed into the centre of the plasma without 

significantly altering the energy-coupling process and hence the temperature. Thus, the 

plasma has a higher temperature in its outer region compared to its irmer region, so the 

radiation emitted from anal>te atoms in the centre does not pass through zones of lower 

temperature and is subjected to considerably less self-absorption effects compared with 

flame and furnace techniques. As a result of this ICP-AES is characterised by a large 

dynamic range, typically five orders of magnitude. Detection limits are generally very low 

for the majority of elements, falling within the range 1 - 100 ng ml"* (23) depending on the 

analyte and the sample matrix. 

When a sample droplet is introduced into the plasma the processes depicted in Fig. 

1.4 take place. First, the aerosol is desolvated usually leaving the sample as microscopic 

salt particles. Next, decomposition of the salt particles into a gas of individual molecules 

(vaporisation) occurs, which are then dissociated into atoms (atomisation). These processes 

occur predominantly in the preheating zone (PHZ). The atoms are dien excited and/or 

ionised in the plasma predominantly in the initial radiation zone (IRZ) and the normal 

analytical zone (NAZ). The NAZ is the region of the plasma from which analyte emission 

is typically measured. 
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Figure 1.4 Processes that take place when a sample droplet is introduced into an ICP 

discharge (24) 

1.2.2.3 Spectrometer 

The physical separation of the emission radiation into its constituent wavelengths is 

carried out by the spectrometer. The monochromaior is an instrument ihal can isolate a 

narrow range bandwidth (e.g. 0.01-0.001 nm)(l) anywhere in the spectrum (for atomic 

emission spectrometry typically 190-750 nm). The commonest configuration for an ICP-

AES is for the monochromator and detector to view the plasma-side on as shown in Fig. 

1.5. There is, therefore, an optimum viewing height in the plasma (dependent on the 

vertical plasma temperature profile) which gives the maximum signal intensity, lowest 

background and least interferences. 

10 
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Fig. 1.5 Typical configuration for ICP-AES instruments; side on viewing of the ICP. 

The dispersion of the different wavelengths by a diffraction grating is by far the 

most common method. Since, up to the early 1990's most ICP-AES analyses were 

performed using diffraction grating-based devices, the following discussion will first focus 

on the more conventional instruments based on their use. However, there is an additional 

wavelength dispersive device, called an echelle grating, that has become an important 

component in ICP echelle-based instruments of the 1990's. Such instruments use 

combinations of 'conventional' and echelle gratings, and will therefore be discussed 

separately. 

Atomic emission from the plasma can be focused onto the entrance slit of a 

monochromaier using a combination of convex or plano-convex lenses or a concave 

mirror. Two common lens arrangements are the Czerny-Turner or Ebert mountings 

(Fig. 1.6). Most modern instruments use a diffraction grating with between 600 to 4200 

lines per millimetre etched 

I I 
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Figure 1.6 Czerny-Turner (a) and Ebert (b) monochromator mounts. 

into it. Light striking the surface of the grating will be diffracted at an angle that is 

dependent on the wavelength of the light and the line density of the grating hence a spatial 

separation of wavelengths is achieved. In general, the longer the wavelength and the higher 

the line density, the higher the angle of diffraction will be. Figure 1.7 shows schematically 

the paths that light rays of two different wavelengths would take when diffracted from a 

grating. 
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Figure 1.7 Diffraction grating separating two wavelengths of light. 

To separate polychromatic light, the grating is incorporated in a spectrometer. The 

function of the spectrometer is lo form the light into a well-defmed beam, disperse it 

according to wavelength with a grating, and focus the dispersed light onto an exit plane or 

circle. One or more exit slits on the exit plane or circle are then used to allow certain 

wavelengths lo pass to the detector while blocking out others. The diffracted light is 

collimaied and focused, using a mirror, or combination of mirrors (Fig. 1.6) onto an exit 

slit, and the diffraction grating can be rotated so that different wavelengths are focused on 

to the exit slit in turn, giving rapid sequential multielement analysis. A prism can also be 

used lo disperse polychromatic radiation into its characteristic wavelengths. 

In the 1970's it was shown that certain advantages might be obtained by combining 

the characteristics of two dispersing systems such as the diffraction grating and the prism 

or two diffraction gratings. The two optical components are positioned perpendicular to 

each other. One of the dispersive devices is in general, a coarsely-lined echelle grating 

which separates the polychromatic radiation by wavelength and produces multiple, 

13 



overlapping spectral orders. The second dispersing device, either a grating with a ruling 

density of greater than 350 lines/mm or a prism, separates, or cross disperses, the 

overlapping orders into a two dimensional pattern called an echellogram. A typical optical 

configuration for this echelle-type of spectrometer is illustrated in Fig. 1.8. A two 

dimensional display results in the exit plane, wavelength in one direction and spectral order 

in the other as shown in Fig. 1.9. 
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Figure 1.8 An echelle optical mount (24) 
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Figure 1.9 Exit plane illustrating the two-dimensional array produced by the echelle mount 
(24). 

Echelle grating-based spectrometers offer some advantages over conventional 

spectrometers using non-echelle dispersive systems. First, the optics result in high 

efficiency in each of the spectral orders, whereas conventional diffraction gratings are 

generally optimised at a particular wavelength, called the blaze wavelength, and for a 

particular order, usually the first order. Second, the system has excellent resolution since it 

is generally used in the higher spectral orders (resolution enhancements are exhibited with 

increasing order). The two-dimensional echelle pattern resulting from the optical design of 

the echelle spectrometer lends itself well to the use of solid stale detectors. 

Three types of advanced solid-state detectors, with high sensitivity and resolution, 

have been developed for spectroscopic applications namely, the photodiode array (PDA), 

the charge injection device (CID) and the charge-coupled device (CCD). The CID and 

CCD belong to the broad class of silicon-based devices called charge transfer devices 

15 



(CTD). CTDs are two-dimensional arrays of photosensitive metal oxide semiconductor 

capacitors arranged within a single, solid-state integrated circuit, and are capable of 

collecting and quantifying photo-generated electrical charge (25). 

In the case of the CID, photons striking the surface of each detector element (pixel) 

generate a proportional degree of electrical charge, which is shifted between two electrodes 

within the pixel (i.e. intra-cell transfer). Voltage fluctuations resulting from this transfer 

are detected and are proportional to the intensity of light striking the pixel. However, the 

CID system has a higher dark current than the CCD system, and requires cooling to liquid 

nitrogen temperatures to decrease the noise. In a CCD detector, photo-generated charge 

accumulated within each pixel is transferred to a serial register, and then to a charge-

sensing output amplifier (i.e. inter-cell transfer) (25, 26). CIDs have been used for wide 

dynamic range imaging applications {e.g. atomic spectroscopy), whereas CCDs are 

preferred for low intensity spectroscopic (e.g. Raman and fluorescence spectroscopy) 

imaging owing to their superior signal-noise ratio. A pixel is typically - 22 x 22 |im in 

size, while CCD arrays are generally arranged in a two-dimensional silicon wafer 

configuration of 578 x 385, 512 x 512, 1 152 x 298, or 4096 x 4096 pixels. 

Recently, a new kind of detector has been introduced, a Segmented-array-Charge-

Coupled device detector (SCD) (27) for an echelle ICP instrument. Instead of using a large 

CCD with hundreds of thousands of continuous pixels, the SCD has been designed with 

subarrays located at specific x-y locations corresponding to the 236 or more of the most 

important ICP spectral lines of the 70 elements observed in ICP spectrometry. Each 

subarray contains between 20 to 80 pixels. Each pixel is 12.5 (im wide and 80 to 170 jam in 

height, the height depends on the wavelength and spectral order of the line. Each subarray 

has its own interface logic which permits individual subarrays to be addressed and read

out. Most commercial CIDs and CCDs have poor sensitivity below 350 nm because of 

photon absorption by electrodes on the surface of the device. Because the pixels of the 

16 



individual subarrays of the SCD have no embedded electrodes, the SCD has excellent 

photosensitivity from 160 to 782 nm (24). 

1.2.2.4 Performance Characteristics of ICP-AES 

Many wavelengths of varying sensitivity are available for each element, making 

ICP-AES suitable for analysis over a wide concentration range, fi-om trace levels to major 

components. Although precision is concentration dependent, relative standard deviations of 

0.5 - 2% are common. When coupled to a suitable detection device, such as the 

Segmented Charge Coupled Detector (SCCD), the simultaneous determination of a large 

number of elements can be accomplished. 

1.2.3 Types of Interferences, Conventional Correction and their Limitations 

Interferences can be broadly divided into two groups: spectroscopic and non-

spectroscopic. 

1.2.3.1 Spectroscopic Interferences 

Spectroscopic interferences can be caused by: (i) line broadening, (ii) shifting 

baseline and line coincidences (iii) structured molecular band emission (iv) stray light, (v) 

plasma continuum, and (vi) radiative recombination continuum. Line coincidences, stray 

light, line broadening, and recombination continuum emission are the most troublesome 

and, as they arise from elements in the sample, their type and severity depend on the 

sample composition (28). 
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An example of line broadening interference is shown in Fig 1.10 for Ca II 393.4 

and 396.8 nm (lOOOfig ml'') on a solution of 1 |ig ml"' Al. A substantial background 

enhancement is observed which seriously interferes with the determination of low 

concentrations of Al in the presence of Ca using the most prominent Al line. 

Interference caused by a shifting baseline or line coincidences can be categorised 

as: simple ("flat") background; sloping background; direct line overlap or complex line 

overiap, all of which are shown schematically in Fig 1.11a. The complexity of the 

interference increasing from (1) to (4). 

Interferences caused by structured molecular band emission vary with the ICP 

operating conditions parliculariy observation height (1). Scans such as reproduced in Fig. 

1.12 give an excellent overall impression of the wavelength regions where molecular bands 

(e.g. OH, C2 Mulliken, CN violet and C2 Swan system) dominate the spectrum and where 

interferences can be expected. The elements present in the sample may also contribute 

molecular bands. For example, some elements may form stable diatomic oxide radicals 

with the oxygen originating from the dissociation of water or entrained from the 

surrounding air, examples of which are: YO, AlO, BaO and MgO. 

Fig. 1.13 illustrates the background continuum spectrum for (i) a solution of 

deionised water and (ii) a 5000|ig ml"' solution of Mg. The rise and levelling off of the 

continuum spectrum is clearly visible at approximately 300 nm and contributes 

significantly to the Mg signal. Each class of interference presents problems in calibration, 

the extent of which depends on the calibration method used. 
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Figure l.IO Background enhancement produced by broadening of Ca II 393.4 and 396.8 
nm lines (29). 
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Figure 1.11 b Background correction methods used in atomic emission spectrometry (23) 
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Figure 1.12 190 -520 nm (oil and MIBK (1:10 m/v)) for three observation heights in the 
centre of an argon axial ICP channel (30) 
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Figure 1.13 Wavelength scan for a Mg solution aspirated into the ICP(31) 

Many attempts have been made to circumvent interferences in ICP-AES. The most 

common the optimisation of line selection with ICP wavelength tables (32). Tables 

complied by the Massachusetts Institute of Technology (M1T)(33, 34) and those by 

Meggers, Corliss and Scribner (35) are two of the most commonly used reference sources, 

but they cannot predict all possible spectral interferences in ICP-AES since the properties 

of the inductively coupled plasma are quite different from those of the DC arc and spark 

for which they were compiled. Wohlers (36) has compiled a set of tables for ICP-AES, but 

they are not comprehensive enough to predict all interferences. Detailed tables of spectral 

interferences in geological analysis were presented by Church (37). The most widely used 

spectral interference tables used however are: An Alias of Spectral Interferences in ICP 

Spectroscopy, by Parsons, Foster and Anderson (38) and Bouman's Line Coincidence 

Tables for ICP-AES, by Boumans (39). The use of tables is limited in that satisfactory 

appraisal of interferences requires comprehensive ICP tables. Even i f such tables were 
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available the usefulness of the information would be dependent upon the experimental 

conditions such as the relative concentrations of the analyte to the interferents and the 

instrumental parameters. In addition, selection of the 'best' analyte lines requires an a 

priori knowledge of the sample composition (especially all possible interferents), which is 

often impossible or impractical. 

Traditionally, interference correction methods for spectroscopic interference have 

taken the form of background correction or the use of interelement correction factors (40). 

The use of background correction is limited, however, to relatively simple situations, such 

as an increase in the continuum background emission which can be easily compensated for 

by subtraction of the background adjacent to the analytical line. For a sloping background 

measurements must be made on both sides of the line and usually the mean value is 

subtracted. These options are summarised in Fig. 1.11b, When complete or complex 

spectral overlap occurs (Fig. 1.11) background correction is not possible. 

J. 2 J.I.J Interelement Correction Factors 

The determination of empirical spectral interelement correction factors (lECs) for a 

given ICP-AES instrument is, in principle, straightforward. A calibration graph for the 

analyte of interest is first constructed in the usual way, and solutions of the suspected 

interferents (1000 jig ml"') are aspirated while monitoring the analyte line(s) of interest. 

The apparent analyte concentration is then determined at the line of interest, and an lEC 

factor calculated by dividing the apparent analyte concentration at that particular 

wavelength by the interferent concentration. Eqn. 1.1 is then applied to obtain the corrected 

analyte concentration. 
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Q = C „ - X r ^ ^ A J Eqn. 1.1 

Where C„, C^, F. and /.^ are uncorrected analyte concentration, corrected analyte 

concentration, lEC factor, and interferent concentration respectively for each interfering 

element /. There are, however, many practical difficulties to overcome in order to obtain 

reliable correction factors. 

In practise truly pure single element solutions of interfering elements are 

impossible to obtain, especially at the high concentrations likely to cause interference. 

Trace quantities of elements, other than the element required, are often present in the 

source material or in the solvent used to dissolve the material. I f these impurities are not 

identified then correction factors become inaccurate. In addition the procedure requires 

proper continuum background correction in the form of background correction points. 

Hence, complex variable matrices make this method very difficult to apply successfully. 

Eqn. 1.1 implies that the concentration of the interferent must be known; to achieve 

this the concentration of all the inlerferents must be determined separately. The assumption 

made here is that the signal output from the interferent element in question is itself not 

suffering from spectral or other interferences. In complex mixtures this assumption may 

not be true, even when alternative lines are used. To overcome this one may consult 

spectral tables, but because of the problems already mentioned, this is not a satisfactory 

approach to the problem. 

y. 2.3. L 2 Matrix Matching 

An alternative to using an internal standard is to matrix match calibration standards 

to the samples being analysed. This is straightforward i f all the elements present in the 
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sample are known. However, i f there are unidentified elements present this method may 

give poor predictive results, depending on the severity of the interference. 

1.2.3. J. 3 Standard Additions 

The method of standard additions is commonplace in spectroscopy, however, there 

are major drawbacks to this method. The method requires at least three, preferably five, 

aliquots for each sample being analysed ( i f large numbers of samples are to be analysed 

this method can easily become burdensome and expensive in terms of instrumental time). 

The additions themselves must be small in comparison to the sample volume to prevent 

dilution effects which would render the standard addition process invalid. The technique of 

backward linear extrapolation itself leads to errors and sample aliquots are required for the 

determination of each analyte (i.e. the method is univariate). The method cannot correct for 

spectral interferences and background changes (emission continuum) which gives it a 

limited value when analysing complex samples. 

1.2.3.2 Non-Spectroscopic Interferences and Internal Standardisation 

Non-spectroscopic interferences give rise to enhancement or suppression of the 

analyte signal as a result of pertiu-bations in sample nebulisation efficiency and sample 

transport (resulting fi"om changes in the sample matrix), by physicsd effects such as 

alterations in the electron density in the plasma itself often referred to as matrix-induced 

suppression or enhancement, or by chemical effects such as the formation of compounds 

containing the analyte which possess much higher ionisation energies. 

The use of internal standards (41, 42) can compensate for such effects, however, the 

internal standard must be chosen with care so that it matches the analyte chemically and 

25 



spectroscopically (i.e. atomic lines with similar excitation energies, partition functions and 

transition probabilities must be used). Myers and Tracy (42) have demonstrated that a 

judicious application of internal standards in ICP-AES can improve the % RSD by a factor 

of 10. These significant improvements in precision were only obtained by using those 

internal standards with similar excitation characteristics as the analyte lines of interest. For 

internal standards and analyte lines with much different excitation characteristics such 

improvements were not found. The use of internal standardisation is, however, reliant upon 

interferent-free lines being available. It is highly probable that for complex samples such 

lines wil l be unavailable. 

Ramsey and Thompson (43) devised the parameter-related internal standard method 

(PRISM) to overcome the limitations of the internal standard method in ICP-AES by 

obviating the requirement for the matching of analyle and internal standard emission lines. 

However, successful use of their method still requires the availability o f interferent-free 

internal standard lines. 

1.3 Univariate Calibration 

Calibration is the process of determining a mathematical model to relate measured 

instrumental response (dependent variable, e.g. emission) to a known pareimeter 

(independent variable, e.g. concentration) of a sample analyte, and using this model to 

predict the same parameter in unknown samples. Typically, response measurements are 

obtained for a series of samples, usually greater than five, in which accurate analyte 

concentration values have been determined independently. These calibration standards are 

measured by the analytical instrument under the same conditions as those subsequently 

used for the unknown samples. Once the calibration curve (mathematical model) has been 
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established the analyte concentrations in any unknown sample can be obtained by 

interpolation (44). The simplest form of calibration model is the linear univariate 

calibration model, in which a single instrumental measurement is used to determine the 

concentration of a single analyte. However, with the development of instrumentation 

capable of rapidly obtaining multiple response data (e.g. fu l l spectrum emission 

measurements), it has become desirable to adopt calibration techniques which can fully 

utilise the available multivariate data. The relative merits of univariate and multivariate 

calibration are discussed below. 

1.3.1 Univariate Classical Least Squares 

One of the most commonly applied univariate calibration procedures in analytical 

chemistry is the 'classical' probabilistic model (Fig. 1.14) which assumes a linear 

relationship between instrumental measurement and concentration. The simplest from of 

this model is the first-order (straight-line model) (45). 

yi = A ^ , + e . Eqn. 1.2 

where andxf are the instrumental response (dependent variable) and analyte 

concentration (independent variable) respectively, fi. is the calibration coefficient 

determined by least-squares regression of instrumental response on analyle concentration 

and e^ is the random error component. 

The principal advantages of univariate calibration techniques are their simplicity of 

application and ability to produce accurate calibration models using a relatively small 

number of calibration samples. However, in order to obtain accurate predictions with the 
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univariate approach instrumental measurements must be highly selective (no interferences 

affecting instrumental response) with respect to the analyte of interest. This can only be 

achieved i f the sample matrix is of low complexity. I f these requirements are not met, then 

predictions of analyte concentrations in unknown samples are likely to be inaccurate. 

Figure 1.14 The classical straight line model. 

The removal of such interferences by chemical or physical means may alleviate this 

problem, but this is not always possible. A further limitation is that univariate calibration 

has no fault-detection capabilities, as illustrated in Fig. 1.15 where the true relationship 

between the instrument response and concentration is represented by the solid line. It 

follows that a sample concentration of c ^ corresponds to an instrument response of r^^ . 

Errors occur i f an unknown interferent is present and the instrument has a significant 

sensitivity to it. In Fig. 1.15 assuming rj^c+imcrfcroicc *s response of the instrument to a 

sample with concentration ĉ ^̂  plus some additional response due to an interferent. Using 

the calibration curve yields a predicted concentration, c, for the analyte. The presence of 

the imerferent has resulted in the overestimation of the concentration o f the analyte. In 
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particular, industrial processes can require the analysis of extremely complicated samples 

and it is often impossible to obtain highly selective measurements or to separate the analyle 

of interest from all potential interferences. Univariate calibration is generally inappropriate 

under these circumstances, and for this reason multivariate calibration methods are 

becoming increasingly widespread. 

'^injc + interference 
Error in Predicied 
ConccntrBtion 

Concentraiion 

Figure 1.15 lliuslralion of the inability of univariate methods to detect the presence of 
inlerferents 

1.4 Multivariate Calibration 

In all cases, the following format will be used for algorithmic expression: 

MATRICES written in bold uppercase; 

Vectors written in bold lowercase (all vectors are column vectors, and all 

transposed vectors are row vectors); 

scalars wriucn in italics (lowercase) 

The algebraic notation used throughout this section is defined in Table 1.1. 
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Multivariate and univariate calibration are similar insofar as they both involve the 

construction of a mathematical calibration model relating instrumental response to analyte 

concentration for a set of known calibration standards, and the use of this model to predict 

analyte concentrations in unknown samples. However, multivariate calibration 

incorporates multiple instrumental measurements of each sample (e.g. the spectra obtained 

by multiwavelength spectrometers) into the calibration model. 

Multivariate calibration makes it possible to determine multiple components 

simultaneously. This is not possible with univariate analysis and can reduce the amount of 

time spent on method development. Multiple measurements can also provide improved 

prediction precision. Statistics show that repealing a measurement n times and calculating 

a mean value wil l give a factor of reduction of yfn in the standard deviation of the mean, 

commonly termed signal averaging. 

It is also possible to account for sources of system variation without isolating and 

characterising their source using multivariate calibration. Hence there is no need for time 

consuming separation processes to remove interferences, the only requirement being that 

sufficient variation is incorporated in the calibration phase. This capability for implicit 

modelling gives this multivariate methods powerful advantages over the univariate 

approach. It is also possible to apply diagnostics to assess model confidence and the 

reliability of the predicted values. These diagnostics can also be used to investigate the 

nature of the problem when a particular sample is "flagged" as being unusual (46). The 

least complex, most widely available, and therefore most frequently applied multivariate 

techniques are those that assume a linear relationship between response signal and anaJyte 

concentration. These include classical least squares (CLS), direct and indirect, principal 

components regression (PCR) and partial least squares (PLS). The last two of which are 

collectively known as inverse least squares modelling techniques. 

30 



Table 1.1 Definition of notation used for muhivariate calibration algorithms. 

C o r Y Component concentrations matrix {i.e. analyte concentrations for all 
samples in the calibration data set 

R o r X Instrumental response matrix(/.e. emission spectra for all samples in 
the calibration set) 

Component concentrations vector for sample / 

r,- Instrumental response vector (i.e. spectrum) for sample / 

T(ti) Principal components scores matrix (vector) 

P(Pi) Principal components loadings matrix (vector) 

/ Total number of samples 

j Total number of variables / wavelengths 

h Total number of principal components 

P\or (bj) Regression coefficient (relating concentration to instrumental 
response) 

Q Matrix of regression coefficients (relating T to C ) 

Partial least squares weight vector for PC h 

E, Spectral residuals matrix 

A Estimated parameter 

s Sensitivity matrix ( / ^ ) 

r 
Transpose of a matrix or vector 
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1.4.1 Classical Least Squares 

Both direct and indirect CLS assume linear additivity of the chemical components 

at each wavelength. This holds in situations where there are no chemical or physical 

interactions, so can only be used for simple chemical systems. For wavelength j, linear 

additivity is expressed mathematically by Eqn. 1.3 

Eqn. 1.3 

where r^^^ is the instrument response to a mixture of analytes A and B, r^j and r^j are the 

spectral responses of the instrument to analyte A and B respectively for j wavelengths, 

and are the concentration of analyte A and B respectively and s^j and s^j are the 

sensitivities of analyle A and B respectively for j wavelengths. This equation can be 

written as Eqn. 1.4 

^A\>^A2 

^B\'^B2^Bj 
Eqn. 1.4 

and in matrix notation as r = cxS . 

To construct a CLS model, pure spectra for all the analytes are obtained to form the 

S matrix. Two CLS methods are available, direct, where pure spectra are measured 

directly, and indirect, where pure spectra are computed from spectra of mixtures with 

known composition. 

To perform prediction, cui unknown sample spectrum is measured (r) . Given r and 

S, it is possible to solve Eqn. 1.4 for c: 
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r = cS Eqn. 1.5 

rS^=cSS^ Eqn. 1.6 

r S V S S ^ - ' =crSSOrSS^;-' Eqn. 1.7 

r S ^ S S ^ r Eqn. 1.8 

By letting = S^t'SS^;"', the pseudo-inverse of S : 

c = rS^ Eqn. 1.9 

where c contains the predicted concentrations. 

These classical methods have the advantage of being f i i l l spectrum calibration 

techniques, which offer greater precision than models limited to a smaller number of 

response variables because of their signal averaging capabilities (47) However, for 

classical methods to work well pure component spectra of all the analytes and interferents 

in unknowTi samples must be obtained and explicitly incorporated into the S matrix, and 

there must be a linear relationship with concentration (i.e. linear additivity of pure 

component spectra must be assumed) 

This is a significant limitation of the technique, since it is seldom possible to 

provide the model with information for all the elements within a complex sample matrix, 

and any unmodelled spectral interferences will produce large residual errors in future 

sample prediction. These errors can be minimised by selecting those spectral regions in 

which unknown components do not significantly interfere with the response of the analytes 

of interest, although in many cases the entire spectral range can be subject to interference 

effects. 
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1.4.2 Inverse Least Squares (ILS) 

The common feature of inverse methods is how the relationship between response and 

concentration is modelled. The concentrations are treated as a function o f the response, as 

shown in Eqn. 1.10 

c = Rb Eqn 1.10 

where c contains the concentrations, R is the matrix of measurements (emission), and the 

vector b contains the model regression coefficients. From a comparison of the inverse 

model (Eqn. 1.10) to the model for the classical method (c = rS) it is not obvious that the 

approaches are significantly different. To illustrate the difference, the matrix algebra for 

Eqn. 1.10 is given for one sample (Eqn. 1.11): 

h]=h.i'^i.2.' 'i.3' '*i.4]x Eqn. 1.11 

Equation. 1.11 shows that the concentration value (c, ) is equal to the weighted sum 

^ ^ ^ 

of the responses for different variables (i.e. ' ' i i x + / " i 2 ^ ^2 •** ' ' i 3 ^ ^3 + ' " i 4 ^ ^4 )• However, 

the classical approach fits a combination of linear pure spectra to an unknown spectrum 

(Eqn's. 1.5-1.9). 

This major difference in the modelling approaches gives the inverse methods 

significant advantages over classical methods. Classical approaches require the explicit 

inclusion of sources of variation. With the ILS methods, it is possible to predict unknown 

sample analyte concentration even when additional chemical and physical sources of 
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variation are present provided that all significant sources of variation are present when the 

calibration models are estimated. Additional requirements are that the analytical instrument 

adequately differentiates between the component of interest from other sources of variation 

and diat the instrumental response is sufficiently linear with concentration. 

Although it is important to ensure that all significant sources of variation are 

present when the calibration models are estimated, these other sources o f variance are not 

included as extra variables, as is the case with CLS methods, but are implicitly modelled. 

Any source of variation that does not change during the calibration phase wi l l not 

implicitly be included in the model. One approach, therefore, is to manipulate all the 

sources of variation using an experimental design. I f designed experiments are not 

possible, for example when complex matrices are involved, another approach is the use of 

historical data. 

The prediction of future unknown sample concentrations is achieved by obtaining a 

new response matrix, r̂ ^ .̂ Using this response matrix and the known concentrations of 

only one of the components in c, the regression coefficients in Eqn. 1.10 can be estimated 

as in Eqn. 1.11: 

b=(^R^R;- 'R^c Eqn. 1.11 

where b contains the estimated regression coefficients, and where ("R^R^-'R^is known 

as the pseudo-inverse of R . Given the spectrum of a single unknown sample ( r ^ ^ ) it is 

now possible to use the estimated regression vector b to predict the concentration of the 

components of interest according to Eqn. 1.12: 

c = r ^ ib Eqn. 1.12 
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In Eqn. 1.11, the key to the model-building step is the inversion of the matrix ( R ^ R ) . This 

is a square matrix with row (calibration samples) and column (variables (nvars)) numbers 

equal. From theory, a number of independent samples in the calibration set greater than or 

equal to nvars is needed to invert this matrix. For most analytical systems, nvars is much 

greater than the number of samples, and therefore R^R cannot be inverted. However, by 

manipulating the variables, calculation of the pseudo-inverse is possible. How this 

manipulation is accomplished distinguishes between the different inverse modelling 

methods. 

1.4.2.1 Multiple Linear Regression 

Multiple linear regression (MLR) with variable selection makes the matrix inversion by 

selecting a subset of the original variables. Multiple linear regression is a relatively simple 

multivariate technique, and is therefore limited to simple systems (i.e. small numbers of 

components and other sources of variation) (46). It is important that the variables in the R 

matrix are informative, i.e. they are correlated to the analyte of interest, since MLR will 

attempt to model all the data present in R , including any irrelevant information. 

Collinearity in the response data can pose a problem for MLR, particularly in the 

calibration of mulliwavelength spectroscopic data. A data set is collinear i f at least one 

variable is an exact or approximate linear combination of the others (i.e. a linear or near-

linear relationship exists between data points). Such collinearity wil l produce instability 

(large variance in some elements of b ) in the b vector during the inversion of R . The 

collinearity and noise problem can be overcome by selecting a suitable subset of the 

response data. Such variable subsets can be statistically determined by a number of 

techniques, an example of which is stepwise multiple linear regression (SMLR) (48). 
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SMLR can be performed as either forward selection, which begins with one variable and 

progressively incorporates more variables into the model until a certain criterion is met, or 

backwards elimination, which starts with the full spectrum and deletes one variable from 

the model at each step until the predefined criterion is achieved. The stopping criterion is 

typically an F- statistic, which tests the significance of the regression coefficients for each 

variable by examining model error. In forward selection, the variable with the most 

significant coefficient at each step is retained, and this continues until no added variable is 

significant. In backwards elimination, the variable with the lowest F-statistic at each step is 

removed until the point is reached when all the remaining variables are significant. In this 

way SMLR can circumvent the problem of collinear data, though, the signal-averaging 

capabilities of full-spectrum techniques are reduced. 

A major limitation of SMLR is the constraint on the number of permitted variables. 

As an illustration, i f a data set has, for example, n calibration samples and p variables, the 

maximum number of variables (v) allowed in either the forward of backward SMLR model 

must be v<p. Therefore, although a variable may have a significant F-statistic and may 

reduce predictive error, i f the maximum number of variables has been reached it cannot be 

included as it may cause unstable coefficients in the b vector during the inversion of R . 

Spectroscopic instrumentation typically produces thousands of variables so i f the number 

of calibration samples is, for example, 50 then v<50. Such a reduction in the number of 

variables may not give optimum predictive results. The minimum number of variables 

must also be greater or equal to the number of chemical components in the system (46). 

For complex samples the number of variables required for an adequate predictive model 

may exceed v. The selection of a variable subset that produces opfimum predictive error is 

therefore not theoretically possible within such constraints. Additionally the calibration 

sample to variable ratio must be of the order of 40 to 1(49), which is clearly impracticable 

for modem instruments capable of delivering thousands of variables. 
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1.4.2.2 Principal Components Analysis and Principal Components Regression 

The most popular data compression method used to describe variation in large data 

sets in chemistry is principal components analysis (PCA) (50, 51). 

Principal components analysis (PCA) is a method of data compression derived from factor 

analysis, a technique first developed to describe patterns in large data sets in terms of a 

much smaller number of underlying factors (i.e. to reduce the dimensionality of the data 

set) (52). 

The first PC is that which best describes the variability, based on changes in the 

response data and not their absolute values, within the matrix, while the second PC and 

subsequent PCs successively describe the remaining variance, under the constraint that 

each PC is orthogonal (i.e. perpendicular) to the previous one. This is illustrated in Fig, 

l.I6a, which represents iheR matrix as ten points when plotted in two-dimensional 

column space, and in Fig. 1.16b where the principal components are plotted also. Figure. 

1.16b illustrates PCA in terms of only two dimensions, though it is important to realise that 

this technique is equally applicable to large matrices for which nPCs are required to 

describe the variability in n dimensions. 
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Figure 1.16 (a) The matrix A plotted in column space; (b) first and second principal 
components (PC 1 and PC 2) for A following mean-centering and variance scaling of the 

columns 

Mathematically, PCA relies upon an eigenvector decomposition of the covariance 

or correlation matrix of the R matrix. The process is one of elimination such that by 

iterative eliminations of each independent variation from R in series it is possible to create 

a set of PCs that capture the variation in R . For a given data matrix X with m rows and n 

columns (each row a sample and each column a variable), the covariance matrix o f X i s 

defined as Eqn. 1.13. 

X ^ X 
w - 1 

cov(X) = Eqn. 1.13 

provided that the columns of X have been "mean centered" (i.e. adjusted to have zero 

mean). If the columns have been "auloscaled" (i.e. adjusted to zero mean and unit 

variance), Eqn. 1.13 gives the correlation matrix of X , In order to reduce unwanted 
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sources of variation and to highlight any relative differences within a dataset mean 

centering or autoscaling is often performed prior to PCA. PCA decomposes the data matrix 

Xas a sum of the outer product of vectors t, and p. plus a residual matrix E as in Eqn 

1.14: 

X = t , p [ + t , p i + + t „ p : + E Eqn. 1.14 

where k must be less than or equal to the smallest dimension of X , Le. k < min(m.n). To 

illustrate what the t. and p, mean, an example for two variables, is shown in Fig. 1.17. 

UNIT VECTOR 

P, = C0S5, 

Figure 1.17 A principal component in the case of two variables xi and X 2 : (A) loadings are 
the angle cosines of the direction vector; (B) are the projections of the sample points (1-6) 

on the principal component direction. (Note that the data are mean centered) 

The vectors (scores) contain information on how the samples relate to each 

other, the closer in value the scores, the more related the samples and vice-versa. The p, 

(loadings) contain information on how the variables relate to one another. The extent to 

which a measurement variable contributes to a PC (its loading value) depends on the 
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relative orientation in space of the PC and variable axis. I f a PC points exactly in the same 

direction as an individual variable, the angle between them is 0, and the cosine is 1, 

indicating that the PC describes all of the variation in that variable axis. Similarly, i f a PC 

is perpendicular to an individual variable axis, the cosine is 0, indicating that none of the 

variation is contained in the PC. It should be noted that the length of p^is 1 because 

[cos(Qy)^ + €03(^2)^ ~ hence the relative importance of each variable can be 

ascertained. Similar rules exist for more than two dimensions. 

For the vectors of the covariance matrix Eqn. 1.15 holds 

cov(X) = X,p, Eqn. 1.15 

where X/is the eigenvalue {X/is a measure of the amount of variance described by the 

t^,p,pair) associated with the eigenvector p. . The t- form an orthogonal set 

(ii^tj =0,i^ J ) , while the p^are orthonormal (^p/py =0 , /V 7", p / p ^ = \ ) . ForXand 

any T, ,P, pair Eqn. 1.16 holds 

T, =XP, Eqn. 1.16 

i.e. the score vector t- is the linear combination of the original A'data defined by p, 

Hence Eqn. 1.17, which shows the elements of the first PC, is true also: 
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=XuP,., + x , 2 P 2 , + . . . . + X , .p .̂, Eqn. 1.18 

^2.1 = X 2 . , P u + X 2 . 2 P 2 , + . . - + X 2 . p . , 

The variables of Xare now replaced by new ones, t,. (now linear combinations of 

the original variables), that have better properties (orthogonality) and also span the 

multidimensional space of X . From of Eqn. 1.16 we have: 

X, = tP ,^ Eqn. 1.19 

which can be expanded to Eqn. 1.14 (X„i = t,p) H-tjP^ +.... + t„p^). 

The t.,p, pairs are arranged in descending order according to the associated X,. 

Because the t, ,p, pairs are arranged in descending order of , the first pair capture the 

largest amount of variance of any pair in the decomposition. It is possible to show that the 

first i,,p, pair capture the greatest amount of variation in the data that is it possible to 

capture with a linear factor, and that each subsequent pair captures the greatest possible 

amount of variance remaining after subtracting t„p^ from X . Hence each successive PC 

captures less and less variance. 

A number of algorithms can be used to perform the decomposition of the response 

matrix into successive PCs. Non-iterative partial least squares (NIPALS) is one of the more 

frequently applied methods owing to its simplicity and speed of computation (48). For each 

successive PC and p. are calculated fromR as follows: 
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(a) The initial score vector t̂  is selected as the column of R with the largest 

variance; 

(b) A new loading vector is estimated for this PC by projecting R onto t̂ : 

(c) The length of /7/is scaled to 1.0 to avoid scaling ambiguity: 

(d) A new score vector is estimated by projecting R onto p / ; 

t, =rp,'"pj-'prR 

(e) I f the difference between the newly estimated t and the previous estimated 

is less than a pre-defined criterion, then the method has achieved 

convergence with respect to this factor. I f not, then repeat the process from 

step (b); 

(f) Subtract the effect of this from R: 
R , _ , = R - t , p ^ 

I f quantitative information is required, then principal components regression (PCR) 

can be used. PCR is conceptually similar to MLR, but the calibration model is constructed 

using the matrix of PC scores, T , in place of the original response matrix R . By reducing 

the number of variables in this manner the problems of collinearity can be overcome and 

the inversion of R^R is then possible. A major drawback to the PCR approach is that the 

PCs which best describe the variance in the response matrix may not be the best 

description of the variance in the analyte concentrations matrix (e.g. instrumental noise 

may be responsible for the largest component of the R variance). I f this is the case, then the 

43 



resulting calibration model will produce poor predictive results for any unknown samples 

(53). 

1.4.2.3 Partial Least Squares 

Partial least squares (PLS) regression is conceptually similar to PGR, however PGR and 

PLS use different approaches for choosing the linear combinations of variables that make 

up the score vectors,t,. Specifically PGR only uses theR matrix to determine the linear 

combinations of variables, but with PLS the variance of the concentration matrix, c , is 

used in addition to the variance inR to generate the linear combinations. The major 

advantage of this method is that variation inR that is not correlated with the 

concentrations of interest is not used to construct T , as it is in PGR. In this way, PLS is 

able to determine which PGs in the response matrix are most relevant to the variance in the 

concentration matrix, thereby reducing the influence of the irrelevant PGs upon the 

calibration model (53-55)]. 

The technique of PLS was first introduced in 1977, following development work 

carried out largely by Herman Wold during the 1960s and 1970s. In analytical chemistry it 

is increasingly being applied to the calibration of multicomponenl spectroscopic data, 

particularly UV-visible (56, 57), NIR (58, 59) and FT-IR (60). 

The form of PLS employed in chemometrics is actually a modification o f the 

NIPALS algorithm used in PGA, as described above. The modifications enable PLS to 

calculate loading vectors which contain the maximum amount of predictive information in 

the earlier vectors. This is achieved by using the information in the concentration matrix 

when performing the decomposition of the response matrix, so that the loading vectors are 

concentration dependent (53). There are several ways of presenting the NIPALS PLS 
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algorithm, e.g. based on the work of Hoskuldsson (55) and Frank (61) or Wold et. aL (62) 

and indeed several ways in which to calculate PLS model parameters, e.g. SIMPLS 

devised by de Jong (63). The PLS version described here is based upon non-linear iterative 

partial least squares (NIPALS) and is the version used in the PLS_TooIbox 2.00 

(Mathworks Inc.). 

NIPALS calculates scores, t , and loadings, p , and an additional set of vectors 

known as weights, w . The addition of weights is required to maintain orthogonal scores. A 

vector of "inner-relationship" coefficients, b , which relate theX and Y block scores, 

must also be calculated. To use the concentration information during the decomposition of 

the response matrix, scores, u , and loadings, q , are also calculated for Y . Using NIPALS 

the scores, weights, loadings and inner-coefficients are calculated sequentially for PCs 

I = /? as shown: 

(a) The PLS decomposition is started by selecting one column of Y as the starting 

estimate for (usually the Y column with the greatest variance is chosen). In 

the situation where only 1 analyte is being determined, U/,= y . 

(b) Starting in the X data block the weights w ,̂ and scores are calculated 

w . = • " 
X ' u , 

(c) In they data, the loadings and scores are calculated 
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l l u ^ t J I 

= V q , 

(d) Check for convergence by comparing t;, in step (b) with the value from the 

previous iteration. I f they are equal within rounding error, proceed to step (e). I f 

they are not, return to step (b) and calculate using u^from step (c). I f the 

y block is univariate step (c) can be omitted, q,, = 1, and no iteration is 

required. 

(e) Calculate the X data loadings and rescale the scores and weights accordingly: 

PI- =777-7 

I ' hnew 11 " 
WPhald 

^hnew ~ ^haltl 1 1 P hold I I 

=^v,„,^ ||p,„,^ II 

(f) Find the regression coefficients b for the inner relation; 

b 

(g) After the scores and loadings have been calculated for the first PC, the X and 

Y residuals are calculated as follows: 
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E . = X - t , p , 

(h) The entire procedure is now repeated for the next PC starting from step (b). 

Both Xand Y are replaced with their residuals E;,and respectively. 

Prediction can then be performed using the following procedure: 

(a) Calculate the PLS regression coefficients as 

Pm = WrP^W;-'(^/flg(^b;Q' for multivariate Y 

^pis =WrP ' 'W;-'^//agrb ;for univariate Y 

(b) New sample concentrations are then calculated as 

1.5 Application of Univariate and Multivariate Calibration in Spectroscopy 

The application of univariate calibration in atomic spectroscopy can be divided into 

the following techniques: univariate calibration (UC); uc incorporating matrix matching; 

standard additions; and interelement correction (lEC). 

In general spectroscopic fields the use of univariate calibration by itself is limited 

to chemical systems where the analyte line under investigation is interference free or where 

the interferences are slight. Univariate regression was used by Peralta-Zamora et. al. for 
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the quantitative determination of a set of 20 different mixtures of Ce, Pr and Nd and Sm 

concentrations in a commercial rare-earth product using FAAS. However, significantly 

better precision was obtained using the multivariate calibration method partial least squares 

1 (PLSI) (64). Another example of the use of univariate calibration was given by Luis et. 

al., in which the determination of chlorthalidone and spironolactone by HPLC gave poor 

results because of the scarcity of interference free wavelengths (65). In those instances 

where the interferences are significant then univariate calibration gives poor predictive 

results. An effective method of correcting for both spectroscopic and non-spectroscopic 

interferences is matrix matching, where the calibration standards used to construct a 

univariate calibration curve are matched, chemically and physically to the samples. In 

theory, any analyte line now used to determine analyte response in the calibration samples 

will incorporate any interferent contribution present in the sample. Signal enhancement or 

suppression effects will also be incorporated in the calibration standards. This technique is 

widespread in atomic spectroscopy for a variety o f instrumental techniques including ICP-

AES (66), HPLC-TLS (high performance liquid chromatography-thermal lens 

spectrometry) (67), ICP-MS (68) and GFAAS(69). However, this technique does have 

limitations. For accurate analyte determination the calibration standards must be matched 

with the sample in terms of chemical composition. Failure to do so wi l l give poor 

predictive results (40). This means that the composition of the sample must be known, a 

priori which is not always possible. 

The method of standard additions, an extension of univariate calibration is again 

widespread throughout atomic spectrometry (70-72), but has several limitations which 

have been discussed earlier. 

One of the most widespread uses of univariate calibration is in conjunction with 

interelement correction (73-75). Griffiths e(, al. (40) showed that the predictive errors for 

the determination of Pt, Pd and Rh in a complex matrix using interelement correction were 
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acceptable and were of the same order when matrix matching was used. The successful 

use of this method, is dependent upon a priori knowledge of the sample being available 

and it does not correct for non-spectroscopic interferences. I f significant interferents are 

not accounted for (in the form of lEC factors), any subsequent predictions wil l be poor. 

The use of interelement correction is therefore restricted to samples with known 

complexity. 

Another approach to minimise the effects of interferences is the use of 

mathematical and statistical procedures, collectively referred to as multivariate calibration. 

Multivariate calibration techniques can be divided into two main groups: linear and non

linear. Although in most real situations the chemical additivity principle is not strictly 

fij lfi l led, linear multivariate methods can provide good approximations of many types of 

non-linearities (76, 77). 

Multivariate techniques are of great interest in chemical analysis and have been 

applied to various spectroscopic methods of einalysis, e.g. infrared (58, 60, 78), UVA^IS 

specu-oscopy (57, 79, 80), NMR spectroscopy (81), mass spectroscopy (82) and emission 

spectroscopy (4, 40, 83-85). 

The multivariate techniques themselves fall broadly into four common methods, i.e. 

partial least squares (PLS) (47, 86, 87), principal components regression (PCR) (80, 88, 

89), stepwise multiple linear regression (SMLR) (83, 90, 91) and principal components 

analysis (PCA) (82, 92, 93) and have become common tools for the analytical chemist. 

Other, less widely used techniques include: numerical derivatives (94, 95); curve 

resolution (96, 97); orthogonal polynomials (98) and Kalman filtering (99-101). 

Multivariate calibration methods have been applied to various analytical problems 

using a wide variety of instrumental techniques. Mc Shane et. al. (102) successfully 

determined the concentrations of lactate, ammonia, glutamate and glutamine from NIR 

spectroscopy using partial least squares coupled with a variable selection algorithm. In the 
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field of mass spectrometry both partial least squares and principal components regression 

have been successfully applied to the correction of spectral and non-spectral interferences 

in samples containing a mixture of Fe, N i , Gu, Zn and Pb (103). 

The growlh in the use of array detectors has resulted in a commensurate increase in 

the application of chemometric procedures to make the best use of this type of spectral data 

acquisition. The predominant use of multivariate methods in IGP-AES is in the area of 

calibration and the removal of interferences. Methods to correct for spectral interference 

have included peak purity assessment by matrix projection (104)and non-linear 

deconvolution to test different line shapes (105). The rare earth elements (REEs) produce 

some the most line rich spectra and two studies have used multivariate methods to improve 

the determination of trace REEs in rare earth element matrices. The first used multi-

component analysis (106) and the other a spectral fitting approach based on least squares 

minimisation (107). Other multivariate techniques include stepwise multiple linear 

regression (83), numerical derivatives (95), PGR (108), PLS (40), the generalised standard 

additions method (GSAM) (90, 109, 110) and Kalman filtering (99-101). 

The work of Sadler (108) successftjlly determined the concentrations of Gr, Mn and 

V (0.5 |ig ml"') in a matrix containing Ge (100 ^ig ml*'), La (40|ig ml ' ' ) , Dy (40|ig ml ' ' ) , Fe 

(20^g ml' ' ) , Mo(20 ^g ml' ') and Go (20 ng ml"') and 5% v/v HNO3 using PGR. The 

predicted concentrations for Gr, Mn and V were 0.51 ± 0 . 0 1 , 0.49 ±0.01 and 0.51 ± 0.01 

jig ml"' respectively. However, in more complex systems it would be expected, that PLS 

would generally give better predictive results, because of its ability to obtain more 

correlated information in the first few PGs. Similarly, Pimental et. a/.(4) successftilly used 

PLS and PGR to predict the concentrations of Mn (0.4-2.0%), Mo (0.6-4.0%), Gr (8.0-

28.0%), Ni (4.0-28.0%) and Fe (40.0-88.0%) in natural waters. Instead o f using analytical 

lines, important regions of the full spectrum were located which possessed, both intense 

analyte and matrix lines with a minimum of spectral overiap. Although the predictions 
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were acceptable, such a methodology does not necessarily locate the most important 

modelling regions from the viewpoint of the PLS algorithm. Areas o f major spectral 

overlap will only be considered by PLS as important depending on how well correlated it 

is with the analyte in question. 

With two exceptions, Veen et. al. (85) and Pimental et. fl/.(4), these techniques 

were not applied to the full atomic emission spectrum. Most of the instrumental calibration 

methods applied to ICP-AES have utilised data in the form of integrated line intensities, 

which has traditionally been the form in which the data has been presented for multivariate 

calibration. However, the use of data in this form presents a number of problems as 

follows: 

(i) Suitable analytical lines must be selected beforehand, using subjective criteria 

(e.g. intensity, analyle line, matrix line), so that useful information may be 

missed. 

(ii) Each spectral line must be integrated to yield integrated line intensities, during 

which substantial errors can be introduced. 

(iii) I f net intensities are required then a suitable background correction method 

must be employed, which can often yield erroneous results for low intensity 

lines or those with potential spectral interferences. 

Hence, it would be desirable for as much of the ICP-AES spectrum as possible to be used, 

rather than selected lines, a technique known as full spectrum modelling. 
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1.6 Research Objectives 

The objectives of this research were to investigate the potential of applying suitable 

multivariate calibration techniques to the fi i l l segmented spectrum obtained from samples 

introduced into an inductively coupled plasma atomic emission spectrometer by 

developing a suitable wavelength variable selection strategy. 

The specific objectives were: 

1 To compare 'traditional' calibration techniques, such as univariate calibration, 

matrix matching e.t.c. with 'traditional' multivariate calibration techniques, e.g. 

multivariate calibration using individual analyte and matrix lines. 

2 To develop a methodology for utilising a full segmented ICP-AES spectrum using 

multivariate techniques coupled to variable selection and to transfer this 

methodology to complex industrial samples. 

3 To assess multivariate model-transferability over time by using multivariate signal 

transformation techniques. 

4 To develop a technique capable of estimating test sample confidence intervals 

using parameters from a multivariate model. 
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C H A P T E R 2 - I N V E S T I G A T I O N O F I N T E R F E R E N C E S IN I C P - A E S 

USING I N T E R E L E M E N T C O R R E C T I O N 

2.1 Introduction 

Interferences caused by partial or direct spectral overlap can result in incorrect estimates of 

concentration. These are primarily the result of interferences from other chemical elements 

in the sample or structured molecular interference formed by plasma-sample interactions. 

The magnitude of these interferences is an important consideration when any method of 

calibration is performed. Hence, the nature and extent of expected spectral interferences 

within a synthetic autocatalyst sample, and their influence on the use of interelement 

correction factors was investigated in order to provide a baseline study and rationale for the 

subsequent investigation of univariate and multivariate calibration. 

2.2 Experimental 

2.2.1 Instrumentation and Reagents 

Al l data were collected using a simultaneous echelle-based inductively coupled 

plasma atomic emission spectrometer (Perkin-Elmer Optima 3000 ICP, Norwalk, USA) 

equipped with a segmented-charge-coupled array detection (SCCD) system. Instrumental 

operating conditions were optimised using simplex optimisation and are given in Table 2.1. 

Simplex optimisation (44) was used in this work to optimise plasma gas, auxiliary gas, 

viewing height and power. The optimisation procedure was performed for a 1 jig ml'* Pt 

standard, measuring the emission at 214.423 nm, the figure of merit for the optimisation 

being the limit of detection (LOD). The simplex routine used was programmed in-house and 
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was of variable-simplex construction, thus allowing the limit of detection (LOD"') (simplex 

programmed to find response surface maximum) to be found more quickly and accurately 

compared to the non-variable simplex design. Because of the potentially high solid content 

of the acid-digest and fusion samples, a wide bore injector tube (2.5 mm) was used, resulting 

in an optimised nebuliser gas flow rate of 0.93 1 min"'. 

Single and multielement solutions were prepared by serial dilution of ultra-pure 

stock standards (10,000 and 1000 (ig ml"', Johnson Matthey pic, Royston, Hertfordshire). 

Water was double deionised, (18 M Q quality) and acids were of Aristar grade (Merk-

BDH, Poole, Dorset). A l l glassware was acid washed in 10 % v/v nitric acid for 24 hours 

then rinsed thoroughly with 18 MQ water. A l l plasticware was metal-free high-density 

polypropylene (Anachem, Luton, Bedfordshire). Calibration and test solutions containing 

varying concentrations of Pt, Pd, Rh, AI , Mg, Ce, Zr and Ba, were prepared from the stock 

solutions and stored in high-density polypropylene tubes. 

Table 2.1 'Simplex' Optimised instrumental (Optima 3000) parameters used for the 
collection of all data. 

Nebuliser gas flow (1 min"') 

Auxiliary gas flow (1 min"') 

Plasma gas flow (I min"') 

Viewing height above the load coil (mm) 

Power (W) 

Spray chamber 

Nebuliser 

Injector diameter (mm) 

Resolution Mode (nm pixel"') 

Read time/ integration time (s) 

Sample uptake (ml min"') 

0.93 

0.5 

16 

9 (IRZ/NAZ) 

1286 

Ryton, double-pass 

Seaspray, glass 
concentric 

2.5 

High (0.01) 

3/0.2 

1.75 
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2.2.2 Procedure 

The calculation of interelement correction factors can be summarised as follows: 

i) The instrument is calibrated for a specific analyte at a specific wavelength (e.g. Ft 

214.423 nm with two-point background correction using a zero and a top standard 

equal to the expected maximum in the unknown samples). 

ii) A 1000 |ig ml ' solution of the interferent element (e.g. Al) is aspirated while 

monitoring the peak wavelength and background signals for the analyte element 

(e.g. Pt 214.423 nm) 

iii) The apparent concentration of the analyte element (Pt) is calculated using the 

calibration curve and the apparent background corrected Pt signal due to the A l 

interference. 

iv) A blank solution (matrix of the Pt standard minus Pt, e.g. double deionised 18 M Q 

water) is analysed and the apparent Pt concentration is calculated in the same way 

as iii above. I f the interferent solution and ftiture standards are matrix matched then 

the apparent blank Pi concentration is not needed. 

v) The correction factor (F) is calculated by dividing the apparent analyte 

concentration by the concentration of the interfering element (1000 (ig ml ' ' in this 

case). 

vi) When a sample is analysed the concentration of the interfering element {Alconc) is 

determined as part of the analysis in the usual way, and this value is multiplied by 

the correction factor (F) to obtain the corrected value which must be subtracted 

from the uncorrected concentration of the analyte (Ptuncorr) in order to obtain the 

corrected value {Ptcorr)- Mathematically this process can be described by Eqn. 2.1: 

^^corr = Ptuncorr ' ( ^ ^ A l ) Eqn. 2. 1 
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Equation 2.1 can be changed (Eqn. 2.2) so as to accommodate multiple interferents. 

Pi.orr=PLncorr-i:(F,^IJ Eqn. 2.2 
1=1 

where F/ and //c are the ith correction factor and ith interferent contributing to the apparent 

Pt signal. Correction factors calculated in this way will be specific to a particular 

instrument and subject to change over time. The above procedure (steps i - vi) was 

performed on those analyte lines and interferents listed in Table 2.2. 

Table 2.2 Analytes and interferents used in lEC study 

Analyte line (nm) Interferents 

Pt 265.945 Mg,Ce,Zr 
Pt 193.700 Mg,Ce,Zr 
Pt 204.937 Mg, Ce, Zr 
Pd 248.892 Mg, Ce, Zr 
Pd 363.470 Mg,Ce,Zr 
Rh 343.489 Mg, Ce, Zr 

These particular analyte lines and interferents were chosen to represent a broad range of 

interference types including direct and partial spectral overlap and background shift. 

2.3 Results and Discussion 

2.3.1 Positioning of Background Correction Points 

Before inierelemeni correction factors can be calculated it is first necessary to ensure 

correct integration of the analytical lines. This is only possible with the correct positioning 
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of background correction points as shown in Figure 2.1. Incorrect positioning of the BCPs 

(BC1-BC3, dashed line) would omit integration of the hatched area under the peak thus 

resulting in an incorrect peak area. The presence of interferents can further complicate the 

positioning of the BCPs as can be seen in Fig. 2.2 where the interferent has caused the 

shifting of the BCP to a new position (original position obtained from pure analyte solution 

spectra). The new BCP position wil l be dependent on both the position of the interferent 

peak and also the peak intensity (i.e. interferent concentration). Incorrect positioning of the 

BCPs (Fig. 2.3, BCPs 3 and 4) can also result in negative net intensities. Hence, the 

presence of neighbouring interferents must be taken into account when positioning the 

BCPs which is only possible when the sample composition is well characterised. 

" 0.6 

3 0.5 
•D 

S 0.3 

10 15 20 
Wavelength nm {arbitrafy units) 

25 30 

Figure 2.1 Schematic of correct background correction point (BCP) positioning (BCl 
BC2) and incorrect BCP positioning (BC1-BCP3) 
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Figure 2.2 Schematic of correct background correction point (BCP) positioning and 
incorrect BCP positioning caused by a neighbouring interferent. 

2 0.6 

S 0-3 

10 15 20 
Wavelength nm (arbitrary units) 

25 30 

Figure 2.3 Schematic of incorrect background correction point (BCP) positioning ( BCPs 3 
and 4) causing a negative net intensity. 
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Background effects are illustrated by observing the analyte lines Pt (20 ml"') at 265.945 

nm (Fig.2.4) and Pt at 193.700 nm (Fig. 2.5) with the interferents Mg, Ce and Zr (500 ̂ ig 

ml ' ) . The interference experienced by Pt at 265.945 nm is a simple background shift 

which is easily corrected for by examining a mixed solution of Pt and M g and positioning 

two BCPs accordingly (Fig. 2.4). In terms of calibration this is an adequate correction 

provided that ftiture samples contain no other interferents that show significant signal 

intensity at this wavelength. 

A more complicated background shift and spectral interference is experienced by Pt 

at 193.700 nm with the addition of Mg, Ce and Zr. Here, the background shift is combined 

with partial spectral overlap from Ce on the left and Zr on the right (Fig. 2.5). The addition 

of two BCPs will provide adequate correction for these interferences, but as in the last 

case, any additional interferents not compensated for by the inclusion of the BCPs wi l l lead 

to incorrect calibration results. As can be seen from Fig. 2,5a, i f the Ce peak were 

positioned directly under the Pt line at 193.680 nm then it would be impossible to assign 

BCP's, because the Pt signal would be the sum of Pt + Ce (i.e. direct spectral overlap). 
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120 
265:888 0 0 2 

wavelength (nm) 

Figure 2.4a Spectra of Pt (20 ng/ml) at 265.945 nm with the interferent M g (500 ^g ml"') 
overlaid showing BCPs positioned using a pure Pt solution. 

c p s 

265:888 002 

wavelength (nm) 

Figure 2.4b Spectra of Pi (20 ^ig/ml) at 265.945 nm with the interferent M g (500 ^g ml"') 
showing BCPs positioned using a mixed Pt + Mg solution. 
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c p s 

1931654 193:738 
wavelength (nm) 

Figure 2.5a Spectra of Pt (20 \ig/m\) at 193.700 nm with the interferents Mg, Ce and Zr 
(500 |jg ml"') overlaid showing BCPs positioned using a pure Pt solution. 

260 

c p s 

80 
193:654 

5CP 

193:738 
wavelength (nm) 

Figure 2.5b Spectra of Pt (20 ng/ml) at 193.700 nm with the interferent Mg, Ce and Zr 
(500 |ig ml ') showing BCPs positioned using a mixed Pt + Mg + Ce + Zr solution. 

61 



2.3.2 Effect of Interferent Correction on l E C Factors 

To study the effect of increasing interferent contribution on the magnitude of the 

I EC factors, the factors were calculated for a number of analyte elements in the presence of 

varying concentrations of several different matrix elements. Results shown in Fig 2.6 and 

Table 2.3, summarising the effect of Mg on the Pt 265.945 nm line, are typical of those 

obtained. As can be seen, the lEC factor increased (i.e. became less negative) as the 

concentration of Mg increased from 500 to 2500 |ig ml"'. Examination of the equation used 

to calculate the lEC factor (Eqn. 2.1) would lead one to expect that it would remain 

constant regardless of the concentration of Mg, This would be so providing that the 

interference caused by Mg on the Pt 265.945 nm line was linearly additive in nature, 

however, this was evidently not the case as can be seen in Fig 2.6. 

Table 2,3 Apparent analyte concentration (Pt 265.945 nm) and lEC factor calculation as a 
function of interferent concentration (Mg). BCP's positioned using Pt solution. 

Apparant 
Interferent analyte 

Calculation 
concentration concentration o f lEC 

(|ig/ml) (^ig/ml) factor lEC factor 

500 -2.91 -2.9/500 -0.0058 
1000 -3.43 -3.4/1000 -0.0034 
1500 -3.71 -3.7/1500 -0.0025 
2000 -3.92 -3.9/2000 -0.0020 
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Figure 2.6 The effect of increasing Mg concentration on the determination of the lEC 
factor at Pt 265.945 nm (errors bars indicate 3 x a o f signal intensity) 

The positioning of the BCPs shown in Fig. 2.7 was effected by aspirating a pure Pt 

solution (20|ig ml' ') , however on aspiration of the interferent Mg solution (Fig. 2.8) it 

becomes obvious that the positioning of the BCPs leads to the erroneous results shown in 

Fig 2.2 and Table 2.3 providing one takes into account how the instrument software 

integrates the peak areas (Figs 2.1 - 2.3). As can be seen in Fig. 2.8, the original positions 

of the BCPs (position 1) resulted in an integrated area indicated by the single hatched area 

which was calculated as a negative value resulting in negative values for the lEC factors. 

As the concentration of Mg was increased the negative apparent concentration increased, 

but at a lower rate than the increase in Mg, thereby leading to an apparent increase in the 

magnitude of the I EC factor (Table 2.3). However, the actual interference caused by Mg on 

Pi 265.945 is shown by the double-hatched area in Fig. 2.8, which was correctly integrated 

when the BCPs were altered to position 2, which resulted in the lEC factors shown in Fig 

2.10 and Table 2.3. The correct positioning of BCPs can, therefore, only be accomplished 

when all of the interferents are known, as shown in Fig 2.9b. Figure 2.9a shows how the 
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Figure 2.7 Spectrum of Pt 265.945 nm (20 ^ig ml**), showing positions of background 
correction points B l and B2. 
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Figure 2.8 Spectra of Mg (500 ^ig ml"') at 265.945 nm (BCPs positioned using a Mg 
solution). 
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BCPs are positioned using only a pure Pt (20 j ig ml"') solution, whereas Fig. 2.9b shows 

the BCP positions using a mixed solution of Pt (jig ml*') and the suspected interferent Mg 

(500 | ig ml"'). Only using Pt, when positioning the BCPs, has resulted in the integration of 

two areas either side of the Pt 265.945 nm peak (hatched) which are integrated as negative 

intensities (Fig. 2.9a). These are subsequently subtracted form the hatched area, which 

represents the majority of the Pt 265.945 nm peak. However, the use of a mixed Pt and Mg 

solution has given BCPs which give the correct integrated intensity (Fig. 2.9b). 

cps 

265:888 266:002 
wavelength (nm) 

Figure 2.9a Spectrum of Pt (20 pg ml ') + Mg (500 ^g/ml) at 265.945 nm (BCPs 
positioned according using a Pt solution). 
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Figure 2.9b Spectrum of Pt (20 Mg ml' ' ) + Mg (500 ^g/ml) at 265.945 nm (BCPs 
positioned using a mixed Pt + Mg solution). 
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Figure 2.10 The effect of increasing Mg concentration on the determination of the lEC 
factor at Pt 265.945 nm (errors bars indicate 3x a of signal intensity) 

Even with the correct positioning of the BCPs the lEC factors still varied with 

concentration of Mg, however, in ihis case they were all positive due to the BCP 

positioning taking into consideration the presence of the interfering Mg line, thus resulting 

in positive apparent analyte concentrations at Pt 265.945 nm (Table 2.4). The non-linear 
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additive behaviour of the interfering signal is probably a combination of several processes 

including changes in nebulisation efficiency, ionisation suppression and energy transfer 

processes due to the introduction of increasing amounts of Mg. 

Table 2.4 Apparent analyte concentration (Pt 265.945 nm) and lEC factor calculation as a 
function of interferent concentration (Mg). BCPs positioned using Pt + Mg solution. 

Apparant 
Interferent analyte Calculation 

concentration concentration of I EC 
(Hg/mi) (Mg/ml) factor lEC factor 

500 2.01 2.01/500 0.0039 
1000 2.30 2.30/1000 0.0022 
1500 2.50 2.50/1500 0.0016 
2000 2.69 2.69/2000 0.0013 

2,3.3 Additivity of lEC Factor 

This discussion wi l l look at the additivily of lEC factors where the BCPs have been 

positioned using pure analyte solutions as this is the most common method of positioning. 

In general, lEC factors are calculated separately for each interfering element then 

subsequently summed in order to derive an overall lEC factor (Eqn. 2.2) for the interfering 

elements present in a particular matrix. However, this assumes that lEC factors, which are 

determined independently are additive in nature. As has been shown in the previous section 

the lEC factors can change depending on the concentration of the interferent element that 

was used to determine it, so it is possible that the assumption of additivity is not valid. 
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In order to test this hypothesis lEC factors were calculated by summing individual 

factors for different interferents and also by determining the lEC factors using a mixed 

solution of the interfering elements in question. Results are shown in Tables 2.5 and 2.6 

and Figs. 2.11 and 2.12, from which two main conclusions can be drawn. 

The first concerns the precision of the two types of lEC factors. For example, at Pd 

363.470 nm (Pd) with interferents Mg and Zr, the lEC factor for the mixed interferent 

solution was -0.0036 and the sum of the individual lEC factors for these interferents was -

0.0037 (Table 2.5 and Fig. 2.11). The errors (1 x a ) were ±0.0003 and ±0.0007 for the 

mixed interferenl solution and summed lEC factor solutions respectively. However, some 

combinations yielded much worse results in terms of precision. Pt 265.945 nm with a 

mixed inierferent solution of Ce and Zr gave an lEC factor of, -0.0014, and -0.0015 by 

summing the individual lEC factors but with a corresponding error of ±0.0024 compared 

to ± 0.0001 (Table 2.5 and Fig. 2.11). This would be expected i f one of the interferenls had 

a particularly low signal at the analyte line of interest, and in this particular case the lower 

signal was due to Ce (240 cps) compared to Zr and Pt (360 and 3000 cps respectively). In 

comparison, for the mixed interferent solution, the low intensity signal was combined with 

the other interferent signals resulting in a higher overall signal which was less prone to 

error. Hence, it may be beneficial in cases where there are multiple interferents to calculate 

lEC factors with mixed solutions to compensate for this. 
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Table 2.5 lEC additivity and the effect on lEC factor precision. 

Mixed Sol'n 
(Mg + Ce 

500 Mg/ml) Mg Ce Summed 
Element Line (nm) lEC Factor SD lEC Factor lEC Factor FEC Factor SD 

Pt 193.700 0.0010 0.0005 -0.0002 0.0010 0.0008 0.0010 
Pt 204.937 0.0005 0.0006 -0.0006 0.0009 0.0003 0.0008 
Pt 265.945 -0.0070 0.0001 -0.0058 -0.0015 -0.0073 0,0003 
Pd 248.892 -0.0007 0.0002 -0.0005 -0.0004 -0.0010 0.0005 
Pd 363.470 0.0003 0.0000 -0.0001 0.0004 0.0003 0.0000 
Rh 343.489 -0.0122 0.0001 0.0000 -0.0129 -0.0129 0.0037 

Mixed Sol'n 
(Ce + Zr 

500 Mg/ml) Ce Zr Summed 
Element Line (nm) lEC Factor SD lEC Factor FEC Factor lEC Factor SD 

Pt 193.700 0.0000 0.0005 0.0010 -0.0011 -0.0001 0.0000 
Pt 204.937 0.0006 0.0009 0.0009 -0.0006 0.0003 0.0005 
Pt 265.945 -0.0014 0.0001 -0.0015 0.0000 -0.0015 0.0024 
Pd 248.892 -0.0004 0.0001 -0.0004 -0.0003 -0.0007 0.0005 
Pd 363.470 -0.0032 0.0009 0.0004 -0.0036 -0.0032 0.0006 
Rh 343.489 -0.0126 0.0001 -0.0129 0.0000 -0.0129 0.0131 

Mixed Sol'n 
(Mg + Zr 

500 ng/ml) Mg Zr Summed 
Element Line (nm) lEC Factor SD lEC Factor lEC Factor l E C Factor SD 

Pt 193.700 -0.0013 0.0004 -0.0002 -0.0011 -0.0013 0.0015 
Pt 204.937 0.0005 0.0007 -0.0006 -0.0006 -0.0012 0.0029 
Pt 265.945 -0.0055 0.0001 -0.0058 0.0000 -0.0058 0.0094 
Pd 248.892 -0.0005 0.0003 -0.0005 -0.0003 -0.0008 0.0007 
Pd 363.470 -0.0036 0.0003 -0.0001 -0.0036 -0.0037 0.0007 
Rh 343.489 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

Mixed Sol'n 
(Mg + Zr + Ce 

500 Mg/ml) Mg Zr Ce Summed 
Element Line (nm) lEC Factor SD lEC Factor lEC Factor lEC Factor l E C Factor SD 

Pt 193.700 0.00001 0.00048 -0.00022 -0.00111 0.00103 -0.00030 0.00125 
Pt 204.937 -0.00032 0.00227 -0.00056 -0.00061 0.00086 -0.00030 0.00244 
Pt 265.945 -0.00668 0.00015 -0.00582 0.00004 -0.00149 -0.00727 0.00243 
Pd 248.892 -0.00064 0.00022 -0.00052 -0.00029 -0.00045 -0.00127 0.00039 
Pd 363.470 -0.00317 0.00203 -0.00013 -0.00361 0.00040 -0.00334 0.00007 
Rh 343.489 -0.01205 0.00011 0.00004 0.00002 -0.01292 -0.01286 0.01362 

SD Standard deviation 
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Figure 2.11 lEC additivity and precision 
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Table 2.6 lEC additivity and analyte prediction accuracy 

Pt + Mg 

Actual Uncorrected Corrected 
Analyte lines concentration concentration concentration 

Uncorrected % 
Accuracy 

Corrected % 
Accuracy 

Pt 193.700 
Pt 204.937 
Pt 265.945 
Pd 363.470 
Pd 248.892 

20 
20 
20 
20 
20 

19.82 
19.61 
16.71 
19.30 
18.90 

19.93 
19.89 
19.62 
19.37 
19.17 

-0.9! 
-1.97 
16.45 
•3.48 
•5.48 

•0.36 
•0.56 
•1.89 
•3.16 
•4.17 

Pt + Mg -f Zr -fCe 

Actual 
concentration 

Uncorrected 
concentration 

Corrected 
concentration 

Uncorrected % 
Accuracy 

Corrected % 
Accuracy 

Pt 193.700 
Pt 204.937 
Pt 265.945 
Pd 363.470 
Pd 248.892 

20 
20 
20 
20 
20 

18.91 
19.05 
15.12 
17.16 
17.87 

18.91 
19.06 
15.23 
17.22 
17.88 

-5.43 
-4.74 

-24.38 
-14.19 
-10.66 

-5.43 
-4.71 

-23.87 
-13.92 
-10.61 
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The affects of lEC additivity, using mixed solution lEC factors, on the accuracy of 

predicted analyte concentrations are shown in Table 2.6 and Fig. 2.12. A n inverse trend 

was obser\'ed where the % accuracy became worse with an increase in solution 

complexity. This was observed for all the analyte lines studied. For Pd at 248.892 nm with 

Mg as the only interferent the corrected predicted concentration % accuracy was - 4.2%, 

whereas in a solution with Mg, Ce, and Zr, the % accuracy fell to 10.66%. The largest 

decrease in accuracy was for Pt 265.945 nm from -1.89 % with only Mg as the only 

interferent to -23.87 % when Mg, Ce and Zr were the interferents. From Table 2.6 it would 

appear that as the number of interferents increases the ability of the method to eliminate 

the interferences decreases, i.e. because the BCPs were assigned using pure analyte 

solutions the decrease in accuracy may be due to the increased number of interferents 

which have altered the BCPs position. However, this effect may also be the result of matrix 

suppression which the use of lEC factors cannot compensate for, or a combination of both 

of the above. 

2.4 Conclusions 

For the synthetic samples investigated the interferences ranged from relatively 

simple background shifts which were easily corrected for, to more complex spectral 

overlaps which cannot be corrected for using lEC factors. Generally, the number and 

nature of interferents has been shown to affect the accuracy and precision of lEC factors, 

with accurate prediction only possible with the correct positioning of the BCPs, which 

requires a priori sample knowledge, or when matrix effects are minimal. The contribution 

to the anal>le signal by a relatively small interference can lead to a degradation in 

precision of the lEC factor compared to the use of a mixed solution containing the same 

73 



inlerferents. The major disadvantage of this method of background correction, the 

positioning of the BCPs, has served to illustrate the complexity of PGM emission spectra 

and also the large range of intensities from several hundred to several thousand cps. 
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C H A P T E R 3 - U N I V A R I A T E C A L I B R A T I O N AND P R E L I M I N A R Y 

COMPARISON W I T H P A R T I A L L E A S T S Q U A R E S 

3.1 Introduction 

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) is now 

well established as a powerful technique for multielement analysis(4), but can suffer from 

both spectral and non-spectral interferences which limit the accuracy, repeatability and 

reproducibility of the information obtained. The nature of the interference is often complex 

and it is not always possible to apply the required corrections in order to achieve accurate 

and precise analysis. In contrast, the information obtained by molecular spectroscopic 

techniques has been greatly enhanced by the application of data handling tools by the 

removal of redundant information and the concurrent decrease in model bias (58-60, 78, 

86,87,111-114). 

Traditionally, for quantitative analysis in atomic spectroscopy, a single spectral line 

is chosen, based upon the criteria of line sensitivity and freedom from spectral 

interferences. Many attempts have been made to correct for spectral interferences in ICP-

AES, including standard additions, matrix matching, inter-element correction, and 

optimisation of line selection. However, these methods suffer from serious limitations 

when a sample with a complex matrix is presented for analysis. For example, the use of 

interelement correction factors requires interferent lines that can be used in a univariate 

fashion to determine the concentration of the interferents themselves, which is not always 

possible with complex samples. 

The use of chemometric approaches to correct for interferences in ICP-AES has 

emerged as an attractive alternative and various multivariate calibration techniques have 
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been proposed. In the mid 1960s, computerised instrumental methods of chemical analysis 

began to generate very large amounts of data. This gave rise to the so-called "data 

explosion" in analytical chemistry. Previous to this, chemists had based their decisions on 

only a few, hard-won, expensive pieces of data. Now they had to base their decisions on 

vast amounts of easily obtained, inexpensive data. In an attempt to make sense of all of this 

data, and extract only useful, relevant information, chemists began to use increasingly 

sophisticated mathematical and statistical techniques borrowed from other disciplines. 

Chemometrics can be defined in the following manner: 

Chemometrics is the chemical discipline that uses mathematical and statistical 

methods, 

to design or select optimal measurement procedures and experiments, and 

to provide maximum chemical information by analysing chemical data 

(115). 

The use of chemometrics in mainstream analytical chemistry first became apparent in the 

early 1970s with the introduction of a number of new mathematical techniques, such as 

pattern recognition and multivariate statistics (116). The term Chemometrics was proposed 

by the Swedish physical organic chemist Svante Wold and the American analytical chemist 

Bruce R. Kowalski, as a generic name for the discipline of chemistry in which 

mathematical and statistical techniques are used for the purposes of optimising 

experimental design and maximising the information obtainable from analytical data (117, 

118). Two years later Wold formed the Chemometrics society in association with Bruce R. 

Kowalski, in order to provide an international forum for chemists applying formal logic to 

chemical analysis. Since this time, chemometrics has expanded into a very prominent area 

of chemical research with two specialist journals (Journal of Chemometrics, Elsevier; 
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Chemometrics and Intelligent Laboratory Systems, Wiley) dedicated to the progression of 

this field. 

One of the most important applications in the field of analytical chemistry is 

multivariate calibration (48, 119), which can be applied to the quantification of single or 

multiple analytes when more than one data point is collected for each variable (i.e. 

multivariate data).This is particularly appropriate in the case of multiwavelength 

spectroscopic techniques, such as ICP-AES. 

In this study multivariate calibration is compared to traditional univariate 

calibration with interelement correction and matrix matching for the determination of 

platinum group metals in autocatalyst digests. The multivariate models were built using 

intensity data for 248 lines which included the most intense Pt, Pd and Rh lines and many 

of the most intense matrix lines as opposed to using the full spectrum which is dealt with in 

a later section. 

One requirement of multivariate methods is that the factor space defined by the 

multi-element standards used for model calibration encompasses all likely constituents 

(analytes and inierferents) and concentrations of the real sample matrices. To ensure that 

this requirement is met it is necessary to acquire data for the multivariate calibration model 

using an appropriate experimental design, such as orthogonal arrays, or historical data for 

which accurate analyte concentrations are available. 

3.1.1 Orthogonal Arrays and Fractional Factorial Experimental Designs 

In mixture experiments it is essential that the elements are uniformly distributed 

over the 'mixture space', thereby giving a balanced element concentration distribution 

(composition), a condition which is often overlooked resulting in poor predictions and 
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unbalanced designs. This is why features such as orthogonality (element vectors at right 

angles to each other, Fig. 3.1) are extremely important i f a good model is to be achieved. 

When two factors (relating to the concentration of two compounds) have a correlation 

coefficient of 0 this is equivalent to stating that both span each other's mixture space 

evenly (Fig. 3.1), and hence that the design is balanced and predictions wi l l depend only on 

the distance from the centre of the design (120). 

The problem of constructing such a multilevel orthogonal design involves the 

theory of orthogonal arrays (120). According to this theory, i f / is the number of levels, in 

order to produce an orthogonal design (e.g. / = 5 ) the minimum number o f experiments (AO 

is equal to N=l^ ( i.e. 25) and the maximum number of factors (elements) permitted is A^-l 

(i.e. 24), but generally only (A^-1)/(/-!) (i.e.6) of the calibration experiments are mutually 

orthogonal. Adherence to the mathematical constraints of the orthogonal array design 

consisting of 49 experiments, 7 levels, and 8 factors used later in this section are shown in 

Table 3.1. Although this is true for two to four-level designs, special circumstances allow 

up to 12 factors to be mutually orthogonal for five-level designs. It is therefore possible to 

construct a 25x12 design matrix in which each pair of columns has a correlation coefficient 

equal to 0. 
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Figure 3.1 Example of a 5 level (-0.4 ,-0.2, 0, 0.2, 0.4) balanced and unbalanced design. 
The factors in the balanced design are mutually orthogonal => perpendicular => their 

correlation coefficient is zero equivalent to stating that the factors span each others mixture 
space evenly. Note that in the case of the unbalanced design the correlation coefficient ^ 0, 

a pattern in the data exists. 

Table 3.1 Number of mutually orthogonal factors possible with 25 and 49 experiments 

No. of experiments {N= l^) 
25 experiments 49 experiments 

No. of mutually orthogonal 
factors 

25 = 5̂  49 = 7^ 

1. (A^- l ) / ( / - l ) u p t o / = 4 

2. (A'-l) not all are mutually 
orthogonal 

(1. Plackett-Burman 
methodology) 

(2. Methodology according to 
Brereton (120)) 

25 - I / 5 - 1 = 6 
( 12 for / > 4 ) 

24 

49 - 1 / 7 - 1 = 8 

49- 1= 48 
(16 factors mutually 

orthogonal) 
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In order to construct an orthogonal array several steps are required. A generalised 

treatment is given below. The five levels wi l l be represented by -0.4 ,-0.2, 0, 0.2 and 0.4 

respectively, representing five equally spaced concentrations, the central one coded by the 

figure 0. Twenty five experiments are necessary and up to 24 possible factors can be 

included in the design. 

The first step is to select the so called repeater level, this is preferably the central level 

which allows more than six mutually orthogonal factors. This is the level at which the first 

calibration experiment is performed for all the factors (elements). The next step is to 

produce a cyclic generator for the remaining four levels. One possible generator can be of 

the form - 2 - > - l ->2-> 1 ^ - 2 , i f the repeater level is 0 as is illustrated in Figure 3.2. Thus 

i f we denote the levels a, b, c, d the cyclic generator converts aio b,b to c, c to d and d to 

a. The key is to generate the first column of the design matrix, after which all other 

columns can be generated. The 25 experiments in the first column can be divided into four 

sets of five experiments and five unique experiments (at the level o f the repeater) as 

illustrated in Fig. 3.2. 

- 2 

/ 
1 - 1 

Fig. 3 Possible cyclic generator for a five-level design. 

Figure 3.2 Arrangement of experiments in the first column of a five-level design. 
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The four ( M ) blocks of five experiments are determined by the first block of five 

experiments as follows. The levels in each block are cyclically shifted firom the previous 

block by one (clockwise), using the cyclic generator (e.g. level -0.4 is shifted to level -

0.2). This cycling ensures that each level is represented five times over the 25 experiments. 

So that each individual element is measured at each of the five concentration levels five 

times, an important prerequisite for an orthogonal design. Thus it is possible to determine 

the overall design. The next, and most difficult aspect, is to establish which combinations 

of levels are possible for the first block of five experiments (starting vector) in column 1 

and how to choose a feasible cyclic generator, both of which are described in detail by 

Brereton (120). As a result, there are only two possible cyclic generators that are capable 

of generating twelve uncorrected factors: -2->-l->2—>1—>2 and -2—> 1 —>2->-l —>-2 

and three possible starting vectors: [-2, -2, 2, -1,2]; [-2,-1,-2, 2, 2] and [-2,2, 2, 1, 2]. 

The major advantage of the orthogonal array is cost efficiency. In the above 

example only 25 calibration experiments are required to study 12 factors at 5 levels. A fijll 

factorial design studying the same numbers of factors and levels would require 244x10^ 

experiments, (experiments = / ) . Generally, full factorial designs are only useful where the 

number of factors is relatively limited (121). Such arrays, therefore, allow the mixture 

space to be covered in an orthogonal manner, with a minimum number of runs in the 

experiment. Latin square, 2**(k-p) fractional factorial, Plackett-Burman (in particular), 

and Box-Behnken designs are also aimed at accomplishing this goal. In fact, many of the 

standard orthogonal arrays tabulated by Taguchi (122) are identical to many of the more 

established designs, such as the fractional two-level factorial and Plackett-Burman 

designs. However, many of these well established designs are available at only two levels 

and in multivariate calibration especially several concentration levels must be used. 
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3.2 Experimental 

3.2.1 Instrumentation and Reagents 

Al l data were collected using a simultaneous echelle inductively coupled plasma 

atomic emission spectrometer (Perkin-Elmer Optima 3000 ICP, Norwalk, USA) equipped 

with a segmented-charge-coupled array detection system (123, 124). Instrumental 

operating conditions were optimised using simplex optimisation and are given in Table 2.1 

Chapter 2., section 2.3.1. 

Single and multielement solutions were prepared by serial dilution of ultra-pure 

stock standards (10,000 and 1000 fig ml*', Johnson Matthey pic, Royston, Hertfordshire). 

Water was double deionised (18 MQ quality) and acids were of Aristar grade (Merk-BDH, 

Poole, Dorset). A l l glassware was acid washed in 10 % v/v nitric acid for 24 hours then 

rinsed thoroughly with 18 MQ water. A l l plasticware was metal-free high-density 

polypropylene (Anachem, Luton, Bedfordshire). Calibration and test solutions containing 

varying concentrations of Pt, Pd, Rh, A l , Mg, Ce, Zr and Ba, plus the internal standards In, 

Sc and Y were prepared from the stock solutions and stored in high-density polypropylene 

lubes. Digests of autocatalyst samples (Johnson Matthey pic, Royston, Hertfordshire) 

which had been validated by comparison with a NiS fire assay, were used for method 

validation. 
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3.2.2 Procedure 

3.2.2.1 Univariate Calibration 

Univariate calibration was performed by two point calibration using a zero standard 

containing 10% v/v aqua regia (3:1 HCI:HN03) and a single element calibration solution 

for each analyte at the concentrations expected in the samples (i.e. Pt 50 | i g ml'*, Pd 50 jig 

mi"', Rh 10 |ig ml ' ' . A calibration graph was prepared using the net integrated peak areas 

(obtained using 2 point background correction) for the analyte lines (Pt 214.423 nm, Pd 

248.892 nm and Rh 343.489 nm) and the concentrations of the analytes in the samples 

were determined by interpolation. 

3.2.2.2 Intcrclement Correction ( lEC) 

Interelement correction factors for each of the suspected interfering elements were 

determined. A calibration graph was first constructed in the usual way, and solutions of the 

suspected interferents, (1000 | ig ml "), were aspirated while monitoring the analyte line(s) 

of interest. The apparent analyle concentration was then determined at the line of interest, 

and an l E C factor calculated by dividing the apparent analyte concentration at that 

particular wavelength by the interferent concentration. Eqn. 3.1 was then applied to obtain 

the corrected analyte concentration. 

Q = C „ - X ( ^ . . 4 ) Eqn. 3.1 

Where Cu, Cc, Fi and lie are the uncorrected analyte concentration, corrected analyte 

concentration, l E C factor, and interferent concentration respectively for each interfering 

element, /. 
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3.2.2.3 Matrix Matched Calibration 

Calibration was carried out using a zero standard containing 10% v/v aqua regia 

(3:1 HC1:HN03) and In, Sc and Y at concentrations of 50, 25 and 25 \ig ml"' and with A l 

and Mg at 1000 and 500 jig ml ' ' respectively. A multi-element calibration solution 

containing each element at the concentrations expected in the samples (i.e. Pt 40 \ig m\'\ 

Pd 40 |ig n\\'\ Rh 10 ^g mV\ Al 1000 | ig ml ' ' , Mg 500 |ig ml"', Ce 300 ^ig ml"*, Zr 100 

|ig ml ' ' , Ba 25 ^g ml*', and the internal standards In 50 | ig ml"', Sc 30 ^ig ml"' and Y 30 fig 

ml*') was also used. The internal standards were included in the solutions but were 

subsequently not used in any of the calibrations due interferences form other elements. The 

calibration standard contained both the analyte and matrix elements at the highest 

concentrations expected in the autocatalyst matrix. The composition o f these matrix-

matched standards is given in Table 3.2. 

3.2.2.4 Multivariate Calibration 

Prior to ICP-AES analysis all calibration and independent test samples were randomised to 

prevent any instrumental bias from affecting subsequent models. Several multivariate-

modelling algorithms were studied, including Principal Components Regression, Partial 

Least Squares 1 and 2, and Multiple Linear Regression Analysis, using Matlab Software 

Version 5.0, and the PLS_Toolbox 2.0 (Mathworks Inc.). Of these four techniques PLSl 

gave the best predictive results and only those are reported here. A l l data were mean 

centred, and flill-set random cross validation was used throughout this work to minimise 

systematic error in forming the models. 

The root mean square of cross-validation (RRMSECV, the equation for which is 

given in Eqn. 3.2) is a measure of the models ability to predict new samples and consists of 
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leaving out one calibration sample from the calibration set, building the model on the 

remaining calibration samples, then predicting the value for the left out calibration sample 

and computing the prediction residuals. The process is repeated until all calibration 

samples have been left out once; then all prediction residuals are combined to compute the 

root mean square of cross-validation. To assess the model fit to the calibration data the root 

mean square error of calibration (RMSEC) value was used. The format is the same as that 

used in Eqn. 3.2 except that y are the values of the predicted variables when all calibration 

samples are left included in the model. 

RMSECV = ' Eqn. 3.2 
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Table 3.2 Concentrations (fig ml"') of the standards for the matrix matched 
calibration. 

Mixed 
calibration 
standard 

Zero standard Calibration 
standard 

0 40 

Pd' 0 40 

Rh' 0 10 

Ba" 0 25 

Ce*̂  0 300 

Zr'' 0 100 

In^ 50 50 

Sĉ  25 25 

25 25 

1000 1000 

500 500 
'analyte, matrix element, internal standard 

3.2.2.5 Estimation of Errors 

The errors of prediction relative to the known values, for individual test solutions 

and autocatalysl samples, were compared using relative standard error (RSE) values, 

calculated as shown in Eqn. 3.3: 

RSE(%) = lOOx^-^' ^ '^ Eqn.3.3 
y. 

The overall efficacy of the different calibration methods was compared 

using the relative root mean square error (RRMSE), defined in Eqn. 3.4, which gives a 

general idea of the error of prediction for a range of concentrations: 
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RRMSE(%) = lOOx ! [Z(->̂ ' Eqn. 3.4 
mean{y) V 

where y is the known concentration, y is the predicted concentration, and N is the number 

of experiments. 

3.2.2.6 Experimental Design 

In a working laboratory it is desirable to maximise the time spent analysing 

samples compared to the calibration step. Traditionally, multivariate calibration datasets 

have been acquired using experimental designs based on a factorial or partial factorial 

approach. However, for the 8-factor problem studied here, where 8 elements must be 

uniformly distributed over an 8-dimensional mixture space (Fig.l for 2-dimensional 

mixture space), such approaches would result in an impracticably large number of 

experiments i f more than a few levels were used (e.g. 65,536 for a design with 4 

concentration levels and 8 factors (4*)). Hence, the calibration set for multivariate analysis 

in this work was prepared using a Taguchi orthogonal array design (122, 125, 126) in order 

to cover the required factor space with the minimum number of experiments. The 

concentration ranges of the elements were determined from historical data on the 

composition of autocatalyst digest samples. The orthogonal array contained 8 factors at 7 

levels with a total of 49 experiments, represented as OA49(7^) [cf. 5,764,801 experiments 

for a full factorial design]. The levels and factors in the design are shown in Table 3.3. 
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Table 3.3 Concentrations levels (ng ml ' ' ) and element factors in the orthogonal array 
design 

Level 
Factor 1 2 3 4 5 6 7 

Pt 0 5 10 20 30 40 50 
Pd 0 5 10 20 30 40 50 
Rh 0 I 2 4 6 8 10 
Ba 0 1 5 10 50 100 200 
Ce 0 1 10 50 100 300 500 
Zr 0 1 10 50 100 300 500 

Mg 0 1 10 50 100 300 500 
A l 0 1 10 100 200 500 1000 

3.3 Results and Discussion 

Individual RSE values for the lest solutions are shown in Fig. 3.3 a-c, and RRMSE 

values are shown in Table 3.4. Individual RSE values for the autocatalyst digests are 

shown in Fig, 3.4 a-c. 

3.3.1 Univariate Calibration 

When univariate calibration was used the RRMSEs of prediction for the test 

solutions for Pi, Pd and Rh were 19.22, 15.23, and 54.09 % respectively (Table 3.4). The 

high errors for Rh were probably due to matrix induced suppression or a combination of 

matrix-induced suppression and spectral interference. There were no direct spectral overlap 

interferences on the Rh 343.489 nm line which would cause this high error but there was a 

baseline shift due to the presence of Zr (Fig. 3.5c). Net intensity data were calculated by 

baseline subtraction, using background correction points (BCPs) positioned either side of 

the line, so the baseline shift should be accounted for, however, the positioning of the 
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BCPs for Rh 343.489 was hampered by the proximity of the Ce 343.521 nm line (Fig. 

3.5c), resulting in failure o f the background correction routine. In addition, the average Rh 

concentration in the test samples was only 3.8 |ig ml"' compared with 15.6 and 15.2 | ig ml"' 

for Pt and Pd respectively (Table 3.5) giving a lower spectral response. Coupled with ihe 

incorrect positioning of the BCPs present at 343.489 nm, the relatively low Rh signal has 

resulted in a much larger predictive error (Fig. 3.3) compared with Pt and Pd. 
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Figure 3.3 Comparison of RSE of prediction obtained using univariate, univariate with 
lEC, matrix matched and PLSl for: (a) Pt; (b) Pd; (c) Rh in synthetic test samples 

90 



(a) Pt 

(b) Pd 

20% H 

-20% 

-60% H 

100% 

150% 

110% 

70% 

^ 30% 

-10% 

-50% 

1.0 2.0 3.0 

Concentration in autocatalyst digest / pg ml' 

3% 
0.5% 

0.1% 
-0.9% 

unzj 

1.2 1.5 17.3 33.0 

Concentration in autocatalyst digest / fjg mf^ 

(c) Rh 

10% 
0% 

10% 
|0> ^ -20% 

-30% -
-40% 
-50% 

1 — = — ^ — - — 1 

5.4 

Concentration in autocatalyst digest / |jg mf^ 

• Univariate D E C • Matrix Matched D P L S I 

Figure 3.4 Comparison of RSE prediction obtained using univariate, univariate with lEC, 
matrix matched and PLSl calibration for: (a) Pt; (b) Pd; (c) Rh in autocatalyst samples. 

Each result is the mean of three replicate analyses, and the error bars represent ± a 
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Table 3.4 RRMSE of prediction for the concentration of Pt, Pd and Rh in the synthetic test 
samples and autocatalyst digests. 

Test solutions Autocatalyst digests 

Calibration method Pt Pd Rh Pt Pd Rh 
Univariate 19.22 15.23 54.09 13.47 18.54 87.69 
Univariate with lEC 19.17 13.97 5.75 12.48 16.95 2.08 
Matrix matched 2,4 3.67 2.44 12.03 2.39 8.03 
PLSl 5.77 2.96 3.46 32.38 7.44 75.33 

Table 3.5 known and predicted concentrations (|ig ml ' ) of the test solutions after the 
application of univariate calibration on net signal intensity obtained using 2-point 

background correction. 

Test solution 
Known Predicted 

Test solution Pt 214.423 Pd 248.892 Rh 343.489 Pt 214.423 Pd 248.892 Rh 343.489 

Tel 12 20 3 10.48 17.82 2.14 
Te2 16 12 5 13.13 10.38 1.52 
Te3 20 18 2 16.66 15.49 -0.69 
Te4 12 14 4 10.1 12.16 2.45 
Te5 18 10 3 15.24 8.54 0.93 
Te6 6 30 1 4.94 26.04 -1.55 
Te7 2 6 2 1.67 5.18 0.55 
Te8 40 2 8 33.32 1.8 5.03 
Te9 30 40 10 25.41 35.1 8.34 
TelO 0 0 0 -0.01 -0.19 -1.33 
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Figure 3.5 Interferences on the: (a) Pt 214.423 nm; (b) Pd 248.892 nm; (c) Rh 343.489 nm 
lines 



Predicted concentrations for Pt and Pd were much closer to the known values and there 

was no trend in the relative error with concentration (Fig. 3.3a-b), despite the presence of 

some small spectral interference and baseline shift (Figs 3.5a and 3.5b). For example, even 

at a relatively high Mg concentration of 500 | ig ml"' the spectral interference was small 

relative to the peak for Pt (Fig. 3.5a), and the baseline shift caused by 500 jig ml** of Zr 

was relatively minor at the Pd 248.892 line (Fig. 3.5b). 

The RSEs for the prediction of Pt, Pd and Rh in the autocatalyst samples are shown 

in Fig. 3.4a-c. Each point represents the average of three replicate sample digests corrected 

for mass of sample. Concentrations of Pt, Pd and Rh were predicted to be lower than their 

actual values. The RRMSEs for Pt, Pd and Rh were 13.47, 18.54 and 87.69 % respectively, 

again confirming that Rh was not predicted as well as the other analytes. 

3,3.2 Interelement Correction ( l E C ) 

The magnitude of the lEC factors varied considerably from -5.5 x 10"̂  to 9.9 x 10'̂  (Table 

3.6). For the prediction of analyte concentrations in the synthetic test solutions the 

application of lEC generally resulted in an improvement in the accuracy o f prediction. The 

greatest improvement was observed for Rh, with the RRMSE falling from 54.09 to 5.75 % 

when lEC was applied (Table 3.4). The RRMSE values for Pt and Pd did not change 

significantly with values of 19.17 % and 13.97 % respectively after the application of lEC 

factors (Table 3.4), which is also reflected in the magnitude of the RSE values for the 

individual solutions (Fig 3.3a-b). Results for the autocatalyst samples followed the same 

trend where the RRMSEs for Pt, Pd and Rh were 12.48, 16.95 and 2.08 % respectively 

(Table 3.4). Hence, lEC correction had a significant effect for the correction of spectral 

interferences on Rh at low concentrations in this instance. 
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Table 3.6 Magnitude of the lEC factors used to correct for spectroscopic interferences 

Interfering 
element 

l E C factor at analyte line (nm) 
Interfering 

element 
Pt 214.423 Pd 248.892 Rh 343.489 

Pt - 9.86 X 10 ' -2.23 X 10"̂  
Pd 3.67 X 10-̂  - 5.45 X 10'̂  
Rh -7.15 x 10"̂  -6.52 X 10^ -
A l -1.47X 10"̂  -8.32 X 10"̂  3.18 X 10'̂  
Mg 6.38 x 10'̂  -3.66 X 10-̂  2.59 X 10'^ 
Ce 1.08 X 10'̂  -2.3 X 10^ -6.68 X 10"̂  
Zr -4.16 X 10"̂  -8.75 X 10'̂  8.03 X 10"̂  
Ba -3.26 X 10"̂  -1.37 X 10"̂  1.67 X 10'^ 
In -1.16x 10'̂  -7.23 X 10"̂  -5.53 X 10"̂  
Sc -6.78 X 10'̂  -5.64 X 10"̂  4.75 X 10"̂  
Y -4.22 X 10-̂  -5.06 X 10"̂  -1.33 X 10-̂  
Sr -2.95 X 10^ -1.08 X 10^ 1.02 X 10"̂  

3.3.3 Matrix Matched Calibration 

Results obtained using a matrix matched standard are shouTi Figs 3.3a-c and Fig. 

3.4a-c for the test solutions £ind autocatalyst samples respectively. Overall, this was the 

most accurate of the univariate calibration methods for the prediction of Pt and Pd in the 

test solutions, and was comparable to, or better than, lEC correction for Rh for all but the 

lowest concentration (Fig. 3.3). This overall improvement in accuracy of prediction for the 

test solutions is reflected in RRMSE values of 2.40, 3.67 and 2.44 % for Pt, Pd and Rh 

respectively (Table 3.4). 

For the autocatalyst samples the RRMSEs for Pt, Pd and Rh were 12.03, 2.39 and 

8.03 % respectively (Table 3.4). Evidently, the accuracy of prediction for Pt and Pd in the 

autocatalyst samples was not as good as for the test solutions, which was probably due to 

the concentrations of the matrix matched elements not being exactly the same as their 

concentrations in the autocatalyst samples. Matrix-induced suppression of the analyte 

signal will only be effectively corrected for by matrix matching the standards to the 
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samples. The relatively low RRMSEs for all three analytes, achieved when matrix 

matching was used, suggests that matrix-induced suppression had a greater effect on the 

accuracy of the results than spectral interferences at the lines chosen for analysis. The main 

disadvantage of matrix matching is that the matrix matched standards contain matrix 

elements at fixed concentrations, whereas the concentrations in the samples may vary 

considerably. This is demonstrated in Fig. 3.6, which shows the RSEs obtained for Rh in 

the individual test solutions when the concentrations of Ce and Zr were reduced by a factor 

of ten, to 30 and 10 \ig ml ' ' respectively. As can be seen, the RSEs increased considerably 

at all concentrations when incorrect matrix matching was employed, and a comparison of 

Figs. 3.6 and 3.3c reveals that the results were very similar to those obtained when non-

matrix matched univariate calibration was used. 
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m -60% 
^ -80% 
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•120% ̂  
•140% t263^ 
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Figure 3.6 Effect on the RSE for Rh in the test samples when matrix matching is applied 
with different concentrations of the main interferents (Ce and Zr) on the line chosen (Rh 

343.489 nm) 
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3.3.4 Multivariate Calibration: Partial Least Squares 1 (PLSl ) 

Multivariate calibration was initially performed using net signal intensities. In order 

to obtain the net signal from the instrument a 2-point, or 1-point where appropriate, 

background correction was performed by the instrument software, however, the selection 

of optimum background correction points for all 248 lines proved problematical due to the 

presence of adjacent spectroscopic interferences. Hence, it was decided to model the data 

using gross integrated as well as net integrated signal intensities. The definition o f gross 

integrated intensity being that area under the peak profile curve, defmed by five points, 

without the use of BCPs. This, therefore, includes any area between the peak profile 

(defmed by the five points) and the baseline due to any sample/standard matrix differences. 

A l l data were translated along the co-ordinate origin by mean-centering each variable. 

Autoscaling was also tried but gave slightly worse results, probably due to the noise being 

scaled equally with the informative data. Results obtained using net integrated signal 

intensity data were worse than those obtained when using gross integrated signal data most 

probably due to the incorrect assignment of BCPs. It appears therefore, that any non-linear 

'shifts' in the plasma continuum (gross signal intensity) giving a non-linear overestimation 

of signal intensity had less effect than incorrect positioning of the BCPs. As such only 

results for gross integrated line intensity are presented here. The number of optimal PCs 

was chosen using cross-validation (Figs. 3.7-3.9 for Pt, Pd and Rh respectively). 

Results for the model validation are shown in Table 3.7, indicating that the model 

for Pd had the lowest error (i.e. lowest RMSECV and RMSEC values). The RRMSE 

values for Pt, Pd and Rh in the test solutions were 5.77, 2.96 and 3.46 % respectively 

(Table 3.4), indicating that, overall, this calibration strategy was as good as matrix 

matching. 
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Table 3.7 RMSEC and RMSECV values for the PLSl-model calibration data set 
constructed using gross mean centred data 

Analyte (PCs) RMSEC RMSECV 

Pt(9) 0.77 1.05 
Pd (6) 0.40 0.48 
Rh(6) 0.12 0.24 

C V for P L S via NIPALS. leave-one-out. 

yj 10 

5 6 
Latent Variable 

Figure 3.7 Cross validation plot for Pt (RMSEC included also) 
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CV for PUS via NIPALS. leave-one-out. 

W 10 

5 6 
Latent Variable 

Figure 3.8 Cross validation plot for Pd (RMSEC included also) 

4.5 
CV for PLS via NIPALS. leave-one-out. 

5 6 
Latent Variable 

Figure 3.9 Cross validation plot for Rh (RMSEC included also) 
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The individual results for the synthetic test solutions are shown in Table 3.8 and 

Fig. 3.3 respectively. In the majority of cases the RSEs for the analytes after multivariate 

treatment were lower than the corresponding values when univariate and interelement 

correction was applied. It is evident from Fig. 3.3 that the predictive accuracy of the PLSl 

model was highly dependent on analyte concentration. For example, the RSE for Pd in the 

test solutions decreased from 45 % for 2 jig ml"' to 11 % for the 6 | ig ml"' solution, and 

only -0.5 % for 40 | ig ml"'. This pattern was repeated for the autocatalyst samples, with the 

RSE for Pd changing from 114 % at ca. 1.2 ^g ml ' ' to 0.1 % at ca. 33 \ig ml ' (Fig. 3.4). 
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Table 3.8 Known and predicted concentrations (ng ml ' ' ) of Pt, Pd and Rh in the synthetic 
test solutions (Te) and autocatalyst samples, predicted using PLSl 

Pt Pd Rh 
Sample Known Predicted Known Predicted Known Predicted 

Tel 12 12.71 20 20.27 3 3.04 
Te2 16 17.45 12 11.98 5 5.03 
Te3 20 20.55 18 18.68 2 2.18 
Te4 12 12.95 14 14.21 4 3.93 
Te5 18 18.43 10 10.64 3 3.1 
Te6 6 7.04 30 29.9 1 1.26 
Te7 2 3.64 6 6.64 2 2.09 
Te8 40 40.33 2 2.9 8 7.86 
Te9 30 28.93 40 39.81 10 9.78 

TelO n/d 2.2 n/d 0.44 n/k 0.36 
SI R 1 1.01 1.26 1.22 2.46 n/k -0.11 
SI R 2 1.02 -0.03 1.19 2.85 n/k 0.14 
SI R3 0.99 0.98 1.22 2.45 n/k 0.1 
S2R 1 1.99 1.55 1.51 2.77 n/k 0.3 
S2 R 2 1.88 1.97 1.48 2.36 n/k 0.1 
S2R3 1.99 1.97 1.49 2.93 n/k -0.34 
S4R 1 n/d 1.06 17.62 18.19 5.36 5.63 
S4R2 n/d 1.11 17.86 17.92 5.36 5.62 
84 R 3 n/d 1.36 17.36 17.59 5.33 5.65 
S5 R 1 n/d 1.47 33.7 32.63 0.05 2.83 
S5 R2 n/d 0.25 34.13 33.84 0.03 2.93 
S5 R3 n/d 0.63 33.73 32.7 0.03 2.95 

n/d: not detectable 
n/k: not known 

For the autocatalyst samples the RRMSEs for Pt, Pd and Rh were 32.38, 7.44 and 

75.33 % (Table 3.4). The relative failure of the model at low concentrations can be partly 

explained by the fact that the lowest concentrations used in the multivariate calibration 

data set were 5, 5 and l | ig ml ' for Pt, Pd and Rh respectively, so the lower end of the 

concentration range was not modelled sufficiently well to enable accurate prediction of 

analyte concentration below these concentrations. This hypothesis is lent credibility by the 
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fact that nearly all of the synthetic test solutions were predicted with lower RSE error 

values than the autocatalyst samples, indicating also that interfering elements may have 

been present in the autocatalyst samples which were not included in the calibration model. 

Another possible cause may be due to the use of gross integrated intensities, which would 

not have corrected for any changes in the plasma continuum due to different element 

concentrations. Any non-linear fluctuation in the continuum would have a significant effect 

at low rather than higher analyte concentrations. One possible solution to this would be to 

model the lower concentration range, where noise is likely to have a greater influence, 

separately from the higher concentration range. 

3.4 Conclusions 

A number of calibration methods have been compared for the simultaneous 

determination of Pt, Pd and Rh in test solutions containing a synthetic matrix and 

autocatalyst samples containing varying concentrations of these analytes. Traditional 

calibration showed that for those elements in the test samples the predominant 

interferences on the Pt 214.423 nm, Pd 248.892 nm and Rh 343.489 nm lines were caused 

by matrix induced suppression and spectroscopic interference, a combination of both or 

poor background correction procedures.. Several calibration methods were compared, with 

the best being matrix matching and multivariate calibration using PLSl. Matrix matching 

failed when the standards were not matched correctly, which wi l l often be the case with 

variable matrices, and PLSl yielded good results at high concentrations but was less 

effective at low concentrations due to the noise contribution. 

The PLSl models were built using intensity data for 248 lines which 

included all of the most intense Pt, Pd and Rh lines and many of the most intense matrix 

lines. Thus, the assumption was made that these lines would be the optimum set for 
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modelling, however this may not be the case. It may be far better to allow the PLSl model 

to select 'informative' regions of the spectrum based upon both PLSl principles coupled 

with some selection criterion. This is investigated in the next section. 
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C H A P T E R 4 - PLS AND V A R I A B L E S E L E C T I O N USING T H E F U L L 

A V A I L A B L E S P E C T R U M USING C O M P L E X S Y N T H E T I C S O L U T I O N S AND 

INDUSTRIAL A U T O C A T A L Y S T S A M P L E S 

4.1 Introduction 

In Chapter 3, multivariate calibration routines were applied to gross integrated line 

intensities (no BCPs) acquired using ICP-AES. The rationale for using integrated line 

intensities being that they represent those regions of the spectrum which contain the most 

useful information with respect to the analyte and matrix elements under study. However, 

there are several disadvantages to this approach: 

1) . The integration must be able to correctly integrate the peaks in circumstances 

where the optimal assignment of background correction points may not always be 

possible (see Chapter 2). 

2) . Only a limited number of lines can be included in the analytical method, hence an a 

priori choice must be made as to which analytical lines are included, thereby 

excluding potentially useful data. 

3) . Data processing time and complexity is increased. 

A simpler and more elegant method would be to use the raw spectral data (i.e. signal 

intensity at each pixel in the spectral array). The raw spectral data has up to 5684 data 

points for each sample acquisition, much of which wil l be redundant or noise. Hence, it is 

necessary to reduce the data to a manageable size while retaining as much of the useftil 

information as possible. 
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Partial least squares regression is now a popular multivariate calibration tool for the 

quantitative analysis of spectral data because of its potential to overcome common 

problems such as collinearity, spectral overlaps and matrix effects(48, 53). However, the 

results of any calibration technique are only as good as the data the technique is given to 

work with. It has been noted experimentally that including data with poor, or 

uninformative, information regarding the parameter of interest results in less than optimal 

calibrations (127, 128). 

Selection procedures have been coupled with a variety of different modelling 

techniques, with most work concentrated in the area of conventional multiple linear 

regression (MLR), e.g. forward and backward stepwise multiple linear regression. Factor 

based techniques, such as PLS and PGR have been considered with wavelength selection 

algorithms less often, although improvements in performance have been reported in several 

studies (129-132). Regardless of the regression method employed, the thrust behind 

wavelength selection is the identification of a subset of spectral wavelengths that wil l 

produce the smallest possible errors when used to predict chemical concentration. In 

obtaining this optimal subset of wavelengths the ful l available spectrum is used. This adds 

a major advantage to this modelling methodology in that it is possible to build predictive 

models without the need for expert knowledge of the chemical system and the selection of 

appropriate wavelengths. 
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4.2 Preliminary Studies of Variable Selection 

4.2.1 Introduction 

Preliminary work on variable selection focused on the theory used by McShane et. 

ai (133). The approach was based on providing PLS with those regions with greatest 

spectral variance. Because PLS looks for correlated variation within a data set, those 

spectral regions with large variation may contain important information for modelling. 

4.2.2 Theor>' of Variable Reduction 

4.2.2.1 Mathematical benefits to Partial Least Squares 

The nature of any data set can be expressed as Eqn. 4.1: 

V, = x a ' + E / , Y , = E , Eqn. 4.1 

Assuming the classical model: V,(A' x p/) and (A^ x pf) are the spectral data for 

samples at pi and p2 wavelengths, x is the vector of sample concentrations, a is a 

vector of unknown parameters for each of P total wavelengths = + /7^), and E^and 

E^ are the random error matrices of mean zero and variance a] and a]. 

We now define the predictor of future concentration X* based on the inverse 

calibration model, Eqn. 4.2 

X* = Y ; P " / + Y ; P ' 2 Eqn. 4.2 
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However, assuming Y^ is a set of "noise" or useless variables, this equation clearly adds 

bias to the estimator. Therefore we wish to define a predictor for X " based on the inverse 

calibration model without the noise component, Eqn. 4.3 

X ' = Y ; P ; Eqn. 4.3 

where only informative variables are considered. It can be proven that even for a small 

number of samples, produces a smaller mean square error XhanPj(Y, + Y ^ ^ a n d 

X ' has a smaller mean square error of prediction than X * (133), and in fact, this result has 

been experimentally observed (127-129). 

4.2.3 Experimental 

4.2.3.1 Instrumentation and Reagents 

See Chapter 3, section 3.2 

4.2.3.2 Experimental Design 

The calibration set for multivariate analysis was prepared using a Taguchi 

orthogonal array (section 3.2.2.6) in order to cover the required factor space with the 

minimum number of experiments. The concentration ranges of the elements were 

determined from historical data on the composition of autocatalyst digest samples. The 

orthogonal array contained 8 factors at seven levels with a total of 49 experiments, 

represented as OA49(7 ). The levels and factors for the design are shown in Table 4,1. 
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Table 4.1 Experimental design analyte and matrix concentrations (^g ml"') 

High concentration range (ng/ml) 
Pt 0 5 10 20 30 40 50 
Pd 0 5 10 20 30 40 50 
Rh 0 1 2 4 6 8 10 
Ba 0 1 5 10 50 100 200 
Ce 0 1 10 50 100 300 500 
Zr 0 1 10 50 100 300 500 

Mg 0 1 10 50 100 300 500 
Al 0 1 10 100 200 500 1000 

4.2.3.3 Data and Data Preprocessing 

In order to ascertain the effectiveness of the variable selection procedure, models 

were prepared using three different datasets and compared. The range o f the analytes and 

matrix elements used in the experimental design are shown in Table 4.1. The first dataset 

comprised the reduced variables only; the second, the unreduced spectrum (i.e. all 5684 

wavelength data points from all 201 subarrays on the SCCD); and a third was prepared 

using the more traditional method of choosing 166 individual spectral lines representing 

the most intense analyte and matrix lines in the spectrum from which gross integrated line 

intensities were then modelled. 
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4.2.3.4 Algorithm Validation 

A l l computer algorithms were developed within the Matlab environment (Matlab 

Software Version 5.0, and PLS_Toolbox 2.0 (Mathworks Inc)). Matlab was chosen 

because of its ability to quickly perform complex matrix operations and the availability of 

open access software, e.g. PLS_Toolbox 2.0. 

The basis of all the in-house programs was the PLS routine contained in 

PLS_Toolbox 2.0. A l l programming was followed by rigorous validation which was 

composed of three stages: 

1) Program design. 

2) Programming / progrcim alteration and visual inspection. 

3) Visual inspection of complete program. 

4) Testing of program with: i) In-house data (data with known parameters) 

ii) Referenced data with known parameter 

values (where available). 

4.2.3.5 Procedure 

4.2.3.5.1 Variable Selection using the Standard Deviation ofWavelensth Intensity 

Selection begins with the classification of all points in the spectrum as noise. 

Variables are placed into the model and i f instrumental response is sufficiently sensitive, 

the standard deviation will be large at variables corresponding to points o f interest. The 

number of variables placed into the model at any one time is governed by the total number 

of variables, here 5684. The addition of one variable at a time, although preferential for 

finding those variables that are important, greatly increases computational time. Therefore, 
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the variables were added in *bits' consisting of twenty five variables at a time. Model error 

was assessed using relative root mean square error (RRMSE %, Eqn. 3.4). 

A flow-chart outlining the selection algorithm, used for one analyte at a time, is 

outlined in Fig. 4.1 and was applied as follows: 

i ) A l l data was left unprocessed and classified as noise. 

i i) The variables were ranked in descending order of their signal standard deviation. 

i i i ) The size of the 'bit ' to be placed into PLS was chosen (e.g. 25). 

iv) The number of latent variables was selected and the data autoscaled (see later). 

v) The RRMSE % value for the first *bit' was calculated using the first PC, then using 

the first and second and so on until the RRMSE % value had been calculated using 

all PCs. 

vi) The next 'bit ' was then placed into the PLS routine and step v) repeated until all the 

data had been modelled, 

vii) A plot of the RRMSE % value for each PC was then produced and the number of 

variables giving the lowest RRMSE % value chosen as the optimal data-set. 

In step vi) the data was autoscaled as this gave the lowest predictive errors. It is 

emphasised that this was carried out after the data was ranked according to the standard 

deviation of the intensity. 
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Figure 4.1 Flowchart for the execution of the variable ranking algorithm 
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In step vi) the data was autoscaled as this gave the lowest predictive errors. It is 

emphasised that this was carried out after the data was ranked according to the standard 

deviation of the intensity. 

4.2.3.5.2 Freprocessins after Variable Selection 

For the data set consisting of 166 individual analyte and matrix lines both mean 

centering and autoscaling were performed, however, in this particular case, autoscaling the 

data gave better predictive results. For the data set obtained after the application of the 

variable selection routine, again both methods of preprocessing were performed and 

autoscaling was chosen as it gave better models in terms of predictive accuracy. 

4.2.3.5.3 Test Sample Confidence Interval calculation usine the 'Jackknife' estimation of 

Standard Error 

Chapter 4, section 4.4.2.2 describes the procedure for calculating test sample 

confidence intervals using the 'jackknife' method. 

4.3 Results and Discussion 

4.3.1 Variable Reduction 

The effect of the variable reduction procedure is shown in Figs. 4.2a/b, 4.3 and 4.4. The 

minimum RRMSE % values were approximately 2, 5 and 2 % for Pd, Rh and Pt 

respectively, and were arrived at using a relatively small number of variables. For example 
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the RRMSE % values for Pd fell to 2% v^th only 300 variables, the Rh RRMSE % value 

fell to approximately 5% using only 600 variables, and for Pt the RRMSE % error value 

was reduced to only 2 % with 800 variables. Although all variables with high variances 

were not guaranteed to be correlated to any analyte in particular, sufficient numbers o f 

variables were evidently present to ensure the relatively successful prediction of the 

cahbration samples. 

RRMSE (%) versus number of wavelengths 

1000 2000 3000 4000 
Number of variables 

5000 6000 

Figure 4.2a Pd RRMSE % as a function of variables in descending order of a (8 PCs). 
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RRMSE (%) versus number of vravelengths 

200 300 400 
Number of veriebles 

500 600 

Figure 4.2b Pd RRMSE % from variables I - 600 (8PCs). 

RRMSE (%) versus number of wavelengths 

1000 2000 3000 
Number of variables 

4000 5000 6000 

Figure 4.3 Rh RRMSE % as a function o f variables in descending order of o (8 PCs). 
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RRMSE (%) versus number of wavelengths 

1000 2000 3000 4000 
Number of variables 

5000 6000 

Figure 4.4 Pt RRMSE % as a function o f variables in descending order o f a (8 PCs). 

One worrying feature was the appearance o f steps in the graphs (e.g. Fig. 4.3 for Rh). This 

was caused by variables wi th high a SD, but which were less correlated w i t h the analyte o f 

interest than the previous 'block' o f variables. I f the variable reduction procedure were 

working correctly then a smooth initial decrease in the RRMSE value to a global minimum 

would be expected. This would indicate that the ranking procedure had been successful In 

ranking the most important variables first. 

4.3.2 Multivariate Calibration and Quantitative Prediction 

Predictive results using variable selection for Pd, Rh and Pt are given i n Tables 4.2 - 4.4. 

The RRMSE % values for the Pd, Rh and Pt test solutions were 4.39, 13.23 and 10.46 % 

respectively. These relatively low error values are seen graphically in Figs. 4.5 -4.7 where 

the majority o f the samples fa l l on the 45° line. For the autocat samples only Pd was 
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predicted wi th any degree o f accuracy, wi th an RRMSE % value o f 18.44 % . (Table 4.2) In 

comparison, extremely poor accuracy was obtained for Rh and Pt (Table 4.3 and 4.4) 

which, had RRMSE % values o f 141 and 6.5 x 10"* respectively. Evidently those variables 

wi th high variance were well correlated to Pd and did not experience, to the same extent, 

interference from the unmodelled interferents, as did the Pt and Rh high variance lines. The 

RRMSE % errors obtained using the variable selection method compared wi th the use o f 

all 166 individual lines and the f u l l spectrum are given in Table 4.5. The lowest RRMSE % 

value obtained was for Pd (4.39 % ) using the variable selection and autoscaling as the 

preprocessing step. By autoscaling, all variables are given the same weight in the PLS 

algorithm. Evidently for the prediction o f Pd, there were very f e w uninformative 

wavelengths present after variable selection. For Rh and Pt the R R M S E % values were 

13.32 and 10.46 % respectively, whereas using the individual line dataset (using meein 

centering) the RRMSE % values were 3.18 and 8.38 %. The highest predictive errors were 

obtained using the f u l l spectrum., which contained 5684 wavelength data points wi th a 

substantial amount o f noise. However, autoscaling gave the lowest predictive errors, this 

would appear to contradict the previous statement. However, i f the intensity o f the most 

informative predictors were relatively low, then autoscaling would have given these 

predictors an equal chance o f participating in the model. Predictive errors for Rh and Pt in 

the autocat solutions ranged f rom 141.34 % for Rh to 6.5 x 10^ % for Pt using variable 

selection, indicating the presence o f unmodelled interferents in the autocat samples. 
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Table 4.2 Actual and predicted concentration for Pd (^g m l ' ) using variable selection. 

Pd 
Test samples Autocat samples 

oncenlration ( j ig /ml) 95% Concentration ( | ig/m!) 95% 
Sample Actual Predicted C. I . Sample Actual Predicted C. I . 

Te l 20 19.48 2.14 A u l R l 1.07 0.97 >50 
Te2 12 11.69 9.31 A u l R 2 0.96 0.74 >50 
Te3 18 17.92 1.70 A u l R 3 0.90 0.79 >50 
Te4 14 13.91 1.77 A u 2 R l 1.22 0.66 >50 
Te5 10 10.32 1.76 Au2R2 1.19 1.05 >50 
Te6 30 29.68 2.05 Au2R3 1.22 . 1.14 >50 
Te7 6 5.68 2.06 Au31R 17.62 16.70 >50 
Te8 2 2.64 2.03 Au3R2 17.86 16.74 >50 
Te9 40 38.60 2.24 Au3R3 17.35 17.15 >50 

TelO 0 1.18 1.81 Au41R 33.70 28.84 >50 
Au4R2 34.12 29.51 >50 
Au4R3 33.73 28.63 >50 

RRMSEP % 4.39 18.44 
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Table 4.3 Actual and predicted concentrations for Rh (^g ml" ') using variable selection. 

Rh 
Test samples Autoca t samples 

oncentration ( n g / m l ) 95% Concentrat ion ( ^ g / m l ) 
Sample Actua l Predicted C. I . Sample Actua l Predicted 

T e l 3 3.58 1.53 A u l R I n/d 0.00 
Te2 5 4.90 4.01 A u l R 2 n/d 0.25 
Te3 2 2.15 1.71 A u l R 3 n/d 0.55 
Te4 4 4.55 1.56 A u 2 R l 3.31 -1.53 
Te5 3 3.28 1.56 A u 2 R 2 3.32 0.65 
Te6 1 1.53 1.98 A u 2 R 3 3.21 0.46 
Te7 2 2.74 1.93 A u 3 l R 5.36 10.45 
Te8 8 7.77 1.85 A u 3 R 2 5.36 9.00 
Te9 10 9.55 1.39 A u 3 R 3 5.33 9.75 

T e l O 0 0.83 2.24 A u 4 1 R 0.05 -4.42 
A u 4 R 2 0.03 -3.07 
A u 4 R 3 0.03 -4.85 

R R M S E P % 13.23 141.34 

n/d No! detectable 
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Table 4.4 Actual and predicted concentrations for Pt (^ig ml" ' ) . 

Pt 
Test samples Autocat samples 

Concentration (|ig/ml) 95% Concentration (^g/ml) 95% 
Sample Actual Predicted C. 1. Sample Actual Predicted C . I . 

Tel 12 12.77 6.80 A u l R I n/d 64.07 
Te2 16 17.25 21.25 A u l R 2 n/d 63.86 
Te3 20 19.51 6.52 AulR3 n/d 63.48 
Te4 12 11.69 6.27 Au2Rl 1.01 73.31 >50 
Te5 18 17.38 6.00 Au2R2 1.02 63.88 >50 
Te6 6 7.26 7.90 Au2R3 0.99 64.10 >50 
Te7 2 2.72 6.43 Au31R n/d 57.30 
Te8 40 36.67 8.11 Au3R2 n/d 61.85 
Te9 30 26.87 7.78 Au3R3 n/d 59.60 

TelO 0 0.85 7.81 Au41R n/d 134.94 
Au4R2 n/d 129.89 
Au4R3 n/d 135.53 

RRMSEP % 10.46 6,570 

Table 4.5 RRMSE % values for the synthetic test and autocat samples using variable 
reduction (VR) , individual wavelengths and the f u l l spectrum. The number o f PCs are 

shown in parenthesis. 

Synthetic test solutions Autocat samples 
RRMSE % RRMSE % 

Pt Pd Rh Pt Pd Rh 

VR [As] 10.46(10) 4.39(10) 13.23(10) 6570.0 18.44 141.34 
Number of variables 1000 650 1250 1000 650 1250 
Individual wavelengths 
(166) [Au] 8.38(5) 7.06(5) 3.18(7) n/a 3.38 n/a 
Full spectrum 
[Au] 12.64(8) 8.31 (8) 27.15(8) 7480(8) 622(8) 1734(8) 

As Autoscaled 
n/a Data not available 
( ) Number of PCs used in ihe final PLS model 
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The variable selection method (Fig. 4.1 flow diagram o f the selection procedure) makes the 

assumption that those spectral regions wi th large variance are correlated to the analyte o f 

interest. In addition to this, this method assumes that there are no interactions between 

variables or groups o f variables and hence that there is no important predictive information 

contained wi th in such interactions which is not a safe assumption. A continuation o f this 

methodology is to examine the correlation o f individual wavelengths wi th the analyte o f 

interest by using all information present wi th in a data set. This can be accomplished 

through the use o f multivariate calibration techniques, such as PLS. Here the individual 

regression coefficients are not estimated from the data directly, wavelength by wavelength, 

but are estimated using all the relevant information (via principal components), giving 

regression coefficients that are much lower in noise and which can be selected not only on 

the basis o f their correlation with a particular analyte, but whilst taking into consideration 

the error associated wi th that particular correlation. 
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Figure 4.5 Actual and predicted concentrations for Pd calibration, test and autocatalyst 
samples ( | ig m l ' ' ) . 
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Figure 4.6 Actual and predicted concentrations for Rh calibration, test and autocatalyst 
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Figure 4.7 Actual and predicted concentrations for Pt calibration, test and autocatalyst 
samples ((ig m l ' ' ) . 

4.3.3 Conclusions 

Selection using variable standard deviation, has shown that it is able to select variables 

useful for prediction, but that large numbers o f variables may be necessary. The main 

disadvantage o f this technique, however, is that it is not anaiyle specific; variables are 

ranked without taking into consideration their correlation wi th the analyte o f interest which 

makes many variables redundant, increasing the predictive error. The predictive ability o f 

this technique for the autocat samples showed that it was only possible to predict Pd wi th 

any reasonable degree o f accuracy. This may be due to the presence o f interferents, the 

absence o f informative variables, or a combination o f both. Addit ional ly, using standard 

deviation as the ranking criterion, well correlated variables w i th small intensity are 

overshadowed (ranked after) by less correlated variables wi th larger intensity, giving them 

less importance than they deserve within the dataset. 
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The use o f variable relative standard deviation as a variable selection criterion 

would prevent this overshadowing effect, however, this may also give noisy baseline 

regions the same importance as important variables and the method wou ld sti l l be non

selective. Because o f the problems associated wi th non-selectivity this ranking criterion 

was not investigated any further. 

4.4 Variable Selection using Uninformative Variable Elimination by Partial Least 

Squares ( U V E - P L S ) and Informative Variable Degradation by Partial Least 

Squares ( I V D - P L S ) 

4.4.1 Introduction 

The variable selection method used in the previous section had the disadvantage 

that it was not analyte specific. Because the variables were ranked in descending order o f 

their standard deviation there was no guarantee that variables w i th the largest variance 

were correlated with the analyte o f interest. The variables were also considered in a 

univariate fashion, i.e. there was no consideration o f how one variable influenced another. 

By using multivariate techniques it is possible to reduce a large data set into a number o f 

PCs which progressively describe less and less o f the correlated variance in that data set, 

until all that is lef t is noise. In this way all o f the variables and their effects on one another, 

are considered simultaneously. Each PC w i l l have associated wi th i t a number o f 

regression coefficients equal in number to the number o f original variables, which give 

information on how important those variables were in forming that particular PC. B y 

taking the cumulative sum o f the regression coefficient for a particular number o f PCs, the 

importance o f each original variable can be determined. Because the noise component o f 
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the model is modelled in the later PCs the noise component o f the regression coefficients 

can be reduced by selecting the optimum number o f PCs. 

4.4.2 Statistical Theory 

4.4.2.1 Traditional Theory and Complex Estimators 

For some data x, an estimate 6 = t(jc) for a particular parameter o f interest ( ^ ) is 

calculated. In the most familiar case, x consists o f observations X p . . . . , x „ independently 

sampled from an unknown probability distribution F : as an example the parameter o f 

interest 6 is the true mean (population mean) o f F(i.e. / /(F) = j x d F ( x ) ) ; and the statistic 

l (x ) is the sample mean ( x ). 

Having selected an estimator 6, e.g. 6 = i{x), it is important to assess the accuracy 

o f ^ as an estimator o f the true va lued . The standard error o f 6, Eqn. 4.4, is the most 

common measure o f accuracy for estimators 0 that are unbiased (134): 

Se{^;F} = [ v a r ^ { l ( x ) } ] " ^ Eqn. 4.4 

The formula for the standard error o f the mean ( 9 = x ) is given by Eqn. 4.5: 

a'(F)=\{x-M(F)ydF(x) Eqn. 4.5 

where a^(F)is the variance o f F . To relate Se(x;F) to Eqn. 4.6 is used: 
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Se{3c;F} = [(T^(F)//7]"^ Eqn. 4.6 

However, f rom a practical point o f view, this is not helpful since <T^(F)IS i tself a funct ion 

o f the unknown distribution F . In this case though a simple unbiased estimate exists for 

a^(F) , in the form o f Eqn. 4.7: 

^ ^ ( F ) = ' ° ' ,^ 
( /7 -1) 

Eqn. 4.7 

Substituting 4.7 into 4.6 gives the estimated standard error for x in the f o r m o f Eqn. 4.8: 

n(n-\) 

1/2 

Eqn. 4.8 

In 1958 John Tukey revolutionised error estimation wi th the "Jackknife" method built 

upon Quenouille's older technique for bias estimation. Tukey's method did not use Eqn. 

4.6, but went directly to a generalisation o f Eqn. 4.8 which omitted much statistical theory 

and instead relied upon computing power. This was not an argument against theory, but 

against unnecessary theory. Most common statistical methods were developed in the 1920s 

and 1930s, when computation was slow and expensive. N o w that compulation is fast and 

cheap major changes are occurring in statistical methodology, such as the Jackknife, a 

branch o f statistics commonly known as resampling statistics. 
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4.4.2.2 The Jackknife Estimator 

To illustrate the theory o f the Jackknife, let the dataset x consist o f n independent 

and identically distributed (i.d.d.) observations from an unknown distribution F , i.e. Eqn. 

4.9: 

F(Li.d) ^ ix„x, , x j = X Eqn. 4.9 

Let Xf,j be the dataset wi th the /-th datum removed and let (9̂ ^ equal t(x^^) , the statistic 0 

re-evaluated for the deleted point data set x^^. The jackknife estimate o f the standard error 

is then given by Eqn. 4.10: 

n 1=1 

1/2 

Eqn. 4.10 

where 6^^ =Y.^o/^- ^^^V ^ ^ " ^ ^^^^ ^-^^ reduces to Eqn. 4.6 (135) when 

6 = jc (i.e. when 6 has a simple algebraic form).The beauty o f Tukey's Jackknife is that it 

can produce a standard error estimate for even the most complicated estimator (136) 

provided that the estimator is 'smooth'. The defini t ion 'smooth' defines the way in which 

the estimator changes wi th changes in the data. A 'smooth' estimator w i l l display only 

small changes wi th small changes in the data, such as the mean or regression coefficient. 

AH that is required is the ability to recompute 6i, n times, once for each deleted-point data 

setx^^. Because the estimates o f PLS regression coefficient standard error do not have 

exact forms (136), the traditional approach requires the use o f the jackknife procedure. 

A subsidiary benefit o f this Jackknife procedure is that an improved estimate o f 0 

can be derived in those situations where the original estimator o f 6 is biased. The 

126 



estimator {6 = n6-{n-\)6) is known as the Jackknife estimator. I f 6 has bias o f the 

order \ / n then the bias o f 6 is substantially reduced, to order \/n^, 

4.4.3 Uninformative Variable Elimination by Partial Least Squares ( U V E - P L S ) 

The method proposed here is based upon that o f Centner et a/.(78) and modif ied by 

both Westad ei al.(^l) and Faber (137). In the original paper by Centner, a reliability 

criterion, Eq. 4.11, was used in conjunction wi th the addition o f random noise. The 

reliability criterion Cj was based on an analogy wi th stepwise M L R . Because, the 

estimated standard error, s ( f i j ) , cannot be computed directly for PLS. Centner et. al. 

proposed to estimate the regression coefficient (/?^) as a mean and its estimated standard 

error s{Pj) for they-th variable using a 'leave one out' strategy. 

= / ? / s ( ^ ^ ) Eq.4.11 

Two sets o f data were collected: one set comprising ordinary calibration data and a second 

set comprising artificial random variables {Cnoise)- These random variables were used to 

define a subjective cut-off level. The problem o f determining a subjective cu t -of f level was 

achieved using Eq. 4.12. 

In,^(Cj)^<\max(c^,,J\ Eq.4.12 

where In^, {Cj) '\s the reliability coefficient ( c ^ ) for the J-ih informative variable in the 

experimental data collected by the instrument and | max(c^^ ) | is the modulus o f the 
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maximum value for f rom the random noise. Because the random data represent 

(artificially added) noise, their cj values w i l l be indicative o f the values that can be reached 

by uninformative variables and hence a cu t -of f level is given. However, this method was 

dependent upon the satisfactory estimation o f the magnitude o f the noise, it is therefore a 

subjective method. The modification proposed by both Faber (137) and Westad (87) gave 

an objective cut -off value for the reliabilities in the f o r m o f a jackkn i fe corrected estimated 

standard error which was used to determine whether fij 9̂  0, (i.e. an informative variable) 

as opposed to = 0, (which was classified as an uninformative variable), using the 

Student's t-test. It is this modified method which is used as a basis here (as is shown in the 

flow diagram in Fig. 4.8a). A n objective cut -off can easily be found using the Student's t-

tesl by using z.̂ .̂ ^̂ ,, = y^^^p^ the tabulated T values for the appropriate degrees o f 

freedom (Fig. 4.8b). The degree o f freedom used here was equal to the number o f 

calibration samples used (/V). 
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Figure 4.8a Flowchart for the execution o f the UVE-FLS algorithm 
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95 % rejection 
region 

for Ho (therefore 
accept variable) 

Acceptance 
region for Ho 

(therefore reject 
variable) 

95 % rejection 
region 

for Ho (therefore 
accept variable) 

p = o 

Figure 4.8b T-test illustrating the 95 % confidence interval for P = 0 (uninformative 
variable) 

4.4.3.1 Limitations of Multiple Statistical Comparisons 

I f a single statistical test is conducted, a one-sample t-test for example, and a = 0.05 , then 

the probability o f a Type I error (rejecting Ho when it is true) is under control. I f however, 

10 independent one-sample t-tests are now performed, each at the 0.025 level, the 

probability o f a false rejection is no longer 0.05. The overall a for a set o f tests is the 

probability o f at least one rejection when the Ho is true. This is described mathematically 

by Eqn. 4.13 for independent tests: 

a = l - ( l - a ) Eqn. 4.13 
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which is the probability of at least one type I error. Where a is the significance level and k 

is the number of tests performed. 

The consequences of this are apparent when one considers the above example of 10 

multiple t-tests. The probability of a type I error for any single t-test is 0.025, however the 

combined probability of obtaining at least one type I error using 10 t-tests is given by I-Cl-

O.OIS)'** which equals approximately 0.22, or 22%. Therefore at least one type I error wil l 

occur 22% of the time. I f a remains constant, but a large number of t-tests are performed, 

say 5684 corresponding to an equal number of variables, there is a l-( I-0.025)^^^'-100% 

probability of, an average, 0.025 x 5684 = 142 type I errors. 

For the purposes of variable selection, therefore, not all the UVE-PLS selected 

variables will be truly informative. Because of this a decision rule was required to find the 

minimum number of variables that could be accepted given that a proportion were the 

result of type 1 errors, denoted varj^^^,. The decision rule was based upon several criteria: 

Type I and Type II errors, test power, the correct estimation of the individual PLS 

regression coefficients ( P ) in UVE-PLS and the predictive RRMSE % value. The value of 

alpha ( a ) chosen was 0.025, there was therefore a 2.5 % probability of rejecting the null 

hypothesis (Ho) when it was true for each individual one-sample t-test. Levels of a below 

this were applied, but proved too stringent resulting in very low numbers o f variables after 

the application of UVE-PLS due to the increase in the Type I I error (accepting Ho when it 

is incorrect) and the concomitant decrease in t-test power. 

For the accurate estimation of P ^ , a suitable number of PCs were required, too 

many or too few would have resulted in the addition of bias to the individual elements of 

P .Where possible UVE-PLS datasets {Var^^^) were chosen, such that the inequality given 

by Eqn. 4.14 was obeyed: 
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Var^^i /an^>3 Eqn. 4.14 

where a is the accepted probabihty of a Type I error and n is the number of t-tests 

performed. Thus the initial probability of choosing a truly informative variable, without 

replacement, is 66%, and therefore the probability of a varj-y^^j variable isa< 33 %. 

4.4.4 Informative Variable Degradation by Partial Least Squares (IVD-PLS) 

UVE-PLS can be thought of as a filter which allows through those P-coefficient's that 

have a high probability of not equalling zero, including varj^^, variables. A variable may, 

therefore, have an associated regression coefTicient equal to 0.01, whereas another may 

have a regression coefficient of 10. I f regression coefficient standard error is neglected for 

a moment it is clear thai the variable with a regression coefficient equal to 10 is the more 

important of the two, so in order to select these variables efficiently, a suitable criterion 

must be found. Centner et. al. proposed using a genetic algorithm(78), however one of the 

dangers of using such algorithms is that of very large numbers of random correlations. 

Even after the application of the UVE-PLS routine to the full spectrum used in this study 

the number of samples required to give a satisfactory variable to sample ratio would be in 

the order of 800-900 , which is cleariy impractical (138). 

In spectroscopic applications, the P -coefficients cannot be used directly to choose 

which wavelengths are most important for modelling. Indeed, a large coefficient may 

indicate a significant variable, but it may also have large variability v^th little or no 

correlation to the analyte of interest. This problem can be avoided by autoscaling the data 

so that a large absolute P -coefficient indicates an important variable (79). 
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It is essential that the regression coefficients used in the final predictive PLS model 

are both relatively large and have low standard error. Hence, a ranking scheme is proposed 

whereby the importance of the mean regression value is assessed by ratioing it to its 

standard error, with larger ratios being assessed as more important (Eq. 4.15).Informative 

variables wil l have both a large multivariate regression coefficient estimate and small 

estimated standard error, so ranking on the basis of a decreasing IVD ratio should enable 

the most important variables to be used in the PLS algorithm. 

where varj"'' is the IVD ratio for the j-ih variable, fij is the mean value for theJ-ih 

regression coefficient from autoscaled X data, and s(/?y) is its estimated standard error. 

Although the presence of var^^^^f variables in the UVE-PLS dataset mean that 

uninformative variables will be present together with truly informative variables, by 

choosing UVE-PLS datasets where Var^^, /an^>2> the probability of ranking varj^.^f in 

the first few programme iterations is 0.33, thereby giving weight the truly informative 

variables. 

In order to obtain the correct number of ranked variables, the cumulative sum of 

varj^'^is obtained and at specific percentage intervals, e.g. 30 to 100 % stepping 5%, the 

corresponding root mean square error of cross validation (RMSECV) is obtained for that 

set of mean centered wavelength data points (as is shown in the flow diagram in Fig. 4.9). 

It can be argued that by mean centering preference wi l l be given to variables with a 

larger variability due to their size whatever their correlation. The alternatives are to 

autoscale the data, which will give equal weight to variables with less correlation, or to use 
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non pre-processed data. Mean centering has been chosen in this case, although either pre

processing method has advantages and disadvantages. As wi l l be demonstrated, the whole 

process results in a minimum being found which then gives the correct number of ranked 

variables to use. The stepping value can be altered to suit the degree of accuracy required 

and in this study a value of 5 % was found to be adequate. The final PLS model was built 

with the corrected number of mean-centered wavelength data points. 
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( 0 Input data from UVE-PLS 
(X, Y and test) 

(2) Number of PC's (Aopt) 
(3) Level of significance (a) 

Remove calibration sample n 

Scale n-\ samples 

PLS to determine the 
regression coefficients 
(P,^ )for the Aopt PC 

Collect for«-l 

subset of calib. samples 

Yes 

Calculate ratio p j / s ( P j ) 

Rank ^ j / s ( p , j ) in 

descending order 
(collect index values, / ) 

RankX 
variables 

according to (i) 

Get cumulative 
sum (CS) of 

omitted 

Variable Definitions 

( i j ) = matrix row and column size 
Aopt = the optimum PC 

a = the significance level 

fiy = regression coefficient for the 

fth set of psuedovalues andyth 
variable 

fij = regression coefficient for the 

yth variable 
ij = t-value for py 

s(pj ) - Jackknife standard error 

No 

« = w +1, replace 
previous 

calibration sample 
«, remove n +1 

NOTE 

Test data are inputted also into the 
algorithm, enabling the ranking of 
corresponding variables in the test 
data set 

Find CS at 
specified % 
intervals 

Take V% at each % 
interval, find lowest 
RMSECV 

End 

Figure 4.9 Flowchart for execution of IVD-PLS algorithm 
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Correct estimation of all parameters in the IVD and UVE-PLS routines, is 

dependent upon the optimum number of PCs being used. The calculation of these 

parameters is performed prior to the removal of any variables so the estimation of the 

correct number of PC's by minimising the predictive error wil l not give a unique solution. 

This effect can be limited by using a range of PC's in an attempt to reduce predictive errors 

in the final models. 

4.4.5 Confidence Intervals 

The multivariate inverse model is of the form (Eqn. 4.16) 

y = p,x, + J:; + + Pf^x^'\-z Eqn. 4.16 

where _v is the concentration value; p, , P 2 , . . . . , p ^ are parameters with unknown values 

(regression coefficients), Xy,x^, x^ are independent information contributing variables 

thai are measured without error and 8 is a random error component. It is assumed that the 

random error has a normal probability distribution with mean equal to 0 (i.e. E(e) = 0) and 

variance equal to a^(i.e. Var(e) = CT^). Further, it assumed that the random errors 

associated with every pair o f y values are probabilistically independent (homoscedastic). 

That is, the error e associated with any one;' value is independent of the error associated 

with any other y value. 

The assumptions that have been described for an inverse multivariate model imply 
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that the mean value E(y) for a given set of values X p X j , is equal to Eqn. 4.17. 

Eqn. 4.17 

The successfijl determination of test sample confidence limits depends on the data 

satisfying these assumptions. Tests to detect deviations fi-om these assumptions are 

possible and include trend detection in residual plots. The residuals used in this study take 

the form of concentration residuals ( ( c - c )v s . c ) , illustrated in Fig. 4.10, where c and 

care the actual and predicted calibration concentrations respectively. I f the assumptions 

concerning the error term e are satisfied, concentration residual plots should display 

random fluctuation about zero with no observable trends and no residuals more than 3 

estimated standard deviations {3a) of e above or below 0. 

Conccniraiion. Predicted Conccniraiion. Prcdicied Conceniration, Predicted 

Figure. 4.10 Schematic conceniration residuals versus actual concentration plots showing: 
(a) ideal; (b) non-linear and (c) outlier. 

It has already been shown that i f the Jackknife method is used it is possible to 

calculate the standard error of P or any other parameter of interest. For the model given by 

Eqn. 4.16 it is possible to construct a confidence interval for the p parameters using as 

follows Eqn. 4.18: 
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p ± / „ , 2 S e ( P ) Eqn. 4.18 

where t^ .-^ is the tabulated students t-value and Se(p) is the standard error o f the regression 

coefficient using the Jackknife method. An alternative to this is the calculation of a 

confidence interval for the predicted concentrations themselves. As before each calibration 

sample in turn is omitted, however instead of calculating the standard error of P, sample 

concentrations are calculated n times {n = number of calibration samples). These 

resampled estimates of the sample concentrations are then put into Eqn. 4.10 and the 

standard error of prediction calculated as Eqn. 4.19. This process is illustrated by Fig. 4.11. 

i^ = /a/2Se(j)) Eqn. 4.19 

where y'ls the predicted value, j is the tabulated t-statistic for the appropriate degrees 

of freedom and Se(_v) the estimated standard error of y . Because predictions are simply 

the sum of weighted {/]j= weight for y-th variable) variables, predictions are defined as 

'smooth' and are therefore well estimated by the Jackknife method of estimation. 
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(1) Input data from IVD-PLS 
(2) Number ofPC's(Aopt) 
(3) Level of significance (a) 

Remove calibration sample n 

Scale n-\ samples 
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for the Aopt PC 

Collect ith sample 
concentration for n-l 
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a = the significance level 
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tj= t-value for pj 
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/ 7 , remove sample 
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concentration 95% confidence 

interval 

End 

Figure 4.11 Flowchart for execution of confidence interval algorithm 
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4.5 Experimental 

4.5.1 Instrumentation and Reagents 

For information on instrumentation and reagents see Chapter 3, Section 3.2.1 

4.5.2 Experimental Design 

For information on the experimental design used see Chapter 3, Section 3.2.2.6. 

4.5.3 Procedure 

4.5.3.1 Data and Data Preprocessing 

In order to ascertain the effectiveness of the variable reduction procedure, models 

prepared using three different datasets were compared. The datasets were constructed 

spanning both a low analyte training range (LTR) and a high analyte training range (HTR) 

(Table 4.6). The first dataset comprised the reduced variables only; the second, the 

unreduced spectrum (i.e. all 5684 wavelengths); and a third was prepared using the more 

traditional method of choosing individual spectral lines representing the most intense 

analyte and matrix lines in the spectrum from which gross line integrated intensities were 

then modelled. 

Data was autoscaled prior to the application of UVE-PLS and IVD-PLS algorithms 

in order to prevent variables with large and / or random variance from dominating the PLS 

model at the expense of variables with a small variance. This is important for atomic 

emission spectra in which signal intensities can range from a few hundred units up to 
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several hundred thousand or more and which can possess very different correlations v^th 

the analyte. 

4.5.3.2 Partial Least Squares (PLS) 

PLS was used because of its ability to reduce the impact of common problems such 

as collinearity, spectral overlaps, interactions, and matrix affects. Because it has been 

shown that linear PLS can provide good approximations with many types o f non-linearities 

(76, 139) partial least squares with linear inner relations was used. Excessive non-linear 

structure in the data may be identified after modelling is performed by examining the 

concentration residuals. 

Table 4.6 High and low training ranges (|ig ml"*) 

High concentration range (^g/ml) 
Pt 0 5 10 20 30 40 50 
Pd 0 5 10 20 30 40 50 
Rh 0 1 2 4 6 8 10 
Ba 0 1 5 10 50 100 200 
Ce 0 1 10 50 100 300 500 
Zr 0 1 10 50 100 300 500 
Mg 0 1 10 50 100 300 500 
A l 0 1 10 100 200 500 1000 

Low concentration range (|ig/ml) 
Pt 0.05 0.1 0.2 0.4 0.8 1 2 
Pd 0.05 0.1 0,2 0.4 0.8 1 2 
Rh 0.05 0.1 0.2 0.4 0.8 1 2 
Ba 0 1 5 10 50 100 200 
Ce 0 1 10 50 100 300 500 
Zr 0 1 10 50 100 300 500 
Mg 0 1 10 50 100 300 500 
A l 0 1 10 100 200 500 1000 

Bold Low analyte concentration range 
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4.5.3.3 Uninformative Variable Elimination PLS (UVE-PLS) 

A flow-chart outlining the UVE-PLS procedure is shown in Fig. 4.8a (section 4.4.3). 

The sofhvare used was Matlab Software Version 5.0, and the PLS_Toolbox 2.0 

(Mathworks Inc). The ful l spectrum data set was subjected to the UVE-PLS algorithm as 

follows: 

i) The original data array extracted from the ICP-AES instrument was a 49 x 5684 

matrix made up of 49 spectra (for the calibration data-set) each containing 5684 

data points. One calibration spectrum was initially removed to leave a 48 x 5684 

matrix after which the data was autoscaled. 

i i) The PLS algorithm was applied and the Pij regression coefficients were extracted 

for the optimum number of PCs and P^ calculated for each wavelength. 

iii) Jack-knife corrected estimated standard errors were calculated for the fiij regression 

coefficients, and a two-sided t-test was performed to determine which were equal to 

zero at the 97.5% confidence level ( a = 0.025). 

iv) Those X variables corresponding to = 0 were rejected from the original 49 x 

5684 data matrix before progression onto the next step. 

4.5.3.4 Informative Variable Degradation by PLS (IVD-PLS) 

A flow-chart outlining the IVD-PLS algorithm is outlined in Fig. 4.9 (section 4.4.4), 

and was applied as follows: 
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i) One calibration spectrum was initially removed fi-om the 49 x 5684 data matrix 

resulting from the application of the UVE-PLS algorithm. The remaining data was 

then autoscaled. 

ii) The PLS algorithm was applied and the pij regression coefficients extracted for the 

optimum number of PCs and P^ calculated for each wavelength. 

i i i ) Jack-knife corrected estimated standard errors, s(^^), and the mean, p^, were 

calculated for all regression coefficients. 

iv) The var'J^ = ^ ratios were calculated (see Eqn. 4) and ranked in descending 

order. 

v) The X variables in the data matrix were ranked in accordance with the vor"^ ratios 

and the cumulative sum calculated. 

vi) A multivariate PLS calibration model was built using mean-centered X data 

contributing to the first 30 % of the cumulative sum of the var'J^ ratios, and the 

RMSECV was calculated. The process was repeated using the first 35%, 40% and 

so on at 5% intervals of the cumulative sum data and the model with the lowest 

RMSECV value was chosen as optimal. 

4.5.3.5 Estimation of Errors 

The overall prediction efficacy, and assessment of the models capability to 

accommodate the calibration data itself, were compared using the relative root mean 

square error (RRMSE), defined in Eq. 4.20, which gives a general estimate of the error of 

prediction for concentrations of an element in the range of samples used; 
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1 l Y f y - v ) ^ 
RRMSE(%) = lOOx . ^ ' ' Eq.4.20 

mean( y ) \ N 

where is the known concentration, y is the predicted concentration, and is the number 

of experiments. However, the ultimate assessment of future prediction is the application of 

the calibration models to independent test data and the assessment of the confidence 

interval magnitude. 

4.5.3.6 Test Sample Confidence Intervals 

Central to the variable reduction routine is the estimation o f (3 coefficient 

uncertainty. This uncertainty can be projected onto the test samples in order to define 

symmetric confidence intervals (assuming a normal distribution). This was done using a 

leave-one-out cross-calibration approach, so that the variation of the calibration models 

was used to estimate the variation in predictions for an independent sample. This was done 

n times {n = number of calibration samples) and the usual Jackknife formula used to 

estimate the standard error of the prediction. Test sample confidence intervals were then 

based on TSP±(tf^^QQs/2.DF=nj*se(TSP)) (TSP = test sample prediction), which corresponded 

to a confidence interval of 95% (i.e. ~ 2 x a ) . 
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4.6 Results and Discussion 

The UVE and IVD algorithms were applied to the ful l raw spectral data matrix 

obtained from the ICP-AES instrument and multivariate calibration models built for the 

prediction of Pt, Pd and Rh in the synthetic test and autocatalyst samples. To avoid 

repetition the efficacy of the variable reduction algorithms are discussed using Pd as an 

example. A comparison of the results obtained for the multivariate calibration and 

prediction of Pt, Pd and Rh using the reduced data, the unreduced data, and integrated line 

intensities are then discussed. 

4.6.1 Application of UVE-PLS and IVD-PLS Algorithms to the High Training 

Range (HTR) Dataset 

Application of the variable reduction algorithms resulted in the deletion of the 

majority of the original 5684 spectral data points (Table 4.7). It is evident that the UVE-

PLS algorithm had the largest effect, eliminating between 79-84% of the spectral data. 
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Table 4.7 Effect of applying the UVE-PLS and IVD-PLS algorithms to the original 5684 
variables in the data matrix for Pd, Rh and Pt calibration 

Pt Pd Rh Pt Pd Rh 

No of PCs Number of variables remaining after application of algorithms 
UVE-PLS rVD-PLS 

6 375 933 168 108 99 35 
8 906 1186 501 73 103 165 
10 1000 1174 537 119 245 140 

142 142 142 * * * 

cm 142 142 142 * * * 

142 142 142 * * if 

an/ 2.64 6.57 1.18 * * * 
6.38 8.35 3.52 * * * 
7.02 8.26 3.78 * * * 

Number of Type 1 errors. 
Number of variables remaining after UVE-PLS. 

an 
nvars 
Shaded Number of variables finally used in ihe PLS 1 
* No i-test used in IVD-PLS 

The IVD-PLS algorithm then reduced the remaining data by betv^een 79-91%, 

depending on the number of PCs used. Because it was known that there were 8 elements 

present in the calibration solutions the number of PCs used was 6, 8 and 10 to prevent 

model under or overfitting. 

The ^/^y^f.^ ratio, in conjunction with Table 4.8, shows that the lowest RRMSE 

% values were not generally obtained, as would be expected, with the highest ratio. In fact 

the variability of the RRMSE % value (Table 4.8) with the ratio was 

insignificant. This would seem to indicate that the data used, by the IVD-PLS algorithm, 

was not 'too diluted' by the presence of the uninformative, i.e. Type I variables. However, 
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for Rh the RRMSE value was 1.62 % with a corresponding ratio of only 1.18, 

suggesting that those variables ranked first, and having the largest varj''^ ratio, were truly 

informative as opposed to variables which were the result of Type I error. 

Table 4.8 Synthetic test RRMSE % values for Pt, Pd and Rh using PLSl with variable 
selection (6, 8 and 10 PCs), f i i l l spectra modelling and the data set containing 166 gross 

analyte and matrix lines. 

Pt Pd Rh 
VariaUeSdection [IVt] 
RRMSE % 
Variables after t-tesi 
Variables selected 

5.27(6) 5.18(8) 5.58(10) 
375 906 1000 
108 73 119 

251(6) 233(8) 256(10) 
933 1186 1174 
99* 103* 245* 

1.66(6) 1.52(8) 1.62(10) 
168 501 537 
35 165 140 

Full Spcctnon (5684 
Ma\'dcngth points) |As| 
RRJVBE% _ 1264(8) - 8.31(8) 27.15 

Indixidual Wa\dengths (166 
anal}te & nutrix lines) |As| 
RRIVBE% 8.38(5) 7.06(5) 3.18(7) 

* Variables were selected using the IVD plot (e.g. Fig 4.12) 
[Mc] Data mean centered 
[As] Data autoscaled 

Inspection of Fig. 4.12 might lead to the assumption that a mixture of Type 1 error and 

truly informative variables were incorporated into the PLS model at first followed by only 

truly informative variables later, indicted by the sudden decrease in the RRMSE with the 

addition of the 11^ variable subset. However, the type 1 error variables possess incidental 

chance correlation and as a result would also give reductions the RMSECV value for the 

calibration data. Because the ^ / ^ ^ ^ ^ ^ ratio was low, it can be concluded that the 

relatively small number of truly informative variables (27) were of sufficient importance, 
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to limit the effect of the Type I error variables thereby giving a low Rh RRMSE for the 

predicted synthetic test data (Table 4.8). However, because o f the higher probability of 

including Type 1 error variables in the final IVD-PLS data set with a low " ^ ^ ^ ^ ^ ratio. 

it is safer modelling practice to choose UVE-PLS data sets with a much higher 

ratio, thereby lowering the probability of including Type I error variables. 

nvars 

0.115 

0.105 

0.095 

E 0.09 

0.085 

0.08 ^ -
10 15 20 25 

Variable subset number 
30 35 

Figure 4.12 Minimum RMSECV for Rh (6 PCs) for each variable subset (step size 
of 2.5 % starting at 20%. 

The overall effectiveness of the IVD-PLS algorithm when the ratio was 

° / n var s 

much larger (6.57, Table 4.7) is illustrated in Fig. 4.13 for Pd. It is evident from Fig. 4.13a 

thai a minimum RMSECV value of 0.515 was obtained when 771 wavelength data points 

were included in the model. However, a RMSECV value of approximately 0.535 was 
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obtained by using only 99 variables and it was found that, by inspection of these plots, 

together with consideration of the ^ / ^ ^ ^ ^ ^ ratio, robust models could be constructed 

using a lower number of variables than the global minimum given by IVD-PLS with very 

little sacrifice in the RMSECV value. 

0.66 

0.54 

6 8 10 12 14 
Variable subset number 

20 

Figure 4.13a Minimum RMSECV for Pd (6 PCs) for each variable subset 
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Figure 4.13b Cumulative sum of IVD ratio for Pd (6 PCs) 
(Both Fig. 4.13a and 4.13b show the relevant plots for a step size of 5% starting at 5%, 
usually it is only necessary to begin the IVD-PLS routine at approximately 30% of the 

maximum IVD value, corresponding to point ) 

The effectiveness of the variable reduction algorithm in improving the quality of 

the PLS calibration models built using the data is illustrated by the synthetic test sample 

R.RMSE values obtained for the prediction of Pt, Pd and Rh concentration (Table 4.8). In 

order to assess the effectiveness of the variable reduction routine, an 8 principal component 

PLS model was also built using the entire spectrum available with no variable selection. As 

can be seen from Table 4.8, there was a significant increase in the prediction accuracy of 

Pd following variable reduction compared to using the unreduced spectral data. 

The synthetic test RRMSE values obtained using the reduced spectrum were 5.27, 

2.33 and 1.52 % for Pt, Pd and Rh respectively, compared to 12.64, 8.31, and 27.15 % 

using the unreduced spectral data. The higher RRMSE values obtained when using the 

unreduced spectral data was probably due to the inclusion of too many uninformative 
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variables (i.e. noise) in the model, which were deleted using the UVE-PLS and IVD-PLS 

algorithms. 

In contrast to infra-red and UV spectroscopy, where absorption bands are quite 

broad, atomic emission spectra are comprised of many narrow emission lines, of the order 

of 0.01 nm width, which can be extremely complex i f even a few matrix elements with 

line-rich spectra are present. 

Part of the emission spectrum for Pd is shown in Fig. 4.14 where all the calibration 

spectra are overlaid.. Also shown are the regions of the spectrum (i.e. the wavelength data 

points) which were selected by the variable reduction algorithms. It is evident from Fig. 

4.14 that the selected parts of the spectrum were often co-incident v^ih analyte lines for Pd 

(e.g. Pd 324.470 and Pd 340. 458) and also known Pd interferents such as Ce, Pt and Zr. 

Because PLS looks for linear combinations of variables for which variability is correlated 

to the analyle of interest it is to be expected that analyte interferents are also selected, as 

was the case here. On close examination of other parts of the spectrum, it was not obvious 

why particular spectral regions were selected by the algorithm (e.g. continuum 

background), however, it is quite possible that parts of the spectrum are correlated with 

non-spectroscopic matrix effects, such as suppression or enhancement of the emission 

signal, which can only be identified by the use of multivariate methods. This highlights an 

extremely desirable aspect of this method of selecting variables from the raw spectral data, 

namely that it is an objective rather than a subjective method of selecting the most 

informative variables, so that prejudgements about the usefulness or otherwise of parts of 

the spectrum are not necessary. Bearing this in mind, it is interesting to compare the 

RRMSE values obtained 
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Figure 4.14 Partial spectrum (overlaid calibration samples (49)) showing the selected areas 
for the Pd model 

when the calibration model was constructed using 166 individual spectral lines 

representing the most intense analyte and matrix lines in the spectrum, the traditional 

method. The variable reduction method resulted in an improvement compared to this 

approach, presumably because useful regions of the spectrum were not subjectively 

omitted from inclusion in the model, as they inevitably must be i f preselected lines are 

used. 

In order to avoid model under- or over-fitting the number of PCs was heuristically 

selected on the basis of the known number of elements in the data set. It was known that 8 

elements were present in the samples, so it was assumed that between 6 and 10 PC's would 
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best model the system. It has been suggested that one should select the optimum number of 

PCs before variable selection has been carried out. However, this method can lead to the 

selection of a large number of PCs resulting in a grossly overfitted model, especially when 

line-rich spectra containing a large amount of noise are used. It is recognised that selection 

of the optimum number of PCs is not always an easy task especially i f the method is to be 

applied to systems for which the exact chemical composition is unknown. In this case, the 

number of PCs can be selected based upon the 'bracketing approach', or 'boundary 

condition' adopted here, starting at some sensible number. 

4.6.2 Multivariate Calibration for Quantitative Prediction of the High Training 

Range Data-Sets 

In order to evaluate the usefulness of the variable selection algorithm for 

multivariate calibration and quantitative analysis, a series of independent test solutions 

were prepared with randomly chosen concentrations of the elements present in the 

calibration solutions. These were then analysed and the concentrations o f Pt, Pd, and Rh 

predicted using the multivariate calibration model. In addition autocatalyst samples were 

also analysed and the same analytes determined. 

Results are shown in Tables 4.9 - 4.12 and Figs. 4.15-4.17. The 95% confidence 

limits of prediction, obtained using the method described in the theory section, are given 

for the test samples in Table 4.9, and are shown as error bars in Figs. 4,15b, 4.16b and 

4.17b for Pd, Pt and Rh respectively. In most cases the confidence interval for the 

predicted concentrations encompassed the known value. For the few exceptions to this 

(e.g. Pd at a known concentration of 18 ^g ml"'), the predicted concentrations were still 

very close to the known concentrations (Table 4.9). 
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Table 4.9 Upper and lower confidence intervals for the predicted test set concentrations 
(|ig ml"') using those variables that gave the lowest RRMSE % test set value 

Pt Pd Rh 
Ptaficticn 

Concenirauon Cbnfidaxe Units Gxifidenoe Units Concenirauon Cbnfidaxe Units Gxifidenoe Units QiuaitiaUGn Lonuaenoe units 
Acad Precficied L C L U C L Acaol Praficted L C L U C L Acaol Prafcted L C L U C L 

12 11.70 11.12 1128 20 19.98 1980 20.15 3 196 183 3.08 
16 15.96 15.32 16.60 12 11.81 11.47 1110 5 4.96 4.80 512 
20 19.50 1&&4 20.16 18 17.46 17.21 17.61 2 ISA 1.93 214 
12 11.61 11.07 1115 14 13.76 13.59 13.81 4 4.02 3.87 4.17 
18 17.24 IdSO 17.69 10 986 9.61 992 3 3.04 185 323 
6 dl4 5.79 d49 30 29.68 29.52 29.94 1 1.04 091 1.18 
2 216 1.72 160 6 5.95 575 600 2 1.98 1.83 214 
40 3a 15 37.54 3&76 2 1.86 1.63 126 8 8.04 7.90 ai8 
30 2&65 27.96 29.35 40 3916 38.80 39.40 10 985 970 10.00 
0 a43 -ai5 1.01 0 -Q15 -035 Qlt 0 003 -on 018 
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Table 4.10 Actual and predicted concentrations for Pt (|ig ml ) 

Pt 
Test samples Autocat samples 

Concentration (|ig/ml) 95% oncentration (ng/ml) 95% 
Sample Actual Predicted C-1. (±) Sample Actual Predicted C. I . (±) 1 

Tel 12 11.70 0.58 A u l R l n/d -2.05 n/g 
Te2 16 15.96 0.64 AulR2 n/d -1.79 n/g 
Te3 20 19.50 0.66 AulR3 n/d -1.89 n/g 
Te4 12 11.61 0.54 Au2Rl I.OI -0.70 n/g 
Te5 18 17.24 0.45 Au2R2 1.02 -1.32 n/g 
Te6 6 6.14 0.35 Au2R3 0.99 -0.66 n/g 
Te7 2 2.16 0.44 Au31R n/d -0.71 n/g 
Te8 40 38.15 0.61 Au3R2 n/d -0.82 n/g 
Te9 30 28.65 0.70 Au3R3 n/d -1.31 n/g 

TelO 0 0.43 0.58 Au41R n/d -0.59 n/g 
Au4R2 n/d -0.47 n/g 
Au4R3 n/d -0.38 n/g 

RRMSEP % 5.18 191.27 

rt/g 
n/d 

Not given 
Not delectable 
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Table 4.11 Actual and predicted concentrations for Pd (|ig ml ' ' ) 

Pd 
Test samples Autocal samples 

Concentration (|ig/ml) 95% oncentration (|ig/ml) 95% 
Sample Actual Predicted C. I . (±) Sample Actual Predicted C. L (±) 1 

Tel 20 19.98 0.17 A u l R l 1.07 2.76 0.4386 
Te2 12 11.78 0.31 AulR2 0.96 2.66 0.4263 
Te3 18 17.41 0.20 AulR3 0.90 2.67 0.4272 
Te4 14 13.70 0.11 Au2Rl 1.22 2.93 0.4244 
Te5 10 9.76 0.15 Au2R2 1.19 2.92 0.4265 
Te6 30 29.73 0.21 Au2R3 1.22 2.99 0.4305 
Te7 6 5.87 0.12 Au31R 17.62 18.89 0.2977 
Te8 2 1.95 0.32 Au3R2 17.86 18.93 0.296 
Te9 40 39.10 0.30 Au3R3 17.35 18.98 0.2996 

TelO 0 -0.12 0.23 Au41R 33.70 34.00 0.2963 
Au4R2 34.12 34.38 0.3037 
Au4R3 33.73 33.85 0.2989 

RRMSEP % 2.51 10.44 
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Table 4.12 Actual and predicted concentrations for Rh (^g ml"*) 

Rh 
Test samples Autocat samples 

Concentration (|ig/ml) 95% oncentration (ng/ml) 95% 
Sample Actual Predicted C. I . (±) Sample Actual Predicted C. L (±) 1 

Tel 3 2.96 0.13 A u I R I n/d O.IO n/g 
Te2 5 4.96 0.16 AulR2 n/d 0.10 n/g 
Te3 2 2.04 0.11 AulR3 n/d 0.11 n/g 
Te4 4 4.02 0.15 Au2RI 3.31 0.15 n/g 
Te5 3 3.04 0.19 Au2R2 3.32 0.10 n/g 
Te6 1 1.04 0.13 Au2R3 3.21 0.12 n/g 
Te7 2 1.98 0.15 Au31R 5.36 5.81 n/g 
Te8 8 8.04 0.14 Au3R2 5.36 5.72 n/g 
Te9 10 9,85 0.15 Au3R3 5.33 5.93 n/g 

TelO 0 0.03 0.14 Au41R 0.05 -0.46 n/g 
Au4R2 0.03 -0.49 n/g 
Au4R3 0.03 -0.50 n/g 

RRMSEP % 1.52 64.66 

n/g 
n/d 

Not given 
Not detectable 
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Figure 4.15a Actual vs predicted concentration (fig ml' ') using variable selection for Pt for 
the calibration data. 

Test data 
45 degree line 

20 30 40 

Actual concenlradon (ng/ml) 

60 

R2 Slope Intercept 

Calibration 0.999 0.999 0.012 
Test 0.999 0.984 0.041 

Figure 4.15b Actual vs predicted concentration (fig ml' ') using variable selection for Pt for 
the independent test data with 95 % confidence interval. 
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Figure 4.16a Actual vs predicted concentration (|ig ml"') using variable selection for Pd for 
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Calibration 0.999 0.999 0.007 
Test 0.999 0.944 0.419 

Figure 4.16b Actual vs predicted concentration (^g ml ' ' ) using variable selection for Pd for 
the independent test data with 95% confidence interval. 
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Figure 4.17a Actual vs predicted concentration (|ig ml" ) using variable selection for Rh for 
the calibration data. 

• Test data 

45 degree line 
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12 

R2 Slope Intercept 

Calibration 0.999 0.999 0.006 
Test 0.999 0.9878 0.043 

Figure 4.17b Actual vs predicted concentration (|ig ml"*) using variable selection for Rh 
for both the independent test data with 95 % confidence interval. 
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The RRMSE values, using the individual lines, for the synthetic test samples were 

8.38, 7.06 and 3.18 % for Pt, Pd and Rh (Table 4.5, section 4.3.2) respectively. This 

compares to 5.18, 2.51 and 1.52 % (Tables 4.10-4.12) respectively using the UVE and 

IVD-PLS algorithms, illustrating their effectiveness at variable selection. These low 

values, however, are not reflected in the autocatalyst samples where the RRMSE values 

were 191.27, 10.44 and 64.66 % for Pt, Pd and Rh (Tables 4.10-4.12) respectively using 

the variable selection method. This is most probably due to the presence of urunodelled 

interferents in the autocatalyst samples. This is also confirmed by the low RRMSE values 

for the test solutions using the entire spectrum, where the RRMSE values were only 12.64, 

8.31 and 27.15 % for Pt, Pd and Rh respectively (Table 4.5, section 4.3.2). I f any 

unmodelled interferents are present they will be accentuated by using the entire spectrum 

because of the increased amount of unmodelled data compared with the data set consisted 

of individual lines. Evidently the calibration samples covered the test sample factor space, 

but not that of the autocatalyst samples. The use o f certified reference materials (CRMs), 

notably standard reference material 2556 (National Institute of Standards and Technology, 

NIST) - *Used Autocatalyst' pellets was not analysed owing to the presence of non-

certified values in the reference material which may render any experimental design 

ineffective. 

4.6.3 Comparison of Variable Selection techniques 

Both of the variable selection techniques used showed that they were capable of 

selecting suitable variables for the successful prediction of the synthetic test data Table 

4.13). Using the method which selected variables based on the standard deviation of the 

intensity, the RRMSE values were 10.46, 4.39 and 13.23 % for Pt, Pd and Rh respectively. 
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However, significant improvements in these values were made by using of the UVE and 

IVD-PLS algorithms. The RRMSE values were reduced by 50 % for Pt (5.18%), 43 % for 

Pd (2.51 %) and 89 % for Rh (1.51 % ) . Although the reduction in the autocat RRMSE 

values followed the same trend, the values remained relatively high for both Pt (191.27 %) 

and Rh (64.66 % ) , with Pd at 10.44 % (Table 4.13). Compared with the more traditional 

method of selecting individual analyte and matrix lines, the UVE and IVD-PLS variable 

selection techniques gave significantly lower RRMSE values for the synthetic test 

solutions. The UVE and IVD-PLS algorithms resulted in a significant decrease in the 

autocatalyst RRMSE values also from 622, 1734 and 7840 % compared with 191.27, 10.44 

and 64.66 % for Pt, Pd and Rh respectively. The high RRMSE values again indicate the 

possible presence of unmodelled interferents in the autocatalyst samples which were not 

incorporated into the calibration solutions. The best modelling to date, however, has been 

obtained with the use of 166 individual analyte and matrix lines. This has given test sample 

RRMSE values of 8.38, 7.06 and 3.18 % for Pt, Pd and Rh respectively, and 3.38 % for Pt 

in the autocatalyst sample. The relatively low autocatalyst RRMSE value for Pt (3.38 %) 

using only individual lines compared with the UVE/IVD-PLS RRMSE at over 190 % may 

indicate the presence of unmodelled interferenis in the autocatalyst samples. 
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Table 4.13 Comparison of Pt, Pd and Rh RRMSE values (test and autocat solutions) for the 
different variable selection techniques. 

Pt 
Test 
Pd Rh Pt 

Autocat 
Pd Rh 

VR UVE and IVD-
PLS [mean centered] 5.18 2.51 1.52 
Number of variables 73 99* 165 
Standard deviation 
[autoscaled] 10.46 4.39 13.23 
Number of variables 1000 650 1250 
Full Spectrum 
[auloscaled] 12.64 8.31 27.15 
Individual 
Wavelengths (166) 
[autoscaled] 8.38 7.06 3.18 

191.27 

6750 

622.66 

3.38 

10.44 64.66 

16.34 

1734 

n/a 

141.34 

7480 

n/a 

* Variables were selected using the IVD plot (e.g. Fig 4.12a). 
n/a Data was not available. 

4.7 Application of UVE-PLS and IVD-PLS Algorithms to the Low Training Range 

Dataset 

4.7.1 Results and Discussion 

Application of the variable reduction algorithms resulted in the deletion o f the 

majority of the original 5684 spectral data points (Table 4.14). It is evident that the UVE-

PLS algorithm had a large effect, eliminating between 96-99% of the spectral data. 
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Table 4.14 Effect of applying the UVE-PLS and IVD-PLS algorithms to the original 5684 
variables in the data matrix for Pd, Rh and Pt calibration 

Pt Pd Rh Pt Pd Rh 

UVE-PLS IVD-PLS 

8 20 220 116 175 13 
12 28 187 205 *** 41 

142 142 142 ** 
OJI 142 142 142 ** ** 

an/ 
/ n var s 0.14 1.54 0.81 •k-k •kit •kit 

** 
*** 

IVD-PLS nol carried out because UVE-PLS selected variables are most probably the result Type I errors. 
No l-iesl used in IVD-PLS algorithm. 
IVD-PLS not performed because number of U V E - P L S variables decreased 

The IVD-PLS algorithm then reduced the remaining data by between 45-87%, 

depending on the analyte. As the chemical rank of the LTR and HTR data sets were equal 

it was only necessary to use 8 PCs for the UVE-PLS algorithm (RJRMSE % error values in 

Table 4.8 show very little change with the number of PCs chosen or with changes in the 

ratio). However, because the number of variables for Pt was less than an, it 

was highly probable that all 20 variables were the result of Type I errors, and were 

therefore present through chance. Because of this UVE-PLS was run using 12 PCs in an 

attempt to increase the ratio. From Table 4.14 it can be seen that this was 

unsuccessful, and that the increase was insignificant. Because of this results are presented 

for Pd and Rh only. The ^tw/ ratio for Rh was < 0 at 0.81, this would seem to 
/ nvar s 

indicate that all variables were the result of Type I errors, however, this does not take into 
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account the variability of a with non-normal distributions. Therefore, because of its 

proximity to 1 modelling was performed. 

The effectiveness of the IVD-PLS algorithm is illustrated in Fig. 4,18a, which 

shows the cumulative sum plot of the varj'^ ratios and the RMSECV values for Pd. It is 

evident from Fig. 4,18a that a minimum RMSECV value of 0.045 was obtained when only 

13 wavelength data points were included in the model. Further inclusion of wavelength 

variables, however, causes the RMSECV value to increase from a minimum of 

approximately 0,045 to a maximum of approximately 0.0535. This was most probably the 

result of incorporating less informative variables into the PLS model. 

5 10 
Variable subset number 

15 

Figure 4.18a Minimum RMSECV for Pd (8 PCs) for each variable subset. 
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Figure 4.18b Cumulative sum of IVD ratio for Pd (8 PCs). 
(Both Fig. 4.18a and 4.18b show the relevant plots for a step size of 5% starting at 30%) 

The effectiveness of the variable reduction algorithm in improving the quality of 

the PLS calibration models is illustrated by the RRMSE values obtained for the external 

prediction of Pd and Rh in Table 4.15 and Figs. 4.19 and 4.20 for Pd and Rh respectively. 

In order to assess the effectiveness of the variable reduction routine, an 8 PC PLS model 

was also built using the entire spectrum available with no variable selection. 

Table 4.15 shows that for the synthetic test samples there was a significant increase 

in the predictive accuracy using variable selection for Pd and Rh with RRMSE reductions 

of - 12 and 43 % respectively compared to the individual wavelengths data. The high 

RRMSE value ( - 232) obtained for Pt, using the reduced spectral data, indicates that 

insufficient information was present in the predictive model. 
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Table 4.15 RRMSE values for Pt, Pd and Rh using PLS 1 with variable reduction, fiill 
spectra modelling and the data set containing 164 lines. 

Synthetic test solutions Autocat samples 
RRMSE % RRMSE % 

Pt Pd Rh Pt Pd Rh 

VR [Mc] 232.21 (3) 50.72(5) 44.64(5) 79.83 (3) 27.13 (5) * 

Individual wavelengths 
(164) [As] 282.08(4) 63.39(10) 87.68(8) 272.73(4) 702.02(10) * 

Full spectrum [Mc] 210.11 (8) 163.29(8) 159.43 (8) 93.71 (8) 22.94(8) * 

* Sample analyte concentration was outside of the calibration range 
[Mc] Mean centered 
[As] Autoscaled 
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Figure 4.19a Actual vs predicted concentration (|ig ml ' ) using variable selection for Pd for 
the calibration data. 

> Test data 
— 45 degree line 

0.5 I 1.5 2 

Actual concentration (|jg/ml) 

2.5 

R2 Slope Intercept 

Calibration 0.998 0.998 0.001 
Test 0.876 1.037 0.092 

Figure 4.19b Actual vs predicted concentration (^ig ml"*) using variable selection for Pd for 
both the independent test data with 95 % confidence interval. 
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Figure 4.20a Actual vs predicted concentration (|ig ml"') using variable selection for Rh for 
the calibration data. 

E 2.5 

^ 0.5 H 

Test data 
45 degree line 

0.5 1 1.5 2 

Actual concentration (pg/ml) 

2.5 

R2 Slope Intercept 

Calibration 0.996 0.996 0.002 
Test 0.883 1.082 0.06 

Figure 4.20b Actual vs predicted concentration (ng ml'*) using variable selection for Rh 
for both the independent test data with 95 % confidence interval. 
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This is lent credibility by Fig. 4.21 which shows the IVD ratio (varj'^ = ^J/^^^ j ) 

obtained from the IVD-PLS algorithm. Because the data was autoscaled prior to the use of 

the IVD-PLS algorithm, all variable coefficients were independent o f scale, a small 

regression coefficient, therefore indicates an uninformative variable. From Fig. 4.21 it is 

evident that Pt had the lowest IVD values of the three analytes, indicating that very little 

predictive information was available to the PLS model. 

The synthetic test RRMSE values obtained using the reduced spectrum were 50.72 

and 44.64 % for Pd and Rh respectively (Table 4.15), compared with 2.51 and 1.52 % 

using the HTR (Table 4.8). The higher RRMSE values using the LTR data set, compared 

to those obtained for the HTR data set are most probably due to the lower analyte 

concentrations (Table 4.6) which have experienced the same magnitude of interference. 

The much larger difference between the analyte and matrix element concentrations may 

have *masked' any analyte variation present at important spectral regions, thereby giving 

the PLS model poor predictive information. The synthetic test RRMSE values for Pd and 

Rh, using individual wavelengths, were 63.39 and 87.68 % respectively, compared with 

163.29 and 159.43 % (Table 4.17 and 4,18) using the full spectrum. Evidently, for these 

analytes the selected wavelengths were more able to predict than the ful l spectrum most 

probably because of excluded noise. For Pt the RRMSE value obtained by using individual 

wavelengths and the full spectrum was 282.08 and 210.11 % (Table 4.16) respectively, 

indicating that the wavelengths used had missed the important information that was 

captured by using the full spectrum. 

For the autocat samples the Pd RRMSE value using variable selection was 27.13 % 

(Table 4.15). When compared with the RRMSE values using the individual wavelengths 

data, the drop was significant with a reduction of - 674 % (Table 4.15). Predictive enors 

for Rh are not shown because all sample concentrations lay outside of the calibration 
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range. The RRMSE values for Pd using the full spectrum was 22.94 % (Table 4.15). This 

value was comparable with that obtained using variable selection. Evidently, by selecting 

individual wavelengths important information has been omitted which is not the case with 

either the full spectrum or the variable selection methods. This trend is also followed by Pt, 

where the RRMSE values are 272.73 and 93.71 % using 164 individual wavelengths (I.W.) 

and the full spectrum (F.S.) respectively (Tables 4.16 - 4.18 for Pt, Pd and Rh 

respectively). 

6 8 10 12 14 
Wavelength data point 

16 18 20 

Figure 4.21a IVD ratio versus wavelength data point for Pt 
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Figure 4.21b IVD ratio versus wavelength data point for Pd 

40 60 80 
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Figure 4.21c IVD ratio versus wavelength data point for Rh 
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Table 4.16 Actual and predicted concentrations for Pt (|ig ml ) 

Pt 
Test samples Autocat samples 

Concentration (|ig/ml) Concentration (ng/ml) 

Predicted Predicted Predicted Predicted 
Sample Actual (164 I.W.) (F. S.) Sample Actual (164 I.W.) (F.S.) 

Tel 0.05 1.85 1.73 A u l R l 1.01 3.57 2.742 
Te2 0.40 1.71 2.11 AulR2 1.02 14.43 2.7955 
Te3 0.20 1.70 1.46 AulR3 0.99 3.30 2.7938 
Te4 0.40 2.43 1.21 Au2Rl 1.99 6.06 2.8023 
Te5 1.00 3.21 1.89 Au2R2 1.88 1.15 2.799 
Te6 0.80 1.93 1.78 Au2R3 1.99 3.29 2.7997 
Te7 0.80 1.89 1.56 
Te8 2.00 1.65 1.78 
Te9 0.05 1.80 1.45 

TelO 0.00 2.00 1.42 

RRMSEP % 282.08 210.11 272.73 93.71 

I. W. individual wavelengths 
F. S. full spectrum 
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Table 4.17 Actual and predicted concentrations for Pd (j ig ml ' ' ) 

Pd 
Test samples Autocat samples 

Concentration (fig/ml) Concentration (jig/ml) 
Predicted Predicted Predicted Predicted 

Sample Actual (164 I.W.) (F. S.) Sample Actual (164 I.W.) (F.S.) 

Tel 0.1 0.09 1.43 A u l R I 1.22 7.09 1.15 
Te2 0.05 0.01 -0.55 AulR2 1.19 17.18 0.96 
Te3 0.1 0.10 0.29 AulR3 1.22 8.97 1.01 
Te4 0.8 0.84 1.16 Au2Rl 1.50 11.25 1.06 
Te5 0.4 1.06 0.05 Au2R2 1.48 6.85 1.13 
Te6 0.2 0.37 -0.02 Au2R3 1.49 9.55 1.10 
Te7 1 1.72 1.33 
Te8 2 2.03 0.12 
Te9 0.4 0.52 1.21 

TelO 0 0.14 0.24 

RRMSEP % 63.39 163.29 702.02 22.94 

i. \V. individual wavelengths 
F. S. full spectrum 
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Table 4.18 Actual and predicted concentrations for Rh (|ig ml ) 

Rh 

Sample 

Test samples 
Concentration (jig/ml) 

Predicted Predicted 
Actual (164 I.W.) (F.S.) 

Autocat samples 
Concentration (|ig/ml) 

Predicted Predicted 
Sample Actual (164 I.W.) (F.S.) 

Tel 0.40 0.39 0.25 
Te2 0.10 0.15 2.33 
Te3 0.05 0.19 0.48 
Te4 0.20 0.37 1.01 
Te5 0.80 1.81 1.61 
Te6 0.40 0.62 1.13 
Te7 2.00 2.31 1.21 
Te8 1.00 2.13 1.10 
Te9 0.80 0.98 0.52 

TelO 0.00 0.09 0.83 

RRMSEP% 87.68 159.43 

• samples out of calibration range 
I. W. individual wavelengths 
F. S. ftill spectrum 
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The emission spectrum for all calibration solutions is shown in Fig. 4.22. Also 

shown are the regions of this spectrum (i.e. the wavelength data points) which were 

selected by the variable reduction algorithms for the prediction of Rh. Because of the 

relatively few lines chosen (Fig. 4.22) it was not obvious why particular spectral regions 

were selected by the algorithm. Because PLS looks for linear combinations of variables for 

which variability is correlated to the analyte of interest it is to be expected that analyte 

interferents are selected, e.g. Pt 240.309, Ce 382.000 or Ba 233.527 nm. It is interesting to 

compare the RRMSE values obtained when the calibration model was constructed using 

164 individual spectral lines (Table 4.11) representing the most intense analyte and matrix 

lines in the spectrum. The variable reduction method resulted in an improvement compared 

to this approach, presumably because useful regions of the spectrum were not subjectively 

omitted from inclusion in the model, as they inevitably must be i f preselected lines are 

used. 
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Figure 4.22 Emission spectrum for all calibration samples with those regions selected for 
the prediction of Rh. 

4.8 Conclusions 

The application of variable elimination and selection algorithms has shown that it is 

possible to use the complete available segmented ICP-AES emission spectrum for 

muhivariate modelling without having to resort to line selection or the need to assign 

background correction points in order to obtain the net analyte signal o f individual lines. 

Indeed one of the benefits of this approach is the selection of parts of the spectrum which 

appear uninformative, such as continuum background, but which can be highly informative 

to a bilinear modelling technique such as PLS, which is able to detect useful variation in all 

parts of the spectrum. The new method has several desirable properties: it is 

computationally simple, it has significance tests of muhivariate model parameters and 

allows the calculation of independent test data confidence intervals. 
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The model errors for the independent test data, have shown considerable 

improvement compared with the errors achieved when using all 5684 wavelengths and 

marginal improvement compared with the more traditional individual wavelength data set 

consisting of intense analyte and matrix lines, thus reinforcing the fact that PLS does 

indeed benefit from selective variable reduction. Of greater interest is the important 

advantage of being able to utilise the fu l l spectrum because the need for individual line 

selection, normally based upon expert knowledge of the chemical system is no longer 

required. In situations where such systems are not fully understood the selection of 

pertinent individual lines may prove impossible. The fundamental techniques used in this 

method of variable reduction are applicable to all forms of spectroscopy. The spectra from 

an ICP-AES instrument, compared to that of a broad spectrum instrument, for example, is 

relatively complex, as such comparable results should be obtainable for other classes of 

spectroscopy. 

The limitations of the techniques were very different. The use o f signal intensity 

standard deviation was not analyte specific, as such some of the selected variables 

possessed very liule correlation. The use of relative standard deviation û as discussed but 

this would give noisy regions of the spectrum the same weight as informative regions. The 

use of PLS regression coefficients also had limitations in that the correct number of PCs 

was required prior to UVE-PLS to estimate the coefficients, thereby leading to a non 

unique solution. It is recognised that selecting a range of PC's to use is not always an easy 

task, especially i f the method is to be applied to data where the exact chemical composition 

is unknown. However, by using this heuristic bracketing approach, in conjunction with the 

variable selection algorithms developed, it has been shown that it is possible to identify 

those spectral areas within an ICP-AES emission spectrum that can be used in subsequent 

modelling. The ratio of Type I error variables to truly informative variables proved only to 

be an important issue when < 0 v^th these particular dalasets. However, this may not be the 
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case when applied to other chemical systems where the number and strength, in terms of 

PLS regression coefficient, of informative spectral regions is much less. However, given 

its limitations this method was analyte specific and was therefore chosen as the most 

appropriate of the two with which to continue ful l spectrum investigations. 
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C H A P T E R 5 - PLS AND V A R I A B L E S E L E C T I O N USING T H E F U L L 

A V A I L A B L E S P E C T R U M A AND C O M P L E X I N D U S T R I A L S A M P L E S 

5.1 Introduction 

The theory of variable selection has up to this point been developed using complex 

synthetic samples containing no more 11 elements (3 analytes, 5 matrix elements and 3 

internal standard elements which were subsequently not used). In this section the 

procedure wil l be applied to real industrial samples containing combinations of over 40 

elements, including Pt, Pd, Rh, Al , Mg, Ce, Zr, Fe, Si, Au, Ag, Ir, As, Cu, Ca, B and L i . 

The elements Fe, Mg and A l all have extremely line-rich spectra in the 200-450 nm 

wavelength region thereby posing problems for the determination o f elements with 

emission lines in this region of the spectrum. The complexity of the samples is the result of 

two factors: first, the samples covered a very broad range of sample types, including 

electronic scrap, spent catalysts, alumina, silica, and base metal matrices, to name but a 

few (Table 5.1). The samples were obtained from Johnson Matthey (JM) and were 

subsamples of material that was to be processed by JM to reclaim the precious PGM 

metals (e.g. Au, Ag, Pt, Pd and Rh). They had been subdivided by the company into those 

main categories given in Table 5.1; second, the samples had been digested using a peroxide 

fusion method, with subsequent digestion in hydrochloric acid, so all the matrix elements 

were still present. 

Because of this complexity it was not possible to use an experimental design to 

produce a calibration data set covering all the factor space so an altemative method was 

required. The samples had previously been analysed by JM in two ways. First, they had 

been subjected to a NiS fire assay (140) procedure to separate the matrix from the precious 
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metals and the precious metals had then been determined by ICP-AES using a combination 

of univariate lEC factors and matrix matching. Furthermore the samples had also been 

determined by independent umpire laboratories and a set of mean values for the precious 

metals were obtained. Second, the samples which had been subjected to the peroxide 

fusion digestion, mentioned above, which did not separate the matrix, had their precious 

and base metal content determined by ICP-AES using suitable wavelengths and a 

combination of lEC factors and matrix matching. Hence, two sets o f data were available 

with corresponding values for the concentrations of the precious metals in each sample. 

The objective of the study was to use multivariate calibration to correct for interference in 

the samples which had been digested by the peroxide fusion (i.e. the samples with large 

concentrations of matrix elements). To this end, the spectral data from the ICP-AES 

analysis could be used to build multivariate calibration models and the concentration 

values obtained for the precious metals obtained using the NiS fire assay method could be 

used as standard concentration values. The analytes available to this approach were gold 

(Au), silver (Ag) and palladium (Pd). 

Because these samples had been analysed by JM using the Perkin-Elmer optima 

3000 ICP-AES specifically for their own work, only 38 % of the segmented spectrum was 

available, consisting of all spectral points from 76 subarrays (out of a possible 201). 

Nevertheless, it was considered that the data would be suitable for the variable selection 

algorithms developed in Chapter 4 and that it would still contain a substantial amount of 

noise which could be identified and removed. 
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Table 5.1 Sample classification 

Assay Group Sample Type Definition (%) % of Total 

1 High silvCT A g ^ 10 3.2 

2 Barium Titanate B a ^ 10 ,T i§ 10 8.7 

4 High Iron Fe ^ 25. S g 5 7.6 

5 Calcia C a O § 3 0 1.4 

6 Alumina Al20j^25, SiQzglO 11.0 

7 Silica SiQ2^25, Al20,g 10 7.9 

8 Marte S ^ IO,Cu + Ni + F e ^ 10 5.5 

9 Silica/Alumina SiQz^ 10.Al2O,^ 10 21.8 

10 Carbon base Sum (base metal) < 10 3.5 
11 Nfixed base metal Not as above 20.9 
13 High PGM Any PGM > 20 8.5 

TOTAL 100 

5.2 Experimental 

5.2.1 Instrumentation and Reagents 

A l l peroxide fusion samples were analysed by ICP-AES (for instrument and reagents 

information see Chapter 3, section 3.2.1) and their base and precious metal content 

determined. Instrumental conditions were optimised (section 3.2.1) and the wavelengths 

chosen corresponding to the major analyte and matrix lines. This made available the 

segmented spectrum from 76 out of a possible 201 subarrays. 
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5.2.2 Procedures 

5.2.2.1 Selection of Calibration and Validation Samples using Principal Components 

Analysis (PCA) 

5.2.2.}.} Theory 

In order to perform any calibration experiment suitable calibration samples must be 

used. In a situation where structured experimental design can be used this is a matter of 

deciding which design to choose (e.g. factorial, partial factorial or orthogonal array e.l.c). 

I f the samples under examination are very complex (in this case > 40 elements), or i f the 

elemental content of future samples is known to vary considerably, the alternative is to use 

'historical data' in a similar manner to that used for process analysis. However, for this to 

give satisfactory predictions, three criteria must be met: there must be sufficient calibration 

samples from which to select a suitable subset; the elemental composition must be similar 

and the analyte concentrations used in the calibration should be accurate. It would be 

preferable to use certified concentration values, however, as this is seldom available in an 

industrial context, an alternative is to use concentration values that have been determined 

by some independent method and which have then been subsequently 'validated'. In this 

case all the analyte concentrations were independently analysed by a number of umpire 

laboratories and validated by comparison with a NiS fire assay. 

The samples were first divided into 3 subsets based upon their analyte (Au, Ag or 

Pd) content, this ensured that only samples containing a specific analyte were used for the 

prediction of the validation samples containing the same analyte. It is then important to 

decide which samples, in each of the three subsets, are of similar composition with respect 

to their base metal content. This was performed using principal components analysis 

(PCA) and the Hotelling t-test. 

is: 



Hotelling originally introduced the 7̂  statistic in 1931 as a multivariate analogue of 

the univariate ^ statistic of the Irish statistician, William Sealy Gossett (1876-1937), more 

familiar in the guise of his pseudonymic 'Student' /-test for the difference between two 

means (141). First consider a bivariate example in which two zmalytes, JC and are assumed 

to have normal distributions with means x and J variances (i.e. standard deviation 

squared) as in Eqns. 5.1 and 5.2: 

and covariance as in Eqn. 5.3: 

= Z r ^ c , . ~x)(y, - y ) / ( n - \ ) Eqn. 5.3 

where n is the number of determinations on which the estimated values of x , y, , S^, 

and 5*̂^ are based. The lest statistic (7^) is then given by Eqn. 5.4: 

r ^ = c r Z j - 2 p Z 7 + Z ^ ; Eqn. 5.4 

where Z , =(x-x)/S^ and Zy=(y~y)/S^ and c = 1/0 - p ' ; where p = S^/(S^Sy) 

Equation 5.4 however, is only suitable for bivariate data and cannot be used with 
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multivariate data which requires the use of PC A. 

The method of PCA has already been described in detail in section 1.4.2.2. I f it is 

assumed that the scores are normally distributed it is possible to calculate confidence limits 

for the scores. The statistical confidence limit, the value for can be calculated by means 

of the F-distribution as shown in Eqn. 5.1: 

2 _ k(m-\) ^ 

m — K 

where m is the number of samples, k is the number of PCs, a is the confidence interval 

chosen (e.g. 95%) and F is the F-statistic for the appropriate degrees of freedom. For any 

two PCs, T^^ ̂  describes an ellipse in the PC-space defined by PCn and PC„+/ (142)(where 

n>\). Each individual sample's t-value is given by Eqn. 5.2 (143): 

T.' = t.X-'t] = x^Fk 'P x. Eqn. 5.2 

where t- refers to the x-th row of the matrix of scores vectors from the PCA model and 

is the diagonal matrix containing the inverse of the eigenvalues associated with the k 

eigenvectors retained in the model. For >TI„^, samples are situated outside of the 

ellipse indicating that they are outliers, as shown in Fig. 5.1. 
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Figure 5.1 Graphical representation of Hotelling's T^ confidence ellipse 

It is important to note that the 7^ statistic makes the assumption that the 

distribution of the data, is multivariate normal. I f u = (u^, u^) is distributed such that 

the are all independent normal univariate random variables, then u is said to have a 

multivariate normal distribution. Clearly data is often not normally distributed, however, 

the central limit theorem slates that the sums of several different groups will tend to be 

normally distributed, regardless of the probability distribution of the individual groups 

(144) (145). This suggests that factor-based methods, such as PCA where the scores are a 

weighted sum of individual variables, wi l l tend to produce measures that are more 

normally distributed then the original data (143). 
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This multivariate equivalent of the Student's t-test can be used to detect those 

samples with different composition (sample outliers) in a data set. Given a set o f samples 

S=(Si, the corresponding data matrix wil l be X = (Xj, x^) and of size m x n 

(where m is the number of samples and n the number of variables). Prior to performing 

PCA the data set X is autoscaled. This has the effect of making the variance constant 

across the measurements (i.e. each variable has the same weighting in the model (146)). 

This procedure is very important for spectral interpretation because the intensity of a 

wavelength has no correlation with wavelength importance (147). The PCA model can 

then be built and the scores vectors, t , for each PC plotted. Since the maximum amount of 

variance is captured in the early PCs it is only necessary to produce a plot of the early 

score vectors (Fig. 5.1) in order to detect unusual samples. The plot reveals how the 

samples are related to each other. Samples that are close together are similar with respect 

to the original measurements provided the plot displays a sufficient amount of variation. 

Since this mathematical proximity translates to chemical similarity i f meaningful 

measurements have been made (46) unusual samples can be identified on the basis of their 

composition. The degree of confidence for the 7"̂  confidence region is then selected (e.g. 

95%, a = 0.05). 

5.2.2.}. 2 Procedure 

The emission data from the peroxide fusion samples was first autoscaled ensuring 

that each variable was considered equally important (the advantages and disadvantages of 

different types of preprocessing prior to sample classification is given in section 5.3 ). The 

samples were first divided into 3 subsets based upon their analyte (Au, Ag or Pd) content 

and then subjected to PCA. The degree of confidence,a, was chosen to be 95% (i.e. 
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a = 0.05, a one sided t-test was used). After each PCA model was built the T^was 

calculated and the correct number of outlying samples calculated according toa x w . I f the 

number of outlying samples exceeded a x /w all outlying samples were deleted. A PCA 

model was then built using the new data and the process repeated until the number of 

outlying samples was statistically acceptable. 

To select the calibration and validation samples, all samples were ranked in 

ascending order of analyte concentration. Validation samples were then selected at regular 

intervals, the size of the interval depending upon the total number of samples. This ensured 

that both the calibration and validation data set contained samples that were representative 

of the analyte concentrations available. 

5.2.2.2 Variable Reduction and Multivariate Calibration 

5.2.2.2.] Theory 

See Chapter 4 (Section 4.4). 

5.2.2.2.2 Procedure 

Application of the variable selection algorithms is described in Chapter 4. The data 

collected for the industrial ftision samples comprised data corresponding to known analytes 

and matrix elements in the samples. Because of this the amount of noise present in the 

corresponding subarrays was vastly reduced compared to the noise present when data fi-om 

all subarrays was used as in Chapter 4 . It was therefore possible to obtain RMSECV plots 

for Au, Ag and Pd, and determine the approximate number of PCs to use in the UVE-PLS 
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algorithm, as opposed to simply using a range of PCs (c.f Chapter 4). 

5.3 Results and Discussion 

The most common pre-processing methods and their effects and disadvantages are 

shown in Table 5.2. From this it is evident that no pre-processing step is without its 

problems when performing classification using PCA. By autoscaling, informative and 

uninformative (noisy) variables within the data set are scaled to unit variance and are 

thereby given the same importance. The use of mean centering, however, may lead to the 

situation shown in Fig. 5.2, where the high variability of informative variables 1 and 2 

overshadow the variability of informative variables 3 and 4. This may give a high level of 

explained variance, but would omit important chemical information necessary for the 

correct classification of the samples on the basis of their composition. 

Table 5.2 Summary of common pre-processing techniques, their effects and disadvantages 

Pre-processing 
technique Effects Disadvantages 

No pre-processing 

Autoscaling 

Mean centering 

Allows natural variability 
to influence model 

Allows all variables to 
influence model equally 

Allows variables with 
greater variability to 

dominate model 

Important variables with 
smaller variability 

ignored 

Noise given same 
importance as relevant 

variables 

Important variables with 
smaller variability 

ignored 
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Figure 5.2 Dominance of uninformative variables over informative ones thereby giving a 
false level of high explained variance 

Because of the large variability inherent with complex ICP-AES spectra, autoscaling was 

chosen as the pre-processing method. Plots of the first 2 PCs obtained after the application 

of PCA on the data subsets are shown in Figs. 5.3 - 5.5 for Au, Ag and Pd respectively. 

Also shown are Hotelling's confidence ellipses at the 95 % confidence interval. 
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Figure 5.3 Scores plot (first 2 PCs) for Au (95 % confidence ellipse) also showing a 
statistically acceptable number of outliers (59 and 37). 
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Figure 5.4 Scores plot (first 2 PCs) for Ag (95 % confidence ellipse) also showing a 
statistically acceptable number of outliers (48, 41 and 45). 
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Figure 5.5 Scores plot (first 2 PCs) for Pd (95 % confidence ellipse) also showing a 
statistically acceptable number of outliers (37 and 35). 

The amount of variance explained by the first 2 PCs, in the final PCA model, for 

Au, Ag and Pd was - 37%, - 42% and 46% respectively. Despite the majority of the 

samples being contained within the confidence ellipse, a large spread was evident within 

the data for all analytes indicating that large differences in the chemical composition of the 

samples remained. The final number of samples retained for Au, Ag and Pd was 58, 48 and 

37 respectively, with 41,41, and 63 % of the total number of samples being classified as 

outliers (sample rejection) for the same analytes. 
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5.3.1 Application of U V E - P L S and IVD-PLS Algorithms to the Industrial Fusion 

Samples 

The UVE and IVD algorithms were applied to the available segmented spectrum 

obtained from the ICP-AES instrument and multivariate calibration models built for the 

prediction of Au, Ag and Pd in complex industrial ftision samples. The general efficacy of 

the variable selection algorithms are discussed, followed by a comparison of the results 

obtained for the multivariate calibration and prediction of Au, Ag and Pd. 

Before the UVE-PLS algorithm can be implemented, one must enter the optimum number 

of PCs. In this particular instance this was possible by using the RMSECV plot. Because 

the UVE-PLS algorithm uses autoscaled data (see Chapter 4), the industrial fiision data 

was also autoscaled prior to determining the optimum number of PCs. This was 

accomplished by plotting the RMSECV for increasing numbers of PCs, the number of PCs 

which yielded the minimum value was chosen. Results for Au, Ag and Pd are shown in 

Figs. 5.6 - Fig. 5.8 respectively, using this data, 8, 5 and 9 PCs were chosen for Au, Ag and 

Pd respectively, resulting in RMSECV values of - 0.4. Application of the variable 

reduction algorithms resulted in the deletion of the majority of the original 2268 spectral 

data points (Table 5.3). It is evident that the UVE-PLS algorithm had the largest effect, 

eliminating between 95-90% of the spectral data. 
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Figure 5.7 RMSECV / RMSEC plot for Ag (autoscaled) 
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Figure 5.8 RMSECV / RMSEC plot for Pd (autoscaled) 

Table 5.3 Effect of applying the UVE-PLS and IVD-PLS algorithms to the original 2268 
variables in the data matrix for Au, Ag and Pd calibration. 

Au Ag Pd Au Ag Pd 
UVE-PLS rVD-PLS 

variables 
an 

an/ 
/ n var s 

229 
57 

4.01 

166 
57 

2.91 

110 
57 

1.92 

83 55 30 

No t-test used in IVD-PLS 

The IVD-PLS algorithm then reduced the remaining data by between 64-72%, depending 

on the analyte. For Au and Ag the ratio >2.5, in the worst case, Pd, the ratio of 

type I error variables to truly informative variables was < 2. There was therefore an equal 
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probability o f the IVD-PLS algorithm ranking either variable type within the first few 

programme iterations. The final Pd model was therefore highly dependent on the 

importance o f the truly informative and Type 1 error variables (see section 5.3.2.2). 

The emission spectrum for all calibration solutions is shown in Fig. 5.9. Also 

shown are the regions of the spectrum (i.e. the wavelength data points) which were 

selected by the variable reduction algorithms for the prediction o f Ag. Explanations for the 

selection of those regions shown are similar to those given previously (section 4.7.1). 

However, in this particular instance the interferent lines include W, Ir, IVIn, Cr and W. 
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Figure 5.9 Partial emission spectrum for all calibration samples with those regions selected 
for the prediction o f Ag (55 wavelength data points). 

The effectiveness of the IVD-PLS algorithm is illustrated in Fig. 5.10, which shows 

the cumulative sum plot of the var '̂*"'ratios and the RMSECV values. It is evident from 
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Fig. 5.10a that a minimum RMSECV value of 0.025 was obtained when only 30 

wavelength data points were included in the model (Fig 5.10b). 
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5.3.2 Multivariate Calibration and Quantitative Prediction for Fusion Samples 

5.3.2.1 Detection of Calibration Outliers 

Every effort was made, through the use of PGA and Hotelling's T statistic, to 

ensure that the data sets had the same general base-metal composition, however, large 

variations in the PLS scores for the first two PCs were still evident (Figs 5.3-5.5). The 95 

% confidence interval simply shows the boundary at which any sample ceases to be a 

member of any particular sample population within the ellipse. It can be concluded fi^om 

the large variations in Figs. 5.3 - 5.5, and the absence of any substantial groupings, that the 

majority of the samples have dissimilar metal content. Although from a modelling 

perspective it would be better to use samples of the same composition, PLS can still be 

used i f a suitable method of detecting potential outliers is used. The detection of outliers 

during PLS can be accomplished using a concentration residual plot (Fig. 5.11). The 

abscissa is plotted as the predicted concentration, and the ordinate is plotted as the 

concentration residual (actual - predicted concentration). Outliers are then detected as 

those whose concentration residual is > 3 x a„„^^„^^. Because of so few samples to start 

with, a 99 % confidence interval was used as opposed to 95 % which is more 

commonplace. Hence, outliers were detected and removed from the calibration dataset and 

the final number of samples for the calibration were 47, 38, and 31 for Au, Ag and Pd 

respectively. 
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Figure 5.11 A typical concentration residual plot for Pd showing the 3xa„„^^^^ boundary 
and 1 outlier. 

5.3.2.2 Analysis of Independent Test Samples 

Predictive errors of Au, Ag and Pd in the fusion samples are shown in Table 5.4. In 

order to compare the effectiveness of the variable reduction routine, a PLS model was also 

built using the entire spectrum available with no variable selection (Table 5.4). For all 

analytes there was a significant increase in the accuracy of the predictions following 

variable selection (outliers removed). Only 83 variables out of 2268 were required to 

obtain a RRMSE value of 10.71 % for Au in the test set, compared to 38.31 % for the ful l 

spectrum. For Ag and Pd test data the RRMSE values were 8.80 and 12.10 % respectively, 

compared to 82.31 and 194.70 % using the f l i l l spectrum. 
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The " % ^ ^ ^ ^ ratio for Au, Ag and Pd respectively was 4.01, 2.91 and 1.92 (Table 

5.3). Evidently the low ratio for Pd did not result in an elevated RRMSE value. One 

possible explanation for this is that the truly informative variables possessed far larger IVD 

ratios then the Type I error variables. This would result in them being placed into the final 

PLS model ahead of any Type I error variables, and a minimum RMSECV being found. 

Table 5.4 Independent test RRMSE % values for Au, Ag and Pd using PLSl with variable 
reduction and ftill spectra modelling. 

Au Ag Pd 
Variable Selection 
RRMSE % [Mc] 74.23(10.71) 8.80 12.10 
Number of variables after t-test 229 166 110 
Final number of variables selected 83 55 30 
Full Spectrum (2268 wavelength 
points) 
RRMSE % [Mc] 142.55 59.42 140.01 
RRMSE % [As] 383 823 194.7 

( ) Outlier removed (Table 5.3) 
Mc Mean centered 
As Autoscaled 

5.3.2.3 Comparison of Methods 

In the following discussion three sets of data, obtained for samples treated in three 

different ways, are compared as follows: 

1. Samples were prepared using a NiS fire assay method and analysed using ICP-AES by 

univariate calibration, designated FA-UC. These were the consensus values which 

were used as in-house standards. 

2. Samples were prepared using the peroxide fusion digestion method and analysed by 

ICP-AES using the variable reduction routine and multivariate calibration by PLS, 

designated F-VR-PLS. 
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i . Samples were prepared using the peroxide fusion digestion method and analysed by 

ICP-AES using univariate calibration and interelement correction, designated F-UC-

/ E C 

Plots of concentration predicted using the F-VR-PLS method versus concentrations 

obtained using the FA-UC method, for both the calibration and test samples, are shown in 

Figs 5.12 - 5.14 for Au, Ag and Pd respectively. Also shown are the 95 % confidence 

intervals. The correlation coefficients for both calibration and test data for all three 

£malytes were > 0.99, showing the overall success of the variable selection method. 

Predicted concentrations in the independent test samples obtained using the three 

methods, and relative percentage errors for the F-VR-PLS and F-UC-IEC methods 

compared to the FA-UC method (consensus values), are shown in Tables 5.5-5.7 for Au, 

Ag and Pd respectively. 

Taking Au first, the RRMSE was 132 % using F-UC-IEC compared to 74 % using 

F-VR-PLS (Table 5.5), indicating a slightly better level of accuracy. As can be seen from 

Table 5.3, in some cases the former method yielded better accuracy, and in some cases the 

latter (Fig. 5.15), however, it should be noted that the former set of results were heavily 

biased by samples 11 and 12, and the latter by sample 11. 

In the case of Ag RRMSEs were 8.5 % and 8.8 % for F-UC-IEC and F-VR-PLS 

methods respectively. It should be noted that, in the latter case, a large error was obtained 

for sample 1 for which the consensus value obtained using the FA-UC method was only 

0.02 fig/ml. In general, the two methods gave comparable levels of accuracy (Fig. 5.16). 

For Pd the RRMSE was 8.6 % using F-UC-IEC compared to 12.2 % using the F-

VR-PLS, with the latter being heavily influenced by samples 1 and 2 with respective 

concentrations of 0.02 and 0.09 [ig/m\ (Fig. 5.17). 
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Figure 5.12 Concentration of Au predicted using the F-VR-PLS method (predicted 
concentration) vs the FA-UC method (actual concentration): (a) calibration samples; (b) 

independent test samples with 95% confidence interval. 
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Figure 5.13 Concentration of Ag predicted using the F-VR-PLS method (predicted 
concentration) vs the FA-UC method (actual concentration): (a) calibration samples; (b) 

independent test samples with 95% confidence interval. 
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Figure 5.14 Concentration of Pd predicted using the F-VR-PLS method (predicted 
concentration) vs the FA-UC method (actual concentration): (a) calibration samples; (b) 

independent test samples with 95% confidence interval. 
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Table 5.5. Fire assay, fusion and variable selection method Au test sample concentrations 
with absolute % error values and 95% confidence limits. 

Au concentration ((ig/ml) % error relative to FA-UC 
method 

FA-UC F-VR-PLS F-UC-IEC F-UC-IEC FVR-PLS 

0.88 1.33 0.95 9.03 52.00 
1.66 2.72 1.92 15.90 63.86 
2.55 2.56 2.65 4.13 0.59 
6.05 5.14 6.49 7.36 14.97 
14.10 13.76 14.29 1.35 2,41 
19.89 26.34 21.02 5.66 32.43 
27.84 21.79 28.16 1.16 21.73 
33.80 32.13 33.16 1.91 4.94 
39.45 39.72 40.48 2.62 0.70 
47.84 51.78 49.13 2.71 8.25 
87.06 -0.31 0.09 99.90 100.36 
129.52 126.29 0.02 99.98 2.49 

RRMSE (%) 132 74 

Table 5.6. Fire assay, fusion and variable selection method Ag test sample concentrations 
with absolute % error values and 95% confidence limits 

Ag concentration (jig/ml) % error relative to FA-UC 

FA-UC F-VR-PLS F-UC-IEC F-UC-IEC FVR-PLS 

0.01 -2.31 0.05 375.67 23200 
2.43 2.52 1.99 18.09 3.92 
4.33 2.45 4.44 2.63 43.35 
10.79 11.27 11.59 7.38 4.45 
20.44 24.46 20.39 0.23 19.67 
22.27 23.24 24.32 9.21 4.38 
28.43 28.05 27.27 4.09 1.34 
35.73 36.78 38.23 7.00 2.95 
41.17 43.21 44.44 7.94 4.96 
57.51 60.10 61.12 6.29 4.51 

RRMSE (%) 8.5 8.8 
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Table 5.7 Fire assay, fusion and variable selection method Pd test sample concentrations 
with absolute % error values and 95% confidence limits, (values also given for veuiable 

selection predictions with and without outliers) 

Pd concentration (^ig/ml) % error relative to FA-UC 
method 

FA-UC F-VR-PLS F-UC-IEC F-UC-IEC FVR-PLS 

0.02 0.001 0.01 16.00 93.33 
0.09 0.042 0.09 4.89 53.33 
0.51 0.546 0.51 0.46 8.12 
1.08 1.043 1.11 3.06 3.43 
1.56 1.648 1.63 4.42 5.64 
2.10 1.575 2.19 4.56 24.82 
3.44 3.417 3.32 3.35 0.52 
7.68 7.217 8.15 6.23 5.97 

RRMSE (%) 8.6 12.2 
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Figure 5.15 Fire-assay, variable selection and fusion estimation o f the independent test 
samples for Au with 95% confidence limits. 
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Figure 5.16 Fire-assay, variable selection and fusion estimation of the independent test 
samples for Ag with 95% confidence limits. 
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Figure 5.17 Fire-assay, variable selection and fusion estimation of the independent test 
samples for Pd with 95% confidence limits. 

5.4 Conclusions 

Spectral data obtained for the analysis of fusion digests has been used to build 

multivariate calibration models using PLS to predict the concentration of Au, Ag and Pd in 

test samples. In order to achieve this, variable elimination and selection algorithms were 

used to select the informative parts of the ICP-AES emission spectra v\dthout having to 

resort to line selection or the need to assign background correction points in order to obtain 

the net integrated line intensities for individual analyte or matrix lines. The model errors 
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for both the calibration and independent test data, have shown considerable improvement 

compared to the errors achieved when using all 2268 wavelengths thus reinforcing the fact 

that PLS benefits fi-om selective variable reduction. The variable selection method and PLS 

multivariate calibration gave results comparable to those obtained using a more traditional 

univariate calibration approach with interelement correction. Calibration models were built 

using 47, 38 and 31 samples for Au, Ag and Pd respectively, hence, it is envisaged that an 

improvement in the accuracy of prediction would be obtained i f more samples were used to 

build the model. 
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CHAPTER 6 - C A L I B R A T I O N TRANSFER OVER T I M E USING PIECEWISE 

DIRECT STANDARDISATION (PDS) FOR C O M P L E X SYNTHETIC 

SOLUTIONS 

6.1 Introduction 

The effort in building a multivariate model is often considerable in terms of both 

time and money, hence it would be beneficial i f it were possible to use the models over a 

long period of time. However, changes in instrument response can occur due to 

temperature fluctuations, electronic drift, wavelength or detector instability e.t.c. I f this 

happens following the calibration of an instrument, subsequent use of the calibration model 

wil l most probably produce erroneous results. This poses severe restrictions on the 

successful application of multivariate calibration models. 

There are many publications detailing the development of calibration drift 

correction methods for broad spectrum techniques (113, 114, 139, 148-153), though none 

has been applied to atomic emission spectroscopy. 

Work on univariate calibration was performed to eliminate the sample-to-sample 

difference, using either internal standards or the zeeman effect (154), but most other work 

in transporting calibration models has been published in the area of NIR analysis. Three 

publications are notable. Osborne and Feam (155) investigated the affects of transferring 

single-wavelength calibration models between nine different instruments for the prediction 

of protein and moisture in wheat flour using NIR spectroscopy. Single wavelength bias 

correction terms for the two calibration equations on each instrument were determined and 

the long-term stability of the calibration was studied. Later Shenk et. al, (156) published 

results from a study where a large number of candidate calibration equations were 

211 



developed on a single instrument and then transferred to six other instruments. The "best" 

equation was adjusted for bias, offset, and wavelength selection on the other instruments 

and the standard error of prediction (SEP) was compared between the original and the 

other instruments for a set of 60 samples. Mark et. al. (157) published work describing the 

selection of wavelengths for NIR calibration based on their robustness toward wavelength 

shifts between instruments. These methods all involve calibration utilising a single, or 

sometimes a limited number of wavelengths, and are not generally applicable to 

multivariate calibration based on ful l spectral responses, or where variable selection has 

been applied to the f i i i l spectrum. 

It is possible to solve the calibration transfer problem in a multivariate way by 

applying chemometric techniques which attempt to find a transformation function that 

makes the measured response obtained from one instrument the ssime as that which would 

be obtained on the same instrument at a later point in time. This method is commonly 

termed piecewise direct standardisation (PDS). There are two methods o f correction, the 

first method transforms the calibration model itself, while the second transforms the 

response from the instrument al / = 2 to match that which would have been obtained i f the 

sample had been measured at / = 1. The later of the two methods has been used in this 

study. Al l methods allow the full response of the instrument to be utilised without 

restriction on the number of wavelengths, which can be included in the calibration model. 
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6.2 Calibration Transfer Theory 

Assume that the response matrix for a full calibration set/f,, has been measured, 

and R^ is a small subset ofR^. TTie response matrix of this subset is measured on the same 

instrument at a later time, and is denoted by / f^ . Through standardisation, it is hoped that 

the calibration information contained i n ^ , could be transferred without measuring the 

response matrix ( ) of the full calibration set at a later time. 

6.2.1 Standardisation with the Classical Calibration Model 

Let the concentration matrix, m (samples) x n (wavelengths), for the ftill calibration 

and standardisation subset be C and C, respectively. A linear relationship between the 

response and concentration is assumed for simplicity, Eqn*s. 6. land 6.2: 

/?, =CK, Eqn. 6.1 

= C(K, + HJC) Eqn. 6.2 

where/iTand /r^are the sensitivity matrices for time t = land / = 2(rows being the pure 

components spectra) and tJC is the difference matrix between them. The same relationship 

should be true for the standardisation subset analysed at time, / = 2 , as shown in Eqn's. 6.3 

and 6.4: 

it, = CK, Eqn. 6.3 

R, = CK, 

= C ( K , + A K ) Eqn. 6.4 
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Solving Eqn's. 6.3 and 6.4 for AA" gives Eqn. 6.5: 

AK = C(R^-R,) Eqn. 6.5 

where C* is the pseudoinverse of C . Substituting AK into Eqn. 6.2 and using Eqn. 6.1, 

is estimated as Eqn. 6.6: 

J?2 = / ? , + CC*(R, -RJ Eqn. 6.6 

With ^ 2 ^ " ^ ^ ' 3 calibration model can be built for prediction at time, / = 2. Two 

assumptions are implied in this method: that the linear relationship is the same at time, 

/ = land at time t = 2, and that the concentrations for all elements contributing to the 

response must be known. 

6.2.2 Standardisation with the Inverse Calibration Model 

Instead of using the classical model, the inverse calibration model corresponding to 

Eqn's. 6.1 - 6.4 is used, i.e. Eqn's 6.7-6,10: 

c = Eqn. 6.7 

c = R,b, 

^R^(b^ +Ab) Eqn. 6.8 

and 
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c = /?,6, Eqn. 6.9 

c = R,b, 

= R^(b, +Ab) Eqn. 6.10 

where b^ and two regression vectors for an analyte at time, / = 1 and time t = 2, 

A, and corresponding regression vectors calculated from the subset, c and c 

represent the concentration vectors for this analyte in the ful l set and subset respectively. 

Using Eqn. 6.7 to calculate A, and combining Eqn. 6.9 with Eqn. 6.10 to estimate Ab, a 

standardised regression vector can be calculated as follows: 

^2 = 6, + Ab 

= b,-^(b,~bj 

= R;c-h(R;-R; )c Eqn. 6.11 

With the standardised regression vector b^^an estimate of Aj)) prediction at time, t = 2 

can be made. The major advantage, of course with the inverse modelling approach, is that 

only the concentration of the analyte of interest is required. 

6.2.3 Direct Standardisation (DS) 

The previous sections corrected the calibration model, built at time, / = 1, so that it 
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could be applied on spectral responses collected at time, / = 2. Another approach called 

direct standardisation is available in which the spectra (future samples) measured at time, 

/ = 2, are corrected to match spectra (the calibration model), built at time, / = 1, hence the 

calibration model remains unchanged. In direct standardisation, response matrices on both 

instruments are related to each other by a transformation matrix F , i.e. 

R, =R,F Eqn.6.12 

where F is a square matrix whose dimensions are wavelength by wavelength. From Eqn. 

6.12, the transformation matrix F is calculated as: 

F = R;R, Eqn. 6.13 

And the response vector of an unknown sample measured at time, t = 2, r^^, is 

standardised to the response vector r^^, expected from the instrument at time, / = 1 

according to: 

rl^=rl^F Eqn. 6.14 

I f there are many wavelengths present, this is simply performed for each wavelength. With 

, the model constructed using R^ and C (at time, / = 1) can now be used for the 

prediction of samples analysed at time, / = 2. 
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6.2.4 Piecewise Direct Standardisation (PDS) 

In the previous section, the number of subset samples must be at least equal to the 

rank of /f, , to ensure that the inverse of /?, is stable, and hence an adequate 

standardisation is achieved. In real applications this could lead to large numbers of subset 

samples being needed. Also, it is noticed that in DS, the whole spectrum at time, / = 2 is 

used to fit each spectral point at time, / = 1. For real spectroscopic data, however, spectral 

variations are often limited to a smaller region. Therefore, each spectral point at time, / = 1, 

would more likely be related to the spectral measurements at nearby wavelengths than the 

full spectrum at time, t = 2. On the basis of these considerations, a piecewise 

standardisation method has been developed to reconstruct each spectral point at time / = 1 

from several measurements in a small window at time t = 2. For subset measurements r , . , 

at wavelength index / at time / = 1 subset measurements at time / = 2 , 

''2.i-j'''2.i-j*\ ' ' 2 . /+*- i» ''2.1+A nearby wavelengths from index point / - y to / + /:are 

chosen and put into a matrix 

= ''2.i-; ' ' ' 2 > - > * i ' ''2.,>*-i'''2.<>* Eqn. 6.15 

For a nominal shift and linear intensity change fi*om time / = ! to t = 2, T j ^ a r j ^ with 

i-j<l <i + k. For the case where / lies between two nominally denoted index points 

with a non-linear intensity change, this equation wil l not hold. It is then possible to 

establish a local multivariate regression model in the form of 

r,̂  =-Y,7», Eqn. 6.16 
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which can perform interpolation and provide a reasonable approximation to the nonlinear 

intensity change provided that it is not loo severe. Each regression vector A, can be 

calculated by means of PGR or PLS regression. These regression vectors are arranged 

along the main diagonal of the transformation mau-ix F while the rest o f the elements are 

zero, which results in a banded diagonal matrix 

F = diag(bl ,bl, bj ) Eqn. 6.17 

When compared to the DS method, PDS is in fact a calculation of the transformation F 

(Eqn. 6.12) by setting most of the off-diagonal elements to zero (/ is the number of spectral 

channels included). 

It is the fact that rank (X,) < rank (R,) which makes it possible to reduce the 

number of subset samples, and hence avoid an ill-conditioned problem where the number 

of variables is much larger than the number of calibration subset samples. The 

transformation matrix is subsequently used to transfer r/"„„ piece by piece into the spectrum 

as i f it were measured at time, / = 1. 

The version of PDS used in this study not only provides multiplicative correction, 

but correction for additive differences also. An example of an additive difference would be 

i f the source drifted slightly and gave an increased background reading at time, / = 2 

compared to the signal at / = 1. I f the additive background is large enough, multiplicative 

corrections alone wil l not accomplish the correction (158). 

The method used in this study removes the additive term from the transfer 

standards prior to standardisation, estimates the correct multiplicative model, and then 

estimates the additive correction required. The removal of the additive term is achieved by 

mean-centering the transfer sample spectra prior to application of the PDS function. 
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6.2.4.1 Selection of Subset for Standardisation 

The subset used in the standardisation must contain enough information to describe 

the difference between the spectra at time, / = 1 and / = 2. A stepwise procedure is 

employed here to select the sample with the highest leverage (maximum ) according to 

H = R;R, Eqn. 6.18 

(assuming that outliers have been detected and deleted from the calibration sel).The 

information contained in the sample just selected is then removed from the set of samples. 

This procedure continues until the desired number of samples have been included in the 

subset. 

6.3 Experimental (Instrumentation and Reagents) 

See Chapter 3 (section 3.2.1). 

6.3.1 Procedures 

Figure 6.1 illustrates the procedure for the application of spectra standardisation 

using PDS with variable selection. Prior to PDS standardisation, outliers in the original 

data set are removed via the inspection of residual concentration plots (outliers tend to 

produce high leverage values). Because the subset response matrices,^, and Rj, should 

contain the same spectral regions for the calculation of the PDS transformation matrix, F , 

(see Eqn. 6.15) the variable reduction routines (UVE-PLS and IVD-PLS) must be 

performed on the original and drifted data sets taken at time, / = 1 and / = 2 respectively, 
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prior to the application of the PDS routine. To accomplish this, alterations were made to 

both the UVE-PLS and IVD-PLS routines which enabled the simultaneous selection of 

informative wavelengths, based upon data set 1, from data set 2. Thus, not only does the 

method standardise the spectra in terms of differences in signal drift, but in doing so it also 

standardises the spectra from / = 2, in terms of variable importance, making those 

variables which were informative at / = 1, also informative at t = 2. 

To perform the UVE-PLS and IVD-PLS routines the number o f PC's must be 

chosen. Because the PDS study used the same calibration and test data from Chapter 4 for 

the calibration model, i.e. data at / = 1, the number of PC's chosen was based upon the 

work in chapter 4, section 4.6.1, Table 4.8. Because the RRMSE % values did not differ 

greatly with the number of PC's chosen or the " / ^ ^ ^ ^ ^ ratio, 6 PC's were used in the 

UVE-PLS routine for Pt, Pd and Rh. For all analytes the " / ^ ^ ^ ^ ^ ratio 4 giving a 

low probability of Type I error variables being entered into the PLS model within the first 

few iterations. The number of PC's for the IVD-PLS routine was then determined by using 

a cross-validation procedure. After the variable subsets had been obtained the PDS routine 

is applied and synthetic sample predictions are then made. This consists of four separate 

steps: 

i) . The calibration transfer samples are determined from the data obtained using the 

variable reduction and selection algorithms (section 6.2.6). 

ii) . The transform matrix is calculated (section 6.2.4) using those calibration samples 

obtained in step i i) . This data is not pre-processed in any way. 

iii) . The PLS calibration model is obtained using the original (/ = 1) mean-centred 

calibration data, and the synthetic lest samples from time i = 2 scaled 

appropriately. 

iv) . Predictions are then made for the standardised synthetic samples from step i i i ) . 
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Figure 6.1 Flow-diagram for the process of standardisation with variable selection. 

An w-function, stdgen, implemented in the PLS Toolbox to spectroscopic 

instrument standardisation has been used to obtain the calibration transfer matrix. The 

inputs were as shouTi in Tables 6.1 -6.3 which give the RRMSE % values obtained for the 

independent test samples with PDS applied. It should be noted that the w-function stdgen, 

implemented in the PLS Toolbox, requires the number of PC's to be allocated for the 

construction of the transformation matrix F , this is because of the use of singular value 

decomposition in the PLS procedure. For this study the number of PC's allowed was set 

equal to the number of calibration samples. In the event that unsatisfactory RRMSE % 
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values were obtained with any particular combination of window size and calibration 

subset sample size, the number of PC's could be optimised also. 

The data sets used in this study were collected 11 days apart (data set / = 1 and 

/ = 2 refers to data collected on 16/7/99 and 26/7/99 respectively) thereby giving sufficient 

time for the instrument to drift. 

6.4 Results and Discussion 

6.4.1 Instrumental Dr i f t 

In order to illustrate the amount of drift the instrument experienced between 

analysing the two data-sets, a solution containing the middle concentration of all elements 

was analysed at every 10^ sample for each data-set (Fig. 6.2). The line chosen was In 

325.609 nm as this experienced the least spectral interference of any o f the lines. It is 

evident from Fig 6.2 that the drift for this line was considerable indicating that the 

prediction of data-set 2 samples using a calibration derived from data-set 1 would give 

erroneous results. 
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Figure 6.2 Central point In 325.609 rmi concentration (j ig ml' ') over time for data-sets 1 
and 2 (16/7/99 and 26/7/99 respectively) using gross intensity. 

6.4.2 Calibration Subset Optimisation 

The effect of calibration subset sample number and spectral window size on the 

RRMSE of the calibration data for Pt, Pd, and Rh is shown in Figs. 6.4-6.6, a summary of 

the optimum parameters is shown in Figure 6.3. For Pt and Pd the lowest RRMSE % 

values were 4.14 and 3.03 % respectively using only 3 calibration subset samples (Fig 6.3 

and Tables 6.1 and 6.2). For Rh the number of samples increases to 5 giving a RRMSE % 

value of 1.88. Generally, for all three analytes the RRMSE % value does not decrease with 

increasing numbers o f calibration subset samples, which may indicate a lack o f intrinsic 

modelling ability (lack o f f i t ) . The effect of varying the window size was also very clear, 

with a distinct minimum RRMSE value for all three analytes. This was to be expected, too 

few wavelengths would not give enough information for standardisation and too many 

would resuh in the noise component predominating. The large number of wavelengths 

required for Pt (11 compared to 7 and 5 for Pd and Rh respectively), may indicate a large 

non-linear response for this analyte at the wavelength regions modelled (139) or a lack of 

model fit. 
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Because the RRMSE% values (4.14, 3.03 and 1.88 % for Pt, Pd and Rh 

respectively (Tables 6.1-6.3)) obtained were acceptable PC optimisation within the stdgen 

procedure was not carried out and was simply set equal to the maximum number of 

calibration subset samples. 

00 

at 

5 10 15 

Window size (# of wavelengths) 

-•—3 calibration subset 
samples 
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samples 
7 calibration subset 
samples 
9 calibration subset 
samples 

Figure 6.3 RRMSE % values for Pt with 3, 5, 7, and 9 calibration subset samples 
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Figure 6.4 RRMSE % values for Pd with 3, 5, 7, and 9 calibration subset samples 
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Figure 6.5 RRMSE % values for Rh with 3, 5, 7, and 9 calibration subset samples 
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Figure 6.6 Lowest RRMSE % for Pt, Pd and Rh 

Table 6.1 RRMSE % values for Pt lest samples using different combinations of subset 
sample number, in addition to the window size and maximum number of principal 

components used in the stdgen w-funclion (calibration transfer function). 

Pt test sample (RRMSE %) 

Sample 

1 3 
Window size 
5 7 9 11 

Maximum 
number of 

PCs 

3 8.15 6.56 5.8 4.6 4.41 4.14 3 
5 5.48 5.28 5.49 4.86 4.81 4.77 5 
7 5.72 5.83 5.64 6.6 6.58 6.64 7 
9 7.96 8.46 8.12 9.06 9.12 9.02 9 
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Table 6.2 RRMSE % values for Pd using different combinations of subset sample number, 
in addition to the window size and maximum number of principal components used in the 

stdgen m-function (calibration transfer function). 

Pd test sample (RRMSE %) 

Sample 
size 

1 3 
Window size 
5 7 9 11 

Maximum 
number of 

PCs 

3 3.27 3.07 3.05 3.03 3.53 3.41 3 
5 3.55 3.57 3.59 3.58 3.61 3.63 5 
7 3.33 3.38 3.35 3.38 3.31 3.38 7 
9 3.21 3.28 3.24 3.23 3.15 3.23 9 

Table 6.3 RRMSE % values for Rh using different combinations of subset sample number, 
in addition to the window size and maximum number of principal components used in the 

stdgen w-function (calibration transfer function). 

Rh test sample (RRMSE %) 

Sample 
size 

1 3 
Window size 
5 7 9 11 

Maximum 
number of 

PC's 

3 4.17 5.7 7.24 8.64 8.34 13.02 3 
5 3.65 2.14 1.88 1.97 2.06 2.08 5 
7 3.83 2.15 2.04 2.2 2 2.08 7 
9 3.89 3.08 2.12 2.14 1.99 2.23 9 
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6.4.3 Multivariate Calibration and Quantitative Prediction for Synthetic Samples 

The results of the application of PDS correction to calibration and test samples 

analysed 10 days apart (i.e. using / = I calibration data with standardised / = 2 test 

samples) are shown in Figures 6.7, 6.9 and 6.11 and Tables 6.4-6.6 for Pt, Pd and Rh 

respectively. As a comparison, results are also given where prediction is performed using 

/ = 2 calibration data and test data (Figs. 6.8, 6.10 and 6.12). It is quite evident that 

without correction, the accuracy of the test sample concentrations was much improved 

when correction was applied. For Pt, Pd, and Rh respectively the RRMSE % value with 

correction was 4.14, 3.03 and 1.88% (Tables 6.4-6.6), compared with 73.04, 44.39 and 

28.06 % without correction. It is evident that there was a clear bias in the uncorrected 

concentrations for all three analytes (Figs. 6.7, 6.9 and 6.11). For all three analytes the 

RRMSE % values for the standardised t = 2 test samples, using the t = 1 calibration data 

were approximately the same as the errors when the t = 2 calibration data was used to 

predict the / = 2 test samples, indicating that a satisfactory transformation of the / = 2 

samples had taken place. 

Confidence intervals (95% - 2 x (7 ) for the three analytes also showed a significant 

improvement with the application of PDS correction. This is most noticeable for Rh, Pt, 

shows a moderate improvement, with Pd showing no significant difference in the 

confidence intervals (Figs. 6.7, 6.9 and 6.11). The relatively large confidence intervals 

shown by Rh (Fig. 6.11) without correction may be correlated to the much lower 

concentration range of the Rh test samples (between 0 - 10 | ig ml"*), compared with both 

Pt and Pd which varied between 0 - 40 ^g mf*. 
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Figure 6.7 Actual vs predicted concentrations for Ft test solutions with and without PDS 
correction, using / = 1 calibration data and / = 2 standardised test data (95 % c.i.) 
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Figure 6.8 Actual vs predicted concentrations for Pt test solutions using / = 2 calibration 
and test data (95 % confidence interval) 
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Figure 6.9 Actual vs predicted concentrations for Pd test solutions with and without PDS 
correction, using / = 1 calibration data and / = 2 standardised test data (95 % c.i.) 
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Figure 6.10 Actual vs predicted concentrations for Pd test solutions using t = 2 calibration 
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Figure 6.11 Actual vs predicted concentrations for Rh test solutions with and without PDS 
correction, using t = 1 calibration data and / = 2 standardised test data (95 % c.i.) 
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Figure 6.12 Actual vs predicted concentrations for Rh test solutions using / = 2 calibration 
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Table 6.4 Actual and predicted concentrations (|ig/ml), including 
95% confidence intervals, for Pt test samples with and without 

PDS correction 

Pt 
Actual C. I . Actual C. I . 

Pred (corrected) (corrected) (uncorrected) (uncorrected) 

12 12.34 0.32 20.96 0.65 
16 15.43 1.38 25.82 2.67 
20 19.81 0.96 32.04 1.99 
12 11.46 0.39 19.71 1.07 
18 18.01 0.62 29.27 1.46 
6 6.18 0.98 10.90 1.98 
2 2.21 0.34 4.97 0.89 

40 38.43 1.08 61.10 2.20 
30 29.83 0.58 47.64 1.34 
0 -0.92 0.53 0.88 1.19 

RRMSE % 4.14 73.04 
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Table 6.5 Actual and predicted concentrations (jig/ml), including 
95% confidence intervals, for Pd test samples with and without 

PDS correction 

Pd 
Actual C. I . Actual C. I . 

Pred (corrected) (corrected) (uncorrected) (uncorrected) 

20 20.30 0.19 27.79 0.28 
12 11.35 0.38 16.04 0.57 
18 17.20 0.29 23.85 0.46 
14 13.76 0.18 19.09 0.27 
10 9.64 0.19 13.56 0.29 
30 29.58 0.38 40.58 0.59 
6 5.89 0.15 8.40 0.15 
2 1.51 0.30 2.69 0.44 

40 39.44 0.37 53.69 0.58 
0 -0.21 0.28 0.32 0.38 

RRMSE % 3.03 44.39 
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Table 6.6 Actual and predicted concentrations (ng/ml), including 
95% confidence intervals, for Rh test samples with and without 

PDS correction 

Rh 
Actual C. I . Actual C. I . 

Pred (corrected) (corrected) (uncorrected) (uncorrected) 

3 2.96 0.05 3.53 0.43 
5 4.92 0.14 5.89 1.22 
2 1.98 0.11 2.28 0.88 
4 3.99 0.06 4.79 0.57 
3 3.04 0.09 3.63 0.63 
1 1.08 0.11 1.19 0.86 
2 1.99 0.05 2.30 0.55 
8 8.18 0.16 10.01 1.05 
10 9.98 0.15 12.24 0.55 
0 0.01 0.05 -0.13 0.89 

RRMSE % 1.88 28.06 
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6.5 Conclusions 

The application of PDS, in conjunction with variable elimination and selection, has 

shov^ that it is not only possible to use large amounts of information in the ICP-AES 

emission spectrum without having to resort to line selection but that it is also possible to 

use the same calibration model over a period of time. 

Compared to the errors observed when synthetic test samples were modelled with 

calibration data analysed at the same time, standardised predictions gave errors that were 

comparable, indicating that successful transformation of the spectra from t = 2 to / = 1 

had been accomplished. 
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Chapter 7 - Conclusions and Future Work 

The following general conclusions can be draw from the work discussed in the preceding 

chapters: 

7.1 Final Conclusions 

1 Interferences can range from relatively simple background shifts which are easily 

corrected for, to more complex spectral overlaps. The number and nature of interferents 

has been shown to affect the accuracy and precision of lEC factors, with accurate 

prediction only possible with the correct positioning of the BCPs or when matrix effects 

are minimal. The contribution to the analyte signal by a relatively small interference can 

lead to a degradation in precision of the lEC factor compared with the use of a mixed 

solution containing the same interferents. However, this can be overcome by using mixed 

inlerferent solutions. 

2 A range of univariate calibration techniques, including interelement correction and 

matrix matching, were shown to be severely limited in their application due to the presence 

of interferences, both spectral and non-spectral. Overall, matrix matching was the most 

accurate of the univariate calibration methods and was comparable to, or better than, lEC 

correction. The accuracy of prediction in the autocatalyst samples was not as good as for 

the test solutions, which was most probably due to unaccounted for interferents. 

Multivariate calibration was initially performed using net signal intensities. In order to 

obtain the net signal from the instrument a 2-point background correction was performed 

by the instrument software, however, the selection of optimum background correction 

points for all 248 lines proved problematical due to the presence of adjacent spectroscopic 

interferences. It was therefore decided to model the data using gross intensities which did 

not require the use of background correction. The RRMSE values for Pt, Pd and Rh in the 
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test solutions were 5.77, 2.96 and 3.46 % respectively (Table 3.4), indicating that, overall, 

this calibration strategy was as good as matrix matching. 

3 The application of variable elimination and selection algorithms has shown that it is 

possible to use the complete available ICP-AES emission spectrum for multivariate 

modelling without having to resort to line selection or the need to assign background 

correction points in order to obtain the net analyte signal. Indeed, one of the benefits of this 

approach is the selection of parts o f the spectrum which appear uninformative, such as 

continuum background, but which can be highly informative to a bilinear modelling 

technique such as PLS, which is able to detect useful variation in all parts of the spectrum. 

The new method has several desirable properties: it is computationally simple, it has 

significance tests of multivariate model parameters and allows the calculation of 

independent test data confidence intervals. The model errors for the independent test data, 

have shown considerable improvement compared with the errors achieved when using all 

5684 wavelengths and marginal improvement compared with the more traditional 

individual wavelength data set consisting of intense analyte and matrix lines. Of greater 

interest is the important advantage of being able to utilise the ful l spectrum because the 

need for individual line selection is no longer required. In situations where such systems 

are not fully understood the selection of pertinent individual lines may prove impossible. 

The variable selection techniques have also been used to develop a muUivariate confidence 

interval which can be used not only for the PLS parameters, but also for independent point 

predictions. The main limitations of the technique are, firstly that large numbers of t-tests 

are required resulting in uninformative variables being incorrectly classified as significant, 

i.e. informative. And secondly that the correct number of PCs are required for the UVE and 

IVD-PLS algorithms. Successfiil use of the technique requires that these two criteria be 

carefully considered. 
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4 Spectral data obtained for the analysis of fusion digests has been used to build 

multivariate calibration models using PLS to predict the concentration o f Au, Ag and Pd in 

test samples. In order to achieve this, variable elimination and selection algorithms were 

used to select the informative parts of the ICP-AES emission spectra without having to 

resort to line selection or the need to assign background correction points in order to obtain 

the net integrated line intensities. The model errors for both the calibration and 

independent test data, have shown considerable improvement compared with the errors 

achieved when using all 2268 wavelengths thus reinforcing the fact that PLS benefits firom 

selective variable reduction. The variable selection method and PLS multivariate 

calibration gave results comparable to those obtained using a more traditional univariate 

calibration approach with interelement correction. 

5 A simulation study has demonstrated that piecewise direct standardisation is 

potentially useful to transfer calibrations over time when recalibration using the entire 

calibration set is not a viable alternative, providing that optimisation of both window size 

and the number of calibration subsets samples is carried out. 

7.2 Suggestions for Future Work 

The work described in the preceding chapters could be developed in a number of ways. 

Possible areas for further investigation are summarised below: 
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7.2.1 Short Term Projects (Industrial Data using the Full Spectrum) 

1. Only 36 % of the frill segmented spectrum were obtained for the industrial samples 

in this study. Further investigations using data from all 201 subarrays would enable the 

variable selection algorithms to select any spectral area covered by the subarrays. This has 

the potential to reduce predictive error even ftirther because the information inputted into 

the selection algorithms is not limited in any way. 

2. The use of variable selection with the industrial samples was limited in that only 

111 samples were available in total. Further work is required with a larger sample database 

which would enable sample clustering, on the basis of their composition, to be identified 

more easily. This may reduce predictive errors even frirther. 

3. Application of the selection routines to other forms of spectroscopy, such as broad 

spectrum techniques. 

4. The application of calibration transfer was limited to that of complex synthetic 

samples only. The use of real industrial samples would enable a ful l validation of PDS. 

7.2.2 Short Term Projects (UVE and IVD-PLS Algorithm Adaptations) 

1. Both the UVE and IVD-PLS routines used the in order to obtain an estimate of 

P. Further investigation into the effects of p estimators are required to determine the 

relationship of such estimates with the Jackknife standard error For example, the use of the 

optimum number of PCs with all calibration samples. 
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2. The UVE-PLS algorithm has the limitation in that the optimum PC (Aopt) is 

decided upon by 'bracketing'. Further work is required in order to determine Aopt 

objectively. 

3. The Jackknife has now been improved upon and the use of Bootstrap techniques 

have been shown to give more accurate estimations of standard error. Both the UVE and 

PLS algorithms may benefit from the use of Bootstrap. 

4. Allied to the use of the Bootstrap is the estimation of prediction confidence 

intervals. The use of the Jackknife does give a crude estimate, however Bootstrap methods 

are now being developed which have been shown to outperform the Jackknife confidence 

interval estimate. In addition, the Bootstrap could be used to overcome the deficiency of 

the Jackknife for estimating calibration confidence limits. 

5. In performing multiple t-test's the problem arises that axUvar w i l l be identified 

as significant even when they are not. Investigations looking at whether the inclusion o f an 

uninformative variable gives a poorer model than the elimination of that same variable i f it 

were informative would then reveal how useful the 'Bonferroni' correction (159) would 

be. Allied to this is an investigation into Type I I errors and whether additional informative 

variables can be identified from those rejected by UVE-PLS. 

7.2.3 Short Term Projects (Instrumental Drift and Multivariate Limit of Detection) 

1. Adaptations to the PDS algorithm may allow its use in correcting for short term 

instrumental drift. This would be of use when 'clean' internal standard lines are not 

240 



available which is often the case with complex matrices. 

2. Of interest in any quantitative determination is the limit o f detection. The 

construction of a multivariate limit of detection, however has received very little attention. 

One possible solution may be to use the sum of each PCs score vector in place of the net 

analyte signal as in Eqn. 7.1: 

2 x a „ 

c, = -

where z is a statistical constant, usually 2, , or 3; a . is the standard deviation 

(standard error) for the sum of the score vectors for PCs I-n, derived from a number of 

replicate blank solutions and bi is a composite sensitivity. 
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APPENDIX I 

Matlab Program for the Ranking of the Signal Standard Deviation. 

s t a n d a r d d e v i a t i o n r a n k i n g - P L S . I n p u t s a r e t h e p r e d i c t o r b l o c k ( x ) , 
p r e d i c t e d b l o c k ( y ) , t h e number o f l a t e n t v a r i a b l e s t o be 
c a l c u l a t e d ( m a x l v ) a n d a n o p t i o n a l v a r i a b l e ( o u t ) t o s u p p r e s s i n t e r m e d i a t e 
o u t p u t [ o u t = 0 s u p p r e s s e s o u t p u t ] . O p t i o n a l O u t p u t s a r e t h e v e c t o r o f 
r e g r e s s i o n v e c t o r s ( m ) , x l o a d i n g s (p) , y l o a d i n g s (q) , x w e i g h t s (w)x 
s c o r e s ( t ) , y s c o r e s ( u ) , and i n n e r r e l a t i o n c o e f f i c i e n t s (b) . The m a i n 
o u t p u t i s t h e r a n k e d e m i s s i o n m a t r i x ( s a m p l e s x r a n k e d w a v e l e n g t h s ) . 

[mx,nx] = s i z e ( x ) ; 
(newmx,newnx] = s i 2 e ( x ) ; 
( m i n , n i n ] = s i z e ( x ) ; 
[mm,nm] = s i 2 e ( x ) ; 
[ m y l , n y l ] = s i z e ( x ) ; 
msj = s i z e ( x , 2 ) ; 
mw = s i z e ( X , 2 ) ; 

nl=mx*nx; 
s j = s t d ( x ) ; 
s j = s j ' ; 
[ y l , i n ] = s o r t ( s j ) ; 
[ m i n , n i n ] = s i 2 e ( i n ) ; 

n=0 
f o r j = m i n : - l : l ; 

n = n + l ; 
w w l ( n , : ) = i n ( j ) ; 

end 

n e w _ m o d e l _ h e a d e r s = m o d e l _ h e a d e r s ( : , w w l ) 
n e w a u t o = a u t o ( : , w w l ) ; 
n e w t e s t = t e s t ( : , w w l ) ; 
t e s t = n e w t e s t ; 

n e w x = x ( : , w w l ) ; 
x=newx; 

i f pre==0; 
y=y; 
t e s t = t e s t ; 

e l s e i f p r e = = l ; 
[ m c x , n n x ] = m n cn(x) ; 
[ m c y , n n y ) = m n c n ( y ) ; 
m c _ t e s t = s c a l e ( t e s t , n n x ) ; 
x=mcx; 
y=mcy; 
t e s t = m c _ t e s t ; 

e l s e i f pre==2 
[ a x , m m x , s t d x ] = a u t o ( x ) ; 
[ a y , m m y , s t d y ] = a u t o ( y ) ; 
a u t o _ t e s t = s c a l e ( t e s t , m m x , s t d x ) ; 
x=ax; 
y=ay; 
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t e s t = a u t o _ t e s t ; 
e n d 
( m x , n x ] = s i 2 e ( x ) ; 
l v = i n p u t ( ' H o w many l a t e n t v a r i a b l e s a r e r e q u i r e d ? ' ) 
i f l v > n x 

e r r o r ('Too many l a t e n t v a r i a b l e s !') 
end 

[mx,nx] 
[my,ny] 
q 
t 
u 
b i n 
r a n k x = 
o l v = 
r a n k x 
i f 

= s i z e ( x ) ; 
= s i z e ( y ) ; 
= z e r o s ( n y , I v ) 
= z e r o s ( m x , I v ) 
= z e r o s ( m y , I v ) 
= z e r o s ( 1 , I v ) ; 
r a n k ( x ) ; 

I v ; 
= r a n k ( x ) 

r a n k x < o l v 
I v = r a n k x ; 

end 

j = i n p u t ('What jump do you r e q u i r e ( < n x ) ? ' ) ; 
v a r = i n p u t ( ' D o you want c a l i b r a t i o n (3) o r t e s t ( 4 ) r r m s e ? ' ) ; 
c o = i n p u t ( ' W h a t c u t - o f f f o r r r m s e c do you w a n t ? ' ) ; 
XX=x; 
T T = t e s t ; 
c o u n t e r = 0 ; 
n=0; 
f o r j u m p n = l : 1 : f i x ( n x / j ) ; 

C O = f i x ( c o / j ) ; 
n = n + l ; 
c o u n t e r = c o u n t e r + j 
x n e w = X X ( : , 1 : c o u n t e r ) ; 
t n e w = T T ( : , 1 : c o u n t e r ) ; 

YY=y; 
x=xnew; 
i f v a r = = 3 ; 

X=xnew; 
e l s e 

X=tnew; 
end 
p = z e r o s ( c o u n t e r , I v ) ; 
w = z e r o s ( c o u n t e r , I v ) ; 

f o r i = l : l v ; 
[pp,qq,WW,tt,uu] p l s n i p a l ( X , y ) ; 
b i n d , i ) 
X 
y 
t ( 
u ( 
p ( 
w( 

t 1 ) 
t i ) 
t i ) 
/ i ) 
f i ) 

X -
y -
t t ( 
uu ( 
pp( 
WW ( 
qq( 

u u ' * t t / ( t t ' * t t ) ; 
- t t * p p ' ; 
- b i n ( 1 , i ) * t t * q q ' 

,1) 
,1) 
,1) 
,1) 
, 1) 

y p r d n = n i p a l s _ p r e d ( X , b i n , p , q , w , i ) ; 

i f pre==0; 
r e y p r d n = y p r d n ; 

e l s e i f p r e = = l ; 
r e y p r d n = r e s c a l e ( y p r d n , n n y ) ; 

e l s e i f pre==2 
r e y p r d n = r e s c a l e ( y p r d n , m m y , s t d y ) ; 
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end 
l e = l e n g t h ( r e y p r d n ) ; 
i f v a r = = 3 ; 

[ y m , y n ] = s i 2 e ( t r u e _ c ) ; 
yniean=sum ( t r u e _ c ( : , 1) ) /ym; 
r r m s e = ( s q r t ( ( s u m ( ( t r u e _ c - r e y p r d n ) . ^ 2 ) ) / l e ) ) * ( l O O / y m e a n ) ; 

e l s e 
[ y m , y n ] = s i z e ( t e s t _ c o n c ) ; 
y m e a n - s u m ( t e s t _ c o n c ( : , 1 ) ) / y m ; 
r r m s e = ( s q r t ( ( s u m ( { t e s t _ c o n c - r e y p r d n ) . ^ ^ 2 ) ) / l e ) ) * ( l O O / y m e a n ) ; 

e n d 
s r r m s e ( n , i ) = r r m s e ; 

end 
y=YY; 
i f CO==jumpn 

p l o t ( s r r m s e ) 
x l a b e l ( ' N u m b e r o f v a r i a b l e s ') 
y l a b e l ( ' R R M S E (%) ') 
t i t l e ( ' R R M S E (%) v e r s u s number o f w a v e l e n g t h s ' ) 
r e t u r n ; 

e n d 
e n d 

f u n c t i o n y p r d n = n i p a l s _ p r e d ( X , b i n , p , q , w , i ) ; 
x=X; 
[mx,nx] = s i z e ( x ) ; 
[mq,nq] = s i z e ( q ) ; 
[mw,nw] = s i z e { w ) ; 
t h a t = z e r o s ( m x , i ) ; 
y p r d n = z e r o s ( m x , m q ) ; 

i f i>nw 
e r r o r ( s p r i n t f ( ' M a x i m u m number o f l a t e n t v a r i a b l e s e x c e e d e d (Max = 

% g ) ' , n w ) ) ; 
end 
f o r i i = l : i 

t h a t ( : , i i ) = x * w { : , i i ) ; 
X = X - t h a t ( : , i i ) * p ( : , i i ) • ; 

e nd 
f o r i i = l : i 

y p r d n = y p r d n + b i n ( 1 , i i ) * t h a t ( : , i i ) * q { : , i i ) ' ; 
e nd 
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APPENDIX I I 

Matlab Program for Uninfomiative Variable Elimination by Partial Least Squares 

UVE-PLS 

A l g o r i t h m c o m p u t e s t - t e s t s t a t i s t i c o f b f o r e a c h w a v e l e n g t h a n d 
d e l e t e s t h o s e whos v a l u e = 0 a t t h e s t a t e d s i g n i f i c a n c e l e v e l . 
I n p u t s a r e t h e p r e d i c t o r b l o c k ( x ) , p r e d i c t e d b l o c k ( y ) 
t h e number o f l a t e n t v a r i a b l e s t o be c a l c u l a t e d ( m a x l v ) 
and an o p t i o n a l v a r i a b l e ( o u t ) t o s u p p r e s s i n t e r m e d i a t e 
o u t p u t [ o u t = 0 s u p p r e s s e s o u t p u t ] . O p t i o n a l O u t p u t s a r e t h e t h e v e c t o r o f 
r e g r e s s i o n v e c t o r s ( m ) , x l o a d i n g s ( p ) , y l o a d i n g s ( q ) , x w e i g h t s (w) 
X s c o r e s ( t ) , y s c o r e s (u) , a n d i n n e r r e l a t i o n c o e f f i c i e n t s ( b ) . 
p r e d o m i n a n t o u t p u t s a r e t h e x, y a n d t e s t x d a t a f o r t h e I V D - P L S r o u t i n e . 

[ m x , n x ] = s i z e ( x ) ; 
[ m m y , n y ] = s i z e ( y ) ; 
XX=x ; 
YY=y; 
T T = t e s t ; 

f o r l o o = l : m x ; 
c o u n t = l o o 
x ( l o o , : ) = [ ] ; 
y d o o , :) = [ ] ; 
i f pre==0 

t e s t = t e s t ; 
x=XX; 
y=YY; 

e l s e i f p r e = = l 
[ m c x , n n c x ] = m n c n ( x ) ; 
x=mcx; 
[ m c y , n y ] = m n c n ( y ) ; 
y=mcy; 

e l s e i f pre=^=2 
[ a x , a m x , s t d x ] = a u t o ( x ) 
x=ax; 
[ a y , a m y , s t d y ] - a u t o ( y ) 
y=ay; 

end 
[mx,nx] = s i z e ( x ) ; 
(my,ny) = s i z e ( y ) ; 
p = z e r o s ( n x , I v ) 
q = z e r o s ( n y , I v ) 
w = z e r o s { n x , I v ) 
t = z e r o s ( m x , l v ) 
u = z e r o s ( m y , I v ) 
b = z e r o s ( 1 , I v ) ; 
o l v = I v ; 
r a n k x = r a n k ( x ) ; 
i f r a n k x < o l v 

I v = r a n k x ; 
d i s p C •) 
s s s = s p r i n t f ( ' R a n k o f X i s %g, w h i c h i s l e s s t h a n I v o f 

% g M v , o l v ) ; 
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d i s p ( s s s ) ; 
s s s = s p r i n t f ( ' C a l c u l a t i n g %g L V s o n l y 
d i s p ( s s s ) ; 

end 
f o r i = l : l v 

[pp,qq,WW,tt,uu] = p l s n i p a l ( x , y ) ; 

, l v ) 

b ( l , i ) uu' * t t / ( t t ' * t t ) ; 
X = X - t t * p p ' ; 
y = y - b { l , i ) * t t * q q ' ; 
t { : , i ) = t t ( : , 1) ; 
u ( : , i ) = uu ( : , l ) ; 
p ( : , i ) = p p ( : , 1 ) ; 
w ( : , i ) = WW { : , 1 ) ; 
q ( : . i ) = q q ( w l ) ; 

end 

m = z e r o s ( I v , n x ) ; 
m ( l : l v , : ) = c o n p r e d ( b , w , p , q , I v ) ; 
m= cumsum(m,1); 
m _ o p t = m ( I v , : ) ; 
summ__opt ( l o o , : )=m_opt; 
x=XX; 
y=YY; 

en d 

[ m x , n n x ] = s i z e ( X X ) ; 
S=summ_opt; 
f o r m=l:mx 

sumin_opt (m, :) = [ ] ; 
mu (m, : ) =mean (sumin_opt) ; 
summ_opt=S; 
MMM (m, : ) =mean (summ_opt) -sunim_opt (m, : ) ; 

end 

summ_loo_squared=sum(MMM.^2); 
j k _ s t d e r r o r = s q r t ( { ( m x - 1 ) / m x ) * s u m m _ l o o _ s q u a r e d ) 
j k_mean=(sum(mu))/mx; 
f c = ( j k_mean./j k _ s t d e r r o r ) ; 

a l p h a = i n p u t ( • W h a t a l p h a l e v e l do you w a n t ? ' ) ; 
p a u s e ; 
d o f = i n p u t ( ' W h a t a r e t h e d e g r e e s o f f r e e d o m ' ) ; 
z=2; 
t t e s t = t t e s t p ( a l p h a , d o f , z ) ; 
[ i , k ] = f i n d ( a b s ( f c ) < t t e s t ) ; 
u n s c a l e d _ x o n e = X X ; 
u n s c a l e d _ x o n e ( : , k ) = [ ] ; 
U t e s t = T T ; 
U t e s t ( : , k ) = [ ] ; 
[ m x , n x ] = s i z e ( U t e s t ) ; 
n m h =(1:nnx); 
amh=model_headers; 
a m h ( : , k ) = [ ] ; 
n m h ( : , k ) = [ ] ; 
nmtwo=mtwo; 
n m t w o ( : , k ) = [ ] ; 
n m t w o t e s t = m t w o t e s t ; 
n m t w o t e s t ( : , k ) = [ ] ; 
nmauto=auto; 
n m a u t o ( : , k ) = [ ] ; 

[ m x , n x ] = s i z e ( X X ) ; 
t = t t e s t p ( a l p h a , m x , 2 ) ; 
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c i = t . * j k _ s t d e r r o r ; 

f u n c t i o n m = c o n p r e d ( b , w , p , q , I v ) 
[raq,nq] = s i z e ( q ) ; 
[mw,nw] = s i z e ( w ) ; 
i f nw ^= I v 

i f I v > nw 
s = s p r i n t f ( ' O r i g i n a l model h a s a maximum o f %g L V s ' , n w ) ; 
d i s p C • ) , d i s p ( s ) 
s = s p r i n t f ( ' C a l c u l a t i n g v e c t o r s f o r %g L V s o n l y ' , n w ) ; 
d i s p ( s ) , d i s p C ') 
I v = nw; 

e l s e 
W = W( , 1 I v ) ; 
q = q( , 1 I v ) ; 
p = P( , 1 I v ) ; 
b = b( , 1 I v ) ; 

end 
end 
m = z e r o s ( l v , m w ) ; 
m - ( w * i n v ( p ' * w ) * d i a g ( b ) ) ' ; 
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APPENDIX III 

Matlab Program for Informative Variable Degradation by Partial Least Squares (IVD-

PLS). 

I V D - P L S 
A l g o r i t h m c o m p u t e s b / s e ( b ) r a t i o f o r e a c h w a v e l e n g t h s IVD v a l u e 
a n d r a n k s i n d e s c e n d i n g o r d e r I n p u t s a r e t h e p r e d i c t o r b l o c k ( x ) , 
p r e d i c t e d b l o c k ( y ) t h e number o f l a t e n t v a r i a b l e s t o be c a l c u l a t e d ( m a x l v ) 
and an o p t i o n a l v a r i a b l e ( o u t ) t o s u p p r e s s i n t e r m e d i a t e 
o u t p u t [out=0 s u p p r e s s e s o u t p u t ] . O p t i o n a l O u t p u t s a r e t h e v e c t o r o f 
r e g r e s s i o n v e c t o r s ( m ) , x l o a d i n g s ( p ) , y l o a d i n g s ( q ) , x w e i g h t s (w) 
X s c o r e s ( t ) , y s c o r e s ( u ) , a n d i n n e r r e l a t i o n c o e f f i c i e n t s (b) . 
P r e d o m i n a n t o u t p u t a r e t h e x, y a n d t e s t x m a t r i c e s f o r f i n a l P L S l 
m o d e l l i n g . 

[ m x , n x ] = s i z e ( x ) ; 
XX=x; 
YY=y; 

f o r l o o = l : m x ; 
c o u n t = l o o 
x ( l o o , : ) = [ ] ; 
y d o o , :) = [ ] ; 

i f pre==0 
x-XX; 
y=YY; 

e l s e i f p r e = = l 
[ m c x , n n c x ] = m n c n ( x ) ; 
x=mcx; 
[ m c y , n y ] = m n c n ( y ) ; 
y=mcy; 

e l s e i f pre==2 
[ a x , a m x , s t d x ] = a u t o ( x ) ; 
x=ax; 
[ a y , a m y , s t d y ] = a u t o ( y ) ; 
y=ay; 

end 

[mx,nx] = s i z e ( x ) ; 
[my,ny] = s i z e ( y ) ; 
p = z e r o s ( n x , I v ) ; 
q = z e r o s ( n y , I v ) ; 
w = z e r o s ( n x , I v ) ; 
t = z e r o s ( m x , I v ) ; 
u = z e r o s ( m y , I v ) ; 
b = z e r o s ( 1 , I v ) ; 
o l v = I v ; 
r a n k x = r a n k ( x ) ; 
i f r a n k x < o l v 

I v = r a n k x ; 
d i s p C •) 
s s s = s p r i n t f (' Rank o f X i s %g, w h i c h i s l e s s t h a n I v o f 

% g M v , o l v ) ; 
d i s p ( s s s ) ; 
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s s s = s p r i n t f ( ' C a l c u l a t i n g %g L V s o n l y ' , l v ) ; 
d i s p ( s s s ) ; 

e n d 
f o r i = 1 : I v 

[PP/qq/WW/tt, uu] = p l s n i p a K x , y ) ; 
b ( l , i ) = uu' * t t / ( t f * t t ) ; 
X = X - t t * p p ' ; 
y = y - b ( l , i ) * t t * q q ' ; 
t { : , i ) = t t ( :, 1) ; 
u { : , i ) = uu ( :, 1) ; 
p ( : , i ) = p p ( w l ) ; 
w { : , i ) = WW ( : , l ) ; 
q( w i ) qq( : , l ) ; 

e n d 

m = z e r o s ( I v , n x ) ; 
m ( l : l v , : ) = c o n p r e d ( b , w , p , q , I v ) 
m= cumsum(m,1); 

m_opt=m(lv, : ) ; 
s u m m _ o p t ( l o o , :)=m_opt; 
x=XX; 
y-YY; 

end 

( m x , n x ] = s i z e ( X X ) 
S=summ_opt; 
f o r m=l:mx 

summ_opt(m, :) = ( ] ; 
mu(m,:)=mean(summ_opt); 
summ_opt=S; 
MMM (m, : ) =mean (summ_opt) -summ__opt (m, : ) ; 

end 

summ_loo_squared=sum(MMM. ̂ ^2) ; 
j k _ s t d e r r o r = s q r t ( ( ( m x - l ) / m x ) * s u m m _ l o o _ s q u a r e d ) ; 
j k _ m e a n = { s u m ( m u ) ) / m x ; 
B = a b s ( j k_mean./j k _ s t d e r r o r ) ; 
[ c _ r a n k , i n ] = s o r t ( B ) ; 

[ m x , n x ] = s i z e ( j k_mean); 
N=0; 
f o r n=nx:-1:1 

N=N+1; 
b _ i n ( : , N ) = i n ( : , n ) ; 
b _ r a n k ( : , N ) = c _ r a n k ( : , n ) ; 

end 

u n s c a l e d _ x t w o = X X ( : , b _ i n ) ; 
U U t e s t = U t e s t ( : , b _ i n ) ; 
[ m x , n x ] = s i z e ( j k_mean); 
f a m h = a m h ( : , b _ i n ) ; 
f n m h = n m h ( : , b _ i n ) ; 
f c i = c i ( : , b _ i n ) ; 
f n m t w o = n m t w o ( : , b _ i n ) ; 
f n m t w o t e s t = n m t w o t e s t ( : , b _ i n ) ; 
f n m a u t o = n m a u t o ( : , b _ i n ) ; 

s l e v e l = i n p u t ( ' W h a t s t a r t l e v e l do you w a n t ' ) ; 
p a u s e 
s t e p = i n p u t ( ' W h a t s t e p l e v e l do you w a n t ' ) ; 
p a u s e 
p c s t e p = i n p u t ( • W h a t % p u n i s h f a c t o r do you w a n t ' ) ; 
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[ o o p t m i n , r m s e c v , c s x ] = o p t ( b _ r a n k , u n s c a l e d _ x t w o , s l e v e l , p c s t e p , s t e p , Y Y ) ; 
m i n i = m i n ( o o p t m i n ) ; 
[ i , j ] = f i n d ( o o p t m i n = = m i n i ) ; 
p c l = s l e v e l + { ( i - 1 ) * s t e p ) ; 
ul=pcl"*max ( c s x ) ; 
v a r s = ( f i n d ( ( u l - c s x ) > 0 ) ) ; 
v = s p r i n t f ( ' Use %g v a r i a b l e s ' , m a x ( v a r a ) ) ; d i s p ( v ) ; 
f u n c t i o n [ o o p t m i n , r m s e c v , c s x ] = 
o p t ( b _ r a n k , u n s c a l e d _ x t w o , s l e v e l , p c s t e p , s t e p , Y Y ) 
x = u n s c a l e d _ x t w o ; 
y=YY; 
n=0; 
csx=cumsum ( b _ r a n k ) ; 
f o r m = s l e v e l : s t e p : 1 . 0 

n = n + l ; 
u l = m * m a x ( c s x ) ; 
l o c - ( f i n d ( ( u l - c s x ) > 0 ) ) ; 
o p t x = x ( : , 1 : m a x ( l o c ) ) ; 
[ m x , n x ] = s i 2 e ( o p t x ) ; 
i f nx>10 

l v = 1 0 ; 
e l s e 

l v = n x ; 
end 
[ p r e s s , c u m p r e s s , r m s e c v ] = 

c r o s s v a l ( o p t x , y , ' n i p ' , ' l o o ' , I v , [ ] , [ 1 , 1 , 1 , [ ] ) ; 
o p t m i n = m i n ( r m s e c v ) ; 
[ i , j ] = f i n d ( o p t m i n = = r m s e c v ) ; 
p c s = j ; 
i f p e s ==1; 

o o p t m i n ( n , : ) = o p t m i n ; 
e l s e 

w h i l e o p t m i n + ( p c s t e p * o p t m i n ) > r m s e c v ( : , ( p c s - 1 ) ) ; 
o p t m i n = r m s e c v ( : , ( p c s - 1 ) ) ; 
p c s = p c s - l ; 
i f p c s < 2 

b r e a k 
end 

e n d 
end 
o o p t m i n ( n , : ) = o p t m i n ; 
c l e a r o p t m i n ; 

end 
f u n c t i o n m = c o n p r e d ( b , w , p , q , I v ) 
[mq,nq] = s i z e ( q ) ; 
[mw,nw] = s i z e ( w ) ; 
i f nw I v 

i f I v > nw 
s = s p r i n t f ( " O r i g i n a l model h a s a maximum o f %g L V s ' , n w ) ; 
d i s p C ' ) , d i s p ( s ) 
s = s p r i n t f ( ' C a l c u l a t i n g v e c t o r s f o r %g L V s o n l y ' , n w ) ; 
d i s p ( s ) , d i s p C •) 
I v = nw; 

e l s e 
w = w( , 1 : l v ) 
q = q ( ,1 : l v ) 
p = p ( , 1 : l v ) 
b = b( , 1 : l v ) 

end 
e n d 
m = z e r o s ( I v , m w ) ; 
m = ( w * i n v ( p ' * w ) * d i a g ( b ) ) 
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APPENDIX IV 

Matlab Program for the Jackknife confidence interval. 

J a c k k n i f e c o n f i d e n c e i n t e r v a l - P L S . A l g o r i t h m c o m p u t e s b / s e ( b ) r a t i o f o r 
e a c h w a v e l e n g t h and r a n k s i n d e s c e n d i n g o r d d e r I n p u t s a r e t h e p r e d i c t o r 
b l o c k ( x ) , p r e d i c t e d b l o c k ( y ) t h e number o f l a t e n t v a r i a b l e s t o be 
c a l c u l a t e d ( m a x l v ) a n d a n o p t i o n a l v a r i a b l e ( o u t ) t o s u p p r e s s i n t e r m e d i a t e 
o u t p u t [ o u t = 0 s u p p r e s s e s o u t p u t ] . O p t i o n a l O u t p u t s a r e t h e t h e v e c t o r o f 
r e g r e s s i o n v e c t o r s (m),x l o a d i n g s ( p ) , y l o a d i n g s ( q ) , x w e i g h t s (w) 
X s c o r e s ( t ) , y s c o r e s ( u ) , a n d i n n e r r e l a t i o n c o e f f i c i e n t s ( b ) . 
P r e d o m i n a n t o u t p u t i s t h e J a c k k n i f e s t a n d a r d e r r o r o f t h e t e s t s a m p l e s . 

[ m x , n x ] = s i z e ( x ) ; 
[ m y , n y ] = s i z e ( y ) ; 
XX=x; 
Yy=y; 

f o r l o o = l : m x ; 
c o u n t = l o o 
x ( l o o , : ) = [ ] ; 
y ( l o o , : ) = [ ] ; 

[ m c x , n n c x ] = m n c n ( x ) ; 
x=mcx; 
[ m c y , n n c y ] = m n c n ( y ) ; 
y=mcy; 
s x = s c a l e ( t e s t , n n c x ) ; 

(mx,nx] = s i z e ( x ) ; 
[my,ny] = s i z e ( y ) ; 
p = z e r o s ( n x , I v ) ; 
q = z e r o s ( n y , I v ) ; 
w = z e r o s ( n x , I v ) ; 
t = z e r o s ( m x , I v ) ; 
u = z e r o s ( m y , I v ) ; 
b = z e r o s ( 1 , I v ) ; 
o l v = I v ; 
r a n k x = r a n k ( x ) ; 
i f r a n k x < o l v 

I v = r a n k x ; 
d i s p C ') 
s s s = s p r i n t f ('Rank o f X i s %g, w h i c h i s l e s s t h a n I v o f 

% g ' , l v , o l v ) ; 
d i s p ( s s s ) ; 
s s s = s p r i n t f ( ' C a l c u l a t i n g %g L V s o n l y * , l v ) ; 
d i s p ( s s s ) ; 

end 
f o r i = l : l v 

[pp,qq,WW,tt,uu) = p l s n i p a l ( x , y ) ; 
b ( l , i ) = u u ' * t t / ( t t ' * t t ) ; 
X = X - t t * p p ' ; 
y = y - b ( l , i ) * t t * q q ' ; 
t ( 
u( 
P( 

i ) = t t ( 
i ) = uu( 
i ) = PP( 

, 1) ; 
, 1) ; 
, 1) ; 
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w ( : , i ) = WW(:,1) ; 
q ( : , i ) = q q ( : , 1) ; 

end 
m = z e r o s ( I v , n x ) ; 
m ( l : l v , : ) = c o n p r e d ( b , w , p , q , I v ) ; 
m= cumsum(m,1); 
p r e d n = s x * m ( l v , : ) * ; 
p r e d n s = r e s c a l e ( p r e d n , n n c y ) ; 
f p r e d ( : , c o u n t ) = p r e d n s ; 
x=XX; 
y=YY; 

end 
f p r e d = f p r e d ' ; 

[ m x , n x ] = s i z e ( f p r e d ) ; 
F = f p r e d ; 
f o r m=l:mx 

f p r e d ( m , : ) = [ ] ; 
m u ( m , : ) = m e a n ( f p r e d ) ; 
f p r e d = F ; 
M M M ( m , : ) = m e a n ( f p r e d ) - f p r e d ( m , : ) ; 

end 

[ m x , n x ] = s i z e ( X X ) ; 
summ_loo_squared=sum(MMM.^2); 
j k _ s t d e r r o r = s q r t ( ( ( m x - 1 ) / m x ) * s u m m _ l o o _ s q u a r e d ) ; 
j k_mean=sum(mu)/mx; 
f c = ( j k _ m e a n . / j k _ s t d e r r o r ) ; 

a l p h a = i n p u t ( ' W h a t a l p h a l e v e l do you w a n t ? ' ) ; 
p a u s e ; 
d o f = i n p u t ( ' W h a t a r e t h e d e g r e e s o f f r e e d o m ' ) ; 
z=2; 
t t e s t = t t e s t p ( a l p h a , d o f , z ) ; 
t e s t _ c i = j k _ s t d e r r o r . * t t e s t ; 

f u n c t i o n m = c o n p r e d ( b , w , p , q , I v ) 
[mq,nq] = s i z e ( q ) ; 
[mw,nw] = s i z e ( w ) ; 
i f nw I v 

i f I v > nw 
s = s p r i n t f ( ' O r i g i n a l model h a s a maximum o f %g LVs',nw) 
d i s p C • ) , d i s p ( s ) 
s = s p r i n t f ( ' C a l c u l a t i n g v e c t o r s f o r %g L V s o n l y ' , n w ) ; 
d i s p ( s ) , d i s p C ') 
I v = nw; 

e l s e 
w = w( , 1 I v ) 
q = q ( , 1 I v ) 
p = P ( , 1 I v ) 
b = b ( , 1 I v ) 

end 
end 
m = z e r o s ( I v , m w ) ; 
m = ( w * i n v ( p ' * w ) * d i a g ( b ) ) • ; 
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A stand alone Guided User Interface (GUI) incorporating all of those algorithms shown in 

appendices i-iv is included on a CD-ROM together with operating guidelines. 
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Ful l 

Univariate and multivariate (partial least squares 1, PLSl) calibration techniques are compared for the 
determination of Pt, Pd and Rh in a complex sample matrix. The univariate techniques utilised either pure 
standards, pure standards with interclement correction factors applied, or matrix matched standards. 
Univariate calibration yielded relative root mean square errors (RRMSEs) o f prediction for Pt, Pd and Rh o f 
19, 15, and 54% and 13, 18, and 88% for test solutions and real samples, respectively. Univariate calibration 
with matrix matching proved the most accurate method with RRMSEs for Pt, Pd and Rh o f 2.5, 3.7 and 2.4% 
for a series o f synthetic test solutions, and 12, 2.3 and 8.0% for real samples, respectively. In comparison, the 
multivariate calibration method yielded relative root mean errors for Pt, Pd and Rh o f 5.8, 3.0 and 3.5% in the 
test solutions, and 32, 7.4 and 76% in the real samples. The relative error for the matrix matching and PLSl 
techniques was dependent upon analyte concentration. 

Introduction 

Inductively coupled plasma atomic emission spectrometry 
(ICP-AES) is now well established as a powerful technique 
for multielement analysis,' but can suffer f rom both spectral 
and non-spectral interferences which limit the accuracy, 
repeatability and reproducibility of the information obtained. 
The nature o f the interference is often complex and it is not 
always possible to apply the required corrections in order to 
achieve accurate and precise analysis. In contrast, the 
information obtained by molecular spectroscopic techniques 
has been greatly enhanced by the application o f data handling 
tools. 

Traditionally, for quantitative analysis in atomic spectro
scopy, a single spectral line is chosen; based upon the criteria o f 
line sensitivity and freedom f rom sp>ectral interferences. Many 
attempts have been made to correct for spectral interferences in 
ICP-AES, including standard additions, matrix matching, 
inter-element correction, and optimisation of line selection. 
However, these methods sufTer f rom serious hmitalions when a 
sample with a complex matrix is presented for analysis. For 
example, the use o f interelement correction factors requires 
interfcrent lines that can be used in a univariate fashion to 
determine the concentration of the interferents themselves, 
which is not always possible with complex samples. -

The use o f chemometric approaches to correct for inter
ferences in ICP-AES has emerged as an attractive alternative 
and various multivariate calibration techniques have been 
proposed.^"^ The least complex and most widely available of 
these assume that there is a linear relationship between 
response signal and analyte level, such as multiple linear 
regression ( M L R ) , stepwise multiple linear regression ( S M L R ) , 
principle components regression (PCR) and partial least 
squares (PLS). 

Atomic emission spectra are well suited to the application o f 
multivariate methods o f calibration and analysis because 
intensity data are recorded at multiple wavelengths.^ I l has 
been demonstrated that mijltivariate methods yield better 
analytical results compared with the more traditional methods 
in cases where the analyte signal is complicated by spectral line 

overlap f rom an interfering species.'"'^ One requirement o f 
multivariate methods, however, is that the factor space defined 
by the multi-element standards used for model calibration 
encompasses all likely constituents (analyles and intcrferents) 
and concentrations o f the real sample matrices. To ensure that 
this requirement is met, it is necessary to acquire data for the 
multivariate calibration model using an appropriate experi
mental design. 

In this paper multivariate calibration is compared to 
traditional univariate calibration with interelcment correction 
and matrix matching for the determination o f platinum group 
metals in autocatalyst digests. 

Experimental 

Instrumentation and reagents 

A l l data were collected using a simultaneous echelle inductively 
coupled plasma atomic emission spectrometer (Perkin-Elmer 
Optima 3000 ICP, Norwalk, USA) equipped with a segmented 
charge-coupled array detection system.'^*" Instrumental 
operating conditions were optimised using simplex optimisa
tion and are given in Table 1. 

Single and multielement solutions were prepared by serial 
dilution o f ultra-pure stock standards (10000 and 
lOOOngmP' , Johnson Matthey pic, Royston, Hertfordshire, 
U K ) . Water was deionised, double distilled (18 M Q quality) 
and acids were o f Aristar grade (Merck-BDH, Poole, Dorset, 
U K ) . A l l glassware was acid washed in 10% v/v nitric acid for 
24 h then rinsed thoroughly with 18 M Q water. A l l plasticware 
was metal-free, high-density polypropylene (Anachem, Luton, 
Bedfordshire, U K ) . Calibration and test solutions containing 
varying concentrations o f Pt, Pd, Rh, A l , Mg, Ce, Zr and Ba, 
plus the internal standards In , Scahd Y were prepared f rom the 
stock solutions and stored in high-density polypropylene tubes. 
Digests o f autocatalyst samples (Johnson Matthey pic, 
Royston, Hertfordshire, U K ) which had been independently 
analysed using an alternative method, and which had been 
validated by comparison with a NiS fire assay, were used fo r 
method validation. 
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Table 1 Optimised instrumental parameters used for the collection of 
all data 

1 able 2 ( unccnirations (pgml ') of the standards for the matrix 
matched calibration 

Carrier gas flow/1 min ~' 
Auxiliary gas flow/1 min ' 
Plasma gas flow/1 mm ' 
Viewing height above the load coil/mm 
Power/W 
Spray chamber 
Nebuliscr 
Resolution 
Read time/integration time/s 

0.93 
0.5 

9 
1286 
Ryton. double-pass 
Scasprav. glass concentric 
High 
3/0.2 

C alibration 

tnivar ia te calibration. Univariate calibration was per
formed by single point calibration using a zero standard 
containing 10% v/v aqua regia ( 3 :1 H C I : HNO3) and a single 
clement calibration solution for each analyte at the concentra
tions expected in the samples (i.e.. Ft SOngml Pd 
50 ml Rh 10 ng ml ' ) . A calibration graph was prepared 
using the net integrated peak areas for the analyte lines (Pt 
214.423 nm, Pd 248.892 nm and Rh 343.489 nm) and the 
concentrations o f the analytes in the samples were determined 
by interpolation. 

Interelement correction ( lEC) . Interelement correction fac
tors for each o f the suspected interfering elements were 
determined. A calibration graph was first constructed in the 
usual way, and solutions o f the suspected interferenls 
( l (K)Ongml ' ) were aspirated while monitoring the analyte 
line(s) o f interest. The apparent analyte concentration was then 
determined at the line o f interest, and an lEC factor calculated 
by dividing the apparent analyte concentration at that 
particular wavelength by the intcrferent concentration. 
Eqn. 1 was then applied to obtain the corrected analyte 
concentration. 

(1) 

Where Cu, Q , F, and 7,̂  are the uncorrected analytc 
concentration, corrected analyte concentration, I EC factor, 
and interferent concentration respectively fo r each interfering 
element, /. 

Mat r ix matched calibration. Calibration u a s e a r n e d i>ul 
using a zero standard containing 10% v/v aqtda regia (3 :1 
H C I : HNO3). A multi-element cahbration solution containing 
each element at the concentrations expected in the samples 
(Table 2) was used also. The internal standards were included 
in the solutions but were subsequently not used in any of the 
calibrations. The calibration standard contained both the 
analyte and matrix elements at the highest concentrations 
expected in the autocatalyst matrix. The composition o f these 
matrix-matched standards is given in Table 2. 

Mult i \ar iate calibration. Several multivariate-modciling 
algorithms were studied, including principal components 
regression, partial least squares 1 and 2 and multiple linear 
regression analysis, using Matlab Software Version 5.0, and the 
PLS_Toolbox 2.0 (Mathworks Inc.). Of these four techniques 
PLSl gave the best predictive results and only those are 
reported here. A l l data were mean centred, and full-set random 
cross validation was used throughout this work to minimise 
systematic error in forming the models. 

Cross-validation [the equation fo r which is given in eqn. (2)) 
is a measure o f the model's ability to predict new samples and 
consists o f leaving out one calibration sample f rom the 
calibration set, building the model on the remaining calibration 
samples, then predicting the value(s) for the left out calibration 

Mixed calibration standard Zero standard Calibration standard 

Pt- 0 40 
Pd" 4 ( 1 

Rh" 10 
Ba'̂  0 25 
Cc" 0 ; i K > 

/ r <• 100 
In^ 50 
Sc' 25 25 

25 25 
A l " 1000 1000 
Mg^ 500 500 
"Analytc. '"Matrix element. ' Internal standard 

sample [\ . eqn. (2)] and computing the prediction residuals. 
The process is repeated until all calibration samples have been 
left out once: then all prediction residuals are combined to 
compute the root mean square o f cross-validation. To assess 
the model fit to the calibration data the RMSEC value was 
iLsed. The format is the same as that used in eqn. (2) except that 
y represents the values o f the predicted variables when all 
calibration samples are left included in the model. 

RMSECV \ N 
(2) 

where y is the known concentration, y is the predicted 
concentration, and N is the number of experiments. 

tlstimation of errors 

The errors o f prediction relative to the known values, for 
individual test solutions and autocatalyst samples, were 
compared using relative standard error (RSE) values, calcu
lated as shown in eqn. (3): 

/ ? 5 £ ' ( 7 c ) = lOOx (3) 

The overall efficacy of the different calibration methods was 
compared using the relative root mean square error (RRMST.). 
defined in eqn. (4), which gives a general idea o f the error o f 
prediction for a range o f concentrations: 

RRMSE(7ii)= lOOx 
meaniy) 

I / E ( i ' i - > ' i ) ' (4) 

Experimental design 

In a working laboratory it is desirable to maximise the time 
spent analysing samples compared to the calibration step. 
Traditionally, multivariate calibration data-sets have been 
acquired using experimental designs based on a factorial or 
partial factorial approach. However, for the 8-factor problem 
studied here, such approaches would result in an impracticably 
large number o f experiments i f more than a few levels were used 
[e.g., 65 536 fo r a design with 4 concentration levels and 8 
factors (4^)]. Hence, the calibration set for multivariate analysis 
in this work was prepared using a Taguchi orthogonal array 
design'** in order to cover the required factor space with the 
minimum number o f experiments. The concentration ranges of 
the elements were determined f rom historical data on the 
composition o f autocatalyst digest samples. The orthogonal 
array contained 8 factors at 7 levels with a total o f 49 
experiments, represented as OA49(7*) (cf., 5 764 801 experi
ments for a f u l l factorial design). The levels and factors in the 
design are shown in Table 3. The orthogonality o f the array 
ensured that the effect o f every factor assigned to the column in 
the orthogonal matrix could be estimated while all the 
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Table 3 Concentralion levels (jig ml ') and factors in the orthogonal array design 

Level 

Factor 2 3 4 5 6 7 

Pi 0 5 10 20 30 40 50 
Pd 0 5 10 20 30 40 50 
Rh 0 1 2 4 6 8 10 
Ba 0 1 5 10 50 100 200 
Ce 0 1 10 50 • 100 300 500 
Zr 0 1 10 50 100 300 500 
Mg 0 ' 1 10 50 100 300 500 
Al 0 . 10 100 • 200 500 1000 

remaining factor effects were zero. The multivariate models 
were built using intensity data for 248 lines which included all 
the o f the most intense Pt, Pd and Rh lines and many o f the 
most intense matrix lines. 

Results and discussion 

Individual RSE values for the test solutions are shown in 
Fig. l(aHc), and R R M S E values are shown in Table4. 
Individual RSE values for the autocaialyst digests arc shown 
in Fig. 2(a)-(c). 

Univariate calibration 

When univariate calibration was used the RRMSEs o f 
prediction for the test solutions for Pt, Pd and Rh were 19, 
15, and 54%, respectively (Table 4). The high errors for Rh 
were probably due to matrix induced suppression or a 

(a)Pt 82% 

20%. 

10% 

0% 

-10% 

-20% 
[ p iff ̂ 'f iT'f 
2.0 6.0 12.0 12.0 16.0 18.0 20.0 30.0 40.0 

(b)Pd' 45.2% 

10% 

2.0 6.0 10.0 12.0 14.0 18.0 20.0 30.0 40.0 

^ 10% 
% 1.4% -0.3% 

-20% 
1.0 2.0 2.0 3.0 3.0 4.0 5.0 8.0 10.0 

Concentration in test solution/pg m]~^ 

lUravariate DEC • Matrix Matched DPLSI 

Fig. 1 Comparison of RSE of prediction'obtained using univariate! 
univariate with lEC, matrix matched and PLSl calibration for: (a) Pi; 
(b) Pd; (c) Rh; in synthetic lest samples, 

Table 4 RRMSE of prediction for the concentration of Pi, Pd and Rh 
in the synthetic test samples and auiocaiaiyst digests 

Test solutions Autocatalyst digests 

Calibration method Pt Pd Rh Pi Pd Rh 

Univariate 19 15 54 13 18 88 
Univariate with lEC 19 14 5.7 12 17 2.1 
Matrix matched 2.5 3.7 2.4 12 2.4 8.0 
PLSl 5.8 3.0 3.5 32 7.5 76 

combination o f matrix-induced suppression and spectral 
interference. Predicted concentrations o f Rh were lower than 
their actual values in all cases (Table 5). There were no direct 

(a)Pt 

(b)Pd 

•0.9% 

17.3 33.0 
(c)Rh 

^ -20% 
a: -30% 

Concenlralion in autocatalyst digest/ pg ml" 

• Univariate DEC • Matrix Matched OPLSI 

Fig. 2 Comparison of RSE of prediction obtained using univariate, 
univariate with lEC. matrix matched and PLSl calibration for: (a) Pi; 
(b) Pd; (c) Rh; in autocawlysi samples. Each result is the mean of three 
replicate analyses, and the error bars represents ± one standard 
deviation. 
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Table 5 Known and predicted conccniraiions (Mg ml" ' ) of the lest solutions after the application of univariate calibration on net signal intensity 
obtained using 2-point background correction 

Known Prediclcd 

Test solution Pt 214.423 Pd 248.892 Rh 343.489 Pi 214.423 Pd 248.892 Rh 343.489 

Tel 12.00 20.00 3.00 10.48 17.82 2.14 
Te2 16.00 12.00 5.00 13.13 10.38 1.52 
Te3 20.00 18.00 2.00 16.66 15.49 -0.69 
Te4 12.00 14.00 4.00 10.10 12.16 2.45 
Te5 18.00 10.00 3.00 15.24 8.54 0.93 
Te6 6.00 30.00 1.00 4.94 26.04 -1.55 
Te7 2.00 6.00 2.00 1.67 5.18 0.55 
Te8 40.00 2.00 8.00 33.32 1.80 5.03 
Te9 30.00 40.00 10.00 25.41 35.10 8.34 
TelO 0.00 0.00 0.00 -0.01 -0.19 -1.33 

Table 6 Magnitude of the lEC factors used to correct for spectroscopic interferences 

- lEC factor al analyte line/nm 

Interfering element Pt 214.423 Pd 248.892 Rh 343.489 

Pt _ 9.86 x 10"' -2.23 X 10"* 
Pd 3.67 X 10"* — 5.45x10"' 
Rh -7 . I5X 10"* -6.52 X 10"" — 
Al -1.47x 10-5 -8.32 X 10"' 3.18x 10"' 
Mg 6.38 X 10"* -3.66 X lO"** 2.59 X 10"' 
Ce 1.08 X 10'^ -2.3 X lO"** -6.68 X 10"' 
Zr -4.16 X 10"' -8.75 X 10"' 8.03 X 10"* 
Ba -3.26 X 10"' -1.37 X 10"" 1.67 X 10"' 
In -1.16x 10"' -7.23 X 10"' -5.53x10** 
Sc -6.78 X 10 ' ' -5.64 X 10"" 4.75 X 10"" 
Y -4.22 X 10"* -5.06 X 10"' -1.33x 10"' 
Sr -2.95x10"** -1.08 X 10"" 1.02 X 10 ' ' 

spectral overlap inlerfercnces on the Rh 343:489 nm line which 
would cause this high error but there was a baseliiie shift due to 
the presence o f Zr [Fig. 3(c)]. Net intensity data were calculated 

(a) 

soo 
4 0 0 

3 0 0 

2 0 0 

100 

Pt 50/Mg m I - 1 

A l 1500/Mg m l - ' 

M g 5O0J\iQ mr-
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7TO 
C 
o SOO -
u (D 
CO 500 

a . 
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c 
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O 

200 

2 1 4 214.1 214.2 214.3 214.4 214.5 214.6 214.7 
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240.7 200.75 24a8 248.66 243.9 ZdaSS 249 24905 

( C ) 

6 0 0 0 

5 0 0 0 

4 0 0 0 

3 0 0 0 

2 0 0 0 

1000 

Zt 500/ng m l - i Rh lO/pg ml-' 

Co SOO/pg mh' 

343 .3 343.35 343.4 343 .45 343.5 343 .55 343.6 343.65 343.7 . 

WavBlenglh/nm 

Fig. 3 Interferences on the: (a) Pi 214.423 nm; (b) Pd 248.892 nm; (c) 
Rh 343.489 nm lines. 

by baseline subtraction, using background correction points 
(BCPs) positioned either side o f the line, so'the baseline shift 
should be accounted for; however, the positioning o f the BCPs 
for Rh 343.489 was hampered by the proximity o f the Ce 
343.521 nm line [Fig.-3(c)], resulting in failure o f the back
ground correction routine. 

Predicted concentrations for Pt and Pd were much closer to . 
the known values and there was no trend in the relative error 
with concentration [Fig. 1(a) and (b)], despite the presence of 
some small spectral interference and baseline shift [Fig. 3(a) 
and '3(b)]. For example, even at a relatively high M g 
concentration o f SOO^igml' ' the spectral interference was 
sniall relative to the peak for Pt [Fig. 3(a)], and the baseline 
shift caused by 500 \ig m l " ' of Zr was relatively minor at the Pd 
248.892 lineJFig. 3(b)]. 

The RSEs for the, prediction o f Pt, Pd and Rh in the 
autocatalyst samples are shown in Fig. 2(a)-(c). Each point 
represents the average o f three replicate sample digests 
corrected for mass o f sample. Concentrations o f Pt, Pd and 
Rh were predicted to be lower than their actual values. The 
RRMSEs for Pt, Pd and Rh were 13, 18 and 88%, respectively, 
again confirming that Rh was not predicted as well as the other 
analytcs. 

Intcrelement correction ( I EC) 

The magnitudejof the lEC factors varied considerably f rom 
- 5 . 5 x 1 0 " ^ to 9 .9x10"^ (Table 6). For the prediction o f 

Table? RMSEC and RMSECV values for the PLSl model calibration 
data set constructed using gross mean centred data 

- - . RMSEC RMSECV 

Pi ,0.77 1.05 
Pd 0.40 0.48 
Rh o.'r2 • 0.24 
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Cpnce,ntration in test solution / Mg mT' 

BCe30.Zr,lO/pg ml'* Matrix Matched •Ce30p.Zrl00/Mg mf' Matrix Matched 

Fig. 4 Effect on the RRSE for Rh in the lest samples when matrix 
matching is. applied with different concentrations of the main 
interferenls (Cc and Zr) on the line chosen (Rh 343.489 nm). 

analyte concentrations in , the synthetic test soIutionsJthe 
application o f lEC generally resulted in an improvement in 
the accuracy of predictipn. The greatest improvement was 
observed "for Rh, with the RRMSE falling-from-54 to to 5.7% 
when lEC was applied (Table 4). The RRMSE values-for Pt 
and Pd did not change significantly with values o f 19'and 14%, 
respectively, after the application o f I EC (Table 4), which is 
also reflected in the magnitude o f the RSE values for the 
individual solutions [Fig. 1(a) and (b)]. Results Tor the 
autocatalyst samples followed the same trend where the 
RRMSEs for.Pt, Pd'and Rh were 12, 17 and 2.1%, respectively 
(Table 4): Hence,r IEC had a significant'effect on\y for the 
correction o f spectral interferences on Rh in this instance. 

Mat r ix matched calibration 
«'"* • . ' , 

Results obtained using a matrix matched standard are shown in 
Fig. l(a)-(c) and Fig. 2(a)-(c) fo r - the test solutions.-and 
autocatalyst samples, respectively. Overall, this was the inost 
accurate o f the univariate calibration methods for the 
prediction o f Pt and Pd in the test solutions, and was 
comparable to, or better than, I EC for Rh for all but the 
lowest concentration (Fig. 1). This overall improvement in 
accuracy o f prediction for the test solutions is reflected in 

RRMSE values o f 2.5, 3.7 and 2.4% for Pt, .Pd and Rh, 
respectively (Table 4).: - > . 
' For the aulocatalyst samples, the RRMSEs for Pt, Pd and 
Rh were 12, 2.3 and 8.0% respectively (Table 4).'Evidently,.the 
accuracy o f prediction for Pi and Pd in the autocatalyst 
samples was not as good as for the test isolutions,'which was 
probably due to the concentrations o f the matrix matched 
elements not being exactly the same as their concentrations in 
the autocatalyst samples. Matrix-induced suppression oH the 
analyle signal w i l l oi i ly be effectively corrected for. by matrix 
matching the standardsi lo ihe samples. The relativcly/llow 
RRMSES' i for a l l ' three.,*-analytes, achieved when" matrix 
matching was used/suggestsahaf matrix-induced suppression 
had a greater effect on the accuracy o f the results than spectral 
interferences at ' the lines chosen, f o r analysis. The,, main 
disadvantage o f matrix matching is that the triatrix matched 
standards contain matrix elements at fixed concentrations, 
whereas the.: concent rations in the siunples may vary-quite 
considerably. This is demonstrated in Fig. 4, which shows the 
RSEs obtained for Rh in the individual test solutions when the 
concentrations o f Ce and Zr were reduced by a factor of ten, to 
30. and l O j i g m l " ' , respectively. 'As can be seen, the RSEs 
increased considerably at all concentrations when incorrect 
matrix matching was employed, and a comparison o f Figs. 4 
and 1(c) reveals that the results were very'similar to those 
obtained when non-matrix matched univariate calibration was 
used: 

Multivariate calibration: partial least squares I ( P L S l ) 

Multivariate calibration was initially performed using net 
signal' intensities. In order to obtain the net signal f rom the 
ihstrijment, a 2-point background correction was performed by 
the instrument software, however, the selection o f optimum 
background correction points for all- 248 lines proved 
problematical due to the presence- o f adjacent spectroscopic 
interferences. Hence, it was decided.to model the data using 
gross as well as net signal intensities. A l l data were translated 
along the co-ordinate origin by mean-centering each variable. 
Autoscaling was also tried but gave much worse results, 
probably due to the noise being scaled equally with the 

Table 8 Known and predicted concentrations (pg ml~') of Pi, Pd and Rh in the synthetic test solutions (Te) and autocaialyst samples, predicted 
using PLSl . • 

Sample 

'Pt • Pd • 

Sample Known Predicted ' > Known Predicted Known Predicted 

Tel 12.00 12.71 20.00 20.27 3.00 3.04 
Te2 16.00 17.45 12.00 11.98 5.00 5.03 
Te3 20.00 20.55 18.00 18.68 2.00 2.18 
Te4 . 12.00 12.95 14.00 14.21 4.00 3.93 
Te5 ..18.00 18.43 10.00 10.64 3.00 3.10 
Te6 6.00 7.04 30.00 29.90 1.00 1.26 
Te7 2.00 3.64 6.00 6.64 2.00 2.09 
TeS 40.00 40.33 2.00 2.90 8.00 7.86 
Te9 30.00 28.93 40.00 39.81 . 10.00 9.78 
TelO n/d 2.20 n/d 0.44 n/k^ 0.36 
SI R 1 I.OI 1.26 1.22 2.46 - n/k" -0.11 
SI R 2 1.02 -0.03 1.19 2.85 n/k-̂  0.14 
SI R 3 0.99 0.98 1.22 2.45 0.10 
S2 R 1 1.99 1.55 1.51 2.77 0.30 
S2 R 2 1.88 1.97 ' 1.48 2.36 n/k" 0.10 
S2 R 3 1.99 1.97 1.49 2.93 n/k" -0.34 
S4 R 1 n/d 1.06 17.62 18.19 5.36 5.63 
S4 R 2 n/d 1.11 17.86 17.92 5.36 5.62 
S4 R 3 n/d 1.36 17.36 17.59 5.33 5.65 
S5 R 1 n/d 1.47 33.70 32.63 0.05 2.83 
S5 R 2 n/d 0.25 34.13 33.84 0.03 2.93 
S5 R 3 n/d 0.63 33.73 32.70 0.03 2.95 
''n/k = not known. 
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informative data. Results obtained using net signal intensity 
data were worse than those obtained when using gross signal 
data, probably due to the incorrect assignment of BCPs, so 
only results obtained using the gross signal data are presented 
here. 

Results for the model validation are shown in Table 7, 
indicating that the model for Rh had the lowest error (Le., 
lowest R M S E C V and RMSEC values). The RMSEs values for 
Pt, Pd and Rh in the test solutions were 5.8, 3.0 and 3.5%, 
respectively (Table 4), indicating that, overall, this calibration 
strategy was as good as matrix matching. The individual results 
and RSEs for the synthetic test solutions are shown in Table 8 
and Fig. I , respectively. In the majority o f cases, the RSEs for 
the analytes after multivariate treatment were lower than the 
corresponding values when univariate and interelement 
correction was applied. I t is evident f r o m Fig. 1 that the 
predictive accuracy o f the PLSl model was highly dependent 
on analytc concentration. For example, the RSE for Pd in the 
test solutions decreased f rom 45% for 2 | ig m l " ' to 11% for the 
6 | i g m r ' solution, and to only -0 .5% for 4 0 j i g m l ~ ' . This 
pattern was repeated for the autocatalyst samples, with the 
RSE for Pd changing f rom 114% at ca. 1.2 \ig m l " ' to 0 .1% at 
ca. 33 j i g m P ' (Fig. 2). 

For the autocatalyst samples the RRMSEs fo r Pt, Pd and 
Rh were 32, 7.5 and 76%. The relative fai lure o f the model at 
low concentrations can be part ly explained by the fact thai 
the lowest concentrations used in the multivariate calibra
t ion data set were 5, 5 and 1 ng ml ' f o r Pt, Pd and Rh, 
respectively, so the lower end o f the concentration range was 
not modelled sufficiently well to enable accurate prediction 
o f analyte concentration below these concentrations. This 
hypothesis is lent credibi l i ty by the fact that nearly all o f the 
synthetic lest solutions were predicted w i t h lower RSE error 
values than the autocatalyst samples, indicating that 
interfer ing elements may have been present in the auto
catalyst samples which were not included in the model. This 
wou ld have a relatively greater influence on the accuracy o f 
prediction at lower concentrations. One possible solution to 
this would be to model the lower concentration range, where 
noise is l ikely to have a greater influence, separately f r o m the 
higher concentration range. 

Conclusions 

A number o f calibration methods have been compared for the 
simultaneous determination o f Pt, Pd and Rh in test solutions 
containing a synthetic matrix and autocatalyst samples 

containing varying concentrations o f these analytes. Tradi
tional calibration showed that for the elements in the test 
samples the predominant interferences on the Pt 214.423 nm, 
Pd 248.892 nm and Rh 343.489 nm lines were caused by matrix 
induced suppression and spectroscopic interference, or a 
combination o f both. Several calibration methods were 
compared, with the best being matrix matching and mult i 
variate calibration using PLSl . Matr ix matching failed when 
the standards were not matched correctly, which wil l often be 
the case with variable matrices, and PLSl yielded good results 
at high concentrations but was less effective at low concentra
tions due to the noise contribution. Further work is proceeding 
to improve the accuracy o f multivariate calibration at low 
concentrations. 
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