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CONTROLLED STRESS RHEOMETRY

KEVIN GOLDEN

Abstract

The work in this thesis is concerned with a theoretical and
experimental investigation of certain time dependent simple flow
situations on a controlled stress rheometer.

We begin by carrying out a viscoelastic analysis of
unidirectional combined steady and oscillatory shear flow, that is
valid for large oscillatory shear amplitudes. The theory uses a
corotational Goddard-Miller model to describe the non-linear
relationship between the shear stress and shear rate in the fluid.
Our main interest in this work is the description of the reduction in
mean shear stress in the fluid due to the fluctuation of the shear
rate about a non-zero mean. The effect of elasticity in this flow
situation is examined by comparing mean shear stress reduction with
that predicted by an inelastic model. A comparison is also made with
data obtained on a controlled stress rheometer.

A linear viscoelastic theory which is able to interpret the
effect of Fluid inertia on pure oscillatory complex viscosity data,
is developed for the controlled stress instrument. The relevant
equations of motion are solved by numerical methods. A first and
second order perturbation technique is used to obtain theoretical
expressions for the complex viscosity function for a number of

-geometries, -commonly used-to measure dynamic data. The theory is
then used to interpret the effect of fluid inertia on experimental
dynamic data.

Finally, we carry out a theoretical Investigation of the dynamic
behaviour of a 'yield stress' material. The generalised Maxwell
model is modified, and then used to describe the non-linear
viscoelastic dynamic behaviour of ‘yield stress' materials.
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Chapter 1

Introduction

Rheology is the study of the deformation and flow of matter.
The term was invented by E. C. Bingham in 1929, and is derived from
the Greek word 'rheos' meaning 'flow'. The discipline is concerned
with the study of material behaviour under a variety of flow
conditions. In classical mechanics, the distinction between the flow
behaviour of solids and liquids was considered to be quite sharp.
The deformation of solids were governed by Hooke's Law describing
elastic deformation, and the flow of fluids governed by Newton's Law
describing viscous flow. However, it is now well known, that the
flow behaviour of many materials do not obey either of these
classicﬁl laws, but can exhibit both solid-like and fluid-like
properties depending on the flow conditions. These materials may be
classified as viscoelastic solids if they do not change shape
continually when subjected to a constant stress, and as
elastico-viscous fluids if they do change shape continually under
conditions of constant stress.

The first. society dedicated to the study of rheology was. the-
(American) Society of Rheology formed in 1929, This organisation
provided an international forum for workers from the fields of
physics, engineering, mathematics, and colloidal chemistry. Since
this time, interest in the subject has grown to an extent that
rheology can justifiably claim to be of fundamental importance to
many types of industry, such as the plastics, petroleum, china clay,
food, rubber, and textile industries to name but a few. Rheology is
also of interest to the clinical sciences with studies into the flow
behaviour of body fluids such as blood, mucous, and synovial fluid.

An important area of rheological study is concerned with the
measurement of material properties in simple shear flow situations,
an& is known as rheometry. These measurements may be used directly
in the design of efficient flow processes or in quality control
assessments. The rheological information obtained from simple
rheometrical flow situations can be of use in the development of
constitutive equations. These constitutive equations may then be
used in conjunction with the stress equations of motion and

continuity to predict material behaviour in complex flow situations.




Another important area of rheological study concerns the relationship
between observed material behaviour and the microstructure of
materials. It is therefore important to be able to consider
rheometrical flow situations in which the structure of the material
is not destroyed.

A rheometer is a versatile instrument capable of measuring
material properties in simple rheometrical flow situations. These
instruments are designed so that, either, a deformation is applied to
the material and the subsequent forces that are generated measured,
or a force is exerted on the material and the subsequent deformation
measured.

This thesis is concerned with an experimental and theoretical
investigation of certain time dependent simple flow situations,
involving elastico-viscous fluids. These flow situations can be
generated on a Carri-Med controlled stress rheometer. '

In Chapter 2, we describe the formulation of various equations
of state for elastico-viscous fluids. Particular emphasis is given
to those models that are relevant to the studies carried out in this
thesis. We also briefly consider the simple rheometrical flow
situations of steady, oscillatory, and combined steady and
oscillatory shear flow. The material properties used to characterise
the flow behaviour of elastico-viscous fluids in the aforementioned
flow situations are discussed.

In Chapter 3, we introduce the subject of controlled stress
rheometry. A brief historical account of the development of the
controlled stress technique is given, before describing the Carri-Med
controlled stress rheometer in detail. We consider the analysis
involved in the measurement of the shear viscosity function in steady
shear and the complex viscosity function in small amplitude
oscillatory shear for this Instfument. The analysis is presented for
the cone and plate, parallel plate, and concentric cylinder
geometries.

In Chapter 4, we carry out a theoretical analysis of tﬁe
unidirectional shear flow of an elastico-viscous fluid in which the
shear rate fluctuates sinusoidally about a non zero mean. One of the
aims of this analysis, is to determine the effect of the oscillatory

shear component on the mean shear stress produced in the fluid.



A Goddard-Miller model is used to describe the non-~linear
relationship between the shear stress and the shear rate in the
fluid. This corotational model is able to describe large
deformations and hence, the analysis is able to consider a flow
situation in which the ratio between the oscillatory shear component
and the steady shear component is large. Theoretical expressions are
also derived to predict the effect of the oscillatory shear rate on
the fundamental oscillatory shear stress amplitude and phase. It
should be noted, that due to the complexity of the equations
involved, mechanical inertia and fluid inertia effects have been
ignored in the analysis.

A generalised Newtonian model is used to determine the effect of
a combined steady and oscillatory shear rate on the mean shear stress
for an inelastic fluid. By compaéing predictions from the
Goddard-Miller model with predictions from the generalised Newtonian
model, we are able to comment on the importance of elasticity in this
flow situation.

In Chapter 5, we carry out an experimental programme on the
Carri-Med controlled stress rheometer to consider the combined steady
and oscillatory shear flow of a 2% solution of polyisobutylene in
dekalin. 1t is possible, via the instrument software,_to_calculate
the applied torque required to produce a given mean shear rate and
fundamental oscillatory shear rate amplitude in the fluid. In this
manner, we may determine the reduction in the mean shear stress,
fundamental oscillatory shear stress amplitude and phase produced in
the fluid, due to the presence of the oscillatory component in the
shear flow. The experiments will be carried out for large values of
the ratio between the oscillatory shear and steady shear components.
A comparison will be made between experimental mean shear stress
reduction data and theoretical predictions obtained from the
Goddard-Miller and generalised Newtonian models.

In Chapter 6, a linear viscoelastic analysis of oscillatory
shear flow on the controlled stress rheometer is carried out. The
relevant equations of motion are solved exactly using a numerical
technique. This analysis is therefore capable of interpreting the
effect of fluid inertia on dynamic data. A perturbation analysis
which assumes small values of a non-dimensional fluid inertia
parameter is also carried out for the linear viscoelastic flow

situation to second order accuracy. Theoretical expressions from



both the exact and perturbation analysis are used to investigate the
effect of fluid inertia on the complex viscosity function for a
variety of flow conditions.

In Chapter 7 an experimental programme is carried out to measure
dynamic data for three different elastico-viscous fluids over a
frequency range of 0-40 Hz. The theoretical expressions derived in
Chapter 6 are used to interpret the effect of fluid inertia on this
dynamic data.

In the final chapter, we consider the effect of yield stress on
dynamic data. This non-linear viscoelastic behaviour is described in
terms of a modified generalised Maxwell model. This model consists
of n Maxwell elements connected in parallel with a yield stress
component. The theoretical model is then used to investigate the
effect of yield stress on the dynamic data. Some of the issues

involved in such a comparison are discussed.



Chapter 2
Rheological Equations of State
2.1, Characterisation of elastico-viscous fluids.

The work presented in Chapters 4 to 7, is concerned with the
characterisation of elastico-viscous fluids in small amplitude
oscillatory and combined steady and oscillatory shear flow. To
facilitate the understanding of these studies, we require a
description of the material functions normally associated with the
characterisation of elastico-viscous fluids in these flow situations.

The stress field in the fluid may be represented by a symmetric
covariant tensor aikt defined in a spatial coordinate system. The

stress in the fluid may be conveniently expressed as

i = a;k - P8y , (2.1.1)

where p is an arbitrary isotropic pressure, gik is the metric tensor
associated with the spatial coordinate system, and U;k is the extra
stress tensor.

In order to relate the deformation in an arbitrary_fluid element_
to the forces producing that deformation, we require an equation of
state (or constitutive equation). This equation is used in
conjunction with the equations of motion and continuity in the
solution of flow problems. The equation of motion is obtained by
applying Newton's Law of motion to an arbitrary fluid element

(Walters [45)), resulting in the derivation of the following equation,

aaik DVi
+ pfl = p . (2.1.2)
axk Dt

where f is the total body force vector, V is the velocity vector and

p is the density of the fluid. The differential operator

D d d
Dt dat * Vk Bxk ! (2.1.3)

[}l

is known as the material derivative,

t We use a standard tensor notation, covariant suffices are written

below, and contravariant above. Repeated suffices indicate summation.



For incompressible materials, the equation of continuity is
given by,
v,

_x = 0 . (2.1.4)

axk

The flow behaviour of Newtonian liquids in any given flow
situation is characterized by the determination of the constant
coefficient of viscosity n,. However, for an elastico-viscous fluid,
the viscosity will in general be a function of the shear rate. This
viscosity function will be a monotonically decreasing function of
shear rate for a shear thinning fluid, and a monotonically increasing
function of shear rate for a shear thickening material. In addition

to this, we must also consider normal stress effects.
(a). Steady shear flow.
Consider the simple steady flow situation defined by the

following velocity distribution Vi in Cartesian coordinates X

V =3 x ;i V=0 ; Vv =20 , (2.1.5)

1 2 2 3

where 4 is the shear rate. The corresponding stress distribution for
an elastico-viscous fluid is given by Colemén et al [9] to be
o ., = )

12

o - 033 = u1(7) . (2.1.6)

ag -
22 33

v, (1
v, and v, are known as the first and second normal stress differences
respectively. The behaviour of an elastico-viscous fluid in such a
flow situation is characterized by the three material functions 7,
v,, and »,. These quantities are all even functions of ¥. As ¥
tends to zero, the normal stress differences v, and v, both tend to
zero, and the shear viscosity 7 tends to a constant value g,. This
is an indication that elastico-viscous fluids exhibit Newtonian
behaviour at low shear rates.

Experimental evidence suggests that first and second normal
stress differences are both greater than zero. However, the first

normal stress difference is much larger in magnitude than the second

-6-



normal stress difference (Walters [45)). The presence of the first
normal stress difference in the flow of elastico-viscous fluids, is
responsible for some interesting phenomena. One example is the
Weissenberg rod climbing effect which is important in mixing
problems, (Walters [45]). The first normal stress difference also
plays an important role in the die swell effect, (Tanner [55]). This
phenomenum is observed when an elastic liquid emerges from an
orifice. The diameter of the jet of fluid is seen to increase by
several times the size of the orifice diameter.

It should be noted that the material functions n(y) and ¢, (y)

are restricted by the following relations. For 7n(y) we have that,
n(¢y) >0 for all ¥ , (2.1.7)

and that ¥n(§) is a monotonically increasing function of ¥.

For v,(¥) we have thart,

2162] > 0 : (2.1.8)
y*  14-0
(b). Small amplitude oscillatory shear flow.

I[f we now consider the oscillatory shear flow defined by the

following velocity distribution,

V = ex meimt ; vV =0 i V. a0 . (2.1.9)
1 2 2 3

The corresponding stress distribution when € is small is given by

(Walters [45]).

ot = nfew o100t , (2.1.10)

where n* is known as the complex viscosity function. The real and
imaginary parts of the complex viscosity function are known as the
dynamic viscosity function ' and the dynamic rigidity function G’
respectively. We note that in the limit of low shear rates and low
frequencies, the apparent viscosity is related to the dynamic

viscosity by the equation (Walters [45]).

1 550 = 7@ 0 : (2.1.11)

-7-



We also note that the first normal stress difference is related to

the dynamic rigidity by

G' (w)

v (¥)

(2.1.12)
212 -0 w® lws0

(¢c). Combined steady and oscillatory shear flow.

Let us consider the parallel superposition of an oscillatory
shear component on to the steady shear flow of an elastico-viscous
fluid. The velocity distribution for such a flow situation is given
by

. fwt | ) -
V| = ¥ x, + ex we : V2 0 ; V3 0 . (2.1.13)

When ¢ is small, the corresponding stress distribution is given by
Walters [45],

' * fwt
U:z ewn e (2.1.14)

We can still characterize the flow behaviour by a complex viscosity
function (n;), but this quantity is now a function of both w and ¥.

For a simple fluid, it can be shown that (Jones and Walters
[22]), -

o d [
R TP ;[y 102 (2.1.15)

and that

C@ |y = © (2.1.16)

2.2, Formulation of rheological equations of state.

(a). Linear viscoelastic models.

The characterisation of the time dependent flow behaviour of
elastico-viscous fluids is greatly simplified if we insist that an
arbitrary fluid element can only experience a small deformation from
its initial position. Under these conditions we may ignore
non-linear effects,

The simplest linear viscoelastic model is the single element
Maxwell model (Maxwell [27])), which may be obtained by writing down

the relationship between the stress and the rate of strain for a



spring and dashpotT in series. The use of mechanical analogies was a
feature of early attempts to model viscoelastic phenomena (Bird et al
[5], Ferry [16])). Examples of this type of model are the Jeffries
model (Bird et al [5]), and the Voigt model (Ferry [16]).

A dashpot has the same stress/strain rate relationship as a

Newtonian fluid. i.e.

Ol = M ¥ip , (2.2.1)

where the ik'P component of the rate of strain tensor Y is given by

avi avk

¥. = [ —_— + — ] . (2.2.2)

ik
axk ox.

i

A spring has the same stress/strain relation as an elastic soclid.

a;k = G Yik , (2.2.3)

where the ikth component of the strain tensor ¥ is given by

aui auk
ox ox,
k i
and uj describes the displacement, in the ith direction of an element

of a solid relative to the unstressed configeration. G is known as
the rigidity modulus of the solid.

The single element Maxwell model may be expressed as,

ik , T Yik ' (2.2.5)
at
where
N, - U‘/G (2.2.6)
is a time constant known as the relaxation time. It can easily be

seen that in steady shear, equation (2.2.5) reduces to the model for
a Newtonian fluid. For rapidly changing stresses, as in high
frequency oscillatory shear, the time derivative term dominates the

left hand side of the equation. Integration with respect to time

t The dashpot consists of a piston moving in a cylinder containing a

fluid of constant viscosity.



yields Hooke's Law. Assuming that U;k is finite at time t=-», we may

rewrite equation (2.2.5) as an integral model. 1i.e,
t
() = Tt | (t') de’ (2.2.7)
O'ik rl e ‘Yik . V2
-0

The function contained within the brackets is known as the
relaxation modulus and is denoted by G{(t-t'). This Function enables
past events to influence the stress in the fluid at the present time
t. The expcnential function ensures that events occurring in the
recent past have a greater influence on the flow behaviour of the
fluid than events that occurre‘(‘i in the distant past. Therefore, the
equation of state defined by equation (2.2.7) contains the notion of
a fading memory. '

Clearly such a simple arrangement as a spring and dashpot in
series cannot be expected to describe the complex rheological
response of an elastico-viscous fFluid. Consequently, more complicated
mechanical networks were considered. The most popular of this type
of model was the generalised Maxwell model (see figure (2.1)) which

may be expressed in both differential and integral forms as follows,

- r(r)
a'(’)+:\aa;k - ' (2.2.8)
ik r 5 T Yik ' L.
where U%ér)is the stress in the rth Maxwell element.
[=]
] |(l')
Tk Z Tk . (2.2.9
r=i

and hence from equation (2.2.7) we have

t

® 7

' r-(t-t')/\ : ' '

aik(t) = J [ z )‘—r e r ]'yik(t )y dt . (2.2.10)
r=1

-

This model can be thought of as the linear superposition of an
infinite number of Maxwell elements and has been found to describe
the linear behaviour of elastico-viscous liquids reasonably well
(Bird et al [5]}). Both of the empirical models represented by

equations (2.2.7) and (2.2.10) are contained within a more general

-10-



equation of state, namely the general linear viscoelastic model.

t
oy (8) = | G(e-t')g,, (t") de’ . (2.2.11)
—

An important example of a linear viscoelastic flow situation is
one in which a material is subjected to a small amplitude oscillatory
shear deformation, (e.g. Walters and Kemp (43)). The shear stress
and shear rate waveforms produced in this flow situation are both
sinusoidal but differ in amplitude and phase. The shear stress is

given by
. - 0 iwt
ot (1) = Re { gle’] (2.2.12)
and the shear rate waveform is given by

i (£) = Re { 1:e'”‘} : (2.2.13)

where a; and 1: are the complex shear stress and shear rate
amplitudes, and w is the angular frequency of oscillation. Re( }
denotes the real part of the quantity contained within the brackets.
From (Bird et al [{5], we see that the complex viscosity function is
defined as the ratio between the complex shear stress and shear rate

amplitudes. i.e.

ag

%
P o

=3
]

(2.2.14)
-'Y

B o

If we write this function in terms of its real and imaginary parts,
we define the dynamic viscosity 7n' and the dynamic rigidity G'

respectively.
7t = 3" - iC'/uw ) (2.2.15)

The dynamic viscosity and dynamic rigidity functions provide
information about the energy dissipated and energy stored in a
cyclic deformation. We can see from equation (2.2,14) that a
knowledge of the complex viscosity provides a complete
characterisation of the linear time dependent behaviour of
elastico-viscous fluids.

The measurement of the complex viscosity function is relatively

straightforward. Consistent theories for determining n* exist for

-11-



controlled shear strain instruments (e.g. Walters [41]), Walters and
Kemp [43], Oldroyd [30], Nally [28], and Markovitz [25]), and for
controlled stress instruments (e.g. Jones et al [23,24] and

Holder (20]).

(b). Codeformational formulation.

We now turn our attention to the development of rheological
equations of state that are valid for all types of flow. In 1950,
Oldroyd set out certain intuitive principles which rheological
equations of state must satisfy [29]. These were that
(i) the behaviour of a material element depends only on its
rheological history and not on that of its neighbouring elements.
(ii) The behaviour of a material element does not depend on any
rigid-body motion of the material as a whole in space.

(iii) The equation must describe properties independent of the frame
of reference.

Oldroyd was able to satisfy principle (iii) by writing the
equations in tensorial form. Principles (i) and (ii) were satisfied
by the use of a convected coordinate system ¢J. The convected
coordinate system is drawn in the fluid and deforms continuously with
it. Hence, an observer in this convected frame of reference
experiences‘ho rigfd-body motion of the material. Also, this system
has the property that a material element {J at time t will be in the
same position at all other times. This implies that the rheological
history of a material element £J, in a convected reference frame is
independent of spatial coordinates, and is therefore independent of
the rheological behaviour of any neighbouring elements.

The equations of motion and continuity are both written in terms
of a fixed reference frame. Hence, a constitutive equation,
formulated in a convected coordinate system, must be expressed in
terms of this fixed reference frame. The kinematic and dynamic
variables are transformed from one frame to the other using the usual
transformation rules for covariant and contravariant tensors [19].

A suitable kinematic variable which is a measure of the

deformation of a fluid element at EJ is,
€

ik - 7ik(fj"') 'Tik(fj,t) . (2.2.18)

where yji is the metric tensor associated with the convected spatial

coordinate system. When we transform the kinematic tensor to the

-12-



fixed frame, we obtain the right Cauchy-Green strain tensor Cjy.

Cix = ax:" éflsgms(x'j) - gy (2.2.19)
axi  axk
where gjk is the metric tensor of the fixed coordinate system xJ, and
x'J is the position at time t' of the element that is instantaneously
at the point xi at time t. When there is no deformation in the

material,
Cik =0 . (2.2.20)

Hence, this variable is useful because small values of Cjy correspond
to small deformations of the fluid element.

Since the behaviour of a simple fluid depends upon its
‘rheological history, we would intuitively expect the constitutive
equation to contain differential and integral operators with respect
to time. A differential operator that is independent of any

rigid-body motion in space was defined by Oldroyd [29] to be, .

E. OE. oE, gvm ov
JE ) K, yr ik " E. + — E. . (2.2.21)
Jt at oxf oxi mk axk im

where Ejy is a symmetric covariant tensor. I[f we apply this
differential operator to the metric tensor g, we obtain the rate of

strain tensor ¥jy.

JBik
e

For the dynamic variable, we see that the extra stress tensor

(2.2.22)

Yik =

’ik in the convected coordinate system is simply transformed to aik
in the fixed coordinate system,
The Oldroyd constitutive equation is able to describe observed

viscoelastic behaviour qualitatively. The model may be expressed in

the form
o' + )Y —_ + l g : - l [o.l : + ] :
ik 'y ik 7 P55 Vik 2 H% YT Tk Y
: S .
= noliy N 9. Yik T MV ij] ' (2.2.23)

where Mo» Nys Ny, Mg, My, and p, are material constants.
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When A, = g = p, = p, = 0, we obtain the model

Q
L] v [] - . )
Tik + N, — Tk - Mo¥ ik , (2.2.24)

St
which is an invariant form of Maxwell's linear equation of state.
(c). Corotational formulation.

An alternative approach to satisfying the principles set down by
Oldroyd, is by formulating rheological equations of state in a
corotational reference frame. Such a frame is described by the
orthogonal unit vectors E which translate with a fluid particle P
while rotating with the local angular velocity of the particle.
Hence, equations written in this frame will be independent of any
rigid-body motion of the fluid. The corotational dynamic and
kinematic variables are formulated as functions of time only. This
ensures that the behaviour of the fluid particle depends only on its
rheological history and not on that of its neighbouring particles.

We again have to transform the dynamic and kinematic variables
to a fixed reference frame. This frame is described by the
orthogonal unit vectors e, It is convenient to choose the corotating
frame such that at time t = t', the two frames coincide. At all
previous times t'<t, the orientation of the corotating frame with
respect to the fixed frame is described by the rotation matrix Qij-

i.e.
v -
e.(t') = z O (t,t")e. (t) . (2.2.25)
—-i L - —i
J

Clearly, when t' = t,
ﬂij(t.t) = 5ij , (2.2.26)
where 5ij is the Kronecker delta
éjj = 1 when i=j
= 0 when i #j (2.2.27)

The corotational shear rate tensor 7ij and the shear stress
tensor g may be written in terms of the fixed frame by using the
transformation rules defined in (Bird et al [§5]).

For all times t’'<t, the fixed frame shear rate tensor is given by

. v
Fijcet) = zzﬂim(t-t')?mn(t')ﬂjn(t,t') . (2.2.28)

mn

-14-



and the fixed frame shear stress tensor is given by

. v
Tyje") = zzQim(t,t')amn(t')ﬂjn(t,t') . (2.2.29) -
m n
At time t' = t, we may write
v
and
v
Oij = Ojj . (2.2,31)

A corotational derivative which is independent of any rigid body

rotation is the Jaumann derivative (Bird et al [5]).

% £ (8) = % E (0 + %Z [ 0in(0E () - By (0o (6 | (2.2.32)
The Jaumann derivati@e is made up of the material derivative D/Dt,
and a vorticity term.

The simplest viscoelastic corotational model is obtained by
formulating a single element Maxwell model in a corotational frame
(Bird et al [4,5]). i.e.

80ij
) 0%] + ), . = MY . (2.2.33)

Transforming the above equation to the fixed frame, we obtain

D i
L N ——
J ja t

The constitutive equation described by equation (2.2.34)

- i (2.2.34)

(Zaremba), and two other constant quasi-linear corotational models
(Fromm and DeWitt) are described in detail by Bird et al [4,5].
These equations of state are termed quasi-linear because they
describe non-linear relations between the stress and rate of strain
tensors in the .fixed reference frame. However when these equations
are written in terms of the analagous quantities in the corotational
reference frame, these relations are linear.

The most general quasi-linear corotational viscoelastic
constitutive equation is given by the Goddard-Miller model [17].
This model can be thought of as formulating the general linear

viscoelastic model in a corotating reference frame and may be
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expressed as

t

o () = [ c(:-t')ﬁik(:-) dt’ ) (2.2.35)

The integral defined by equation (2.2.35) is the first term of a
memory integral expansion derived by Goddard [18]. The
Goddard-Miller model can describe realistfc shear viscosity behaviour
(Bird et al [4,5]). The model is also capable of describing,
qualitatively at least, many elastic effects such as stress
overshoot, complex viscosity, elastic recoil, and normal stresses
differences (Bird et al [4,5]).

The equation of state described by equation (2.2.35) will be
used to investigate the reduction in mean shear stress caused by the
parallel superposition of an oscillatory component on to the steady

shear flow of an elastico-viscous fluid.
2.3. The gene;aIIZed Newtonian model.

An equation of state that is able to predict the same viscosity
behaviour as the Goddard-Miller model, but is not capable of
describing any elastic effects is given by the generalised_ Newtonian.
model. This model is obtained by modifying the equation of state for
a Newtonian liquid to include a shear rate dependent viscosity

function. i.e.

TN [CoL 2 . (2.3.1)

The non-Newtonian viscosity is a scalar quantity and therefore
must only depend on a scalar quantity., [t can be shown (Bird et al
[5]) that in shear flow, the non-Newtonian viscosity is dependent on

the second invariant of the shear rate tensor ¥yi. i.e.

o= (105 ] : (2.3.2)

where

I, - Z % TR . (2.3.3)
1

Many empirical formulae have been proposed to describe the
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dependence of the shear viscosity function on the shear rate. Some

of those that are relevant to this thesis are described beilow.

(1). Power law model (Bird et al [5]).

W =m oy (2.3.4)
where m is known as the consistency index and n is known as the power
law index. Clearly, n equal to 1 represents Newtonian behaviour,
For n € 1, the fluid is shear thinning, increasingly so as n
approaches zero. Values of n > 1, represent shear thickening
behaviour. The consistency index may be determined from the
intercept on the viscosity axis.

In figure (2.2) we compare different viscosity models. The
linear region of the log-log plot is known as the power law region
and is described by equation (2.3.4). The slope of the power law
curve is given by (n-1).

The above model is not able to predict the presence of a
Newtonian plateau at low shear rates. Therefore, a restriction must

be placed on the shear rate range when using a Power Law model.
(t1i). Segalman model (Bird et al [5]).

Ny COS [(l-n)tan"(ksﬁ)] '
n(5) = : . (2.3.5)
( 1 + (Rs_y)z )(1‘")/2

The Segalman model is able to describe viscosity data over a
wide shear rate range. The constant 7, is the constant Newtonian
viscosity and is obtained from low shear rate viscosity data. The
Power Law index is again given by n. \Ag is a time constant known as
a relaxation time. This parameter determines the shear rate range
over which the fluid exhibits Newtonian behaviour before entering the
Power Law region. The shear rate at which this occurs is given by
1/Ag. One drawback of this model is shown in Figure (2.2). The
Segalman shear viscosity curve 'overshoots' the shear viscosity curve
predicted by the power law model. This is not a realistic shear
viscosity behaviour (Davies et al [10}). We finally note that at
higher shear rates, the Segalman model shows similar behaviour to the

power law model.
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(fi1). Carreau model (Bird et al [S5]).

(n-v)/2

7Y) = 19, (1 + OPD) (2.3.6)

This viscosity model is able to describe viscosity data over a
wide shear rate range, but has the advantage of not exhibiting any
unrealistic 'overshoot' behaviour. Figure (2.2) shows a compariébn
of Power Law, Segalman, and Carreau viscosity prediction based on
experimental data taken from a 2% solution of polyisobutylene in
dekalin.

For some polymeric liquids, a second Newtonian region is
observed at high shear rates. Both the Segalman and Carreau models
are capable of predicting this second Newtonian region by
incorporating a fourth constant 75, into the model. e.g. for the

Carreau Model,

) -

(n=-1)/2
7," T

=(1+ ONH (2.3.7)

(iv). Oldroyd four constant model (Walters and Townsend [44]).

This model predicts a shear rate dependent viscosity of the

following form,

] (1 + A, Ho ?2)
7(y) = 14 , (2.3.8)
(1 + N, 4 ¥2)

where \,, A,, and po are time constants.

The Oldroyd four constant model can qualitatively describe
viscosity data over a wide shear rate range. The model predicts a
first Newtonian viscosity at low shear rates and a second Newtonian
region at high shear rates. At intermediate values of ﬁ, shear
thinning behaviour is predicted. The constants A\, and A\, are

restricted by the relation,

N, A, € 9, (2.3.9)

This means that the maximum difference between the second
Newtonian viscosity given by n,A,/);, and the first Newtonian
viscosity, is 1/s9th the magnitude of the first Newtonian viscosity.
Experimental evidence (Bird et al [5]), has shown that for polymeric
liquids, shear thinning behaviour can lead to much larger reductions

in viscosity than this.
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2.4. Yield stress.

Many types of material 'appear' to require a critical stress to
be exceeded before any deformation or .flow can take place. e.g.
pastes, dispersions, gels, and concentrated suspensions. This
critical stress is commonly known as the yield stress. The work of
Barnes and Walters [3], has questioned the concept of a material
possessing a yield stress. These workers argue the shear viscosity
function of material, is always finite. To support this hypothesis,
Barnes and Walters present 'yield stress’' data for a commercially
available PVA latex adhesive, and a 0.5% solution of Carbopol. This
experimental evidence demonstrated that the observed value of yield
stress is dependent upon the accuracy of the instrument used to
measure it. An important factor in this argument is that of 'time
scale'. 1i.e. providing sufficient time is given, then a material
will always deform for any non-zero shear stress. However, many Flow
processes take place in too short a time for any deformation to be
observed. In this context, yield stress remains a useful concept in
characterizing the flow behaviour of these materials.

Chapter 8 of this thesis is concerned with the effect of yield
stress_on dynamic data. We therefore provide a brief discussion here
of some of the constitutive equations normally associated with the

description of yield stress behaviocur.

2.4.1. Bingham model (Bird et al [6]).

g = Yy + , 2.4.1
Y y ( )
where
6 = o —L_ ¥ >0 (2.4.2)
Yy o :
191 .
Iayl < o, ¥ =0 . (2.4.3)

The above two parameter model proposed by Bingham, represents
the simplest model for describing the shear stress/shear rate
relationship for a yield stress material, (see figure (2.3)). The
flow behaviour of a Bingham fluid in steady shear may be
characterised by the constant plastic viscosity p and the yield

stress 0,. The critical stress value ¢, is determined by the
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intersection of the straight line of the shear stress / shear rate

curve with the shear stress axis.
2.4.2. Herschel-Bulkley model (Bird et al [6]).

Another yield stress model which does not allow any deformation
unless the yield stress is exceeded, is the Herschel-Bulkley model.
This three parameter model describes a plastic viscosity function

which is predicted from a power law relation, (see figure (2.3).)

g = myl ¥ R ay , (2.4.4)

2.4.3 Elastic Bingham model (Yoshimura and Prud'homme [47]).

We now consider a model which describes elastic deformation

below the yield stress.

g = CTE "YE' <-y0 , (2.4.5)

- n4 + 9 - . .4,

c N 7y Ygl = 7, (2.4.6)
where v, is the yield strain, vg s the elastic strain and G is the
elastic modulus. At strains below the yield strain, the model
behaves as an elastic solid. When the yield strain is exceeded,
viscous flow occurs with a constant plastic viscosity Mp- The
elastic strain Yg s stored during the viscous flow and is recovered

if the applied shear strain changes direction.
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Chapter 3.
An Introduct.ion to Controlled Stress Rheometry.
3.1, Introduction.

Rheometry is concerned with the measurement of material
properties in simple flow situations. These measurements may be used
directly in the design of efficient flow processes or in quality
control assessments. The rheological Information obtained from
simple rheometrical flow situations can be of use in the development
of constitutive equations. These constitutive equations may then be
used in conjunction with the stress equations of motion and
continuity to predict material behaviour in complex flow situations.
Another important area of rheological study concerns the relationship
between observed rheological behaviour and the microstructure of
materials. Hence, it is important to be able to consider
rheometrical flow situations in which the structure of the material
is not destroyed.

A rheometer is a versatile instrument capable of determining the
material properties of elastico-viscous fluids in simple rheometrical

flow situations. These instruments may be of a capillary or a

rotational type of design. The work in this thesis is concerned with
flow situations that may be generated on a controlled stress
rotational rheometer.

In the controlled stress technique, a shear stress is applied to
the fluid. An advantage with this flow situation is that the
rheometer reacts in sympathy to the  fluid properties and does not
force the material to deform. This enables accurate low shear data
to be measured. An important application of the controlled stress
technique, is in the measurement of the yield stress of a material.

A controlled stress rheometer is capable of measuring the minimum
stress at which the material is observed to deform. It should be
noted, that this value of the yield stress, will depend both on the
accuracy of the measurement system used and on the amount of time
allowed for the experiment to take place.

By contrast, a controlled shear rate rotational instrument (e.g.
The Weissenberg Rheogoniometer), imposes a deformation on to the
sample and forces the material to move. This obviously has

disadvantages when effects such as 'yield stress' are to be measured.
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3.2. Historical development of controlled stress rheometry.

In the past, the controlled shear rate technique has been the
more popular method for measuring rheological properties. The main
reason for this being that it is easier to design an instrument in
which the shear rate is controlled than it is to design an instrument
in which the shear stress is controlled (Davis et al {14]). The
first commercially available controlled stress instrument, was the
Stormer viscometer (circa 1920). This instrument is described in
detail by Van Wazer et al [40]. The basic geometry was a concentric
cylinder geometry in which the inner cylinder was free to rotate
under an applied stress and the outer cylinder was fixed. A constant
stress was provided by a system of pulleys, strings, and weights (see
figure (3.1)). A shear stress was applied to the sample by attaching
a known weight to a string and permitting free fall through a
distance of about 40 inches. The period of shear was therefore
restricted by the distance of travel of the weight. It was possible
to use the Stormer viscometer to carry out creep retardation and
relaxation experiments. A modification to the Stormer viscometer in
which the outer cylinder was rotated and the weight was held
stationary was described by The British Food- Manufacturing Industries _
Research Association [7].

In 1951, Oldroyd et al [31] described the use of an air bearing
for the accurate centering and support of an inner cylinder inside an
outer cylinder. This principle was utilised by Davis, Deer, and
Warburton [14] in their development of a concentric cylinder
viscometer which was the first of a new generation of controlled
stress instruments commonly known as Deer rheometers. This
instrument made use of an air bearing turbine system to both centre
and support the rotor, and to supply a constant source of stress.

The rates of rotation were measured by a stop watch. The very small
movements obtained in creep testing were measured by a displacement
transducer and displayed as a continuous trace on a UV recorder.
Later modifications of this instrument used an induction motor drive
system to apply a constant stress to the rotor platen. A schematic
diagram of this motor is shown in figure (3.2). A disc supported by
an air bearing is situated between two current carrying coils. By
varying the current in one of the coils, a torque may be exerted on

the disc. This torque is then transmitted to the rotor platen
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through a shaft with almost zero friction from the drive head. The
Deer rheometer could be used to carry out steady shear flow and creep
experiments. However, the induction motor used in the Deer rheometer
was not suitable for operation in an oscillatory shear mode due to
problems involving electromagnetic inertia [20].

The next development in controlled stress rheometry came with
the introduction of the Carri-Med controlled stress rheometer!
(figure (3.3)). The experimental programme for this thesis was
carried out on a Carri-Med CS100L instrument which allows for a

maximum torque of 0.01 Nm to be applied to the rotor.
3.3. Description of The Carri-Med Rheometer.

The Carri-Med rheometer is fully computer controlled. The rheometer
may be linked to a microcomputer through an $SSM IEEE interface. This
enables oscillatory and combined steady and oscillatory shear
experiments to be carried out in addition to flow and creep tests,
This was therefore the first controlled stress instrument that could
be used in an unsteady shear mode of operation {(Jones et al [23]).
The experimental data is automatically analysed using specially
written software. The oscillatory shear-flow analysis was developed
by Jones et al (23,24] and Holder [(20], and the combined steady and
oscillatory shear fFlow analysis was developed by Davies et al [12].

The stress is applied to the rotor by an electronically
controlled induction motor. There are no mechanical connections
between the moving and stationary parts of the motor. All rotating
parts of the motor are supported by an air bearing. The rotor
spindle is hollow, so that a draw rod may be inserted into it. This
rod has a screw thread fitted, to which a number of different platens
may be attached. The basic geometries incorporated into this
apparatus are the cone and plate, parallel plate, concentric
cylinder, and double concentric cylinder measuring systems. The
bottom plate may be automatically raised or lowered by the computer.
The level to which it is raised is set on a micrometer scale. This
mechanism controls the parallel plate gap, the concentric cylinder
and double concentric cylinder height, and the cone and plate

truncation gap.

t Manufactured by Carri-Med UK Ltd, Dorking, Surrey RH4 3YX.
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Slight imperfections in the air bearing give rise to a 'wind
milling' effect on the rotor. In order to counteract this unwanted
rotation, the rheometer calculates the torque required to hold the
rotor stationary, effectively 'exerting a zero torque' on the platen.
This process is known as biasing, and occurs each time the bottom
plate is lowered,

The displacement of the rotor is measured using an optical
encoder. This measurement system consists of a circular disc divided
into 2500 equal divisions, each marked as a digital location. In
between each of these digital positions, the electronics interpolates
between each line to give a further 256 divisions per line. The
optical encoder therefore has, in total, 640,000 divisions, giving a
resolution of the order of 1075 radians.

The temperature control of the-experimental apparatus is greatly
simplified by having one platen fixed. This stationary platen can
then form part of the temperature control system. The Carri-Med
rheometer uses a Peltier system to control the temperature of the
bottom plate. This system may be used in conjunction with the
parallel plate and cone and plate geometries. A circulation jacket
should be incorporated into the temperature control system when
performing concentric cylinder -and double-concentric cylinder .
experiments. This jacket should be operated at the same temperature
as the Peltier system. The Peltier system uses a thermo-electric
effect which functions as a heat pump system with no moving parts.

This set up enables the temperature to be controlled over a range of
0-99 C.

3.4, Steady Shear Flow.

(a). Cone and plate geometry (figure(3.4)).

The fluid is contained between a cone of semi-vertical angle 6.,
and a horizontal flat plate. The radius of the cone (i.e. the
distance from the edge to the vertex) is a. The gap angle between
the cone and the plate #, is assumed to be small enough to ignore the

free surface boundary effect. If the gap angle is small (< 4-), then
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the shear rate yg across the gap may be assumed to be constant
(Walters and Waters [42]). i.e. ‘ .

¥

0
.- , (3.4.1)
0

where  is the angular velocity of the rotor platen. The equation of

motion of the cone is given by

2za’ . .
cC = ;a ARG , (3.4.2)

where C is the applied couple. The shear viscosity function can
therefore be determined directly by measuring the angular velocity of

the cone,

ace
9 (3.4.3)

(y_.) =
s 21933

(b). Parallel plate geometry (figure (3.5)).

The fluid is contained between two circular parallel plates of
radius a and separated by a vertical distance h. The shear rate
across the parallel plate gap is dependent on the radial distance r,

i.e. . - - _

g - . . (3.4.4)

The maximum shear rate occurs at the outer edge of the geometry

(r=a), and is given by
g = - ) (3.4.5)

The equation of motion of the top platen is given by the integral,

a
C = 2z j r? ygn(yy) dr ) (3.4.6)
0

Substituting for r from equation (3.4.4) into the above integral, and

using equation (3.4.5), we obtain

- [*rjnws) dy : (3.4.7)
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Differentiating equation (3.4.7) with respect to y, produces the

following expression for the shear viscosity function.

i dcC 3c
n(y,) = — + — (3.4.8)
a 272’ Loy, ¥
a a
i.e. In order to evaluate the shear viscosity function we must

determine the slope of the couple/shear rate curve.
(¢) Concentric Cylinder Geometry (Figure (3.6)).

The fluid is contained in an annular gap between two concentric
cylinders of radii ri{ and r, (rj<ry), and height h. When the
relative gap, (ro - ry)/rj, between the two cylinders is small, we
can assume that the shear rate across the gap is constant. (Coleman
et al [9]) i.e.

r.Q )
o —_— . (3.4.9)

The equation of motion of the inner cylinder is given by

2 . .
C - 21rri h_ys F(7s) . (3.4.}0?

Hence, the shear viscosity function may be determined directly

by measuring the angular velocity of the inner cylinder.

C (ro - ri )

2 riahﬂ

n(y,) = (3.4.11)

When the relative gap between the two cylinders is large, the
analysis is not so straightforward, since the shear rate is now a
function of the radial distance r.

A method for obtaining the shear viscosity function from the
gradient of the angular velocity/couple curve is presented by Coleman
et al [9]. However, this method is only really applicable for very
large annular gaps, in which case end effect errors due to the finite
dimensions of the measuring system become significant. Clearly, the
cone and plate, parallel plate and narrow gap concentric cylinder
geometries offer much more convenient methods for determining the

shear viscosity function.
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(d) Concentric Double Cylinder Geometry (Figure (3.7)).

The analysis for this flow situation is similar to that for the
narrow gap concentric cylinder geometry except that there are now two
separate annular regions of width (r, - r,) and (r, - ry)
respectively. The advantage of this arrangement is that a large area
of fluid is in contact with the shearing surface. This results in
reduced experimental scatter, which is a particularly important
consideration when measuring the rheological properties of thin
fluids.

The relative gaps (r, - r,)/r, and (r, - r,;)/r, are both
assumed to be small. Hence, the shear rate across each annular gap
can be assumed to be constant (see equation (3.4.9)). The dimensions
of the geometry should be chosen so that the shear rate across the
inner gap is equal to the shear rate across the outer gap. The

couple acting on the rotor cylinder due to the motion of the fluid,

is given by
C = CI + Cz , (3.4.13)
where
2, . .
C, =2xrr hyn() ' - : (3.4.14)-
and
2, . .
C2 = 2x r3h s q(ys) , (3.4.15)
i.e.
e 2
C = 2r h (7 )0 + 2 . (3.4.16)
r -r r -r
2 1 4 3

The shear viscosity may be determined directly from measuring the

angular velocity of the rotor platen.

c (r2 -r ) (rq -r, )

1(¥y) =
2z h D [ r?(rq - ) r;(rz -t ) ] ) (3.4.17)
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3.5. Small Amplitude Oscillatory Shear Flow.

This flow situation is extensively covered in Chapters 6 and 7,
and so will only be discussed briefly here. In Chapter 2 we noted
that the linear time dependent behaviour of elastico-viscous fluids
may be characterised by the complex viscosity function np*. In
practice, this function is a fairly simple quantity to measure. The
most important point to note is that the experimental data must be
sampled in the linear viscoelastic region. This can be ensured by
performing a torque sweep before a dynamic test is carried out. The
region where the dynamic viscosity and dynamic rigidity functions are
fndependent of the strain amplitude defines the linear viscoelastic
range.

Fluid inertia effects may influence the measurement of -the
dynamic properties of a fluid. These effects can be particularly
severe when measuring the dynamic properties of mobile fluids at high
frequencies. Fluid inertia effects can be reduced by using narrow
gap geometries to measure the dynamic properties. |In this case, the
first order correction is usually sufficient to provide accurate

dynamic data (Jones et al [24]).
(a). Coné énd-Plafe E;ométry.

We consider the small gap angle cone and plate geometry. The
dynamic viscosity and dynamic rigidity functions are given to first

order accuracy by Holder [20].

3C°sin {c)
n' = T , (3.5.1)
2rwa”™X
0
and
3 Co cos (c) wzpazo 2
G' = + l0? | + g , (3.5.2)
2ra’ X 5

0

respectively.

The applied torque amplitude C,, angular frequency of
oscillation w, cone radius a, fluid density p, and gap angle 6, are
all known quantities. The displacement amplitude X, and phase
difference c, between the applied torque and angular displacement

waveforms are measured as the output from this experiment.
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(b). Parallel Plate Geometry.

For a parallel plate measuring system with platens of radius a
separated by a vertical distance h, the dynamic viscosity and dynamic

rigidity functions are given to first order accuracy by,

2hC°sin(c)
7 - —_— , (3.5.3)
Twa X
0
and
2h C cos(c) ) uzph2
' - . 0 + lw + —_— ) (3.5.4)
ra X 3

1]

(c). Concentric Cylinder Geometry.

For a concentic cylinder measuring system with inner and outer
cylinders of height h and radii Ei and r, respectively, (r;<r,), the
expressions for the dynamic viscosity and dynamic rigidity functions

to first order accuracy are as follows,

Co(r;- r:)sin(c)

n' - " , (3.5.5)
4xwX hrir?
o o i
and
2 2
o - (ro— ri) Cocos(c) . |m2
4xhr’r? X
o i 0
2 2 2
w pr, 3r’-r; r In(r_/r.)
_ i o 2.1 _ o i o 21 . (3.5.6)
2 4r r =-r
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(d). Double Concentric Cylinder.

For the double concentric cylinder measuring system with inner
and outer annular gaps of width (r2 ~r,) and (r, - r3) respectively,
the dynamic viscosity and dynamic rigidity functions are given to

first order accuracy by

C sin(c) (r® - Pt - 1h
. 0 2 1 3
n = 2 2,2 2 2.2, 2 2 ! (3.5.7)
47wX h rr(r r'y +rri(r- -r7)
0 1 2 4q 3 3 4 2 1
and
1 (r: - rf)(rz - rz) C cos(c)
¢ - 2 2, 2 2 2 23 2 2 - RS
4rh rr{(r" -r)+rr(r -1r7) X
120 a 3 3 a° 2 1 0
2 2 a
2 a4, 2 2 3r1 - r, r11n(r‘/r2)
-oer rz(r4 - r3) - -2 2z
4 r'-r
2 1
4, 2 2 2 2 a
ra(r2 - r‘) 3r4 - r3 rqln(ra/rd)
+ +
2 4 r’-r’
a 3
/ 2 2, 2 2 2.2, 2 2 )
// [ r1r2(ra - r3) * rara(rz - rI) ] : (3.5-8)
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Chapter 4

Combined Steady and Oscillatory Shear Flow
4.1 Introduction

In this chapter, we carry out a theoretical analysis of a '
unidirectional shear flow of an elastico-viscous fluid in which the
shear rate fluctuates sinusoidally about a non zero mean. One of the
aims of the analysis, is to determine the effect of the oscillatory
shear component on the mean shear stress produced in the fluid. In
order to understand the motivation behind this work, we shall carry
out a review of the previous literature relevant to this fFlow
situation. .

It is well documented that when an oscillatory shear component
is superimposed on to the steady shear flow of an elastico-viscous
fluid, a change in the mean flow rate is observed (Jones and Walters
{22), Barnes et al [2], Sundstrom and Kaufman [37], Davies et al
(10], Phan-Thien and Dudek [36]). This is to be expected, as the
equations describing the relationship between the stress and the
strain for- these materials are non-linear. - It-can readily-be- shown
that for a Newtonian fluid, no change in the mean flow rate is
predicted (Barnes et al [2]). Depending on the flow conditions
considered, the superimposed oscillatory shear component can have
either a beneficial or a detrimental effect on the mean flow rate of
the fluid (Barnes et al [2], Bullivant [8]). This phenomenum is
known as flow enhancement. The sign convention usually adopted is
that a positive flow enhancement represents an increase in flow rate,
whereas a negative flow enhancement signifies a decrease in this
quantity.

A particular flow problem which has recieved a great deal of
attention in flow enhancement studies is the flow of an
elastico-viscous fluid through a straight pipe of circular
cross-section (Walters and Townsend [(44], Barnes et al {2], Sundstrom
and Kaufman [37], Davies et al [10], Phan-Thien [34]). The pressure
gradient generating the flow situation is assumed to fluctuate about
a non-zero mean. However, other flow situations have been
considered. Jones and Walters (Jones and Walters [22]) have carried

out an investigation of the combined steady and oscillatory shear
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flow of an elastico-viscous fluid on a Weissenberg rheogoniometer.
Recently, Davies et al [12] have demonstrated that a controlled
stress rheometer can be used to investigate flow enhancement
behaviour.

The flow of an elastico-viscous fluid through a straight pipe of
circular cross-section due to a pulsed pressure gradient is a flow
situation frequently encountered in industry. Many industrial
processes involve pumping non-Newtonian fluids through straight pipes
of circular cross-section. It is well known that some mechanical
pumps use a reciprocal mechanism which results in a pulsatile
pressure gradient. The theoretical work of Barnes et al [2] using a
four constant Oldroyd model, predicted that in certain cases where an
increase in flow rate was observed, the energy required to maintain
the pulsed pressure gradient was, in fact, less than that required to
generate the corresponding steady shear flow. This result suggested
that it would be of economic advantage to design a pumping mechanism
that encouraged a pulsed pressure gradient. This theoretical
prediction was however found to be at variance with those of
Sundstrom and Kaufman [37] using an Ellis model, and Phan-Thien and
Dudek [36], using a non-affine network model, which predicted that
the unsteady shear flow would require .the greater energy to
generate. Phan-Thien and Dudek suggest that the discrepancy between
these theoretical predictions may be due to the form of the viscosity
function assumed in the Oldroyd model. These workers (Phan-Thien and
Dudek [36] used a power law relation to model the shear viscosity of
the elastico-viscous fluid.

Barnes, Townsend, and Walters [2] carried out the first detailed
investigation into flow enhancement behaviour for the pulsatile pipe
flow problem outlined earlier in this introduction. This work was a
continuation of earlier theoretical work carried out by Walters and
Townsend [44]. Both of these studies considered the situation in
which the superimposed oscillatory shear component was sinusoidal in
character, and used a four constant Oldroyd model to provide
theoretical predictions as to the nature of the flow enhancement
effect. These predictions were then compared with experimental data
obtained from a conventional pipe flow apparatus. It should be noted
that the investigation was restricted to small values of the ratio
between the pulsatile pressure gradient amplitude and the steady

pressure gradient.
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Barnes et al {2] obtained agreement between theory and
experiment concerning the variation of flow enhancement with mean
pressure gradient for a fixed frequency of pulsation. However,
contradictory results were obtained between the theoretical
predictions and the experimental data regarding the frequency
dependence of the flow enhancement effect. The experimental data
indicated that flow enhancement should increase as the frequency of
pulsation is increased. The Oldroyd model!, however, predicted that
flow enhancement should decrease over this frequency range. Davies
et al [1b] using a Goddard-Miller model, Sundstrom and Kaufman [37]
using an Ellis model and Phan-Thien [35] using both a B-KBZ model and
a non-affine network model, were all unable to predict the frequency
dependence of the Barnes et al experimental data. Furthermore,
Sundstrom and Kaufman presented experimental data sampled at low
frequencies of pulsation which showed that flow enhancement decreased
with increasing frequency. They also showed that the Ellis model was
able to predict these experimental results. It was later pointed out
by Phan-Thien and Dudek [36], that the Goddard-Miller model and the
four constant Oldroyd model are also capable of describing the
experimental data taken by Sundstrom and Kaufman. Interestingly,
Phan-Thien [34)--managed to qualitatively predict the frequency
dependence of the flow enhancement data of Barnes et al, using a
simple generalized Maxwell model.

In the conventional pipe flow apparatus used by Barnes et al
{2], the mean pressure gradient is controlled, and the mean flow rate
is measured. |In order to compare theory with experiment, the
amplitude of the pulsatile pressure: gradient must also be measured.
This measurement is difficult to obtain accurately, especially at
high frequencies, and so can be subject to error. Davies and
Chakrabarti [11] overcame this limitation by developing a modified
pulsatile pipe flow apparatus. In this modified apparatus, the mean
flow rate and the amplitude of the pulsatile pressure gradient are
controlled, Hence, with this instrument, measurement of the
pulsatile pressure gradient is not required.

The problem of measuring the pulsatile pressure gradient
amplitude on the conventional pipe flow apparatus was also raised by
Phan-Thien and Dudek (36]. These workers modified the pipe flow
apparatus by mounting the pressure transducer directly on to the

pressure tap hole in the. test section of the pipe flow apparatus. In
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the conventional apparatus the transducer is connected to the
pressure hole tap via two plastic tubes resulting in a large
attenuation of the pulsatile pressure gradient amplitude. This
attenuation increases with increasing frequency.

Phan-Thien and Dudek [36] used this modified apparatus to carry
out an experimental prograﬁﬁe to investigate flow enhancement
behaviour. These experimental results showed that flow enhancement
decreases with increasing frequency of pulsation. This work also
included a theoretical analysis of the flow problem using a
non-affine network model. Qualitative agreement was obtained between
the experimental flow enhancement data and the theoretical
predictions concerning the variation of flow enhancement with both
frequency of pulsation and mean preséure gradient. It should be
peinted out that, in this investigation, the ratio of the pulsatile
pressure gradient amplitude to the steady pressure gradient was
small. Consequently, the experimental data obtained by Phan-Thien
and Dudek was subject to a large amount of experimental scatter.

The investigations into the pulsatile pipe Flow problem
described above, have in general been restricted to small pulsatile
pressure gradient amplitudes. Consequently, the experimental results
obtained from these studies contain some experimental scatter.

Davies et al [12] considered the possibility of using the Carri-Med
controlled stress rheometer to carry out combined steady and
oscillatory shear stress experiments. This instrument can be used to
superimpose large amplitude oscillatory displacements on to the
steady shear flow of a test fluid. Preliminary experiments, produced
results which were in qualitative agreement with the theoretical
predictions of Walters and Townsend [44] and Davies et al [10].

Townsend [39] developed a viscoelastic theory based on a four
constant Oldroyd model. This theory included the effects of Fluid
inertia and was valid for large amplitudes of oscillation.

The current project will extend the work of Davies et al [12] by
considering the effect of a large sinusoidal fluctuation of the mean
shear flow on the mean shear stress produced in the fluid. A
corotational Goddard-Miller model is used to describe the non-linear
relationship between the shear stress and shear rate for an
elastico-viscous Fluid. This model is capable of describing large
deformations. Due to the complexity of the equations involved,

mechanical and fluid inertia effects will be ignored in the analysis,
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The generalised Newtonian model will be used to predict the
change in mean shear stress for an inelastic fluid. A comparison of
the reduction in mean shear stress predicted by the Goddard-Miller
and Ceneralised Newtonian models will provide information concerning
the importance of elasticity in this flow situation. As mentioned
earlier, the shape of the shear viscosity curve exerts a strong
influence on the flow enhancement behaviour of an inelastic fluid.
The present study will compare inelastic and viscoelastic flow
enhancment predictions for the power law, Carreau, and Segalman

models.
4_2. Viscoelastic model.
4.2.1. Constitutive equation.

The constitutive equation for this analysis is provided by the
Goddard-Miller model. For this model, relationship between the

stress and the strain for an elastico-viscous fluid is given by (Bird

et al [4,5]). i.e.

t
ag'(t) = J G(t-t')t(x,t,t') de' (4.2.1)
-0
where ¢'(t) is the extra stress tensor, G(t-t') is known as the
relaxation modulus, and E(x,t.t') is the corotational rate of strain
of tensor. The formulation together with some of the properties of

this model were discussed in detail in Chapter 2.
4.2.2. The geometry.

We consider the combined steady and oscillatory shear flow of a
viscoelastic fluid contained in an annular gap between two concentric
cylinders of radii rj and r, (ri<r,), (see figure (3.6)). The height
of fluid in contact with the cylinders is h. At this stage of the
analysis, no assumptioﬁ is made as to the boundary conditions on the
inner and outer cylinders. The theoretical analysis proceeds by

assuming that the shear rate 4 in the fluid is of the form

wt

Wroe = (1 ce @ty , (4.2.2)

-35-



where vy, is the mean shear rate and ¢ is the ratio between the
oscillatory shear rate amplitude and the mean shear rate. In
equation (4.2.2), the real part is implied.

All physical quantities are referred to a cylindrical polar
coordinate system (r,0,z). The velocity profile in the fluid is

assumed to be of the form

Vr =0 ; VG = rF(r) ; Vz =0 . (4.2.3)

Hence the equation of continuity for incompressible fluids is

automatically satisfied. 1i.e.

v.v =0 , (4.2.4)

The fluid exerts a torque on the upper platen due to the shear
stress that is produced in the fluid. Our main interest in this work
is to obtain an expression for the mean shear stress produced in the
fluid. We will also derive expressions for the fundamental stress

amplitude and phase angle.
4.2.3, Derivation of the mean shear stress.

This section will be concerned with a derivation of the mean
shear stress for a general relaxation function G(t-t'),

The corotational rate of strain tensor is determined for the
concentric cyinder geometry in Appendix A. It can be shown that the
corotational rate of strain tensors for the parallel plate and small
gap angle cone and plate geometries are of the same general form as

that described below.

-sin(p) cos(yp) 0

O(r,t,t7) = cos(p)  sin(p) 0 Yop(rot')
0 0 0 (4.2.5)
where,
t
o = Iy’ar(r,t“)dt" . (4.2.6)
tl

On examining equation (4.2.5), we see that the shear stress

o' , and ¢! are all zero as expected. The

components ¢' gl
P rz’ 68z' " zr zf
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normal stress components U;r, Ué&' and aéz do not give any
contribution to the couple being applied to the upper platen, and
therefore will not be considered in this work. The only components of
I that give rise to shear stresses producing a couple in the fluid are
:he ﬁﬂr and the ﬁrﬂ components.

On substituting equation (4.2.5) in the constitutive equation
(4.2.1), we see that the shear stress produced in the fluid is given
by

t t
gy = [ c(e-ttycos| | 4, (emrder]s, (e de : (4.2.7)

. [

where the shear rate 5, is of the form given in equation (4.2.2),

Hence, equation (4.2.7) may be written as

t

i“f € . . f - : 1
Uér - I G(t"t')COS[“ym(t-t') _ : [elwt_ elwt ]]'Ym(l + EelUt ) de'.
- (4.2.8)
Let
§=t -¢' . (4.2.9

So that equation (4.2.8) becomes

[- ]

Opp = I G(s)cos|y s - me[eiwt- ei”(t‘s)] L (14 eel@CtS)y g
ar Tm “ Ym s
0

iy

(4.2.10)

We may simplify (4.2.10) further by integrating by parts and taking

the real part of the resulting expression.

-]

e
oy = - | G'(s)sin[?ms + -;—[sin(wt) - sin(w(t-s))]] ds . (4.2.11)
0

Using simple trigonometric identities we can easily show that the

shear stress produced in the fluid is given by

=]

Y €
oy, = - [ G'(s)sin|y s + I sin(ws/2)cos(wt - ws/2)] ds . (4.2.12)

w

o]
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The shear stress oy, is periodic in time t.

1 3 3 -
express ¢ gr as a Fourier series expansion. i.e.

a [s4]
oy (6) = T" +z [ancos(nmt) + bnsin(nmt)]
n=1

(4.2

We can therefore

.13)

Clearly the first term is the value of the mean shear stress o, and

is given by the formula

a =
m

On equating equation (4.2.12) and equation (4.2.13), we:obtain

©

27
a L |
m 2x
U=0 S=0

where

us=

I.G'(s)sin[yms +

2r/w
ol EAROKL

0

24 e
n sin{ws/2)cos(u-ws/2)

w

wt

We may express equation (4.2.15) as

>
am = - I G'(s)SIn(yms)gl
0
where
) 27
gl = P I cos[
0
and

N~

27
g2 = I sinl

[ o]
ds - J
"o

G"(s)cos(#ms)g2 ds

2y ¢

sin(ws/2)cos(u-ws/2)] du
w

2y ¢

sin(ws/2)cos{u-ws/2)| du

w

(4.2

(4.2.

(4.2.

(4.2,

(4.2.

(4.2.

The integrands defined in gl and g2 are both periodic functions of

period 2x. Hence,

then gl and g2 become

1
gl = 27
0

o]

if we make the substitution,

p=u- ws/2 ,

29 ¢

sin(uws/2)cos(p)| dp

w
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and

27 25 e
1 Tm
g2 = 5 ] sin sin{ws/2)cos(p)| dp . (4.2.22)

0 w

Since both integrands are even functions of p, we may write

1 ks 2y e
gl = -— I cos[ m sin(ms/Z)cos(p)] dp , (4.2.23)
g o )
and
1 T 2% ¢
g2 - = ] sin sin(ws/Z)cos(p)] dp . (4.2.24)
w

o

From (Watson [46)), we use the Bessel property.

T
12 = % j cos(zcos(p)) dp . (4.2.25)
0
Hence,
29 €
gl = Jo[ m sin(ws/2)] , (4.2.26)
(D]

where J,{(z) is a zero order Bessel function of the first kind.

It can be easily shown that

2y ¢
sin

sin(ms/Z)cos(p)] dp - 0O ) (4.2.27)

0 w

Hence, we may evaluate the mean shear stress from the formula,

-}

o = - ]c'(s)sin(yms)Jo[Eigisin(ws/z)] ds . (4.2.28)

]

Let the change in mean shear stress due to an imposed

oscillation on the steady shear flow of the fluid be E. Therefore

om
E = 1 - T , (4.2.29)
S
where the steady shear stress is given by the integral,
[ +]
o = - [c (s)sin(y_s) ds . (4.2.30)

0
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If we integrate equation (4.2.30) by parts, we obtain,

<0

o = 7, IG(s)cos(?ms) ds . (4.2.31)
o

From (Bird et al [5]), we see that the viscosity function 5(¥) and the

relaxation modulus G(s) are related by

(-]

) = [G(s)cos(ys) ds . (4.2.32)
0

Hence, the steady shear stress may be evaluated from

g, = ) . (4.2.33)

4.2.4. Derivation of the fundamental stress amplitude and phase.

The Fourier series expansion given in equation (4.2.13) may be

expressed as.

a
0

~18

Ueé(t) = + aancos(nwt—cn) . (4.2.34)

2 n=1

where ¢,,, ¢, are the nth harmonic amplitude and phase lag of the

shear stress waveform.
o = [A’ + B’]i (4.2.35)
an 1 1 ! T
is the fundamental stress amplitude, and

c, = tah-'(Bl/ A) (4.2.36)

is the phase lag between the fundamental oscillatory component of

shear stress and the oscillatory component of the shear rate,
(a). Derivation of A,.

From equation (4.2.13), A, is given by the integral,

27/
A = ¢ [ op (t)cos(ut) dt . (4.2.37)

1 T
0
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Hence, using equation (4.2.12) we may express A, as,

2y @ ) 2y e
A|= - % I I G'(s)sin[?ms + sin(ws/2)cos(u-ws/2)|[cos(u) ds du ,
u=0 s=0 w
(4.2.38)
where
u = ot . (4.2.39)
We may rewrite equation (4.2.38) as two separate double integrals.
i.e.
[o-] )
A = - [c(s)sin(y_s)hl ds - [ 6 (s)cos(y_s)n2 ds . (4.2.40)
) a
where
: 2T szf
hl = = J cos[ sin(ms/Z)cos(u-ws/Z)] cos(u) du , (4.2.41)
o w '
and
1 T 29 e
h2 = p l sin sin(ws/2)cos(u-ms/2)] cos(u) du . (4.2.42)

0 (&)

The integrals defined in hl and h2 are both periodic functions of

period 2n. Hence if we make the substitution,

P = u - ws/2 , (4.2,
then hl and h2 become
2w 21me
hl = = I cos[ sin(ws/2)cos(p)]cos(p+ws/2) dp , (4.2.
o W
and
1 o 2-ymf
h2 = p I sin[ sin(ws/Z)cos(p)]cos(p+ws/2) dp . (4.2.
w .
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Evaluation of hl.

Let us first consider hl.

27 24 ¢ ]
hl = p [cos(ws/2)lcos sin(ws/2)cos(p) [cos(p) dp
o I w
2T r 29 e 1
- sin(ws/Z)Icos sin(ws/2)cos(p)|sin(p) dp] .
o W )

(4.2.46)
The first integrand is an even function of p and the second integrand

is an odd function of p. Hence, equation (4.2.46) simplifies to

T 2y ¢
2cos(ws/2) [ —= sin(ws/2)cos(p) [cos(p) dp . (4.2.47)

hl = —_— lcos

0 w

It can easily be shown from equation (4.2.47) that

hl1 = 0 . (4.2.48)
Evaluation of h2.
27 29 e
- h2 = —- sin[ sin(ws/Z)cos(p)]cos(p+ws/2) dp . (4.2.49)
4 0 w
By employing similar arguments to those used to evaluate hl, it can

be deduced that the integral defined by equation (4.2.49) reduces to

the following expression,

PLN

h2 = 2cos(ws/2)J![ sin(ws/Z)] , (4.2.50)

w
where J,(z) is a first order Bessel function of the first kind and is
defined by the integral (Watson [46]),
5 27
Jl(z) - = Isin(zcos(p))cos(p) dp . (4.2.51)
0
Hence, substituting equations (4.2.48) and (4.2.50) into equation

(4.2.40), we obtain A, given by

© 2y ¢
A = -2 ]c-(s)cos(«',ms)cos(us/z)J‘[ sin(ws/2)| ds . (4.2.52)
0 w
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(b) Derivation of B,.

From equation (4.2.13), we see that B, is given by

21/
B = %’jabr(t)sin(m) dt . (4.2.53)

0

Substituting equation (4.2.12) into (4.2.53), we obtain,

| 2T @ 2v €
B‘ -- = I [ G'(s)sin[ﬁms + sin(ws/2)cos(u-ws/2)|sin(u) ds du ,
u=g S=o @

(4.2.54)

which may be split into two separate double integrals as follows,

[+ ] [+ 4]
B‘ - - l C'(s)sin(?ms)gs ds - I G'(s)cos(?ms)h4 ds , (4.2.55)
0 o
where
1 T 249 ¢
h3 = - I cos[ m sin(us/Z)cos(u-ws/2)] sin(u) du , (4.2.56)
n " w
and

2y e

27
hd = 1 l sin[
k.

sin(ws/2)cos(u—ws/2)] sin{u) du . (4.2.57)
0

w

If we analyse the above integrals using similar techniques to those

used to evaluate hl and h2, then we obtain the following results,
h3 = 0 , (4.2.58)
and

2y €

h4 = ZSin(ws/Z)J‘[ sin(ws/Z)] . (4.2.59)

w

Hence, B, may be evaluated from the integral,

o

B‘ = - 2 IC'(s)cos(?ms)sin(w5/2)J1[ )
o

2% ¢

sin(ws/2)] ds . (4.2.60)

From equations (4.2.52) and (4.2.60), we may determine the
fundamental stress amplitude and the phase lag defined in equations
(4.2.35-36).
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4.2.5. Evaluation of integrals using recursive techniques.

The integrals defined by equations (4.2.28), (4.2.38), and
(4.2.60) do not lend themselves well to numerical integration. The
problem being that the upper limit of integration is infinity, and
that the integrands contain the product of two periodic functions.
Hence, we would expect convergence for any numerical scheme to be
slow and subject to rounding off errors. This section will show an
alternative approach where the integrals could be evaluated

analytically using recursive techniques.
(a). Fractional reduction in mean shear stress (E).

The inetgral in equation (4.2.28) may be evaluated in the
following way. From (Watson [46]), we may express the Bessel

function J,(z) by the infinite series defined below,

8
N
=

1 (2) = z W [ z ] , (4.2.61)

which is convergent for all z. Substituting equation (4.2.61) into

(4.2.28), we obtain,

v (-0X (g1 T ok
gm = -kz T [—3—] IG'(s)sln(yms)sln (ws/2) ds . (4.2.62)
-0 0

Hence the mean shear stress oy can be expressed as a convergent
infinite series of integrals. Using trigonometric identities, the

mean shear stress may be expressed as

- i D" 136" mc' in(3_s) (1 k 4 4.2.63
g - EETET;; [ " ] I (s)s:n(yms)( - cos(ws)) s . (4.2.63)
=0 ]

We now define the integral Iy(yp,) to be

2.k

L) = - [% ] 16'(s)sin(7ms)(l - cos(ws))X ds . (4.2.64)

(k=0,1,2,...)

Hence,

k - _2k
v = G ) Ge (4.2.65)

The above series can be shown to be convergent.
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Therefore, provided the value of the integral I (%) can be
determined for all k, then theoretically we should be able to predict
the mean shear stress op.

The integral Iy(¥y,) in equation (4.2.64) may be expressed in
terms of three separate integrals Iy_3(¥p), Fk-1(¥mtw), and

k-1 (¥m—w). i.e.

. € . 1 . 1 .
[k(ym) -2 [ lk-1(7m) 2 lk-1(7m+w) ) [k—t(vm‘w) ] ! (4.2.66)
' (k=1,2,3,...)
where
1, Om) = - !C'(SISin(ﬁms) ds . (4.2.67)
Integrating (4.2.67) by parts produces
lo(ym) -, lG (s)cos(y s) ds . (4.2.68)

From (Bird et al [5]), we see that the shear viscosity function for

the Goddard-Miller model is given by

o

) = ]c(s)cos(yms) ds , (4.2.69)
0

Hence, equation (4.2,68) becomes

IO(?m) = ?mn(?m) . (4.2.70)

When equation (4.2.66) is used recursively to obtain Iy(¥y,), we shall
need the general result for Iy (¥ trw), which can be obtained from
equation (4.2.66) by replacing ¥, by ¥ptrw to give
e’ 1 1
L (mera) = 3 [1,_ Gmtro) - 3 1, (Gp(reDe) - 5 1 Gpe(r-Da)]
(k=1,2,3,...) (4.2.71)
where the starting value for the scheme is
lo(ymzrw) = (7m:rw)n(7m:rw) . (4.2.72)

The recursive formula (4.2.66) may be used to obtain the mean shear

stress op, from equation (4.2.65).
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On substituting equation (4.2.65) into equation (4.2.29), we see that

the fractional reduction in mean shear stress E, may be obtained from

° k 2k
1 (-1 1y :
E = 1- I (5 ) (k1) ? [‘ﬂ‘] lk(Tm) . (4.2.73)
0 Tm’ ke=o
i.e,
= k+1 2k
1 {-1) y .
E - 1 (v) (k1) 2 [Iﬂ-] Iy (Ym) . (4.2.74)
0 Yo/ k=1

(b) Fundamental Stress Amplitude (oa‘).

The fundamental stress amplitude produced in the fluid is given
by equation (4.2.35). Using the infinite series Bessel identity for
J,(z), given by (Watson {46]).

[+ 2}

jl(z) = ; kz klgkiz)r [ 3 ] ) (4.2.75)

we can show that A, and B, are given by

A, =

v k - 2k+1
(-1)" (ype/w) PO S o
; Z 2k+'k!(k$1)! IC (s)[snn((7m+ w)s) - snné(ym_ w)s)]
=0

x (1 - cos(ws)) ds , (4.2.76)
B, =
x k . 2k+1 ®

(-1) € . . k+1
; Z_EEET?;:T;T[Ig_] !c (s)cos(y_s)(1 - cos(us)) ds . (4.2.77)

Evaluation of A,.

We may rewrite the equation for A, in equation (4.2.76) as

Q k . 2k

_ (-1) ~ a,.
A . RT(R+1)1 [’3‘] L ) ' (4.2.78)
=Q

where the integral li(?m) is defined to be

2k+| *®

:(7m) = 2k+ IG (S)[Sln((7 +w)s) - sin((¥ -w)s)](l -~ cos(ws)) ds

(4.2.79)
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a,. . =
It is possible to express lk(ym) in terms of a recursive formula

involving three integrals evaluated at the (k-1)th step. i.e.

2
a,. € . 1 .a . 1 a .
1) = 5 [ G -3 Ml ) - g e () | (4.2.80)
(k=1,2,3,...)
The starting value for this scheme is given by

123+ ro) = -3 [e () [sinC(y_+(r+Dw)) - sin((§ +(r-Dw))] ds
0
r=0,:1,52, ... (4.2.81)

From (4.2.32),

27+ rw) = 3 [ DO HrHe) - (F Hr-Dw)n +r-1)e) |
r=0,21,:2 (4.2.82)

Hence, we have a similar iterative scheme for evaluating A, as we
employed to work out the fractional reduction in mean shear

stress.
Evaluation of B,.

The equation for B, in equation (4.2.77) may be written as

= 2k+1

K ]
(-1) b,.
B - RI(R+T) ! [13] ) ' (4.2.83)

K=o
. b, . . .
where the integral I (7ms) is defined as

b 2k+1 @ K+
) = - %EIT‘ {G'(s)cos(?ms)FI - cos(ws)) 7' ds . (4.2.84)

It can be shown that the integral I:(im) satisfies the recursive

formula defined below,

b,. € b . 1 b . 1 b .
LG = g [ 1, G -3 L G -3 1) (e |, (4.2.85)
k=1,2,3,...
where the starting value for this iterative scheme is given by

lg(7m+rw) = - ¢ IG'(s)cos((7m+rw)s)(l - cos(ws)) ds . (4.2.86)

0
r=0, 1,22,
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Integrating (4.2.86) by parts, produces the expression

-]

l:(7m+rw) - € !G(s)[(1m+rw)sin((7m+rw)s)

- % (7m+(r+l)w)sin((&m+(r+l)w)s) - % (1m+(r-l)m)sin((ﬁm+(r-l)m)s)] ds

r=0,:1,22, ., . (4.2.87)

Hence, in order to obtain lg(?m+rw) we need to evaluate integrals of
the form
o
Q = [G(s)sin((y _+rw)s) ds , (4.2.88)
o
r=0,:1,22 ...
which is discussed in section (4.2.6)
Finally we define the non-dimensional quantity 4 to be the ratio
between the fundamental oscillatory stress amplitude and the mean

shear stress. i.e.
o
6 = — . (4.2.89)

and is obtained by evaluating equation (4.2.65) for o, and equations
(4.2.35), (4.2,78) and (4.2.83) for o,,. |

4.2.6. Non-Newtonian viscosity models.

The relaxation modulus G(s) is related to the shear viscosity
Function by the following equation (Bird et al [5])},

L= ]

[ nGrcos(ys) ay . (4.2.90)
o s>0

EYES)

C(s) =

This equation can be used to determine G(s) for the following

non-Newtonian viscosity models.
(i) Power Law: n(§) = mlyln" , (4.2.91)
where m and n are material constants.

From (Bird et al[5]), G(s) = EE; cos{nx/2)(n) . (4.2.92)
TS
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ngcos[(1-n)tan~' (Ac§) (4.2.93)

(ii) Segalman: n(y) - '
1+ (n ?)2](1 n)/z
s
where n,, Ag, and n are material constants.
-S/Ag
] e
From (Bird et al [§]), G(s) = 0 . (4.2.94
¢ 3] [k;'“r(l—n)] sh )
(i1i) Carreau: D) To (4.2.95)
| T i epn G -
where n,, A\, and n are material constants.
21+n/2

. No K-n/z(s/)\)
from (Bird et al [5}), G(s) = [wix'-n/zr((l-n)/z)] yp
(4.2.96)

where K_n/z(s/k) is a modified Bessel function.

(a). Mean shear stress reduction (E).

Before we discuss the three non-Newtonian viscosity models, it
would be useful to determine the mean shear stress reduction as a
function of non-dimensional quantities. We shall need to use the

result from equation (4.2.72),

LoGptre) [1 + EE] GHre) 0, s1,52,. ..  (4.2.97)
1o (¥Ym? Ym 1 (¥Ym)

(i1). Power law model.

For the Power Law model (4.2.91), equation (4.2.97) takes the

form
[, (ytrw) r n-t
2ol¥pTre) [1 s e 1 + ro (4.2.98)
r=0,21,:2, ..,

The fractional reduction in mean shear stress is a function of ¥p/w
and the power law index n. We note that if equation (4.2.,98) is
differentiated with respect to ¥p/w, then the resulting function will
contain singularities at integer values of ¥,/w. Hence, the slope of
the curve of E against y,/w will have an infinite slope for integer

values of Jp/w .
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(i1). Segalman model.

For the Segalman model (4.2.93), equation (4.2.98) takes the form

(1-n)/2

|

cos[(1-n)tan™!' (A yp(1+rw/yp)) )

cos[(l-n)tan"(lsim)]

1 (yptre) _ [1 . Eﬁj[
Lo (¥m) ¥

1 + (MY 2
1 + (ksﬁm)2(1+rw/7m)2

(4.2.99)

Hence, the fractional reduction in mean shear stress is a function of

Ym/¥ + AgYm and n.
(i11) Carreau Model.

For the Carreau model (4.2.95), equation (4.2.98) takes the form

Lo (Yptrw) [1 . EHI + (>~~1fm)’(1+rm/1'fm)2]("-')/2 (4.2.100)
Lo (Ym) Ym L+ () ?

{b) Fundamental Stress Amplitude (Ua‘).

It was noted in section (4.2.5) that the iterative scheme for

evaluating A, was similar to that used for E. Therefore, we will

concentrate our discussion on the evaluation of B, for different

viscosity functions.

(1) Power Law Model.

For the Power Law model, the

(4.2.88),

integral defined by equation
takes the form,
=)
2m . .
Q - = cos(mr/Z)F(n)IC(S)SIn((7m+rw)s) ds ,
0
From (Dwight [15]) we see that the integral defined by equation

(4.2.101)

(4.2.101) is a standard integral of the form

e o}

1 .
l-;; sin(xs) ds =
0

-50-

n-1
X

2M{n)sin(nx/2)

(4.2.102)



Hence,

Q = mn+ rw|“"coi(nw/2) ) (4.2.103)
The fundamental stress amplitude and phase expressions for the power
law model are therefore given analytically.

(ii). Segalman model.

For the Segalman model, the integral defined by equation
(4.2.88), is given by

-S/hg
sin((yptrw)s) ds . (4.2.104)

e - [xg-nzzl-n)] I

From (Dwight [15]) we see that the integral defined in equation

(4.2.104) is a standard integral of the form

T oS/ 2 Msin[¢(1-nYtan” ' (Ax)]
{—;; sin(xs) ds = T v (o072 (4.2.105)
Hence,
Q npsinl(l1-n)tan~' (A (yp+rw)) ] (4.2.106)

(1 + N, (gera) ) TTM/2
m

For the Segalman viscosity model, we have analytical expressions

describing the the fundamental stress amplitude and the phase lag.
(111) Carreau Model.

For the Carreau model, the integral defined by equation (4.2.88)
is defined by

1+n/2

2 Mo ] T K-n/20c /03

- [wix"“/zr((l-m/z)

Sn/: sin((yptrw)s) ds . (4.2.107)
We are unable to solve (4.2.107) analytically. Hence, we do not

have analytical expressions for the Fundamental stress amplitude and

phase lag produced in the fluid for the Carreau viscosity function.

However, it is possible to evaluate these quantities numerically.

The integral in equation (4.2.107) may be evaluated using a suitable

numerical integration technique provided a small enough time

step is chosen.
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4,.3. Inelastic model.

We now consider a model that gives the same viscosity behaviour
as the Goddard-Miller model, but does not describe any elastic
effects. By comparing theoretical predictions from both models, we
can comment on the importance of elasticity in flow

enhancement behaviour.
4.3.1, Mean shear stress for an inelastic fluid,

For an inelastic¢ fluid, the shear stress is given

by the generalised Newtonian model. 1i.e.

Tor(t) = Fp (OI0(F,, (L)) : (4.3.1)

Again we impose a combined steady and osciilatory shear rate of

the form
?Gr(t) = ?m(l + ecos(wt)) . (4.3.2)

The shear stress is a periodic function of period 27/w and hence the

mean shear stress o is obtained from

2 /w
(5]
o = 7;-[ a,.(¢) dt . (4.3.3)

0

Substituting equation (4.3.2) into (4.3.3) produces, using u=wt,

27

o = I [(1 + ecos(u)In(y (1 + ecos(u))) du , (4.3.4)

0

The expression defined by equation (4.3.4), is independent of
frequency as expected.
The fractional reduction in mean shear stress is obtained from

equation (4.2.29)

27
E = 1 - b1 [(1+ ecos(uiIn(y_(1 + ecos(u))) du ., (4.3.5)

27n(Y,) o
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We shall now derive the inelastic mean shear stress reduction for the
three non-Newtonjan viscosity models considered in this work
(1) Inelastic power law model.

For the power law model,

27T
E = 1 - i%—l(l + ecos(u))|1 + ecos(u)ln-' du , (4.3.6)
0

The integrand is an even periodic function of period 2x. Hence,

T

E - 1 - % I(l + fcos(u))ll + ecos(u)ln_' du s (4.3.7)
0
(11) Inelastic Segalman model.
For the Segalman model,
E -1-1 ]r(l+ecos(u)) L+ )’ (e

1 + (M ¥y) 2(1+ecos(u))?
0 s

cos[{(1-n)tan™' (Ac¥m(1+ecos(u))) ]

x du
cos[(l-n)ta?“(ks?m)]
(4.3.8)
(i1i) Inelastic Carreau model.
For the Carreau model,
T . (1-n)/2
E - 1 - % I(l + ecos(u)) . 1+ Q) ? ] du
0 1 + (M) 2(1 + ecos(u))?
(4.3.9)

The integrands in equations (4.3.7-9) inclusive are all well behaved

and can be evaluated using suitable numerical techniques.
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4.3.2. Fundamental stress amplitude.

For an inelastic fluid, we would expect the shear stress
waveform to be in phase with the shear rate waveform. Hence the
quantity B, in equation (4.2.35) is equal to zero.

Hence, by substituting equations (4.3.1-2) into equation (4.2.37) we

obtain the following equation for the fundamental stress amplitude

25

T

T
o l (1 + ecos(u)) n(¥ (1 + ecos(u))) cos(u) du
0 (4.3.10)

Normalising this quantity with respect to the mean shear stress o,

we obtain

r
2 l (1 + ¢ecos(u)) n(?m(l + ecos(u))) cos(u) du
0

6 = =
I (1 + ecos(u)) q(?m(l + ecos(u))) du
o ’ (4.3.11)
The viscosity functions for the power law, Segalman, Carreau models
may be substituted into the equation (4.3.11) to obtain the

normalised shear stress amplitude by numerical integration.

4.4, Theoretical results and discussion.

In this section, we investigate the reduction of mean shear
stress, predicted by the Goddard-Miller model and the generalised
Newtonian model, due to the imposition of a sinusoidal shear rate on
to a unidirectional steady shear flow. By comparing the predictions
of these two models, we are able to comment upon the importance of
elasticity in this flow situation. Theoretical curves are generated
for three different viscosity functions as described by the power
law, Carreau, and Segalman models.

We start this discussion by considering the mean shear stress
reduction predicted by the power law viscosity model. This is an
important region of the viscosity curve for us to examine because the
shear viscosity behaviour of many elastico-viscous fluids can be
accurately described, over a wide shear rate range, by a power law
model. Figures (4.1) to (4.5) inclusive, show the variation of mean
shear stress reduction against the non-dimensional quantity ¥, /@ for

e values from 0.2 to 2.0. In each of these figures the mean shear
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stress reduction is determined for the three values of the power law
index, n = 0.3, 0.6, and 0.9. i

An important difference between the inelastic and viscoelastic
models is that the inelastic power law model predicts that mean shear
stress reduction is independent of ¥, /o for all e¢. All of the
figures (4.1) to (4.5) show that as ¥, /w increases, the viscoelastic
mean shear stress reduction curves tend towards the constant
inelastic value as expected. We note in figures (4.1) and (4.2),
that the inelastic mean shear stress reduction for n equal to 0.6 is
greater than n equal to 0.3. This result is to be expected, since
for small ¢ the inelastic mean shear stress reduction is given by
¢2n(1-n)/4 which has a maximum value at n = 0.5 (Davies et al [10]}.

We would expect elastic effects to have an important influence
on mean shear stress reduction in the region of Jow ¥, /w. In figures
(4.1) to (4.5), we observe large differences between the viscoelastic
and inelastic predictions in this part of the curve for n equal to
0.3 and for n equal to 0.6. We note that the differences between the
two predictions are not very large for n equal to 0.9. This is an
expected result because as n approaches unity the flow situation
tends to the Newtonian case. It is interesting to note that in the
region of 4, /w < 1, the difference between the viscoelastic and
inelastic predictions of mean shear stress reduction, decreases as ¢
is increased for a fixed value of n.

Figure (4.1) shows that for small ¢ (¢ = 0.2), the mean shear
stress reduction for the viscoelastic model increases with increasing
Ym /@ to a maximum value which occurs just before ¥ ,/w equal to 1.0.
These curves then decrease rapidly towards the constant inelastic
prediction. Similar behaviour to this has been observed by other
workers (Davies et al [10], Barnes et al [2] and, Phan-Thien and
Dudek [36]).

For a fixed value of ¥, /w we see by comparing figures (4.1) to
(4.5) that the mean shear stress reduction increases with increasing
¢. However, if we take ¢ to be constant, then we see that the
viscoelastic mean shear stress reduction curves oscillate with a
frequency of ¥, /w equal to 1. The amplitude of oscillation decreases
as the viscoelastic curves tend to the inelastic prediction. A
resonance effect appears to occur at ¢ equal to 1.0. A consequence
of this oscillating behaviour, is that the GCoddard-Miller model

predicts that reduction in mean shear stress may either increase or
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decrease with increasing 4, /@w. The inelastic model predicts that the
reduction in mean shear stress is independent of ¥, /w.

In figure (4.5), we note the irregular shape of the viscoelastic
mean shear stress reductien curve for ¢ equal to 2, n equal to 0.3,
In order to check that the behaviour of this curve is not due to any
numerical rounding error, the computer program used was run in both
double and quadruple precision.

Let us now consider the reduction in mean shear stress predicted
by the Carreau viscosity function, This viscosity model is capable of
describing realistic shear viscosity behaviour over a wider shear
rate range than the power law model. Another advantage of using this
viscosity function in conjunction with the Goddard-Miller model, is
that the resulting expression describing mean shear stress reduction
(see equation (4.2.100)), does not possess an infinite gradient at
integer values of ¥, /w.

Figures (4.6) to (4.11) inclusive, examine the effect on mean
shear stress reduction of varying M, the power law index n, and ¢
for both elastic and inelastic models. In figures (4.6) and (4.7) we
vary M) from 1.0 to 10.0 for a power law index of 0.3. The values of
€ considered are 0.8 and 1.2 respectively. This value of the power
law index was chosen because it represents a.highly shear thinning
behaviour. For each value of Mw, the horizontal axis effectively
represents a range of M, . e.g. for M\ equal to 1, My, takes on
values from 0 to 12, whereas for Aw equal to 10, My, ranges from 0 to
120. We would therefore expect the Carreau mean shear stress
reduction predictions to tend to the power law predictions as \w
increases. This is clearly shown in figures (4.6) and (4.7).

The mean shear stress reduction shown in figures (4.8) to (4.11)
inclusive, is in agreement with the power law mean shear stress
reduction curves presented in figures (4.1) to (4.5) except at low
values of 4, /w. This is to be expected because the Carreau and the
power law viscosity functions are different at low shear rates. For
instance, at low ¥, /w the inelastic mean shear stress reduction
behaviour predicted by the Carreau model is not constant. However, as
Ym /@ increases both the viscoelastic and the inelastic mean shear
stress reduction curves from the Carreau model tend to the power law
predictions as expected.

In addition to the Carreau and the power law viscosity models,

theoretical mean shear stress reduction expressions were also derived
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for the Segalman model. Figure (4.12) compares the viscoelastic mean
shear stress reduction for each of three viscosity functions
discussed in this chapter. Similarly, figure (4.13) compares the
inelastic mean shear stress reduction for the same three viscosity
functions. It is clear from these two figures that the reduction in

mean shear stress is sensitive to the shape of the shear viscosity

function.

4.5 Comments.

The flow problem analysed in this chapter was one in which a
fluid was subjected to a unidirectional combined steady and
oscillatory shear flow. The main interest in this analysis was the
derivation of thecoretical expressions describing the reduction in the
mean shear stress produced by the sinusoidal fluctuation of the shear
rate about a non-zero mean. The viscoelastic constitutive equation
was supplied by the Goddard-Miller model which is able to describe
large deformations. Consequently we were able to carry out a
theoretical investigation into mean shear stress reduction for
situations where the oscillatory shear component was large compared
to_the mean shear flow (e). -

The theoretical work described above, provided an analytical
technique for determining the effect of a large oscillatory shear
component on the mean shear flow properties of an elastico-viscous
fluid. Similar analytical methods were derived for evaluating the
fundamental oscillatory shear stress amplitude, and the phase.
However, it should be noted that the fundamental oscillatory shear
stress amplitude and phase must be evaluated numerically if the shear
viscosity is described by a Carreau model.

Mean shear stress reduction predictions observed for small
values of e showed similar behaviour to that obtained by previous
workers (Davies et al [10], Barnes et al [2]) and, Phan-Thien and
Dudek [36]). Townsend [39], used a four constant Oldroyd model to
consider the situation of large ¢ for the pulsatile pipe flow
problem. This work predicted that the variation of flow enhancement
against mean pressure gradient for a fixed value of frequency and ¢
(e=1), does show a peak in the value of the flow enhancement.
However, the Townsend results do not show the oscillating behaviour

exhibited by the Goddard-Miller model in the current investigation.
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It is difficult to make a qualitative comparison between these two
sets of results, because the Goddard-Miller model and the Oldroyd
four constant model do not predict the same shear viscosity
behaviour. It has been previously demonstrated that combined steady
and oscillatory shear flow behaviour is sensitive to the shape of the
shear viscosity function (Davies et al [10]), Phan-Thien an& Dudek
[36]), Jones and Walters [22].

In Chapter 5, an experimental programme is carried out on a
controlled stress rheometer to investigate large ¢, mean shear stress
reduction behaviour for a 2% solution of polyisobutylene in dekalin.
The experimental results from the programme will be compared with
viscoelastic and inelastic predictions of mean shear stress reduction

obtained from the analysis developed in this chapter.
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Chapter 5
Combined Steady and Oscillatory Shear Experiments
5.1 Introduction.

Previous workers (Barnes et al [2], Phan-Thien and Dudek [36]),
have carried out combined steady and oscillatory shear experiments
for small amplitudes of oscillation. These results were then
compared with viscoelastic theories using a perturbation analysis for
small amplitudes of oscillation. A problem that is encountered with
making this small amplitude comparison, is that the experimental data
is subject to a degree of experimental scatter, and hence,
quantatative agreement between experiment and theory may be difficult
to obtain. This chapter will be concerned with making a comparison
between theory and experiment for large oscillatory shear
amplitudes. Recent developments in the controlled stress rheometer
(Davies ef al [12]), have enabled combined steady and oscillatory
shear experiments to be carried out at large amplitudes of
oscillation.

In this chapter, a Carri-Med controlled stress rheometer
(CS100L) is used to superimpose an oscillatory shear strain on to the

steady shear flow of an elastico-viscous fluid.
5.2, Experimental procedure and results,

The controlled stress rheometer was operated throughout each .
experiment by an Opus V microcomputer via an IEEE interface.
Computer software was used to modify the couple waveform so that a
combined steady and oscillatory couple could be applied to the rotor
platen. The subsequent displacement of this platen was measured
using an optical encoder measuring system. The experiments were
carried out at a constant temperature of 23.C using both a narrow gap
concentric cylinder geometry (r;=18.5 mm, r,=20.75 mm, cylinder
height=5 cm; fig (3.6)), and a cone and plate geometry (gap angle=1.,
radius=2cm; fig (3.4)). The test sample for this programme of
experiments was a 2% solution of polyisobutylene in dekalin., This

fluid exhibits both shear thinning and elastic properties.

The analysis developed in Chapter 4 was based on a controlled
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shear rate theory. However, the experiments were carried out on a
controlled stress instrument. Therefore, in order for us to make a
comparison between theory and experiment, it was necessary to
incorperate a 'feed back loop®’ into the computer software so that the
rheometer behaved as a controlled strain instrument. In order to
determine the mean shear stress reduction for each experimental run,
a steady shear test was initially performed, followed by a combined
steady and oscillatory experiment. The computer software ensured
that the required mean shear rate in both cases was the same.

The theory in Chapter 4, requires the knowledge of model
parameters n, for the power law model, and n and A, for the Carreau
model. These parameters were obtained by fitting the viscosity
functions of these models to the experimental shear viscosity data,
as presented in figure (5.1). For the viscosity data shown in this
figure, n = 0.35, and A = 4.5 s™'. There is a slight discrepancy
between the Carreau model viécosity function and the experimental
viscosity data at low shear rates. However, most of the combined
steady and oscillatory experiments were carried out at mean shear
rates in the power law region. Hence, this discrepancy should not
affect the mean shear stress predictions.

In figure (5.1), we also present dynamic viscosity for a 2%
solution of polyisobutylene in dekalin. It should be noted that the
Goddard-Miller model, used in Chapter 4, predicts that the shear
viscosity function plotted against shear rate, should be coincident
with the dynamic viscosity function plotted against angular
frequency. Clearly, this is not the case for a 2% solution of
polyisobutylene in dekalin. Interestingly, there is almost a perfect
match between the shear viscosity and the magnitude of the complex
viscosity, as shown in figure (5.1), which has also been found to be
the case for some other materials (Zahorski [48], Bird et al [S5]).

In figures (5.2) to (5.6) inclusive, we show mean shear stress
reduction curves for the polyisobutylene solution for various values
of ¢ (ratio of the oscillatory shear rate amplitude to the mean shear
rate). An important feature of the experimental data presented in
these figures is the lack of experimental scatter. This figure also
shows that for large oscillatory shear rate amplitudes, large mean

shear stress reductions are obtained (>50% in some cases).
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The mean shear stress reduction data presented in figures (5.2)
to (5.4) inclusive, was obtained using a narrow gap concentric
cylinder geometry and shows the variation of mean shear stress
reduction with the non-dimensional parameter vn,/w. The range of y,/w
considered, was governed by the limitations of the instrument for the
particular geometry concerned. In each experimental run, both the
angular frequency and ¢ were held constant. The experiments were
repeated for different values of ¢. Figures (5.2-4) all show that,
under these conditions, the magnitude of the mean shear stress
reduction increases monotonically with increasing mean shear rate and
oscillatory shear rate amplitude. For the experimental mean shear
stress reduction data shown in these figures, we see that the effect
of increasing € for a constant value of ¥,/w is to increase the mean
shear stress reduction effect. The theoretical predictions in
figures (5.2-4) will be discussed in section (5.3).

In figures (5.5) and (5.6), the measurement system used is that
of a 1° gap angle cone and plate set-up. The mechanical inertia of
the cone and plate system is less than that for the concentric
cylinder system., There is also less surface contact with the fluid.
Hence, the cone and plate system, enables an extended range of ¥y /w
to be considered. - These experimental curves again show-that mean
shear stress reduction increases monotonically with increasing y,/w
as w and € are held constant.

The viscoelastic power law theory, developed in Chapter 4,
predicts that the mean shear stress reduction should only be a
function of the power law index n, ,/w, and ¢. Since, both ¢ and n
are held constant for figures (5.5-6), the reduction in mean shear
stress predicted by these experiments, should be a function of Yp/w
only. This prediction is supported by the experimental data shown in
figures (5.5-6). The frequency of oscillation for the experimental
results shown in figure (5.5) was 2 Hz and was reduced to 1 Hz for
the experiments carried out in figure (5.6). If we compare the
experimental mean shear stress reductions obtained for ,/w 2 4, and

Ym/®w 2 9, we see that

(Yp/w 2 4; [E(freq=2 Hz) = 0.375 , E(freq=1 Hz) = 0.388)
Ym/w 2 9; [E(freq=2 Hz) = 0.462 , E(freq=1 Hz) = 0.473].)

This result confirms that the experiments were carried out in

the power law region.
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Also shown in figure (5.5), is experimental data taken from a
controlled stress rheometer by Davies et al [12]. The frequency of
oscillation in the Davies et al data was 4 Hz. We can see that good
agreement is obtained between the two sets of data when plotted
against y,/w. The Davies et al data mean shear stress reduction data
contained some experimental scatter. This was probably due to the
inaccuracy of the snail cam device used to measure the angular

displacement.
5.3. Theoretical Comparison.

The theoretical expressions derived in Chapter 4 (equations
(4.2.74) and (4.3.9)), in conjunction with a Carreau viscosity
function (4.2.95), we}e used to generate viscoelastic and inelastic
mean shear stress reduction curves for the figures (5.2-7).

We begin by considering the variation of mean shear stress
reduction with y,/w in figures (5.2-6). The angular frequency w, and
the ratio ¢, are both held constant. For low values of y,/w, we
would expect elastic effects to play an important role in determining
the combined steady and oscillatory flow behaviour of the fluid.
However, as jp/w is increased, the importance of elasticity in-
determining flow behaviour should diminish. This prediction is
consistent with the behaviour of the viscoelastic and inelastic
curves presented in these figures, in that the viscoelastic curve
tends to the inelastic curve as expected.

For each of the figures (5.2-6), discrepancies are observed
between the experimental mean shear stress reduction data and both
the viscoelastic and inelastic theoretical curves. The experimental
mean shear stress reduction data increases monotonically with
increasing yp,/w, and does not display any of the oscillating
behaviour of the viscoelastic model. This oscillating behaviour
appears to be an artifact of the Coddard-Miller model and is unlikely
to arise in more realistic viscoelastic models. Even though the
Goddard-Miller model has not given agreement with experimental
behaviour at low values of 4,/w, we would expect the model to give
reasonable predictions of experimental data at large values of yp/w.
The reason being that all viscoelastic models must tend to the
inelastic model as the frequency of oscillation tends to zero.

However some discrepancies still occur between theory and experiment
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at large values of y,/w. We therefore conclude that the theoretical
discrepancy is not entirely due to thke viscoelastic model used.

A possible reason for the discrepancies discussed, is that the
theory was based on the assumption that the oscillatory component of
the shear rate waveform was sinusoidal. In our experiments on the
controlled stress rheometer, the shear waveform was observed to be
non-sinusoidal (see figure (5.9)). This is to be expected for
non-Newtonian fluids.

It is not a simple matter to use the Goddard-Miller viscoelastic
model to determine the mean shear rate enhancement for a combined
steady and oscillatory shear stress situation. However, we are able
to examine this flow problem for the inelastic model. Since the
experiments were carried out at mean shear rates which were in the
power law region, a power law viscosity Function was considered. This
analysis is presented in section (5.4). The corrected inelastic
predictions for the controlled stress situation are shown in figures
(5.2-7).

The cone and plate mean shear stress reduction results from the
inelastic controlled stress analysis, in figure (5.6), appear to
show an improved prediction of the experimental data at large yp/w.
In figure (5.6), the experimental data does appear to be tending to
the inelastic correction as yp/w is increased. However, in the
results for the concentric cylinder, in figures (5.2-4), it is
difficult to see whether an improvement in the discrepancy between
theory and experiment has been made, since the range of y,/w is
restricted.

In figure (5.7), we consider the variation of mean shear stress
reduction with ¢, for a fixed value of y,/w and w (y,/w=1.0). Again,
we observe differences between the inelastic and viscoelastic curves,
and the experimental data. However, it should be pointed out thart
the viscoelastic model does qualitatively predict the correct
behaviour regarding the variation of mean shear stress reduction with
€. The differences between the inelastic model and the experimental
data were to be expected for the low value of ¥, /w considered in this
experiment,

In figure (5.8) we consider the variation of the inelastic mean
shear stress reduction with ¢ for the controlled stress and the

controlled strain analysis. The theoretical predictions from these
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two theories are compared with the small ¢ mean shear stress

reduct ion predicted by an inelastic power law model (Davies et al
[10]1). The mean shear stress reduction predicted by the three models
are in agreement at values of ¢<1.0, as expected. However, there are
clear differences between the controlled stress and controlled strain
analysis for values of ¢>1.0 . Therefore, our assumption of a
sinusoidal oscillatory component of the shear rate, was subject to
error and must be taken into account in the theory. We would expect

to have a similar type of error for the viscoelastic theory

5.4, Comparison between controlled stress and controlled strain

inelastic analyses.

Most of the experimental work in this chapter, was carried out
at mean shear rates, which were in the power law region of the shear
viscosity curve of a 2% solution of polyisobutylene in dekalin. We
therefore use a power law viscosity function to describe the shear
viscosity behaviour of the inelastic model considered in this
section. For an inelastic power law fluid, the relationship between
shear stress and shear rate is given by the generalised Newtonian
model as,

1

n—
o = myl+yl . (5.4.1)
Hence, the shear rate may be expressed in terms of the shear stress by

1 1

-= ==

n n
Y =m alal . (5.4.2)
We begin by considering an inelastic controlled strain analysis
for the combined steady and oscillatory shear flow problem outlined
in this work. From equation (4.3.7), we see that if the shear rate

in the fluid is assumed to be of the form,

¥ = 7m(1 + ecos(wt)) . (5.4.3)

where ¢ is the ratio between the amplitude ¥,, of the oscillatory
component of the shear rate, and the mean shear rate 4, then the

inelastic power law model, gives the following expression for the
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mean shear stress reduction E.

/W n-i ;
E=1 - % [ (1 + ecos(uwt) |1l + ecos(wt) dt . (5.4.4)
0

However, the experimental flow situation considered in this work, is
one in which the stress is the controlled variable. A shear stress

is applied to the fluid of the form
o =0p (1 + 6 cos(wt)) . (5.4.5)

where § is the ratio between ampliude 0,,, of the oscillatory

component of the shear stress, and the mean shear stress op.

§ = — . (5.4.6)

The shear rate produced in the fluid will now be non-sinusoidal. i.e.

@
v = ?m +iz 7aicos(wt) ; (5.4.7)
=1

The mean shear rate 4, and the fundamental oscillatory shear rate

ammpliude ¥, may be obtained via a Fourier series analysis, as follows

Sl-

1
. n t/w

¥, -'g [_%m_] j (1 + scos(wt)) |1 + scos(we) dt ,
0
(5.4.8)
and
1 1
n T/w n !
¥y, = o [_%m_] ] (1 + écos(wt))|1 + scos(wt) cos(wt) dt
[+]
(5.4.9)

The inelastic controlled stress prediction of mean shear stress

reduction E, is subsequently obtained from the equation

E - 1 - — , (5.4.10)
where g is given by the inelastic power law model.

n-i
o, = my, |ym| . (5.4.11)
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Due to the presence of second and higher order terms in the shear
rate waveform (5.4.7), the mean shear stress predicted in equation
(5.4.11) for the controfled stress analysis, will differ from the
prediction of mean shear stress reduction obtained from the

controlled strain analysis in equation (5.4.4)

5.5. Comments.

In this chapter, we have presented experimental mean shear
stress reduction data obtained from a Carri-Med controlled stress
rheometer. These combined steady and oscillatory shear experiments
were carried out for large oscillatory shear amplitudes, (e>1l). It
is important to point out the lack of experimental scatter in the
mean shear stress reduction data. This should facilitate any future
comparison between theoretical and experimental predictions for mean
shear stress reduction. It should also be noted that large
reductions in the mean shear stress were observed for large
oscillatory shear amplitudes. In figure (5.5), it was shown that
good agreement is obtained between the current mean shear stress
reduction data and the data of Davies et al [12].

The viscoelastic model qualitatively predicts the correct trend
regarding the variation of mean shear stress reduction with e.
However, large discrepancies were observed between the experimental
and theoretical predictions for the variation of mean shear stress
reduction with both ¢ and y,/w. The viscoelastic analysis assumes
that the shear rate waveform is sinusoidal. Figure (5.9) clearly
shows that this assumption is incorrect. This result is to be
expected, since polyisobutylene is a non-Newtonian fluid. However,
if we consider the corrected inelastic prediction for mean shear
stress reduction, we see that the inclusion of second and higher
harmonics in the shear rate waveform does not adequately describe the
discrepancies between the experimental and theoretical predictions.
We would expect. any corrected viscoelastic curves to tend to the
inelastic curves as yn,/w is increased. Clearly, the experimental
mean shear stress reduction data would have to start decreasing with
increasing ¥y,/w if the experimental data is to coincide with the
corrected inelastic prediction at high values of §g/w. We have no
evidence to support this type of behaviour. It is true that

mechanical inertia effects were ignored in the development of the
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corrected inelastic theory. However, the experimental data presented
in figures (5.5) and (5.6) suggested that mechanical inertia effects
were not significant for this brogramme of experiments.

The Goddard-Miller model is not able to adequately describe the
combined steady and oscillatory shear flow behaviour of
elagtico-viscous fluids. The model is capable of describing
realistic shear viscosity behaviour or realistic dynamic viscosity
behaviour, but is unable to describe both behaviours simultaneously.
This may be an important consideration for the accurate modelling of

combined steady and oscillatory flow behaviour,
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Chapter 6
Fluid Inertia Effects In Controlled Stress Oscillation (Theory).
6.1, Introduction.

This chapter is concerned with the effect of fluid inertia on
experimental oscillatory shear data taken from a controlled stress
rheometer. A linear viscoelastic theory has been developed which
Includes the effect of fluid inertia for the parallel plate, cone and
plate, concentric cylinder, and double concentric cylinder
geometries. The time dependent behaviour of a material undergoing a
linear viscoelastic -deformation may be characterised by the complex
viscosity function n*. Small amplitude oscillatory shear experiments
were first performed on applied strain rheometers such as the
Weissenberg rheogoniometer. Many workers, Maude and Walters [26],
Oldroyd [30], Walters [41), Walters and Kemp [43], Nally [28], and
Markovitz {25), have studied the effect of fluid inertia on
oscillatory shear data taken from this instrument. This topic is
comprehensively covered by Walters in Rheometry [45].

It was first shown that the controlled stress rheometer could be
operated in an oscillatory stress mode by Jones et al [24])., These
workers developed a linear viscoelastic theory for the cone and plate
geometry which excluded the effect of fluid inertia. Fluid inertia
effects were first considered by Holder [20] and by Jones et al
[24]. The former, working on a Deer rheometer, developed a linear
viscoelastic theory for the cone and plate and parallel plate
geometries. This theory included a first order fluid inertia
correction for the cone and plate geometry, and an exact fluid
inertia correction for the parallel plate geometry. However, due to
problems of electromagnetic inertia in the induction motor used to
drive the Deer rheometer, Holder was unable to verify these
theoretical expressions with experimental results. Jones et al [24]
developed first order fluid inertia corrections for the parallel
plate, cone and plate, and concentric cylinder geometries. An
experimental program was carried out using a Carri-Med controlled
stress rheometer on a highly elastic fluid and a slightly elastic
fluid. Their results indicated that over a frequency range of

0-10 Hz, fluid inertia effects were small for the cone and plate and
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parallel plate geometries when testing a 2% solution of
polyacrylamide in water. It was also shown that fluid inertia
effects should be taken into account in the concentric cylinder
geometry especially for high density mobile fluids.

The aim of present work is to consider the effect of fluid
inertia on dynamic data obtained from the Carri-Med controlled stress
rheometer. This chapter will concentrate on developing a linear
viscoelastic theory capable of interpreting experimental data over a
wide frequency range. The theory will assume that the fluid under
consideration is Incompressible. For each geometry, the equations of
motion will be solved exactly using a numerical technique. The
perturbation solution to the equations of motion will be extended to

second order accuracy.
6.2, Parallel plate.
6.2.1. CGoverning equations.

All physical quantities are referred to cylindrical polar
coordinates (r,8,z). The parallel plate geometry is defined by two
coaxial horizontal flat plates of radius a, separated by a vertical
distance h as shown in fig (3.5). An oscillatory couple is applied
to the top platen forcing it to make small amplitude angular
oscillations of amplitude X, and frequency w about the z-axis., The
bottom platen remains stationary. The generalised linear equation of

state for elastico-viscous liquids,

*

=" ¥y; - P8 ; (6.2.1)

ag, . e

1) HJ
will pe used, where Uij is the stress tensor, 7ij is the rate of
strain tensor, gij is the metric tensor, and p is the isotropic
pressure.

The complex viscosity n* is defined by (2.2.15) to be,

n* 8 g - IC'/w ; (6.2.2)
Following the analysis of previous workers, Walters and Kemp
{43], Holder (20), and Jones et al [24), the non-zero physical

velocity component is assumed to be,

iwt
V(e) = rF(z)e . (6.2.3)

-69-



which identically satisfies the equation of continuity for
incompressible fluids (equation (2.1.4). This velocity profile gives
rise to one non-zero component of the rate-of-strain tensor (Bird et
al [5],

. dF(z) iwt
Yoz r e (6.2.4)
which can be used in equation (6.2.1) to determine the #z-component

of the stress tensor. 1i.e.

. -r gf(z) * enmt

9z iz n (6.2.5)

Substituting (6.2.3) and (6.2.5) into the relevant equation of motion
(2.1.2),

1 3.2 13 3 1 3p
= BF[r “er] Y798 %6 "3z %=z" ¥ 36 ' (6.2.6)

we obtain the second order ordinary differential equation,

d2F(z)

rrrali a?F(z) = 0 , (6.2.7)
which must be solved subject to the boundary conditions,
F(h) = iwX, , (6.2.8)
F(0) =0 . (6.2.9)
The complex parameter a? defined by Walters([45],
o? _-inz , (6.2.10)

governs the magnitude of fluid inertia effects, where p is the liquid
density. The solution to (6.2.7) subject to the boundary conditions

(6.2.8) and (6.2.9) is given by,

F(z) = jwXgsin(oz) . (6.2.11)

sin(ah)

The equation of motion of the top platen is

C -C. = Ii

F , (6.2.12)

where C is the applied couple, C_ is the couple acting on the top

F
platen due to the motion of the fluid, I is the moment of inertia

of the top platen, and X is the angular acceleration.
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The applied couple may be written as,

ei(wt+c).

C =, : (6.2.13)

where C, is the amplitude, and c phase lag of the motion of the top
platen behind the input couple.
The angular deformation X of the parallel plate resulting from a

sinusoidal applied couple C can be expressed as

X = Xge'“" (6.2.14)
Hence the angular acceleration of the top platen is given by,
X = <w?Xye'“" (6.2.15)

The couple exerted on the top platen due to the motion of the fluid is

a
- 2
CF 21[0r 082|z=hdr , {(6.2.16)
where the f#z-component of the stress tensor is obtained by
substituting (6.2.11) into (6.2.5). CF is therefore given by,
; 4 *_lwt
c - iwra®X,acot (ah)n’e (6.2.17) L
_ . - F -2
We may express the equation of motion of the top platen as,
n*C(a?) = Coe' + lw2X, , (6.2.18)
where,
i 4
Cla?) = iwra?X acot (ah) (6.2.19)

2

The complex viscosity q* can now be determined by solving
equation (6.2.18) in conjunction with equation (6.2.19). These
equations are able to interpret the full effect of fluid inertia on
the complex viscosity function and must be solved numerically. A
computer algorithm based on a rapidly convergent iterative scheme has
been written for this purpose. However, for some flow situations
fluid inertia effects are small. Hence a perturbation technique may

be used to solve these equations analytically.
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6.2.2. Perturbation method of solution.

Consider equation (6.2.19) which defines the complex
trancendental function C(a?). The function (ah)cot(ah) may be

expanded in powers of (ah)? terms, and hence,

2 9
Claz) = lemaTy[, _ (eh)®_ LaW® ] (6.2.20)

where terms of order (ach)® and higher order terms have been ignored.
Similarly the complex viscosity function n* may be expanded in the

following form,

7 = 0% + (ah)Zn} + (ah)<n} : (6.2.21)

However, from (6.,2,10) we see that the non-dimensional fluid inertia

parameter (ah)? is a function of n*. In particular,
(ohyz = ~ieph? (6.2.22)
If we define (ayh)? to be
(@zh)? = 'i:£h2 . (6.2.23)
0

‘then it can easily be shown by substituting (6.2.21) into (6.2.22)

that (ah)? may be expanded in terms of (ayh)2, as follows

1]

(ah)? (agh)? - (agh)*n7/n% , (6.2.24)

and

I

(oh)* (agh)? : (6.2.25)

where terms of order (aoh)s have been ignored. Consequently the

expansions given by (6.2.20-21) become,

n l(&”l'a aX (a h) a 1 T’*
Clog?) & SFA%al 1 - 120 (anys[5 - —3;%—]] . (6.2.26)
and
n* 2 ¥+ (agh) T+ (eph)9(n} - nf’/n:) . (6.2.27)

respectively.
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Clearly the simplest situation we are able to consider is when
fluid inertia effects are negligible. (i.e. a?<0). Under this
assumption the equation of motion (6.2.18) of the top platen reduces

to,

2h

* _ ic 2
Mo iwwaZXO[ Coe = + lu?X, ] . (6.2.28)

The real and imaginary parts of the complex viscosity are called
" the dynamic viscosity and the dynamic rigidity respectively. These
linear viscoelastic functions are related to the experimental

displacement amplitude and phase data by the expressions,

. 2hC.sin(c)
T '—;ﬁzzy:—- ) (6.2.29)
and
. 2h C,cos(c) 2
¢! i A ] : (6.2.30)
The phase angle c must therefore lie in the range,
O0gcgr ] (6.2.31)

The mechanical inertia of the system is governed by the term lw? and
has no effect on the dynamic viscosity.

We are now in a position to derive expressions for the first and
second order complex viscosity coefficients. It can be seen by
comparing (6.2.18) and (6.2.28) that the complex viscosity n* and the

zero order approximation to the complex viscosity n: are related by,

3 a
n*cla?) = ¥ -‘-‘i-’%—xﬂ . (6.2.32)

Hence by using (6.2.20-27) and equating coefficients, we find that

the complex viscosity is given by,

* a % (a,h)? (a h)?
I B R L T (6.2.33)

Let the first and second order approximations to the complex
viscosity be qt1) and n?z) respectively. Jones et al [24} have
derived the first order Fluid inertia correction for this geometry in

an earlier finvestigation.
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Consider equation (6.2.33), which to first order accuracy is,

2
* * iwph
ﬂ(‘) ﬂo - —3— . (6.2.34)

The first order approximation has no real component and therefore the
zero order dynamic viscosity function remains unchanged. i.e.

Ty = T, : (6.2.35)

However, the zero order dynamic rigidity function is increased by an

amount wph2/3.

.(6.2.36)

The first order fluid inertia corrections (6.2.35-36) have previously
been derived by Jones et al (24]. Equation (6.2.36) shows that the
first order fluid inertia correction is dependent on the system
geometry only and is independent of fluid properties. It should be
noted that nT is proportional to h?. Hence, by varying the gap size,
in experiments, the influence of fluid inertia may be determined.

The second order fluid inertia approximation may be obtained

from equation (6.2.33), and is given by

* * iwph2 .wzpth
Ty = T T - : (6.2.37)
(7) 0 3 45773;
i.e.
x . g% _ deph? 1 paph?y? o
T(2) T 3 73 =3 ] (ny + G /w) (6.2.38)
where,
* , 2 . 2 *
|70l = [ n, +t (C/w) ] : (6.2.39)

Taking real and imaginary parts we see that the dynamic viscosity

n; is decreased by a value of (n;/45)(uph2/|n:|)2.

Ty = 1 g3 ?%%% 17 ] . (6.2.40)

(2)

Sy = Gl 1+ g3 |

The dynamic rigidity C is given by,

wph? ]2 ] + w?ph? (6.2.41)

TH 3
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The second order fluid inertia correction depends on both the system
geometry and on the fluid properties. Expressions defined by
equations (6.2.29-30),(6.2.35-36), and (6.2.40-41) may be used to
produce dynamic data from experimental displacement amplitude and
phase data measurements, provided fluid inertia effects are not too

large.
6.2.3. Exact method of solution.

If fluid inertia effects are large, it is not possible to obtain
an analytical solution to the couple equation (6.2.18). By
multiplying both sides of (6.2.32) by a complex factor -1/iwph?, the

resultant equation is non-dimensional and may be written in the form,
(agh)? = (ah)tan(ah) . (6.2.42)

This equation may be solved numerically using a Newton-Raphson

technique. To avoid the discontinuity in tan(ach) as ah approaches

kr/2, k = ¢1, #3, ..., we rewrite this equation as,

(ah)sin(ah) - (agh)?cos(ah) =0 . (6.2.43)
Let

f(ah) = (ah)sin(ah) - (ayh)?cos{ah) : (6.2.44)
The complex parameter (ajh)? is known experimentally. (ah) can now

be determined by solving equation (6.2.43) numerically using the

iterative procedure (Jennings {21]).

-z - SZK)
zk+| zk fl (zk) ’ k - 0'1.2'..‘ (6.2.45)
where z, is an initial value for ah. It should be noted that the

solution to equation (6.2.43) is multivalued and hence, care must be
taken in the initial choice of {(ah) to ensure that the scheme

converges to the correct solution.
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6.3. Cone and plate.
6.3.1. Governing equations.

All physical quantities are referred to sphericat polar
coordinates (r,f6,p). The cone and plate geometry is defined by two
coaxial instrument members; a cone of semi-vertical angle Bc and a
flat horizontal plate of radius r as shown in figure (3.4). The
angle between the cone and the plate, denoted ¢,, is assumed to be
small (<4.). A couple is applied to the cone forcing it to make
smal]l amplitude angular oscillations of amplitude X, and frequency w
about the p-axis. The bottom platen remains stationmary. We again
use the generalised linear equation of state for elastico-viscous
liquids defined by (6.2.1). f.e. ' )

i = ”*"/ij - P8 . (6.3.1)

Following the analysis of previous workers, Holder [20] and
Jones et al [24], the non-zero physical velocity component is assumed
to be,

Veoy = F(r,a)e @t . (6.3.2) -

which identically satisfies the equation of continuity (2.1.4), for
incompressible fluids. The velocity profile (6.3.2) gives rise to
two non-zero components of the shear rate tensor. These

are (Bird et al [5]),

. OF(r.,8) F(r,0) iwt

or = | 3¢ - D et (6.3.3)
and

: 1 1 OF(r,8 i

Yoo = T [ aﬁ(r ) = F(r,0)cot(d) ]e“"t : (6.3.4)

The corresponding components of the stress tensor are given by
JoF(r,8) F(r,9) * 1wt
o9 = | 3 Sl LG (6.3.5)

and

Too = % [ gg(r,o) - F(r,8)cot(9) ]n*ei“t. (6.3.6)

fp
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Substituting (6.3.2) and (6.3.5-6) into the relevant equation of

motion (see equation (2.1.2)),

v, Vv, v, V, 8V, V.V, VgV
WV, © P ¥ r¥y 6%
[ ot T Vrar t T 33- + rsin(8) Jdp =t cot(0) ]
1 d, , 1 d ) 1 e | ogpcot(8)
- 7 w0+ ey 36 0] ey & T
1 dp
FSTn(d) 3p : (6.3.7)

we obtain the second order partial differential equation,

n(®) 35

[rzgg(r,a)] aF(r a)] FCr ) oryer(e.8)

Ol G
sin(8) sin?(8)

(6.3.8)

where o is defined in equation (6.2.10).

Equation (6.3.8) must be solved subject to the boundary conditions
F(r,ac) = lmrXOSLn(Oc) (6.3.9)
F(r,0) = 0 . (6.3.10)

Nally [28] has solved the above partial differential equation
using a separation of variables technique. The general solution may

be written as,

F(r,8) = r-iz Jn+é(ar)[ A_P!(cos(8)) + B Q' (cos(8)) ] . (6.3.11)

n=1

where Jn+i(ar) is a Bessel function of the first kind of order
(n+1/2), Pn(cos(a)) and Qn(cos(ﬂ)) are zero order Legendre Functions
of the first and second kind of degree n, and ' denotes
differentiation with respect to §. An and Bn are arbitrary
constants to be determined from the boundary conditions (6.3.9-10).

We shall need to use the following result from Watson[46],

/2 3/2 T (n+1/2)T(1+n/2)
(@r)™" = 2 [(n-13/2]17 “n+}

n=1i,3

(ar) , (6.3.12)

where from [28] we define the gamma function I' to be,

(ki) = 1357

- L C2k-1) 112y . (6.3.13)
> (k=1,2.3....)
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F(r,8.) may be expanded in terms of Intr/2 by substituting (6.3.12)

into (6.3.9) to give

1 3

—— - [2s]
2 2 .,
F(r,ﬂc) - inor o SIn(Bc) z aan+5(ar) .
n=1,3

where,

. 93/7 (/DM (14n/2)
n [(n-1)/2]!

a

(6.3.14)

(6.3.15)

Using the properties of the Legendre functions (Abramovitz and

Segun [1], we see that the solution (6.3.11) to the differential

equation (6.3.8) satisfies the boundary conditions (6.3.10) and

(6.3.14) provided,

A =0 for all n R
n
B =20 n even ,
n
and
. ; -a/2
B - ¢ Xo.?noszg(gg)a n odd
n Qn cos c

Hence equation (6.3.11) becomes,

1 3 &
- 2~ 2
F(r,8) r ?2 o z aan+}(ar)Rn(8) ,

n=1,3

where,

jwX,sin(8.) Qu(cos(8))

Rn(ﬂ) =
Qn(cos(6.))

The equation of motion of the cone is given by,

I (wt+c 2 iwt
e ( )- C = -lw Xoe ,

Co F

(6.3.16)

(6.3.17)

(6.3.18)

(6.3.19)

(6.3.20)

- (6.3.21)

where | is now the moment of inertia of the cone. The couple acting

on the cone due to the motion of the fluid is given by,

a

2 2
C. = -2zsin (ec)l r

F r

o d
oplo=o_
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Equation (6.3.6) describes the dp-component of the stress tensor from

which CF may be determined. i{.e.

2 -3 ! * jwt
CF = -27sin (Bc)u z an[ Rn(B) - Rn(B)cot(G) ]B-BcHn+§(ar)n e ,
n—=i,3
(6.3.23)
where
oa 1/2
Ho,,(0a) = j (ar)'/*y | (ar)d(ar) . (6.3.24)

0
The equation of motion of the cone may therefore be expressed as,
ic

q*C(az) = Coe + lw X; . (6.3.25)

where the complex function C(az) is given by,

ce’y - -Zwsinz(ﬂc)a—az a| R;(e) - R_(8)cot (0) ]emec"n+g(“’)
=1,3

(6.3.26)

Equation (6.3.25) may be used to determine the complex viscosity
exactly. A computer algorithm has been written to solve equation
(6.3.25) numerically by employing essentially the same iterative
technique as described in section (6.2.3). This scheme is discussed

in section (6.3.3)
6.3.2 Perturbation method of solution.

If we assume that fluid inertia effects are small, then from
Maude and Walters [26], we see that the solution to (6.3.8) may be

expanded in powers of (ar)2 terms. i.e.
F(r,6) 2 F (r,8) + (ar)’F (r,8) + (ar)°F (r,0) ,  (6.3.27)

5] .
where terms of order (ar) have been ignored.

I1f we use the Bessel function property (Watson [46])),

e 1" 2 n+zmt}
(ar) = éTF%E§%£§7%) . (6.3.28)

nm=o

Ty
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in equation (6.3.19) we obtain by collecting coefficients the

expression for F(r,8) below

@[ & 0 - & @) ]

F(r,6) 2 r [ R (0) +

+ (ar) | §3§El - %ﬁéﬂl + gééﬂl 11 - (6.3.29)

This solution is the same as that obtained by Holder([20].

When fluid inertia effects are ignored,

F(r,8) 2 rR1(8) . (6.3.30)

which when used in conjunction equations (6.3.6) and (6.3.22), gives

the following expression Cg.

zwa’sin’(o iwt
CF - 3 (6.3.31)

[ R'(8) - R (8)cot(d) ]a=ac":e

When fluid inertia effects are not ignored, then in order to simplify
the equations, it is convenient to assume that the gap angle 6,, is
small. Using the properties of Legendre functions (Abramovitz and

Segun {1]), it can be shown that equation (6.3.29) may be written as,

. 2
F(r,0) 2 1%553 [ (r72-0) + S%Ll [ (rr2-0305 - (3/2-0)7]
o]

7 1 1
+ (ar)'[ zgg(r/2-0)65 - 5g(1/2-0)785 + 1z5r/2-0)°] ] .

(6.3.32)

Substituting equations (6.3.6) and (6.3.32) into equation

(6.3.22), Cfg is now given by,

2riwa’X 1 2 1 a
g LT W9 Mg - = -
CF 30, [ 1 g (cad ) 103 (xab ) ] . (6.3.33)
Hence from (6.3.25),
3
2, o 2miwa’X 1 2 1 4
Cla’) . [t - 3 (casy) o5 (@as )] . (6.3.34)
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When fluid inertia effects are ignored, the equation of motion
of the cone reduces to, on substitution of equation (6.3.34)

into equation (6.3.25), the following expression for q: '

*

Mo = 21|wa3x [ Coe < + 12X, ] . (6.3.35)

Taking real and imaginary parts we see that the dynamic viscosity is

given by,

30,C . sin(c)

"o = TmwalX, , (6.3.36)

and the dynamic rigidity is given by,

39
t - 2
Go _7;5%?;[ Cycos(c) + lw?X, ] . (6.3.37)

For the case when fluid inertia effects are included, we see by
substituting equation (6.3.34) into the couple equation (6.3.25) and

equating with equation (6.3.25) that

™o e Sﬁnif.nl + {003 )’ ] . (6.3.38)

The first and second order approximations to the complex viscosity
function may- be- obtained From (6.3.38).
Substituting (6.3.35) into (6.3.38) yields the first order

approximation,

2,2
iwpa @
17’;1) - 7 - %‘—n . (6.3.39)
Taking real and imaginary parts, we see that the dynamic rigidity

function is now given by,

- G+ @p3l, . : (6.3.40)

™ % 3
The dynamic viscosity function is unaffected by first order fFluid
inertia effects.
The second order approximation, is given from equation (6.3.8)

to be

*  _ ok _ (2] P ’a 9
T = Ty 105[ = a] . (6.3.41)
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Taking real and imaginary parts we see that the dynamic viscosity is

given by,

(- Lo[eeae)] | 6

RO 105 U |3

and that the dynamic rigidity is given by,

6.3:43
(2) (1) o 105 1751 ¢ )

where

H
el = [ny+ (o] . (6.3.44)

6.3.3. Exact method of solution.

When fluid inertia effects are included in the analysis, the
couple equation is given by (6.3.25). The couple equation for the
case when fluid inertia effects are ignored in the analysis is
cbtained by substituting equation (6.3.31) into equation (6.3.21).
i.e.

2ra’sin’(0,.) * i
C R'(8) - R (8)cot () ] = Ce + lw'X
3 1 1 f=0."0

(6.3.45)

By comparing equation (6.3.45) with (6.3.25), we see that n* and q:

are related by the following equation.

* 3n* i
o (ca)? an"n(")le_ac Hiy 08) . (6.3.46)
n=1, 3

where the function Ln(B) is defined by,

L (&) =

[ Qn(cos(8)) - Qg(cos(o))cot(a)]//[ Q) (cos(8)) - Q,(cos(8))cot(d)
Q;(COS(BC)) Q; (cos(8 )

(6.3.47)
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Multiplying both sides of (6.3.46) by a complex factor -l/iwpa2 leads

to the non-dimensional equation,

o)
$ 2 _
(ca) " - 3(a0a) Z anLn(0)|0=0 Hn+5(aa) = 0 , (6.3.48)
n=1,3 <
which is to be solved using the same iterative scheme as set out in
section (6.2.3). At the (k+1)th jteration,

flloa)) (6.3.49)

@)y = @Dy = Ftaa)) k =0,1,2,..,

The function f{ca) is defined by,

5 2
f(ea) = (xa)™ - (aoa) z anLn(0)|0=Oc Hn+t(aa) . (6.3.50)

n=1,3

The non-dimensional complex parameter (aoa)z may be determined
experimentally. For each value of this parameter, we must find a
value of oa which satisfies (6.3.48). The first and second
derivatives of the nth order Legendre function may be evaluated using

the following stable forward recursive relations,

Q' (cos(0) = 2D cos(0)Q!_ (cos(8)) - Do QL (cos(0))
n=2,3,4.. (6.3.51)
and
Q"(cos{(8)) = 2n-1 [ cos(0)Q" .(cos(8)) - sin(8)Q’ (cos(a))]
n n-1 n-1 n-1
- =55 Q7 _,(cos(0)) n=2,3,4,.. . (6.3.52)

1

where refers to differentiation with respect to 4.
We note the recursive formula for evaluating the Bessel function

Jn+§(aa).

2n-1
Jn+‘/2(aa) - aa Jn-1/z

{qa) - Jn-a/z(aa)' (6.3.53)

This formula is unstable recursing in the forward direction, but

(oa)

stable when recursing backwards . A scheme for evaluating Jn+

H

due to Miller and presented by Olver can be found in [32].
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The integral represented by H (aa) may be evaluated by means

n+i
of a stable forward recursive relation,

aa) = LN H (xa) - 2n-1

1/2
n+1/z( a1 Hn-3/2 (ea) Jn _z(aa), n=2,3,4,..

H n-1 -1/

(6.3.54)

This formula is obtained by subtstituting equation (6.3.53) into

equation (6.3.24) and integrating by parts.
6.4. Concentric cylinders.
6.4.1. Governing equations.

All physical quantities are referred to cylindrical polar
coordinates (r,#,z). The concentric cylinder geometry consists of
two coaxial cylinders of height h and radii r and o respectively
(r°>ri), as shown in figure (3.6). A couple is applied to the inner
cylinder forcing it to make small amplitude angular oscillations of
amplitude X, and frequency w about the z-axis. The outer cylinder
remains stationary.

We again use the generalised linear equation of state for

elastico-viscous liquids defined in section (6.2).

*

Uij =1 71_] - pgl_] (6.4.1)
Following the analysis of Jones et al [24], the non-zero
physical velocity component is assumed to be,
V, = rF(r)elwt , (6.4.2)

8

which identically satisfies the equation of continuity (2.1.4), for
incompressible fluids. This velocity profile gives rise to one

non-zero component of the shear rate tensor (Bird et al [$§]),

r gf(r)elwt

Yor = ir ' (6.4.3)
which can be substituted into equation (6.4.1) to obtain the
corresponding component of the stress tensor,

dF{r) 4+ iwt
Opr =T gr T (6.4.4)
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Substituting (6.4.1) and (6.4.3) into the relevant equation of motion,
ov ov V, oV ove V.V
e[S+ Vgt + 2t * Ve * 0 |

1 9 (.2 19 e) 1 dp
= 2 a?[’ %) * T35 %0t 5 %2 T (6.4.5)

leads to the second order ordinary differential equation,

d [_3 dF(r) 2 3 _
I [r e + a'r'F(r) =0 . (6.4.6)

The solution to this differential equation must satisfy the following

boundary conditions,

F(ri) - iwX, . (6.4.7)
F(ro) =0 . . (6.4.8)

It can be shown that it is possible to rewrite (6.4.6) in the form,

e? g;g<r> + o gg(r) + (@r-1G(r) = 0, (6.4.9)
where,
G(r) = rF(r) . (6.4.10)

Equation (6.4.9) is an example of Bessel's equation and has a general

solution,

G(r) = AJ‘(ar) + BY|(ar) . (6.4.11)
where Jl(ar) and Y'(ar) are first order Bessel functions of the first
and second kind respectively, and A and B are arbitrary constants to

be determined from the boundary conditions (6.4.7-8). The solution

G(r) satisfies (6.4.7-8) provided A and B are given by,

-iwX,r;Y, (ar,)

A . (6.4.12)
J‘(aro)Y‘(ari) - Y‘(aro)J‘(ari)
and
iwX, r:d. (ary)
B Q. 11 [o]
Jl(aro)Yi(ari) - Y‘(aro)J‘(ari) (6.4.13)
Hence,
F(r) iwfnri[JYl(ar)J,(aro) - J,{ar)Y, (ar,) (6.4.14)

I(aro)Yl(ari) - Y1(ar°)J‘(arl)
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The equation of motion of the inner cylinder is,

pllwtde) o -:w’xoei“‘ , (6.4.15)

Co F

where the couple acting on the inner cylinder due to the motion of

the fluid is given by,

2
CF - -21rhriaer|r=ri (6.4.16)
The 6r-component of the stress tensor may be determined by
substituting (6.4.14) into (6.4.4). i.e.
. Y,(ar)J. (ari) - J, {ar )Y, (ari)] * iwt
00r|r-ri waoari Jl(aro)Yl(ari) - Y‘(aro)J‘(ari) ]" € - (6.4.17)

The equation of motion of the inner cylinder may be expressed as,

nce®) = ce'® 1ix (6.4.18)

where,

2 . af J,(ary)Y, (ar;) - Y, (arg)d, (ar;)
Cla) = 21"“"’)(uhm-i leurongzari; - Y‘EarO?JIEari;

(6.4.19)

and I is now the moment of inertia of the inner cylinder. Equation
(6.4.19) mﬁst be solvedAnumerically to determine the complex
viscosity function q*. However, it is possible to derive an
approximate analytical expression providing we assume that fluid

inertia effects are small.
6.4.2, Perturbation method of solution.

It is convenient to define the following non-dimensional quantity

p o= ; , (6.4.20)
(o]

On substitution of p into equation (6.4.6), we obtain the

differential equation,

Ky 3 dF ()

23
3 i + (aro) wF(p)y =0 , (6.4.21)
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the solution to which must satisfy the boundary conditions

F(ri/ro) - in0 , (6.4.22)

and
F(l1) = 0 . (6.4.23)

By expanding the solution to (6.4.21) in powers of (aro)2 terms,

we obtain,

F(p) 2 F () + (ar )’F () + (ar )°F () ) (6.4.24)

where (aro)2 is considered small enough to ignore terms of order
(aro)E . On substitution of the expansion (6.4.24) into (6.4.21), we
obtain three second order ordinary differential equations that must be

solved subject to the boundary conditions (6.4.22-23). These are,

d a dF ,(p) ’

I [u " ] - 0 : (6.4.25)
d 3 dF, (p) 3

3 [“ . = F (6.4.26)
d 3 dF,(u) 3

gS [# o ] - -Fw F6.4.27)

The above equations enable us to determine the zero, first, and
second order coefficients Fo' F‘, and F2 respectively. Substituting

F,, F,, and F, into equation (6.4.24), we obtain

2
fwX, r; 1

F(p) 2 r: - ré [ p? !
o i

+g o) 6t - atnn + [trhneyra) L Sy ) ]
1 app® 2 ul riln(ri/ry) . ri ul
+ 75 (org) iz - wiinGo + v [FEEEGeS + D (1ntn - £
o 1 (o]

n

2 2
- Fz_giF-ii[%éln(ri/ro)[l + iﬁ;éﬂéﬂ%éiﬂl] + z%i - %Eg - TZ][l_ _ 1]

on

7 1 (rilnri/ry) . r}
"T2t3 [ rg - r; + Fé]] : (6.4.28)
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The couple acting on the inner cylinder due to the motion of the

fluid is given by equation (6.4.16) to be

CF - -2qr° 08r|p—r /r , (6.4.29)
where o4, is given by equation (6.4.4),
dF (p) * iwt
T ”EE ne (6.4.30)

The couple C_ can therefore be determined by substituting (6.4.28)

F
and (6.4.30) into (6.4.29). i.e.

¢ - ﬁ:ﬂ“’lﬂ‘ﬂhp\u (ar )¢+ (ar) C]ne we (6.4.31)
o i
where the first and second order coefficients are given by,
2 2 2 2
ri f3r, - r; roln(r;/ry)
- _L?JTL —0___1/ 0/
C1 2r [ dr * ré< - r!? ] !

o o o i
and

4r? ln(r /o) 2r2 In(r;/rg)
c, = —Lf[ -lrzo [+ + Qr; -lrfo (6.4.32)

(7r° - rl)(ro - rl)]
6r4

respectively.
If we substitute equation (6.4,31) into equation (6.4.15), and
then express the resulting equation in the form given by equation

(6.4.18), we obtain the following expression for C(a?).

41r|wxuhrjrn

C(a?) = 5o [t + erp®c + (arpc] . (6.4.33)
o

i
where C, and C, are defined by equation (6.4.32),
If we ignore fluid inertia effects, then on substituting

equation (6.4.33) into equation (6.4.18), we obtain the following

expression for n:

2 2
rpo - I;j ic 2
T’D = mgxoT?r—;[cue + lw XD] . (6.4.34)
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Taking real and imaginary parts, we obtain the following expressions

for the dynamic viscosity n; and the dynamic rigidity G;.

2 .
p = Calro - ri)sin(c)
0 4meohr§r; '

and

C' = (r; - rf)[Cnpos(c) + Iwz]

4whrfr; Xq

(6.

(6.

For the case when fluid inertia effects are included, we see by

substituting equation (6.4.33) into the couple equation (6.4.18)

equating with equation (6.4.34) that

* a * _ 2 _ q
g & "o[ 1 - (ar)’c - (ar) c,] .

where C and C are given by (6.4.32).

(6.

To first order accuracy, the compilex viscosity is given by

ﬂ?1) - W:[l - (aoro)zc‘]

Hence, from (6.4.32)

* iwggi[Sr; - rf + r;ln(ri/ro)
3

*
Tty = T 2 - ré r: - r?
o o 1

(6.

(6.

Clearly the dynamic viscosity is unaffected by first order fluid

inertia effects. However the dynamic rigidity is now given by,

r< - r
o i

! - c - wzpr; 3r; - rf + rzln(r-/r )]
(1) 0 2 4?3 Z z

(6.

The second order approximation to the complex viscosity is also

obtained from equation (6.4.37).

* * 2 q
n(z) -7 [1 - (aoro) C1 - (aoro) Cz]
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Hence,

* * iwpr 3rQ - [i r;ln([i/ro) -
7 -7 [ +
(2) 0 2 4r? rz - p?
o 0 i
+ (wpr; rQ) [4r ln(rl/ro)[l + 2roln(r1/ro)
32n - r2 r2 - r;
2 2 2 2
- (Trg -rj)(ro - ’i)] : (6.4.42)

é6rd
o

By taking the real and imaginary parts of (6.4.42), we obtain the

dynamic viscosity,

[wpriro]zl 4riln(r1/r°)[1 2r;ln(ri/r0)]

Ly - n'[l +
(2) 0 2 2 _ .2
|ﬂ | o T o T
2 2 2 2
(Try - ré)iro - ri)] , (6.4.43)
rO
and the dynamic rigidity,
G - _ Ei[wpriro]’[ 4r ln(rl/ro)[I + 2r°ln(rl/ro)
(2) (1) 32 |ﬂ:| réd - ri - r}
2 2 2 2
+ Urg - ri)lrg - ri)] . (6.4.44)
6r:

6.4.3. Exact method of solution.

As with the previous geometrieé considered, we find that for
large fluid inertia effects we must solve the couple equation
(6.4.18) numerically. By comparing (6.4.18) and (6.4.34) we are

able to deduce that q: and q* are related by the expression,

* . arjn (l" - rj ) J. (ary)Y,(ar;) - Y, (arns)d,(ar;)
1, ng 1 [ J:(arz)Yf(ar?) - Yf(arz)Jf(ar;)] . (6.4.45)

Multiplying both sides of (6.4.45) by a complex factor -1/iwp leads

to the equation,

2.2 2 rj J, (ar )Y, (ar;) - Y, (ary)d, (ar;)
ao(ro ri)ro 2ar [ J:(arg)Y;(ari) - Y:(arz)J;(ar;)] ) (6.4.46)
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This equation is valid for all fluid inertia effects and will be
solved numerically using the iterative procedure described in section

(6.2.3) and defined at the (k+1)th jteration to be,

- . Plzy
zk+1 zk [ (zk) ’ (64.47)
where,
2
z, = (aro) , (6.4.48)
and

f(z) = z[J‘(z)Yl(riz/ro) - YI(z)JI(riz/ro)]

2 2
oprij{rg -
2r

0

2
ri)[J‘(z)Yz(riz/ro) - Y‘(z)Jz(riz/ro)]

(6.4.49)

The Bessel functions of the first and second kind Jn(z) and Yn(z),may
be evaluated using the following recursive relatijon,

2n

Joe1(2 = < 4@ - J (@) : (6.4.50)

n-1

This relation is stable when the recursive relationship is applied in
the -forward direction -for Yn(z)q—but unstable when applied in the
forward direction for Jn(z). The Bessel function of the First kind

must be evaluated using (6.4.50) in the reverse direction.

6.5. Double concentric cylinder.
6.5.1 Governing equations.

All physical quantities are referred to cylindrical polar
coordinates (r,6,z). The double concentric cylinder geometry differs
from the concentric cylinder geometry in that the rotor cylinder is
situated between -inner and outer stator cylinders. This forms two
coaxial annular regions as shown in figure (3.7). A couple is
applied to the rotor cylinder forcing it to make small amplitude
angular oscillations of amplitude X, and frequency w about the z-axis.

In the theory, the flow of the fluid contained in the inner
annular region is considered separately from the flow of the fluid in
the outer annular region. The equations of motion and the velocity

profile for each annular region are identical to those describing the
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flow of a fluid in a concentric cylinder geometry (section (6.4)).
The boundary conditions, however will be different.

The equation of state is defined by equation (6.2.1). i.e.

* _
aij i Tij Pgij . (6.5.1)

The starting point of our analysis of this flow situation is the
second order ordinary differential equation defined by (6.4.6). i.e.

d [ra gf(r)

2 3
Ir ir + o' r’F(r) =0 . (6.5.2)

It was shown in section (6.4) that the general solution to this

differential equation is given by,
Fir) = = [-ad (ar) + BY (an)] (6.5.3)
r 3 1 ! T

where Jl(ar) and Yl(ar) are first order Bessel functions of the first
and second kind respectively, and A and B are arbitrary constants to
be determined by satisfying the boundary conditions.

Let the radii of the rotor surface and stationary surface of the
inner annulus be r, and r respectively (r2>r1). For the outer
annulus, r3 is the radius of the rotor surface and r, is the
radius of the stationary surface (ra>r3) (see figure (3.7)).

Let us first consider the flow of the fluid in the inner
annulus. The general solution (6.5.3) to the differential equation

(6.5.2), must satisfy the boundary conditions,

F(r) = 0 : (6.5.4)
F(r) = ieX (6.5.5)

where as for the outer annulus the boundary conditions, to be

satisfied are

F(ra) = jwX , (6.5.6)
F(ra) = 0 . (6.5.7)

If we let the radius of the rotor for each annular region be r. and

the radius of the stator be re ,then the two sets of boundary
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conditions defined by equations (6.5.6-7) may be covered by the

single set below,

F(r) = ioX , (6.5.8)
F(rs) - 0 . (6.5.9)

Expressed in this form, these boundary conditions are identical to
the boundary conditions (6.4.7-8) for the concentric cylinder
geometry. Therefore, from equations (6.4.12-13) we see that the
constants A and B must be given by,

-iw X, rn Y, (arg)

A
J|(arS)Y‘(arm) - Y‘(ars)Jl(arm)

, (6.5.10)

and

- i(d xn rm-lI(arg)
B Ji(ars)Y‘(arm) - Yl(ars)Jt(arm) (6.5.11)

Hence the solution to equation (6.5.2) subject to the boundary

conditions defined by (6.5.8-9) is,

jwX, r Y,{(ar)J. (ar.) - J {ar)Y, (ar.)
. F(r) = 3 m[J,EarS)Y:(ar;) - Y:(ars)j,(aim)] - (6.5.12)

The equation of motion of the rotor cylinder is,

ei(wt+c)_ C = -Ic.uth_jei""’t , (6.5.13)

Co F

where 1 is the moment of inertia of the rotor cylinder.
The couple acting on the middle cylinder due to the motion of

the fluid is given by the sum,

CF - CFi + CFo . (6.5.14)

CFi is the couple acting on the rotor cylinder due to the motion of

the fluid in the inner annulus,

C.. = =2xhric

Fi 2 Br|r=-r2 ! (6.5.15)

and CFo is the couple acting on the rotor cylinder due to the motion

of the fluid in the outer annulus.

C = 2whrza

Fo 2 9r|r=r3 (6.5.16)
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Using equation (6.4.17) we can deduce that

Y, (ar,)J,(ar,)

J,(ar))Y,(ary)) > it o s 19y

(i3 . = iwX ar
Brlr-r2 0 2 Ji(arl)Yl(arz) - Y‘(ar1)J1(ar2)
and that
\ Y. (ar ) (ar,) - J, (ar )Y, (ar )] * iwt
o = jwX ar 1 4--2 a 1 12 2 3 e . (6.5.18)
Br|r=r3 0 3 Ji(ard)Yl(ara) - Y‘(ar4)Jl(ar3)
The equation of motion of the rotor cylinder (6.5.13) may be
expressed as
n'c@’) = ce’r X, (6.5.19)
where
2, . ar J,(ar, )Y, (ar,) - Y,(ar,)Jd,(ar,)
Cla) 2eiuX ha[r}[-] tar )Y (ar.) =Y (ar )T (ar )]
1 1 1 2 ] 1 1 2
_ .3 J, (ar )Y, (ary) - Y, (ar ), (ar,)
ra Jl(arq)Yl(ara) - Yi(ara)Jl(ara)]] ) (6.5.20)

Equation (6.5.19) is valid for all fluid inertia effects and must be
solved numerically if we wish to use it to determine the complex
viscosity function n*.

6.5.2. Perturbation method of solution.

Consider the equation of motion of the rotor cylinder. From
equation (6.5.13),
ic t

c. = (ce'®+ lwzxo)eiw , (6.5.21)

By considering equations (6.4.31-32) inclusively, we are able to
deduce that the couple acting on the rotor cylinder due to the flow

of the fluid contained in the inner and outer annuli may be

approximated by the following expressions. For the inner annulus we

have,
2 2
a AdmiwXyhr,r 2 4 * jwt

Cpi -;3-{—??—1[1 + (ar )’c + (ar) c)i]n e'¥t, (6.5.22)

where,
' 1 [3¢? - p? r2ln(r, /r.)
= - 2
c . | e ‘*Fj‘?*??z‘] , (6.5.23)
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and

Czi -
4riln(r,/r,) 2r In(r /T3) (Try - r)(r3 =1}
32r5[ r’ -1 2 [1 + - ;2 ] + : 613 ‘l*] . (6.5.24)
2 1
For the outer annulus,
driwX hr.r 2 4 * jwt
Cro 2 ———1—3—;%—3[1 + (ar e+ (arpic Jne't (6.5.25)
where,
c = _E;[3ri - r; + Fa In(ra/rq)] (6.5.26)
10 2 - rf r .9 .
and
C E_J
20
2 2 ) 2 2 2 -
r 4r.In(r. /r) 2r? Jin(r /r (Tr, - r)(r, - r3)
aa 3 3/ 4 3 4 3 4 k|
32r:[ r: - r; [] + 52 - ] 654 ] - (6.5.27)

Hence the total couple acting on the rotor cylinder is given by,

2

Cp & drmiuX h[ — r? + r:3 ][1 + (ar ) C + (ar ) Ne ]n 't
(6.5.28)
where,
3 -r? I
R L L
+ el - rz')[3r‘zl = r: + ln(r3/r4)]]
37 2 1 4 - r?
// [2r (r r (r - r:) + r:r:(r: - r:))] . (6.5.29)
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and

1 2 1 7 2 2 2
[rrescel - P [EEEda(s - 2l /'2’]+“‘ 'éié“ =

rz - rf
a_a, 2 2, [raln(r,/r,) 2r} ln(r /T) -ehee? - eh
M rara(rz - rl)[ - r [1 + - :2 g ] gr: 4 2 ]
//[32r:(rfr:(r: - r:) + r:rz(r: - rf))] . ) (6.5.30)

From (6.4.37) we can show that the complex viscosity may be expanded

. 2
in powers of (aora) terms.

* a w* 2” 4
n & qo[l - (@ r)’C, - (o r) c2] , (6.5.31)

where (aord)2 is considered small enough to ignore terms of order
(aorq)s. The coefficients Cl and C2 are given by (6.5.29-30). If we
ignore fluid inertia effects, then the equation of motion of the

rotor cylinder reduces to
rirl rird ic 2
: *
[?3_{_?? + sz}i%§]4rlwxohnq ce' + l'x . (6.5.32)
Hence the complex viscosity is given by,

2 2, , 2 2
- [ (rp - r))(ry - rjy) ]
0 drichlrir?(r? - r?) + r2r4(r? - r?)

2 4 3 3 4 2 1

[C Y ] . (6.5.33)

Taking real and imaginary parts we obtain the following expressions

for dynamic viscosity,

- Sgsin(e) (ri -l -ed) ] (6.5.34)
0 4zwX h r’r?(r2 - r?) + rir¥(r? - r’) ! T
0 3 3 4 2
and the dynamic rigidity,
2 2 2 2
'a (r, - r)(r, - r) C,cos(c) 2
Go 4rh[r$r;(r: - r;) + rgr:(r; - rf)][ X + o ] (6.5.35)
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The first and second order fluid inertia corrections to the
complex viscosity function are obtained by substituting equations
(6.5.29-30) into equation (6.5.31). The first order fluid inertia

correction is given by

* * 4+ iwpric 6.5.36
q(1) - no lwpr4 : . (6.5.36)

Taking real and imaginary parts provides the following expression for

the dynamic rigidity function.

v 1 2 2
G(1) - GD - w pqu‘ . (6.5.37)
There is no First order fluid inertia correction to the dynamic
viscosity function. The second order fluid inertia correction is
given by
2 2 a
* * wpr
T’(z) - 1‘)(‘) + —*‘1(:2 (6.538)
Mo
Taking real and imaginary parts, we see that the dynamic viscosity is

now given by
R (R -5 K IR e

and that the dynamic rigidity is given by

[ ”pr ] C co. (6.5.40)

G, .= G
(2) ()
6.5.3. Exact method of solution.

Consider the couple equation (6.5.19)

* .
7 C(az) = Coelc + leXo ,

where from (6.5.20),

J,(ar, )Y, (ar,) - Y,(ar,)J,(ar,)
Jl(ari)Y‘(arz) - Y‘(arl)JI(arz)

Cla®) = 2winoha[rz[

3fd,(ar )Y, (ar,) - Y,(arq)Jz(ara)]]
3 Jl(arq)Yl(ara) - Yl(arq)Ji(ara)
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Comparing equations (6.5.20) and (6.5.33) we see that n™ and n: are

related by the following equation.

*[ rira_ . rir? ] _ an*[ra[ J,(ar )Y, (ar,) - Y,(ar,)Jz(arz)]
re -r? 2 2

) L) _
0 re r: J'(arl)Y1(ar2) Y1(ar‘)J‘(ar2)

n

- J,(ar, )Y, (ary) - Y,(azﬂ)Jz(ara)]]
3 J‘(ard)Yl(ara) - Yl(ara)Jl(ara)

(6.5.41)

Multiplying both sides of (6.5.41) by a complex factor -1/iwp leads

to the non-dimensional equation

2 2 2 2 2_2 2 2
2(ar )[r,rz(rq - ry) + ror (r, - r,)]
a ri(r? - r?)(r? - r?
. 3< 2 l)( 4 3)

3
2 r J,(ar )Y (ar,) - Y, (ar ,)J, (ar,)
) a°r3r4[[ Fj ] [ J:(ar:)YT(arz) - Y:(ar:)J?(arz)

J,(ar, )Y, (ar,) - Yl(arq)Jz(ara)]]

J'(arq)Yl(ara) =Y (ar )7 (ar ) (6.5.42)

This equation is valid for all fluid inertia effects and will be
solved numerically using the iterative procedure outlined in section

(6.2.3) and defined at the (k#l)‘h iteration to be,

- . Bz) -
2y 41 z) T (2,0 k 0,1,2,... (6.5.43)
where
z= (ar)’ (6.5.44)
and

2 r ? J,(zr, /e )Y (zr,/r,) - Y, (zr /T )), (zr, /r,)
f(z) - 0'clrar-a[[ Fj ] [ Jl(zr:/r:)Y?(zrz/r:) - Y:(zr:/r:)JT(zr:/r:)]

J ()Y, (zr /r,) - Y,(z)Jz(zra/rq)]]
Jl(z)Y‘(zra/r4) - Yl(z)J‘(ara/rd)

2 2, 2 2 2 2, 2 2
- 2z[r|r2(rq - ry) +ror,(r, - rl)]

Z(r? Z 2 ]
r r< -r r -
3(rs (rz - r?)

(6.5.45)

The Bessel functions of the first and second kind J,(2z) and Y,(z) may

be determined via the recursive relation defined by (6.4.50).

-98-



6.6. Complex modulus and argument for o?.

For all geometries considered in this chapter, the parameter a?
governs fluid inertia effects. From equation (6.2.10), this complex
quantity may be written in terms of its complex modulus and argument

as follows,

a? - LB 10 , (6.6.1)
71

where tan(é) is defined as the loss tangent (Ferry [16]) and is given

by,
tan(s) = EE$ ' . (6.6.2)

The loss tangent is a non-dimensional quantity and is a measure
of the ratio of the energy dissipated to the energy stored in a
periodic deformation. A purely viscous flow is represented by tan(s)
being equal to infinity where as setting tan(é) to zero represents a
purely elastic deformation. Consequently, the complex argument of o?

must lie in the range,
0 <6 ¢ x/2 . (6.6.3)

By varying wp/1n~1 over this range of 5, we define a region in which
theoretically we are able to examine the effect of fluid inertia on
the flow properties of any type of material undergoing a linear

viscoelastic deformation.
6.7. Theoretical results and discussion.

In this section we discuss the effect of fluid inertia on the
complex viscosity function n* for the parallel plate, cone and plate,
and concentric cylinder geometries. At the present time, dynamic
data taken from rheometrical instruments is usually not fully
corrected for fluid inertia effects. In this discussion theoretical
results will be presented in a form which will provide the
experimentalist with an indication of whether the rheometer dynamic
data needs to be corrected for fluid inertia.

We shall first discuss fluid inertia effects for the parallel
plate system. In figure (6.1) we plot the zero, first, and second

order approximations to (ah)? together with the exact value of this
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quantity. Except in the region of magnitudes (wph?2/1m*120.05), large
differences occur if Fluid inertia effects are not taken into
account. However, the first order approximation provides good
agreement with the exact value of (ah)? over the complete range of &
for wph?/1n*1 less or equal to 1,0, The accuracy of the perturbation
method is further improved if we include second order fluid inertia
terms in our calculations. |In figure (6.2), a wider range of
wph?/1n9*1 is considered up to a value of 2.0. In this range
differences occur between the exact and first and second order
approximations.

In order to see the effect of fluid inertia on the complex
magnitude and argument, we present figures (6.3-11) inclusive. In
these figures a region has been defined in which the area has been
divided into eight equal segments in the s-direction while wph2/19*|
has been divided in increments of five percent. The input grids for
all of these figures represent the parameter (ah)2? in which fluid
inertia effects have been fully taken into account.

In figures (6.3) to (6.5) the output grid represents the
situation where fluid inertia effects have been ignored. Hence any
differences between these results demonstrates the full effect of
fluid inertia on_(ch)2, We can immediately see. that the deformation
of the output grid with respect to the exact value of (oh)? is
dependent upon both wph?/19*| and 5. This deformation is greater as
5 tends to zero. This is because fluid inertia has a far greater
effect on the dynamic rigidity than on the dynamic viscosity. It can
be seen from figure (6.4), that the error incurred in wphz/lq*l as a
consequence of ignoring fluid inertia effects is less than five
percent for all &, provided wph?/1n¥| is less than 0.15. Clearly, as
& approaches =/2, the range of wph2/1n*1 for which we can obtain the
five percent accuracy is extended.

It should be noted from figure (6.6), that for wphz/ln*l less or
equal to 0.4, second and higher order fluid inertia effects are
negligible. Hence we can assume that the differences between the
zero order and exact grids in figures (6.4) and (6.5), are due to
first order fluid inertia effects. Since first order fluid inertia
effects do not influence the dynamic viscosity function, we can
deduce that these differences are due to changes in the dynamic
rigidity. The result of including fluid inertia in the theory for

evaluating (ah)?, is to reduce the magnitude of the complex modulus |
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wph2/19*1 and to cause a shift in the complex argument § towards the
real axis. Both of these observations are consistent with an
increase in the dynamic rigidity function as predicted by equation
(6.2.36).

Regions of the zero order grid for which & is greater than /2
may only be explained by negative values of experimental dynamic
rigidity data. Figures (6.3) to (6.5), all show that this type of
error is corrected by including fluid inertia in the theory.

In figures (6.6) to (6.8), the output grid has been obtained
using the first order perturbation method described in section
(6.2.2). As previously stated, the first order expressions
accurately describe fluid inertia effects provided wph2/19*) is less
or equal to 0.4 . For values of wph?/17*) greater than 0.4, the
effect of fluid inertia is to decrease the magnitude of wph?/1m*1 as
& approaches ze}o, but to increase this quantity as § approaches
/2. This is because second and higher order fluid inertia effects
influence both the dynamic viscosity and the dynamic rigidity.

Figures (6.7) and (6.8) show large fluid inertia effects
occurring as wph?/1n*| is increased to a value of 2.5. As § tends to
either of its limiting values, the error in uphz/ln*l increases.

The output grids for figures (6.9) to (6.11) have been
calculated using the second order perturbation method. Figure (6.9)
shows that providing wph?2/1m*1 is less than 0.8 then third and higher
order fluid inertia effects are negligible irrespective of the value
of 5. We see by comparing figure (6.9) with figure (6.6) that as
expected, for small fluid inertia effects, the second order
perturbation method provides a more accurate approximation of (ah)?
than the First order method. Figures (6.10) and (6.11) show that
this is not necessarily true for larger fluid inertia effects. 1In
figure (6.11), we see that it is possible for at least two values of
(ah)? to be mapped to a single value of (a,h})?, and hence to single
values (ayh)? and (a,h)?. This was predicted by equation (6.2.42) and
shows how important it is to provide the numerical scheme defined by
(6.2.45) with an accurate initial value,

In the case of the cone and plate geometry we consider the
effect of fluid inertia on the complex non-dimensional parameter
(cab ) 2. The theoretical curves presented in figures (6.12-13)
inclusive, demonstrate fluid inertia effects for the cone and plate

geometry. The discrepancies between the input and output curves in
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figures (6.12-13), represent the full effect of fluid inertia on
(ca8,)?. These figures confirm that the effect of fluid inertia on
these quantities follows the same trend as observed for the parallel
plate geometry. Figure (6.14) shows the first order fluid inertia
approximation for the cone and plate geometry. As expected, this
approximation is in better agreement with (caf,)? than that provided
by the zero order approximation. In the case of the concentric

cylinder geometry, Figure (6.15) shows a similar effect of fluid

inertia on (a(ry,-rj))?.
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Chapter 7
Fluid Inertia Effects in Controlled Stress Oscillation (Experiments).
7.1 Introduction

The aim of this chapter is to show the effects of fluid inertia
on experimental dynamic data taken from a Carri-Med controlled stress
rheometer. A frequency range of up to 40 Hz was used. The
experimental programme will comprise of small amplitude oscillatory
shear experiments carried out on three different fluids. These are
as follows; a highly elastic 2% solution of polyisobutylene in
dekalin, silicone (30 Ns/m?), which is a slightly elastic Fluid, and
pol&butene, which has a sligh}Iy non-Newtonian dynamic viscosi;y and
a small but measurable dynamic rigidity.

Increasing the angular frequency of an oscillatory shear
experiment, results in an increase in the magnitude of both
mechanical inertia and fluid inertia effects. The mechanical inertia
of the rotor platen used must be known accurately, otherwise large
errors can occur particularly in the dynamic rigidity data, since
mechanical inertia effects are proportional to the square of the
angular frequency. In order to accurately predict the mechanical
inertia of the system the controlled stress rheometer may be
calibrated by carrying out an oscillatory test in air. The full
effect of fluid inertia on the dynamic properties of the test sample
may be interpreted using the theoretical analysis developed in
Chapter 6.

A previous experimental programme on the controlled stress
rheometer, carried out by, Jones et al [24], was restricted to a
frequency range of 1 Hz to 10 Hz. The effect of fluid inertia on
their dynamic data, obtained for a 2% solution of polyisobutylene in
dekalin, was interpreted using first order fluid inertia
corrections. The experiments were performed using cone and plate,
parallel plate, and concentric cylinder geometries. These
experiments showed that, for the frequency range considered, a first
order fluid inertia correction was capable of adequately describing
fluid inertia effects for the cone and plate and parallel plate
geometries. However, discrepancies between this experimental data

and data sampled on the concentric cylinder geometry suggested that
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higher order fluid inertia corrections are required for this geometry.
The current experimental programme will alsc consider a 2%
solution of polyisobutylene in dekalin. As previously mentioned this
fluid is a highly elastic mobile fluid, and consequently we would
expect fluid inertia effects to be greater for this material than for
either the polybutene or the silicone when tested at the same
frequencies of oscillation. Dynamic measurements will be carried out

for all three of the aforementioned measurement system geometries.
7.2 Experimental Set Up and Procedure.

The experimental apparatus, was essentially the same as that
described in Chapter 5. A torque was applied to the rotor platen in
the form of a digitised sinusoidal waveform, the frequency of which
was set by the use of a timer card in the microcomputer. The maximum
resolution of the sinusoidal waveform was governed by the condition
that the elapsed time between successive points cannot be less than
250 pus. This resulted in a mean resolution of 400 points per cycle
at 10 Hz and a mean resolution of 100 points per cycle at 40 Hz.

The output displacement waveform was measured digitally using an
optical encoder measuring system. The displacement amplitude and
phase lag between the input and output displacement waveforms were
obtained from the software by evaluating the fourier series
coefficients through a numerical integration procedure. The data was
sampled over a large number of cycles to ensure accurate evaluation
of the displacement amplitude and phase lag particularly at high
frequencies of oscillation. The maximum number of cycles that could
be applied, was governed by the storage capacity of the microcomputer
which allowed for the storage of a maximum of 12000 data points. The
sinusoidal torque was initially applied to the rotor platen for a
number of 'settling’' cycles before sampling took place. This was to
allow time for the flow field in the fluid to reach a periodic state,

Throughout the experimental programme, the rheometer was
operated in auto strain mode. This means that for a frequency sweep
experiment the measured strain amplitude was kept constant. The
torque required to produce the required strain amplitude was
automatically calculated by the rheometer software. The theory
developed in Chapter 6 is only valid provided the data is measured in

the linear viscoelastic region. This implies a restriction on the
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strain or torque amplitude and is dependent on the type of fluid
considered. The dynamic properties of the fluid should be
independent of strain or torque amplitude. Therefore a torque
amplitude sweep was carried out before each experiment in order to
determine the strain amplitude required for the data to lie in the
linear viscoelastic region. The theory developed in Chapter 6 is
also based on the assumption that the fluid under consideration is
incompressible. Hence, care was taken to ensure that no bubbles were
present in the fluid before sampling commenced.

The dynamic properties of these fluids should be independent of
the.measurement system geometry. Hence, in order to validate the
theoretical expressions developed in Chapter 6 (equations (6.2.42),
(6.3.48), and (6.4.46)), the experiments were carried out on the cone
and plate, parallel plate, and concentric cylinder geometries. The
cone and plate geometry had a 2. gap angle. The platens for the
parallel plate geometry were of radius 2cm, and the gap between the
platens varied from 250 pum to 1000um. Three.different set-ups were
used for the concentric cylinder geometries. The radius of the
stator (outer) cylinder was kept at 20.75 mm throughout the
programme. The annular gap was varied by changing the rotor (inner)
cylinder. Three different roter cylinders were used of radii 18.5mm,

15.0 mm, and 12.5 mm.
7.3 Results and discussion.

7.3.1 A 2% solution of polyisobutylene in dekalin.

Figure (7.1) shows the variation of dynamic viscosity and
dynamic rigidity with frequency for a 2% solution of polyisobutylene
in dekalin up to a Frequency of 30 Hz. A comparison is made between
dynamic data obtained from a cone and plate geometry (gap angle=2.),
a parallel plate geometry (gap=0.25 mm), and a concentric cylinder
geometry (gap=2.25 mm). These curves were obtained from the raw
displacement amplitude and phase data using the exact fluid inertia
theory developed in Chapter 6. The experiments were carried out at a
constant temperature of 20.C.

The dynamic viscosity shows excellent agreement between the
three different geometries for the frequency range considered. There

Is little difference between the dynamic rigidity data obtained from
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the cone and plate geometry and that obtained from the parallel plate
geometry up to 30 Hz, The concentric cylinder dynamic rigidity data
is in good agreement with the cone and plate and parallel plate data
up to 20 Hz. However, at higher frequencies, from 20 Hz to 30 Hz,
the concentric cylinder geometry predicts a lower value of the
dynamic rigidity function than that obtained from the other two
geometries, The concentric cylinder experimental data was found to
be reproducible when the experiment was repeated with different
batches of the fluid. Hence, it is unlikely that the trend of the
concentric cylinder dynamic rigidity data is due to experimental
scatter.

The concentric cylinder geometry experiment was repeated for the
three different annular gaps. In figure (7.2) we see that agreement
is obtained for the dynamic viscosity data between the narrow and
medium gaps up to 30 Hz. Reasonable agreement is obtained between
these two geometries and the large gap geometry up to 22 Hz.

However, from 22 Hz to 30 Hz, the dynamic viscosity function

predicted by the large gap geometry begins to increase slightly with
frequency. According to the parallel plate and cone and plate data,

the dynamic viscosity should be a monotonically decreasing function

of frequency. It is also noted that a small step in the large gap -
dynamic viscosity data occurs between 10 Hz and 11 Hz which is

probably due to end effects.

The dynamic rigidity data from figure (7.2) shows that agreement
is obtained between all three annular gaps up to a frequency of 9 Hz,
and just between the narrow and medium gap geometries up to 13 Hz.

It should be noted that there are two sudden steps in the dynamic
rigidity function predicted by the large gap geometry. These occur
at frequencies of 10 Hz and 23 Hz. There is also a kink in the
dynamic rigidity function predicted by the medium gap geometry. This
kink occurs between 10 Hz and 20 Hz and is much smoother than the
steps in the large gap dynamic rigidity function. This behaviour
proved to be reproducible for different samples and for different
strain amplitudes ranging from 1 to 10 milli radians.

A possible cause of the discrepancies between the concentric
cylinder data and that obtained from the other two geometries in
figure (7.1), and between the different concentric cylinder annular
gaps in figure (7.2), could be due to end effects. The linear

viscoelastic theory developed in Chapter 6 assumes that the
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dimensions of the shearing surfaces are infinite. However, when
applying this theory to interpret experimental data, end effects due
to the finite dimensions of the measurement system geometry are
ignored,

The rotor cylinder in the concentric cylinder geometry, has an
air cavity situated on the bottom surface in order to reduce the area
of this bottom surface in contact with the fluid. This cavity also
makes it easier to set up the experiment without introducing bubbles
into the sample. However, there is still a small area of the bottom
surface in contact with the fluid. This part of the cylinder
subsequently forms a shearing surface that is neglected in the
theoretical analysis. It is also possible for a small amount of
fluid to enter the air cavity thus creating another shearing surface
on the inner wall of this cylinder. These shearing surfaces ‘exert an
extra drag on the rotor cylinder resulting in a reduction in the
displacement amplitude of this member.

We must also note that, the fluid in contact with the bottom
surface of the rotor cylinder is subject to fluid inertia effects.

As stated previously, this shearing surface is not taken into account
in the theory. Therefore, any end correction must take into account
fluid inertia effects.

Another contributing factor to the discrepancies observed in the
concentric cylinder dynamic data, could be temperature effects. The
temperature of the experiment was controlled by maintaining the ram
plate (see figure (3.6)) at the required setting. It was not
possible to obtain a temperature jacket for the purpose of ensuring
that the temperature was constant throughout the sample. Hence, a
small temperature gradient might exist across the platen gap, giving
rise to incorrect dynamic data.

In figures (7.3) and (7.4), we consider the effect of fluid
inertia on dynamic data obtained from a large gap concentric cylinder
geometry (gap=8.25 mm). Fluid inertia effects are clearly important
for both the dynamic viscosity and dynamic rigidity calculations. It
should be noted that if fluid inertia effects are not taken into
account in figure (7.3), then the dynamic viscosity data show an
apparent shear thickening followed by a shear thinning behaviour as
frequency is increased. Similarly in figure (7.4), the dynamic
rigidity data show an apparent structure breakdown followed by a

structure recovery as frequency is increased. Similar observations
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can be made about the dynamic viscosity and dynamic rigidity data
presented in Figures (7.5) and (7.6) for the medium gap concentric
cylinder geometry (gap=5.75 mh).

We again draw attention to the discrepancies in the exact
dynamic rigidity data at 10 Hz and 23 Hz for the large gap concentric
cylinder (Figure (7.5)), and at 15 Hz For the medium gap concentric
cylinder (figure (7.6)). The equation, (6.4.46), used to interpret
the effect of fluid inertia on dynamic data contain periodic
functions which can lead to multi-valued solutions. In order to check
that the numerical scheme employed to solve the equation for the
concentric cylinder system, (6.4.47), converged to the correct
solution, we substituted exact values of the dynamic viscosity and
dynamic rigidity back into equation (6.4.46). This equation was then
used to predict the uncorrected dynamic data.

The predictions from this theoretical exercise are pregented in
figures (7.7) and (7.8). The corrected dynamic data was based on the
assumption that dynamic Qiscosity and dynamic rigidity predicted by
the cone and plate geometry in figure (7.1) is accurately predicted.
This data was then fitted with a power law relationship, (see figure
(7.9)).

The theoretical curves presented in figures (7.7) and (7.8) for
medium and large concentric cylinder gaps, clearly show the
escillating nature of the dynamic data when fluid inertia effects are
not included. [t should be noted that the uncorrected dynamic curves
are in very good agreement with the uncorrected experimental data
presented in figures (7.3) to (7.6) inclusive, which confirms that
our numerical scheme converged to the right solution for fluid
inertia effects.

In figures (7.10) and (7.11), we consider dynamic data from the
narrow gap concentric cyl{nder geometry. The uncorrected dynamic
viscosity and dynamic rigidity curves are in very good agreement with
the theoretical predictions shown in figures (7.7) and (7.8). Also
displayed in these Figures, are the first and second o}der fluid
inertia corrections for the dynamic data. It should be noted that
the first order fluid inertia correction does not affect the dynamic
viscosity function. Figure (7.10) shows that fluid inertia has a
small effect on the the dynamic viscosity data up to 30 Hz. The
small discrepancies between the exact and uncorrected data in the

frequency range of 25 Hz to 30 Hz, are adequately described by the
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second order fluid inertia correction. In figure (7.11), we see that
" the first order fluid inertia correction is in good agreement with
the exact data up to 20 Hz. The second order fluid inertia
correction is now in agreement with the exact data up to 24 Hz.

In figure (7.12), good agreement is obtained between the dynamic
viscosity and dynamic rigidity functions obtained from the 0.25 mm
and 0.5 mm gap parallel plate geometries. The effect of fluid
inertia on the dynamic data for the 0.5 mm gap geometry is considered
in figure (7.13). Fluid inertia effects up to 30 Hz, may be
adequately described using the first order correction. Similarly,
fluid inertia effects on the cone and plate geometry (figure (7.14)),
for the frequency range considered, may be adequately described by

the the first order correction.
7.3.2. Silicone (30 Ns/m~2).

Figures (7.15) to (7.20) inclusive show the variation of dynamic
data with frequency for silicone up to a frequency of 40 Hz. The
full effect of fluid inertia on the dynamic data has been taken into
account. These experiments were carried out at a constant
temperature of 25 C. In figure (7.15), we compare dynamic data
obtained from the three types of geometry considered in this work.
Tﬁe di&e;sions of the geometriés used in fiéure (7.15) are as defined
in figure (7.1). It should be noted that over the frequency range
considered, the dynamic data shows virtually no experimental
scatter. Excellent agreement is obtained between both the dynamic
viscosity and the dynamic rigidity obtained from the cone and plate
and parallel plate geometries. The concentric cylinder results,
however, do differ slightly from the predictions of the other two
geometries. In order to consider the concentric cylinder geometry in
greater detail, we vary the annular gap, (figure (7.16)). Again we
observe discrepancies between the dynamic data predicted by the three
gaps. The value of both the dynamic viscosity and the dynamic
rigidity data at a given value of the frequency, increases as the
annular gap increases. Possible reasons for the discrepancies in
both figure (7.15) and (7.16) were discussed earlier in connection
with the 2% solution of polyisobutylene in dekalin results. In
figure (7.17), very good agreement is obtained between the dynamic
data from a 0.25 mm, 0.5 mm, and a 1 mm parallel plate gap.

From fFigures (7.18) to (7.20), we can clearly see that, as
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expected, fluid inertia effects are smaller for silicone than for the
2% solution of polyisobutylene in dekalin. We see that for the large
gap concentric cylinder geometry (figure (7.18)), and the 1 mm gap
parallel plate geometry, (figure (7.19)), the effect of fluid inertia
on the dynamic data over the frequency range considered, can be
adequately described by a first order correction. The cone and plate
results displayed in figure (7.20), show that fluid inertia effects
are not important for this geometry over the frequency range

considered.
7.3.3 Polybutene.

In figures'(7.21) to (7.23), we present dynamic data for
polybutene up to a frequency of 30 Hz. This material possesses a
slightly non-Newtonian dynamic viscosity. These experiments were
carried out at a constant temperature of 20.C. The comparison
between exact dynamic data obtained from the cone and plate geometry,
and the 0.5 mm and 1 mm parallel plate gap geometries, shows good .
agreement for the dynamic viscosity data predicted by the three
geometries. However, for the dynamic rigidity, slight differences
between 1 mm gap parallel plate data and that obtained from the other
two geometries are observed at frequencies between 25 Hz and 30 Hz.
As mentioﬁed-breviously, contribufﬁry factors to this discrepancy
could be edge effects or temperature effects. Figures (7.22) and
(7.23) show that the effect of fluid inertia on the dynamic
properties of polybutene are small for the parallel plate and cone

and plate geometries coq§idered in this work.
7.4. Comments.

In this experimental programme a Carri-Med controlled stress
rheometer was used to measure the dynamic properties of three
different Fluids over a frequency range of 0.01 Hz to 30 Hz, (up to
40 Hz for silicone (30 Ns/m?)). Previous work by Jones et al [24],
was restricted to a maximum frequency of 10 Hz and therefore fluid
inertia effects were not as large as those observed in this work.

The linear viscoelastic analysis carried out in Chapter 6 was used to
interpret the effect of fluid inertia on the dynamic data over the
frequency range considered. This analysis should predict dynamic

viscosity and dynamic rigidity data that is independent of the
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measurement system geometry. In general, good agreement was obtained
between the dynamic data obtained from the different geometries
considered in this work, an exception to this being, the concentric
cylinder dynamic rigidity data measured at frequencies of oscillation
greater than 25 Hz.

Discrepancies were observed between the dynamic rigidity data
predicted by the concentric cylinder geometries, and that predicted
by the parallel plate and cone and plate geometries for both the 2%
solution of polyisobutylene in dekalin and the silicone sample.
Discrepancies were also observed in the dynamic data for these fluids
predicted by the different concentric cylinder annular gaps. It is
possible, that these discrepancies couid be due to end effects or
temperature effects. The influence of end effects on the dynamic
data, could be reduced by the use of a double concentric cylinder
geometry. As shown in figure (3.7), there is only a small area of
the rotor platen in contact with the fluid that is not included in
the theoretical analysis for this geometry.

As expected, the largest fluid inertia effects were observed in
experiments involving the polyisobutylene solution. The dynamic data
for the 2% solution of polyisobutylene in dekalin was sampled up to a
frequency of 30 Hz. The fluid inertia effects observed for the
parallel plate (gap=0.25 mm, 0.5 mm) and the cone and plate (gap
angle=2.) geometries were small and could be adequately described by
the first order fluid inertia theory.

The dynamic data obtained from the large and medium gap
concentric cylinder geometries demonstrated that large fluid inertia
effects can cause the uncorrected dynamic viscosity and dynamic
rigidity data to oscillate when plotted against frequency. We were
able to predict this oscillatory behaviour theoretically using the
analysis developed in Chapter 6. GCood agreement was obtained between
these theoretical predictions and the experimental results.

The work contained in this chapter has been accepted for

publication in Revista Portuguesa de Hemorreologia.
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Chapter 8
Yield stress effects in controlled stress oscillation.
8.1. Introduction.

In this final chapter, we are concerned with the theoretical
description of the non-linear effect of yield stress on viscoelastic
dynamic behaviour, As discussed previously in Chapter 2, a yield
stress model provides a useful appfoximation for the description of
the flow behaviour of many types of material e.g. gels, slurries,
-pastes, concentrated dispersions.

The yield stress model predicts an infinite shear viscosity at
zero shear rates. Real materials, however, have a finite zero shear
viscosity and hence a Newtonian viscosity region. It therefore
follows that it is theoreticélly possible to obtain dynamic data in
the linear viscoelastic region. In practice this is not possible,
since the strain amplitudes required for dynamic data to be taken in
the linear viscoelastic region, are too small to be accurately
measured on rheometrical instruments.

The motivation for the work carried out in this chapter was
provided by dynamic experiments in which a Carri-Med controlled
stress rheometer was used to apply a sinusoidal torque to a 'yield
stress' material. A typical displacement waveform obtained from
these experiments is displayed in figure (8.1). The non-sinusoidal
displacement waveform shows ranges of applied stress over which the
change in displacement is very small (< 1075 radians). This
observation is commonly known as 'flat topping'. This will occur in
the region where the applied torque does not exceed the yield stress
of the material. Following the ideas of Barnes and Walters [3]) on the
non-existence of yield stress, an alternative explanation of 'flat
topping' can be ascribed to the shear thinning properties of the
material (Perkins [33]). In figure (8.2) the complex viscosity is
clearly torque amplitude dependent. We therefore have a non-linear
viscoelastic flow situvation.

Previous work relevant to the problem of describing the dynamic
response of 'yield stress' materials has been carried out by
Yoshimura and Prud'homme [47]). These workers modified the two

parameter Bingham model (Bird et al [6])), to include recoverable
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elastic strain below the yield stress or yield strain. This modified
model is called the elastic Bingham model (see Chapter 2). The model
describes elastic deformation below the yield stress. Above the
yield stress, the model describes viscous flow characterised by a
constant plastic viscosity and a yield stress. The flow situation
considered by Yoshimura and Prud'homme [47) was one lé which a
sinusoidal shear strain was applied to the fluid.

The work carried out in this chapter, makes use of the concept
of yield stress to describe the non-linear viscoelastic dynamic
behaviour displayed in figure (8.1). The model is presented in figure
(8.3) and differs from that of Yoshimura and Prud'homme ([47] in that
it is not able to predict elastic deformation below the yield stress.
However, the model has the advantage of reducing to a generaliéed
linear viscoelastic model when the yield stress is zero.

It is convenient to characterise the dynamic response of these
so called 'yield stress' materials in terms of a plastic complex
viscosity and the yield stress. We can think of the plastic complex
viscosity as being analagous to the plastic shear viscosity in steady
shear flow. It should be noted in this model that the plastic complex

viscosity will be independent of oscillatory stress amplitude.
8.2. Description of the model.

The model is shown diagramatically in Figure (8.3). It consists
of n Maxwell elements connected in parallel with a yield stress
component. The model will not deform unless the applied stress
exceeds some critical stress value.' The condition for flow to occur
is that the magnitude of the difference between the applied stress,
o, and the sum of the stresses in the Maxwell elements, Zai' must be

i

equal to the yield stress o,. f.e.

n
| g - zai I -0, . (8.2.1)
f=1
The stress response of the model is made up of the sum of the
stresses in the Maxwell elements ¢, and the stress in the yield
stress element Ty. i.e.
n

g =3 o, + ay . (8.2.2)

i=1
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When a stress is initially applied to the model, the stresses in the
Maxwell elements are completely relaxed. Hence, the condition for

initial Flow to occur is given by,

| i I > oo . : (8.2.3)

(a). Response of Maxwell elements.

Referring to section (2.2), equations (2.2.5) to (2.2.10)
inclusive, we see that in the ith Maxwell element, the stress is
related to the shear rate by the following fFirst order linear

differential equation in oj.
o. + N 0. = 7.¥ , i=1,2,...,n , (8.2.4)

where the dot denotes differentiation with respect to time.
By solving this differential equation we obtain the shear stress
oij in terms of the shear rate and is given by

t 'qi "(t-t')/)\i
e Y(t') de' . (8.2.5

The total stress in the n Maxwell elements is therefore given by

n t
So, = [CC-t') y(xr) ar : (8.2.6)

i=1 —®

where the relaxtion modulus G(t-t') for n Maxwell elements is given by

noom -(e-t/A | .
C(t-t') = S e . (8.2.7)
=1 A

When an oscillatory stress is applied to the [luid, there will be
ranges of applied stress for which the flow condition (8.2.1)'is not
satisfied and the shear rate will therefore be zero. During this
part of the periodic cycle, we see from equation (8.2.4) that in the
ith Maxwell element stress relaxation takes place according to the
equat ion

Ai -t/ki
e

. ¥=0 . (8.2.8)
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The total stress for n Maxwell elements is

n n Ai -t/).i

z o, = z e , Y=20 , (8.2.9)
i

i= j=1 X\

where the A{'s are arbitrary constants which can be determined from

the condition that the stresses ¢; must be continuous for all time t.
(b). Response of yield stress element (ay).
When the shear rate is non-zero, then the stress in the yield
stress element will have one of two values, f0,. i.e.
¥(t)

= —_—— , y(t)= 0 . (8.2.10)
y REGI

g

However, when the shear rate is zero, then Oy is indeterminate but

must satisfy the condition
|oy| < ao . ¥(e)=0 . {(8.2.11)

Substituting equations (8.2.6), (8.2.9) and (8.2.10) into

equation (8.2.2), we obtain the equation of state for the model

‘presented in fiqure (8.3) and is given by

t F(t)
[ ottty §(ey der + o —— . F(t) 20
- |~y(t)|
g = (8.2.12)
n A, -t/x,
S—e '+ a ' . (t) =0
| i=1 i y

where G(t-t') is given in equation (8.2.7), Ty satisfies the
condition (8.2.11) and Aj,s are constants which are determined from
satisfying the condition that the stress in each Maxwell element is
cont inuous. We shall now use this equation of state in the flow

situation encountered on the Carri-med controlled stress rheometer.
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8.3. Solution of the equation of motion.

In a controlled stress rheometer The fluid is contained between
two platens. One platen, the stator, is fixed and the other platen,
the rotor, is free to rotate under an applied couple. The theory will
assume that the shear rate throughout the measurement system gap is
constant. Hence, this analysis is valid for the small gap angle cone
and plate geometry and the narrow annular gap concentric cylinder
geometry. In order to obtain a basic understanding of the solution to
the theoretical equations we shall only be concerned with the theory
for the case when mechanical inertia of the rotor is ignored.

Consider a sinuscidal torque being applied to the upper rotor of

the form
C=C, sin(uwt), t>0 . (8.3.1)

When the mechanical inertia of the rotor is ignored then on applying
the equation of motion to the upper platen, the shear stress applied

to the sample is also sinusoidal and is given by
g = 0, sin(wt), t>0 . (8.3.2)

where o, is the stress amplitude and is related to the torque

amplitude by the formula
Co = Fg 0, . (8.3.3)

Fy is known as the platen geometry shear stress factor,
Substituting for the stress o from equation (8.3.2) into the

equation of state (8.2.12) we have for the case when ¥ # 0

t y(t)
o, sin(we)= [ ce-ty 4cery ae + g —— . ()2 0 (8.3.4)
> ly¢e)

In order to determine the shear rate and shear strain waveforms
it is necessary to formulate this equation in its differential form.
This is obtained by applying the differential operatoriﬁ‘(l+xid/dt)
to equation (8.3.4) to give the following (n-1)th order linear

differential equation in ¥

n n ¥(t)
d ). d
E,[l + ki E?]7 = 1 [l + ki H?]aaSi"(”t> -0 — , y(t)#0

n
kglﬂk i=1 o Iy(t)l

i

izk (8.3.5)
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This equation can now be solved to produce the shear rate and
hence produce the shear strain., The solution to this equation is

discussed in the following section.
8.3.1. Determination of the shear rate function

Equation (8.3.5) can be solved by considering the solution as
the sum of two parts; the complementary function (CF) and the

particular integral (Pl). 1i.e,

¥ = ?CF + ?P[ } (8.3.6)
(a). The complementary function.

The complementary function for equation (8.3.5) is obtained by

solving the homogeneous differential equation

n n d
kzlqk iE.[ t+x. ]9 =0 . (8.3.7)
i#k

We may assume 7CF to be of the form

7CF -3 c e . (8.3.8)

where ck and mk are constants.

Substituting (8.3.8) into (8.3.7) we have

n T n
S——————— (1 +xm) = 0 . (8.3.9)
k=l( 1 + ka ) i

[e=y

n
Since the term ] (l+him) 2 0 then equation (8.3.9) simplifies to
i=1

K"

n
Yy 0 . (8.3.10)
k=1( 1 + kkm )]

This equation is a (n-1)th order polynomial in m and can be solved to

produce the (n-1) roots m; (i=1,2,..,n-1).
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(b). The particular integrali.

To obtain the particular integral to equation (8.3.5) it is

convenient to express this equation in complex number form. i.e.

E n ﬁ [1+ -9] g = c Inf ﬁ [v+ i w]ejwt] - a.;zfil- . 7(t)=0
ke 1 k et i dt a io i ulﬁ(t)l
2k (8.3.11)

where Im denotes of imaginary part of the quantity contained within
the square brackets.
We may assume a particular integral of the form
. - jot
Yoy im[Be! ] + o (8.3.12)
where B and C are constants.
Substituting equation (8.3.12) into equation (8.3.11) and
equating sinusoidal terms the complex constant B must satisfy the

equatijon

5k 8.3.13
B - = g . (8.3.13)
k=l( 1 + Jkkw ) a

To simplify this equation it is convenient to define the plastic

complex viscosity n; by

c!
. 'p P w k=1( I + Jkkw)

(8.3.14)

This definition is normally associated with the complex
viscosity predicted by the Generalised Maxwell linear viscoelastic
model. However, we now have a yield stress element incorporated into
the model and so the above quantity can no longer be thought of as
the complex viscosity function.

Using the above definition for plastic complex viscosity we may

rewrite equation (8.3.13) for the constant B as

(8.3.15)
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To obtain the constant C in equation (8.3.12) we substitute equation

(8.3.12) into equation (8.3.11) and equate the constant terms to give

g ¥
C - - -9 ) (8.3.16)
AL

where 17, is defined by the equation

7, 2 : (8.3.17)

Substituting for the constants B and C from equations (8.3.135) and
(8.3.16) respectively into (8.3.12) the particular integral is
a

. - a jwt _ 0
Vpy Im [ — © ] — ; (8.3.18)
17P

The general solution to the differential equation (8.3.5) can now be

obtained by substituting equations (8.3.8) and (8.3.18) into (8.3.6)

to give
. [
e Ut l - — ., 4% #0 (8.3.19)

7T

n-1 mit
Yy = c.e + Im
¥ 3 e

f=1

g

o

*
nP

Over any one particular cycle of oscillation there will be two
regions of time in which in which the shear rate is zero. i.e.

there will be a region of time in which ¥ > 0 and a region of time

in which 4 < 0. If we denote the time region for the casé y > 0 by
t,St<t, and the time region for the case ¥ < 0 by t,<t<ta, then the
shear rate in equation (8.3.19) over any one cycle of oscillation may

be written as

0 yot,m 279/ € T < t
n-1 m.t Ua jot 00
c.e + Im e - , t €t <t
izl [ q; I T ! z
Y = 0 . t2<t<t3
n-1 mit Ga wt a
Sc.e + Im e’ I + 2 , t <t <t
. i * 1 3 4
i=1 np 0
(8.3.20)
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[t should be noted, that the complementary function (8.3.8) has
to be included in the general solution (8.3.20). This complementary
function is usually associated with transient terms which are
important in start-up flow, but which normally decay to zero after a
sufficient time has elapsed. However, for the flow problem considered
in this work, the complementary function does not disappear, even
when the flow has reached its periodic state. The exception to this
situation, is the case of a single Maxwell element, (n=1). For this
case, the differential equation reduces to an analytical expression
for the shear rate and will be discussed later.

In the expression for the shear rate in equation (8.3.20) we
shall need to obtain the three sets of constants m; ¢y,
(i=1,2,...,n-1) and t, (m=1,2,3,4). The constants mj; have been
discussed previously and are determined from the roots to the (n-l)"h
order polynomial (8.3.10). The derivation of the constants cj and t
are discgssed in section (8.3.3) and are obtained numerically by
satisfying relevant boundary conditions. In general these constants
will be different in value for each cycle of oscillation until the

periodic state has been reached.
8.3.2. Derivation of the fundamental shear rate amplitude

In order for us to be able to calculate the cohplex viscosity
function for our model shown in figure (8.3) we shall need to
evaluate the fundamental amplitude and phase of the shear rate
waveform derived in equation (8.3.20).

We use a Fourier series analysis to determine the fundamental
amplitude and phase of the shear rate expression presented in
equation (8.3.20). We show that it is possible to obtain an
analytical expression for the fundamental amplitude and phase for the
shear rate waveform in terms of the contants m;, c¢;, (i=1,2,...,n-1)
and ty, (m=1,2,3,4) which appear in equation (8.3.20).

The Fourier series expansion for the shear rate expression
obtained in equation (8.3.20) may be written as
@

a + iglaicos(mt) + bisin(wt) (8.3.21)

3
'
|-

The fundamental amplitude for the shear rate is therefore given by

c = [af+ bf]t , (8.3.22)
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and the phase difference a between the applied stress and the

fundamental harmonic of the shear rate waveform is given by

b
1

tan(a) = (8.3.23)

a
1

It is convenient to rewrite equation (8.3.21) in complex form to give

@ .

y = zd+ 3ae (8.3.24)
. i=1

where don a . and di - a, + jbi is the complex amplitude of the

ith harmonic. Hence the fundamental complex amplitude d, for the

shear rate waveform may be obtained from evaluating the integral

2r/w )
d = 2 4 ed®tar : (8.3.25)

1 T
s}

where ¥ is given by equation (8.3.20)
In equation (8.3.20) we see that ,over any one period of
oscillation, the non zero shear rate times lie in the intervals

t,gt<t, and t,gt<t,. Hence equation (8.3.25) become

t t
.2 . - a . - :
[A] . wt w . wt
a = & I $(t) ed%de + = [ ey e ar (8.3.26)
t t
1 3

We shall only be interested in the fundamental amplitude when a
sufficient number of cycles of oscillation has ocurred. i.e. when the
solution has reached it's periodic state. When this occurs it can be

shown by symmetry that t, and t, are related to t, and t, by

w
el

and (8.3.27)

5
N
IS E]

On making the substitution u = t -r/w in the second integral in
equation (8.3.26) and using equation (8.3.27) the complex amplitude

in equation (8.3.26) reduces to

y(t) eI ar , (8.3.28)
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Substituting for ¥ from equation (8.3.20) into equation (8.3.28) we

have
t
2w : nt m ¢ Ta jot T jot
d - I S c.e + Im — © - e dt
' T : i n
¢ i=1 qp 0
1 . (8.3.29)
Using the complex number result
1 -
In (2] = —- [z-2] : (8.3.30)

where z is the complex conjugate of z, then equation (8.3.29) may be

written as

Q
1<

2 n-1 (mi+ Jjwdt a

d = 3” I > ce + ——E; e2dot _ i* - 2 d¥ gt
3 i=1 2jn, 2jn, 7,
(8.3.31)

Evaluating the integral in equation (8.3.31) produces the analytical

expression,

20 n-j i (mi+ o)t Ta 2 jwt Gat 00 Jjuwt
dI = — b CR)] e - e - - — e
jm T dum ZjE; jwqo

(8.3.32)

Taking real and imaginary parts of d, provides analytical expessions

for a, and b, respectively.

20 n-1 cicos(wt - Bi) mit . aa 2G't
a = 3 e - —— | cos2ut + &) -
! LSt + w)? 4w|q ]n*l
i p p
¢ ‘2
- 2 sin(ut) ] . (8.3.33)
wn
and ° t
n-i c.sinfwt - §.) m,t g 27't
b‘ = 2? > ! - - %l e ' - a* [ sin(2ut + &) - ™ ]
i=1 (mi + w’) 4w|n Inp
o ¢
+ cos(wt) ] . (8.3.34)
“n, t,
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where

tan (8,) = % , (8.3.35)
i
and
n'w
tan (8) = —ET' ) (8.3.36)
p

The fundamental amplitude and phase for the shear rate waveform is
determined by substituting equations (8.3.33) and (8.3.34) into
equations (8.3.22) and (8.3.23).

8.3.3. Derivation of the constants c¢j and t; in equation (8.3.20)

In order to determine the constants c; and t; we first consider
the simplest case of a single Maxwell element in parallel with a
yield stress component. In this case, the complementary function in
equation (8.3.20) vanishes, and hence, we only need to determine the
constants t;. We shall then discuss the more general case of n

Maxwell elements in parallel with an yield stress component.
(a). Single Maxwell element.

To facilitate the explanation concerning the derivation of the
constants t;, we present the periodic shear rate waveform (figure
(8.4)), in advance of the discussion concerning the determination of
these constants.

For the single element model, equation (8.3.20) simplifies to

0 , t,- 21r/w<t<t‘
Ua wt UD
Im[ = e’ ] - — , t <t <t
* 1 2
T n,
¥ = 0 . t2<t<t3
aa wt g
Im * ed l + —2 , t gt <t
3 4
ﬂp n,
(8.3.37)

We shall now discuss the procedure that is carried out to obtain
the unknown constants t;. As we progress from one time region to the

next time region we shall need to monitor the stress in the Maxwell
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element. This stress has to be continuous for all time t. This
information is necessary in the calculation of the constants t, and
t, in each cycle of oscillation.

To ca]culate the times tj, we will need to consider the four
time ranges in the first cycle. However, the first time range in the
initial cycle of oscillation is a special case in that the stress in
the Maxwell element is zero. Consequently, in order to obtain for a
general cycle we shall also need to discuss the first time range in

the second cycle. We now consider the first cycle of oscillation;
(1). 0t <¢t,.

In this time range, the model will not deform until the flow
condition (8.2.1) is satisfied. This occurs at time t,, which on the

first cyclé is given analytically by equation (8.2.3). 1i.e.
1 -1 00
t = -— sin [ — ] . (8.3.38)
1 w
g
a

(11). t, <t < t,.

Over this range of times, the model deforms with a shear rate
that is greater than zero. Hence from equation (8.3.37) the shear

rate is given by

Ua iwt a
s = Im l 2 ol l .0 . (8.3.39)
", 1,

Throughout this deformation, there is a non-zero stress in the
Maxwell element. The magnitude of this stress while the shear rate

is positive, may be obtained from equation (8.2.1). i.e.

o = Uasin(wt) -0, . (8.3.40)

During this period, the applied stress increases to its maximum value
at t=r/2w, before decreasing as the time t, is approached. When t,
is reached, the applied stress has decreased by such an extent that
the flow condition is no longer satisfied. At this point, the shear
rate is zero. The time t, is determined by solving equation (8.3.39)

with ¥ = 0. i.e.

Ta jwt 7
In [ 2 e ] - — =0 . (8.3.41)
o n,
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This equation can be solved analytically.
(1i1). ¢, < ¢t < t,.

In this time range, the flow condition (8.2.1) is not satisfied
and so no further deformation of the model takes place until time t,
is reached. During this range, the applied stress decreases to zefto
at t=r/w, but then increases in magnitude as we approach t,. Time t,

is obtained by satisfying the flow condition (8.2.1) below
aasin(wt) - o|(t) - - ao , (8.3.42)

where o,(t) is the stress in the Maxwell element which relaxes

according to equation (8.2.8) and is given by
o (1) = ae /M : ' (8.3.43)
The constant A, is determined by satisfying the condition that the
stress o, must be continuous at all times. At time t,, o, is given by
aI(tz) = 0351n(wt2) + oo . (8.3.44)
On substitution of equation (8.3.43) with t = t,, into equation
(8.3.44), we obtain A,. Substituting equation (8.3.43) into equation

(8.3.42), we obtain an equation in t which must be solved numerically —

to give the time t,
(v) t, <t < t,.

Over this range of times, the model deforms according to

equation (8.3.37). i.e.

O'a -'wt a
¥ = lm[ 2 e ] + — : (8.3.45)
", m,

The shear rate is now negative, and hence, the stress ¢, is obtained

from equation (8.2.1), and given by,

o = aasin(wt) - 00 . (8.3.46)

The magnitude of the applied stress increases to a maximum value at

t=3z/2w, before again decreasing to zero at t=2r/w to complete a full
cycle. However, at t=t,, the applied stress falls below the critical
stress required for the flow condition to be satisfied. The time at

which this occurs is determined by solving equation (8.3.45) with the
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shear rate equal to zero. i.e.

o it g
Im[ 2 el ] y =2 =0 . (8.3.47)
n, m,

This is an equation in t which can be solved analytically to produce

the time t,.
(V). t, <t <t ,+27/0.

In this time range, the flow condition (8.2.1) is not satisfied
and so no further deformation of the model takes place until time
t,¥27/w is reached. During this range, the applied stress decreases
to zero at t=2x/w, but then increases in magnitude as we approach
t,+2r/w. Time t,+2r/w is obtained by satisfying the flow condition
(8.2.1) below

aasin(wt) - 0‘(t) - 0, , (8.3.48)

where o,(t) is the stress in the Maxwell element which relaxes

according to equation (8.2.8) and is given by

~t/\,

01(t) - A‘e (8.3.49)

The constant ‘A, is determined by satisfying the condition that the

stress o, must be continuous at all times. At time t,, ¢, is given by

a‘(td) = UaSi"(U‘4) - . (8.3.50)

On substitution of equation (8.3.49) with t = t,, into equation
(8.3.50), we obtain A,. Substituting equation (8.3.49) into equation
(8.3.48), we obtain an equation in t which must be solved numerically

to give the time t,
(b) The generalised model (n Maxwell elements).

The procedure for determining the shear rate waveform is similar
to that for the single Maxwell element model. However, the
complementary function is now present in the expression for the shear
rate and so we have to determine the constants mj and c¢j. The-
constants m; are the roots to equation (8.3.10) as discussed earlier.
Before we discuss the four time ranges separately we shall need to
use a formula which predicts the magnitude of the discontinuity that
arises in the shear rate predictions. This formula is produced in the

following way.
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Substituting equation (8.3.2) into equation (8.2.1) we have

n .
= i -J—u—
izlai aaSIn(wt) + o, |? , vy #0 . (8.3.51)

On differentiating equation (8.3.51) with respect to t we have

n
izlai = oW cos(wt) , ¥ #0 . (8.3.52)
Dividing equation (8.2.4) throughout by A; and summing terms we obtain

an expression for the shear rate given by

1 [ n O'i n .
y = =15 + 56 ] . (8.3.53)
7o Li=1 M = !

Substituting for equation (8.3.52) into equation (8.3.53) we have
1 0%
Y = —;: [ igl K; + aacos(wt)] . (8.3.54)

If we monitor the stresses in the Maxwell elements in each time
range, then equation (8.3.54) can be used to obtain the magnitude of
the discontinuity in the shear rate at times t, and t, . In order to
monitor the stresses in the Maxwell elements for the time ranges when
¥ # 0, we shall need to obtain a formula which expresses the stress
in the Maxwell element in terms of the shear rate function. This
formula can be obtained by solving the differential equation (8.2.4),

to give

—t/a:f T .
g, = e ‘/Xll LMoy ¢ E, (8.3.55)
i (i=1,2,..,n)
where E; is a constant of integration.
To simplify the discussion we shall only consider two Maxwell
elements in the derivation of the constants c; and t; . We now

discuss the shear rate waveform for the different time regions.
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(1). 0t <t,.

In this time range, the model will not deform until the Flow
condition (8.2.1) is satisfied. This occurs at time t, , which on the

first cycle of oscillation is given by
1 -1 Uo
t = = sin [ — ] . (8.3.56)
1 W
g
a

Since the shear rate is zero in this region then the stresses in the

two Maxwell elements are also zero.

i.e. o, = 0 , (i=1,2) for ¥ = 0 (8.3.57)

In particular the stresses in the Maxwell elements will be zero at

time t,
(i), ¢, <t < t,.

In this time range the model deforms with a shear rate which is

greater than zero. Hence from equation (8.3.20) the shear rate is

given by
m t o, it T,
¥ = ce + Im l = ed ] - , (8.3.58)
1 ”p 1,

Since the stresses in the Maxwell elements is known to be zero at
time t,, then the shear rate at time t, can be determined from
equation (8.3.54). Hence, ¥(t,) is now known and the constant ¢, can
be determined from equation (8.3.58). The shear rate for this time
range is then known from equation (8.3.58) for all time t. The time
t, can now be obtained solving equation (8.3.58) for the case when
¥ = 0 to obtain an equation in time t. This equation has to be solved
numerically to obtain the time t

To monitor the stresses in the Maxwell elements, in this time
region, we can obtain an analytical solution for these stresses by
substituting for equation (8.3.58) into equation (8.3.55). In
equation (8.3.55) the constant E; would be known by satisfying the
stress continuity at time t,. Hence, the Maxwell element stresses

are known, in this time region, for all time t.
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(1), t, <t < ¢,

In this time range, the flow condition (8.2.1) is not satisfied,
and so no further deformation of the model takes place until time t,
is reached. The stresses in the Maxwell elements relax according to
equation (8.2.8). The constants Aj are determined by satisfying the
condition that the stresses ¢; are continuous at time t,. On

substituting equation (8.2.8) into the equation

O‘asin(wt) =¢ + 0 - 0 . (8.3.59)

we obtain an equation in t which can be solved to obtain the time t,.
Using symmetry arguments the procedure for determining the
constants cj and tj, in the remaining time ranges, are similar to

those discussed above.
8.4. Effect of yield stress on dynamic data.

The fundamental amplitude and phase of the shear strain waveform
predicted by the modified generalised Maxwell model may be determined
using a Fourier series analysis. By substituting these quantities
into the normal expressions for the complex viscosity function from
the linear viscoelastic theory, this model may be used to
theoretically show the effect of yield stress on the complex
viscosity function 7n*. Consider the shear rate and shear strain
waveforms shown in figures (8.4) and (8.5) respectively. The shear
strain curve predicted by the model is of the same geﬁeral shape as
the experimental waveform presented in figure (8.1). However, one
difference between these waveforms,.is the presence of
discontinuities in the slope of theoretical curve at times t, and t,
which are not present in the experimental displacement waveform.

This difference is due to the influence of mechanical inertia effects
in the experimental flow situation. These effects have been ignored
in the theoretical analysis. The fundamental amplitude and phase
angle for the theoretical curves may be determined by a Fourier
series analysis as described in section (8.3). This information may
then be used to predict the complex viscosity behaviour that would be
obtained from a viscoelastic material possessing a Bingham yield
stress. The following curves were determined using a single Maxwell

element .
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Figures (8.6) and (8.7) show the variation of normalised dynamic
viscosity and normalised dynamic rigidity with respect to normalised
angular frequency. The dynamic viscosity was normalised with respect
to the zero frequency value of the plastic dymamic viscosity, and
similarly, the dynamic rigidity with respect to the zero frequency
value of the plastic dynamic rigidity. In figure (8.6), the A=0
curve, represents the variation of plastic dynamic viscosity with
frequency. This curve is the same as the dynamic viscosity predicted
by the generalised Maxwell model. (i.e. 0,=0 in the modified
generalised Maxwell model). The effect of yield stress is to
increase the predicted value:of the dynamic viscosity. The larger
the yield stress, the larger the effect. We can make similar
comments about the effect of yield stress of dynamic rigidity
behaviour. i.e. the éffect of yield stress is to increase the value
of the dynamic rigidity.

Figures (8.8) and (8.9), show the variation of normalised
dynamic viscosity and normalised dynamic rigidity against normalised
torque amplitude. The torque amplitude is normalised with respect to
yield stress. Hence, the effect of yield stress on these dynamic
properties should decrease as normalised torque amplitude increases.
The horizontal curve at nl/"; = 1, represents the plastic dynamic
viscosity function which is independent of torque amplitude, by
definition. This quantity can also be thought of as representing
linear viscoelastic behaviour. The non-linear viscoelastic behaviour
of the normalised dynamic viscosity is clearly shown in its
dependence upon the torque amplitude. The same observation is found
in figure (8.9) with the normalised dynamic rigidity behaviour. It
should be noted that the modified generalised Maxwell model does
predict the correct trend regarding the torque amplitude dependence
of the dynamic viscosity and dynamic rigidity as was observed

experimentally in Figure (8.2).
8.5. Comments.

The aim of this chapter was to describe the non-linear effect of
yield stress on viscoelastic dynamic behaviour. The modified
generalised Maxwell mode! considered in this work, is able to
characterise this non-linear viscoelastic behaviour in terms of a

plastic complex viscosity and a yield stress. The plastic complex
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viscosity has the property of being independent of strain amplitude
provided the strain amplitude is sufficiently small., For situations
when the yield stress component in the modified generalised Maxwell
model is zero, then the plastic complex viscosity is equal to the
complex viscosity.

It has been shown, that the model does predict the correct trend
regarding the torque amplitude dependence of dynamic data as observed
using a Carri-Med controlled stress rheometer.(see figures (8.2),
(8.10), and (8.11)). However, it should be noted, that no direct
comparison between the theoretical predictions of this model and
experimental data has as yet been undertaken. Such a comparison
would require curve fitting the theoretical expression (8.3.20) to
the experimental shear rate data in order to determine the model .
constants 7, \j, and g,. Current work being carried out at Plymouth
Polytechnic South West, is concerned with determining a suitable
curve fitting technique for working out the value of these constants.
It should be noted that, mechanical inertia effects have been ignored
in the analysis presented in this chapter. It is not difficult to
show that it is possible to obtain analytical expressions for the
shear rate and shear strain waveforms when mechanical inertia effects
are included in the theory. However, the constants c¢j, tj, and mj
are now likely to be more difficult to obtain.

Part of the work carried out in this chapter, has been published by

Davies, Golden, and Jones [13].
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Appendix A.
Derivation of the corotating rate of strain sensor t (Bird et al [5]).

The aim of this section is to present the theory for evaluating
the components of the corotating rate of strain tensor t for the
flow problem discussed in Chapter 4- All quantities are referred to
a cylindrical polar coordinate system (r,6,2): From Bird et al [35],

(equation- 7-3-5), t {s given by the relation

free) = [0 g @t ey ] (A.1)

where 1 (t,t') describes the local rotation of a fluid particle as it
moves ;long its path from time t' to t. t denotes the transpose.
This section will be considered in two parts. The first part
will consider the determination of the rotation tensor Q (t,t'). The
second part will consider the derivation of the rate of strain tensor
§(t') at some past time t'. The problem of formulating equations

of state in curvilinear coordinates will be discussed.

(1) Determination of the Rotation Tensor Q (¢, ")

The rotation tensor  (t,t') describes the orientation of the
v
corotating reference frame e; with respect to the fixed frame g;.
The corotating frame is chosen so that at time t' = t, the two frames

coincide. We may write
v
ei (1) = [e .0 (e ] : (A.2)

The components of the rotation tensor Q (t,t') will be evaluated
for the unidirectional shear flow of an elastico-viscous fluid
contained in the annular gap of a concentric cylinder geometry with
inner cylinder radius r; and outer cylinder radius r,. The cylinder

height is h. The velocity distribution in the fluid is defined by,

Ve =0 ; Vg=1rF(r,t') ; VvV, =0 . (A.3)

At time t', the rate of strain tensor i (t') and the vorticity
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tensor (t') are given by

, t
() =vY )+ [Y ()] : (A.4)

and t
@ () =YY (") - [FY ()] : (A.5)

respectively. To evaluate the components of these two tensors in
cylindrical polar coordinates, we refer to Bird et al [5] (Appendix
A)., We see from equation (A.3) that the only non-zero components of
the rate of strain and vorticity tensors , rate of strain tensor are

the 8r and rf components.

L dE(r,th)

Yor = T @ ' (A.6)
and
w4 = % g—r [F2rerey ] (A.7)
The rotation of the Ei frame depends on the local angular
velocity W of the particle. From Bird et al [5], (eqn. 7.1-4),
W=13[VXV] . (A.8)
For the velocity field (A.3),
We=1 (0, 0, wpeg) . (A.9)

Hence, we have a rotation of the Fluid about the z-axis. Let o
be the angle of rotation of the fluid particle about the z-axis such
that at time t' = t, the corotating frame coincides with the fixed
frame. By making use of elementary geometric arguments (Bird et al
{S), section (7.6)), together with the equation A.2, the rotation

tensor Q (t,t') for this flow problem is,

cos (o) -sin (o) 0
9 (t,t') = sin (a) cos (o) 0 . (A.10)
0 0
Note that when a -~ 0, i.e. at time t'=t, the above matrix reduces to
1 0 0
Q(t,t')= 0 1 0 , (A.11)
0 0 1

thus satisfying equation (A.2)
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The local angular velocity of the fluid particle about the z-axis
is 3 wpg. Hence, a the angle, through which the z-axis is rotated

from time t' to t is, given by the differential equation

do
F = -i‘ Wrp . (A.l2)
_Integrating the above equation with respect to t', and satisfying the
condition that when t' =t then ¢ = 0, we obtain an expression for
the angle of rotation as follows,

t

o (t,t) = 3 [ wrg (¢7) de” (A.13)
t'

(i1). Derivation of the rate of strain tensor y (t').
(a). The curvilinear co-ordinate System (r,0,z).

Due to the geometries considered, we shall need to formulate our
equations of state in curvilinear coordinates. Therefore, the theory
must take into account the change in orientation of the curvilinear
coordinate system as the fluid moves along its path from time t' to
t. We describe the curvilinear coordinate system by an orthogonal
set of unit vectors e;. The e; frame changes its orientation as the
fluid particle P travels along its path from time t' to t. This
affects the components of the rate of strain tensor i {(t') which has
to be written in terms of the fixed frame g¢;. When we evaluate the
rate of strain tensor from equation (A.4), we obtain it in terms of
the g¢; frame. We choose the ¢ frame so that at time t' = t, the ¢ j
and e; frames coincide.

At time t', the two reference frames are related by the equation
below (Bird et al [5], eqn (7.6.2)),

ei =~ [ei - A ] . (A.14)

The change in orientation of the curvilinear coordinate system is

therefore described by the A tensor.
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(b). Determination of the rate of strain tensor ¥ (")

From equation (A.4) we may write down the components of the rate

of strain tensor § (t') at some past time t' referred to the éi frame.

i.e.
0
i (t') = 0 1 0 7r9 . _ (A.15)
0 0 1

where is given by equation (A.6).

The equations of fluid motion and continuity are written in a
fixed frame. We must therefore transform the equations of state from
the corotating reference frame to a fixed frame. Before we can write
the rate of strain tensor in terms of the fixed frame, we must
determine the components of the A tensor. From time t' to time t,
the éi frame rotates through an angle 8. Using elementary geometric

arguments, we can show that

cos () -sin (f8)
Q (t,t') = sin () cos (fB) 0 (A.16)
0 0 1

The éi frame rotates with angular velocity F(r,t') from time
t' to t. Therefore, the rate of change of 8 with respect to t' is

given by

B Fre (A.17)

Satisfying the condition that when t' = t then § = 0, and
integrating equation (A.17) with respect to t', we obtain an
expression for 8 (t,t'),.

t

B (t,ery = [ F(roeny aee (A.18)
t 1

Equation (A.15) may be rewritten in terms of the unit vectors

(e, . &4 gz). i.e.

F) = (G e+ 2,8 ) 7 ro : (A.19)
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Using equation (A.14), the rate of strain tensor may be expressed

in terms of the fixed frame. i.e,
g =] (er - A e))ep . A (t,e)

+ (2. A (U2 A (5,00 | Ypp (£1)  (A.20)

which provides the result

sin (28) cos (28) O
g (¢') = | cos (26) - sin (26) O | ypg (t') (A.21)
0 0 0

On substitution of equations (A.10) and (A.21) into equation (A.1) we

obtain the components of the corotating rate of strain tensor.

cos(a) -sin(a) sin(28) cos(28) O
t (r,t,t') = sin(a) cos(a) ] [ cos(28) =-sin(2B8) O
0 0 0
cos(a) sin(a) O
P -sin{a) cos(a) 0 i {(t') . (A.22)

0 0 0

-sin(2{x-B#)) cos(2(a-8)) 0
[ (r.t,t') = | cos(2(a-P)) sin(2(a-B)) 0 | yrg(t') (A.23)
0 0 0

Now, equations (A.13) and (A.14) can be used to yield an expression

for (a-B8). i.e.

t
a-f = 3 ‘ r dF(r t") gen . (A.24)
t

Hence,

t'
2(a-B) = I yrg(r,t") den . (A.25)
" )
The corotating rate of strain tensor f (r,t,t') is therefore given by

-sin(p(r,t")) cos(p(r,t")) 0
f (r,t,t') = cos(p(r,t")) sin(p(r,t")) O &rg(t‘) , (A.26)
0 0 0
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where

) (l',t") -

t [}

vro(r,t*) dte”
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NOMENCLATURE

(X,,%5,X5) : cartesian coorinates
(r.eéz) : cylindrical coordinates
(r.8,y) : spherical coordinates
(£,.%8,.8,) : convected coordinates
a : cone radius, platen radius
ap : fourier series coefficients of cos(nwt)
1at : magnitude of a
by, : fourier coefficients of sin(nwt)
c : phase angle
Cj : constant in modified generalised Maxwell model theory
C : Couple/Torque
Cr ; Couple acting on rotor platen due to fluid
Co Couple/Torque amplitude
Cik : right Cauchy-Creen tensor
ag total derivative
0 . . .
3t partial derivative
ﬁ? material derivative
Y Jaumann derivative
- Oldroyd derivative
ej : orthogonal unit vectors (fixed frame)
ej : orthoggnal unit vectors (corotating frame)
E : mean shear stress reduction
£ total body force vector
Fg : platen geometry shear stress factor
ik : metric tensor (fixed frame)
G(t-t') : relaxation function
G : dynamic rigidity (pure oscillatory shear)
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C'n : dynamic rigidity (combined steady and oscillatory

shear)
G'p : plastic dynamic rigidity
C'.G"(1):C" (2) : dynamic rigidity from fluid inertia perturbation theory

{zero, first, and second order fluid inertia effects)

C' : rigidity coefficient (Maxwell element)

h : parallel plate gap, cylinder height

i,] : /(-1)

Im{ ] : imaginary part of complex numbef

1 . : mechanical inertia of rotor

Jn : nth order Bessel function of the first kind
K_n/2 : nth order modified Bessel function

In : naperian logarithm

m : constant (power law model)

m; : constant { modified generalised Maxwell model)
n : power law index

o] : isotropic pressure

Pn : Legendre function of the second kind (degree n)
Qn : Legendre function of the first kind (degree n)

ri,rg,r,,ry,ry,r, : cylinder radii

Re[ ] : real part of complex number

s : time

t : time

ti : time constant (modified generalised Maxwell model)

Tik : corotating stress tensor (fixed frame)

ug : displacement vector components

vy : velocity vector components

Yn : nth order Bessel function of fhe second kind (order n)
A : complex number

NI

complex conjugate
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g, 04,0,

Yo
YE
Yik
Ym
Vs
Yik
Ya
Yan

tan{d)

angle of rotation

fluid inertia parameter

fluid inertia paramers from perturbation theory
(zero, first, and second order)

yield strain

elastic strain

rate of strain tensor (fixed frame)

mean shear rate

steady shear rate

rate of strain tensor (fixed frame)

complex shear rate amplitude

oscillatory shear rate amplitude

loss tangent

ratio between fundamental oscillatory shear stress
amplitude and mean shear stress

kronecker delta

ratio between yield stress and shear stress amplitude
oscillatory strain amplitude (Chapter 2)

ratio between fundamental oscillatory shear rate
amplitude and mean shear rate

strain tensor (convected frame)

shear viscosity

zero shear viscosity

infinite shear viscosity

plastic shear viscosity

viscosity coefficlent (generalised Maxwell model)

dynamic viscosity (pure oscillatory shear)

dynamic viscosity (combined steady and oscillatory
shear)

plastic dynamic viscosity
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Ng,M3.M5 : dynamic viscosity from perturbation theory

n : complex viscosity (pure oscillatory shear)

n; plastic complex viscosity

n:,nf,nt : complex viscosity from perturbation theory

(zero,first,second order)

8. : cone angle

8, 1 gap angle

A : relaxation time (Carreau model)

N : relaxation time (Maxwell element)

Ag : relaxation time (Segalman model)

Ao, : relaxation time (Oldroy& mode ls)

Aij : rotation matrix

BorByi Mo : Oldroyd model constants

v, : first normal stress difference in steady simple shear
v, : second normal stress difference in steady simple shear
iﬁl : product sign

";k . extra stress tensor (convected frame)

P : Fluid density

Tik : total stress tensor

a;k : extra stress tenssor

oik : extra stress tenssor (corotaing frame)

a; : complex shear stress amplitude

Om : mean shear stress

T, : yield stress value

Oy stress in yield stress element

Ta, : fundamental oscillatery shear stress amplitude
E summat ion sign

i=1

Wik : vorticity tensor

Q angular velocity

ik : rotatioﬁ matrix
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angular displacement

displacement amplitude

second invariant of rate of strain tensor
del operator

factorial sign
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*FIGURE (2.1)

The Generalised Maxwell Model.
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FIGURE (2.2)

Variation of normalised viscosity (9(y)/n,) with normalised

shear rate (M) for different viscosity models (n = 0.3).

(i).
(ii).
(iii).
(iv).

Power Law Model.
Segalman Model.
Carreau Model.

Newtonian Model.
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FIGURE (2.3)

Variation of shear stress with shear rate for

(i). The Bingham Model.
(ii). The Hersche!-Bulkley Model.
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FICURE (3.1)

The Stormer Viscometer.
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FIGURE (3.2)

Schematic diagram of the air-bearing in the Deer Rheometer.
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10.

11.

12,

13.

14,

15.

16.

17.

18.

19.

20.

FIGURE (3.3)

The Carri-Med Contolled Stress Rheometer.
Stand base.
Bearing support pillar.
Air bearing housing.
Air bearing-located axially and radially.
Motor drive spindle.

Upper measurement member-cone & plate or parallel plate or

concentric cylinder.

Drive motor stator.
Optical enco&er measurement system.
I.E.E.E. interface.

Automatic sample presentation system,
Mains switch.

Draw rod - retains measurement system.
Moveable top cover.

L.E.D. Display.

Adjustable levelling feet.

Height adjusting micrometer scale.
Gap setting micrometer scale.

Bottom plate of measurement system - raised or lowered on a dry

bearing - temperature controlled by a Peltier system,
Digital input / output optical encoder interface.

Gap setting indicator light and lead.
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FIGURE (3.4)

The cone and plate system on the Carri-Med

controlled stress rheometer.
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FICURE (3.5)

The paralliel plate system on the Carri-Med

controlled stress rheometer.
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FIGURE (3.6)

The concentric cylinder system on the Carri-Med

controlled stress rheometer.
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FIGURE (3.7)

The double concentric cylinder system on the Carri-Med

controlled stress rheometer.
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FIGURE (4.1)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (0g - op)/0g with

Ym/@ for a power law model (n = 0.3, 0.6, 0.9; ¢ = 0.2).

(i). Goddard-Miller Model (viscoelastic).

(ii). Ceneralised Newtonian Model (inelastic).
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FIGURE (4.2)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (og -~ 0y)/0g with

Ym/w for a power law model (n = 0.3, 0.6, 0.9; ¢ =0.8).

(i). GCoddard-Miller Model (viscoelastic).

(ii). Generalised Newtonian Model (inelastic).
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FIGURE (4.3)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (og - opy)/0g with

Ym/w for a power law model (n = 0.3, 0.6, 0.9; ¢ = 1,0).

(i). Goddard-Miller Model (viscoelastic).

(ii). GCeneralised Newtonian Model (inelastic).
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FIGURE (4.4)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (og - o,)/0g with

Ym/w for a power law model (n = 0.3, 0.6, 0.9; ¢ = 1.4).

(i). Goddard-Miller Model (viscoelastic).

(ii). Generalised Newtonian Model (inelastic).
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FIGURE (4.5)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (o0g - op)/0g with

Ym/w for a power law model (n = 0.3, 0.6, 0.9; ¢ = 2.0).

(i). Goddard-Miller Model (viscoelastic).

(ii). Generalised Newtonian Model (inelastic).
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FIGURE (4.6)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (0g - o,)/adg with
Ym/w@ for a Carreau model (M = 1.0, 2.0, 5.0, 10.0; n = 0.3;
e = 0.8).

(i). Goddard-Miller Model (viscoelastic).
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FIGURE (4.7)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (o5 - op)/0g with
Ym/w for a Carreau model! (M = 1.0, 2.0, 5.0, 10.0; n = 0.3;
e = 1.2).

(i). Goddard-Miller Model (viscoelastic).
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FIGURE (4.8)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (og - op)/0g with
Ym/@ for a Carreau model (M» = 5.0; n = 0.2, 0.4, 0.6, 0.8;
e =1.5).

(i). Goddard-Miller Model (viscoelastic).

(ii). Generalised Newtonian Model (inelastic).
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FIGURE (4.9)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (0g - oy)/0g with
Ym/w for a Carreau model (Mw = 5.0; n=0.2, 0.4, 0.6, 0.8;
e = 3.0). ' '

(i). Goddard-Miller Model (viscoelastic).

(ii). Generalised Newtonian Model {(inelastic).
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FIGURE (4.10)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (g - o) /og with
Ym/w for a Carreau model (M = 5.0; ¢ = 0.2, 0.5, 0.8, 1.0;
n=0.3.

(i). Goddard-Miller Model (viscoelastic).

(ii). Generalised Newtonian Model (inelastic).

~184-



681~

(0 - o /0

0-20 -

VISCOELASTIC

000
™~
0
o
o




FIGURE (4.11)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (og - op)/0g with
Ym/w@ for a Carreau model (Mv = 5.0; ¢ = 1.0, 1.5, 2.0, 2.5;
n=20.23).

(i). Goddard-Miller Model (viscoelastic).

(ii). Generalised Newtonian Model (inelastic).
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FIGURE (4.12)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (0g - oy)/0g with
Ym/w for a Goddard-Miller Model (viscoelastic), (n = 0.3;
e = 1.5; w = 5.0).

(i). Power Law Model
(ii). Carreau Model.

(iii). Segalman Model.
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FIGURE (4.13)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (o0g - op)/0g with
Ym/w for a Generalised Newtonian Model (inelastic), (n = 0.2;
e =1.5; a2 =5.0).

{i). Power Law Model.

(ii). Carreau Model.

(iii). Segalman Model.
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FIGURE (5.1)

Viscosity behaviour of a 2% solution of polyisobutylene

in dekalin.

(i). Experimental shear viscosity data.
(ii). Experimental dynamic viscosity data.
(iii). Magnitude of complex viscosity.
(iv). Carreau fit to shear viscosity data.

{(ny = 28 Ns/m?; n = 0.35; N =4.5 s7').
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FIGURE (5.2)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (05 - op)/0g with

Ym/w, (¢ = 0.8; freq = 2 Hz).

(i). Experimental data (concentric cylinder
geometry, rj = 18.5 mm, ro = 20.75 mm).

(ii). GCoddard-Miller model (viscoelastic).

(iii). Generalised Newtonian model (inelastic).

(iv). Controlled stress inelastic correction.

Model constants (based on Carreau fit to shear viscosity curve),

(n=0.35; N\ =4.5 s71).
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FIGURE (5.3)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (¢g - op)/0g with

Ym/w, (¢ = 1.2; freq = 2 H2).

(i). Experimental data (concentric cylinder
geometry, rj = 18.5 mm, r, = 20.75 mm).

(ii). Goddard-Miller model (viscoelastic).

(iii). Generalised Newtonian model (inelastic).

{iv). Controlled stress inelastic correction.

Model constants (based on Carreau fit to shear viscosity curve),

{(n=0,35; X =4.5 s~').
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FIGURE (5.4)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (og - op)/0g with

Ym/w, (€ =-1.5; freq = 2 Hz).

(i). Experimental data (concentric cylinder
geometry, rj = 18.5 mm, ro = 20.75 mm).

(ii). GCoddard-Miller model (viscoelastic).

(iii). Generalised Newtonian model (inelastic).

(iv). Controlled stress inelastic correction.

Model constants (based on Carreau fit to shear viscosity curve),

(n=0.35; »\ =4.5s71),
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FIGURE (5.5)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (o5 - op)/og with

Ym/w, (e = 2.0; freq = 2 Hz).

(i).

(ii).

(iii)

(iv).
(v).

Experimental data (cone and plate
geometry, 8, = l., a =2 cm),

Experimental data (Davies et al [12], cone
and plate geometry, 8, = 2., a= 2 cm,

freq = 4 Hz),

Goddard-Miller model (viscoelastic).
Ceneralised Newtonian model (inelastic).

Controlled stress inelastic correction.

Model constants (based on Carreau fit to shear viscosity curve),

(n=0.35;

AN=4.5s"1),
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FIGURE (5.6)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (as - am)/aS with
Ym/w, (¢ = 2.0; freq-= 1 Hz).
(i). Experimental data (cone and plate
geometry, 8, = l., a =2 cm).
(ii). Goddard-Miller model (viscoelastic).
(iii). Generalised Newtonian model (inelastic).

(iv). Controlled stress inelastic correction.

Model constants (based on Carreau fit to shear viscosity curve),

(n=0.35; N\ = 4.5 s7).
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FIGURE (5.7)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (og - op)/0g with

€, (yp = 6.28 s7'; freq = 1 Hz).

(i). Experimental data (cone and plate
geometry, 6, = l., a=2cm).
(ii). GCoddard-Miller model (viscoelastic).
(iii). Generalised Newtonian model (inelastic).
Model constants (based on Carreau fit to shear viscosity curve),

(n=0.35; A\ =4.535"").
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FIGURE (5.8)

Combined Steady and Oscillatory Shear Flow.

Variation of mean shear stress reduction (gg - 0op)/og with

€, (yp = 6.28 s7'; freq = 1 Hz).

(i). Inelastic power law model (for small e { }).
(ii). Controlled strain inelastic model.
(iii). Controlled stress inelastic model.

Model constants (based on Carreau fit to shear viscosity curve),

(n=0.35; N = 4.5 s71).
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FIGURE (5.9)

Combined Steady and Oscillatory Shear.

Shear rate waveform for an inelastic power law fluid (n = 0.35)

subjected to a combined steady and oscillatory shear stress.

(i). 6 = 2.885.
(ii). e = 2.0
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FIGURE (6.1)

Fluid inertia effects on the paralle!l plate geometry.

This figure shows a plot of the complex fluid inertia

parameter (ah)?.

(i). X-axis; Re(ch)?, Re(aoh)’, Re(a‘h)z, Re(azh)z.
(ii). Y-axis; Im(ah)?, Im(auh)’, Im(a'h)z, lm(azh)z.
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FIGURE (6.2)

Fluid inertia effects on the parallel plate geometry.

This figure shows a plot of the complex fluid inertia

parameter (ah)?.

(i). X-axis; Re(ah)?, Re(alh)z, Re(azh)z.
(ii). Y-axis; Im(ah)?, Im(alh)z, Im(azh)z.
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FIGURE (6.3-5)

Fluid inertia effects on the parallel plate geometry.

These figures show the effect of fluid inertia on the

complex fluid inertia parameter (ah)?Z2.

(i). X-axis; Re(ah)?, Re(auh)z.
(ii). Y-axis; Im(ah)?, Im(aoh)z.
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FIGURES (6.6-8)

Fluid inertia effects on the parallel plate geometry.

These figures compare the first order fluid inertia

parameter (alh)2 with (ah)?.

&i). X-axis; Re(ah)?, Re(a|h)2.
(ii). Y-axis; Im(ah)?, lm(a}h)z.
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FIGURES (6.9-11)

Fluid inertia effects on the parallel plate geometry.

These figures compare the second order fluid inertia

parameter (ozzh)2 with (ah)?,

(i). X-axis; Re(ah)?, Re(azh)z.
(ii). Y-axis; Im(ch)?, Im(azh)z.
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FIGURES (6.12-13)

Fluid inertia effects on the cone and plate geometry.

These figures show the effect of fluid inertia on the

complex fluid inertia parameter (afja)?.

(i). X-axis; Re(af8ja)?, Re(aoﬂoa)z.

(ii). Y-axis; Im(af,a)?, Im(% 0,a)2.
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FIGURE (6.14)

Fluid inertia effects on the cone and plate geometry.

This figure compares the first order fluid inertia

parameter (alﬂoa)2 with (af a)?.

(i). X-axis; Re(af8,a)?, Re(a‘ﬁoa)7.

(ii). Y-axis; Im(afgja)?, lm(a100a)2.
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FIGURE (6.15)

Fluid inertia effects on the concentric cylinder geometry.

These figures show the effect of fluid inertia on the

complex fluid inertia parameter (or(ro - ri))z.

(i). X-axis; Re(ah)?, Re(ao(r° - ri))z.

(ii). Y-axis; Im(ah)?, !m(ao(r0 - ri))z.
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FIGURE (7.1)

Oscillatory Shear Experiments.

Dynamic data for a 2% solution of polyisobutylene in dekalin.
Experimental conditions (Temp = 20 C; p = 0.88 gm/cm®).

Measurement system,

(i). Cone and plate (gap angle=2.;

cone radius=2 cm)
(ii). Parallel plate (gap=0.25 mm; radius=2 cm)
(iii). Concentric cylinder (rj=18.5 mm, r,=20.75 mm,

cylinder height=50 mm).
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FIGURE (7.2)

Oscillatory Shear Experiments.

Dynamic data for a 2% solution of polyisobutylene in dekalin.

Experimental conditions (Temp = 20.C; p = 0.88 gm/cm® ),

Measurement system; concentric cylinder geometry (r,=20.75 mm,
cylinder height = 50mm).

(i). ri=18.5 mm.

(ii). r;=15.0 mm.

(iii). r;=12.5 mm.
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FIGURE (7.3)

Oscillatory Shear Experiments,

Effect of fluid inertia on dynamic viscosity of a 2% solution

of polyisobutylene in dekalin.
Experimental conditions (Temp = 20.C; p = 0,88 gm/emd) .,

Measurement system, concentric cylinder geometry (rg=20.75 mm;

ri=12.5 mm; cylinder height=50 mnm).

(i). Exact.

(ii). Fluid inertia ignored.
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FIGURE (7.4)

Oscillatory Shear Experiments.

Effect of fluid inertia on dynamic rigidity of a 2% solution

of polyiscbutylene in dekalin.
Experimental conditions (Temp = 20.C; p = 0.88 gm/cm?).

Measurement system; concentric cylinder geometry (r,=20.75 mm;

ri=12.5 mm; cylinder height=50 mm).

(i). Exact .

(ii). Fluid inertia ignored.
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FIGURE (7.5)

Oscillatory Shear Experiments.

Effect of fluid inertia on dynamic viscosity of a 2% solution

of polyisobutylene in dekalin.
Experimental conditions (Temp = 20.C; p = 0.88 gm/em? ).

Measurement system; concentric cylinder geometry (r,=20.75 mm;

ri=15.0 mm; cylinder height=50 mm).

(i). Exact .

(ii). Fluid inertia ignored.
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FIGURE (7.6)

Oscillatory Shear Experiments.

Effect of fluid inertia on dynamic rigidity of a 2% solution

of polyisobutylene in dekalin.
Experimental conditions (Temp = 20‘C; p=0.88 gm/cm?).

Measurement system; concentric cylinder geometry (ry=20.75 mm;

ri=15.0 mm; cylinder height=50 mm).

(i). Exact.

(ii). Fluid inertia ignored.
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FIGURE (7.7)

Theoretical prediction of the effect of fluid inertia on
the dynamic viscosity of a 2% solution of polyisobutylene in dekalin,

(p=0.88 gm/cm3).

Measurement system; concentric cylinder (ry,=20.75 mm,

cylinder height = 50mm).

(i). ri{=18.5 mm.
(11). r;{=15.0 mm.
(ifi). ry{=12.5 mm,
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FIGURE (7.8)

Theoretical prediction of the effect of fluid inertia on

the dynamic rigidity of a 2% solution of polyisobutylene in dekalin,

(p=0.88 gm/cm3).

Measurement system; concentric cylinder (ry,=20.75 mm,

cylinder height = 50mm).

(i). r{=18.5 mm.
(ii). rj=15.0 mm.

(iii). ry=12.5 mm.
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FIGURE (7.9)

Power law fit to dynamic data for a 2% solution of

polyisobutylene in dekalin. Model constants,

(i). Dynamic viscosity (n=0.269; m=6.333).
(ii). Dynamic rigidity (n=1.292; m=10.076).
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FIGURE (7.10)

Oscillatory Shear Experiments.

Effect of fluid inertia on dynamic viscosity of a 2% solution

of polyisobutylene in dekalin..
Experimental conditions (Temp = 20.C; p = 0.88 gm/cm®) .

Measurement system; concentric cylinder geometry (r,=20.75 mm;

ri=18.5 mm; cylinder height=50 mm).

(i). Exact.
(ii). Fluid inertia ignored.
(iii). First order fluid inertia correction.

(iv). Second order second fluid correction.
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FIGURE (7.11)

Oscillatory Shear Experiments.

Effect of fluid inertia on dynamic rigidity of a 2% solution

of polyiscbutylene in dekalin.
Experimental conditions (Temp = 20.C; p = 0.88 gm/cm?) .

Measurement system; concentric cylinder geometry (r,=20.75 mm;

ri=18.5 mm; cylinder height=50 mm).

(i). Exact .
(ii). Fluid inertia ignored.
(iii). First order fluid inertia correction.

(iv). Second order fluid inertia correction.
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FIGURE (7.12)

Oscillatory Shear Experiments.

Dynamic data for a 2% solution of polyisobutylene in dekalin.

Experimental conditions (Temp = 20.C; p = 0.88 gm/cm®),
Measurement system; parallel plate geometry (radius = 2 cm).

(i). gap = 0.25 mm.
(ii). gap = 0.5 mm.

-255-



-952-

DYNAMIC RIGIDITY (N/m~2)

DYNAMIC VISCOSITY (Ns/m~2)

2

xa

DYNAMIC RIGIDITY -
o B 5 &

Egé
x

05X %
M g

QQQQQﬁ

x _
- DYNAMIC VISCOSITY

M
EE
EEEEEEQ&@EE&EEEQ

60

50

140

130

120

110

|

30

0 1
10 15 20
FREQUENCY (Hz)

X 0.25 mm O 0.5 mm

25



FIGURE (7.13)

Oscillatory Shear Experiments.

Effect of fluid inertia on dynamic data for a 2% solution of
polyisobutylene in dekalin.

Experimental conditions (Temp = 20.C; p = 0.88 gm/cm’ ),

Measurement system; parallel plate geometry (radius = 2 cm;

gap = 0.5 mm).

(i). Exact.
(ii). Fluid inertia ignored.

(ifi). First order fluid inertia correction.
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FIGURE (7.14)

Oscillatory Shear Experiments.

Effect of fluid inertia on dynamic data for a 2% solution of

polyisobutylene in dekalin.
Experimental conditions (Temp = 20'C; p = 0.88 gm/cm?),

Measurement system; cone and plate geometry (gap angle=2 ;

cone radius=2cm).

(i). gap = 0.25 mm.
(iiY. gap = 0.5 mm.

-259-




-09¢-

DYNAMIC RIGIDITY (N/m"2)
' 50

DYNAMIC VISCOSITY (Ns/m~2)
2
5 &
A KK 2
8 A & % oDo0o = O H
BB Boo -140
1.5 anaf
s 88
L
a8 130
B
B
1 |
-120
= B
0.5 8
®n 2 -10
B g BEg o

@@Eﬂﬂﬁﬁﬁﬂmggggg@

0 | I | | | O
0 ) 10 15 20 25 30
FREQUENCY (Hz)
& 1ST ORDER

*  EXACT

O NO FLUID INERTIA



FIGURE (7.1J5)

Oscillatory Shear Experiments.

Dynamic data for silicone (30 Ns/m?).
Experimental conditions (Temp = 25 C; p = 0.9 gm/cm®).

Measurement system;

(i). Cone and plate (gap angle=2.;

cone radius=2 cm)
(ii). Parallel plate (gap=0.25 mm; radius=2 cm)
(iii). Concentric cylinder (rij=18.5 mm, ry=20.75 mm,

cylinder height=50 mm).
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FIGURE (7.16)

Oscillatory Shear Experiments.

Dynamic data for silicone (30 Ns/m?).

Experimental conditions (Temp = 25.C; p=0.9 gm/cm? ),

Measurement system; concentric cylinder geometry (r;=20.75 mm,

cylinder height = 50mm).

{(i). r;=18.5 mm.
(ii). r;=15.0 mm.
(iii). rj=12.5 mm.
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FIGURE (7.17)

Oscillatory Shear Experiments.

Dynamic data for silicone (30 Ns/m?).

Experimental conditions (Temp = 25.C; p=0.9 gmn/cm?),
Measurement system; parallel plate geometry (radius = 2 cm).

(i). gap = 0.25 mm.
(ii). gap = 0.5 mm.
(iii). gap = 1.0 mm.
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FICURE (7.18)

Oscillatory Shear Experiments.
Effect of fluid inertia on dynamic data for silicone (30 Ns/m?).
Experimental conditions (Temp = 25.C; p=0.9 gm/cm?®) .

Measurement system; concentric cylinder geometry (ry=20.75 mm;

ri=12.5 mm; cylinder height=50 mm).

(i). Exact.
(ii). Fluid inertia ignored.

(iii). First order fluid inertia correction.
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FIGURE (7.19)

Oscillatory Shear Experiments.
Effect of fluid inertia on dynamic data for silicone (30 Ns/m?).
Experimental conditions (Temp = ZS-é; p = 0.9-gm/cnP).

Measurement system; parallel plate geometry (radius = 2 cm;

gap = 1 mm).

(i). Exact.
(ii). Fluid inertia ignored.

{iii). First order fluid inertia correction,
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FIGURE (7.20)

Oscillatory Shear Experiments.
Effect of Fluid inertia on dynamic data for silicone (30 Ns/m2).
Experimental conditions (Temp = 25.C; p=0.9 gm/cm? ).

Measurement system; cone and plate geometry (gap angle = 2‘;

cone radius = 2 cm ).

(i). Exact.

(ii). Fluid inertia ignored.
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FIGURE (7.21)

Oscillatory Shear Experiments.

Dynamic data for polybutene.

Experimental conditions (Temp = 20.C; p=0.9 gn/em?®).
Measurement system;

(i). Cone and plate (gap angle = 2-;
cone radius = 2 cm).
(ii). Parallel plate (radius = 2 cm; gap = 1 mm).

(iii). Parallel plate (radius = 2 cm; gap = 0.5 mm).
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FIGURE (7.22)

Oscillatory Shear Experiments.
Effect of fluid inertia on dynamic data for polybutene.
Experimental conditions (Temp = 20.C; p =09 gm/cm®).

Measurement system; parallel plate geometry (radius = 2 cm;

gap = 0.5 mm).

(i). Exact .
(ii). Fluid inertia ignored.

(iii). First order fluid inertia correction.
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FIGURE (7.23)

Oscillatory Shear Experiments.
Effect of fluid inertia on dynamic data for polybutene.
Experimental conditions (Temp = ZO-C; p=0.9 gm/cm? ).

Measurement system; cone and plate geometry (gap angle = 2 ;

cone radius = 2 cm; ).

(i). Exact.
(ii). Fluid inertia ignored.

(iii). First order fluid inertia correction.
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FIGURE (8.1)

Typical experimental strain waveform for a 'yield stress’
material undergoing a sinusoidal oscillatory stress. Test
fluid is a water absorbant gel (Sanwet 2500) with a 1%

concentration by weight.

Measurement system, cone and plate geometry (gap angle = 2.;

radius = 2cm).
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FIGURE (8.2)

Variation of complex viscosity data with torque amplitude
for a water absorbant gel (Sanwet 2500) with a 1%

concentration by weight.

Measurement system, cone and plate geometry (gap angle = 2 ;

radius = 2cm).
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FICURE (8.3)

Modified Generalised Maxwell Model.
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FIGURE (8.4)

Typical strain rate response of a single element
modified Maxwell model to an applied sinusocidal

oscillatory stress.
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FIGURE {(8.3)

Typical strain response of a single element modified

Maxwell model to an applied sinusoidal oscillatory stress.
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FIGURE (8.6)

Variation of normalised dynamic viscosity with
normalised frequency for a range of wvalues of

A4 (0, 0.2, 0.5).

where,
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FIGURE (8.7)

Variation of normalised dynamic rigidity with
normalised frequency for a range of values of

A (0, 0.2, 0.5).

where,
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FIGURE (8.8)

Variation of normalised dynamic viscosity with
normal ised stress amplitude for a range of values

of values of »w (0, 2.0, 5.0)
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FIGURE (8.9)

Variation of normalised dynamic rigidity with
normalised frequency for a range of values of

A (0, 0.2, 0.5).

where,
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