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Abstract 

Coastal and estuarine environments are dynamic yet highly sensitive which makes them 

particularly susceptible to any changes dictated by external forces. The interaction 

between environmental forces and those imposed by humans who live and work in the area 

is a very delicate one and needs to be considered through an holistic management approach 

to ensure the maintenance of a sustainable equilibrium. The use of airbome remote 

sensing in the coastal zone has been employed and validated for the specific aims of 

suspended particulate matter (SPM) concentration and flux quantification in the Humber 

Estuary and sea-surface temperature and salinity determination in the Tweed Estuary. 

Routines for the effective radiometric, atmospheric, thermal and geometric correction of 

Compact Airbome Spectrographic Imager (CASQ and Airbome Thematic Matter (ATM) 

data were tested and enhanced. Validations at all stages were executed through 

comparison with sea-based optical data acquired coincident with the images. The data 

acquired from the sea-surface also yielded important information regarding the nature and 

content of the waters. Water classification techniques were addressed and a new algorithm 

for use in case / / waters based on the Austin & Petzold (1981) K^{490) routine derived. 

A new algorithm to determine SPM concentration in the Humber Estuary from CASI 

images was successfully determined and validated. SPM flux estimates were ascertained 

through the incorporation of image data, hydrodynamic models and depth profiles 

determined from hydrographic charts. In the Tweed Estuary, A T M images were used to 

determine sea-surface temperature and salinity using thermal image calibration and 

comparison with surface monitoring. The results provide an hitherto unseen insight into 

the dynamics of the Humber and the Tweed Estuaries. In particular, information regarding 

SPM concentration and fluxes in the Humber supports the so far unproved hypothesis that 

most of the SPM moves into and out of the mouth in elongated streaks. The use of the 

width of a streak (or patch) to predict the SPM concentration and / or flux and so eliminate 

the necessity for surface-based monitoring was addressed. Algorithms to determine SPM 

concentration and flux were devised using patch size and within-patch water depth alone. 

A model to apply these algorithms to all data was unsuccessful due to the sparse temporal 

coverage of the image data. The analyses exemplified in this study give an invaluable 

insight into the forces at play in coastal and estuarine environments and would provide key 

information sources for hydrodynamic modellers and coastal zone managers. 
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Chapter I : Iniroduction 

1 Introduction 

The United Kingdom boasts an extensive coastline approximately 12 000 km in length 

(Turner, et al., 1998). It comprises a series of physically and ecologically diverse stretches 

which are highly dynamic, environmentally sensitive regions and are thus greatly 

influenced by the impact of those humans who live and work there. The physical, social 

and economic processes affecting these active environments must be addressed to enable 

their effective enhancement, protection and management. The adoption of an holistic 

approach to the coastal system is thus necessary. 

The north-eastern coast of England is a particularly striking example of a coastal stretch 

where an integrated management approach is essential. Key inputs into such a 

management approach are the understanding of the underlying processes driving and 

maintaining the coastline and its environs. A major factor influencing the coastal zone of 

north-eastern England is the erosion, transport and accretion of the fine sediments. The 

characterisation, monitoring and modelling of fluxes within the coastal zone also provides 

insight into the impact of the disposal of toxic pollutants in this region, another key input 

into the integrated management system. 

Traditional approaches of oceanographic, estuarine and riverine monitoring projects 

incorporate in-situ point measurements. As Allan (1983) observed, 'the worst place from 

which to study the sea is the sea surface'. Monitoring through single point measurements 

does not provide a synoptic view of the area in question and may in fact be misleading in 

cases where a localised anomaly occurs, or where the properties change quickly in space 

and time. Jay et al. (1997) suggest that estimates of flux derived from direct 

measurements are generally inadequate and prone to error and further that fluxes should be 

estimated using consideration of two-dimensional spatial distributions, in conjunction with 

variations in depth and time. A more multi-dimensional approach to survey is thus 

necessary with the incorporation of hydrodynamic modelling to fill in any gaps in the 

measurements. 
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This study attempts to approach the question of suspended sediment movement and flux 

estimation multi-dimensionally. Remote sensing provides a two-dimensional synoptic 

coverage of an area and, by repeatedly flying an aircraft across a target, a unique and 

invaluable time series of image data is generated. The measurement of in-water 

parameters with depth introduces a third dimension and, when incorporated with 

information gained through hydrodynamic modelling, provides a comprehensive multi­

dimensional description of an area. 

1.1 Aims and objectives 
The aims and objectives of this study were devised in response to the requirements of the 

airborne remote sensing section of the Land-Ocean Interaction Study (whose role is 

discussed in section 1.2). The overall aim of this work was to provide an assessment of the 

practical use of airborne remote sensing in coastal and estuarine studies and to investigate 

the more technical aspects of image processing and manipulation. More specifically the 

stated aims and objectives were: 

1. To explore the practical use of airbome remote sensing in the coastal zone for the 

quantification of suspended particulate matter (SPM) concentration, SPM flux, sea-

surface temperature and salinity, 

2. To develop a protocol for the sea-truthing of remotely sensed airbome data acquired 

using the Compact Airbome Spectrographic Imager (CASI) and the Airbome Thematic 

Mapper (ATM) and to generate a comprehensive dataset as part of the core Land-Ocean 

Interaction Study (LOIS) field programme, 

3. To assess the optical characteristics of the waters surveyed and to develop a K^{490) 

algorithm for use in the coastal zone, 

4. To utilise and enhance the processing routines used to correct the CASI and ATM, 

5. To test atmospheric correction routines developed for use with the CASI, 

6. To develop and substantiate algorithms to quantify SPM concentration in the Humber 

Estuary using CASI data and sea-surface temperature and salinity in the Tweed Estuary 

using ATM data, and 

7. To develop a methodology for the estimation of SPM flux in the Humber Estuary 

through the incorporation of SPM concentration information derived from CASI images 

and hydrodynamically modelled flows. 
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1.2 The Land-Ocean Interaction Study 
The Land-Ocean Interaction Study (LOIS) was a 6 year UK community research project 

undertaken during the period 1992 - 1998. LOIS was funded by the Natural Environment 

Research Council (NERC) and involved 11 NERC institutes and 27 Universities. The 

project aimed to quantify the exchange, transformation and storage of materials at the land-

ocean boundary, and to determine how these parameters vary in space and time. At the 

heart of LOIS was the Rivers, Atmospheres, Estuaries and Coasts Study (RACS) 

component. The work undertaken for this thesis was executed as part of the LOIS 

RACS(C) component, the coasts and estuaries section of RACS, which aimed to 

specifically determine the fluxes from estuary to sea, together with their controlling 

factors. More expressly some of the stated aims were: 

• To estimate the contemporary fluxes of momentum and materials (sediments, nutrients, 

contaminants into and out of the coastal zone), 

• To characterise the key physical and biogeochemical processes that govern coastal 

morphodynamics and the functioning of coastal ecosystems, and 

• To simulate the transport, transformation and fate of materials in the coastal zone. 

(Natural Environment Research Council, 1992) 

1.3 Thesis overview 
Before launching on a study investigating the use of optically sensitive instrumentation 

within an aquatic environment, it is important to have a firm understanding of the 

processes and interactions of the water itself, the constituents held within the medium, and 

the atmosphere which the remotely sensed signal passes through to reach the airborne (or 

satellite) sensor. Chapter 2 introduces the theory of water optics and in particular the 

complex interactions the medium has with the constituents held within its mass. 

Classification of water types is addressed through the use of in-water optical theory. This 

is an important aid to identifying the likely in-water processes affecting the remotely 

sensed signal received at the airborne (or satellite) sensor from the target water medium. 

The areas of study and the acquisition of data is discussed in chapter 3. The main area 

under investigation is the north-east coast of England, one of the principal LOIS RACS(C) 

study sites, which is an extremely dynamic, environmentally sensitive and economically 



Chapter I : Introduction 

important stretch of coastline. The contrasting environmental regimes of the Humber and 

Tweed estuaries are the foci for the study. Data acquisition from the air and from the sea 

are discussed and the instrumentation described. Chapter 4 embraces the calibration and 

processing of this data in two main sections. The first component (section 4.1) addresses 

the data acquired from the sea-surface (in-water optical profiles) and the second (section 

4.2) the airborne data (CASI and ATM images). Each processing stage is discussed and 

new algorithms developed and evaluated. 

Chapter 5 takes the use of in-water optical monitoring and of airborne remote sensing a 

stage further by utilising the calibrated and processed datasets to investigate the waters of 

the Humber Estuary. Using theory described in earlier chapters (chapters 2 and 4), in-

water optical measurements are used to characterise the estuarine environment. SPM 

concentration is derived using the algorithms developed for the CASI (chapter 4) and used 

to assess a series of images acquired across the Humber mouth at a variety of tidal states 

and under different spring and neap conditions. Fourier transforms are used to evaluate 

SPM distributions throughout the images and to interrogate transects taken from the image 

data across a line which spans the Humber mouth. The question of SPM flux evaluation is 

addressed and estimates derived from the transects. Possible errors are discussed and total 

flux estimates for the five survey periods determined. 

Discussion of the results from chapter 5 reveal that there may be a relationship between the 

pattems and quantities of SPM flux and the SPM concentration which is shown to move 

into and out of the estuary in elongated streaks or patches (chapter 6). This is investigated 

further and the findings reveal that it is possible to use the size of the patches and the 

averaged water depth within the patch as a surrogate for SPM concentration and for SPM 

flux. This would eliminate some of the costly time and effort involved in fieldwork and 

data processing and the data would provide a key input into the development of more 

accurate hydrodynamic models of the Humber estuary. 

A summary of the results is provided in chapter 7. Suggestions for future work are made 

which carry on from the techniques developed and evaluated in this study and which 

propose the utilisation of the vast archive of LOIS data now available. 
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2 Optical Theory 

The electromagnetic spectrum comprises a variety of radiation types which differ only in 

wavelength. Visible radiation covers that part of the spectrum lying between 390 nm 

(violet) and 740 nm (dark red). These wavelengths are fundamental in the study of water 

colour and water quality. The selective absorption and scattering by constituents within 

the water such as sediments, phytoplankton and dissolved organic compounds, and the 

interaction of light at the water's surface, determine its colour. 

2.1 Properties of the radiation field 
Light falling onto a parcel of water may be reflected from the surface, absorbed into the 

water and augmented by light upwelling through the surface from the water column below 

(fig. 2.1). Hence, the radiant field is complex and its form is dictated by the nature of the 

target. In order to quantify the angular structure of the radiant field, upwelling and 

downwelling light, radiance and irradiance, need to be defined. 

Sun O 

water's surface 

scattering 
" absorption 

Figure 2.1 : Simplified diagram to show the fate of a ray of light hitting the water's surface 

Radiant flux, <p{k) (Watts, W), is fundamental to optical theory and is the rate of flow of 

radiant energy with respect to time: 

where F is the radiant energy (Joules, J), 

/ is time (seconds), and 

A is the wavelength (nanometres, nm). 

Sensor 

reflection 
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Radiant intensity, /(A) (W sr '), provides a measure of the radiant flux per unit solid angle 

in a specified direction and is defined as: 

d ^ _ d ^ (2-2) 

da " dodt 
where Q is the solid angle subtended on a cone. 

Radiance, L[X) (W m*̂  sr '), considers radiant flux per unit solid angle per unit area of a 

plane at right angles to the direction of flow (Kirk, 1983). Radiance can thus be expressed 

as: 

rf>(A) dl{X) (2-3) 

^^^^-~dMa~~^ 
where A is the area perpendicular to the direction of photon propagation. 

Irradiance, E{X) (W m'̂ ), is the radiant flux per unit area impinging upon the selected 

surface within the radiative field. Irradiance can be expressed as: 

where S is the surface area upon which the radiant flux impinges. 

2.2 Properties of aquatic media 

The optical properties of aquatic media are classified into two main groups, inherent and 

apparent. Inherent optical properties do not alter according to any change in the radiant 

distribution whereas apparent properties are affected. 

2.2.1 Inherent optical properties 
Inherent optical properties are optical descriptors of the constituents within the medium 

and not of the ambient light field. The fundamental inherent optical properties of 

absorption and scattering within an aquatic medium are defined by the volume absorption 

coefficient and the volume scattering coefficient. These functions carry information about 

the material present within the body of water. 
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The volume absorption coefficient, a(A,z), is the fraction of the incident flux which is 

absorbed, divided by the thickness of the layer dz (Kirk, 1983) and is defined as: 

a(A,z) = - ^ l n [ l - A ] 
ciz 

where z is the depth relative to the water's surface and 

where A = — , 0̂  is the radiant flux absorbed and 0o the radiant flux incident in 
<t>o 

the form of a parallel beam (Kirk, 1983). 

The volume scattering coefficient, ^(A,z,cr), is a measure of the radiant flux which is 

scattered in a specific direction within the medium: 

^(A.z,cT) = - ^ l n [ l - f i ] ('-'^ 

where G is the specified direction of scattering, and 

where B = — and is the radiant flux scattered (Kirk, 1983). 
<t>0 

As )3(A,z,a) is a measure of scattering in one direction only, it is necessary to define a 

total volume scattering coefficient, b{X,z). This describes the proportion of incident 

intensity which is scattered in all directions from the medium and is thus defined as: 

(2-7) 

0 

b{X,z) is often considered as comprising two distinct coefficients, forward scattering, 

by (A,2), and backscattering, bi,{X,z). where: 

b{X,z) = by{X,z)~^b,{X,z) (2-8) 

The effects of absorption and scattering are additive: 

^(A) = a , + a, .+a,,+a, (2-9) 

M l ) = 05b^^b^,^b,, (2-10) 

where w is the water component, 

y is the yellow substance component, 

ch is the chlorophyll component, and 

s is the SPM component. 
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The coefficient 0.5 is necessary in equation 2-10 to convert the water scattering values to 

backscattering quantities and can be applied due to the symmetry of the volume scattering 

function for water molecules (Morel, 1974). 

The optical properties of a water body are determined by any material contained within it. 

If a water mass has a low mineral SPM content, the backscattered part of the signal is weak 

and ^t(A) « . In this case, the optical penetration depth is mainly determined by the 

absorption properties of water itself (Nanu & Robertson, 1993). Conversely, where the 

SPM concentration within an aquatic medium is high, backscattering dominates (Viollier 

& Sturm, 1984). 

2.2.2 Apparent optical properties 
Apparent optical properties are attributes of the medium in the ambient light field as well 

as of the material present within the water. The attenuation coefficient is a measure of 

these properties and evaluates the combined effect of absorption and scattering of the 

water. Attenuation is at a minimum in the blue and green and rises rapidly with 

wavelength due to the wavelength dependence of the absorption and scattering functions. 

The irradiance, or diffuse attenuation coefficient, K{X,z), defines the attenuation of light 

as a function of depth and can be used as a measure of water quality, to predict the depth of 

the euphotic zone (the uppermost part of the water where enough light is received for 

photosynthesis to take place) and ultimately the depth of maximum primary production 

(Austin & Petzold, 1981; Stumpf & Pennock, 1991). The diffuse attenuation coefficient is 

the logarithmic depth derivative of spectral irradiance found at a depth z : 

^(A,z) = - | l n [ £ ( A . z ) ] ^^-''^ 

The optical depth, C(A,z), of an aquatic medium is a dimensionless quantity and is useful 

in defining the attenuation coefficient of downwelling irradiance at a particular depth. 

Attenuation is thus defined as a percentage of the original subsurface irradiance remaining 

at the optical depth. Mathematically, the optical depth is expressed as the integration of 

the downwelling irradiance attenuation coefficient, /r^(A,z), over the subsurface depth z : 
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z (2-12) 

0 

If Kj{X,z) is the average value of the irradiance attenuation coefficient over the depth 

interval 0 to z then: 

C(A ,z)=/r ,2 (2-13) 

As the propagation of light within an aquatic medium is characterised by its inherent 

optical properties, so these determine the optical depth: 

1 (2-14) 
C(A,z) = ,0.5 

where: fi^ is the cosine of the refracted solar photons just below the surface and 

G is approximately 0.323 and varies as a function of ^IQ (Kirk, 1994). 

The depth from which 90% of irradiance originates is known as the penetration depth, Z^Q 

(Gordon & McCluney, 1975), and is defined as: 

1 (2-15) 

The ratio of upwelling irradiance at a point due to the stream of upwelling light, to the 

downwelling irradiance due to the downwelling light stream defines the volume 

reflectance, R{k,z), of a medium: 

where u and d denote upwelling and downwelling. 

Remote sensing instrumentation mounted on airborne or spacebome platforms measures 

radiance rather than irradiance, having a fixed field-of-view which does not extend to the 

full cosine response. The available reflectance quantity from remote sensors, /?^(A,z), is 

thus the ratio of upwelling radiance to downwelling irradiance: 

p f A . ^ - A M (2-17) 
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Differential attenuation of sunlight penetrating the water column changes the reflectance 

spectrum with depth. The reflectance of water is also variable in response to the properties 

of any absorbing and scattering materials within. This relationship approximates to: 

where /?(A,0 ) is the irradiance reflectance just below the water's surface, and 

Y is approximately 0.33 and depends on the light field (Gordon et ai, 1975). 

Reflectance is a function of any environmental influences acting upon the water mass 

(Curran & Novo, 1988). In coastal regions the terrigenous component is extremely 

important and is the determining influence on the water body's optical response to 

incoming light. In the coastal zone, SPM concentration and the properties of individual 

particles present are the dominant force dictating the shape of the spectral response (Novo 

et a/., 1989; Bhargava & Mariam, 1990; Ferrier, 1995). Thus, in turbid (coastal) waters 

the reflectance specuoim is dominated by the backscatter component: 

V ( A ) (2-19) 

(Stumpf&Pennock, 1989; 1991) 

where n^ is SPM concentration, 

a^ is the absorption coefficient for water, chlorophyll & dissolved pigments, 

Z>̂ / is the speciflc backscatter coefficient for SPM such that 6^/ = — , 

= b^/ + a / and a/ is the specific SPM absorption coefficient ( a / = — ), and 

Y is a constant of proportionality equal to 0.178 (Gordon et al., 1975) and 

includes components relating to surface refraction and reflection effects. 

The magnitude and spectral distribution of reflected light from surface waters changes as 

the concentration of suspended solids increases (Ritchie et al., 1983). Morel & Prieur 

(1977) found the relationship between SPM concentration and reflectance to be linear for a 

10 
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narrow range of concentrations. Where the range of concentrations are broader, this 

relationship becomes logarithmic (Munday & Alfoldi, 1979). 

In clear offshore waters SPM concentrations are zero and the maximum radiant intensity is 

located in the blue wavelengths. Within the coastal zone, where SPM concentrations are 

generally higher, the reflected solar radiation between 500 nm and 950 nm increases 

(Bartolucci et al., 1977) and the region of maximum reflection shifts from approximately 

550 nm at low concentrations to over 600 nm at higher concentrations (fig. 2.2; Ritchie et 

ai, 1976). Between 700 nm and 900 nm this increase is generally uniform (fig. 2.2) 

making it an ideal part of the spectrum to use in SPM concentration quantification. 
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Figure 2.2 : The relationship between surface spectral reflectance with varying SPM 

concentrations (Han & Rundquist, 1994) 
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Bhargava & Mariam (1990) found a high coefficient of correlation and low standard error 

in the response between 700 nm and 900 nm for a variety of particulates studied in 

suspension. In addition they found that, between 550 nm and 750 nm, particulates with an 

high organic content exhibited a lower reflectance than those with a lower organic content. 

Remote sensing, therefore, needs to consider the properties of the individual suspended 

particles as well as the bulk properties of the sediment (Bhargava & Mariam, 1991). 

2.3 The air-water interface 
The signal returned upward by a water mass is the value which, after propagation up 

through the surface, becomes the inherent radiance of that medium, expressed as the 

water-leaving radiance. As radiation enters the water it is refracted, according to SnelPs 

law (e.g. Bukata et ai, 1995). Water-leaving radiance is accordingly defined as: 

(2-20) 
M A . o - ) = ^ . ( ^ . o - ) 

(Mueller & Austin, 1995) 

where 0* denotes a point just above the water's surface and 0" a point just below, 

p(A,^) is the Fresnel reflectance which is assumed to be 0.021 over the visible 

spectrum (Gordon et al, 1988), and 

n^iXf is the refractive index of sea water according to: 

6.610 
A-137.192 

(Mueller & Austin, 1992) 

1.325 + 

The roughness of the air-water boundary influences L^{k,0^^. In addition, any sunglint on 

the water's surface will increase L„(A,0^) , particularly at low solar zenith angles. This 

latter relationship is particularly strong where the surface waves are orthogonal to the look 

direction of the sensor. It is therefore necessary to normalise / ^ ( A , © * ) to a value that 

would have been obtained under theoretically ideal conditions, i.e. at a solar zenith angle 

of 0°, located at a mean distance between the earth and sun and minus any atmospheric 

effects contaminating the signal. Normalised water-leaving radiance, Z ^ ^ ( A ) , is defined 

as: 

12 
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( l -p(0))( l -p)F„(A)/?(A.O-) (2-21) 

"^-^^^^ ^,(ArQ(l-r/?(A.O-)) 

Gordon et al. (1988) 

where p is the Fresnel reflectance albedo of the sea surface for normal incidence and is 

averaged at 0 .043 (Gordon et ai, 1988), 

/ ^ ( A ) is the mean extraterrestrial solar irradiance derived from tables (Gregg et 

aL, 1993), 

E [X] 
Q = ^ towards the zenith, and 

r is the water-air reflectance for totally diffuse irradiance which is assumed to be 

0.48 (Gordon et aL, 1988). 

To provide a comparison between reflectance measured from the water*s surface and 

image derived values it was necessary to redefine equation 2-21 to enable the propagation 

of /?£^(A,0") quantities up through the water's surface to calculate / ? ^ ( A , 0 ^ ) . Equation 2-

17 can be expressed as: 

(2-22) 

Mueller & AusUn (1995) specify that: 

Using equations 2-22 and 2-23 redefines equation 2-21 as: 

(2-24) 

From Mueller & Austin (1995): 

Incorporating equations 2-25 and 2-22 into equation 2-24 removes all remaining radiance 

parameters: 

13 
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Underwater, in Q equation 2 - 2 1 is often replaced by n. Q is only weakly dependent on 

wavelength (Morel & Gentilli, 1 9 9 1 ) and would be n for a Lambertian reflector (see 

appendix B for proof). As most surfaces are not pure Lambertian reflectors, and studies by 

Bricaud & Morel ( 1 9 8 7 ) have shown that the value of Q may actually be closer to 4 .5 , 

replacing Q by 7C is a potential source for error i f the sea surface is not completely flat. 

However, in the absence of any field measurements for the value of 2 , it was assumed 

that that Q equates to K (appendix B) as is commonly found in the literature. Substituting 

all known quantities into equation 2 - 2 6 and assuming that Q equates to n defines: 

^ I - 2 . 1 6 . / ? , ( A , 0 - ) ^ 

Equation 2 -27 thus allows the propagation of / ? ^ ( A , 0 " ) , which is derived from in-water 

optical measurements, up through the water's surface to quantify y?^ (A ,0^ ) . This is the 

available reflectance quantity from remote sensors and can thus be used to compare and 

validate coincident digital images. 

2.4 Classification of water types 

The classification of water types yields information about the nature and content of the 

aquatic medium. Morel & Prieur ( 1 9 7 7 ) categorised waters by their optical properties and 

identified two broad water types, case / and case //. Case / are clear, open oceanic waters 

and are those dominated by light absorption due to the presence of phytoplankton and their 

by-products. Case / / waters refer to near-shore and estuarine waters whose optical 

properties are determined by resuspended inorganic and / or organic sediments, terrigenous 

particles and / or yellow substance. 

Jerlov ( 1 9 7 6 ) identified a more empirical approach to water type classification. Jerlov's 

( 1 9 7 6 ) theory is based on the spectral transmittance and Kj{X) of a water body with 

respect to a reference wavelength of 4 7 5 nm. From earlier work using spectral 

transmittance to categorise two distinct water types ( I and 11) and using the ^ ^ ( A ) 

14 
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relationships. Jerlov (1976) classified three distinct and two intermediary water types ( I , 

l A , IB , n and I I I ) . He went on to further categorise five types of coastal waters (types 1, 

3, 5, 7 and 9) derived from observations in the type HI waters of f the coast of Scandinavia 

and western North America. A section of his results is shown in table 2.1 and figure 2.3 

and are used later to categorise the water types under investigation for this study (section 

5.1). 

Water type 
400 450 

W 2 

475 
ivelength (n 

500 
m) 

550 675 700 
I 0.028 0.019 0.018 0.027 0.063 0.420 0.560 

l A 0.038 0.026 0.025 0.032 0.067 0.430 0.570 
IB 0.051 0.036 0.033 0.042 0.072 0.435 0.580 
I I 0.096 0.068 0.062 0.070 0.089 0.465 0.610 

I I I 0.185 0.135 0.116 0.115 0.120 0.520 0.660 
1 0.510 0.250 0.170 0.140 0.120 0.510 0.650 
3 0.780 0.390 0.290 0.220 0.190 0.560 0.710 
5 1.100 0.560 0.430 0.360 0.300 0.650 0.800 
7 1.600 0.890 0.710 0.580 0.460 0.780 0.920 
9 2.400 1.600 1.230 0.990 0.630 0.920 0.110 
Table 2.1 : Ar^(A) (m ) for different water masses (adapted from Jerlov, 1976) 

o.se 

aoi 2 3 i 5 6 7 8 9 to II 01? 001 2 3 A 5 6 7 8 9 10 It 0)2 
Kj(475) 

Figure 2.3 : Graphical representation of Kj{X) (m"') and its relation to Kj{415) (m *) for 

different water masses (Jerlov, 1976) 
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3 Instrumentation and Fieldwork 

A fundamental problem when working in the marine environment is that, from a sea-going 

vessel, one can obtain only a single point measurement at the time of an overflight. As 

water is constantly moving, only one sea-truth measurement may be directly compared to 

the image. In terms of a sampling strategy for validation purposes this is not very 

satisfactory, although repeat overflights of the ship help to improve this somewhat. This 

problem can be partially overcome through the use of fixed moorings which continuously 

record a number of relevant parameters and allow the flight programmes to be more 

flexible. 

3.1 Study area 

The study area was contained within the LOIS RACS(C) coastal sampling grid which 

comprised a set of sites routinely revisited during the LOIS cruises (fig. 3.1). This 

included a section of the east coast of England extending from Great Yarmouth to 

Berwick-upon-Tweed (fig. 3.1). This area is highly dynamic and susceptible to change, 

particularly in response to any rise in sea level. 

3.1.1 The Humber Estuary 

The Humber Estuary (fig. 3.2) is one of the UK's largest and most economically influential 

estuaries with a catchment area spanning one fifth of the surface area of England. Its ports 

handle 15,000 ship movements and 500,000 passengers every year. The Estuary has to be 

constantly dredged to maintain the shipping lanes that are so important to the economy of 

the region. Sediment fluxes into and out of the Humber Estuary, therefore, have great 

economic as well as environmental influence and importance. The monitoring and 

understanding of the sediment dynamics are thus very important for an effective estuarine 

and coastal zone management strategy. 

Along the Holdemess coast, erosion is prevalent with an average land loss of 1.75 m p.a. 

(Hardisty, 1996) over a stretch of coastline extending 60 km from Spum Head at the mouth 

of the Humber Estuary to Flamborough Head in the north (fig. 3.1). The Holdemess 

coastline's soft boulder clay is constantly attacked by the sea augmented by storms. The 
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eroded silts and clays which dominate the coastline are carried offshore and any sand is 

moved alongshore due to wave action and strong tidal currents. Approximately 1,400,000 

tonnes p,a. are contributed to the North Sea from cl i f f erosion along the Holdemess coast 

(Pethick, 1988). The offshore silts and clays are carried southerly forming part of the 

Humber sediment plume and feeding the Humber Estuary and the Wash ftirther to the 

south. 

Tweed Estuary 

Ramboraugh Head 

Holdemess coast 
• 

Spum Head 

Humber Estuary The Wash 

A Humber Grid Stations 
• Humber-Wash Grid Stations 
• Humber-Tweed Grid Stations R. Vara 

100 200 Kilometres 

Figure 3.1: The LOIS RACS(C) coastal sampling grid stations 

The Humber is a wide (15 km at its widest point) well mixed macrotidal estuary with a 

tidal length of 120 km and a tidal range in excess of 4 m (Pethick, 1988). Its large tidal 

range brings approximately 1.2 km^ of water into the estuary during the flood tide 

(Hardisty & Rouse, 1996). This cuts the deep channels at Immingham and Kingston-upon-

Hull (fig. 3.2) upon which the majority of the region's trade is based. Due to the estuary's 

macrotidal nature, the tidal wave is deformed as it propagates upstream and the currents 

experienced during the flood are much greater than those experienced during the ebb 
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(Dyer, 1986). As a consequence, SPM is carried into the estuary on the flood, but is not 

removed in the same quantities on the ebb. Approximately 63,400 tonnes of sediment are 

deposited in the Humber every year. Over the past 6,000 years the estuary has 

accumulated enormous quantities of sands and muds and a deposit from 2 - 20 m thick has 

accumulated (Pethick, 1988). This has caused an overall smoothing of the estuary bed and 

banks into a trumpet shaped channel (Pethick, 1988). 

Ramborough Head 

Kingston-upon-HuIl 

R. Ouse Spum Bight 

R. Trent 

Spum Head 

The Binks 

10 20 30 Kilometres 

Figure 3.2 : The Humber Estuary 

Approximately 200,000 tonnes p.a. of sediment are carried into the Humber by river flow 

(Pethick, 1988). The Rivers Ouse and Trent which flow into the Humber Estuary drain 

some 25.000 km^ of central and eastern England (Amett, 1991). The sediment content of 

the Humber itself, therefore, reflects the drainage across a variety of geological and 

superficial deposits. The tidal asymmetry of the estuary causes a net landward movement 

of sediment entering the estuary from the sea; the fluvial-derived particulates tend to be 

transported offshore due to the fresher water floating on the surface (National Rivers 

Authority, 1993). Most of the sediments found in the Humber, however, are not riverine-

derived, rather they were transported from the North Sea through tidal power. The 

riverine-derived sediments are mainly found in the upper part of the Ouse, only 20 - 30 km 
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from its tidal limit at Nabum Weir (Uncles, et ai.y 1997a). Below this the sediments are 

mostly derived from the sea. The ratio of Holdemess cliff-derived sediments to those 

fluvial sediments derived from the Humber Estuary and further south in the Wash is of the 

order of 7:1 (McCave, 1987). 

Vast quantities of material have been transported down the Holdemess coast and into the 

breaker zone of the Humber Estuary. This has been the sediment source for the formation 

of Spurn Head, a spit which lies across the mouth of the estuary (fig. 3.2). A spit is formed 

by an accumulation of material until a point is reached where its physical presence across 

the estuary mouth causes such an increase in velocities that the currents erode as much 

material as is deposited (Dyer, 1986). Thus, they are highly mobile landforms and Spurn 

Head migrates inland as the Holdemess coastline erodes. The channel through which the 

River Humber follows was carved during the last glacial period but the shape of the outer 

estuary seen today (i.e. from Kingston-upon-Hull to the sea) is largely controlled by the 

infi l l of Spurn Bight (fig. 3.2). This inf i l l lies below high tide and continues seaward of 

Spurn Head to the Binks (fig. 3.2). The Binks form the northern shoulder of the glacial 

channel and project 5 km into the North Sea. The whole feature forms a 15 km long, 5 km 

wide platform and is an integral part of the estuary. 

3.1.2 The Tweed Estuary 

Located in the far northern section of the LOIS RACS(C) study area lies the Tweed 

Estuary (figs. 3.1 & 3.3). The Tweed is a shallow estuary and is particularly important for 

trout and salmon. It is a rapidly flushed, highly stratified estuary in which frontal systems 

are ubiquitous (Uncles & Stephens, 1996; Uncles et a/., 1997b). The Tweed has a tidal 

limit about 13 km from the estuary mouth at Homcliffe Island. Tides at Berwick-upon-

Tweed are semidiurnal with mean springs of 4.1 m and mean neaps of 2.5 m. There is 

strong variability in water velocity and salt intrusion between springs and neaps (Uncles & 

Stephens, 1996). The estuary drains the Rivers Tweed and Whiteadder; the long term 

monthly-averaged inflows to the lower reaches of the Tweed in July approach 30 m"* s * 

and rise to 140 m** s * in January (Uncles & Stephens, 1997). The higher inflows 

associated with the winter months mean that higher SPM concentrations than in the 

summer months are experienced during this time (Uncles & Stephens, 1997). Even during 

the winter months, however, the concentrations of SPM in the Tweed are low. 
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R. Tweed 

Berwick 
upon-Tweed 

Homclilfe 

Holy Island 

12 Kilometres 

Figure 3.3 : The Tweed Estuary 

In such an highly stratified system, the forces determining estuarine circulation can be 

assessed by looking at surface salinity and temperature distributions. These parameters 

delineate frontal phenomena and plumes, and by studying a time series of data, covering 

particular sections of the tidal cycle, it would be possible to gain a greater understanding of 

the forces at work in the estuary. 

3.2 Airborne instrumentation 

The remote sensing platform used in this study was a Piper Navajo Chieftain aircraft 

maintained by the NERC Airborne Remote Sensing Facility (ARSF). On board was an 

ITRES Compact Airborne Spectrographic Imager (CASI), alongside a Daedalus AADS-

1268 Airborne Thematic Mapper (ATM) and a Wild RC-10 metric survey camera (not 

used in this study). A downwelling Incident Light Sensor (ILS) was installed on the roof 

of the aircraft at the beginning of the LOIS campaign. Altitude and position of the aircraft 

was obtained from a differential Global Positioning System (GPS). The GPS information 

was combined with output from a laser ring gyro Attitude and Heading Reference System 

(AHRS), also housed onboard, to accurately detail the aircraft* s location in three-

dimensional space. The output from the equipment onboard the NERC aircraft was 
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combined through custom designed hardware known as the Integrated Data System (IDS) 

(fig- 3.4). 
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Figure 3.4 : The Integrated Data System onboard the NERC aircraft (Wilson, 1995) 

3.2.1 Compact Airborne Spectrographic Imager 

The CASI is a programmable high spectral and spatial resolution imaging spectrometer 

with a wide dynamic range and low noise on high quality data (Anger et al., 1990). The 

CASI is a pushbroom type imager operating through the use of a two-dimensional CCD 

array (fig. 3.5) coated with lumogen to improve blue response. This improves the 

sensitivity for the identification of subtle variations in water-leaving radiance arising from 

spatial variations in SPM, plant pigments and dissolved organic matter (also known as 

yellow substance or gelbstoff). It has a field-of-view of 42° thereby covering a swathwidth 

of 2.303 km at an altitude of 3.048 km. The along-track resolution is dependent on the 

scan rate and aircraft speed. 

The CASI has the analytical potential of a spectrometer with the ability to record up to 288 

spectral channels in the visible and near-infrared. Its spectral range lies between 400 nm 

and 915 nm with a nominal bandwidth of 1.8 nm, spectrally separated by a reflectance 

grating. The CASI has very high data acquisition rates (typically a terabyte per hour) 

thereby limiting the amount of data that can be recorded at any one time and necessitating 
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subsampling of the data through alteration of the mode of operation. This can be done in 

one of three ways: 

• Spatial (or imaging) mode (fig. 3.6a), 

• Spectral (or multispectral) mode (fig. 3.6b), or 

• Full frame (hyperspectral) mode. 

S12SpatiilPixeU 

NIR 913iun 

CCD 
Detector' 

(Image Frunc) 

BLUE 400nm 

SI2 Spatial PUcU^ 

Spectrograph 
optics 

* Scan-line 

Flight Pilh 

Figure 3.5 : The CASI imaging concept (Wilson, 1995) 

This study utilises the CASI in its spatial mode of operation (fig. 3.6a). In spatial mode the 

full amount of information from the scene line (512 pixels plus 66 columns of information 

within the CCD's hidden zone, fig. 3.6a) is collected. This information is, however, 

restricted in the spectral dimension through the selection of a limited number of 

wavelength bands (up to eighteen). Fourteen wavelength ranges were chosen here to 

match the specific scientific interests of water quality and atmospheric parameters and to 

include those ranges covered by NASA's Sea Wide Field-of-view Spectrometer 

(SeaWiFS) (table 3.1). SeaWiFS is a satellite-based sensor, housed onboard ORBIMAGE-

2, which became operational in 1997. It was launched to provide vital oceanographic 

information the likes of which have not been seen since the Coastal Zone Color Scanner 

(CZCS) ceased operation in 1986. The launch of ORBIMAGE-2 was originally planned 

for a date much earlier than September 1997 and it was hoped that the data generated 
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during this study would be analysed in concert with SeaWiFS images. The delayed launch 

of the satellite prevented this. 
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Figure 3.6a : CASI spatial mode configuration (Wilson, 1995) 
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Figure 3.6b : CASI spectral mode configuration (Wilson, 1995) 
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CASIBand Wavelength SeaWiFS Band 
Number Min. (nm) Max. (nm) Centre (nm) & Wavelengths 

1 408.08 422.15 412.13 1 (402-422 nm) 
2 438.00 453.87 443.51 2 (433 - 453 nm) 
3 483.91 490.02 490.02 3 (480 - 500 nm) 
4 503.38 509.68 501.68 4 (500 - 520 nm) 
5 547.74 563.75 554.31 5 (545 -565 nm) 
6 611.89 631.55 620.37 
7 661.99 678.13 668.64 6 (660 - 680 nm) 
8 679.92 687.10 682.06 
9 706.86 717.66 710.75 
10 748.27 755.49 750.28 7 
11 757.29 784.37 769.21 (745 - 785 nm) 
12 816.94 831.43 822.55 
13 847.75 884.03 864.40 8 (845 - 885 nm) 
14 887.71 902.27 893.63 

Table 3.1 : CASI handset and its relation to SeaWiFS 

3.2.2 Airborne Thematic Mapper 

The A T M is a twelve channel multi-spectral scanner. Its wavelength range spans the 

visible to the thermal-infrared and includes channels that closely match those of the 

Landsat Thematic Mapper (TM), a satellite-based sensor mainly used in terrestrial studies 

(table 3.2). The visible and near-infrared light is split by a prism before being imaged by 

an array of silicon detectors (fig. 3.7). Middle- and thermal- infrared light is split, imaged 

and recorded on single, nitrogen cooled detector elements. The inclusion of the thermal-

infrared channels complements the CASI whose sensitivity does not reach as far into the 

electromagnetic specuoim. Between the two sensors, a clear picture of the content and 

nature of the target waters can be built up by using image information spanning from 

visible to thermal-infrared wavelengths. 
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A T M Band Wavelength Landsat T M Band 
Number Min, (nm) Max. (nm) & Wavelengths 

1 424 448 
2 469 518 1 (450-520 nm) 
3 522 601 2 (520-600 nm) 
4 594 635 
5 627 694 3 (630-690 nm) 
6 691 761 
7 754 924 4 (760-900 nm) 
8 897 1027 
9 1600 1785 5 (1550- 1750 nm) 
10 2097 2391 7 (2080 - 2350 nm) 
11 8400 11500 6 
12 8400 11500 (10400- 12500 nm) 

Table 3.2 : A T M handset and its relation to Landsat T M 
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Figure 3.7 Optics and detector layout within the A T M (Wilson, 1995) 

3.3 Sea-based instrumentation 

Sea-based instrumentation was deployed from a series of cruises executed over two years 

(1994 - 1995) from the Sea Vigil, maintained by the National Rivers Authority (now the 

Environment Agency), and the Royal Research Ship Challenger. The inner and outer 
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estuary work in the Humber was executed from the former and the offshore and coastal 

work from the Challenger. 

3.3.1 PML-Satlantic proflling system 

The PML-Satlantic profiling system consists of a seven-band radiance and a seven-band 

irradiance Satlantic sensor head (both set to conform to SeaWiFS specification and 

covering the same wavelengths, except in the seventh channels where radiance is set to 

683 nm and irradiance 700 nm), a logger and a battery pack mounted on a T-shaped frame 

painted matte black to reduce interference from the upwelling light field (fig. 3.8). When 

profiling, the equipment was suspended on a taut wire with a weight suspended a distance 

of 3 - 4 m from the bottom of the frame. The weight kept the profiler vertical and was held 

at a distance sufficient to minimise interference from the weight itself on the upwelling 

radiance field. The battery pack was manually connected to the logger to commence 

operation and data were acquired and stored internally. lagging stopped when the battery 

pack was disconnected. Data were subsequently downloaded from the logger onto a PC. 
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Figure 3.8 : The PML-Satlantic profiling system 
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SeaWiFS protocols state that optical profiles should be acquired from the stem of the ship 

facing into the sun and from a point as far away from the ship as possible (Mueller & 

Austin, 1995). This ensures that the amount of shading by the ship itself is kept to a 

minimum and within acceptable limits. The PML-Satlantic was deployed from a 

telescopic j ib crane into a position facing into the sun and located as far away from the ship 

as possible. 

3.3.2 Core data collection and underway instrumentation 

The data acquired by the underway instrumentation operational during the Sea Vigil and 

Challenger cruises was calibrated through comparison with discrete samples collected 

throughout the monitoring period. The resulting data included information on temperature, 

salinity, dissolved oxygen, SPM, chlorophyll, phaeopigments and water depth. 

Navigational information, acquired through differential GPS, was used to geolocate each 

sampled point. 

The following discrete sample data were obtained as part of the core LOIS data collection 

campaign: 

• Chlorophyll by filtration through 0.2^1 nucleopore filters and then extraction in 90% 

acetone. The total chlorophyll was assessed by fluorescence measurements using a 

Turner fluorometer. 

• Total suspended particulate matter by filtration through pre-ashed and pre-weighed OFF 

(Glass fibre Filter F) filters (0.7^). 

The underway instrumentation onboard the Sea Vigil was controlled by a Qubit system 

which logs data from a variety of instrumentation including navigational information. 

Those used in this study operated on a flow through pumped system which obtained water 

at a set depth. The instrumentation included: 

• WS Oceans CTD, 

• Omnidatas Hydrolab, 

• Turner Electronics Fluorometer, and 

• Partech 7000i Transmissometer (40 mm cell). 
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The underway instrumentation operational during the Challenger cruises included: 

• EA-500 echo sounder, 

• Decca Mark 53G differential GPS, and 

• Fluorometer, transmissometer and thermosalinigraph operated on a flow through 

pumped system which obtained water at a set depth. 

3.3.3 Moored instrumentation 

It is a great advantage to have instrumentation permanently moored and recording at 

strategic locations to ensure that, should particularly favourable conditions prevail for 

flying, any image data acquired could be compared to sea-based information. The 

presence of permanently moored instrumentation eliminates some of the time-consuming 

and costly efforts involved with field work. To this end, a flivc curtain consisting of five 

permanent moorings monitoring the dynamics of the estuary were put in place across the 

mouth of the Humber Estuary (fig. 3.9) by the University of Hull (Hardisty, et a/., 1995). 
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Figure 3.9 : The flux curtain moorings and their relation to the transaxial flightlines 

Development and installation of the flux curtain took place in 1994 and it became fully 

operational towards the end of that year. For the 1995 field campaign the Bull Light Float 

mooring (fig. 3.9, mooring c) generated data sampled from the top 0.2 m of the water for 
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SPM, tidal velocity, temperature and salinity at houriy intervals. The sampling rate was 

increased to 15 minute intervals during some of the overflights. The data were telemetered 

to the University of Hull where it were calibrated and archived. 

3.4 Fieldwork campaign 

The objective of the field campaign throughout 1994 and 1995 was to acquire coincident 

airborne and sea-truth data for comparison and for algorithm development and validation. 

There were several technical problems encountered during the 1994 campaign concerning 

the airborne data system. These included the delay of the introduction of an interim 

positioning system and the postponement of the fully Integrated Data System (IDS), both 

of which were designed to provide accurate position and attitude information (Mockridge 

et al., 1997). As a result, the images that were acquired in 1994 cannot be accurately 

geometrically corrected (neither for position nor attitude). There were also a few problems 

during 1994 that resulted in the CASI being sent back to ITRES in Canada due to poor 

performance. This coincided with a major data gathering campaign. As a result of the 

technical difficulties, and due to the scarcity of those images coincident with sea-based 

monitoring, this study focuses on data acquired during the 1995 campaign which was more 

successful in terms of acquisition of image data of an acceptable quality and quantity (table 

3.3). 

3.4.1 Sea Vigil cruises 

Monthly campaigns in the Humber Estuary were planned throughout the summer of 1994 

and 1995 with simultaneous acquisition of airborne and sea-based data. These were 

executed from the Sea Vigil (cruises SV23 & SV24) as part of the core LOIS fieldwork 

programme in the Humber Estuary (table 3.3). The vessel track followed a predetermined 

course extending out from the mouth of the Humber into the North Sea (fig. 3.10). 

The flight campaign was organised into a series of discrete blocks across and down the 

estuary. These were predetermined and the Sea Vigil's track designed to encompass the 

flightpaths (fig. 3.10). The cruise track spanned the heavily SPM laden waters inside the 

estuary and extended into the clearer waters of the North Sea. Profiling stations were 

identified along the cruise track (fig. 3.10). Vertical profile stations VP (VPl - 10) and 
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MC (MCI - 6) stations were devised to span the outer estuary waters and to coincide with 

the transaxial flightpaths across the estuary respectively. The PML-Satlantic was deployed 

at the profiling stations V P l - 10, and occasionally M C I - 6 when communication by air-

band radio signalled that the aircraft was overhead the vessel. 

Cruise Date Sampling Sea-based data acquired Coincident 
Grid Underway 

data 
PRR 

profiles 
Satlantic 
profiles 

UOR Discrete 
samples 

overflights 
of ship 

1994 
SV7 26 April H • * 

27 April H * * « 

28 April H * • 

SV8 11 May H » * * * 
SV9 18 May H * * * * 

19 May H * * * * 
SVIO 28 June H * * * * 1 

29 June H * * 
30 June H * * * 

S V I I 26 July H * * * * 
27 July H * * 
28 July H * * 

SV12 09 August H • * • 

10 August H • * 
1995 

CHI 18a 06 April H-T * * * * 4 
10 April H-T * * * * 1 
11 April H-W * * * 
12 April H-W • * * • 4 

CHI 18b 21 April H-T * * * * 3 
23 April H-T • • * 2 

CHI 19c 07 July H • * * 
SV23 19 July H • * * * 
SV24 22 August H • • * 2 

23 August H * * * * 
Table 3.3 : Challenger & Sea Vigil cruise and airborne image data obtained as part of the 

1994 and 1995 fieldwork campaigns. The sampling grid abbreviations refer to those 

depicted in figure 3.1 where H is the Humber grid, H-T the Humber-Tweed grid and H-W 

the Humber-Wash grid. For completeness, data acquired using a Profiling Reflectance 

Radiometer (PRR) and an Undulating Oceanographic Recorder (UOR) are also detailed. 

The data acquired using these instruments were not used for further study and their use and 

application are not reported in this thesis. 
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10 15 Wlometres 

Figure 3.10 : The Sea Vigil cruise track. The VP vertical profiling stations span the outer 

estuary cruise track and the MC vertical profiling stations coincide with the transaxial 

flightpaths across the inner estuary. 

3.4.2 Challenger cruises 

Field data were acquired from three Challenger cruises during 1995, CHI 18a, CHI 18b 

and CHI 19c (table 3.3). The ship's track encompassed the core sampling stations on the 

Humber-Wash and Humber-Tweed grids (fig. 3.1). Airborne data were acquired over the 

Challenger to enable direct comparison with measurements taken from the vessel. 

Communication between the ship and plane was maintained by the use of air-band radio to 

ascertain the exact location of the ship. 

A predetermined protocol for flightline delimitation from the air was followed throughout 

the Challenger cruises (CHI 18a, CHI 18b & CHI 19a). This consisted of a preliminary run 

over the ship followed by lines to the east and to the west thereby building up a grid of 

flightpaths around the ship and finishing with a final run over the vessel. In the presence 

of sunglint, the flightlines were reoriented to minimise these effects but to still pass over 

the ship. Whilst this was being executed, the ship remained stationary in most cases and 

PML-Satlantic optical profiles were acquired. 
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3.4.3 Time series 

As well as for the acquisition of comparative sea- and air-based data, the objective behind 

the overflights of the Humber and Tweed Estuaries during 1995 was the acquisition of 

sequential data time series. This type of exercise enables the synoptic study of a region*s 

dynamics over certain sections of the tidal cycle. A number of imaged time series were 

acquired during 1995 for significant fractions of the tide (table 3.4). Time series were 

acquired over both the Humber and the Tweed Estuaries. In the Humber Estuary, 

transaxial flightline 1 was devised and repeat flights undertaken to target the cross-section 

of the estuary mouth monitored by the flux curtain (fig. 3.9). 

Date Time in hours relative to 
low water (LW) 

Tidal state Number of 
images 

Humber 29 June LW-0.23h toLW + O.lh springs 3 Humber 

10 August L W + 1.38h t o L W + 3.33h 1 day before springs 9 

Humber 

11 August LW-0.15h to LW + 0.08h springs 2 

Humber 

15 August LW-3.33h t oLW-2 .17h 4 days after springs 6 

Humber 

21 August LW + 3.27h t o L W + 4 . 7 h neaps 7 

Tweed 4 May LW-0.125h t o L W + 4.1h 5 days after springs 19 

Table 3.4 : Time series of CASI and A T M image data acquired in 1995 coincident with 

sea-based measurements obtained from the flux curtain in the Humber Estuary and from a 

survey vessel in the Tweed Estuary 
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4 Data Calibration and Processing 

There are a number of image calibration and correction steps that need to be followed in 

order to accurately relate image radiance values to sea-surface measurements with sub-

pixel accuracy. These include radiometric calibration, thermal calibration (for thermal-

infrared channels), atmospheric correction and geometric correction (figs. 4.1 & 4.2). 

Providing each stage can be attained with sufficient accuracy, the development of 

algorithms to quantify in-water parameters can be achieved. Ideally, an algorithm should 

be portable, both in time and space, and not require in-situ measurements for its operative 

use. Here, measurements taken from the sea surface are used to develop algorithms. 

Examples of CASI image calibration and processing form the focus for this chapter. 

Procedures relating to the A T M are also addressed but are more fully exemplified in 

Appendix F : Uncles et al., 1999. 

Raw CASI image data 

I 
Radiometric calibration 

(section 4.2.1.1) 

Atmospheric correction 

(section 4.2.2) 

SPM algorithm development 

(section 4.2.3.1) 

SPM algorithm application 

Geometric correction 

(section 4.2.4) 

Raw ATM image data 

'I 
Radiometric calibration 

(section 4.2.1.2) 

I 
Thermal calibration 

(section 4.2.1.2.1) 

Temperature & salinity 
algorithm development 

(section 4.2.3.2) 

Temperature & salinity 
algorithm application 

I 
Geometric correction 

(section 4.2.4) 

Figure 4.1 : CASI image calibration and Figure 4.2 : A T M image calibration and 

correction procedures correction procedures 
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To verify the image calibration stages, optical profile data acquired coincident with the 

images were used. 

4.1 In-situ optical proflles 

An in-water optical profile sensor detects the upwelling light field with an exponentially 

decreasing magnitude with depth. Austin & Petzold (1981) executed a study over waters 

with low SPM concentrations which involved measurements taken from an in-water 

optical sensor and from the spacebome sensor the Coastal Zone Color Scanner (CZCS). 

They found that, at 520 nm, 87% of the upwelling radiance signal at the surface was 

returned from the first 20 m or less and 50% of the signal originated from the upper 7 m of 

the water column. Therefore, the properties most relevant from the remotely sensed signal 

are contained within the upper surface waters. 

In order to quantify SPM using remote sensing techniques, the characteristics of the water 

are specified by direct measurements of the optical properties and their variation with 

depth. Here, this was achieved through the acquisition of twenty PML-Satlantic optical 

depth profiles (see section 3.3.1) which spanned the waters of the North Sea and the 

Humber Estuary. 

The raw data files from the PML-Satlantic profiler were downloaded from the internal 

logger onto a PC immediately following profiling. Each channel was calibrated according 

to a set of calibration coefficients as supplied by the manufacturers, Satlantic Inc. (Nova 

Scotia, Canada). This yielded calibrated upwelling radiance (L„) values at 412 nm, 443 

nm, 490 nm, 510 nm, 555 nm, 670 nm and 683 nm, and calibrated downwelling irradiance 

(E^) values at 412 nm, 443 nm, 490 nm, 510 nm, 555 nm, 670 nm and 700 nm. 

The data files contain information as a time series from the moment the unit is switched 

on. Using detailed logs, consisting of accurately monitored and recorded times, it was 

possible to time stamp the data for the entire profile. Depth was also recorded during 

profiling via a pressure sensor on the rig. 
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Errors wi l l be incurred at many stages in data acquisition and processing. The PML-

Satlantic was rigorously calibrated on the bench both by Satlantic Inc. (Nova Scotia) and 

also at PML. However it must be recognised that would still be is at least a 1% uncertainty 

in the calibration of the instrument. Measurements are also affected by the instantaneous 

depth of the underwater sensor, its altitude, the location of any ship shadow, the refractive 

effects of waves and swell (Austin & Petzold, 1981) and self-shading by the instrument 

itself (Gordon & Ding, 1992). Aas & Korsb0 (1997) estimated that under normal 

conditions in coastal areas, the error in radiance readings close to the surface is seldom less 

than 20% due to the influence of waves and the ship's movement. Such effects were kept 

to a minimum in this study by profiling at a distance from the ship to minimise ship 

shadow, by attaching a weight to the bottom of the rig to keep it near-vertical and by only 

acquiring data under favourable weather conditions (i.e. under clear or totally cloud 

covered skies and calm sea conditions). The PML-Satlantic and the frame upon which the 

instrument is mounted was constructed with the SeaWiFS protocols (Mueller & Austin, 

1995) in mind. Thus the effects of self-shading on the measurements is kept to a minimum 

although it should be recognised that the error due to self-shading may be as much as 5% 

in more turbid waters (Gordon & Ding, 1992). 

The profiles were examined in log space where the relationship of radiance and irradiance 

with depth is a linear one above the maximum depth of light penetration (Mueller & 

Austin, 1995). Linear regression analyses were performed on the log plots of the radiance 

and irradiance profiles. The resulting regression equations derived the and values 

for that profile at a point just below the air-water interface, L „ ( A , 0 " ) and £'^(A ,0") . 

It was necessary to ascertain whether the profile's upcast or the downcast alone or an 

average of the two were the most relevant for analysis. In some cases the upcast and 

downcast differed significantly. These differences may have been due to changes in the 

water structure during profiling or due to external environmental effects such as changing 

lighting conditions (e.g. scattered cloud). In the absence of any evidence for making a 

decision regarding which section of the profile is the most relevant for use. an average of 

the up and downcasts was sought for each datasei. Where the up and downcast differed 
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significantly, the upcast alone was chosen or that section of the data most relevant for 

comparison with a coincident flightline. 

In an attempt to ascertain the most reliable methodology to adopt in linear regression 

analysis to achieve subsurface downwelling radiance and upwelling irradiance. a profile 

was selected as the test subject. One acquired in clear case / waters was chosen as these 

conditions support relatively deep optical penetration depths for all wavelengths and so the 

test dataset provides a clear visualisation of the nature and distribution of the light field 

with depth. Those profiles acquired in case / / waters reflected similar trends seen in the 

test daiaset but were not as clearly apparent on visual scrutiny due to the shallower 

maximum penetration depth of the light field. The 510 nm upwelling radiance channel 

was selected as an example of a characteristic dataset (fig. 4.3) and regression analyses on 

its log derivative, to achieve L„(5I0,0"), were performed. 

-2.5 

ln(Lu510) (W cm'̂  sr") 

-1.5 -1 -0.5 

Figure 4.3 : Relationship between log calibrated upwelling radiance at 510 nm and depth 

Two linear regression analyses were performed on the test dataset. The preliminary 

situation used the entire set of readings, the second scenario used those readings deemed 

entirely free from ship shading. The proportion of the 510 nm upwelling radiance profile 

36 



Chapter 4 : Data Calibration and Processing 

free from ship shading was identified as that lying at a depth of 2.5 m or below through 

visual scrutiny of the profile (fig. 4.3). 

Z^(510,0") for the entire profile was found to be lower than that calculated from the 2.5 -

15 m section of the profile (table 4.1). Ship shadow would lower the overall value for 

Z^(510,0") and is likely to be the primary factor influencing this result. Assuming that the 

0.863 result is the more accurate due to less probable shading contamination, the error 

introduced by using the entire profile is -2.8%. 

R^ 4(510,0-) 

0 - 15m section of profile 0.999 0.839 
2.5 - 15m section of profile 0.998 0.863 

Table 4.1 : The effects of ship shadow on the definition of water-leaving radiance, just 

below the water's surface (at 510 nm), through regression analysis 

Through comparison of these results with the other datasets acquired for this study, a 

similar technique to that described above was adopted in the profile analysis. This 

consisted of the visual selection of the best section of the profile to use (thereby 

eliminating any contamination in the surface layers by ship shading) followed by 

regression analysis to achieve L „ ( A , 0 " ) and £ J ( A , 0 " ) . Once Z^(A ,0") values were 

ascertained for each profile, it was necessary to propagate L „ ( A , 0 " ) up through the air-

water interface by deriving L„(A ,0*) according to equation 2-20. Equation 2-27 was then 

used to calculate /?^(A ,0^) for twenty complete datasets acquired during the cruises 

CHI 18a, CHI 18b, SV23 and SV24 (all results for the twenty datasets appear in Appendix 

C). The results shown in Appendix C detail the general water characteristics at the time of 

profiling and represent an averaged analysis of each site throughout the time of survey. 

This data is used later (sections 5.1 and 5.2) to investigate the nature of these waters and to 

classify them based on their optical properties. 

To compare sea-based optically profiled information with airborne (or satellite) image 

data, both must be truly coincident in space and time. From the profiles acquired during 
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the Challenger and Sea Vigil cruises, reduced sections of the complete datasets were 

selected which coincided exactly with image data. Sixteen images were identified and 

married with profiled datasets; the exact location of the ship at the time of survey was 

known and could be identified on the images due to the accurate georectification 

information available with each image (see later in section 4.2.4). Appendix D details the 

profile results from the sixteen reduced datasets. The optically profiled water-leaving 

radiance spectra were used for the verification of the calibration, processing and analysis of 

the image data (section 4.2). 

4.2 Airborne images 

A greater number of image calibration and correction procedures are required for airborne 

images than for those acquired from a satellite. This is due to the fact that an aircraft is a 

less stable platform upon which to mount a sensor and its position within the earth's 

atmosphere constantly varies. Thus, a satellite does not require coincident, per pixel 

location measurements in three-dimensional (3D) space as these quantities are relatively 

easy to calculate from its orbit parameters. Spacebome images do not need as complex an 

atmospheric correction given the satellite's location above the entire atmospheric column. 

An aircraft, on the other hand, has a constantly varying 3D position which makes the 

atmospheric correction procedures much more complex. 

4.2.1 Radiometric calibration 

4.2.1.1 Compact Airborne Spectrographic Imager 

The light levels entering the optics of the CASI through the lens can be controlled using 

the iris in response to extemal lighting conditions. Prior to and after a flightline, the iris 

closes up completely to allow a dark-current reading to be taken. This information is used 

in post-processing to relate and then calibrate each sensor in a 288 charge coupled detector 

(CCD) array (fig. 3.5) and hence radiometrically calibrate the datastream. Light enters the 

CASI through a 15^im wide spectrographic reflectance slit and then passes through a 

reflectance grating which disperses the light over the 400 - 915 nm spectral range. The 

signal is recorded by the CCD array which has a nominal spectral sampling of 1.8 nm. In 

addition to this, the signal from an incident light sensor (ILS), housed on the roof of the 

aircraft, is directed through the CASI optics and onto the CCD (fig. 3.4). The ILS 
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information is recorded alongside the imaged datastream which thus allows the direct 

comparison of the two. 

Spectral calibration of the CCD array was carried out on the bench at regular intervals 

throughout the flight campaigns and provided, at best, a 2% accuracy to sensor radiance. 

This information was used to calibrate each spectral band (table 3.1) and applied to the 

dataset on a per pixel basis through the use of a suite of software developed for the NERC 

ARSF (fig. 4.4; Wilson et al., 1997). The software also appends ancillary information, 

including position and attitude data, to each radiometrically correct image scanline and 

stores it all in a single hierarchical data format (HDP) file (fig. 4.4). An example of a 

radiometrically corrected CASI image acquired over the Humber Estuary is shown in 

figure 4.5. 
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Data Processing Strategy for the 
NERC Airborne Remote Sensing Facility 

CAS I 

L 
ATM 

Uve 0 

Level la 

Level lb 

Level 2 

Uvel 3a 

Level 3b 

Level 4 

Hierarchical 
Data Format NASA standard product definitions 

Mission & Sensor Raw "sensor format" data at original resolution. 
Vgroups 

Navigation 
Vgroups 

Calibrated Image 
Scientific 
Data Sets 

Level 0 data reformatted to image files with 
ancillary files appended. 

Level I a data to which radiometric calibration 
algorithms have been applied, to produce radiance 
or irradiance. and to which location and 
navigational information has been appended. 

CD-ROM distribution 
of data and software 

NERC data processing 

User data processing 
DEM option 

hdfread 

User algorithms 

hdf write 

, DEM option 

Gcorcctified 
Image 

GPSGCPs 

Precision 
Gcorectified 

Image 

Geophysical or environmental parameters derived 
from level 1 a or 1 b data, may include atmospheric 
correction. 

Level lb or 2 data mapped to a geographic 
co-ordinate system using on-board attitude and 
positional information only. 

Level I b or 2 data mapped to a geographic 
co-ordinate system using on-board attitude and 
positional information with additional ground 
control points. 

Multi'temporal/ mulU-sensor gridded 
data products. 

^ I S / Image Analysis ^ 

Figure 4.4 : NERC ARSF processing strategy for CASI and A T M data. The HDF file 

output and product definitions at each stage and for each sensor are detailed (Wilson et a/., 

1997). 
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Tetney Haven 

The agricultural fields along the 
southcm shores of the Estuary 
arc highlighted well due to the 
choice of wavelengths used in 
the false colour composite 

Spurn Head 

This line represents a faulty 
detector in the CASI's C C D 
array which affected all data 
acquired during 1995 

Figure 4.5 : Radiometrically corrected CASI image acquired on 15 August 1995 at LW -

2.7h over the mouth of the Humber Estuary. The image is a false colour composite with 

band 7 (669 nm) represented in red, band 5 (554 nm) in green and band 3 (490 nm) in 

blue. 
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4.2.1.2 Airborne Thematic Mapper 

The A T M is sensitive to those parts of the electromagnetic spectrum ranging from the 

visible to the near-infrared (NIR), shortwave-infrared (SWIR) and thermal-infrared (TIR) 

(table 3.2). A rotating mirror directs the incoming light onto dichroic filters which split it 

into the separate fractions of the electromagnetic spectrum (fig. 3.7). The visible and NIR 

fractions are further split by a prism before being imaged onto an array of silicon detectors 

(fig. 3.7). Those wavelengths beyond the NIR (SWIR to TIR) are split and imaged onto 

single detector elements which are housed in individual Dewars (f ig. 3.7) cooled with 

liquid nitrogen. On the bench, spectral calibration was executed at regular intervals 

throughout the flight campaigns. This provided a sensor radiance accuracy of between 5% 

and 10% for the visible channels and to within 0.3°K brightness temperature for the 

thermal-infrared. As with the CASI data, the radiometric calibration of the A T M dataset is 

applied on a per pixel basis and output as an HDF file using the NERC ARSF routines (f ig. 

4.4; Wilson et ai, 1997). 

4.2.1.2.1 Thermal calibration 

Thermal-infrared data from channels 11 and 12 (both 8400 - 11500nm; channel 12 records 

at half the standard gain, i.e. at 0.5, and is particularly useful i f channel 11 becomes 

unexpectedly saturated) require initial calibration to *at sensor' radiance (to derive the 

brightness or apparent temperature) before conversion to sea-surface temperature. The 

calibration procedure utilises two controllable blackbodies whose temperatures are set to 

the minimum and maximum temperatures expected across the target scene. The 

blackbodies are imaged before and after each scanline, the direction of the signal through 

the optics being controlled by a rotating mirror (fig. 3.7). The blackbody temperature and 

the emitted radiation have a nonlinear relationship which is defined by the Planck radiation 

law: 

C, 4-1 

X exp^"* ' - l 

where R{X) is the spectral radiant emittance (W m'^ (im *), 

X is the radiation wavelength (^im), 

(Wilson, 1988) 
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T is the absolute temperature (K), 

C, =2;z/ic'= 3.74151 x 10^ Wm•^^im^ 

C, = — = 1.43879 X lO'^^unK, 

and: h is Planck's constant = 6.6256 x 10'̂ ^ W s^ 

c is the velocity of light = 2.9979 x 10^ m s"', and 

k is Boltzmann's constant = 1.38054 x 10*^'Ws ' K'V 

The detector response of the A T M was determined by "on the bench" calibration. The 

response curve was used, together with knowledge of the Planck function, to determine the 

effective radiance for each of the two blackbodies by: 

/ A 4-2 

iisod 

S400 
expt^^-'-l'l 

(Wilson. 1988) 

where x is blackbody 1 or 2, 

R is the effective radiance at the sensor when viewing the blackbody at T , 

£ is the emissivity of the blackbody (assumed to be constant), and 

<t>^ is the detector response function. 

is assumed to be a linear function of the sensor response thus providing a two point 

calibration and enabling the determination of the apparent temperature for all digital 

number (DN) values. A further step of atmospheric correction would be required to derive 

actual sea-surface temperature (Callison et ai, 1987). However, this was not possible 

within the atmospheric correction software available to the author. Thus, sea-surface 

temperature was approximated from the apparent temperature images by ignoring any 

atmospheric errors and by assuming a constant emissivity of the water of 0.965 in the case 

of the Humber Estuary and of 0.98 for the Tweed (A. K. Wilson, pers. comm.). The 

possible errors remaining within the images as a result of the omission of an atmospheric 

correction could lie between 5% - 10%. When the additional possible errors within the 

data from the radiometric calibration of the A T M are recalled, these figures become quite 

considerable. Thus, to reduce any remaining atmospheric effects and error within the 
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images, they were further calibrated through comparison with coincident surface-based 

measurements. 

4.2.2 Atmospheric correction 

The useful remotely sensed information about an area of sea is contained within the 

physical properties of the radiation leaving the target, i.e. the water-leaving radiance. The 

signal is difficult to quantify due to complex interactions between absorption, scattering 

and reflection of light by any in-water constituents. This is a considerable problem in 

coastal waters whose optical properties are determined by resuspended organic and / or 

inorganic sediments and terrigenous particles (Gordon & Morel, 1983). Compounding this 

problem is the fact that radiative flux arriving at the sensor has travelled some distance 

through the atmosphere and has therefore suffered scattering, attenuation and possibly 

augmentation from surrounding light fields (fig. 4.6). The atmospheric contribution to 

remotely sensed data at optical wavelengths is over 50% and may approach 80 - 90% of 

the radiance received at the sensor towards the blue end of the spectrum (Cracknell & 

Hayes, 1991). Atmospheric correction is therefore imperative. 

Atmospheric gases 

Aerc Aerosols Mie scattering 

Sensor 

Absorption 

Air molecules Rayleigh scattering 

Water-leaving radiance 

Fig 4.6 : The influence of the atmosphere on the signal received at the sensor 

The atmospheric component is not constant throughout an image, particularly in airborne 

data where the target-sensor path length is variable (fig. 4.7). The CASI handset (table 3.1) 
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was chosen to target wavelengths which would enable the detection and quantification of 

important atmospheric parameters as well as surface water characteristics. In particular, 

some wavebands were chosen to highlight atmospheric aerosols which represent a key 

input to the atmospheric correction procedure over coastal, SPM dominated waters. 

Direction of 
night 

Sensor 

Direction of 
scan 

Figure 4.7 : The variability o 

X , y and z represent the distances between 

the target and the remote sensor as the 

instrument scans across a scene. The target-

sensor path length at nadir (x) is smaller 

than when viewing off-nadir (y). At the 

edge of the scanline the path length between 

sensor and target increases to z, a distance 

possibly much greater than that found at 

nadir (x). 

the target-sensor path length 

The atmospheric correction algorithms used in this study were devised at Plymouth Marine 

Laboratory (Moore et ai, 1999) and were applied to the image datasets through the Coastal 

Earth Observation Application for Sediment Transport (COAST) software (Bottrell & 

Matthews, 1994). The atmospheric correction routines assume that in waters with a 

significant SPM concentration, as is the case in the Humber Estuary, there is significant 

water-leaving radiance at NIR wavelengths. Such areas are flagged within the atmospheric 

correction procedure and an iterative approach is employed. Iterations are based upon 

information contained within look-up tables and use a constrained fit of aerosol optical 

thickness values in the NIR and water-leaving reflectance against sediment concentrations. 

In clearer waters it is assumed that all radiance in the NIR has originated from the 

atmosphere because water absorbs all energy at these wavelengths (Gordon and Wang, 

1994). Values from the NIR are then used to correct bands in the visible part of the 

spectrum. 

The COAST software outputs Rayleigh (e.g. fig. 4.8a) and fully (Rayleigh and aerosol; e.g. 

fig. 4.8b) atmospherically corrected, land-masked images (the latter wil l hereafter be 
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referred to as COAST images). An assessment of the accuracy of the atmospheric 

corrections were required. The results from known comparative points on sixteen 

Rayleigh and COAST images, and on their radiometrically correct companion, were 

related to the water-leaving radiance spectra calculated from PML-Satlantic optical 

profiles (Appendix D). The profiles were acquired from the side of the ship facing towards 

the sun. This could easily be visually identified on the (nongeometrically corrected) 

radiometrically, Rayleigh and COAST corrected images once the ship had been located. 

An area of interest was delineated on each of the images which represented that section of 

water whose optical properties were measured from the sea*s surface. The mean and 

standard deviation values were obtained from these groups of pixels and were compared 

with the exact water-leaving radiance as derived from the sea-based profiles. The results 

from the sixteen sets of images were compared to measured water-leaving radiances and 

are shown in figures 4.9a - 4.9p. 

The comparisons of the image and profiled L„(A , 0* ) results are limited to the seven 

wavelengths measured by the PML-Satlantic which constrains the assessment somewhat. 

However, the overall trend of the spectra can be assessed from figures 4.9a - 4.9p and the 

comparison highlights some of the strengths and weaknesses of the COAST routines. The 

representative spectra for each image have very similar shapes and characteristics with the 

exception of figures 4.9o and 4.9p. These two images were acquired over extreme case / / 

waters in the upper reaches of the River Humber where SPM concentrations are very high. 

The image spectra do not reflect the measured radiances and possibly highlight the 

weaknesses of the COAST routines in extremely SPM laden waters. 

In general, all the images sustain values much higher than expected given the sea-based 

water-leaving radiance results. Considering the lower wavelengths in particular, the shape 

of the spectra suggest an over-correction for Rayleigh scattering. An over-correction 

would have the greatest impact at lower wavelengths due to a steep exponential 

relationship with wavelength. This appears to be the case in all sixteen samples as the 412 

nm image values for all the COAST images are zero. With the exception of figures 4.9b, 

4.9i and 4.9k, the 412 nm value in the Rayleigh images also reach zero. 
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Figure 4.8 a) Rayleigh corrected (left) & b) Fully COAST corrected (right), land-masked 

CASI images acquired on 15 August 1995 (LW - 2.7h) over the Humber Estuary. The 

images are false colour composites where red depicts band 7 (669 nm), green band 5 

(554 nm) and blue band 3 (490 nm). 
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Figure 4,9 : Measured water-leaving radiance (from in-water optical profiles) and the 

comparative results from radiometrically, Rayleigh and fully atmospherically (COAST) 

corrected CAS I image data 
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Figure 4.9 d) : 6 April 1995, 13:36 GMT 
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Figure 4.9 e) : 10 April 1995, 10:41 GMT 
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Figure 4.9 i) : 12 April 1995, 10:20 GMT 
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Figure 4.9 m) : 23 April 1995, 10:36 GMT 
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While the gradient between the radiances from the Rayleigh and COAST images and the 

"true" water-leaving radiance can be attributed to Rayleigh scattering correction, the offset 

between the two is likely to be due to an under-correction for aerosol and, to a lesser 

extent, gaseous atmospheric absorption. This theory is supported in all images at 

wavelengths above 555 nm where the COAST image spectra and the measured water-

leaving radiance spectra are all displaced with the latter spectra sustaining the lower 

values. 

The COAST software contains a land-masking routine and this came into conflict in areas 

with exceptionally high SPM concentrations, such as large sections of the Humber Estuary 

and, in particular, the upper reaches. In the extreme case / / scenario, the COAST routines 

tended to erroneously mask out large sections of the image which represented waters with 

particularly high SPM concentrations. The incorrectly masked out areas contained regions 

of specific scientific interest. To recover this information, the Rayleigh and COAST 

images needed to be recreated with no land-masking. This had to be done externally from 

the COAST software (fig. 4.10). 

i) Radiometrically corrected CASI 
image (e.g. fig. 4.5) 

ii) Rayleigh corrected land-masked CASI 
image output from COAST (e.g. fig. 4.8a) 

i) Radiometrically corrected CASI 
image (e.g. fig. 4.5) 

ii) Rayleigh corrected land-masked CASI 
image output from COAST (e.g. fig. 4.8a) 

iii) Rayleigh correction image (e.g. fig. 4.1 la) 
[Subu-act ii) from i) to achieve a difference image] 

Rayleigh corrected CASI image with no land-masking (e.g. fig. 4. l i b ) 
[Subtract iii) from i)] 

Figure 4.10 : The Rayleigh correction of a CASI image with no land-masking 

The Rayleigh correction of an image is a relatively straightforward procedure although the 

orientation of the flightline with respect to the sun has to be assumed to be constant 

throughout the flight. Constant offset values for each column of pixels (along-track) in the 

image are applied to correct for Rayleigh scattering. These constants were calculated by 

the routines within COAST. The results were quantified by subtracting the Rayleigh 
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corrected image from the radiometrically corrected one (fig. 4.10). This gave the 512 

specific constants used to correct a particular image for Rayleigh scattering (an example 

taken from 15 August 1995 is expressed as a digital image in figure 4.11a). These values 

were then reapplied to the radiometrically corrected image and a new Rayleigh corrected 

one produced with no land-masking (e.g. fig. 4.1 lb). 

The distribution of aerosols across an image is not a constant and varies along-irack as 

well as across-track. It was thus impossible to determine what the digital number (DN) 

values should be in those sections of the fully atmospherically corrected images which 

were erroneously masked out as land without complete knowledge of COAST's underlying 

routines and / or more flexibility within the software. These were not available. Together 

with the results from the initial tests on COAST*s reliability (fig. 4.9; Robinson & Morris, 

1997), it was concluded that the Rayleigh corrected image (with no land-masking) alone 

would probably be adequate given that any further analysis (such as the use of algorithms 

to determine in-water parameters) incorporated band ratios. The use of Rayleigh corrected 

images would therefore be sufficient as any residual atmospheric component within the 

image (primarily due to the effects of aerosols which have an exponentially decreasing 

impact with increasing wavelength) would be cancelled out in the band ratio particularly i f 

longer wavelengths were chosen for analysis. 
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Figure 4.11 a) The across-track constants (from the subtraction of fig. 4.8a from fig. 4.5) 

used to correct a CASI image for Rayleigh scattering (left) & b) The Rayleigh corrected 

(no land masking) equivalent (right) for an example image acquired on 15 August 1995 

(LW - 2.7h). Red = band 7 (669 nm), green = band 5 (554 nm) & blue = band 3 (490 nm). 
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4.2.3 Algorithm development 

4.2.3.1 Suspended Particulate Matter 
The effectiveness of an algorithm to derive SPM concentration from digital image data is 

largely determined by knowledge of the correlation between SPM and any chlorophyll 

present in the water (Tassan, 1993). In case / waters, this relationship is stable and well 

defined. However, in case // coastal waters, the relationship may vary significantly across 

both spatial and temporal scales. The contributions of chlorophyll and dissolved organic 

matter to absorption can be neglected when considering river plumes which are dominated 

by SPM (Tassan, 1997). The study area, the Humber Estuary, is one such region where 

SPM dominates and chlorophyll concentrations are extremely low or commonly zero. The 

effect of chlorophyll on the SPM concentration - reflectance relationship is at a minimum 

between 700 nm and 900 nm (fig. 4.12). Therefore, these wavelengths could be 

confidently used in an SPM retrieval algorithm for use over the Humber Estuary without 

the necessity of the addition of a chlorophyll term. 
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Figure 4.12 : Relationship between SPM concentration and reflectance in clear water (left) 

and in algae-laden water (right) (Han, 1997) 
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Waters with high SPM concentrations generally exhibit a greater overall reflectance than 

those at lower concentrations (Viollier & Sturm, 1984). This is due to an increase in 

scattering by the SPM particles in the water. In one of the first studies on the topic, Ritchie 

et al. (1976) investigated the nature of the relationship between reflectance and SPM 

concentration. They found that reflectance between 450 nm and 900 nm increased as SPM 

concentration values rose (fig. 2.2 depicts this same relationship as gleaned from a later 

study by Han & Rundquist, 1994). They also discovered that the maximum peak moved 

from approximately 550 nm at low SPM concentrations to over 600 nm at high 

concentrations (fig. 2.2). Their conclusion was that the best spectral region for assessing 

SPM concentration from reflectance lies between 700 nm and 800 nm. This region was 

adjusted to the 700 - 900 nm wavelength range in a later study (Ritchie et al, 1983). The 

applicability of this wavelength region for SPM concentration determination is similarly 

echoed throughout the literature (e.g. Han & Rundquist, 1994; Mayo et aL, 1993; Xia, 

1993; Dekker et al., 1991; Bhargava & Mariam, 1990). 

SPM concentration and reflectance have a positive correlation (Curran et al., 1987). This 

relationship is linear at low SPM concentrations and nonlinear at high concentrations (Han 

& Rundquist, 1994). Thus, in general, when considering sediment plumes, the relationship 

is linear for a narrow range of SPM concenU-ations (Morel & Prieur, 1977) and logarithmic 

for a wider range (Munday & Alfoldi , 1979). The logarithmic relationship is widely used 

in the literature (e.g. Tassan, 1993; Doerffer et al., 1989; Tassan & Sturm, 1986; Gordon & 

Morel, 1983) and takes the form: 

ln(5) = / + j\n{X) 4-3 

where S is the SPM concentration, 

X is the sediment retrieval term and 

I and j are constants derived from least squares regression between ln(S) and 

ln (X) . 

Due to the limitations of the atmospheric correction available for the CASI, it was 

necessary that for this study X should be a ratio of two, Rayleigh corrected, wavebands. 

This would ensure the reduction of any remaining atmospheric effects in the Rayleigh 

corrected data. Comparative CASI image and sea-surface SPM concentration data were 
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available for use in the determination of an effective SPM algorithm for seventeen images 

acquired over 3 days in August 1995, the 10'*", 11^ and 15**". The sea-based measurements 

of SPM were acquired from the Bull Light Float, one of the flux curtain moorings (fig. 3.9, 

mooring c), and concentrations for this period ranged from 20 mg m"^ to 305 mg m'^. 

For a band ratio algorithm to be effective, two bands must be chosen that, when raiioed, 

highlight the concenu-ations in the water well. A l l fourteen bands from the seventeen 

radiometrically, Rayleigh and COAST corrected images were ratioed against each other. 

A least squares regression of each against coincident SPM concentration as derived from 

the Bull Light Float was then performed. The coefficient of determination (R^) in each 

case was used as the indicator of the strength of the relationship and hence their potential 

for use in an effective SPM algorithm (tables 4.2 - 4.4). 

In all cases, the R^ results from the COAST image ratios never exceeded 0.8 (table 4.4). 

This further highlights the ineffectiveness of the full atmospheric correction routines 

within COAST for this group of images. The results from the radiometrically (table 4.2) 

and Rayieigh (table 4.3) corrected images exhibit a similar pattern. In their study of inland 

lake systems using MSS data, Dekker et al. (1991) found that the best wavebands to use 

for the retrieval of SPM concentration were a ratio of wavebands 6 (673.14 - 687.46 nm) 

and 7 (708 - 714.76 nm). Similarly in this study, one of the best ratios of Rayleigh 

corrected CASI image wavebands incorporate bands 8 (679.92 - 687.10 nm) and 9 (706.86 

-717.66 nm) (table 4.3). 

Based on equation 4-3, X was taken as ^^"^^ . Constants / and j (equation 4-3) were 

band9 

determined by regression of the Rayleigh corrected image band ratios with in-situ SPM 

concentration measurements. The resultant relationship has an R^ of 0.952 (table 4.3, fig. 

4.13) and is defined as: 
r W S y " " " 4-4 5PM = exp(7.l)x 

' \band9) 

where SPM has the units mg m"''. 
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band (x) 
I 2 3 4 5 6 7 8 9 10 11 12 13 14 

I 
2 0.209 
3 0.209 0.192 
4 0.216 0.207 0.196 
5 0.176 0.109 0.012 0.126 
6 0.477 0.537 0.581 0.574 0.792 

band (y) 7 0.311 0.256 0.192 0.172 0.219 0.003 
8 0.624 0.687 0.75 0.753 0.836 0.856 0.145 
9 0.775 0.826 0.871 0.873 0.919 0.953 0.486 0.948 
10 0.807 0.863 0.913 0.919 0.92 0.892 0.797 0.857 0.743 
11 0.814 0.868 0.918 0.923 0.924 0.897 0.811 0.864 0.758 0.185 
12 0.875 0.917 0.947 0.951 0.96 0.947 0.856 0.918 0.876 0.002 0.001 
13 0.816 0.866 0.909 0.914 0.912 0.871 0.821 0.82 0.716 0.382 0.348 0.149 
14 0.812 0.86 0.9 0.904 0.903 0.849 0.799 0.774 0.646 0.03 0.016 0.015 0.305 

Table 4.2 : R values from the regression of radiometrically corrected CASI image band 
ratios [band (x) / band (y)] against SPM concentration (R^ > 0.9 in bold) 

band (x) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 0.014 
3 0.01 0.001 
4 0.011 0.004 0.021 
5 0.036 0.097 0.219 0.294 
6 0.002 0.095 0.192 0.263 0.75 

band (y) 7 0.057 0.373 0.549 0.613 0.826 0.856 
8 0.069 0.403 0.567 0.624 0.824 0.86 0.577 
9 0.232 0.67 0.78 0.812 0.912 0.954 0.937 0.952 
10 0.577 0.878 0.936 0.937 0.925 0.89 0.864 0.854 0.742 
11 0.594 0.885 0.939 0.94 0.928 0.895 0.87 0.861 0.758 0.404 
12 0.604 0.903 0.947 0.954 0.965 0.951 0.928 0.924 0.884 0.002 0.022 
13 0.621 0.894 0.938 0.938 0.922 0.873 0.829 0.818 0.71 0.202 0.115 0.1 
14 0.616 0.891 0.928 0.927 0.913 0.849 0.784 0.771 0.639 0.001 0.005 0.004 0.259 

Table 4.3 : R values from the regression of Rayleigh corrected CASI image band ratios 
[band (x) / band (y)] against SPM concentration (R^ > 0.9 in bold) 

band (x) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 0.132 
3 0.15 0.397 
4 0.15 0.355 0.06 
5 0.151 0.314 0.023 0.007 
6 0.175 0.513 0.372 0.394 0.602 

band (y) 7 0.195 0.626 0.585 0.604 0.694 0.736 
8 0.198 0.634 0.581 0.593 0.68 0.721 0.253 
9 0.22 0.683 0.614 0.616 0.682 0.719 0.587 0.624 
10 0.285 0.771 0.789 0.782 0.753 0.719 0.7 0.692 0.582 
11 0.3 0.74 0.729 0.721 0.699 0.675 0.659 0.655 0.582 0.245 
12 0.291 0.682 0.618 0.615 0.632 0.628 0.592 0.596 0.567 0.005 0.091 
13 0.297 0.777 0.792 0.784 0.755 0.723 0.706 0.699 0.607 0.728 0.006 0.054 
14 0.303 0.774 0.757 0.746 0.726 0.708 0.694 0.691 0.624 0.092 0.085 0.054 0.023 

Table 4.4 : R values from the regression of fully atmospherically corrected (COAST) 
CASI image band ratios [band (x) / band (y)] against SPM concentration 
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SPM concentration (mg m •*) measured from the Bull Light Float 

Figure 4.13 : Relationship between SPM concentration (mg m""*) as measured from the Bull 

Light Float and as derived from CASI images. The error bars represent one standard 

deviation away from the mean values as derived from image pixel averaging and from the 

averaging of a series o f surface measurements spanning a few seconds. 

Figure 4.14 shows two examples of SPM images derived from CASI data using equation 4-

4. The portability of the algorithm is, however, limited both spatially and temporally as the 

data used in its derivation were acquired over three days in August 1995 and over the same 

location. Also, there were no independent datasets to test equation 4-4 thoroughly and so 

its use with other similar datasets may not be justified. With the incorporation of similar 

images and coincident in-situ measurements (e.g. from the vast quantity o f data acquired 

during the LOIS), the procedure described here could reliably be replicated and fully 

temporally portable algorithms for key sections of the Humber Estuary derived. 
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Bull Light Float 

Figure 4.14 : Two examples of SPM images derived from CASI data acquired over the 

Humber Estuary on 10 August 1995 at LW + 2.07h (left) and LW + 3.08h (right) 
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4.2.3.2 Temperature and Salinity 
Temperature was quantified from a series of twelve A T M images (see section 4.2.1.2.1) 

acquired on 4 May 1995 over the Tweed Estuary. In those images where there were 

coincident sea-surface measurements of temperature, the boat was identified and the 

relevant pixels interrogated. These were compared to the sea-truth data (fig. 4.15) by least 

squares regression, the fit yielding a 0.952 coefficient of determination. This relationship 

was used to 'fine tune' the temperature images and to reduce the effects of any remaining 

atmospheric errors within the data. Figure 4.16a shows an example sea-surface 

temperature image as derived from the A T M . 

10 n 12 13 14 15 
ATM-dcrivcd lempcralure C*C) 

18 

Figure 4.15 : Relationship between temperature (''C) measured at the sea's surface and as 

derived from ATM images. The error bars represent one standard deviation away from the 

mean values as derived from image pixel averaging. 

The strong linear relationship between temperature and salinity renders the derivation of the 

latter, from a temperature image, relatively straightforward given knowledge of the 

particular water body's characteristics. The comparison o f sea-based measurements o f 

temperature and salinity al the water's surface enabled the determination of the relationship 

between the two by least-squares regression analysis which supported a 0.911 coefficient of 
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determination (Appendix F: Uncles et al.. 1999). The same relationship was then applied to 

the temperature image (e.g. fig. 4.16a) to enable the derivation of salinity (e.g. fig. 4.16b). 

More complete results ft-om this study are detailed Appendix F: Uncles et al., 1999. 

12 JO 

15.0 

18X) 

Figure 4.16 : Geometrically correct A T M images depicting a) temperature in °C (top) & b) 

salinity in psu (bottom) acquired at L W + 4h on 4 May 1995 over the Tweed Estuarv 
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4.2.4 Geometric correction 
Airborne images can suffer from a number of geometric distortions due to the instability of 

the aircraft. With the addition of the C A S I to the N E R C aircraft, the N E R C A R S F took 

the important step of designing an Integrated Data System which synchronised the 

acquisition of A T M , C A S I , and Global Positioning System (GPS) data (fig 3.4). 

An Ashiech 3DF unit was purchased and installed (fig. 3.4). This uses phase 

interferometry, over four antennae fitted in a rigid cross shape on the aircraft roof, to 

measure pitch, roll and true heading in addition to GPS position at one antenna (Mockridge 

et ai, 1997). There are serious limitations in the 3DF unit for operational remote sensing 

due to its low attitude acquisition rate of 2Hz. More importantly, its lock on the local 

satellite cluster, necessary for definition of the system in 3D space, has a tendency to be 

undermined when the aircraft executes steep turns. These two problems were prevalent in 

all the data acquired for this study and thus stimulated much initially unforeseen research 

and development into solutions for their rectification. 

Included within the navigation data stream is a measure of the degree of accuracy 

maintained by the 3 D F unit on the local satellite cluster for each of the aircraft's location 

points during survey. This quantity is termed the position dilution of precision, or pdop, 

and is a quality measure of the position fixed by several G P S satellite observations. If the 

satellites are scattered across the sky and well distributed in the zenith (vertical angle) the 

measure of the position of the aircraft will be good and the pdop will be low. Conversely, 

if the satellites are clustered together, the quantification of position will be poor and the 

pdop high. In the absence of the original data which detailed the exact satellite cluster 

characteristics, and would thence enable the recalculation of the 3D position of the aircraft 

directly, the pdop was used as a surrogate for the reliability of any particular set of 

navigation records. Assuming that the lowest pdop corresponded to navigation 

information which contained fewer errors, the entire flight campaign's navigation could be 

altered to fit to that particular section of the datastream. A series of programs which 

worked on this assumption were developed in C and DDL. The software corrects an 

erroneous datastream by comparing it, the number of G P S satellites used and their pdop 

with data acquired before and after that segment. If the pdop lies below a threshold, the 

data is assumed to be of sufficient quality. If it has a high pdop, the data segment is shifted 
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to comply with the overall trend of the good quality data surrounding it. The navigation 

datastream is reset to compensate for any errors contained within and the images processed 

using the newly rectified navigation datasets. 

In addition to problems encountered with the navigation, many and varied discoveries were 

made concerning the imaged digital datastream itself. Depending on the quality of 

equipment operation and / or the command of the aircraft during survey, a variety of errors 

can creep into the imaged datastream. These included, for example, the misrepresentation 

of important information routinely recorded on the in-flight log sheets, misuse of the 

equipment and / or bad practice concerning data storage, backup and handling. The 

complexity and variety of possible factors affecting the quality of the data, and the sheer 

quantity of the remotely sensed data acquired both for L O I S and broadly within N E R C , 

necessitated the development of a streamlined processing system which took the majority 

of the unwanted factors affecting the imaged datastreams into account. C-shells were 

scripted to handle the navigation correction software and to run it alongside the main 

N E R C A R S F processing routines. In addition, the major errors affecting the imaged 

datastreams which resulted from a variety of external and internal (equipment) sources 

were identified through thorough familiarisation with the datasets. Their identification and 

correction were coded into the software and these are now routinely used to effectively and 

efficiently rectify current and historical data acquired using the N E R C I D S . 

Geometric correction using the corrected 3D vector data is applied to the image data 

through the gcorr program. Gcorr uses integrated attitude and position, datum shift, 

geoid-spheroid separation correction and projection parameters and integrates it with the 

scanner optic parameters to obtain pixel co-ordinates on a selected map projection 

(Mockridge et al., 1997). Through nearest neighbour interpolation the image data is 

transformed into fiilly corrected rectilinear versions (e.g. figs. 4.16 & 4.17). The results 

are tested through comparison with Ordnance Survey landline and locally digitised 

linework where possible. 

The overall accuracy of the geometric correction is at best within 3 - 4 pixels for all 1995 

data acquired using the Integrated Data System. When comparing the images with sea-

surface derived measurements it was not necessary to have greater geometric accuracy. 
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The geometric information contained within the image datastream was used to identify the 

ship or mooring on the image and then the area relating to the required target waters 

defined by eye. Using knowledge of the orientation of the flightline and of the time of day, 

it was possible to chose the relevant section of the image that would correspond to any 

measurements being taken from the water's surface at the same lime. In the case of optical 

profiles this was the side of the ship facing into the sun and in the case of the fliix curtain 

the section of water directly in front of the mooring, which itself always faces into the 

flow. The group of relevant pixels were interrogated and an area of between 10 and 30 

pixels averaged to derive mean and standard deviation values for comparison with the 

surface-derived measurements. This ensured both spatial and temporal coincidence was 

maintained between the images and any measurements acquired at the sea-surface. 

Within the C A S I and A T M datastreams errors have been minimised wherever assumptions 

have had to be made and / or where software has limited progress. Errors may have been 

introduced into the datastreams due to an inadequate atmospheric correction (resulting 

from software limitations) although the use of a Rayleigh correction alone is considered 

adequate where further algorithm development relies on band ratios, as does the SPM 

algorithm developed and employed here. The thermal calibration of the ATM*s thermal-

infrared channels relies on the use of an assumed constant emissivity value for a particular 

water body. This assumption may be a source of error although the effects of this are 

minimised through the use of sea-based measurements to fine tune the sea-surface 

temperature images. Due to a concerted error minimisation effort, the calibrated and 

corrected C A S I and A T M images are thus considered to be of a sufficient quality for use in 

the analyses proposed for this study. 
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Figure 4.17 : SPM concentration (mg m"̂ ) derived from a mosaic of six CASI images 
acquired over the Humber Estuary on 22 August 1995 
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5 Optics and Airborne Remote Sensing in the Humber Estuary 

The calibrated and processed data acquired from the air and from the sea in and around the 

Humber Estuary are assessed and analysed in this chapter The optical properties of the 

waters generate valuable information concerning their nature and content. When used in 

conjunction with hydrodynamically modelled data, a truly multi-dimensional view of the 

Humberts estuarine dynamics is revealed. 

5.1 Classification of water types 
A water classification based on Jerlov's (1976) empirical water classification technique 

outlined in section 2.4 was adopted for the Humber Estuary. ^ j ( A ) values were 

calculated for the datasels acquired in the Humber Estuary and offshore along the coastal 

stretch to the north (results in Appendix C ) . This was achieved through the application of 

equation 2-11 and the linear regression of In f̂"^ (A,0" against depth. In the absence of a 

475 nm waveband as used by Jerlov (1976) (fig. 2.3), the values for each 

wavelength were compared with, and regressed against, their associated Kj[490) values. 

The resulting regression relationships all sustained values of over 0.95 and are 

graphically depicted in figure 5.1; to aid clarity the points themselves are not depicted. 

The relationships provide a more detailed insight into coastal water classification than 

Jerlov's (1976) original study (fig. 2.3) which mainly focused on waters of type I, l A , IB, 

II and III and less on the five more distinct coastal water classes of types 1, 3, 5, 7 and 9. 

A similarity between the oceanic type III and coastal type 1 waters between 555 nm and 

700 nm was exemplified by Jerlov (1976) in the transmittance curves measured for his 

study (fig. 5.2). He showed that there is a convergence of the transmittance curves for 

types III and 1 at wavelengths over 555 nm (fig, 5.2). This factor would make the 

boundary between oceanic type III and coastal type 1 less distinct in wavelengths above 

555 nm. The trends shown in the profiled data acquired in the Humber Estuary and in the 

clearer North Sea waters (fig. 5.1a) follow those expected from Jerlov's (1976) predictions 

for wavelengths of 490 nm and below (table 2.1, fig. 2.3). However, at wavelengths over 

555 nm (670 nm and 700 nm) an entirely different trend emerges (fig 5.1b). This is likely 
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to be due to the extreme SPM laden conditions in which the large majority of the profiles 

were acquired. The revelation of fig. 5.2 may help to explain the emergence of a change in 

trend at 510 nm and 555 nm located at the type 1 boundary (fig. 5.1b). The type 1 

boundary could indicate the cross over point from oceanic to coastal type as the 

transmittance characteristics in coastal waters below 555 nm are dramatically different to 

those found above 555 nm (fig. 5.2). 

90nm 
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Kd(490) 
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Figure 5.1a (top) & b (bottom) : K^{X) (m ') and its relation to Kj(490) for the water 

masses of the Humber Estuary and the North Sea. Also detailed are the boundary limits 

for Jerlov's (1976) oceanic water type III and coastal water types 1, 3, 5, 7 and 9. 

68 



Chapter 5 : Optics and Airborne Remote Sensing in the Humber Estuary 

300 400 500 600 700 

Figure 5.2 : Transmittance per metre of downward irradiance in the surface layer for 

optical water types - oceanic water types I, II, III and coastal water types 1, 3, 5, 7, 9 

(Jerlov, 1976) 

The profiles acquired for this study were classified according to the thresholds detailed in 

table 2.1. This was done by comparing the K^{X) values from table 2.1 to those derived 

for all the profiles (Appendix C ) . The wavelengths were matched to the ones detailed in 

table 2.1 as closely as possible although some interpolation was necessary (table 5.1). 

Type 1 waters were taken as the cross over point from oceanic to coastal type waters and 

an indication of the change from Morel & Prieur's (1977) case / to //waters. 

Profile Jerlov (1976) Morel &Prieur (1977) Maximum (m) 

A, B 1 / / / / 6.6 
D, S 3 // 5.4 

C , P, Q, R, T 5 // 3.6 
i , J , o 7 // 1.8 

E , F, G , H, K , L , M , N 9 // 1.5 
Table 5.1 : Classification of water "types" according to Jerlov (1976) and "cases" 

according to Morel & Prieur (1977) for each profile. The maximum depth from which 

90% of the original optical signal reached the surface, Zgo, is also shown. 

As a further check to verify the results of the water classifications was calculated from 

equation 2-15 for all the profiles (results in Appendix C and maximum depth Zqo values 
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calculated for each water type detailed in table 5.1). This provides a further insight into 

the nature of the waters by delineating the depth at which 90% of the light penetrates 

through the water column. The maximum values for the different water types clearly 

highlight the progression of water classes from the clearer type 1 waters at the case / / / / 

boundary whose Zgo values reach 6.6 m, to the more turbid case / / and type 9 where the 

maximum z^q found was only 1.5 m (table 5.1). 

5.2 Diffuse attenuation and {490) 

An empirical relationship between A'^(490) and C Z C S observations was discovered by 

Austin & Petzold (1981). Their algorithm employs the ratio of water-leaving radiance at 

443 nm and 550 nm. It was devised using measurements acquired in waters where the 

majority of material was biogenic and contained a maximum chlorophyll concentration of 

1.5 mg m"̂ . In the open sea, the 520 nm to 550 nm ratio would be more relevant (Mayo et 

a/., 1993). The Austin & Petzold (1981) AT^(490) relationship is defmed as: 

^ A . ( 4 4 3 ) V - ( 5 - 1 ) 
A:.(490) = 0.022+ 0.088 

U . ( 5 5 0 ) J 

The results from the Austin & Petzold (1981) study were limited due to the restricted 

sensor capability of the C Z C S and the atmospheric correction used. A s a consequence, the 

results are suitable only for waters which have a ^^^(490) of less than 0.5 m * (Stumpf & 

Pennock, 1991) and a predominance of absorbing material, namely case / waters. 

Mueller & Trees (1996) devised a A'rf(490) algorithm for SeaWiFS based on that 

developed by Austin & Petzold (1981) for the C Z C S . They assessed the results from 242 

profiled measurements obtained from a series of cruises which took place over different 

stretches of the world*s oceans (fig. 5.3). Due to the characteristics of SeaWiFS, it was 

necessary to substitute the 550 nm waveband, which forms the basis of the Austin & 

Petzold (1981) routine, with 555 nm. Regression analysis for 42 of their profiles yielded a 

result with an of 0.9 and defined: 
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A : . ( 4 9 0 ) = 0 . 0 2 2 + 0 . 1 0 0 I A . . ( 5 5 5 ) j 

•1.300 ( 5 - 2 ) 

InIK(490)-0.022)= - 2.30261 -1.29966 fL^443yUTi(553)| 
R =0.90; Sk, = 0.017 m 

hiIlW443yiW5S5)| 

Treci(Anb-l) • Mitcfadl(CCS) 
Siegd(So8. Sea) Trees (Arib-p2) 
Tree* (AnlKp6) • Treci (Anb^pT) 

+ M u d k r / U i ^ (OoC*l) •AiMtia-Pttzoia 
• Moore (N. A S. AUntk^ AKTIT}) 

Figure 5 .3 : SeaWiFS Kj{490) values acquired from a variety of oceanic cruises 

compared with calculated values as derived from equation 5 - 2 (Mueller & Trees, 1996) 

Both Austin & Fetzold (1981) and Mueller & Trees (1996) based their analyses on samples 

acquired predominantly in case / waters. The literature lacks an algorithm that handles 

case / / waters. Turbid estuaries have Kj{490) values which range from 0 . 5 m * to 

approximately 5 m ' and hence optical depths ranging from 2 m to 0 . 2 m. Their optical 

characteristics are primarily dependent upon the presence of SPM which has a strong 

backscatter component. This can be represented as: 

K, = K^n^-^K^ ( 5 - 3 ) 

Stumpf & Pennock (1991) 

where is the specific diffuse attenuation coefficient for SPM. 
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is S P M concentration, and 

is the diffuse attenuation coefficient for other constituents (water, chlorophyll, 

etc.). 

To define a routine for ^ ^ ( 4 9 0 ) derivation in case / / waters, the Austin & Petzold ( 1 9 8 1 ) 

theory was applied to the results from the twenty profiles (detailed in Appendix C ) 

acquired during this study and mainly in case / / waters (table 5 . 1 ) . Z^^,^(443) and 

Z^ ;^ (555) were derived from the profiled measurements according to equation 2 - 2 1 and 

/ ( 4 4 3 ) 
using values for F q { X ) determined by Gregg et al. 1 9 9 3 . The ratio ^ was then 

compared to the / C ^ ( 4 9 0 ) profiled results (fig. 5 . 4 ) . The regression analysis yielded an 

of 0 . 7 9 7 and defined: 

A:^ ( 4 9 0 ) = 0 . 0 2 2 + 0 . 0 6 1 
A v ^ ( 4 4 3 ) 

, A . . ( 5 5 5 ) J 

•2^26 ( 5 - 4 ) 

0 1 

In[LWN(443)/LWN(555)] 

Mueller & Trees Austin & Petzold New case D algorithm Measured data points 

Figure 5 . 4 : ^ ^ ( 4 9 0 ) algorithms as devised by Austin & Petzold ( 1 9 8 1 ) and Mueller & 

Trees ( 1 9 8 6 ) . Their relation to the newly quantified case / / algorithm and the measured 

A : ^ ( 4 9 0 ) results are shown. 
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The three equations (equations 5-1, 5-2 and 5-4) were used to derive A'^(490) from the 

twenty profiles (detailed in Appendix C ) acquired during this study. Multiple regression 

analyses were performed using these results to relate them to S P M , chlorophyll and salinity 

measurements acquired simultaneously. Table 5.2 details the standardised coefficients for 

each variable in the multiple regression. This quantity allows the comparison of the 

relative influence individual variables have on the A'^(490) values by converting the 

original values to a standard deviate. The multiple regression equation takes the form: 

(5-5) K, (490) - K, (490) X^-X, ^ X^^-X^, _ X^^, - X , , , 
= a 

X, 

where: s, ch 8l sal represent SPM, chlorophyll and salinity respectively and 

a , b, c 8l d are the standardised coefficients. 

The regressions yielded an R" of 0.819 for the Austin & Petzold (1981) routine (equation 

5-1), of 0.810 for the Mueller & Trees (1996) equation (equation 5-2) and of 0.880 for the 

newly derived case / / algorithm (equation 5-4). 

Austin & Petzold Mueller & Trees New case / / algorithm 
S P M 0.273 0.283 0.200 
Chlorophyll 0.783 0.771 0.855 
Salinity -0.023 -0.023 -0.11 
r 2 0.819 0.810 0.880 
Table 5.2 : Standardised coefficients and the coefficient of determination from the multiple 

regression of results from three (490) algorithms and in-water constituents for twenty 

datasets 

The results shown in table 5.2 support the newly quantified case / / version of the Austin & 

Petzold (1981) routine (equation 5-4) and imply that the Mueller & Trees (1996) version 

r (443) 
(equation 5-2) does not describe case / / waters as well. The ratio of ^^(490) to ^ 

Avw (555) 

increases exponentially as one moves from case / through to case / / waters. The routine 

developed for /r^(490) by Mueller & Trees (1996) (equation 5-2), using samples acquired 

over case / waters only, thus becomes invalid for use in case / / waters where /rj(490) 

values increase exponentially away from their idealised regression line (fig. 5.4). 
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5.3 SPM concentration from CASI images 
C A S I data were acquired over the Humber Estuary to provide sequential time series of data 

throughout significant fractions of the tide for the purposes of investigating sediment 

distributions for modelling and for the estimation of sediment fluxes. This was achieved 

by repeatedly flying transects across the mouth of the Humber Estuary along transaxial I 

and encompassing the flux curtain (fig. 3.9). These data were then calibrated and 

processed to derive the SPM concentrations (see section 4.2) that were evolving over these 

time scales. Imaged time series which spanned a variety of tidal fractions were acquired 

on five dates during 1995 (table 3.4). The SPM concentrations derived from the image 

data were interrogated to investigate the distribution of SPM across the mouth of the 

estuary during the times of data acquisition. This information was further used in the 

estimation of fluxes into and out of the estuary during the different tidal fractions. 

5.3.1 Two-dimensional Fourier Transforms of image data 
A preliminary investigation was undertaken to ascertain the spatial frequency distribution 

of SPM across the images and so determine the axis along which the S P M features varied 

most. Two-dimensional Fourier transforms of image data provide a measure of the 

wavelength of SPM features and also indicate the axis along which S P M flux may be 

estimated; the SPM features found in the Humber Estuary generally take on the form of 

tongues extending into and out from the estuary mouth and would thus be represented as 

features perpendicular to the axis of maximum variation across the image. 

The Fourier transform of an image gives an indication of its spatial frequency distribution 

by transforming it from "real" space ( x , ) to frequency space ((o^, O) ̂ .). An image whose 

digital number (DN) values vary across it slowly will support low spatial frequencies and 

thus low values of CD (fig. 5.5). Conversely, an image containing frequent sharp changes 

in DN values will have high spatial frequency components and high values of O) (fig. 5.5). 

Thus, a profile across an image which has many "patches" of S P M will have a broader 

Fourier spectrum than one comprising more uniform concentration patterns. 
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Figure 5 .5 : Data transformation from "real space" (left) to Fourier space (right). The solid 

line depicts information taken from an image across which the D N values vary slowly 

(left). In this case the Fourier spectrum is narrow (right). Where D N values vary rapidly 

across a scene, as exemplified by the dashed line (left), the Fourier spectrum is much 

broader (right). 

The complex function d{X,Y) defines a two-dimensional image { d ) of size Nx x Ny 

where 0 < X < Nx - 1 and 0 <y < Ny - 1. The discrete Fourier transform defined over the 

same two-dimensional grid, D(fi)^,ty^.), can be expressed mathematically as: 

<2j[Xoj. -i27tYQ}, ( 5 - 6 ) 

X=0 Y=0 

If the sampling distance in the space domain is Ax then the highest spatial frequency 

found in the Fourier domain is ĥe Nyquist frequency (N^) . 

D(ct)^,a)j.) contains information on the amplitude of the spectrum and the phase. The 

amplitude, D(ct}^,fi>^.|, is commonly displayed as a grey scale image in which the value 

of the transform is represenied as the corresponding intensity in the ((W^,(y^.) plane (e.g. 

fig. 5 . 6 ) . The high frequency components appear near the edges and the low frequency 

components near the centre (e.g. fig. 5 . 6 ) . 

An example SPM image was chosen from each of the five dates when C A S I data was 

acquired (table 3.4). The images were Fourier transformed and their amplitude, 

D(fy^,cu^.|, which highlights the size of any SPM patches, displayed as a grey scale 
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image (fig. 5.6). The results from each image depict the axis along which there is the 

maximum variation in SPM distribution and clustering. This is represented as a 

concentration of white patches or bands (fig. 5.6), i.e. high amplitude information. In all 

cases this lay along an axis which, although slightly varying from image to image, 

traversed the estuary in a roughly NNW - S S E direction. The solid lines in figure 5.6 

depict the actual line across the estuary mouth chosen as the target transect used for further 

analysis of the image scenes. This transect deviates slightly from the ideal due to the fact 

that the image groups vary slightly in their spatial coverage but it was chosen to be as close 

to the ideal axis as possible. The transect was used to depict the S P M distributions and 

hence ascertain the nature of flux ebb and flow across the estuary mouth for each C A S I 

image acquired. 

5.3.2 SPM concentration distributions 
Figures 5.7 - 5.11 detail the twenty-seven S P M images derived from C A S I data. The 

corresponding SPM concentrations determined from the transects across the estuary 

(shown as solid lines on the S P M images) are displayed alongside. On each transect, the 

location of the Bull light float can be identified as the 0 kg m'̂  SPM feature at 

approximately 1400 m from Spurn Head. 
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29 June, L W - 0.23h 10 August, L W + 2.62h 11 August, L W + O.OHh 

KS August, L W - 2 . 7 h 21 August, L W + 4.25h 

Figure 5.6 : \o^Q)^ ^ values for 1024 x 2048 subsets of example S P M images from each 

of the five days of survey. The central axes define co ^ and o)^ and the solid lines depict 

the actual transect across the estuary mouth chosen for further analysis; the plots are 

orientated with north at the top. 

77 



Chapter 5 : Optics and Airborne Remote Sensing in the Humbcr Estuary 

Figure 5.7 : SPM concentrations (kg m'^) derived from CASI images ( lef t ) acquired on 29 

June 1995 during spring tide conditions. SPM concentrations (kg m"^) procured from a 

transect taken across the Humber mouth in accordance with the solid lines shown on the 

images (left) are detailed to the right. The x-axis corresponds to distance from Spurn Head 

with zero representing Spurn Head itself and 6825 m Tetney Haven. 
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Figure 5.8 : SPM concentrations (kg m^) derived from CASI images ( lef t ) acquired on 10 

August 1995 one day before springs. SPM concentrations (kg m'^) procured from a 

transect taken across the Humber mouth in accordance wi th the solid lines shown on the 

images (left) are detailed to the right. The x-axis corresponds to distance from Spurn Head 

with zero representing Spurn Head itself and 6825 m Tetney Haven. 

Figure 5.8 a) : L W + 1.38h, 12:31 G M T 
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Figure 5.8 d) : L W + 2.07h, 13:12 G M T 
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Figure 5.8 g) : L W + 2.83h, 13:58 G M T 
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Figure 5.9 : SPM concentrations (kg m"^) derived from CASI images (left) acquired on 11 

August 1995 during spring tidal conditions. SPM concentrations (kg m"^) procured from a 

transect taken across the Humber mouth in accordance with the solid lines shown on the 

images (left) are detailed to the right. The x-axis corresponds to distance from Spurn Head 

with zero representing Spurn Head itself and 6825 m Tetney Haven. 
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Figure 5.10 : SPM concentrations (kg m^) derived from CASI images ( lef t ) acquired on 15 

August 1995 four days after springs. SPM concentrations (kg m^) procured from a 

transect taken across the Humber mouth in accordance wi th the solid lines shown on the 

images (left) are detailed to the right. The x-axis corresponds to distance from Spurn Head 

with zero representing Spurn Head itself and 6825 m l etney Haven. 
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Figure 5.10 d) : L W - 2.7h, 11:58 G M T 
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Figure 5.11 : SPM concentrations (kg m"^) derived from CASI images (left) acquired on 21 

August 1995 during neap tide conditions. SPM concentrations (kg m'^) procured from a 

transect taken across the Humber mouth in accordance wi th the solid lines shown on the 

images (left) are detailed to the right. The x-axis corresponds to distance from Spum Head 

with zero representing Spum Head itself and 6825 m Tetney Haven. 
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Figure 5.11 d) : L W + 3.98h, 11:44 G M T 
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Figure 5.11 g) : L W + 4.7h, 12:27 G M T 
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The asymmetric nature o f the concentration f ie ld across the Humber is clear f rom the 

cross-sectional transects and is especially apparent in figures 5.7, 5.9 and 5.10. Higher 

SPM concentrations were evident in the northern channels, and lower concentrations in the 

south, in the preceding few hours before low water ( f i g . 5.10) and also at and around low 

water itself ( f i g . 5.7 and 5.9). This mirrors the bathymetry relating to the cross-sectional 

transects ( f i g . 5.12). The northem channels are the deeper and it is here that the higher 

concentrations are found in the few hours before and at low water. 

1000 2000 3000 4000 5000 

Distance from Spum Head (metres) 

6000 7000 

Figure 5 .12: Bathymetry across the Humber mouth derived f rom hydrographic charts and 

corresponding to the transects shown in figs. 5.7 - 5.11 

SPM in the uppermost layers o f the estuarine waters o f the Humber are mainly fine 

grained. Median particle sizes range f r o m 70 |xm to 110 | i m in the top few metres o f the 

water column and probably comprise floes o f silt and clay and very fine sand (Uncles, R.J., 

pers. comm.). During the flood tide, fine particulate matter is resuspended as flow 

velocities increase. Sharp increases in SPM concentrations at various points across the 

transects can be particularly seen in fig. 5.8 f r o m L W + 2.62h onwards. The patterns of 

resuspension are "streaky" at this stage of the flood tide and are probably influenced by the 

seabed distribution o f sediment and by bedforms. 
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The places across the transects where concentrations drop to 0 kg m'^ indicate passage of 

the transect over a ship or mooring (N.B. the 0 kg m'-^ at 1400 m always represents the Bul l 

light float). These features are commonly preceded or fo l lowed by a sharp peak in SPM 

concentration due to the influence o f the ship or mooring on the sediment dynamics in its 

locality. Figure 5.11 shows such features where in all but two images the transect passes 

over a ship (the 0 kg m'^ feature at 2200 m) and is immediately fo l lowed by a sharp peak in 

SPM concentration. 

The stirring up of large quantities o f SPM in the wake o f a ship can also be distinguished. 

Visual inspection o f the images identifies ships and their direction o f travel and these can 

then be related to the transect plots. An example o f this is found in fig. 5.8h at L W + 

3.08h where a sharp peak that immediately fo l lowed a ship's passage is depicted as a 

feature at 2125 m. Concentrations here reach in excess o f 0.24 kg m"^ (i.e. over twice the 

local background level) as water is stirred up f r o m deeper in the water column by the 

ship's passage. This exemplifies the stratified nature o f these waters and identifies the 

complex problem of modelling their sediment dynamics. 

5.3.3 One-dimensional Fourier transforms of SPM concentration data 
The SPM concentration distribution across the Humber mouth is extremely patchy (figs. 

5.7 - 5.11). The results highlighted in figure 5.6 show that SPM elongates into and out o f 

the estuary across a transect spanning the mouth o f the estuary. These fingers or jets o f 

SPM have been nicknamed Snarks, after Lewis Carroll (Hadlington, 1995). The 

distribution o f SPM concentration "patches" across the images were assessed by 

transforming the transect data into frequency space by the use of one-dimensional Fast 

Fourier Transforms (FFTs). The FFT is a numerical technique which enables the Fourier 

transform of a 2" (or 2" x 2") data series to be calculated eff icient ly by a computer. The 

FFT of each transect data series was accomplished through the use o f signal processing 

tools within the Matlab PC software package. Matlab uses a fast Radix-2 FFT (see Krauss, 

et al., 1994 for more details). 

To increase the confidence level wi thin the overall FFT estimate, the power spectrum 

estimate o f a data sequence can be useful. This increases the number o f Fourier transform 

estimates derived f rom the data series. Wi th in Matlab this procedure is accomplished by 
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dividing the data into groups of m points ready to be FFTed. To ensure that the end points 

o f each group is zero, and so reduce leakage into other frequencies, the data series is 

further windowed into groups o f m/2 points which overlap the original m points. Each 

windowed section is then FFTed and m/2 Fourier estimates established which lie between 

zero and the Nyquist frequency ( N^). 

The 27 data series detailing SPM concentration along the Humber mouth transect were 

resampled to reduce / increase the number o f points each dataset comprised so that they all 

contained 2048 ( 2 " ) data points. The data series were windowed into groups o f 256 points 

wi th a further windowed overlap o f 128 points. These groups o f data points were FFTed 

and 128 Fourier estimates for each dataset attained. From these results the most frequently 

occurring SPM patch size in each dataset was sought. This was accomplished through 

knowledge that the frequency o f the nth component is calculated by / = — - and the 
n 

period (or wavelength o f patch) by /? = . The most frequently occurring SPM 

concentration patch size was related to the averaged suiface velocity as derived f rom an 

hydrodynamic model ( f ig . 5.13). The surface velocities were calculated as values relating 

to that f l o w perpendicular to the Humber mouth transect which represents the predominant 

movement of water into and out of the estuary (this derivation is explained fu l ly in section 

5.4.1). 

The relationship between the most frequently occurring SPM concentration patch size 

across the transect and the averaged surface velocity perpendicular to the transect was 

investigated further by attempting to f i t a trendline to the data points depicted in fig. 5.13. 

The relationship the entire dataset has wi th surface velocity is non linear and the closest fit 

was found to be a polynomial one wi th the highest power o f 5 for the independent variable 

and wi th an of 0.44 ( f i g . 5.13). Although the relationship is poor there is obviously 

some dependence of patch size on surface velocity and hence tidal state. The images were 

acquired under different tidal conditions (i.e. at and between spring and neap tides) and so 

the relationship between patch size and tidal state w i l l naturally not be a perfect one for 

this dataset. 
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-0.8 -0.6 -0.4 , -0.2 0 0.2 0.4 0.6 0.8 
Surface velocity (m sec' ) perpendicular to the transect and averaged across 

the Humber mouth 

• 29-Jun 
• 10-Aug 
« 11-Aug 
• 15-Aug 
• 21-Aug 

Figure 5.13 : Most frequently occurring SPM concentration patch size across each image 

related to the averaged surface velocity (m sec*') into the estuary. The solid line represents 

a polynomial trendline fit to the data wi th the highest power o f 5 fo r the independent 

variable. Data acquired during spring tidal conditions are represented in red, one day after 

springs in pink, four days after springs in green, and during neaps in blue. 

5.4 SPM flux 
The accurate estimation o f flux is important for the effective management o f estuaries and 

the coastal zone f rom both environmental and socio-economic perspectives (Jay et al 

1997). The impact o f anthropogenic influences on estuarine environments, the prediction 

of long-term change and the mechanism behind this change can only be achieved through 

f lux estimation and assessment. SPM f lux estimation is particularly important in the 

Humber Estuary due to the extremely mobile nature o f the vast quantities o f sediments 

contained wi th in its waters. High S P M concentrations are supported by large f low 

velocities. 

Previous studies have been largely l imi ted by the calculation o f f lux at a single point only 

due to the l imited spatial coverage o f most surface-based monitoring exercises. Lane et al. 

(1997) identify that ^accurate f lux calculations require consistently high spatial and 

temporal resolution across the cross section*. The use o f remote sensing provides the 
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temporally instantaneous spatial resolution, but direct velocity measurements are normally 

sparse. Assessment o f SPM fluxes can be made through the incorporation o f 

hydrodynamic models, which estimate flow velocities and direction. This is an important 

application for operational coastal remote sensing as it reduces the need for costly and 

time-consuming surface-based monitoring. 

5.4.1 Calculation of SPM flux 
The calculation o f SPM flux needs to take into account the hydrodynamics o f flow in three 

dimensions. The Depth Integrated Velocities And Solute Transport ( D I V A S T ) 

hydrological model (Falconer and Owens, 1990) was used to model depth-averaged flows 

in the Humber Estuary. The D I V A S T model outputs north and east velocity components 

for the estuary in coarse I k m grid cells. This information was resampled for the transect 

across the mouth o f the estuary to achieve velocities for each 2.5 m pixel . Depth-averaged 

velocity vectors perpendicular to the profi le across the Humber mouth were then 

determined ( f ig , 5,14). 

Spum Head 
V(seawards) = usina — vcosa 

V / u & V are the east & north velocity components 

respectively. 

C ' > u V is the depth-averaged velocity perpendicular to the 

V 
transect across the Humber mouth, and 

a is the angle describing the transect. 

Tetney Haven 

Figure 5.14 : The derivation of depth-averaged velocity vectors perpendicular to the 

transect across the Humber mouth 

The product o f the resultant depth-averaged velocities into the estuary and image-derived 

SPM concentrations provide an estimate o f surface SPM flux for each point along the 

profile. Total SPM flux was then estimated for each point by integrating these results wi th 

depth as derived f rom hydrographic charts ( f i g . 5.12). Tidal heights at the times o f data 

acquisition were ascertained f rom Admiralty tide tables to calculate the area o f water per 
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unit of cross-sectional distance present at each point across the transect. The published 

tidal heights are relative to chart datum and these were converted to heights relative to 

ordnance datum through the knowledge that chart datum at Spum Head is 3,9 m above 

ordnance datum. Total SPM flux, assuming a uni form concentration wi th depth, was then 

calculated as the product o f surface SPM concentration, depth averaged velocity and 

bathymetry (± tidal height relative to ordnance datum). Figure 5.15 - 5.19 show SPM 

fluxes in kg m ' s * calculated for each transect (i.e. corresponding to figs. 5.7 - 5.11 

respectively). 
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Figure 5.15 : SPM fluxes (kg m ' s ') into the Humber Estuary along each transect as 

derived from CASI images acquired on 29 June 1995. Positive values indicate flux into 

the estuary and negative out into the North Sea. 
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Figure 5.16 : SPM fluxes (kg m ' s ') into the Humber Estuary along each transect as 

derived from CASI images acquired on 10 August 1995. Positive values indicate flux into 

the estuary and negative out into the North Sea. 
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Figure 5.16 d ) : LW + 2.07h, 13:12 GMT 
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Figure 5.16 g) : LW + 2.83h, 13:58 GMT 
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Figure 5.17 : SPM fluxes (kg m"' s'*) into the Humber Estuary along each transect as 

derived from CASI images acquired on 11 August 1995. Positive values indicate flux into 

the estuary and negative out into the North Sea. 
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Figure 5.18 : SPM fluxes (kg m*' s ' ) into the Humber Estuary along each transect as 

derived from CASI images acquired on 15 August 1995. Positive values indicate flux into 

the estuary and negative out into the North Sea. 
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Figure 5.18 d ) : LW - 2.7h, 11:58 GMT 
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Figure 5.19 : SPM fluxes (kg m's '*) into the Humber Estuary along each transect as 

derived from CASI images acquired on 21 August 1995. Positive values indicate flux into 

the estuary and negative out into the North Sea. 
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Figure 5.19 d ) : LW + 3.98h, 11:44 GMT 
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Figure 5.19 g ) : LW + 4.7h, 12:27 GMT 
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5.4.2 Possible errors in SPM flux calculation 
Field measurements acquired in the region of the Humber mouth have shown that SPM 

concentrations are highly stratified vertically down through the water column and increase 

with depth. Figure 5.20a shows a depth profile of SPM concentrations taken 

approximately 600 m to the west of Spum Head (Uncles, R.J., pers. comm.). This increase 

with depth corresponds inversely to the Van-Veen profile (fig. 5.20b) where water 

velocities are shown to characteristically decrease towards the bed as SPM concentrations 

increase. SPM depth profiles wi l l also vary with sediment and bedform type and slope and 

with current speed. The Rouse equation (e.g. Dyer, 1986) was fitted to the measured SPM 

depth profile. The equation describes concentration variation with depth as: 

(5-7) 

where C , and are SPM concentration at a height z and at a reference height a 

respectively, and 

where p is the ratio of the eddy diffusion coefficient for the sediment to that for 

the fluid (assumed to be 1; Dyer, 1986), 

K- is von Karman's constant (taken to be 0.4; Dyer, 1986), 

vv, is the settling velocity, and 

M. is the friction velocity. 

Surface velocities were averaged across the Humber mouth for each data series. These 

averaged values show the range of velocities experienced over the different stages of the 

tide (fig. 5.21). Velocity minima are reached shortly after LW + Ih during spring tides but, 

under neap conditions, this is achieved about two hours later at LW + 3h. Averaged 

surface velocities ranged from 0 to 0.9 m s"' with velocities reaching over 1 m s * in some 

cases, particularly in the northern channels of the estuary. These large velocities coincided 

with the resuspension of sediment in these deeper channels. Using this information it was 

possible to justify the assumption that, in the case of the Humber Estuary, — -̂ (in equation 

5-7) wi l l be small due to the dominance of fine silts and clays in a fast flowing 
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environment. An initial estimate of 0.1 for — was taken and then iteratively changed to 

fit the Rouse equation (equation 5-7) to the measured SFM profile (fig. 5.20a). 

S P M concentration (kg m" ) 
0 0.05 0.1 0.15 

Velocity (m s' ) 
0 0.5 1 1.5 

g.0.4 
CL 0.3 

Figure 5.20a ( lef t ) : A typical depth profile of SPM concentrations acquired approximately 

600 m to the west of Spum Head at Hawke (Uncles, RJ.^pers. comm.) 

Figure 5.20b (right) : Van-Veen profile showing the variation of water velocity with depth 

(e.g. Uncles and Jordan, 1994) 

A final value of 0.5 was derived for B in equation 5-7. Using this value in equation 5-7, 

the measured SPM concentrations (fig. 5.20a) were integrated with depth and a total 

concentration for the entire profile of 0.471 kg m'^ derived. I f the surface SPM 

concentration value taken from fig. 5.20a is assumed to be a constant with depth, and B 

again taken as 0.5 in the Rouse equation, a total concentration of 0.315 kg m'^ is obtained. 

Thus in this example, the assumption of uniform SPM concentration with depth provides 

an estimate that is in error by 33%. However, in the absence of reliable models that 

describe SPM concentrations down through the water column during the measurement 

period and over the study site, a uniform concentration with depth has been assumed here. 

The limitations of this assumption must be recognised and the possible errors in the 

calculation of fluxes appreciated. 
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Figure 5.21 : Surface velocities (m sec"'), derived from the DIVAST model, averaged 

across the Humber mouth transect for each of the 27 datasets. Data acquired during spring 

tidal conditions are represented in red, one day after springs in pink, four days after springs 

in green, and during neaps in blue. 

5.4.3 SPM fluxes in the Humber Estuary 
The SPM fluxes into and out of the estuary were estimated by calculating the area under 

the transect curves (i.e. figs. 5.15 - 5.19). This enabled the comparison of the flux 

estimates at the different tidal states (fig. 5.22). 

By integrating throughout the observed time sequences, an estimate of SPM flux for each 

section of the tide can be estimated (fig. 5.23). Although the survey dates did not cover the 

range of dates and times which would extend the study across the ful l tidal cycle and over 

all spring and neap tidal conditions (table 3.4), it is still possible to appreciate the nature of 

SPM flux in the Humber Estuary. 
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Figure 5.23 : Total SPM flux into the estuary (kg m ' s ") for each dataset covering the five 
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6 Discussion 

Remote sensing has a useful and important role to play in coastal and estuarine studies. 

An aircraft is a more flexible platform than a satellite upon which to mount remote sensing 

instrumentation. The response time to good weather is quicker from the air and the data 

turnaround is also much faster. The instrumentation can be directed over whichever target 

may be necessary at any time within the aircraft's constraints. This flexibility is not readily 

available from space and the aircraft's synoptic coverage not obtainable from surface-

based monitoring. 

The CASI has been shown to be an extremely useful tool in the monitoring and 

quantification of the coastal and estuarine environment. In particular its use in conjunction 

with continuous surface-based measurements at a few key locations, from, for example, 

buoys, has proven to be both effective and enlightening. The programmable bandwidths 

available to the operator mean that the instrument can be customised for different 

environments to highlight certain features in response to the hypotheses underlying the 

campaign. The NERC ARSF routines ensure that the data are adequately and easily 

radiometrically calibrated. The atmospheric correction routines employed within the 

COAST software did not fully atmospherically correct the image data as required. 

Comparisons with measured water-leaving radiance identified the shortcomings within the 

software. Rayleigh corrected images were also output from COAST and the algorithms 

used in their determination deemed correct through comparison with coincidently 

measured datasets. The Rayleigh corrected images were used in the further processing 

stages. However, this may not always be justified as the target area is located close to 

heavy industry. An excess of particulates within the atmosphere could increase the effects 

of aerosol scattering to such a degree that the Rayleigh correction of image data might not 

be sufficient and a ful l atmospheric correction would be imperative. 

The SPM ratio algorithm has been shown to perform well with the data acquired during 

this study (R^ of 0.952; section 4.2.3.1). However, there were no independent datasels 

available with which to execute a thorough comparative analysis. The use of the SPM 

algorithm with other similar datasets over this stretch of the estuary must be viewed with 
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some caution as conditions over and within the water must be similar. Such algorithms are 

not fully portable in space as the characteristics within the water can radically change from 

place to place, as can the general atmospheric environment through which the light passes 

from the water's surface to reach the sensor. If, for example, the levels of chlorophyll 

reach a state whereby they effect the results output from the SPM ratio algorithm, they 

would need to be accounted for and quantified separately within the algorithm. The 

algorithm was portable over the datasets used here and has been proven to give good 

results when compared to data acquired from the water's surface (R^ of 0.952, section 

4.2.3.1). 

The ATM has been shown here and in other studies (e.g. Callison et ai, 1987) to be useful 

when investigating sea-surface temperature (section 4.2.3.2). The emissivity of the water's 

surface is the unknown which must be assumed. The assumption of a constant emissivity 

was made and the sea-surface temperatures resulting from this matched the measured 

results well. In the case of the Tweed estuary where measurements were taken from a 

vessel located within the estuary, it was possible to apply the measured temperature / 

salinity relationship to the image data. The salinity images allow further insight into the 

estuary's characteristics and dynamics. However, this procedure would be difficult to 

replicate elsewhere and / or for a different survey period without supplemental sea-truth 

measurements. 

6.1 Water classification and {490) 

Water classification is important for the characterisation of the optical properties of the 

target aquatic medium. Jerlov's (1976) water classifications work well for wavelengths 

less than 555 nm (section 5.1). For 670 nm and 700 nm the U-end lines differ from Jeriov's 

ideal (fig. 5.1b). This is probably due to the extreme SPM laden nature of the waters in 

and around the Humber Estuary. The classification can be refined by using the Zg^ 

measure (equation 2-15) which delineates the maximum depth to which most (90%) of the 

light penetrates. Morel & Prieur's (1977) coarser classification is insufficient for detailed 

work within coastal and estuarine waters but does provide a general demarcation of the 

coastal and oceanic water margins. 
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An algorithm for Kj{490) based on Austin & Petzold (1981)*s theory developed in case / 

waters is missing from the literature for the case / / scenario. The Mueller & Trees (1996) 

algorithm (equation 5-2) also describes case / but not case / / waters. Kj{490) values have 

been shown to increase exponentially away from their linear regression line and a new 

algorithm has been devised to describe the conditions in turbid case / / waters (equation 5-

4) that hitherto have not been addressed. The new algorithm has been developed for use 

where SPM concentrations lie between 0.44 and 34.06 mg m'^ and chlorophyll 

concentrations between 0.46 and 12.05 îg m'̂ . As conditions become even more sediment 

laden, a further algorithm may be required to describe these more extreme situations. 

6.2 Possible errors in the data processing 
Many of the image processing stages involve the unavoidable inclusion of errors within the 

procedures employed. These were limited to a minimum where possible by maintaining 

rigorous equipment calibration procedures although errors will still be present within the 

data streams. These may vary from a minimum error of 1% in the calibration of the P M L -

Satlantic to over 10% in the radiometric calibration of the A T M . Surface-based data 

acquisition was executed in accordance with NASA's SeaWiFS protocols (Mueller & 

Austin, 1995) to minimise any contamination from external sources and errors in the 

datastream. From the air, a set of guidelines were followed prior to, during and after 

airborne data acquisition. Once the image data had been procured, it was compared at each 

stage of the processing chain to the results obtained from the in-water optical 

measurements and to discrete samples acquired from the sea surface. The algorithms 

devised for SPM (in the Humber), temperature and salinity (in the Tweed) were compared 

to sea-based measurements. The Tweed data comprised measurements taken from a small 

vessel and the Humber from the Bull Light Float. These both only constitute a single test 

site within an image which relate to a few pixels only. Care was taken to identify the 

relevant section of the image and a group of pixels was then interrogated to derive the 

mean and standard deviation values for that particular target. This ensured that no 

anomolies were picked up and reduced the effects of any noise within the data streams. 

However, errors within the data may still be present and were found to range from 1% -

15% depending on how uniform the target waters were. Relating the relationship between 

the images and those measurements acquired from the sea surface to the much larger 
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image picture inevitably introduces additional unquanitifable errors. This is, however, 

unavoidable due to the commonly experienced lack of available surface-based test sites to 

relate to the remotely sensed image which itself covers a large expanse of water. 

Ultimately this highlights the unique nature of remotely sensed imaging which provides 

fully spatial information not available through surface monitoring. 

The waters of the Humber Estuary are known to be highly stratified at times and the 

example of S P M concentration with depth (fig. 5.20a) highlights the possible error in using 

uniform concentration with depth in S P M flux estimations. Using the Rouse equation 

(equation 5-7) the error has been estimated to be possibly as much as 33% (section 5.4.2). 

The D I V A S T model used to derive current velocities, and hence estimate fluxes, across the 

estuary for the surveyed times must also be queried. The model is relatively coarse and, to 

achieve a unique set of values corresponding to each imaged data point across the estuary, 

interpolation was necessary. This does not therefore account for any small scale variations 

in velocity structure induced from small scale bathymeiric features and could cause the 

flux estimates to be in error. A finer resolution three-dimensional model of the Humber 

Estuary would be a better information source and, with the subsequent development of 

such models within the extended L O I S framework, any future analysis of this nature 

should not be hampered by such issues. 

Although the possible errors in the flux quantities calculated here could be as much as 

33%, the data clearly shows the tidal patterns and the order of magnitude of S P M fluxes 

that pass into and out of the Humber Estuary (figs. 5.22 and 5.23). This is something that 

has hitherto not been quantified on the spatial and temporal scales seen here. One such 

example of the information available is the magnitude of the difference between the S P M 

fluxes experienced at neaps to those under spring conditions. Very low flux estimates 

were found during the neap tide in comparison to the spring. The difference in the lag time 

between low water and the take-off of the flood into the estuary is also apparent with an 

approximate two hour difference between spring (flood begins approximately 1.5 hours 

after low water) and neap (flood begins at approximately 3.5 hours after low water) 

conditions. 
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6.3 Verification of the flux estimates 
To test the reliability of the SPM flux calculations, related flux estimates were sought in 

the literature. Annual flux quantities and budgets were readily available such as those 

detailed in McCave (1987). However, it would not be justified to extrapolate the flux 

estimates from this study to an annual estimate of S P M flux as the data was acquired over 

a relatively sparse array of tidal states. The impossibility of achieving an annual flux 

estimate is exemplified by the results from 29 June and 11 August. Both surveys covered a 

period at and around low water during spring tides. These two similar tidal conditions 

generated flux estimates which differed approximately 1.5 fold across the surveyed time 

frame. The dates are almost two months apart and this result may exemplify the seasonal 

nature of SPM fluxes into and out from the estuary and that fluxes probably increase as 

summer progresses into autumn. The spring and neap cycles are also very important in 

that fluxes estimated during a spring tide will be inherently dissimilar to those acquired at 

the same stage of the tide but during neap conditions. Weather, e.g. heavy rainfall, high 

winds, storms along the Holdemess coast, etc., must also play a factor in the actual 

quantity of flux moving across the Humber mouth although its actual role cannot be 

assessed for this study due to a lack of information. One would thus need a complete 

annual coverage of image data to achieve a truly accurate annual flux estimate. 

Hardisty & Rouse (1996) detail preliminary work into flux monitoring across the Humber 

Estuary undertaken within L O I S . Their figures quantify S P M fluxes into the estuary 

averaged for spring and neap floods and ebbs. This is itself a questionable action given the 

finding laid out in the previous paragraph detailing the dramatically different results found 

for two similar low water spring tidal conditions. Hardisty & Rouse (1996) calculated that 

during springs the average flux on the flood is 165 x 10"' tonnes and on the ebb is 77 x 10'' 

tonnes. During neaps they calculated the flux on the flood to be 162 x 10^ tonnes and on 

the ebb 94 x 10^ tonnes. They also quote an averaged flood and ebb figure of 120 x 10^ 

tonnes calculated by Pethick (1994) which lies in well with their results. A comparative 

result of 100 x 10^ tonnes per flood tide was published in the Independent newspaper 

(Hadlington, 1995). The figures vary slightly and all are averaged across the entire flood 

or ebb tide, in the case of Pethick (1994) across both. The quantities calculated here (fig. 

5.23) do not span the entire section of either flood or ebb tides. It is impossible, therefore, 

to compare the results directly. 
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Due to the lack of other flux data acquired from either conventional sea-surface 

measurements or from better models of the estuary, it was not possible to conclusively 

verify the flux quantities depicted in figures 5.22 and 5.23. An attempt was made to 

compare the data to some of Hardisty & Rouse (1996)'s results by comparing the ratio of 

their flux estimates for the spring and ebb floods (165 x 10^ tonnes : 162 x 10^ tonnes 

respectively or 1.02:1) to that derived from the smaller sections of the spring flood and ebb 

covered for this study. The total flux of 8.462 x 10̂  tonnes calculated for 10 August 

covered a 1.98 hour section of the spring flood tide from L W + 1.38h to L W + 3.33h. The 

total flux of 8.077 x 10"* tonnes calculated for 15 August covered a 1.16 hour section of the 

ebb tide four days after springs and spanning the time period L W - 3.33h to L W - 2.17h. 

The 10 August data was recalculated to span the same period relative to low water as the 

15 August data, i.e. L W + 2.17h to L W + 3.33h. This resulted in a new quantity of 7.737 x 

10^ tonnes. The comparative ratio to Hardisty & Rouse (1996)*s flood to ebb 1.02:1 was 

thus defined for the small section of the tide here as 1:1.04 (7.737 x 10^ tonnes : 8.077 x 

10̂  tonnes). The dissimilarity of the results is explained by the difference in the state of 

the spring to neap cycle under survey for this study. The 10 August survey targeted a 

spring tide just beginning to flood in earnest while the 15 August highlighted a tide 4 days 

after springs and well into the ebb (figs. 5.22 and 5.23). 

Comparison with Hardisty & Rouse's (1996) estimates does not verify the flux estimates 

calculated here. However, the results they quote are based upon calculations derived from 

point measurements and are thus not really valid for extrapolation across the entire mouth 

of the estuary. The flux estimates presented in this thesis take information derived from 

digital image data whose strength lies in the definition of spatial variability within the 

surface waters of the estuary. This gives the much broader picture which was not available 

to Hardisty& Rouse (1996) and questions the reliability of their results. 

During the life span of L O I S a detailed flux monitoring framework was set up across the 

Humber mouth by the University of Hull, the flux curtain. Throughout 1995 (the main 

focus for this study) the equipment was installed and tested. The data generated did thus 

not comprise a complete dataset for the practical comparison of the S P M flux results 

derived for this study. Unfortunately, it is only since 1995 that the flux curtain has begun 

to generate a unique and comprehensive array of flux data and, even though the data is 
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representative of single points across the estuary only, the flux curtain would be an ideal 

source for subsequent validation of any studies of this nature undertaken in the future. 

6.4 SPM concentration and flux distributions across the Humber mouth 
Suspended Particulate Matter moves into and out of the Humber Estuary in patches which 

are probably formed as a result of bathymetric influence and / or the resuspension of 

sediments particularly at higher water velocities (examples may be found extensively 

throughout the image sequences depicted in figs. 5.7 - 5.11). In order to exemplify the 

"paichiness" of the SPM concentration field across the Humber Estuary, Fourier 

transforms on one-dimensional transects derived from SPM images were performed 

(section 5.3.3). From analysis of the transect data which spanned the Humber mouth, it 

was possible to determine the most frequently occurring size of S P M patch within each 

dataset (fig. 5.13). Generally, the most frequently occurring patch size found for each 

image decreased with a reduction in surface velocity; patch sizes reached a minimum 

between 0.2 and 0.3 m sec *. This relationship was found to be best described by a 

polynomial fit (highest power of 5) but yielded an of only 0.44 possibly due to the 

sparse temporal coverage of the images. Thus, this relationship alone could not be 

suggested as a useful indicator of total S P M concentration or flux into or out of the 

estuary. According to J . Hardisty (quoted in Hadlington, 1995), rough calculations have 

shown that up to 50% of the S P M moving into or out of the estuary do so in patches, or 

Snarks, which he specifies as having a width of approximately 100 m. From visual 

scrutiny of the images (figs. 5.7 - 5.11) it is possible to ascertain that there are different 

sizes of patches across the estuary and that their width is not a constant. 

To test the importance of patches in S P M transport in the Humber Estuary, the 

relationships between patch size and the S P M concentration, SPM flux, water depth, and 

surface velocity perpendicular to the transect, within each patch were assessed. The 

patches across the transect profile were identified by first passing a moving average filter 

(covering ten points either side of the target value) over the datastream to smooth out any 

high frequency information which can be assumed to be within-patch variation or noise. 

The patches were then identified by finding the troughs within the datastream which 

separated out one patch from another. Patches were delineated as sections of data lying 

between two troughs and at a minimum separation distance of 20 m (e.g. fig. 6.1). The 
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results will differ from those generated by Fourier analysis which would identify some of 

the larger scale features, spanning two or more smaller patches, and would eliminate much 

of the higher frequency noise. The involvement of noise in the datastream has been 

minimised by smoothing (averaging) the data first. No information on the larger scale 

features (within which two or more smaller patches lie) will be included. As the 

hypothesis under test is that the smaller scale S P M patches (quoted as approximately 100 

m wide in Hadlingion, 1995) are considered important for sediment transport, this method 

of patch determination was considered satisfactory. For each patch the within-patch total 

SPM concentration and total SPM flux was determined by calculating the area under the 

curve for the two parameters (e.g. fig. 6.1). Averaged surface velocity and averaged water 

depth for each patch were also calculated. 

0.4 

0.3 

0.2 

o u 

i 
0 0 

0.1 H 

Patch of SPM 
Total concentration within the patch 

is determined by calculation of the 
area under the curve 

A 

50 100 150 200 

Distance along transect (m) 

250 300 350 

Figure 6.1 : An example of patch delineation using the transect data acquired across the 

Humber mouth from C A S I images (figs. 5.7 - 5.11). The data has been smoothed with an 

averaging filter and the patch is defined as a section between two troughs in the 

concentration distribution. Total S P M concentration and flux within the patch is 

calculated as the area under the curve; averaged depth and velocity as mean values across 

the patch. 
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To test Hardisty*s claim that 50% of the total S P M is transported across the mouth in 

patches of roughly 100 m, the total flux contained within patch sizes less than 50 m, 

between 50 m and 100 m and over 100 m were determined for each transect dataset (fig. 

6.2 and table 6.1). Considering the patch sizes from all of the transect datasets it was 

found that most of the SPM flux moving into or out of the estuary does so in patches 

spanning less than 50 m (a mean from all datasets of 86% of the total). This is further 

supported by the Fourier transform results (fig. 5.13). On average 11% of the flux is 

transported in 50 - 100 m patches, and 3% is carried within patches over 100 m wide (fig. 

6.1 & table 6.1). This data suggests that the smaller patches (< 50 m in width) play the 

dominant role in SPM transport and it is these that could provide a useful insight into the 

determination of S P M concentration and transport from remote sensing. 

Percentage total flux Patch sizes 

transported < 5 0 m 5 0 - 100 m > 100 m 

mean (%) 86 11 3 

maximum (%) 97 21 19 

minimum (%) 64 3 0 

Table 6.1 : The mean, maximum and minimum percentages of the total flux transported 

across the Humber mouth transect in the different patch sizes of < 50 m, 50 - 100 m and 

> 100 m considering all 27 image datasets 
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Figure 6.2 : The percentage of total S P M flux moving into or out of the Humber Estuary 

contained within patch sizes < 50 m, 50 m - 100 m and > 100 m for each image transect. 

The results are related to averaged surface velocities into the estuary. The first 50% of 

SPM flux is not shown as in all cases this is transported in patches less than 50 m wide. 

It was considered that the actual size of patch may play a key role in the transport of SPM 

across the Humber mouth and that it may be possible to relate the size of patch directly to 

SPM concentration and / or flux. If indeed the relationships are significant it could be 

possible to use the size of patch as a surrogate for SPM concentration and / or flux across 

the Humber mouth. In such a case, one would need only a radiometrically (preferably 

atmospherically) correct image to determine the spatial distribution of patches across the 

estuary as SPM concentration across the image could be inferred from patch size rather 

than derived using image processing techniques. This would remove many processing 

stages, and so reduce time and effort. The results could be used as a key input into 

hydrodynamic models of the region necessary for environmental monitoring and coastal 

zone management. Modelling eliminates costly fieldwork and data acquisition both in 

time and resources. Data such as that generated here is necessary to first define the model 

and then to test its results. This is an area where remote sensing can assist by generating 
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data with the synoptic coverage necessary, together with an invaluable temporal element 

through sequential repeat coverage of a particular target site. 

Pearson's correlation coefficient matrices were determined for each data series to evaluate 

the relative influence of each parameter on another and on the size of the patch they are 

contained within (results in Appendix E ) . Matrices were also derived for the log 

relationships of all the parameters and groups of data points (Appendix E ) . 

Patch size and within-patch total S P M concentration maintain a significant relationship 

(taken here to be a relationship yielding a correlation coefficient of 0.7 or more) across all 

dataseis except those acquired on 29 June and one dataset each from the 11 and 15 August 

surveys (Appendix E & fig. 6.3). The data series acquired at L W + 0.08h on 11 August 

exhibits a relationship with a correlation coefficient of 0.69 and this was assumed to be 

close enough to the (arbitrarily) chosen threshold of 0.7 to retain its significance for the 

purposes of future analysis. Thus it is hypothesised that it would be possible to use patch 

size directly to determine wiihin-patch total S P M concentration for all days of survey 

except where average surface velocities lie between 0 and -0.5 m sec ' (fig. 6.3). 

hi an attempt to find a significant relationship between patch size and within-patch total 

S P M concentration for those surface velocities lying between 0 and -0.5 m sec *, the 

Pearson's correlation coefficients defining the relationships between the logged parameters 

were consulted. For data acquired on 10, 15 and 21 August, i.e. all data except those 

acquired during spring conditions, an improvement in significance to that of their linear 

equivalent was found (Appendix E & fig. 6.4). It was thus hypothesised that the patch size 

/ S P M concentration relationship (fig. 6.3) could be employed for data acquired during 

spring tidal conditions such as those experienced on 11 August (but not on 29 June) and 

the ln(patch size) / In(SPM concentration) relationship (fig. 6.4) for data acquired during 

tidal conditions other than these (10, 15 and 21 August). The conditions experienced on 

29 June posed a more complex problem given that there is no direct significant linear nor 

logarithmic relationship between patch size and within-patch total SPM concentration. 

Other more indirect approaches were thus investigated. 
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Figure 6.3 : Pearson's correlation coefficients describing the relationship between patch 

size and within-patch total SPM concentration. The coefficients for each dataset are 

plotted against the averaged surface velocity into the estuary for the survey. 
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Figure 6.4 : Pearson's correlation coefficients describing the relationship between ln(patch 

size) and In(within-patch total S P M concentration). The coefficients for each dataset are 

plotted against the averaged surface velocity into the estuary for the survey. 
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The relationship between within-patch averaged surface velocity and ln(within-patch 

averaged water depth) maintains a significant relationship for 29 June (Appendix E & fig. 

6.5). A further significant relationship is evident for 29 June between within-patch 

averaged surface velocity and ln(within-patch total S P M concentration) (Appendix E & 

fig. 6.6). Thus it may be possible to derive within-patch total S P M concentration for 

conditions such as those experienced on 29 June indirectly from within-patch averaged 

water depth (assumed to be a known quantity alongside patch size) through the 

determination and use of wiihin-patch averaged surface velocity. It is thus hypothesised 

that one can derive within-patch total SPM concentration from patch size either directly or 

indirectly for other similarly assessed datasets acquired during the tidal conditions 

discussed in this study (table 6.2). Obviously there are large gaps in the temporal coverage 

of this particular study and it is suggested that the use of one relationship over another 

would be more clearly defined with the addition of more data. The use of the relationships 

sunmiarised in table 6.2, however, do exemplify the possible practical use of such analysis 

in the Humber Estuary and the consequential vast reduction in traditional surface-based 

monitoring time and cost. 

Date Tidal state Times relative to 

low water 

Significant relationships to derive 

within-patch S P M concentration 

29 June springs -0.23h to+0.1 h ln(z) —> V 

v —»ln(s) 

10 August 1 day before springs +1.38h to +3.33h ln(x) ln(s) 

11 August springs -0.15h to 4O.08h x —> s 

15 August 4 days after springs -3.33h to -2.17h ln(x) —> ln(s) 

21 August neaps +3.27h to +4.7h ln(x) —> ln(s) 

Table 6.2 : Summary of the significant relationships suggested for use in the derivation of 

within-patch total SPM concentration from the known quantities of patch size and within-

patch averaged water depth, x = patch size, s = within-patch total S P M concentration, 

V = within-patch averaged surface velocity, and z = within-patch averaged water depth. 
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Figure 6.5 : Pearson's correlation coefficients describing the relationship between within-

patch averaged velocity and ln(within-patch averaged water depth). The coefficients for 

each dataset are plotted against the averaged surface velocity into the estuary for the 

survey. 
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Figure 6.6 : Pearson's correlation coefficients describing the relationship between within-

patch averaged velocity and ln(within-patch total S P M concentration). The coefficients for 

each dataset are plotted against the averaged surface velocity into the estuary for the 

survey. 
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A similar analysis was followed to ascertain the possible use of patch size to determine 

within-patch total SPM flux directly or indirectly from patch size. The relationship 

between these two parameters is not uniformly significant (Appendix E & fig. 6.7) and the 

derivation of within-patch total SPM flux can probably only be assessed from patch size 

directly under the conditions experienced on 11 August. The relationship between within-

patch total SPM concentration and total flux was thus interrogated as a possible indirect 

avenue through which flux may be derived (Appendix E & fig, 6.8). Significant 

relationships emerged for the data acquired on 29 June, 10 August (latter section of the 

survey only), 15 August and 21 August (fig. 6.8). For these conditions it could thus be 

possible to use these relationships to derive within-patch total S P M flux from the 

previously determined concentration results. The first three datasets acquired on 10 

August yielded insignificant relationships (figs. 6.7 & 6.8) and it appeared impossible to 

suggest a useful methodology to use in the derivation of within-patch total SPM flux. It is 

again suggested that the analysis would benefit from the addition of more data to fill in the 

temporal gaps. More concrete suggestions for the application of these types of analytical 

reasoning could then be made. A summary of the suggested methodologies as derived 

from this study's datasets is detailed in table 6.3. 

Date Tidal state Times relative to 

low water 

Significant relationships to derive 

wilhin-patch SPM flux 

29 June springs -0.23h to+0.1 h s - > f 

10 August 1 day before springs +1.38h to +3.33h s -> f ( L W + 2.07h and later only) 

11 August springs -0.15hto +0.08h x ^ f 

15 August 4 days after springs -3.33h to -2.17h s - > f 

21 August neaps +3.27h to +4.7h s ^ f 

Table 6.3 : Summary of the significant relationships suggested for use in the derivation of 

within-patch total S P M flux from the known quantities of patch size and within-patch total 

S P M concentration, x = patch size, s = within-patch total S P M concentration, 

and f = within-patch total S P M flux. 
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Figure 6.7 : Pearson's correlation coefficients describing the relationship between patch 

size and within-patch total S P M flux. The coefficients for each dataset are plotted against 

the averaged surface velocity into the estuary for the survey. 
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Figure 6.8 : Pearson's correlation coefficients describing the relationship between within-

patch total SPM concentration and within-paich total S P M flux. The coefficients for each 

dataset are plotted against the averaged surface velocity into the estuary for the survey. 
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It is interesting to note that the only dataset from which within-patch total SPM 

concentration and total SPM flux can be derived directly from patch size is that acquired 

on 11 August (low water springs). However, the surveyed datasets on this date comprised 

only two images and thus may not be truly representative of these conditions. The results 

from the 29 June survey suggest a more indirect way of deriving S P M concentration 

through the definition of within-patch averaged surface velocity. Again this dataset 

comprised only three points but this factor together with the results from 11 August may 

point to the fact that at or around low water and / or under spring tidal conditions the 

relationships between the parameters determining within-patch total SPM concentration 

are less distinct. Likewise, the data acquired on 10 August did not conform to the majority 

rule that within-patch total SPM concentration and total S P M flux are linearly related. The 

data series begins to conform as the tide progresses into the flood but for the first three 

image data transects ( L W + 1.38h to L W 1.85h) the relationships were not significant. 

This may be explained by the effects of particle setfling when water velocities are low and 

decelerating. In general, the best relationships are found where velocities are increasing 

and high. In the absence of any evidence to suggest any clear change from the significant 

use of one relationship over another in the derivation of either within-patch total SPM 

concentration or total SPM flux, the results are summarised as exemplifying two generally 

signiflcant relationships: 

• ln(patch size) and ln(within-patch total S P M concentration), and 

• within-patch total S P M concenu-ation and within-patch total SPM flux. 

Although the two previously summarised results apply to the majority of the data acquired, 

there still remains a degree of uncertainty in using the relationships for data acquired under 

conditions similar to those datasets which did not conform to one or both of them (e.g. 

conditions similar to those experienced on 29 June, 10 and 11 August). What is required is 

an algorithm which continuously delivers the required quantities from all datasets with a 

high significance. An approach which incorporated all known quantities (patch size and 

within-patch averaged water depth), and not just a single entity, was thus adopted. 

Algorithms for the derivation of wiihin-patch total S P M concentration and total SPM flux 

were developed through multi-regression analyses. Equations 6-1 and 6-2 were thus 

defined. 
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ln(5) = 
ln(/i) + a./n-Z?ln(x) + c 6-1 

where: s = within-patch total S P M concentration (kg m" ), 

/ = within-patch total SPM flux (kg m"̂  s"*), 

jc = patch size (m), 

h = within-patch averaged water depth (m), and 

a y b, c & d are constants derived from multi-regression analysis (table 6.4). 

Date Time (hours 
relative to L W ) 

average surface 
velocity (m sec ") 

a b c d 

29 June -0.23 -0.502 0.087 -0.034 1.474 0.028 0.971 
-0.1 -0.474 0.086 -0.033 1.469 0.033 0.971 
0.1 -0.431 0.084 -0.038 1.511 0.031 0.971 

10 August 1.38 -0.032 0.092 0.147 0.868 -0.148 0.979 
1.58 0.071 0.086 0.133 0.973 -0.13 0.981 
1.85 0.204 0.079 0.145 0.998 -0.147 0.984 
2.07 0.317 0.075 0.126 1.088 -0.131 0.98 
2.35 0.461 0.078 0.112 1.098 -0.108 0.987 
2.62 0.599 0.078 0.085 1.199 -0.088 0.989 
2.83 0.695 0.077 0.071 1.278 -0.065 0.986 
3.08 0.787 0.076 0.058 1.335 -0.056 0.985 
3.33 0.88 0.076 0.064 1.321 -0.062 0.981 

11 August -0.15 -0.627 0.107 0.036 1.066 -0.035 0.965 
0.08 -0.554 0.107 0.028 1.1 -0.038 0.963 

15 August -3.33 -0.759 0.074 -0.035 1.693 0.034 0.981 
-3.18 -0.719 0.076 -0.052 1.71 0.052 0.98 
-2.93 -0.653 0.077 -0.041 1.644 0.04 0.979 
-2.7 -0.59 0.079 -0.029 1.576 0.033 0.979 

-2.43 -0.521 0.082 -0.039 1.554 0.032 0.976 
-2.17 -0.45 0.082 -0.028 1.523 0.03 0.977 

21 August 3.27 -0.009 0.066 0.102 1.188 -0.101 0.994 
3.48 0.042 0.067 0.076 1.308 -0.081 0.989 
3.72 0.133 0.068 0.054 1.412 -0.053 0.984 
3.98 0.232 0.091 -0.309 2.693 0.301 0.931 
4.25 0.335 0.063 0.087 1.336 -0.082 0.987 

4.48 0.422 0.058 0.132 1.208 -0.12 0.991 
4.7 0.506 0.058 0.097 1.363 -0.095 0.989 

values 

the averaged surface velocity during survey. 
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/ = / i + aln(/i) + /7ln(;c) + c 6-2 

where: / = within-patch total SPM flux (kg m'^ s ' ) , 

jc = patch size (m), 

h = within-patch averaged water depth (m), and 

a , b, c & d are constants derived from multi-regression analysis (table 6.5). 

Date Time (hours 
relative to LW) 

average surface 
velocity (m sec ') 

a b c d 

29 June -0.23 -0.502 10.482 0.289 -13.985 0.033 0.97 
-0.1 -0.474 10.616 0.321 -14.214 0.07 0.971 
0.1 -0.431 10.688 0.325 -14.528 0.069 0.971 

10 August 1.38 -0.032 10.641 0.016 -13.853 0.054 0.971 
1.58 0.071 11.211 -0.069 -14.965 -0.005 0.974 
1.85 0.204 11.331 0.058 -15.631 -0.027 0.974 
2.07 0.317 11.608 0.155 -16.517 -0.047 0.972 
2.35 0.461 11.597 -0.273 -15.658 0.097 0.977 
2.62 0.599 12.315 -0.174 -17.754 0.061 0.979 
2.83 0.695 12.492 0.02 -18.572 0.003 0.978 
3.08 0.787 12.767 0.067 -19.336 -0.002 0.981 
3.33 0.88 13.014 0.089 -19.998 -0.002 0.977 

11 August -0.15 -0.627 9.382 0.332 -11.348 0.043 0.966 
0.08 -0.554 9.24 0.393 -11.295 0.042 0.962 

15 August -3.33 -0.759 13.409 0.487 -21.773 0.096 0.983 
-3.18 -0.719 13.123 0.767 -21.418 0.154 0.982 
-2.93 -0.653 12.772 0.46 -19.953 0.088 0.98 
-2.7 -0.59 12.368 0.241 -18.478 0.047 0.978 

-2.43 -0.521 11.768 0.291 -17.175 0.036 0.973 
-2.17 -0.45 11.751 0.066 -16.586 0.014 0.975 

21 August 3.27 -0.009 13.033 0.187 -20.364 6.292 0.984 
3.48 0.042 13.676 -0.133 -21.462 2.286 0.983 
3.72 0.133 13.87 0.182 -22.424 -0.482 0.983 
3.98 0.232 11.33 1.917 -19.204 -2.527 0.911 
4.25 0.335 14.297 0.001 -23.121 -0.082 0.984 
4.48 0.422 14.598 -0.11 -23.568 -0.064 0.986 
4.7 0.506 14.784 -0.005 -24.531 -0.02 0.983 

the averaged surface velocity during survey. 
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In all cases the value is high for both the definition of within-patch total SPM 

concentration and of total SPM flux from equations 6-1 and 6-2 respectively (table 6.4 & 

fig. 6.9 and table 6.5 & fig. 6.10 respectively). In all but one case the value is above 

0.95 which represent very significant results. The one case where the R^ value lies below 

0.95 represents the dataset acquired at LW -i- 3.98h on 21 August. This dataset was not 

included in further analyses. 

It was hypothesised that i f the distribution of the a, b, c and d coefficients for the two 

equations 6-1 and 6-2 were significantly related to averaged surface velocity for the survey 

(i.e. tidal state and condition) it may be possible to predict their specific quantities for use 

with any similarly surveyed data not included here. Relating to equation 6-1, figures 6.11, 

6.12, 6.13 and 6.14 depict the variation in the a, b, c and d coefficients respectively 

according to averaged surface velocity for the survey, c and d both have a reasonably 

significant relationship with averaged suri'ace velocity with R^ values over 0.75, a and c 

however do not. The coefficients relating to equation 6-2 are depicted in a similar fashion 

with a, b, c and d represented in figures 6.15. 6.16, 6.17 and 6.18 respectively. In this case 

only the b coefficient has a reasonably significant relationship with averaged surface 

velocity (R^ of 0.73) and d may actually be a near-zero constant. 

It was evaluated that the surveyed data included in this study do not provide sufficient 

information to use in the derivation of a predictive model which defines all the unknowns 

(a, b, c & d) necessary in the resolution of equations 6-1 and 6-2 for any similarly surveyed 

dataset. The underlying ethos that equations 6-1 and 6-2 present do however pave the way 

for the development of such a model. The inclusion of many more similar datasets now 

readily available from the LOIS archive could allow this to become a reality. 
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Figure 6.10 : R^ values describing the goodness of fit of equation 6-2 (to derive within-

patch total SPM flux) to the 27 surveyed datasets. The dotted line represents the threshold 

where R^ is 0.95. 
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Figure 6.11 : The coefficient a from equation 6-1 for 26 of the datasets. The trendline 

describes the distribution of the coefficient in relation to the averaged surface velocity for 

the survey. 
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Figure 6.12 : The coefficient b from equation 6-1 for 26 of the datasets. The trendline 

describes the distribution of the coefficient in relation to the averaged surface velocity for 

the survey. 
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Figure 6.13 : The coefficient c from equation 6-1 for 26 of the daiasets. The trendline 

describes the distribution of the coefficient in relation to the averaged surface velocity for 

the survey. 
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Figure 6.14 : The coefficient d from equation 6-1 for 26 of the datasets. The trendline 

describes the distribution of the coefficient in relation to the averaged surface velocity for 

the survey. 
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Figure 6.15 : The coefficient a from equation 6-2 for 26 of the datasets. The trendline 

describes the distribution of the coefficient in relation to the averaged surface velocity for 

the survey. 
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7 Summary and Recommendations for Future Work 

The use of airborne remote sensing in the coastal zone has been addressed through the 

development and validation of practical image processing and data analysis techniques for 

use in the Humber and Tweed Estuaries. The achievements of the original aims of study 

(section l . l ) are addressed in this section and recommendations for future work made. 

7.1 The achievements of the original aims of study 
The achievements of this study are related to the original aims set out in section 1.1 as 

follows: 

7. To explore the practical use of airborne remote sensing in the coastal zone for the 

quantification of suspended particulate matter (SPM) concentration, SPM flux, sea-

surface temperature and salinity 

Airborne remote sensing has proved to be a useful and worthy technology for use in the 

coastal zone and in particular for estuarine studies. An aircraft's flexibility is its main 

advantage over the use of satellite monitoring. The acquisition of truly synoptic image 

sequences provides an unique and invaluable insight into estuarine dynamics. It has, 

however, been impossible, during the lifetime of this study, to generate image data 

spanning an entire tidal cycle and covering all spring and neap conditions. This was 

mainly caused by unfavourable weather conditions during proposed surveys. The 

utilisation of a variety of images acquired over the Tweed and Humber Estuaries has been 

demonstrated in this study. The A T M has been shown to be a useful tool from which sea-

surface temperature can be determined and salinity derived (section 4.2.3.2 & Appendix F 

: Uncles, et al., 1999). In the Humber Estuary the CASI has been employed and tested for 

use in SPM concentration derivation and SPM flux estimation (section 4.2.3.1 & chapter 

5). This type of information has been defined in greater detail than is presently 

exemplified in the literature due to the finer spatial resolution and the wider two-

dimensional coverage area furnished by the use of airborne remote sensing. Such 

information represents essential and hitherto unseen evidence of estuarine and coastal 

dynamics and would provide a key input into hydrodynamic models of the region 

important for effective estuarine and coastal zone management. 
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2. To develop a protocol for the sea-truthing of remotely sensed airborne data acquired 

using the Compact Airborne Spectrographic Imager (CASI) and the Airborne Thematic 

Mapper (ATM) and to generate a comprehensive dataset as part of the core Land-

Ocean Interaction Study (LOIS) field programme 

The author took part in numerous cruises spanning the Humber Estuary and the North Sea. 

The protocols for sea-based data acquisition and the coordination of the aircraft with the 

ship were developed throughout 1994 and were put into active operation during 1995 

(section 3.3). Comprehensive sea-based in-water optical profile data acquisition protocols 

were devised based on those already laid down by the SeaWiFS committee (Mueller & 

Austin, 1995). A reliable communication link between ship and aircraft was maintained 

and sampling from the sea and from the air was undertaken in concert. Al l airborne data 

acquired in the vicinity of the ships could thus be validated through comparison with the 

results which the in-water optical profiles yielded. 

3. To assess the optical characteristics of the waters surveyed and to develop a ^^^(490) 

algorithm for use in the coastal zone 

In-waler optical profiles were employed to assess the surveyed waters of the Humber 

Estuary and North Sea. Water classifications extending from Jerlov*s (1976) and Morel & 

Prieur*s (1977) theories were used to define the coastal and estuarine conditions monitored 

during this study (section 5.1). This information provides the researcher with an overall 

view of the nature and content of the waters under study. For a more detailed analysis of 

the optical characteristics of the case / / waters of the Humber Estuary and its environs, a 

^d(490) algorithm, which takes as its basis the theory put forward by Austin & Petzold 

(1981), was developed for use in coastal waters (section 5.2). 

4. To utilise and enhance the processing routines used to correct the CASI and ATM 

Each image processing stage was assessed and validated through comparison with in-water 

optical profiled data (chapter 4). The main focus of the enhancement of the processing 

routines used to correct NERC CASI and A T M data comprised the development of 

automated correction procedures for erroneous location and attitude data contained within 

the datastream (section 4.2.4). This information is necessary for the geometric correction 

of NERC image data and it was found that much of the information originally present 
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within the datastream was of insufficient quality. Much effort thus went into the 

development of routines to allow the rectification of erroneous data points. These routines 

are now used for all NERC CASI and A T M data acquired using the IDS. 

5. To test atmospheric correction routines developed for use with the CASI 

The atmospheric correction routines contained within the COAST software were tested 

through comparison with in-water optical profile data acquired coincident with CASI 

images (section 4.2.2). The fully atmospherically corrected results did not compare well 

with those measured. It is suggested that the Rayleigh scattering correction is effective but 

that the full atmospheric correction, which comprises a Rayleigh and an aerosol correction, 

does not perform well for the datasets acquired for this study. 

6. To develop and substantiate algorithms to quantify SPM concentration in the Number 

Estuary using CASI data and sea-surface temperature and salinity in the Tweed 

Estuary using ATM data 

An algorithm for the derivation of SPM concentration from CASI data acquired in the 

Humber Estuary was devised and tested (section 4.2.3.1). An automated routine for the 

determination of sea-surface temperature from thermal-infrared A T M data was enhanced 

for use in the Tweed Estuary and an algorithm to derive salinity determined (section 

4.2.3.2). These algorithms were used successfully within this study to investigate the 

nature and content of the estuarine waters of the Humber and Tweed. The detailed 

definition of SPM concentrations and sea-surface temperature and salinity that airborne 

remote sensing provides for particular sections of the tidal cycle is an important addition to 

the information available to estuarine and coastal zone managers. 

7. To develop a methodology for the estimation of SPM flux in the Humber Estuary 

through the incorporation of SPM concentration information derived from CASI images 

and hydrodynamically modelled flows 

Two-dimensional Fourier Transforms of the SPM concentration images were employed to 

assess the transect line along which the maximum variation of SPM concentrations and so 

movement of flux lay (section 5.3.1). A transect was taken from each image which lay 

close to this ideal and encompassed as much image data as possible, the images having 

slightly different spatial coverages. The transect data were then used, in conjunction with 
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information derived from an hydrodynamic model and hydrographic charts, to estimate 

SFM fluxes into and out of the Humber mouth (section 5.4). Present methodologies are 

coarse-grained and employ point measurements for their definition. The use of remotely 

sensed images provides a spatially coherent representation of SPM distribution and 

movement and suggests a more practical alternative to flux calculation. The use of a 

variety of images acquired at different tidal states and under different tidal conditions 

enabled an insight into the nature of sediment movement during this study. One-

dimensional Fourier Transforms of the transect datasets yielded information pertaining to 

the fact that SPM moves in patches which elongate into and out of the mouth on the flood 

and ebb (section 5.3.3). The importance of the patches was determined by attempting to 

derive a crude model through which it would be possible to predict SPM concentration and 

flux within the patches from the patch size alone (section 6.4). Algorithms to enable this 

were set up and generated results with an of over 0.9 for each image when using 

constants within the algorithm specific to an individual dataset (equations 6-1 and 6-2). It 

was impossible to devise a model to monitor the variations in the algorithms' constants for 

all potential surveys as the data available for this study covered a relatively sparse array of 

tidal states and conditions. However, with the addition of more data to test the 

methodology further, the use of airbome remote sensing and spatial analysis techniques to 

estimate SPM concentration and flux could be a better approach for estuarine and coastal 

zone managers to adopt over traditional point monitoring. 

7.2 Recommendations for future work 
Comparisons with conventionally monitored and derived estimates of SPM flux for the 

survey period were not possible. The end of the Land-Ocean Interaction Study sees the 

amalgamation of all the data acquired under its umbrella. The vast archive of CASI and 

A T M image data acquired for LOIS is now more readily available and its quality is 

assured. If a complete tidal cycle of CASI images exists (or near-complete as an aircraft is 

limited by the need to refuel) it would be possible to gain flux estimates across the 

complete tidal range. It may be possible to incorporate data acquired under differing 

spring and neap conditions by scaling each according to their tidal state. This was not 

possible here due to the diversity of the surveyed conditions. The availability of more 

airbome and surface-based data acquired under the LOIS banner would also allow the 

beginning of work towards an annual flux estimate. It would also enable the 
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comprehensive validation of the SPM flux derivation techniques demonstrated in this 

study with actual measurements. In addition, the high resolution hydrodynamic models of 

the North Sea and Humber Estuary, which are still being developed within an extended 

LOIS framework, wil l provide a potential source for data validation. 

Within LOIS a vast amount of airborne data was acquired and has now been processed. 

The natural extension of this work would be to delve into the archive of airborne data to 

unearth CASI images acquired over the Humber mouth. The larger picture of the nature of 

SPM and its movement which this study has started to highlight could then be built up. In 

particular, the contribution of datasets from all types and states of the tide would enable the 

worker to demonstrate the nature of the estuary throughout the tidal cycle and also during 

spring and neap conditions. 

Future work could address the question of SPM concentration and SPM flux estimation in 

the Humber Estuary directly from patch size and within-patch water depth, two readily 

accessible quantities from airborne images and hydrographic charts / digital elevation 

models respectively. The inclusion of more data should conclusively ascertain the 

relevance of patch size to SPM flux and thus enable the derivation of a model to predict 

SPM concentration and SPM flux directly from patch size and within-patch water depth. 

This would reduce the necessity for expensive and time consuming fieldwork and would 

provide an essential, data source for hydrodynamic modellers who require this sort of 

information to develop and validate their models. 

The success of this type of study provides a unique and novel insight into the flux 

exchange between the land and sea. The value of remote sensing when adopting an 

integrated coastal zone management approach is becoming more widely recognised as 

techniques improve. The usefulness, flexibility and transportability of the multi­

dimensional approach reported here is one such important use and a unique information 

source for the coastal zone manager. 
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Appendix A : Acronyms 
AHRS Attitude and Heading Reference System 

ARSF Airborne Remote Sensing Facility 

A T M Airborne Thennatic Mapper 

CASI Compact Airborne Spectrographic Imager 

CCD Charge Coupled Detector 

CH Challenger cruise identifier 

COAST Coastal Earth Observation Application for Sediment Transport 

CTD Conductivity, Temperature and Depth monitoring apparatus 

CZCS Coastal Zone Color Scanner 

DIVAST Depth Integrated Velocities And Solute Transport 

DN Digital Number 

DOM Dissolved Organic Matter 

FFT Fast Fourier Transform 

gcorr Geometric correction software 

GFF Glass fibre filter F 

GTS Geographic Information System 

GPS Global Positioning System 

HDF Hierarchical Data Format 

IDS Integrated Data System 

ILS Incident Light Sensor 

LHS Left-hand side 

LOIS Land-Ocean Interaction Study 

LW Low Water 

MC Vertical profiling stations related to transaxial flightlines across 

Humber Estuary 

MSS Multi-Spectral Scanner 

NASA National Aeronautics and Space Administration 

NERC Natural Environment Research Council 

NIR Near-infrared 

NRA National Rivers Authority 

PC Personal Computer 
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Appendix A : Acronyms 

pdop 

PML 

RACS(C) 

RHS 

SeaWiFS 

SPM 

sv 
SWIR 

TIR 

T M 

VP 

3D 

position, dilution of precision 

Plymouth Marine Laboratory 

Rivers, Atmospheres, Estuaries and Coasts Study (Estuaries & 

Coasts) 

Right-hand side 

Sea Wide Field-of-view Sensor 

Suspended Particulate Material 

Sea Vigil cruise identifier 

Shortwave-infrared 

Thermal-infrared 

Landsat Thematic Mapper 

Vertical profile stations along the offshore track from the Humber 

mouth 

Three-dimensional 
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Appendix B : Proof that Q = i t fo r a Lambertian reflector 

Appendix B : Proof that Q = K for a Lambertian reflector 

where: L is the radiance (directional flux) hitting the surface of a sphere, whose radius is 

7?, at an angle 6 with the vertical and 0 with the horizontal. 

22k RdeRs'ined<t>cos<t> 

0 0 

where: E is the irradiance (diffuse flux) 

E ' 
— = js\necose[2n}id 

— = 27t\-sin2edd 
L i2 

1 I2 
= 7t — c o s i e 

I 2 Jo 
— = n—cos;r + —COS0 = ; r — + — =n 
L I 2 2 J L2 2j 

E=L7t 

Q = n for a perfectly absorbing Lambertian water surface 
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Appendix C : Optical proHle results f r o m datasets acquired during C H I I 8a, C H 118b, SV23 & SV24 

Profile A : 6 April 1995 (CHl lSa) , 10:23 -11:14 G M T 

SPM concentration = 0.44 mg m'̂  Chlorophyll concentration = 0.46 mg m"̂  Salinity = 34.36 

X L.(0-) U ( 0 ^ K m Ed(0) R ( 0 ) R(0*) Z90 

412 0.3304 0.1779 -0.2820 68.2336 -0.2840 0.0048 0.0026 -3.5211 

443 0.5041 0.2724 -0.1989 84.6794 -0.2133 0.0060 0.0031 -4.6890 

490 0.8933 0.4848 -0.1387 99.9569 -0.1515 0.0089 0.0048 -6.6006 

510 0.8759 0.4760 -0.1349 95.3094 -0.1511 0.0092 0.0049 -6.6193 

555 0.6803 0.3708 -0.1447 90.9808 -0.1611 0.0075 0.0040 -6.2056 

670 0.0634 0.0347 -0.3804 54.3745 -0.5535 0.0012 0.0006 -1.8068 

683 0.0362 0.0198 -0.3039 

700 33.8401 -0.6565 -1.5232 

-0.8 
400 

0.002 

Lu((>4-) 

400 450 500 550 600 

Wawlength (nm) 

650 700 

KLu 

KEd 

450 500 550 600 

Wawlcngth (nm) 

650 700 750 

0.008 

« 0.006 

S 0.004 

R(O-) 

R(0+) 

400 450 500 550 600 

\Va%ilength (nm) 

650 700 
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Appendix C : Optical prof i le results f r o m datasets acquired during C H I 18a, C H I 18b, SV23 & SV24 

Profile B : 10 April 1995 (CHl lSa) , 10:35 - 10:46 G M T 

S P M c o n c e n t r a t i o n = 0 .72 m g m '^ C h l o r o p h y l l c o n c e n t r a t i o n = 0 .32 m g m"^ S a l i n i t y = 34 .20 

\ L u ( 0 ) U(0*) Ed(O-) R ( 0 ) R(0*) Z.90 

412 0.2498 0.1345 -0.3285 44.6685 -0.3113 0.0056 0.0030 -3.2123 

443 0.3696 0.1997 -0.2428 52.5556 -0.2359 0.0070 0.0037 -4.2398 

490 0.5930 0.3218 -0.1748 58.4643 -0.1673 0.0101 0.0054 -5.9780 

510 0.5885 0.3198 -0.1671 55.7243 -0.1632 0.0106 0.0056 -6.1274 

555 0.4852 0.2644 -0.1729 52.9975 -0.1683 0.0092 0.0049 -5.9410 

670 0.0699 0.0383 -0.4741 28.9190 -0.5285 0.0024 0.0013 -1.8922 

683 0.0404 0.0221 -0.3794 

700 16.8099 -0.6065 -1.6488 

400 

Lu(0+) 

400 450 500 550 600 

Wawlength (nm) 

650 700 

KUi 

KEd 

450 500 550 600 

Wa\%length (nm) 

650 700 750 

0.012 

0.008 

S 0.006 

« 0.004 

0.002 

R(O-) 

400 450 500 550 600 

Warelength (nm) 

650 700 
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Appendix C : Optical prof i le results f r o m datasets acquired during C H H S a , C H I 18b, SV23 & SV24 

Profile C : 12 April 1995 (CHl lSa) , 09:35 -10:22 G M T 

SPM concentration = 3.15 mg m'' Chlorophyll concentration = 0.9 mg m'̂  Salinity = 34.22 

X L„(0-) U ( 0 ^ Ed(0) R ( 0 ) R(0*) Z90 

412 0.4500 0.2422 -0.5624 67.375739 -0.55064 0.0067 0.0035 -1.8161 

443 0.7111 0.3842 -0.4520 82.813989 -0.4531 0.0086 0.0046 -2.2070 

490 1.2494 0.6780 -0.3581 99.621001 -0.35782 0.0125 0.0067 -2.7947 

510 1.3395 0.7279 -0.3399 95.898659 -0.3419 0.0140 0.0075 -2.9248 

555 1.4806 0.8069 -0.3164 92.146067 -0.31779 0.0161 0.0087 -3.1467 

670 0.2191 0.1200 -0.5893 41.979693 -0.64915 0.0052 0.0028 -1.5405 

683 0.1371 0.0751 -0.5414 

700 27.312569 -0.72062 -1.3877 

-'^ -0.2 

0.004 

Lam) 

400 450 500 550 600 

VVa\-elength (nm) 

650 700 

KLu 

KEd 

400 450 500 550 600 650 700 

Warelength (nm) 

750 

0.016 

S 0.012 

« 0.008 

R(O-) 

R(0+) 

400 450 500 550 600 650 

\Va\-elength (nm) 

700 
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Appendix C : Optical prof i le results f r o m datasets acquired dur ing CH118a, C M 118b, SV23 & SV24 

Profile D : 21 April 1995 (CHI 18b), 09:51 -10:27 G M T 

SPM concentration = 0.74 mg m""' Chlorophyll concentration = 1.4 mg m'̂  Salinity = 34.54 

\ L „ ( 0 ) U O * ) Ed(0) R ( 0 ) R(0*) Z90 

412 0.3699 0.1991 -0.3157 79.8289 -0.3213 0.0046 0.0024 -3.1120 

443 0.4620 0.2496 -0.2584 94.4374 -0.2703 0.0049 0.0026 -3.6990 

490 0.6805 0.3693 -0.1830 106.8510 -0.1987 0.0064 0.0034 -5.0320 

510 0.6868 0.3732 -0.1705 103.9822 -0.1903 0.0066 0.0035 -5.2557 

555 0.6408 0.3493 -0.1643 100.7827 -0.1838 0.0064 0.0034 -5.4422 

670 0.0372 0.0204 -0.2068 73.5021 -0.5973 0.0005 0.0003 -1.6743 

683 0.0327 0.0179 -0.1552 

700 58.7422 -0.6887 -1.4519 

-0.2 A 

< -0.6 

-0.8 

0.008 

0.006 

2 0.004 

0.002 

400 450 500 550 600 

Wa -̂elength (nm) 

650 700 

KUi 

KEd 

400 450 500 550 600 650 

Wa^ilength (nm) 

700 750 

R(O-) 

R((H) 

400 450 500 550 600 

\Va\7length (nm) 

650 700 
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Appendix C : Optical prof i le results f r o m datasets acquired during C H I 18a, C H I 18b, SV23 & SV24 

Profile E : 23 April 1995 (CHl lSb) , 10:37 -10:55 G M T 

SPM concentration = 12.84 mg m""* Chlorophyll concentration = 0.79 mg m"̂  Salinity = 34.21 

\ U(0*) Ed(O-) R ( 0 ) R ( 0 ^ Z90 

412 0.4621 0.2488 -1.6643 62.3907 -1.6118 0.0074 0.0039 -0.6204 

443 0.6676 0.3607 -1.3472 68.7874 -1.3576 0.0097 0.0052 -0.7366 

490 1.3439 0.7292 -1.2256 94.7526 -1.2049 0.0142 0.0076 -0.8299 

510 1.2374 0.6724 -1.0831 70.8195 -1.0456 0.0175 0.0095 -0.9564 

555 1.7474 0.9523 -1.0003 71.3406 -0.9404 0.0245 0.0135 -1.0634 

670 0.8640 0.4733 -1.2177 49.1916 -1.1725 0.0176 0.0095 -0.8529 

683 0.5639 0.3090 -1.2362 

700 52.4761 -1.3181 -0.7587 

c -1.3 

< -1.5 

-1.7 

Lu((H) 

400 450 500 550 600 

\Va\-elength (nm) 

650 700 

KLu 

KEd 

400 450 500 550 600 650 

\Va\-elength (nm) 

700 750 

0.025 

2 0.015 

0.005 

R(O-) 

R(&+) 

400 450 500 550 600 

\Va\Tlenglh (nm) 

650 700 
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Appendix C : Optical prof i le results f r o m datasets acquired during C H I 18a, C H I 18b. SV23 & SV24 

Profile F : 19 July 1995 (SV23), 13:53 -14:04 G M T 

SPM concentration = 10.07 mg m" Chlorophyll concentration = N/A Salinity = 32.19 

X L u ( 0 ) Lu(0*) E d ( 0 ) R(O-) R(0*) Z90 

412 0.3761 0.2025 -1.7367 63.2279 -1.6775 0.0059 0.0031 -0.5961 

443 0.7826 0.4228 -1.4131 78.9438 -1.3530 0.0099 0.0053 -0.7391 

490 95.5033 -1.1003 -0.9089 

510 1.7821 0.9685 -1.0634 96.0423 -1.0208 0.0186 0.0101 -0.9796 

555 2.3943 1.3049 -0.8988 85.6915 -0.8403 0.0279 0.0155 -1.1901 

670 0.7991 0.4377 -1.0364 51.6177 -1.0629 0.0155 0.0084 -0.9408 

683 0.2637 0.1445 -1.0601 

700 47.4715 -1.1846 -0.8442 

w 0.6 

0.032 

0.024 ^ 

B 0.016 A 

0.008 H 

400 

Lu({>+) 

400 450 500 550 600 

\Va\ielength (nm) 

650 700 

KLu 

KEd 

400 450 500 550 600 650 

Wa\vlength (nm) 

700 750 

R(O-) 

R((H) 

450 500 550 600 

\Va\-elength (nm) 

650 700 
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Appendix C : Optical prof i le results f r o m datasets acquired during C H 118a, C H 118b, SV23 8l SV24 

Profile G : 19 July 1995 (SV23), 14:20 -14:29 G M T 

SPM concentration = 16 mg m" Chlorophyll concentration = N/A Salinity = 32.62 

X U ( 0 ) Lu(0*) K L U Ed(0) R ( 0 ) R ( 0 ^ Z90 

412 0.4286 0.2307 -2.6313 70.9190 -2.3404 0.0060 0.0032 -0.4273 

443 0.6797 0.3673 -2.0864 80.4574 -1.9567 0.0084 0.0045 -0.5110 

490 96.3354 -1.7019 -0.5876 

510 1.4875 0.8084 -1.6560 88.3022 -1.5489 0.0168 0.0091 -0.6456 

555 2.2414 1.2216 -1.4489 92.9222 -1.3809 0.0241 0.0133 -0.7242 

670 1.2347 0.6763 -1.5163 52.0504 -1.4535 0.0237 0.0130 -0.6880 

683 0.4277 0.2344 -1.5569 

700 53.9858 -1.6020 -0.6242 

400 

Lu(0+) 

400 450 500 550 600 

Wa\clength (nm) 

650 700 

KLu 

KEd 

450 500 550 600 

\Va\'elength (nm) 

650 700 750 

0.025 

Z 0.015 
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Appendix C : OpUcal prof i le results f rom datasets acquired during C H I 18a, C H I 18b, SV23 & SV24 

Profile H : 19 July 1995 (SV23), 14:58 -15:04 G M T 

S P M c o n c e n l r a l i o n = 9.39 m g m" C h l o r o p h y l l c o n c e n l r a l i o n = N / A S a l i n i t y = 33.10 

X U ( 0 ) L„(0*) Ed(O-) R { 0 ) R(0") Z90 

412 0.3882 0.2090 -1.2553 57.1881 -1.2107 0.0068 0.0036 -0.8260 

443 0.6764 0.3655 -1.0145 69.4047 -1.0000 0.0097 0.0052 -0.9999 

490 88.0694 -0.8563 -1.1678 

510 1.4908 0.8102 -0.7960 82.9363 -0.7850 0.0180 0.0098 -1.2740 

555 1.9928 1.0861 -0.7003 81.7990 -0.6932 0.0244 0.0134 -1.4426 

670 0.7170 0.3928 -0.9791 55.0872 -0.9861 0.0130 0.0070 -1.0141 

683 0.2358 0.1292 -0.9999 

700 52.4029 -1.1121 -0.8992 

-0.6 

•0.8 

400 450 500 550 600 

Wa\«length (nm) 

650 700 

KLu 

KEd 

400 450 500 550 600 650 
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700 750 

0.025 
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0.005 
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R(0+) 

400 450 500 550 600 
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Appendix C : Optical prof i le results f r o m dataseis acquired during C H I 18a, C H I 18b, SV23 & SV24 

Profile 1: 19 July 1995 (SV23), 15:32 -15:40 G M T 

SPM concentration = 8.09 mg m" Chlorophyll concentration = N/A Salinity = 33.20 

X U C O ) Lu(0*) Ed(O-) R ( 0 ) R(0*) Z90 

412 0.1449 0.0780 -1.0222 23.2012 -0.9982 0.0062 0.0033 -1.0018 

443 0.2493 0.1347 -0.8125 26.7724 -0.8012 0.0093 0.0050 -1.2481 

490 32.8292 -0.6788 -1.4731 

510 0.5013 0.2724 -0.6145 30.6802 -0.6187 0.0163 0.0088 -1.6164 

555 0.6338 0.3454 -0.5399 29.6360 -0.5477 0.0214 0.0117 -1.8260 

670 0.1688 0.0925 -0.8192 17.4615 -0.8530 0.0097 0.0052 -1.1723 

683 0.0588 0.0322 -0.8635 

700 16.0029 -0.9872 -1.0130 

E 0.2 

-0.4 

Ui((h-) 

400 450 500 550 600 

Wavelength (nm) 

650 700 

KLu 

KEd 

400 450 500 550 600 650 
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700 750 

0.024 

0.016 

S 0.012 

5 0.008 

0.004 
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400 450 500 550 600 
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Appendix C : Optical p rof i l e results f r o m dataseis acquired dur ing C H I 18a, C H I 18b, SV23 & SV24 

Profile J : 19 July 1995 (SV23), 15:58 -16:07 G M T 

SPM concentration = 5.63 mg m' Chlorophyll concentration = N/A Salinity = 33.34 

X UCO) Ed(0) R ( 0 ) R(0*) Z90 

412 0.3177 0.1711 -0.8103 44.3500 -0.7520 0.0072 0.0038 -1.3298 

443 0.5227 0.2824 -0.6471 57.6360 -0.6280 0.0091 0.0048 -1.5924 

490 71.5241 -0.5210 -1.9193 

510 1.0056 0.5465 -0.4874 69.2977 -0.4912 0.0145 0.0078 -2.0360 

555 1.2113 0.6601 -0.4417 68.3802 -0.4505 0.0177 0.0096 -2.2197 

670 0.3464 0.1897 -0.8091 44.6463 -0.8045 0.0078 0.0041 -1.2430 

683 0.1170 0.0641 -0.8220 

700 39.6339 -0.9381 -1.0660 
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Appendix C : Optical profile results from datasets acquired during CH118a, CH118b. SV23 & SV24 

Profile K : 19 July 1995 (SV23), 16:32 -16:39 GMT 

SPM concentration = 8.59 mg m' Chlorophyll concentration = N/A Salinity = 32.92 

k L„(0') Lu(0*) K.|jj Ed(O-) R(0) R(0^ Z90 

412 0.2039 0.1098 -1.2867 32.9783 -1.2575 0.0062 0.0033 -0.7952 
443 0.3453 0.1866 -1.0115 39.7853 -1.0332 0.0087 0.0046 -0.9679 
490 49.0049 -0.8762 -1.1413 
510 0.7503 0.4077 -0.7857 44.2539 -0.7846 0.0170 0.0092 -1.2745 
555 1.0111 0.5511 -0.6860 44.0373 -0.6903 0.0230 0.0126 -1.4487 
670 0.3615 0.1980 -0.9636 29.4974 -0.9955 0.0123 0.0066 -1.0045 
683 0.1284 0.0703 -1.0119 
700 29.9954 -1.1593 -0.8626 

-0.6 

J-- -0.8 
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400 
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Appendix C : Optical profile results from datasets acquired during CHI 18a, CHllSb. SV23 & SV24 

Profile L : 19 July 1995 (SV23), 17:26 -17:33 GMT 

SPM concentration = 27.48 mg m' Chlorophyll concentration = N/A Salinity = 31.18 

X L.(0) L„(0") Ed(0) R(0) R(0*) Z90 

412 0.0817 0.0440 -4.4847 22.1698 -4.2055 0.0037 0.0019 -0.2378 
443 0.1560 0.0843 -3.5088 20.3262 -3.2302 0.0077 0.0041 -0.3096 
490 33.7185 -3.0847 -0.3242 
510 0.3523 0.1915 -2.7063 24.3395 -2.5488 0.0145 0.0078 -0.3923 
555 0.5446 0.2968 -2.3231 23.5890 -2.1707 0.0231 0.0127 -0.4607 
670 0.3144 0.1722 -2.0649 12.4784 -1.9994 0.0252 0.0139 -0.5002 
683 0.1133 0.0621 -2.1369 
700 11.2958 -2.0630 -0.4847 
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0.024 -

0.02 -
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Appendix C : Optical profile results from datasets acquired during CH118a, CH118b, SV23 & SV24 

Profile M : 19 July 1995 (SV23), 17:53 - 17:59 GMT 

SPM concentration = 23.11 mg m' Chlorophyll concentration = N/A Salinity = 31.02 

X M O ) U(0*) KLU Ed(0) R(0) R(0") Z90 

412 0.0608 0.0327 -3.9840 15.8140 -3.7034 0.0038 0.0020 -0.2700 
443 0.1207 0.0652 -3.1140 19.2374 -3.0482 0.0063 0.0033 -0.3281 
490 24.3798 -2.6728 -0.3741 
510 0.2795 0.1519 -2.3586 19.5010 -2.2341 0.0143 0.0077 -0.4476 
555 0.3927 0.2140 -1.8847 17.5629 -1.8171 0.0224 0.0123 -0.5503 
670 0.2570 0.1408 -1.8373 10.9368 -1.7925 0.0235 0.0129 -0.5579 
683 0.0847 0.0464 -1.8196 
700 10.6812 -1.9361 -0.5165 
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Appendix C : Optical profile results from daiascts acquired during CHI 18a, CHI 18b, SV23 & SV24 

Profile N : 23 August 1995 (SV24), 08:42 - 08:46 GMT 
SPM concentration = 19.44 mg m'^ Chlorophyll concentration = 12.05 mg m*' Salinity = 34.69 

X U O ) Lu(0*) Ed(0) R(0) R(0") 

412 0.0876 0.0472 -1.6571 34.7276 -1.5808 0.0025 0.0013 -0.6326 
443 0.1315 0.0710 -1.2209 36.5118 -1.2966 0.0036 0.0019 -0.7712 
490 46.8792 -1.0199 -0.9805 
510 0.2819 0.1532 -0.8243 35.0258 -0.8076 0.0080 0.0043 -1.2382 
555 0.4796 0.2614 -0.6301 36.8218 -0.6448 0.0130 0.0070 -1.5508 
670 0.1409 0.0772 -0.9487 27.9291 -1.0504 0.0050 0.0027 -0.9520 
683 0.1683 0.0922 -0.9642 
700 22.8310 -0.9604 -1.0413 
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Appendix C : Optical profile results from datasets acquired during CHI 18a, CHI 18b, SV23 & SV24 

Profile O : 23 August 1995 (SV24), 09:08 - 09:12 GMT 
SPM concentration = 19.08 mg m'^ Chlorophyll concentration = N/A Salinity = 32.76 

X U ( 0 ) K(0^ Ed(O-) R(0) R(0") Z90 

412 0.1483 0.0798 -1.3419 48.5262 -1.3054 0.0031 0.0016 -0.7661 
443 0.2180 0.1178 -1.0442 48.5138 -1.0697 0.0045 0.0024 -0.9349 
490 60.8384 -0.8476 -1.1798 
510 0.4344 0.2361 -0.7186 52.5803 -0.7134 0.0083 0.0044 -1.4016 
555 0.7288 0.3972 -0.5616 49.4203 -0.5518 0.0147 0.0079 -1.8122 
670 0.2275 0.1246 -0.8906 39.7782 -0.9645 0.0057 0.0030 -1.0368 
683 0.2542 0.1393 -0.8699 
700 34.4387 -0.9349 -1.0697 
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Appendix C : Optical profile results from datasets acquired during CH 118a, CH 118b, SV23 & SV24 

Profile P : 23 August 1995 (SV24), 09:30 - 09:35 GMT 

SPM concentration = 11.24 mg m"* Chlorophyll concentration = 10.04 mg m"̂  Salinity = 35.50 

U(O') L„(0*) Ed(0) R(O-) R(0*) 

412 0.1623 0.0874 -1.0051 67.2109 -0.9685 0.0024 0.0013 -1.0326 
443 0.2237 0.1209 -0.8320 67.8716 -0.8333 0.0033 0.0017 -1.2001 
490 82.7399 -0.6663 -1.5009 
510 0.4590 0.2494 -0.5985 78.9435 -0.5954 0.0058 0.0031 -1.6795 
555 0.7022 0.3827 -0.4658 70.7872 -0.4700 0.0099 0.0053 -2.1276 
670 0.2044 0.1119 -0.7810 56.9868 -0.8940 0.0036 0.0019 -1.1186 
683 0.2606 0.1428 -0.7585 
700 49.1418 -0.8738 -1.1444 
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Appendix C : Optical profile results from datasets acquired during CHI 18a, CHI 18b. SV23 & SV24 

Profile Q : 23 August 1995 (SV24), 09:59 -10:03 GMT 
SPM concentration = 11.14 mgm"^ Chlorophyll concentration = 4.59 mg m'^ Salinity = 35.04 

X U(o-) U(0*) Ed(O-) R(0) R(0*) Z90 

412 0.1514 0.0815 -0.8123 58.5357 -0.7872 0.0026 0.0014 -1.2703 
443 0.2360 0.1275 -0.5884 63.8965 -0.6326 0.0037 0.0019 -1.5807 
490 74.3206 -0.4734 -2.1123 
510 0.4760 0.2587 -0.3827 72.9009 -0.4327 0.0065 0.0035 -2.3111 
555 0.6353 0.3463 -0.3000 66.6229 -0.3619 0.0095 0.0051 -2.7632 
670 0.1450 0.0794 -0.5995 49.4633 -0.7162 0.0029 0.0015 -1.3962 
683 0.1652 0.0906 -0.5924 
700 38.6571 -0.7816 -1.2794 
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Appendix C : Optical profile results from datasets acquired during CH118a, CH118b, SV23 & SV24 

Profile R : 23 August 1995 (SV24), 10:27 - 10:30 GMT 
SPM concentration = 7.9 mg m ' Chlorophyll concentration = 1.13 mg m'^ Salinity = 33.33 

X U O ) U(0*) Ed(0) R(0) R(0*) ^90 

412 0.1842 0.0991 -0.6386 49.8520 -0.6120 0.0037 0.0019 -1.6340 
443 0.2972 0.1606 -0.4403 56.1134 -0.4682 0.0053 0.0028 -2.1358 
490 64.0305 -0.3339 -2.9951 
510 0.5930 0.3222 -0.2805 63.4334 -0.3110 0.0093 0.0050 -3.2155 
555 0.6926 0.3774 -0.2430 58.1279 -0.2801 0.0119 0.0064 -3.5708 
670 0.1373 0.0752 -0.5329 46.2214 -0.6224 0.0030 0.0016 -1.6066 
683 0.1379 0.0756 -0.5311 
700 37.1193 -0.7550 -1.3245 
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Appendix C : Optical profile results from datasets acquired during CHI 18a. CHI 18b, SV23 & SV24 

Profile S : 23 August 1995 (SV24), 10:51 -10:55 GMT 

SPM concentration = 7.9 mg m"' Chlorophyll concentration = 1. 18 mg m'^ Salinity = 30.22 

X t„(0") Ed(0) R(0) R(0*) Z90 

412 0.0772 0.0416 -0.5248 23.7865 -0.5147 0.0032 0.0017 -1.9427 
443 0.1172 0.0633 -0.3655 25.2245 -0.3900 0.0046 0.0024 -2.5642 
490 27.9860 -0.2670 -3.7460 
510 0.2176 0.1183 -0.2156 27.3961 -0.2429 0.0079 0.0042 -4.1166 
555 0.2316 0.1262 -0.1770 24.8029 -0.2176 0.0093 0.0050 ^.5966 
670 0.0392 0.0215 -0.4335 18.0104 -0.5467 0.0022 0.0011 -1.8291 
683 0.0459 0.0252 -0.4275 
700 15.2698 -0.6871 -1.4555 
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Appendix C : Optical profile results from datascts acquired during CHI 18a, CHI 18b, SV23 & SV24 

Profile T : 23 August 1995 (SV24), 11:25 - 11:26 GMT 

SPM concentration = 34.06 mg m"' Chlorophyll concentration = 1.49 mg m"* Salinity = 33.33 

X L„(0-) U(00 Ed(O-) R(0) R(0*) Z90 

412 0.0147 0.0079 -0.7322 7.1818 -0.6736 0.0021 0.0011 -1.4845 
443 0.0234 0.0127 -0.4570 6.4073 -0.4768 0.0037 0.0019 -2.0974 
490 7.7966 -0.3757 -2.6617 
510 0.0411 0.0223 -0.2941 7.3021 -0.3281 0.0056 0.0030 -3.0475 
555 0.0519 0.0283 -0.2338 6.7143 -0.2817 0.0077 0.0041 -3.5502 
670 0.0117 0.0064 -0.5060 5.7535 -0.6376 0.0020 0.0011 -1.5684 
683 0.0128 0.0070 -0.5218 
700 4.2841 -0.7348 -1.3609 
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Appendix D : Results from optical profiles acquired coincideni with airborne data 

6 April 1995 (CHllSa), 10:34 GMT 

X U ( 0 ) U(0*) Ed(0) R(O-) R(0*) Z90 

412 0.3163 0.1703 -0.2825 64.5204 -0.2824 0.0049 0.0026 -3.5415 
443 0.4678 0.2528 -0.1980 80.4014 -0.2118 0.0058 0.0031 -4.7208 
490 0.8332 0.4521 -0.1379 95.3661 -0.1506 0.0087 0.0046 -6.6408 
510 0.8193 0.4453 -0.1342 90.2560 -0.1499 0.0091 0.0048 -6.6690 
555 0.6368 0.3471 -0.1442 85.9731 -0.1601 0.0074 0.0039 -6.2457 
670 0.0122 0.0067 -0.1518 19.2456 -0.4434 0.0006 0.0003 -2.2552 
683 0.0195 0.0107 -0.1830 
700 43.7564 -0.6912 -1.4469 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

6 April 1995 (CH118a), 10:57 GMT 

X Lu(0) KLU Ed(0) R(0) R(0*) Z90 

412 0.3045 0.1640 -0.2739 71.2502 -0.2843 0.0043 0.0023 -3.5176 
443 0.4608 0.2490 -0.1903 87.1661 -0.2129 0.0053 0.0028 -4.6972 
490 0.8155 0.4425 -0.1302 102.5748 -0.1510 0.0080 0.0042 -6.6223 
510 0.7995 0.4345 -0.1265 97.2661 -O.I 501 0.0082 0.0044 -6.6612 
555 0.6073 0.3310 -0.1349 92.1349 -0.1596 0.0066 0.0035 -6.2642 
670 0.0149 0.0081 -0.1619 12.5275 -0.4022 0.0012 0.0006 -2.4863 
683 0.0247 0.0135 -0.1949 
700 43.7564 -0.6912 -1.4469 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

6 April 1995 (CHllSa), 13:29 GMT 

X Lu(0) Ed(0) R(O') R(0") 

412 0.3554 0.1914 -0.3580 59.6592 -0.3428 0.0060 0.0031 -2.9175 
443 0.5582 0.3016 -0.2602 72.9876 -0.2578 0.0076 0.0041 -3.8785 
490 0.9622 0.5221 -0.1870 84.9019 -0.1855 0.0113 0.0061 -5.3897 
510 0.9582 0.5207 -0.1802 81.6752 -0.1824 0.0117 0.0063 -5.4813 
555 0.8040 0.4382 -0.1872 77.8228 -0.1885 0.0103 0.0055 -5.3056 
670 0.0384 0.0210 -0.3106 47.7839 -0.5805 0.0008 0.0004 -1.7225 
683 0.0370 0.0203 -0.3492 
700 31.5972 -0.6969 -1.4348 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

6 April 1995 (CHllSa), 13:36 GMT 

X U ( 0 ) U ( 0 * ) KLU Ed(O-) R(O-) R(0") Z90 

4 1 2 0 .3515 0.1892 -0.3451 55.6373 -0 .3215 0.0063 0.0033 -3.1108 

443 0.5737 0.3100 -0.2511 68.9749 -0.2373 0.0083 0.0044 -4.2138 

4 9 0 0.9594 0.5206 -0 .1711 80.0275 -0.1636 0.0120 0.0064 -6.1143 

5 1 0 0.9567 0.5199 -0.1638 76 .1111 -0.1585 0.0126 0.0067 -6.3088 

555 0.7983 0.4351 -0.1691 72 .7611 -0.1645 0 .0110 0.0059 -6.0789 

670 0.0738 0.0405 -0.4212 40.5181 -0.5431 0 .0018 0 .0010 -1 .8411 

683 0.0473 0.0259 -0.3922 

700 35.1648 -0.7099 -1.4086 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

10 April 1995 (CHllSa), 10:41 GMT 

X U(O-) Lu(0*) Ed(O-) R(O-) R(0^ Z90 

412 0.4244 0.2285 -0.3391 87.5517 -0.3344 0.0048 0.0026 -2.9900 
443 0.6374 0.3444 -0.2524 107.2301 -0.2587 0.0059 0.0031 -3.8647 
490 0.9253 0.5021 -0.1831 125.4862 -0.1894 0.0074 0.0039 -5.2802 
510 0.9191 0.4995 -0.1760 119.8926 -0.1852 0.0077 0.0041 -5.3991 
555 0.9216 0.5023 -0.1827 116.1553 -0.1908 0.0079 0.0042 -5.2401 
670 0.0312 0.0171 -0.2358 47.3383 -0.5285 0.0007 0.0003 -1.8921 
683 0.0287 0.0157 -0.2105 
700 32.6025 -0.6420 -1.5577 

0.6 

0.5 

0.4 

0.3 
U 

^ 0.2 

0.1 

Lu(Of) 

400 450 500 550 600 

Wawlength (nm) 

650 700 

•0.7 
400 

KLu 

KEd 

450 500 550 600 

\Va\-elength (nm) 

650 700 750 

0.009 

^ 0.006 

0.003 

R(O-) 

R(a+) 

400 450 500 550 600 

Wavelength (nm) 

650 700 

172 



Appendix D : Results from optical profiles acquired coincident with airborne data 

12 April 1995 (CH118a), 09:53 GMT 

X U O ) U(0*) Ed(0) R(O-) R(0*) Z90 

412 0.4280 0.2304 -0.5565 62.2590 -0.5408 0.0069 0.0036 -1.8491 
443 0.6696 0.3618 -0.4454 76.7670 -0.4440 0.0087 0.0046 -2.2525 
490 1.2089 0.6560 -0.3549 91.2019 -0.3473 0.0133 0.0071 -2.8794 
510 1.2968 0.7047 -0.3368 88.2968 -0.3321 0.0147 0.0079 -3.0115 
555 1.4379 0.7836 -0.3140 85.5126 -0.3091 0.0168 0.0091 -3.2353 
670 0.1938 0.1062 -0.5677 48.7151 -0.6724 0.0040 0.0021 -1.4872 
683 0.1145 0.0628 -0.5073 
700 47.7006 -0.8188 -1.2213 
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Appendix P : Results from opiical profiles acquired coincident with airborne data 

12 April 1995 (CHl lSa) , 10:02 G M T 

X U O ) L„(0*) Ed(O-) R(0) R(0") 290 

412 0.4634 0.2495 -0.5638 65.6692 -0.5447 0.0071 0.0037 -1.8359 
443 0.7208 0.3895 -0.4513 80.4109 -0.4467 0.0090 0.0048 -2.2389 
490 1.3017 0.7063 -0.3611 95.1497 -0.3496 0.0137 0.0074 -2.8608 
510 1.3946 0.7579 -0.3429 92.0282 -0.3342 0.0152 0.0082 -2.9925 
555 1.5456 0.8424 -0.3199 88.8770 -0.3107 0.0174 0.0094 -3.2181 
670 0.2024 0.1109 -0.5677 48.9612 -0.6675 0.0041 0.0022 -1.4981 
683 0.1211 0.0664 -0.5089 
700 46.7720 -0.8098 -1.2349 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

12 April 1995 ( C H I 18a), 10:11 G M T 

X U O ) U(0*) Ed(O-) R(0) R(0^ 290 

412 0.4472 0.2408 -0.5548 65.5006 -0.5400 0.0068 0.0036 -1.8520 
443 0.7049 0.3809 -0.4446 80.4839 -0.4426 0.0088 0.0047 -2.2592 
490 1.2662 0.6871 -0.3536 95.0809 -0.3454 0.0133 0.0072 -2.8953 
510 1.3588 0.7384 -0.3354 91.9615 -0.3301 0.0148 0.0080 -3.0298 
555 1.5087 0.8222 -0.3120 88.9786 -0.3068 0.0170 0.0092 -3.2600 
670 0.2259 0.1238 -0.5877 54.1032 -0.6830 0.0042 0.0022 -1.4641 
683 0.1412 0.0774 -0.5386 
700 50.1662 -0.8167 -1.2245 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

12 April 1995 (CHl lSa) , 10:20 G M T 

X U ( 0 ) L.(0") Ed(0) R(0) R(0^ Z90 

412 0.8380 0.4511 -0.5628 70.4219 -0.5454 0.0119 0.0064 -1.8336 
443 0.7562 0.4086 -0.4497 85.874! -0.4468 0.0088 0.0047 -2.2383 
490 1.3579 0.7369 -0.3586 101.1361 -0.3493 0.0134 0.0072 -2.8632 
510 1.4505 0.7883 -0.3400 97.4733 -0.3335 0.0149 0.0080 -2.9981 
555 1.6063 0.8754 -0.3165 93.8718 -0.3099 0.0171 0.0093 -3.2270 
670 0.2259 0.1237 -0.5784 51.0155 -0.6639 0.0044 0.0023 -1.5062 
683 0.1340 0.0734 -0.5197 
700 48.6574 -0.8035 -1.2446 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

21 April 1995 (CHl lSb) , 09:55 G M T 

X U(O') U(0*) KLU Ed(O-) R ( 0 ) R(0") Z90 

412 0.3709 0.1997 -0.3284 79.1320 -0.3217 0.0047 0.0025 -3.1089 
443 0.4604 0.2488 -0.2686 91.5960 -0.2695 0.0050 0.0027 -3.7108 
490 0.6687 0.3629 -0.1898 101.0426 -0.1953 0.0066 0.0035 -5.1204 
510 0.6769 0.3679 -0.1770 96.6894 -0.1851 0.0070 0.0037 -5.4039 
555 0.6322 0.3445 -0.1716 91.9961 -0.1767 0.0069 0.0036 -5.6608 
670 0.0554 0.0304 -0.2561 67.8612 -0.5802 0.0008 0.0004 -1.7234 

683 0.0488 0.0268 -0.2002 
700 70.0779 -0.7092 -1.4100 
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Appendix P : Results from optical profiles acquired coincident with airborne data 

21 April 1995 (CHl lSb) , 10:14 G M T 

X Lu(O-) U(0") KLU Ed(0) R ( 0 ) R(0*) Z90 

412 0.2572 0.1385 -0.2375 79.7746 -0.3234 0.0032 0.0017 -3.0924 

443 0.3367 0.1819 -0.1895 89.2365 -0.2580 0.0038 0.0020 -3.8763 

490 0.5099 0.2767 -0.1201 93.6794 -0.1691 0.0054 0.0029 -5.9144 

510 0.5150 0.2799 -0.1086 92.1183 -0.1614 0.0056 0.0030 -6.1976 

555 0.4746 0.2586 -0.1003 85.7493 -0.1454 0.0055 0.0029 -6.8799 

670 0.0424 0.0232 -0.2302 68.5569 -0.5998 0.0006 0.0003 -1.6672 

683 0.0361 0.0198 -0.1786 
700 75.1872 -0.7548 -1.3248 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

21 April 1995 (CHl lSb) , 10:22 G M T 

X Lu(O') Lu(0*) Ed(O-) R(0) R(0*) Z90 

412 0.3816 0.2054 -0.3207 81.3178 -0.3178 0.0047 0.0025 -3.1463 

443 0.4669 0.2523 -0.2609 93.7384 -0.2657 0.0050 0.0026 -3.7636 

490 0.6927 0.3759 -0.1852 103.4157 -0.1929 0.0067 0.0035 -5.1831 

510 0.7016 0.3813 -0.1732 100.2583 -0.1839 0.0070 0.0037 -5.4364 

555 0.6668 0.3634 -0.1691 95.2213 -0.1759 0.0070 0.0037 -5.6861 

670 0.0344 0.0188 -0.2000 52.0361 -0.5392 0.0007 0.0003 -1.8547 

683 0.0347 0.0190 -0.1699 
700 49.6409 -0.6517 -1.5345 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

23 April 1995 (CHllSb) , 10:36 G M T 

X U(O-) U(0") Ed(0) R(O-) R(0") Z90 

412 0.6344 0.3415 -1.7944 81.6949 -1.7379 0.0078 0.0041 -0.5754 
443 0.9483 0.5124 -1.4914 93.2199 -1.4895 0.0102 0.0054 -0.6714 
490 2.0160 1.0939 -1.3707 112.0884 -1.2742 0.0180 0.0098 -0.7848 
510 1.9875 1.0801 -1.2492 105.5022 - M 8 6 6 0.0188 0.0102 -0.8428 
555 2.5647 1.3977 -1.1262 102.8050 -1.0618 0.0249 0.0138 -0.9418 
670 1.2230 0.6699 -1.3207 68.5820 -1.2309 0.0178 0.0097 -0.8124 
683 0.8723 0.4781 -1.3700 
700 71.4930 -1.4201 -0.7042 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

23 April 1995 (CHl lSb) , 10:42 G M T 

X U(O-) L„(0*) Ed(0) R(0) R(0*) Z90 

412 1.1588 0.6239 -1.9872 93.9423 -1.7634 0.0123 0.0066 -0.5671 
443 1.5068 0.8142 -1.6390 98.7680 -1.4901 0.0153 0.0082 -0.6711 
490 2.5293 1.3725 -1.4264 136.8194 -1.3265 0.0185 0.0100 -0.7539 
510 2.3137 1.2574 -1.2862 118.1153 -1.2133 0.0196 0.0107 -0.8242 
555 2.9866 1.6277 -1.1634 114.3278 -1.0870 0.0261 0.0144 -0.9200 
670 1.3314 0.7293 -1.3408 73.2792 -1.2959 0.0182 0.0099 -0.7717 
683 1.0500 0.5754 -1.4188 
700 77.4100 -1.4390 -0.6949381 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

22 August 1995 (SV24), 13:31 G M T 

X U ( 0 ) Ed(O-) R(0) R(00 Z90 

412 1.5262 0.8217 -0.5991 9.6276 -0.5986 0.1585 0.1258 -1.6706 
443 1.7652 0.9537 -0.4660 16.2199 -0.4899 0.1088 0.0742 -2.0414 
490 1.5199 0.8247 -0.3317 29.3910 -0.2622 0.0517 0.0304 -3.8144 
510 1.4793 0.8039 -0.3054 52.9208 -0.2958 0.0280 0.0155 -3.3804 
555 1.5433 0.8411 -0.2646 60.9084 -0.2487 0.0253 0.0140 ^.0209 
670 0.8599 0.4710 -0.6614 19.5215 -0.5943 0.0440 0.0254 -1.6826 
683 0.7624 0.4178 -0.7938 
700 20.8484 -0.5567 -1.7962 
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Appendix D : Results from optical profiles acquired coincident with airborne data 

22 August 1995 (SV24), 13:57 G M T 

X U(0) L„(0") Ed(0) R(O-) R(0*) Z90 

412 1.4977 0.8063 -0.5486 13.1862 -0.6196 0.1136 0.0785 -1.6140 
443 1.8661 1.0083 -0.4347 21.4909 -0.5017 0.0868 0.0558 -1.9932 
490 1.5899 0.8627 -0.3027 37.7641 -0.2714 0.0421 0.0242 -3.6846 
510 1.5500 0.8423 -0.2766 65.9680 -0.3045 0.0235 0.0129 -3.2844 
555 1.6230 0.8845 -0.2368 74.6450 -0.2537 0.0217 0.0119 -3.9423 
670 0.8465 0.4637 -0.6142 22.6708 -0.5754 0.0373 0.0212 -1.7379 
683 0.7447 0.4081 -0.7424 
700 24.0938 -0.5288 -1.8912 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

29 June 1995 

L W - 0.23 h to h W f -1- O.lh 
X s f V z ln(x) In(s) ln(0 l n ( v ) ln(z) 

X 1.00 
s 0.52 1.00 
f -0.50 -0.86 1.00 
V -0.02 0.55 -0.38 1.00 
z -0.06 0.42 -0.22 0.89 1.00 

ln(x) 0.89 0.45 -0.46 -0.05 -0.09 1.00 
ln(s) 0.31 0.75 -0.68 0.86 0.69 0.33 1.00 
ln(0 0.37 0.65 -0.78 0.56 0.39 0.42 0.84 1.00 
ln(v) 0.00 -0.47 0.17 -0.88 -0.88 0.04 -0.70 -0.23 1.00 
ln(z) -0.07 0.42 -0.27 0.90 0.98 -0.10 0.72 0.48 -0.82 1.00 

L W - 0.23h 
X s f V z ln(x) ln(s) ln(0 l n ( v ) ln(z) 

X 1.00 
s 0.58 1.00 
f -0.53 -0.90 1.00 
V 0.02 0.51 -0.43 1.00 
z -0.02 0.38 -0.26 0.90 1.00 

ln(x) 0.87 0.49 -0.50 -0.06 -0.07 1.00 
ln(s) 0.34 0.72 -0.71 0.87 0.71 0.34 1.00 

ln(0 0.37 0.67 -0.77 0.70 0.53 0.41 0.93 1.00 
ln(v) -0.06 -0.46 0.27 -0.91 -0.90 0.02 -0.74 -0.46 1.00 
ln(z) -0.03 0.38 -0.30 0.91 0.98 -0.09 0.73 0.60 -0.84 1.00 

W - O.lh 
X s f V z ln(x) In(s) ln(0 ln(v) In(z) 

X 1.00 
s 0.50 1.00 
f -0.50 -0.83 1.00 
V -0.02 0.61 -0.44 1.00 
z -0.05 0.47 -0.26 0.89 1.00 

ln(x) 0.91 0.45 -0.49 -0.04 -0.07 1.00 
In(s) 0.31 0.79 -0.73 0.87 0.69 0.35 1.00 

ln(0 0.38 0.67 -0.84 0.59 0.40 0.45 0.86 1.00 
ln(v) 0.00 -0.54 0.22 -0.90 -0.89 0.03 -0.72 -0.28 1.00 
ln(z) -0.06 0.47 -0.31 0.90 0.98 -0.07 0.72 0.49 -0.83 1.00 

X = patch size, s = within-paich total SPM concentration, f = wiihin-patch total SPM flux, 
V = within-patch averaged surface velocity & z = within-patch averaged water depth 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

L W + O.lh 
X s f V z ln(x) ln(s) ln(0 In(v) ln(z) 

X 1.00 
s 0.45 1.00 
f -0.50 -0.82 1.00 
V -0.10 0.60 -0.33 1.00 
z -0.14 0.45 -0.15 0.90 1.00 

ln(x) 0.91 0.42 -0.45 -0.11 -0.14 1.00 
ln(s) 0.27 0.80 -0.64 0.85 0.69 0.31 1.00 

ln(0 0.37 0.60 -0.78 0.41 0.22 0.45 0.74 1.00 
ln(v) 0.09 -0.49 0.07 -0.87 -0.88 0.10 -0.67 -0.02 1.00 
ln(z) -0.15 0.45 -0.21 0.90 0.98 -0.15 0.71 0.33 -0.82 1.00 
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Appendix E : Pearson's correlation coefficients describing within-palch parameters in the Humber Estuary 

10 August 1995 
L W + 1.38h to L W + 3.33h 

X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 
X 1.00 
s 0.82 1.00 
f 0.69 0.85 1.00 
V 0.02 -0.04 0.31 1.00 
z 0.11 0.03 0.18 0.02 1.00 

In(x) 0.88 0.62 0.45 0.03 0.06 1.00 
ln(s) 0.77 0.72 0.48 -0.11 -0.07 0.86 1.00 

ln(0 0.49 0.39 0.56 0.68 0.26 0.53 0.45 1.00 
ln(v) 0.03 -0.03 0.28 0.85 0.03 0.03 -0.11 0.80 1.00 
ln(z) 0.10 0.00 0.18 0.08 0.99 0.06 -0.12 0.27 0.07 1.00 

L V V -1- 1.38h 
X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 

X 1.00 
s 0.90 1.00 
f 0.10 0.14 1.00 
V 0.01 0.05 0.80 1.00 
z 0.03 0.06 0.68 0.79 1.00 

ln(x) 0.94 0.84 0.08 -0.01 0.02 1.00 
ln(s) 0.87 0.93 0.15 0.06 0.09 0.92 1.00 

ln(0 0.46 0.52 0.37 0.20 0.20 0.48 0.58 1.00 
In(v) -0.03 0.02 0.07 -0.13 -0.22 -0.02 0.03 0.76 1.00 
ln(z) 0.02 0.01 0.68 0.83 0.99 0.02 0.05 0.14 -0.27 1.00 

L V V -I-1.58 
X s f V z ln(x) ln(s) ln(f) ln(v) in(z) 

X 1.00 
s 0.87 1.00 
f 0.26 0.21 1.00 
V 0.00 0.00 0.65 1.00 
z -0.01 -0.08 0.62 0.43 LOO 

ln(x) 0.95 0.82 0.27 0.02 0.01 1.00 
ln(s) 0.87 0.93 0.25 0.04 -0.06 0.91 1.00 
ln(f) 0.41 0.39 0.65 0.78 0.54 0.46 0.46 1.00 
ln(v) 0.02 0.00 0.48 0.87 0.38 0.06 0.04 0.86 1.00 
ln(z) 0.00 -0.11 0.63 0.43 0.99 0.02 -0.08 0.53 0.37 1.00 

X = patch size, s = wiihin-patch total SPM concentration, f = within-patch total SPM flux, 
V = within-patch averaged surface velocity & z = within-patch averaged water depth 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

J 1.85 1 

X s f V z In(x) In(s) l n ( f ) l n ( v ) In(z) 
X 1.00 
s 0.82 1.00 
f 0.67 0.53 1.00 
V -0.09 -0.22 0.47 1.00 
z 0.09 -0.20 0.37 0.39 1.00 

ln(x) 0.91 0.78 0.67 -0.06 0.04 1.00 
ln(s) 0.80 0.89 0.55 -0.23 -0.25 0.90 1.00 

ln(0 0.57 0.42 0.85 0.66 0.43 0.64 0.48 1.00 
l n (v ) -0.09 -0.23 0.42 0.94 0.34 -0.06 -0.24 0.67 1.00 
ln(z) 0.08 -0.24 0.37 0.47 0.99 0.03 -0.28 0.46 0.41 1.00 

L V ̂  -1- 2.07 1 

X s f V z ln(x) In(s) ln(f) ln(v) ln(z) 
X 1.00 
s 0.76 1.00 
f 0.75 0.70 1.00 
V -0.09 -0.01 0.39 1.00 
z 0.04 -0.34 0.04 -0.20 1.00 

ln(x) 0.93 0.70 0.75 -0.01 0.01 1.00 
ln(s) 0.78 0.89 0.73 0.06 -0.38 0.84 1.00 
ln(f) 0.69 0.64 0.90 0.52 -0.03 0.79 0.78 1.00 
i n (v ) -0.10 -0.02 0.35 0.96 -0.29 -0.02 0.07 0.51 1.00 
ln(z) 0.03 -0.39 0.04 -0.10 0.99 0.00 -0.42 -0.01 -0.19 1.00 

LV V + 2.35 1 

X s f V z ln(x) In(s) ln(0 ln(v) ln(z) 
X 1.00 
s 0.77 1.00 
f 0.85 0.81 1.00 
V -0.24 -0.22 0.07 1.00 
z 0.19 -0.07 0.13 -0.42 1.00 

ln(x) 0.93 0.72 0.82 -0.16 0.12 1.00 
ln(s) 0.75 0.90 0.80 -0.12 -0.22 0.82 1.00 

ln(0 0.78 0.74 0.92 0.16 0.08 0.85 0.85 1.00 
l n (v ) -0.24 -0.29 0.02 0.95 -0.44 -0.17 -0.17 0.12 1.00 
ln(z) 0.18 -0.13 0.12 -0.33 0.99 0.12 -0.26 0.08 -0.36 1.00 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

L V / -1- 2.62 1 

X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 
X 1.00 
s 0.82 1.00 
f 0.78 0.92 1.00 
V -0.13 -0.09 0.04 1.00 
z O.Il 0.03 0.13 -0.66 1.00 

ln(x) 0.92 0.72 0.71 -0.08 0.05 1.00 
ln(s) 0.78 0.88 0.81 -0.08 -0.03 0.84 1.00 

ln(0 0.75 0.80 0.87 0.16 0.08 0.81 0.90 1.00 
ln(v) -0.12 -0.11 0.04 0.95 -0.64 -0.07 -0.11 0.17 1.00 
In(z) 0.09 -0.03 0.10 -0.59 0.99 0.04 -0.09 0.05 -0.57 1.00 

L V V + 2.83 1 

X s f V z ln(x) In(s) ln(0 ln(v) ln(z) 
X 1.00 
s 0.88 1.00 
f 0.86 0.98 1.00 
V -0.22 -0.21 -0.16 1.00 
z 0.18 0.16 0.19 -0.66 1.00 

In(x) 0.86 0.64 0.62 -0.15 0.11 1.00 
ln(s) 0.81 0.73 0.70 -0.22 0.05 0.88 1.00 

ln(0 0.79 0.71 0.72 -0.01 0.12 0.86 0.93 1.00 
ln(v) -0.18 -0.16 -0.10 0.95 -0.62 -0.13 -0.17 0.08 1.00 
ln(z) 0.17 0.14 0.18 -0.59 0.99 0.10 0.00 0.11 -0.56 1.00 

LV V + 3.08 1 

X s f V z ln(x) ln(s) ln(f) ln(v) ln(z) 
X 1.00 
s 0.89 1.00 
f 0.88 0.99 1.00 
V -0.16 -0.18 -0.12 1.00 
z 0.17 0.12 0.14 -0.72 1.00 

ln(x) 0.83 0.59 0.59 -0.10 0.15 1.00 
ln(s) 0.78 0.67 0.65 -0.22 0.09 0.90 1.00 
ln(f) 0.78 0.64 0.67 -0.03 0.17 0.90 0.92 1.00 
ln(v) -0.15 -0.16 -0.08 0.96 -0.66 -0.11 -0.21 0.02 1.00 
In(z) 0.17 0.11 0.14 -0.68 0.99 0.14 0.06 0.16 -0.61 1.00 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

L V / + 3.33 1 

X s f V z ln(x) ln(s) ln(f) ln(v) ln(z) 
X 1.00 
s 0.86 1.00 
f 0.83 0.93 1.00 
V -0.09 -0.28 -0.10 1.00 
z 0.01 0.10 0.19 -0.60 1.00 

In(x) 0.91 0.73 0.72 -0.05 -0.04 1.00 
ln(s) 0.84 0.85 0.77 -0.28 0.04 0.90 1.00 

ln(0 0.81 0.75 0.83 0.04 0.15 0.86 0.86 1.00 
ln(v) -0.07 -0.24 -0.04 0.97 -0.53 -0.04 -0.26 0.12 1.00 
ln(z) 0.00 0.07 0.19 -0.52 0.99 -0.05 0.00 0.16 -0.44 1.00 
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Appendix E : Pearson's correlation coefficients describing wiihin-patch parameters in the Humber Estuary 

11 August 1995 

N - 0.15 ̂  to L W + O.OSh 
X s f V z ln(x) ln(s) In(f) ln(v) ln(z) 

X 1.00 
s 0.44 1.00 
f 0.29 0.42 1.00 
V 0.00 0.00 0.66 1.00 
z -0.01 -0.16 -0.02 -0.15 1.00 

ln(x) 0.59 0.69 0.51 -0.04 0.14 1.00 
ln(s) 0.37 0.80 0.54 0.07 -0.24 0.84 1.00 

ln(0 0.17 0.30 0.75 Oil 0.02 0.35 0.44 1.00 
ln(v) 0.00 -0.03 0.58 0.86 -0.05 -0.05 0.05 0.90 1.00 
ln(z) -0.03 -0.18 -0.01 -0.13 0.99 0.13 -0.25 0.02 -0.04 1.00 

L W - O.lSh 
X s f V z ln(x) ln(s) ln(0 In(v) ln(z) 

X 1.00 
s 0.72 1.00 
f -0.76 -0.71 1.00 
V 0.04 0.48 -0.12 1.00 
z 0.04 0.39 -0.06 0.91 1.00 

ln(x) 0.92 0.61 -0.72 0.02 0.01 1.00 
ln(s) 0.65 0.82 -0.69 0.59 0.47 0.70 1.00 
ln(f) 0.52 0.40 -0.78 -0.13 -0.20 0.57 0.46 1.00 
ln(v) -0.06 -0.39 -0.11 -0.83 -0.83 -0.05 -0.48 0.51 1.00 
ln(z) 0.04 0.38 -0.09 0.92 0.98 0.01 0.44 -0.14 -0.76 1.00 

L V ̂  + 0.08 1 

X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 
X 1.00 
s 0.69 1.00 
f -0.83 -0.64 1.00 
V 0.05 -0.45 0.03 1.00 
z -0.02 0.41 0.00 -0.83 1.00 

In(x) 0.90 0.61 -0.79 0.08 -0.02 1.00 
ln(s) 0.58 0.83 -0.67 -0.52 0.39 0.64 1.00 
ln(f) 0.70 0.55 -0.87 0.01 -0.06 0.79 0.67 1.00 
ln(v) -0.02 -0.53 -0.02 0.85 -0.84 -0.01 -0.58 0.14 1.00 
ln(z) -0.03 0.35 0.01 -0.83 0.98 -0.04 0.33 -0.06 -0.79 1.00 

X = patch size, s = within-patch total SPM concentration, f = within-patch total SPM flux, 
V = within-patch averaged surface velocity & z = within-patch averaged water depth 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

15 August 1995 

L W - 3.33h to L W - 2.17h 
X s f V z ln(x) ln(s) ln(0 In(v) ln(z) 

X 1.00 
s 0.64 1.00 
f -0.78 -0.90 1.00 
V 0.00 0.33 -0.16 1.00 
z 0.07 0.06 -0.18 0.52 1.00 

ln(x) 0.90 0.58 -0,70 -0.02 0.05 1.00 
ln(s) 0.63 0.84 -0.81 0.36 0.06 0.71 1.00 

ln(0 0.69 0.74 -0.85 0.10 0.23 0.77 0.89 1.00 
ln(v) -0.01 -0.36 0.16 -0.97 -0.49 0.01 -0.39 -0.10 1.00 
ln(z) 0.06 0.08 -0.21 0.51 0.99 0.05 0.09 0.28 -0.47 1.00 

L W - 3.33h 
X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 

X 1.00 
s 0.89 1.00 
f -0.89 -0.94 1.00 
V 0.09 0.09 0.06 1.00 
z 0.03 -0.12 0.07 0.75 1.00 

In(x) 0.90 0.82 -0.82 0.08 0.02 1.00 
ln(s) 0.80 0.88 -0.84 0.07 -0.17 0.90 1.00 

ln(0 0.77 0.81 -0.88 -0.13 -0.12 0.87 0.92 1.00 
ln(v) -0.09 -0.08 -0.09 -0.97 -0.71 -0.09 -0.05 0.18 1.00 
ln(z) 0.03 -0.11 0.05 0.73 0.99 0.02 -0.16 -0.08 -0.68 1.00 

L W - 3.18h 
x s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 

X 1.00 
s 0.86 1.00 
f -0.90 -0.94 1.00 
V -0.01 0.07 0.08 1.00 
z 0.05 -0.08 0.01 0.69 1.00 

ln(x) 0.92 0.81 -0.84 -0.04 0.04 1.00 
ln(s) 0.79 0.91 -0.86 0.02 -0.14 0.87 1.00 

ln(0 0.79 0.82 -0.90 -0.19 -0.04 0.86 0.91 1.00 
ln(v) 0.00 -0.05 -0.12 -0.98 -0.66 0.02 0.00 0.24 1.00 
ln(z) 0.05 -0.06 -0.02 0.67 0.99 0.04 -0.12 0.01 -0.61 1.00 

X = patch size, s = within-palch total SPM concentration, f = within-patch total SPM flux, 
V = within-patch averaged surface velocity & z = wiihin-patch averaged water depth 

191 



Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

L W - 2.93h 
X s f V z ln(x) ln(s) ln(0 l n ( v ) ln(z) 

X 1.00 
s 0.82 1.00 
f -0.86 -0.95 LOO 
V 0.06 0.26 -0.16 1.00 
z 0.04 0.03 -0.12 0.70 1.00 

ln(x) 0.89 0.73 -0.77 0.03 0.02 1.00 
In(s) 0.75 0.86 -0.83 0.27 0.03 0.85 1.00 

ln(0 0.75 0.79 -0.85 0.12 0.14 0.86 0.92 1.00 
In(v) -0.07 -0.24 0.13 -0.97 -0.67 -0.03 -0.25 -0.05 1.00 
ln(z) 0.04 0.06 -0.15 0.69 0.99 0.02 0.06 0.19 -0.64 1.00 

L W - 2.7h 
X s f V z ln(x) ln(s) ln(0 In(v) ln(z) 

X 1.00 
s 0.71 1.00 
f -0.77 -0.96 1.00 
V 0.02 0.31 -0.25 1.00 
z 0.06 0.10 -0.21 0.64 1.00 

ln(x) 0.91 0.60 -0.67 -0.02 0.05 1.00 
ln(s) 0.67 0.83 -0.83 0.39 0.18 0.73 1.00 
l n ( f ) 0.68 0.75 -0.82 0.22 0.33 0.76 0.92 1.00 
l n ( v ) -0.01 -0.28 0.21 -0.97 -0.56 0.03 -0.35 -0.13 1.00 
ln(z) 0.06 0.13 -0.24 0.63 0.99 0.05 0.22 0.39 -0.53 1.00 

L W - 2.43h 
X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 

X 1.00 
s 0.71 1.00 
f -0.79 -0.94 1.00 
V 0.08 0.42 -0.35 1.00 
z 0.11 0.19 -0.33 0.65 1.00 

ln(x) 0.87 0.66 -0.69 0.05 0.05 1.00 
ln(s) 0.61 0.88 -0.83 0.49 0.24 0.69 1.00 

ln(0 0.63 0.83 -0.86 0.40 0.40 0.71 0.95 1.00 
ln(v) -0.10 -0.45 0.37 -0.98 -0.65 -0.07 -0.52 -0.42 1.00 
ln(z) 0.09 0.22 -0.34 0.67 0.99 0.04 0.27 0.43 -0.65 1.00 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

L W - 2.17h 
X s f V z ln(x) ln(s) ln(0 In(v) ln(z) 

X 1.00 
s 0.67 1.00 
f -0.67 -0.91 1.00 
V 0.04 0.37 -0.29 LOO 
z 0.02 0.20 -0.39 0.60 1.00 

ln(x) 0.92 0.60 -0.62 0.05 0.02 1.00 
ln(s) 0.62 0.83 -0.81 0.48 0.32 0.67 1.00 
ln(f) 0.62 0.77 -0.86 0.35 0.49 0.67 0.93 1.00 
In(v) -0.03 -0.41 0.30 -0.98 -0.58 -0.04 -0.53 -0.38 1.00 
ln(z) 0.02 0.23 -0.40 0.64 0.99 0.02 0.35 0.51 -0.62 1.00 
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Appendix E : Pearson's correlation coefficients describing within-palch parameters in the Humber Estuary 

21 August 1995 

L W + 3.27h to L W + 4.7h 
X s f V z In(x) ln(s) ln(f) l n ( v ) ln(z) 

X 1.00 
s 0.84 1.00 
f 0.50 0.57 1.00 
V -0.05 0.06 0.67 1.00 
z 0.21 -0.14 -0.01 -0.14 1.00 

In(x) 0.91 0.79 0.50 -0.04 0.18 1.00 
In(s) 0.77 0.90 0.56 0.11 -0.22 0.85 1.00 

ln(0 0.31 0.40 0.76 0.79 0.02 0.36 0.47 1.00 
ln(v) -0.07 0.05 0.60 0.87 -0.06 -0.04 0.09 0.91 1.00 
ln(z) 0.21 -0.15 0.01 -0.12 0.98 0.18 -0.22 0.03 -0.05 1.00 

L V V + 3.27 1 

X s f V z ln(x) ln(s) ln(f) ln(v) ln(z) 
X 1.00 
s 0.84 1.00 
f -0.60 -0.71 1.00 
V 0.33 0.17 0.27 1.00 
z 0.35 -0.02 0.14 0.70 1.00 

ln(x) 0.87 0.74 -0.72 0.26 0.32 1.00 
ln(s) 0.72 0.87 -0.79 0.09 -0.12 0.83 1.00 

ln(0 0.51 0.61 -0.89 -0.47 -0.28 0.67 0.77 1.00 
l n ( v ) -0.34 -0.21 -0.27 -0.98 -0.64 -0.25 -0.12 0.48 1.00 
In(z) 0.33 -0.06 0.14 0.64 0.99 0.31 -0.16 -0.27 -0.58 1.00 

LV V + 3.48 1 
X s f V z In(x) ln(s) l n ( f ) ln(v) ln(z) 

X 1.00 
s 0.79 1.00 
f 0.83 0.96 1.00 
V -0.25 0.01 0.09 1.00 
z 0.22 -0.18 -0.13 -0.79 1.00 

ln(x) 0.93 0.74 0.80 -0.23 0.18 1.00 
ln(s) 0.77 0.90 0.89 0.02 -0.22 0.83 1.00 

ln(0 0.80 0.86 0.92 0.13 -0.15 0.87 0.95 1.00 
ln(v) -0.25 -0.02 0.08 0.98 -0.75 -0.22 -0.02 0.12 1.00 
In(z) 0.20 -0.22 -0.16 -0.77 0.99 0.16 -0.26 -0.19 -0.72 1.00 

X = patch size, s = wilhin-patch total SPM concentration, f = wilhin-patch total SPM flux, 
V = within-patch averaged surface velocity & z = within-patch averaged water depth 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humbcr Estuary 

L W + 3,72h 
X s f V z In(x) ln(s) ln(f) ln(v) ln(z) 

X 1.00 
s 0.91 1.00 
f 0.90 0.94 1.00 
V -0.16 0.00 0.11 1.00 
z 0.16 -0.11 -0.07 -0.83 1.00 

ln(x) 0.91 0.87 0.87 -0.13 0.11 1.00 
ln(s) 0.82 0.92 0.87 0.07 -0.21 0.91 1.00 
ln(f) 0.80 0.87 0.91 0.22 -0.18 0.90 0.94 1.00 
In(v) -0.16 -0.01 0.13 0.97 -0.78 -0.12 0.06 0.25 1.00 
ln(z) 0.15 -0.12 -0.06 -0.80 0.99 0.11 -0.21 -0.16 -0.75 1.00 

L V V + 3.98h 
X s f V z ln(x) ln(s) ln(0 ln(v) In(z) 

X 1.00 
s 0.88 1.00 
f 0.87 0.93 1.00 
V -0.14 0.13 0.22 1.00 
z 0.11 -0.20 -0.16 -0.79 1.00 

ln(x) 0.92 0.83 0.84 -0.13 0.08 1.00 
ln(s) 0.81 0.92 0.90 0.22 -0.27 0.88 1.00 
ln(0 0.79 0.88 0.93 0.32 -0.25 0.86 0.97 1.00 
ln(v) -0.15 0.13 0.23 0.97 -0.71 -0.14 0.23 0.35 1.00 
ln(z) 0.10 -0.16 -0.11 -0.61 0.94 0.06 -0.19 -0.15 -0.47 1.00 

L V V + 4.25 1 

X s f V z ln(x) ln(s) ln(f) ln(v) In(z) 
X 1.00 
s 0.85 1.00 
f 0.82 0.93 1.00 
V -0.23 0.08 0.19 1.00 
z 0.23 -0.13 -0.11 -0.86 1.00 

ln(x) 0.91 0.80 0.83 -0.17 0.20 1.00 
ln(s) 0.79 0.90 0.90 0.19 -0.21 0.87 1.00 

ln(0 0.76 0.84 0.92 0.28 -0.18 0.87 0.96 1.00 
ln(v) -0.24 0.05 0.18 0.98 -0.85 -0.17 0.18 0.29 1.00 
ln(z) 0.24 -0.14 -0.10 -0.83 0.99 0.21 -0.21 -0.16 -0.81 1.00 
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Appendix E : Pearson's correlation coefficients describing within-patch parameters in the Humber Estuary 

L V / + 4.48 1 

X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 
X 1.00 
s 0.87 1.00 
f 0.85 0.95 1.00 
V -0.15 0.16 0.25 1.00 
z 0.17 -0.19 -0.17 -0.88 1.00 

ln(x) 0.93 0.83 0.83 -0.13 0.15 1.00 
ln(s) 0.79 0.91 0.89 0.27 -0.30 0.87 1.00 

ln(f) 0.77 0.87 0.91 0.38 -0.30 0.85 0.96 1.00 
ln(v) -0.13 0.16 0.26 0.98 -0.85 -0.09 0.27 0.40 1.00 
ln(z) 0.20 -0.18 -0.14 -0.85 0.99 0.18 -0.29 -0.26 -0.82 1.00 

L W + 4.7h 
X s f V z ln(x) ln(s) ln(0 ln(v) ln(z) 

X 1.00 
s 0.82 1.00 
f 0.75 0.94 1.00 
V -0.27 0.16 0.28 1.00 
z 0.25 -0.19 -0.19 -0.85 1.00 

In(x) 0.92 0.78 0.76 -0.22 0.21 1.00 
ln(s) 0.75 0.91 0.89 0.26 -0.29 0.83 1.00 

ln(f) 0.70 0.86 0.91 0.39 -0.30 0.79 0.96 1.00 
ln(v) -0.26 0.12 0.26 0.98 -0.83 -0.20 0.23 0.38 LOO 
ln(z) 0.25 -0.21 -0.18 -0.83 0.99 0.22 -0.30 -0.29 -0.80 1.00 
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Deriving Fluxes of Suspended 
Particulate Matter in the Humber 
Estuary, UK, Using Airborne Remote 
Sensing 
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This study exploits the use of airborne remote sensing for 
the assessment of coastal and estuarine environments, in 
particular the Humber Estuary. A Compact Airborne 
Spectrographic Imager was used to acquire a series of 
flightlines across the mouth of the Humber estuary during 
the flood on 10 August 1995. The flightlines encompassed 
the flux curtain^ which consists of five moorings set out 
across the estuary to monitor flux of Suspended Particu­
late Matter (SPM). The images were radiomelrically. 
atmospherically and geometrically corrected and S P M 
concentrations in surface waters derived. S P M flux was 
assessed by incorporating image-derived S P M concen­
tration values with velocity results from a hydrodynamic 
model. These results were integrated over depth and an 
estimate of total flux determined for a 2-h section of the 
flood. © 1999 Elsevier Science Ltd. All rights reserved 

Introduction 

The work presenied here forms a core pan of the Land-
Ocean Interaciion Sludy (LOIS), a Natural Environ-
meni Research Council (NERC) funded Thematic Pro­
gramme. A n important pan of the LOIS campaign is (he 
characterization, monitoring and modelling of Huxes 
within the coastal zone, which forms an integral pan of 
the RACS(C) (Rivers. Atmospheres. Estuaries and 
Coasts Stiidv (Coasts and Esiuariesl) component of 
LOIS. 

The accurate estimation of flux is important for a 
number of reasons (Jay ei al.. 1997). These include: 
• the calculation o f residence lime for the classification 

of estuaries and their ecosystems. 
• the prediction of long-term changes in estuaries and 

the mechanisms behind such changes. 
• assessment of the impacts of anthropogenic influences 

on estuarine environments. 

•Corresponding aulhor. 

• analysis of the origin of sedimentary sequences and 
the geological evolution o f estuaries. 

• improved management of the coastal zone, f rom both 
environmental and socio-economic perspectives. 
Traditional approaches by oceanographic. esiuarine 

and riverine monitoring projects incorporate in situ 
point source measurements. As Allan (1983) observed, 
the worst place f rom which to sludy the sea is the sea 

surface'. Point source monitoring does not provide a 
synoptic view o f the area in question and may. in fact, be 
misleading in cases where a localized anomaly occurs. 
Jay et al. (1997) suggest that estimates of flux derived 
from direct measurements are generally inadequate and 
prone to error, and funher thai fluxes should be esti­
mated using knowledge of the two-dimensional spatial 
distribution, in conjunction with variations in depth and 
lime. 

This paper attempts to approach the question of flux 
estimation mulii-dimensionally. Remote sensing pro­
vides the two-dimensional synoptic coverage o f an area 
and repeatedly flying an aircraft across a target provides 
a unique and invaluable time-series of image data. The 
modelling of in-water parameters with depth introduces 
a third dimension and. when incorporated with infor­
mation gained through hydrodynamic modelling, pro­
vides a comprehensive multi-dimensional description o f 
an area. 

Airborne remote sensing within LOIS has acted as a 
unifying technology by providing synoptic parameter­
ization of the areas of study. The main LOIS RACS{C) 
coastal study area (Fig. 1) comprises a section of the 
East Coast of England f rom Great Yarmouth to Ber­
wick-upon-Tweed. This area is highly dynamic and 
su.scepiible to change, particularly in respon.sc to any 
rise in sea level. Acute coastal erosion of up to 2 m p a. is 
prevalent along the Holderness coast, to the north of the 
Humber Estuary (Valentin. 1971). The Humber Estuary 
is one of the UK's largest and most economically in­
fluential estuaries, with a catchment area spanning 
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I \ B I ( I 

C A S I handset dctiniiion for R A C S ( C ) and their associated SeaWiFS hand relations 

C A S I Band No. ScawiFS Band No Wavelength Range 

Mm tnm) Max (nm) 

Purpose 

1 1 408 422 Gelhstoffe A chlorophyll 
2 2 438 454 Chlorophyll & gelbstofTe 
3 3 484 500 GelhstofTe. chlorophyll and accessory pigment 
4 4 504 519 SPM & accessory pigment 
5 5 564 Accessory pigment and chlorophyll 
6 6 i : 631 M E R I S compaiihle 
7 6 662 678 Chlorophyll. SPM & chlorophyll fluorescence 
8 687 SPM & chloroph>ll fluorescence 
9 707 718 Chloroph>ll fluorescence & M E R I S 

1.) • a 748 755 SPM & atmospheric aerosols 
1 1 7b 757 784 SPM & atmospheric aerosols 
i : 817 831 Atmospheric water vapour band 
1 ^ 8 :̂ 4̂  SH4 SPM & atmosphenc aerosols 
14 888 902 Atmospheric aerosols & sediment 

one-fifth of the surface area of England and with a port 
thai handles 15000 ship movements and 5000(30 pas­
sengers every year. The estuary has to be constantly 
dredged to maintain the shipping lanes that are so im­
portant for the economy of the region. Sediment fluxes 
into and out of the Humber Estuary, therefore, have 
great economic as well as environmental influence and 
importance. 

The remote sensing platform used in this study was 
the NERC Piper Navajo Chieftain aircraft. On board 
was an ITRES Compact Airborne Spectrographic Im­
ager (CASI). alongside a Daedalus AADS-1268 Air­
borne Thematic Mapper ( A T M ) and a Wild RC-IO 
camera. The CASI is a programmable, high spectral and 
spatial resolution, imaging spectrometer (Anger ei ai., 
1990). It has the analytical potential of a spectrometer, 
with the ability to record up to 288 spectral channels in 
the visible and near infrared. However, there is a trade-
ofl" between spectral and spatial resolutions on the CASI 
mstrument. and at fu l l spatial resolution it was only 
possible to resolve 14 spectral channels. These were 
acquired for the specific scientific application of water 
quality and atmospheric correction (Table I ) . Sus­
pended Particulate Matter (SPM) concentrations were 
denved from the CASI image data after a number o f 
image calibration and correction steps. This enabled the 
calculation of sediment flu.xes into and out of the estu-
arv. 

Data .Acquisition 
The objective behind CASI overflights of the Humber 

Estuary was the acquisition of a sequential time-series o f 
data throughout a significant fraction of the tide for the 
purposes of estimating sediment fluxes and providing 
sediment distributions for modelling. This was achieved 
by repeatedly flying transects across the mouth of the 
Humber Estuary f rom Spurn Head to Tetney Haven 
(Figs. I and 2). These data were then used to derive the 
SPM concentrations that were evolving over this time 

scale. The SPM concentration varied in relation to tidal 
strength and exhibited spatial patterns that were related 
to bathymetry and bedform type. 

This study focuses on a series of flightlines acquired 
on 10 August 1995. when low water was at 11:08 G M T 
(at Spurn Head) and high water at 17:25 G M T . The 
tides were rising springs and the tidal range was 5.9 m. 
The mean tidal range at Spurn Head is 4.8 m. A T M and 
CASI images were acquired over the mouth of the es­
tuary. The transect encompassed a series of five fixed 
moorings (Fig. 2). the so-called //w.v curtain (Hardisty et 
a/., 1995). This sampled the top 0.2 m of water for SPM. 

Berwick-upon-Tweed 

,Newcastle-upon-Tyne 

North 
Sea 

N 

A 

Kingston-upon-Hull 

Humber Estuary 

Great 
Yarmouth 

0 50 100 150 200 Kilometera 

Fig. I L O I S R A C S i C ) studv area 
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alumc 37 Numbers 3 7 March-July l*WH 

Spurn 
3 Head 

K l l o m e t e r e 

1 Spurn Jetty 
2 Hawk* 
3 BuH LlQht Host 
4 2C Uatrt FkMt 
5 Hail* Sand Fort 

2 Location of the transaxial C A S I fljghiline across the Humber 
moulh and the flux curtain moorings 

[idal velocity, temperature and salinity at hourly inter-
î als throughout the day and at 15-min intervals 
throughout the period coincident with the overflights 
[Fig. 3). This period covered the section of flooding tide 
from 12:27 G M T to 14:31 G M T . 

Data Processing 
There are a number of image calibration and correc­

tion steps that need to be followed in order to accurately 
estimate SPM f rom image radiance values. These in­
clude radiometric calibration, atmospheric correction. 

geometric correction and derivation and validation o f 
the SPM algorithm itself 

Radiometric calibration 
The images were radiometrically calibrated using a 

suite o f software developed for the N E R C Airborne 
Remote Sensing Facihly (ARSF) (Wilson et al., 1997). 
Spectral calibration of the sensor was carried out at 
regular intervals. This information was used to calibrate 
each spectral band and applied to the dataset on a per 
pixel basis. 

A tmospheric correction 
The useful remotely sensed informat ion about an area 

o f sea is contained within the physical properties o f the 
radiation leaving that target, i.e. the water-leaving ra­
diance. This signal is difficult to quant i fy due to inter­
actions between absorption, scattering and reflection of 
light by in-water constituents. This is a considerable 
problem in coastal waters, whose optical properties are 
determined by resuspended organic and or inorganic 
sediments and terrigenous particles (Gordon and More l . 
1983). Compounding this problem is the fact that radi­
ative flux arriving at the sensor has travelled some dis­
tance through the atmosphere and has therefore suffered 
scattering, attenuation and possibly augmentation f rom 
surrounding light fields. The atmospheric contr ibution 
to remotely sensed data at optical wavelengths is over 
50% and may approach 80-90% o f the radiance re­
ceived at the sensor towards the blue end of the spec­
t rum, leaving only 10% of the signal containing useful 
informat ion regarding the condit ion o f the water 
(Cracknell and Hayes. 1991). The atmospheric compo­
nent is not constant throughout an image, particularly 
in airborne data where the target-sensor path length is 
variable across the image. Atmospheric correction is 
therefore imperative The C A S I handset (Table I ) was 
chosen to allow the detection and quantification o f at­
mospheric aerosols, which represent a key input to the 
atmospheric correction procedure over coastal. SPM-
dominated waters. 

S 0.16 

05:00 07:00 09:00 11 00 13 00 

Time ( ( . M l ) 

1500 17:00 

Fig. 3 SPM conccniraiion measured from the Bull light Float on 10 
August 1995 
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The atmospheric correciion algorithms used in this 
study (Moore ei af., 1998) assume thai in waters with a 
significant SPM concentration, as is the case in the 
Humber Estuary, there is significant water-leaving ra­
diance at near-infrared ( N I R ) wavelengths. Such areas 
are flagged within the atmospheric correction procedure 
and an iterative approach is employed, using a con­
strained fit o f aerosol optical thickness values in the 
N I R and water-leaving reflectance against sediment 
concentrations. In clearer waters it is assumed that all 
radiance in the N I R has originated f rom the atmo­
sphere, because water absorbs all energy at these 
wavelengths (Gordon and Wang. 1994). Values f rom the 
N I R are then used to correct bands in the visible part of 
the spectrum. 

Geometric correction 
Airborne images can suffer f rom a number of geo­

metric distortions due to the instability of the aircraft. 
Wi th the addition o f the CASI to the N E R C aircraft, the 
N E R C A R S F took the important step o f designing an 
Integrated Data System which synchronized the collec­
tion of A T M , C A S I . and Global Positioning Satellite 
(GPS) data (Wilson, 1997). The GPS system consists of 
four separate antennae fitted in a rigid cross-shape on 
the aircraft roof. This provides measurements of local 
position and. by using the relative output o f each an­
tenna, allows the accurate measurement o f the attitude 
of the aircraft in ro l l , pilch and yaw (Mockridge et oA, 
1997). 

SPM algorithm determination 
SPM was derived f rom the CASI data using a simple 

band ratio algorithm that employed two visible wave­
bands covering the green (509 nm; band 4) and red (668 
nm; band 7) parts o f the electromagnetic spectrum. 
These wavelengths correspond to channels 4 and 6 of 
SeaWiFS (Sea viewing Wide Fieid-of-View Sensor; 
Hooker et a/., 1992) and were chosen to highlight the red 
clay sediments, which dominate the particulates found 
in the Humber mouth. Litt le, or no, chlorophyll was 
found in the area at this time. The signal f rom the green 
waveband, therefore, is dominated by SPM, jus t i fy ing 
its use in the algorithm ratio. The algorithm lakes the 
fo rm: 

SPM(mg \-')=a 

where /.„ is radiance at wavelength n and a and h are 
constants of 3.505 and -2.726. respectively. 

The coeflicients a and h were derived f rom the com­
parison of in situ SPM measurements, laken f rom the 
Bull Light Float (one of the flux curtain moorings; Fig. 
2) and the corresponding image spectral ratios. The al­
gorithm was applied to the suite of CASI images ac­
quired on 10 August 1995 in order to obtain SPM 
information for ihai portion of the tidal cycle moni­

tored. Fig. 4 shows examples o f image-derived SPM. 
acquired 2 h after Low Water ( L W + 2 h ) and at L W 
+ 3h. 

Interpretation of Image Features 

Profiles across (he mouth o f the Humber, which en­
compassed the Bull Light Float (Fig. 2), were assessed 
for each SPM image. The results, displayed in Fig. 5, 
show the SPM concentrations throughout the 2-h sec­
tion o f the flood tide monitored for this exercise. The 
left-hand side o f each plot represents Spurn Head wi th 
the .r-axis defining distance along the profile ( in metres). 
The dark lines represent SPM concentration in units o f 
kg m " \ On each profile, the location o f the Bull Light 
Float can be identified as the 0 kg m"^ SPM feature at 
approximately 1300 m. 

The asymmetric nature of the concentration field 
across the Humber is clear f r o m the cross-sectional 
profiles in Fig. 5. Higher SPM concentrations were ev­
ident in the deeper northern channels during the flood­
ing tide and lower concentrations in the south. SPM in 
the uppermost layers of the esiuarine waters were 
mainly fine grained. Median particle sizes were in the 
range 70-110 ^ m in the top few metres o f the water 
column and probably comprised floes o f silt and clay 
and very fine sand (Uncles, R.J., pers. comm.). 

Dur ing the flood tide, fine particulate matter was re-
suspended as flow velocities increased. Sharp increases 
in the SPM concentrations at various points across the 
profile occurred f r o m L W + 2.3h onwards (Fig . 5). The 
patterns o f resuspension were streaky in nature at this 
stage o f the flood tide (Fig. 4b and Fig. 5) and were 
probably influenced by the seabed distribution o f sedi­
ment and by bedfomis. Other surface features, such as 
the stirring up o f large quantities o f SPM in the wake o f 
a ship, can be distinguished (Fig. 4b and Fig. 5). A small 
section o f the ship was incorporated in the profi le at L W 
+ 3h and subsequently identified and masked out (as 0 
kg m~^ SPM concentration) at a distance o f approxi­
mately 2000 m across the profile. The sharp peak that 
immediately followed the ship's passage reached con­
centrations in excess o f 0.1 kg m"-^ (i.e. over twice the 
local background level) as water was stirred up f r o m 
deeper in the water column. This exemplifies the strati­
fied nature o f these waters and identifies the complex 
problem o f modelling their sediment dynamics. 

Calculation of S P M Flux 

Previous studies have been largely limited by single-
point flux calculations due to the limited spatial cover­
age o f most surface-based monitor ing exercises. Lane 
et al. (1997) identify that "accurate flux calculations re­
quire consistently high spatial and temporal resolution 
across the cross section'. The use of remote sensing 
provides the temporally instantaneous spatial resolu­
tion, but direct velocity measurements are normally 
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Fi>». 4 SPM conccnir.iiionN dcri\cd Irom C A S I im.igeN acquired .il 

sparse ANNCsMncnt of SPM fluxes can he made ihn^ugh 
the mcorporation of h>drod>namic modcU. which csii-
maie flow velocities .ind direction. This is an important 
application lor operational coastal remote scnsinj:. as it 
reduces the need for cost I \ and time-consuming surlace-
hascd monitoring. 

The calculation of SPM flux needs to take inti> ac­
count the h\dri>U>LMcal d\namics o\ flow in three di-
inei iMonN The Depth Integrated \elocilics And Solute 
Transpt>ri ( D l \ \ S I ) h>dri>logical model iKalconer and 

O u e n s . 1990) has been used here to model the depth-
averaged flt>ws m the Humbcr The north and east ve-
U K \ I \ components from the I ) I \ ' .AST model were 
to derive depth-averaged velocity vectors perpendicular 
to the profile across the Humher nv)ulh Surface ve­
locities were then estimated from the \'an-\een prt>hle 
(FiLV 6 a l determined from the following equation 
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LW + 1 Jh LW+2Jh 
• 

LW+1.5h LW + 2Jh 

LW+l.8h LW + 3h 1 1 

i 
i 

1 

1 

1 
LW + 2h 

LW + 2Jh 

LW + 3 Jh 

Batbymctry 

Distanct along profQc (metres) 

Fig. 5 Cross-sectional profiles derived from the C A S I images ac­
quired between L W + 1.3h and L W -?- 3.3h. The left-hand side 
of each plot represents Spurn Head with the .v-axis defining 
distance along the profile. The dark lines represent S P M 
concentration: the light grey lines represent SPM flux. On each 
profile the location of the Bull Light Float can be identified as 
the 0 kg m"^ SPM feature a( approximately 1300 m. 

where 0 is depth averaged velocity. i / | the velocity at the 
surface and ;/ is the relative depth: 

where : is height above the bed and J the total 
(e.g. Uncles and Jordan. 1994). 

depth 

The product o f the resultant surface velocities and 
image-derived SPM concentrations then provided an 
estimate o f SPM flux for each 2.5 m pixel along the 
profile. Fig. 5 shows SPM fluxes in kg m"- s"' as a light 
grey line. At L W + 1.3h. velocities ranged f rom 0.3 to 
0.7 m s"'. Velocities iiraduallv increased to L W +2 .5h . 
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Fig. 6 (a) (left)The Van-Veen profile showing the variation of water 
velocity with depth, (b) (right) A typical depth profile of SPM 
concentrations acquired approximately 600 m to the west of 
Spurn Head at Hawkc. 

/here an average of 1 m s"* was reached. Following 
his, velocities exceeded 1 m s"' in the northern chan­
nels, which coincided with the resuspension o f sediment 
n these deeper channels. 

Field measurements acquired in the region o f the 
lumber mouth have shown that SPM concentrations 
icrease with depth. Fig. 6b shows a depth profile o f SPM 
oncentrations taken approximately 600 m to the west of 
.purn Head (Uncles, R.J., pers. comm.). This increase 
/ i i h depth corresponds inversely to the Van-Veen profile 
Fig. 6a). where water velocities are shown to decrease 
haracteristically towards the bed as SPM concentrations 
ncrease. SPM depth profiles wil l also vary wi th sediment 
nd bedform type and slope and current speed. The 
louse equation ( f rom Dyer, 1986) was filled to the 
leasured SPM depth profile. The equation describes 
oncentration with depth and is defined as; 

/here C- and C„ are SPM concentration at a height r 
nd at a reference height a, respectively, and: 

P K U . 

/here p is the ratio of the eddy diffusion coefficient for 
he sediment to that for the fluid (assumed to be 1; Dyer, 
986), K is von Karman's constant (taken to be 0.4; 
)yer. 1986). M-, is the settling velocity and H . ; is the 
fict ion velocity. 

In the case o f the Humber Estuary, w./u, wi l l be 
mall, due to the dominance of fine silts and clays in a 
ast flowing environment. A n initial estimate of 0.1 for 

Wj/u, was laken and then iteratively changed to fit the 
Rouse equation to the measured SPM profile. A final 
value o f 0.5 was derived for B. Using this value in the 
equation, the measured SPM concentrations were inte­
grated wi th depth and a total concentration for the 
profile o f 0.471 mg m"^ derived. I f the surface SPM 
concentration value is assumed as a uniform measure 
throughout the profile, a total concentration o f 0.315 mg 
m~^ is obtained. Therefore, by assuming un i fo rm con­
centration with depth, one can expect a 33% error when 
calculating total concentration throughout the profile. 
However, in the absence of reliable models that describe 
SPM concentrations down through the water column 
during the measurement period and over the study site, 
a uniform concentration with depth has been assumed 
here. The limitations o f this assumption must be rec­
ognized and the possible errors in the calculation o f 
fluxes appreciated. 

Using bathymetric data o f the estuary (derived f r o m 
Hydrographic Office charts), it was possible to integrate 
SPM flux with depth. By additionally integrating 
throughout the observed time sequence, an estimate o f 
SPM flux for the 2-h section o f the flood tide was ob­
tained (Fig. 7). This figure illustrates the larger influx of 
SPM to the estuary through the northern channels 
during a flood tide. The total SPM flux for this time 
period was 8.8 x 10^ kg. 

Conclusions 
Surface-based measurements are largely limited to 

single point studies. Remote sensing provides informa-
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Fig. 7 Total SPM flux for the transaxial cross-section of the Humber 
mouth over the 2-h section of the flood tide spanning LW 
+ l.3h to LW -t- 3.3h. The left-hand side of the plot represents 
Spurn Head with the .r-axis defining distance along the profile. 

t ion on the two-dimensional, surface structure of the 
water. Baihymetric analysis extends this to three di ­
mensions and hydrodynamic models add the temporal 
element. A vast quantity o f remotely sensed data has 
been acquired within the LOIS project and the future 
holds much potential, wi th studies over a more complete 
tidal cycle possible. 

The work presenied here has examined the use o f 
remotely sensed data to estimate SPM fluxes across a 
section o f the flood tide. This study has successfully 
tested new approaches to SPM flux evaluation and has 
estimated SPM flux across the mouth o f the Humber 
Estuary over a 2-h section o f the flood tide. Although 
the assumption that SPM concentration is uniform wi th 
depth had to be made due to model and in situ data 
limitations, the results provide some insight into the 
feasibility o f such studies. 

O f great importance are the hydrodynamic models 
themselves and an increase in the spatial resolution o f 
their output would be o f benefit. A hydrodynamic 
model has been developed within LOIS for use in the 
Humber Estuary (Wood et al., 1996) and this should 
enable the more accurate determination o f flow regimes 
within the estuary. In addition to this, a modelled depth 
profile of velocity and SPM would increase the accuracy 
in three dimensions. 

It is hoped that future work wi l l examine the type 
and distribution o f bedforms to the SPM concentration 
and flux measurements derived using the procedures 
reported here. It may then be possible to attempt to 
describe the sources of the SPM entering the estuary 
and any resuspension which takes place. Studies such 
as these wi l l enable the progression o f our under­
standing of the fluxes into and out o f the Humber 
Estuary and so fu l f i l one o f the main aims o f the LOIS 
project. 

This Sludy was executed as part of the NERC LOIS project and is 
LOIS Publication Number No. 430. The CASI data were acquired and 
distributed by rhe NERC ARSF. We would like lo thank Dr RJ . 
Uncles at Plymouth Marine l-aboratory for his advice and assistance, 
and Prof. J. Hardisty and N . Hughes at the Humber Observatory. Hull 
University, for provision of the in situ data. 
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Abstract. Results are presented of frontal phenomena in the Tweed Estuary, 
UK- Salinity distributions in the lower estuary were particularly complex and 
salinity stratification was strong. Large areas of high salinity waters abutted 
waters of much lower salinity with the formation of distinct frontal systems. These 
systems were largely controlled by the bathymetry of the region, especially the 
shoal and inlet morphologies. Sea-truth and remote sensing observations allowed 
the high-resolution, spatial determination of surface temperature and salinity 
fields within the frontal regions. 

1. Introduction 
The River Tweed and Tweed Estuary are located on the English-Scottish border 

(figure l(fl)). Early research within the estuary concentrated on its chemisti^ (Gardner 
and Ravenscroft 1991) and little information on circulation and salinity was available 
unti l recently (Uncles and Stephens 1996, Uncles et al. 1997). These later studies 
showed that the Tweed was a rapidly flushed, highly stratified estuary in which 
frontal systems were ubiquitous. In this article we present high-resolution surface 
salinity and temperature distributions that delineate frontal phenomena within the 
Tweed. Data were derived f rom aircraft and sea-truth measurements made during 
May 1995. 

Remotely sensed data have become increasingly important in our attempts to 
understand the fine-scale behaviour of both esluarine circulation (Anderson et ai 
1992, Ferrier et ai 1996, Ferrier and Anderson 1997a,b) and estuarine and coastal 
wastewater dispersal (Ferrier and Anderson 1996, Davies et al 1997). The focus of 
this article is on the use of thermal and photographic observations from aircraft and 
sea-based monitoring to estimate the high-resolution surface temperature and salinity 
fields that were associated with a tidal intrusion front that propagated through the 
Tweed's inlet on a flooding, mean-range tide (Uncles et al 1997, and also Simpson 
and Britter 1979, Simpson and Nunes 1981, Largier 1992). Previous work showed 
that the inlet neck (region of minimal cross-section) appeared to act as a control 

International Journal of Remote Sensing 
ISSN 0143-1161 prini/ISSN 1366-5901 online © 1999 Taylor & Francis Lid 

hitp:/7www.iandf.co.uk/JNLS/rcs.him 
hnp://www.iaylorandfra ncis.com/JNLS/rcs.htm 



610 R. J. Uncles el al. 
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(a) 

Figure 1. The Lower Tweed Estuary and its location within the British Isles, (a) Location of 
the Tweed Estuary, (b) The Lower Tweed. Distances along the estuary are marked off 
in 0.5 km intervals from the Pier Head at the seaward end of the Harbour Pier. 

section for the inflow of high-salinity coastal waters during the flood portion of 
spring tides (Armi and Farmer 1986» Stigebrandt 1988, Largier and Taljaard 1991, 
Uncles et al. 1997). The objectives here are to: (/) investigate near-surface stratification 
in the outer Tweed Estuary, (n) follow the evolution of surface frontal systems during 
a flooding tide, and (Hi) map the surface distributions of salinity and temperature. 

The Tweed is particularly important as a fishery for trout and salmon (The 
Tweed Foundation 1989 and 1992). I t is a fairly steeply rising and shallow estuary. 
The tidal l imit is located approximately 13km from the mouth (Fox, personal 
communication). The mouth of the estuary is located between the coastal towns of 
Berwick-upon-Tweed (Berwick) and Tweedmouth. Depths at high water are typically 
a few metres. The width at the tidal limit is about 100 m and the width near the old 
Berwick Bridge, al 2 km f rom the mouth, is about 300 m (figure 1 (<>)). The width 
increases to about 700 m in the lower estuary, between the Old Bridge and the 
Harbour Pier. The mouth (a tidal inlet at low water levels) is confined between the 
Harbour Pier and a sand spit. The spit is dry at low water and is covered at high 
water. The width at the inlet neck is about 50 m at low water. 

2. Observations and methods 
Near-surface salinity and temperature were measured during a flooding tide 

along transverse tracks in the lower estuary on 4 May 1995 in order to delineate 
frontal features there. An inflatable boat was fitted with salinity-temperature sensors 
at 0.10, 0.45 and 0.55 m beneath surface and steered between navigational turning 
stations. Data at O. lm were recorded al 30-sec. intervals and those at 0.45 and 
0.50 m at 3-sec. intervals. During these measurements, repeated aircraft over-flights 
were undertaken to acquire photographs and thermal images of the region. 

The aircraft deployed for this study was the NERC Airborne Remote Sensing 
Facility's Piper Navajo Chieftain PA31-350. Mounted onboard this craft was a suite 
of instrumentation that included a Daedalus-AADS-1268 Airborne Thematic Mapper 
( A T M ) and a Wild-RC-10 metric survey camera. No other approach could have 
provided the near-synoptic, contiguous acquisition of salinity and temperature data 
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that are esseniial for the quantitative delineation of rapidly changing frontal systems 
within estuaries and the coastal zone. 

Remotely sensed data were acquired every 5-10 minutes throughout two portions 
of a flood tide on 4 May 1995. Data acquisition commenced at 1055 G M T (low 
water, i.e. LW) and continued until LW-f0 .66h , and then from LW4-2.51h to 
LW + 5.21h (1608 G M T ) . This coincided with the monitoring exercise in place at 
the water's surface. The work presented here comprises a description of the series of 
images taken between LW and LW + 4.1h (1500 G M T ) . 

3. Environmental data 
Tides at Berwick are semidiurnal with mean spring and neap ranges of 4.1 and 

2.5 m, respectively. Mean high water and low water spring tide water levels are 4.7 
and 0.6m, relative to local chart datum (Hydrographic Office 1992 and 1993). Mean 
high-water and low-water neap tide water levels are 3.8 and 1.3 m. The tidal range 
was decreasing f rom 4.0 m spring tides on 29 Apr i l to 3.5 m on 4 May, slightly 
greater then the mean tidal range of 3.3 m (figure 2(a)). 

Freshwater inflow to the Tweed Estuary is the sum of run-oR" f rom the Tweed 
and Whiteadder Rivers. The long-term averaged inflow from the Whiteadder is about 
8% of that f rom the Tweed. The long-term, monthly-averaged inflow to the estuary 
varies from about 140m*^s"' during January to about 30m^s~* during July. The 
freshwater inflows f rom the Tweed and Whiteadder Rivers were steadily decreasing 
over the 12 day period before the measurements and amounted to 27m-* s"' on 
4 May, compared with the long-term annual mean of 84m-* s"* (figure 2{b)). 

4. Physical background 
Data from an earlier field study are used to illustrate physical behaviour in the 

lower Tweed Estuary and inside the inlet region during a flood tide. 

Mean 

Tidal Range 

Long-Term Mean 

Tweed + Whiteadder 

Flows 

Apr! Apr 8 Apr 15 Apr 22 Apr 29 May 6 

M Time: Date 1995 

I ' I ' I • I 

Apri Aprs Apr15 Apr 22 Apr 29 May 6 

Figure 2. Environmental data during 1 April to 6 May 1995. (a) Predicted tidal range at 
Berwick (m). (b) Freshwater inflow from the Tweed and Whiteadder Rivers (m^ s"M-



612 R. J. Uncles et al. 

4.1. Longitudinal salinity distributions 
Main-channel salinity dislribuiions are strong functions of intratidal phase, tidal 

range and freshwater inflow (e.g. Fischer et al. 1979, Dyer and New 1986). The flood 
behaviour observed on 20 September 1993 is relevant to the behaviour of tidal 
intrusion fronts (figure 3). High-water ( H W ) level at Berwick was 4.7m (mean 
springs) and the freshwater inflow was fairly low (35 m^ s" The salt wedge (salinity 
>30) had moved > 1 km up-estuary by 2.6 h after low-water ( L W + 2.6h). The 
halocline which separated upper and lower layers (salinities < 5 and >30, respect­
ively) was about I m thick (figure 3(a)). By LW-l-3.3h the salt wedge had moved 
> 2 k m into the estuary and the halocline thickness had increased to 1.5 m. In the 
lower reaches the halocline had mixed to the surface, so that the water column 
comprised a two-section system with high salinity waters overlain by a highly 
stratified upper layer of about 2 m thickness. Frontal systems were evident inside the 
inlet ( < 0 . 5 k m from the Pier Head) al LW + 2.8h (figure 3(a)) and in the main 
channel of the estuary ( > 0.5 km) at LW H- 3.5 h (figure 3(b)). 

4.2. Currents 
Measurements in the neck of the inlet on 28 September 1993 illustrate the early 

flood dynamics of the flow there (figure 4). Tides were small springs (4.4 m H W level 
at Berwick) and freshwater inflows were low (25 m'* s"^). A vertical profil ing station 
was occupied close to the Harbour Pier wall and in shallow water to the side of the 
main channel. At LW + 0.2h the water column was homogeneous (salinity ^ 5 over 
a depth of 1.2 m) and the ebb-directed current profile was approximately linear wi th 
depth. Speeds increased f rom bed to surface (figures 4(a,6)). By LW-l-0.9h a near-
bed, high salinity current was observed to be moving up-estuary. This current 
probably occurred earlier in the deep channel ( ' ^ 4 m ) but required a greater depth 
of flooding water before spreading onto the shallower parts of the section. The upper 
I m still had low salinities ( < 7 ) . By LW + 1.4h the flooding, high salinity basal 
current had become thicker and the low salinity ( < 5 ) upper layer was <0 .7m thick 
(figures 4{aJ))). 

A classical gravitational circulation (e.g. Turner 1973) therefore occurred within 

a 
o 

10 

MA 
LW + 2.4hto2.8h 

1 

LW + 3.0h to 3.6h 

(a) Distance from Pier Head . km (b) 

Figure 3. Salinity from longitudinal transects of the Tweed during a flooding spring tide on 
20 September 1993. The HW level at Berwick was 4.7 m and the daily-averaged 
freshwater inflow was 35m^ s"*. (a)Transect between LW + 2.4h and 2.8h. (6)Transect 
between LW-i-3.0h and 3.6 h. 
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Figure 4. Vertical profiles of currents and salinity at the inlet neck on a flooding spring tide 
during 28 September 1993. Profiles are at LW + 0.2, 0.9 and 1.4 h. [a) Salinity, (b) Velocity. 

the inlet during the eariy flood period of this low freshwater inflow, small spring 
tide. The surface layer thinned while ebbing and decelerating (figure 4(f>)) and the 
flooding basal current increased in speed. 

5. Results 
5.1. Remotely sensed time-series images 

Remotely sensed, thermal (band 11, i.e. 8 . 4 ^ m - l 1.5/im) A T M images of the 
estuary mouth were used to track the intrusion of saltwater into the Tweed during 
the afternoon flood tide of 4 May 1995. The raw digital thermal data were processed 
to provide apparent surface temperatures. In-flight calibration consisted of two 
controllable black bodies that acted as maximum and minimum infrared references 
(Wilson 1988). The calibrated radiance was converted to brightness temperature by 
inverting the Planck function equation (Callison 1985). The water surface was 
assumed to have a constant emissivity of 0.98, which is an average value for clear 
water bodies (Wilson, personal communication). A further step of atmospheric 
correction would be required to derive actual sea surface kinetic temperature 
(Callison et al. 1987), but this was not done here. 

Between LW and LW + 0.6h there was little thermal structure evident in the low 
salinity surface waters of the lower Tweed and in the adjacent coastal zone (figure 5). 
By LW + 2.5h the flooding tide of high salinity coastal waters had developed a 
frontal boundary that defined the margins of the out-flowing, low-salinity surface 
waters (figure 5). The 'V'-shaped tidal intrusion front of high-salinity coastal waters 
formed within the inlet between LW + 2.7h and LW + S.Oh (figure 6) at around the 
time of peak flood currents. The 'V'-shaped front remained within the inlet between 
LW + 3.0 and LW + 3.6h (figures 6 and 7) but had migrated into the main channel 
of the estuary by LW + 4.0h (figure 7). The maximum rate of frontal migration was 
about 0.1 ms"*, compared with tidal current speeds of >0.5 m s " ' . Denser saline 
waters had already progressed further into the estuary beneath the low-salinity 
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LW 

LW + 0.5h 

LW + 0.6h 

LW+2.6h 

Figures. A T M thermal (band I I ) image acquired al LW, LW-h0.5h. L W ^ 0 . 6 h and 
L W - f 2.5h on 4 May 1995 and scaled to display and highlight the frontal features 
wi ihm the water surface. The lighter grey shading delineates the warmer, fresher waters 
in the esiuary and the darker grey and black shading the colder seawater. 
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Figure 6. A T M thermal (band 11 ) image acquired at LW + 2.7h, LW-f-3.0h, LW-i-3.1 h and 
LW + 3.2h on 4 May 1995 and scaled to display and highlight the frontal features 
within the water surface. The lighter grey shading delineates the warmer, fresher waters 
in the esiuary and the darker gre> and black shading the colder seawalcr 
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LW + 3.5h 

LW + 3.6h 
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\ Injure 7. A T M thermal ( band 11) image acquired al LW 4- 3.5 h, LW ^ 3.6 h. LW ̂  4 () h and 
L W ^ 4 . 1 h on 4 May 1995 and scaled to display and highlight the froiilal features 
within the water surface. The lighter grey shading delineates the warmer, fresher waters 
in the esiuarv and the darker grey and black shading the colder seawater. 
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surface layers by the time that the 'V'-shapcd front was first observed within the 
inlet (LW-f-3.0h. figure 6). The small patch of cooler waters that had up-welled to 
the west of the sandspil, on the inner shoals and near the water's edge evidences this 
(LW-i-3.0h, figure 6). The cool patch gradually increased in size through to 
LW -•- 3.2 h (figure 6) and was associated with some slight mixing of cooler waters to 
the surface that occurred between itself and the intrusion front. The cool, saline 
basal current eventually mixed upwards at L W - f 3.5h when the intrusion front at 
the inlet neck finally migrated into the main channel of the estuary. A second 
intrusion front formed between LW-i-3.5h and LW-h4.0h that slowly moved 
up-channel. At LW-1-4.1 h the high-salinity waters had trapped a body of freshwater 
adjacent to the sandspit. Another, small patch of cooler waters had appeared near 
the southern-most point of the southern bank by LW-1-4.1 h (figure 7). This was 
again due to the upwelling of denser, saline waters that comprised the basal current 
that flowed up-channel beneath the lighter, near-surface fresher waters. 

5.2. Sea-truth tracks 
Intense stratification was a feature of the near-surface salinity and temperature 

fields during the early flood, as expected from previous field data (figures 3 and 4). 
Between LW-i-1.3 h and LW-i-1.7 h the salinity differences between 0.1 and 0.55 m 
beneath surface were >20 throughout the sea-truth grid and were strongest in the 
coastal zone immediately outside the inlet (station 1, figure 8). Near-surface salinity 
at 0.1 m was low throughout the inlet and estuary ( < 10). However, elevated salinity 
and greatly reduced stratification were observed at station 2. This is consistent with 
the higher surface salinities (cooler waters) observed in the A T M images somewhat 
later in the flood, at L W - f 2.5h (figure 5). 

Reduced, but nevertheless pronounced, salinity stratification persisted throughout 
the mid-flood (figure 9). Salinity between stations 12 and 17 at L W - f 4.2h to 
L W - f 4.5h was similar at 0.4 and 0.55m beneath surface, but exceeded the 0.1-m 
salinity by about 10. The strongest feature of these data was the existence of 
pronounced salinity peaks on the outside of the main-channel bends (figures 1 and 
9). These peaks can be attributed to an upward tilt ing of the near-surface isohalines 
that resulted from centrifugal forcing of the tidal currents (Proudman 1953) at 
channel bends (denoted by on figure 9). The marked decrease in near-surface 
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Figures. Salinity at 0.1 and 0.55m beneath surface along sea-lrulh-irack run 1 over the 
period LW + 1.3 h to LW -f 1.7 h. Turning stations 1 to 11 and the water-line (continu­
ous line) and LW-line (dashed line) are superimposed on a chart of the Tweed. 



618 R. J. Uncles el al. 

'•2 

RUN 4 TRACK 
14 15 16 i : ia 19 

c 
CO 

16 10 16 13 16 16 16 19 

Local Time (h) LW+4 2h to LW*4 5h 

Figure 9. Salinity at 0.1, 0.4 and 0.5 m beneath surface along sea-truth-lrack run 4 over the 
period LW -f-4.2 h to LW -f-4.5 h. Turning stations 12 to 19 and the water-line (continu­
ous line) and LW-line (dashed line) are superimposed on a chart of the Tweed. 

stratification between turning stations 13 and 14 was associated wi th the boat's 
passage across a foam line. 

Salinity stratification was greatly reduced on the late flood approaching high 
water, between LW-i-5.6h to LW-i-6.1 h (figure 10). Vertically homogeneous coastal 
saltwater had intruded up-channel to station 15 and displaced fresher surface waters 
further into the estuary. Isohaline ti l t ing and associated salinity peaks were still 
evident on the outside of channel bends al turning stations 15, 17 and 19 ( 'C on 
figure 10). 

5.3. Temperature'Sulinity plots 
Large quantities of simultaneous, near-surface salinity and temperature data were 

derived from the sea-truth tracks (runs 1, 2, 3, 4, 5a, 5b and 6) throughout the flood 
tide. Scatterplots of salinity versus temperature exhibited strong linearity over the 
entire salinity range for each individual sea-truth run. These linear relations varied 
slightly and consistently throughout the afternoon flood tide. Coastal saltwater 
maintained a constant temperature of 7.5 C, whereas the freshwater, river end-
member temperature increased from 16.5 to 18 C during the afternoon, presumably 
in response to solar heating of in-flowing and near-surface, fresher waters. The last 
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Figure 10. Salinity al 0.1, 0.40 and 0.55 m beneath surface along sea-truth-track run 6 over 
the period LW-i-5.6h to LW-*-6. lh Turning stations 10 to 21 and the water-line 
(continuous line) and LW-line (dashed line) are superimposed on a chart of the Tweed. 
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three sca-trulh runs of the flood tide measured relatively few low-salinity data 
throughout the tracks, but the temperature-salinity plots remained essentially linear 
(figure 11). A scatterplot of all data measured during all runs maintains linearity 
(figure I I ) ; most of the scatter about the regression line can be attributed to the 
slight heating of near-surface, fresher waters during the course of the flood tide. 

5.4. Remotely-sensed salinity distributions 
The strong linearity of these scatterplots indicates that mixing between waters of 

differing salinities was essentially conservative; i.e. that mixing occurred with negli­
gible loss or gain of heat during a single sea-truth run. These linear salinity-
temperature plots and their associated least-squares regression lines, derived from 
sea-truth measurements, enabled salinity data to be derived from temperature data 
acquired from A T M thermal images. In order to deduce temperatures f rom thermal 
images, calibration was performed for those images that were acquired at times 
coincident with sea-truth measurements. In each image, the inflatable boat was 
identified and the pixels around its location were interrogated. Means and standard 
deviations for each set of apparent temperature values were found. These have been 
compared with the sea-truth data (figure 12) and a least squares regression fitted to 
the data. The regression achieved a 0.952 coefficient of determination. 

The temperature derived from the A T M was, on average, 1.2° C higher than that 
measured at the water's surface. This can be accounted for by the fact that the boat 
measurements were taken subsurface (>0.1 m) whereas the A T M results relate to the 
surface, where heating f rom the Sun increases the 'skin' temperature by up to 2 ° C 
(Wilson, personal communication). The atmosphere can also influence the A T M -
derived apparent surface temperature. Weather conditions and altitude of aircraft 
could have a positive, negative or neutral eflfect on the derived data. The most 
effective way of overcoming any atmospheric influence is to move to a minimum-
two channel thermal instrument, to allow 'split window' atmospheric corrections to 
be performed (Wilson, personal communication). 

Calibrated temperatures were derived f rom the A T M thermal images using boat 
data to provide true surface temperature images. Using the temperature-salinity 

ALL RUNS 

RUNS 5a. 5b and 6 

Temperature f C) 

Figure 11. Salinity-temperature scatterplots for sea-truth tracks 5a, 5b and 6 and for all 
tracks, runs 1 to 6, combined. Data have been used from the two instruments nearest 
the surface (0.1 and 0.4 m) in order to reduce the number of plotted data points. 
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Figure 12. Comparison of ATM-derived temperatures with sea-truth data and the least 
squares regression line (0.952 coefficient of determination). 

regressions derived from sea-truth measurements, ATM-based salinity images were 
constructed for the entire set of A T M scenes. The surface salinity and temperature 
fields within the Tweed's lower estuary and coastal zone exhibited complex and 
remarkable structures. The 'V'-shaped intrusion front within the Tweed's inlet at 
LW-1-3.1 h was sharply defined by the margin between saltwater of coastal salinity 
(>33 , yellow on figure 13, top panel) and intermediate waters of salinity <20. Slight 
vertical mixing of the plunging, flooding coastal flow with the overlying esluarine 
waters generated these intermediate-salinity waters. Incompletely mixed surface 
waters were traceable through the main inlet channel, into the estuarine channel and 
onto the shoals. Centrifugal-induced up-welling on the outside, western side, of the 
main channel bend also led to somewhat higher salinity waters at the surface 
(figure 13). Topographically induced upwelling was also evident on the shoal to the 
west of the main channel. A higher-salinity patch of waters to the west of the main 
channel (figure 13) appeared to result f rom up-welling due to topographic blocking 
of the high salinity basal flow as it moved onto the shoal. Additional, coastal-zone 
features in the surface-salinity field were the movements of intermediate-salinity 
plume waters to the north of the inlet's mouth and the trapping of intermediate-
salinity waters on the shallow, recently covered intertidal areas (figure 13). These 
features were, of course, also evident in the temperature field at LW-1-3.1 h (lower 
panel, figure 13). 

By LW-i-4.0h the intrusion front (salinity >30) had moved into the estuary's 
main channel and collapsed as a result of intense mixing (figure 14). The front was 
then transferred up-channel. Waters of salinity > 3 0 plunged beneath waters of 
salinity <15. Salinity was high over the shoals. Surface salinity was < 10 further 
up-channel. Lower salinity ( < 30) waters remained trapped close to the coast. Despite 
pronounced mixing of the remnants of the Tweed's ebb-tide plume, a frontal bound­
ary nevertheless remained between these mixed waters and high-salinity North Sea 
waters (figure 14). These features were also evident in the temperature field, which 
covered the range 6.4 to 18°C. 
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Figure 13. Temperature (lower panel) and salinity (upper panel) of the Tweed Estuary at 
LW + 3.1 h. Acquired 4 May 1995 and derived from the A T M thermal band 11 image. 

6. Discussion and conclusions 
Previous measurements in the Tweed have shown that frontal systems occur both 

inside the inlet at around mid-water and in the main channel of the estuary later 
into the flood tide during spring tides and at fairly low inflows (Uncles et al. 1997). 
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Figure 14 Temperature (upper panel) and salinity (lower panel) of the Tweed Estuary at 
LW + 4.0h. Acquired 4 May 1995 and derived from the A T M thermal band 11 image 

The data presented here demonstrate that similar behaviour also occurs dunng 
lower, mean tidal-range tides. Additionally, the salinity and temperature fields withm 
these frontal systems have been defined with both temporal and spatial resolutions 
that far exceed previous studies in this and, to our knowledge, any other estuanne 
study. 

The shaped front that formed in the neck of the mlet was particularly well 
developed around mid-flood. Previous, vertical-profiling measurements illustrated 
the cariy flood dynamics of the flow in the inlet. A gravitational circulation occurred 
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during the early flood period. The flooding basal current increased in speed and the 
upper layer thinned while it ebbed seawards. 

The tidal intrusion front that was observed at the constricted neck of the inlet 
was similar to those described and reviewed by Largier (1992). In particular, an 
inflow Froude-number criterion (Uncles et al. 1997) when applied to the inlet's neck, 
appeared to control the timing and shape of the plunge line within the inlet (where 
high salinity waters plunged beneath lower salinity estuarine waters). The intrusion 
front was observed to occur at the inlet neck around mid-water. At that time, and 
earlier in the flood, the neck acted as a constriction to the flow. The observed 
apparent migration speed of the front through the inlet was about 0.1 m s ~ \ which 
was much slower than the tidal currents. 

According to the review by Largier (1992), on the early flood tide the outflowing 
surface waters from the estuary to the coastal zone are blocked when the inflow 
Froude number at the inlet neck lies within a critical range of values. These surface 
waters are then pushed back towards the neck as the flood currents increase. Plunging 
occurs at the neck when the Froude Number is unity. Observations presented here 
demonstrate that blocking of surface waters occurred by LW-(-2.5h, roughly 0.5 h 
before peak flood current speeds (figure 5). During peak current speeds, the intrusion 
front was located within the inlet's neck. Subsequently, plunging would be expected 
to occur up-estuary of the neck. 

On the eariy flood, vertical profil ing in the inlet showed that high salinity coastal 
waters entered the inlet as a basal density current. This current was topographically 
steered into the lower estuary along the deep channel and transverse salinity gradients 
occurred due to centrifugal, cross-channel t i l t ing of the isohalines (Proudman 1953). 
Less saline waters were forced onto the edges of the flanking intertidal shoals, 
sometimes with the formation of long, buoyancy-induced and shear-induced frontal 
systems (Huzzey 1988, Huzzey and Brubaker 1988). When an intrusion front 
occurred inside the inlet, the high salinity waters plunged beneath estuarine waters. 
Wi th rising water levels, the basal current bifurcated as it left the inlet and entered 
the estuary. One branch turned into the main channel while the other branch retained 
its course and flooded the shoals. Weak vertical mixing between the high-salinity 
basal current and the fresher surface waters led to elevated surface salinities that 
were evident in the remotely sensed images. 

The experiment reported here was undertaken at a time when it was known that 
particularly strong temperature contrasts would be observed between in-flowing 
freshwater to the Tweed and coastal saltwater. These contrasting temperatures led 
to straightforward identification of water masses f rom the sea-truth measurements. 
The efTective flushing of the Tweed over the course o f an ebb tide (Uncles and 
Stephens 1996) generated an essentially homogeneous body of low-salinity waters 
at low water. The introduction of essentially 'new\ high-salinity Nor th Sea waters 
on the flood led to extremely well defined and linear salinity-temperature scatterplots. 
These plots enabled salinity to be defined in terms of temperature from the A T M 
images. While the methodology could be applied in other estuarine areas the A T M 
is most eff*eciive at examining relative changes and thermal gradients. Therefore, it 
has most value at those times of the year for which strong temperature diff'erences 
exist between in-fluxing and receiving waters. 
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