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A B S T R A r T 

Towards the Development of a Model of Vision: 
An Investigation into the Architectures and Mechanisms of 

Visual Perception. 

by 

LUCY JANE TROUP 

A conceptual model of visual perception has been developed using a multi-

disciplinary approach which combines both top-down and bottom-up 

descriptions of vision. Top-down psychological theories of visual 

perception have been investigated resulting in the development of a theory 

of perception which combines the best of existing accounts. Perception is 

defined in terms of a combination of "data driven" and "concept driven" 

explanations. Bottom-up neurophysiological descriptions have also been 

investigated to provide possible descriptions of structure and function for 

the development of a conceptual model based upon the theory. An attempt is 

made to provide a "complete" account of visual perception through the 

development of both the theory and conceptual model. Further it is 

envisaged that the development of such a model wi l l provide new insight 

into the development of artificial vision systems and new algorithms for 

perceptual function in such systems. 
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C H A P T E R 1 

I N T R O D U C T I O N : 

AN O V E R V I E W OF T H E DEVELOPMENT OF A 
MODEL OF VISUAL PERCEPTION. 

This introductory chapter aims to provide an outline of the work that 

follows. An initial overview is provided, then the chapter has been divided 

into four sections. The first is an introduction to perception through an 

overview of previous attempts at explaining vision. The second is an 

overview of the theoretical framework in which the model is to be based, 

introducing the approach that has been taken to modelling vision. The third 

section is an introduction to the model itself in relation to the previous two 

sections. Finally there is a summary of the following five chapters. 

I N T R O D U C T I O N . 

AIMS OF THE THESIS. 

Before embarking on a description of the thesis it is important to explain 

the motivations behind the work that follows. The title of the thesis begins 

with the words; "Towards the development of a model of vision..." This is 

extremely important because as it suggests this work in no way constitutes a 

definitive account of a model of biological vision, neither does it describe a 

model implemented in software for use in the development of artificial 

vision applications. The aim then is quite simply twofold. 
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The first aim is to provide a better understanding of visual perception 

through the development of both a theory and conceptual model of 

perception. One of the key issues that w i l l be addressed in the thesis is that 

it is important to have a good conceptual model based on sound theory 

before you attempt any implementation. There is a danger that pressure to 

simulate any model developed distracts from the insight gained in 

understanding what is to be modelled. 

The second aim of the thesis, is to provide the foundations for a model of 

visual perception that could be easily implemented as an artificial vision 

system, by formulating new more efficient algorithms as a result of 

studying in detail real neuronal behaviours and architectures. 

It is reasonable to assume from attempts at developing artificial vision 

systems that the closer those systems are to the brain the more efficient they 

might be. An example of this can be seen in limitations experienced with 

expert systems approaches to the development of artificial vision systems. 

Early attempts at artificial vision systems such as "blocks world" (Roberts, 

1965; Waltz, 1975) were at best limited to the domain in which they were 

developed. The advent of artificial neural networks (ANN's) which had 

their foundations in a simplified understanding of how the brain was 

thought to function, as outlined in Rumelhart & Mc Clelland's 10 

characteristics of brain function (Rumelhart & Mc Clelland, 1986), were 

more successful in dealing with the problem of restricted domains. The key 

to ANN 'S was that they could learn, so could adapt to deal with new 

information, rather than depend on representations already stored in the 
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system. However the networks developed were inclined to be restricted to 

subsets of visual processing. For example successful neural network 

implementations tended to be built to deal with the problems of low level 

vision or high level vision, a distinction to levels of visual processing first 

popularised by Marr (Marr, 1982), separately. One of the reasons suggested 

for the inadequacies of ANN's in terms of explaining how the brain 

functioned was that the algorithms, for example "back-propagation" and 

architectures they ran on were not brain like at all (Massaro, 1988; Ratliff , 

1990). I f systems developed under these principles do not function like the 

brain, it would seem reasonable to suggest that in the development of a 

truly intelligent machine their performance could be bettered. Through the 

formulation of a conceptual model based closely on the brain it is hoped 

that systems can be developed that produce much more effective behaviours. 

DIFFERENT SORTS OF MODELS. 

It seems that to progress in the field of understanding any aspect of the 

brain involves a relationship with computers in some form. This 

relationship might just be to analyse data. However at the other end of the 

scale, the development of computer models of neuronal behaviour has 

proved to be extremely useful in developing the understanding that we have 

of the brain today. Implementing models of brain behaviour in software 

provides support for both reasons for modelling the brain. The sort of 

system that is developed determines how much detail is necessary in both 

the theory and conceptual model. For example, it is possible to define two 

broad categories of artificial system development with different aims and 
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objectives. These two sorts of system correspond with the two reasons for 

modelling perception that were previously outlined. Firstly there are those 

systems that w i l l eventually be marketed as being capable of performing 

some task that was otherwise performed by a human being. Such systems 

include fault detection devices, robots, chess playing games, etc. The 

development of such systems is not necessarily concerned with how the 

system works its concern is producing systems that can perform certain 

tasks that seem to be examples of "intelligent behaviour". These systems are 

concerned with the apparent behaviours they produce rather than the 

underlying mechanisms of those behaviours. However generalisations of the 

underlying mechanisms of the brain provide valuable artificial mechanisms 

that mean the performance of the artificial system is superior. Usually one 

has a task in mind and a system is developed that performs that task, this is 

referred to as a "top-down" approach to artificial intelligence. 

Secondly there are those systems that are developed to demonstrate 

behaviours but which also rely on architectures and mechanisms that have 

some kind of biological realism. These systems are built initially to work 

from a "bottom-up" approach. They start at the lowest level of function and 

build up on that in the hope that the eventual emergent behaviours wi l l be 

realistic. The underlying mechanisms are similar to those of the brain. At 

their purest level such systems are used by neurophysiologists to investigate 

how the brain actually works, through developing detailed models of 

neuronal behaviours. This approach also has bearing on the development of 

systems that are behaviour driven. Such models can provide information 

about new mechanisms that could be simplified and used in the development 
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of systems that are designed to perform a given task. However there is a 

certain amount of overlap between the two sorts of systems developed and it 

is not always the case that only one particular approach, either top-down or 

bottom-up, is applied in the development of one or other type of system. 

A MULTI-DISCIPLINARY APPROACH. 

The idea of modelling the brain to understand its behaviour is not new. A 

distinguishing feature of this thesis is the aim to provide a multi-

disciplinary model of visual perception, that encompasses both 

psychological theory and an understanding of neuronal behaviours. To 

understand neuronal behaviours, mathematical analysis and computer 

simulation can provide invaluable tools. This means the involvement of at 

least four different disciplines, neurophysiology, psychology, computer 

science and mathematics in the modelling process. 

Such a model can take advantage of the understanding of vision that has 

been developed from each of these perspectives. There are however very 

few theories of vision that are not related specifically to one discipline. 

There are psychological, neurophysiological, and philosophical theories of 

how we see. It is a relatively simple task to develop models of vision from 

detailed neurophysiological research. It is when there is no specific 

physiological information that it becomes diff icul t to develop models, and 

psychological theories and behavioural information from psychological 

experiments become central to understanding (Bruce & Green, 1990). 

However reconciling neurophysiological data with psychological theory is 

not an easy task. The eventual outcome is that you have several theories 
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some derived f rom neurophysiology and others derived f rom psychology. In 

turn this means that most a r t i f i c i a l intelligence models have been developed 

through concentrating on one o f these particular theories. 

Links between what we know about vision and how we can create machines 

that can perform the same tasks have been dominated by theories o f vis ion 

or iginat ing f rom cognitive psychology. The implications o f this are that 

a r t i f i c i a l v is ion systems tend to be al l developed based on the same 

theories. Arguably it is only through major paradigm shif ts , or the advent of 

new theories generally l inked to the fai lure o f existing theories that changes 

in the models take place. Thus i f a theory is dominant for any length o f 

t ime, the models remain unchanged regardless o f developments f rom other 

disciplines. For example the expert systems approach was dominant for a 

long whi le in a r t i f i c i a l intelligence even though new approaches to 

intel l igent systems development were apparent. Neural network theory that 

eventually usurped the dominant expert systems approach had its 

foundations in 1940's neurophysiology, although i t was the early 1980's 

before a r t i f i c i a l neural network models began to be recognised in the 

development o f a r t i f i c i a l intelligence models. 

Through looking at the capabilities o f a r t i f i c i a l v is ion systems to date i t 

becomes obvious that there is a need to improve on their performance 

greatly. They are generally restricted to single tasks or "domains" and 

compared to the human visual system they are greatly infer ior . The insight 

a r t i f i c i a l systems applications have provided has been through their 

inab i l i ty to perform rather than through actually demonstrating real visual 

behaviours. A classic example being the previously mentioned "blocks 
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w o r l d " program. The blocks wor ld system was unable to process a r t i f i c i a l 

geometric scenes, being unable to generalise to object recognition in natural 

visual images (Roberts, 1965; Waltz, 1975). 

PROBLEMS OF M U L T I - D I S C I P L I N A R Y APPROACH. 

There are many problems associated wi th mult i -discipl inary approaches to 

the study o f any subject. One such problem is that by combining 

informat ion f rom different disciplines, in this case in research into vis ion, 

there is a danger that any discoveries about the nature of the problem may 

seem to be general rather than detailed. Detailed understanding evolves 

f rom looking extremely closely at a particular aspect o f perception. A 

specific problem, or area o f the brain is studied in depth, usually through 

research in a particular discipline such as neurophysiology or psychology. 

This often means that any insight gained is dependent on the research 

methods associated wi th that discipl ine. For example psychological 

interpretations o f vis ion often centre on behavioural experimentation to 

support a theory, whereas neurophysiological research provides detailed 

accounts o f how the brain actually functions in terms o f the mechanisms o f 

neuronal behaviour. To make things even more complex what is assumed to 

be a singular discipline comprises again o f a whole set o f sub-disciplines. 

Arguably neuroscience i t se l f is a mul t i -d isc ipl inary research area, invo lv ing 

the work o f anatomists, biochemists, and physiologists working either in 

c l in ica l neuroscience or experimental neuroscience (Bloom & Lazerson, 

1988), a l l using their own particular research methods, al l working on 

di f ferent aspects o f the same problem. The same applies to psychological 
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approaches to understanding vis ion. Wi th in the discipline of psychology 

there are developmental psychologists, cognitive psychologists, 

psychobiologists, etc., al l looking at vision f rom their own perspective. 

This leads to another very real problem, how informat ion is communicated 

wi th in and across disciplines. I t is not surprising that there is l i t t l e or no 

relationship between a model developed for example f rom psychological 

research and a model developed f rom neurophysiological research as they 

are both working at very different levels o f explanation. The descriptions 

they provide about vision could be seen as being wri t ten in different 

languages. This means that i f you understand one particular language, you 

w i l l be able to understand what the research in that discipline is saying. For 

example i f you are a neurophysiologist you w i l l explain vis ion in terms o f 

its underlying neuronal processes and relate this informat ion in a specific 

language used to describe these mechanisms. I f however you are a 

psychologist the informat ion w i l l not hold the same meaning, any 

understanding w i l l be l imi ted compared to that o f a neuroscientist. I f a clear 

understanding is d i f f i c u l t to communicate at the theoretical level there is 

l i t t l e chance o f that informat ion being o f any use in developing a r t i f i c i a l 

intelligence models. 

I f the development o f a better understanding o f vision or the development 

o f new a r t i f i c i a l systems capable o f perception is to become a reality there 

has to be inter-disciplinary communication. I t seems reasonable to suggest 

that an understanding o f vis ion in its ful lest sense is the f i r s t step to 

developing any sort o f model for whatever reason. Even i f your intention is 

to model a very small part o f v is ion, or even i f you are only concerned wi th 
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modell ing vision at its highest level , it is essential to have the most 

complete understanding possible. I t seems clear through looking at the 

development o f a r t i f i c i a l vis ion systems that the demands of being able to 

implement a model in software shape the kind o f model that is developed. 

This leads to things being added or lef t out purely because o f the need to 

code the model. Eventually you may lose important features o f the model 

just so you can produce the desired behaviours. I t is therefore my aim not to 

emphasise the development o f a simulation o f the model. I f a strong 

theoretically based conceptual model is developed f i r s t then maybe its 

eventual simulation w i l l retain more o f the delicate intricacies underlying 

vision in translation. Further, i f s ignif icant changes have to be made to 

enable simulation, there is always the conceptual model to refer to for a 

more detailed description. 

To be able to f u l l y understand informat ion f rom other disciplines you need 

to have some understanding o f those disciplines. One possible solution to 

the problem o f understanding the diversity o f relevant informat ion provided 

by several di f ferent disciplines is to translate everything into a single 

language that can be understood by everyone through a common factor. 

I n i t i a l l y this would seem to be a good idea, but there are problems w i t h this 

approach. One obvious problem is that informat ion is lost in translation. 

Some types o f informat ion have to be represented in certain ways and could 

not be translated, or else attempting to translate them becomes a central 

issue distracting f rom understanding the informat ion itself . A crucial aspect 

o f any attempt at mul t i -d isc ip l inary research is to overcome these problems. 

It is envisaged that by using a strong theoretical framework through 
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combining a top-down and bottom-up approach the problems o f m u l t i -

disciplinary research can be overcome. 

S U M M A R Y . 

Through the combination o f research into visual perception f r o m varying 

disciplines it is hoped that a conceptual model can be developed that w i l l 

provide a more complete understanding o f vis ion. The aims o f the 

conceptual model are both to form a more comprehensive understanding o f 

vis ion, and to aid the development o f more sophisticated a r t i f i c i a l v is ion 

systems. There are many diverse explanations o f various aspects o f visual 

perception, both neurophysiological and psychological. Through uni t ing 

such a plethora o f informat ion i t is hoped that progress in understanding the 

brain w i l l be made. In turn this progression w i l l influence the development 

o f a r t i f i c i a l systems. As noted previously this work does not aim to 

provided an account o f an implementation o f a model o f vision. I t aims to 

provide a strong theoretical frame work for a conceptual model that could 

ul t imately be developed in software. 

A T H E O R E T I C A L F R A M E W O R K F O R M O D E L L I N G 

V I S I O N . 

TOP-DOWN VERSUS BOTTOM-UP. 

Churchland addresses the issue o f "top-down" versus "bottom-up" 

processing as a theoretical framework w i t h which to study the structure and 

funct ion o f the brain. (Churchland, 1986). This dist inct ion between top-
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down and bottom-up in principle is much the same as discussed previously, 

although Churchland specif ical ly defines the terms in relation to the study 

o f the brain. Churchland refers to top-down and bottom-up as fo l lows . 

A top-down approach involves starting wi th a theory then explaining the 

underlying mechanisms o f that theory, for example taking a psychological 

approach to the study o f visual perception. This would involve having a 

theory o f visual perception and then going out to look for evidence that 

supports that theory. A bottom-up approach on the other hand starts by 

working up f rom the lowest level o f explanation to develop a theory, e.g. 

taking a neurophysiological approach to the study o f visual perception. This 

would involve t ry ing to understand how the brain works at its lowest level , 

for example at the neuronal level , then using that informat ion to develop a 

theory o f perception. However i f you only work at one level you miss out 

on important informat ion that would become evident i f you were working at 

the other. So in the case o f vision i f it was studied merely in terms o f low 

level neuronal behaviour we would not progress towards an understanding 

o f perception. The same is true i f we start w i th a theory o f higher cognitive 

funct ion and d id not look at possible underlying mechanisms for that 

theory. By disregarding the elements o f neuronal behaviour the theory o f 

perception might never be complete. I t may miss out on subtleties that an 

explanation at a lower level might provide. Churchland goes on to il lustrate 

the importance o f a uni f ica t ion o f top-down and bottom-up approach to 

understanding the brain. As previously discussed this theme provides the 

basis for the conceptual model o f vision that is developed here. The aim is 

to provide a theory o f visual perception that is easily reduced to its 
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neurophysiological basis, the rationale being that so called "higher level" 

cognitive functions must have underlying neuronal foundations. The aim is 

thus to explain and develop a conceptual model o f visual perception by 

looking at the underlying architecture and mechanisms o f vis ion, i.e. the 

brain, what i t is and how it works. 

Churchland goes on to explain that the major i ty o f our understanding o f the 

brain has been developed through adopting either o f these two approaches. 

For example there are neurophysiologists working on the lower levels based 

on a bottom-up approach. In contrast there are psychologists developing 

"grand theories" o f how the brain works f rom a top-down perspective. What 

is clearly evident according to Churchland is that there is a serious lack o f 

communication between the two approaches. Not only that, but there are 

also many disciplines using very di f ferent tools o f explanation that could be 

relevant to understanding the brain, an example being the discipline o f 

mathematics. Using the tools o f mathematical analysis could provide 

essential insight into the behaviour o f low level neuronal behaviour. 

Al though there are many reasons for this lack o f communication leading to 

a lack o f progression in our understanding o f the brain Churchland suggests 

that one important factor is the subject matter i tself . 

B R A I N EQUALS B R A M B L E S C A P E . 

Churchland describes the brain as "bramblescape", an unruly mass o f w i l d 

and tangled structures. This makes i t d i f f i c u l t to study as the fibres br inging 

informat ion into the cortex and fibres taking out are tangled together. I t 

leads on f r o m this that types o f in format ion , both incoming and outgoing 
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are therefore d i f f i c u l t to characterise. So relating a top-down theory o f the 

brain to a bottom-up theory becomes an almost impossible task. In the case 

o f developing a theory o f visual perception clearly the problem is making 

sense o f the tangled mass o f fibres in an attempt to try and develop an 

understanding o f what actually constitutes perception at its lowest level 

before any theory can be developed. We have to go beyond bramblescape, 

and the key to this and ult imately the key to developing a conceptual model 

o f visual perception is to make sense o f the brain through the emergence of 

structure f r o m mayhem. The problem o f understanding visual perception 

becomes the problem o f understanding the informat ion processing structures 

and functions o f the brain. By looking at visual processing structures and 

functions, the lowest level o f behaviour, a theory o f visual perception w i l l 

evolve. The two are reliant on each other, in that understanding processing 

provides informat ion about perception, and ul t imately how the brain works. 

Al though processing can be explained in isolation f r o m perception i t has no 

real value i n being able to explain anything about the brain as a whole 

unless i t is l inked to a theory o f perception. (Churchland, 1986). 

Through developing models o f the brain i t is possible to develop a 

uni f ica t ion o f both bottom-up and top-down approaches. The sorts o f 

models developed even at the neurophysiological level can be categorised 

into two types o f model, ' "s impl i fying brain models'", where the generalised 

neurophysiology is used (Sejnowski , Koch & Churchland, 1988). or finer 

more detailed models (Wehmeier, Dong, Koch & van Essen, 1989). They 

suggest that the essential differences between these two sorts o f models can 

be likened to the dis t inct ion that Chomsky makes between "competence" 
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and "performance" in models o f language understanding (Chomsky, 1965). 

Competence models are similar to s i m p l i f y i n g brain models whereas 

performance models are related to detailed models o f structure and funct ion 

o f the brain. You may get the same behaviours wi th the two but the latter is 

more realistic. The former, however, provide an excellent overall picture 

f rom which to bui ld more detailed models (Wehmeier, Dong, Koch & van 

Essen, 1989). 

I N T R O D U C T I O N T O A M O D E L O F V I S U A L P E R C E P T I O N . 

THE IMPORTANCE OF V I S I O N . 

Vis ion could be considered as being our most important sensory system, 

making up over for ty per cent o f al l sensory input (Dowl ing , 1992). 

Intelligence can be defined as having the abi l i ty to adapt to our constantly 

changing environment. Wi th in this f luctuat ing environment we encounter 

and have to solve many problems enabling us to act upon the wor ld in which 

we exist in order to maintain that existence (Beer, 1989; Gould, 1981). 

Informat ion about our environment arrives through our sensory receptors in 

d i f f e r i n g forms, e.g. l ight waves (eyes), chemicals (mouth and nose), sound 

waves (ears), etc. This informat ion is then directed to the relevant area in 

the brain to be processed to enable incoming informat ion to be interpreted 

and acted upon. Al though al l o f our senses are important to us i t could be 

argued that visual informat ion is the most crucial to our performance in our 

environment. Without hearing we can s t i l l funct ion wel l enough to survive, 

the same can be said about smell and taste. Visual impairment on the other 
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hand can have devastating effects on our survival . This then suggests that 

explaining how this system works is a key issue not just in developing 

a r t i f i c i a l l y intel l igent systems, but also in understanding real biological 

intelligence: 

"Our thinking is to a large extent visual imagery. All navigation and 
manipulation is guided directly by vision or by imagined geometry. Our 
intelligence is curiously restricted to things that can be formulated as 
scenes, which are largely visual in substance. Language only makes sense 
by continuous reference to visual imaginations. Understanding vision very 
likely will mean understanding the brain and mind. " 

von der Malsburg (1990), 

W H A T IS VISION? 

To attempt to define vis ion calls for an explanation o f a l l the component 

parts that go to make up an understanding o f what "seeing" involves. Vis ion 

is a general term which is used to describe both the mechanisms and 

apparatus that are involved in the processing o f visual informat ion, as wel l 

as the actual act ivi ty o f "seeing" in its global sense, i.e. vis ion as a 

cognitive func t ion , as an interpretation rather than purely a physical 

representation. There is a clear dist inct ion between explaining "seeing" in 

terms o f mechanisms and apparatus, and explaining "seeing" as cognit ion in 

the psychological sense. The dist inct ion is perhaps best described as the 

dis t inct ion between visual processing and visual perception. 

V I S U A L PERCEPTION OR V I S U A L PROCESSING? 

Visual perception is not the same as visual processing. There is a clear 

difference between the two, although the latter is the basis for the former. 
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Visual processing involves understanding seeing in terms of l ight f a l l i n g on 

the retina, reflected f rom objects in the visual scene, and the mechanisms 

and structures in the brain that process that informat ion . The level at which 

the informat ion about the visual image is described is purely neuronal. That 

is, it is understood in terms o f the electrochemical reactions that occur in 

relevant neurons in specific areas o f the brain dedicated to visual 

processing. The study o f visual processing might involve tracing the path o f 

informat ion through the brain, iden t i fy ing the various areas involved in 

processing visual informat ion . I t also might involve describing neuronal 

behaviour in those particular structures, and making some sense o f how 

visual informat ion is represented in the brain. Visual processing therefore, 

is about looking solely at how l ight f a l l i ng on the retina is processed and 

encoded by the component parts o f the brain that make up the visual system, 

and how the brain combines al l the relevant informat ion about the patterns 

o f l ight f a l l i ng on the retina to provide an overall representation o f the 

visual scene. Visual processing is thus best understood through 

neurophysiological theory. 

On the other hand, visual perception is not just about the processing that 

takes place when the brain is representing visual in format ion . Visual 

perception is about interpreting and making some fo rm o f evaluation o f that 

informat ion . Rather than just describing the structures and mechanisms 

underlying the encoding o f the visual scene or an image i t involves acting 

upon that in format ion , using i t to perform transformations upon the wor ld . 

Perception is crucial to the notion o f intelligence as adaptive behaviour, our 

abi l i ty to solve problems in an environment that is constantly changing, in 
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order to survive. (Beer, 1989). A possible def in i t ion o f visual perception is 

as fo l lows : 

Extracting from the retinal image a meaningful description of the world 
that can be used to carry out necessary actions on that world. 

Bearing in mind that the image that is projected onto the retina is static and 

meaningless, whereas the wor ld we see is constantly changing and 

meaningful , g iv ing an image meaning involves going beyond understanding 

the image in terms o f how it is represented through its processing. (Bruce & 

Green, 1990.) 

This i n turn means that perception is not necessarily l imi ted to a description 

o f the wor ld in terms o f visual sensory input alone. I t is possible to separate 

perception in general into two types, local and global. Local perception 

would be the meaningful interpretation o f sensory processing in a particular 

sensory area. For example visual perception would be a product o f visual 

processing and auditory perception a product o f auditory processing, etc. 

Global perception would be a combination o f a l l the available local 

perceptions to form an overall description o f the wor ld based on al l the 

available sensory informat ion. Global perception is extremely complex and 

does not simply consist o f the result o f visual sensory processing, i t also 

incorporates the result o f sensory processing f rom al l the other senses, 

informat ion about the wor ld that we have encountered previously and stored 

in memory. 

Visual processing can thus be explained as low level neuronal processing in 

the brain whereas visual perception is about the relationship between that 
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low level processing and higher level cognitive processing. Higher level 

cognitive processes being so called "higher" functions o f the brain, such as 

language, memory and learning, usually described by psychological theory 

rather than through neurophysiology. In relation to vision such functions 

might include object recognition, visual attention and visual memory. 

Central to this idea is how the links are made between higher level 

cognitive interpretations o f the image and low level neuronal 

representations. We can interpret and react to visual information extremely 

quick ly , recognising and acting upon visual sensory input almost 

instantaneously. I t is evident that we can make judgements about visual 

s t imul i in as l i t t l e as 150 ms (Biederman et al , 1982). Further, 

neurophysiological measurement o f cortical cell responses are in a similar 

t ime domain (Oram and Perrett, 1994). I t is therefore extremely unl ikely 

that high level cognitive processing is separate f r o m the low level neuronal 

processes that underlie visual perception. The two must be l inked i n some 

way. The question is at what point in the processing is the l ink made, and 

how? Do we have two very separate and distinct levels o f understanding 

visual in format ion , one encoding and the other interpreting, operating in 

serial, or is visual perception inextricably interwoven into the underlying 

neuronal processes? I f the latter is the case at what point does low level 

neuronal act ivi ty become high level cognitive perceptions? 

THE B I N D I N G P R O B L E M . 

A t the level o f processing and at the level o f perception, local or global , 

whether separate or simultaneous, a key issue arises, how are al l the 
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separate parts o f the visual scene combined to form an overall 

representation? How are low level neuronal processes linked to high level 

cognitive interpretations? How are local perceptions l inked to global 

perceptions? Somehow al l this informat ion has to be "bound" together, 

combined at all levels to provide a complete and meaningful understanding 

o f our wor ld . This problem o f combining all the relevant informat ion about 

an object in the visual scene is referred to as the "binding problem" 

(Hummel & Biedermann, 1990; 1992.) or more simply, the problem o f 

integration o f informat ion . A t its lowest level , i n terms o f visual sensory 

informat ion binding is related to the "segmentation problem" (Marr, 1976) 

or "feature l i nk ing" (Gray & Singer, 1989). The segmentation problem 

refers to how the various segmented parts o f an object in the visual scene 

are combined to fo rm a single representation. For example how are al l the 

segments that go to make up the outline o f an object l inked together. The 

problem is accentuated by the fact that objects have several aspects o f form 

that have to be taken into account when they are encoded, for example 

whether or not the object is moving or in what orientation i t occurs. 

The binding problem has become a central issue in both developing theories 

o f vis ion and in developing a r t i f i c i a l systems capable o f vis ion. In terms o f 

developing theories o f binding, typical ly top-down psychological 

approaches have been dominant wi th l i t t l e evidence o f a mul t i -d isc ipl inary 

approach. Recently however the development o f bottom-up 

neurophysiological approaches that has enabled mechanistic theories o f 

binding to emerge. U n t i l recent discoveries in neurophysiology, theories o f 

binding were dominated by "feature detection" theories, which suggested 
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that visual binding in object recognition was a product o f the hierarchical 

detection o f more and more complex features by cells in the visual cortex. 

Eventually at the top o f the hierarchy was a cell that represented that 

particular object in its^ entirety (Barlow, 1972). This theory was wel l suited 

to informat ion processing models in a r t i f i c i a l intelligence (Lindsay & 

Norman, 1972) and so was dominant in the field for some time. It was also 

supported by apparent neuronal mechanisms in the primary visual cortex 

(Hubel & Wiesel, 1962). Recent discoveries in neurophysiology have 

changed that view, through the advent o f so called "population models". 

Such models suggest that object recognition is a product o f the distributed 

encoding o f informat ion across populations o f neurons. Previously evidence 

for mechanisms to support this idea was non existent resulting in l i t t l e 

interest being taken in theories based on this idea (Stryker, 1989). 

Wi th the advent o f new neurophysiological evidence and wi th the fai lure o f 

a r t i f i c i a l systems based on tradit ional informat ion processing models to 

either provide adequate support for feature detection theories or produce 

systems capable o f visual binding (Stryker, 1989), mul t i -d isc ipl inary 

approaches are now being pursued. Previously general accounts o f binding 

included theories f r o m cognitive science implemented in standard neural 

networks, e.g. mult i - layer perceptrons (Hinton et a l , 1986; Chalmers, 1990; 

Pollack, 1990; Blank et a l , 1992). Standard neural networks is a term given 

to the class o f neural networks or iginat ing f r o m work in the 1980's 

popularised by Rumelhart and Mc Clelland's "parallel distributed 

processing" (PDP) group (Rumelhart & Mc Clel land, 1986). The problem 

wi th this approach is that standard neural networks do not really provide 
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any insight into the mechanisms that underlie binding. Further, standard 

neural network theory alone has been shown to be insuff ic ient in the 

development o f successful implementations o f models o f visual binding 

(Hummel & Biedermann, 1990; 1992). This approach has doubtful relevance 

in the advancement o f understanding binding because to implement a theory 

of binding in this way requires that you already have both a theoretical and 

conceptual understanding. An implementation in standard neural networks, 

which are unrelated to actual brain mechanisms, is simply one possible way 

of representing a model or theory. I t is l ike translating your theory f rom a 

verbal description to a pictor ial description. It tells you no more about i t , it 

just provides another form for representing i t . Therefore implementing a 

psychological theory o f binding through a network that is unrelated to 

actual brain mechanisms w i l l te l l you no more about binding than you knew 

before the implementation. Clearly to discover more about the nature o f 

binding, and to bui ld more successful vision systems, developing models 

that incorporate more realistic brain mechanisms is essential. What is 

needed, and what is now becoming apparent, is a mul t i -disc ipl inary study 

into the very nature o f perception, an iterative procedure based on both top-

down theories supported wi th bottom-up mechanisms that, through 

implementation, w i l l a l low modif ica t ion and support o f each other. 

CONCLUSIONS. 

Two levels o f understanding vision are proposed: the level of processing, 

which demands a detailed analysis o f structure and funct ion o f the parts o f 

the brain involved in vis ion; and perception, which involves g iv ing meaning 
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to the product of low level neuronal activity through high level cognitive 

representations. Perception or higher level cognitive interpretations take 

place locally, being "sensor specific", and globally, incorporating 

information from all available senses and from memory. It is possible to 

study vision in terms of processing alone, but it is not possible to study 

perception without studying the processing that underlies perception. So to 

look at visual perception involves understanding visual processing. Through 

the development of a conceptual model of visual perception based on low 

level neuronal processing a possible solution to the binding problem can 

also be proposed. 

The development of a truly multi-disciplinary model of vision begins with 

looking at the neurophysiology of the visual system. An investigation into 

the architectures and mechanisms that underlie vision provides the next 

step, bearing in mind that several theoretical assumptions about the nature 

of perception have already provided an outline for the development of a 

conceptual model of vision. By taking a truly multi-disciplinary approach it 

is hoped that both the aims of the thesis w i l l be fu l f i l l ed , to provide new 

algorithms for machine vision and insight into the nature of perception. The 

intention is to start by introducing what is known about vision from a 

bottom-up view, and then relate this to theories of visual perception at a 

higher cognitive level, ultimately providing a deeper understanding of what 

vision is, and deriving new architectures and algorithms for developing 

artificial vision systems. 
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SYNOPSIS OF T H E F O L L O W I N G 5 CHAPTERS. 

Chapter 2 aims to provide an overview of the neurophysiology underlying 

visual perception. This chapter comprises of a simplified account of the low 

level neuronal processes that constitute visual processing. It is from these 

descriptions of structure and function that an architecture for a conceptual 

model of visual perception has been constructed. This chapter forms the 

basis of the so called bottom-up explanation of visual perception as 

discussed previously in this chapter. As the visual system, like the rest of 

the brain is extremely complex, a simplified account of the architecture and 

function is all that can realistically be achieved. 

Chapter 3 aims to provide an overview of both the psychological and 

neurophysiological theories of visual perception. The neurophysiological 

theories are accounts of visual processing rather than of visual perception 

whereas the psychological theories are attempts at explaining perception 

rather than visual processing. This chapter is more concerned with a top-

down approach to investigating visual perception, although the 

neurophysiological theories are best described as top-down interpretations 

of bottom-up accounts of visual processing. The psychological theories are 

"purely" top-down in that they do not have to make reference to bottom-up 

descriptions. This distinction is not as clear as it seems as there is an 

enormous amount of overlap between neurophysiological and psychological 

theories. The aim of this chapter is to provide an evaluation of the available 

theories of visual perception enabling the development of a theory on which 

the conceptual model has been based. 
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In Chapter 4 both the theory and the conceptual model have been made 

explicit. Initially a theory of perception has been outlined which has then 

been used to shape the conceptual model. The theory originates from a 

combination of current explanations of visual perception and the conceptual 

model provides a structural and functional description that supports the 

theory. The theory and resulting conceptual model that have been developed 

in this chapter attempt to both explain visual perception in novel way and 

provide new and innovative approaches to the development of artificial 

vision systems. 

In chapter 5 additional support for the theory and the model as outlined in 

chapter 4 has been made. Although chapters 2 and 3 provide the foundations 

for the component parts of the model this chapter provides more concrete 

support for the model and theory as a whole. 

Finally, chapter 6 comprises of a summary and discussion of the 

achievements of the thesis and suggestions for further work. 

The thesis attempts to provide a "complete" account of visual perception 

through the development of a theory and conceptual model that supports 

that theory. It attempts to do this through a multi-disciplinary approach that 

unites both bottom-up neurophysiological and top-down psychological 

accounts of vision. Further it is envisaged that the development of such a 

model wi l l provide new insight into the development of artificial vision 

systems and new algorithms for perceptual function in such systems. 
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C H A P T E R 2 

T H E VTSIJAT. S Y S T F M » 

AN O V E R V I E W O F T H E N E U R O P H Y S I O L O G Y 
O F V I S U A L P E R C E P T I O N . 

This chapter aims to introduce a simplified account of the neurophysiology 

of vision, providing an overview from which the outline of a conceptual 

model might be developed. Part one attempts to explain why we need to 

understand the neurophysiology of vision, and introduce a general view of 

visual processing. Part two then gives a more detailed account of the visual 

processing pathways in the brain and explanations of the various areas 

associated with visual perception. From the point of view of the thesis as a 

whole, the description here will be general in the sense that when the 

conceptual model is introduced in chapter 4 a more detailed account of 

neurophysiology will be made in order to support the model. 

UNDERSTANDING VISION. 

INTRODUCTION TO STRUCTURE AND FUNCTION. 

The aim of developing any model of vision involves understanding both the 

processing, in the form of neuronal behaviour that takes place, leading to an 

eventual understanding of the higher level cognitive states that enable us to 

perceive our world. I f we regard low level processing as being the 

foundations from which higher level interpretations occur, then its seems 
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reasonable that a good starting point in attempting to explain vision would 

be to trace its evolution from light falling on the retina to the areas of the 

brain that deal with that information. It is important to emphasise that most 

of what we know about the structure and function of the brain originates 

from extrapolating the results from experimental work with animals to the 

human brain. The majority of the work presented in this chapter is the result 

of experimentation in the cat or monkey, and not in the human brain. 

Although we have extremely advanced techniques for tracing the flow of 

information in the brain there is stil l a great deal to be discovered about the 

structures and their underlying function. The speed at which understanding 

advances is hampered by the differing methods of investigating the brain 

and a lack of consensus in terms of the results such work produces (van 

Essen, 1985). This means that a lot of neurophysiological evidence is often 

speculative in terms of the less well understood areas of the brain. As van 

Essen points out i t was only twenty years (now thirty years) ago that the 

area of the brain processing visual information was thought to be made up 

of three concentrically organised areas (van Essen, 1985). The next step 

would be to describe the underlying mechanisms of these structures. To do 

this the relationship between structure and function in the cortex must be 

addressed. 

The structure of the cortex is not entirely independent of its underlying 

function. It is not as simple as having a set of pre defined structures that 

any old function can be applied to. How neurons behave influences how 

structures develop and evolve. In the same way, how structures evolve can 

influence how neurons behave, not necessarily individually but as groups. 
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Many studies have been conducted addressing the issue of cortical plasticity 

and the effects of visual deprivation on the development of the visual cortex 

and resultant perception. I f the visual apparatus is in some way damaged, 

for example monocular deprivation through one eye not functioning, then 

the visual cortex loses its binocularity. Projections from the retina are 

pronounced from one eye causing a change in the normal structure of the 

visual pathway where both eyes would share the same distribution of 

ganglion projections (Le Vay, Wiesel & Hubel, 1981; Hubel, Wiesel & Le 

Vay, 1977). In the same way, i f young animals are raised in artificial 

environments deprived of specific visual information the brain is unable to 

readjust to normal function when the animal is no longer visually deprived, 

suggesting that some of the structures of the brain have not been able to 

develop fu l ly . (Hirsch & Spinelli, 1971). It is important to note that up until 

recently it was thought that there are so called critical periods in the 

development of the visual system, in cats and monkeys this is from birth to 

6 or 7 months whereas in humans the critical period is up to 6 years (Hubel 

& Wiesel, 1970; Thompson, 1985). After this critical period has elapsed the 

visual system no longer changes in its structure significantly enough to 

effect visual perception. Recently though new research has suggested that 

this may not be the case (Gilbert, 1992). It seems that both the structure and 

function of the visual system are intertwined, changes to either influence 

visual perception. It is not sufficient to merely model one or the other to 

understand visual perception. 
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A GENERAL UNDERSTANDING OF VISUAL PROCESSING. 

The starting point for developing a biologically plausible model of visual 

perception means understanding and developing a model of visual 

processing. Initially investigation must follow the path of visual 

information from it entering the brain to its end product, recognition and 

identification. The process of investigation demands an understanding of 

the architectures that form part of that pathway, and how they function in 

terms of processing that information. To begin to describe vision in simple 

terms is in itself a complicated task. How the brain deals with light falling 

on the retina, and describing the areas of the brain that deal with this 

sensory information, is not as clear as i t first seems. Already, confronting 

the problems discussed in chapter 1 relating to the multi-disicplinary nature 

of modelling perception is a major issue. Firstly there is a need to have an 

understanding of physics so that the form, which information is transmitted 

to the visual system can be understood. There is then a need to understand 

neurophysiology, the behaviour of neurons and the structures they form as 

well as psychological theory explaining the eventual behaviours that are a 

result of interpreting and acting upon the information that has been 

processed. Because of this diversity of understanding and the enormity of 

the information available, this chapter aims to introduce a "simplifying 

brain model" (Sejenowski, Koch & Churchland. 1988), as discussed in 

chapter 1. Then from this general understanding of global principles a more 

detailed model can be developed (Wehmeier, Dong, Koch & van Essen, 

1989). It cannot be stressed enough that the enormity and complexity of 
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information from neurophysiology alone means that only an extremely 

simplified description of vision is possible i f the issue of perception in its 

global form is to be addressed. 

In its simplest terms the visual process begins with information being 

transmitted to the perceiver in the form of waves of light. These waves of 

light are reflected from objects and forms that make up the visual scene and 

are absorbed by the first part of visual apparatus, the retina. The retina is 

the starting point for the processing of visual information and is often 

referred to as a "pre processing stage". The retina is made up of light 

sensitive receptor cells that absorb the waves of light being refiected from 

the objects in the visual scene. At this point the first transformation of 

information takes place as light waves are turned into electrical signals, a 

medium with which the brain is able to work. (Bruce & Green, 1990; 

Dowling, 1992.) Although at this stage a certain amount of processing takes 

place it is generally regarded as preparation, transformation by the retina of 

the information from the visual scene into a form that can be understood 

and passed on for in depth processing by dedicated areas in the brain. The 

image at the retinal level is only two dimensional. As we are able to 

perceive three dimensions it is assumed that further processing allows us to 

infer three dimensional interpretations of a two dimensional image. The 

destination of the outcome of retinal processing of the two dimensional 

image is therefore all important to understanding perception. 

There are two major pathways that retinal information is transmitted on, 

both via the optic nerve. The first route known as the "primary visual 

pathway" leads from the retina down the optic nerve to the dorsal part of the 
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lateral geniculate nucleus (dLGN) in the thalamus and then on to the visual 

cortex. The path that those signals follow, through the primary visual 

pathway, can be traced to at least six synapses. Two are in the retina, the 
> 

third in the dLGN, the other three represent at least three distinguishable 

levels of processing in the visual cortex (Dowling, 1992). 

The visual cortex is divided into two main areas: the striate cortex which 

consists of the primary visual cortex ( V I ) where most of the information 

from the dLGN is projected to and the extra striate areas which are those 

areas beyond the primary visual cortex (see figure 1). 
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Figure 1. A schematic of the visual processing areas of the brain including 

the primary and secondary visual pathways. 

It is this pathway that is of most interest as it leads to the area in the brain 

that carries out the processing of visual information that leads to eventual 

perception. I t is well accepted that the cortex is the area of the brain that 

processes sensory information due to the large number of ganglion axons 

terminating there, other pathways are considered to be less important in 
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terms of the processing of the visual scene. (Bruce & Green, 1990; 

Dowling, 1992; Cowey, 1981.) 

The secondary visual pathway leads to the superior colliculus (SC), which 

is thought to be involved with controlling eye movements and possibly 

plays a role in visual attention (Churchland, 1986). The SC is also 

implicated in the integration of the processing of sensory information as it 

also responds to auditory input enabling the eyes to foveate on objects 

omitting sound, thereby linking visual and auditory information 

(Churchland, 1986). However essentially the role of the SC in perception is 

indirect rather than direct, that is, its role is more with controlling what we 

see rather than saying what it is we are seeing (see figure 1).There are other 

visual pathways leading from the retina to other areas in the brain but their 

function is not as well defined. That is not to say that these pathways are 

not significant. In relation to both global and local perception as outlined in 

chapter I these pathways may perform key roles. One reason for the lack of 

interest in these other pathways could be due to the role they play in visual 

processing. Like the secondary visual pathway their involvement in the 

visual process is related more to the control of what is perceived rather than 

performing the action of perception. They are often referred to as dealing 

with so called reflexive "non cognitive" processing, therefore are not given 

the attention they perhaps demand (Cowey & Stoerig, 1990). However i f 

perception is seen as an emergent property of the brain as a whole then the 

importance of these pathways could be said to be being overlooked. 
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INTRODUCTION TO T H E NEUROPHYSIOLOGY OF T H E 

VISUAL S Y S T E M . 

THE RETINA. 

The retina is the point at which visual processing begins. A mapping of the 

visual scene on to the retina is the beginning of the perceptual process. The 

retina then encodes that representation and passes the information on for 

further analysis. A great deal of research has been conducted into the 

structure and function of the retina, it is perhaps the most well understood 

part of the visual system. As a result it has been possible to develop 

extremely sophisticated models of the retina, and it has even been possible 

to implement such models in hardware (Mead & Mahowald, 1990; 

Mahowald & Mead, 1991). The retina does more than just sample the visual 

scene. Although i t is beyond the retina that visual processing begins in 

earnest, it is important to mention key points about the retinas role in the 

processing of the visual scene as certain aspects of the retinal image are 

preserved in the processing that takes place in the cortex. 

The retina encodes both spatial and temporal information present in the 

visual scene in a series of light sensitive receptor cells. This information is 

then transformed into a pattern of electrical activity that translates the 

spatio-temporal information into a form that can be used by the relevant 

structures in the brain (Bruce & Green, 1990). The transformations that take 

place at the retina have been studied in great detail in lower level l i fe forms 

such as the mudpuppy (Werblin & Dowling, 1969) and the horseshoe crab 

(Hartline & Graham, 1932; Hartline, Wagner, & Ratliff , 1956). The retina 
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of vertebrates has also been investigated in depth (Kuffler , 1953; Dowling, 

1968). The retina as described by Dowling consists of two layers of 

synaptic cells (two plexiform layers) each having its own distinct kind of 

processing. Light hits photoreceptor cells providing input to the outer 

plexiform layers. In this first layer two main sorts of cells are found, 

horizontal cells which mediate lateral interactions within the layer, and 

bipolar cells that send the resultant processing to the inner plexiform layer. 

Amacrine cells in the inner plexiform layer perform the same lateral 

mediation tasks that the horizontal cells carry out in the outer plexiform 

layer. Ganglion cells then act as the output from the inner plexiform layer 

and the retina as a whole, their axons making up the optic nerve fibres 

terminating mainly in the dLGN and SC (see figure 2). 
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Figure 2. The basic structure of the retina. 

There are only two action potentials generated in the retina by amacrine and 

ganglion cells. The photoreceptors, bipolar and horizontal cells respond 

with graded potentials (Dowling, 1992). Masland notes in a review of 
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retinal processing that the functionality of the retina was until recently 

thought to be directly related to the five sorts of cells present in its 

structure; an example of structure defining function. However he goes on to 

point out that these five classes of cells comprise of subtypes that multiply 

the number of functional elements by at least 50. (Masland, 1986). 

The basic function of the mammalian retina in terms of the processing that 

takes place can be summarised as follows. There are essentially two paths 

of information flow, one from the photoreceptors to the brain and the 

second is lateral mediation pathway that affects the processing within the 

retina itself. An important feature of the vertebrate retina is the 

convergence of information, with a ratio of approximately 100 to 1 from 

photoreceptors to ganglion cells (Dowling, 1992). Each ganglion then has a 

corresponding group of photoreceptors related to i t , this is known as the 

receptive field of the ganglion. The closer to the fovea the receptive field is 

the smaller it is, so conversely ganglions with the receptive fields on the 

edge of the retina have larger receptive fields. Receptive fields are not 

distinct there is a certain amount of overlap between them (see figure 3). 

DOOOOOO 
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O 

Figure 3. The receptive fields of retinal ganglion cells. 
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Recent research into the nature of receptive fields suggests that they are 

able to adapt and change dependent on a number of factors including 

attentional mechanisms, and contextual information relating to the 

presentation of given objects (Gilbert, 1992). This has direct effects on the 

stability of the structure of the cortex. As retinotopicy is maintained 

throughout the primary visual cortex, changes to the receptive field size on 

the retina directly affect the structure of V I . (Le Vay, Wiesel & Hubel, 

1981; Hubel, Wiesel & Le Vay, 1977; Miller & Stryker, 1990) As 

mentioned previously there are two main sorts of information about the 

visual scene that are encoded, the spatial information and temporal 

information. It is possible to distinguish at least two sorts of receptive field 

properties of ganglion cells, relating to the encoding of either temporal or 

spatial information. 

Information is encoded through two processes known as "on-centre" or "off-

centre" (Kuffier , 1953). Kuff ler discovered that retinal ganglions respond to 

information from photoreceptors grouped in such a way that they form two 

concentric circles with either inhibitory cells (off-centre) or excitatory cells 

(on centre) in the centre circle and the opposite in the outer circle (see 

figure 4). 

"Off Centre" "On Centre" 
Inhibitory Cells Excitatory Cells 

Figure 4. "On centre" and "of f centre" retinal ganglions. 
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On-centre cells fire with sustained bursts i f light falls directly on its centre. 

I f light falls in the surround then the firing is inhibited, finally i f it falls 

across the two a weaker response takes place as the two regions 

"antagonise" each other. Off-centre cells behave in exactly the reverse way 

(Dowling, 1992; Bruce and Green 1990). It is possible to discriminate 

further between two different sorts of concentric field ganglions, X & Y 

(Enroth-Cugell & Robson, 1966). X ganglions conduct more slowly than Y 

ganglions and respond in a sustained "tonic" way whereas Y ganglions 

conduct quickly and respond in a transient or "phasic" way (Carlson, 1986). 

Hence X cells are thought to encode spatial information and fine detail, 

whereas Y ganglions code for temporal information and direction. Another 

difference is in the distribution of X and Y ganglions. X ganglions are 

concentrated in the central part of the retina whilst the opposite is true of Y 

ganglions (Bruce & Green, 1990). Both X and Y ganglions project mainly to 

the dLGN. There is also a third class of ganglion, the W ganglion, that does 

not correspond to the concentric receptive field and projects unlike the 

other two types mainly to the SC (Stone & Fukuda, 1974). W ganglions 

respond weakly and like Y cells prefer moving stimuli. They also have large 

receptive fields responding in both a sustained and transient way (Carlson, 

1986). The result of this processing is that a spatio-temporal encoding of 

the visual scene takes place and is transmitted down the axons of the 

ganglion cells to form the third synapse along the primary visual pathway, 

in the dLGN (see figure 5). 
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Figure 5. The primary visual pathway from the retina to the dLGN showing 

the X, Y and W ganglion classification. 

Obviously not all ganglion cells transmit to the dLGN, as mentioned earlier 

there are other pathways formed by these ganglion cells. The secondary 

visual pathway to the SC mainly consists of W ganglions as well as a small 

amount of Y ganglions. X ganglions along with the majority of Y ganglions 

terminate in the dLGN. A small number of W ganglions also terminate in 

the dLGN. Each retina is divided into left and right visual fields, and this 

structural feature is retained in the passage of information down the optic 

nerve to the optic chiasma, the point at which the optic nerve crosses. At 

the optic chiasma left visual field information from both retinas goes to the 

right hemisphere and vice versa for the right visual field (see figure 5). 
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THE LGN. 

The lateral geniculate nucleus (LGN) is one of the many nuclei that make 

up the two parts of the thalamus, which sits on the top of the brain stem, 

one part being in the left hemisphere the other in the right. The thalamus is 

considered to be crucial to the integration and transmission of incoming 

information to the brain, described as "a brain within a brain" (Churchland, 

1986). A l l primary sensory information projects initially to a specific nuclei 

in the thalamus, where i t is then transmitted to the relevant processing area 

in the cortex (Shepherd. 1979; Carlson, 1986; Churchland & Sejnowski, 

1992; Dowling, 1992). Significantly the thalamus is hidden by a mass of 

both feedforward and feedback axons both providing massive input from 

sensory organs to their respective processing areas in the cortex and 

receiving information back from these cortical areas (Mumford, 1991). Not 

all the thalamic nuclei relay primary sensory information, some correspond 

to other areas in the brain projecting to related areas in the cortex, and 

others relay information within the thalamus itself, such as the midline 

nucleus which receives input from the reticular formation and projects to 

other thalamic nuclei (Carlson, 1986). Three distinct types of nuclei can be 

identified: specific central relay nuclei such as the LGN, which send 

incoming sensory information to the relevant area in the cortex; specific 

central nuclei, which relay information from the cortex to the cerebellum; 

and non specific thalamic nuclei, which receive information from the 

reticular formation and project mainly to the neocortex (Shepherd, 1979). 

As the majority of the retinal ganglions terminate in the dLGN (dorsal 

lateral geniculate nucleus) of the thalamus, it is regarded as the gateway to 
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both the striate and extra striate areas in the visual cortex, these areas being 

the ones that are assumed to carry out so called cognitive processing, 

leading to eventual perception. It is important to note that the processing of 

visual information beyond the retina in higher mammals is not well 

understood at all (Dowling, 1992). It is estimated that 1,000,000 optic nerve 

fibres (retinal ganglions) terminate in the dLGN and the same number of 

neurons are thought to exists in the dLGN (Shepherd, 1979). Neurons in the 

dLGN have the same receptive field properties as retinal ganglions, 

responding in the same "on and o f f centre" way (Dowling, 1992). The 

existence of an almost 1:1 ratio between retinal ganglions and neurons in 

the dLGN as well as the retained receptive f ie ld organisation or 

"retinotopicy" suggests that little processing is carried out by thalamic 

nuclei (Shepherd, 1979; Dowling, 1992). Retinotopic representation refers 

to the fact that the spatial relationship between retinal cells and neurons in 

the dLGN and further, in the cortex is maintained (Churchland, 1986). 

However anaesthetics used in the experimentation from which these 

conclusions about the role of the thalamus are drawn, would significantly 

effect the results, (Dowling, 1992). There are both neurophysiological and 

psychological theories of perception that implicate the thalamus as central 

to sensory processing (Mumford, 1991; 1992). 

The structure of the dLGN reflects the intertwined relationship between 

structure and function in the brain. The complicated coding of sensory 

information at the retina is maintained in the dLGN As previously noted 

there are three types of retinal ganglions, W, X, and Y making up the optic 

nerve, two of which, X and Y, project mainly to the dLGN. This distinction 
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between different ganglions carrying different sorts of information is 

maintained in the structure of the dLGN, The dLGN, like the cortex, is 

constructed of layers of cells (lamina) of which there are six. Each lamina 

consists of a retinotopic map of one half of the visual field for each eye. 

Further, the left half of the visual field for each eye projects to the right 

side of the dLGN and the opposite for the right half of the visual f ield. 

(Bruce & Green, 1990). These lamina can be divided into two types, 

magnocellular and parvocellular, based upon the size of the cells in each 

layer. The X ganglions form synapses in the parvocellular layers and the Y 

ganglions form synapses in the magnocellular layers (see figure 5). This 

classification of cell types coding for different sorts of information lead to 

the development of a theory of parallel processing in the visual system 

(Stone, 1983) arising from this structural/functional distinction. This w i l l 

be discussed in more detail in the next chapter. There is a further functional 

distinction represented by the architecture of the lamina in the dLGN, that 

is each eye projects to separate lamina. This is "occularity"' means that 

layers 1, 4 and 6 correspond to the opposite or "contralateral" eye and 

layers 2, 3 and 5 to the same side or "ipsilateral". This implies that cells 

dealing with binocular information do not occur at this stage in the 

processing (Dowling, 1992) (see figure 5). In simple terms there seems to 

be separate pathways for different sorts of information about the visual 

scene, and that is reflected in the encoding of information at the dLGN. An 

important question has to be how much information processing takes place 

at any particular point in the perception process? Arguably, the dLGN does 

not play a significant role in the extraction of information as little of the 
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retinal encoding is changed. I f this is the case why then bother with this 

stage at all? Surely visual perception would be faster i f ganglions projected 

straight to the next stage of processing. The question then is what is the 

function of the dLGN? 

THE STRIATE CORTEX. 

The next stage in the primary visual pathway is the cortex. Since the early 

work carried out by Brodmann (Brodmann, 1909) anatomists have described 

the brain and subsequently the cortex in terms of distinct regions. 

Historically the areas of the cortex involved in visual processing have 

undergone extensive investigation, resulting in detailed descriptions of their 

structure and related functionality. This has lead to the development of what 

is referred to as "functional anatomy", the classification of the brain in 

terms of both structure and the related function for given structures. The 

cortex is vast and unlike the rest of the brain does not divide so neatly into 

physically distinct parts. By adopting an approach based on functional 

segregation, distinctions are more easily made between areas in the cortex 

resulting in what is commonly referred to as its "functional architecture" 

(Hubel & Wiesel, 1962). Interestingly most reviews of functional anatomy 

agree that there are areas of the cortex that have a particular functional 

anatomy, but the exact nature of the underlying function of such structures 

is unknown (Churchland, 1986; Churchland & Sejnowski, 1992; Bruce & 

Green 1990; Dowling, 1992). Understanding the organisation of the cortex 

through the identification of distinct regions is possible using more than 

one methodology, for example patterns of connectivity, differences in 
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neuronal behaviours, lesioning, topographic mapping and chemical and 

structural differences (Rosenquest, 1985; van Essen, 1985). Despite this the 

cortex lends itself well to functional segregation and therefore mapping of 

the cortex continues to be dominated by this approach. 

Initially the visual processing areas of the brain can be identified by tracing 

the flow of information through the visual pathways, notably the primary 

visual pathway. From the dLGN the ascending primary visual pathway 

synapses mainly in the area of the cortex known as the "Striate Cortex", 

also referred to a the "primary visual cortex", "area 17" and V I . For the 

purpose of clarification it wi l l be referred to hence forth as V I . From here 

information passes on to other distinct cortical processing areas known 

collectively as the "extra striate" areas. There are direct projections from 

the dLGN to the extra striate areas such as V2, V3, V3a V4 and V5 (MT 

(medial temporal area)), however these are weaker in monkey's and humans 

than in other animals such as the cat (van Essen, 1985; 1991; Oram & 

Perrett, 1994; Churchland & Sejnowski, 1992; Bruce & Green 1990; 

Dowling, 1992). Arguably the primary visual pathway, terminating in V I 

must be intact for "conscious" visual perception (Bruce & Green, 1990), 

supporting the theory that the primary visual pathway is the non-reflexive 

pathway and the visual cortex constitutes the cognitive processing areas of 

the brain. There is however, contradictory evidence that suggests that 

"perception" occurs even i f damage to the primary visual pathway is evident 

as demonstrated by patients suffering form "blindsight" which wi l l be 

discussed in more detail later in this chapter (Churchland, 1986; Bruce & 

Green, 1990; Cowey & Stoerig, 1992; Weiskrantz, 1986; Weiskrantz, 
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1992.). This does not necessarily support a counter argument, that the 

striate and extra striate areas are not essential for cognition or perception. 

As previously mentioned information flow does not rely entirely on the 

primary visual pathway. 

Our present understanding of visual processing, and more importantly V I , 

originates with a collection of work, some of which has already been 

mentioned, conducted by Hubel and Wiesel (Hubel & Wiesel, 1962; Hubel 

& Wiesel 1970; Hubel, Wiesel, & Le Vay, 1977; Hubel & Wiesel, 1977.) 

The work of Hubel and Wiesel was primarily experimental neurophysiology 

based on extra-cellular recordings, predominantly single cell, but also multi 

unit and staining studies, conducted mainly in V I . This initial work resulted 

in the formulation of a neurophysiological theory of perception which has 

been extensively developed and expanded by many researchers (Barlow, 

1972; Perrett et al, 1986; Perrett et al 1987; Oram & Perrett, 1994). 

Theories of visual perception w i l l be discussed in more detail in the 

following chapter. Since the publication of the original work on the visual 

cortex, technology has allowed the development of more sophisticated 

methods of investigation. Research no longer relies completely on single or 

multiple cell recordings in animals. With the development of the positron 

emission topography (PET) scanners and magnetic resonance imaging (MRI) 

it is also possible to use human subjects. Technology has provided us with 

the ability to construct a complex and detailed understanding of the 

structure of the cortex (Oram & Perrett, 1994). 

The visual cortex, like the dLGN is constructed of six main layers formed 

by a mass of cell bodies. Axons of the cells in the cortex mainly project 
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vertically but there are also a limited amount of "local" horizontal 

connections (Bruce & Green 1990; Churchland & Sejnowski, 1992). 

Information from the dLGN typically terminates in layer 4 in V I . As with 

the dLGN further functional distinctions can be made between the layers 

that make up V I . This distinction is not directly related to the input 

received by V I , rather i t is a distinction relating to the function of the 

neurons within each layer. Layer 4 is where information enters the cortex, 

and can be divided into three sub layers, 4a 4b, and 4c. Magnocellular 

layers in the dLGN project mainly to the upper half of 4c referred to as 4ca, 

and parvocellular layers terminate mainly in the lower areas of 4c referred 

to as 4cp. (Dowling, 1992). magnocellular projections also terminate in 

layer 4b and parvocellular projections also terminate in layers 2 and 3 

which is where the clusters of colour sensitive cells are found (these 

clusters w i l l be discussed later). This has important implications for 

parallel theories of visual processing that w i l l be discussed in chapter 3. 

Layers 5 and 6 project mainly to "deep brain" structures, for example back 

to the dLGN and layers 2 and 3 as well as 4 project to the extra striate 

cortex and other cortical areas. As mentioned before both feedforward and 

feedback connections exist and are present in layers 2, 3, 4 and 6 (Oram & 

Perrett, 1994; Churchland & Sejnowski, 1992; Dowling, 1992) (see figure 

6). 
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Figure 6. A schematic diagram showing the basic structure of the striate 
cortex ( V I ) . 

It is possible to distinguish between feedforward and feedback pathways 

due to the fact that feedforward, or ascending pathways arise in the 

superficial layers and terminate predominantly in layer 4. Feedback, or 

descending pathways arise in the deep layers and terminate in the both the 

superficial and deep layers (van Essen, 1985; Maunsell & Newsome, 1987). 

An even more general functional description of the visual cortex can be 

seen in the relationship between input to the cortex and the processing that 

takes place within i t . It has been demonstrated that retinotopicy is 

maintained in at least 25 visual areas (Rosenquist, 1985). Further, that it is 

possible to distinguish between "first order transformations", where the 

visual field is represented isomorphically with neurons in V I , and "second 

order transformations" where the relationship is not as strong, apparent in 
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the extra striate areas (AUman & Kaas, 1971; 1974). 

There are two main classes of cells in the visual cortex, pyramidal and 

stellate. Pyramidal cells project over distance to other areas of the cortex 

whereas stellate cells are project within the visual cortex. Stellate cells can 

be classified further into two sorts, "spiny" and "smooth". Spiny stellates 

have lots of spines on their dendrites in comparison to smooth stellates 

which have very few or even none. A functional distinction can also be 

made, spiny stellates are excitatory and smooth stellates are inhibitory. A l l 

pyramidal cells are excitatory, and like spiny stellates have complex 

dendritic trees. (Dowling, 1992). Interestingly it is the dendritic 

"structural" feature that seems to determine the functional difference in 

cells, illustrating the inseparable nature of structure and function in the 

cortex. Layers 4 (a, b & c) of V I mainly consists of stellate cells whereas 

pyramidal cells are found predominantly in the other layers. Layer 4c cells 

have the same receptive field "centre on" and "centre off* properties as 

retinal ganglions whereas cells in other layers do not demonstrate this in 

such a definite way. These cells are also monocular, responding to either 

the right or left eye but not both (Bruce & Green 1990). Pyramidal cells are 

generally binocular, responding to input from both eyes, and the further 

away from layer 4 they are the greater their binocularity (Dowling, 1992). 

These layer 4 cells have also been classified in terms of function as "simple 

cells" (Hubel & Wiesel, 1962; Hubel & Wiesel, 1977). These simple cells 

are thought to process simple information such as the detection of edges, 

bars and blobs, responding in an excitatory way. They are also particularly 

sensitive to orientation of lines in their receptive field. This information is 
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then passed on to the next layer which consists of "complex cells" (Hubel & 

Wiesel, 1962; Hubel & Wiesel, 1977) which like simple cells respond to 

edges, bars and blobs present in their receptive field with excitatory 

responses. They also extract more complex information such as geometric 

form in the shape of angles etc. and are sensitive to motion. Complex cells 

have a typically non-linear response pattern like Y ganglions, whereas 

simple cells respond in a linear fashion to light intensities like X ganglions. 

Finally there are "hypercomplex" cells" (Hubel & Wiesel, 1962; Hubel & 

Wiesel, 1977) which are again sensitive to bars edges and blobs, but they 

also perform something called "end stopping" where the inhibition occurs in 

the cell i f its edge, bar or blob goes beyond the boundaries of its excitatory 

region. 

The existence of hypercomplex cells is much debated, it has been suggested 

that complex and hypercomplex cells are the same, as complex cells are also 

sensitive to the ends of bars edges, and blobs. (Bruce & Green, 1990). It has 

been suggested that simple cells are in fact stellate cells whereas complex 

cells are pyramidal, the evidence however for such a distinction is not 

conclusive (Dowling, 1992). However i f hypercomplex and complex cells 

are considered to be the same it is tempting to adopt this cell classification 

parallel. There is also evidence to suggest that cells in the visual cortex are 

sensitive to spatial frequency as well as geometric shapes (Campbell & 

Robson. 1968; De Valois et al 1982). 

The relationship between structure and function in V I is extremely 

complicated. As well as differences between single cells there are also 

structural divisions based on the function of groups of cells, "ocular 
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dominance" is an example of such a distinction. Ocular dominance concerns 

the cortical organisation of binocular information. As mentioned previously, 

until the cortex sensory input from each eye is kept separate. The 

segregation of information from right and left eye is maintained in V I 

notably layer 4c where dLGN projections terminate cells prefer input from 

one or the other eye. These cells are grouped together in terms of eye 

preference in vertical columns roughly 0.5mm thick, alternating left eye, 

right eye (see figure 7). 

2mni 

Input fh>m LGN 

Figure 7. A schematic diagram of the functional architecture of the striate 
cortex ( V I ) . 

However in other layers (4a, 4b, 1-3 &5-6) this is not as easy to 

demonstrate as both simple and complex cells respond to both eyes. Each 

cell has a "preferred eye" but the structural organisation is less clear (Oram 

& Perrett, 1994; Churchland & Sejnowski, 1992; Dowling, 1992 Hubel & 
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Wiesel, 1962; Hubel & Wiesel 1970; Hubel, Wiesel, & Le Vay, 1977; Hubel 

& Wiescl. 1977). 

A second functional anatomical distinction is evident in cell grouping which 

is most prevalent in all the layers except 4c, that of orientation selectivity. 

It seems that V I can be organised into vertical columns of cells running 

through layers l-4b and 5-6 that demonstrate a preference for sensory input 

lying in a given orientation. Changes of around 10"* in the preferred 

orientation for a given column occurs roughly every 0.05mm continually 

eventually repeating themselves, across the length of the cortex (see figure 

7). The combination of both ocular dominance column and orientation 

columns was identified as a single functional structure referred to as 

"hypercolumns" (Hubel & Wiesel, 1962; Hubel & Wiesel 1970; Hubel, 

Wiesel, & Le Vay, 1977; Hubel & Wiesel, 1977). Each hypercolumn 

consists of a block of cells running vertically through V I about 1mm by 

1mm by 2mm thick. A single hyper column incorporates 2 ocular dominance 

columns, one for each eye, roughly 20 orientations columns, one for each 10 

orientation preference and both simple and complex cells (see figure 7). 

The borders of these hypercolumns over lap to a certain degree meaning that 

the changes across the cortex are graded rather than definite (Dowling, 

1992; Bruce & Green, 1990). 

There is a further functional structure apparent in this layer and column 

organisation related to colour vision. Although the conceptual model to be 

developed does not include a detailed description of colour processing in 

early visual processing, namely in the retina and V I , the processing of 

colour information plays a significant role in the relationship between 
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structure and function and our understanding of parallel processing within 

the visual system. It is therefore important to explain very simply some 

aspects of colour processing in V I which clarify the nature of visual 

information flow in the so called "higher" visual processing areas of the 

cortex. It was discovered through staining studies in V I that within the 

hypercolumns there were groups of colour sensitive cells prominent in 

layers 2 and 3 but also in layer 1, 5 and 6. This implies that layer 4 has no 

real colour processing abilities, and has important implications in parallel 

theories of the neurophysiology of vision to be discussed in the next 

chapter. They were referred to as "pegs" as they looked like small round 

pegs that had been driven vertically into the cortex through the previously 

mentioned layers (Dowling, 1992) (see figure 7). They were independent of 

ocular dominance or orientations columns, and on closer inspection were 

found to be constructed of colour sensitive cells (Hubel & Livingstone, 

1983; Livingstone & Hubel, 1984). These "colour pegs" seem to be 

independent of the rest of processing in V I and receive independent input 

from the dLGN (Livingstone & Hubel, 1982). 

The columnar structure of the cortex particularly the hypercolumns indicate 

that specific regions of the cortex are dedicated to the processing of 

information from restricted inputs (Carlson, 1986). This further suggests 

that because synaptic connectivity in the cortex is mainly vertical, giving 

rise to this columnar structure, visual processing in V I is mainly localised. 

A complete understanding of the visual scene is not well supported by 

neurophysiology within V I 

It seems then that a highly complex pattern of information processing 
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emerges from the functional organisation of V I , which through 

simplification indicates specific information is extracted about the visual 

image at this stage in the processing. Arguably this "simplified picture" of 

V I is not only incorrect, it detracts from the real capabilities of V I in the 

processing of visual information (Gawne et al, 1994). 

THE EXTRA-STRIATE AREAS. 

At least 25 cortical areas associated with the processing of visual 

information have been identified in the primate, the striate cortex being one 

such area (van Essen et al, 1991). In the Macaque monkey it is possible to 

identify 11 areas that are dedicated primarily to the processing of visual 

information. There are 4 areas that have a marked preference for visual 

processing but also process other information. Finally there are 5 further 

areas that could be dedicated to either of the previous groups, and it is 

suggested many more remain to be discovered (van Essen, 1985). The areas 

involved with the processing of visual information beyond the striate cortex 

( V I ) are commonly referred to as the "extra striate" or "pre striate cortex". 

Beyond the extra striate cortex are other areas relating to vision namely the 

"association areas", for example the parietal and temporal cortices (see 

figure 8), where i t is thought that the resultant visual processing is 

integrated into a coherent whole. 
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Figure 8. A schematic of the extrastriate and association areas of the visual 

cortex. 

Arguably the extra striate cortex is part of the association cortex, however 

the extra striate areas tend to be purely concerned with visual information 

processing whereas the association areas are not necessarily dedicated 

purely to visual processing (Carlson, 1986). The extra striate areas and the 

association areas are assumed to perform so called higher level functions or 

cognitive processing resulting in "conscious" perception. It is these areas 

and this high level processing that we know very little about (Churchland, 

1986; Maunsell & Newsome, 1987). It could be argued that due to the 

significant amount of feedback from the extra striate areas to the striate 

cortex and dLGN the role of V I in high level processing is underestimated. 

Unlike V I the extra striate cortex consists not just of one cortical region, 

but of many, for example V2 and V3 are both visual cortical areas within 

the extra striate cortex. The identification of these extra striate areas 
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generally involved classic lesioning studies trying to trace the flow of 

information in the cortex. By destroying known visual areas, initially V I , 

and seeing which other areas were affected it is possible to "parcelate" the 

cortex. For example in lesioning V I , degeneration of another visual cortical 

area was apparent, V2. The next step was to lesion V2 and so on and so on 

(Rosenquist, 1985). Although identification of further distinct visual 

processing areas has been possible, their function is not as clearly defined. 

It is possible to make some kind of interpretation as to the underlying 

functionality of the extra striate areas, and some functional and structural 

themes are continued from V I . 

As with the previous accounts of the visual system the outline given here of 

the extra striate cortex is primarily concerned with charting the information 

flow through the cortex identifying structures and attempting to define their 

function (see figure 8 for a simplified overview of the extra striate areas 

and their pattern of connectivity). The projections making up both the 

feedforward and feedback pathways from and to V I are extremely complex. 

At least 100 pairs of major visual pathways have been identified along with 

many more suspected ones (Van Essen, 1985). It is only possible to discuss 

a limited number of the pathways that are significant in terms of a 

simplified model of visual perception (for a more comprehensive review of 

the patterns of connectivity see van Essen, 1985). Detailed accounts of 

structure and function w i l l be discussed when necessary in further chapters. 

In simple terms then, from V I the feedforward pathways project mainly to 

V2, although V I projects directly to two other areas in the extra striate 

cortex, V3 and V4. V3 sends projections on to V3A, but V I is not directly 
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connected to V3A. From V2 projections go to V3, V4 and also directly to 

the frontal eye fields. The frontal eye fields are located in the frontal lobes 

and involve the control of eye movement. V3 then projects to V3a, V5 (MT) 

and IT. V4 projects to IT and V5 to the posterior parietal cortex. In terms of 

functionality, V3 and V3a are sensitive to orientation but not colour. These 

are only the major pathways, there are many more. As mentioned previously 

retinotopicy to some degree is maintained in all these areas but not to the 

same degree as in V I (van Essen, 1985; Allman & Kaas, 1971; 1974). 

The visual cortex, especially the extra striate areas have been shown to be 

organised in a hierarchical fashion (van Essen, 1985; Maunsell & Newsome, 

1987). Further, it is suggested that at least two anatomically separate 

streams of information How exist. The first attempt at classification of two 

stream of information suggested a dorsal and ventral pathway (Ungerleider 

& Mishkin, 1982; van Essen, 1985; Maunsell & Newsome, 1987; Bruce & 

Green, 1992; Oram & Perrett, 1994). The dorsal or 'Svhere" pathway 

proceeded from V1-V2-V5 (MT), terminating predominantly in the posterior 

parietal region and the ventral or "what" pathway, from V l - y 2 - V 4 , 

terminating in the inferior temporal (IT) regions of the cortex (Ungerleider 

& Mishkin, 1982). The parietal area of the cortex is involved in the 

processing of visio-spatial information and language and IT is the "highest" 

level in the association cortex of the monkey, thought to be the area of the 

cortex where object recognition takes place (Churchland & Sejnowski, 

1992; Carlson, 1986). Through classic lesioning studies it is possible to 

support this theory of visual processing (Mishkin et al, 1983), but this w i l l 

be discussed in the next chapter. It has been suggested that this distinction 
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between two separate pathways originates in the separation of retinal 

information at the dLGN into magno and parvo cellular layers which is 

maintained in V I in the 4c and 4cp input layers (Livingstone & Hubel, 

1988). However the neurophysiological evidence for this is not conclusive 

(Goodale & Milner. 1992). 

Beyond the parietal areas and IT, projections for both ventral and dorsal 

pathways go on to the medial temporal lobe. In the medial temporal lobe it 

seems that the pathways maintain their segregation. The medial temporal 

lobe includes the tail of the caudate, the claustrum, the amygdala and the 

hippocampus. These areas are thought to be involved in learning and 

memory processes as well as the generation of emotional states. It seems 

that visual processing does not have to reach IT or the parietal regions 

before it passes to the medial temporal lobe, there are direct projections 

from earlier visual processing areas.(see O' Shaughnessey, 1994; Oram & 

Perrett, 1994 for reviews). The implications of this are that object 

recognition and consequently visual perception could be taking place before 

visual processing is complete. This could mean that vision is not completely 

bottom-up, and explain why it takes longer to recognise things we have no 

experience of compared to things we have previously encountered. Oram 

and Perrett suggest that how much visual processing is necessary before 

information goes to the medial temporal areas is dependent on the task in 

hand. I f cues are given as to the nature of the information that needs to be 

extracted then it takes less time than i f no cue is given. 

In terms of functionality the extra striate areas have both similarity and 

dissimilarity with V I . V2 is very much like V I , having the same structure 
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and functional distinctions, retinotopicy is also maintained in V2. Like V I , 

V2 is sensitive to orientation as well as binocular disparity suggesting V2 is 

sensitive to depth information (Carlson, 1986). The architecture of V2 

consists of thin and thick vertical stripes with faint interstripes separating 

them. It has been shown that the thin stripes are sensitive to wavelength and 

the thick stripes to motion. Form sensitivity is distributed across all of the 

stripes. (De Yoe & van Essen, 1985; Hubel & Livingstone, 1985; Shipp & 

Zeki, 1985). It is also clear that beyond V2 extra striate areas are tuned to 

respond to particular types of information (Zeki, 1978a; 1978b; 1980; 1983; 

1988; 1992) Lesion studies have shown that by destroying certain areas in 

the extra striate cortex it is possible to remove the ability to process certain 

types of information. For example V3, which is anatomically separate from 

V3a but functionally similar, is sensitive to orientation but not at all to 

colour. Neurons in V3 have larger receptive fields than both neurons in V I 

and V2 suggesting that a more global form of processing is taking place. 

Lesions to V4 demonstrate inability to perceive colour, and lesions to V5 

(MT) show inability to detect motion. Since the development of a an 

anatomical and functional basis for two separate streams of information 

processing in the cortex there has been extensive revisions. It is now clear 

that the early distinctions are not fu l ly supported by neurophysiology and it 

has been suggested that there are in fact 4 separate pathways in the extra 

striate cortex processing information, one for colour, one for motion and 

two for form (Zeki, 1978a; 1978b; 1980; 1983; 1988; 1992; van Essen, 

1985; Maunsell & Newsome, 1987; Bruce & Green, 1992; Oram & Perrett, 

1994). Again this w i l l be discussed further in the following chapter. 
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Therefore it is possible to create a very simplistic schematic idea of visual 

processing from V I . V2 can be thought of as a parcelling point where, as in 

V I , a retinotopic representation of the image is directed to various areas in 

the extra striate cortex that process certain information. There are at least 

two main pathways through the extra striate cortex operating in parallel 

with a possible third and fourth, processing colour, form and motion. Two 

of the pathways can be seen to originate in V I where colour and motion in 

formation are processed separately, colour in the "pegs" and motion on 

direction selective cells. These direction sensitive cells are found mainly in 

layer 4b which projects to V5 (MT) and V3 and in layer 6 which is known 

to project directly to V5 (MT) where motion information is thought to be 

processed (Livingstone & Hubel, 1988; Zeki, 1978a; 1978b; 1980; 1983; 

1988; 1992; van Essen, 1985; Maunsell & Newsome, 1987; Bruce & Green, 

1992; Oram & Perrett, 1994). It is possible to make a further anatomical 

distinction between the extra striate areas and the association areas of the 

cortex. Init ially there are the areas that are stil l concerned with the 

processing of the retinal image, extracting information. Beyond this are 

further areas that are concerned with the integration of information and 

possibly learning and recognition of the result of such integration. Areas 

considered to involve information extraction include; V2, V3, V3a & V4 

and VS. The areas thought to be significant in the integration of all this 

visual information include the inferior temporal cortex (IT), and the 

posterior parietal cortex (see figure 8). 
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OTHER PATHWAYS: REFLEXIVE 'TsTON COGNITIVE" PATHWAYS. 

As mentioned previously there are a number of other pathways from the 

retina that do not pass through the dLGN. These pathways do not all project 

to the visual cortex, some project to the brain stem, and play a significant 

role in the regularity system, controlling for example eye movement and 

focus. These secondary or reflexive, non cognitive pathways include retinal 

projections to, the superior colliculus (SC), pulvinar nucleus (PN), ventral 

lateral geniculate nucleus (vLGN), olivary nucleus of pre-tectum (ONPT), 

nucleus optic tract (NOT), dorsal terminal accessory optic nucleus 

(dTAON), lateral terminal accessory optic nucleus (ITAON), medial 

terminal accessory optic nucleus (mTAON), and the suprachiasmatic 

nucleus (SCN) (see figure 9). Pathways that project to the cortex include 

the SC and the PN whereas pathways to other areas such as the brain stem 

include the vLGN, ONPT, NOT, d, 1, and mTAON and the SCN (Cowey & 

Stoerig, 1992; Carlson, 1986). 
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Figure 9. The secondary, reflexive visual pathways. 

The superior colliculus (SC) as discussed previously, receives mainly W 

ganglion projections from the retina and is thought to play a major role in 

the control of eye movements. The SC then projects to the extra striate 

areas via the inter-laminar areas of the dLGN, and the pulvinar nucleus 

(PN). The SC receives information from nearly all of the areas in the visual 

cortex. The PN is one of the many nuclei that make up the thalamus and it 

both projects to and receives projections from the extra striate areas, 

namely MT. MT being concerned with the processing of motion 

information. The pathways projecting to the SC and the PN are inextricably 
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linked, i t is therefore hard to determine exactly what information is 

transmitted by the PN. The vLGN projects retinal information not to the 

cortex, but to sub-cortical structures including structures that already form 

secondary visual pathways of their own such as the pretectum, SC, and the 

SCN. Its role in the processing of visual information is not at all clear. The 

ONPT is thought to be involved with the control of pupil size and the 

accessory optic nuclei, d, 1, and mTAON, in the co-ordination of eye 

movements and the detection of self movement. Finally the SCN which is 

part of the hypothalamus involves the regulation of the day/night cycle and 

is sometimes thought of as a biological clock. (Carlson, 1986; Cowey & 

Stoerig, 1992). 

The role of these secondary visual pathways in relation to the processing of 

visual information resulting in perception not clear. As already suggested 

one distinction that has been made between these secondary visual pathways 

and the primary visual pathway is that of conscious/non conscious, 

reflexive/non-reflexive processing. However as it is clear some of these so 

called secondary reflexive pathways project to and receive projections from 

the extra striate cortex, the very areas of the visual cortex with which we 

associate with the processing of higher cognitive "conscious" processes. 

Experimentation with patients suffering with the disorder "blindsight" has 

suggested that the information enabling conscious perception could be 

carried along these pathways. Blindsight is a condition where part of the 

visual cortex, usually V I has been destroyed either through illness in human 

subjects, or through lesions in animal studies, making it impossible for 

them to recognise or respond to visual stimuli. It has been shown that i f 
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subjects suffering from blindsight are asked to "guess" where objects are 

they can correctly locate them even though they are clinically "blind" 

(Weiskrantz, 1986; 1992). However the evidence is not conclusive and there 

is much work to do before the role of these secondary pathways is more 

clearly defined (Cowey & Stoerig, 1992). 

CONCLUSIONS. 

There cannot be enough emphasis on the point made earlier (in chapter 1) 

that a simplifying brain model is the best that can be hoped to be achieved. 

The outline of the neurophysiology of the visual system presented here is a 

gross simplification. The information available in the neurophysiological 

literature is far more detailed and complex. Even though it is possible to 

pursue more and more detailed accounts of the neurophysiology of the 

visual system, information is stil l incomplete. The problem of incomplete 

information is directly related to the techniques available in experimental 

neuroscience. Intracellular recordings are extremely hard to conduct 

successfully, and extracellular techniques are less reliable. 

Neurophysiological research is continually providing new information about 

the structure and function of the brain, meaning that any model developed is 

by no means complete. As research continues finer levels of detail are 

achieved, going beyond neurophysiological descriptions, to include 

biochemical descriptions and even to the level of molecular physics. At this 

point the problem of multi-disciplinary research becomes most apparent. To 

provide a global picture of what is actually happening causes an overload of 

information of which a great deal is meaningless without in depth 
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knowledge in given disciplines. 

It seems from the amount of literature published that more is known about 

the structure and function of the visual cortex than any other cortical area. 

It seems that even with this wealth of knowledge we may know a great deal 

about visual processing, but we know very little about how visual 

processing becomes visual perception (Oram & Perrett, 1994). This makes 

the task of developing artificial vision systems capable of perception 

extremely dif f icul t . 
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CHAPTER 1 

THEORIES OF VISUAL F E R C E P T I Q N ; 

N E U R O P H Y S I O L O G I C A L AND 
P S Y C H O L O G I C A L T H E O R I E S O F VISION. 

This chapter introduces theories of visual processing and visual perception 

that originate in both neurophysiology and psychology. The first part of the 

chapter discusses neurophysiological, bottom-up theories of both visual 

processing and visual perception. The emphasis being on theories that 

explain the processing of visual information. The second part of the chapter 

discusses psychological theories some of which originate in 

neurophysiology others are pure top-down approaches. The difference from 

neurophysiological theories being that psychological theories aim to 

explain global perception. However overlap occurs between psychological 

and neurophysiological theories especially in regard to explaining local 

perception. 

I N T R O D U C T I O N . 

PSYCHOLOGICAL AND NEUROPHYSIOLOGICAL THEORIES. 

It is not always a simple task to distinguish between neurophysiological and 

psychological theories of visual perception. This is because some 

psychological theories have grown from accounts of neurophysiology, 

taking ideas suggested in the structure and function of the visual system and 
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using them to explain behaviour. Conversely some neurophysiological 

theories originate within the field of neuropsychology, using behavioural 

accounts to develop theories of brain structure and function and supporting 

them through classical neurophysiological techniques. With 

neurophysiological theories it is often hard to decide whether what is being 

proposed by any piece of research is actually an account of either a 

localised or global aspect of the neurophysiology of vision or an actual 

theory supported by such descriptions. With psychological approaches it is 

often hard to see how behavioural accounts in the form of psychophysical 

experimentation can be related to the structure and function of the 

underlying neurophysiology. 

One possible distinction that can be made is that neurophysiological 

theories of visual perception tend to be based on accounts of visual 

processing, whereas psychological theories are based more on visual 

perception. This equates to psychology taking a top-down approach to 

vision, having a theory of what vision is then testing that theory against 

behavioural experiments. Neurophysiology on the other hand works from a 

bottom-up approach. This means constructing a theory of visual perception 

by starting at its lowest level, and building on this until a theory emerges. 

The aim of this chapter is to illustrate this point and also to combine the 

best of the two approaches in the development of a theory of perception. 

Most attempts at theorising about or modelling perception are directed at a 

specific visual task, especially top-down psychological approaches. For 

example psychological theories of vision include theories of object or 

pattern recognition, depth perception, motion perception, object constancy 
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and theories of selective attention. There are very few "global" theories of 

vision, most seem to be task orientated, possibly with the exception of 

Marr's and Gibson's theories respectively (Marr, 1982; Gibson, 1950). 

Arguably such theories are really frameworks within which visual 

perception is investigated (Bruce & Green, 1990). Neurophysiological 

theories of vision tend to be directed more at accounts of how the visual 

system might work. Rather than having different theories argued in 

conjunction with each other theories tend to be updated or replaced as new 

information comes to light. These like psychological theories of perception 

tend to be task orientated, for example face detection, or colour processing. 

It does seem that neurophysiological theories attempt to be global but 

within that global theory of visual perception a specific aspect of visual 

processing is focused on. 

N E U R O P H Y S I O L O G I C A L T H E O R I E S O F V I S I O N . 

Two main types of theory emerge from the structural and functional 

descriptions of the visual processing areas of the brain. Firstly there are 

those theories which are based on the notion of vision as a hierarchical, 

sequential process. Secondly there are those theories that suggest visual 

processing is to some extent hierarchical but there are separate and distinct 

streams of visual processing that occur in parallel. Therefore it possible to 

class neurophysiological theories o f vision as being either of one sort or the 

other. Underlying either class of theory is a further functional distinction 

related to the coding of information. In hierarchical sequential theories of 
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visual processing each neuron in V I is thought to encode a specific piece of 

information about the visual image. As processing continues through the 

visual system neurons encode for more and more abstract pieces of 

information, until at the highest level their are neurons that respond only to 

specific combinations of information in the form of whole objects. With 

parallel theories of visual processing encoding is thought to be based on 

populations of neurons all contributing to the processing of the visual 

image, with no one neuron in any visual area having complete information 

on any aspect of the visual image. Neurons in V I for example encode form 

information, whereas neurons in V4 encode colour information. The image 

is encoded as a pattern of activity across populations of cells.(Churchland & 

Sejnowski, 1992). Exactly how this "distributed" representation becomes a 

coherent whole is the subject of much debate and is discussed in more detail 

later in this chapter. 

As the visual system can be divided into a number of separate stages of 

processing involving anatomically distinct areas of the brain there are also 

localised theories of vision. These theories may relate only to a particular 

area of visual processing rather than providing a global model or theory of 

perception itself. However such theories can provide insight into the way in 

which global theories of visual processing can be constructed. 

BARLOW'S SINGLE CELL FEATURE DETECTION THEORY. 

The single cell feature detection (SCFD) theory of visual processing and 

eventual perception evolved from the work carried out by Hubel and Wiesel 

on the structure and function of the visual cortex as discussed in chapter 2 
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(Hubel & Wiesel, 1962; Hubel & Wiesel 1970; Hubel, Wiesel, & Le Vay, 

1977; Hubel & Wiesel, 1977). The theory is based on Hubel and Wiesel's 

description of visual processing from the retinal ganglions to neurons in 

V I . The first level of detection being light intensities in the retinal 

ganglions terminating in the dLGN. Feature detection becomes more 

abstracted as simple cells in V I code for edges and orientation in a given 

retinal location. The third level of abstraction is with complex cells that are 

not bound by retinotopic representation (Bruce & Green, 1990; Churchland, 

1986). This is supported by the laminar columnar structure of V I , and the 

strict organisation of information flow within that structure, as well as the 

existence of the primary visual pathway from the retina to V I . Although 

Hubel and Wiesel themselves did not propose that visual processing 

throughout the cortex exists in this way, their work provided 

neurophysiology with the evidence it needed for a single cell doctrine to 

develop. 

Quite simply the SCFD theory suggests that information is processed in a 

series of hierarchical sequential steps resulting in a more and more 

sophisticated description leading to the "Grandmother Cell" hypotheses 

proposed by Barlow (Barlow, 1972). Barlow suggests that the brain has 

single cells acting as feature detectors in the cortex responding to more and 

more abstract geometric features until at the top of the hierarchy they 

respond only to particular objects, for example one*s grandmother. When a 

particular feature falls into the receptive field of a neuron in layer 4 of V I 

tuned to that feature it fires. This neuron projects to those in a layer 

directly above it which is tuned to respond to an even more abstract feature 
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until eventually it projects to an area in the extra striate cortex that actually 

contains a neuron that fires only when a certain persons face has been 

detected, maybe ones grandmother (see figure 10). The problem is whether 

this theory can be upheld by neurophysiological evidence. 

o o 

Figure 10. Single cell feature detection theory. 

I f the SCFD holds true then it would be expected that the transmission of 

information from the dLGN to the striate cortex would be solely 

feedforward, and this would be reflected in the structure of the primary 

visual pathway (Bruce and Green, 1990), Initially it would be expected that 

i f this was the case then dLGN cells would connect directly and only to 

simple cells in V I . It has been shown that projections from the dLGN 

connect to both simple and complex cells in V I . Complex cells also receive 

projections from other cortical cells. It must be noted however that simple 

cells do only get information in from the dLGN being predominantly in 

layer 4 of V I and complex cells do provide output from V I (Ferster & 

Lindstrom, 1983). One major problem with the SCFD theory is that there 

are more feedback pathways than feedforward ones, so as much goes back to 

the dLGN as comes in (van Essen, 1985; Oram & Perrett, 1994; Churchland 

& Sejnowski, 1992; Dowling, 1992). However the organisation of the visual 
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cortex has been shown to be hierarchical in that information entering the 

cortex proceeds in a feedforward way and is processed in stages. Although 

specific connection patterns may not be upheld there is a consensus that the 

cortex is to some extent organised in a hierarchical fashion (see van Essen, 

1985; for a review). 

Another problem for the SCFD theory is that it assumes that single neurons 

in V I code for geometric features. A pattern of light falls on the retina and 

is coded as an abstract symbolic representation of the retinal image which 

consists of simple geometric features present such as line angles etc. 

Neurons in the visual cortex then respond in a hierarchy to more and more 

complex patterns of these geometric features. The centre-on cells for 

example in the LGN do not just respond to straight lines they can respond to 

any number of patterns. To be a line detector they would have to respond 

only to straight lines (Bruce and Green, 1990) Bruce and Green argue that 

proponents of the SCFD theory would suggest that simple cells in V I 

respond to lines of cells in the LGN not just single centre-on cells. 

Therefore simple cells in the next stage of the hierarchy are coding for 

geometric features. However simple cells do respond to variations in line 

orientation in the retinal image, as coded by lines of centre-on cells, so 

detecting different lines. This is not the whole picture, the response of 

simple cells increases with other variables such as contrast and position of 

the light falling in its corresponding receptive field. Therefore the 

information i t imparts is ambiguous (Bruce & Green, 1990). 

The SCFD theory also has been shown to be fiawed through classic lesion 

studies. I f the theory holds true it would be expected that i f V I was 
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removed through lesions, object and complex pattern recognition would not 

be possible. In a series of experiments it has been consistently shown that 

this is not the case. However in the same series of experiments it was shown 

that lesions to the extra striate cortex do impair object and pattern 

recognition, providing support for the SCFD theories claims that whole 

objects are represented at the highest level in the hierarchy, namely IT in 

the extra striate areas. (Sprague et al, 1977; Berlucchi & Sprague, 1981), 

This work also casts doubt on the significance of the spatial frequency 

tuning of neurons in V I in contour processing for pattern recognition 

(Berlucchi & Sprague, 1981). The results of Berlucchi and Sprague support 

this in that visual acuity is lost with V I , however pattern recognition is not. 

A possible explanation for this is that the secondary visual pathways are 

sufficient to transmit information to the extra striate areas. This is a 

contentious issue and has been investigated extensively in relation to 

blindsight patients who when pressed to make perceptual "guesses" about 

objects do so correctly even though they cannot see them. However it is stil l 

not certain as to how much information can be passed on via the secondary 

pathways (see Cowey & Stoerig, 1992; for a review). One suggestion for 

blindsight is that i t is very rarely the whole of V I that is destroyed, and 

what is left is sufficient to process images to a limited degree (Campion et 

al, 1983). The evidence in support of the SCFD theory is not conclusive 

though the single cell doctrine dominated both theories of visual processing 

and experimental research in neurophysiology for a long time. 
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THEORIES OF PARALLEL PROCESSING IN THE VISUAL SYSTEM. 

More recently and as a result of conflicting evidence for single cell theories 

and extensive investigation into the relationship between the striate and 

extra striate areas of the cortex, theories of visual processing have been 

readdressed. It has become clear that beyond V I processing in the extra 

striate cortex is not purely hierarchical and by no means a sequential 

process. By looking at specific aspects of visual processing, for example the 

processing of colour, motion, shape, and size information, research has 

shown that there are separate areas for processing this information beyond 

V I . Destruction, either artificial or through illness and disease, of certain 

areas of the cortex supports this. Zeki and his colleagues have conducted a 

vast number of experiments that show that the extra striate areas of the 

cortex are specialised in their function (Zeki, 1978a; 1978b; 1980; 1983; 

1988; 1992). As mentioned in chapter 2. Zeki showed that V5 (MT) is 

specialised for motion detection, and cells in V4 are particularly sensitive 

to wavelengths of light used in colour identification as well as orientation 

for detection of form. Neurons in V3 and V3a are also tuned to form 

information but do not respond to colour information. This lead to the 

development of a functional specialisation hypothesis which has also 

extended to V I . Zeki suggested that both V I and V2 are also specialised in 

their function, and they act as a "parcelling" point where information is 

grouped and sent to the relevant specialised area in the extra striate cortex 

for processing (Zeki, 1978a; 1978b; 1980; 1983; 1988; especially 1992 for 

review). This hypothesis is supported by the structural and functional 

distinctions in V I where, as mentioned in chapter 2, colour and motion 
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information is coded separately. 

UNGERLIEDER & MISHKIN*S TWO STREAM THEORY OF VISUAL 

PROCESSING. 

The SCFD theory was predominantly hierarchical, and there is evidence 

suggesting this to be the case in the primate visual cortex with several areas 

of processing making up each level with extensive feedback from higher to 

lower levels (van Essen, 1985). The existence of a hierarchy does not mean 

serial processing feature detection theory is right. Especially as SCFD 

theory claims processing to be feedforward, and evidence to support 

hierarchical processing suggests that feedback connections are equally as 

important. The parcelling model suggests different areas code for different 

things. V I and V2 "parcel" information out to areas that code for different 

things in parallel (Zeki, 1978a; 1978b; 1980; 1983; 1988; 1992). So within 

the bounds of the striate cortex functional and structural evidence lend 

support to single cell accounts of visual processing. However when looking 

beyond V I to the extra striate areas the evidence is not so convincing. The 

failure of the SCFD to explain why pattern and object recognition was stil l 

possible after lesions to V I (Sprague et al, 1977; Berlucchi & Sprague, 

1981) along with the evidence for functional specialisation within the extra 

striate areas (Zeki. 1978a; 1978b; 1980; 1983; 1988; 1992) led to the call 

for a parallel theory of visual processing. 

As mentioned in chapter 2 Ungerleider and Mishkin proposed a two stream 

theory of visual processing based on two different visual processing 

capabilities, recognition and visio-spatial. One pathway determines what an 
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object is and another determines where it is. There theory was based on a 

proposal by Schneider (Schneider, 1969) who suggested that there were 

separate sites dedicated to object recognition and object location. 

Ungerlieder and Mishkin conducted a series of experiments that enabled 

them to support such an idea as well as give it substance through proposing 

the exact anatomical pathways for information flow, ventral and dorsal, to 

two separate processing sites, IT and the parietal areas of the cortex. The 

theory is also supported by neuropsychological studies. Patients suffering 

from visual agnosia due to damage to the occipitotemporal regions of the 

cortex are unable to identify objects yet can sti l l manipulate them, 

conversely patients suffering from optic ataxia due to damage to the 

posterior parietal cortex are able to identify but not move objects (see 

Goodale & Milner, 1992 for review). 

More recently the two stream theory has been substantially reviewed in the 

light of neuropsychological studies that suggest the distinction between 

'Svhat" and *'where" pathways is not quite so straight forward (Goodale & 

Milner, 1992). They suggest that neuropsychological evidence used to 

support the original two stream theory is conflicting. In some cases of 

patients suffering from optic ataxia they are unable to use the information 

relating to grasping rather than being completely incapable of doing so. 

Goodale and Milner suggest that the "where" pathway should be renamed 

the "how"' pathway. They suggest that two systems exist, one relating to 

predominantly to perception and the other to action, both processing visual 

information in different ways. There is a certain amount of interaction 

between the two systems through connectivity, meaning that it is not as 
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easy to separate perception and action as suggested by previous models 

(Goodale, & Milner, 1992). 

MAUNSELL & NEWSOME'S PARALLEL MODEL OF VISUAL 

PROCESSING. 

Ungerleider and Mishkin's two stream theory was primarily concerned with 

visual capabilities. It also suggested that divergence of the two streams took 

place early in the extra striate areas (Maunsell & Newsome, 1987). Revision 

of the two stream theory taking account of early vision was proposed by 

Maunsell and Newsome. (Maunsell & Newsome, 1987). The two stream 

theory they proposed was based on the formulation of possible pathways 

through the extra striate cortex in view of Zeki's work on functional 

specialisation. Maunsell and Newsome propose that there are two main 

pathways functioning in parallel, rather than lots of different areas all 

processing different things as the parcelling theory suggests. Both pathways 

begin in V I , and it is suggested even earlier in the 

magnocellular/parvocellular separation in the dLGN, but as mentioned in 

chapter 2 the basis for such a distinction is not clear. One pathway 

processes motion and spatial information resulting in visio-spatial 

processing, whilst the other processes colour and form information resulting 

in object recognition. Each stream is organised hierarchically, with 

differing levels of processing in each of the relevant areas associated with 

that particular stream. Maunsell and Newsome refer to the two pathways as 

the "colour form pathway" and the " motion pathway" and emphasise the 

point that they are related to but not the same as Ungerleider and Mishkin's 

85 



streams of processing (Maunsell and Newsome, 1987). 

The motion pathway originates in V I in layer 4b which projects directly to 

V5 (MT). From V5 projections go to the medial superior temporal area 

(MST) and then to area 7a in the parietal cortex. The colour form pathway 

originates in the colour "pegs" in V I and the "interpeg" regions that are 

sensitive to orientation. This segregation is maintained in V2 where the 

pegs in V I project to the thin stripes in V2 which are sensitive to colour. 

The interpegs project to the inter stripes in V2 which prefer a similar 

orientation preference as in V I . From V2 projections go to V4 then to IT, 

specifically the posterior inferotemporal area (PIT) and to the anterior 

inferotemporal area (AIT) . In both pathways retinotopicy decreases as they 

move away from V I and evidence suggests that as the pathways progress 

deeper into the extra striate areas more complex information is developed. 

Finally Maunsell and Newsome cite experimental work that suggests extra 

retinal inputs via the secondary visual pathways to the parietal and IT 

regions of the cortex play a significant role in the information processing 

that takes place there and should not be dismissed as merely modulating 

visual processing (see figure 11). 

4b r -

PARIETAL 

• Colour form pathway 

? Motion pathway 

Figure 11. A schematic diagram illustrating Maunsell and Newsome*s two 

stream theory of visual processing. 
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Maunsell and Newsome make it quite clear in their paper that the extra 

striate areas are still very much under investigation and that some areas 

have been the subject of intensive study whilst other have not been 

scrutinised at all well. They go on to suggest that the two streams of 

processing are not totally independent of each other either functionally or 

anatomically. The colour form pathway does contain direction sensitive 

cells and orientation specificity is present in the motion pathway. Also 

there is evidence for connections between V4 and V5 and evidence from 

psychophysics that suggests completely independent processing does not 

exist. They suggest visual processing consists of two streams of serially 

connected visual processing areas that are in no way completely sequential 

due to feedback and diverse connection patterns. The complexity of the 

functional and structural relationship between the two streams is such that it 

is not possible to demonstrate conclusively that they operate completely 

independently of each other (Maunsell & Newsome, 1987). It seems then 

that although it is possible to regard visual processing in terms of parallel 

streams of processing there is a certain amount of overlap. 

ZEKI'S FOUR STREAM THEORY OF VISUAL PROCESSING. 

Zeki has revised the two stream theory further to flt with recent 

neurophysiological evidence from positron emission tomography (PET) 

scans. The results of PET scans carried out in conjunction with visual 

experimental tasks support Zeki's parcelation hypothesis (Zeki, 1992). Zeki 

proposes four parallel pathways operate in the visual cortex, one for colour, 
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one for motion and two for form. Zeki suggests there is an overlap between 

the pathways but the motion and colour pathways are quite distinct, having 

origins in the magnocellular parvocellular layers in the dLGN and in V I . 

One of the two form pathways is linked to the colour pathway originating in 

the parvocellular layer in the dLGN and passing to V4 via the areas between 

the colour pegs in V I (interpegs) and the thin stripes in V2. Then second 

form pathway is independent of colour, and follows the magnocellular 

pathway via layer 4b in V I to the thick stripes in V2 to V3 and directly to 

V3 from layer 4b in V I . Zeki refers to this as the "dynamic form" pathway 

as i t is thought that V3 processes form and motion information. Zeki argues 

that the "pigeon hole" nature of V I and V2's role in processing and direct 

connections between extra striate visual areas allows for complete 

interaction between pathways even though they can be seen to be distinct 

(Zeki, 1992) (see figure 12). 
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Figure 12. A schematic diagram illustrating Zeki's four stream theory of 

visual processing. 

Support for the four stream theory comes not only from existing structural 

and functional experimental evidence but also from neuropsychology. 

Damage to V4 results in achromatopsia, where the patient st i l l has a fu l ly 

functioning V I , but is not able to see colour. Interestingly patients are also 

unable to recall colour information from before the damage occurred. These 

patients are completely capable of form and motion perception. In contrast 

patients with damage to VS resulting in akinetopsia, are unable to see things 

when they are in motion. The form pathways are less well supported by 
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neuropsychology, however some achromatopsia patients with damage in the 

striate cortex cannot perceive form unless either they or the visual world is 

in motion. Zeki argues that this is because they have to rely on the dynamic 

form pathway rather than through the damaged colour form pathway. 

Strikingly in support of the role of V I and V2 in the four stream theory is a 

syndrome that Zeki has termed "chromatopsia of carbon monoxide 

poisoning". People who suffer the effects of smoke or fume inhalation tend 

to have visual problems but their colour vision is not affected at all . In fact 

colour becomes the dominant medium for object recognition. Zeki suggests 

this is due to the fact that the colour pegs in V I and the thin stripes in V2 

have a high density of oxygen supplying blood vessels meaning that oxygen 

is less likely to be deprived to these areas than in others in the event of 

fume inhalation (Zeki, 1992). 

Zeki also proposes that V I is needed for long term visual experience, 

suggesting that V I and V2 are as important to perception as the extra striate 

areas that are assumed to underlie cognition. Zeki suggests that V I is used 

for short term perception in that it initialises the processing of visual 

information which is then processed in its specialist area and then passed 

back to V I and V2 for further specialist analysis. He uses blindsight 

patients as support for this idea. Blindsight patients cannot see as such but 

Zeki argues secondary pathways allow enough information to get to the 

specialised areas for them to "guess" correctly. They cannot add detailed 

specific information but can guess at motion and colour. 

There are other neuropsychological disorders providing support for parallel 

stream theories such as Zeki's. However it must be noted that 

90 



neuropsychological deficits and savings are generally partial. This means 

that although there may be a distinct deficit in certain processing abilities 

these are not necessarily completely abolished. Obviously individual cases 

differ due to the extent and nature of damage. Further, deficits in the 

processing of one particular type of information processing generally means 

a deficit is present in another. The nature of the cortex is such that damage 

occurring to certain areas wi l l affect the processing capabilities of others. 

Other disorders providing support include akinetopsic patients who cannot 

tell direction or coherence of motion but can stil l determine the existence of 

motion (Baker et al, 1987; Baker et al, 1991). However as mentioned above, 

patients suffering with akinetopsia generally have impaired form processing 

as well. Similarly achromatopsies can interpret waveform information but 

not as colour. Patients in both disorders st i l l had an intact V I , therefore 

Zeki implies V I is not just important in terms of providing detailed form 

information but for visual perception as a whole process. Conversely 

serious damage to extra striate regions but not to V I causes problems in 

long term perceptual abilities. Zeki cites the case of a man whose V I was 

intact but had severe stroke damage to the extra striate areas. He could copy 

drawings in incredible detail but had no idea what he had drawn. This 

suggest that V I and V2 are not just simply parcelling points, their role in 

perception is complex. Zeki parallels this segregation in the cortex to 

memory, initial processing can be used like a "working memory" (Baddeley 

& Hitch, 1974) whereas later processing is essential for long term storage 

(Zeki, 1992). 

This also supports Zeki*s earlier findings that suggested the parallel 
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pathways operated hierarchically extracting more and more abstract 

information as they progressed. There is evidence in support of hierarchical 

processing within the colour form pathway, where it has been demonstrated 

that cells in V I are selective for wavelength and respond even to changes in 

wavelength brought about by changes in lighting conditions. Cells in V4 

however do not change their response in this way, they demonstrate colour 

constancy. This ensures that an object that is red remains red even when 

lighting conditions change. This suggests that colour processing in V4 is 

more abstract than that in V I (Zeki, 1983). The notion of hierarchical 

processing does not mean that early visual processing is not essential for 

visual perception rather it suggests that higher visual processing is less 

dependent on retinal processing. 

One important question that has to be addressed in any parallel theories of 

vision is the integration of information allowing perception to take place. 

SCFD theory does not call for information to be combined. Zeki says there 

is no one "master" area where information converges, claiming there is no 

anatomical evidence to support such an idea. Zeki says integration occurs 

through the many links right from dLGN upwards that run between areas 

and forward and back in cortex. He illustrates this by pointing out that V5 

detects motion, but its receptive fields are too large to pinpoint the exact 

location of what is moving. It is by sending information back to V I , that the 

visual system is able to determine exactly what and where objects are 

moving. In reverse Zeki argues this is also an explanation of illusions. V I 

does not fa l l for illusions. It is the larger receptive fields and increased 

processing power of V2 that perceives things to be present that are not. This 
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led Zeki to formulate his theory of "multistage integration" in which 

perception takes place across the visual system simultaneously. Perception 

is mediated by vast re-entrant (feedback) connections to all areas of the 

visual cortex. Forward connections are "patchy and discrete" but feedback 

connections are non-specific and diffuse. This means that a feedback system 

could perform several important functions including the integration of form, 

colour and motion information, and provide detailed spatial information for 

extra striate processing (Zeki, 1988; 1992). 

EVIDENCE FOR INTEGRATED THEORIES OF PERCEPTION. 

Contrary to theories of segregated visual processing there is evidence to 

suggest that there is a great deal of interaction between processing channels 

in the visual system. As mentioned previously neuropsychological deficits 

are not generally distinct. When one form of processing is impaired other 

perceptual capabilities are usually also affected. Akienotopic patients who 

have damage to the motion pathways also suffer from form perception 

impairments. This implies that form processing is not necessarily distinct 

from motion processing. 

The neurophysiological and psychological literature also supports the 

distribution of processing between processing channels. It has been shown 

that the chromatic properties of visual stimuli effect the detection of motion 

(Krauskopf & Fareil, 1990). Psychophysical research has also shown that 

the processing of motion information seems to be dependent on form 

information. In a series of experiments Adelson and Movshon showed that 

the coherent motion perception of two spatial gratings was facilitated i f the 
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two gratings had similar spatial frequencies and were of a similar contrast 

(Adelson & Movshon, 1982: 1984). This has been interpreted as being 

evidence that segmentation of the object is directly responsible for coherent 

motion perception (Albright, 1991). 

Neurophysiological accounts of perception that suggest that visual 

processing is carried out in separate channels acknowledge that integration 

within the visual cortex occurs at all stages. However parallel theories of 

visual processing are concerned with the overwhelming evidence that 

supports segregated streams of processing within the visual system. This 

does not mean that the processing of form and motion information is not an 

integrated process, rather that is predominantly segregated. 

PERRETT AND COLLEAGUES -THE SINGLE CELL REVISITED. 

Further, and more recent support for the SCFD theory and hierarchical 

processing in the visual system comes from work conducted by Perrett et al 

(Perrett et al , 1986; Perrett et al, 1987; Oram and Perrett, 1994), based on 

earlier findings by Gross et al (Gross et al, 1972). Perrett et al have 

extensively investigated cells in IT that have been found to be selectively 

responsive to faces. (Perrett et al , 1986; Perrett et al, 1987; Oram and 

Perrett, 1994). The implication of this is that while cells in lower levels 

detect edges, bars, blobs and orientation, at the highest level cells respond 

to complex abstract combinations of features such as faces. As mentioned 

previously, IT is thought to be the area of the visual cortex involved in 

object recognition. Therefore a tenuous conclusion can be drawn that 

perhaps IT contains cells that respond to individual faces and objects. 
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In a review article Perrett et al provide examples of evidence from both 

neurophysiology and neuropsychology to support hierarchical abstraction of 

complex features in visual processing, where object recognition is 

dependent on a step by step process culminating in the association cortex 

possibly in IT. They suggest that Hubel and Wiesel's work along with the 

clinical condition prosopagnosia, where people are able to identify objects 

but not faces, provides the foundations for such a theory. The existence of 

cells that respond to faces provides strong support for such a theory. They 

stress that the neuropsychological work is controversial. One problem that 

could be construed is that it is hard to see how IT could be selectively 

damaged so as to stop face responsive cells but not cells responsive for 

other objects. On closer examination of their claims it seems that the 

behavioural responses of such cells are not as clear as i t first seems. Cells 

respond not just to one face but to faces. Cells recorded from monkey 

cortex responded to human and monkey faces. They did however not 

respond at all to other complex objects such as an alarm clock. Cells that 

did respond to faces however did so despite position, viewing distance, 

orientation and luminance of the face. Perrett et al also stress that this does 

not mean that visual processing does not occur in parallel, they merely 

suggest that hierarchical feature extraction is a possibility in the process of 

object recognition. Interestingly further experimentation showed that cells 

responded to particular facial features as well as they did to complete faces. 

However they go on to cite experimental evidence suggesting that certain 

cells responded best to "normal" arrangement of complete facial features. 

Finally response latency was affected by view, in that it took longer for 
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cells to respond to uncommon views, (for review see Perrett et al, 1987). 

It seems that the evidence is not conclusive. There could be cells 

responding to faces but at the same time there are cells that are responding 

to a lot of other things as well. They still maintain that the recognition of 

faces relies not on features encoded across populations of cells, but on 

small groups of selective cells and single cells. They also conclude that 

because cells responsive to faces are clumped together there are areas of the 

brain to deal specifically with face recognition. This does not mean it is 

exclusively dedicated to face recognition, but that is one of its particular 

functions. The implications of these findings are vast. I f there are cells 

responsive to faces then is it possible that there are cells that respond to 

other objects. I f there are then such a theory would fa l l foul of the problem 

of combinatorial explosion. It would also suggest that for recognition of 

new objects and new faces new cells would have to develop. This is not 

borne out by neurophysiological evidence. Arguably just because a cell 

responds to a face doesn't mean it is actually a speciflc feature detector. 

The numbers o f cells that respond in this way are extremely small, only 

10% of a sample of cells taken from IT (Perrett et al, 1982). Further 

criticisms include experimental evidence that shows the responses of cell in 

IT to be ambiguous, they respond to other things as well as faces. They also 

respond to faces with differing degrees of intensity (Bayliss et al, 1985). 

Another problem for purely feedforward hierarchical feature detection is 

that the response of cells in V4 in the colour form pathway are affected by 

their attentional state whereas cells in V I are not (Moran & Desimone, 

1985). I f visual processing is feedforward hierarchical with the highest 
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level of processing holding a complete abstract representation like a face 

then you would not expect one level of processing to be affected by the 

animals state and not others. Also it has been shown that cells in anterior 

inferotemporal cortex (AIT) respond very differently in a delayed matching 

to sample task. Some respond to the sample, different cells respond in the 

delay period and a further class of cells responded to the colour the animal 

eventually chooses regardless of the colour i t was shown. (Fusler & Jervey, 

1982). Fuster and Jervey conclude from this that the extra striate pathways 

do not function independently of other areas of the brain. Other processes 

such as attention and memory influenced the strength of response in so 

called feature detecting cells. The fact that cells respond to the chosen 

colour, which is different from the colour of the object presented to the 

retina, suggests that visual information is not completely processed in a 

feedforward hierarchical way. Information feeds back and forth not only in 

the visual pathways but to and from other sensory processing areas. 

Oram and Perrett in a recent paper outlining how models can be derived 

from neurobiological constraints revise feature detection theory to fit with a 

more general view of visual processing (Oram & Perrett, 1994). They 

discuss in further detail the nature of cells in IT and their role in object 

recognition. They maintain grandmother cells do exist but now describe 

them as cells that are responsive to "biologically important visual 

patterns..." such patterns include faces, limbs, eyes etc. and include groups 

of features or just single features. They acknowledge work which has shown 

cells in IT are selective for complex patterns but suggest that biologically 

important visual patterns are more abstract than these complex patterns. 
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They cite neurophysiological evidence that suggests that cells in IT prefer 

specific combinations of features to be present and in a specific order for 

such cells to respond maximally (Oram & Perrett, 1994). This fits with 

psychological research that suggests neonates are capable of face 

recognition at extremely young ages (Fantz, 1961; Bushnell et al, 1989). In 

one reported case a two day old neonate is capable of distinguishing 

between its mother and a stranger (Bushnell et al, 1989). Oram and Perrett 

do emphasise that although visual perception involves the interaction of 

many different areas of the brain the model they are concerned with is one 

that involves constructing a visual image from a bottom-up approach. They 

are trying to model visual perception arising from being asked *Svhat is this 

picture of?" Exactly how much of visual perception is based on such an 

approach is questionable, and even i f you ask such a question experience 

surely plays a large part in analysis of individual components of the picture 

(Oram & Perrett, 1994). 

Evidence from neurophysiology and neuropsychology shows strong support 

for parallel models o f visual processing. It is possible to support a SCFD 

approach within a parallel model. In view of the fact that the mechanisms 

for integration of information in parallel models is not at all clear SCFD 

attracts much attention, especially in relation to the development of 

artificial vision systems. There is stil l much debate as to whether the SCFD 

model is correct. Evidence from both SCFD and parallel models suggest that 

visual processing is hierarchical. However parallel models especially that 

proposed by Zeki emphasise the significance of feedback from higher to 

lower levels for visual perception. Whether visual perception can be 

98 



explained in terms of bottom-up processing leading to the abstraction of 

features of increasing complexity is not clear. The strongest support comes 

from studies of object recognition, or more specifically face recognition. 

Arguably this is a very specialised area of visual processing, involving a 

great many other factors. It may not be sufficient to extrapolate the 

mechanisms of face recognition to general visual processing. One advantage 

of adopting SCFD as a model of visual processing is that i t is easy to see 

how it may operate at the functional level. Inputs from neurons ultimately 

converge in a feedforward hierarchical fashion on a single cell in IT. 

Parallelism in the visual system can be seen even in retinal processing of 

the image. It seems then that it is an important feature of the visual system 

right from early vision to late vision. Single cell feature detection might be 

part of visual processing but it does not explain visual perception. Because 

a single cell fires in the presence of certain visual stimulus does not mean 

all our understanding of that object is stored in that one cell. Even i f you 

accept the feature detection theory you must stil l have an explanation of the 

mechanisms underlying early stages of processing. Most of the evidence to 

support single neurons responding to faces concentrates on static images. 

Bearing in mind that motion information is processed in the parietal areas 

how does a SCFD approach cope with the recognition of moving faces? 

Visual perception means combining processing from other visual, and 

sensory areas as well as incorporating information from past experiences 

involving the mechanisms of memory and learning. It may be that there are 

cells that respond to biologically important objects, but this is just a small 

part of visual processing and it does not explain vision as a whole. 
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OSCILLATIONS AS AN UNDERLYING MECHANISM FOR VISUAL 

PROCESSING. 

It seems that processing in the visual cortex can be explained as a 

combination of hierarchical and parallel processing. This means that within 

the cortex there is a need for a functional mechanism for visual processing 

capable of explaining the linking of resultant processing in separate areas of 

the visual cortex. Since the late 1980*s and more significantly the early 

1990's a new body of research within the field of neurophysiology has 

evolved that has changed not only our understanding of how the brain 

functions but has also had a major implications in the field of neural 

modelling (Gray & Singer, 1987; 1989; Eckhorn et al, 1988; Gray et al, 

1989; Eckhorn et al, 1989; Eckhorn et al, 1990; Engel et al. 1990; Eckhorn 

& Schanze, 1991; Eckhorn 1991; Engel et al, 1991a; 1991b; Engel et al, 

1992.), This work has provided new explanations as to how the brain 

processes information specifically in the visual cortex. In general terms the 

findings of this research suggest that information about stimuli can be 

encoded in the brain as patterns of oscillation. Most of the work has focused 

on the presence of oscillatory behaviour in the neurons of the cat visual 

cortex, however this oscillatory behaviour has been found to exist in other 

areas of the brain as well as the visual cortex, including the olfactory bulb 

and the thalamus (Skarda & Freeman, 1987; Crick, 1984). Recently 

oscillatory activity has also been shown to exist in humans (Ribary et al, 

1991). 

The discovery of oscillatory activity in the cortex occurred simultaneously 
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by several groups of neurophysiologists.(Gray & Singer, 1987; Eckhorn et 

al, 1988.) Initially the work was purely experimental, but later research lead 

to the development of theoretical models based on the results of these 

experiments ( Eckhorn et al, 1989; Eckhorn et al, 1990; Engel et al, 1990; 

Eckhorn & Schanze, 1991; Eckhorn 1991.) This theoretical work enable 

neurophysiologists to experiment with and analyse the complex emergent 

behaviours of these oscillatory neurons. This was done by replicating the 

experimental findings through computer simulation and mathematical 

analysis. The work generated has provided an important link between 

experimental and theoretical analysis of theories of both brain and mind. It 

has also provided insight into the underlying functionality of neurons in the 

visual cortex. This is extremely important, because although we have a 

reasonable understanding of the structure of the visual cortex we know little 

about its underlying mechanisms. 

The synchronisation of oscillations in separate cells acting as feature 

detectors was first put forward by von der Malsburg, who proposed cells 

that discharged with the same frequency and in phase would form strong 

excitatory links with other cells behaving in the same way. Eventually 

individual cells would become a group of cells all representing the same 

stimulus (von der Malsburg, 1981). Since the discovery of oscillatory 

neurons in the cat primary visual cortex a great deal of research has been 

conducted into the significance of these oscillatory behaviours. Eckhorn and 

his fellow researchers also propose phase locking in groups of oscillating 

neurons as a mechanism for feature linking in the visual cortex. They 

propose that this temporal coding through phase locking in oscillating 
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groups of neurons that are spatially separate, but functionally similar, is a 

mechanism for secondary visual coding. Primary visual coding is 

represented by the receptive field properties of individual neurons. This 

secondary processing is stil l pre-attentive, enabling the appropriate features 

in the visual scene to be linked together before high level processing takes 

place. (Eckhorn et al, 1988; 1989; 1990; Eckhorn & Schanze, 1991; 

Eckhorn, 1991). 

In relation to the problems of integration of information in parallel models 

of vision this provides a possible solution. Zeki proposes in his model 

outlined previously, that the integration of information from spatially 

separate sites could be explained by diffuse feedback connections. However 

he does not discuss in any detail the mechanisms underlying such 

connections, further this does not account for integration between sensory 

areas such as the visual cortex and the auditory cortex. In view of this the 

idea of integration through oscillation sounds very appealing. At least a 

combination of both feedback connections and oscillations could be 

considered. In a review of the work so far into temporal codes Engel et al 

conclude they provide a solution to the integration in distributed neuronal 

networks. (Engel et al, 1990; 1991a; 1991 b; 1992). 
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P S Y C H O L O G I C A L T H E O R I E S OF VISION, 

When discussing neurophysiological theories there is a tendency to talk 

about visual processing rather than perception. This is generally because it 

is assumed that processing is an integral part of perception, and it is the 

underlying mechanisms of perception that are being described at the 

neurophysiological level. Psychological approaches can be thought of as 

being on a level above, dealing with perception from a behavioural point of 

view rather than its underlying mechanisms, trying to establish the nature of 

higher level cognitive function rather than the so called lower level visual 

processes associated with early vision. Neuropsychology is perhaps where 

vision is both thought of as perception and as processing. Psychological 

theories of vision are not always concerned with attempting to describe 

visual perception in its entirety. Vision can be thought of as modular, and 

theories of particular problems of vision are common in psychology. Marr 

refers to the breaking down of vision into a series of smaller theories as 

"independent modules of perception" (Marr, 1982). Marr goes on to argue 

that there are in fact very few general theories that attempt to describe 

visual perception, because it so complex it tends to be broken down into its 

component parts and each being investigated alone: 

"...students of the psychology of perception have made no serious attempts 
at an overall understanding of what perception is, concentrating instead on 
the analysis of properties and performance. " 

(Marr, 1982). 

The problem with this approach is that it becomes di f f icul t i f not impossible 
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to see how all the modules fit together to constitute perception. Further, it 

makes the unification of top-down and bottom-up descriptions even harder. 

Reducing many explanations of the nature of visual cognition to underlying 

neurophysiology becomes too complex to even consider in terms of visual 

perception. Arguably it becomes easier within the separate modules, but 

does this equate to perception? 

As with neurophysiological theories of vision it is possible to distinguish 

between two main categories of theories of visual perception, "concept 

driven" or top-down theories and "data driven" or bottom-up theories 

(Lindsay & Norman, 1972). These two approaches are related to the terms 

used to describe the general relationship between neurophysiological and 

psychological approaches to understanding visual perception as discussed in 

chapter 1. Data driven theories hold the premise that perception can be 

explained in terms of interpretation of the visual scene from the data as it 

streams through the system. No prior knowledge about the world is needed 

to interpret the world. A l l that is needed for perception is the information 

present in the visual world. Concept driven theories on the other hand 

suggest that the visual scene is interpreted by making comparisons to stored 

knowledge about the world acquired through experience, or genetically 

determined. Perception is not about constructing an image from data it is 

about using data to test hypotheses about the world. 

CONCEPT DRIVEN THEORIES OF PERCEPTION. 

Early explanations of vision focused on concept, or hypothesis driven 

models of vision. The retinal image provided a hypothesis that could then 
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be tested against what was known about the world. Such approaches to 

explaining vision were strongly linked to the constructivists view of 

cognitive psychology, that the retinal image was insufficient on its own. It 

was through building upon the retinal image through successive stages of 

processing including referral to information stored about the world that 

resulted in perception (Best, 1986).This approach to the explanation of 

perception was popularised in the 1970's as "information processing theory" 

(Lindsay & Norman, 1972). In turn artificial intelligence models were 

developed based on this approach (Tenenbaum & Barrow, 1976). Although 

there was a great deal of neurophysiological research into how the brain 

processed visual information the findings of this work were seen as the data 

element in a process that was far more concerned with cognitive states. The 

emphasis for any model was that i t had to be couched in a discipline. That 

discipline was predominantly psychology, however there were theories 

within psychology that were firmly rooted in neurophysiology. Such 

theories though were transformed to f i t psychological terms and research 

methods. Neurophysiology provided descriptions of the mechanisms and 

psychology provided the models. 

The gestalt psychologists proposed that perception involved the grouping of 

the elements of objects in the visual scene into whole objects or "gestalts". 

The gestalt psychologists were particularly interested in how we perceive 

ambiguous images. They proposed that "the whole is greater than the sum of 

its parts". Ambiguous images provide exactly the same retinal information 

yet they have more than one possible interpretation. The gestalt 

psychologists suggested that this is because vision is top-down, you have 
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two possible interpretations of the data and what you perceive depends on 

which interpretation you apply. High level cognitive processes are in 

control of the underlying neuronal mechanisms of lower level vision (Bruce 

& Green, 1990). They went on to describe what are commonly referred to as 

the "gestalt laws of organisation" which comprises of a series of principles 

that underlie the grouping of various component parts of and image to from 

a gestalt. These include, proximity, similarity, structure from motion, 

continuity, closure and goodness of fit. They suggested that the visual scene 

was represented isomorphically in the brain according to these principles. 

The work of the gestalt psychologists had a significant impact on early 

approaches to the development of artificial vision systems (Waltz, 1975) 

and to Marr's computational model of vision (Marr, 1982). The grouping 

principles aid scene analysis by allowing various segmented parts of the 

image to be grouped together to enable object recognition. However one of 

the biggest criticisms of the gestalt approach was that there is no evidence 

to suggest the mechanisms that underlie the laws of organisation exist 

(Bruce & Green, 1990). Gregory points out that i f the visual scene is 

represented isomorphically in the brain, you would need a further eye in the 

brain to see it (Gregory, 1973). It seems that the emphasis should not be on 

the details of the theory but rather on its more global implications. The 

suggestion that perception is a top-down process is st i l l very much debated 

even today. The effect of experience on perception provides a great deal of 

support for this to be the case. This has been highlighted through the results 

of psychophysical experiments with visual illusions. Cross cultural research 

into the effect of the Muller-Lyer illusion suggests that previous visual 
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experience from our environment determines whether or not we see the 

illusion (Deregowski, 1972). 

Gregory also proposes that visual perception is predominantly top-down. He 

suggests that visual perception involves testing hypotheses about the world 

in order to make sense of i t : 

"Perception is not determined simply by the stimulus patterns; rather it is a 
dynamic searching for the best interpretation of the available data... the 
senses do not give us a picture of the world directly; rather they provide the 
evidence for checking hypotheses about what lies before us. " 

(Gregory, 1972). 

Gregory also looks to visual illusions for support for his theory suggesting 

high level cognitive processes shape the interpretation we make about the 

visual image. As well as the Muller-Lyer evidence he sites the example of 

depth perception in visual illusions. Using a hollow mask of a face he 

demonstrated that it is only when the viewer is close to the face that depth 

information from the image itself is used to interpret i t . Meaning that when 

the hollow face is held at distances of more than a few feet it is perceived 

as being convex as opposed to concave or hollow. We are perceiving what 

we expect to see rather than what we are really seeing. 

MARR'S THEORY OF VISION. 

More recently interest has moved away from the idea of vision being a top-

down process and the emphasis has been on data driven approaches, an 

example of which is David Marr's computational approach (Marr, 1982). 

The approach proposed by Marr is particularly relevant, as it provides an 
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example of an attempt at both outlining a theoretical framework and then 

developing a model within that framework. Marr's theory of vision has had 

a significant impact on attempts at understanding visual perception, in the 

field of cognitive science and on the development of artificial vision 

systems in the fields of engineering and computer science. It also poses an 

important question about the nature of multi-disciplinary approaches to 

science that have direct bearing on the approach taken in this thesis. It 

could be argued that these approaches are not truly multi-disciplinary, and 

that at the level of description of the model they are firmly linked to a 

particular sort of representation. For example with Marr, his approach is 

very much a computational approach and the level of description for his 

model, although based on general ideas from both neurophysiology and 

psychology, is dominated by the fact that i t translates everything into a 

computational form. This means that Marr's model is subject to the 

problems associated with the translation from one description to another 

"universal" description. The other problem that is apparent in this approach 

is that research is then directed towards trying to find evidence to support 

the existence of the model of vision rather than looking at what vision 

really involves. Psychologists for example, interested in Marr's theory of 

vision dedicate their research to look for behavioural evidence to suggest 

that Marr's levels exist rather than looking at what vision actually is. 

Although Marr's intention was that vision could be described at many 

levels, the major impact of his work has been the implementation of 

computer vision systems that are in fact far removed from the visual 

processing mechanisms that takes place in the brain. 
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Marr's approach to the study of vision took the opposite view to the 

traditional information processing theories that had preceded it . Marr 

believed that vision could be explained in terms of bottom-up processing. 

His model was "data-driven" rather than top-down "hypothesis-driven". The 

theory was based on the assumption that you did not need prior information 

about the world to perform the task of visual perception. A l l the 

information needed for interpreting the world was present in the incoming 

data (Marr, 1982). A symbolic representation of the light falling on the 

retina was derived from the positions, orientations and movements of 

surfaces and their relations to one another. Marr proposed that visual 

processing took place on three levels. Firstly the retinal image has to be 

translated into data that can be processed. Translation involves matching 

each cell on the retina with the corresponding grey level image associated 

with i t , giving rise to a "grey level image" (GLI), from which a grey level 

description is computed. Computation of the description is through the 

detection of certain features in the GLI intensities that help to explain it . 

These intensities are represented symbolically as signatures for features 

corresponding to edges, bars, blobs and terminations in the image. The 

result of this level of processing Marr referred to as the "primal sketch". 

The second level of processing involves describing the "layout" in the world 

of the structures in the primal sketch in relation to the viewer. This can be 

explained as taking the symbolic descriptions of features and their geometry 

and putting them in a frame of reference, or co-ordinate system, making 

explicit orientations and depth. This level involves computing the 

underlying structural description from the features in the primal sketch and 
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results in the 2 1/2 D sketch. The third level of visual processing attempts 

to solve the problem of higher level visual processing. It is not a well-

defined problem and ultimately not complete in Marr's theory. The emphasis 

is on the construction of a three dimensional object based on an object 

centred description as opposed to a retinotopic description that has been the 

case up until this stage. This is because i f the description was viewer 

centred every time the view changed the object would appear to change and 

so its description would have to be altered. As we know, objects do not 

change every time our view of them changes, their form remains constant. 

Therefore a computation of the "volumetric primitives" of the two 

dimensional image takes place. Objects are described by taking a principle 

axis within them and building up a hierarchy of generalised "nested cones". 

This gives a two dimensional "stick" object three dimensional structure. 

Marr refers to this level of processing as the 3D sketch. (Marr, 1982). 

The early stages of visual processing proposed in Marr's theory are based on 

strong neurophysiological understanding of the vision system, for example 

the work of Hubel and Wiesel. They discovered cells in the primary visual 

cortex were organised in a very specific way, that led them to believe they 

acted as feature detectors looking for things like orientation, movement and 

edges in the information transmitted from the retinal image (Hubel & 

Wiesel, 1962). The later stages of the model are not so well supported by 

neurophysiological evidence. This might explain why the 3D sketch is not 

so clearly developed in the model. Whereas the primal sketch has strong 

foundations in neurophysiology, the 3 D sketch is about explanations of 

higher level cognitive function, something that has little support in 
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neurophysiological experiments. Also it is relatively easy to translate the 

primal sketch into a computational description that is easily implemented 

(Marr & Hildreth. 1980). The 2 1/2 D sketch also translates relatively well 

in a modular fashion but has not been implemented as a complete model. 

However the 3 D sketch does not translate in the same way, since the 

information it conveys is not easily described computationally. The 

implementation of the primal sketch has not been without problems. 

Neurophysiological evidence since the Marr-Hildreth algorithm was devised 

has contradicted its formulation (Schiller, 1982). So in translation to the 

computational level information was misinterpreted, providing evidence to 

support the notion that a single language is not necessarily the solution to 

multi-disciplinary study. This also supports the idea that implementation is 

perhaps best thought of as an aid to the development of theories rather than 

the end product of a theory. 

VON DER MALSBURGS CONSIDERATIONS. 

Contrary to Marr's theory of vision is one relating more to the early 

approaches to vision and Gregory's views. In brief von der Malsburg has 

constructed an outline for the development of a model of vision referred to 

as "considerations for a visual architecture" (von der Malsburg, 1990). 

Importantly von der Malsburg insists that the theoretical work in modelling 

vision is central to understanding vision. The depth of understanding and 

available technology should enable a model of vision to be constructed 

through the assimilation of information from many disciplines to form a 

coherent whole: 
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"What is needed now is the integration of all the components into one 
coherent functional whole: the definition of a visual architecture " 

(von der Malsburg, 1990). 

Central to the view of von der Malsburg is that vision is in fact an active 

process of testing and constructing visual information from stored 

knowledge we have about the world. This is a very different approach from 

that of Marr, who saw vision as being independent of our understanding of 

the world. Unlike Marr's theory of vision von der Malsburg suggests that 

top down information in the form of schema's are crucial for perception. 

Therefore von der Malsburg's account of perception goes beyond the visual 

processing areas of the brain to include discussion of the role of memory in 

visual perception. The account of the nature of perception given by von der 

Malsburg is theoretical, so unlike Marr's account it is not addressed at a 

computational level necessary for possible implementation. 

There are two key components to von der Malsburg's theory: architecture 

and data structure. According to von der Malsburg architectures are 

structures which shape and direct understanding of a system: 

"Architectures are standardised, flexible formulations of data structures 
and processes." 

(von der Malsburg, 1990). 

Data structures are the elementary parts that make up the architectures, for 

example neurons are the data elements of the brain. It is the organisation of 
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those elements within the architectures that lead to the understanding of 

vision. The theory is very much a series of "considerations" and it is not 

always possible to agree with some of the assumptions made by von der 

Malsburg. However the approach outlined is sympathetic to the aims of this 

thesis. Rather than translate information into one language, as with Marr's 

approach, transfer of information between disciplines is much preferable. 

By constructing a well-defined theory it is possible to combine information 

from various disciplines, thus also combining both a top-down and bottom-

up approach. 

CONCLUSIONS. 

It would seem then that there is no clear answer as to which theory, 

neurophysiological or psychological is correct. Development in either field 

seems to be related to trend as much as anything else. Within 

neurophysiology new evidence tends to lead to the adaptation of existing 

theories to f i t new information. With psychology there seems to be separate 

evidence to support either one view or another. It seems clear that in terms 

of understand real perception no one theory is right. It would seem fair to 

suggest that vision at the neurophysiological level is a combination of 

distributed hierarchical processing with the possibility of specialised cells 

for biologically important information (although this is far from 

conclusive). In terms of providing a psychological description of perception 

again i t seems that it must be a combination of the two approaches, data 

driven and concept driven. 

In the next chapter the evidence from chapters 2 and 3 w i l l be used to 
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develop both a theory and a conceptual model of visual perception. 

114 



CHAPTER 4 

A M Q P E L OF VISUAL PERCEPTION; 

AN OUTLINE OF A CONCEPTUAL MODEL OF 
PERCEPTION FROM A TOP-DOWN AND 

BOTTOM-UP APPROACH. 

Chapter 4 can be divided into two parts all of which are heavily based on 

the general descriptions of the neurophysiology and psychology of vision 

provided in chapter 2 and 3. Part one briefly outlines a very general theory 

of perception. Part two describes a more detailed conceptual model 

outlining possible architectures and functions underlying the theory and 

includes a section on the architecture and function of the model and a 

section on their underlying mechanisms. 

A T H E O R Y OF VISUAL P E R C E P T I O N . 

The aim of this chapter is to create a hypothesis about how perception might 

be explained both theoretically and as a conceptual model. This means that 

some aspects of the model are purely speculative, whereas others are more 

factual and therefore described in more detail. In turn this means that some 

aspects of the model are more relevant to the development of artificial 

vision systems and others to the advancement of our understanding of the 

neurophysiology and psychology of perception. It is envisaged that the 

conceptual model w i l l provide an "architecture" with which to direct further 

115 



work. Therefore the less detailed, more speculative aspects of the model can 

be addressed in future research. 

INTRODUCTION. 

In chapter 3 psychological or top-down theories of perception were classed 

as being one of two possible types. The first class of theory suggested that 

vision was essentially concept driven (top-down), where information 

entering the brain at the retina consisted of hypotheses that were interpreted 

through testing against experiential or genetically predetermined 

knowledge. Theories based on this approach include Gregory's theory which 

describes perception as hypothesis testing (Gregory, 1973). The second 

class suggested that vision is a data driven process (bottom-up) where 

stored knowledge is not needed to perceive, all the knowledge that is 

needed is already present in the world itself. Such theories of vision include 

Marr's and suggest that no previous experience of the world is needed in 

order for perception to take place. Marr's theory however does imply that 

although early visual processing may be structured like this higher level 

interpretation, for example object recognition relies on stored knowledge in 

the form of a collection of three dimensional model descriptions (Marr, 

1982). Both classes of theory are limited, data driven theories such as 

Marr's best explain low level vision whereas concept driven theories such 

as Gregory's provide better explanations of high level visual processes such 

as object recognition. 

The theory of vision I wish to propose here is not new. It merely combines 

or extends the best aspects of existing theories. Unlike existing combination 
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theories (Nakayama, 1990) this theory wi l l attempt to explain perception in 

its fullest sense rather than just provide a functional explanation of the 

organisation of the visual system. At the same time it aims to provide 

insight into how architecture, function and possible underlying mechanisms 

support the theory as well as provide ideas for artificial vision systems. 

A COMPLETE THEORY OF VISUAL PERCEPTION. 

The theory underlying the model suggests that visual perception results 

from a combination of both data driven (bottom-up) and concept driven 

(top-down) processes. Representations are constructed within the visual 

system which form hypotheses about the world. Such representations are not 

necessarily generated entirely from visual input. Other sensory input is 

combined with visual input in the form of a poly sensory hypothesis at the 

highest level of processing. These hypotheses are then tested by comparing 

them to knowledge acquired through previous interactions with the world, 

and knowledge that is genetically predetermined. Stored associations made 

between previously encountered visual information and other sensory 

information also contributes to the interpretation of hypotheses. The result 

of this •'testing" allows for some form of identification or labelling of the 

visual image based on this top-down knowledge. Conformation results from 

the labelled hypothesis being propagated back through the system to be 

"checked" against bottom-up data. 

Data driven processing amounts to the construction of representations of the 

visual scene using knowledge that is implicit in the world and exists 

independently of high level knowledge gained through intelligent reasoning 
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processes. It is essentially an unconscious process. Concept driven 

processing involves the use of high level cognitive processes both conscious 

and unconscious that allow us to reason about data driven representations. 

So visual perception involves building bottom-up or data driven 

representations that can be compared in some way to existing knowledge 

about the world resulting in the interpretation of the world which can then 

be acted upon. 

SOME PREDICTIONS OF THE THEORY. 

• It is possible to describe vision in terms of the three levels outlined in 

chapter 1. Visual processing equates to the construction of a hypothesis 

using data driven information. Local perception equates to the 

identification of a hypothesis in terms of its visual content alone. Finally 

Global perception equates to the use of top-down information in the form 

of memory and other sensory input resulting in perception. 

• Visual perception is facilitated by experience. Knowledge about the 

world enables us to perceive it more quickly and accurately than i f we 

have no knowledge. 

• A visual representation is not necessarily the same as a visual perception. 

Information processing using top-down information means that the 

resultant perception can comprise more information than is made 

available through data entering the visual system. 

• I f a hypothesis cannot be constructed through damage to the visual 

system then visual perception would be greatly impaired. However, it is 

possible that i f the visual image has been experienced before, top-down 
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information could evoke a visual response. As it would be impossible to 

check this response against incoming data it would be expected that it 

may be extremely diff icul t to consciously report on the visual 

information being experienced. 

A C O N C E P T U A L MODEL OF VISUAL P E R C E P T I O N . 

The development of a conceptual model is strongly rooted in 

neurophysiology. The aim is to build a model based on the architecture and 

function of the visual system that w i l l uphold the top-down theory of 

perception outlined. The development of the model is strongly influenced 

by chapters 2 and 3, however there is significant difference between what 

was described there and what w i l l be described here. Chapters 2 and 3 

described in general terms the visual system in a biological brain. What is 

described here is a model based on the biological vision system, not a 

replica of that biological visual system. The biological visual system is 

extremely complex, and it is almost an impossible task to build a conceptual 

model on such a scale. Even i f it is possible it stil l may not function in the 

same way that the biological vision system does when it stands alone from 

the rest of the brain. To develop a conceptual model of perception capable 

of supporting a theory of perception requires gross simplification. This is 

even more important i f at any time the model is to be implemented in 

software. Therefore the conceptual model outlined here is by no means 

definitive, it is highly speculative and at best w i l l be biologically plausible 

rather than biologically real. 
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The approach taken to developing such a model involves starting with the 

simplest possible description and continually refining it until a detailed 

model emerges. This is done firstly for architecture, outlining the structure 

of the model, and then gradually functional descriptions of structure can be 

added resulting in a complete conceptual model of visual perception. The 

first stage of the development of the model is to begin building a structure 

that gives a global interpretation of the system. This process equates to the 

general philosophy of the thesis that you start with a "grand theory" or 

"general model". Once this has been achieved satisfactorily the global 

model can be broken down into its component parts and structure can be 

outlined at the local level for the various modules. This section of the 

chapter aims to illustrate how the conceptual model is developed. 

ARCHITECTURE & FUNCTION. 

The conceptual model is based on the neurophysiology described in chapter 

2 and 3. In its simplest form the model can be outlined in terms of a 

functional architecture. Basically it w i l l comprise a series of units 

corresponding to the major areas that make up the visual system in the 

brain. Each of the units outlined can be looked at in two ways, firstly 

through connections between the units as a whole system, and secondly as a 

series of independent sub systems (see figure 13). 
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The model comprises of a series of hierarchically connected visual areas 

with both feedforward and feedback connections throughout the whole 

system. As with the biological visual system the feedforward connections 

are specific, (specific information is transmitted along certain pathways) 

and the feedback connections diffuse (information is projected back across 

the whole system regardless of its nature). The retina and dLGN to V I 

represent the equivalent of the primary visual pathway. V I represents the 

striate cortex and V2, V3, V3a, V4 and V5 the extra striate areas. IT and the 

PARIETAL regions represent the association areas and MTL (medial 

temporal lobe) and the PFC (pre frontal cortex) represent "memory" in its 

broadest sense. I t is suggested that MTL is needed for the consolidation of 

memories, especially declarative memory, and the PFC is strongly 

implicated in working memory. In terms of the model detailed discussion of 

these areas is not necessary and it is sufficient to refer to them as "memory" 

(See O' Shaughnessy, 1995 for a detailed review of the structure and 

function of these two areas). 

In general terms the overall functionality of the model can be classified into 

two streams of information flow operating in parallel as suggested in the 

biological visual system. One stream is the "WHAT" pathway and the other 

the "HOW" pathway (see figure 14). 
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The WHAT pathway is concerned with the identification of visual stimuli 

whereas the HOW pathway is concerned with how to use or respond to the 

visual stimulus. The separation of information into two pathways begins at 

the retina and continues through V I and V2. In the biological vision system 

the division of two major pathways in the dLGN, V I and V2 is extremely 

complicated as both pathways pass through the same structures. In the 

development of the conceptual model this has been simplified. 

Simplification is necessary at all levels to enable the development of a 

model capable of explaining biological perception in its global sense and to 

be able to use the model in the development of artificial vision systems. 

Beyond V2 the segregation of information fiow becomes less complicated, 

the WHAT pathway being a general description of the colour and colour 

form pathway terminating in IT where objects are identified, and the HOW 

pathway the same for the motion and dynamic form pathway terminating in 

the PARIETAL regions where spatial information is processed. The WHAT 

and HOW distinction is thought to be maintained in the PFC where there is 

evidence to suggest that "what" and "where" information is processed 

separately (Eraser et al, 1993). This suggests that working memory, thought 

to be located in the PFC, like the visual system is modular (see Service, 

1993 for a brief review). 

Functionally the model w i l l perform as dictated by the biological visual 

system (see figure 15). 
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Figure 15. A simple outline of feedforward functional processing. 

Data enters the system at the retina where i t w i l l pass on to the dLGN. From 

the dLGN data is relayed to V I which constructs an early representation of 

the image in terms of form. V2 then acts as a parcelling point where 

specific information is sent for further processing, directly to V4 for colour. 
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to V4 via V3 and V3a for colour and form information combined, to V5 for 

motion detection and to V5 via V3 for dynamic form information. At the 

highest levels in the visual system IT is the area where object recognition 

takes place, and the PARIETAL region where spatial layout information is 

interpreted. From here information is processed for two main purposes 

firstly for object recognition (what), and secondly for action (how). 

Therefore IT connects both to the MTL and directly to the PARIETAL 

region. The MTL is necessary for the retrieval of past experience or 

"memories" that facilitate recognition in IT, and for the storage of new 

experiences or objects for future use. IT also relies on HOW information 

from the PARIETAL region to identify objects. Where objects are in 

relation to each other can be.used to aid interpretation as can information 

on what to do with objects. It is possible to identify things by their purpose 

as well as by form information especially when form information is 

incomplete in some way. The PARIETAL region is predominantly concerned 

with spatial and motion information and so has direct connections to the 

motor cortex and PFC, the motor cortex for action generation and the PFC 

for planning and working memory. The PARIETAL regions also need direct 

connections to IT so that a label for the visio spatial information is 

available immediately. As with IT, connections to the MTL also allow for 

previous experiences to be incorporated in HOW decisions and new 

information can be stored for future use. 

As with biological vision there are extensive feedback connections 

throughout the system. These connections are non specific, meaning that all 

of V2 and V I and the dLGN receive feedback from both high level streams. 
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One suggestion for a possible role for diffuse feedback connections in the 

biological visual system is to provide a possible mechanism for complete 

integration of information processed in the four separate streams at all 

levels (Zeki, 1992). Functionally separate information is distributed to areas 

that did not receive it through feedforward pathways, via diffuse 

connections. Therefore abstract global information about object identity and 

visuo spatial relationships is integrated with detailed form information via 

these diffuse feedback connections (see figure 16). 
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Figure 16. A simple outline of feedback functional processing. 
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Feedback connections in the model perform three crucial roles: 

1 To enable the integration of information for perception including: 

• Information processed in functionally separate structures such as 

colour and motion information. 

• Top-down information about the world stored in memory accessed 

via the MTL and PFC. 

• Information from other sensory processing available via poly 

sensory areas in the association cortex notably the superior temporal 

gyrus (STG) and the posterior and anterior superior poly sensory 

areas (STPp and STPa respectively). 

2 To maintain the visual representation in all areas for detailed analysis: 

• Allowing for detailed low level form information to be associated 

with high level abstract information about object identity. 

• To enable an incorrectly confirmed hypothesis to be re evaluated. 

3 To provide a mechanisms for checking hypotheses constructed about the 

visual scene: 

• Once a hypothesis has been constructed and compared to stored 

knowledge feedback enables the possible interpretation to be 

checked against the incoming data. 

At this point the model based on both bottom-up neurophysiology and top-

down psychology can be summarised by figure 17. 
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based on incoming data from that world. Top-down information in the form 

of both stored and genetically determined knowledge is used to test 

hypotheses, as is bottom-up data entering the system in the dLGN. The 

model functions as follows: 

The visual image is basically processed in two ways, one to identify WHAT 

things are in the image and two HOW to use and react to the visual image. 

Although integration of WHAT and HOW information is important it is not 

always necessary. You can identify things without actually having to know 

there exact spatial location in relation to other objects, and how to 

manipulate and use them. By the same token you do not necessarily need to 

know what something is in order to react to i t or know how to manipulate it . 

The first step towards perception involves the construction of a hypothesis. 

Initially the hypothesis consists of detailed form information ( V I ) , then 

more abstract properties such as colour and motion information (V3, V3a, 

V4 and V5 via V2) are incorporated. The result causes particular cells in IT 

to fire. These cells or groups of cells represent particular features of objects 

and possibly in some cases whole objects themselves. The representation 

formed in IT is very much abstracted with no detailed form colour or 

motion information. Detailed information is associated with the 

representation in IT via diffuse feedback connections. At the same time in 

the PARIETAL regions spatial information is processed and passed on to IT 

which enables the features to be associated by where they are in relation to 

each other to form the collective hypothesis in IT. 

From IT connections go directly to the MTL where two things happen. Top-

down information in the form of stored knowledge is matched against the 
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hypothesis in IT and i f a match is made identification of the hypothesis 

occurs. I f however there is no previous recollection of the representation in 

IT it is stored in memory for future use. This aspect of the model is 

speculative and in relation to biological vision there is no concrete 

neurophysiological evidence to provide possible mechanisms for how that 

matching occurs. However in relation to artificial vision systems there are 

possible pattern matching algorithms that could support this aspect of the 

model (Carpenter & Grossberg. 1987; Carpenter & Grossberg, 1987). At the 

same time top-down information in the form of other sensory processing is 

incorporated via input from poly sensory areas namely the STG, STPp and 

STPa. Sensory information from other areas can be crucial in the 

identification of a hypothesis i f visual information alone fails. It is also 

necessary to incorporate information from other senses for complete 

perception. This information is then fed back through the visual system for 

confirmation, detailed analysis and integration. This confirmation occurs 

where feedback connections converge on the dLGN. The dLGN acts as a 

"detail assessor" checking that the identified representation in IT correlates 

with the incoming data from the retina. 

In the PARIETAL region the hypothesis is interpreted in terms where things 

are in relation to each other in the visual image. This is continually updated 

so that objects that are moving can be monitored at all times. This visuo 

spatial information can then be used in the planing and execution of actions 

in relation to the visual image. The PARIETAL region also connects to 

MTL so that top-down stored knowledge about spatial relationships can also 

be incorporated in the spatial analysis and prediction of movement. Direct 
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links to the PFC facilitate motor actions and working memory. Connections 

with IT are also used for the facilitation of action through object 

identification in working memory. In sum then, a hypothesis has been 

created and tested both in relation to top-down and bottom-up information. 

Figure 18 gives a simplified example of how the model might function. 
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Figure 18. A simple representation of visual processing in the model. 

The dLGN acts as a blackboard providing the most up to date representation 

of the visual image from the retina (Mumford, 1991). V I carries out 
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detailed form processing recognising edges blobs and bars and is also 

responsive to motion and colour information. The representation in V I is 

not of for example a red circle but of a series of edges, bars, blobs and 

termination in given orientations, with wavelength sensitive cells 

responding to colour. V2 then holds a more abstract version of V I where the 

edges, bars, blobs and termination relate to larger receptive fields. It stil l 

does not represent a red circle. V4 responds to colour information alone, but 

V3 and V3a combine input from V2 about form with V4 colour information 

to hold a representation of what forms are what colour. V5 responds to 

motion information which is combined in V3 to represent form and motion 

together. Within the model IT is the point at which a representation is 

formed that could be classified as "red circle", but has no detailed 

information about form colour or motion. This representation takes the form 

of groups of cells that fire in response to all the attributes associated with 

red circle, but not to any specific details. The response is to the high level 

representation "red circle" rather than to detailed form, colour or motion 

information. MTL provides the mechanism which enables access to stored 

knowledge against which the representation in IT can be compared to and 

identified with, as well as enabling new information to be stored for future 

identification purposes. It is important to emphasise at this point that in 

relation to the model the role of the MTL is to facilitate memory. Detailed 

descriptions of the structures and mechanisms that underlie memory are 

beyond the scope of this thesis. 

MTL also provides the same service for the PARIETAL region. The PFC 

can generate and co-ordinate the execution of actions relating to the visual 
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stimulus through input form the PARIETAL region. The connections 

between the IT and the PARIETAL region, direct and indirect via the MTL, 

perform a number of functions including: 

• The integration of spatial information with object identification. IT relies 

on the PARIETAL regions for information about spatial location of a 

given object in relation to other objects. The PARIETAL region knows 

that motion is occurring in a particular form in a particular direction, but 

relies on IT for information as to the identification of form. 

• An aid for object recognition when incomplete information is available to 

IT. Some things are not easily recognisable from their visual 

representation. Procedural information from the PFC such as how 

something is used may facilitate object interpretation in IT via the MTL. 

The poly sensory areas enable the incorporation of other sensory 

information detected in relation to the object, for example smell, taste, and 

sound. Two way connections from the poly sensory areas to IT and the 

PARIETAL regions also perform a number of possible tasks including: 

• Facilitates recognition in that i f there is insufficient top-down 

information to identify an object other sensory information may provide 

invaluable association cues. 

• Reconciliation of ambiguous bottom-up information, for example 

determining a real object from a replica object such as a real apple from a 

wax apple using olfactory information as well as visual information. 

• Following on from the previous example, facilitating the correct response 

to an object when there is a choice. For example a hot baked potato 

requires careful handling, although visually the cues do not distinguish 
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between hot and cold, smell can elicit information that would enable care 

to be taken in its handling. 

Meanwhile feedback which is continually occurring at all levels ensures 

that the representation is maintained in the visual system. It also enables 

adjustments to be made to the processing at each stage based on top-down 

information. Such adjustments might occur as a result of extra information 

from poly sensory processing and from memory. This may mean that the 

representation fed back through the visual system has more detail than the 

original representation resulting from feedforward retinal input to the 

system. These adjustments can then be checked against the representation in 

the dLGN for confirmation against incoming bottom-up data. This is 

particularly necessary for new visual examples that have not been 

experienced before. It is essential that a correct representation is committed 

to memory. 

MECHANISMS UNDERLYING ARCHITECTURE AND FUNCTION. 

Within the model i t is proposed synchronous oscillatory activity w i l l 

underlie the maintenance of a distributed visual representation for 

integration, detailed analysis and hypothesis checking. This w i l l mean that 

the visual representation is distributed across the whole system as opposed 

to the single cell approach discussed in chapter 3, which suggests that at the 

highest level of representation there are cells that respond to given objects. 

In the model in IT there are cells that respond to extremely abstract 

properties of the visual scene but the representation of the visual image is 

distributed across the whole system. It is then integrated or "bound" 
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together by neurons all oscillating in synchrony. This oscillatory activity is 

a function of feedback connections throughout the system. Oscillatory 

activity has recently become the focus of much attention in the role it has to 

play in visual processing. It has been suggested as a mechanism for feature 

linking or binding in early visual processing and there is a wealth of 

literature, both neurophysiological and simulation based, providing support 

for its role in visual processing (see Basar & Bullock, 1992; Denham & 

Troup, 1992; Troup, 1991 for comprehensive reviews and detailed 

discussion of the nature of oscillations). 

As with most models of visual processing feedforward connections enable 

neurons to act as "feature detectors". The role therefore of feedforward 

connections in the model is to enable neurons in feedforward processing to 

respond in an excitatory fashion to certain features i f they are present in the 

visual image. Therefore neurons in V I are f ir ing in response to detailed 

aspects of form such as edges bars and blobs in given orientations. Neurons 

in other modules w i l l respond to other particular aspects of the retinal 

image. Within the model diffuse feedback connections produce synchronous 

oscillations in the relevant neurons namely those that have received retinal 

input allowing them to be associated with each other in each module as well 

as across modules. As feedback occurs at all levels neurons in V I may 

produce synchronous oscillations as a result of feedback from V2 before 

recognition in IT occurs. This means it would be possible to identify the 

colour of something before i t is actually perceived. The hypothesis about 

colour could be tested against thalamic input before recognition in IT has 

occurred. 

138 



At the very highest level neurons in IT respond to complex features and in 

some instances actual objects. The pattern of response generated in IT is 

then matched against or compared to memories for instances of previous 

patterns via the MTL. I f a match is made then synchronous oscillations are 

induced in the neurons representing the features that fit with the stored 

pattern. Top-down information in the form of poly sensory input that 

represents other sensory information associated with the visual image also 

contributes to the generation of oscillatory activity. It also feasible that 

poly sensory activity associated with the visual stimulus could also oscillate 

in synchrony with neurons in IT representing that stimulus. It is worth 

noting that the extent of oscillatory behaviour in neurons in high level 

processing is speculative in regard to the neurophysiology of visual 

processing. In terms of the aims of developing the model oscillatory 

activity has to speculative in relation to understanding human visual 

perception. However in the development of an artificial model of visual 

perception it could be extremely relevant. Direct connections with the 

PARIETAL region allows for spatial information to be incorporated into the 

representation in IT. Neurons in IT oscillate in synchrony with neurons in 

the PARIETAL region relating to their location. 

Synchronous oscillations also provide a mechanism for integration or 

feature linking within modules as well as across modules. Lateral 

connections allow information with similar receptive field properties to be 

associated or bound together. This would mean that the various edges, blobs 

and bars that might make up a particular line in a given orientation in V I 

can be associated or bound together through synchronous oscillations. 
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However this kind of processing is localised so it does not allow for the 

integration or binding of information in edges, blobs and bars having 

different receptive field properties, yet belonging to the same object. 

Integration of this nature is actuated by diffuse feedback connections and 

not localised lateral connections, (for a detailed discussion based on 

neurophysiology and simulation work of laterally induced oscillations see 

Basar & Bullock, 1992; Troup, 1991; Denham et al. 1991; Denham & Troup, 

1992). 

To implement the model poses some extremely complex problems even at 

the theoretical level. Figure 19 illustrates how this might possibly be done. 

V4 n 
MATCH 

^ WITH 
MTL 

dLGN 
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TO PFC 

V5 PARIETAL 

Figure 19. A schematic diagram of a possible implementation of the model. 

By comparing the diagram above to that in chapter two reflecting the 

extremely complex functional structure of the dLGN shows how little 
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information can actually be extracted from the biological visual system in 

the development of artificial vision systems. For the purposes of possible 

implementation the retina has been omitted and retinal input reduced to a 

pattern of activity in a module likened to the dLGN. As mentioned 

previously in chapter 2 there are already detailed models of the retina 

available. Input in this theoretical implementation is a one dimensional red 

square moving slowly across the visual field to the left . It is represented in 

the dLGN as three grids of excitatory neurons. Visual field information as 

well as ocular dominance information has been omitted and the dLGN has 

been reduced to a simple retinotopic representation of form, colour and 

motion information. As with the biological visual system this is processed 

separately reflecting X, Y and W information pathways. 

This representation is then mapped directly onto a module representing V I 

in the same way reflecting the 1:1 relationship between the dLGN and V I . 

Again the main theme carried across from the biological vision system is 

that of functional separation rather than anatomical detail. The form 

information is processed separately from motion and colour information in 

readiness for separate streams of processing later on. Again the complex 

way in which the biological visual system expresses its functional 

architecture has to be greatly simplified. I f a model of processing purely in 

V I was being developed i t would be possible to reflect this detail far more 

accurately. This however is supposed to be a model of visual perception 

rather than a model of specific visual processing. 

This is then mapped again directly to the V2 module where the receptive 

f ie ld size has been reduced significantly. The square now consists of a grid 
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for form, colour and motion information. At this point the information is 

split into three pathways. One to V4 where a cell fires in response to a 

given colour, in this case red. Another to V5 where the same occurs for 

motion in a given direction. Lastly one to V3 where form information is 

incorporated with colour or motion information with even larger receptive 

fields. V3 then projects to V3a but only for colour and form information. 

V3 grids for colour and form connect to V4 whereas the grid for motion 

connects only to V5. V3a projects directly back to V3 enhancing colour 

form projections to V4. 

V4 then sends information to IT where a pattern of activity occurs which 

represents the object as red square. It does not reflect specific information 

although in the biological system there is some evidence for retinotopicy to 

exist in IT. The same occurs in the PARIETAL region, but here cells 

represent spatial information in relation to each other using a co-ordinate 

system. Finally the pattern in IT is matched with patterns stored in memory, 

facilitated by the MTL, for identification. A positive match results in 

neurons in IT oscillating, which in turn, through diffuse feedback 

connections, causes oscillatory activity in all the neurons at the various 

other stages in the visual system. This oscillatory activity is then correlated 

against the retinal input in the dLGN. A positive correlation results in a 

further strengthening of synchronous activity in V I which in turn influences 

the strength of oscillatory activity across the whole system. Synchrony 

across the system enables binding and integration, and a positive correlation 

indicates a confirmed hypothesis. 
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PREDICTIONS OF THE MODEL. 

• Top-down information from other sensory areas can cause a 

representation in IT to be active, i.e. a group of cells oscillating in 

synchrony, before feedforward visual information has reached IT. 

Information stil l has to feed back through the system for detailed analysis 

and for confirmation with the retinal input in the dLGN. 

• Top-down information in the form of either a memory or other sensory 

information is sufficient to evoke a pattern of synchronous oscillatory 

activity in the model without retinal input. Such a pattern of response 

would be weak compared to a retinally induced one, and it would not be 

possible to check the visual hypothesis against a retinal input correlated 

in the dLGN. This would mean that i f blindfolded you were asked to 

identify a lemon using smell and touch as sensory inputs a visual 

representation would be generated. You would not however be able to 

confirm that the lemon was in fact a lemon, as you would not be able to 

confirm the hypothesis that other sensory information had provided. I f 

for example the lemon had been coloured green i t would be impossible to 

check. The pattern of activity in V4 would say yellow, as the associated 

colour for lemon is exactly that, however without retinal input it would 

be impossible to test this hypothesis. 

' It is also possible that i f the response pattern in IT is incomplete and that 

the stored pattern consists of features not present in the retinal image 

then neurons not responding could be induced to do so due to MTL input. 

This means that incomplete visual information can be completed by 

comparison of a partial pattern to a stored complete pattern. 
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CHAPTER 5 

SUPPORT F O R T H E O R Y AND M O D E L : 

ADDITIONAL SUPPORT FOR BOTH THE 
THEORY AND MODEL. 

This chapter provides additional support for the theory and conceptual 

model explaining perception outlined in the previous chapter. Firstly it 

addresses support from neurophysiology and psychology for the claim that 

visual perception has a strong top-down component. Secondly it looks at 

how neuropsychology also provides support for various aspects of the 

theory and model notably the top-down component of visual perception. 

Thirdly support for the role of oscillations as a possible mechanism of 

visual processing in the model is discussed. 

INTRODUCTION. 

Support for both the theory and conceptual model originates initially in 

chapters 2 and 3. This aim of this chapter is to provide additional support 

for certain aspects of both the theory and model that have not previously 

been made explicit. 
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VISION AS BOTH A TOP-DOWN AND BOTTOM-UP 

PROCESS. 

SUPPORT FROM NEUROPHYSIOLOGY AND PSYCHOLOGY. 

The conceptual model of visual perception presented in the thesis has been 

based upon a general theory of perception that claims vision to be both a 

top-down and bottom-up process. Based upon this, visual perception is 

explained in general terms as the construction of hypotheses which are 

identified through comparison to previous knowledge, and then verified 

against incoming data. 

As mentioned in chapter 3 it is not a new idea that visual perception is 

reliant on top-down processes in the form of memory being used to make 

sense of bottom-up incoming sensory data. Neurophysiological descriptions 

of the visual system indicate both massive feedback as well as feedforward 

pathways are in operation indicating that deep brain structures are exerting 

their influence on incoming sensory data. Such structures include those 

thought to be associated with the storage and retrieval of memories. 

Recently research in developmental neurobiology has provided architectural 

support for the claim of the model that visual perception is strongly reliant 

on top-down processing in the labelling of bottom-up sensory data. It is 

widely reported that the human visual system is immature at birth (see 

Burkhalter, 1993 for a review). Recent research has shown that both 

feedforward and feedback connections in the visual system only emerge just 

prior to birth. It is not until 4 months of age that feedforward connections 

are developed in the same way as the mature adult cortex. Importantly 
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feedback connections are at this stage immature by comparison (Burkhalter, 

1993). Burkhaller suggests that this implies that in the first few months of 

l ife the infant is only capable of local processing, for example image 

segmentation in V I , it is not until later on that the infant is capable of 

global processing in the form of object identification. 

It is possible to interpret these findings more generally to provide support 

for the theory underlying the conceptual model. I f the visual system is 

reliant on memory for the labelling of hypothesis then it would be expected 

that the focus of the immature visual system is to develop a repertoire of 

memories that can be used to aid identification. Therefore the first few 

months of the infants l ife are devoted to the development of feedforward 

pathways to enable a repertoire to be constructed. It is only when enough 

sensory stimulation has been encoded and stored that the feedback pathways 

are of any use. Therefore they develop more slowly and do not mature as 

quickly as the feedforward paths. So i t is not until the visual system is 

capable of processing both local bottom-up information and global top-

down information that perception is complete. It is possible to provide 

further support based on the above interpretation in the developmental 

psychology literature. 

There is a whole host of experimental evidence from developmental 

psychology to suggest that the functional capabilities of the visual system 

are extremely limited at birth (for example Banks, 1980; Banks & 

Salapatek, 1983). Infants w i l l respond to high contrast patterns (Banks and 

Ginsburg, 1985) and objects that are moving (Slater et al, 1985) but form 

perception is limited (Banks & Ginsburg, 1985). This fits with the recent 

146 



neurophysiological findings outlined in the previous section that suggest the 

visual pathways are not fu l ly developed until well into the first year of l i fe . 

Research into infants ability to store patterns also provides experimental 

results that support the neurophysiological findings in the previous section. 

It seems that infants under 2 months respond equally well to new patterns as 

they do to ones which they have experienced before. However infants over 

two months of age respond better to patterns they have experienced before 

(Olson & Sherman, 1983; Banks & Salapatek, 1983). There is an exception 

to this in that genetically important patterns such as the pattern of a 

mothers face produce responses a few days after birth (Bushnell et al, 

1989). This supports the neurophysiological data suggesting that the visual 

system is immature at birth. Further it supports the theory outlined in 

chapter 4 in that i t suggests that memory or experience is essential for 

perception, in that we need top-down information to perceive the world. 

Developmental psychologists have even gone as far to claim that the very 

young infant is essentially a "stimulus seeker" with a biologically 

programmed disposition to actively search for novel stimuli keeping the 

visual neurons active to promote development (Haith, 1980). In relation to 

the conceptual model this could be interpreted as building a repertoire of 

experiences for the future labelling of hypotheses. 

The role of past experience in perceptual processes is well documented in 

psychology, and there is a great deal of experimental evidence supporting 

top-down processes in the interpretation of bottom-up data. Research by 

Biederman into how context affects ones ability to identify objects 

demonstrated the importance of top-down information in perceptual 
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recognition tasks. Subjects were asked to identify both contextually related 

and unrelated objects in real world scenes. Performance for contextually 

related objects was significantly faster and more accurate than for non 

related objects (Biederman, 1972; Biederman et al, 1973). Exposure to 

stimuli facilitating recognition is also well documented in psychology. In 

the 1960*s Haber and Hershenson demonstrated in a series of experiments 

that in a word recognition task the more times a string of letters was 

presented the more likely subjects would perceive them correctly (Haber & 

Hershenson, 1965). As well as supporting the role of top-down information 

in visual perception it is also possible to demonstrate hypothesis testing 

experimentally. In an experiment which involved showing two images one 

to each eye tachistoscopically Engel was able to show how subjects 

interpret bottom-up visual data. Subjects were shown two identical 

stationary figures, one to each eye. One figure was naked and the other 

clothed. When subjects were asked to report what they had seen they either 

said a figure getting dressed or a figure doing a "strip tease". Subjects had 

perceived motion that was in fact not present to make sense of the visual 

information they had received (Engel, 1956). 

Visual illusions provide further evidence for the role of top-down processes 

in perception. Many visual illusions present the visual system with a 

representation that has more than one possible interpretation yet only one 

retinal image. Examples include the goblet/two faces illusion (see figure 

20), the mouse/old man illusion, the young woman/old hag illusion etc. As 

well as ambiguous illusions there are illusions which involve the visual 

system actively adding information that is not actually present in the retinal 
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image. Kanizas triangle is one such illusion (see figure 20). 

Figure 20. Examples of visual illusions: The goblet/two faces illusion and 

Kanizas triangle. 

Here the visual system interprets the retinal image as a triangle even though 

there is no actual triangle present, only the illusion of one. The 

interpretation of such illusions is reliant on top-down information, not on 

bottom-up processing alone. There is also experimental results showing that 

contextual effects influence the visual systems interpretation of ambiguous 

illusions. I f subjects are shown pictures of young women before being 

shown the young woman/old hag illusion almost 100% report seeing a 

young woman as opposed to 65% when not shown the pictures first (Leeper, 

1935). The same effect has been demonstrated using the mouse/old man 

illusion but instead of specific pictures of a rat, various animal pictures 

were presented showing generalisations in interpretation (Bugelski & 

Alampay, 1961). 

Other top-down information which facilitates perception includes 

genetically predetermined information and information from other sensory 

processing areas. Genetically predetermined input to visual perception is 

much debated, as with most psychological research there is evidence both in 
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support and against the claim that visual perception is innate. Animal 

studies have shown that certain biologically important visual behaviours are 

present from birth. Herring gull chicks w i l l peck at the red spot on the adult 

birds beak as soon as it is born, before it has made the association between 

food and the red spot (Tinbergen, 1952). There is evidence to suggest that 

certain visual information in humans is genetically determined. Experiments 

in developmental psychology have shown that infants are capable of 

demonstrating certain innate visual behaviours such as depth perception 

(Gibson & Walk. 1960) and object constancy (Bower, 1966). It has also 

been suggested that infants are able to recognise their mothers face at 3 

months of age (Barrera & Maurer, 1981), even though they are unable to 

easily discriminate between carers and strangers faces until they are 5-7 

months old (Cohen et al, 1979). According to the research discussed in an 

earlier section the visual system is neurophysiologically incapable of 

processing the kind of global information needed for face recognition. This 

could be interpreted as being support for the suggestion that some 

biologically important visual information such as face identity could be 

facilitated by pre determined information about faces, enabling a certain 

amount of perception to occur without repeated experience. This may also 

explain the existence of cells in IT responsive to faces. 

More recently it has been suggested that "backward masking" is controlled 

by the top-down process of voluntary visual attention (Ramachandran & 

Cobb, 1995). Backward masking is where a target stimulus is presented 

followed by a non-target stimulus, causing subjects to be completely 

unaware of the existence of the original target stimulus. Gregory goes 
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further to suggest that bottom-up data is ''topped up" by top-down 

information (Gregory, 1995). Gregory's interpretations can be seen as 

further support for the role of top-down information in both the theory and 

conceptual model. 

SUPPORT FROM NEUROPSYCHOLOGY -BLINDSIGHT. 

The existence of certain neuropsychological disorders affecting visual 

perception also provide support for the theory and the model, blindsight 

mentioned previously in chapters 2 and 3 is one such disorder. The 

destruction through illness or accident of the striate cortex leaves a person 

clinically blind. It must be reiterated that vision in patients suffering from 

blindsight can be partially, rather than fu l ly impaired. Research has shown 

that some of these supposedly clinically blind patients are in fact able to 

make judgements about stimuli which they reportedly claim they are unable 

to "see". This is what is referred to as blindsight, and has been extensively 

investigated (for reviews see Weiskrantz, 1986; 1992). As the amount of 

information they can report about such stimuli is restricted to things like 

whether or not it was moving, or what colour an object was rather than 

detailed form information, i t seems that information about the stimulus is a 

product of processing in the extra striate cortex. Arguably the existence of 

blindsight could be interpreted as demonstrating that perception is not 

purely a bottom-up process. I f this was the case destruction of the striate 

cortex should result in complete blindness. The ability of people suffering 

from blindsight to make judgements about visual stimuli however limited 

suggest that visual perception is still possible even i f the bottom-up 
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pathways are destroyed. 

Attempts to explain the existence of blindsight have given rise to two main 

theories, briefly mentioned in chapter 3. The first suggests that the 

secondary visual pathways mentioned in chapter 2 allow sensory processing 

to occur. The emphasis originally has been on the pathway leading from the 

superior colliculus (SC) via the pulvinar to V5. However more recently, 

research has shown that the destruction of other pathways, specifically the 

lateral pretectum and the accessory optic system, have a greater effect on 

the ability to see with existing damage to V I than destruction of the SC. 

Further to this some blindsight patients are able to detect colour 

information in a stimulus, since the SC is unable to transmit wavelength 

information this suggests that other pathways are responsible for the 

transmission of colour information (see Cowey & Stoerig, 1992 for a review 

on the pathways mediating blindsight). The second theory suggests that the 

secondary visual pathways do not contribute to the ability of blindsight 

patients to make perceptual judgements. Perception in cortically blind 

patients is due to scattered light falling on areas in V I where cortical tissue 

has been spared, and are able to function as normal (Campion et al, 1983). 

Neither theory is conclusive, there are lots of possible pathways that could 

account for the resultant perceptual judgements demonstrated in blindsight 

patients (see Cowey & Stoerig, 1992). 

In relation to the theory blindsight provides support for its claim that visual 

perception results from the construction and subsequent testing of 

hypotheses about the world by the visual system, a combination of both top-

down and bottom-up processing. In terms of the model a blindsight patient 
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would at best only be able to construct limited hypothesis. Detailed form 

information would not be available due to the damage to V I . Although there 

are at present no secondary pathways defined in the model it is possible to 

speculate their ability to carry limited information to the extrastriate areas. 

For example it is possible to envisage a pathway from the SC to V5 via the 

pulvinar. The processing that is carried out in V5 would only be able to 

provide a hypothesis of "motion" and limited spatial information but 

nothing more. It is possible that the information from the secondary visual 

pathways is not sufficient to engage the memory processes, meaning that 

object labelling would not occur. Further to this i t would be impossible due 

to damage to V I to ''test" any hypothesis against incoming data in the 

dLGN. This would mean that conscious perception would not be possible. 

However i t would be possible to send the resultant motion processing 

information on to other cortical areas such as the motor cortex, or the poly 

sensory areas for integration with other processing. This would mean it may 

be possible to point to a visual stimulus without being visually aware of it . 

The importance of top-down information in the labelling of hypotheses is 

emphasised by other neuropsychological disorders such as prosopagnosia. 

Sufferers from prosopagnosia are impaired in certain aspects of perceptual 

recognition in that they are generally unable to identify the faces of familiar 

people, they can however differentiate between faces (for a general review 

of the literature see Young & De Haan. 1992). In relation to the model this 

demonstrates an ability to construct a hypothesis but there is a problem in 

labelling that hypothesis. Feedback would st i l l be possible meaning that the 

hypothesis could be "checked" but i t would not have a label hence would 
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not be identified. This indicates that visual perception of some sort is 

occurring, but complete visual perception is not. This w i l l be discussed 

further in chapter 6 in relation to levels of processing as outlined in chapter 

1 and how they relate to the model outlined in chapter 4. 

Another form of agnosia, associative visual agnosia, can be seen to provide 

support for the claim made by the model outlined in chapter 4 that top-down 

information in the form of poly sensory information is also important in 

visual perception. Some patients suffering from associative visual agnosia 

are able to replicate drawings of objects with ease, but when asked verbally 

to draw objects they are unable to do so. They are unable to associate the 

verbal description with the visual description. When asked to describe 

verbally the object they have been unable to draw they can do so without 

problem so it seems they are aware of what it is they have been asked to 

draw even though they are incapable of doing so (Ratcliff & Newcombe, 

1982). Another case study of a person suffering from some form of visual 

agnosia also provides evidence to support the role of poly sensory 

processing in visual perception. This particular patient was unable to 

recognise objects visually. However when studying pictures of objects he 

made unintentional gestures with his hands that in some way related to the 

picture he was studying. The hand gestures enabled him to identify the 

objects in question (Carlson, 1986). The model suggests that i f a hypothesis 

is unlabeled through incomplete visual input or through failure to match 

with a stored memory then the result of processing from other sensory areas 

can facilitate recognition. It could be that the motor response pattern 

generated by the agnosic facilitates the retrieval of a stored description of 
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the object. This can then be instantiated at all the possible levels of sensory 

description previously associated with the object. Damage to the visual 

processing areas of the brain would mean that i t could not be fed back 

through the visual system and "confirmed" at the dLGN. However i t could 

be fed back through other sensory processing pathways and identified at a 

different level of description. 

The evidence presented by neuropsychology is in no way conclusive. As 

mentioned in chapter 3 i t is extremely di f f icul t to determine the exact 

nature of damage to the visual cortex resulting in neuropsychological 

disorders. Further, most disorders are not clearly defined and tend to be 

partial rather than complete. However it does seem that there is a great deal 

of psychological as well as neurophysiological evidence that can be used to 

support the model and especially the theory outlined in chapter 4. 
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SUPPORT FOR MECHANISMS U N D E R L Y I N G 

P E R C E P T I O N . 

INTEGRATION OF INFORMATION THROUGH SYNCHRONOUS 

OSCILLATORY ACTIVITY. 

Within the conceptual model i t is proposed that the problem of integration 

of information can be solved by synchronous oscillatory activity. Such 

activity serves to integrate information both within modules via lateral 

connections and across modules via diffuse feedback connections. Further 

to this synchrony as a function of feedback also provides a mechanism for 

confirming hypotheses about the world by correlating them against 

incoming data. The key to such a mechanism is that the visual image can be 

represented by distributed temporal activity across populations of neurons 

rather than by dedicated processing in specific neurons. This means that a 

given neuron can become part of the representation for more than one 

stimulus. 

The role of oscillatory behaviour in the integration of distributed 

information was introduced in chapter 3. This work had a major impact on 

both the development of our understanding of visual processing and the 

development of artificial models of visual perception. Since the early work 

investigating oscillatory behaviour a great number of models have been 

developed that exploit synchrony as mechanism of feature linking. This 

early work, both experimental involving the recording of cells, and 

simulation based involving the development of models, suggested that 

synchrony in oscillations occurred in two ways. Firstly through lateral 
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connections between neurons or groups of neurons with similar receptive 

field properties, and secondly by diffuse feedback connections linking 

neurons with unrelated receptive fields (see Werner et al, 1993 for a 

review). 

In a series of neurophysiological experiments Gray and Singer demonstrated 

that neurons in the cat visual cortex oscillated at a frequency of around 40 

Hz. They also demonstrated that these oscillations correlated with a 

rhythmic firing pattern, suggesting that groups of neurons were using 

temporal information to synchronise their oscillations in spatially separate 

areas of the visual cortex, (Gray et al, 1987; 1989). Their experiments 

showed that groups of neurons within a functional column with the same 

receptive fields responded to a moving stimulus by discharging 

rhythmically. Gray and Singer concluded from the experimental results that 

when responding to a given stimulus, adjacent neurons in the stimulated 

receptive field are more likely to fire at the same time and in synchrony. 

Further more this phenomenon is not a product from interference from other 

areas of the brain such as the thalamus, which is known to produce 

oscillation. In the discussion of their results Gray and Singer suggest that 

although the underlying mechanisms that are producing this behaviour are 

unknown, i t seems that simple inhibitory and excitatory links between 

neurons is a sufficient explanation as to how oscillations are produced, 

(Gray & Singer 1989) (see figure 21). 
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Figure 21. A summary of Gray and Singers findings. 

In more detailed experiments Gray et al went on to show that these 

synchronous oscillatory responses explained how spatially separate features 

of a given stimulus could be bound together, (Gray et al, 1989). They 

recorded at between 5 and 7 spatially separate sites in the visual cortex, and 

used a cross correlation function to determine whether the oscillatory 

responses were present at any of the sites when stimulated. They then 

selected from 132 recordings, 99 pairs of sites producing oscillations that 

had the same orientation preference, also having overlapping receptive 

fields. To determine whether synchrony (or phase locking) was present, a 

cross correlation function was applied to the results of the oscillations of 

these pairs when they were stimulated by a single bar of light falling across 

both sites. It was demonstrated that synchrony was present when the two 

sites were stimulated by the single bar. The conclusion is that 

synchronisation of oscillation was being used to identify the stimulus as a 

long bar in a given orientation (see figure 22). In a second experiment 

recordings were made in pairs of sites as far apart as 7 mm. These sites did 

not have the same receptive f ield, but st i l l shared the same orientation 
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preference. The rationale behind this was to see i f synchrony was just a 

result of the receptive fields being the same. I f stimulation was achieved 

through the use of a stationary light bar that fe l l across two sites, the 

oscillatory responses were in synchrony. I f the light bar was split into two 

separate stationary bars of the same orientation, each fall ing across one of 

the sites synchrony was also evident. I f the two bars of light were moved 

across the recorded areas in the same direction again synchrony is evident. 

However i f the two light bars were moved across the two separate areas in 

different directions there was no synchrony in the oscillations (see figure 

22). 
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Figure 22. Gray and Singer's 4 experiments. 

Gray et al conclude: 

"We propose that the synchronisation of oscillatory responses in spatially 
separate regions of the cortex may be used to establish transient 
relationships between common but spatially distributed features of a 
pattern." 

(Gray et al 1989). 
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Through the mechanism of synchrony it is possible to establish overall or 

"global" features including continuity, orientation preferences, and 

consistency of motion, (Gray et al 1989). 

Further research based on these findings explored the results more 

extensively with a larger data set, (Engel et al 1990). As in the previously 

mentioned work the study aimed to investigate activity in functional 

columns. Measurement of the local field potential (LFP) indicated that 

functional columns of neurons, each column having a different orientation 

preference, oscillated in synchrony. By recording multi-unit activity (MUA) 

it was demonstrated that groups of neurons in these functional columns also 

demonstrated oscillatory behaviour. By taking the local field potential it 

could be seen that neighbouring columns did not contribute to the 

oscillations produced by a given column. The cross correlation of MUA 

activity in the pairs of recording sites produced the evidence for feature 

detection through synchrony. In this more detailed analysis previous results 

were confirmed and a more detailed understanding was created. Firstly, the 

strength of synchrony depends on the distance between the spatially 

separate sites. The further the recordings were apart, the weaker the 

synchrony. With groups of cells having non-overlapping receptive fields 

synchrony is a product of orientation preference, as well as being sensitive 

to stimulus features such as motion. I t was found that i f the stimulus was 

changed, for example a stationary bar o f light moved, the reaction of the 

groups of neurons producing oscillations changed, indicating that the 

oscillations encoded feature specific information and did not just respond to 
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any kind of stimulation with the same pattern of activity. Also a long single 

bar produced stronger oscillations than two separate bars, (Engel et al, 

1990) . 

There is a great deal of controversy as to the relevance of this kind of 

neurophysiological research. Phase information has been largely ignored on 

the grounds that it is unreliable. Most of the problems can be traced to the 

methodology used to extract the data. The wrong kind of anaesthetic can 

effect the recordings taken, and incorrect analysis can also be a problem, 

(Engel et al, 1990). However the results obtained by this recent body of 

research have overcome these problems. 

Parallel work carried out over a similar period of time by Eckhorn et al 

made further distinctions as to the nature of this oscillatory activity 

(Eckhorn et al, 1988; 1989; 1990; Eckhorn & Schanze, 1991; Eckhorn, 

1991) . They distinguish between two types of oscillatory activity, stimulus 

forced, and stimulus induced. Stimulus forced synchronisations are driven 

by the image itself and are generally coarse representations of the visual 

scene, referred to by Eckhorn et al "crude instantiations" (Eckhorn et al, 

1990). Stimulus induced synchronisations are internally driven and are 

thought to be the mechanisms by which more detailed and complex 

associations are made. The mechanism for synchrony in both cases is 

thought to be by feedback and in the stimulus-induced synchrony through 

mutual coupling of local oscillators, (Eckhorn et al 1990; Eckhorn & 

Schanze, 1991; Eckhorn, 1991). 

The results of these experiments have led to suggestions that synchronous 

oscillatory activity as a riesult o f neurons responding to particular objects 
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can be likened to Gestalt criteria such as proximity, continuity, similarity 

and common fate (Engel et al. 1992; Sompolinsky et al, 1990). In Gray and 

Singers experiments synchrony was evident in non overlapping receptive 

fields only i f the stimulus was a continuos bar. I f two bars moving in 

opposite directions was observed both groups produced synchronous 

oscillations but there was no correlation in the oscillatory activity between 

the groups (see figure 23). 
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Figure 23. Oscillatory activity between groups showing no correlation 

Engel et al suggest this is evidence to support the Gestalt principles for 

grouping such as continuity and similarity. I f the object falls in the same 

receptive filed but with differing orientation preferences synchrony can still 

be achieved through lateral connections. This is interpreted as representing 

criteria such as common fate and proximity. 
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Thus there is a great deal of evidence from these recent findings to support 

the use of synchronous oscillatory activity as a "binding mechanism" for 

early visual processing. Employing such a mechanism allows segments of 

the visual representation to be bound together to form coherent parts of that 

representation. The hundreds of edges bars blob and terminations that 

contribute to a particular line can be linked via synchronous oscillatory 

activity. In relation to the model stimulus forced synchronisation enables 

initial crude representations to be formed. Subsequent stimulus induced 

synchronisation through lateral connections enables more detailed 

associations to be formed. Within V I and V2 in the model, segments that 

share the same receptive fields can be linked by coupled oscillators that 

form strong feedback connections, and do not necessarily rely on sharing 

the same orientation preferences (Sompolinsky et al, 1990). Segments that 

do not share the same receptive fields, but have the same orientation 

preferences, synchronise their oscillations via weak specific connections 

(Sompolinksy et al, 1990). In terms of viability in the conceptual model, 

there is a great deal of simulation work based on the experimental findings 

described so far, that demonstrate the ability to build artificial models 

capable of such behaviours (for example Cotterill & Nielsen, 1991; Denham 

et al, 1991; Denham & Troup, 1992; Dorizzi, & Grammaticos, 1991; 

Eckhorn et al, 1990; Eckhorn & Schanze, 1991; Eckhorn, 1991; Grossberg, 

& Somers, 1991a; 1991b; Kurrer et al. 1991; Kurrer et al, 1992; 

Sompolinsky et al, 1990; Troup, 1992). 

Later experimental and simulation work has suggested that synchronous 

oscillations are also an interhemispheric phenomena suggesting that inter 
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area association or "binding" via synchronous oscillator activity within the 

model is feasible (Engel et al, 1991a). Engel et al also suggest that 

synchrony can be mediated by long range cortico-cortico connections. 

Synchronisation of oscillation between cortical areas has also been reported 

notably between V I and V2 (Eckhorn et al, 1988). Further to this 

synchronous oscillatory responses have also been recorded between V I and 

the posteromedial lateral suprasylvian area (PMLS) mediated by long range 

cortico-cortico connections (Engel et al, 1991b). This provides significant 

evidence to support association between striate and extrastriate areas via 

synchronous oscillatory responses. The PMLS is an association area thought 

to be primarily involved with the analysis of global motion information, 

responding to movement in large scale patterns. The PMLS also has 

significantly large receptive fields compared to V I . As already discussed in 

chapters 2 and 3, V I is responsible for the analysis of localised detail of 

objects rather than global interpretations (Engel et al, 1991b). The existence 

of synchrony provides evidence to suggest that it could be implicated as a 

possible mechanism for binding between cortical areas coding for different 

properties o f the visual image. This would suggest that temporal binding 

through synchronous oscillations is not dependent on the receptive field 

properties o f neurons and therefore can easily bind information that is 

supposedly unrelated. 

In sum the use of synchronous oscillations as a mechanism for binding or 

associating information both within and between modules in the model 

presented in chapter 4 is well supported in neurophysiology. Whether or not 

it is the sole mechanism for binding information in the biological brain is 
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st i l l not conclusive. It does however lend itself well to simulation and 

therefore provides a strong candidate for binding both in the conceptual 

model and in the future development of artificial systems based on that 

model. 

TOP-DOWN INPUT CAUSES OSCILLATORY ACTIVITY. 

Within the model it is proposed that both bottom-up and top-down inputs 

generate synchronous oscillatory activity. Feedforward retinal inputs drive 

bottom-up oscillations allowing the retinal image to be represented across 

the visual cortex in the manner discussed in the previous section. Feedback 

connections provide a mechanism for both the integration of information 

across modules and also for top-down inputs to contribute to perception. A; 

outlined in chapter 4, the visual image is interpreted through comparing it 

to previously stored examples in memory. A match induces oscillations in 

the relevant neurons in IT confirming the identification is correct. This in 

turn, through feedback connections, enhances synchronous oscillatory 

activity throughout the system. Synchrony is also induced in neurons that 

may not have received retinal input. Such neurons are driven by top-down 

input from memory and are known to belong to the visual image from past 

experience but are not explicit in the retinal input due to things like 

occlusion. 

Recent simulation work has shown that it is possible to generate synchrony 

from top-down inputs fed back into the system (Bugmann & Taylor, 1994). 

They claim that in their model synchronisation is a product of visual 

recognition in higher levels of processing rather than causing visual 
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recognition itself. One of the predictions of their model is that 

synchronisation occurs at all 4 levels supporting the notion of inter area and 

interhemispheric integration through synchronous oscillation. The results of 

simulations partially uphold this prediction. An important point that they 

raise in the paper is that models of synchronisation to date all include 

artificial neurons that are capable of self sustainable oscillatory behaviours 

which enables synchronisation to occur. External input alone does not 

induce synchronisation in such models. I f neuronal f i r ing was driven 

entirely by retinal input then synchronisation would not occur. However 

this could be looked upon as a simulation problem in that this may be the 

case in relation to artificial models but does not mean that the biological 

vision system cannot produce oscillatory behaviour i f i t is driven by 

feedforward retinal input alone. The binding of information in V I for 

example relies on stimulus induced oscillations according to the 

neurophysiology outlined in the previous section. 

It is extremely di f f icul t to asses the relevance of these claims in relation to 

understanding human visual perception as their model only attempts to 

explain a small aspect o f visual processing. Also the model is only loosely 

based on functional and structural neurophysiology and is more concerned 

with the intricacies of simulation rather than the biological mechanisms of 

vision. Finally it addresses important issues, such as the binding problem 

without substantiating them in any way. However their model does 

demonstrate that for the purpose of developing artificial vision systems at 

least it is possible to induce synchronous oscillations as a result of top-

down input. Therefore in relation to the model outlined in chapter 4 it is 
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possible to combine the results of this paper with neurophysiological 

knowledge to make certain predictions about visual perception which can 

then be both incorporated into conceptual models as in chapter 4 and 

investigated further both neurophysiologically and psychologically. An 

example being the claim that feedback could be considered as a possible 

mechanism for the integration of visual information processing in parallel 

architectures. 

Further evidence to support the claim that integration in the conceptual 

model is driven by top-down feedback comes from neurophysiology. 

Correlated f i r ing in thalamic relay cells has been found to be driven by 

feedback inputs from V I to the dLGN (Sillito et al, 1994). This they claim 

provides additional support for the role of synchronous oscillatory activity 

in feature integration. They go on to suggest that the role of this 

synchronisation via feedback is to maximise the capability of relay cells in 

driving cortical processing. They expand this by suggesting that the 

correlation of a cortical pattern of activity in V I with thalamic relay cells is 

a mechanism for "testing" that the original pattern in V I is still correct, and 

i f it is, to enhance the relations between its component parts. The dLGN 

contains the most recent representation of the visual image which is 

continually updated reflecting the transient nature of the visual scene. 

The suggestion that the role of the thalamus extends beyond merely relaying 

information on to the cortex is not new. It has been widely implicated in 

models and explanations of visual attention (including: Desimone et al, 

1990; Crick. 1984; La Berge et al, 1992; Taylor & Alavi . 1993). It is also 

central to many models and theories of sensory processing (Harth et al, 
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1987; Mumford. 1991; 1992). In relation to the conceptual model outlined 

in chapter 4 of the thesis Sillito et al's findings provide neurophysiological 

support for oscillatory activity underlying hypothesis testing. The transient 

thalamic representation serves to provide a pattern against which the 

hypothesis that has been generated through cortical processing can be 

tested. I f it is correct then a correlation in the form of synchronous 

oscillatory activity occurs enhancing the pattern of activity representing the 

visual image in V I . It is also possible that new information about the visual 

image has become available, and can now be incorporated into the 

representation, thus the visual image is continually updated with new 

information. This also serves to aid the interpretation of ambiguous 

hypotheses which may have been unlabelled on their first iteration through 

the system. 

INTEGRATION OF POLY SENSORY INPUT VIA TOP-DOWN 

SYNCHRONOUS ACTIVITY. 

There is also evidence to support the proposal of oscillatory activity being 

the underlying mechanisms for integration from other sensory areas. Top-

down synchronisation could be occurring as a result of input from poly 

sensory areas or directly from other sensory areas. Recent evidence suggests 

that in several different species synchronous oscillations occur between 

cortical processing areas notably between the somatosensory cortex and the 

motor cortex (Murthy & Fetz, 1991). Further synchronous oscillatory 

activity has also been found in the association areas which include poly 

sensory areas (Llinas et al, 1991). Llinas et al reported the presence of 
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oscillatory activity in layer 4 of the guinea pig frontal cortex which 

oscillated at the same frequency as previously mentioned cortical 

oscillations. 

The implications of this in relation to the model are that input from other 

sensory processing areas could be associated with resultant visual 

processing through synchronous oscillatory activity. It is also possible that 

inputs from the poly sensory areas could induce oscillatory activity in the 

visual cortex as suggested by Bugmann and Taylor's top-down model of 

synchronisation. However as with much of this work this is purely 

speculative and bears more relation to the development of artificial vision 

systems than it does to explaining human visual perception. 

INTEGRATION OF PAST EXPERIENCES VIA SYNCHRONOUS 

ACTIVITY. 

It is proposed in the model that past experiences or "memory" is used to 

identify and label hypotheses that are constructed via feedforward pathways 

projecting to IT. The model suggests that a given hypothesis is matched or 

rather checked against stored exemplars for recognition purposes. As 

mentioned in chapter 4 it is not the aim of the thesis to provide detailed 

explanations of the module referred to as memory. (A comprehensive 

related account of a possible model of this module can be found in O' 

Shaughnessey, 1995). In relation to developing artificial vision systems it is 

acceptable to check patterns of oscillation in IT with stored exemplars in 

the module of the model referred to as memory. I f a match or close match is 

made then identification can be facilitated. This then leads to induced 
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synchronisation in the related neurons across modules via the feedback 

pathways. 

Relating the conceptual model to the understanding of human visual 

perception it is a little tenuous. There is however evidence to suggest that 

synchronous oscillatory activity is present in brain structures that are 

implicated in memory related activity such as the entorihnal cortex 

(Freeman, 1975). Later research suggests that oscillations in the entorihnal 

cortex occur at around 5-7 Hz corresponding to the theta rhythm associated 

with the hippocampus which is also strongly implicated in memory (Alonso 

& Llinas, 1989; Llinas, 1991). How the theta rhythm associates with the 

cortical rhythms which underlie the oscillatory activity implicated in visual 

binding both in neurophysiology and the conceptual model is not clear. The 

only concrete common factor is that recordings of responses with an 

oscillatory nature have been made. I t is possible to hypothesise that as there 

are cortical cells that oscillate in a wide frequency band between 10-45 Hz 

as well as those oscillating in the narrow 35-50 Hz band (Llinas et al, 1991) 

there are some cortical cells that correspond to the theta rhythm. This could 

enable the permeation of memory via wide band oscillations into cortical 

processing, this however is purely speculative. Engel et al emphasise the 

danger of implying to much from oscillatory activity saying that the 

presence of such activity does not prove the temporal coding hypothesis in 

anyway (Engel et al, 1992). This also applies in attempting to link cortical 

rhythms with theta rhythm in explanations of cortical processing in the 

human brain. 

In relation to the conceptual model then, i t is possible to posit these kinds 
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of mechanisms in relation to artificial visions systems. Concerning th 

of the model to understand human visual perception the evidence is by 

means conclusive. The role of synchronous oscillatory activity in binding 

memory in the form of past experience with sensory input for identificatio: 

purposes is speculative. However by implicating such a mechanism in 

human visual perception should stimulate interest in pursing its existence 

and relevance further. 

CONCLUSIONS. 

This chapter has provided additional support for both the model and the 

theory outlined in chapter 4. The evidence presented is in no way 

conclusive but aims to substantiate some of the claims that were made in 

relation to the theory and model but were not presented previously in the 

thesis. It seems that i t is reasonable to suggest that visual perception is not 

a single process but a combination of both bottom-up and top-down 

processing where the retinal image provides a hypothesis that is labelled 

according to information from memory and poly sensory processing. 

Further, oscillations as an underlying mechanism provide a solution to the 

integration of information across parallel processing modules. 
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C H A P T E R 6 

SUMMARY: 

A DISCUSSION OF THE ACHIEVEMENTS OF 
THE CONCEPTUAL MODEL AND 

SUGGESTIONS FOR FURTHER WORK. 

A brief summary of the work is outlined followed by a discussion in three 

sections. The first section discusses what has been achieved in the thesis in 

relation to its original aims. The second section discusses the conceptual 

model further in relation to perception. The third section attempts to 

discuss the implications of the thesis. Finally suggestions for future work 

are outlined including suggestions for simulation work, psychophysical and 

neurophysiological experimentation and how the conceptual model may be 

used as a neuropsychological tool. 

INTRODUCTION. 

As stated in chapter 1 the aim of the thesis is to develop both a theory and a 

conceptual model of visual perception, the purpose of such being twofold. 

Firstly to provide a better understanding of visual perception and secondly 

to provide insight into new architectures and mechanisms for artificial 

intelligence. Ultimately the applications of a conceptual model would be its 

eventual implementation as an artificial vision system which could be used 

to perform visual tasks as well as provide insight into biological vision. The 
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development of such a model was to be based on a bottom-up approach, 

through investigating what we understand about the neurophysiology of 

vision, and from a top-down approach, through looking at general theories 

of vision. Through combining both neurophysiological and psychological 

accounts of vision a strong multi-disciplinary framework would be establish 

with which to investigate the nature of visual perception. 

HAS T H E THESIS A C H I E V E D WHAT IT S E T OUT TO 

A C H I E V E ? 

OVERVIEW. 

In comparison to the complex accounts of both architecture and function in 

the visual systems of primates and humans the model evolved is extremely 

simple. This reflects the extremely complicated nature of visual perception 

as a whole. There are both models of artificial vision systems and of human 

visual processing that are both complicated and detailed, significantly more 

so than the model in the thesis. This is true of psychological top-down 

models and neurophysiological bottom-up models. Such models are only 

really detailed in relation to certain specific aspects of visual processing or 

visual perception. The seemingly impossible task that is created by trying to 

move away from localised models to global models means that simplicity is 

the only option. This section aims to address the claims made in chapter 1 

and discuss the model in relation to these claims. 
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A CONCEPTUAL MODEL THAT PROVIDES BETTER UNDERSTANDING 

OF HUMAN PERCEPTION. 

The claim that the development of a conceptual model of human visual 

perception wi l l lead to a greater understanding of that process can be seen 

as an emergent aspect of the thesis. The early chapters enabled an 

assimilation of a broad range of knowledge about the nature of vision that 

would not necessarily been a result of a research path restricted to a more 

"narrow" domain. For example i f the aim of the thesis had been to develop a 

model of feature integration in early visual processing the research would 

have been restricted to investigations into the structure and function of V I 

alone. This may have resulted in the development of an extremely detailed 

model of feature integration, i t may even had lead to the implementation of 

a conceptual model in software, but it would not have showed any real 

understanding of visual perception as a whole process. The question is what 

has the model achieved in helping us understand human visual perception. 

In general terms the conceptual model suggests that its is possible to regard 

visual perception as being a combination of both data driven and concept 

driven processing. The model incorporates a top-down, concept driven 

component with a bottom-up data driven component to explain how visual 

perception occurs. The implication of a top-down component in visual 

perception also suggests that vision as a sensory modality does not 

necessarily occur in isolation. Information from other sensory areas, as well 

as from memory indicates that the traditional view of sensory processing as 

being completely modular is not necessarily the case, although at a local 
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level processing is in fact restricted to purely visual information, more 

specifically the model proposes a possible mechanism for the integration of 

information globally via oscillations driven by top-down diffuse feedback 

connections and also locally via weak connections between populations of 

cells representing stimuli. 

In relation to understanding human perception one question that emerges 

from the development of the conceptual model is how much can be 

explained by developing models of perception? Arguably understanding 

visual perception is best explained by psychological or neurophysiological 

experimentation, through the testing of hypotheses or the gathering of data 

rather than through the construction of conceptual models. This may be true 

to some extent, but what the conceptual model does is provide the 

foundations for conducting experimental work. So many theories o f 

perception have been based on a subset of experimental evidence that bears 

no relation to the visual process as whole. Experimentation that is guided 

by a general idea of how perception works is far more productive than 

experimentation that is carried out in isolation of the global interpretation 

of the system. It is envisaged that it w i l l be possible to extend 

understanding of human perception with the eventual implementation of the 

model in software when some of the predictions of the model can be tested 

against experimental evidence. 
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A CONCEPTUAL MODEL THAT CAN EASILY BE IMPLEMENTED IN 

AN ARTIFICIAL SYSTEM. 

The second main aim of the thesis was to develop a conceptual model that 

could be easily implemented in software and would provide new and 

innovative algorithms for use in artificial vision systems. To a certain 

degree the development of the model has achieved this status. It would be 

possible to build the model in software in the structural and function form 

outlined. As mentioned in chapter 5 there are a number of simulation 

studies to support various structural and functional aspects of the model. 

The role of such a model once i t has been successfully implemented in 

software is not so clear. 

Arguably an implementation of the model as it stands would not provide a 

great deal of benefit to the artificial intelligence community. So far, in 

artificial intelligence research, it has been acknowledged that to build 

systems capable of intelligent behaviour we need to look more closely at 

how the brain functions. The failure of expert systems to realistically 

extend beyond a single domain, caused attention to focus on neural network 

theory providing artificial intelligence (AI) with systems that could "learn". 

However both expert systems and neural networks have been extremely 

successful in the development of artificial vision systems, especially the 

application of standard neural network techniques to pattern recognition 

problems. Both expert system and neural networks are based upon very 

general and very simple characteristics of brain function rather than 

detailed explanations. This does not mean that performance can be greatly 

enhanced by developing an A I model based on detailed structural and 
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functional understanding of the brain. However the progression from expert 

systems which are far removed from the brain to neural networks that are 

more closely linked to the brain has demonstrated an improvement in the 

capabilities of artificial vision systems in that they can now "learn". 

One of the important emergent properties of the model in relation to 

artificial vision systems is that like the brain the model does not separate 

structure from function. Standard neural network approaches to artificial 

vision not only separate structure from function but also apply different 

functions to the same structures (Churchland, 1986; Churchland & 

Sejenowski, 1992). The model reflects the relationship between structure 

and function through maintaining separate pathways for object 

identification and object manipulation. This relationship is further 

maintained in the modular processing of information within the model 

which is based upon the brain. As Churchland points out the structural and 

function relationship in the brain is the key to its ability to make sure that 

information requiring different amounts of time to encode, process and act 

upon information emerges as a coherent whole (Churchland, 1986; 

Churchland & Sejenowski, 1992). For real time artificial vision systems this 

could provide the key to enabling realistic emergent behaviours. 

What the development of the model has done for A I vision systems to some 

extent mirrors its achievements in relation to understanding human visual 

perception. Essentially it provides a general understanding of perception in 

its entirety providing insight into the sorts of structures and functions that 

might be useful to incorporate in an artificial vision system rather than 

providing a rigid detailed account of architecture and function that must be 
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adhered to. This point can be illustrated in the suggested mechanism for the 

integration of information in the model. The model suggests that the 

integration of information can be explained by synchronisation of 

oscillatory activity across and between modules. This is base upon 

biological understanding, but can be extrapolated to artificial systems quite 

successfully. This does not mean that the artificial system has to be 

architecturally isomorphic with the biological system, or that the oscillatory 

neurons have to be exact replicas of the best biological interpretation on 

single neuron behaviour. In fact most artificial single neuron models are 

based on approximations of biological models of the single neuron such as 

the leaky integrator models (Bressloff & Taylor, 1990) based on the 

Hodgkin Huxley equations (Hodgkin & Huxley, 1952). 

It would seem possible that simple object recognition and pattern 

discrimination tasks could be carried out by a software implementation of 

the model. Shape, colour and motion information could be computed and 

possible simple discrimination tasks could also be demonstrated. However 

to produce a successful artificial vision system would most likely mean that 

a large amount of the biological constraints of the system would have to be 

omitted to f u l f i l the software requirements. Arguably the system that would 

emerge would be no more biologically realistic than those neural network 

models already functioning. It is also highly probable that the 

implementation of a biological system would not be as successful as 

existing systems. What the model has provided artificial intelligence with is 

some pathways which could be explored in more detail. 
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A M U L T I - D I S I C P L I N A R Y APPROACH. 

A UNIFICATION OF TOP-DOWN AND BOTTOM-UP APPROACHES. 

In chapter 1 i t was suggested that one of the most distinguishing features of 

the model was that it would adopt a multi-disciplinary approach to its 

development. This would include investigations into the neurophysiology of 

vision, predominantly looking at architectures and function and 

investigations into the psychology of vision looking at theories of 

perception, and how perception manifests itself as higher level cognitive 

processing and ultimately in behaviour. Finally by proposing the eventual 

implementation of the model understanding of the computational aspects of 

the model would be necessary. As the implementation of the model was not 

included in the investigation of the thesis the multi-disciplinary nature of 

the conceptual model was restricted to neurophysiology and psychology 

alone. Computational constraints were addressed in terms of the possibility 

of being able to actually build the model in software, especially in relation 

to the proposed underlying mechanisms of the model, but in depth 

understanding was not necessary at this stage in the research. Bearing in 

mind the problems with taking a multi-disciplinary approach as outlined in 

chapter 1, has the thesis been able to provide a truly multi-disciplinary 

model of visual perception? 

Essentially the unification of disciplines was achieved in the sense that the 

conceptual model incorporates a top-down psychological account of 

perception which was applied to a bottom-up neurophysiological account of 

the architectures and function of the visual system. So the top-down 
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component explained what the bottom-up component would do globally, but 

the functionality of the architecture itself was actually based on bottom-up 

neurophysiology. This can also be interpreted as maintaining the 

segregation of disciplines as well as unifying them. The unifying element is 

the model itself and the segregated interpretation comes from the two 

disciplines explaining different aspects of the model, psychology the 

general theory of perception and neurophysiology the foundations for the 

architectures and their underlying functionality. 

HOW UNIFICATION MIGHT HELP UNDERSTAND HUMAN VISUAL 

PROCESSING. 

This unification and segregation within the model can be expressed in 

relation to the proposal that biological vision operates at three levels. In 

chapter 1 it was proposed that visual perception could be explained as three 

levels, local processing, local perception and global perception. Local 

processing correlates with the processing that takes place within each 

module in the model. The processing of form information in V I , V2 V3, and 

V3a, the processing of colour information in V4 and motion information in 

V5. Local processing has its foundations in the structural and functional 

descriptions offered by neurophysiology. Local perception correlates with 

the level in the model where a representation has been formed that relates to 

a more complete description, the level at which information is combined to 

form a hypothesis. The distributed pattern of activity across the modules 

could then be thought of as being a local perception. At this level the visual 

image is restricted to a purely visual description with no top-down input 
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from poly sensory information or from memory at all . It is the result of 

labelling and the checking of the hypothesis that equates to the third level 

of global perception. The combination of sensory processing from other 

areas and experiences from memory mean that visual perception is not 

restricted to the traditional approach in psychology and neurophysiology to 

compartmentalise behaviour. At the level of local processing and local 

perception it is possible to modularise, not only limiting vision to the result 

of processing in a particular cortical area, but also to distinct modules 

within that area. 

This existence of levels could also provide a solution to how higher level 

cognitive states as defined by psychology might be reduced to low level 

neuronal behaviours as deflned by neurophysiology. It would be possible to 

infer that high level cognitive states equate to local and global perception 

whereas low level neuronal behaviour equates to local processing. Having 

three levels allows for a gradual transition from low level processing to 

high level processing, with the middle level of local perception comprising 

both a level of description which is based on low level neuronal behaviours 

and yet one which aspires to a higher level of description. The construction 

of a hypothesis begins with low level neuronal behaviours. Within the 

model artificial neurons extract information about the visual image in 

parallel within two hierarchical steams. The actual hypothesis is a result of 

this processing and is represented in IT by cells that correspond to 

particular patterns of activity. I t is at this level that the distributed 

representation becomes unified as a hypothesis. However it is only through 

the comparison to memory and the incorporation of poly sensory processing 
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that local perception becomes a global perception. Therefore the level of 

local perception provides a level at which higher level processing emerges 

from low level processing. It must be noted that throughout the whole 

model, at all levels, low level neuronal behaviour drives high level 

representations. 

HOW T H E C O N C E P T U A L M O D E L IS D I F F E R E N T FROM 

E X I S T I N G MODELS. 

In very general terms the conceptual model developed is different to 

existing models in that it attempts to add more detail both to broad 

psychological theories of perception and to particular aspects of more 

detailed neurophysiological accounts of perception. This has significant 

implications in relation to furthering our understanding of human 

perception and the development of artificial vision systems. By making 

explicit possible functional structures underlying broad psychological 

accounts of vision it is possible to sec how behavioural explanations of 

perception can be linked to neurophysiological descriptions of structure and 

function. Although the addition of a detailed functional description to 

existing neurophysiological accounts of vision is speculative in terms of its 

foundations in experimental neurophysiology, it provides a basis for future 

investigation. Finally by making explicit the architectures and mechanisms 

underlying both neurophysiological and psychological accounts of 

perception it is possible to facilitate the development of artificial computer 

models of visual processing. 
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NEUROPHYSIOLOGICAL MODELS. 

The functional structure of the conceptual model was based on parallel 

models of processing within the biological visual system outlined in chapter 

3. In particular the model was developed from Zeki's four stream theory of 

visual processing (Zeki, 1978a; 1980; 1983; 1988; 1992). However the 

model differs from that proposed by Zeki in several ways. 

Primarily the conceptual model extends Zeki's model to incorporate 

psychological accounts of visual processing. Zeki's model is purely an 

anatomical account of vision, he does not attempt to link his model to 

general psychological theories as discussed in chapter 3 such as Gregory's 

(Gregory, 1972, 1973). This means that Zeki's work can tell us a lot about 

structure and function, and can be used to question the nature of specific 

neurophysiological dysfunction, however it does not tell us a great deal 

about perception as a whole process. It relates more to understanding visual 

processing within a limited set of cortical structures. In reverse general 

psychological theories of perception do not provide detailed insight into the 

architectures and mechanisms that underlie vision. They attempt to explain 

and understand the so called higher level thought processes both conscious 

and unconscious that are a consequence of visual processing. 

In particular the conceptual model incorporates the theoretical assumption 

that vision can be explained as both a top down and bottom up process. This 

is embodied in the structural and functional account of perception by the 

addition of a description of how memory and polysensory processing might 

effect visual input, as well as the role of the dLGN in the visual process. 
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This aspect of visual processing is not addressed by other 

neurophysiological accounts of vision such as Zeki's. 

The importance of the role of the dLGN in the conceptual model is one of 

the aspects that enable it to be distinguished from other models. Within the 

model the dLGN is described as playing an active role in the visual process, 

rather than just relaying information between the retina and the cortex. 

Most of the parallel models of visual processing discussed in chapter 3 refer 

to the dLGN mainly to add support to the segregation of function within the 

visual system. The classification of X and Y ganglions upheld in the dLGN, 

as discussed in chapter 2, is interpreted as being evidence for separate 

streams of processing in the cortex. There are other theories which suggest 

that the thalamus, and therefore dLGN, plays an active role in sensory 

processing. 

As discussed briefiy in chapters 2, 4, and 5 Mumford proposes a model that 

suggests that the thalamus acts as a blackboard which holds the most recent 

results of sensory processing which can then act as a reference point for the 

integration of information throughout the cortex (Mumford, 1991; 1992). 

The conceptual model that has been outlined in chapter four makes the role 

of the dLGN more explicit in that rather than just holding a representation 

of the most recent results of visual processing it actively engages in 

association with both the retina and with V l to enable the confirmation of 

labelled hypotheses propagated back throughout the visual system. Sill i to et 

al showed experimentally that thalamic relay cells associated with a given 

stimulus wi l l fire in synchrony as a result of feedback from V I only i f they 

are also depolarised by their retinal input. They interpret the role of this 
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cortical feedback as being a mechanism for testing whether or not the 

cortical representation matches the retinal image. I f a match is made 

through synchronous firing then connectivity is strengthened. They go on to 

say that these findings are consistent with the proposal that binding in the 

visual cortex occurs as a result of synchronous oscillatory activity (Sillito 

et al, 1994). 

Within the model the dLGN behaves in the same way as described above. 

Synchronous oscillatory discharges within the dLGN wi l l result from cells 

being stimulated simultaneously via feedforward input from the retina and 

via feedback input from V I . As a consequence of this the connections 

involved in the relay of this information between V I and the dLGN wi l l 

then be strengthened. The synchronous activity generated in the dLGN 

implies that the LGN is no longer merely relaying information, but carrying 

an evaluation of both top down and bottom up information. 

As mentioned in chapter 3, Zeki's model of visual processing suggests that 

there are four streams of information flowing in a feedforward way from the 

retina to the cortex. Each stream deals with the processing of a particular 

aspect of the visual image such as form, colour, and motion. Zeki suggests 

that information processed in distinct streams is then integrated by the 

diffuse feedback connections between cortical areas. These diffuse feedback 

connections are "non specific", they are not segregated into pathways in the 

same way that the feedforward connections are. Although Zeki proposes a 

functional structure for the integration of information, neuronal mechanisms 

are not made explicit. The conceptual model suggests a possible neuronal 

mechanism for the integration of information that is processed in separate 
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sites, that mechanism being synchronous oscillations. This mechanism is 

speculative, however as discussed in chapters 3 and 5 there is both 

neurophysiological evidence coupled with simulation studies that have 

shown that synchronous oscillations are capable of such behaviours. 

The conceptual model brings together recent neurophysiological evidence 

which enables existing models such as Zeki's to be extended to f i t with a 

general theory of visual perception. Existing neurophysiological accounts of 

vision such as Zeki's are incomplete in relation to the proposed theory of 

perception outlined in chapter 4. In turn existing models of vision based 

upon more detailed analysis of both structure and function are stil l only 

"simplifying brain models". The more detail that is incorporated the smaller 

the scope of the model. Wehmeier et al have developed a detailed model of 

vision, but to enable this to be achieved they are only able to model the 

retina, dLGN and V I (Wehmeier et al, 1989). This means at best they are 

modelling a subset of visual processing rather than attempting to develop a 

model of visual processing. They do not include explanations of the role of 

memory and poly sensory processing, and they do not include recent 

advances in our understanding of the possible role of the dLGN as the 

conceptual model developed here does. 

By incorporating recent neurophysiological research into particular 

structures forming the primary visual pathway it is possible to provide 

structural and functional support for the general theory proposed in chapter 

4. Further to this it has been possible to develop a conceptual model that 

goes beyond the scope of existing models. 
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PSYCHOLOGICAL MODELS. 

As already mentioned in the previous section the main distinction between 

the model proposed here and existing psychological theories and models of 

perception as a complete process, is that the present account provides 

detailed insight into the possible structural and functional mechanisms of 

vision. Through linking a theory based in psychology with 

neurophysiological description, detailed interpretation of perception is 

possible. The conceptual model is based around a general theory of visual 

perception drawn from existing mainstream global theories. As discussed in 

chapter 3 there are essentially two major views in the psychological 

literature regarding global theories of vision. 

Firstly there are those theories that claim that vision is purely data driven, 

the visual image is interpreted with no reference to stored information and 

those that claim vision is concept driven, using stored knowledge about the 

world to interpret the visual image. Neither of these views alone fits with 

evidence from neurophysiology into the nature of vision. For example as 

mentioned in chapter 2 there are as many feedback connections in the brain 

as feedforward. I f vision is purely data driven what is the role of these 

extensive feedback connections from higher level processing areas to lower 

level processing areas? Surely it implies that vision is concept driven as 

well as data driven, relying on stored knowledge to help interpret the visual 

image. Feedback connections allow the results of processing in higher 

levels of the visual system and other relevant further processing areas of the 

brain, to be propagated back through the system to aid interpretation of the 

visual image. 

188 



The model differs from existing data driven theories such as Marr's (Marr, 

1982) by extending the general view of vision to include a concept driven 

element to account for the massive feedback connections in the brain, 

therefore avoiding one of the major criticisms of Marr's account of object 

recognition that essentially his model is biologically implausible and hence 

sheds no new light on human perception (Werner et al, 1993). Further the 

model is different from Marr's in respect of the relationship between 

architecture and function. Marr's account of vision identifies the 

computational level as being the most important in describing visual 

processing. Architecture and function can be treated as being completely 

separate. Within the conceptual model outlined in chapter 4, architecture 

and function are inextricably linked. 

The theory on which the conceptual model is based attempts to unify 

existing theories such as Marr's with concept driven theories such as that 

proposed by Gregory to fit with neurophysiological data. The conceptual 

model goes beyond merely unifying data driven and concept driven accounts 

of vision, it attempts to make explicit the nature of the concept driven 

input. As discussed in chapter 3, Gregory's theory refers to the concept 

driven element of perception as ''top down knowledge". However, exactly 

what form this knowledge takes in terms of structure and function in the 

brain is not made clear. The conceptual model attempts to clarify this by 

defining "knowledge" as memory, genetically predetermined information 

and polysensory information. Further to this, embodying the unified theory 

of perception in a conceptual model enables specific structures and 

functionality underlying the redefined concept "knowledge" to be made 
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explicit. 

S P E C I F I C IMPLICATIONS OF T H E CONCEPTUAL M O D E L 

LIMITATIONS OF OSCILLATIONS FOR BINDING. 

Within the model it is proposed that synchronous oscillations provide a 

possible mechanism for "binding" both within modules and between 

modules. As discussed in chapters 1, 3 and 5 the proposal for binding 

through oscillations is relatively new in terms of neurophysiological 

evidence in their support. A great deal of excitement has been generated by 

their discovery, however very little has been published which discusses the 

f u l l extent of their possible limitations. 

One genera] criticism of synchronous oscillations as a mechanism for 

binding is that what the discovery of 40 HZ oscillations demonstrates is not 

binding but segmentation (Hardcastle, 1994). Hardcastle takes a classic 

view of vision similar to that adopted in the development of the conceptual 

model, and identifies visual perception comprising of three stages. Firstly 

segmentation, secondly binding and finally association. Segmentation 

involves early visual processing, where the visual image is segmented into 

"simple cohesive features". From segmentation higher level visual 

processing "binds" image segments together, incorporating some top down 

knowledge to form an object hypothesis. Finally memories and associations 

enable objects to be correctly identified. Hardcastle argues that the 

experimental work of neurophysiologists such as Gray and Singer relates 

only to the first stage of this description of visual processing. Therefore 
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synchronous oscillation does not explain binding, rather it can be seen as a 

possible mechanism underlying the segmentation of the visual image in 

early visual processing. 

Hardcastle suggests that the work of Gray and Singer demonstrates 

segmentation of the image in relation to very simple single features such as 

orientation. Gray and Singers experiments do not show how cells coding for 

very different information might behave. Cells are segmenting the image in 

terms of one possible constraint, i.e. orientation, but not binding different 

sorts of information such as colour information processed in V4 and form 

information processed in V I . However as mentioned in chapters 3 and 5 and 

acknowledged by Hardcastle, work by Engel et al has showed that it is 

possible to record synchrony between areas of the cortex coding for very 

different information. Engel et al discovered synchrony between area 17 

( V I ) and the PMLS. Area 17 ( V I ) has relatively small receptive fields, 

coding mainly for fine grain spatial resolution and orientation, whereas the 

PMLS has large receptive fields and is thought to code for motion, but is 

severely limited in its capabilities to encode orientation information (Engel 

et al, 1991a; 1991 b; 1992). 

Hardcastle goes on to argue that even as an explanation for segmentation 

the evidence for synchronous oscillations is limited. It is dangerous to 

imply that a very small number of single cell recordings can be used to infer 

a general trend in the behaviour of all the neurons in V I . Further, with the 

current state of neurophysiological research, it is impossible to accurately 

test the proposal that synchronous oscillations underlie binding. 

A second more general criticism of synchronous oscillations as a solution to 
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the binding problem is that most of the experimental work has been 

conducted on the cortex of the cat. There is much discussion about the 

limited evidence for the existence of 40 Hz oscillations in the primate, and 

therefore the relevance of this work in understanding human visual 

perception. Arguably it is as tenuous to extrapolate from primates to the 

human brain as it is any other animal. The foundations for our 

understanding of visual processing and for that matter the structure and 

function of the biological brain as a whole is largely based on, or at least 

originated from animal experimentation. Dismissing the implications of 

oscillations on these grounds hardly seems justifiable, as it could imply that 

perhaps we should question the whole of our understanding of the human 

brain that has originated from such work. Therefore it is important to make 

clear that the existence of oscillations is limited and requires further 

investigation. 

More recently research has been directed at investigating more extensively 

oscillation in monkey cortex, the results being contradictory. There is 

evidence to suggest that there is both oscillatory, and synchronous 

oscillatory activity present in awake and anaesthetised monkey cortex. 

Livingstone recorded both single unit and local field potential oscillations 

in V I of the monkey, and also demonstrated phase locking behaviour with 

two light bars (Livingstone, 1991). Krieter and Singer recorded 40-60 Hz 

oscillations in MT, however the responses were short, less than 300 Ms and 

not always present (Krieter and Singer, 1992). Work carried out by Young 

et al was not so supportive and found that there was little 40 Hz oscillatory 

activity in V I and MT, and in IT only two of fifty recording sites in a 
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monkey performing a face discrimination task oscillated in the 40-60 Hz 

range (Young et al 1992). However as with more positive conclusions drawn 

from cat experiments, the methodology for measuring this kind of activity is 

limited, meaning that more research is required and the results treated 

carefully. 

More specifically it has been argued that synchronous oscillations in respect 

of visual binding are computationally slow. They do not meet the temporal 

constraints necessary for perceptual integration. Psychophysical research 

has show that the time taken to perform perceptual grouping, segmentation 

and figure ground separation requires less that 200 ms. Biederman et al 

demonstrated that it was possible for subjects to determine the "semantic" 

relations between objects in a novel visual scene in less that 150ms 

(Biederman et al, 1982). This would mean that the visual image would have 

to be segmented, bound and associated within this time. Further, 

neurophysiological experimentation has shown that response to visual 

stimuli in recordings from awake monkey is less than 100 ms. In a 

discrimination task in which different views of faces were presented to the 

animals the latency between stimulus onset and a response in cells in STPa 

was as litt le as 70 ms. (Oram and Perrett, 1994). However i t must be noted 

that a response in a cell does not necessarily mean that recognition has 

occurred. 

Contrary to these criticisms evidence suggests that binding by synchronous 

oscillatory activity is capable of meeting these time constraints. Tononi et 

al has achieved figure ground segmentation in simulation in around 100-200 

Ms which fits with psychophysical and neurophysiological data.(Tononi et 

193 



al. 1992). The original work by Gray and Singer also demonstrated that 

synchrony was present within a few tens of milliseconds. It could be argued 

that i t might be possible to equate oscillation onset times with cell 

recording times, but not so successfully with behavioural response to visual 

stimuli. Certainly simulations have concentrated on replicating responses in 

populations of artificial neurons rather than in the generation of behaviours. 

Edelman*s group argue that they have successfully used oscillatory 

networks to drive a behavioural response to visual stimuli producing similar 

distribution of reaction times over a given set of trials as psychophysical 

studies (Tononi et al, 1992). 

Another more specific criticism of the use of oscillations as a mechanism 

for perceptual integration is that they are computationally more expensive. 

This criticism related more to the development of artificial vision systems 

than the explanation of biological vision. Although oscillations are 

computationally expensive and the physical simulation time is longer than 

in standard neural networks (SNN's) the advantages out weigh this 

disadvantage. The main advantage is the number of representations one can 

sustain on a single network, facilitated by the fact that you can encode more 

that one parameter (Skarda & Freeman, 1987; Grossberg, 1988), phase 

amplitude and frequency, rather than just amplitude in the form of 

excitation level as in SNN*s. Further, Hummel and Biedermann have 

developed a model that is capable of the temporal binding of visual 

relations using 44 cells compared to the 1.985x10*' cells needed for a 

standard enumeration solution (Hummel & Biederman, 1990). 

The fact that oscillatory artificial neurons are computationally expensive is 
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not a realistic problem at this stage in the development of their use in visual 

perception. At this point they should be seen as the basis for proving a 

methodology rather than for buildings systems for the real world. Once the 

methodology has been established it is envisaged that technology in the 

form of computing power wi l l have caught up. To a limited degree, they are 

already feasible with today's computational power, and have been used to 

replicate binding demonstrated by neurophysiological experimentation( for 

example: Eckhorn et al, 1989; Eckhorn et al, 1990; Engel et al. 1990; 

Eckhorn & Schanze, 1991; Eckhorn 1991.) and binding in cognition (Shastri 

& Ajjanagadde, 1993; Tononi et al, 1992). Further, i t is possible to reduce 

the computational power needed to employ oscillatory behaviours in 

networks. Examples of this can be seen in the case Carpenter and 

Grossberg's Adaptive Resonance Theory (ART), where the oscillatory 

behaviour of resonance is represented in a simplified and computationally 

less demanding form (Carpenter & Grossberg, 1987a & 1987b; Carpenter & 

Grossberg, 1988; Grossberg, 1988) and in the work of Baldi et al (Baldi et 

al, 1990), where oscillatory neurons are modelled simply in terms of their 

frequency and phase relationships. 

Grossberg emphasises this point further in a response to Skarda and 

Freeman's suggestion that chaos is a necessity of biological systems to self-

organise (Skarda & Freeman, 1987) Grossberg emphasises the point that 

although biological data suggests that chaos is evident in the stable self-

organisation of sensory recognition codes, notably in olfaction, i t is not 

necessary to build systems that exhibit chaotic activity to achieve the same 

functional property of the biological system. Grossberg sites ART as an 
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example of a self-stabilising system that is not dependent on chaos 

(Grossberg, 1987c). Baldi et al also demonstrate this point, that biological 

isomorphism is not necessary to achieve the same results in simulation 

through his use of coupled oscillators which used frequency and phase 

information to encode information, but do not actually oscillate (Baldi et al, 

1990). In summary you can capture the nature of oscillations without the 

burden of computational expense necessary to simulate oscillatory neurons. 

Further criticism of the use of synchronous oscillations to explain binding 

is the limited number of representations that are available per network. In 

fact, by binding using temporal codes, it is possible to have several 

representations coexisting in a network. Recent research has shown that it is 

possible to represent multiple memories in a single neural network of 

oscillating neurons (Lisman & Idiart, 1995). Lisman and Idiart replicated 

psychophysical results which showed subjects were capable of storing up to 

7 short term memories at any one time. They worked on the principle that 

different memories were stored as different high frequency (40 Hz) 

subcycles of a low frequency oscillation. The number of possible 

representations on any one network is determined by the number of 

subcycles that f i t in any given low frequency cycle. 

THE RELATIONSHIP BETWEEN SYNCHRONY IN NEURAL FIRING 

AND SYNCHRONY IN OSCILLATIONS 

As discussed in chapter 5 synchronous oscillations result from neurons 

discharging simultaneously causing oscillations in the 40-60 Hz range. 

Temporal f i r ing patterns are closely correlated with this oscillatory activity 
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(Gray & Singer. 1987; 1989; Eckhorn et al, 1988; Gray et al, 1989; Eckhorn 

et al, 1989). However, the integration of information solely by synchronous 

f i r ing patterns is not without its problems. Retinal jit ter, and time delays 

especially in the integration of information between cortical areas would 

mean that spike trains are randomised. Information arriving say in IT from 

two parallel streams of information flow would be subject to varying time 

delays, meaning that information relating to the same object would be 

represented by f i r ing patterns that were not temporally synchronised. It is 

possible that oscillatory discharges would enable these problems to be 

overcome, enabling the integration of information between cortical areas. 

Within the visual cortex it is thought that cells code for stimulus specific 

information through a rhythmic f ir ing pattern which correlates closely with 

oscillatory discharges in the 40-60 Hz frequency band (Gray & Singer, 

1989; Eckhorn et al 1989; Engel et al, 1992;). I t has been suggested that 

this oscillatory activity acts as a "carrier signal for a temporal binding 

mechanism," between cortical areas (Engel et al, 1992). 

As discussed in chapter 5 Eckhorn et al acknowledge the relationship 

between rhythmic f i r ing patterns and synchronous oscillations. They 

distinguish between stimulus forced and stimulus induced synchronisation. 

Stimulus forced synchronisation takes the form of averaged visually evoked 

potentials and are generally not oscillatory. They are involved at all levels 

of visual processing. Stimulus induced synchronisation's are oscillatory, 

and facilitate the correlation of irregular discharges. Eckhorn et al go on to 

suggest that stimulus forced synchronisation's enable crude pre-attentive 

representations to be formed, whereas stimulus induced synchronisation's 
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allow for more sophisticated associations to be made involving inter area 

interaction within the visual cortex and with other cortical processing areas 

(Eckhorn et al, 1990). 

EXAMPLES OF THE COMPUTATIONAL ROLES OF SPECIFIC LINKS IN 

THE MODEL. 

In chapter 4 an outline of the nature of the structure and function of the 

conceptual model is presented. Although simulation of the model was not 

undertaken, a simple description of visual processing and a possible 

simplified implementation of the model is outlined (see figures 18 & 19 and 

corresponding text). It is possible to expand on chapter 4 by looking more 

specifically at the computational roles played by specific arrows in the 

model for example the links between the modules representing IT and 

PARIETAL cortex, and dLGN and V I . 

As outlined in chapter 4, processing within the model is carried out in two 

streams. The "WHAT" pathway processes form information, and is 

concerned with object identification. The "HOW" pathway processes 

information which facilitates a response to the visual stimuli. Although 

there is evidence of integration between these two systems as discussed in 

chapter 3 it is beyond the scope of the model to include descriptions of this. 

The model proposed in general, and at this stage in its development is not 

designed to model specific psychophysical phenomena. However interaction 

between the two streams is addressed on a more general level. As discussed 

in chapter 3 interaction in the biological vision system occurs through 

diffuse feedback connections and very weak specific feedforward 
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connections. The basis for interaction within the model is via diffuse 

feedback connections. Such connections occur between all areas, and result 

in synchronisation of oscillatory discharges. This allows information 

processed in separate pathways to be integrated via temporal mechanisms. 

One such point of interaction is made explicit in the model via a reciprocal 

link between IT and PARIETAL cortex. The purpose of this link is 

discussed in chapter 4. 

Computationally the link consists of diffuse feedback connections between 

neurons in IT and the PARIETAL cortex. These feedback connections would 

be not be specific, enabling the integration of information between areas 

with unrelated receptive field properties. The links between IT and the 

PARIETAL cortex are associative links. The idea being that i f one area is 

active the other area is also activated by association. It is envisaged that 

these links would be weak due to the fact they would not share the same 

receptive fields. This would mean that rather than connecting one to one 

they would connect groups of neurons in IT to groups of neurons in the 

PARIETAL cortex. The links would st i l l be strong enough to enable the 

oscillatory discharges of neurons in IT representing the visual image 

processed in the "what" pathway, to synchronise with the oscillatory 

discharges of neurons in the PARIETAL cortex, representing the visual 

image processed in the "how" pathway. The oscillatory discharges in IT 

would represent a object hypothesis, whereas the oscillatory discharges in 

the PARIETAL cortex would represent the spatial layout information 

relating to that given object hypothesis. The effect of this would be that the 

oscillatory responses for "what" information would be synchronised with 
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those for "how" information This link therefore enables object identity to 

be linked to spatial and motion information which can then be passed to the 

motor cortex via the "how" pathway to enable the execution of motor 

responses to the object. 

Engel et al confirm that it is possible to record synchronisation of 

oscillatory responses between different visual processing areas in the cortex 

that have very different receptive field properties via weak diffuse feedback 

connections (Engel et al, I99lb) , notably between area 17 ( V I ) and the 

PMLS. V I has small receptive fields and is mainly concerned with the 

processing of detailed form information. The PMLS on the other hand has 

large receptive fields and is concerned primarily with the analysis of 

direction of movement, and its capability for processing orientation 

information is extremely limited. 

As mentioned previously in this chapter and in chapters 4 and 5 the 

relationship between the dLGN and V I is crucial to the model. Feedforward 

excitatory connections between the dLGN and V I serve to relay the retinal 

image to the cortex for processing. These connections are specific and 

related to the receptive field properties of neurons in the dLGN and V I . 

Segmentation in V I then takes place as described by neurophysiological 

accounts in chapter 5. As discussed more generally in chapters 3, 4 & 5 and 

earlier in this chapter feedback connections between V I and the dLGN 

perform a different role. They enable an association to be made between the 

object hypothesis which is arrived at as a product of feedforward 

processing, and the retinal image. This association enables the labelled 

object hypothesis to be confirmed. 
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The mechanism for this association is similar to the mechanism for the 

integration of information between IT and the PARIETAL region described 

previously. Feedback connections from V I to the dLGN wi l l cause neurons 

in the dLGN to oscillate i f they are receiving feedforward input from the 

RETINA. Neurons in the dLGN which are oscillating wi l l strengthen their 

feedforward connections to V I causing a stronger level of excitation in the 

relevant neurons in V I . This w i l l then be propagated throughout the model 

affecting all levels. Further to this the feedback connections from V I to the 

dLGN wi l l enable the synchronisation of oscillations between the two areas 

to enable hypothesis confirmation. 

G E N E R A L IMPLICATIONS OF T H E CONCEPTUAL M O D E L 

PSYCHOLOGY 

One of the main implications in relation to psychology is the attempt in the 

conceptual model to link neurophysiological accounts of vision with 

psychological ones. As mentioned in previous chapters the rationale for this 

is that through the development of a conceptual model insight into the 

relationship between visual processing and visual perception wi l l become 

clear. This is seen by researchers as being fundamental to advancing our 

understanding of vision: 
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"...we know very little about how visual processing leads to perceptionf A 
plethora of processing models have been proposed^ yet few encompass or 
account adequately for more than a small fraction of the available 
neurobiological data. " 

(Oram & Perrett, 1994). 

In general terms the model represents a theory of perception, which has 

evolved from combining mainstream psychological theories, and which has 

been grounded in neurophysiology. This has enabled one of the aims of the 

thesis, restated in the quotation above to be addressed. A general claim that 

perception is a combination of data driven and concept driven processing 

has been supported from neurophysiological evidence, specifically the role 

of diffuse feedback connections enabling memory and poly sensory 

information to be integrated into data driven visual processing. The 

suggestion of the role of the dLGN as a mechanism for confirming a 

labelled hypothesis of the visual image, again supported by 

neurophysiological experimentation, adds further support. This then enables 

psychological theories such as those of Marr and Gregory to be re-evaluated 

in the light of these suggestions. 

It is possible that refinement of the theory and model through further 

experimentation and simulation may advance understanding of 

neuropsychological deficits and advance our understanding of the brain. 

Through the future development of large scale biologically plausible 

simulations of the visual system it w i l l be possible to investigate the 

functional properties of the visual system. This approach has already had a 
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major impact on our understanding of the brain. By building biologically 

realistic models i t is possible to investigate the dynamical interactions of 

the nervous system. 

More specifically, through making explicit a possible relationship between 

psychological phenomena i.e. binding and integration, and a 

neurophysiological solution i.e. synchronisation of oscillatory discharges, 

the unification of disciplines has been achieved. This unification allows 

understanding from both disciplines to advance a general understanding of 

perception. Arguably psychological theory alone has been incapable of 

providing an adequate solution to the binding problem. 

Other researchers have also used the same neurophysiological mechanisms 

to successfully develop a model capable of dynamic binding in reasoning 

(Shastri & Ajjanagadde, 1993), attempting to link so called higher level 

cognitive functions with low level neurophysiological description. Although 

their work met with much criticism one of the responses to their paper was 

that they were making a brave attempt to unite psychology and 

neurophysiology rather than merely replacing psychological accounts of 

reasoning with neurobiological ones (Ohisson, 1993). The conceptual model 

has also attempted to achieve the same results for vision. 

Although there is much criticism of oscillation as a mechanism for 

integration and specifically binding it seems to be a candidate for serious 

consideration. The emphasis on neurophysiological mechanisms as a 

possible solution to the binding problem has lead to the development of 

research interest that attempts to span several disciplines. One of the 

biggest problems to overcome is the fear of multi-disciplinary research 
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evident in both the psychological and neurophysiological literature. The 

conceptual model has endeavoured to provide a framework which spans 

disciplines, so providing proof that multi-disciplinary research is possible. 

More specifically, through the development of both a theory and conceptual 

model that is firmly grounded in both neurophysiology and psychology, it is 

hoped that the pitfalls of complex computational models such as that 

developed by Marr can be avoided. Marr's theory of vision, which 

dominated psychological accounts of vision for so long relied on 

biologically implausible computational requirements (Werner, 1993). This 

meant that although it provided the foundations for the development of 

successful artificial vision systems it did not provide accurate insight into 

the nature of human visual perception. As mentioned previously in this 

chapter, Marr's theory of vision suggests that architecture and function can 

be seen to exist as separate entities. Through taking into account 

neurophysiological accounts of visual processing it becomes obvious that 

structure and function are inextricably linked. Therefore it is possible, 

through multi-disciplinary research, to advance our understanding of 

perception. 

ARTIFICIAL INTELLIGENCE 

The use of oscillations as mechanisms for binding and integration have far 

reaching implications for A l . In general, input from psychology and 

neurophysiology provides design constraints which the A l researcher can 

utilise (Singer & Donoghue, 1988). The design constraints evident from the 

development of the conceptual model can be considered to be: 
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• The use of stored information in the analysis of input. 

• Simultaneous feedforward processing of information in separate channels 

• The use of both spatial and temporal information in the encoding of 

information rather than simply using spatial encoding as in SNN's. 

Specifically the third constraint is of significance in the development of 

artificial vision systems. As mentioned in chapter 1 the binding problem is 

a central issue in the development of artificial models of visual processing 

as well as in biological vision. Solutions to the binding problem within A l 

generally involves the enumeration of every possible combination of object, 

and provide a unit or set of units to represent each combination in a SNN 

(Hummel & Biederman,1990). For example in the recognition of simple one 

dimensional coloured objects in the visual scene each possible combination 

of shape, colour and position is calculated and represented by a possible set 

of outputs in a neural network. This means that in the analysis o f complex 

visual scenes the number of possible enumerations is beyond the 

capabilities of most networks. Further, more complete information about 

every possible enumeration has to be built into the network before it is able 

to process data. I f the network is presented with a combination that i t has 

not been previously enumerated then recognition w i l l f a i l . 

Another problem for such a network is highlighted by Hummel and 

Biedermann as what they refer to as the "scrambling problem" (Hummel & 
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IS 

Biedermann, 1990). This is where a SNN recognises an incorrect 

combination of features, which fu l f i l s the enumeration criteria but i 

visually incorrect. For example the right combinations of edges are present 

say for a square, but in the wrong combination giving rise to a collection of 

lines that are not identifiable as a square. Hummel and Biederman 

demonstrate that these problems can be overcome using "dynamic bindings" 

in the form of synchrony in networks of oscillating artificial neurons. 

Within a series of linked networks the spatial relations, location and 

viewpoint of a given object can all be represented separately and bound 

together through synchronous oscillations facilitated by "fast enabling 

links" which do not affect excitatory and inhibitory processing within each 

network. Further i t is possible to represent more than one object at a given 

time using this technique. 

Other successful implementations of artificial systems capable of binding 

information using temporal coding have been mentioned previously and 

include Skarda and Freeman's model of olfaction and Shastri and 

Ajjanagadde's model of systematic reasoning. Skarda and Freeman's model 

is essentially a neurophysiological model, and does not involve accounts of 

the cognitive aspects of olfaction. Shastri and Ajjanagadde's model related 

more closely to the approach taken here, concerned with linking higher 

level cognitive processes to lower level neuronal behaviours. 

So far the impact of temporal coding in the form of oscillations has not had 

a major impact on mainstream A l . Implementations have mainly centred 

around the development of biologically realistic models by 

neurophysiologists for the investigation of brain dynamics. However, as 
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mentioned earlier, Edelman*s group have concentrated on the development 

of biologically realistic models of brain function that drive robots (Tononi 

et al, 1992). 

SUGGESTIONS FOR F U T U R E W^ORK. 

OVERVIEW. 

It was not intended that the conceptual model and theory would be in 

anyway a definitive account of visual perception. What was intended by the 

thesis was the investigation of the nature of visual perception in relation to 

its architectures and mechanisms. On refiection it seems that one of the 

main outcomes of this work is that its contribution to understanding visual 

perception is to provide the foundations for future research. One of the main 

motivations behind the thesis was that i t is essential to have an 

understanding of perception as a coherent whole before the construction of 

detailed software models. Bearing this in mind it is also possible to refine 

that representation of perception through the implementation of a general 

model in terms of more specific applications. 

SIMULATE THE MODEL. 

The next stage of the research program would be to attempt a simulation of 

the model as i t stands, the aim being to decide whether i t is possible to 

investigate perception as a complete process or whether it would be more 

productive to concentrate investigation on a particular aspect of visual 

perception such as object recognition or visual attention. Through 
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simulation it is envisaged that possible extensions to the model would 

become apparent. The architectures and function described by the model 

may be insufficient to allow for it to be built in software. This may be the 

case both in relation to alterations that might be necessary due to 

constraints enforced by the available simulation tools, and also constraints 

imposed by the neurophysiological and psychological descriptions 

underlying the conceptual model. This would be the case for the application 

of the simulation to both the development of artificial vision systems and 

understanding human visual perception. 

Simulation can be regarded as a tool to advance our understanding of visual 

perception. Arguably in relation to the general theory forming the 

foundations of the conceptual model, simulation would not provide anymore 

insight than the conceptual model outlined in the thesis. A l l simulation 

would achieve would be a different way of representing what had already 

been stated. It could almost be likened to taking a written description of the 

model and then re writing it in diagrammatic form. 

In attempting to understand more specific aspects of the conceptual model, 

simulation may provide a useful tool. For example investigating whether it 

is possible that synchronous oscillatory activity underlies feature 

integration within modules, or whether diffuse feedback resulting in 

synchronous oscillatory activity could explain the integration of 

information between modules. I f the model was to be used in such a way to 

understand the mechanisms of human visual perception then it would have 

to correspond to experimental research taking place in neurophysiology. For 

example the generalisation of neurophysiological findings about neuronal 
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mechanisms in V I to explain how integration across modules might occur is 

speculation. So a l l the model would achieve is a mechanistic demonstration 

o f a theory o f func t iona l i ty . What the model would do however, is to 

provide direct ion for neurophysiological investigations into the possibi l i ty 

o f this a r t i f i c i a l behaviour existing i n the biological brain. 

It is possible therefore to view the possible simulat ion o f the conceptual 

model as either detailed models o f modules, investigating the mechanisms 

underlying perception, or an extremely s impl i f i ed simulation o f the model 

as a whole. The former would not explain perception, rather visual 

processing, the latter on the other hand could be expected to explain visual 

perception, but the fact that i t was an extremely s impl i f i ed model would 

mean that i t would s t i l l only provide a generalised interpretation o f 

perception. I t is possible that implementation o f either the conceptual model 

as a whole or specific aspects o f the model could be applied to help us 

understand and explain both perceptual defici ts and visual behaviour 

generally. This would obviously be most successful i f carried out in parallel 

w i t h pure experimental research. 

Attempted simulation o f the model has far greater significance i n the 

development o f a r t i f i c i a l v is ion systems. Continued research would demand 

that the model was implemented in software and in i t i a l tests were carried 

out to see i f i t was possible in its simple form to demonstrate its ab i l i ty to 

perform in the way proposed by the conceptual model. A t this point there 

would be a need for a great deal o f work to be conducted into the 

computational constraints o f the model and ul t imately a lot o f the biological 

realism would have to be omitted. A simulat ion for a r t i f i c i a l v is ion systems 

209 



would be based upon the conceptual model, but the resultant behaviour o f 

the system would have to be more important than its biological realism. 

I n i t i a l l y i t would be necessary to decide what k ind o f system was to be bui l t 

based upon the model. As wi th its application to understanding human 

vision there are two possible options. First ly to try to implement the 

conceptual model as a complete system capable o f human like perception. 

The possible uses o f such a system would include real time robotics. 

Secondly i t is possible to concentrate on a particular aspects o f the model to 

provided solutions for specific v is ion problems. For example the 

development o f the feature l i nk ing mechanisms proposed by the model for 

use in pattern recognition processes. 

The next stage would be to select a possible neuronal model which would 

behave i n the way proposed by the conceptual model. Most neuronal models 

that produce oscil latory behaviour are based upon experimental data f r o m 

single cell recordings, therefore i t would seem that biological realism could 

be applied even to a r t i f i c i a l vis ion systems. However the s impl i f ica t ion o f 

the behaviours o f such models to a l low them to be described mathematically 

means that they can at best be considered approximations o f neuronal 

behaviour. The selection and formula t ion o f the neuronal model is in i t se l f a 

major research program. This then becomes even more complex when 

networks o f neurons are constructed. The connection o f a r t i f i c i a l neurons in 

a network, be i t a b iological ly based architecture or a completely arbitrary 

one does not guarantee behaviours proposed by experimental data or 

conceptual models. I t may be the case that architecture, funct ion and 

mechanisms as proposed by the model may not extrapolate to the 
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development o f a r t i f i c i a l v is ion systems. The conceptual model may providi 

ideas that could then be developed further, but may not rely on the actual 

constraints o f the model. 

In sum then, The conceptual model is in fact a hypothesis for a model, it 

could be argued that simulation at this point would involve a great deal o f 

hard work based on pure speculation. I t would be feasible to attempt 

simulat ion o f certain aspects o f the model, but this would not provide 

support for the theory and conceptual model as a whole. 

POSSIBLE EXTENSIONS TO THE M O D E L . 

The development o f any model is an iterative process. Once a model has 

been proposed i t is possible to adapt and change that model to f i t w i t h new 

data and to extend i t to incorporate a wider range o f behaviours. I t was not 

intended that the conceptual model would account for a l l visual processes. 

I t does not for example include secondary visual pathways, visual attention 

processes and detailed explanations o f connectivity between visual modules. 

Therefore further work on the model must include a more comprehensive 

and more detailed account o f both architecture and func t ion . What is needed 

is to look at particular visual behaviours in relation to the model and to 

extend i t incorporate these behaviours, for example how the model explain 

the recognit ion o f faces, or how action responses are generated f r o m visual 

s t imu l i . To a certain degree extensions to the model w i l l be defined by the 

applications o f the model. I f for example the model is to be use to help 

understand b l ind sight, then secondary visual pathways must be 

incorporated. In the same way investigation into other visual behaviours 
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w i l l mean that change to the model w i l l be necessary. 

One o f the key areas for further work is the development of a more detailed 

understanding o f the more speculative aspects o f the model. This would 

include investigations into the way in which top-down memory was 

integrated into the system as an aid to hypothesis label l ing, and the role o f 

the dLGN in hypothesis conf i rmat ion. I t would be expected that s imulat ion, 

especially for the purposes o f modell ing human visual perception would 

demand that extensions such as the incorporation o f secondary visual 

pathways were made. The model claims to provide a global account o f 

visual perception. Arguably wi thout incorporating an explanation o f 

attention processes, and by omit t ing certain known structures relating to 

visual perception this claim is not entirely va l id . However the model 

provides a point f r o m which perception as a whole process can be 

investigated. Importantly the development o f the model so far has shown 

that visual perception does not occur in isolation, i t includes input f rom 

processing across the whole brain. Therefore not including descriptions o f 

certain visual processing functions and particular detailed structures is 

really a minor omission in relation to the rest o f the brain. 

The theory underlying the model is not conclusive. Is therefore envisaged 

that another possible extension to the model would involve conducting both 

psychological and neurophysiological experiments to investigate the theory 

i n more detail . This may result i n changes being made to the model in order 

for i t to be used in attempts at understanding human visual processing. 

However as descriptions o f structure and funct ion can be separated f rom the 

theoretical foundations, explanations o f some o f the more detailed aspects 
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o f visual processing would not be affected by such modif icat ions . Any 

changes that were made as a result o f such experimentation would not 

necessarily affect the model in terms o f its application to the development 

o f a r t i f i c i a l v is ion systems unless such systems claimed to be biological ly 

plausible. 

CONCLUSIONS. 

A mult i -disc ipl inary approach to the investigation o f visual perception has 

been successfully applied and the conceptual model developed has benefited 

f r o m this approach. A better understanding or rather interpretation o f human 

visual perception as wel l as new possibili t ies for a r t i f i c i a l vision systems 

has been achieved. Final ly has been possible to place the conceptual model 

in relation to future research. 
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GT.OSSARY 

Local Visual Processing 

Local Perception 

Global Perception 

Bottom-Up Approaches 

Top-Down Approaches 

The processing of sensory information localised 
to those areas of the brain which process only 
visual information. Essentially theses areas can 
be defined as; V I . V 2 , V 3 . V3a. V4 and V 5 . 

The perception of sensory input localised to a 
given sensory area, namely vision. Any 
"perception" at this level would be restricted to 
visual information only and would not include 
information processed in other sensory 
modalities or memory. 

The perception of sensory input that includes 
the result of local processing and local 
perception in many sensory areas as well as 
input from memory. 

An approach to the study of visual perception 
that begins at the lowest possible level of 
explanation, and results in the formation of a 
theory. More explicitly with regard to the study 
of visual perception, to begin by trying to 
understand vision at the neuronal level and 
using successively higher level descriptions 
eventually to formulate a theory based on these 
investigations which also explains high level 
behavioural accounts of visual perception. 

An approach to the study of visual perception 
that takes the opposite approach to bottom-up 
approaches. Initially the formulation of a 
theory takes place based on a high level 
behavioural account of visual perception, which 
is then supported or refuted by the collection of 
evidence at lower levels of description, ending 
at the neuronal level. 

Data-Driven 

Concept-Driven 

An approach to the explanation of visual 
perception that maintains all the information 
needed for interpreting the visual image is 
already present in the visual scene. No prior or 
stored knowledge is necessary. 

An approach to the explanation of visual 
perception that takes the opposite view of data-
driven approaches. Concept-driven approaches 
to understanding visual perception maintain 
that stored knowledge in the form of memory is 
necessary for the successful interpretation of 
the visual image. 
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