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Abstract	
Service-based automation of software construction activities  

Marcus Zinn 
Master of Science 

The reuse of software units, such as classes, components and services require professional 
knowledge to be performed. Today a multiplicity of different software unit technologies, 
supporting tools, and related activities used in reuse processes exist. Each of these relevant 
reuse elements may also include a high number of variations and may differ in the level and 
quality of necessary reuse knowledge. In such an environment of increasing variations and, 
therefore, an increasing need for knowledge, software engineers must obtain such knowledge 
to be able to perform software unit reuse activities. Today many different reuse activities exist 
for a software unit. Some typical knowledge intensive activities are: transformation, 
integration, and deployment. In addition to the problem of the amount of knowledge required 
for such activities, other difficulties also exist. The global industrial environment makes it 
challenging to identify sources of, and access to, knowledge. Typically, such sources (e.g., 
repositories) are made to search and retrieve information about software units and not about 
the required reuse activity knowledge for a special unit. Additionally, the knowledge has to be 
learned by inexperienced software engineers and, therefore, to be interpreted. This 
interpretation may lead to variations in the reuse result and can differ from the estimated result 
of the knowledge creator. This makes it difficult to exchange knowledge between software 
engineers or global teams. Additionally, the reuse results of reuse activities have to be 
repeatable and sustainable. In such a scenario, the knowledge about software reuse activities 
has to be exchanged without the above mentioned problems by an inexperienced software 
engineer. The literature shows a lack of techniques to store and subsequently distribute 
relevant reuse activity knowledge among software engineers. The central aim of this thesis is 
to enable inexperienced software engineers to use knowledge required to perform reuse 
activities without experiencing the aforementioned problems. The reuse activities: 
transformation, integration, and deployment, have been selected as the foundation for the 
research. Based on the construction level of handling a software unit, these activities are 
called Software Construction Activities (SCAcs) throughout the research. To achieve the aim, 
specialised software construction activity models have been created and combined with an 
abstract software unit model. As a result, different SCAc knowledge is described and 
combined with different software unit artefacts needed by the SCAcs. Additionally, the 
management (e.g., the execution of an SCAc) will be provided in a service-oriented 
environment. Because of the focus on reuse activities, an approach which avoids changing the 
knowledge level of software engineers and the abstraction view on software units and 
activities, the object of the investigation differs from other approaches which aim to solve the 
insufficient reuse activity knowledge problem. The research devised novel abstraction models 
to describe SCAcs as knowledge models related to the relevant information of software units. 
The models and the focused environment have been created using standard technologies. As a 
result, these were realised easily in a real world environment. Software engineers were able to 
perform single SCAcs without having previously acquired the necessary knowledge. The risk 
of failing reuse decreases because single activities can be performed. The analysis of the 
research results is based on a case study. An example of a reuse environment has been created 
and tested in a case study to prove the operational capability of the approach. The main result 
of the research is a proven concept enabling inexperienced software engineers to reuse 
software units by reusing SCAcs. The research shows the reduction in time for reuse and a 
decrease of learning effort is significant. 
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1. 	Introduction	
 “…So spake Zeus in anger, whose wisdom is everlasting; and from that time he was always 

mindful of the trick, and would not give the power of unwearying fire to the Melia race of 

mortal men who live on the earth. But the noble son of lapetus outwitted him and stole the far-

seen gleam of unwearyting fire in a hollow fennel stalk. And Zeus who thunders in high was 

stun in spirit, and his dear heart was angered when he saw amongst men the far-seen ray of 

fire” (Hesoid and Evelyn-White, 1914, line 545). 

Among other things, this excerpt from the Greek hero mythology ‘Theogony’ describes a 

human dilemma. Against the will of Zeus, son of lapetus (so called Prometheus) gave mankind 

the knowledge of certain skills, such as cooking or producing tools. To punish mankind, Zeus 

took the skill to make fire away from them. This meant that, although Prometheus had given 

them the necessary knowledge, mankind was no longer able to carry out relevant tasks like 

cooking or producing certain tools. 

It seems that this punishment was only possible because mankind was unable to independently 

create an relevant detail necessary for these activities. The different activities like cooking food 

or producing tools depended on fire and the activities to create it. However, the people did not 

know how to generate fire by themselves. They were only able to keep an already existing fire 

burning. Prometheus helped the people again so this part of Theogony had a happy ending. 

The dilemma came about because humans in this story are only able to conduct processes when 

they have the required knowledge for all the necessary sub-activities to manufacture parts, or 

they are able to use parts that have been made before. If this knowledge is absent, some 

activities of a process cannot be performed. As a result, the dependent processes cannot be 

performed at all, only incompletely or not in the calculated time. This dilemma, occupying the 

minds of poets and authors 2300 years ago, still exists today and is particularly apparent in 

manufacturing of products. Car manufacturers, for example, do not usually create all parts of a 

car by themselves and are only able to assemble the parts into a finished product. Zheng (2007) 
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shows the dilemma which arises if one of the individual parts is not available, the car cannot be 

completed.  

Regarding the area of software this dilemma seems to be solved. Install tools and package 

management systems on different operation systems are able to perform the activities of 

installation and configuration of software for a user. The user has not to know these activities 

and can continue. But the problem of missing knowledge exists in the area of software 

development. Sandhu et al. (2010) and Böckle, Pohl and van der Linden (2005) describe a 

special field of software engineering attempting to develop software products (such as software 

units, software applications, and software product lines) by utilising those previously 

developed. Sommerville (2011) and Sandhu et al. (2010) call this software reuse, which should 

help to save resources, (e.g., time and money). In software reuse, existing software products are 

integrated into another software product because they solve a particular sub-problem and, 

therefore, create added value. Sandhu et al. (2010) and Garlan, Allen and Ockerbloom (2009) 

figured out that usually, trying to solve problems that can be solved by reuse existing 

functionality by themselves uses more resources than reusing an existing software unit.  

However, Jha and O’Brien (2011) discuss the problem of missing reuse knowledge impacting 

the whole software development process. Therefore, reuse of existing software products needs 

knowledge which has to be available for the human user (e.g., software engineer). Regarding 

the Theogony, not knowing the knowledge of a reuse activity seems to be a dilemma. 

1.1. 	Missing	activity	knowledge	in	software	unit	reuse		
The mentioned impact of missing knowledge on software reuse is well-known, especially at the 

end of the last century, reuse based software development projects were analysed. For example, 

Mohagheghi et al. (2004), Edward, Ali, and Sherif (1999), Fichman and Kemerer (2001), and 

Schmidt (1999) show in their multi-project analysis that knowledge is one of the critical 

success factors of software reuse. 
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Regarding the analysis results of Ravichandran and Rai (2003) and Ajila (2006), missing 

knowledge may also lead to an increase of required resources (i.e., time or costs) or to the 

complete failure of a development project. Jansen et al. (2008) also analysed different software 

development projects more recently and conclude the same result. Based on such results, 

different researchers focus on the exchange and application of knowledge (cf. Qu, Ji and 

Nsakanda, 2012; Choi, Lie and Yoo, 2010). Qu, Ji and Nsakanda (2012) stated that software 

development teams are knowledge intensive groups and the exchange of knowledge is relevant 

for the project success. 

Inside this thesis, knowledge describes the information a software engineer has to know to 

perform a reuse activity. For example, if a software engineer wants to reuse a software unit 

(e.g., a Java component), the engineer has to know how to insert this component into the 

Eclipse development environment for further use. Another reuse activity example is the 

transformation of a software unit into another technology. The transformation of a Java 

component into a .NET component requires specific tools (e.g., IKVM by Frijters, 2011) and a 

list of settings with specific values. Such settings are related to the used transformation tool and 

the software unit to transform. This is knowledge that a software engineer has to know in order 

to perform the transformation activity. Here, missing knowledge can lead to reuse activity 

failure.  

This thesis focuses on two types of knowledge. The first one is the above mentioned knowledge 

needed in order to perform a reuse activity. The second one is the knowledge required to 

exchange the other knowledge type between software engineers. This is the knowledge to store, 

search, and receipt and perform reuse activity knowledge by using a technical environment. 

Also the scenarios which create a lack of knowledge for software engineers are well-known. 

Shiva and Shala (2007) discuss a typical scenario of young professionals (e.g., students) 

without any experience. Another example is the unsuitable knowledge of senior software 

engineers for a new project or task. Based on Boh (2008) this is a typical scenario based on 
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missing knowledge for experienced software engineers. Ven et al. (2006) use the term 

knowledge vaporisation. It describes the scenario that existing knowledge gets lost. Typically, 

this happens if a person leaves a project and previous decisions cannot be implemented 

anymore. As a result, none of the remaining people has access to knowledge of this person.  

Another fact is the multitude of different technologies that require different knowledge for 

software unit reuse. If the engineer is not aware of the necessary knowledge for reuse, the 

whole reuse process might be at risk. This is a dilemma comparable to the situation implied in 

the Greek myth. The knowledge problem is based on two relevant aspects: 

1. The knowledge for reuse activities is based on the technology of the software unit it 

relates to (McCarey, Ó Cinnéide and Kushmerick, 2008). There are a high number of 

different software units and related technologies which require knowledge (Isoda, 

1992). As a result, the amount of existing knowledge is huge.  

2. In recent years the problem has been aggravated by the dramatic growth of new 

technologies, necessary tools, and the opportunities to use new software units. If this 

trend continues, an even greater amount of knowledge will be required to employ the 

technology for reusing software units successfully in future. Regarding the analysis of 

Ajila and Zheng (2004) knowledge is always increasing and, therefore, has to be 

maintained. 

Garcia et al. (2006), Tsai et al. (2010), Ye and Fischer (2005), Bjørnson and Dingsøyr (2008), 

and Boh (2008) show in their discussion that approaches may exist in the area of knowledge 

management (i.e., search recognition and storing of knowledge). But this does not include the 

handling of reuse activity knowledge. Especially in the area of application and automation of 

reuse activity knowledge such approaches are rare (see also Bjørnson and Dingsøyr, 2008).  

Next to the point that a suggestion system for reuse activities does not exist, there is another 

problem with knowledge received from a knowledge management system. As seen in the 
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discussion of Bjørnson and Dingsøyr (2008), Ajila and Zheng (2004), and Ajila (2006) about 

knowledge interpretations, this may lead to the wrong interpretation of knowledge. This means 

the reuse result might be not what the user or system that enters or creates the knowledge 

expects. Therefore, this may not result in a successful reuse. Furthermore, long learning 

processes may fail or may be useless because this reuse is never repeated by the same person, 

or the learning process was not sustainable to perform a reuse activity. 

1.2. 	Focus	of	research	
Qu, Ji and Nsakanda (2012) analysed different software development projects and stated that 

software engineers and teams are knowledge intensive. Success of a project depends on the 

sharing and execution of this knowledge. Choi, Lie and Yoo (2010) identify information 

technology (IT) as a relevant factor for the exchange and use of knowledge. McCarey, Ó 

Cinnéide and Kushmerick (2008) conclude that a lack of techniques to store and subsequently 

distribute reuse activity relevant software unit knowledge among software engineers also exists. 

As a result, software engineers are not supported by the techniques focusing on the problems 

described in Section 1.1.  

In general, this research creates an added value on the aforementioned problem of unsuccessful 

reuse caused by missing or misinterpreted reuse activity knowledge in the field of software unit 

reuse. A technique will be created to limit the lack McCarey, Ó Cinnéide and Kushmerick 

(2008) have identified, but with a focus on a specific type of reuse activity. As a result, of this 

added value, software engineers require less knowledge to perform this type of reuse activity.  

Thereby, a technique has to handle the following knowledge based problem areas which are the 

main focus of this research:  

1. Problem of knowledge intensive technology 

The first problem is the multitudes of different technologies of software units, 

environments, and tools necessary for a reuse activity. McCarey, Ó Cinnéide and 

Kushmerick (2008) discuss the relation between reuse activity knowledge and related 
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software unit technology. Software engineers have to handle the amount of different 

technologies (Isoda, 1992) which increases significantly (Ajila and Zheng, 2004). As a 

result, the numbers of possible reuse activities and the required knowledge for these 

increases, too.  

2. Problem of knowledge level of software engineers 

Ye and Fischer (2005) state that software engineers may have inadequate knowledge 

levels. This means they have no, or less, experience with reuse activities of a specific 

software unit (e.g., the transformation of a Java component into a .NET component). 

As a result, a software engineer has to gain knowledge to increase their knowledge 

level (cf. Qu, Ji and Nsakanda, 2012). 

Additionally, the creation of variants by learning and the interpretation of activity 

knowledge may be a problem (based on the experience of individuals; cf. Johansson, 

Hall and Coquard, 1999). As discussed before, such variants can lead to non-adequate 

reuse results. This is combined with the problem that reuse activities (including the 

learning of knowledge and the setup of these activities) are time consuming tasks for 

each software engineer.  

3. Problem of knowledge intensive distribution environment. 

Relating to the secondary knowledge, the multitude of different existing repositories 

containing primary knowledge and information is the focused problem to search, 

receive and perform reuse activity knowledge. A software engineer has to know how 

each of these repositories can be used. This is similar to the multitudes of different 

technologies. Another related problem is the location. This problem is typical for global 

development teams placed on different locations all over the world. Often, team 

members have no idea about the repositories of other teams, how to locate them, and 

how to access them (cf. Qu, Ji and Nsakanda, 2012, Vlaar et al., 2008).  
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Global software development projects are used as application areas of these problems in this 

thesis. Typically, the knowledge exchange between software development teams is difficult. 

Thereby, software engineers have the mentioned problems. (cf. Qu, Ji and Nsakanda, 2012)  

The research aims to find a solution that enables inexperienced software engineers to perform 

reuse activities and, thereby, handle the aforementioned problems. Choi, Lie and Yoo (2010) 

conclude that a technical infrastructure support people to exchange and execute of knowledge. 

Qu, Ji and Nsakanda (2012) relate this statement to software engineers. Based on this 

statement, the identified problems are addressed by the solution of this thesis through following 

points: 

1. The problem of different technologies of software units, environments, and tools used 

in reuse activities are handled by an abstraction model in relation to a reuse 

environment. The creation of models based on abstractions is a widely used 

methodological approach. A good example is the topic of model-driven software 

development where the core idea is the use of abstraction models for creating software 

or new models (cf. Selic, 2003). Abstraction is also an relevant method in software 

reuse (Krueger, 1992).  

In this thesis, a common model for software units is created. To do so, this research 

focuses on classes, components, and services as examples of reusable software units. 

As a result, the common Software Unit Model includes these three types of units. 

Additionally, reuse activity models are created and related to the common software unit 

model. This relation represents the software unit information used by reuse activities. 

The reuse activity models represent (as example) integration, transformation, and 

deployment activities (i.e., the focused reuse activities in this research) of software 

units. To be more precise, the integration of software units into development 

environments, the console tool based transformation of software units, and the 

deployment of software units into embedded devices are used as examples of activities 
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in this thesis. Based on the construction behaviour of these three reuse activities, they 

are called software construction activities (SCAc) in this thesis. The reuse activity 

models also describe how a unit should be integrated, transformed, and deployed. This 

includes the description of necessary environments, tools, and the required 

configuration. The reuse environment is hosting instances of these models. As a result, 

all different software units, environments, tools, and SCAc are described by abstract 

models. This generates a single view on the multitudes of technologies and makes it 

easier to handle. 

2. To avoid a learning process which may end in a misinterpretation or insufficient 

knowledge of a reuse activity, an automation environment is created. An experienced 

user fills this system with reuse activity knowledge. This information is stored in the 

reuse activity models. An inexperienced user can use this system to execute the focused 

reuse activity based on the stored information. This means an inexperienced user 

selects an SCAc and executes it in the user’s technical environment. As a result, the 

inexperienced user is not constrained to learn and interpret the activity knowledge. 

Additionally, the reuse activity results do not vary. The automation system performs 

the stored SCAc in the same way the experienced user expects and, therefore, produces 

invariant results. The related problem of time intensive reuse activities is addressed by 

creating an environment which is able to host different setups and configurations 

required by different SCAcs. An experienced user creates this SCAc setup and the 

inexperienced user is then able to perform the SCAc with less preparation and learning 

time for the SCAc. The expected effect is a reduction of time in performing an SCAc. 

3. The problem of the knowledge intensive distribution environment (e.g., the use of 

different repositories) is also based on abstraction. The focused environment handles 

repositories and the reuse automation environment for an experienced and 

inexperienced user. To simplify the handling, a service interface is used. By using this 
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interface an experienced user can store SCAc related information. An inexperienced 

user is then able to search and retrieve SCAc information, as well as perform SCAcs in 

their environment. Next to the abstraction this service should address the location 

problem by a simplification of provided infrastructure. 

This also includes the location problems of repositories. Whether a repository is placed 

next to the user or in a different location should be not relevant. Even though the 

structure of the focused environment is changing (i.e., repositories will be added, 

replaced or removed) the user should not be aware of these changes. Using such an 

SCAc service limits the knowledge to find and access different repository systems. 

This thesis focuses on the problem of software engineers if knowledge that is necessary to 

perform reuse activities (i.e., transformation, integration, and deployment) of reusable software 

units (i.e., classes, components, and services) is missing. The research question is formulated as 

follows: 

How does one provide successful reuse of different software units considering the possibilities 

of reusing and performing related software construction activities even if software engineers do 

not have the required knowledge? 

By focusing on the reuse of activities, this research can be classified as a reuse of procedure 

using the reuse classification of reuse types by Prieto-Diaz (1993). 

This research will identify one possible technique to enable inexperienced users to perform the 

focused SCAcs and analyse the effects on software engineers in a case study.  

1.3. 	Aims	and	objectives	
The principal aim of this thesis is defined as follows: To define a concept to enable software 

engineers to reuse software construction activities of reusable software units even if these 

engineers do not have enough knowledge to perform these activities on their own. 

Basically, the concept is based on the idea to create different models that are able to store SCAc 

related information. Additionally, an environment will be created that is able to perform the 
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SCAc stored in the SCAc models. This environment is service-oriented which means that the 

functionality of the environment is provided by one service to users and the environment itself 

uses internal services. 

By achieving this aim, one possible approach is identified to limit the lack of techniques to 

store and subsequently distribute reuse activity relevant software unit knowledge among 

software engineers. As a result, this contributes to McCarey, Ó Cinnéide and Kushmerick 

(2008) who identify this lack but with the focus on three software construction activities (i.e., 

integration, transformation, and deployment). This aim will be complemented by a series of 

further objectives. These objectives and their relationships are summarised in Figure 1 and will 

be defined as follows: 

 

Figure 1 - Relationship between aim and objectives 

1. Objective - Problem analysis  

This objective includes analysing the problems of missing knowledge in software unit reuse for 

SCAc, the potential causes generating this problem, and finally the impact created by this type 

of problem. This approach is necessary to achieve the principal aim of this work. The briefly 

described problems of missing SCAc knowledge in this chapter will be analysed.  

The result of this objective is the analysis of the problems which can be used for the discussion 

of the success or failure of the approach. 
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To achieve this objective, the software reuse information demand model is used to represent the 

missing knowledge problems of software engineers and, therefore, the elements of missing 

knowledge (see ‘Objective 1’ in Figure 1). 

2. Objective - Model creation  

The second objective of this thesis is the definition and realisation of two model types which 

allows a unified view on software units and related software construction activities. The first 

includes a way of describing software units using a unified viewpoint. From the scientific point 

of view this new model is not an relevant research result. It is used to underline two aspects. 

The first one is the fact that an abstract model is sufficient to support the creation of a solution 

to solve the focused problems. The second aspect focuses on the demonstration of the focused 

solution. The research will show that little information of this model is necessary for the 

research.  

The second model type describes the three focused software construction activities (see 

‘Objective 2’ in Figure 1). This provides the basis for solving the problem that arises through 

missing SCAc knowledge.  

3. Objective - Creating a service-oriented environment concept 

The principle aim supports software engineers in performing software construction activities. 

This thesis tries to achieve this by the specification of a technical service-oriented environment. 

This environment is the result of this objective. It includes the definition of how to use the 

infrastructure and how the infrastructure itself makes use of the models defined in the second 

objective (see ‘Objective 3’ in Figure 1). 

Note: Even though this objective includes the creation of a service-oriented environment, it is 

not the aim of the research to create yet another reuse environment or repository.  

4. Objective - Combining models and environment  

In order to achieve this objective it is relevant to combine the results of Objectives 2 and 3. 

Based on the problem identified in the first objective, the models for a unified view of software 
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units, and their related software construction activities (Objective 2) will be combined with the 

service-oriented environment (Objective 3). This environment has to manage different 

repository systems, user requests for managing SCAc, and software units, as well as the 

execution of SCAc in the inexperienced users’ environment. The result of this objective is the 

solution (i.e., SCA model and service-based environment for performing SCAc) which this 

thesis aims to discover. This result is relevant for the principal aim of the thesis, because from 

that point onwards, the solution is defined and can be investigated, validated, and discussed 

(see ‘Objective 4’ in Figure 1). 

5. Objective – Practicability 

The fifth objective of the thesis is verifying the principal aim. By using the result of Objective 4 

and including the models defined in Objective 2, together with the environment created in 

Objective 3, the evidence resulting from this work’s principal aim is investigated and replicated 

in a real environment. This realised environment includes existing software units, software 

construction activities, software engineers, and an existing industrial environment. This 

environment is used in a case study to measure different values. In the last step of this objective 

the values are compared and their impact on the focused problems is discussed (see ‘Objective 

5’ in Figure 1). 

1.4. 	Method	overview	and	thesis	outline	
The following section describes the outline of the thesis, the chapters’ content and the research 

methods briefly. 

This introduction has laid the foundations for the thesis by introducing the research problem 

and research question.  

In Chapter 2, relevant literature is analysed and discussed to demonstrate the scientific gap (i.e., 

missing support of SCAc knowledge execution for software engineers) that this research 

focuses on as well as the relevance of the research. The discussion in Chapter 2 also includes a 
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overview about the research methods used for the literature (secondary) research and the 

definition of the focused problem. 

Chapter 3 discusses the focused problems of missing SCAc knowledge and shows examples of 

SCAcs. The problem discussion uses the perspective of software engineers and examples of the 

previously described SCAcs and the industry context as the application area. Additionally, the 

software reuse information demand model is used here to demonstrate the missing SCAc 

knowledge problem. This model is one result created during the Ph.D. research. At the end of 

Chapter 3 a short discussion about existing solution types is included. 

Chapter 4 presents this thesis’ advocated solution concept. This includes the description of the 

solution’s methodology, the concept of a unified view of software units, and the concept for 

models describing software construction activities. From the scientific research perspective this 

chapter includes the creation of abstraction models for the focused SCAc types and the 

abstraction model for the different types of software units (e.g., classes, components, and 

services). This simplifies the view on knowledge and creates a solution based on this 

simplification. Additionally, this chapter describes the service-oriented environment used to 

focus on the problems based on distribution environment knowledge. 

Chapter 5 extends the theoretical discussion of Chapter 4 by describing one possible realisation 

of the solution. Furthermore, the concept of a unified view of software units will be achieved by 

creating model instances. The same procedure will be performed with the concept for models 

describing software construction activities. The realisation is a service-oriented environment 

which is used in the case study in Chapter 6.  

From the methodical point of view this chapter fulfils the creation of a software reuse 

environment which is able to handle user requests and the created models for SCAcs. Such 

method is often used to demonstrate the reliability of an approach. (cf. Garcia et al., 2006; 

Santana de Almeida et al., 2004). 
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Based on the examples and the realisation demonstrated in Chapter 5, Chapter 6 describes the 

verification of the proposed solution’s concept by means of a case study. This implies the 

preparation of a case study including a demonstration of the chosen inputs (i.e., SCAc and 

software units) and participants. It is also relevant to show the different ways of measuring 

relevant research results. Such a method is often used in approaches for software unit reuse and 

has the advantage of demonstrating the real world properties of approaches. (cf. Santana de 

Almeida et al., 2004; Edward, Ali, and Sherif, 1999) 

The results of the study are collected and discussed objectively. Chapter 7 summarises the 

results of the previous chapters, thereby, presenting the research in a compact and well-

structured form. After this, the results will be compared with the results of the previous 

chapters especially those of Chapter 2 and Chapter 3. This results in the conclusion which 

demonstrates the usability of the proposed solution. The result of this chapter is a discussion 

and evaluation of the results of the primary research. The possible future work will also be 

discussed for this purpose. 

 

Figure 2 - Used research methods 

Figure 2 shows the chosen research methods as a process. The process starts with the analysis 

of different SCAcs (1). The result includes necessary knowledge for SCAcs, detailed problem 

properties, as well as, a state of the art analysis of existing solutions. This knowledge is used to 

create abstraction models (2). These models are used in a new reuse environment (3). This 

environment is filled with data (stored in the models) and used with different participants in a 
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proof of concept case study (4), the result of input analysis (1) and the proof of concept (4) is 

used for the results analysis (5). 

The next chapter includes the secondary research and, therefore, discusses the basics, relevant 

definitions, and problems of software unit and activity reuse from the perspective of the used 

literature.  	
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2. Problem	of	missing	knowledge	in	software	unit	reuse		
This chapter discusses the literature focusing on the topic of software unit reuse, the problem of 

deficient reuse knowledge, as well as the lack of handling software construction activities 

knowledge in the area of software reuse. Thereby, the chapter starts with a short overview 

about the secondary research analysis characteristics and methods. It is followed by a general 

perspective on software unit reuse knowledge. This includes the definition of relevant terms 

and an overview about software unit reuse, as well as reuse areas. After this overview section, 

the general problem of missing knowledge in software unit reuse will be discussed. This is 

followed by a conclusion that the used literature includes a lack of support of software 

construction activities knowledge and, therefore, a need for an adequate solution.  

2.1. 	Secondary	research	methods	
This section presents an overview of the secondary research methods to describe the procedure 

model the author used to identify literature and relevant statements for the literature review. For 

further information, a detailed discussion about these methods and their realisation in this thesis 

can be found in Appendix Section B. 

In general, the research methods follow the discussion of a literature review published by 

Randolph (2009) in the Journal of Practical Assessment, Research & Evaluation. The 

discussion shows two types of information in literature: characteristics and used analysis 

methods. The used characteristics of the literature review are focus, goal, perspective, coverage, 

organisation, and audience. Regarding the focus, the literature review in this thesis is used in 

order to: 

1. Explain reuse in general. 

2. Identify and discuss relevant keywords in the field of reuse. 

3. Show different research and problem areas of reuse (including SCAc related topics). 
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4. Underline the problem of missing knowledge in reuse (including SCAc related topics). 

5. Show the historical view on reuse and the problem focused upon (including SCAc 

related topics). 

6. Critically discuss problems of existing solution approaches (focusing SCAc related 

topics). 

7. Discuss the contribution of this thesis to the research area of reuse. 

Note: The discussion of the existing solution approaches can be found in Section 3.3. 

Using these objectives, the overall goal of the literature review is to: (1) generalise the findings 

and outcomes of ‘missing knowledge in reuse research’, (2) identify central issues, and (3) 

create a line of argument for an innovative solution of a service-oriented provision of software 

construction activities. 

The literature review is structured by using the aforementioned objectives. Literature used for 

an objective discussion is first discussed in a neutral position. The different literature will be 

related also from this neutral position. In some of the cases, the discussions have to be related 

to the research of this thesis or require a critical analysis.  

The coverage characteristic shown by Randolph (2009) is defined as follows: They range from 

a review of all existing literature to a purposive collection of literature. This literature review 

focuses on a purposive selection of literature, therefore, only journal papers, conference papers, 

and specifications of standards (e.g., processes or technologies) were used. These documents 

were searched using scientific digital libraries (e.g., IEEE, Association for Computing 

Machinery (ACM), Springer, CiteSeerX, and Thinkmind). Also, documents were selected by 

analysing references cited previously in studies, journals or conference papers. The literature 

used is deemed adequate to explain the focused problem and the solution. 
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For the organisation characteristic, this literature review mainly uses a conceptual format and is 

structured using the above mentioned objectives. As a result, the review follows the order of 

these objectives. Inside each objective discussion the conceptual format is also used, but the 

structure differs. Regarding the audience characteristic, the complete thesis including the 

literature review is used to demonstrate the capability of the author to perform a Ph.D. study. 

Therefore, the primary audience is the review committee of the University of Plymouth.  

Following the characteristics, the analysis methods are relevant. Using the characteristics as the 

main information following analysis, methods were used in the literature review, as follows 

(see Appendix Section A for more detailed description): 

Problem formulation: for each focused aim, an objective is formulated. Additionally, the 

inclusion and exclusion criteria for literature are defined. 

Data collection: In the next step, a basic questionnaire is formulated. At the same time, a 

process to separate irrelevant literature is defined based on the inclusion and exclusion criteria 

of the problem formulation step. 

Data evaluation: For each objective it will be defined which kind of information is seen as 

interesting for the research. 

Data analysis and interpretation: Using the data evaluation criteria for interesting information, 

each selected literature has to be read and checked to see if specific statements can be used as 

evidence or a contrary statement. Therefore, this section defines what is evidentiary or contrary 

for each objective. For each of the literatures, all relevant information (e.g., statement and 

evidence value) is listed in a personal cookbook. An example of this listing can be found in 

Appendix Section C. 

Data presentation: This last step defines the structure of the literature discussion. The resulting 

structure is presented in Section 2.2. An exception is the discussion about other solution 

approaches. This is given in Section 3.3. A detailed description of the used literature review 

methods can be found in the Appendix Section A. 



Problem of missing knowledge in software unit reuse 
_____________________________________________________________________ 
 

____________________________________________________________________ 
20 

 

2.2. 	Software	reuse	academic	background	
In this section the necessary background information for software reuse will be discussed. This 

includes term definitions, as well as a discussion about the reuse landscape and related research. 

The section concludes with a discussion regarding relevant statements showing that a lack of 

techniques exists to support software engineers in exchanging software construction activity 

knowledge. 

2.2.1. 	Term	definitions	and	software	reuse	aspects		
In the following, the terms used in this thesis to explain the research are discussed and defined.  

2.2.1.1. 	Software	reuse	term	definition		
Reuse based software engineering, also called ‘Software Reuse’ (see McClure, 2001), is a 

development approach that focuses on the reuse of previously developed software parts. 

Without regard to different characteristics in the realisation of software reuse, this term is more 

or less defined using the same meaning. Amongst others, the following definitions for software 

reuse exist: 

“Reuse-based software engineering is an approach to development that tries to maximize the 

reuse of existing software. The software units that are reused may be of radically different 

sizes.” (Sommerville, 2011, p. 426) 

“Software reuse is the process of building or assembling software applications and systems 

from previously developed software parts designed for reuse. Software reuse is practiced to 

save time and money, and to improve quality.” (McClure, 2001, p. 3) 

 “Software reuse is the process of creating software systems from existing software rather than 

building software systems from scratch.” (Krueger, 1992, p. 131) 

From the perspective of this thesis, all definitions are correct and applicable. Especially, in 

relation to this work, the definition of McClure (2001) including a process view, is applicable. 

From the perspective of this definition, the term ‘Software Reuse’ is defined as a process. 
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Another relevant point is mentioned by Krueger (1992, p. 131): “The reuse is more the use of 

existing units rather than newly writing software units”. Krueger’s statement also implies the 

possibility that in one project, the reuse of existing units as well as the creation of a new unit 

may occur.  

In the scope of this thesis, the term reuse based software engineering is defined from the 

software engineer's point of view. To understand the approach discussed in this thesis, it is 

useful to identify ‘Reuse based software engineering’ as a software engineering discipline 

which is realised using a development process, including different activities, to create 

software systems by using software development methods and reusing existing software 

units. 

Note: This definition is based on the aforementioned statements and is applicable for this thesis. 

For other approaches, this perspective may not be suitable. From this point of view ‘reuse based 

software engineering’ is called ‘software reuse’ in the thesis. 

2.2.1.2. 	Expected	characteristics	of	software	reuse	
The following is generally expected from software reuse: higher reliability, lower risk of wrong 

development, more effective use of specialists, standards compliance, and accelerated 

development (cf. Sommerville, 2011). 

The reduction of costs and the improvement of product quality are seen as the relevant aims of 

software reuse. This is discussed, for example, by Morisio, Ezran and Tully (2002), Ha, Sun 

and Xie (2012), and Ajila (2006).  

Ha, Sun and Xie (2012), Sandhu et al. (2010), Poulin (1997), and White et al. (2009) 

demonstrate different ways to calculate costs of software reuse, but mention that different reuse 

approaches are difficult to compare. The measurement of quality seems to be a major problem 

in the area of research (see Leite et al., 2005). 

The requirements of software reuse are based on the expectation that a previously developed 

software unit is tested and, therefore, of high quality and simple to reuse. A software engineer 
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has only to select the correct software unit, integrate it into a development project, and use it 

because the high quality is known. The surveys of Slyngstad et al. (2006), Isoda (1992), and 

Morad and Kuflik (2005) in different countries show that this basic idea is correct. Here, 

companies are good examples demonstrating reuse as an approach which is able reach the aim 

of higher quality and lower costs. The same studies as well as the studies of Frakes and Kang 

(2005) and Rothenberger et al. (2003) also demonstrate that the effort for reuse has also to be 

considered. Effort is, for example, the training of people for reuse or the search and validation 

of a suitable software unit in an in-house repository. Morisio, Ezran and Tully (2002), Card and 

Comer (1994), and Frakes and Kang (2005) stated that software reuse includes a preparation 

from the technical as well as from the organisational point of view. As a result, software reuse 

is not as simple as expected. 

Another expected characteristic on reuse is the handling of reusable software units. The studies 

of Frakes and Kang (2005), Morisio, Ezran and Tully (2002), Tomer et al. (2004), and Alferez 

and Pelechano (2011) are based on different reuse research areas (reuse knowledge, costs, and 

software product lines) and identify together source-code (e.g., object-oriented classes), 

components, services, and applications (or application parts) as reusable software units. 

The last interesting expected characteristic for this research is the expectation of reuse plans 

and organisational support of reuse Jansen et al. (2008), Jha and O’Brien (2011), Jakobson, 

Griss, and Jonsson (1997), Frakes and Kang (2005), Morisio, Ezran and Tully (2002), and Ajila 

(2006), for example, discuss the need for organisational support. Therefore, software reuse has 

to be supported by the management, meaning the management has to allocate a budget for reuse 

costs, human resources, processes, and time into their business plans. 

2.2.1.3.  Units	and	landscape	of	software	reuse	
To create an overview of relevant areas where software reuse is used, it is helpful to identify 

reusable software unit types first. In software reuse, units of different sizes are reused in a new 
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context or environment. Three typical types of reusable software units are defined by 

Sommerville (2011,  p. 416): 

1. Reuse of software systems: a system as a whole or parts of a software system can be 

used either by integrating with other systems and customising it for different customers 

or by developing application, having a shared architecture, but with the added features 

that a current customer needs. 

2. Reuse of components: application components that adjust the size of the subsystems to 

one simple class or object can be reused. It is, for example, possible for a pattern 

matching system, which was developed as part of a text processing system, to be reused 

in a database management system. 

3. Reuse of objects and functional software components that implement functions such as 

a mathematical function or object classes that can be reused. Indeed, reuse of 

components was common for 40 years (Paulisch, 2008). Today a complete market 

exists for libraries, different types of function classes, and application development 

platforms. They can be easily used by another application code that is linked. This 

approach is effective, especially in the areas of mathematical algorithms and graphics, 

particularly where domain specific experienced users are needed to develop objects and 

functions. 

Different scientific studies handle the first and second type of Sommerville’s classification as 

typical reusable software unit’s categories. In their analysis, Jansen et al. (2008) use services 

and components as reusable software units and focuses on the topic of the reuse of components. 

Wang and Fung (2004) also see service and components as relevant units of modelling in 

software reuse from an architectural perspective. This is different from the viewpoint of Tomer 

et al. (2004) and Böckle, Pohl and van der Linden (2005). Their research focused on software 
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parts or whole software products in a software product line (SPL) environment. Bayer et al. 

(1999) and Dikel et al. (1997) are examples of research that focused on the third type during the 

1990s. 

From the perspective of this thesis the second type is the focused category. This research 

focuses on classes, components, and services as reusable software units. 

Additionally, to the discussion of the reusable software units it is relevant to see how these 

units are reused. Next to the typical use of objects and classes Jansen et al. (2008) discussed in 

detail the two software unit types (components and services) of reuse inside development 

environments (see Table 1).  

Note: A detailed discussion about different base technologies of classes, components and 

services can be found in the Appendix Section D. This also includes an overview of typical 

usage behaviours. 

Unit of inclusion Call type Interaction method 

Component 

Direct 
Pipe and filter 

Component library reuse 

Indirect 

Glue code 

Shared data object 

Component bus 

Plug-in architecture 

Service 
Direct Service framework 

Indirect Enterprise service bus 

Table 1 - Extension mechanism for reusable software units (based on Jansen et al., 2008) 

Table 1 shows that service frameworks and enterprise service busses are used to integrate 

services into a development project or application environment. The use of a service framework 

is defined as direct method call. This means the software engineer reuses the service by a direct 

link between the existing code and the service using the service framework. Windows 
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Communication Foundation (WCF), for example, is the service framework of the .NET 

architecture. An indirect method is the configuration of an enterprise bus to act as a mediator 

between a service and the project or application environment. Here, the software engineer does 

not use the service directly. The task is to configure an enterprise bus for forwarding request or 

responses of the service. 

Table 1 shows direct and indirect methods for integration of components into a development 

project or application environment. Pipes and filters, as well as method calls of component 

libraries are typical direct methods of a software engineer to reuse a component. Four indirect 

methods exist for components.  

- Glue Code means to write some extra source-code to integrate the component into the 

project.  

- Shared data objects are instantiated components used like a service and capsulate the 

existing implementation.  

- Component bus is equal to the service bus approach.  

- Plugin-architecture describes an infrastructure as part of the existing development 

project. This infrastructure is able to load/integrate an existing component in the 

development project or application environment. These methods are similar to the 

component methods of Jansen et al. (2008) and used in the area of SPL. 

Also, it is relevant to know if software units are reused for critical or non-critical operations. 

Jansen et al. (2008) conclude that software units (in this case services and components) are used 

for non-critical and critical operations. Leite et al. (2005) also support this statement and, 

therefore, mention that the quality of the software unit is relevant. If a software unit contains 

errors or has an unexpected behaviour this may be lead to errors in the system using this unit.  

Next to the discussion of the types of units and their usage in development, is the relevant 

discussion about the potential content of a reusable unit. The examples used before discuss 

software units as reusable units. Ajila (2006), for example, uses the term component or reuse 
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component to summarise all reusable software units. Other studies as Lopez and Niu (2011) 

and Morisio, Ezran and Tully (2002) use the term artefact or asset and define it as a reusable 

unit which includes, e.g., the following information: knowledge, documentation, design, code, 

and cost information for assets. This demonstrates that additional information only uses 

binaries or source-codes are the focus of software reuse. Rothenberger et al. (2003) discuss 

these terms as containers of multiples values. Note: For a more detailed discussion about the 

different terms see Section 2.2.2.  

The different software units of the three categories mentioned by Sommerville (2011) can be 

related to the different approaches in software unit reuse. Sommerville (2011) shows a software 

reuse landscape including these approaches. 

 

Figure 3 - Landscape of reuse (Sommerville, 2011 p.429) 

Figure 3 shows different reuse approaches from the area of software engineering. These are 

described briefly as follows (based on the listing of Sommerville, 2011): 

1. Design Patterns: Across applications, abstractions are commonly presented as design 

patterns denoting either abstract or concrete objects or interactions. Design patterns are 

concepts which can be reused as a concept or implemented in adaptable source-codes 

or components (see Gamma, 1995 for example). 
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2. Component-based Software Engineering: A software systems will be created by a mix 

of components meeting the standards of the component model. Typically, the software 

units used here are components (Szyperski, 2002a). 

3. Application Frameworks: These consist of concrete and abstract class sets which can be 

expanded or adapted to build application systems. In application frameworks usually 

application parts can be used. An example for reuse of application parts is the 

Microsoft Office application. Often, application parts of Microsoft Word or Microsoft 

PowerPoint are reused between these two applications in the same version of Office as 

well as between different versions of Office. Therefore, a specific framework is used 

that is provided to software engineers using the Microsoft Component Object Model 

(COM) technology (Microsoft, 2012a).  

4. Legacy System Wrapping: A system that can be included in a wrapper and is defined 

by the associated use of an interface over which access takes place. This type of reuse 

often uses components, application parts or services. Especially if a wrapper or legacy 

system creates a connection to another technology and is used in the system providing 

the wrapper. An example is the use of Java byte code in a .NET application using the 

IKVM wrapping system (Frijters, 2011). 

5. Service-Oriented Systems: These comprise systems developed by linking shared 

services that can be supplied by external sources. Typically, services are the used 

software units for reuse in this area (Singh and Huhns, 2005; Wang and Fung, 2004). 

6. Software Product Lines: A type of application which is generalised by using a common 

architecture so that it can be adapted to different customers. Usually, whole 

applications are used in such approaches (see Fayad and Johnson, 2000). 
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7. Commercial of the shelf (COTS) integration: These systems are developed through the 

integration of existing application systems. Typically, the software units used here are 

components (Sommerville, 2011) that are provided by COTS selling companies (e.g., 

Componentsource, 2012). An example for COTS is the WebCAD web service provided 

by Componentsource (2012) which includes numerical procedures to either construct a 

function of one or two variables from a set of points (i.e., interpolate), or solve an 

equation of one variable.  

8. Configurable Vertical Applications: A generic system designed to make it adaptable to 

the specific needs of the customer. Compared to the application product lines, the 

software units here are reused by configuration and not by adaptation of the software 

units. The typical software units are also whole application systems. 

9. Programming Libraries: Consists of class and function libraries that implement 

functionality for reuse. Typically, the software units used here as components are used 

as libraries today. An example is the topic of Dynamic Linked Libraries (DLL). Often, 

these libraries include a set of classes that may be not related to each other or to the 

same business domain. This is the difference to components used in component-based 

development (see Szyperski, 2002a) 

10. Program Generators: A generator system storing knowledge about a particular type of 

application purchase system or system fragment created for this application. Czarnecki 

and Eisenecker (2000) discuss such programme generator technology called Generative 

Programming.  

11. Aspect-Oriented Software Development: In this process, shared components are 

‘woven’ into the composing program in different places. In this type of reuse 
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development, smaller software units (e.g., source-code, classes, components or 

services) are usually used (see Rashid and Akşit, 2006). 

12. Model-Driven Development (or Model-Driven Software Development; MDSD): 

Development discipline using domain models and implementation independent models 

to represent software or software units. By transforming models, software units or 

systems can be created (see MDSD; Petrasch and Meimberg, 2006). 

13. ERP System: System for organisational use. These include business functionality and 

rules. 

14. Architectural Patterns: Software architecture used to create software. An architectural 

example is the use of a plugin infrastructure (e.g., Microsoft Extensible Framework; cf. 

Microsoft, 2012b) 

Table 2 summarises the relation between reuse approaches shown in the landscape of 

Sommerville (2011,  p. 430) and the typical software unit types used in the approaches. 

Landscape	approach	 Typical	used	software	units	

Design	Patterns	 Components,	Source-Code	
Component-Based	Development	
Systems	 Components	

Application	Frameworks	 Application	parts	
Legacy	System	Wrapping	 Components,	Services,	Application	parts	
Service-Oriented	Systems	 Services,	Interface	descriptions	
Software	Product	Lines	 Applications,	Application	parts	
COTS	integration	 Components	
Configurable	Vertical	Applications	 Applications,	Application	parts	
Programming	Libraries	 Components	
Program	Generators	 Models	(Source-Code)	

Aspect-Oriented	Software	Development	 Components,	Source-Code,	Classes,	Services	

Model-Driven	Development	 (typed)	Models		
Architectural	Patterns	 Components,	Source-Code,	diff.	Models	
ERP	System	 Components,	Source-Code,	Configuration	files	

Table 2 - Typical software units in different software reuse landscape approaches  
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2.2.1.4. 	Perspectives	on	software	reuse		
In used literature, different perspectives on software reuse can be identified. For example, 

Prieto-Diaz (1993) identified six facets of reuse: by substance, by scope, by mode, by 

technique, by intention and by product. Based on these facets the author describes different 

types of reuse. 

Facets  
By substance By scope By mode By technique By intention By product 

Re
us

e 
ty

pe
s 

Idea reuse Vertical reuse 
Planned 
reuse 

Compositional 
reuse Black-box reuse Reuse products 

Artefact 
reuse 

Horizontal 
reuse Ad-hoc reuse 

Generative 
reuse White-box reuse 

Procedure 
reuse 

Table 3 -Types of reuse (based on Prieto-Diaz, 1993) 

The facet ‘by substance’ describes reuse from the perspective of the reusable content. Ideas, 

artefacts, and procedures can be reused. The facet ‘by scope’ focuses on vertical and horizontal 

reuse. Therefore, a reusable unit can be used in similar (e.g., vertical areas in industrial 

automation) or in different business contexts (e.g., horizontal areas of automation, power, and 

building). In the facet ‘by mode’ the focus of reuse is set to an organisational planned (so called 

planned or systematic) reuse or not planned (so called ad-hoc) reuse. The facet ‘by technique’ is 

not relevant from the literature review point of view, and is similar to the COTS integration and 

program generators described by Sommerville (2011). While the facet ‘by substance’ describes 

the content to reuse the facet, ‘by intention’ describes how content is used. Two aspects are 

given: in the first, (black-box) content is reused as it is which means without changes. In the 

second, (white-box) the reuse content will be adapted to fit the requirements for reuse. The last 

facet ‘by product’ focuses the use of the whole application or application parts. Also other 

classifications exist. Rada (1995), for example, identifies the type of focus (methodology 

centric or user centric) as an relevant facet in software reuse. Both types are named; 

development-with-reuse and reuse-within-development.  
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The research described in this thesis can be classified as reuse ‘by substance’. This is explained 

as follows: The facet ‘by substance’ describes reuse from the perspective of the general content. 

As described in the previous sections, this research focuses on classes, components, and 

services as software units and their SCAcs. The research shown by this thesis focuses on 

handling missing SCAc knowledge. Therefore, the primary research of this thesis is a 

procedure reuse. As a result, the research can be classified in the facet ‘by substance’. But the 

other aspects are also relevant for the research. 

In the following, the relevant terms will be explained in more detail, related to each other, and 

related to the context of the focused research. The used literature distinguishes planned 

(systematic), ad-hoc (opportunistic), white-box, black-box, development with reuse, reuse-

within-development, vertical reuse, and horizontal reuse. 

Systematic (Planned) and ad-hoc (opportunistic) reuse: The literature shows two typical 

classifications for reuse: systematic and ad-hoc reuse. Morisio, Ezran and Tully (2002), Rada 

(1995), Ye and Fischer (2005), and Ha, Sun and Xie (2012) are examples which defines 

systematic reuse as a process of previously (long term) planned reuse. This includes 

organisational and technical project planning. On the other side they show that the ad-hoc reuse 

is also planned (short term) reuse. Usually, ad-hoc reuse is the use of an existing software unit 

in different application/development projects sporadically. Therefore, ad-hoc reuse is also 

called ‘opportunistic reuse’.  

For Morisio, Ezran and Tully (2002) and Ye and Fischer (2005) systematic reuse has to be 

established inside an organisation. As a result, management decides and plans how to reuse. To 

do systematic as well as ad-hoc reuse different infrastructure is necessary (see Tomer et al., 

2004). Tomer et al. (2004) describes systematic and controlled reuse scenarios. In a controlled 

reuse, a repository is prepared with reusable software units ready for reuse in one product line. 

In a systematic reuse, all reusable software units are prepared to be reused in multiple product 

lines. This view differs from the other views of systematic and ad-hoc reuse. Tomer et al. 
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(2004) showed that not only the level of planning is relevant, but also the level of used 

infrastructure.  

Morisio, Ezran and Tully (2002) use the term systematic practise to describe the term of 

systematic reuse but with a focus on organisation-wide reuse behaviour. 

White-box and black-box reuse: Ha, Sun and Xie (2012) shows by using the example of 

software development for embedded devices the white-box reuse or black-box reuse is relevant. 

Szyperski (2002a, pp. 40-42) describes white-box and black-box abstraction related to the reuse 

of components which is summarized as follows: 

- Black-box: A component is included into the system to be developed, as a complete 

unit. This component cannot be altered. Furthermore, no statement can be made about 

its internal construction and functionality. The use of the component happens 

exclusively on the basis of defined interfaces and specifications of the component.  

- White-box: The component is reused as an open or editable unit that can be adapted to 

the new requirements. For that purpose, its internal construction is visible and thus 

analysable. Hence, the component is considered as a software fragment. The use of the 

component does not happen exclusively on the basis of defined interfaces, but also by 

analysing the actual implementation of this component.  

Additionally, glass-box and grey-box reuse is discussed by Szyperski (2002a, pp. 40-42). These 

are not relevant for this research. 

Tomer et al. (2004) describe a white-box reuse approach as an adaptable reuse approach for 

software development. Software units as well as processes are adaptable. On the other side 

Ampatzoglou et al. (2011) describes black-box reuse as a process of reusing software unit or 

design patterns and its processes as ‘it is’. This explicitly excludes the adaptability of a software 

unit which is equal to the black-box view on components.  

Development-with-reuse and reuse-within-development: McCarey, Ó Cinnéide and 

Kushmerick (2008) use two different scenarios for reuse: Development-with-reuse and reuse-
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within-development. Development-with-reuse is described by Rada (1995). The main 

properties of this methodology centred approach are: 

- Reuse of software units is an optional activity in the development process 

- Reuse of each software unit has to be planned 

- The user has to handle given reuse models 

The reuse-within-development scenario is described by McCarey, Ó Cinnéide and Kushmerick 

(2008) as a user centred approach. Mili, Mili and Mili (1995) and Ye and Fischer (2005) 

describe case tool supported scenarios which fit the reuse-within-development scenario. This 

‘user centred’ approach has the following properties: 

- Focus on behaviours and actions of software engineers 

- Combine different reuse based development activities (McCarey, Ó Cinnéide and 

Kushmerick (2008)) focuses on Component-Based Development activities) 

- The used tools (e.g., development environments) have to be adapted for supporting the 

users and fulfil the user’s requirements. 

 

Figure 4 - Relation between relevant reuse types 

While systematic and ad-hoc reuse describes the different levels of long and short term 

planning, white-box and black-box defines the level of adaptability of a software unit. 

Development-with-reuse and reuse-within-development describes two type of reuse for 
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software engineers. In this thesis the relation of the three different perspectives on reuse are 

related as shown in Figure 4. 

The relation between the different perspectives is defined for this thesis as follows: Black-box 

or white-box is in the scope of development-with-reuse and reuse-within-development. These 

two perspectives can be used in systematic and ad-hoc reuse. This thesis targets knowledge 

based reuse problems generated in both scenarios: white-box and black-box reuse. The solution 

approach created in Chapter 5 focuses on reuse of SCAcs of software units without any manual 

adaptations by a software engineer. As a result, of hiding the structure and the execution of 

reuse activities, this approach is related to the perspective of black-box reuse. Therefore, it can 

be used on development-with-reuse and reuse-within-development, and the related systematic 

and ad-hoc (or opportunistic) reuse. 

2.2.1.5. 	Impact	of	reuse	
The literature shows positive impacts of software reuse on software development projects and 

software products. Jansen et al. (2008) mentioned based on McConnell (1996a) that the reuse 

effort is between 1% and 19% of effort of reinvention in start-up companies. White et al. (2009) 

create a formula based on existing cost metrics to calculate the costs for the development and 

the reuse of a domain specific language (DSL). They conclude that reuse does reduce costs. 

Ajila (2006) discusses several studies for the topic of costs and productivity that shows the 

same conclusion.  

Some examples in literature show a reduction of cost (e.g., 43% and 15%) and the increase 

(e.g., 10% and 57%) of quality (see discussion of Tomer et al., 2004) by focusing on software 

unit reuse.  

The different studies focus on different types of companies and different countries (and 

different cultures). Therefore, it is difficult to compare these statements. But for this thesis the 

fact is relevant that reuse supports software development. The research of this thesis tries to 

simplify software reuse in a special topic to generate similar positive impacts. 
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As mentioned, the cost of reuse is relevant information for organisations. Usually, it is a 

problem to compare different reuse projects because they’re not comparable one by one. This is 

particularly a problem between white-box and black-box projects. In the SPL environment, 

Tomer et al. (2004) create a cost function to compare these two different reuse approaches and 

mention reuse development costs, product construction costs, core asset costs, and 

infrastructure costs. Thereby, they mentioned an relevant perspective for this thesis - costs can 

be related to activities necessary in a reuse process. As a result, a specific activity can have a 

cash value. In a SPL environment these are, for example, transformation costs (e.g., adaptation, 

creation, white-box reuse, and new development) and transition costs (e.g., integration of reuse 

results into the SPL environment). 

An relevant statement here is the use of activities in cost calculations for software reuse (see 

Tomer et al., 2004). This indicates that reuse activities are a relevant (cost) factor in software 

reuse. Therefore, an approach for optimisation of the reuse activities has impacts on the costs of 

software reuse. The research in this thesis focuses the simplification of the execution of reuse 

activities. The result of this research may show that this has positive impacts on costs in an 

indirect way. If the focused approach is able to show that time for reuse can be reduced, it can 

be stated that the labour cost for this reuse is also reduced. This presumption is based on the 

relation between time and costs (cf. Ajila, 2006). 

2.2.1.6. 	Reuse	technologies	and	environments	
This section describes reuse technologies and a special environment type identified in the 

literature. In general, for each element of the software reuse landscape, supporting technology 

approaches can be identified. Table 4 shows example technologies and concepts that are related 

to the typical software unit of the different software reuse landscape approaches. As a result, 

Table 4 links landscape approaches and base technologies and concepts based on the used 

software unit type.  

Landscape approach Typical used software units Base technology/concept 
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examples 
Design	Patterns	 Components,	Source-Code	 CB,	OO	
Component-based	
development	
systems	

Components	 CB	

Application	
frameworks	

Application	parts	 SPL,	CB	

Wrapper	and	legacy	
systems	

Components,	Services,	Application	
parts	

SPL,CB,	SB	

Service-Oriented	
Systems	

Services,	Interface	descriptions	 SO	

Application	
(software)	product	
lines	

Applications,	Application	parts	 SPL	

COTS	integration	 Components	 CB	
Configurable	
vertical	applications	

Applications,	Application	parts	 SPL	

Libraries	 Components	 CB	
Program	generators	 Models	(Source-Code)	 UML,	MDSD,	OO	
Aspect-oriented	
software	
development	

Components,	Source-Code,	Classes,	
Services	

SO,	CB,	OO	

Table 4 - Example of base technology/concept in the software reuse landscape approaches (CB = component based 
technology ; OO = oject orientet technology; SPL = Software Product Line; SO = service oriented technology; UML = 

Unified Modelling Language; MDSD = Model-driven software development) 

A base technology concept for components is the component-based technology used in 

component-based development. For example, Morisio, Ezran and Tully (2002), Szyperski 

(2002a), and Naur and Randell (1968) identify reuse as the composition or generation of 

software units. The reuse landscape component-based technology can be used in the area of 

design patterns, application framworks, wrappers, COTS integration, libraries, and aspect-

oriented software development.  

Service-based technologies use services and interfaces as typical software units. This is stated 

for example by Papazoglou et al. (2007), Wang and Fung (2004), and Singh and Huhns (2005). 

Regarding the reuse landscape, service-based technologies can be used in the area of wrapper 

and aspect-oriented software development.  

In the area of advanced software units, software product lines (SPL) are used as the technology 

concept. In this area, core asset development (see Tomer et al., 2004) and product development 

are seen as different types of software unit creation. The reuse landscape SPL can be used in the 
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area of applications frameworks, wrappers, application product lines, and configurable vertical 

application. 

A source-code is used in object-oriented form, for example as class structure. Morisio, Ezran 

and Tully (2002) for example, found examples of object-orientated technologies as a typical 

technology that supports reuse. Regarding the reuse landscape, object-oriented technologies can 

be used in the area of design patterns, programme generators, and aspect-oriented software 

development. 

Another landscape approach is the area of programme generators. Here, source-codes, as well 

as modelling technologies, for example Unified Modelling Language (UML), may be used to 

generate reusable software units. Generating models as reusable software units, for example; 

model-driven software development can be used. 

Next to the technologies in Table 4, another approach in the reuse of software units is the 

Software Process Improvement (SPI). Pino, García and Piattini (2007) review different case 

studies for software development improvements and argue that case tools that improve reuse 

processes are very relevant. 

Garcia et al. (2006) describes an abstract case tool necessary for software reuse called software 

reuse environments. Software reuse environments (SRE) support software engineers by 

addressing, for example, reuse activities. Garcia et al. (2006) concludes that current integrated 

development environments (IDEs) are SRE systems and do not completely fulfil the 

requirement for SREs to include all possible reuse functions as, for example, for integration 

purposes.  

2.2.2. 	Discussion	of	key	definitions	
Next to the term software reuse, the area of software reuse research includes other typical 

terms. Often, these terms can be interpreted differently. Following, a short overview is given 

discussing and concluding relevant term definitions for this thesis. 
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2.2.2.1. 	Software	construction	
The research focuses on three special reuse activities (i.e., integration, transformation, and 

deployment) which are not related to the domain specific knowledge of the software unit. To 

separate these activities from other activities which are related to software unit domains, the 

term software construction is used. In contrast to software engineering, the definition of 

software construction differs. Basically the construction of software relates to the development 

and integration of bigger components (McConnell, 1996b). These components are linked with 

each other in a previously specified manner and result in a finished product or another 

component. Therefore, software construction is a part of software engineering. This form of 

construction is the result of a long chain of developments and has a large number of aspects. 

The term software construction is often applied to the meaning of component-based software 

development (Szyperski, 2002b) or component-based software engineering (Sommerville, 

2011). On account of the ambiguity arising from this, using the term ‘software construction’ is 

not unproblematic.  

According to the software engineering glossary (McConnell, 2006) construction in the area of 

software engineering is defined as follows:  

 “…The activity in software development consisting of detailed design, coding, unit testing, and 

debugging. Also called programming or development.” (McConnell, 2006, p. 128) 

Taking this definition, software construction includes software unit domain related reuse 

activities. Accordingly, software construction is only one synonym for software programming 

or development. This is similar to the definition of software construction two years before by 

SWEBOK (2004). In the procedure model SWEBOK (2004), software construction is one of 

ten knowledge areas which are necessary in a software development procedure model. Software 

construction is described as follows: “Software construction refers to the detailed creation of 

working, meaningful software through a combination of coding, verification, unit testing, 

integration testing, and debugging.” (SWEBOK, 2004, Chapter 4 HTML Version) Here, 
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software construction is a description for typical object-oriented software development and 

contrary to the other mentioned definitions.  

Hunt and Thomas (2004) adopt a pragmatic view. Here, software construction relates, in this 

case, to the joining of bigger units. Furthermore, the authors show that construction is also 

about architecture and design. Also, the software construction becomes more separated from 

the software unit domain. 

Another view focuses on processes. Software construction describes a process in which clusters 

within a software development process are built and joined (Baudoin and Hollowell, 1996; 

Meyer, 1997). Thereby, a cluster is defined as follows:  

“The module structure of the object-oriented method is the class. For organisational purposes, 

you will usually need to group classes into collections, called clusters […] A cluster is a group 

of related classes or, recursively, of related clusters.” (Meyer, 1997, p. 923)  

This description corresponds to component-based software development. Due to the many-

sided definitions, the base definition for software construction used within this thesis is the 

general definition of component-based software engineering (cf. Sommerville, 2011):  

“Component-based software engineering is an approach based on reuse for the definition, 

implementation and composition of loosely coupled, independent components to systems.” 

(Sommerville, 2011, 775). 

Combining this statement with the view of Hunt and Thomas (2004) this view on software 

construction can be defined as follows: Instead of focusing on components, as in component-

based software engineering, software construction focusses on different independent software 

units. Because software construction is mostly seen as software development in the use of 

bigger previously developed software units (e.g., objects, components, and services) which 

serve as a base for the creation of software, it is similar to component-based software 

development. Additionally, software construction is the reuse of a software unit without, or 

with less, relation to its domain. 
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Note: This definition is applicable for the research of this thesis. As shown above, other 

researchers have other definitions for software construction. For other investigations this might 

not be a useful viewpoint. 

2.2.2.2. 	Software	artefact		
Morisio, Ezran and Tully (2002) and Lopez and Niu (2011) describe software artefacts as part 

of a software unit. Typical content might be: code, design, requirements, test cases, and so on. 

For Tomer et al. (2004) artefacts are components, test cases, or documentation. 

But also other interpretations exist. Petrasch and Meimberg (2006, p. 12, translated.) define 

artefacts as follows: “Artefacts are work results (final results or intermediate data) which are 

produced during a project. Artefacts are used to hold or to transmit project specific 

information”.  

The view of the different authors is based on granularity of reusable software units. In that they 

can be classified from single source-code, to libraries, to complete software products (see 

Tomer et al., 2004; Morisio, Ezran and Tully, 2002). 

In the scope of this thesis a software artefact is defined as a container including different 

information. This view is close to the perspective of Rothenberger et al. (2003) who discusses 

this term as a container of multiples values. The granularity of a software artefact is not 

relevant for this thesis. An interesting point is given by the definition of Petrasch and Meimberg 

(2006). In primary research of this thesis knowledge (and all reusable parts of a software unit) 

about software construction activities will be stored in software construction artefacts. This 

knowledge is the result of the previous work of a software engineer and it can be identified as a 

‘work result’. This is similar to the discussion of Petrasch and Meimberg (2006) in which 

artefacts store models which are intermediate results in an MDSD based process. As a result, 

the research shown in this thesis defines knowledge description as an optional part of an 

artefact. This is contrary to the opinion of Morisio, Ezran and Tully (2002) who’s defines 

knowledge (i.e., experience) as explicitly excluded in the definition of software artefacts. 
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2.2.2.3. 	Reuse	activity	and	software	construction	activity	
Isoda (2001) uses the term software reuse activity to describe all activities related to software 

reuse. Basically in this research all activities (e.g., identification, search, test, validation, 

integration, etc.) that are used in a reuse process are named reuse activities.  

Software construction activities are seen as specialised variants of reuse activities. Based on the 

differences between software construction and software development (cf. Section 2.2.2.1) or 

engineering, SCAcs include activities focusing on the reuse of bigger software units without 

relating to software unit domain reuse. In the scope of this research, only reuse activities are 

named as SCAc that focus on activities, as for example, integration, transformation or 

deployment of a software unit. 

Note: Examples of activities of software construction (i.e., integration, transformation, and 

deployment) can be found in Section 3.1.  

2.2.2.4.  Software	asset	
Basically assets describe software artefacts from the commercial view of business management 

(Tomer et al., 2004). Therefore, assets are seen as reusable software units including a cash 

value for business calculations. Seedorf (2010) calls this a business object. 

Additionally, software assets are described differently in literature based on their usage. Tomer 

et al. (2004) for example defines an asset as a software unit which can be used in cost 

calculation. Due to the SPL perspective of their research, they separate two different types of 

assets: Private Asset, which indicates an asset not available for reuse because it exists only in a 

software engineer’s private environment; and Repository Asset, which indicates a software unit 

available for reuse in a company repository. In the research the term asset is used to identify a 

software artefact which includes cost values.  
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2.2.2.5. 	Knowledge	and	knowledge	perspectives	
In this research, knowledge of software construction activities is focused upon. Different 

existing definitions are discussed this section. The term knowledge is widely used but with 

many different definitions, as for example: 

 “Knowledge is the combination of data and information, to which is added experienced 

user opinion, skills, and experience, to result in a valuable asset which can be used to 

aid decision making.” (Chaffey and Wood, 2005, p. 223, quoting the European 

Framework for Knowledge Management) 

  “Knowledge is data and/or information that has been organized and processed to 

convey understanding, experience, accumulated learning, and experienced userise  as 

they apply to a current problem or activity.” (Turban, Rainer and Potter, 2001, p. 38) 

 “Knowledge builds on information that is extracted from data [...] While data is a 

property of things, knowledge is a property of people that predisposes them to act in a 

particular way.” (Boddy, Boonstra and Kennedy, 2004, p. 9) 

 “Knowledge is the capability of a man (or an intelligent machine) to use information 

for problem-solving.” (Bobillo, Delgado and Gómez-Romero, 2008, p. 1903) 

 “Knowledge consists of that mix of contextual information, values, experience, and 

rules […] Knowledge involves the synthesis of multiple sources of information over 

time. The amount of human contribution increases along the continuum from data to 

information to knowledge.” (Bellinger, Castro and Mills, 2004, pp. 13-14) 

The different definitions of knowledge highlight the relationship with the terms ‘data’ and 

‘information’. The data–information–knowledge–wisdom hierarchy (DIKW hierarchy) defines 

the terms data, information, knowledge, and wisdom and is defined as follows (Rowley, 2007):  

  “Data are defined as symbols that represent properties of objects, events and their 

environment. They are the products of observation. But are of no use until they are in a 
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useable (i.e., relevant) form. The difference between data and information is functional, 

not structural. 

 Information is contained in descriptions, answers to questions that begin with such 

words as who, what, when and how many. Information systems generate, store, retrieve 

and process data. Information is inferred from data. 

 Knowledge is know-how, and is what makes possible the transformation of information 

into instructions. Knowledge can be obtained either by transmission from another who 

has it, by instruction, or by extracting it from experience. 

 […]Wisdom is the ability to increase effectiveness. Wisdom adds value, which requires 

the mental function that we call judgement. The ethical and aesthetic values that this 

implies are inherent to the actor and are unique and personal.” (Rowley, 2007, p. 166) 

Regarding the definition of Rowley (2007), knowledge is the combination of information in 

order to fulfil a specific purpose. In the focused research of this thesis, this knowledge can both 

be part of a person or part of a system (Bobillo, Delgado, and Gómez-Romero, 2008). To be 

more specific, this research distinguishes between two types of knowledge that is possessed by 

humans or stored in a system (based on Horeis and Sick, 2007): data-driven knowledge and 

human-driven knowledge. 

“Data-driven knowledge is application-specific knowledge which is extracted from data by 

conventional Knowledge Discovery (KD) systems. ...” (Horeis and Sick, 2007) 

“Human-driven knowledge is application-specific knowledge, too, but this kind of knowledge 

originates from human experienced users. They have a certain experienced userise  concerning 

an application area. …..“ (Horeis and Sick, 2007, p. 422) 

Therefore these two terms can be described by assigning them to existing definitions: 

“If we want to describe data-driven and human-driven knowledge by means of some existing 

terms, [...] we can state that data-driven knowledge is often provided in an implicit way (it must 

be extracted from data). It typically has a quantitative nature and it is less abstract (with 
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respect to the application) than human-driven knowledge. Human-driven knowledge is (at least 

in an initial phase of knowledge acquisition) explicitly provided by human experienced users.” 

(Horeis and Sick, 2007, p. 422) 

In this thesis, the term ‘knowledge’ represents both data-driven knowledge and human-driven 

knowledge. Both terms are used. In this thesis, this is the knowledge to store, search, if it 

necessary to differ the meaning.  

After discussing the definition of the term knowledge it is necessary to explain the context of 

knowledge, information, and data. 

 

Figure 5 - The knowledge pyramid (Ackoff, 1989, p. 5) 

Based on the initial definition of the knowledge pyramid (Ackoff, 1989; see Figure 5), the 

data–information–knowledge–wisdom hierarchy (DIKW Hierarchy; see Figure 6) was 

developed. Basically, both models explain that wisdom is based on knowledge which is based 

on information. Data is the basis for information. Both models are generally accepted for the 

definition of knowledge (Jennex, 2009), but treat it differently. 



Problem of missing knowledge in software unit reuse 
_____________________________________________________________________ 
 

____________________________________________________________________ 
45 

 

 
Figure 6 - Example of the DIKW hierarchy (Rowley, 2007, p. 186) 

However, both models see knowledge in a different manner. While the basic knowledge 

pyramid indicates a classification of different information types, newer approaches focus on the 

transition between the different classification types. Figure 6 shows five different transitions 

between the mentioned terms: 

1. Researching: Research is necessary to collect basis data, for example, values from 

different sensors (Rowley, 2007). 

2. Absorbing: When different data (values) are linked in systematic relationships, 

information is created. This can be seen as understanding data, (Rowley, 2007; 

Bellinger, Castro and Mills, 2004), for example, the relationship between rain and an 

increasing water level. 

3. Doing: By creating a pattern which indicates what will happen when specific 

information is available, knowledge is created. Therefore, knowledge can be seen as a 

rule to handle information, (Rowley, 2007; Bellinger, Castro and Mills, 2004), for 

example, the water level increases if it rains more than 1 litre per square metre. 

4. Interacting: Using knowledge is called interacting. The result of a knowledge process is 

relevant for the next transition (Reflecting; Rowley, 2007). Based on the used example, 

a reaction to an increasing water level is to install protectors on the river banks. 
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5. Reflecting: This interaction results in wisdom whether the applied knowledge is correct 

or not. Within this thesis, the base definition of the knowledge pyramid (Figure 5) is 

used. In relation to the DIKW hierarchy, the interactions ‘absorbing’, ‘doing’, and 

‘interacting’ are relevant for this work.  

Regarding the research of this thesis, knowledge is the use (so called ‘Interacting’, Rowley, 

2007) of information. Information is the relation of existing data (so called ‘Doing’, Rowley, 

2007). 

In this thesis, the term knowledge defines data-driven and human-driven knowledge related to 

the reuse of SCAcs. Regarding the DIKW hierarchy, this is the interaction with SCAc related 

information. The exchange of knowledge is a relevant research area. Theories such as, for 

example, the Transactive Memory System focusses on the exchange of knowledge inside and 

outside of a team. Choi, Lie and Yoo (2010) show in a field study that the search, exchange and 

use of knowledge is relevant for teams to perform projects. The authors conclude the use of IT 

as infrastructure is relevant for the exchange of knowledge for software development teams. 

Qu, Ji and Nsakanda (2012) relate the topic of knowledge exchange to software development 

teams and agree to the importance of an IT infrastructure. An relevant concept which can be 

seen as an IT based infrastructure is a knowledge management system (KMS). Such systems 

provide functionality to manage different knowledge. In this thesis, knowledge management 

(KM) is understood to mean “a method that simplifies the process of sharing, distributing, 

creating, capturing and understanding of company’s knowledge.” (Davenport, 2000, p. 4) 

In this research the discussion of different viewpoints on knowledge management is not 

necessary. What is relevant is the analysis of existing solutions or approaches to handle 

knowledge of software construction activities.  
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2.2.3. 	Missing	knowledge	in	software	unit	reuse	
This section discusses the problem area of missing knowledge for software unit reuse and 

describes the focused problem of the research regarding missing knowledge for software 

construction activities. As shown in Chapter 1, typical scenarios including the fact of missing 

knowledge are: 

- young professionals (e.g., students) without any experience (Shiva and Shala, 2007) 

- senior software engineers in new projects (Boh, 2008)  

- team members who leave the team (‘knowledge vaporisation’, Ven et al., 2006) 

In the following, relevant research statements about missing knowledge for software units will 

be discussed.  

2.2.3.1.  Historical	perspective	on	the	problem	of	missing	knowledge	for			
fffsoftware	unit	reuse	

The problem of missing knowledge in software unit reuse is not a problem created today or in 

the last three years. Reuse itself can be seen as a solution for missing knowledge. Naur and 

Randell (1968) suggest creating reusable components based on the examples in the area of 

hardware to make it easier to develop software. The idea was not to build software functionality 

every time it is needed from scratch. The result from knowledge perspective is that it is not 

necessary for a software engineer to know how to build the functionality.  

In the 1980’s this issue was identified as a problem of ‘experience’ of a software engineer and 

management (Deming, 2000). Such examples can be found in the 90’s also (e.g., Johansson, 

Hall and Coquard 1999; Isoda 1992).  

The discussion about software units and their content differs in the past. Originally a reusable 

component consisted only of source-code or binary code (see Naur and Randell, 1968). Later 

on with the use of video and audio systems it becomes clear that also other values e.g., audio, 

video, or text can be reused. But the focus was still on elements directly used by an application. 

Childs and Sametinger (2012) and Blok and Cybulski (1998) are examples who discuss the 
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reuse of documentation, specification and models used in the 1990s. The same studies connect 

the reusable content with information (may be seen as knowledge from the perspective of the 

DIKW hierarchy) needed by a software engineer. Another example is the area of reusing tests. 

Bagnasco et al. (2001) discusses the reusing of unit test. In the 1990s reuse knowledge was 

combined with existing reuse technologies as object and component orientation (see Szyperski, 

2002b). As a result, software engineers have to know such technologies to handle a software 

unit or their content. The same requirement was created by the use of SPL. SPL also changes 

the view on the content of a reusable software unit. From now on a software unit does not 

include only a few functionalities and has only a small size. In the beginning of the 21st century 

a change in thought occurs. Ye (2001) and Morisio, Ezran and Tully (2002) for examples uses 

the term software artefact that is able to contain different content. This means different software 

units (i.e., components, classes, service, etc.) as well as different additional values (e.g., binary 

data, documentation, models, tests, etc.). This perspective does not change till today. With the 

increase of content types and variations the amount of necessary knowledge grows for software 

engineers (Ajila, 2006).  

The changes on the view on software units and related knowledge can be identified in the past. 

But the view on reuse activities is not so easy to identify. In the used literature, two views on 

reuse activities can be identified. Prieto-Diaz (1993) includes in their classification of reuse 

types the reuse of procedures. Here, an activity will be reused. On the other side, Isoda (1991) 

concluded after a 4 year reuse project, that the main activities are: registration and the reuse of 

reusable modules, construction of a reusable module library, compilation of reusability 

guidelines and the development of software reuse support tools. In the 1990s different reuse 

processes such as, for example, Software Technology for Adaptable, Reliable Systems 

(STARS) and ROSE PM were developed (cf. De Almeida, 2005). A clear relation between the 

reuse activities and missing knowledge was not identified in the past. 
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From the view of this thesis the historical consideration of the different missing knowledge 

problem classes concludes in the following statements: 

- The problems of missing knowledge is still known, but related to software units and its 

technical structure 

- Based on technology changes / evolution the complexity of the knowledge increases 

- The idea of reuse activity is known 

- A clear definition of knowledge for software reuse activities was not identified 

2.2.3.2. 	Relevant	research	statements	of	literature		
Literature shows different problems in the area of software reuse regarding missing knowledge. 

Tracz (1994) highlights different software reuse myths (i.e., software reuse is a technical 

problem, special tools are needed for software reuse, reuse results in huge increases of 

productivity, software reuse is equal to hardware reuse, reused software is equal to reusable 

software, and software reuse) will just happen. The conclusion of Tracz (1994) is that reuse is 

not a problem anymore. It is only a problem to the organisation level. 

Analysing other studies shows a different picture: Frakes and Isoda (1994) argues that support 

for reuse is difficult to create because of the variants of different technologies and user 

domains. 

Morisio, Ezran and Tully (2002) conclude in their survey that often the use of a repository and 

reuse supporting technologies (e.g., object-oriented technologies) are adequate for performing 

reuse. But they also mention the need for reuse processes and the human factor. Repositories 

are relevant in the area of software reuse. Ajila (2005) and Cummings and Teng (2003) use the 

term ‘intellectual capital’ for information and knowledge stored in repositories. Ajila (2006) 

mentions this capital as an relevant success factor in software reuse. 

Frakes and Fox (1996) indicate that 24% of software development projects using reuse fail 

because not all software engineers try to reuse. The study analysed 29 American organisations 

in 1991 and 1992. Based on this statement McCarey, Ó Cinnéide and Kushmerick (2008) 
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concludes in another study that the human factor is the relevant factor in reuse of software 

units. Ye and Fischer (2005) describe a negative scenario which is based on this human factor 

and related to knowledge and concludes: 

- Software engineers may not able to perform reuse because of lack of knowledge (e.g., 

for accessing and handling repositories) or cannot anticipate. 

- This limits investment in reuse-based development projects 

- No investment in reuse projects limits reuse activities for software engineers. 

While Ye and Fischer (2005) shows that a lack of knowledge exists, McCarey, Ó Cinnéide and 

Kushmerick (2008) identifies the following three problems in software reuse: 

- Inability of support tools to automatically identify reuse opportunities 

- The separation of reuse from mainstream development 

- The lack of techniques to store and subsequently distribute task relevant component 

knowledge among software engineers 

The last statement of McCarey, Ó Cinnéide and Kushmerick (2008) is relevant for this 

discussion and for the research of this thesis. It contains three relevant statements:  

1. Task has/needs knowledge to be performed 

2. Task relevant knowledge has to be stored  

3. A lack of techniques for storing such knowledge 

The first statement is also noted by Ajila and Zheng (2004) who claim that knowledge is the 

relevant factor in software development. Because of the changes in technologies and the 

knowledge of software engineers, this knowledge increases and has to be maintained. The 

second statement is also supported by Ajila and Zheng (2004) and Qu, Ji and Nsakanda (2012). 

The size of a company is also related to reuse problems regarding missing knowledge. Ha, Sun 

and Xie (2012) mentioned based on Mishra and Mishra (2009) that more small and medium 



Problem of missing knowledge in software unit reuse 
_____________________________________________________________________ 
 

____________________________________________________________________ 
51 

 

sized enterprises (SME) exist then large companies. An example is shown by Mishra and 

Mishra (2009): in 2009, 77% (Germany) 69% (Brazil) of the software development companies 

in Germany and Brazil were SME. Fayad, Laitinen, and Ward (2000) showed that in USA 

99,2% of all software development companies were smaller than 250 people. The different 

studies used different metrics and characteristics to identify SME. Also they are performed in 

different countries and cultures. Among these differences, SMEs typically have the following 

problematic attributes (based on Mishra and Mishra, 2009): 

- Insufficient development environments 

- Low budget 

- Customer dependencies 

- Development teams usually consist of only one or a few team members. 

Thörn (2010) concludes the missing of reuse in SMEs. This statement is complementary to the 

conclusion of Jansen et al. (2008) and Ajila (2006). Ajila (2006) especially showed in their 

multi company/project analysis the difference between large and medium (small) sized 

companies. Large companies are able to store knowledge for reuse but based on organisational 

problems the expected reuse is limited. Medium sized companies on the other side are efficient 

when using knowledge but usually the processes to store or search knowledge are not available 

for cost reasons. Additionally, the exchange of knowledge between software development 

teams is seen as difficult (cf. Qu, Ji and Nsakanda, 2012). 

The limit of team member size is also discussed by Johansson, Hall and Coquard (1999) and it 

appears that not only small software engineer teams have problems performing reuse, but also 

multiple teams in global companies and different companies working together have the problem 

of exchanging reuse knowledge based on the team member size and the global distribution of 

teams (see also O’Sullivan, 2003; Qu, Ji and Nsakanda, 2012). 

The size of teams is not the only impact factor. The knowledge of each individual software 

engineer is different and is handled differently by each person. Ye (2001) categorises the 
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activity of reuse focusing the search of reusable software units into three classes: reuse-by-

memory, reuse-by-recall, and reuse-by-anticipation. 

The reuse-by-memory scenario describes a software engineer identifying a software unit that 

can be reused and fits with the given requirement. In a reuse-by-recall scenario, a software 

engineer knows of one or more existing software units, but is not sure where to find or how to 

access it. The last scenario, reuse-by-anticipation, is given if a software engineer has no idea 

about useful software units which may be useful. 

Based on this classification McCarey, Ó Cinnéide and Kushmerick (2008) argues that the first 

two classes (reuse-by-memory and reuse-by-recall) are state of the art in software development. 

Therefore, no problem exists. Software engineers may find the correct software unit. But the 

third class (reuse-by-anticipation) includes several problems based on missing knowledge: 

- “A software engineer may incorrectly anticipate a component that does not exist. 

- It is difficult for a software engineer to clearly express their reuse intentions. 

- A software engineer cannot easily evaluate retrieved components due to the engineer’s 

knowledge limitations.” (McCarey, Ó Cinnéide and Kushmerick, 2008, p. 54) 

Picot (2003) shows a demand model for management knowledge which can be used to show 

the classification of Ye (2001) and the three problems shown by McCarey, Ó Cinnéide and 

Kushmerick (2008). This model was adapted by Zinn et al. (2011a) for software unit 

information demand to support the research focused by this thesis. 

Figure 7 shows fours relevant areas:  

- OID – includes all (theoretical) software units which can solve a specific problem  

- SID – includes all software units a software engineer believes can solve a specific 

problem 

- IP – includes all software units which are provided/accessible at the moment. 

- IQ – This area indicates a search request of a single person. It is based on the area SID; 

as a result, the IQ area overlaps the SID every time. 
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Figure 7 - Software Reuse Information Demand Model based on Picot (2003, p. 106) adapted by Zinn et al. (2011a) 

The reuse-by-memory scenario is presented in the Actual Information State (AIS) area that is 

overlapping area of OID, SID, ID, and IQ. From the perspective of the information demand 

model the software units in this overlapping area are valid, known by the user, accessible, and 

describable (in a search request) by a user. 

The reuse-by-recall can be represented in this model. Because the user is not sure which unit is 

the correct one and how to access it the two overlapping areas between (SID and OID / SID and 

IP) can contain the unit a person mentioned. Because this person cannot describe the searched 

unit the IQ will be very small. Regarding to Picot (2003) this will limit the useful results. 

The reuse-by-anticipation may be presented in an information demand model as the area of 

SID. In this case the user has no idea about adequate software units. This reduces the area of 

SID and limits the overlapping areas to OID and SID. Because of the mentioned restriction of 

creating an IQ the valid results in this approach are very small. Two of the discussed problems 

of McCarey, Ó Cinnéide and Kushmerick (2008) can be also shown in this model. The first 

problem is that the SID may be containing correct and incorrect solutions. As a result, a person 

may think they know the correct solution when it could be wrong. The second problem is 

indicated by Picot (2003) as the difficulty of a person in creating the correct search request 

based on missing knowledge. In the Software Reuse Information Model (SRID) model a non-
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correct search request may be reduce the area of IQ or change the location of the area to the 

field of SID. In both cases the overlapping with the AIS area will be reduced.  

 
Figure 8 - Users experience level (based on Ye, 2001, p.2) 

Ye and Fischer (2005) discuss a model (based on Ye, 2001) which demonstrates the view of 

reuse repositories on the reuse knowledge of software engineers (cf. Figure 8). This model 

shows that the knowledge of software engineers partly consists of information the engineers 

knows well (L1), knows vaguely (L2), knows of (L3), and doesn’t know (L4). This is similar to 

the above discussed information demand model and the perspective of McCarey, Ó Cinnéide 

and Kushmerick (2008). An relevant difference to other knowledge perspectives is the relation 

of knowledge and task-relevant information. For Isoda (1992), Budhija and Ahuja (2011), and 

the author of this thesis reuse includes a set of specific activities, each of which need different 

information. But the necessary information is not only defined by the activities. Visser (1990) 

showed in a case study that different software engineers use different ways to do the same 

activity, often including different information. The same effect is explained by Sen (1997). This 

leads to the discussion of knowledge or information interpretation. Qu, Ji and Nsakanda (2012) 

and Choi, Lee and Yoo (2010) argue that the interpretation of knowledge leads to different 

results. Such results may be different to the expected results in the knowledge creator. As 

shown by Qu, Ji and Nsakanda (2012) this is a typical problem of knowledge transfer between 

different teams. Using distributed teams is a typical scenario in software development and 

software reuse (see O’Sullivan, 2003; Johansson, Hall and Coquard, 1999). Interpretation may 

be one reason why people repeating a task use different ways and/or information or knowledge. 
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The same information provided to another person may not be supporting this person. On the 

other hand it shows that a solution which supports persons in reuse has to be flexible to handle 

different information from different perspectives. (cf. discussion of Johansson, Hall and 

Coquard, 1999; Ye and Fischer, 2005) 

LaToza, Venolia and DeLine (2006) in a case study, show that a lot of software engineers assist 

others by performing development tasks. This implies that lot of software engineers need 

support for software reuse. For McCarey, Ó Cinnéide and Kushmerick (2008) this lack is based 

on knowledge and will be increased in component-based development because components 

may be larger and more difficult to integrate. This statement is also seen by Ajila (2006) which 

indicates that the growing number of information a software unit includes has to be maintained 

or will result in project problem (e.g., time issues). Therefore, the limited view on components 

of McCarey, Ó Cinnéide and Kushmerick (2008) can be enlarged to other software units (e.g., 

service and classes) as well. 

To conclude this section is to show relevant research statements of literature that relate 

problems of missing knowledge to software development activities. Regarding this relation, 

McCarey, Ó Cinnéide and Kushmerick (2008), partly supported by the statements of Frakes 

and Kang (2005), Ajila (2006), and Cummings and Teng (2003) come to the following 

conclusions: 

- Software development requires an amount of experienced user knowledge. 

- Often, software engineers do not have the required knowledge for specific development 

tasks. 

- Knowledge about technology is not transferred between engineers or teams. 

Thereby, the fact that knowledge is missing was identified by the literature. Also, the impact is 

well known (cf. Section 2.2.1.5): 

- Reduced quality (see Morisio, Ezran and Tully, 2002; McCarey, Ó Cinnéide and 

Kushmerick, 2008) 
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- Longer development times (see Ajila, 2006; McCarey, Ó Cinnéide and Kushmerick, 

2008) 

- Failure of development (see Morisio, Ezran and Tully, 2002; Ajila, 2006) 

- Rise in costs (see Ajila and Zheng, 2004; McCarey, Ó Cinnéide and Kushmerick, 2008) 

An interesting point is that missing reuse knowledge may lead to (from the view of the 

literature) a contrary result than the estimated results in improvements in quality, shorter 

development times, success of development, and reduction of costs (see Section 2.2.1.2). 

2.2.3.3. 	A	key	challenge	for	software	unit	reuse		
In the previous section, different relevant research statements from the literature are discussed. 

These statements will now be consolidated to identify the key challenge for this research. 

One fact the literature shows is that knowledge is relevant for software unit reuse. For example, 

Ajila (2006) and Cummings and Teng (2003), identify knowledge as a critical success factor in 

software unit reuse. Isoda (1992), Budhija and Ahuja (2011), and McCarey, Ó Cinnéide and 

Kushmerick (2008) state that the task of reuse is based on knowledge.  

McCarey, Ó Cinnéide and Kushmerick (2008) conclude that a lack of techniques to store and 

subsequently distribute task relevant component knowledge among software engineers exists. 

Using the other statements identified in the literature by the previous section, this lack is based 

on following problems: 

Problem 1 – Knowledge required based on variants of different technologies: Frakes and 

Isoda (1992) state that reuse is difficult because of different technologies and user domains. 

The knowledge of reuse activities, which is called task relevant component knowledge by 

McCarey, Ó Cinnéide and Kushmerick (2008), is based on the technology of the related 

software unit. Next to the multitude of existing technologies, Ajila and Zheng (2004) state that 

the rapid changes in technologies and required knowledge have to be maintained. As a result, 

the first challenge to limit the lack, McCarey, Ó Cinnéide and Kushmerick (2008) focuses on, is 
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to handle the problem of different technologies and the related software construction activity 

knowledge of different software units. 

Problem 2 – Different knowledge level of software engineers: Another challenge is to find a 

way to distribute reuse activity knowledge at the level of software engineers’ knowledge. Ye 

(2001) discusses three types of software engineers’ knowledge related reuse types. The analysis 

using the models of Zinn et al. (2011a) and Ye and Fischer (2005) show that software engineers 

can have different knowledge levels. As a result, the conclusion of Ye and Fischer (2005) is 

that software engineers may be not able to perform reuse because of a lack of knowledge. This 

statement is also made by McCarey, Ó Cinnéide and Kushmerick (2008). 

On the one side, this knowledge is required to perform a reuse activity. In this case the 

previously discussed problem of knowledge interpretation occurs. Qu, Ji and Nsakanda (2012) 

and Choi, Lee and Yoo (2010) identifies this, particularly in an environment where multiple 

teams exchange knowledge. This may lead to variations in the reuse activity result or to the 

failure of the reuse activity. Another point of interpretation is that software engineers use 

different ways of working to perform the same activity even if the underlying information is 

equal (Visser, 1990; Sen 1997). 

On the other side, the software engineers have to know how to use a knowledge resource or 

know somebody who is experienced (Qu, Ji and Nsakanda, 2012). 

As discussed in the previous section, it is difficult for a software engineer to clearly express 

their reuse intentions (McCarey, Ó Cinnéide and Kushmerick, 2008; Picot, 2003). In the case of 

a reuse activity a user has to describe what software unit is required and what kind of reuse 

activity has to be done.  

Problem 3 – Distribution of knowledge:  McCarey, Ó Cinnéide and Kushmerick (2008) states 

that the distribution of knowledge about technology between engineers or teams is not 

adequate. Next to the problem of interpretation and the use of knowledge, an experienced 

software engineer has to distribute knowledge in a way that other engineers are able to 
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understand (see Taweel et al., 2009; Boden and Avram, 2009). This implicates an infrastructure 

which provides the functionality to upload activity information and knowledge. Additionally, it 

has to provide the possibility to find and access this infrastructure for searching, receiving,  

uploaded, and execution of knowledge (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 

2010). Frakes and Kang (2005), Ajila (2006), and Slyngstad et al. (2006) discuss the need of 

repositories; usually software engineers have repositories, but these are different in type and 

distribution. This can range from personal project files to a team or department repository. As a 

result, a software engineer has to know where to find a repository, how to access it, and how to 

use it. The last point relates to the previously mentioned problem of mind-set and capability of 

formulating a request. As a result, an inexperienced user has to know how to find and access 

this knowledge source (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). As shown by 

Ajila (2006), large companies are able to store knowledge for reuse, but based on organisational 

problems the expected reuse is limited. To limit the lack described by McCarey, Ó Cinnéide 

and Kushmerick (2008) one challenge is to create such an infrastructure. Following the 

discussion of Qu, Ji and Nsakanda (2012) and Choi, Lee and Yoo (2010) such an infrastructure 

has to be information technology (IT) based. Visser (1990) and Morad and Kuflik (2005) state 

the use of special teams or single experienced users for a single software unit - as support for 

other software engineers or development teams in bigger companies. Ha, Sun and Xie (2012) 

and Thörn (2010) also mentioned that this is not usually possible in SMEs.  

Problem 4 – Definition of software reuse knowledge: The last challenge discussed in this 

section is the definition of software reuse activity knowledge. In the focused problem 

statement, task relevant component knowledge should be exchanged between software 

engineers (see McCarey, Ó Cinnéide and Kushmerick, 2008). But a definition of this 

knowledge is not given. Based on the amount of possible knowledge, for example, based on the 

technology variations, this is challenging. On the other side, activities are recognised by the 

literature as typical activities of reuse. Bosch and Bosch-Sijtsema (2010) and Shiva and Shala 
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(2007) for example indicate the need for integrating a reusable software unit into the 

development environment. Also, for Vliet (2008) and Mens and Vangorp (2006) it is necessary 

to adapt an existing unit before reuse. Especially in the area of embedded devices (see Carlson 

et al., 2010; O’Connor et al., 2009), the deployment is an relevant part and often depends on 

previous created software units. 

Note: Also other problems may exist which can be seen as challenges. The selected problems 

are identified by using scientific literature. The research determines if a new approach is able to 

limit these four problems. Whether the research is able to do this or not, it creates a small added 

value for this research area. 

2.3. 	Conceivable	research	contribution	
The discussion in Section 2.2.3.3 supports the statement of McCarey, Ó Cinnéide and 

Kushmerick (2008) whereby the lack of techniques to store and subsequently distribute task 

relevant component knowledge among software engineers exists. The discussion shows that a 

technique has to handle four different problems to successfully handle knowledge based 

problems in the exchange of reuse activity knowledge.  

The research of this thesis aims to contribute to the field about the lack of techniques to store 

and subsequently distribute software construction activity relevant software unit knowledge. 

This includes the execution of software construction activity activity knowledge as part of the 

distribution. To identify an approach to handle the four problems would create a contribution to 

this research area and support software engineers in today’s problem of software unit reuse. 

The reuse or use of previously stored SCAc is an procedure reuse type (cf. Petro-Diaz, 1993). 

Regarding the knowledge area, the research deals with the knowledge necessary to perform the 

SCAc and the knowledge of the distribution environment. The literature discussion about the 

type of reuse (black-box, withe-box, reuse-within-development, etc.) is not relevant for the 
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problem discussion. This part of the literature review is used to create a solution approach in 

Chapter 4. The historical view in the literature does not show these problems.  

2.4. 	Summary	
This chapter startes with an overview about the research methods for the literature review. The 

main part of this chapter is the literature review itself. First of all, this review defines the view 

of this thesis on software reuse as a software development including different software reuse 

activities. After this, a definition of typical estimated characteristics of software reuse is 

discussed (e.g., a reduction in costs or an increase of product quality). Software reuse is 

separated by the literature into 11 areas (e.g., design patterns, component-based software 

development, software product lines, and so on). These different areas use different software 

unit types which require different software units to handle them. Also, different impacts of 

inadequate reuse are discussed (e.g., rising costs and limitations in quality). A relevant result of 

this chapter is found by the definition of reuse activities (i.e., all tasks that are necessary for 

reuse) and software construction activities which is a subset of reuse activities (e.g., integration 

or transformation). After the discussion of relevant definitions, an overview of different 

research areas is given including the focused research area of this thesis that handles (missing) 

knowledge for software reuse. In the next part of the literature review different examples of 

problems of missing knowledge and their relation to human-driven knowledge is discussed. 

This discussion also includes the focused problem of missing knowledge for the execution of 

software construction activities of this thesis. The literature discussion identifies a lack of 

techniques to store and subsequently distribute software reuse activity relevant software unit 

knowledge among software engineers. Following problem areas were identified that make the 

creation of such a technique challenging: 

- Insufficient knowledge level of software engineers  

- A high variant of existing technologies and related (activity) knowledge  

- The distribution in global company environments 
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- Missing definition of reuse knowledge for reuse activities 

The chapter concludes with a discussion concerning the targeted contribution which focuses on 

the four identified problem areas and the aim to enable the inexperienced user to perform 

software unit reuse.  
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3. Missing	software	construction	activity	knowledge	–	
problem	analysis	

The literature review in Chapter 2 shows that a lack of techniques to store and subsequently 

distribute software reuse activity knowledge exists. Also, problems are explained which show 

that the creation of adequate techniques is challenging. This research investigates an approach 

for a technique to store and subsequently distribute software reuse activity knowledge. 

Therefore, this chapter shows additional analysis results focusing on the identified problems of 

the creation of an adequate technique. The first step is the definition and explanation of focused 

software construction activities: integration, transformation, and deployment. The second one is 

the analysis of the different problems based on missing knowledge. Thereby, a low knowledge 

level of an inexperienced user is discussed for each problem. The final analysis shows an 

overview of existing approaches and concludes with the need of an approach to focus on all 

mentioned problems to limit the lack of techniques of handling software reuse activity 

knowledge (on the example of software construction activities) and, therefore, enable 

inexperienced users to perform software unit reuse. 

3.1. 	Focused	software	construction	activities	
This section explains the focused software construction activities that are the research objects 

of the research. On the one hand this is necessary to identify necessary reuse activity 

knowledge. On the other hand the aim is to give the reader an overview of the focused software 

construction activities for the description of the focused problems of these activities (relation 

between analysed problems and reuse activities) in Section 3.2. The following reuse activities 

are in the scope of this thesis: 

a) Integration of software units in integrated development environments 

b) Console-based transformation of software units into other technologies  

c) Deployment of software units into embedded devices. 
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Note: The topic of integration and deployment activities was published by the author (see Zinn, 

Fischer-Hellmann, and Schoop, 2012a; Zinn et al., 2011b). Other reuse activities also exist. 

These activities were chosen because they have been identified in literature (cf. Bosch and 

Bosch-Sijtsema, 2010; Shiva and Shala, 2007; Vliet, 2008; Mens and Vangorp, 2006; Carlson 

et al., 2010; O’Connor et al., 2009). In the following section, these activities and their special 

scope will be introduced. These are used as examples to support further discussion of the 

identified problem areas (i.e., insufficient knowledge level of software engineers, high variance 

of existing technologies and related activity knowledge, and the knowledge distribution in 

global company environments). 

3.1.1. 	Console-based	transformation	of	software	units	–	
ffftransformation	activities	

Different activities within development projects with software reuse require different kinds of 

transformation expertise. For example the modification of a software unit into another form 

may be reached by using transformations (Mens and Vangorp, 2006). The results of such 

transformation processes are manifold. They range from simple content-adaptation to an 

adaptation that changes the basic technology of the software units. An example of a content 

adaptation is changing the content (domain) of a method within a class or a component (Seriai, 

Bastide and Oussalah, 2006). An example of a technology change is the conversion of a Java-

based component to a .Net-based component (Frijters, 2011). Another frequent form of 

transformation is the extension of a software unit with new information and interfaces. This, for 

example, allows simple transformation of Java-based components to a web interface (Lee et al., 

2005). Other examples are: compiler or interpreter transformation using source codes and 

model-driven software development transformation using different models. 

The transformation of a software unit can be defined by using the definition of model 

transformation from the area of model-driven software development:  
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“A transformation is the automatic generation of a target model from a source model, 

according to a transformation definition. A transformation definition is a set of transformation 

rules that together describe how a model in the source language can be transformed into a 

model in the target language. A transformation rule is a description of how one or more 

constructs in the source language can be transformed into one or more constructs in the target 

language.” (Kleppe, 2003, p. 24) 

Note: The focused transformation activity is based on console applications. As a result, the 

software engineer is using an application to perform the transformations. 

3.1.2.  Transformation	activity	example	
There is no typical or standardised transformation activity step identified in literature, but the 

following example will illustrate a real transformation process of a software unit. To transform 

a Java-based byte code into .NET-based byte code the tool IKVM (Frijters, 2011) may be used. 

In this example the Device Profile for Web Service (DPWS) is used. The DPWS software unit 

enables embedded devices to handle different web service protocols (called WS*) like Web 

Service discovery and security (see Jammes, Mensch and Smit, 2007). The DPWS software 

unit based on Java should be transformed into a .NET compatible software unit. The IKVM 

tool offers two different transformation scenarios. The first one is to run the original Java byte 

code in a Java virtual machine inside the .NET application. Therefore, only some interfaces are 

required by the software engineer. The second scenario is to make a real transformation. The 

last scenario is used to describe a transformation activity. 

Aim: The aim of this transformation activity is to transform the DPWS Java-based software 

unit into .NET binary libraries. 

Precondition: The software engineer has searched and identified the software unit, as well as 

identified the IKVM transformation tool. The used operating system (OS) is a Windows OS. 

Preparation: The software engineer has to download the IKVM tool and transfer the ZIP 

package to a folder. The engineer has to set Java path information in the OS settings because 
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the IKVM is based on the Java runtime. As an additional precondition is that the Java runtime 

has to be installed. The tool is installed and can be executed by typing starting the IKVM 

executable that is located in the IKVM binary folder in the windows console window. 

 

Figure 9 - Dependency hierarchy of DPWS Java libraries (blue external libraries; red internal libraries) 

Additionally, the engineer has to download the DPWS Java stack which includes 23 Java 

binary files. These files have to be extracted to a folder. 

As additional task in the preparation phase is that the engineer has to identify references 

between the DPWS Java libraries or other external libraries. These are necessary to perform the 

transformation. Figure 9 shows the dependency hierarchy between DPWS libraries and external 

libraries. All libraries here have direct or indirect dependencies and have, therefore, been 

transformed. The file DPWS4J.jar contains the relevant DPWS functionality. 
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Execution: The software engineer has to identify all libraries without any other dependencies. 

These can be now transformed by using IKVM as shown in the example in Figure 10. 

 
Figure 10 - Example IKVM transformation execution 

The engineer has to be experienced enough to set the parameters so that the IKVM tool is able: 

- to create a DLL file  (‘-target:library’), 

- to load an input file (‘C:\PHD\DPWS\Java\xsdlib.jar’), and; 

- to identify the location and name of the output file (‘C:\PHD\DPWS\DOTNET 

\xsdlib.dll’). 

  

Figure 11 - Example IKVM transformation execution with dependency 

This procedure has to be repeated for each Java library at the end of the dependency hierarchy. 

For each of the libraries with dependencies the execution of IKVM appears as follows; the call 

has a new parameter –r or –reference and a path to the referenced dependency. Figure 11 shows 

an example of an IKVM transformation using a dependency (‘-r:c:\PHD\DPWS\DOTNET\jax-

gname.dll’). 

Additional to the parameters from the first call, the engineer has to specify the location of the 

previously transformed dependencies. To transform the top of the DPWS dependency 

hierarchy, multiple dependency parameters have to be used. Figure 12 shows the transformation 

call including the dependency parameters which are shown as references in Figure 9. To 

complete the transformation, 23 single transformation activities have to be executed.  
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Figure 12 - Example IKVM transformation execution of the DPWS4J.JAR file 

Output: The output of this transformation example is a set of .NET libraries including the 

functionality of the Java DPWS stack. The engineer has to know that the transformation result 

has special dependencies. On the one hand the dependencies between the original DPWS Java 

libraries exist. This is shown in the resource view in Figure 13. Also, the dependencies to 

external libraries exist. This is shown in the reference view in Figure 13.  

 

Figure 13 - Dependency hierarchy of DPWS .NET libraries (ILSpy View) 

To handle these libraries, the transformation output refers to special IKVM libraries. As a 

result, these special libraries have to be shipped and deployed together with the transformation 

result. Figure 14 shows the dependency hierarchy of the software unit created by the 

transformation result, references to external libraries (blue), and internal (red) which are results 

of the transformation process. 
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Figure 14 - Dependency hierarchy of DPWS .NET libraries (blue external libraries; red internal libraries) 

3.1.3. 	Integration	of	software	units	in	development	environments	–	
ffintegration	activities	

In the scope of software unit reuse it is necessary to integrate these units into development 

environments or, more precisely, into a development project. Software reuse environments 

(SRE) support software engineers by addressing these activities. The SRE discussion in Section 

2.2.1.6) shows that IDEs are such SRE systems.  

Note: In this research the integration of software units into an IDE is equal to the integration of 

a software unit into a development project. Because the focused problems are distinguishable 

from the different knowledge requirements of the different IDEs the first term will be used in 

this work. Additionally, it is relevant to know that the focused integration activity does not 

include the activity of interface adaptation or mapping. These are examples of transformation 

activities. 

In the scope of the integration activity four interesting perspectives exist: the first perspective is 

concerned with the integration of software units. Software engineers have to be aware of the 

technical properties of a software unit. Software units may consist of different parts (e.g., files 

or environment variables). Each of these parts may need to be integrated differently into an 

IDE. (see discussion of Zinn et al., 2011b). 
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The second perspective is the required file structure of software units. The different parts of a 

software unit may require a specific location in the project. Each part of a software unit may 

have dependencies themselves. Also, these dependencies may have a required location which 

can be specific or relative to the dependent part of the software unit. 

The third perspective is the IDE in use. Today different IDEs exists, and some of these are 

specialised. The development of software for embedded devices for example, often requires a 

special IDE for the targeted device or special libraries in a normal software development 

project. Other IDEs, for example, Eclipse and Visual Studio can be extended and used for 

different application languages or technologies. For each IDE the provided functionality for 

software unit integration is different. As a result, the knowledge to use this functionality differs 

too. 

The last relevant perspective is concerned with the different scenarios of integration. The 

scopes of the previous perspectives can be used in distributed and non-distributed scenarios. 

Typically, for an SME scenario, the decision maker, the person who decides to reuse a specific 

software unit, is the same as the integrator, implementing the reuse. However, there are 

scenarios which include the decision maker and the integrator not being the same person. In the 

scope of this thesis this is called a distributed scenario because the individuals can be located in 

different locations and differ in their domain of experienced users (see Section 2.2.2.3). 

Typically, software architects are this kind of decision makers in software development (see 

discussion of Kruchten, Capilla and Dueñas, 2009).  

3.1.4. 	Integration	activity	example	
There is no typical or standardised integration activity process identified in the used literature, 

but the following example will illustrate a real integration process of a software unit.  

Aim: The aim of this integration activity is to integrate the DPWS .NET library of the 

transformation example in Section 3.1.1 into the Visual Studio IDE. 
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Precondition: The software engineer has searched and identified the software unit. The used 

operating system is a Windows OS and a Visual Studio 2010 with a loaded development 

project. 

Preparation and Execution: Figure 14 shows all files necessary for a runnable integrated 

software unit. Therefore, all files marked blue in the figure (includes all created .NET files and 

special files of IKVM for .NET) have to be inserted as references in the Visual Studio project. 

Due to special behaviours of IKVM the engineer has to copy all additional IKVM files into the 

same folder as the .NET DPWS files. It is also possible to insert a library path in the project 

configuration instead of copying all additional IKVM files. Additionally, the Java Virtual 

Machine (JVM).dll file has to be copied into the DPWS .NET folder without referencing. The 

engineer has to select the 32bit or 64bit version, depending on the development project 

configuration. To get the file automatically copied to another build or debug folder of the 

project, the engineer can choose between two (automatic) options: 

- Create a copy order in the pre-condition or post-condition settings of the project  

- Add the file to the project tree and set its reference property to ‘Copy’ or ‘Copy if 

newer’ 

In both cases, Visual Studio will copy the file if the debug or release folder is changed. 

Output: The result of this integration activity is a DPWS .NET library integrated into a Visual 

Studio project including all dependencies. Figure 15 show the resulting folder structure of the 

integration activity and the project structure in a Visual Studio environment. 
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Figure 15 - DPWS integration activity folder and project structure 

3.1.5. 	Deployment	of	software	units	into	embedded	devices	–	
ffdeployment	activities	

Deployment of embedded devices is seen as the physical set up of devices in a specific 

environment (e.g., wireless sensors; Bohn, Bobek and Golatowski, 2006; and medical devices; 

Burg et al., 2009). From a software development perspective, deployment may be seen as the 

installation of software on a system (Burg et al., 2009). From here on, the term 'deployment' 

will refer to the latter definition. The conception of embedded devices has changed in the past. 

Originally, such devices were perceived as follows (based on Gill, 2005):  

- Specialised on a specific task by limited functionality.  

- Built for an unchanging environment.  

- Limited by resources.  
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Nowadays, they are perceived as embedded systems, which are characterised as follows (based 

on Gill, 2005):  

- (Self-)adaptive, open and more efficient 

- Capable of dynamically handling multiple tasks 

- 'Plug and Play'-able for integration 

The reason for this change of perception can be seen “…as a consequence of the integration of 

IT" (Gill, 2005, p. 7) into the field of embedded systems. Gill (2005) perceive this change to be 

a result of advancements in hardware and software of embedded systems. Over time, hardware 

has become more capable of handling increasingly complex software instructions, more 

advanced software technologies, and platforms (see Gilart-Iglesias et al., 2006; Gill, 2005). 

This increased flexibility enables the implementation of special software features, namely: 

Fault Tolerance (Pinello, Carloni and Sangiovanni-Vincentelli, 2008), Security (Gogniat et al., 

2008), and Dynamic Infrastructure (Karnouskos and Tariq, 2009). The high number of 

available embedded devices poses a problem for software reuse. This problem is especially 

apparent in the area of automation where many different types of device exist. Usually, 

available devices are distinguished by hardware technology, software technology, form factor, 

and safety features. This results in the fragmentation of both software platforms and libraries 

for embedded devices. Therefore, the task of reusing such software units for embedded devices 

is becoming increasingly more complicated and requires special knowledge for regarding 

deployment. This is similar to the discussed problem of an increasing number of technologies 

for software units. 

3.1.6. 	Deployment	activity	example	
There is no typical or standardised deployment activity step, but the following example will 

illustrate a real deployment process of a web service to a device.  

Aim: The aim of this deployment activity is to deploy a web service written in Java into an 

embedded device.  
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Precondition: The software engineer has searched and identified the software unit. The used 

operating system is a Windows OS, and an Eclipse IDE is used to build the deployment 

packages. For this example a GX300 Gateway with OSGi (earlier called Open Services 

Gateway initiative) device platform is used.  

The deployment of a web service to an embedded device needs the following information: 

1. Interface description file – Extensible Markup Language (XML) (Text) 

2. Resource description file – Binary file (BIN) (Binary) 

3. Manifest File (Project) - XML (Text) 

4. Classes for the web service - Java Class (Java source-code) 

Some of this information (1-3) is OSGi specific. By developing the web service, context 

dependencies to the OSGi platform has to be created inside the Java classes. The OSGi website 

provides different features like sample Java projects and Eclipse plugins for easier handling. 

Even by using such a support feature, the software engineer has to do following steps: 

The first step is to create the interface description files that are a special text file. This file 

describes the interfaces of the new web service. The syntax and format are specified by OSGi. 

This is also true for the manifest file. This file describes all project information and file 

locations that are necessary to build a deployment package. The last file to create is the 

resource file, which is only a pre-formatted list of all files that are a part of the deployment 

package at the end. The last file is the service description itself. To create this file, the engineer 

has to develop a Java class with special dependencies (i.e., to Java libraries from OSGi) that 

have to be included into the project as references or path settings in the Eclipse environment. 

Execution: The deployment package is created by compiling the project. To upload the file 

into a device, a console tool from OSGi has to be used. This tool needs the information from 

the new Java Archive (JAR) file and the IP address of the device. After deployment, the device 

has to restart. Depending on the device type, the restart has to be done automatically or 

manually by the user. 
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Output: The result of this deployment activity is a SOAP based web service running on a 

GX300 device and an OSGi platform. The running web service can be now reused by other 

software systems. 

The shown procedure model differs depending on other platforms or device types (see Zinn, 

Fischer-Hellmann and Schoop, 2012a). 

3.2. 	Problem	analysis	
The main problem this research focuses on is that an inexperienced software engineer is not 

able to perform SCAcs. McCarey, Ó Cinnéide and Kushmerick (2008) conclude that a lack of 

techniques to store and subsequently distribute task relevant component knowledge among 

software engineers is responsible for this dilemma. The discussion of this statement in Section 

2.2.3.3 identifies four major problem areas:  

1. Amount of different knowledge exists based on different technology. 

2. The inadequate knowledge level of inexperienced software engineers. 

3. The amount knowledge required by distribution environments. 

4. Missing reuse activity knowledge specification. 

These problems have to be challenged by an approach to handle this lack. In the following 

these, problems are related to each other by using the view of typical problems in the area of 

knowledge management: knowledge storing (Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 

2010), knowledge learning (Bjørnson and Dingsøyr, 2008; Ajila and Zheng, 2004), search and 

receiving of knowledge (Garcia et al., 2006), knowledge exchange (Qu, Ji and Nsakanda, 2012; 

Choi, Lee and Yoo, 2010) and knowledge execution (Qu, Ji and Nsakanda, 2012; Choi, Lee and 

Yoo, 2010). To discuss each problem, the software reuse information demand (SRID) model 

and the industrial context with the example studies of Schoop (2012) and an internal study of 

Schneider Electric (performed 2012; cf. Appendix Section E) is used. 
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3.2.1. 	Explanation	of	analysis	contexts		
In the following, the software reuse information demand model and the industrial working 

environment of software engineers are explained. Both topics are used for the problem 

discussion in this chapter. 

3.2.1.1.  Software	reuse	information	demand	model	
For the problem analysis the SRID model introduced in Section 2.2.2.3 is used. In the 

following, two visualisation types of knowledge problems for inexperienced user are explained. 

 

 

Figure 16 - Single problem visualisation (a) and multiple problem visualization (b) 

Figure 16 shows both visualisations (a) called single problem visualisation and (b) called 

multiple problem visualisation. These types of visualisation are explained using the knowledge 

problem of accessible knowledge. Different locations may use different repositories. A user or 

a team has to know how to localise and access these repositories in a localisation scenario. 

From the perspective of the SRID model, this can be analysed separately or together. Figure 16 

shows the two separate SRID models examples. In the first one (a) SID contains all repositories 

a user might think is useable. OID contains all repositories that may exist in the environment of 

the user. IP represents all existing repositories in the environment of the user. The SRID model 

(b) analysis is the same scenario with different perspectives. In (a) an element contains different 

problems (i.e., localisation, access, and use of a repository). On the other side (b) shows each 

knowledge problem separately.  
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A problem to visualise may contain different sub problems (e.g., knowledge about service, 

object, and component technology. Each of these sub problems can be visualised using single 

problem visualisation type (Figure 16a). These single problems can be now combined. In a 

software development project where a software engineer has to use all three technologies 

together a solution has to consist of triple all three technologies types. The amount of 

information is higher because OID may contain a lot of different variations of triple, double or 

single items based on the three single problem visualisations (see Figure 16b and Figure 17). 

 

Figure 17 - Creation of a multiview SRID model out of single view SRID models 

3.2.1.2.  Reuse	in	industrial	environment		
In this thesis, the term industrial environment or context describes software reuse in an 

industrial environment. In such environments, software engineering is applied to solve 

problems, for example, in the areas of automation, building, power, software, and conveyance. 

Software development of desktop applications is one of the typical parts of software 

engineering in an industrial context. But this also includes software development for smaller 

devices or specialised environments (e.g., software for mobiles or out of space projects). 
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An relevant view for the research on software construction activities is the environment 

software engineers have to work in. Such an environment may create problems or difficulties. 

In the literature review different studies of development projects were discussed. The discussed 

problems arise for single persons and for whole working teams (cf. Qu, Ji and Nsakanda, 2012; 

Desouza, Awazu and Baloh 2006). 

The environments for software engineers are different. As shown in Section 2.2.2.3 the size of 

companies differ, ranging from SME to large global companies. In such environments software 

engineers also try to perform reuse. Section 2.2.2.3 also shows the problems companies have 

with software reuse. 

Next to the efforts of companies different European research projects also try to create software 

units which are reusable for different platforms (e.g., Bohn, Bobek and Golatowski, 2006; 

Jammes, Mensch and Smit, 2007). In this way, standardised software units for different 

companies and different industry areas are created. 

Reusable software units should not only reuse in one project or one vertical market. It is also 

interesting to reuse in horizontal markets (see discussion of Szyperski, 2002b; Wang and Fung, 

2004). Figure 18 shows examples for vertical markets as well as horizontal markets for 

software development projects. Often, software units are market or domain-specific (Frakes and 

Isoada, 1994). As a result, a software unit has not only to be reused in a vertical market. In 

horizontal markets the requirements may be different depending on the domain knowledge. In 

Figure 18 different industrial domains are shown (i.e., Power, Automation, and Building). 

Inside each domain different vertical markets exists. The building domain for example handles 

office, university, and hospital buildings. A software unit may used in each of these vertical 

markets. Additionally, the same software unit may be used on other horizontal markets, as for 

example, in factories of the automation domain. Global companies are involved in more than 

one vertical market. This may lead to distributed development team (cf. Qu, Ji and Nsakanda, 

2012). In this thesis the terms horizontal projects and vertical projects are used to identify 
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software development projects which are used in one domain (vertical) or different domains 

(horizontal). 

 

Figure 18 - Horizontal vs. vertical markets 

Next to the development of usual desktop application, also other development specialisations 

exist. One specialisation is the development of software for embedded devices reusing reusable 

software units. Such devices are typically limited in their physical size and in the amount of 

available hardware resources and will be used for specific tasks. These devices are applied in 

all previously named industrial areas. In the automation area, for example, they control small 

parts of factory lines (cf. Jammes, Mensch and Smit, 2007). In the building industry, embedded 

devices are used as sensors for single rooms or whole buildings. Embedded devices are also 

used in the area of power to measure energy consumption or to predict bigger control devices. 

In conveyance they are mostly used as sensors. A gold mine, for example, may use more than 

10,000 of such devices to measure sensor values (e.g., air pressure). Typical software 

engineering tasks are the development of software platforms (Firmware) for such devices and 

software units based on these platforms, including special functionality (Karnouskos and Tariq, 

2009). Also, controller applications (so called Enterprise Systems) have to be created by 

software engineers. 

Next to the specialised domains another relevant property for software engineers exists. In the 

industrial context often teams or people work together but do not share the same location. Large 
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companies, for example, outsource software development to other teams located in foreign 

countries to save money (cf. Desouza, Awazu and Baloh, 2006). Also, customers or 

development partners may be located in different countries. In this global industrial context 

software engineers have to work together and share experiences (see discussion of distributed 

software development of Boden and Avram, 2009; Qu, Ji and Nsakanda, 2012; Choi, Lee and 

Yoo, 2010; Taweel et al., 2009). 

Chapter 2 shows different problems from the perspective of the literature. Two are relevant for 

this research: reuse problems based on the size of a company (see Chapter 2, Section 2.2.2.3) 

and the work in distributed teams. In this section the missing knowledge problems based on the 

distribution aspect are focused upon (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). 

The reuse of software units is an relevant part of software development in industrial areas 

(Henry and Faller, 1995). Its aim is to reduce cost and time in development projects (Morisio, 

Ezran and Tully, 2002). However, reuse in industrial projects does not guarantee a project’s 

success; a fact that has been demonstrated by several project studies (see for example Morisio, 

Ezran and Tully, 2002). Next to the discussed organisational reuse problems, based Morisio, 

Ezran and Tully (2002) typical problems in industrial software development are: 

 Misconceptions: Often, reuse is seen as technology; therefore, the use object-oriented 

technology is equal to reuse.  

 No non-reuse specific processes are modified: Often, existing development processes 

are adapted to handle reuse.  

 No reuse specific processes are installed: Reuse needs special processes which have to 

be prepared for systematic reuse. 

 No training/awareness actions: Software engineers are not prepared or trained to 

perform reuse. 

 Reusable assets produced but then not used: Often, reusable software artefacts are 

created but not reused or provided for reuse. 
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 No production of assets: Often, non-reusable software units which are able to reduce 

costs are produced. 

Due to the software units having to be developed in order to be reusable (Garlan, Allan, and 

Ockerbloom, 2009), the last problem: ‘no production of assets’, has special focus on the 

literature from others. Garlan, Allen and Ockerbloom (2009) and Morisio, Ezran and Tully 

(2002) argue that that companies often do not produce software units which are reusable. This 

requires more resources if these units are to be reused. Usually, the effort (e.g., costs and 

development time) to reuse should decrease after the creation of a software unit and should 

remain the same value continuously for each reuse. This requires software units prepared for 

reuse (Morisio, Ezran and Tully, 2002). 

The advantages and disadvantages of reuse now are focused upon by creating artefacts in 

industrial contexts which are explained by using a practical example. An internal study  

performed by Schneider Electric (cf. Schoop, 2012) Appendix Section E shows an interesting 

picture. A set of 50 software units was created by different development groups and widely 

reused in different development projects in other development teams (including vertical and 

horizontal markets). The average reuse number was between 9 and 10. The reuse distribution of 

different software units is shown in Figure 19. 

 

Figure 19 - Distribution of reusable software units (Schoop, 2012) 
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It starts with a minimum of 3 reuses (the point where development costs are typically recovered 

compared to a non-reuse scenario) and spans up to 36 reuses. All software units have been 

created for the purpose of reuse. This study of Schneider Electric identifies three typically reuse 

scenarios: 

a. Multiple Teams with Support (MTwS): Multiple teams reuse the same 

software units in different product lines, supported by the creation team. 

b. Single Team with Support (STwS): A single team reuses a software unit in 

different product versions that is not the same as the creation team, but 

supported by it. 

c. Multiple and Single Team(s) without Support (MTwoS; STwoS): Multiple 

teams reuse the same software unit in different product lines without the 

support of the creation team. 

The corresponding development effort distribution is shown in Figure 20 ((a) STwS, (b) 

MTwS, (c) MTwoS) respectively.  

 

Figure 20 - Development distribution (a) STwS (b) MTwS; and MTwoS (c) based on Schoop (2012) 

The creation of software units is equal for the STwS and MTwS scenarios regarding the 

maintenance, preparation of support and the development of the software unit (cf. Figure 20a 

and b). The highest effort is dedicated to designing the core function, to be followed by the 

effort to generalise the functionality as a basis for reuse (e.g., extended customisable function, 
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extended documentations, application notes, test case specification, and so on). Furthermore, a 

dedicated effort is needed to support the reuse later on and a maintenance effort for bug fixing, 

and later small evolutions are needed. In the STwS scenario the single team reusing the 

software unit reduced the integration effort in the first 4 reuses significantly. In the MTwS 

scenario each team reuses the software unit only once. A learning curve as seen in the STwS 

scenario is not created. Therefore, the effort for each team in an MTwS is similar. This is also 

true for the MTwoS scenario. The effort for each team is similar, but the general effort for the 

integration of the software unit is higher than in the other scenarios. The difference is the 

missing support of the creation team. 

An internal survey at Schneider Electric from 2012 (see notes in Appendix Section E) aims to 

identify the effort involved and need for software unit reuse. It identifies different behaviours of 

software unit reuse for software engineers. Thereby, 86 people (engineers and technical 

managers working in development projects with reuse units) of different business units were 

asked 18 questions.  

Figure 21 shows the reuse of different software units by different business units of Schneider 

Electric. These units are reused in different software products of these business units or in 

different product versions. While the reuse of general software units (e.g., eula  information; cf. 

Figure 21a) is done by most of the business units, the picture changes to then focus on the 

device level (e.g., PC drivers, object Software Development Kit (SDKs), Schneider Electric 

specific programming SDKs; Figure 21c). Here, based on the difference on working with 

devices (e.g., different technology or platforms) not all business units reusing existing software 

units. What is interesting is the reuse of one software unit including a graphical user interface 

for device handling. This unit is reused several times (30x) by three business units. Figure 21b 

shows the use of platform specific software units (e.g., PC drivers, object SDKs, Schneider 

Electric specific programming SDKs). The number of reuses differs. While the signature and 

the PC driver units are reused several times, the specific SDK software units are not reused. 
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These results show that software units are reused by different software development teams of 

different horizontal (in different business units) and vertical (inside a specific software unit) 

projects. 

 

 

Figure 21 - Use of relevant software units in different business units (Schneider Electric; cf. Appendix Section E) 

Additionally, the study shows what kinds of units are reused by the different business units. 

The survey concludes that source code, software modules (set of classes), and binary code and 

guidelines are the most recent reused units. Figure 22 shows the study results. 
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Figure 22 - Reused units in software development (based on Schneider; (cf. Appendix Section E)) 

 

Figure 23 - Future improvements identified by the study of Schneider Electric 2012 (Brick = software unit) 

The final interesting result in the survey is the topics of future improvements for software unit 

reuse at Schneider Electric. The study identifies this as shown in Figure 23. Most of the 

interviewed persons identify the late arrival and unknown storage as a relevant point. The 

development teams had no idea where the software units could be found and when they are 

released. The next point is the missing knowledge that software units still exist. Both points are 
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described by Qu, Ji and Nsakanda (2012). The next point is the internal effort to integrate a 

software unit. This includes the low support during the integration. Figure 20 shows the 

difference between supported and unsupported teams. An interesting point in this study is that 

the reuse of the domain of a software unit is not seen as critical as the aforementioned points.  

The next section discusses the challenges identified in Chapter 2 based on the topic of missing 

SCAc knowledge. Therefore, the topic of industrial environments shown in this section is used 

to underline the problems. 

3.2.2. Knowledge	storing	problem	
For software engineers the problem of knowledge storing occurs if no external storing process 

description exists (see Boden and Avram, 2009). The storing of data and information is not a 

problem technical in software engineering. Today, knowledge management systems are able to 

store knowledge and to put information into a context and constitute knowledge (Bjørnson and 

Dingsøyr, 2008). This relationship and the associated information can be stored in systems. 

Therefore, different technologies exist. A typical technology is so-called semantic model 

(Seedorf, 2010). Such a model is not only able to describe the information itself, but also the 

meaning (semantics). This allows the linking of different semantic models representing the 

knowledge of different individuals or groups. An example of semantic mark-up language 

models are: Speech Framework (W3C, 2000), OWL2 (W3C, 2009), and Resource Description 

Framework (RDF) (W3C, 2004). Specialised knowledge is required to store the knowledge in 

such systems and their (semantic) models. Content management tools (e.g., GForgeGroup, 

2012) support development processes by storing of information. However, a commonly used 

tool or process to force the problem of storing of SCAc related knowledge and information is 

not identified in the used literature.  

If knowledge is not stored it can be get lost. This is called knowledge vaporisation (see Ven et 

al., 2006). This is an effect which occurs when people leave a company, for example. Often, 

these people are experienced users of technologies, relevant concepts, processes or domains. 
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However, their knowledge is part of their private experienced users and is mostly not 

documented. As a result, this knowledge is inaccessible to a company if such a person leaves 

(Bosch, 2004). The result of Knowledge Vaporization (KV) is an increase in cost because of 

adaptation of processes or people to replace the missing knowledge (see Seedorf, 2010). 

To store information or knowledge, a user may access a repository (e.g., knowledge 

management system) and use it. Therefore, the user has to know where to find a repository, 

how to access it and how to use it. From the SCAc point of view, such a repository system has 

to store different information. The problem is that SCAc related information may consist of 

different technology forms (e.g., service description or binary files). This is based on the fact 

that SCAcs are related to different software units which are based on different technologies and 

component worlds. Additionally, within each different software unit, technology forms (e.g., 

object orientation, component orientation, and service orientation), there can exist multiple sub 

technology forms or concepts (cf. Appendix Section D).  

This is also valid for component models. Special context dependency is where a software unit 

belongs to a component model. Beside the exact form and the properties of the components 

which correspond to the model, a component model also specifies how components can 

communicate with each other (interaction standard) and connect to each other (composition 

standard). Moreover, a component model can be constructed by implementations from different 

manufacturers using different technologies. Similar to the multitude of object-oriented 

languages, a number of component models specify different approaches which may be 

incompatible with each other. (Szyperski, 2002b; Gruhn and Thiel, 2000)  

The problem of component models is valid for component-based software construction and not 

found in this form in other construction forms. Though in the object-oriented software 

construction, a strong (economic) relation to the special paradigms is found (e.g., .NET and 

JavaEE). This is also found in component-based software development. Typically, component 
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models are related to a component world (e.g., .NET and Java). In service-based software 

construction there is currently no such dependency. Information from professional and/or 

market-political viewpoints, however, can be relevant for the software engineer (Szyperski, 

2002b) and, therfore, part of the SCAc description. Services do show a kind of world 

perspective looking on different protocols. Commonly used protocols are, for example, SOAP 

and Representational State Transfer (REST) (Singh and Huhns, 2005), and both are 

incompatible. Next to the stored software unit information, also additional information, such as 

descritpion files or additionally binary files, of an SCAc has to be stored.  

Regarding the industrial environment described in Section 3.2.1.2 the problem of knowledge 

storing occurs especially for supporting teams. Knowledge has to be stored in a way that other 

teams can use it (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). 

Next to the software unit information the SCAc examples in Section 3.1 show additional 

information. The shown integration SCAc requires the information which software unit is 

needed and how each unit is inserted. Additionally, an integration SCAc includes information 

about settings for the IDE, the development project or an integrated software unit. The 

transformation and deployment SCAc shown also identifies the need of additional tools. The 

parameter and the relation to software unit parts has to be described. The result of 

transformation Software Construction Artefact (SCA) is a new software unit. which has to be 

described also. 

As a result, of this view on the problem of knowledge storing following sub problems based on 

knowledge are identified 

- Problem of identification of a repository 

- Problem of access of a repository 

- Problem of use of a repository 
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Regarding the use of the repository it is identified that the content (software unit and SCAc 

knowledge) has to be stored. Therefore, the special charactersistics of the related technologies 

(software unit and SCAc) has to be known and how it insert in the system. 

Using the identified knowledge based sub problems, an inexprerienced user has a similar 

Software Reuse Information Demand model with multiple (i.e., three combined) solution 

elements as shown in Figure 16. If one of these elements is not known by the user the storing of 

knowledge migth be incomplete or take a long time or will not happen. Figure 24 shows an 

possible SRID model for an inexperienced user. Here, the solution for problems of 

identification of a repository (red), access to a repository (yellow) and the use of a repository 

(blue) are shown. 

 

Figure 24 - Example SRID model for knowledge storing 

Regarding the problem area of the distribution evironment knowledge, the problem of 

knowledge storing can be related as follows. This problem occurs for experienced software 

engineers (focused on a software unit and SCAc) who wants to store and, therefore, distribute 

an SCAc. Figure 24 shows the problem of the inexperienced knowledge level to store this 

knowledge. Additionally, the knowledge to store relates to the problem about distribution 

knowledge and the problem of missing technology knowledge. All three problem areas are 

related, but the primary research focuses on the inexperienced user who wants to perform 

SCAcs. Because storing SCAc knowledge is required for reuse, the problem of knowledge 

storing is discussed in this research.  
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3.2.3.  Knowledge	learning	problem	
Some research groups (e.g., Human Brain Project, 2011) deal with the acquisition of 

knowledge. Their aim is to find out how the human body absorbs knowledge and generates the 

corresponding semantic link. The underlying idea in this area of research is to emulate the 

human brain to gain positive results to improve systems of knowledge (e.g., for the medical 

sector; see Human Brain Project, 2011). 

Knowledge management tools provide knowledge to a user. However, the content of such 

provisions differs. Typically, a user gets a text which contains the searched knowledge or 

describes it (see Horeis and Sick, 2007). It is also possible that knowledge is provided using 

graphic or animated processes (see Bjørnson and Dingsøyr, 2008). Users have different ways to 

learn knowledge.  

The need to learn new knowledge is an relevant activity for software engineers (cf. Qu, Ji and 

Nsakanda, 2012). This is based on two facts in the area of software development: the changing 

tasks and fast growing nature of technologies and information (see Ajila, 2006). Software 

engineers have different ways to learn such new knowledge. Typically, professional or self-

training sessions, magazines, or podcast support are common examples. However, the problem 

is the given time, interpretation, and the learning possibilities of a person (see discussion in 

Section 2.2.2.3). 

 

Figure 25 - Example process for knowledge interpretation 
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Figure 25 shows the following scenario: (1) The experienced user combines the knowledge 

they are aware of with the input user interface. (2) Another user formulates a search request. 

The system uses an algorithm the compare stored knowledge with information of the search 

request. (3) This user interprets the provided knowledge. 

The problem of the process shown in Figure 25 is that the experienced user entering the 

knowledge cannot be sure the system interprets their perspective correctly. Also, the 

experienced user cannot be sure that the inexperienced user understands the knowledge in the 

same way (se Bjørnson and Dingsøyr, 2008; Ajila and Zheng, 2004) or is able to formulate a 

search request correctly (Picot, 2003). 

From the SCAc point of view, the knowledge to learn depends on the SCAc and the technology 

of the related software units. In general, a user has to learn how to prepare and execute an 

SCAc. Also, it can be necessary for a user to know how to handle the SCAc result. Especially 

in the creation or execution of an SCAc the problem of different technologies and component 

models may exists. A user has to learn different SCAcs for different software unit technologies. 

Using the SCAc examples in Section 3.1 this is also valid for additional tools used by different 

SCAc. A transformation SCAc for example uses transformation tools. These tools have to be 

installed and configured for the SCAc. This is also valid for deployment activities. In the 

example of an integration SCAc a user has to learn about different IDE tools and its 

technologies. 

The industrial environment of software engineers shows the problem of missing time and 

support. Reuse needs time and has to be planned (see Ajila, 2006; Frakes and Isoda, 1992). The 

discussion about industrial environment shows that if a team is not supported by experienced 

software engineers the investment in resources (e.g., time) increases. (cf. Section 3.2.1.2). 

The reuse of ‘unknown’ software units may speed up with the performing or learning support 

of experienced users. If such experienced users are not available, the software engineer or a 

development team is under constraint to investigate the possibilities and limitations of a 
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software unit by themselves (see study of Schneider Electric Section 3.2.1.2). To share 

knowledge is seen as a relevant success factor (cf. Qu, Ji and Nsakanda, 2012). 

Additionally, the learning curve is not shared. If one team discovers a way to simplify a reuse 

step, this knowledge may be not shared with other teams. In this team, profitability may be 

reached earlier. Therefore, shared knowledge between teams that could enable all teams to 

avoid the repetition of mistakes and generally accelerate the learning processes of all teams is 

missing; each team has an individual ‘learning curve’ (see study of Schneider Electric Section 

3.2.1.2; Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). 

These team-related problems become more pronounced as the number of developed reusable 

software units increases. The reuse teams are different for each product line, therefore; sharing 

the learning process with other (horizontal or vertical) teams is difficult. Often, the learning 

curve of one reusable software unit which was reused by the same team can be re-applied to 

later units with additional work (see STwS example in the study of Schneider Electric Section 

3.2.1.2). 

During the research no special solution or approach was identified supporting software 

engineers by learning SCAc related knowledge. To summarise the discussion about the 

problem of learning following knowledge based problems are identified: 

- Problem of different technologies and component worlds 

- Problem multiple variations of SCAc related actions 

- Problem multiple existing tools used in SCAcs 

- Problem of knowledge interpretation 

- Problem of variant results 

Using the SRID model to demonstrate the information demand an picture is created which 

differs to the example of Figure 16. While the SID and the OID can contain multiple 

interpretations of the SCAc knowledge or information the IP area only includes one set of 

related solution elements. In the real world this set is represented by the knowledge that is used 
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for learning and the interpretation of this knowledge by the experienced user who creates it. If 

the inexperienced user does not have the same interpretation the use of the learned knowledge 

might create a not valid SCAc from the perspective of experienced user. A user might use 

multiple knowledge resource to learn an SCAc. This can change the number of elements in OID 

and especially in the SID, but not the number of elements in the IP area.  

Regarding the three problem areas focused by the research. The problem of knowledge learning 

can be related to the research as follows. The knowledge required by the technologies (i.e., 

software unit and SCAc technology) and the distribution environment has to be learned by the 

inexperienced user.  

3.2.4.  Problem	of	searching	and	receiving	of	knowledge	
Usually, a user can search for knowledge by using a specialised search engine of such systems. 

Simple knowledge management systems provide knowledge as textual information. Another 

feature of these systems is the conclusion from existing knowledge to new data-driven 

knowledge. This can be reached, for example, by using a case-based reasoning approach 

(Allen, 1994). Usually, semantic models are used in such cases. For users, it is difficult to use 

these tools because of the diverse knowledge requirements (Seedorf, 2010; Picot, 2003).  

For knowledge to be received, first it has to be searched for. The problem is based on the fact 

that a search request (description) of the searched object has to be created by a user (see SRID 

model discussion in Section 3.2.1.1). Due to differing search algorithms and search 

technologies, a user might not be familiar with the use of search technology (Garcia et al., 

2006). Also, describing the information appropriately in a search query may represent a 

problem (see Picot, 2003; Garcia et al., 2006). 

From the SCAc perspective, a user might describe the SCAc input, result, or its behaviour. As 

discussed before, SCAcs differs in their used technology or component model. A user might 

have problems to use this information for a search query. The SCAc examples in Section 3.1 

show three different types of SCAc with different behaviours. Also, the results (integrated 
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software unit, a new software unit, and a deployed software unit) differ. The inputs are similar 

but differ in their use. In a transformation SCAc, for example, the input information is used to 

setup a transformation tool. Such actions of an SCAc should to be searchable. 

In addition to the experience of SCAc related information, a software engineer has to know 

how to reach or access such sources of information (see discussion of knowledge storing in 

Section 3.2.2) Each repository system is in place to advance different approaches since, for 

example, it may be necessary to authenticate in some repository systems (see Ajila, 2006). A 

user requires knowledge about an authentication system (e.g., user name and password).  

Some systems offer standardised approaches such as web portals, while others use advanced 

specialised applications, in addition, different types or use.  

Usually, software engineers are familiar with their own special in-house or free open source 

repository where they are able to search for information. The number of internal corporate 

repositories increases with the size of the company. A software engineer is not aware of all 

existing repositories in their environment (i.e., in a global company). This is particularly true 

for private repository of other software engineers.  

For software engineers, the problem arises in the functionality of finding information using the 

request results. Search engines such as Google allow to search in many different systems for 

information. Search results of general search engines such as these provide a variety of results 

that do not match the desired result also. 

From the SCAc point of view the problem of receiving SCAc knowledge includes another 

problem. The requested knowledge has to be complete. As logical result the input, 

configuration, needed tools and the output has to be described completely to repeat the SCAc. 

An example for this is the knowledge base CodeProject (see Maunder, 2012). Here, software 

engineers provide different software unit and description how to use the provided functionality 

of these units (domain context). But the SCAc related information is missing in most cases. As 

a result, an inexperienced user does not know, for example, how to integrate this unit. 
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The industrial environment of software engineers shows the problem of localisation for 

software engineers (see Bosch and Bosch-Sijtsema, 2010). One team member can be located on 

a different site than others of the same team. To exchange data is not only a problem of 

different time zone or culture but also a question of communication (see Taweel et al., 2009). 

The problem of localisation also occurs for a multiple teams of software engineers (see Taweel 

et al., 2009; Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). Different teams may be 

placed in different locations. Teams, as well as, single software engineers, have to 

communicate with each other. To search and receive knowledge (e.g., formulation of a search 

request and the download of software units) about a repository in different locations is required. 

Additionally, software engineers use different types of repositories. These types of repositories 

reach from handmade notes or files on the personal hard disc to a team, department, 

companywide or community repository system (see Ajila, 2006; Ha, Sun, and Xie, 2012; Qu, Ji 

and Nsakanda, 2012). As discussed before, to know how to connect to these repositories is a 

problem. A software engineer (or a team) has to know where these repositories may be found 

and how to use them (formulate search requests). 

The discussion about different views on the problem of searching and receiving knowledge can 

be summarised as follows. Search and receipt requires knowledge about the searching and 

receiving infrastructure. Additionally, a software engineer has to formulate a search request 

which requires knowledge about software units and SCAcs (e.g., domain or technical 

knowledge). A search result has to be learned and interpreted (cf. Problem of learning, Section 

3.2.3). As a precondition, knowledge has to be stored beforehand (cf. Section 3.1.4). 

From the SRID model view, this problem has to be demonstrated by using multiple SRID 

instances. The information demand of each single knowledge problem (i.e., find, access, and 

use of a repository) of repository location can be demonstrated by using the SRID model (see 

Figure 26). 
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Additionally, the formulation of a search request can be presented by aggregating the problems 

of technology software units and SCAcs (see Figure 27). Picot (2003) identifies that 

inexperienced user are not able to formulate a correct search request this limits the useful 

information. This limitation is shown in Figure 27 by a black circle representing a search 

request of an user.  

 

Figure 26 - Creation of the problem of repository localisation 

 

Figure 27 - SRID model for the problem of search request formulation based on Picot (2003, p. 106) 
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In the next step the final SRID model can be summarised by aggregating the SRID model for 

the problem of localisation, formulation a search request, and interpretation. Figure 28 shows 

the aggregation problem of searching and receiving. This problem is based on knowledge of 

repository location, search request formulation, and knowledge interpretation. 

 

Figure 28 - SRID model for information demand for search and receipt of knowledge 

The SRID model in Figure 28 demonstrates that the problem of searching and receiving 

knowledge is related to the problem area of the inexperienced knowledge level. Also, the 

remaining two problem areas are related to this topic. Especially the distribution environment 

which requires knowledge of an inexperienced user for searching and receiving SCAc related 

knowledge. The received knowledge about software units and SCAcs has to be interpreted. 

3.2.5.  Knowledge	exchange	problem	
In different projects software engineers have to share their knowledge. Typically, this can be 

done by arranging meetings supported by different presentation media (i.e., audio, video, or 

pictures) or by using knowledge management tools. Next to the discussed problems of 

searching and using of knowledge the problem arises to distribute knowledge in a way that it 

can be understand correctly by others. In contrast to the knowledge user, the software engineer 
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who is the knowledge creator has to look for the distribution possibilities (see Taweel et al., 

2009; Boden and Avram, 2009). 

Knowledge management systems can store information as knowledge and usually use concepts 

like location technology-independent, as for example, web pages or services (see Huang et al., 

2005). As a result, the user no longer has problems accessing such systems because on 

technology dependency (e.g., missing runtime for Java-based tools). A web page can be used 

independently of special runtimes. Using a web technology makes it possible to build 

knowledge systems that can be accessed and used from different locations (i.e., by using a 

network connection). However, the problem is more focused on entering the knowledge into a 

system and enabling others to find and use it (see discussion in Section 3.2.2). Considering this, 

three points are pertinent: insert knowledge in a system, request knowledge from a system, and 

receive knowledge (see Figure 25). 

The problem of knowledge exchange bases on the problem of storing, learning, searching, and 

receiving (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). Software engineers have 

to store knowledge and other has to find and receipt it. As a result, the problem of knowledge 

exchange includes the same problems for software engineers. Additionally, in the multiple team 

scenarios, software units are created by a singular team, but multiple reuse teams then use them. 

In the study of Schneider Electric shown in Section 3.2.1.2, one team would create a software 

unit and related SCAcs and teams from different industry areas would reuse the software unit. 

Qu, Ji and Nsakanda (2012) and Choi, Lee and Yoo (2010) also identify this problem, but focus 

on knowledge in general instead of SCAc or software unit knowledge.  

On the side of the reuse teams, two different effects of the multiple team scenarios are 

identifiable. When multiple teams reuse software units, the effort required in all these teams is 

nearly the same. Also, the learning curve may be nearly identical. If a single dedicated ‘reuse’ 

team exists, the effort decreases with each reuse due to the learning process. This decrease is 

not linear and stops at a certain minimum (see STwS scenario discussed in Section 3.2.1.2). 
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Even if this minimum seems to be a positive effect, the constraints of organisations (i.e., 

missing management of reuse) prohibit this effect in some cases (see discussion about 

organisational problems of software reuse Section 2.2.2.3). This may be leads to the following 

scenarios: Single Team without Support (STwoS) and Multiple Teams without Support 

(MTwoS; cf. Figure 20c). Here. No knowledge exchange to the supporting team exists. The 

study of Schneider Electric shows that such a scenario a significantly higher effort for reusing 

software units is required, since there is no support. This also leads to a decrease in profitability 

of the reuse approach compared to developing from scratch. While scenarios with support reach 

profitability with 3 or 4 reuses, the last scenario only starts to be profitable after five reuses (cf. 

study of Schneider Electric in Section 3.2.1.2). Additionally, the learning curve is not shared 

between teams (see problem discussion in Section 2.2.2.3).  

These team-related problems become more pronounced as the number of developed reusable 

software units increases. (see problem discussion in Section 2.2.3.3). 

Another typical problem is that teams or team members may be situated in different locations 

and have to cooperate over a distance (Qu, Ji and Nsakanda, 2012). Distributed software 

development scenarios cause problems in software architecture, engineering processes, and 

R&D organisation (Bosch and Bosch-Sijtsema, 2010). Also, the sharing of reusable software 

units between teams has a great impact on costs: 

“A problem observed […] is that when decoupling between shared software assets is 

insufficiently achieved is excessive coordination cost between teams. One might expect that 

alignment is needed at the road mapping level and to a certain extent at the planning level. 

When teams need to closely cooperate during iteration planning and have a need to exchange 

intermediate developer releases between teams during iterations in order to guarantee 

interoperability, the coordination cost of shared asset teams is starting to significantly affect 

efficiency.” (Bosch and Bosch-Sijtsema, 2010, p. 70) 
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The problem of missing knowledge exchange is identified by the analysis of other real 

development projects (see Boden and Avram, 2009). Software engineers may not be able to 

work with other solutions than the solutions they already know. In a worst case scenario, people 

are not able to fulfil their work or cooperate with teams using different versions of the same 

knowledge (based on interpretation issues; see Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 

2010).  

To summarise the discussion of the problem of knowledge exchange, the following statements 

can be made. Knowledge exchange consists of knowledge storing by an experienced software 

engineer, searching and receiving by an inexperienced software engineer, and the interpretation 

of knowledge by these engineers. Therefore, the problem of knowledge exchange includes the 

same sub problems (i.e., location, different technologies, learning, interpretation of knowledge, 

and the creation of search requests) as the problem areas it consists of. As a result, this problem 

is related to the three focused problem areas. Because of this problem is related to the other 

mentioned problems the SRID models explained in Sections 3.2.2, 3.2.3, and 3.2.4 explain the 

sub these as sub problems. 

3.2.6.  The	problem	of	knowledge	execution	
To avoid misunderstanding to the term application, which means software program in the scope 

of the thesis, the term knowledge execution is used instead of knowledge application. 

The difficulty is due to the fact that the definitions of knowledge and information are different 

(see knowledge term definition in Section 2.2.2.5).  

However, the difficulty is due to the fact that knowledge can be applied in different ways; 

based on experiences of a person. (cf. Qu, Ji and Nsakanda, 2012). There is no rule or process 

which defines how knowledge can be applied. Usually, knowledge has to be described in a 

form whereby other users can use it (cf. discussion of Qu, Ji and Nsakanda, 2012; Choi, Lee 

and Yoo, 2010). 
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Humans use knowledge to relate information (‘interacting’; see definition of knowledge in 

Section 2.2.2.5). This is a result of one or more learning processes. If knowledge is not 

adequate, humans may be able to work around this issue (Human Brain Project, 2011). To 

create such behaviour at system level is challenging. The problem is to create a system which is 

able to reuse the given knowledge to reach the same aim or intention as the user who creates 

this knowledge (cf. Qu, Ji and Nsakanda, 2012). 

To execute SCAc related knowledge (i.e., information about software units, tools, and their 

usage), it is necessary to handle different problems. The first one is the availability which is of 

crucial importance for software engineers. To guarantee the operability, (e.g., the frictionless 

execution and operation of software), all units of software have to be available. If a unit is not 

available, an application has to be able to react to it. With the handling of objects, in most cases 

local resources which can be verified, are meant. Though with the handling of components, 

local resources also exist in most cases, during the construction time, however, only the 

interfaces are handled. The existence of the resource is not always mandatory. This behaviour is 

even more pronounced with service-based construction (Breivold and Larsson, 2007) and leads 

to the problem of the availability at runtime (Kumar et al., 2007). The knowledge how to use 

information about software unit in an IDE (integration SCAc) or configure special tool 

(transformation and deployment SCAc) is necessary for an SCAc (cf. SCAc examples Section 

3.1). This kind of information have to be available for a user or a system for knowledge 

execution. 

Additionally, the SCAc knowledge and information has to be complete in order to perform the 

SCAc. Otherwise (i.e., knowledge is missing) problems can be created in a project (cf. Qu, Ji 

and Nsakanda, 2012). In the area of components, for example, the software engineer uses 

interfaces to execute functions of a service or component. But engineers have to know the 

structure of a component (including external dependencies; Sommerville, 2011). On the service 

side the internal structure of a service is not so relevant (Breivold and Larsson, 2007). Since the 
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implementation of services is encased, only a low dependency exists (cf. Breivold and Larsson, 

2007). Often, services provide all information (e.g., in an interface description). This 

description can describe dependencies which a client can try to find or to create an adequate 

alternative. In the area of classes (i.e., source code), the software engineer can influence the 

context dependency to a certain degree. This is done by adding, removing or changing the 

source-code. So, an engineer can manage the use of external dependencies or reduce such 

dependencies by independently writing missing functionality. Since these dependencies are 

necessary at different levels of the development, the software engineer has to know them 

intimately. In the area of components context dependencies (e.g., relation to other components 

or the runtime environment) are usual. The integration and transformation SCAc examples 

shown in Section 3.1 show this problem. For the transformation of each Java library the 

references to previously transformed software units has to be used. In the integration example 

the mail library has a lot of dependencies to other transformed libraries as well as to a special 

IKVM library. The internal study of Schneider Electric also shows that the topic of 

dependencies has to be improved in the future (see Section 3.2.1.2) 

Following list summarises the knowledge based sub problem identified in this discussion: 

- Problem of completeness (including dependencies) 

- Problem of availability 

- Problem of interpretation and realisation of existing knowledge 

Using the SRID model for the problems based on these three sub problems and, therefore, 

similar to the SRID model shown in Figure 26. 

To summarise the proof knowledge execution, it can be stated that this is an relevant problem 

identified by the literature (cf. discussion of Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 

2010). The execution of knowledge depends on knowledge about the technology of a software 

unit and the technical environment for execution. Therefore, it can be concluded that this 

problem also depends on the other discussed problems of knowledge. 
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3.2.7.  Problem significance 
To highlight the problem significance, the following two questions will be discussed: 

- How often is reuse used in industry? 

- What happens if problems occur? 

The questions are answered using a different discussion to Chapter 2. For the first question 

‘How often is reuse used in industry?’ no investigation was identified defining a percentage 

number. But different viewpoints indicate a high usage of software unit reuse in industry 

projects.  Following the discussion of Ajila (2006), the reuse of a software unit is a standard 

process used in software development projects. This statement is supported by other reuse 

discussions of Morisio, Ezran and Tully (2002) and Ha, Sun and Xie (2012). Thereby, reuse 

can appear, for example (see McCarey, Ó Cinnéide and Kushmerick, 2008), as a main focus 

(development-with-reuse) or inside a development process (reuse-within-development: see 

Chapter 2 Section 2.2.1.4).  

Another indicator is the development environments used today. Often IDEs (SREs) with high 

reuse support are used (see discussion of Garcia et al., 2006). Typical examples are Visual 

Studio and Eclipse and these support developers to perform software unit reuse, sometimes this 

occurs automatically, for example the automated creation of a web service client out of a web 

service description file. 

The IDEs mentioned are related to another indicator. Object-orientation, component-orientation 

and service-orientation are relevant models for software development. As shown in Chapter 2 

Section 2.2.1.6 these are reuse technologies (or concepts). As a logical result, these concepts 

are often used. Another related indicator is the reuse landscape (see Figure 3 and Table 2). The 

reuse topics represent relevant fields in software engineering and most of them use the 

mentioned reuse models (or concepts; see Table 2) 

However, software development can be done without any software unit reuse. As a personal 

opinion this particularly occurs in the area of new technology research, and where software 
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developers have no knowledge of reuse in their specific field. Sometimes reuse may be avoided 

based on the risk of failure. In such situations, software development has to be done without 

reuse support.  

3.3. 	Missing	solution	approaches	
In Chapter 2 four problems are identified from the literature. The discussion in Chapter 2 

concludes that these problems are challenges for the exchange and execution of SCAc related 

knowledge. This chapter discusses the problem areas in more detail. In the literature solution 

approaches focusing on the three knowledge problems related to reuse activities could not be 

identified.  

However, approaches with a specialisation focusing on one problem area, such as technology, 

and one single SCAc can be found. In the following, some examples are discussed briefly. 

McCarey, Ó Cinnéide and Kushmerick (2008) focus on supporting software engineers by using 

agents. In this approach, agents perform, amongst other activities:  

learning from a human user and 

- sharing knowledge between software engineers. 

In this approach an agent is used to study and analyse the activities of a software engineer in an 

Eclipse environment focusing on Java source code creation. All relevant information about the 

reuse of a software unit (i.e., source code) is stored in an information retrieval model. Together 

with a repository this system is able to store knowledge about the use of a software unit. The 

system can analyse this knowledge and provide this to other users. The solution described by 

McCarey, Ó Cinnéide and Kushmerick (2008) is useful from the perspective of the author of 

this thesis and can be seen as a ‘learning by doing’ approach. The advantage of this type of 

approach is that the knowledge level of a software engineer is not changed. Regarding the 

focused problem areas some disadvantages of such a type of approach can be identified. The 

first on is the focus on one technology and one type of software unit. The example of McCarey, 

Ó Cinnéide and Kushmerick (2008) focuses on a Java source code in an Eclipse IDE, and  the 
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research does not focus and does not show the possibilities of focusing on other software unit 

technologies. Ye and Fischer (2005) follow a similar approach to McCarey, Ó Cinnéide and 

Kushmerick (2008). Both approaches focus on the integration of a single software unit type 

(i.e., source code) with a special technology type (i.e., Java in the case of McCarey, Ó Cinnéide 

and Kushmerick, 2008). The problem area of different software unit SCAc knowledge is not 

covered by this approach. 

Regarding the transformation and deployment, a similar picture is identified. In transformation, 

for example, different specialised solutions can be found. For Java and .NET, for example, 

compiler and interpreter exists which transform source-codes into component byte codes. Tools 

like SVCUtil (cf. Microsoft, 2012d) transform web service information into source codes or 

components. Even if such tools provide the possibilities to support two different software unit 

types, they focus on a special platform (in this case .NET). The same can be found with Java 

side using WsGen (Sun, 2013). Transformation tools like IKVM (Frijters, 2011) are able to 

transform one technology into another. In this case Java components are transformed into .NET 

components. The problem area of different software units or SCAc technologies is not covered 

by such tools. Even if these transformation tools avoid the manual performance handling of the 

transformation, these tools require ‘handmade’ knowledge (e.g., configuration parameters). The 

required knowledge depends on the different tools. For the problem area of distribution 

knowledge no approach was identified. 

Next to the idea of using similar firmware (cf. discussion of device deployment of Zinn, 

Fischer-Hellmann and Schoop, 2012a) one example was identified that focuses on the problem 

of different technologies. Some vendors provide tools to supports a user in creating a 

configuration for different devices (e.g. Altera, 2012).  

Device and firmware vendors provide their own application for device deployment (cf. Zinn, 

Fischer-Hellmann and Schoop, 2012a). Even if these different tools avoid the manual handling 

of device deployment knowledge, these tools still require knowledge which has to be handled 
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by users. For the problem area of distribution environment knowledge and the problem of a 

user’s knowledge level, no approach was identified. 

A solution or discussion about the definition of reuse activity knowledge focusing on one or 

more of the three focused SCAcs was not found. 

The research presented in this thesis focuses on the support of inexperienced software engineers 

to perform a SCAc. Thereby, the research focuses on an approach handling the three focused 

SCAcs. While a similar approach (i.e., focusing on the three problem areas) was not found 

during the research phase, such an approach may be a contribution to the topic of SCAcs.  

3.4. Summary	
This chapter analyses the problems of missing software construction activity knowledge. 

Therefore, it starts with an overview of the three focused software construction activity types 

chosen for this thesis: integration, transformation, and deployment software construction 

activities. For each activity type, three examples are given in the beginning of the chapter. After 

this discussion the industrial environment as typical environment of software engineers is 

explained. Additionally, the Software Reuse Information Demand Model is presented. This 

model is a research result of the Ph.D. study and is used to visualise the knowledge level of a 

person. 

In the second part of this chapter five knowledge problems are discussed: knowledge storing, 

knowledge learning, search and receiving of knowledge, knowledge exchange, and knowledge 

execution. These knowledge problems are discussed as problems for three of the focused 

problem areas. Additionally, the SRID model and the industrial environment are used to 

explaind negative effects of the knowledge problems to the area of software unit reuse and the 

use of SCAcs. The result of the discussion is that the three problem areas are challenges to 

create an approach for the use of SCAcs which performs single software unit reuse activities. 

The analysis shows that the focused problems are based on different knowledge problems. The 

last section of this chapter discusses examples of existing approaches and concludes that these 
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are not adequate to solve all problem areas at the same time. The next chapter defines a basic 

idea and a concrete concept of a solution focusing the knowledge level of the discussed 

problems of this chapter.  
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4. A	general	approach	to	realise	knowledge-based	
automated	reuse	activities		

The previous chapter discusses the challenges for creating an adequate technique to handle 

software construction activity knowledge. This chapter provides a solution to enable 

inexperienced software engineers to perform software construction activities and it also 

explains the concept which focuses on these challenges. Therefore, this chapter begins with an 

explanation of the basic idea and the solution approaches focusing on the different problems 

identified in the literature review. The concrete concept is explained in the second section of the 

chapter.  

4.1. 	The	basic	idea	
The basic idea is to enable inexperienced software engineers to perform software reuse 

activities on special software units that require experienced user knowledge. This support 

should be done automatically or partially automatically without a long learning process for 

software engineers. As concluded in the study of Qu, Ji and Nsakanda (2012) the use of IT is 

relevant for the exchange and execution of knowledge. Therefore, the basic idea is based on a 

technical infrastructure. The development of software can be seen as a set of sub-steps, for 

example, the reuse of a software unit, integration of a unit, or deployment. The basic idea 

focuses on handling such steps, and sketches a solution. This does not mean that a complete 

software unit development process or a complete reuse process of a software unit is focused by 

this idea. It means only the support of single and specialised sub-steps (i.e., software 

construction activities) is focused upon. Figure 29 shows an example process and the focused 

sub-step support by the basic idea of the focused approach. The focused approach is useable in 

the implementation phase of a development process. Here, different activities (e.g., integration, 

transformation or deployment) are performed. The figure uses an example login software unit. 

The download, transformation and integration of software units are focused steps in this 

research. This figure is only an example. One characteristic of the basic idea is that the focused 
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approach is not a development process and does not depend on such a process. From the 

viewpoint of the author, software construction activities are typical reuse activities which occur 

with and without specific reuse development processes (cf. Perspectives on reuse in Section 

2.2.1.4).  

 

Figure 29 - Example of focused reuse steps 

From a more technical perspective, the idea focuses a solution to combine a knowledge 

database with service provision. Regarding the discussion about inexperienced software 

engineers it became clear that, in most cases, knowledge about software unit reuse activities 

had to be learned from scratch (cf. Section 3.2.3). Sometimes the knowledge learned may never 

be reused by individuals. So the idea is to create a service which provides the capability of:  

- searching for reusable software unit activities, 

- automating single reuse steps, 

- storing reuse activity information permanently, 

- being accessible independently of location or technology platforms, and 

- extending the knowledge database with new reuse activity information.  
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Figure 30 shows this idea. 

 

Figure 30 - Basic Idea of this thesis 

(1) It is relevant for the idea to have an experienced user (2) storing knowledge about software 

reuse activities of a specific software unit (3) in an environment. (4) This stored knowledge 

may be used by a person who is not an experienced user in this particular software unit and/or 

the stored reuse activity. (5) This is done by using a service. 

 

Figure 31 - Concepts used for problem solving 
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The focus here is on the different challenges discussed in Section 2.2.3.3 by the combination of 

four concepts: 

(A)  Abstraction of software unit complexity 

(B)  Automation of reuse activities / Abstraction of distribution environment 

(C)  Service for management of software units and reuse activities 

(D)  Knowledge repository for reuse activities 

Figure 31 shows where the different concepts can be found in the idea.  

The approach uses abstraction to handle software unit complexity (i.e., changing technologies) 

to support a user in searching, handling, and reusing a software unit. A user can search for a 

software unit and an SCAc. The idea is based on the concept of abstraction which is widely 

used in software development (for example, see the use of abstract data types in Ludewig and 

Lichter, 2010 or abstract specification in Sommerville, 2011).  

The idea to use automation for SCAc is based on the example of industrial manufacturing For 

example, in the automobile industry, cars are built using tools and computer-aided design 

(CAD) models (cf. Zheng, 2007). Intellectual properties (knowledge parameters) are part of 

such models. As a result, different variations of cars can be built using a single model. 

Manufacturing machines can be programmed using the model and most of the construction 

process steps can be performed automatically. Likewise, it may be possible to automate special 

reuse activities (i.e., software construction activities) to support software engineers. 

Within this idea, a service is used for handling (storing, removing, editing, and executing) of 

software construction activities. Therefore, the concept of service-oriented architectures (Singh 

and Huhns, 2005) is used. This allows a distributed environment. This enables people to access 

or use these functionalities independently of their location. In terms of automated software 

reuse activities; this feature (i.e., service-oriented architecture) reduces complexity. This means 

that the user does not have to know how to create a setup or how to perform a reuse activity. 

Also a user does not have to think about locations and environments.  
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The concept of using a repository is based on the fact that repositories are already widely used 

in the area of software engineering to store data and provide management functionality (see the 

discussion of Morisio, Ezran and Tully, 2002). The basic idea focuses on two different types of 

repositories. The first stores information about software units similar to a Content Management 

System (CMS). Here, software unit data and information can be stored using an abstraction 

model. This model simplifies the view on software units. The second repository type stores 

information and knowledge about software reuse activities which will be relayed to the 

software unit information. The second repository behaves more as a Knowledge Management 

System. 

The four focused concepts are not new in the scope of software engineering or industrial 

behaviour. The literature review in Chapter 2 did not identify approaches using these concepts 

together to focus on the automation of software unit reuse activities for inexperienced software 

engineers. Therefore, the idea and the related concept (see Section 4.4 and the realised solution 

in Chapter 5) have to be proofed to be a valid technique to the identified lack.  

The expected mode of operation is now summarised and related to the problems discussed in 

Section 2.2.3.3. The problem of the knowledge required based on variants of different 

technologies is handled for the inexperienced software engineer by storing the information 

about software units into a common model which does not focus on the variants (i.e., 

abstraction). Additionally, by use of the described service, the inexperienced software engineer 

does not need to handle the differences in the technologies. The service is also relevant for the 

problem of different knowledge levels of software engineers. The service will deliver the same 

information, use the infrastructure to perform the SCAc in the same way, and deliver the same 

results. This is independent of the knowledge level of a user. It is expected that the behaviour of 

the service also has a positive effect on the problem of the distribution of knowledge. The 

service holds the infrastructure (e.g., repositories and SCAc execution tools). As described, the 

user does not need to know this infrastructure and how the information is distributed. The 
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problem of a missing definition of software reuse knowledge should be handled by the model 

for software construction activity. Here, information is described which is used as knowledge 

by the service. 

4.2. 	Focused	user	profiles	and	scenarios		
The previous section illustrates that the focused approach is intended to supports software 

engineers with insufficient knowledge in performing the specific reuse activities in software 

development projects. To define the corresponding user profiles, it is first necessary to classify 

the corresponding application scenarios. 

The approach focuses on traditional reusable software units (classes, components, and services) 

in the field of object-oriented, component-based, and service-bases development (see Appendix 

Section D.1). This means using these software units as artefacts in a black-box reuse project. 

These units represent a solution, either individually or in context from a domain specific view. 

A solution from the perspective of the focused approach is, therefore, is the provision of the 

software unit information which may consist of classes, components and services, as well as 

any additional information, such as configuration and dependencies. This includes SCAc 

information. From a technical point of view, this solves at least the problem for the user. In 

addition to the provision of software units, the extra information collected can be deposited. 

Reuse activities are represented in this thesis by focusing on transformation, integration, and 

the deployment construction activities of software units. In detail of this, thesis this means the 

adaptation, integration into IDEs as well as the deployment of software units into embedded 

devices.  

The following application scenarios are focused: 

1) Software engineers want to use these software units to fulfil a requirement that they are 

developing or fixing a problem that is encountered in the development of a software 
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unit. Therefore, the engineer has to reuse the activities (i.e., reuse of procedures cf. 

Section 2.2.1.4. 

2) Software engineers want to provide software units and activity information/knowledge 

for general reuse. 

Generally, these two application scenarios identify two different user profiles: (1) ‘knowledge 

user’, and (2) ‘knowledge creator’. These profiles will be discussed in the following sections. 

4.2.1. 	Knowledge	user	(KU)	–	Reuse	of	software	units	
The following two hypothetical examples illustrate the focused application scenario for the use 

of software unit activity knowledge: 

Example 1 "Service Discovery": In automation industry, the use of web services has become 

standard (Jammes, Mensch and Smit, 2007). Devices with limited resources (so-called 

embedded devices) are equipped with Web Service interfaces. In this example, a software 

engineer is given the task of creating web services on such a device ‘discoverable’, (i.e., a 

device which is connected to a network can be found automatically by an application or other 

device and used). In the field of automation, the Device Profile for Web Service standard is 

used for this purpose (Jammes, Mensch and Smit, 2007). This profile defines a protocol 

extension for SOAP-based web services that enables web services to provide discovery 

functions in their web operations (which may differ from device to device) to be used 

dynamically. The SOA4D Group (see Jammes, Mensch and Smit, 2007) provides components 

for devices based on conventional technologies (e.g., C++ and Java). Software engineers can 

download them and use them in their software development projects to fulfil requirements. 

However, an extensive setup of the used development environment is needed. One example is 

the DPWS units which have dependencies that need to be configured (cf. DPWS example in 

Section 3.1.4). 

Example 2 "Corporate Identity": A software engineer has to integrate the company's usual 

AboutBox into their latest program based on C#. However, this results in the following problem 
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for the software engineer. This AboutBox was developed using the Java technology that is 

incompatible with its .NET based program. The engineer now has several options for solving 

the problem (e.g., develop their own AboutBox or build an adapter).  

Another possibility is using an existing component (e.g., Java-.Net Bridge) which solves the 

problem for software engineering, or performing the conversion of AboutBox by using a 

transformation application (e.g., IKVM) into a C# AboutBox. The latter provides a problem for 

the software engineer; because IKVM applications have to be parameterised extensively. As in 

the first example it is necessary to prepare a complex configuration. 

In both examples, an existing software unit (i.e., DPWS unit and the AboutBox) may be used to 

solve the problems. The units themselves are smaller parts of software and focus on small 

functionality, but require the use of additional knowledge (e.g., for configuration). The first 

example is the configuration of the dependencies in the development environment. In the 

second example, complex transformation parameters are needed for additional applications (cf. 

SCAc examples in Section 3.1). 

Also, specialised knowledge is necessary in both cases. For people who have this knowledge, 

there is no direct need for an environment such as the focused approach that supports the use of 

this knowledge. An exception may be the time saved by using an automated reuse activity. For 

people who do not know this, the focused approach might be an added value from the 

perspective of the author. An interesting aspect in the use of the focused approach is the fact 

that users of this platform are not under obligation to acquire the knowledge. 

Thus, the focused approach is aimed at a user profile that has the following properties: 

1. The people do not have the necessary knowledge to reuse a certain software unit. 

2. The people, however, are under constraint to use such an approach generally.  

3. The people are not interested in acquiring the knowledge for independent use at a 

later time. 

Such a user profile is related in this thesis to following groups:  
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1. ‘Young Professional’: Young professionals with software development 

backgrounds, who do not yet have enough knowledge (Garcia et al., 2006). 

2. ‘End User’: Software engineers who do not have a software development 

background yet develop personal or professional software. Typically, these people 

develop web pages, macros or small applications (Ko et al., 2009). 

3. ‘Senior software engineer‘: Experienced software engineers who have no 

knowledge of the specific software unit and its activities.  

The research of this thesis focuses on young professionals and senior software engineers. The 

user profile is called the Knowledge User (KU) profile. 

4.2.2. 	Knowledge	creator	(KC)	–	Provision	of	software	units	and	reuse	
ffactivities	knowledge	

The following hypothetical examples are intended to clarify the focused application scenario in 

the provision of software units and reuse activity knowledge: 

Example 3 "Corporate Web Services": A software engineer has to create a standardised Web 

Service that allows information to be queried regarding alarm information (i.e., sensor alarms) 

and devices (i.e., embedded devices). This Web Service is to be used to exchange data 

uniformly between horizontal and vertical software applications of a company. After 

completing the task (the development of such an interoperability Web Service), the software 

engineer has to select an appropriate repository to provide the development result to the other 

software engineers. 

Example 4 "Corporate Web Service Integration": A task is given to a software engineer to 

integrate the service developed in Example 3 into an existing software application. The 

software engineer has to be aware of the integration of this Web Service and its additional 

artefacts in the used development environment. The service requires extensive knowledge of 

copying, referencing, and configuring activities. Due to these specific requirements, the 

software engineer chooses to automate these activities to perform this integration process more 



A general approach to realise knowledge-based automated reuse activities 
_____________________________________________________________________ 
 

____________________________________________________________________ 
117 

 

easily a second time. In addition, the software engineer also wants to provide this automated 

integration to other users.  

Example 5 "Corporate Web Service Transformation": By using the other previously 

transformed software unit (Corporate Web Service), the engineer of Example 4 recognises that 

it is possible to handle the problem of transformation. The unit solves the problem of unified 

communications, but in a different technology type. For this reason a transformation tool is 

used (e.g., SvcUtil) to change the original software unit into the required technology type. This 

automates the transformation step for easier reuse at a later date. In addition, the software 

engineer wants to make this automated transformation available to other users. 

The software engineer of Example 3 has various problems, all based on knowledge. Firstly, it 

has to be ensured that all other teams have access to a repository and are able to use it. 

Knowing ‘where’ to find information and ‘how’ somebody gets the information to decide is 

part of the process of knowledge acquisition. 

If the software engineer of Example 3 only uses this software unit for themself, this will not 

raise any problems. When spreading to other software engineers, however, the engineer is 

confronted with various issues. First, the knowledge (automated integration) has to be described 

in a format that other people are able to use. Second, it has to be found as seen in Example 3, 

using a repository to distribute this knowledge. Here, the question of ‘where’ and ‘how’ arises 

accordingly (see Example 3), revealing the same knowledge problem as seen in Example 4 and 

Example 3. 

These examples point to relevant application scenarios for the focused approach. A user will 

need to provide knowledge for others to use. In addition, there is a need to automate recurring 

activities that are of use. This knowledge can also be maintained by other users as well as the 

producer of a software unit. Each of these activities is based on knowledge. 

In these examples, the focused approach is directed to a user profile that has the following 

properties:  
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- Users have the knowledge of a software unit and want to make this available to other 

users. 

- - Users have knowledge about reuse activities (e.g., integration and transformation) and 

want to make these available to other users. 

Such a user profile is expected in this research by the following groups: ‘senior software 

engineer’: Experienced software engineers of certain software units, applications integration, 

and transformation scenarios that have the relevant knowledge. 

In the scope of this research, the focus is on such senior software engineers. The user profile is 

called the Knowledge Creator (KC) profile. 

4.3. 	Focused	development	project	scenarios	
The previous section describes both of the user profiles used in the basic concept. In the 

following section, the focused development project scenarios are described using these user 

profiles. This mainly based on the statement of Qu, Ji and Nsakanda (2012) that teams and 

knowledge are distributed. The result is the description of the application area of software 

engineers that is focused by the research of this thesis.  

4.3.1. 	Separate	user	development	projects	
The first perspective on development project scenarios is separated into development projects 

or sub development projects both of which are only handled by one software engineer. 

4.3.1.1. 	Single	KC	–	single	KU	

 

Figure 32 - Single KC and Single KU relation 
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Figure 32 shows a typical scenario in smaller development projects. An inexperienced user (KU 

profile) uses the knowledge of reuse activities for a single software unit in this development 

project. 

4.3.1.2. 	Single	KC	–	multiple	separated	KU		

 

Figure 33 - Single KC related to multiple KU 

Multiple inexperienced users handling the same knowledge of reuse activities for a single 

software unit are shown in Figure 33. However, not all users are involved in the same 

development project. This scenario is typical for software engineers using repository 

communities (e.g., CodeProject; cf. Maunder, 2012). 

4.3.1.3. 	Multiple	KC	–	single	KU	

 

Figure 34 - Multiple KC related to single KU 
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The third interesting scenario is the use of multiple software unit reuse activities by a single 

user. This is also a special variation of 1 KC – 1 KU and can be handled by looking on each 

relationship individually. This is shown in Figure 34. 

4.3.1.4. 	Single	KC	–	multiple	related	KU	

 

Figure 35 - Single KC related to multiple related KU 

An interesting scenario is a development project where different team members are working 

together. Such scenarios are created multiple consultants or if a number of smaller companies 

work together for one customer. Such a scenario may include that different team members are 

not located on the same site yet have to reuse the same activities, for example to create their 

own working environment (cf. Qu, Ji and Nsakanda, 2012). This is shown in Figure 35. 

4.3.2. 	Separate	team	development	projects	
In the previous section, only single software engineers with a KU profile are described. Often, 

in global companies, such development projects are done by development teams (cf. Qu, Ji and 

Nsakanda, 2012). 
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4.3.2.1. 	Single	KC	–	Multiple	non-separated	teams	

 

Figure 36 - Single KC related to multiple-non separated teams 

Figure 36 shows a typical scenario in global development projects (cf. Qu, Ji and Nsakanda, 

2012).; multiple KU teams working together on a development project. Often, such teams are 

not located on the same site and are mostly divided by culture or time zone differences which 

have negative effects on communications (see Taweel et al., 2009). It may be that reuse activity 

knowledge has to be used by all teams. The complexity in this scenario can be increased if 

teams or single team members use some of the scenarios in Section 4.3.1.  

4.3.2.2. 	Single	KC	–	Multiple	separated	teams	

 
Figure 37 - Single KC related to multiple separated teams 
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Multiple, separated teams using the same knowledge of reuse activities for a single software 

unit are shown in Figure 37. However, not all teams are related in the same development 

project. This scenario describes horizontal development projects. The complexity in this 

scenario can be increased if teams or single team members use some of the scenarios in Section 

4.3.1.  This scenario is similar to the internal case study of Schneider Electric (cf. Section 

3.2.1.2). 

The research of this thesis focuses on all shown scenarios. Because of limitations of time and 

number of participants, this research performs a case study showing the scenario of a single KC 

and multiple separated KU (cf. Figure 33). The analysis result of this scenario is also valid for 

the other scenarios. 

4.3.2.3. 	Decision	maker	
When changing the perspective to the decision maker of used software units, two interesting 

scenarios can be identified: distributed and non-distributed decision scenarios. In non-

distributed decision scenarios, the decision maker - the person who decides to reuse a specific 

software unit - is the same as the person performing the reuse activity. However, there are 

scenarios in which the decision maker and the performer are not the same person. Within the 

scope of this thesis, this is called a distributed scenario because the individuals may be located 

in different places and may differ in their domain of experienced users (cf. Qu, Ji and 

Nsakanda, 2012; Choi, Lee and Yoo, 2010). Software architects are typically these kinds of 

decision makers in software development. Section 3.1.3 described these focused scenarios. 

A distributed scenario can be explained as follows: Based on the scenario of Schneider Electric 

(see Section 3.2.1.1), two teams may be situated in different locations (e.g., France and India) 

while working together in a software development project. The French team defines the 

architecture and pre-selects existing software units for reuse that are developed by the same 

team. The Indian team is responsible for the real implementation and integration. The decision 
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about software units is made by the French team. If the Indian team does not have all the 

relevant knowledge it cannot start the development process or may do so only partially. 

4.3.2.4. 	Focused	development	scenarios	
All the scenarios presented in Section 4.3.1 and Section 4.3.2 are relevant within the scope of 

the focused approach, especially the scenarios which involve handling multiple KU profiles in 

different locations. 

The decision maker, who decides which kind of software unit should be reused, is not as 

relevant for the focused approach in this thesis. However, it is relevant to know that this 

decision is one way to create the KC and KU profile relationships in the different development 

scenarios. 

4.4. 	The	fundamental	concept	

4.4.1. 	Software	construction	as	concept	bases		
A relevant part of the fundamental concept is adopting the perspective of software construction 

(see Section 2.2.2.1). Therefore, the concept focused approach has to be explained first. Two 

elements are relevant within this perspective: Service-based Software Construction Process 

(SSCP) and Software Construction Artefact (SCA). 

 

Figure 38 - Parts of the Service-oriented Software Construction Process 
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The SSCP describes the method of the focused approach. This has been briefly described by the 

basic idea (see Section 4.1); it handles Software Construction Artefacts for the user, these 

artefacts contain different information about software units and related reuse activities. Both 

perspective elements are described in more detail as follows. 

Figure 38 shows the basic design of an SSCP. This contains five elements. In the following, an 

overview of each element is shown. 

4.4.1.1. Representation	of	the	SSCP-components		
The SSCP uses four different parts: external structure, software construction artefact, software 

construction service and an optional process description. 

External structure: The external structure represents a target platform (platform specific 

implementation) in which software construction artefacts are inserted at a later time. Often, 

reuse activities (e.g., the focused SCAcs) have a relationship to a specific external structure. 

This depends, in particular, on the respective design phase of a reuse activity or a software unit. 

The external structure is part of the user’s environment and not specified by the focused 

concept. Therefore, it is not relevant for the SSCP how the software engineer or designer 

creates the required external structure. 

In the scope of the research, an integration activity uses an IDE, a deployment activity uses an 

embedded device or deployment platform, and a transformation activity uses, for example, a 

file and folder structure as an external structure. 

Software Construction Artefact: “A software construction artefact (SCA) is a typified unit 

which is the basis for the construction of software.” (Zinn, 2008, p. 80) 

Therefore, an SCA represents a container for software units within the SSCP. The basic idea of 

an SSCP is to enable the execution of SCAc, and not to change the software unit content. An 

SCA includes the necessary information. Therefore, an SCA consists of (cf. Figure 39): 

 the different units of modelling (UOM, software units, i.e., objects, components, and 

services), 
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 readable data for software engineers and designers (human readable data),  

 data for reuse activities (i.e., transformation or integration; mostly non-human readable 

data),  

 software construction activity information related to the unit of modelling, 

 an SCA type which describes the contents of the units of modelling, and 

 a service interface.  

 

Figure 39 - Content of a Software Construction Artefact 

An SCA contains different implementation solutions (e.g., non-readable data in Figure 39) from 

which a software engineer is able to choose. Again, the solutions can be realised in the 

technologies of the different software technology approaches or their combinations as objects, 

components, and services. Each variant may also have multiple reuse activities (cf. Figure 39).  

SCA types: The classification of SCAs corresponds to meta-information and serves to 

differentiate the contents. It describes the professional content which is carried by the units of 

modelling and, therefore, is relevant for the software engineers to identify a software unit or an 

SCA. Note: The SCA type is explained in this section and shown in the realisation in Chapter 5. 



A general approach to realise knowledge-based automated reuse activities 
_____________________________________________________________________ 
 

____________________________________________________________________ 
126 

 

These types are not relevant for this research but are used for further research. The types are 

published throughout the Ph.D. research (see Zinn, Turetschek and Phippen, 2008). 

Within this thesis, four of the internal content-dependent types are distinguished: data, 

functions, structure and (graphic) interface elements. These constitute the basic types of 

software unit (Zinn, Turetscheck, and Phippen, 2008). This differentiation serves to display the 

software-technical contents of the artefact for the software engineer. The view and expectation 

is limited to these four types: 

 Data: Data represents all the information that is worked with. A software unit that 

belongs to a Data SCA typically provides data or information. In comparison to 

Function SCAs, Data SCAs have no or very low costs at the data gathering stage.  

 Functions: With the function type, functions, methods or operations are described. 

They exist locally and/or externally. The useable content of a software unit that is 

related to a Function-SCA are functions, methods or operations. 

 Structure: The structure type is a carrier of information in the form of interfaces, class 

structures, patterns, and architecture defaults.  

 (Graphic) user interfaces: This type of software unit includes (graphic) user 

interfaces. Therefore, lightweight (e.g., Extensible Application Markup Language -

XAML or Scalable Vector Graphic-SVG and library-based, as for example, Windows 

Forms) technologies are suitable. The useable content of a software unit that is part of a 

User Interface (UI)-SCA are user interfaces. 

The shown definition of the SCA types is a summary of the definition given by Zinn (2007). 

Service Interfaces: For the realisation of the SCA, different interfaces are necessary. Two 

interfaces are distinguished: the software construction service interface and the interfaces for 

handling individual units of modelling inside the SCA (see Figure 40). 
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Figure 40 - Service interfaces of an SCA 

Software construction service interface: Each artefact is offered by a software construction 

service (SCS). This service provides standardised access methods to the information (the 

artefact and the included software units).  

 

Figure 41 - Reuse of software construction artefacts 

Interfaces of the units of modelling: The interface for the single units of modelling provides 

technical, domain, and additional information which are necessary for the development. Figure 

41 shows examples of local (b) and global (a) distribution, as well as showing the reuse of 
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software units by repositories providing these services. This service also includes the 

management of SCAcs. 

Units of modelling: This defines single software including components, objects, and services 

including their required descriptions, as well as, the related reuse activities. 

The focused approach of this research is to create a service-oriented environment for the 

storage and execution of knowledge of software unit construction activities. This thesis does 

not refer to all possible aspects of these activities, focusing rather on the aspects of: 

1. search of the focused SCAc information (and software units),  

2. tool-based transformation,  

3. integration within development environments, and 

4. embedded device-based deployment of software units. 

 

Figure 42 - Automation concept 

The goal of the approach is to support software engineers to reuse specific software units. The 

inexperienced software engineers are focused (KU profile), which means they do not have the 

necessary knowledge to perform a specific software reuse activity. This goal is reached by 

(partial) automation of these specific reuse activities. Figure 42 shows an example. Here, a user 
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has to discover the software units manually. The focused reuse activities are performed 

automatically for the user by the SSCP. 

The input of knowledge information can be performed by use of a graphical user interfaces 

(GUI) or other knowledge detection approaches (i.e., McCarey, Ó Cinnéide and Kushmerick, 

2008). An UI is a defined interface that communicates with the environment of the focused 

approach (see Figure 43). 

Note: For the explanation of the concept a UI is used. But the definition of a UI is not part of 

the focused concept. Also, how the described service is used or integrated in an existing 

environment is not defined. The thesis uses one possible way of usage and service integration. 

 

Figure 43 - UI as abstraction layer for the focused environment 

The knowledge given by an experienced user is stored within a semi-semantic model. On a 

basic level, this knowledge consists of software units, additional information (such as 

documents, video, audio, and so on), knowledge about adaptation of the units, as well as 

knowledge about their integration into software development environments. Figure 44 

demonstrates this property. 

 

Figure 44 - Data content of the SSCP environment 
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A service-oriented architecture is used to enable the integration of service-based extensions 

(e.g., plugin) into the focused approach. Thereby, the plugins are able to implement and 

perform the stored activity knowledge to the focused reuse activities (transformation, 

integration, and deployment) as well as all other management functions (i.e., search or storage 

of software unit information). Knowledge is entered into the system by experienced users and 

can be reused by inexperienced users. Figure 43 and Figure 45 show these relationships. 

 

Figure 45 - Requesting knowledge inside the SSCP environment (Transformation activity example) 

The focused approach behaves as a content management system (CMS) on the one hand and as 

an knowledge automation system on the other. In the following sections, the above briefly 

described aspects are explained as a concept. 

4.4.2. 	Relevant	elements	of	the	concept	
Based on this basic idea, a concept was developed. This concept is comprised of three parts:  

(1) The knowledge database called the ‘Software Unit Model’ has the task of storing 

knowledge about software units. This knowledge describes software units and their 

behaviours for reuse activities like transformation and integration into a common 

description. This description includes technical and business information.  

(2) The service called ‘Software Construction Service’ provides operations which support the 

user in typical software reuse tasks like searching, adapting, integration, and deployment 

as well as the execution of such reuse activities. For search functionality, the service uses 

the information stored in the Software Unit Model.  
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(3) To perform SCAcs the different activities are implemented by special adapters (e.g., 

plugins). These adapters use the common information/knowledge together with specialised 

information stored in the adapters to support the user. The Software Unit Model includes 

all information about the software units and activities. This is necessary information for 

these adapters. 

Application example: The user requests a software unit to be transformed from Java-based 

into .NET-based technology. The Software Construction Service will then search (1) for an 

adapter (e.g., plugin) which is able to execute (2) the transformation and respond to the request 

with the transformed software unit. Figure 46 shows the relationship between Software 

Construction Service and the Software Unit Model. 

 

Figure 46 - Use of the Software Unit model in the focused environment 

The example above shows only a small part of the whole concept. The main concept is an 

environment which has to be filled with reuse activity information. This information can be 

extended continually and reused by other users. Figure 47 shows the focused life cycle concept 

of reusable knowledge.  

 



A general approach to realise knowledge-based automated reuse activities 
_____________________________________________________________________ 
 

____________________________________________________________________ 
132 

 

 

Figure 47 - Communication concept of knowledge in the focused concept 

The concept procedure can be explained as follows: A reusable software unit may be inserted 

into the focused environment. This.This process is called ‘Software Construction Artefact 

Injection’, which means to store a software unit (i.e., a class, component or service) in an 

existing repository system which is connected to the environment. Usually, storing is done by 

an experienced user. In this case the process is called ‘Manual Software Construction Artefact 

Injection’. This process is carried out by users of the KC profile, (see User 1 in Figure 47), but 

can also be performed by an adapter that reads information from a repository and adds it to the 

environment automatically. This process is called ‘Automated Software Construction Artefact 

Injection’. The result of the Software Construction Artefact Injection is a software unit which is 

described by the Software Unit Model. KC profile users can add additional information, like 

specification or documentation (see User 2 in Figure 47). This process is called ‘Additional 

Software Construction Content Injection’ and is a functionality typically known in content 
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management systems. This process is carried out by users of the KC profile. Users can add 

information about reuse activities related to the stored software units. This means that users are 

able to add information about the transformation of, or integration into, the software unit, for 

example. This process is called ‘Activity Reuse Knowledge Creation’, a process carried out by 

the KC profile users. The focused environment is now able to execute these rules which 

transform, integrate or deploy the specific software unit (mostly) automatically. For example, 

User 3 in Figure 47 injects knowledge about a transformation of the original .NET library into a 

Java library. The user also injects another rule which describes how to integrate the transformed 

software asset into an Eclipse development environment project. Such knowledge can now be 

used by other users by requesting the transformation or integration. The focused environment 

will execute the request. As a result, there is no need for the requested user to know all the 

information which is necessary for the two processes. In the example of Figure 47, User 4 uses 

the stored knowledge about transformation and integration. Using active reuse knowledge is 

called ‘Activity Reuse Knowledge Injection’ within the scope of the general concept. Section 

4.4.1 demonstrates the fact that reuse knowledge is stored in the Software Unit Model and in 

the adapters (plugins) of the Software Construction Service. The difference between the model 

and the adapters is the abstraction level of the stored knowledge. Knowledge stored in the 

Software Unit Model is described abstractly by the model and is used for different purposes 

(for example, in transformation or integration). On the other hand, knowledge stored in the 

adapters (plugins) is specialised; not abstracted knowledge. Adapters control other applications 

or systems for reuse purposes (for example, in adaptation or integration). The input for these 

applications or systems is the knowledge stored in the Software Unit Model. The creation and 

integration of an adapter in the focused environment is called ‘Passive Reuse Knowledge 

Creation’. During the Active Reuse Knowledge Creation, a user stores the data for executing a 

rule on a specific adapter. The user then combines the input for the adapter with data that has 
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been saved in the Asset Injection or Additional Content Injection. Figure 48 shows which 

knowledge repository is used by the different phases in the focused concept. 

 

Figure 48 - Use of active and passive knowledge 

Note: The research focus is via a concept to enable exchange of knowledge between 

inexperienced and experienced software engineers. The division of knowledge in active and 

passive parts is viewed as an interesting possibility for further research. Passive knowledge, as 

for example, the knowledge about the use of a special IDE is part of the plugins. This is created 

by the plugin developers and not by the experienced user. In this thesis the difference is know 

but not considered. Both knowledge types are necessary for the focused approach. 

4.4.3. 	Use	cases	
The fundamental concept supports 12 different use cases. These use cases are required by the 

discussed profiles KC and KU; therefore, KC and KU are stakeholders. The use cases are now 

described briefly to support the discussion about the concept (see Table 5). A more detailed 

description is shown in Section 5.4.1. Figure 49 summarises the supported use cases of the 

focused concept. 
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Figure 49 - Overview of the supported use cases 

No. Title Description Used by 
1 UOM Creation This use case describes the creation of a software 

unit. 
KC 

2 UOM Search This use case describes the search of a software unit. KC, KU 
3 UOM Discovery This use case describes the selection of a software 

unit. 
KC, KU 

4 UOM Adaptation This use case describes the adaptation of information 
of a software unit. 

KC 

5 UOM Deletion This use case describes the removal of a software 
unit. 

KC 

6 Activity Creation This use case describes the creation of a reuse 
activity. 

KC 

7 Activity Search This use case describes the search of a reuse activity. KC, KU 
8 Activity 

Discovery 
This use case describes the selection of a reuse 
activity. 

KC, KU 

9 Activity 
Adaptation 

This use case describes the adaptation of information 
of a reuse activity. 

KC 

10 Activity Deletion This use case describes the removal of a reuse 
activity. 

KC 

11 UOM Download This use case describes the retrieval of software unit 
information. 

KU 

12 Activity 
Execution 

This use case describes the execution of a reuse 
activity. 

KU 

Table 5 - Briefly description of the supported use cases 
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The use cases describe the creation, discovery, adaptation and deletion of software units (Use 

Case 1-5; 11) and software construction activities (Use Case 6-10; 11). Additionally, the 

execution of an SCAc is part of the use cases (Use Case 12). Use Cases 1, 2, 3, 4, 5 and 11 are 

necessary to explain the complete concept, but are not focused on by the research.  

4.5. 	Concept	of	potential	technical	environments	
In this section, the typical technical environment of the focused concept will be described. For 

this reason the communication entities, the scalability of the concept, the amount of 

communication data, as well as the distribution of business logic will be explained. 

Note: There may be other possible environments for the shown concept. It is also possible to 

instantiate the described concept with different technologies and environment setups. A 

technical realisation of this concept is described in Chapter 5. 

4.5.1. 	Communication	concept	
The communication concept of the focused approach will be explained in this section. 

Therefore, communication entities as well as the communication scenarios require explanation. 

4.5.1.1. 	Communication	entities	
In essence, three main elements exist in a concept-based environment: a concept-based client, a 

concept-based server, and a concept-based repository system. 

Concept-based client system: A client supports the users when interacting with the server. 

Such a client supports the use cases of a user. In principle, the development project scenarios 

presented in Section 4.3 and the user profiles Knowledge Creator and Knowledge Consumer as 

described in Section 4.2 are meant. Typically, the following types of application are used as 

client systems: 

- Desktop applications: A client can be implemented as a typical desktop application. 

Such applications usually have the advantages of accessibility to an amount of host 
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system resources. Typically, software engineers work with such applications during the 

development stages.   

- Web applications: A client can be implemented as a web application. Such variants 

usually have the advantage of being (mostly) independent of the available computers, 

and more so than a desktop application. This distribution architecture allows the 

execution of a web application from different systems in various locations. Often, such 

applications do not have the full accessibility to host resources as desktop variants. This 

is usually for security reasons, for example.  

- Application integration: A client can be implemented as an extension of an existing 

application. Development environments such as Eclipse or Visual Studio offers the 

capability of extending their functionality by using application extensions (so-called 

plugins or packages; see Eclipse Foundation, 2012; Microsoft, 2012c). A client can 

execute and be displayed inside such a development environment and carry out its task 

inside this environment. The advantage of such an application is the capability of 

communicating easily with the development environment and the fact that users do not 

need to start an additional application.  

Concept-based server system: The main component of the concept-based environment is a 

server application. The task of the server is to handle user requests (e.g., searching a software 

unit or performing a reuse activity). Essentially, such an application needs the ability to handle 

multiple requests simultaneously. A connection to multiple repositories is also required in a 

scenario where more than one repository exists.  

It is also possible to connect multiple servers together. In such a scenario a server is linked as a 

repository to another server. This is useful for environments that include more than one server 

or server groups. 

Repository system: In the concept-based environment access is required to one or more 

software unit repositories. This can be realised by adapters. Each adapter handles the 
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communication between a repository and the server. Repositories typically provide the 

capability of being accessed using database adapters (e.g., Java Database Connectivity JDBC or 

Open Database Connectivity ODBC), general services (e.g., Web Services) or by providing 

specialised services (e.g., ports of a Microsoft Structured Query Language SQL server). It is 

also possible for repositories to only provide an interface for humans to access software unit 

information.  

Based on these three elements, the following communication scenarios are of interest within the 

scope of the focused concept (see Figure 50 and Figure 51): 

 

Figure 50 - Knowledge injection scenario 

 

Figure 51 - Knowledge extraction scenario 

Knowledge Injection Scenario: In Figure 50 it is possible for the client to send search and 

download requests (A) and (B). The server receives and performs these requests. During the 
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execution of these tasks, the server communicates with the different repositories (C) and (D). 

The different databases’ responses (E) and (F) are then used to generate responses for the client 

by the server. These responses will then be sent to the client system (G) and (H). 

Knowledge Extraction Scenario: In Figure 51, an experienced user is able to use the client to 

store a software unit or additional information about a software unit. The server receives the 

request (b) and performs this by communicating to the different databases (c). It may be 

possible to update the client system on the state of the storing request by a response from the 

server (e) based on a response of a repository (d). It may be necessary to provide the user with 

information about the connected repository system to begin the knowledge injection process 

(a). An existing software unit is a necessary requirement for storing or performing reuse 

activities. Companies may have special procedures for filling their repositories. As a result, the 

first steps (a-e) shown in Figure 51 are optional. The next step is mandatory; a user has to store 

their knowledge about a reuse activity so it can be performed by the system. Not all repositories 

support the storing of reuse activities because of the given data model of the repositories. For 

that reason, a special reuse activity repository may exist in the concept-based environment (see 

Figure 51). A user may start a request to store activity information (f), and the server adapts and 

forwards the request to the specific repository (g). In the case of this software unit repository 

not being able to store this kind of data, the request is forwarded to the special repository (h). It 

may also be necessary to provide the user with information about the connected repository 

system to begin the knowledge injection process (a). It may be possible to relay to the client 

system the state of the storing request by a response from the server (e) based on the response 

of a repository (d). 

Note: The described scenario does not include restrictions on any of the elements, such as 

security or the download restrictions of the database. One download restrictions example is 

discussed later on in Section 5.2.4.) 
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Figure 50 describes the basic scenario for searching and receiving data. The main focus of the 

concept is the execution of reuse activities. Based on this restriction, the following element is 

necessary in the communication scenario: a Reuse Activity System (RAS) which handles reuse 

activity information. Depending on the activity, such systems carry out different tasks. For 

example, in an integration scenario, data may be integrated with a software system. In this case, 

the RAS is able to integrate the software unit into this software system, based on the stored 

reuse activity knowledge. Another example is the controlling of transformation software. A 

transformation activity may include the task of executing a software application, transforming a 

software unit into another form or type (e.g., a compiler transforms classes into binary code). In 

this case, a Reuse Activity System controls the transformation application. As mentioned in 

Chapter 2, the amount of reuse activities and controllable tools is high and differs. Such 

systems may be implemented by the use of different programming languages, operating 

systems and communication technologies. A typical task of the RAS is to perform reuse 

activities. The necessary information is given by the software unit model. 

Based on the communication scenario in Figure 50 the following extension may be created (see 

Figure 52). 

 

Figure 52 - Request for reuse activity execution 
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Knowledge Injection Scenario: Figure 52 shows the changes for the knowledge injection 

scenario. A user is able to request an execution of a reuse activity by using the client system (I). 

The server is able to perform this request by communicating to the specific RAS (K). It may be 

required that the server system needs to load additional information about the software unit or 

the stored reuse activity from one or more repositories to perform the activity (J). The activity 

result is sent from the RAS to the server (L) which creates a response for the client system (M). 

As explained in the description of the RAS, such a system may communicate with other 

applications necessary for the reuse activity (N). 

Knowledge Extraction Scenario: In the case of the Knowledge Injection Scenario, this 

extension changes the idea of the communication context; only the content of a search request 

may change. A user is now able to search for a reuse activity or the result of an activity. 

4.5.1.2. 	Scalability	scenarios	of	the	focused	approach	
In the previous section, the communication structure was explained. Different scenarios may be 

possible based on this communication structure. 

Note: The following discussion only includes scenarios which are necessary for the discussion 

of the basic idea (see Section 4.1), the focused concept and the approach discussions in the 

following chapters. Other possible scenarios may exist but are not discussed here. 

For the purpose of this discussion, two border scenarios will be described which differ in the 

value of their scalability: monolith and total distribution scenarios. A monolith scenario 

describes a complete environment, based on the discussed concept running on one system. 

From the system perspective, it is not relevant if this scenario is realised by different 

applications or if only one application includes all features of such an environment. Figure 53 

illustrates this example. 
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Figure 53 - Monolith scenario 

 

Figure 54 - Completely distributed scenario 

In Figure 53 each element of a concept-based environment (server, client, RAS, etc.) is part of 

the same system. The other scenario describes the high scalability in the described approach. In 

this scenario each element is a standalone application and runs on a different system. Figure 54 
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demonstrates this scenario by presenting all elements (server, client, RAS, etc.) as part of a 

different system. For this thesis, a realistic scenario is between the two scenarios.  

A distributed scenario can be found in global working companies (cf. Example of Schneider 

Electric in Section 3.2.1.2).   

4.5.1.3. 	Amount	of	data	
In the described communication and scalability scenarios, the amount of data may differ. 

Indeed, this is an relevant point for the definition of communication interfaces. Additionally, 

two scenarios are very useful for the explanation for the main concept: Data-driven or ID-

driven scenarios. 

In a data-driven scenario, the communication contains the complete datasets which will be used 

by the caller. Data values may be changed by any element in the concept-based environment. In 

an ID-driven scenario, only necessary values will be transmitted. The context of these values 

which software unit belongs to these values is recognised by a unique identifier. Such an 

approach reduces the necessary bandwidth of a single call. One example is the execution of a 

transformation software construction activity: where the client asks for software unit 

information. After receiving the information about the software unit, the client asks for the 

execution of the transformation activity. Figure 55 and Figure 56 show both data scenarios for 

this example. 

 

Figure 55 - Data-driven communication 



A general approach to realise knowledge-based automated reuse activities 
_____________________________________________________________________ 
 

____________________________________________________________________ 
144 

 

 

Figure 56 - ID-driven communication 

In Figure 55, the request for a software unit is answered with the full amount of values of the 

software unit even though not all information is necessary for the user’s current use case. In 

Figure 56, only values which are requested are received. This may increase the amount of 

requests but minimises the amount of data in a single request. Based on the received 

information, a user may choose a transformation activity and request its execution by the 

server. In Figure 55, all information from the software unit and of the transformation activity is 

sent to the server, which initiates the execution. In Figure 56, only the ID of the software unit 

and the ID of the transformation unit is sent. The server has to load all necessary information. 

Note: As with the description of both scalability scenarios, the different variants between both 

data scenarios are possible. At this point, no decision has been made as to which approach is 

better. The realisation of the approach in Chapter 5 focuses mainly on the ID version. 

4.5.1.4. 	Distribution	of	business	logic	
The business logic may be centralised, totally distributed, or partially distributed. In the case of 

the concept-based environment, all variants are feasible, but only one direction is focused upon. 

The concept describes a service for the automation of software reuse activities. One relevant 

element of the concept is that an inexperienced user is able to start a simple request to perform 

an activity. Therefore, it is recommended that the logic for handling data and performing reuse 
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activities is from the perspective of a client system behind the service. Therefore, the ID-driven 

data approach is preferred, in order to keep the communication between the server and the 

client system simpler (from the perspective of the communication data model). Behind the 

service, the distribution of the business logic is not regulated by the concept described.  

 

Figure 57 - Example of distribution of business logic for the concept-based environment 

Figure 57 shows an example for the distribution of business logic. It shows that the concept-

based server handles all requests from a client system. This is the central logic of the complete 

environment (A). All other elements in this environment are controlled by the server. The logic 

for handling execution of reuse is placed in the RAS (B) and is started by the server. Usually, 

an application controlled by a RAS includes the logic for the specific task (C), though it may be 

possible for a RAS itself to contain this logic and functionality. The logic to read and write 

knowledge within a specific repository is usually included in the repository system (D), but is 

initiated by the server.  
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4.5.2. 	Software	unit	model	
One relevant element of this concept is the Software Unit Model. The aim of this model is to 

describe different concrete software unit types as abstract software units with concrete 

information.  

Figure 58 shows this in the example of services, components, and classes. All three units of 

modelling have concrete properties (shown by using different shapes), but they are stored as a 

common software unit abstraction (triangle shape). This abstraction creates a common view on 

the different units and makes it easier to handle. 

 

Figure 58 - Standardisation of the view on services, components, and classes 

The aim of this model is to describe software units from the perspective of their usage in 

software unit reuse. Using this perspective, Figure 59 shows 4 different views. 

 

Figure 59 - Areas of the Software Unit Model 

The model consists of four parts. Part 1 shows the ‘problem-solution approach’. Part 2 relates 

to ‘general business information’ about the solution (e.g., manufacturer, name, and author). Part 

3 describes the solution as a technical unit (e.g., a type of unit, a technology, a file format, or 
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files). In Part 4, the technical contents are described, thereby, explaining a (semantic) search 

approach that is discussed in a previous publication (See Zinn et al., 2010a). Here, the SCA 

types explained in the previous section are used to classify SCAs. If an instance of the model is 

generated (e.g., by the registration of a newly developed unit), the user has to specify 

information that is stored in the appropriate area of the model. The data may also be entered 

automatically into Part 3 of the model. This is possible as the technical data is generally 

detectable, such as by file size, file type, file name and technology. Nevertheless, the data from 

other sections of the data model is not automatically detectable. The model describes services, 

components, and classes in the same way and abstracts them into units (unit view). Based on 

this abstraction, the model will be extended by collection requirements of different use cases 

(views). Figure 60 demonstrates this relationship. 

 

Figure 60 - Relevant views of the Software Unit Model 

Figure 60 shows, for example, integration as a system view extension. Therefore, all reuse 

activity describes an extended system view on the model. This describes the relation of the 

model for the reuse activity to specific elements of the common view model.  

Note: This thesis focuses on Part 3 of the described model. All other parts are also relevant and 

were analysed during the research study for this thesis, but for the focused approach, the 

technical perspective of this model is relevant. Therefore, only Part 3 and a special property of 

Part 4 will be discussed in this thesis. It is relevant to show the relation to the other parts so that 



A general approach to realise knowledge-based automated reuse activities 
_____________________________________________________________________ 
 

____________________________________________________________________ 
148 

 

the picture on software units is more complete. In Chapter 5, a possible realisation of these 

parts of the concept is shown. 

4.5.3. 	Reuse	activity	models	
In the concept description, the reuse activity models are relevant elements of the focused 

approach. These models are included and handled by the RAS. Figure 60 shows this as a 

Business View. From the technical perspective these models use information from the 

fundamental Software Unit Model and will be used by special plugins to perform a SCAc. 

Figure 61 shows the usage with the focus on the technical part of the Software Unit Model. 

 

Figure 61 - Software Unit Model as fundamental information base for reuse activities 

This plugin behaviour includes several technical advantages (cf. Figure 61): 

- (1) The model technology used in instances of software reuse activity models refers 

information from an instance of the fundamental software unit model. This means the 

different models and plugin technologies have to be compatible. Typical model 

descriptions, as for example, UML may be used, also when focusing on the mapping of 

different activity models and the fundamental software unit models. Semantic models 
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may be used to extend models with meaning. Such semantic technology has the 

advantage that the wording of different domains may be connected to each other. 

Additionally, semantic models can be used for knowledge queries (see W3C, 2009). 

Also, it may be possible to connect some of the reuse activity models together. 

- (2) The different models are used during runtime to perform SCAc. Thereby, the stored 

information is managed inside an instance of the focused approach. For that purpose, 

different scenarios exist; on the one hand, the information may be loaded in a runtime 

representation (e.g., object structure) on the other, it is possible to operate on the data 

using a database also in the case of (semantic) model reasoning. These approaches and 

the existing variants differ in their features (e.g., McCarey, Ó Cinnéide and 

Kushmerick, 2008). 

This also leads to the question as to how the models may be stored. Typical examples 

are databases, where different database technology is required to exist. It is also 

possible to use description language such as XML. For semantic models, description 

languages like RDF or Web Ontology Language (OWL) (cf. W3C, 2004; W3C, 2009) 

are useful. 

- (3) Another relevant point is the use of extensible application parts (e.g., plugins) to 

perform software reuse activities. Such parts use the information stored in the different 

instances of the activity models and in the related software unit model. The plugins use 

this information to perform related reuse activities. Plugins can be adapted or replaced 

by other plugins to extend SCAc functionality of a realised environment based on the 

concept. 

4.5.4. 	Extensibility	
An relevant requirement for the focused concept is extensibility. The growing amount of 

knowledge based on new technologies, concepts or processes in the area of software 
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development requires flexibility. Systems and humans have to be flexible to learn and be able 

to handle such new knowledge. 

The focused concept has to be extensible relating several different points: 

1. Fundamental Software Unit Model 

2. Reuse activities models 

3. Support of different existing repositories 

4. Support of different development environments and tools 

5. Support of different client applications 

4.5.4.1. 	Fundamental	software	unit	model	
The Software Unit Model described in Section 4.5.2 aims to describe different software units in 

a common model. For the focused concept it is relevant that this model can be extended to 

describe other software units. 

This may be reached by focusing on two different concepts for the software unit model. The 

model describes a software unit from an abstract perspective. This means a concrete software 

unit for example, a component or a service, is described as a generic software unit which has 

properties and sub parts. Due to each software unit having the same possible content, the mind-

set given by the based software unit type is hidden. The information of the type is stored and 

may be used by the experienced user during the knowledge extraction or by the inexperienced 

user during the knowledge injection. The personal perspective that everything is a software unit 

abstracts and simplifies the handling of software units. Every new unit type, for example, code 

snippets, are only software units. All units are used in the same way. 

This only works if the chosen model technology supports such common description, as well as 

the extension for new information types which were not part of the prior model. 
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4.5.4.2. 	Reuse	activities	models	
Another relevant point from the perspective of extensibility is the extensibility of the system for 

reuse activities. As described in Section 4.5.3 such models may be built for different reuse 

activities. The idea behind this concept is that such models are extensions for the Software Unit 

Model (see Section 4.5.2). Figure 62 shows the extension concept. 

 

Figure 62 - Extension concept of reuse activity models 

Figure 62 shows that the fundamental Software Unit Model will be extended by software reuse 

activity models. Each activity model describes a set of real activity methods, as for example, 

the transformation activity model describes several approaches on how to transform a software 

unit. From another perspective it is possible to say that the fundamental Software Unit Model 

will be used by activity models. The advantage of this methodology is that anybody should be 

able to add a new activity model or extend an existing model to handle a special type of 

activity. 

Also, relevant from the perspective of extensibility is the capability to combine reuse activity 

models to reach a special aim. This is demonstrated by following example: 



A general approach to realise knowledge-based automated reuse activities 
_____________________________________________________________________ 
 

____________________________________________________________________ 
152 

 

An experienced user creates a Java-based software unit and stores it by using the focused 

approach. This experienced user also adds a transformation activity which transforms this Java-

based unit into a .Net-based unit. Another user of this approach adds an integration activity rule 

to this transformed unit. This rule integrates the .NET unit into IDE Visual Studio. 

The second user uses the result of a previous reuse activity. This flexibility may be used to 

build more complex processes based on combined reuse activities. This is seen as extensibility 

of the concept.  

Eventually, it may be possible to create complete development processes for a software unit, 

but this is not covered by this research.  

4.5.4.3. 	Support	of	different	existing	repository	
Typically, software engineers are experienced users that work in their normal business and 

development environment. A problem may be occurs if this environment changes or if these 

people have to use other unknown environments. The use of new or other repositories is a 

particularly relevant part of a work between different teams. For these reasons, an relevant 

requirement for extensibility is the support of such a repository. The focused approach has to 

enable the integration of the existing repository.  

 

Figure 63 - Reducing view complexity on different repositories 
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The user is not aware of the different repositories which are used by the focused approach; 

neither is the user is aware of the different usage pattern of theses repositories. The usage 

pattern of the focused approach has to remain the same for the user, and the different usage 

patterns of the different repositories have to be handled by the approach directly. Plugins take 

over the task of handling repositories. The concept-based environment is responsible for 

creating a common view for the user on software units in the repositories and the repositories 

themselves. Figure 63 shows this relationship. 

The problem of different usage patterns does not only come from different technologies used by 

these tools. It is also possible that companies require different processes for handling 

repositories. A typical example may be the quality check of a software unit before it is 

deployed to a repository.  

The focused approach has to be able to handle such regulation. This does not mean that the 

approach has to take into account all existing business processes around a software unit, but it 

is relevant that a user of the focused approach will at least be informed about the possibilities of 

software unit management. If a repository does not support the storing of a software unit, or the 

technical aspect of the focused approach is not able to handle this, the user needs to be 

informed about this situation. Another example may be the security issues. If the focused 

approach is not capable of downloading information because special security information is 

necessary (e.g., user name and password) the user has to be informed. 

Repositories without an interface for automation use, pose a special challenge. In this case 

special methodologies have to be developed (see Section 5.2.4) or the focused approach will 

not able to handle such repositories. An example of such would be repositories with a user 

interface that is only designed to be handled by human users.  

Another concept requirement is that the server reacts also as a repository. So an instance of this 

approach may be used in another case. Figure 64 shows this concept. Here, the ‘Environment 

X’ is another environment based on the concept described in this chapter.  
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Figure 64 - Concept environment as repository 

4.5.4.4. Support	of	different	development	environments	and	tools	
The focused approach has to be able to work with different development environments and 

tools. The kind of work depends on the task described in the reuse activities model, which in 

turn depends on the software unit model. As discussed in Section 2.2.2.3, the number of 

different tools is growing. Therefore, the support of the tools becomes problematic. The 

following discussion describes the challenge of this support for the topic of expandability.  

Additionally, if a user also uses Visual Studio and Eclipse, the focused approach has to be able 

to handle both of these IDEs. In addition, it is possible that these IDEs provide different ways 

to do one task, for example, the integration of a software unit into a development project. The 

focused approach has to provide a way or a methodology so that such different IDEs and other 

possible variants are manageable. 

Next to the IDEs - which are typical tools of a software engineer’s developing software - there 

are other tools which exist. Such tools may also be required in a reuse activity and should be 

made usable by the focused approach (see transformation and deployment SCAc example in 

Section 3.1). 
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In a similar way to the support of different existing repositories, this requirement has the 

problem of different IDEs having different behaviours and technology restrictions. At the very 

least it is relevant that a user of the focused approach is informed about the possibilities of 

handling the different tools. Figure 65 demonstrates an environment which would need to be 

handled by the focused approach. 

 

Figure 65 - Typical development environments 

From the perspective of expandability, the focused approach has to be able to interact with 

existing IDEs and other tools used in software reuse activity, as well as being able to interact 

with new tool approaches. This expandability is handled by the plugin system (cf. Figure 57). 

4.5.4.5. 	Support	of	different	client	application	
The extensibility is not restricted to the direction of tools used by the focused approach, but 

also includes the tools using this approach. In basic terms, a user interface should be used to 

interact within this approach. The user interface being a standalone application or having been 

integrated into a development environment is not relevant for the purpose of this thesis (cf. 

Section 4.5.1.1); in general terms, the intent of this thesis is not to create a new tool. From this 

point of view an integrated user interface should be more focused. It may also become 
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interesting to use the approach automatically by other systems instead of humans, but this is not 

covered by this research.  

The described concept of a service interface (see Section 4.4.1) is an relevant factor of being 

more extensible. Different user interfaces or systems may be built using this interface. So the 

interface is independent from technical conditions, as for example runtime environments or 

non-technical factors, like corporate identity. As a result, the focused approach is extensible by 

the number of client systems using the approach. Figure 66 summarises the potential client 

systems as for example integrated, web, desktop, and mobile clients. 

 

Figure 66 - Multiple client system using the same service of the focused concept 

4.6. 	Summary	
First of all, this chapter presents the basic idea of the focused approach of this thesis. The idea 

of this approach is the storage and reuse of software construction activity knowledge. The aim 

is to support users who do not have sufficient knowledge to perform a specific reuse activity of 

specific a software unit.  

In general, different user types may utilise this idea. In this work, software engineers are 

focused on those who want to use smaller software units in their software development 

projects. At the very least, experienced software engineering users are focused on in the 

approach which assists the inexperienced in handling a specific software unit.  

After putting forward the basic idea, the concept is more fully explained in this chapter. The 

concepts described follow two elementary parts of the solution approach. The first one is a 
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common Software Unit Model describing different existing software unit concepts as a general 

software unit. This model is extended by different software construction activity models, 

describing the SCAc information required by using the Software Unit Model information in a 

specific reuse activity. The second one is a service-oriented environment providing a service for 

(re)use functionality (i.e., storing, distributing, and execution) based on the information in the 

models. 

Using these two parts, the problem area will be handled as follows: The service can be used to 

store information as knowledge using the different models. This includes the storage of 

different software units and relevant software construction knowledge as information. This 

should handle the problem of the variations of technologies.  

The service also hides the environment for knowledge distribution. An inexperienced software 

engineer has not to know this environment (e.g., server location, etc.) and, therefore, a 

limitation of this problem area is expected by the concept. 

The last and most relevant solution approach is the service executing software construction 

activity. After an experienced software engineer enters the necessary SCAc information into the 

service-oriented environment, an inexperienced user is able to perform this without the 

knowledge an experienced user would need for the execution of this SCA without this 

environment. With this approach, it can be expected that an inexperienced software engineer is 

able to perform a software construction activity independently outside of their current 

knowledge level. 

In Chapter 5 one concrete instance of the concept is explained which is used for the case study 

in Chapter 6.  
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5. 	Solution	realisation		
This section describes an instance of a concept described in the previous chapter. Therefore, the 

realisation of the used architecture, technologies, interfaces, and their usages will be described. 

A relevant part of this chapter is the description of the used models to store software units and 

software construction activity information. This extends the concept description in Chapter 4. 

To differ from the concept described in Chapter 4, the realisation is called ‘Prometheus’. 

5.1. Development	approach	
The software shown in this chapter is the result of a development lifecycle conducted during 

the PhD research. In the following, the scenes are described to outline the development 

approach.  

The first scene is the development of the proof of the concept application. This was done in the 

first year of research. The aim was to create a simple application showing that the basic idea of 

the research topic was realisable in a software application. The created application was built in 

a rapid development procedure model with no focus on stability, full functionality or error 

handling. It supports only the integration of information into a Visual Studio 2008 instance. In 

2007 this application was shown at an internal academic conference (SEIN 2007).  

In 2008 the creation of a second version of this tool was started. Following a prototype 

procedure model, the first prototype was analysed for positive and negative behaviour, but it 

was dismissed and the second prototype was built from scratch. Based on the experience 

developed in the research, this prototype includes several topics: 

- Integration into IDEs 

- Transformation 

- Deployment 

- Service provision 
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This prototype changed several times, so a waterfall development model was used beginning 

with the topic of integrations. This feature was created and then tested. Each time errors or new 

research results were identified the prototype was adapted. The same procedure was made for 

the other topics (transformation and deployment). Important changes during the development 

were the integration of the (SCAc-) service and the integration of SCAc data models. The tests 

for the functionality were different, and most tests were done by the author of this thesis. 

Additionally field tests were conducted. Thereby, other software engineers used special features 

and gave feedback.  

This prototype was presented in 2009 at a relevant German fair (Cebit 2009), in several PhD 

meetings at the Darmstadt University of Applied Sciences and in meetings with external 

companies (i.e. Schneider Electric Automation GmbH and Engineering Methots AG). The 

development of this prototype took about 2 years. As the first prototype, it was one piece of 

software monolithic architecture). 

In 2010 the last version of the prototype was created. The previous version of the second 

prototype was analysed for positive and negative effects. Two reasons led to the development 

of a third prototype.   

The first one was the fact that the service provision concept can be realised independently from 

the UI interface. So the decision was made to create plugin architecture to host different service 

technologies to connect different UIs. As a result, three different UIs were created: a Desktop 

client, a Visual Studio/Eclipse integrated UI and a Webpage based UI. The last was used for the 

case study. The second reason is the negative monolithic behaviour of the second prototype. 

Changes have side effects on other functionality and the deployment was circular. Hereby, a 

plugin and interface architecture were used in the third prototype.  

During the test phase of the case study, only error fixes were conducted. The deployment SCAc 

functionality was not used in the case study, but in other investigations (see Zinn et al., 2012a). 

Therefore it was adapted and errors were fixed. 
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5.2. Selected	technical	environment	

5.2.1. 	Distribution	model	and	relevant	architecture	elements	
The used Prometheus environment uses a common architecture with three layers: client, 

middleware (server), and database (repositories) (see Figure 67). The communication between 

the individual layers is realised on the basis of a service-oriented architecture. This architecture 

is used to cover four different user scenarios. The individual layers, the technical 

implementation, user scenarios, and possible alternative implementation are described as 

follows. 

 

Figure 67 - Prometheus architecture overview 

5.2.1.1. 	Layer	1	-	Client	
The Prometheus architecture distinguishes between three different types of clients: 

User Client: This client type is defined for the two user profiles KU and KC (see Section 4.2). 

The user interface described in this chapter corresponds to this client type. The client uses a 

special interface to the middleware layer to communicate. The following functionalities of the 

middleware can be used:  

- Search: search software units / reuse activities 

- Update: update software units / reuse activities 

- Add / Remove: adding and deleting software units  

- Add / Remove transformation rule: add or delete a transformation rule of a software 

unit 



Selected technical environment 
_____________________________________________________________________ 
 

____________________________________________________________________ 
162 

 

- Execute transformation rule: performing a transformation rule of a software unit 

- Add / Remove integration rule: adding or deleting an integration rule of a software unit  

- Execute integration rule: implementation of an integration rule of a software unit 

- Add / Remove deployment rule: adding or deleting a deployment rule of a software unit 

- Execute deployment rule: implementation of a deployment rule of a software unit 

As part of this work, the client was implemented using Silverlight technology from Microsoft 

(2012d/e) and uses a SOAP client to communicate with the middleware (Prometheus server) by 

using SOAP Web Service. 

Note: Because the middleware should be able to offer a variety of communications 

technologies (to reach the extensibility requirements of Section 4.5.4), the clients may also be 

able to use various communication technologies. As part of the research for this thesis, four 

different user clients have been developed: desktop, an add-in for Visual Studio 2008-2010, an 

add-in for Eclipse, as well as a Silverlight client. The clients were each produced as a further 

development and presented at different events (see Acknowledgements). Each of the clients 

uses SOAP-based communication.	
In the realised Prometheus environment, three different clients exist: Integration Client, 

Transformation Client, and Deployment Client (based on the focused SCA described in Chapter 

4). 

Integration Client: This client type describes applications that are able to integrate software 

units in development environments. This is only possible for those development environments 

that offer other programs appropriate interfaces. In contrast to the User Client, this client type is 

not a sender of messages. Rather, they are contacted by the middleware to integrate software 

units by performing an integration SCAc. For this application, this client type offers an 

interface to provide the following function:  

- Integrate: integration of a software unit 
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The Integration Client has also been developed using soap-based web services, .NET and Java 

technologies. 

Transformation Client: This client type is capable running batch-based transformation 

applications. The middleware sends input parameters to clients for the execution of a 

transformation SCAc. The corresponding client performs this transformation by using these 

parameters and sends the result (transformed software unit) back to the middleware. The client 

offers an interface to provide the following function: 

- Transformation: transformation of a software unit 

In this work, this client type is realised using a SOAP-based Web Service and .NET 

technologies. 

Deployment Client: This client type deploys software units into embedded devices. Therefore, 

it controls other applications to perform the deployment (cf. SCAc deployment example in 

Section 3.1.6). This is similar to the transformation client. The middleware sends deployment 

SCAc information to the client. The corresponding client performs this deployment by using 

parameters for different deployment applications. Both client types - deployment and 

transformation - are able to display manual orders as text to the user. In a case of deployment, 

this could be necessary (e.g., to switch a device on/off for manual restart). 

As the Transformation Client, the interface has also been developed using a SOAP-based web 

service and .NET technologies. 

5.2.1.2. 	Layer	2	-	Middleware	
Prometheus server: The core of the Prometheus environment is a communications 

infrastructure that enables communication between the various elements of the middleware by 

using predefined interfaces. The server includes also the logic for the RAS system. This is 

explained in Section 4.5.1. The service is realised as a single application using different plugins 
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that are part of the application instance. Figure 68 shows an overview of the server 

infrastructure. 

Note: The complete environment (including plugins) was created by the author of this thesis. 

 

Figure 68 - Overview of Prometheus server architecture 

The different plugins as shown in Figure 68 for repository integration, deployment tasks, server 

configuration, IDE client integration, user client management, and monitoring tasks have the 

basic task of sending information to the core of the Prometheus server or receiving information 

from the server and passing it on to external communication partners. 
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Figure 69 - Information flow of the Prometheus core 

Figure 69 indicates this by demonstrating the flow of information described in general terms. 

The following example illustrates this relationship. 

Example ‘Search Example’: A user enters a query into a user client and sends it to a 

Prometheus server. A User Client plugin receives this search request. The plugin converts the 

inquiry to ensure that it meets the client user interface requirements of the Prometheus core, and 

sends them on to the core. The Prometheus core forwards the request to the connected plugin 

(i.e., repository plugins). The repository plugins convert the query of the core and perform a 

search in the connected databases. The results of different searches are, by the appropriate 

database plugins in the format that the core plugin database interface is defined, transformed, 

and transmitted to the core. The core forwards the result back to the calling User Client Plugin 

by using the client user interface. The User Client Plugin transforms the result into the format 

that is defined by the user client and User Client Plugin. Figure 70 shows the communication 

behaviour of this search example including the user. 
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Figure 70 - Communication behaviour of a search request  

The individual plugins, interfaces, and the communication relationship of the Prometheus core 

are presented as follows. 

Prometheus Plugins: Plugins can, in this approach, be divided into user client, reuse activity 

(i.e., transformation, integration, and deployment), and repository. Figure 68 shows additional 

monitoring and reporting plugins. However, these are not relevant to the investigation and were 

only used in the context of the experiment (see Chapter 6). 

Each plugin follows the communication structure shown in Figure 69. This results in the 

following distribution scenario for each plugin (cf. Sections 4.5.1.4): 

1. Absolute distribution: In this scenario, plugins and their communication partners 

(Prometheus core and plugin system), are different instances. This allows distributed 

architecture on different physical systems. This is not used in the focused Prometheus 

environment. 

2. Relative distribution: In this scenario, plugins and their communication partners 

(Prometheus core and plugin system) are part of the same application instance. This is 

not used in the focused Prometheus environment.  

3. Mixed distribution: In this scenario, plugins and their communication partners 

(Prometheus core and plugin system) are differently interconnected. This is used in the 
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focused Prometheus environment for most of the core plugins. Two logical variations 

are possible: 

1. Prometheus core and plugin form an instance together. In this scenario, the 

external tool (e.g., repository) and the Prometheus elements are installed on 

different systems or on separate applications (see Scenario 1 Figure 71). 

2. External tool (e.g., repository) and a related plugin create an instance together. 

In this scenario the Prometheus core and the plugin are installed on different 

systems or separate applications (see Scenario 2 in Figure 71). 

Figure 71 - Distribution possibilities of the used Prometheus architecture 

The different distribution scenarios used are illustrated by concrete examples in the following 

plugin descriptions: 

User Client Plugins (UCP) – UCPs have one area of responsibility 

1. Receive and transmit information from or to user clients. 

Basically, the interface and the communication protocol between a user and a UCP client 

application are not determined by the SSCP approach. UCPs can use any compatible interface 

and any compatible communication protocol. This enables the integration of other protocols or 

technologies. As part of this work a SOAP-based Web Service is defined, and includes the 

capability of bidirectional (synchronously and asynchronously) information exchange. There 
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are additional Web Service eventing mechanisms integrated into the Web Service. All 

operations can be used as synchronous and asynchronous web services calls.  

The used interfaces between Prometheus core and the used User Client Plugin are defined in 

Section 5.2.2.3. User client plugins are used for the knowledge injection (i.e., creation/mapping 

of software units/SCAcs) into the Prometheus environment. This refers to the following tasks: 

Software Construction Artefact Injection, Additional Software Construction Content Injection 

and Activity Reuse Knowledge Creation (cf. Section 4.4.2). 

Transformation Client Plugins (TrCP) – TrCPs have two areas of responsibility 

1. Receiving and transmitting information from or to transformation clients. 

The interface and the communication protocol between the Transformation Client Plugins 

(TrCPs) and the transformation clients were not determined by the focused approach. This is to 

guarantee a higher extensibility by enabling the integration of different protocols and 

technologies. Also, the number of different applications is high (see Chapter 1). As a part of 

this work, the different transformation applications are executed directly by the transformation 

plugins. In contrast to the web service calls of the User Client Plugin, a Transformation Plugin 

has to be aware of the existing file structure and correct parameters for the transformation 

application (see Section 3.1.1). In addition, there may be a need to clean this file structure after 

the transformation is complete. 

2. Receiving and transmitting information from or to the Prometheus core 

In contrast to the communication with the transformation application, the communication with 

the Prometheus core is defined in detail. The TrCP receives transformation reuse activity 

information from the Prometheus core. Based on this information it prepares and executes the 

transformation. These tasks require the interpretation of the formatted reuse activity 

information into the special protocol of the transformation application. The transformation 
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result is also transformed into the given communication protocol of the Prometheus core and is 

sent back to the core. 

The used interface definition between the Prometheus core and the used Transformation Client 

Plugin is shown in Section 5.2.2.5. This type of plugin is used for the knowledge injection into 

the environment of the inexperienced user. This refers to the task of Activity Reuse Knowledge 

Injection (cf. Section 4.4.2). 

Integration Client Plugins (ICP) – ICPs have two areas of responsibility 

1. Receiving and transmitting information from or to integrated clients. 

In essence, the Integration Client Plugins (ICPs) follow the same procedure as the 

Transformation Client Plugins. They differ by handling different applications and information; 

in the Prometheus environment, the focused applications are Visual Studio 2008, Visual Studio 

2010, as well as Eclipse (Juno). The protocol and technology used between the ICPs and these 

three IDEs are specified by the focused approach; it is based more on the provided 

communication possibilities of the IDEs. In the case of both Visual Studio versions, the Visual 

studio COM technology was used. In the case of Eclipse, an Eclipse plugin was written 

providing a SOAP-based Web Service. This structure is shown in Figure 72.  

 

 

Figure 72 - Integration plugins for Visual Studio and Eclipse 
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Figure 72a includes the ICP for Visual Studio which serves a special gate way tool developed 

to handle Visual Studio instances. Figure 72a shows a ICP for eclipse serving directly eclipse 

instances. For the research an Eclipse plugin was developed for communication with the ICP. 

2. Receiving and transmitting information from or to the Prometheus core. 

The Prometheus core sends integration reuse activity information as well as related software 

unit information to the specific integration plugin, these plugins then forward this information 

to the Visual Studio Gateway or to the integrated Eclipse plugin. The result – which in this case 

is a more or less empty error list – is forwarded back to the Prometheus core. 

The used interface definition between Prometheus core and the used Integration Client Plugin is 

shown in Section 5.2.2.5. This type of plugin is used for the knowledge injection into the 

environment of the inexperienced user. This refers to the task: Activity Reuse Knowledge 

Injection (cf. Section 4.4.2). 

Deployment Client Plugins (DeployCP) – DeployCPs have two areas of responsibility:  

1. Receiving and transmitting information from or to deploy clients. 

Deployment reuse activities have two properties of interest; the first is where more than one 

application is used in the deployment process. For this reason, DeployCP uses multiple 

deployment applications. The second property is the required manual support by the user during 

the deployment process (see Zinn et al., 2012a). Similar to other client plugins, the protocol and 

communication technologies are not defined by the focused approach (for extensibility 

reasons).  

2. Receiving and transmitting information from or to the Prometheus core. 

The Prometheus core sends deployment reuse activity information as well as the required 

software unit artefacts to the Deployment Client Plugin. This plugin creates and executes the 

deployment process. In contrast to other client plugins, this plugin type is able to send user 
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orders to the Prometheus core. This may be necessary because some embedded devices have to 

restart for deployment to proceed, but this might have to be done by turning the power off and 

on. The result of the whole deployment process – in this case, a more or less empty error list – 

is forwarded to the Prometheus core. 

The used interface definition between the Prometheus core and the used Integration Client 

Plugin is shown in Section 5.2.2.5. This type of plugin is used for the knowledge injection into 

the environment of the inexperienced user. This refers to the task: Activity Reuse Knowledge 

Injection (cf. Section 4.4.2). 

5.2.1.3. 	Layer	3	–	Database	
Repository Client Plugins (RCP) – RCPs have two areas of responsibility:  

1. Receive and transmit information from or to repository clients. 

Similar to other plugins, the communication protocol and technology is not regulated by the 

focused approach. An RCP has to react to the given communication protocols of the different 

repository systems (see Section 5.2.3). The task of this plugin is to read and write information 

to the repositories. A special feature in this implementation is that RCPs have to use a special 

approach-based repository. This includes RCPs that are used to connect to a special reuse 

activity repository (using the special reuse activity models, see Section 5.3). Also, a database is 

needed to store software units based on the fundamental software unit model, for example to 

store the result of a transformation SCAc. This kind of repository is also connected by using an 

RCP. 

2. Receiving and transmitting information from or to the Prometheus core. 

The RCPs receive read and write requests sent by the Prometheus core. These requests and the 

responses are well defined by the Prometheus environment. The RCP uses this information to 

read/write data form/to a connected repository. The protocol information is, therefore, 

translated into the special database language (e.g., SQL).  
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Contrary to other client plugins, RCPs use a subscription approach, based on the Web Service 

Eventing protocol (W3C. 2006). Using that mechanism as a basis, the plugins are able to send 

requests to the Prometheus server (e.g., to require additional information or send information to 

other parts of the server). 

The used interface definition between Prometheus core and the used Repository Client Plugin is 

shown in Section 5.2.2.3. 

5.2.2. 	Interface	definitions		
In the previous section, the different elements of the Prometheus architecture were shown. In 

the following, the interfaces which are used by this architecture will be defined.  

The Prometheus environment uses 11 interfaces (see Figure 73). Three interfaces (I1 – I3 a, b, 

c) are the relevant core interfaces, and 8 interfaces are used between the plugins and other 

systems. As mentioned in the previous section, these 8 interfaces are not defined by the focused 

approach. The interface operations use the ID-driven approach described in Section 4.5.1.3. 

 

Figure 73 - Relevant interfaces in the Prometheus architecture 
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In the following sections, the different operations of used interfaces will be described. 

Therefore, the interfaces are grouped (see Table 6). 

Interface Group Contained Interfaces 
User Client Plugins interfaces I1 a/b 
Reuse Activity Interfaces I1 a/b 
Repository Client Plugin Interface I2 
Reuse Activity Plugin Interfaces I3 a/b/c 
Repository Client Interfaces I6, I4 
Integration Client Plugin I8, I9 
Non-Interface Types I5, I7, I10, I11 

Table 6 - Used interface groups 

5.2.2.1. 	Knowledge	user	related	interfaces	(I1a)	

Figure 74 - Relevant interfaces of the User Client (UC)-Plugin 

Figure 74 shows the relevant 6 interfaces in the area of user interfaces: Search, GetItems, 

GetItemsAsZip, PerformTransformation, PerformIntegration and PerformDeployment. These 

interfaces form operations that are necessary for the Knowledge User Profile (see Section 4.2). 

There are also other operations to manage (create, update and remove) software construction 

artefacts, software units, and reuse activities. These methods are listed in the next section. 

The search operation allows the client to provide user search queries. The parameters listed in 

Table 7 are required: 
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Search 
Type Name Description 
List<Guid> 
= Globally Unique 
Identifier 

guidPath Includes the path (serverID, repositoryID) to be searched 
for a Software Construction Artefact, Software Unit, or 
SCAc. 

Guids[]  repositoryIDs Additional IDs of repositories to be searched for by a 
Software Construction Artefact, Software Unit, or Reuse 
Activity. 

String  searchword The entered search term. (May contain multiple words 
separated by commas) 

SearchFieldType[] searchfieldTypes Includes the search fields, (e.g., search in file names, 
metadata, description, topics, etc.). 

UOMType[] uomTypes The types of UOM (Data, GUI, Function, Structure). 
List<String> uomCategories Freely defined categories for software units (need 

support by the databases). 
List<String> artefactCategories Free defined categories for software construction 

artefacts. 
SearchOperation[] Searchoperation Type of search types (Free text, Attribute or semantic 

search (need support of the repository plugins and/or the 
repository itself). 

List<Artefacts> - The return value are artefacts including UOMs fitting the 
search attributes. 

Table 7 - Parameters of the search operation 

The call returns a set of artefacts that meet the given requirements. The next operation in this 

area is the GetItems/GetItemsAsZip operation. These allow the caller to get complete software 

units (including all available information) or parts of it from the UCP. The parameters listed in 

Table 8 are required: 

GetItemsAsZip/ GetItems 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID, artefactID, 

uomID) to identify the correct UOM. 
List<Guid> fileIDs The IDs of the files, which should be included in the 

operation response. 
List<FileInformation>  Return value includes one or more file information (e.g., 

name, byte code, creation date.). In the case of 
GetItemsAsZip this includes one zip file 

Table 8 - Parameters of the GetItems/GetItemsAsZip operation 

Both operations return the binary information of a software unit. The operation GetItems 

returns this as a list of binary values as well as returning the information of the files; each value 

representing a file. The operation GetItemsAsZip also delivers the same information, but packed 

in a single ZIP file. 
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The next relevant operations are the reuse activity operations PerformTransformation, 

PerformIntegration and PerformDeployment. All three operations need typical and specialised 

information. Typically, the ID of the server (serverID), the repository (repositoryID) and the 

artefact (artefactID) - where the software unit is based on – is given. In the case of the 

DoTransformation operation the ID of the transformation rule is also given. The parameters 

listed in Table 9 are required: 

PerformTransformation 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID, 

artefactID, uomID) to identify the correct 
UOM which includes the transformation 
activity. 

Guid transformationActivityID The ID of the transformation activity which 
should be performed. 

List<TransferTypes> - The return value includes a list of UOM 
artefacts. 

Table 9 - Parameters of the PerformTransformation operation 

The result is a set of transfertypes which include the new software unit (see Section 5.3.2). In 

the case of PerformIntegration, the three IDs are also given. In addition, the ID of an 

integration rule has to be set as well as the information about the service endpoint which 

defines the external integration tool (i.e., Visual Studio Gateway or Eclipse Plugin (see ICP in 

Section 5.2.2). The parameters listed in Table 10 are required: 

PerformIntegration 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID, 

artefactID, uomID) to identify the correct UOM 
which includes the integration activity. 

Guid integrationRuleID The ID of the transformation activity which 
should be performed. 

InetgrationClient Client Includes service information to connect to the 
IDE.  

List<Errormessages> - The return value includes a list of error message 
for the user. 

Table 10 - Parameters of the PerformIntegration operation 
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The next reuse activity operation contains the two typical IDs: the ID of a deployment rule as 

well as the necessary communication address. The method returns a list of errors 

(List<ErrorMessages> Errormessages). The parameter and return values are listed in Table 11: 

PerformDeployment 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID, 

artefactID, uomID) to identify the correct UOM 
which includes the deployment activity. 

Guid deploymentRuleID The ID of the transformation activity which 
should be performed. 

String communication The address where the device can be found (e.g., 
a service endpoint address). 

List<Errormessages> - The return value includes a list of error message 
for the user. 

Table 11 - Parameters of the PerformDeployment operation 

5.2.2.2. 	Knowledge	creator	related	interfaces	(I1B)	
These interfaces are used by experienced users (Knowledge creator; KC profile, see Section 

4.2) who wish to add information or knowledge. Figure 75 shows the interface used in this 

work, which includes 14 operations. 

 

Figure 75 - Advanced interface of the UC-Plugins 
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Therefore, different operations groups are used: the Software Unit Handling Group, the Integration 

Activity Group, the Transformation Activity Group, and the Deployment Activity Group. These groups 

are discussed in the following sections. 

Software unit handling group operations 
The first two operations are named CreateArtefact and UpdateArtefact. They enable an 

experienced user to create or update a Software Construction Artefact which can contain 

different software units. Therefore, alternative information is necessary. First of all, the 

information demand (ID) of the Prometheus instance and the repository in which the new SCA 

should be saved, have to be set (serverID and repositoryID). The next is the type of artefact 

(artefactType) which states if the artefact contains UOM which includes data, structure, 

graphical, or function elements (see Section 4.4.1.1). A name (artefactName) and the 

description (description) also have to be set. The parameter and return values are listed in Table 

12: 

Create/UpdateArtefact 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID) were the artefact 

should be created. 
Int artefactType Type of the artefact. Therefore, the UOM types Data, 

Function, GUI, Structure is used. 
String artefactName A customised (user friendly) name for the artefact. 
String description Description of the professional content of the containing 

software unit.  
Artefact - The return value is a new SCA. 

Table 12 - Parameters of the CreateArtefact operation 

The next two operations are called CreateUOM and UpdateUOM. These enable the storing of a 

software unit into a selected repository or the updating of an existing one. This operation also 

needs special information. First of all, the path of the UOM has to be set. This is done by using 

the IDs of the service (serverID), the repository (reposID) as well as the artefact (artefactID). 

Additionally, it is necessary to define the UOM type (for uomType, see section 4.4.1.1), a 

customised name (uomName), and a small description (uomDescription). 
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The parameter and return values are listed in Table 13: 

Create/UpdateUOM 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID, artefactID) 

were the artefact should be created. 
Int uomType Type of the UOM. Possible values are Data, Function, 

GUI, and Structure. 
string uomName A customised (user friendly) name for the uom. 
string uomDescription Description of the professional content of the uom.  
Bool - The return value indicates if the creation/update task was 

successful (true) or unsuccessful (false). 

Table 13 - Parameters of the CreateUOM operation 

This operation creates an instance of an empty software unit model. To add existing files to this 

software unit, the AddData operation has to be used. At the end, the Prometheus server needs 

three different types of information:  

- The path to the Software Unit Model which is given by the ID of the server (serverID), 

repository (reposID), artefact (artefactID), software unit (uomID), and a reference to a 

package (packageID) as optional information. A package ID indicates that information 

belongs together. 

- The file information includes typical information, as for example, Path (directory, 

fullname), name (name, fullname), file extension (extension), file length (size), the byte 

content (bytecontent), as well as the creation date (datetime). 

- Additional information for the focused approach, for example a package ID for 

grouping different files in a download package (e.g., the different web pages of a 

Hypertext Markup Language (HTML) documentation), the definition of this file as 

human or machine readable (humanselector), and based on that, the real content type. 

The parameter and return values are listed in Table 14: 

AddData 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID, artefactID, 

uomID, packageID) to identify the artefact. 
string name Name of a single file. 
String fullname Name and path of a single file. 
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AddData 
Type Name Description 
String extension The file extension of a single file. 
String directoryName The directory name of a single file. 
Datetime dateTime The creation time of a single file. 
Long size The size in kilobyte of single file. 
Byte[]  byteContent The byte content of a single file. 
Int (Human  or 
machine data) 

humanSelector The content type of the file. Possible values are 
‘machine’ or ‘human’ 

Int (Dynamic enum 
for human or 
machine readable 
data) 

contentSelector The type content of the file to add. Values depends on 
the humanSelector. 

FileElement - The return value is an object containing all information 
set by this operation. 

Table 14 - Parameters of the AddData operation 

The last relevant operation is used to delete existing items (e.g., software units, single files or 

reuse activities). This operation is called RemoveItem and has a simple structure. First the 

server (serverID) and the repository (reposID) have to be set. Then the ID (ID) of the item that 

order to be removed. Finally, the type (e.g., UOM, activity, file, etc.) has to be set. The 

operation returns a true/false for a successful/unsuccessful execution. The parameter and return 

values are listed in Table 15: 

RemoveItem 
Type Name Description 
List<Guid> guidPath Includes the path (serverID, repositoryID) were the 

artefact should be created. 
Guid id The ID of the element which should be removed. 
Bool - The return value indicates if the operation execution was 

successful or not. 

Table 15 - Parameters of the RemoveItem operation 

Integration activity group 
The integration part of the instantiated SCS offers one group of operations: Integration Activity 

Group. In this group, four operations are defined LoadIntegrationActivity, Remove 

IntegrationActivity, CreateIntegrationActivity, and UpdateIntegrationActivity. 

The first operation is the LoadIntegrationActivity, which is used to load information about 

integration activities from the server into the client. Therefore, a list of IDs 
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(integrationActivityIDs) has to be set. The operation returns a list of IntegrationActivity objects 

(List<IntegrationActivities), which contains all necessary information. The parameter and 

return values are listed in Table 16: 

LoadIntegrationActivity 
Type Name Description 

List<Guid> IntegrationActivityIDs The IDs of integration activities which should 
be loaded. 

List<IntegrationActivity> - The return value includes a list of 
IntegrationActivities. Each describes a 
complete integration activity.  

Table 16 - Parameters of the LoadIntegrationActivity operation 

The operation RemoveIntegration removes a single integration activity based on the given ID 

(ID). The parameter and return values are listed in Table 30: 

RemoveIntegration 
Type Name Description 

Guid ID The ID of the integration activity. 
bool - The return value indicates if the remove task was 

successful (true) or unsuccessful (false). 

Table 17 - Parameters of the RemoveIntegration operation 

The operation CreateIntegration stores a list of new integration activities (List<Integrations> 

integrationActivities) to a given software unit, which is indicated by a list of IDs (List <Guid> 

guidPath). The UpdateIntegration uses the same structure. The parameter and return values are 

listed in Table 18: 

CreateIntegration / UpdateIntegration 
Type Name Description 

List <Guid> GuidPath Includes the path (serverID, repository, 
artefactId, UOMId) to select the software 
unit (UOM) related to the created/updated 
integration activity. 

List<IntegrationActivity> integrationactivities A list of complete descriptions of 
integration activities. 

Bool - The return value indicates if the 
creation/update task was successful (true) 
or unsuccessful (false). 

Table 18 - Parameters of the Create/UpdatesIntegration operation 
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Transformation activity group 
For the creation of a transformation reuse activity, different operations are necessary which can 

be divided into two groups: a Transformation Application Group and a Transformation Activity 

Group. Both groups are described as follows: the Transformation Application Group contains 

an operation for managing transformation applications: GetAvailable-Transformation-

Application, GetTransformationApplication, RemoveTransformationApplication, Create-

TransfromationApplication and UpdateTransfromationApplication. 

The operation GetAllAvailableTransformationApplication responds with a list of 

transformation application descriptions (List<TransformationApplication>) which can be used 

and handled by the Prometheus server. The parameter and return values are listed in Table 19: 

GetAvailableTransformationApplication 
Type Name Description 

Guid ID The ID of the Prometheus server containing 
the transformation application. 

List<TransformationApplication> - The return value includes a list of 
transformation application descriptions 
containing all information about the 
configuration of transformation applications. 

Table 19 - Parameters of the GetAvailableTransformationApplication operation 

The operation GetTransformationApplication responds with a single transformation application 

(TransformationApplication) description, based on the given ID (id). The parameter and return 

values are listed in Table 20: 

GetTransformationApplication 
Type Name Description 

Guid ID The ID of the Prometheus 
server containing the 
transformation application. 

Guid transformationApplicationID The ID of the transformation 
application. 

List<TransformationApplication> - The return value includes a 
transformation application 
description containing all 
information about the 
configuration of a 
transformation application. 

Table 20 - Parameters of the GetTransformationApplication operation 
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The operation RemoveTransformationApplication removes a single transformation application, 

based on the given ID (id). The parameter and return values are listed in Table 21: 

RemoveTransformationApplication 
Type Name Description 

Guid ID The ID of the Prometheus server containing the 
transformation application. 

Guid transformationApplicationID 
 

The ID of the searched transformation 
application. 

bool - The return value indicates if the remove task was 
successful (true) or unsuccessful (false). 

Table 21 - Parameters of the RemoveTransformationApplication operation 

The operation CreateTransformation creates a transformation activity description which may be 

used by transformation reuse activities. The description is included in only one parameter 

(Tapp) of type TransformationApplication. The UpdateTransformationApplication operation 

has the same structure and updates existing transformation applications. The parameter and 

return values for both operations are listed in Table 22: 

Create / UpdateTransformationApplication 
Type Name Description 

Guid  ID The ID of the focused Prometheus. 
TransformationApplication transformationApplication The complete description of a 

transformation application. 
Bool - The return value indicates if the 

remove task was successful (true) or 
unsuccessful (false). 

Table 22 - Parameters of the Create/TransformationApplication operation 

The Transformation Activity Group contains the following operations for handling 

transformation activities: LoadTransformationActivity, RemoveTransformationActivity, 

CreateTransformationActivity and UpdateTransformationActivity. 

The first operation is the LoadTransformationActivity operation. This operation is used to load 

information about transformation activities. Therefore, a list of IDs (transformationActivityIDs) 

has to be set.  
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The operation returns a list of TransformationActivity objects (List<TransformationActivities) 

which contains all the necessary information. The parameter and return values are listed in 

Table 23: 

LoadTransformationActivity 
Type Name Description 

List<Guid> TransformationActivityIDs The IDs of transformation activities 
which should be loaded. 

List<TransformationActivity> - The return value includes a list of 
TransformationActivities. Each 
describes a complete transformation 
activity.  

Table 23 - Parameters of the LoadTransformationActivity operation 

The operation RemoveTransformation removes a single transformation activity description, 

based on the given ID (id). The parameter and return values are listed Table 24: 

RemoveTransformationActivity 
Type Name Description 

Guid ID The ID of the transformation activity description 
bool - The return value indicates if the remove task was 

successful (true) or unsuccessful (false) 

Table 24 - Parameters of the RemoveTransformation operation 

The operation CreateTransformationActivity creates a transformation activity description. The 

description is included in only one parameter of type, TransformationApplication, and requires 

a second parameter to identify the path to the related software units (List<Guid> id). The 

UpdateTransformationApplication operation has the same structure, and updates the existing 

transformation activity description. The parameter and return values are listed in Table 25: 

CreateTransformationActivity / UpdateTransformationActivity 
Type Name Description 

List<Guid> GuidPath Includes the path (serverID, repositoryID, artefactID, 
uomID) to select the software unit (UOM) related to the 
created/updated transformation activity. 

Transformation transformation The complete description of a transformation 
application. 

bool - The return value Indicates if the creation/update task 
was successful (true) or unsuccessful (false). 

Table 25 - Parameters of the Create/UpdateTransformation operation 
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Deployment activity group 
For the deployment activity the five different operations are defined: 

CreateDeploymentActivity, GetAllDeploymentForASingleUOM, GetSingleDeployment, 

RemoveDeploymentActivity and UpdateDeploymentActivity 

The first operation is the LoadDeploymentActivity operation, which is used to load information 

about transformation activities. Therefore, a list of IDs (deploymentActivityIDs) has to be set. 

The operation returns a list of DeploymentActivity (List<DeploymentActivities>) objects 

which contains all the necessary information. The parameter and return values are listed in 

Table 26: 

LoadDeploymentActivity 
Type Name Description 

List<Guid> DeploymentActivityIDs The IDs of deployment activities which 
should be loaded. 

List<DeploymentActivity> - The return value includes a list of 
DeploymentActivities. Each describes a 
complete deployment activity.  

Table 26 - Parameters of the LoadDeploymentActivity operation 

The operation RemoveDeployment removes a single deployment activity description based on 

the given ID (ID). The parameter and return values are listed in Table 27: 

RemoveDeploymentActivity 
Type Name Description 

Guid ID The ID of the deployment activity. 
Bool - The return value indicates if the remove task was 

successful (true) or unsuccessful (false). 

Table 27 - Parameters of the RemoveDeploymentActivity operation 

This operation CreateDeployment stores a list of new deployment activities (i.e., 

List<DeploymentActivity> deploymentActivities) to a given software unit, which is indicated 

by a list of IDs (List<Guid> guidPath). The UpdateDeployment uses the same structure. The 

parameter and return values are listed in Table 28: 
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CreateDeployment / UpdateDeployment 
Type Name Description 

List<Deployment> Deploymentactivities A list of complete descriptions of deployment 
activities. 

List <Guid> GuidPath Includes the path (serverID, reposed, artefactId, 
UOMId) to select the software unit (UOM) related to 
the created/updated deployment activity. 

bool - Indicates if the creation/update task was successful 
(true) or unsuccessful (false). 

Table 28 - Parameters of the Create/UpdateDeployment operation 

Support interfaces 
These interfaces are required to use KU and KC related operations with the correct information 

about the current Prometheus environment. 

 

Figure 76 - Additional support Interface of the UC-Plugin 

Figure 76 shows the two operations of the support interfaces, which are necessary for KU and 

KC related operations. GetServiceInformation is an operation that returns the information to a 

Prometheus server, such as a version number and contained information about repositories. 

Because of this, the Prometheus server can be connected in clusters; a Prometheus server ID 

will be integrated into the call. Therefore, clients are able to use these IDs from another 

Prometheus server or repository in their different requests. The parameter and return values are 

listed in Table 29 (cf. 4.5.4.3): 

GetServiceInformation 
Type Name Description 

 
Service - The return value contains an information object of all 

available repositories in a Prometheus server, including 
(e.g., name, ID, functional limitations of each repository, 
etc.) 

Table 29 - Parameters of the GetServiceInformation operation 
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The second operation in this section is the GetAvailableRepository operation, which gives 

information about the active (actually available) repositories of the Prometheus server. Because 

of the cascading feature, a Prometheus server ID is also used. This method is intended for 

informational purposes and to validate whether communication is necessary or possible with a 

desired repository. The parameter and return values are listed in Table 30: 

GetAvailableRepositoryInformation 
Type Name Description 

Guid ID The ID of the Prometheus server containing the software 
unit. 

Repository[] - The return value includes an information object of a 
Prometheus server, including (e.g., name of the 
Prometheus server, ID of the different repository, etc.) 

Table 30 - Parameters of the GetAvailableRepositoryInfomation operation 

5.2.2.3. 	User	Client	Plugins	interfaces	and	reuse	activity	interfaces	(I1	
fffA/B)	

The User Client Plugin Interface is used for the communication between the user client and the 

Prometheus server. Therefore, the Prometheus Service implements this interface and the User 

Client Plugin uses the interface to communicate to the Prometheus core. The interface is 

divided into different areas: Knowledge User and Knowledge Creator related interfaces and 

some minor support operations. 

5.2.2.4. 	Repository	client	plugin	interface	(I2)	
The Repository Client Plugin interface defines the communication between the Prometheus 

core and the different repository plugins. Therefore, different method groups are used: Software 

Unit Handling Group, Integration Activity Group, Transformation Activity Group, Deployment 

Activity Group and Repository Control Group. From the perspective of software development, 

each group is defined in a specific interface and the interface shown in Figure 73 inherits these 

interfaces. 
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For simplification, this interface uses most of the operations already defined in other interfaces. 

The purpose of all interface operations will be explained, but only new or adapted operations 

will be shown in a table view. 

The Software Unit Handling Group contains nine operations that handle software units as 

content. CreateArtefact, UpdateArtefact, CreateUOM, UpdateUOM, AddData, Search, 

GetItems, GetItemsAsZip and RemoveItems. 

The operations GetItems and GetItemsAsZip do not differ from the definition of the user 

interface. Both operations are used to get byte data from a repository. Also, the operations: 

CreateArtefact, UpdateArtefact, CreateUOM and UpdateUOM do not differ in their purpose or 

in terms of the necessary information. The creation methods save data into the repositories. The 

update operations update such information inside the repository. The operations AddData, 

RemoveItem and Search do not differ in their interface structure, but they are implemented 

differently based on the related repository. 

The Integration Activity Group contains three interfaces related to manage integration activity 

information: LoadIntegrationActivity, CreateIntegration and SetTransferTypes. The operation 

RemoveIntegrationis is realised by using the RemoveItem operation of the Repository Control 

Group. None of these operations differ in their structure or purpose from the previous 

descriptions. 

The Transformation Activity Group contains four different operations: LoadTransfor-

mationActivity, CreateTransformation, UpdateTransformation and RemoveTransformation. 

Note: The operation RemoveIntegration is realised by using the RemoveItem operation of the 

Repository Control Group. None of these operations differ in their structure or purpose. 

The Deployment Activity Group contains five different operations: CreateDeploymentActivity, 

GetAllDeploymentForASingleUOM, GetSingleDeployment, RemoveDeploymentActivity and 

UpdateDeploymentActivity. Note: the operation RemoveIntegrationis is realised by using the 
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RemoveItem operation of the Repository Control Group. None of these operations differ in 

their structure or purpose. 

The Repository Control Group contains two relevant operations: RemoveItem and 

GetAllRepositories. Neither operation differs in its structure or purpose as defined in the 

previous section. The RemoveItems operation deletes data which belongs to an item which 

should be removed, (e.g., the files of a UOM). The other operation returns information about 

the repository, including repository ID and which operations of the interface are supported. 

Note: The repository interfaces include additional operations for handling the repositories, (e.g., 

initialisation of communication). Also, some methods are included for handling the plugin in 

the focused Microsoft Extensible Framework (MEF) system. 

5.2.2.5. 	Reuse	activity	plugin	interfaces	(I3	a/b/c)	
Integration Plugin Interfaces (I3a): The interface I3a is provided by integration plugins. In 

the case of the focused Prometheus environment, two plugins use this interface. The first one is 

for Visual Studio integrations. The second one is for Eclipse integrations. Both plugins use the 

same interface for communication from the core to the plugins. Figure 77 shows the user 

interface including an event and the previously explained DoIntegrationActivity operation. 

 

Figure 77 - C# notation of the integration plugin interface 

DoIntegration 
Type Name Description 
List<Guid> guidPath The IDs of the repository, Software Construction 

Artefact, and UOM to be searched for a transformation 
activity. 

Guid integrationActivity The ID of the integration SCA to be performed. 
ReceivClient ide Information about the service endpoint. 
List<ErrorMessage> - The return value includes a list of error messages for the 

user. 

Table 31 - Parameters of the DoIntegration operation 
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The method DoIntegration includes different parameters. The first one (List<Guid> guidPath) 

identifies the Prometheus Service, the repository, the SCA, as well as the UOM that relies to 

the integration SCA. The second parameter (Guid integrationActivity) is the ID of the 

integration SCA to be performed. The last parameter includes the service information where the 

SCA should be performed (ReceiveClient ide). The method is able to respond a list of custom 

errormessage. 

Transformation Clients Interface: Figure 78 shows the relevant service operations used. 

 

Figure 78 - C# notation of the transformation client Interface 

The method DoTransformation requires several pieces of information. The ID for the 

corresponding Prometheus Service (Guid serviceID), the ID of the database that contains the 

software unit to be transformed (Guid RepositoryID), the ID of the software unit containing the 

artefact (Guid artefactID), the ID of the UOM, and the transformation rule have to be executed 

(string transformationruleName). The method returns a list of transfer types as the return value. 

TransferType consists of a set of file elements and additional descriptions of the result of a 

transformation. In the case of the Prometheus environment the result of the transformation is a 

new software unit (see Section 5.3.2). The parameter and return values are shown in Table 32. 

DoTransformation 
Type Name Description 
Guid serviced The ID of the Prometheus server. 
Guid repositoryID The ID of the repository. 
Guid artefactID The ID of the Software Construction Artefact. 
Guid uomID The ID of the UOM including the transformation 

activity. 
string transformationRule

Name 
The name of the transformation activity which should 
be executed. 

List<TransferType> - The return value includes a list of UOM artefacts. 

Table 32 - Parameters of the DoTransformation operation 
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Deployment Clients Interface:  

Figure 79 - C# Notation of the deployment web service 

Figure 79 shows the relevant service operations used. The DoDeployment operation requires 

several pieces of information, as with the other client methods. It is necessary to use different 

IDs to select the correct Software unit, for example, the ID for the corresponding Prometheus 

server (Guid serviceID), the ID of the repository that contains the software unit to be deployed 

(Guid RepositoryID), the ID of the software unit containing the artefact (Guid artefactID), the 

ID of the UOM, and the deployment rule to be executed (string deploymentruleName). The 

operation returns a list of errors (List<ErrorMessages> Errormessages).  

The parameter and return values are listed in Table 33. As discussed in Section 5.3.3, an 

operation is also available for the subscription to manual instruction (DoSubscription). This 

operation is not discussed further because it is a common subscription operation with eventing 

mechanisms. 

DoDeployment 
Type Name Description 
Guid serviceID The ID of the Prometheus server is to be searched. 
Guid repositoryID The ID of the repository to be searched for a transformation 

activity. 
Guid artefactID The ID of the Software Construction Artefact. 
Guid uomID The ID of the UOM including the deploymentDeployment 

activity. 
string deploymentRuleNa

me 
The name of the transformation activity which should be 
executed. 

List<Errorm
essages> 

- The return value includes a list of error messages for the user. 

Table 33 - Parameters of the DoDeployment operation 

5.2.2.6. 	Repository	client	interfaces	
The connection to the different repository systems was handled using the provided interfaces. 

In three cases, these interfaces were real system interfaces: 
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I4: The DeviceXML repository provides a Web Service based on ASP.NET. This service 

includes an interface with three operations. The first one is the initial login into the system 

(‘authentication’) which requires a username and password. The second one is a search function 

which delivers device xml classes. The third operation delivers pictures for a given device xml 

class. 

I6: The SOA4D repository provides a Web Service interface based on the GSoap library (FSU, 

2007). SOA4D provides operations to iterate over the SOA4D project structure to get 

information about, for example, stored software units. 

I12: The last repository in the used Prometheus environment was a second Prometheus 

environment using the described I1 interface (cf. 4.5.4.3). 

5.2.2.7. 	Integration	client	plugin		
For the connection to the Visual Studio Gateway and the Eclipse Plugin, a Web Service 

interface was used. Even though both systems were developed with different technology, the 

SOAP-based Web Service includes the same interface. Figure 80 shows the relevant service 

operations used: 

 

Figure 80 - C# Notation of the Integration client plugin Interface 

SetTransferType 
Type Name Description 
List<IntegrationObj
ect> 

transferTypes List of integration objects. Each object describes how a 
given UOM element has to be integrated in a given 
development environment.  

void - Return value does not exist. 

Table 34 - Parameters of the SetTransferType method 

The method SetTransferType receives a list of IntegrationObejcts. These objects contain the 

binary data and a description of how these are to be integrated (see Section 4.5.3). An 
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integration client plugin interprets these data sets and the integration of the specific type of 

development environment. The parameter and return values are shown in Table 34. 

The method ReceiveZip receives a ZIP package that allows the user to save the zip file. This 

file includes all files and folders necessary for an activity.This is needed in the download 

scenario (see Section 4.5.1). Also the result of a transformation activity includes one or more 

files. To avoid several download operations these are included in one zip file. The parameter 

and return values are shown in Table 35: 

ReceiveZip 
Type Name Description 
byte[] Files A list of files which can be stored as zip files.  
Void - Return value does not exist for this operation. 

Table 35 - Parameters of the ReceiveZip method 

5.2.2.8. 	Non-service	interfaces	
Connections to other existing system (e.g., the repositories) are called non-service interfaces in 

this realisation. The Prometheus environment uses different repository technologies and 

applications without any service interfaces. These are listed as follows: 

I5: The Brick Catalogue only provides a web page for humans. As a result, there is no system 

interface which can be handled by a repository plugin. The problem was solved by an 

automated reading of the web page and by creating an internal database inside the plugin which 

was created for this repository. 

I7: When connecting to the SQL based repository, the SQL connection technology of Microsoft 

.Net combined with the Entity Framework of .NET was used. Therefore, the connection to the 

server was handled by the .NET Environment. The special repository plugin for this repository 

only handled the objects and sent read/write requests. 

I13: For the communication between the Eclipse Integrated Development Environment (IDE) 

plugin and Eclipse, the Eclipse IDE Application Programming Interface (API) was used. 
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I14: For the communication between the Visual Studio Gateway and a Visual Studio Instance 

the COM Interface of visual studio was used.  

I10: The transformation application calls are realised by using normal process calls. 

I11: The transformation application calls are realised by using normal process calls and File 

transfer protocol (FTP)-based connections. 

5.2.3. 	Used	technologies	and	communication	protocols	
For the realisation of the different architecture elements, different technologies are used. For 

the relevant parts of the realisation, the used technologies are now briefly described. 

Technologies or architecture parts which are not relevant are not discussed or listed in this 

thesis. Figure 81 shows an overview of used technologies in the Prometheus environment. 

 

Figure 81 - Used technologies 

The Prometheus core was developed by using Microsoft .NET Version 4.0 (see 1 in Figure 81). 

The used programming language is C#. The plugins were also developed using this platform as 

well as the used programming language. As a plugin system or architecture, the MEF was used 
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(see 2 in Figure 81). This enables lazy loading and the rescheduling of plugins into a plugin 

host, which is in the current scenario Prometheus core. The plugin differs in its communication 

technology. The plugins use normal method calls or .NET eventing mechanisms to 

communicate with the core (see 3 in Figure 81). Some plugins use or provide Web Services 

based on SOAP 1.2. This interface technology is realised based on Windows Communication 

Foundation (WCF), which is an API extension of .NET 4.0, including different technologies for 

communication. One relevant feature of WCF used in this implementation is the hosting of 

multiple Web Services in one application, without the use of a classical web server (e.g., 

Internet Information Server). This enables the Prometheus core or the plugins to host different 

Web Services directly without the need for an external web server. Some of the plugins control 

other applications by using process calls (see 5 in Figure 81). Thereby, typical functionality of 

the .NET platform was used. 

The Eclipse integration plugin is developed using the Java programming language and a special 

API of the Eclipse IDE. It also uses a Web Service which is based on a Java SOAP extension. 

The Visual Studio Gateway is a standalone application based on C# and .NET 4. It also uses a 

WCF-based web service and the Microsoft COM technologies (see 6 and 7 in Figure 81). 

Visual Studio provides a COM object to perform IDE activities. 

For the connection to the different repositories, the following technologies were used: SQL (see 

8 in Figure 81), GSoap based Web Service (FSU, 2007; see 9), the ASP.NET based Web 

Service (see 10 in Figure 81), and simple HTML API of .NET 11. 

The user interface of the client system used is realised in Microsoft Silverlight technology (see 

12 in Figure 81; Microsoft, 2012d). The version 4.0 was used. For communication purposes, 

the client system reacts as Web Service consumer using WCF (see 13 in Figure 81). 

The datamodels implemented are created by using a code first approach based on the Entity 

Object Framework (EOF) which is a Microsoft-supported open source project for object-

oriented data handling of databases (see 14 in Figure 81; Microsoft, 2010). 
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5.2.4. 	Extensibility	approaches	
Section 4.5.4 discusses the requirement of the focused extensibility (based on variants of 

technologies and changes in future) for the following points: Fundamental Software Unit 

Model, Software Construction Activities models, support of different existing repositories, 

support of different development environments and tools and support of different client 

applications. 

The support of different client applications as extensibility attributes is realised by using the 

plugin concept which enables the integration of clients using different communication concepts 

or technologies. In this case, a SOAP based Web Service is used which fits to the W3C web 

service standard (W3C, 2007). Also, the used data model in the communication protocol is 

fully serialisable and describable by using XML technology. The advantages of this approach 

are: 

- Different platforms or programming languages support this kind of service technology, 

- (Web) Services can be created to enable a distributed environment (e.g., Service-

oriented Architecture; SOA). 

The plugin system is also used for extensibility to support of different development 

environments. In this scenario, two different IDE types were integrated using different 

technologies. One was also integrated using a Web Service approach, which shows the 

possibilities for distribution. The integration of the repository also uses the same approach. One 

repository (Brick Catalogue), which is only accessible by scanning the provided web pages, 

shows the advantages (See 10 in Figure 81). This repository is not able to accept write requests 

or provide a system interface. It provides a simple web page (HTML) for human readers. To get 

information, the different web pages have to be scanned by a self-written HTML client. The 

scan results are stored using a second software unit datamodel instance in the plugin. This 

specialised repository connector is part of one repository plugin and shows the flexibility of the 
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plugin approach. Even if ‘special’ handling or technologies are necessary, this can be handled 

by a plugin and does not affect the environment. 

The Software Unit Model and the three different reuse activity models were developed as semi 

semantic models. One relevant requirement was to create one technical model that can be 

referred to by others. Therefore, following characteristic of semantic models is relevant: 

semantic models can be extended by relating the different semantic terms of two models  This 

characteristic is used to combine the three software constructuion activity models with the 

software unit model (cf. Parreiras, 2012). 

5.3. 	Realised	models	
In this section, the realisation for the different models of software unit and reuse activities (see 

Section 4.5.2) is described. Therefore, four different model instances were created: 

- Software Unit Model – Realised model of the basic Software Unit Model (see Section 

4.5.2) 

- Transformation Activity Model – Realised model of an activity model (see Section 

4.5.3) 

- Integration Activity Model – Realised model of an activity model (see Section 4.5.3) 

- Deployment Activity Model – Realised model of an activity model (see Section 4.5.3) 

The different models are realised using a single model concept. This concept consists of several 

layers which together give the description of the focused software units and activities. In basic 

terms, it contains two layers (see Figure 60 in Section 4.5.2): 

The ‘Unit’ or U-Layer describes software units with the necessary information for this 

approach. The ‘Application’ or A-Layer describes the different reuse activity view.  

5.3.1. 	Software	Unit	Model	instance	
In this section, the U-Layer is described. This layer consists of four different areas described in 

Section 4.5.2 (cf. Figure 59).  
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In region 1: the "Stakeholder View", authors and responsible persons are described. Region 2: 

the "Problem-Solution View" describes the relationship between the problem and solution. 

Region 3: the "Technical View" describes a device from a technical perspective. In region 4: 

the "Content View", on the other hand, is a description from the technical point of view for 

searching behaviors. The four areas are described in the following sub-sections. There, each 

element in the different model region will be described, as well as the relational aspects of each 

element. 

5.3.1.1.  Restriction rules for the datamodel	
Restriction 1: In general, each element of the datamodel has no relation to other elements or 

semantics. The exceptions are explained in the next sub sections.  

Restriction 2: Each element is a ‘Thing’ and has an ID. This is relevant for the handling of 

model instances inside the Prometheus environment (cf. Figure 82). 

Restriction 3: Also, relevant is the general view on persons (see Figure 82). A person can be a 

natural person or a synthetic person in the scope of the model. 

Restriction 4: A system is a computer application. 

 

Figure 82 - Model restrictions 

5.3.1.2. 	Region	1	“Stakeholder	View“		
The stakeholder view is relevant for this thesis because information about possible stakeholders 

(e.g., project owner or unit creator) may be relevant for users for resue. Therefore, this region is 
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described briefly. Next to the stakeholders, this area describes a simple feedback and ranking 

system used by the Prometheus environment. Each element is described in Table 36. 

No. Element Description 
U1-3 Author The creator of a software unit and, therefore, a stakeholder. To describe an 

author in this Prometheus environment a name and surname is used. 
U1-1 Person A common description for any human stakeholders, e.g author and user.  
U1-2 System A non human stakeholder. This element is not used in the current Prometheus 

environment, but is relevant for future use of the approach by another system. 
U1-
11 

User The second human stakeholder. An inexperienced user consuming the provided 
functionality of a Prometheus environment.  

U1-6 Statistic 
Data 

This element is a list of statistic data. For example, it may be interesting for a 
user to know how often a software unit was downloaded or reused. 

U1-
12 

Comment A comment from a person about the software unit. 

U1-7 Reuse 
Feedback 

A special comment about special reuse characteristics. 

U1-4 Contact 
Information 

Contact information of the responsible person for this software unit. 

U1-5 Ranking Ranking information is usually used to identify if a reuser of a software unit 
was satisfied or not.  

U1-8 Monitor A system which sets the statistic data (given by humans or other systems). 
U1-9 Service A special system for handling the monitoring system. It is not relevant for the 

datamodel and is only used in the Prometheus server. 
U3-1 UOM This is the central element of the model and is a software unit.  

Table 36 - Defintion of elements of the stakeholder view (U1) 

 

 

Figure 83 - Relevant elements of the area 1 - stakeholder view (U-R1) 
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This region is named U-R1 and is demonstrated in Figure 83.The element relations can be 

described as follows: A ‘Person’ is an ‘Author’ (U1(13)) if this person creates the ‘UOM’ 

(U1 (3U3(1))) or is the current UOM owner. A ‘Person’ is a ‘User’ (U1(111)) if this 

person: 

- (U1 (115)) makes a ‘Ranking’ that is a sub type of a ‘Comment’ (U1 (5  12)) for a 

UOM or an related SCAc (U1 (5U3(1))) or 

- Creates a ‘Comment’ (U1 (1112)a) for a UOM or related SCAcs (U1 (712)a) or a 

‘Feedback’(U1 (117)) that is also a ‘Comment’ (U1 (12 U3(1))) or a comment of a 

comment (U1 (712)b) or 

- Comments on an existing comment (U1 (11-12)b) which is equal to (U1 (117)) and 

(U1 (1112)a). 

Each ‘Person’ has ‘Contact Information’ (U1 (14)). Ranking is a special type of ‘Statistical 

Data’ (U1 (56)) and is directly related to the ‘UOM’ U3(1U1(6)). A ‘Monitor’ is a special 

‘Service’ (U1 (98)) and sets and reads ‘Statistical Data’ (U1 (68)a and b). Both ‘Monitor’ 

and ‘Service’ are ‘System’ elements (U1 (92)) (U1 (82). 

5.3.1.3. 	Region	2	“Problem-Solution	View“	
The research area of this study does not focus on problem-solutions in terms of software units 

and has no contribution to these issues. However, this is an relevant research field, (cf. solution 

and relation comparison discussed by Jeong and Kim, 2012). Therefore, the used data model 

includes a relation to this topic which may be extended in the future by other semantic models. 

But this is not part of the focused research. The problem solution context is related to the 

professional content of a UOM and not to the SCAcs. 

No. Element Description 
U2-1 Problem This element represents a problem that can be solved by a UOM. 
U2-2 Solution This element represents a solution included in a UOM for a particular problem. 
U2-3 Software 

Engineer 
This element represents a special user who is a problem owner and is searching 
for a solution. 

U2-3 MetaData This element represents additional information describing a solution. 

Table 37 - Defintion of elements of the problem solution view (U2) 
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Figure 84 - Relevant elements of the area 2 – problem and solution view” (U-R2) 

Figure 84 shows the elements in this area. The main elements are ‘Solution’ and ‘Problem’. 

Thereby, a ‘Problem’ is solved by a ‘Solution’ (U2(21)). A ‘Solution’ is realised by a ‘UOM’ 

(U2(1U3(1))) that is used to solve a ‘Problem’ (U2(2  U3(1))). Additionally, a ‘Solution’ 

can be described by additional ‘Metadata’ (U2(14)). A ‘Software Engineer’ which is a 

‘Person’ (U1(1U2(3))) searches for solutions (U2(31)) because of engineer has one or 

more problems (U2(32)). Finally this model shows that a solution is created by an ‘Author’ 

of an ‘UOM’ (U2(2U1(3))). 

5.3.1.4. 	Region	3	“Technical	View“	
The technical view is the relevant view for the primary research of this thesis. It describes 

software units (based on different technologies and types) in a common view. This is part of the 

concept described in Chapter 4. All SCAc-based models relate to this section. Table 38 shows 

the 22 elements that are relevant in this area. 
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No. Element Description 
U3-1 UOM This element is the central definition of a software unit as a reusable 

element. It represents the view of this approach in this thesis when it is 
"spoken" of as a reusable software unit. Therefore, the element is meant 
as an alternate member for the entire data model. All other elements are 
descriptive elements for the ‘UOM’ element. 

U3-2 Unit This element represents a real software component in the context of this 
thesis that is equivalent to a unit of a class, component or service. 

U3-3 Human 
Readable 
Content 

This element describes the contents of a 'Unit', a 'Data', as suitable for 
human element format. 

U3-4 Machine 
Readable 
Content 

This element describes the contents of a 'Unit', a 'Data' element as for 
systems suitable format. 

U3-5 Service 
Information 

This element defines a ‘Machine Readable Content’‘Data’ element which 
is a service type. Therefore, it is an interface description (e.g., endpoint 
and WSDL file). This element behaves disjointly to ‘Class’ and ‘Binary’ 
elements. 

U3-6 BinaryData This element defines a ‘Machine Readable Content’ ‘Data’ element as a 
binary type. This is the definition of binary files that do not comply with 
the other descriptive elements (‘Class’ and ‘Service’). This element 
behaves disjunct from the elements ‘Class’ and ‘Service’. 

U3-7 ClassData This element defines a ‘Machine Readable Content’ ‘Data’ element as a 
class type. This serves the definition of class files. This element behaves 
disjunct from the elements ‘Binary’ and ‘Service’. 

U3-8 Data This element is the most common element which is used to describe the 
content of an available element. 

U3-9 Audio This element is a 'Human Readable defined content' 'Data' element as the 
audio type. This is the definition of audible ‘Audio’ data. This element 
behaves disjunct from the elements 'Video', 'Document', 'Link' and 
'Picture'. 

U3-10 Document This element is a 'Human Readable defined content' 'Data' element as the 
document type. This is the definition of readable documents. This element 
behaves disjunct from the elements 'Video', 'Audio' and 'Picture'. 

U3-11 Video This element is a 'Human Readable defined content' 'Data' element video 
type. This serves to define foreseeable movie data. This element behaves 
disjunct from the elements 'Document', 'Audio', 'Link' and 'Picture'. 

U3-12 File-Links This element represents physical data of a file. 
U3-13 Technology  This element describes the basic technology, which is required by a 

‘Technical Environment’. 
U3-14 Programming 

Language 
Charactersitic 

This element defines the language that has to be available in the runtime 
environment. 
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No. Element Description 
U3-15 Component  This element defines a ‘unit’ element as a component software unit. 

U3-16 Class  This element defines a ‘unit’ element as a class software unit. 

U3-17 Service This element defines a ‘unit’ element as a service software unit. 

U3-18 Snippet  This element is a "unit" and is defined as a textual element software unit. 
In this work, this type of software unit is out of focus. 

U3-19 File Structure This element describes a file in a folder location 
U3-20 Tec 

Environment 
This element is a descriptive element. It describes the technical 
environment, which a "unit" element requires to be able to run. 

U3-21 Picture This element is a 'Human Readable defined content' 'Data' element as a 
picture type. This is the definition of foreseeable image files. This 
element behaves disjunct from the elements 'Video', 'Audio', 'Link' and 
'Document'. 

U3-22 Folder 
Structure 

This element describes a folder structure 

U3-23 Dependencies This element defines dependencies (e.g., other files, system files, or 
settings) 

  Link This element defines a ‘Human Readable Content’ ‘Data’ element as a 
link type. This is used for the definition of document links to other 
documents Note: This element is not used in the realised environment 
and, therefore, not part of Figure 106. 

Table 38 - Defintion of elemens of the technical view (U3) 

Figure 85 shows the elements and their relations. These are defined as follows: the main 

element of the technical view is the ‘UOM’ element. The main task is to hold the relations to 

the other less technical views (see paragraph ‘Region Relations’ at the end of this chapter). It is 

the entry point of the model. A ‘UOM’ represents the ‘Unit’ (U3(12)) in this part of the 

model. This separation was made to simplify the model. The ‘Unit’ element represents the 

technical viewpoint. It includes a unit type (equal to SCA types in Section 4.4.1.1) that is 

represented by the elements ‘Snippet’, ‘Service’, ‘Class’ and ‘Component 

(U3(215,16,17,18)). Also, a ‘Unit’ has a description for the runtime ‘Technolgy’ 

(U3(213)) that includes a description for the programming language ‘Characteristic’ 

(U3(1314)). The technology description is also used for the description of the ‘Technical 
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Environment’ (U3(2013)) that is used as a ‘Dependency’ (U3(2313)) of ‘Files’ 

(U3(1223)). Also other files can be dependencies of existings files (U3(2312)). The file 

association to the ‘Unit’ element is described by two different content types. The first one is the 

‘Human Readable’ content (U3(23)). This content is represented by ‘Video’, Audio’ and a 

‘Document’ element (U3(9,10,1,213)). The second one is the ‘Machine Readable’ content 

(U3(24)). This is definied as a ‘Class’, ‘Binary Data’ and ‘Service Information’ element 

(U3(5,6,74)). Basically, both content elements ‘Data’ elements (U3(83) and U3(84)) can 

be represented by real files (U3(812)) with typical file properties. For the relation of files to 

different SCAc models, the typical ‘File Structure’ and ‘Folder Structure’ is used if ‘Files’ has 

to be described (U3(1912) and U3(2212)). These two elements are also related because of 

the structure of files is part of the folder structure in this model (U3(1922)). 

The last relation to be described is that a ‘Unit’ has a content definition described in the content 

view region. 

 

Figure 85 - Relevant elements of the area 3 – technical view (U-R3) 
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To classify the different unit types, special attributes are part of the ‘Unit’ element. A ‘Snippet’ 

for example is changeable, extendable, under local control and not complete. A ‘Service’ is not 

changeable, not extendable, not under local control and complete. A ‘Class’ is changeable, 

extendable, under local control and complete. A ‘Component’ is not changeable, not 

extendable, under local control and complete. Table 39 summarises theses classifications: 

Attributes 
  IsChangeable IsExtendable IsUnderLocalControl IsComplete 

U
ni

t T
yp

es
 Snippet X X X - 

Class X X X X 
Service - - - X 
Component - - X X 

Table 39 - Classification of unit types 

5.3.1.5.  Region 4 “Content View” 
The research area does not focus on a search for UOM. A software conctruction reuse process 

requires the search for UOMs or SCAcs. Therefore, the realised model describes the description 

of the content from a business and professional view. The description of more technical 

perpectives (e.g., interfaces) is not provided by the model. Such information can be added by 

using research results of other research (cf. Combination of semantic models in Parreiras, 

2012). Table 40 describes the 15 elements that are used in the content view area.  

No. Element Description 
U4-
5 

Content 
Definition 

This element is the main element of region U4-R4 (content view). It represents 
the profeesional content of the ‘Unit’ element.  

U4-
11 

GUI This element defines a “Contentdefinition” element as a GUI type. The content 
of the related unit is a user interface or contains user interface information. 

U4-
14 

Function This element defines a “Contentdefinition” element as a function type. The 
content of the related unit is a set of functions. 

U4-
12 

Structure This element defines a “Contentdefinition” element as a structure type. The 
content of the related unit is structured information, (e.g., an interface). 

U4-
15 

Data This element defines a “Contentdefinition” element as a data  type. The content 
of the related unit is data. 

U4-
2 

Subject This element is a substantive. 

U4-
9 

Verb This element is a verb. 

U4-
3 

Optional 
Information 
(Tags) 

This element extends the content element with a set of subjects (Tags) and 
provides keywords used for the search of a “Unit” element. 
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No. Element Description 
9 Synonym This element contains synonyms for substantives or verbs.  
U4-
4 

Subject -
Verb 
Combination 

This element is a relation between “Subjects” and “Verb” elements. This is 
used to search for key substantive and verb pairs related to a specific software 
unit. 

U4-
7 

Synonym 
Relation 

This is an extension point to other semantic models dealing with subject 
synonyms. 

U4-
8 

Verb 
Relation 

This is an extension point to other semantic models dealing with verb 
synonyms. 

U4-
10 

Synonym This element is the main element and represents synonyms in this model. All 
other synonyms are related to this base class. 

U4-
1 

Subject 
Synonym 

This element represents synonyms for subject elements. 

U4-
6 

Verb 
Synonym 

This element represents synonyms for verb elements. 

Table 40 - Defintion of elements of the content view (U4) 

In the following, the relation between these elements will be explained and are shown in Figure 

86. 

 

Figure 86 - Relevant elements of the area 4 – content view (U-R4) 
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The main element in this area is the ‘ContentDefinition’ element. It represents the professional 

description of software unit content (U3(2U4(5))). A ‘ContentDefinition’ includes a simple 

‘Subject-Verb’ combination (U4(54)) that includes a ‘Subject’ (U4(42)) and a ‘Verb’ 

(U4(49)). This relation is used to describe the content using two words. The 

‘ContentDefinition’ element can be a ‘GUI’, ‘Structure’, ‘Data’, or ‘Function’ element (see 

Section 4.4.1; U4(511,12,13,14)). This relation is combined with the ‘Verb’ 

(U4(11,12,13,14)9) to give a user the possibility to search for the content by using a 

‘Substantive-Verb-ContentType’ relation. Also, a ‘Subject’ element can be described more 

precisely using ‘Optional Information’ (U4(32)). Such textual information is part of the 

‘ContentDefinition’ element (U4(53)). Also, the ‘SubjectSynonym’ and the ‘VerbSynonym’ 

have a relation to a relation element to other semantic models (‘Synonym-Model Relation’ 

element, (U4(67) and U4(47)). ‘Subject’ and ‘Verb’ elements can be expressed using 

‘Subject synonyms’ elements (U4(21)) or ‘Verb synonyms’ (U4(96)). Both synonym 

elements are based on the ‘Synonym Element’ (U4(101) and U4(106)). 

This area includes some extension points to relate the model with other semantic models. The 

‘Subject-Verb’ relation for example can be expressed by using other word-relations models 

(U4(28) and U4(98)). 

5.3.1.6. Region relations 
The previous descriptions of the different regions of the model also include relations between 

these regions. To create a non complex view on these relations, this paragraph shows them 

seperatly.  

The four areas shown in Figure 87 are related by using the ‘UOM’ and ‘Unit’ element. The 

‘UOM’ element represents a non-technical element and, therefore, is connected to Region 1 and 

Region 2. An ‘UOM’ has a ‘Problem’ description (U2(2U3(1))) and realises (by using the 

‘Unit’ element) a solution for this problem (U2(1U3(1))). The ‘UOM’ element also has two 

relations to region 1. An ‘Author’ as the creator of the software unit (‘UOM’, 
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(U1(3(U3(1)))). The second relation is between the ‘UOM’ and the ‘Comment’ element. A 

‘UOM’ can include comments (U1(12U3(1))). The ‘Unit’ element is a more technical 

description of an ‘UOM’. It includes a relation to the ‘Content Definition’ element in region 4 

(U3(2U4(5))). This extends a unit with the description of the professional content. 

 

Figure 87 - Relevant relations between the different areas of the U-Model 

5.3.2. 	Transformation	model	instance	
The concept description in Section 4.5.4.2 shows that SCAc models extend the fundamental U-

Model with SCAc specific information. In this section, the realised Transformation SCAc 

model is explained. This includes the explanation of the elements, their relationship, as well as 

the relationship to the existing Unit Model. Figure 88 shows these elements and their 

conections:  
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Figure 88 - Data model extension for transformation activities maintanance  

In this area, the main link between the transformation model extension (called T-Model) and 

Software Unit Model (called U-model) is defined. The central element of the T-model is the 

‘Transformation Description (T1)’. It represents a complete transformation. The connection is 

that one unit of the U-model has one or more T1 (U3(2T(1))). T1 describes a transformation 

which again consists of (T(13)) several ‘Transformation Steps’ (T3). Furthermore, T1 has a 

textual ‘Description’ element meant for human readers that describes the overall transformation 

process (T2, T(12)). The last link of T1 is an ‘Output’ element of the last transformation step 

(T4, T(14)), which is the result of the entire transformation. 

T3 provides a transformation description, which means the execution of an application 

transformation. T3 is, therefore, associated with the other three areas of the T-models (T(35), 
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T(34), and T(36)). These represent the input (T5), the transformation application itself 

(T6) and the result of T3 (T4). 

5.3.2.1. 	Input	of	a	transformation	application	
The ’Input’ (T5) of a transformation application contains (T(57)) all necessary input 

parameters (T7) and is used by (T(56)) this application (T6). An instance of T7 is described 

by three relevant aspects. The first is the parameter structure (T8), whose (T(89,10)) syntax 

name (T9) and syntax structure (T10) are defined by the transformation application (T6) 

(T(86)). T8 and T10 are used by T7 (T(97), T(107)). The second relevant area concerns 

the values to be entered in the parameters. In the context of this thesis, these are text values, 

which are either freely definable values or defined by certain properties of files (U3-12, 

U3(12T(11))) or structure information of files and folders (U3-19, U2-22, U3(19(11))), 

which come from the software unit to be transformed. In addition, these values come from 

properties of the technical environment (U2-20) which are required by the software unit (U3-2) 

or the transformation (U3(20T(11)) and U3(223)). 

5.3.2.2. 	The	transformation	application	
The actual transformation application (T6) is described by means of three relevant elements. 

The first element is comprised of the input parameters (T5, T(56)). The next element is the 

result of the performed transformation application (T(64 a and b), T4). The last element is the 

application description (T12, T(612)). T12 includes the files and folders (T(12U3(19)), 

which the application consists of, the dependencies from runtime environment (U3(1220)), 

and the definition of the start file and the execution environment as attributes. This dependency 

relation can be expressed by T(12U2(19)) also. 

5.3.2.3. 	Transformation	result	
The result of a transformation application is represented by the area T4 in Figure 88. Essential 

in context with the U-model is that T4 represents a software unit (U3-21) with missing 
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additional files in the sense of the U-model (T(4U2(21))). Users can add other artefacts to the 

result of a transformation, (e.g., documentation to create a new reusable software unit in the 

sense of the U-model). This is done by reference to other software unit artefacts. T4 may have 

dependencies, (e.g., files, system variables, etc.), defined by the application. 

Each transformation step can have an output (T(34)). This output can used for later executed 

transformation steps as input (T(45)).  

5.3.3. 	Deployment	Model	instance	
The deployment model was created by analysing three different Web Service deployment 

approaches. The study's test subjects consisted of the following three embedded device engines: 

Advantys STB using the Sonata engine, Advantys STB using the Dynamic Deployment engine 

and GX300 Gateway using OSGI Deployment (see Zinn et al., 2012a). In the following text, 

the model shown in Figure 89 and Figure 90 is explained. 

  
Figure 89 - Data model extension for deployment activities Part 1 
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Figure 90 - Data model extension for deployment activities Part 2 

5.3.3.1. 	Maintenance		
In this area, the main link between the model extension (D-model) and the model to extend (the 

U-model) is defined. The central element of the D-model is the ‘Device Deployment 

Description” (D1). It represents a complete focused device deployment. The connection is that 

one unit of the U-model has one or more ‘Device Deployment Description’ elements. The 

relation is realised by creating a ‘Device Deployment Externsion’ that is related to all ‘Device 

Deployment Description’ elements (U25, U3(25D(1))). This extension is related to the 

‘Extension’ element U3(2425) of a unit that relates to all SCAc related extensions (U23, 

U3(224). Additionaly, D1 has a simple ‘Description’ element that describes the complete 

deployment SCAc for the user search (D14, D(114)). 

D1 describes a complete device deployment activity which again consists of several 

deployment steps (D2, D(12)). Each of these steps has a ‘Manual Step Description’ meant for 

human readers and describes the overall device deployment process (D3, D(23)). A D3 has a 

‘Message Type’ (D(34)) that can be an ‘Information’, ‘Warning’ or a ‘Command’ element 

(D(45,6,7)). A D3 has the attributes: ‘Order’, ‘Name’, ‘Text’. The order describes the order 

of all messages. The name is used as a simple topic of the message and the text attribute 

includes the text part of the message. 
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An experienced user can describe the invocation step for each D2 D(28). This is an order for 

the automation software or for the user in the manual step description. An ‘Invocation’ can be a 

‘Start’, ‘Reset’ ‘Stop’, ‘Compilation’ or ‘Deployment’ element (D(89,10,11,12,13)). 

5.3.3.2. 	Input	of	a	deployment	application		
Like a transformation SCAc, the focused deployment SCAc, also uses console-based 

applications to deploy the software units to the devices. As a result, the input part of a 

deployment model is similar to the transformation model. The Input (D15) is used by 

‘Deployment Application’ (D16, D(1516)) and includes, for this application, several 

parameters (D17, D(1517)).The ‘Parameter Values’ needed by the ‘Paramaters’ (D18, 

D(1718)) have a ‘Parameter Structure’ (D19, D(1819)). This structure is simply defined as 

‘Syntax Name’ (D20, D(19,20)) and (D(D21, D(19, 21))). Multiples of these simple parameter 

pairs can be used by the ‘Paramater’ element (D9,10 7). 

The input of a deployment step can be external files and deployment information. This 

information can be represented by the parameters. External file information is expressed by the 

relation (D15U3(19)) and (U3(12D(18))). 

5.3.3.3. 	Deployment	application		
The output of a D2 is defined and created by the deployment application (D16, D(1623ab)). 

This application depends on a ‘Technical Environment (U2(20), D16U2(20)). An application 

has an ‘Application Description’ element (D22, D(1622)) that includes the technical 

environment requirement of the application (D(22U2(20))) that can be used by the input of a 

(D2 (D15D22)). The application description also defines external files and their file structure 

that are necessary for the deployment process or step (D22U3(19)). 

5.3.3.4. 	Result	of	a	deployment	SCAc	
The result of a single D2 (D(223)) can be used as input of the next D2 (D(2315)). From the 

scope of the research, the deployment SCAcs output is not relevant. For future research in this 
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area, it may be interesting to see software units executed on embedded devices also as reusable 

software units. 

5.3.4. 	Integration	model	instance	
The idea of this integration model was published by Zinn et al. (2011b). For the creation of this 

model, the integration features of two IDEs (Visual Studio 2010 and Eclipse ‘Juno’) were 

analysed. Additionally, it was proven how the result information can be related to the U-Model. 

In the following, the realised integration model shown in Figure 91 is described. 

 

Figure 91 - Data model extension for Integration activities 

5.3.4.1. 	Maintenance		
In this area, the main link between the model extension (I-model) and the model which the 

authors wish to extend (the U-model), is defined. The central element of the I-model is the 

‘Integration Description’ (I1) that represents a complete integration. The connection is that one 

‘Unit’ of the U-model has one or more I1 (U3(2I(1)). I1 describes an integration which again 
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consists (I(12)) of several ‘Integration Packages’ (I2). Furthermore, I1 has a textual 

description meant for human readers, and describes the overall transformation process (I3, 

I(13)). The last link of I1 is the description of the focused IDE (I4, I(14)) into which the 

different files have to be integrated.  

I2 provides an integration of several files of a software unit. It is, therefore, associated with the 

other two relevant elements of the I-model (I(25) and I(26)). These represent the input (I5) 

and the integration output description (I6). 

5.3.4.2. 	Input	of	an	integration	activity		
The input (I5) of an integration package contains (I(5U3(12)) all necessary files from a 

software unit. This also includes the dependencies of these files (I(5U3(23)). 

5.3.4.3. 	Result	of	an	integration	
The result (I6) of an integration package includes all files and dependencies defined in the input 

(I5, I(5U3(12,23)). In addition this element may contain files and folders (described by U3-

12, I(6U3(12))) which are not part of the focused software unit. Each file will be described 

by an integration pattern (I7, I(67)). This pattern includes different values: 

- OnlyCopy (I8, I(78)): This copies a file without referencing it in the solution tree of 

the project. This is necessary for second level dependencies that are not controlled by 

the IDE environment. 

- WebReference (I9, I(79)): This marks a file as a web reference. Different IDEs utilise 

different methods for managing this information. For example, Visual Studio can use a 

WSDL file to create a reference to a web service that is based on the corresponding 

WSDL description. 

- Reference (I10, I(710)): This copies a file and includes it in the solution tree of the 

project. This is a traditional reference that can be included or imported. This is 

necessary for managing the dependencies of a unit. 
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- DoNotCopy (I11, I(711)): This prevents a file from being transferred into a project’s 

environment. Not all the files that are included in a unit are necessarily required by the 

IDE (e.g., documentation). 

- InsertAsText (I12, I(712)): This flags the content of a file that is to be treated as text 

when loaded into the IDE. This is useful for code references (using or import) and code 

snippets. 

- CopyAsResource (I13, I(713)): This flags a file to be used as a resource and includes 

it in the project. (e.g., configuration files). 

5.3.4.4. 	Integrated	development	environments	
The ‘Output’ information of the ‘Integration Package’ is used in an IDE. It is, therefore, 

necessary to define the focused IDE. An ‘IDE’ (I4) has a simple ‘Product Name’, an ‘Endpoint 

Description’ (I15, I(414)) and a ‘Technical Environment’ (U2-20, I(4U2(20))). 

The ‘Endpoint Description’ is all the information needed to connect the Prometheus 

environment to a specific IDE. The ‘Technical Environment’ is also used in the description of 

files. From a semantic point of view, this node can be used to validate the compatibility 

between a software unit and the platform of the IDE. The ‘Technical View’ part of the U-

Model includes the description of technology that can be used to describe the possible 

technologies an IDE need to support for the integration (using the ‘Technical Environment’ 

element). Based on this information, the Prometheus environment may prove if such an IDE is 

connected. This is possible by the relations of technology and platform characteristics described 

in Figure 88. 

5.4. 	Usage	concepts	
In this section, the usage concept of the realised Prometheus environment is shown. The aim is 

to describe the different user profiles based on this realisation. This supports the understanding 

of the experiment in the next chapter where this realised environment is used. Therefore, the 
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Uses Cases (based on Section 4.4.3) will be discussed in more detail in the different related 

sections. The usage concept is based on the information represented by the models described in 

Section 5.3. 

5.4.1. 	Focused	use	cases		
Figure 92 and Figure 93 extend Figure 49 with a complete Use Case scenario for the 

Prometheus environment. This extension is related to the realised Prometheus environment. In 

the following section, each Use Case (see Figure 93) and its relation will be explained. 

Therefore, each case will be described by an activity diagram and the explanation of the user 

interface used (if this was needed for the specific use case). Both (diagram and interface) 

describe the behaviour and the UI of the used Prometheus environment. The used graphical 

user interface was created in the scope of the research for the company Schneider-Electric. The 

internal name for this project was ‘Corporate Repository’. The selected UI parts shown in this 

chapter serve to aid the reader to understand technical descriptions and examples in the 

following sections. 

Note: Note: This graphical user interface is not part of the investigation of this work. The 

research focuses on Prometheus as a service platform; therefore, the user interface shown is one 

possible representation of the focused interaction.  

 

Figure 92 - Focused stakeholder of the Prometheus environment 
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Figure 93 - Use Case digramm for the focused Prometheus environment 

Figure 92 shows the previously mentioned Software Engineer types, Knowledge User and 

Knowledge Creator. In the realisation of the concept (cf. Chapter 4) in this chapter, the 

Knowledge User is called ‘Reuser’ and the Knowledge Creator is separated into two 

stakeholders. The first one is the Activity Experienced user. This stakeholder profile describes 

an experienced user for one or more SCAcs. The second one is the UOM Experienced user who 

knows one or more software units very well. 

5.4.2. 	Knowledge	creator	profile	use	cases	
In Figure 93, the knowledge creator profile is used for two different profile characteristics. The 

first is the UOM Expert user who describes a software engineering experienced user for a 
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specific UOM. Such a person wants to provide his experienced user knowledge in the given 

scenario. The second characteristic is the Activity Experienced user; such a person is 

experienced user in one or more reuse activities (SCAc) and wants to share their experienced 

user knowledge in the given scenario.  

Note: For each use case, a user interface is required an example of the used user interface is 

given. Because of it is a simple remove of data in a database. The use cases for deletion of 

UOMs and activities are not described. 

5.4.2.1. 	Use	case	1	–	create	UOM	
A software unit is created by a UOM Experienced user. For this, the Prometheus server 

searches for connected repositories. The server determines whether the addition of information 

into the repository is allowed. In the next step, the user can create a software unit. The system 

asks for the following metadata. Note: See Section 5.3 for the underlying data model. 

- Authors and responsible persons (e.g., name, surname, date of birth, contact 

information): This metadata describes people (stakeholder) related to the software unit 

(see Section 5.3.1). 

- Name, type, content type and initial descriptions of the software unit. 

These data are metadata that describe the component directly: specific descriptions of 

the types (GUI, Function, Data and Structure) and the content type (class, component 

and service) (see Section 5.3.1). Selecting a type realise Use Case 1.1, 1.2 and 1.3. 

These Use Cases are not explaind seperatly in this thesis. 

- Artefact affiliation: The artefact affiliation is used to determine which area of 

responsibility the real software unit is in (e.g., logging). This is done by a simple 

description by the experienced user. 
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Figure 94 - Activity diagram for Use Case ‘UOM Creation’ 

After this initial creation, the software unit parts (files) can be inserted into the system. This 

requires the following information for each UOM to be made (see UI in Figure 95): 

- File information, (e.g., file name, file size, file extension (type), creation and 

modification date). 

- Prometheus metadata, (e.g., content type, packet affiliation; see Section 5.3.1). 

- Additional metadata, (e.g., creation time, description; see Section 5.3.1). 

This step is repeated for all files of a software unit. If the files already exist in another 

repository, these can be linked by entering the download link or file transfer link into the file 

element description. The artefact concept explained in Chapter 4 is used to create packages of 

UOMs based on business content. Therefore, an artefact includes information that is equal to 

the metadata of a UOM. Additionally, UOMs can be added to the artefact. Figure 94 shows the 

use case as an activity diagram. 

Note: Creating, editing or deleting an artefact is not part of this description. These handlings are 

equal to the creation, editing and deletion of UOMS.  
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Figure 95 - UOM creation UI 

Figure 95 shows the user interface for generating UOMs.  

Note: All UI elements of the wizard are shown in this figure. The wizard guides the user 

through the different processes (e.g., UOM creation) and shows only necessary UI elements. 

This is done to simplify the UI explanation.  

First, the user has to select a repository to store the UOM information (1). In the next step, the 

user selects an existing SCA or creates a new one (2). For the creation of a UOM, a user has to 

enter the metadata for UOMs (3). 

 

Figure 96 - File element creation UI 
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Figure 96 shows the file element creation UI. This field is accessable (2) after selecting a UOM 

in the selction area (1). Then all information shown about file elements in the U-model can be 

entered (3). 

5.4.2.2. 	Use	case	2	–	UOM	search	
This use case is used by two stakeholders. The UOM-Experienced user and the Reusers are 

rarely able to search for a UOM (see Figure 97). Therefore, the user (1) defines keywords and 

(2) starts the search by sending a search request: 

 
Figure 97 - Activity diagram of use case ‘UOM SEARCH’  

The use case is provided to users through a user interface. This focused interface is a web 

application based on Silverlight (See Section 5.2.1.1) and can be accessed with a web browser 

using a Unified Ressource Identifier (URL). The user is then able to specify their search terms 

in a search box (1). By confirming the search button (2), the query is sent to the Prometheus 

server. Figure 98 shows the elements of the search user interface. 

Note: The other graphical elements in Figure 98 are typical of a content management system 

and not relevant to this thesis. They are not explained. 
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Figure 98 - User Interface for UOM search 

5.4.2.3. 	Use	case	3	–	UOM	discovery	
This use case is used by an experienced user. This user has to confirm if the result of a search 

contains a UOM which is suitable for his requirements (see Figure 99), Therefore, this use case 

includes Use Case 2 “UOM Search” with the condition that the search request result contains at 

least one UOM. 

 
Figure 99 - Activity diagram of use case ‘UOM DISCOVERY’ 

The search results (found software units) are displayed in a compact form and can be shown in 

a more detailed presentation as required. Figure 100 shows an example of the more detailed 

representation. This includes both metadata about a unit, such as author and description, as well 

as information on possible executable activities (e.g., download of software unit information 

and SCA information). 
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Figure 100 - Detailed presentation of a software unit 

Figure 100 shows a detailed presentation of a software unit, where varied information is 

presented. Based on this user interface, a user is able to:  

- find out who created it and who is responsible for this software unit (1),  

- read additional descriptions (3), 

- analyse and download unit artefacts or additional documents (2) (4), and 

- explore links to other kinds of content (e.g., web pages). 

Based on this information, the user may be able to decide whether this element is useable or 

not. The UI shown here is not used for UOMs or activity experienced users. These users use the 

UI shown in Use Case 1 for creating and changing information. Therefore, they use the wizard 

to select elements such as SCAs and UOMs.  

5.4.2.4. 	Use	case	4	–	UOM	adaptation	
This use case is used by the experienced user. After the successful discovery of a UOM (Use 

Case 3), a user (2) is able to change the metadata of a UOM or change other values (e.g., files, 
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dependencies, etc.). The user (3) can decide to save these changes or (4) or ro cancel the 

operation (see Figure 101). 

Note: The selection of a UOM is not defined as a standalone use case. 

 
Figure 101 - Activity diagram of use case ‘UOM Adaptation’ 

The user interface described in Use Case 2 is also used here (see Figure 100). By adding new 

files or dependencies, a wizarad begins and this supports the user in adding information.  

 

Figure 102 - Wizard to add new UOM file information 
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Figure 102 shows the UI for editing a UOM. After selecting the UOM (1), the editing field can 

be selected (2). After this, the metadata can be changed and other elements (i.e., file elements, 

or SCAcs) can be created, removed or changed. 

5.4.2.5. 	Use	case	6	–	activity	creation	
This use case is used by the Activity Experienced user. This user wants to create a reuse 

activity.  

Figure 103 - Activity diagram of use case ‘ACTIVITY CREATION’ 

Therefore, the user has to discover a UOM (Use Case 3), (2) create an activity by adding meta 

information and additional file information and relating existing information of the UOM to the 

new activity. The user (3) can decide at any time to cancel this use case or, (4) to save the new 

activity to the UOM (see Figure 103). A wizard is, therefore, used to create an activity. After 

the discovery of a UOM (see Figure 100), the user is able to click and add an activity. For each 

activity model (see Section 5.3), one use case and a UI wizard is created. 
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5.4.2.6. 	Use	case	6.1	–	integration	activity	creation	
For this use case, a wizard is used to generate an integration reuse activity; therefore, three 

different UIs are used. In the first UI, different metadata can be entered by the user. In the 

second UI, additional files, which are not part of the UOM, may be added. This UI is also used 

to define how single files can be integrated into an IDE. The last UI is used to define the 

compatible IDE environment.  

 

Figure 104 - Main UI for integration activity creation 

For the creation of an integration rule, a corresponding menu item (2) is provided including a 

detailed user interface for software units (4). This is accessable after selecting an UOM (1). 

Figure 104 shows the settings page for an integration activity. Besides specifying general 

information (3), the user needs to specify the following information: 

- The development environment where the data should be integrated (8) 

- The UOM files for integration (5) 

- The type of integration for each file (i.e., copy and specify reference) (5) 

- The environment variables needed for the integration (7) 
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- Optionally, one or more dependencies (e.g., external files) (6) 

Note: Figure 104 shows the overview page.  

In this study, the development environments Visual Studio and Eclipse were used as 

experimental subjects. Therefore, appropriate extensions for the Prometheus environment were 

developed. Accordingly, the user can select at this point between Visual Studio 2005, 2008 and 

2010 and the Eclipse versions G4 and E5. The Prometheus environment compares the technical 

description of the selected development environment with the appropriate requirements of the 

selected software unit or integration rule and alerts the user of possible incompatibilities. 

Note: The user is able to store integrate rules even if they are incompatible. This may be mainly 

used for experimental trials within a project. KU users have to be informed about such 

characteristics when they are selecting an integration. 

After completion of the specification of integration rule or complete SCAc, it can be stored. 

The user has to perform a test. The Prometheus environment does not recognise the error and 

the user has to test and comment on the activities as successful or proven; the integration of 

user profile for KU is then released. 

This use case extends Use Case 6 by adding integration activity-specific steps. First of all, the 

user (2a) has to set some metadata about the activity. In the next step (2b), the user can add 

some additional files neccessary for the integration. After adding this information, the user (2c) 

is able to define the integration types and environment settings for each integrateable file. In the 

last two steps, the user (2d) can specify the integration environment that is able to handle the 

integration result (2e) and describe the integration result with additional descriptions. 
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Figure 105 - Integration steps 

In creating an integration activity, the user may be supported by the Prometheus Predictive 

Knowledge System. On the basis of existing knowledge of other integration-scale integrations, 

the system is able to create suggestions for the additional integration rules (case bassed 

reasoning). This system is not part of the thesis, however, a first publication was made as result 

of the research of this Ph.D. thesis (cf. Zinn, Fischer-Hellmann and Schoop, 2012a). 

5.4.2.7. 	Use	case	6.2	–	transformation	activity	creation	
This use case is realised by five different user interfaces sections. First of all, a Prometheus 

server needs to know information about possible transformation tools. This is a step not 

covered by the use cases shown in this thesis. The installation of the transformation tool is done 

by a system administrator. Figure 106 shows the UI used for the research. In the first area 

general information (e.g., name and platform technology) are entered by the user (1). In the 

second area, the parameter value key (definied by the transformation activity model) used to 

store all possible parameters and their value types (2). All entered parameters are shown in the 

overview section (3),  
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Figure 106 - Example of an UI for transformation tool setup 

Figure 107 shows the main UI for the creation of transformation SCAc. Next to the general 

information (1), the user can add transformation rules (2). Also, the user can set information 

about the output of the transformation (3) which the user can define in an additional wizard (4). 

 

Figure 107 - Main UI for transfromation activity creation 

For the creation of transformation rules, the detailed user interface for software units provides a 

corresponding menu item. Figure 108 shows the main settings UI for a transformation rule. 

Besides specifying the name, the user needs to enter the: 
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- Definition of the target technology, the required runtime environment, and general 

metadata (1) 

- Selection of appropriate transformation tools (2) 

- Parameterisation of the transformation tools (3) based on the selected transformation 

tool (2) 

- Define the file output of the rule (4). This includes the description if the rule output is 

used as input for other rules or as output for the transformation activity. 

 

Figure 108 - Main User Interface for transformation rule creation 

In the first step, the user gives it to the target technology and the required runtime environment. 

Here, the user can choose from previously created target technologies and runtime 

environments, or define the transformation environments by themselves. The system indicates 

the potential for incompatibilities. 
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Note: The user is able to store transformation rules even if these are incompatible. This may be 

mainly be used for experimental trials within a project. KU users have to be informed about 

such characteristics when they selecting an integration. 

In the second step, the user selects a transformation application. It is also possible to insert new 

transformation application information into the system. Therefore, a user has to specify: 

- All the necessary parameters including different values of a single parameter 

- The location and application path of a transformation application 

- Additional input files (optional) 

In the third step, the user sets the connection between the data (files) of the software unit and 

the transformation applications. Also, the parameters needed by the tool for this transformation 

process were configured. 

In the fourth and final step, the user defines the result of the transformation rule which is, in the 

case of a new software unit, based on the software unit model. 

 

Figure 109 - Relevant UI areas of the transformation output definition wizard 



Usage concepts 
_____________________________________________________________________ 
 

____________________________________________________________________ 
232 

 

The UI for the definition of the final output of the transformation activity is summarised in 

Figure 109. A user can set the metadata of the new UOM (1). This includes the UOM type (2). 

Additionally, the user has to specify the files (4) (i.e., normal files or dependencies) (4) and 

defines them as human readable or machine readable (3). This is necessary information based 

on the U-Model. 

Figure 110 shows the creation of a transformation activity as an activity diagram. Therefore, a 

user (2a) adds meta imformation about the complete transformation activity. In the next step 

(2b), additional files can be added that are neccessary for a transformation rule or the 

transformation result. After this a user can create one or more transformation rules that are used 

by the transformation activity. For each each rule, (2c1) metadata and (2c2) additional files can 

be added. A user then selects the transformation tool (2c3).  

 

Figure 110 - Transformation steps 

After this selection, the user can describe the transformation input by linking the paramaters of 

the transformation tool with values of UOM, additional files, previously transformation rules or 
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selfdefined (2c4). For each transformation rule, (2c5) the transformation output (a new UOM) 

has to be definied. After finishing all transformation rules, the user (2d) also has to define the 

transformation activity output which is a new UOM. After completion, a transformation activity 

can be saved. The user has to perform a test. As in the scope of integration here, the user has to 

tell the system if this test was successful or not. After saving the transformation, it is then 

available for KU profile users. 

In creating a transformation, the user may be supported by the Prometheus Predictive 

Knowledge System. On the basis of existing knowledge of existing transformation, the system 

is able to create suggestions for the additional transformation rules. This system is not part of 

the thesis, however, it is explained in a first publication (cf. Zinn, Fischer-Hellmann and 

Schoop, 2012b). 

5.4.2.8. 	Use	case	6.3	–	deployment	activity	creation	
This use case is realised by using two nearly the same interface as seen in Figure 106 and 

includes two different steps. The first (1) step includes the input of meta information of a 

deployment process (e.g., the name of the process). In the next step (2), all deployment steps 

for this process have to be defined. Therefore, each deployment step requires the following 

types of information (see also Section 5.3.3): 

- Relating the files of the existing software unit to the single process step 

- Adding additional files to the current process step 

- Defining the deployment command (e.g., start, stop, etc.) 

- Relating results of previously deployment process steps to the current process step 

(optional) 

- Definition of manual steps (optional) 

- Defining the communication information for the specific device 

Figure 111 shows the relation between the use case and the two sub steps. 
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Figure 111 - Relevant steps for deployment activity creation 

Figure 111 shows the creation of a deployment activity as an activity diagram. A user (2a) adds 

meta information about the complete deployment activity. In the next step (2b), additional files 

can be added that are neccessary for a deployment rule or the deployment result. After this, a 

user can create one or more deployment rules that are used by the deployment activity. For each 

rule (2c1) metadata and (2c2) additional files can be added. A user then selects the deployment 

tool (2c3). After this, selection the user (2c4) can describe the deployment input by linking the 

paramaters of the deployment tool with values of an UOM, additional files, previous 

deployment rules, or self defined rules. For each deployment rule, the transformation output (a 

new UOM) has to be definied which may need some manual orders by (2c5) the user (e.g., 

manual restart of a device). 

After finishing all transformation rules, the user (2d) also has to define the deployment activity 

output which is a new UOM. 
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5.4.2.9. 	Use	case	7	–	activity	search	
This use case is used by the Activity Experienced user to search for an activity (see Figure 

112). Therefore, the user can enter key words for searching (1) and start a search request of the 

system (2; cf. Use Case 2). After discovering a UOM, the different activity information relating 

to the selected UOM are useable. 

 

 
Figure 112 - Activity diagram of the use case ‘ACTIVITY SEARCH’ 

The interface shown in Figure 98 is used for searching UOMs. After discovering a UOM, the 

user can analyse the metadata of the existing activities. Figure 113 shows an example of search 

key words. A user can enter key words into the search field (1) for search and (optional) enter 

keywords for filtering the result. The system uses the search key words and also identifies 

matching words in the SCAc. The system uses the information stored in the main U-model and 

the related SCAc models as a search area. 

 

Figure 113 - User Interface for activity search 



Usage concepts 
_____________________________________________________________________ 
 

____________________________________________________________________ 
236 

 

Both experienced user types can also use the wizard in the different creation and modification 

use cases to ‘search’ for activities. Therefore, a UOM has to be selected and then the related 

activities are displayed. 

5.4.2.10. 	Use	case	8	–	activity	discovery	
An experienced user has to confirm that a result of a search contains an activity which is 

suitable for his requirements. Therefore, this use case includes Use Case 7, Activity Search, 

with the condition that the search request responds to at least one activity (see Figure 114). 

 
Figure 114 - Activity diagram of the use case ‘ACTIVITY DISCOVERY’ 

The search results (found activities (cf. Figure 120)) are presented in a compact form, but can 

be shown in more detail if required. This includes both the metadata of reuse activities such as 

author and the description of activity results (e.g., the new software unit of a transformation 

activity). 

Figure 122 and Figure 125 show a detailed example of integration and transformation SCA 

type. Based on these user interfaces, a user is able to:  

- Find out who created this activity,  

- Find out who is responsible for this activity, 

- Read additional descriptions, 

- Analyse and download unit artefacts or additional documents, and 

- Explore links to other content (e.g., web page). 
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Based on this information, the user may be able to decide whether this element is usable or not. 

Experienced user who wants to modify data uses the other described UI. 

5.4.2.11. 	Use	case	9	–	activity	adaptation	
This use case is used by the activity experienced user. After the successful discovery of an 

activity (Use Case 8), a user is able to change the data of a reuse activity (2) or change other 

values (i.e., files, dependencies, etc.). The user (3) can decide whether to save these changes or 

(4) not to (see Figure 115). 

 
Figure 115 - Activity diagram of the use case ‘ACTIVITY Adaptation’ 

For modification, the experienced user interface has to be used. By adding new files or 

dependencies, a wizard starts and supports the user to add information. Figure 116 shows a 

transformation activity. After selecting the repository, artefact and UOM, an existing SCA can 

be selected (1). Based on the type of SCA, the relevant UI will be displayed (2). The user can 

now change information (3). The UI is also used in Use Case 6.1, 6.2 and 6.3. 
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Figure 116 - UI Wizard for UOM adaptation 

5.4.3. 	Knowledge	user	profile	use	cases	
These use cases handle action for the Reuser stakeholder. This inexperienced user aims to gain 

information about a UOM or activities. In addition, this user may want to execute a reuse 

activity. 

5.4.3.1. 	Use	case	11	–	UOM	information	retrival	
After reading the information of the UI, downloading data is the second means of gaining 

information. Therefore, the actual software unit data (see Figure 117, left side ‘Implementation 

Units‘), is distinguished from the data that describes the software unit (Figure 117, right side 

‘Additional Data’). The user is able to download the individual files or is able to file together a 

package to download. How a user then uses this downloaded data is not part of the Prometheus 

environment.  Additonally, the user can read shown information about a software unit. 
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Figure 117 - UI for downloading UOM information 

This use case depends on Use Case 3 and includes two sub-steps. The first (2) sub-step is the 

‘reading’ of information. If the user (4) decides to download this information, this can be done 

by requesting it (see Figure 117 and Figure 118). The selection of a download folder is not part 

of this use case view. 

 

Figure 118 - Activity diagram of the use case ‘UOM INFORMATION RETRIVAL’ 
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5.4.3.2. 	Use	case	12	–	activity	execution	
The execution of reuse activities is relevant in the scope of this work. This use case requires the 

Use Case 8 to have been performed before. The user can execute a reuse activity selecting the 

focused activity and pressing the execution button (2; see Figure 119). This sub-step depends 

on the type of reuse activity. Therefore, this sub-step is realised by the Use Cases 12.1, 12.2 and 

12.3. 

 
Figure 119 - Activity diagram of the use case ‘ACTIVITY EXECUTION’ 

An activity can be executed by using the UOM overview user interface, including the activity 

overview. Figure 120 shows the area where to find the stored SCAc (1). A selected SCAc can 

be executed by pressing the execution button (2). It is also possible to execute an activity on the 

detailed activity view in the UI (see Use Cases 12.1, 12.2, and 12.3). 

 
Figure 120 - UI for activity execution (a) in UOM overview (b) in activity detail 
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In the following section, the execution processes are explained as use cases, including a brief 

discussion of the user interfaces used. 

5.4.3.3. 	Use	case	12.1	–integration	activity	execution	
This use case enables a user to execute an integration reuse activity. Therefore, the user (2) has 

to specify the service endpoint address. The system asks the user for this information. The user 

(3) is also able to change the given configuration of the integration rules, but (4) this step is 

optional. The integration will be executed automatically if the user (5) requests it by pressing 

the execution button. If the Prometheus environment (6) discovers an inconsistency (e.g., the 

given IDs and the specified IDs in the activity are not the same) it displays an alarm to the user. 

Figure 121 shows the Activity diagram for this use case. The user interface used is 

demonstrated in Figure 122. The result of this use case is an integrated software unit in a 

specified IDE. 

 

Figure 121 - Activity diagram of the use case ‘INTEGRATION ACTIVITY EXECUTION’ 
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Figure 122 - UI for integration activity execution 

Figure 122 shows the information screen about an integration SCAc were it can be executed 

(5). A user can find general information about the SCAc (1). The relevant information as for 

example the required environment, the files, and the related dependencies can be reviewd (3).  

 

 

Figure 123 - Configuration UI for IDE service endpoints 
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Figure 122 shows especially the file section (4). The user can see the project and folder 

structure for each file in the destination IDE. Additionally, the IDE for integration can be 

chosen (2). Figure 123 shows the configuration UI for the IDE service endpoint. A user has to 

specify a service endpoint and the IDE type. If the focused IDE is not the specified IDE in this 

UI, the system will warn the user. 

5.4.3.4. 	Use	case	12.2	–	transformation	activity	execution	
This use case enables an inexperienced user to perform transformation activities. Therefore, the 

user has to select a transformation activity (Use Case 8). The user (2) is also able to change the 

given configuration, for example, the transformation rules, but (3) this step is based on the 

knowledge level of the user. Finally, the user (4) can perform the selected activity (the perform 

button).  

 
Figure 124 - Activity diagram of the use case ‘TRANSFORMATION ACTIVITY EXECUTION’ 
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The result of the transformation is a new software unit, one based on the software unit model. If 

the Prometheus environment (5) detects an inconsistency (e.g., the given IDs and the specified 

IDs in the activity are not the same), it displays an alarm to the user. The user (6) can download 

the new unit after the transformation activity is completed sucessfully. Figure 124 shows the 

Activity diagram for this use case. The user interface is demonstrated in Figure 125. 

 
Figure 125 - UI for transformation activity execution 

In the user interface shown in Figure 125, each rule of a transformation activity can be seen 

seperately (3). This includes the information for each input file or parameter for each 

transformation rule. Also, the result and additional information of the transformation can be 

seen (2). The activity can be executed by pressing the ‘Perform’ button (1). 

5.4.3.5. 	Use	case	12.3	–	device	deployment	activity	execution	
This use case enables a user to execute a device deployment reuse activity. After identifying the 

correct activity, the user (2) has to specify the service endpoint address of a device. The system 

asks the user for this information. The user (3) is also able to change the given configuration of 
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the deployment rules, but (4) this step is optional. The activity (5) will be executed 

automatically if the user requests it by pressing the execution button. If the Prometheus 

environment (6) identifies an inconsistency (e.g., the given IDE and the specified IDE in the 

activity are not the same), it displays an alarm to the user. Figure 126 shows the activity 

diagram for this use case. The result of this use case is a deployed software unit in a device. 

 
Figure 126 - Activity diagram of the use case ‘DEVICE DEPLOYMENT ACTIVITY EXECUTION’ 

Note: The deployment plugin explained in this chapter is not used in the experiment described 

in Chapter 6. The possible realisation with the presented Prometheus environment is published 

by Zinn, Fischer-Hellmann and Schoop (2012a). 

5.5. 	Summary	
Chapter 5 discusses a realised Prometheus environment. The environment uses an application 

called Prometheus server. This server uses plugins to communicate to different elements of the 

environment. Such elements are: a user client system, different repository system, and different 

applications used to perform the focused software construction activities. 
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The communication technologies used between these elements are services, methods, and 

process calls. This chapter explains the interfaces used. The plugin system is the major part of 

the discussion about the extensibility of this system as well as the service communication. 

The data types used in the service and other interfaces are related to the realised data models for 

software units, transformation software construction activities, integration software 

construction activities and device deployment software construction activities. These models 

are relevant because the common view creates the focused approach. For the realisation of the 

focused approach, typical existing technologies are used. The created environment is used in 

Chapter 6 to perform a case study with different software engineers as participants. 

 	



Evaluation and research result analysis 
_____________________________________________________________________ 
 

____________________________________________________________________ 
247 

 

6. 	Evaluation	and	research	result	analysis	
This chapter describes the case study used for the thesis primary research. The aim is to identify 

the effect of the realisation of the focused approach which supports software engineers by 

performing SCAc. This description includes the research methods used to evaluate the focused 

approach (cf. Chapter 4), using the realised Prometheus environment (cf. Chapter 5). The first 

section describes the research theory and the related research methods. This includes the 

scientific viewpoint and is focused on a practical case study. After the explanation of the case 

study setup, including the case studies procedure and measurement model in the second section, 

the analysis methods are explained in the third section. This chapter concludes with an 

overview of the results of the case study and the consideration of the scientific viewpoint of the 

first section.  

6.1. 	Focused	case	study	and	scientific	viewpoint	
This chapter focusses on a case study supporting the primary research. To support the 

understanding of the structure and methods used for the case study, this study is now briefly 

described. 

6.1.1. General	overview	about	the	case	study	
In general, the case study observes software engineers performing software construction 

activities. Six experienced software engineers are measured by performing 12 SCAcs (2 SCAcs 

for each engineer). The measured variables (i.e., time, task and knowledge resources) are 

compared to the measured values of a group of 48 inexperienced software engineers (4 

participants perform the same SCAc). This comparison shows the difference between 

experienced and inexperienced software engineers in a normal working environment. 

In the next step, the measured values of an additional group of 48 inexperienced software 

engineers (4 participants perform the same SCAc) are compared to the other values measured 

previously. In this case, these inexperienced software engineers used the realised approach (cf. 
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Chapter 5). Comparing these values to the others shows the differences between engineers 

using the realisation of the focused approach and engineers in a normal working environment. 

6.1.2. Scientific	case	study	theory	
The case study scientific basis is shown by using the discussion of Baxter and Jack (2008) 

regarding qualitative case study methodology. In these discussions two different case study 

approaches that guide case study methodology are analysed. The first one is proposed by Stake 

(1995) and the second is proposed by Yin (2003 and 2006). Baxter and Jack (2008) use the 

following conceptual structure in their analysis: Determining the Case/Unit of Analysis, 

Binding the Case, Determining the Type of Case Study, Single or Multiple Case Study Designs, 

Proposition, Issues, Conceptual Framework, Datasource and Database. 

Note: In the following, the points determining the Case/Unit of Analysis, Binding the Case and 

Determining the Type of Case Study will be discussed. The concrete realisation of the case 

study including Single or Multiple Case Study Designs, Proposition, Issues, Conceptual 

Framework, Datasource and Database is explained in Section 6.3.  

Determining the Case/Unit of Analysis: The case study aims to analyse the difference between 

supported and unsupported software developers who want to perform software unit reuse. As a 

result the cases are scenarios including software developers with different knowledge levels 

performing reuse of the same software unit. The unit of analysis is the behaviour of software 

engineers in specific reuse scenarios. 

Binding the Case: Following the analysis of Baxter and Jack (2008), it is relevant to determine 

the boundaries for the case study. In this case, the place (Creswell, 2003), time and activity 

(Stake 1995), and the context is relevant. The case study will be performed in normal 

environments of software developers (see Section 6.3.1.1). The focus of the case study is set on 

the reuse activities which should be done by the developers (see Section 6.3.1.4). The context 

of the case study is software reuse of different sized software units of different contents and 

types (see Section 6.3.1.4). 
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Determining the Type of Case Study: Based on Yin (2003) and Stake (1995), Baxter and Jack 

(2008) explain typical types of case studies. Follow this explanation, the case study of this 

thesis is a ‘multiple-case study’ (Yin 2003) which is also defined by Stake (1995) as 

‘collective’. Such a case study type focuses on multiple case studies with different settings. 

Hereby, the differences within and between the cases are relevant. In the focused case study 

different scenarios are handled. The knowledge level of the software engineers, the reuse task 

to do and the type of software unit will be changed. By comparing the results of the different 

cases to the case study hypothesis, this hypothesis can be carefully discussed and proven. 

6.1.3. Case	study	hypothesis	
The following theoretical statements are used as a hypothesis for the case study research:  

1. SCAc knowledge/information can be stored in an environment and can be reused by 

inexperienced users.; 

2. Such a reuse produces a comparable (working) result as an experienced user in a 

normal application area, but with a reduction in learning the required knowledge for the 

specific SCAc or a comparable knowledge transfer task; and,  

3. The inexperienced status of the user which relates with the specific SCAc does not 

change. 

The hypothesis focuses on a positive effect for software unit reuse by software developers if 

developers are supported. After the case study result, a discussion of these 3 hypothetical 

statements has to be proven. 

In the following sections the methods and the structure of the case study is explained in detail. 

6.2. 	Research	theory	and	methods		
The primary research focuses on the creation of a concept to enable inexperienced user to 

perform knowledge based software construction activities. As primary source for evaluation an 

experimental case study is used. In the beginning of this section the research type and theory is 
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explained. This includes the definition of context related terms and the definition in relation to 

the research question. Tittenfick 

 

6.2.1. 	Relating	focused	problems	and	research	question	
Firstly, a recap of the research question shown in Chapter 1: ‘How does one provide successful 

reuse of different software units in the area of software construction considering the 

possibilities of reusing and performing related software construction activities even if software 

engineers do not have the required knowledge?’ This will be related to the discussed problems 

of missing knowledge of software construction activities. Therefore, the relevant terms in this 

question are explained in relation to the current context.  

The research question aims to deal with the execution of reuse activities of different software 

units (‘...successful reuse of different software units...’) by inexperienced software engineers 

(‘even if software engineers do not have the required knowledge’). This means that a user has 

an inadequate knowledge level in one or more of the focused software construction activity 

areas. This research focuses on ‘software units’ (i.e., objects, components and services) which 

should be successfully reused by undertaking such activities. In order to successfully reuse 

(‘successful reuse’) a software unit, the problem of an inadequate knowledge level of SCAcs 

has to be dealt with. As a result, all problem areas (i.e., knowledge required for specific 

technologies, inadequate knowledge level of software engineers, and knowledge required by 

distribution environment) discussed in Section 2.2.3.3 have to be limited or solved. This 

includes the related sub problems discussed in Section 3.2. The focused ‘software construction 

activities’ in this research are: integration, transformation, and device deployment of software 

units (cf. Section 3.1).  
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6.2.2. 	Selected	research	type	
One objective of the research is to demonstrate the practical applicability of the focused 

approach. To demonstrate the success or failure of this objective, a case study is used. 

Following Creswell's (2009) discussion about qualitative, quantitative and mixed procedure 

models, the case study has quantitative and qualitative elements, which will now be explained. 

The measuring of data in the case study is quantitative. Thereby, one or more of certain 

(predefined and classified) characteristics are measured and the results are combined and 

discussed with the research aim. The number of participants and the analysis of the case study 

results are quantitative. Based on limitations regarding participants (people with suitable 

software engineering backgrounds), the number of measured participants is applicable to 

perform the case study and to come to a conclusion. Therefore, the number of participants is 

also seen as qualitative. However, this number is not to be considered applicable in general. 

These means that the result of the case study cannot be used as a statement for each existing 

software engineer or SCAc.  

6.2.3. 	Used	research	theory,	methods	and	application	area	
Clarke (2005) states that a research model consists of a theory, related methods, and an 

application area. In this thesis, the definitions made by Clarke (2005, Slide 21) are used for 

these terms: 

- “A theory is a set of interrelated constructs (concepts), definitions and propositions 

(statements) that presents a systematic view of phenomena by specifying relations 

among variables.” 

- “Methods (a.k.a. techniques) are used to reveal the existence of, identify the ‘value’ 

significance or extent of, or represent semantic relationships between one or more 

concepts identified in a model from which statements can be made.” 

- “Application domains are defined as those substantive areas, examples, cases, that 

theory and methods are applied.” 
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In the following, the above defined three elements will be explained focusing on the realisation 

this thesis. 

6.2.4. 	Theoretical	viewpoint	
The following theoretical statements are used as hypotheses for the case study research: 

- SCAc knowledge/information can be stored in an environment and  

- can be reused by inexperienced users.  

- Such a reuse produces a comparable (working) result as an experienced user in a 

normal application area,  

- but with reduction of learning the required knowledge for the specific SCAc or a 

comparable knowledge transfer tasks.  

- The inexperienced status of the user which relates with the specific SCAc does not 

change. 

6.2.5. 	Methods	
To create a systematic view on the primary research, several methods have to be defined. These 

methods are classified by the author as follows: 

- Preparation methods: Methods supporting the preparation and setup of the study (e.g., 

identification of an experienced user in the application area). 

- Measurement methods: Methods supporting the measurement and storing of values and 

results. 

- Analysis methods: Methods defining the rules for verification of results in context to 

fulfil requirements and theory. 

Following, the case study preparation and measurement methods will be defined and explained. 

These methods are necessary to understand the complete measurement of values in the primary 

research. The definition and explanation of the analysis methods follows in Section 6.4.1 
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Note: Only the transformation and integration SCAc are discussed for the methods used in the 

case study. Due to limitations of the security the deployment SCAc is not investigated in the 

practical part of the case study (cf. Section 6.4.2.3). But it is discussed in the result analysis 

using the measured results of transformation and integration SCAcs for comparison. (cf. 

6.4.2.3)  

6.2.5.1.  Preparation	methods	
For the theory and preparation of the case study two relevant preparation questions have to be 

answered: 

- How to identify a SCAcs and related software units? A method is required to show how 

SCAcs and related software units were chosen. 

- How to identify inexperienced and experienced users? A method is required to show 

the processes and variables to separate users: the inexperienced and experienced user. 

Following, the questions will be answered. 

Method 1 (M1): The first method to explain is the identification method to identify reusable 

software units. Software unit are necessary for the experiment. They have to be reused by the 

use of different SCAc. Additionally, the SCAc depends on these units. The application area is 

set in the global environment of the company: Schneider Electric. Inside this environment, 

special software units exist and have to be reused in several projects and products. A software 

unit typically belongs to one business unit area (e.g., power and industry) of Schneider Electric. 

In the case study, software construction activities of such software units will be performed. 

Two of the three focused SCAcs will be used for the case study. Therefore, software units were 

identified by evaluating if the reuse of the provided software units included: 

- at least one integration task for Eclipse or Visual Studio, and 

- at least one transformation task for console-based transformation tools. 

Both activities have to be repeated in the case study.  

Additionally, following requirements have to be fulfilled: 
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- learning to perform integration or transformation should be made within several hours 

(max 4 hours). This is based on time limits of the participants and the observer. 

- documentation or examples for the SCAc have to exist inside the Schneider Electric 

environment or in other accessible locations. This is necessary to give all participants a 

chance to perform the activities. 

- the software units have to be used in different vertical or horizontal projects. The 

requirement refers to the development project scenarios discussed in Section 4.3. 

The procedure to identify software units was to contact different business unit’s product 

manager for software units to identify relevant software units and experienced users. The 

experienced users were asked to explain different integration and transformation reuse activities 

for their software unit. A software unit that fulfilled the selection requirements explained above 

was inserted in a list of useable software units for the research.  

Additionally, it was relevant to identify an experienced user for each software unit able to 

perform the transformation or integration task manually (see next method M2). 

Note: Four of the six software units were identified by proving internal repository information 

about the software units. The overview information about the units contains the software unit 

owner. These were asked to be the experienced users (cf. method M2) or if these people knew 

of a potential experienced user. These users were asked for software units which fulfilled the 

requirements. The other two software units were identified by asking the different product 

owners (managers of software products of Schneider Electric) for software unit experts who 

could identify potential software units. 

Method 2 (M2): The next methods to explain are the identification methods to identify 

inexperienced and experienced users, these methods are described below. Experience user a 

necessary to  

(1) identify SCAc for a software unit (see method M1),  

(2) be measured as comparion to the values of inexperienced engineers 
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(3) to insert SCAc information into the Prometheus environment  

For each software unit in the Schneider Electric environment, at least one responsible and 

experienced software engineer exists. These engineers were asked whether they have already 

reused the specific software unit several times, or could identify a potential experienced user. 

The required experience has to include the use of a transformation and integration SCAc. If an 

engineer answered the questions (for software unit, transformation and integration experience) 

with yes this user was selected as an experienced user for one software unit the related SCAc. It 

doesn’t matter whether the experienced user is the inventor of the software unit. For the case 

study it is relevant to have a trained software engineer as a comparison to untrained engineers. 

This can be used to show the difference between experienced and inexperienced software 

engineers. 

Method 3 (M3): Inexperienced users were identified by searching for software engineers in 

actual software development projects inside all business units of Schneider Electric. The 

primary research focuses on the support of software engineers with less experience of specific 

SCAc reuse. Therefore, it was ascertained that each inexperienced engineer was not an 

experienced user for one specific software unit, the related SCAc, the related technology and 

related transformation tools or IDEs. For the identified software units, an SCAcs (cf. Section 

6.3.1.4). It was relevant to identify engineers without experience or with less experience in Java 

or .Net based software development. Depending on their answer it was relevant to identify if 

these people also have less experience in Eclipse or Java software development kit for web 

services (for inexperience in Java). For participants with less experience in .NET it was relevant 

to identify users with less experience in IKVM, Visual Studio or .NET software development 

kit for web services.  

6.2.5.2. 	Measurement	methods	
The aim is to measure information that can be used to analyse if the realisation of focused 

approach have an impact on users to perform SCAcs. To discuss this, it is necessary to measure 



Evaluation and research result analysis 
_____________________________________________________________________ 
 

____________________________________________________________________ 
256 

 

experienced users and inexperienced users performing SCAc reuse with and without (i.e., 

normal way of working) the realisation of the focused approach. The results are values that can 

be compared to prove the theoretical statement in Section 6.2.4. Therefore, the measurement 

methods will be described. For each identified problem area, the related knowledge problem 

view discussion (cf. Section 3.2) is used to define the measurement methods (i.e., focusing 

knowledge storing, knowledge learning, searching and receiving knowledge, knowledge 

exchange and knowledge execution). The following question must be answered: How can the 

impact of the focused approach for the focused problem areas be measured (including the 

identified knowledge problems)? In the following the used method will be explained. 

Method 4 (M4): The problem of knowledge storing includes the problem of identification, 

access, and use of a repository. The previously identified experienced users (see method M2) 

are observed in configuring an SCAc (i.e., insert of SCAc related information into the 

Prometheus environment). This includes the measurement of identification, access, and use of 

the Prometheus environment. This method measures only the time a user needs for this activity. 

The information a user inserts in the system and the tasks the user completes are not relevant 

for later analysis of the research. The method (M4) is performed by an observer and a system 

(cf. the case study setup description in Section 6.3.1.2). 

Method 5 (M5): This method is used to measure the effort of knowledge learning. This means 

the time spent on knowledge ressources and the number of used knowledge ressources It 

focusses the problem of multiple technology variations, multiple existing tools used in SCAcs, 

and of knowledge interpretation. To be more precise, the method focuses on knowledge 

resources used for learning. 

This method is based on a comparison between users using the focused approach and not using 

the approach. Both types of user are inexperienced. Therefore, for both user types, the time 

spent for learning (i.e., time spent to use a knowledge resource), the success of the task (i.e., the 

personal opinion of the participant of their success), and the number of used knowledge 
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resources will be measured. These measurements can be used to discuss the effect of the 

realised approach on the problem of knowledge interpretation. This method is used while the 

participants perform different SCAc with different software units and tool technologies to 

measure values.  

Method 6 (M6): This method measures the same values than the method M5 but has a different 

focus. To measure the problem of searching and receiving knowledge this method focuses on 

the related sub problems: the problem of localisation (for identification and access to a 

repository) and the problem of the use of a search engine (different technologies and 

component worlds, variations of SCAc related actions, existing tools used in SCAcs), and 

search result analysis. 

This method measures how long a user spent on knowledge resources on repositories. To 

search for software units and SCAc related information.  

Method 7 (M7): To measure the values focusing the problem of knowledge exchange no 

special behaviour is necessary. It has to be measured if the inexperienced software engineer 

created a valid value. Therefore, the experienced software engineer is used to determine if the 

result created by the inexperienced software engineer is useful. Also it is measured how many 

knowledge resources a participant has used.  

Method 8 (M8): The problem of knowledge execution is focused on by using this measuring 

method. Here, the complete task of the execution of an SCAc is relevant. Therefore, this 

method measures the time needed, knowledge resources and tasks used to perform the SCAc. 

Additionally the validation of method M7 is used to. 

6.3. 	Case	study	setup,	procedure	and	measurement	model		
To explain the analysis methods it is first necessary to explain the case study setup. This 

includes the application domain, the used infrastructure and the case study procedure model. 
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6.3.1. 	Application	domain	
The application domain is the environment of the company Schneider Electric. Schneider 

Electric is a global company with ~160,000 employees and 7 business units (i.e., power, 

datacenter, building, industry, life space, infrastructure and water). Actually, ~15,000 software 

engineers are working in software development projects. These include device, desktop and 

server level development projects. Inside this environment the case study is done. The 

participants of the case study are software engineers from different business units. Therefore, 

the typical office working environment of software engineers provided by Schneider Electric is 

used. It is relevant for the study not to change the normal working environment to have 

comparable initial situation.  

Often, software development projects consist of different software engineers located on 

different sites all over the world (cf. Qu, Ji and Nsakanda, 2012). The method M1 describes one 

way to identify software units and experienced users inside this global scenario. 

The technical setup of the case study is divided into three distinct areas: description of the 

environment, description of the technical structure of the case study and the necessary elements 

(i.e., software unit and SCAc) for the case study. 

6.3.1.1. 	Description	of	the	environment	
The experiment was conducted at a German location of the company Schneider Electric 

Automation GmbH (Address: Steinheimer Strasse 116, 63500 Seligenstadt, Germany) which is 

part of the global Schneider Electric network. The company participated by providing 

personnel from the site and from other locations, and the company intranet and the software 

units/SCAc for the case study. The study itself was conducted in normal offices, which provide 

a connection to the intranet sources (e.g., internal repositories) and internet sources (e.g., 

external repositories).  
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6.3.1.2. 	Description	of	the	technical	structure	of	the	experiment	 
The technical design of the experiment is mainly a hardware and software infrastructure. Figure 

127 shows this structure inside the Schneider Electric intranet. Six relevant elements are 

involved.  

 
Figure 127 - Experimental environment and setup 

The first element is the intranet (1), which is used to connect the various elements of the 

technical structure together. Additionally, it enables the communication to the internet (6). The 

second element (2) is the connected databases including the software units and complete 

information about the reuse activities. For the experiment, three databases are relevant:  

- SOA4D - this is an open source repository including software units and further 

information about device profiles for web services. This repository is based on Forge 

technology and offers a web interface. This repository is not part of the Schneider 

Electric intranet; it is placed on the internet. 

- Prometheus Database - this is a specially developed repository. It belongs to the SCAc 

approach of this thesis and uses a Microsoft SQL database and Microsoft SQL database 

interface.  

- Brick Cataloque and DDXML- These are Schneider Electric internal repository that 

includes different reusable software artefacts.  
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The third element (3) in the case study setup is the server inside the Prometheus environment. 

The server maintains information about software units and software construction activities in 

the connected databases and makes this information available to the user. Finally the server 

performs requested activities and presents the available results to users (see Section 5.2.1.2). 

The fourth element (4) is a web page including a user interface through which the user can 

communicate with the server. This web page is executed on a web server. This web server 

contains a web application and provides the user an ability to query information from the server 

or to perform SCAcs on the server. The basic technology of the Web application is Microsoft 

Silverlight version 5.0. The web page is located and available via the company’s intranet. The 

participants use a typical Schneider Electric laptop (5) including different IDEs and runtime 

environments (i.e., Java and .NET) for software engineers. In addition to the computer network 

environment, there is the possibility to use a telephone, the internet, voice, conversation or 

literature. This is also part of the company’s infrastructure. 

 

 
Figure 128 - Basic experiment scenario 

This experimental setup allows for the working scenario shown in Figure 128. The participants 

use the element (5) (office laptop) to view the normal working environment. Within this 

environment, all necessary software applications are found in order to search for information on 

the internet, information, or perform activities on the intranet as well as various communication 

technologies (e.g., FTP, Skype, Telnet, etc.). Furthermore, participants can click the element (4) 
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(the web page) to access and use the Web application thereon to communicate with the element 

(3) (Prometheus server). The Prometheus server performs SCAcs and communicates with the 

databases that are marked as element (2). 

6.3.1.3. 	Description	of	the	technical	setup	for	the	measurement	and	the	
fffdefinition	of	participant	groups	

 
Figure 129 - Overview measureable content 

Figure 129 shows the interaction of the experimental setup and the ability to measure data. To 

do so, there are two different (technical) possibilities. The first is the purely visual recognition 

of the actions of the user. This does not require any technical measurement. The second 

possibility is to measure the data storage of information. This is done using two elements of the 

design of the experiment: 

- Created requests: The Prometheus environment attracts all incoming server requests 

and all activities undertaken. This information can also be queried after the end of the 

experiment used for analysis. 

- Database entries: The data and information generated within the databases through the 

interaction of the user can be analysed. 

In Section 6.3.3 the use of the described measurement techniques in the case study is explained. 

Participant groups: There are a total of three participant groups: The first group (Group 1) 

consists of so-called experienced users. These people are experienced users for one software 
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unit. For the selection of experienced users, method M2 is used. Altogether 6 experienced users 

are necessary which are able to do one integration and one transformation activity (per user). 

The second experimental group (Group 2) consists of 48 inexperienced software engineers 

selected by using the method M2. The third group (Group 3) also includes 48 inexperienced 

participants. For this group, the same rules for selection are used as for Group 2 (see 

preparation method M1 Section 6.2.5.1).  

Note: In the beginning of the case study video recording was planned to be used as support of 

the measurement. But this was not permitted by the work council of Schneider Electric. 

6.3.1.4. 	Software	units	and	software	construction	activities	
In the case study, six different software units are used. One integration and one transformation 

software construction activity for each software unit is used in the case study. In this section the 

software unit and the related software construction activities are briefly described: 

Software Unit 1 – Device Profile for Web Service (DPWS; Java Stack): DPWS is a protocol 

to extend the basic web services definition with the information required by electronic devices 

(like footprint, performances, security and event driven messaging). The DPWS Java stack  can 

be found in the SOA4D repository (cf. SOA4D, 2012) and contains a set of 23 Java 

components which are necessary for the different activities. The transformation software 

construction activity uses IKVM as a transformation tool. Challenges are apparent when an 

inexperienced user has to find the repository, access it, download the correct DPWS Java Stack, 

find the IKVM repository, access it and download the IKVM. Next to the fact that an 

inexperienced user has to find out the correct parameter for each Java component, this user has 

to do this in the correct sequence. The sequence depends on the dependency hierarchy of the 

Java components which has to be discovered beforehand. The second software construction 

activity is the integration of the transformation result into a Visual Studio IDE. The challenge 

for an inexperienced user is the dependencies created by the IKVM transformation. Special 
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files have to be copied in the project folder and, next to the transformed components; special 

files have to be referenced by the Visual Studio project.  

Software Unit 2 – Device Profile For Web Service (C++ Stack): The C stack of the DPWS 

software unit contains several classes written in programming language C. It fulfils the same 

functionality as the DPWS Java Stack. The challenges for integrating this software unit as a 

source-code are the dependencies between the different classes and the setting in the project 

environment. Regarding the transformation, the problem is to setup a special compiler with the 

correct settings and prepare the correct file and folder structure. Based on the number of classes 

and dependencies, these SCAcs are classified as ‘advanced’ compared to the Ecostructure Web 

Service (EWS) and Log4Net/J software unit. The integration should be made with the same 

source-code into the Visual Studio IDE. This software unit can also be found in the SOA4D 

repository. 

Software Unit 3 – EcoStrucure Web Service: The EcoStrucure Web Service is a common 

data exchange web service enabling enterprise systems of different domains (e.g., industry and 

building) to exchange information. The service is used between all business units of Schneider 

Electric and external partners or customers. The challenge of this software unit is to create out 

of the existing WSDL file and the specification running web service server and clients. Based 

on the strict specification, knowledge is required to create a valid and consistent web service 

server and client. If these implementations are not consistent, they are not able to communicate 

to other EWS implementations. The SCAcs here are the transformation of the WSDL file to a 

.NET client using the SVCUtil tool provided by Microsoft. The result of the transformation has 

to be integrated regarding the correct dependencies of the .NET framework. As a test, the client 

should be able to call one web operation of an existing EWS server. Based on the dependencies 

of the WSDL file and the specification, the complexity of the SCAcs are classified as ‘middle’. 

The EWS software unit can be found in the Schneider Electric intranet and the Prometheus 

SQL repository. 
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Software Unit 4 – EcoStrucure We bService:This software unit is the identical EWS web 

service. The SCAcs here are to create an EWS client in a Java software development kit 

technology (transformation SCAc). The results have to be integrated into an Eclipse Java 

project. The SCAc has the same complexity as the realisation in .NET.  

Software Unit 5 – Log4Net: Log4Net is an open-source software unit providing logging 

functionality. The source-code project contains only a few classes and one configuration file is 

necessary. The SCAc for this unit is the integration of the classes into visual studio and the 

compilation of the classes using the .NET compiler in a console call (transformation SCAc). 

Based on the fewer dependencies of this software unit to other classes, libraries and settings, 

these SCAcs are classified as ‘simple’. This unit is available on the Internet and the Schneider 

Electric Brick Catalogue repository. 

Software Unit 6 – Log4J: The Log4J is a Java based software unit and includes the same 

functionality as the .NET variant. The SCAc here is the transformation of the single binary file 

using IKVM. The result (including all IKVM dependencies) should be integrated in the Visual 

Studio environment. 

Table 41 lists all units used in the experiment.  

Name / 
ID 

Description Tec/ Unit Type / Repository Integration effort / 
Transformation effort 

DPWS 
/ SU1 

Enable devices for 
WS* profiles  

Java / Component / SOA4D Advanced   Visual Studio 
Advanced   IKVM 

DPWS 
/ SU2 

Enable devices for 
WS* profiles  

C++ / Code/ SOA4D Advanced   Visual Studio  
Advanced   C-compiler 

EWS / 
SU3 

Web sService for data 
exchange of business 
between units 

Soap-C# / Web Service / 
Prometheus 

Middle       Visual Studio  
Middle        SVCUtil  

EWS / 
SU4 

Web sService for data 
exchange of business 
between units 

Java-Android / Web Service / 
Prometheus 

Middle       Eclipse  
Middle      Java2SOAP 

Log4J / 
SU5 

Logging  functionality 
for  Java 

.NET / Code / Brick Catalogue Simple      Visual Studio 
Simple      IKVM 

Log4Net / 
SU6 

Logging  functionality 
for .NET 

Java / Component / Brick 
Catalogue 

Simple      Visual Studio  
Simple      .NET   
                      Compiler 

Table 41 - Case study software units 
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6.3.2. 	General	case	study	sequence	
The case study is used to prove the ability of the focused approach to support the inexperienced 

user. Following, the case study procedure model used for the different directions is explained 

briefly.  

The basis for the case study demonstrated in this chapter is the explanation of the idea and the 

concept of the new approach focused by this thesis in Chapter 4. In Chapter 5 one concrete 

instance of the concept is explained and used for the case study in this chapter.  

In principle, there are three different experimental groups performing seven different scenarios 

for each SCAc. Table 42 describes each scenario. 

Scenario Description Group 
(1) Observation of 
the experienced 
users 

The experienced users from group (1) perform transformation and integration 
activities with the software unit and without using the focused approach.  

(1) 

(2) Collection of 
software units and 
activities 

Each of the experienced users inserts the relevant information in the 
Prometheus Environment and performs the SCAc using the focused approach. 

(1) 

(3) Validation of 
Prometheus 

The experienced users validate the results of the activities performed by using 
the focused approach. 

(1) 

(4) Reuse activities 
with Prometheus 

In this scenario the participants of group (2) are asked to perform a 
transformation or integration activity. Therefore, they use the focused 
approach. 

(2) 

(5) Reuse activities 
without 
Prometheus  

In this scenario the participants of group (3) are asked to perform a 
transformation or integration activity. This group is not supported by the 
focused approach. 

(3) 

(6)/(7) Validation of 
the results 

The experienced users validate the results of the activities performed by group 
(2) and (3). 

(1) 

Table 42 - Case study scenario summary  

In principle, the case study uses the procedure explained in Table 42. After identifying and 

selecting an inexperienced user, experienced user, software units and related SCAc (method 

MP1, MP2, and MP3), the experienced user is observed by performing a specific 

transformation and/or integration activity without support of the Prometheus environment 

(Scenario 1). Afters this, the experienced users are asked to enter the information into the 

Prometheus environment and perform the same SCAc using the Prometheus environment 

(Scenario 2). The experienced user validates the results of the SCAc performed by the 

Prometheus environment (Scenario 3). If the result is valid, Group 2 is asked to perform the 
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same SCAc as the experienced user (Scenario 5). This is done without the support of the 

Prometheus environment. Additionally, Group 3 is asked to perform the same SCAc using the 

Prometheus environment (Scenario 4). The experienced user has to validate the results of 

Group 2 and Group 4 (Scenario 6 and 7).  

After performing all scenarios for all selected SCAcs, the measurement is done and the analysis 

of the measured values and hypothetical values can be analysed to formulate a conclusion for 

the primary research. 

6.3.3. 	Measurement	and	experiment	results	overview	
In this section the measurement procedure of the case study will be explained. This includes the 

definition of the measureable variables and the process of measuring.  

6.3.3.1.  Definition	of	variables	for	comparing	methods	
The results of the case study measurements are stored into variables. In addition, each variable 

is assigned to name within the experiment and is used in one or more of the measurement 

methods. In this section all variables are named and briefly presented. Table 43 explains the 

different measurable variables in the different scenarios. The scenarios and the variables are 

numbered. In Section 6.4.1.2, the different variables are used to explain the analysis rules and, 

therefore, the relation between the variables. 

Scenario 
/ variable  
Number 

Value 
type 

Name: Description 

(1)/(1) Time ActivityDuration: How long does it take an experienced user to perform a complete 
activity? This variable contains a value that expresses how long the experienced user 
needs for preparation and execution of an SCAc. 

(1)/(2) Time TimeForKnowledgeResources: How long does an experienced user spend on 
external knowledge resources? This variable describes the time needed to handle 
different knowledge resources throughout the activity.  

(1)/(3) Boolean ActivityCarriedOutSuccessfully: Has the experienced user completed the activity 
successfully? This variable represents whether an activity was successful or not.  

(1)/(4) List of 
resources 

UsedKnowledgeSources: What type of knowledge sources, the experienced user 
handles to perform the activity? This variable describes the sources consulted such as 
Google, a phone or an experienced user to perform the activity.  

(1)/(6) List of 
tasks 

MadeSubTasks: What sub tasks have the experienced user made to perform an 
activity? This variable collects all sub tasks done (e.g., open web page or download 
software unit) 

   

(2)/(1) 
(input) 

Time TotalInputDuration: How long does the experienced user require to enter all the 
information into the Prometheus system? This variable contains a value of the 



Evaluation and research result analysis 
_____________________________________________________________________ 
 

____________________________________________________________________ 
267 

 

Scenario 
/ variable  
Number 

Value 
type 

Name: Description 

testimony of an experienced user on how long the whole process of entering all their 
data needs.  

(2)/(2) 
(input) 

Boolean SuccessfulEntry: Could the experienced user enter all the relevant information? This 
variable tells us whether an experienced user could enter all the information about a 
software module and complete activities in the system. 

(2)/(3) Time ActivityDuration: How long does it take an experienced user to perform a complete 
activity using the Prometheus environment? This variable contains a value that 
expresses how long the experienced user needs for preparation and execution of a 
SCAc. 

(2)/(4) Time TimeForKnowledgeResources: How long an experienced user spent on external 
knowledge resources using the Prometheus environment? This variable describes the 
time needed to handle different knowledge resources throughout the activity.  

(2)/(5) Boolean ActivityCarriedOutSuccessfully: The experienced user has completed the activity 
successfully? This variable represents whether an activity was successful or not.  

(2)/(6) List of 
resources 

UsedKnowledgeSources: How many knowledge resource are used to perform the 
activity? This variable describes the sources consulted, such as Google, phone or an 
experienced user to perform the activity. 

(2)/(7) List of 
tasks 

MadeSubTasks: What sub tasks have the experienced user make to perform an 
activity? This variable collects all sub tasks done (e.g., open web page or download 
software unit) 

   

(3)/(1) Boolean ResultIsValid: Is the result of an activity conducted by Prometheus equivalent to the 
result of the same activity conducted by an experienced user? This variable indicates 
whether the experienced identifies the result of his Prometheus activity as valid. 

   

(4)/(1) Time ActivityDuration: How long does it take an experienced user to perform an activity? 
This variable contains a value that expresses how long the experienced user needs for 
the preservation of the task to perform the activity.  

(4)/(2) Time TimeForKnowledgeResources: How long does an inexperienced user spend on 
external knowledge resources? This variable describes the time needed to handle 
different knowledge resources throughout the activity. 

(4)/(3) List of 
resources 

UsedKnowledgeResources: How many knowledge resource are used to perform the 
activity? This variable describes the sources consulted, such as Google, phone or an 
experienced user to perform the activity. 

(4)/(4) Boolean ActivityCarriedOutSuccessfully: Has the inexperienced user has completed the 
activity successfully? This variable represents whether an activity was successful or 
not.  

(4)/(5) List of 
tasks 

MadeSubTasks: What sub tasks have the experienced user completed to perform an 
activity? 

   

(5)/(1) Time ActivityDuration: How long does it take an experienced user to perform an activity? 
This variable contains a value that expresses how long the experienced user needs for 
the preservation of the task to perform the activity.  

(5)/(2) Time TimeForKnowledgeResources: How long an inexperienced user spent on external 
knowledge resources? This variable describes the time needed to handle different 
knowledge resources throughout the activity. 

(5)/(3) Boolean UsedKnowledgeResources: How many knowledge resource are used to perform the 
activity? This variable describes the sources consulted, such as Google, phone or an 
experienced user to perform the activity.  

(5)/(4) List of 
resources 

ActivityCarriedOutSuccessfully: Has the inexperienced user completed the activity 
successfully? This variable represents whether an activity was successful or not.  

(5)/(5) List of 
tasks 

MadeSubTasks: What sub tasks have the experienced user completed to perform an 
activity? 

   

(6)/(1) 
(7)/(1) 
 

Boolean ResultIsValid: Was the result created by the participants an valid result? The 
experienced software engineer proof the results of Scenario 4 and 5 to be valid. 

Table 43 - Overview variables of comparison methods used in case study scenarios 
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In general, the variables of Scenario 1 are used for the measuring methods MM5, MM6, MM7 

and MM8. Therefore this scenario focuses on the problem of learning, search and receipt, and 

execution of SCAc knowledge. Scenario 2 focuses on the problem of SCAc knowledge storing 

and, therefore, the measurement method MM4. The second part of Scenario 2 focuses on the 

measuring methods MM5, MM6, MM7 and MM8. Scenario 3 is a support scenario for 

Scenario 5 and therefore supports the measuring methods MM5, MM6, MM7, and MM8 

indirectly by proving the propriety of the Prometheus environment. Scenario 4 and 5 are equal 

to Scenario 1 and support the same measuring methods. Scenario 6 and 7 validates the SCAc 

results of scenarios 4 and 5. As a result, it supports the measuring methods MM5, MM6, MM7 

and MM8 indirectly. Table 44 summarises this relationship between measuring methods and 

scenarios.  

  MM4 MM5 MM6 MM7 MM8 
General 
Support 

Scenario 1 X X X X 
Scenario 2 X X X X X 
Scenario 3 X 
Scenario 4 X X X X 
Scenario 5 X X X X 
Scenario 6 X 
Scenario 7 X 

Table 44 - Case study scenario related to measurement methods 

6.3.3.2.  Measurement	execution	process	
Section 6.3.1.3 shows different techniques which can be used to measure the previous discussed 

variables. In the following description, the relation between variables and the measurement 

technique is described. 

In Scenario (1) seven variables are measured for each SCAc. The variable ActivityDuration is 

measured by the human observer. Here, the observer measures the complete time the 

experienced user needs to perform an SCAc manually. The experienced user defines the end 

point of the task. The time is recorded in whole seconds. For the variable 
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TimeForKnowledgeResource the human observer notes the time a participant spent on 

knowledge resources. The time is recorded in seconds. The variable UseKnowledgeSources is 

measured by a human observer. The resources used are listed by source name and a type if 

possible, e.g., co-worker, telephone and web page, Google (Web browser). The variable 

ActivityCarriedOutSuccessfully is measured by the human observer. The participant is asked 

after the completion of the activity if the work was finished successfully. The variable can only 

be set to yes or no. The variable MadeSubTasks is measured by the human observer. Here, the 

observer notes the progress of the entire task. The aim is to recognise different tasks and their 

duration, (e.g., “00:10:41h user open web page”). 

Note: The same variables are used in Scenario (2), Scenario (4) and Scenario (5). 

In Scenario (2) three additional measurements are made: The variable TotalInputDuration is 

measured by a human observer and measures the time an experienced user needs to enter all 

information into the Prometheus environment. The observer records the start time point at 

which they hand over the task to the experienced user. The end time is determined by the 

finishing signal of the user. The observer notes this point in time. Time is measured in whole 

seconds. 

The variable SuccessfullEntry is measured with the human observer and the Prometheus 

environment. First, the experienced user has to inform the observer about the successful use of 

the environment. Secondly, the server in the Prometheus environment writes log files about 

entries. The variable can only be set to yes or no and present the personal opinion of the 

experienced user of completing the task.  

In Scenario (3), (6) and (7) one measurement is made: The variable ResultIsValid is captured 

by the type of measurement (1). The experienced user examines the results of the performed 

SCAc from Scenario (3), (6) and (7) with the same activity carried out in scenario (1). It tells 

the observer whether the result has the same value and is usable. The variable can only be set to 

yes or no. 
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Note: The maximum time for a single activity is set to 4 hours. This is based on the fact that all 

participants are volunteers and, therefore, perform this case study during their normal working 

time.  

6.4. 	Result	analysis	 	
This section discusses the results created by the case study and the primary research. The aim is 

to measure the impact of the realised approach on the reuse of SCAc. Therefore, the case study 

results will be compared using the different defined variables and scenarios.  

The basis of these discussions is the results of the case study shown in Section 6.4.2, the related 

properties of the fundamental concept discussed in Chapter 4, and the realised environment in 

Chapter 5. This section also discusses the possible positive effect of the approach for 

deployment software construction activities which are not part of the case study.  

6.4.1. 	Analysis	methods	definition	 	
In this section the analysis methods will be discussed. This includes the definition of variables, 

values and the statements for each variable measured by the different measuring methods. After 

this, the statements for the comparison of different values of the same variable will be 

discussed. At the end, the relationship between the variables and the resulting analysis 

statements will be defined. 

6.4.1.1. 	General	analysis	concept	
The case study creates a special analysis environment. An experienced software engineer and a 

group of inexperienced software engineers are asked to perform software reuse in their normal 

environment without the support of the Prometheus environment. This is done in the first 

scenario (by the experienced user) and in the fourth scenario (by the inexperienced users). 

Independent of the different variables and their value types, Figure 130 shows the expected 

behaviour of the measured values. It is expected that the experienced user (red line) needs less 

time, knowledge sources, and sub tasks to perform a SCAc than an inexperienced user (blue 
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line). By performing the same SCAc with the Prometheus environment (Scenario 2 and 5) this 

will support experienced as well as inexperienced users and may be create values in the area A, 

B and C (grey area). 

 

Figure 130 - Estimated results of experienced and inexperienced user 

Using this behaviour, the problem of exchange and users’ knowledge level can be discussed for 

each reused SCAc type. Using the Prometheus environment may create better results than an 

experienced user (A) or an inexperienced user (A, B). Also it is possible that a worse result than 

an inexperienced user (C) or an experienced user (B, C). Using this analysis approach it can be 

determined how the focused approach is working for one special SCAc regarding the same 

knowledge to perform. This is called single view in the case study analysis. 

The different scenarios are performed using different software units and different tools. 

Therefore, the required SCAc knowledge differs between each single view. By comparison of 

the measured values of scenario 1, 2, 4, and 5 for each single view, it can be estimated whether 

the focused approach is feasible for different SCAc knowledge (e.g., information for setup or 

parameters). This is called multiple views in the case study analysis.  

In general, three results are expected. The first one is that all measured values are placed in the 

combined area of A and B in Figure 130. In this case the approach shows that it can support 

inexperienced software engineers by performing different SCAcs even if the engineers do not 

have the required knowledge. From the perspective of McCarey, Ó Cinnéide and Kushmerick 

(2008) a technique is identified to store and subsequently distribute reuse activity relevant 
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software unit knowledge among software engineers. The second is opposite to the first one. All 

measured values are in the area of C in Figure 130. In this case, the focused approach creates no 

added value for inexperienced software engineers. For the research itself, it only creates the 

statement that the realised environment is not an adequate technique to limit the lack of 

techniques mentioned by McCarey, Ó Cinnéide and Kushmerick (2008). The third result 

variant is a mix of the first and second result type. In this case the different results have to be 

analysed further. From the single view perspective it is necessary to prove if the focused 

approach is supporting only one or some types of values (e.g., time, knowledge resources, or 

sub task). Additionally, it has to be checked if the approach is supporting only one or a few 

different SCAc knowledge (i.e., only transformation or integration) by analysing the multiple 

view results. 

6.4.1.2. 	Variable	value	definition	
The first variables to discuss are used in Scenarios 1, 2, 4, and 5. The time measuring variables 

ActivityDuration and TimeForKnowledgeResources have no other special information than the 

time. Their relationship is that TimeForKnowledgeResources is part of ActivityDuration. The 

variable ActivityCarriedOutSuccessfully stated whether a single participant was able to finish 

the task. This is not the validation of the task. The UsedKnowledgeSources variable states the 

number of external (not the personal memory) knowledge resources. Together with the 

variables MadeSubTasks and TimeForKnowledgeResources it can be declared how often and 

how long a single knowledge resource was used. Additionally, MadeSubTask also shows how 

many sub tasks were done for the whole activity. 

In Scenario 3, 6, and 7 the variable Is Valid is used. Looking on this variable for its own 

statement is relevant: the participant passed or failed to perform the SCAc. 

For the input of values in Scenario 2 the variables TotalInputDuration, SuccessfulEntry and 

MadeSubTasks are used. Looking only at one single measurement, the values produce simple 

statements: A user needs a specific time to insert all information into the Prometheus 
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environment. This includes a number of specific tasks. An experienced user finished or did not 

finish the activity, which is expressed by the variable SuccessfulEntry. 

6.4.1.3. 	Comparison	of	different	measurements	
The next step in the analysis is the comparison of multiple instances of the same scenarios. In 

the first step, the Scenarios 1, 2, 4, and 5 can analysed together. Basically, it can be determined 

how long each participant needs to perform a given activity. Also the number of used 

knowledge resources, number of performed tasks, and the time spent on knowledge resources 

can be measured. Also average values can be calculated for each variable. For each participant, 

a statement can be created that identifies the needed time and for tasks to be completed. The 

same classification pattern can be used for MadeSubTask and UsedKnowledgeSources. Based 

on this, a statement for each participant can be created identifying the needed for sub tasks and 

knowledge resources for the given tasks. The content for the ActivityCarriedOutSuccessfully 

variable is the number of participants who finished a special SCAc and how many did not finish 

it.  

Scenario 1 has the problem that only one experienced user for each SCAc performed this 

scenario. As a result, there is no comparable participant for measurement. The other 

experienced users performed other SCAcs. Scenario 4 and 5 can use this comparison. In 

general, results under same conditions can be measured.  

The problem of no comparability based on different SCAcs is also true for Scenario 2 (i.e., the 

first three variables). All experienced users perform different a SCAc with different conditions 

(e.g., the software unit has to enter the system or is already available). The only variable which 

is useful in the current perspective is SuccessfulEntry. Thereby, a statement can be made as to 

how many experienced users were able to insert the necessary information. This is also valid 

for Scenario 3, 6 and 7. The statement here is only concerned about how many participants 

created a valid result. This statement can be made from an SCAc independent or focus view for 

each SCAc.  
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Table 45 shows the measurement results of a single participant performing one software 

construction activity. Here, the participant needed 01:28:42h to perform an activity. Exactly 

00:39:50h (i.e., 44, 91%) of this time is spent on the task to gain knowledge and information 

about it. At least this participant uses 9 different knowledge resources and undertook 35 

subtasks. The validation made by the experienced software engineer was made after the 

participant successfully finished the activity.  

Time needed KR Time KR used Sub Task 
done 

Success Valid 

1:28:42 0:39:50 9 35 1 1 

Table 45 - Summary of measured values of an SCA performed by a participant 

In Table 46 an example for the preparation of an experienced software engineer in Scenario 2 is 

shown. As explained before the time and number of made sub tasks are measured.  

Time needed Success 
0:40:31 1 

Table 46 - Summary of measured values of a Prometheus preparation 

Table 4647 shows the average values of one software construction activity performed by the 

experienced user and both inexperienced user groups (cf. single view in Section 6.4.2.1). Here, 

for each measured variable, the minimum, average and maximum value is calculated. The 

maximum and minimum value is only discussed further in the analysis if a special value is 

reached compared to other participants. 

 Inexperienced 
User  
Manual  

Inexperienced 
User 
Prometheus 

Experienced 
User  
Manual 

Experienced 
User 
Prometheus 

Min time  1:00:00 0:05:46 0:33:00 0:06:18 
Average time 1:27:27 0:06:12 0:33:00 0:06:18 
Max time 1:38:17 0:06:18 0:33:00 0:06:18 
     
Min KR 9,00 1 2 1 
Average KR 9,80 1 2 1 
Max KR 10,00 1 2 1 
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 Inexperienced 
User  
Manual  

Inexperienced 
User 
Prometheus 

Experienced 
User  
Manual 

Experienced 
User 
Prometheus 

     
Min tasks done 33,00 5,00 33,00 6,00 
Average tasks done 33,40 5,80 33,00 6,00 
Max tasks done 35,00 6,00 33,00 6,00 
     
Min KR time 0:39:50 0:04:39 0:09:00 0:04:39 
Average KR time 0:44:34 0:04:39 0:09:00 0:04:39 
Max KR time 0:46:16 0:04:39 0:09:00 0:04:39 
     
Success/Valid 1/1 1/1 1/1 1/1 

Table 47 - Average values example of a software construction activity 

The multiple views can be created by using the average values of all single view results of the 

same software construction activity type (e.g., transformation or integration). For this case 

study this results in two different tables (i.e., average results for integration and transformation 

software construction activities) which have the same structure as shown in Table 47. 

6.4.2. 	Case	study	result	analysis	
In this section, the relevant results of the case study are shown and discussed based on the 

analysis methods shown in the previous section. In the first part, the average values for each 

software unit and the related SCAcs are explained (single view). After this an average view is 

described focusing on integration and transformation SCAcs (multiple views). Finally the 

relevant analysis results are discussed.  

Note: A complete list of all measured values can be found in Appendix Section F 

6.4.2.1. 	Single	view	analysis	
In this section the measured results for each software construction activity are shown and 

discussed. The first example is discussed in more detail. For the others only average values are 

shown. In the Appendix Section F the all measurements are summarised for each single SCAc 

as shown in Table 47 and Table 48. 
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The DPWS Java stack was measured with a transformation and integration software 

construction activity. For the transformation, the following values are measured. 

 Time needed KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 1:28:42 0:39:50 9 35 1 1 
User M (2) 1:32:01 0:44:11 10 33 1 1 
User M (3) 2:10:32 0:59:38 19 70 1 1 
User M (4) 0:49:02 0:28:22 9 41 1 1 

 
User P (1) 0:03:28 0:02:13 2 8 1 1 
User P (2) 0:03:01 0:01:37 2 5 1 1 
User P (3) 0:03:05 0:02:21 2 7 1 1 
User P (4) 0:02:45 0:02:22 2 5 1 1 

 
Expert M 0:13:21 0:03:43 3 25 1 1 
Expert P 0:02:34 0:01:54 2 6 1 1 

Table 48 - Measured values of each participant (DPWS4J transformation SCAc KR - Knowledge Resource) 

Regarding the values in Table 48, the following statements can be made. For manual steps the 

inexperienced software engineers needed between 0:49:02h and 2:10:32h to perform the SCA 

while the expert required 0:13:21h. The difference is smaller between the software engineers 

using the focused approach. Here, the time is between 0:02:45h and 0:03:28h. The 

inexperienced users needed between 0:28:22h and 0:59:38h of the whole time to handle 

between 9 and 19 different knowledge resources. Between 33 and 70 tasks were done by each 

participant. The expert software engineer spent 0:03:43 minutes using 3 knowledge resources 

and performing 25 tasks. Compared to the software engineers who used the focused approach, 

the difference is apparent. Between 5 and 8 tasks were done by these participants and only 3 

knowledge resource was used for 0:01:37h and 0:02:22h. The experienced software engineers 

using the focused approach have comparable values. The values shown in Table 48 are 

summarised to average values for further analysis (cf. Section 6.4.1.3) as shown in Table 49. 
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 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:49:02 0:02:33 0:13:21 0:02:01 
average time 1:30:04 0:02:51 0:13:21 0:02:01 
max time 2:10:32 0:03:05 0:13:21 0:02:01 
     
min KR 7,00 1 2 1 
average KR 11,25 1 2 1 
max KR 19,00 1 2 1 
     
Min tasks done 33,00 5,00 25,00 4,00 
average tasks done 44,75 5,75 25,00 4,00 
max tasks done 70,00 7,00 25,00 4,00 
     
Min KR time 0:29:22 0:01:48 0:03:00 0:01:54 
average KR time 0:43:15 0:02:17 0:03:00 0:01:54 
max KR time 0:59:38 0:02:37 0:03:00 0:01:54 
     
Success/Valid 1/1 1/1 1/1 1/1 

Table 49 - Average values of the DPWS Java transformation SCAc (KR Knowledge Resource) 

As explained in Section 6.4.1.1 the expected value is between the experienced user and the 

inexperienced user. Based on the average values of Table 49, Figure 131a shows that the values 

of the experienced software engineer who performed this task manually as 100% (green line). 

The values of the inexperienced software engineers who did the task manually are represented 

as the maximum line (blue line). The values measured for the inexperienced engineers (red 

line) and the experienced engineers (purple line) in Figure 131(b) (enlarged view of Figure 

131a to identify values smaller 100%) show that the focused approach required fewer 

knowledge resources, time and tasks to perform this SCAc. 
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Figure 131 - Average results for the DPWS Java transformation SCAc 

Based on Figure 131, it can be stated that for the measured transformation SCAc of the DPWS 

Java software unit unsupported inexperienced software engineers require more time (675%) to 

perform the SCAc, spent more time (1157%) to use more knowledge resources (392%), and do 

more tasks (179%) than an experienced user. On the other side inexperienced software 

engineers supported by the Prometheus environment use less time (23%) to perform the SCAc, 

spent less time (58%) to use less knowledge resources (67%), and do less tasks (25%) than an 

inexperienced user without such support. A supported experienced software engineer uses the 

same number of knowledge resources (2; 67%) but required subtly less time for the SCAc 

(19%), time for knowledge resources (51%) and tasks (24%).  

The integration of the transformed DPWS Java stack software unit results in the average values 

is shown in Table 50. 

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:18:15 0:02:45 0:07:45 0:02:46 
average time 0:28:09 0:02:59 0:07:45 0:02:46 
max time 0:45:05 0:03:14 0:07:45 0:02:46 
     

Min KR 6,00 1 4 3 
average KR 7,25 2 4 3 
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 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

max KR 9,00 3 4 3 
     

Min tasks done 46,00 5,00 23,00 6,00 
average tasks done 50,75 6,25 23,00 6,00 
max tasks done 56,00 7,00 23,00 6,00 
     

Min KR time 0:06:21 0:01:55 0:02:45 0:01:56 
average KR time 0:12:30 0:02:23 0:02:45 0:01:56 
max KR time 0:20:34 0:02:43 0:02:45 0:01:56 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 50 - Average values of the DPWS Java integration SCAc (KR Knowledge Resource) 

The inexperienced software engineers needed on average 0:28:09h (363%) to perform the 

activity. The unsupported experienced software engineer required 0:07:45h (100%) for the 

same activity, and the engineers using the Prometheus environment needed significantly less 

time. Exactly 0:02:59h (39%) was required by the inexperienced software engineer and 0:2:46h 

(36%) by the experienced engineer. A similar picture can be identified by the time spent on 

knowledge resources. The unsupported experienced software engineers spent 0:12:30h (455%) 

on average while the experienced engineer with the same condition spent 0:02:45h (100%). 

Compared to this the supported engineers spent less time. The inexperienced engineers took 

0:02:23h (87%) and the experienced engineers took 0:1:56h (70%). The number of knowledge 

resources used differs significantly between the unsupported engineers. Here, the inexperienced 

engineers used 7.25 (181%) and the experienced engineer used 4 (100%). The supported 

software engineers used only 2 (50%; inexperienced user) and 3 (75%; experienced user) 

knowledge resources. The number of tasks done differs between the supported and unsupported 

groups significantly. Inside the groups the differences are not so high. The unsupported 

experienced engineer performed 23 (100%) tasks while the inexperienced software engineers, 

50.75 (221%) on average. The supported groups use fewer tasks. The inexperienced groups use 

6.25 (27%) tasks while the experienced engineer uses only 6 (26%) tasks.  
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Figure 132 - Average results for the DPWS Java integration SCAc 

Figure 132a focuses on the relation between both unsupported groups. The inexperienced 

engineer (blue line) needed more time, resources and tasks than the experienced software 

engineer (green line), Figure 132b focuses on the difference between the unsupported 

experienced software engineer (green line), the values if this person is supported (purple line), 

and the inexperienced software engineers (red line) supported by the focused approach. Here, it 

is shown that the focused approach supports all engineers by integrating the transformed DPWS 

Java Stack. All participants fulfilled the activity successfully and created a valid result. 

From the transformation SCAc point of view Table 51 shows the average values measured for 

the DPWS C stack. 

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:25:36 0:02:26 0:21:34 0:02:01 
Average time 0:33:14 0:02:57 0:21:34 0:02:01 
Max time 0:41:13 0:03:17 0:21:34 0:02:01 
     

Min KR 5,00 2 5 2 
Average KR 12,00 2,5 5 2 
Max KR 18,00 3 5 2 
     

Min tasks done 19,00 5,00 10,00 7,00 
Average tasks done 22,75 7,25 10,00 7,00 
Max tasks done 26,00 8,00 10,00 7,00 
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 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

     

Min KR time 0:16:23 0:02:05 0:07:21 0:01:54 
Average KR time 0:23:48 0:02:27 0:07:21 0:01:54 
Max KR time 0:29:52 0:02:47 0:07:21 0:01:54 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 51 - Average values of the DPWS C transformation SCAc (KR Knowledge Resource) 

For the transformation task of the DPWS C stack, inexperienced software engineers needed 

00:33:14h on average to perform the SCAc without the support of the Prometheus environment. 

The experienced software engineer under the same conditions required 00:21:34h. Also the 

values of the used knowledge resources differ. While the inexperienced software engineers use 

12 knowledge resources on average, the experienced uses only 5. While the inexperienced 

software engineers spent 00:23:48h of their time to use the knowledge resources, the 

experienced user spent only 00:07:21h. The number of tasks done for the SCAc differs (average 

view). Inexperienced software engineers needed 22.75 tasks and the experienced software 

engineer needed 10 tasks for the SCAc. All participants without the support of the focused 

approach were able to fulfil the SCAc and create a valid result. Figure 133a shows the 

differences between the inexperienced (blue line) and the experienced (green line; 100%) 

software engineers. On average, inexperienced software engineers require more time (154%) to 

perform the SCAc, spent more time (324%) to use more knowledge resources (240%) and do 

more tasks (228%) compared to the experienced user. 

The integration activity of the DPWS C stack shows other values than the transformation 

activity. 
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Figure 133 - Average results for the DPWS C stack transformation SCAc  

By comparing the values of the experienced software engineer without the support of the 

Prometheus environment to the inexperienced engineers with support, the following statements 

can be made. The inexperienced software engineers require less time (00:02:57h; 14%), spent 

less time (00:02:27; 33%) on more number of knowledge resources (2,5; 50%), and did similar 

number of tasks (7.25; 73%). Figure 133b shows the experienced software engineer as 100% 

line (green line) and the average values of inexperienced engineers with support (red line).  

Comparing the values of the experienced software engineer using the Prometheus environment 

and the average values of inexperienced engineers with the same support, the following 

statements can be made. The experienced software engineer needed less time (00:02:01h; 9%) 

for the complete SCAc and the use of knowledge resources (2; 40%). The number of tasks 

performed is 7 (70%) than the inexperienced software engineers on average. This engineers 

spent less time on knowledge resources (00:01:54h; 26%). 

The measurement of integration SCAc for the DPWS C stack delivers the average values 

shown in Table 52. These are discussed as follows. 
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 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 1:10:03 0:02:45 0:37:56 0:02:23 
Average time 1:25:39 0:03:07 0:37:56 0:02:23 
Max time 1:42:04 0:03:20 0:37:56 0:02:23 
     

Min KR 9,00 2 4 4 
Average KR 14,75 2,25 4 4 
Max KR 22,00 3 4 4 
     

Min tasks done 15,00 7,00 20,00 7,00 
Average tasks done 31,75 7,75 20,00 7,00 
Max tasks done 53,00 9,00 20,00 7,00 
     

Min KR time 0:37:17 0:01:30 0:04:24 0:01:16 
Average KR time 0:51:01 0:02:06 0:04:24 0:01:16 
Max KR time 1:06:10 0:02:22 0:04:24 0:01:16 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 52 - Average values of the DPWS C integration SCAc (KR Knowledge Resource) 

The integration of the DPWS C stack shows a similar picture as the other measurements. The 

inexperienced software engineers with the same conditions needed 01:25:39h (226%) on 

average to fulfil the SCAc. The experienced software engineer needed 0:37:56h (100%). With 

support, the experienced software engineer needed 0:02:23h (6%) and the inexperienced 

software engineers needed 0:03:07h (8%) of time. The number of knowledge resources is the 

same (4; 100%) for the experienced software engineer. The inexperienced software engineers 

without support needed 14,75 (369%) knowledge resource on average. The inexperienced 

software engineers with support needed 2,25 (56%) knowledge resources. The time spent on 

the knowledge resources differs between all participant groups. While the unsupported 

experienced software engineers needed 0:04:24h (100%) the inexperienced engineers with the 

same conditions spent significantly more time (i.e., 0:51:01; 1160%) on knowledge resources. 

The supported engineers require less time. The experienced engineers spent 0:01:16h (29%) 

and the inexperienced software engineers spent 0:02:06h (48%) of time. All participants fulfil 

their work and differ in the number of tasks. The inexperienced groups required 31.75 (159%; 
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without support) and 7.75 (39%; with support). The experienced engineer needed 20 tasks 

(100%; without support) and 7 tasks (35%; with support). 

 

Figure 134 - Average results for the DPWS C integration SCAc  

The final statement for this integration SCAc is similar to the previously analysed 

transformation SCAc. The approach supports inexperienced software engineers especially in 

reducing the number of knowledge resources and the time spent on these resources. 

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:17:45 0:02:45 0:03:43 0:02:45 
average time 0:22:02 0:03:12 0:03:43 0:02:45 
max time 0:29:18 0:03:45 0:03:43 0:02:45 
     

Min knowledge resource 5,00 2 3 2 
average knowledge 
resource 7,75 2 3 2 
max knowledge resource 9,00 2 3 2 
     

Min tasks done 12,00 5,00 7,00 4,00 
average tasks done 22,75 6,50 7,00 4,00 
max tasks done 36,00 9,00 7,00 4,00 
     

Min KR time 0:09:31 0:01:48 0:02:07 0:02:03 
average KR time 0:13:25 0:02:20 0:02:07 0:02:03 
max KR time 0:16:58 0:03:02 0:02:07 0:02:03 
     

Success/Valid 1/1 1/1 1/1 1/1 
Table 53 - Average values of the Log4J transformation SCAc (KR Knowledge Resource) 
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The measured value of the Log4J software unit for the transformation SCAc values are shown 

in Table 53. The unsupported inexperienced software engineers needed 0:22:02h (593%) and 

fulfil 22.75 (325%) tasks. This includes 00:13:25h (634%) for 7,75 (258%) knowledge 

resources on average. Figure 135b shows this (blue line) compared to the values of the 

experienced software engineer (green line). These engineers needed 0:03:43h (100%) to 

perform 7 (100%) tasks. 00:02:07h (100%) is used to handle 3 (100%) knowledge resources. 

This is shown in Figure 135a. Figure 135b shows the measured values of this engineer and the 

engineers supported by the focused approach. Regarding the time used for the activity and the 

time spent on knowledge resources the difference between the three groups is not huge. This is 

a difference to other transformation SCAcs. Another difference to other measured SCAcs is 

that, on average, the inexperienced software engineers with support spent more time (0:02:20h; 

110%) on knowledge resources (2; 67%) than the unsupported experienced software engineers. 

The supported inexperienced software engineer needed 00:03:12h (86%) to perform 6,50 (93%) 

task. The supported experienced software engineer performed 4 (57%) task but required only 

0:02:45h (74%). This engineers spent 00:02:03h (97%) on 2 (67%) knowledge resources. 

 

 

Figure 135 - Average results for the Log4J transformation SCAc 
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The results show that the focused approach supports inexperienced software engineers 

significantly. In this example the differences between supported engineers and the unsupported 

experienced software engineer are minimal. 

A similar picture is shown by the integration SCAc of the Log4J software unit. Table 54 shows 

the average values. 

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:12:34 0:02:32 0:03:56 0:02:15 
Average time 0:31:22 0:02:47 0:03:56 0:02:15 
Max time 0:49:34 0:03:07 0:03:56 0:02:15 
     

Min KR 3,00 2 2 2 
Average KR 11,00 2,75 2 2 
Max KR 18,00 4 2 2 
     

Min tasks done 7,00 4,00 7,00 5,00 
Average tasks done 21,00 4,50 7,00 5,00 
Max tasks done 39,00 5,00 7,00 5,00 
     

Min KR time 0:06:44 0:02:11 0:02:15 0:01:45 
Average KR time 0:15:49 0:02:34 0:02:15 0:01:45 
Max KR time 0:21:03 0:03:02 0:02:15 0:01:45 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 54 - Average values of the Log4J integration SCAc (KR Knowledge Resource) 

The differences between the unsupported groups are similar to other measured integration 

SCAcs. The inexperienced software engineers required 0:31:22h (797%) to perform 21 (300%) 

tasks. They spent 0:15:49h (703%) for 11 (550%) knowledge resources. The unsupported 

experienced software engineer required 0:03:56h (100%) including 00:02:15h (100%) used for 

2 (100%) knowledge resources. This engineer performed 7 (100%) tasks. The differences of 

both unsupported groups are shown in Figure 136a. Here, the experienced engineer (green line) 

required less time, knowledge resources, and performed fewer tasks than the inexperienced 

engineer group (blue line). 



Evaluation and research result analysis 
_____________________________________________________________________ 
 

____________________________________________________________________ 
287 

 

 

Figure 136 - Average results for the Log4J integration SCAc 

Figure 136b shows the differences between the unsupported experienced software (green line) 

engineer and the supported engineers. The experienced software engineer supported by the 

focused approach needed 0:02:15h (57%) and the supported inexperienced engineer groups 

needed 0:02:47h (71%) on average. The unsupported experienced engineer needed 0:03:56h 

(100%) which is more time than the supported engineers. In other measured values this differs. 

The number of knowledge resources used is the same for experienced engineers; 2 (100%). The 

inexperienced engineers without the support of the focused approach used 2,75 (138%) of 

knowledge resources on average. Regarding the time spent on knowledge resources, the picture 

also differs. The unsupported inexperienced software engineer spent 0:15:49h (703%). This is 

significantly more than the other groups spent on knowledge resources. The unsupported 

experienced software engineer spent 0:02:15h (100%). Also, 0:02:34h (114%) was spent on 

such resources by the inexperienced software engineers with support by the focused approach. 

These engineers needed more time than the experienced engineer. The time spent 0:02:34h 

(114%) is more the time spent by the unsupported experienced software engineer. The 

supported experienced software engineer needed less time (0:01:45h; 78%). The task done by 

the supported experienced user is 5 (71%). For the experienced user without support the 

number of tasks done is 7 (100%). Figure 136b shows 4.5 (64%) and 5 (71%) tasks done by 
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inexperienced and experienced software engineers with support. This is the first time the 

inexperienced engineers used fewer tasks on average than the supported experienced engineer. 

Figure 136a show that the unsupported inexperienced software engineers perform 21 tasks in 

average. All participants were successful in finishing the activity and created a valid result.  

The next SCAc to analyse is the Log4NET transformation SCAc. In Table 55 the average 

values measured of this SCAc scenario are listed.  

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:21:02 0:01:59 0:12:35 0:02:02 
Average time 0:25:06 0:02:29 0:12:35 0:02:02 
Max time 0:28:31 0:03:05 0:12:35 0:02:02 

     

Min KR 19,00 4 3 3 
Average KR 26,25 5 3 3 
Max KR 34,00 6 3 3 

     

Min tasks done 34,00 6,00 9,00 4,00 
Average tasks done 43,00 7,00 9,00 4,00 
Max tasks done 49,00 8,00 9,00 4,00 
     

Min KR time 0:16:36 0:01:34 0:05:56 0:01:50 
Average KR time 0:18:56 0:01:54 0:05:56 0:01:50 
Max KR time 0:21:02 0:02:21 0:05:56 0:01:50 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 55 - Average values of the Log4Net transformation SCAc (KR Knowledge Resource) 

The most interesting values are related to the number of knowledge resources used. While the 

unsupported inexperienced software engineers used 26.25 (875%) knowledge resources and 

spent 00:18:56h (319%) of time, the unsupported experienced software engineer used only 3 

(100%) knowledge resources in 00:05:56h (100%). The supported inexperienced software 

engineer required more knowledge resources (5; 167%) but invested only 00:01:54h (32%) of 

time. This is close to the experienced user supported by the Prometheus environment. This 

person spent 00:01:50h (31%) and used 3 (100%) knowledge resources. The other values (i.e., 

task done and time needed) are similar to other transformation SCAcs. The unsupported 
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inexperienced software engineer required the most time (00:25:06h; 199%) and did the most 

tasks (43; 478%). The unsupported experienced software engineer performed only 9 (100%) 

tasks and required 00:12:35h (100%). The values of the supported engineers are not as high as 

the values of the unsupported experienced engineer. For the time required for the whole tasks, 

both are similar. The supported inexperienced software engineer required 00:02:29h (20%) to 

perform 7 (78%) tasks while the supported experienced user required 00:02:02h (16%) and 

performed 4 (44%) tasks. The unsupported engineers are shown in Figure 137 with the blue line 

(inexperienced software engineers) and green line (experienced software engineers). The 

supported engineers are represented by the purple line (experienced software engineers) and the 

red line (inexperienced software engineers). 

 

Figure 137 - Average results for the Log4Net transformation SCAc 

The integration of the Log4Net software unit delivers a similar picture for the integration 

SCAc. Figure 138 shows the inexperienced software engineers without the support (blue line), 

the experienced software engineer with the same conditions (green line), the group of supported 

software engineers (red line) and the supported experienced engineer (purple line).  
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Figure 138 -Average results for the Log4Net integration SCAc 

The figure is based on the values shown in Table 56. 

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:14:45 0:02:31 0:06:54 0:02:29 
Average time 0:19:13 0:02:52 0:06:54 0:02:29 
Max time 0:24:09 0:03:05 0:06:54 0:02:29 

     

Min KR 12,00 2 2 2 
Average KR 16,25 2,5 2 2 
Max KR 21,00 3 2 2 

     

Min tasks done 24,00 6,00 7,00 6,00 
Average tasks done 31,75 7,00 7,00 6,00 
Max tasks done 39,00 8,00 7,00 6,00 
     

Min KR time 0:12:48 0:02:02 0:05:06 0:01:56 
Average KR time 0:15:39 0:02:21 0:05:06 0:01:56 
Max KR time 0:17:23 0:02:46 0:05:06 0:01:56 
     

Success/Valid 1/1 1/1 1/1 1/1 
Table 56 - Average values of the Log4Net integration SCAc (KR Knowledge Resource) 

The unsupported inexperienced software engineers needed on average 0:19:13h (279%) to 

perform the activity. The unsupported experienced software engineer required 0:06:54h (100%) 

for the same activity, and the engineers using the Prometheus environment needed less time. 



Evaluation and research result analysis 
_____________________________________________________________________ 
 

____________________________________________________________________ 
291 

 

Exactly 0:02:52h (41%) was required by the inexperienced software engineer and 0:02:29h 

(36%) by the experienced engineer. A similar picture can be identified by the time spent on 

knowledge resources. The unsupported experienced software engineers spent 0:15:39h (307%) 

on average while the experienced engineer with the same condition spent 0:05:06h (100%). 

Compared to this the supported engineers spent less time. The experienced engineers took 

0:01:56h (38%) and the inexperienced engineers took 0:2:21h (46%). The number of 

knowledge resources used differs significantly between the unsupported engineers. Here, the 

inexperienced engineers used 16.25 (813%) and the experienced engineer used 2 (100%). The 

supported software engineers used only 2.5 (125%; inexperienced user) and 2 (100%; 

experienced user) knowledge resources. The number of tasks done differs between the 

supported and unsupported groups not so much. The unsupported experienced engineer 

performed 7 (100%) tasks while the inexperienced software engineers, 31.75 (454%) on 

average. The supported groups use similar number of tasks as the unsupported experienced 

engineer. The inexperienced groups use 7 (100%) tasks while the experienced engineer uses 

only 6 (86%) tasks.  

 
 

Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:18:09 0:02:10 0:09:08 0:02:46 
Average time 0:22:37 0:02:39 0:09:08 0:02:46 
Max time 0:26:12 0:03:01 0:09:08 0:02:46 

     

Min KR 12,00 2 2 3 
Average KR 14,75 2,5 2 3 
Max KR 19,00 3 2 3 

     

Min tasks done 19,00 6,00 7,00 7,00 
Average tasks done 23,00 6,75 7,00 7,00 
Max tasks done 28,00 7,00 7,00 7,00 
     

Min KR time 0:15:03 0:01:50 0:05:06 0:02:16 
Average KR time 0:17:36 0:02:02 0:05:06 0:02:16 
Max KR time 0:21:11 0:02:13 0:05:06 0:02:16 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 57 - Average values of the EWSJ transformation SCAc (KR Knowledge Resource) 
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In Table 58 the measured values for the transformation SCAc of the EWS J transformation are 

shown. An interesting point is that the supported experienced user required more knowledge 

resources (3; 150%) than the supported inexperienced software engineer (2.5; 125%). The 

unsupported experienced engineer required fewer knowledge resources (2; 100%). Focusing on 

the time spent on knowledge resources, the picture changes. While the supported inexperienced 

engineers spent only 00:02:02h (40%), the experienced software engineer with the same 

constraints spent 00:02:16h (44%).  The unsupported experienced engineer spent more time on 

knowledge resources (00:05:06h; 100%). The unsupported inexperienced software engineer 

spent more time (00:17:36h; 345%) and used more knowledge resources (23; 738%) than the 

unsupported software engineer. The number of tasks is in thefollowing order. The unsupported 

inexperienced software engineers performed 23 (329%) tasks and performed them in 00:22:37h 

(248%). The unsupported software engineer spent 00:09:08h (100%) to perform 7 (100%) 

tasks. The supported engineers required less time. The inexperienced group required 00:02:39h 

(29%) and performed 6.75 (96%) tasks. The experienced software engineer spent 00:02:46h 

(30%) (which is more than the average of the supported inexperienced software engineer) to 

perform the same number of tasks as the unsupported experienced engineer (7; 100%).  

 

Figure 139 - Average results for the EWSJ transformation SCAc  
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Figure 139 shows the blue line (inexperienced software engineers) and the green line 

(experienced software engineers). The supported engineers are represented by the purple line 

(experienced software engineers) and the red line (inexperienced software engineers). 

Table 58 shows the results measured for the integration of the EWS software unit (Java 

technology). 

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:26:54 0:02:10 0:15:03 0:02:51 
Average time 0:39:36 0:02:31 0:15:03 0:02:51 
Max time 0:53:23 0:02:54 0:15:03 0:02:51 

     

Min KR 9,00 2 4 4 
Average KR 14,25 2,5 4 4 
Max KR 23,00 3 4 4 

     

Min tasks done 7,00 6,00 7,00 5,00 
Average tasks done 34,00 6,50 7,00 5,00 
Max tasks done 52,00 7,00 7,00 5,00 
     

Min KR time 0:18:03 0:01:45 0:05:06 0:01:54 
Average KR time 0:24:05 0:02:08 0:05:06 0:01:54 
Max KR time 0:29:05 0:02:31 0:05:06 0:01:54 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 58 - Average values of the EWSJ integration SCAc (KR Knowledge Resource) 

The group of inexperienced software engineers required 00:39:36h (263%) on average. When 

compared to the unsupported experienced software engineer, they needed more time and 

required 00:15:03h (100%). The supported experienced engineer spent 00:02:51h (19%) and 

the supported inexperienced software engineer spent 00:02:31h (17%). Compared to the 

unsupported experienced software engineer, this is significantly less time.  

The unsupported inexperienced software engineer performed 34 (486%) tasks and the 

experienced software engineer with the same conditions performed 7 (100%) tasks. Compared 

to this time required, the supported software engineer performed fewer tasks to perform the 

SCAc. The inexperienced engineers also performed 6.5 (93%) tasks while the experienced 
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engineer performed 5 (71%). The same order, but with fewer intervals, can be identified for 

time spent on knowledge resources. The inexperienced software engineer without support spent 

00:24:05h (472%) on 14.25 (356%) knowledge resources (on average). The unsupported 

experienced software engineer spent only 00:05:06h (100%) on 4 (100%) knowledge resources. 

The supported inexperienced software engineer uses the same number of knowledge resources 

(4; 100%) but spent only 00:01:54h (37%). The supported inexperienced software engineer 

used only 2.5 (63%) of knowledge resources and spent 00:02:08h (42%) in total. Figure 140 

shows the described values in graphical form. The unsupported engineers are shown with the 

blue line, the inexperienced software engineers and the green line for experienced software 

engineers. The supported engineers are represented by the purple line, the experienced software 

engineers, and red line for inexperienced software engineers. 

 

Figure 140 - Average results for the EWS J integration SCAc 

The final software unit is EWS (.NET). In the following, the integration and transformation 

SCAc of this unit will be described. Table 59 shows the average values for the integration 

SCAc. 
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 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:26:54 0:02:10 0:09:08 0:02:01 
Average time 0:33:21 0:02:32 0:09:08 0:02:01 
Max time 0:41:56 0:02:54 0:09:08 0:02:01 

     

Min KR 4,00 2 4 2 
Average KR 5,00 2,5 4 2 
Max KR 6,00 3 4 2 

     

Min tasks done 7,00 5,00 7,00 4,00 
Average tasks done 19,50 5,75 7,00 4,00 
Max tasks done 52,00 7,00 7,00 4,00 
     

Min KR time 0:04:08 0:01:45 0:05:06 0:01:54 
Average KR time 0:14:47 0:02:08 0:05:06 0:01:54 
Max KR time 0:29:01 0:02:31 0:05:06 0:01:54 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 59 - Average values of the EWS .NET integration SCAc (KR Knowledge Resource) 

The differences between the unsupported groups are similar to other measured integration 

SCAcs. The inexperienced software engineers required 00:33:21h (365%) to perform 19.5 

(279%) tasks. They spent 00:14:47h (290%) for 5 (125%) knowledge resources. The 

unsupported experienced software engineer required 00:09:08h (100%) including 00:05:06h 

(100%) used for 4 (100%) knowledge resources. This engineer performed 7 (100%) tasks.  

 

Figure 141 - Average results for the EWS .NET integration SCAc 
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The differences of both unsupported groups are shown in Figure 141a. Here, the experienced 

engineer (green line) required less time, knowledge resources and performed fewer tasks than 

the inexperienced engineer group (blue line).Figure 141b shows the differences between the 

unsupported experienced software engineer (green line) and the supported engineers. The 

experienced software engineer (purple line) supported by the focused approach needed 

00:02:01h (22%) and the supported inexperienced engineer groups (red line) needed 00:02:32h 

(28%) on average. The unsupported engineer needed 00:09:08h (100%) which is more time 

than the supported engineers. In other measured values this differs.  

The number of knowledge resources used, is for experienced engineers 2 (50%). The 

inexperienced engineers without the support of the focused approach used 2.5 (63%) of 

knowledge resources on average. Regarding the time spent on knowledge resources, the picture 

is similar. The unsupported experienced software engineer spent 00:14:47h (290%). This is 

significantly more than the other groups spent on knowledge resources. The unsupported 

experienced software engineer spent 00:01:54h (100%). A total of 00:02:08h (42%) was spent 

on such resources by the inexperienced software engineers with the support of the focused 

approach. These engineers needed more time than the experienced engineer. The supported 

experienced software engineer needed less time (0:01:54h; 37%).  

 

Figure 142 - Average results for the EWS .NET transformation SCAc 
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The completed tasks done by the experienced user with support was 4 (57%) and 5.75 (82%) 

for the inexperiened engineers).  

The last SCAc is the transformation of the EWS (.NET). Figure 142 shows the measured 

values.The most interesting point is that the unsupported experienced software engineer spent 

less time 00:01:10h (100%) on knowledge resources and used fewer knowledge resources (2; 

100%) as the supported inexperienced engineer. This person used 2.25 (113%) knowledge 

resources and spent 00:02:29h (213%). The supported experienced software engineer spent 

00:02:45h (236%) and used 2 knowledge resources (100%). Regarding the total time spent and 

the taskperformed, the picture changes. Here, the supported engineers required less time and 

did fewer tasks. While the unsupported experienced software engineer (100% line) needed 

00:05:13h to performed 9 (100%) tasks the same person with support required only 00:03:04h 

(59%) to perform 7 (78%) tasks. The supported inexperienced software engineer required (on 

average) the minimum time (00:02:52h; 55%) to perform 5.5 (61%) tasks. As in the other 

SCAcs the inexperienced software engineer without support needed the most time (00:21:07h; 

405%) and performed 31.75 (353%) tasks. This includes 00:17:34h (1505%) of time spent on 

knowledge resources and 31.75 (950%) on tasks.  Table 60 includes these average values. 

 

 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min time 0:16:00 0:02:43 0:05:13 0:03:04 
Average time 0:21:07 0:02:52 0:05:13 0:03:04 
Max time 0:26:45 0:03:05 0:05:13 0:03:04 

     

Min KR 15,00 2 2 2 
Average KR 19,00 2,25 2 2 
Max KR 22,00 3 2 2 

     

Min tasks done 25,00 2,00 9,00 7,00 
Average tasks done 31,75 5,50 9,00 7,00 
Max tasks done 42,00 8,00 9,00 7,00 
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 Inexperienced 
User 
Manual 

Inexperienced 
User 
Prometheus 

Experienced 
User 
Manual 

Experienced 
User 
Prometheus 

Min KR time 0:14:23 0:02:17 0:01:10 0:02:45 
Average KR time 0:17:34 0:02:29 0:01:10 0:02:45 
Max KR time 0:21:34 0:02:45 0:01:10 0:02:45 
     

Success/Valid 1/1 1/1 1/1 1/1 

Table 60 - Average values of the EWS .NET transformation SCAc (KR Knowledge Resource) 

6.4.2.2.  Multiple	view	analysis	
In the multiple view analyses, all complete software construction activities for transformation 

and integration are compared. As a result, statements for the two types of SCAcs can be made. 

Additionally, both SCAc types can be compared based on analysis. 

The measured values of the six software units and their transformation SCAc can be 

summarised as follows (cf. Figure 143a). From the average point of view in transformation 

software construction activities, inexperienced software engineers without support needed 

379% of time compared to an experienced software engineer (100%). An inexperienced 

software engineer using the Prometheus environment needed 38% of the time. 

The time spent on knowledge resources by supported inexperienced software engineers is 81% 

of the time that the experienced software engineer without support spent. The inexperienced 

software engineers spent 714% of time compared to the supported experienced engineer. Also 

the number of used knowledge resources is different. While supported engineers used fewer 

knowledge resources (98%), the experienced software engineer without support used 

significantly more knowledge resources (575%). Figure 143a shows this with the blue line (not 

supported inexperienced software engineers), red line (supported in inexperienced software 

engineer), green line (supported experienced software engineers), and the purple line 

(supported experienced software engineer). 

Even though it is not in the scope of the research, results shows that an experienced software 

engineer can also be supported by the focused approach in performing transformation activities. 
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However, these differences are not as significant as the difference between inexperienced 

software engineers with and without support. Regarding the tasks done the differences are not 

so high. Inexperienced software engineers without support perform 173% of tasks. Here, the 

unsupported experienced engineer is at the 100% mark. The supported inexperienced engineers 

perform 76% of tasks in comparison to the 100%. 

Based on the results, the inexperienced software engineers are supported by the focused 

approach significantly. These engineers were able to reuse a transformation activity in less time 

and with less knowledge resource than the inexperienced control group. Figure 143b shows this 

with the red line (supported inexperienced software engineer), green line (supported 

experienced software engineers), and the purple line (supported experienced software 

engineer). 

 

Figure 143 - Average results all measured transformation SCAc 

The integration SCAc shows a similar picture to the transformation SCAc. The inexperienced 

software engineers without support needed more time (382%) to perform 316% of tasks 

compared to the unsupported experienced software engineers (100%). By using the focused 

approach, inexperienced software engineers were able to perform the integration activities by 

using less time (34%) and performing fewer tasks (68%). The time spent on knowledge 

resources by unsupported inexperienced software engineers (564%) shows the highest 

difference compared to the inexperienced software engineer (100%) regarding all measured 
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values for this SCAc. The supported engineers without experience spent less time (63%) on 

such resources. This is related to the fact that these engineers also used only less knowledge 

resource (82%). But the unsupported engineers with the support needed significantly more of 

such resources (399%). Figure 144a shows the difference between the four different scenarios 

measured including the unsupported inexperienced engineer (blue line). Figure 144b focuses on 

the explained differences between supported engineers (green and purple line) and the 

unsupported experienced software engineer (red line). 

 

Figure 144 - Average results all measured integration SCAc 

Figure 144b also shows the difference between the experienced and the inexperienced software 

engineer using the focused approach. The differences are minimal. The experienced software 

engineer required less time (29%), performed fewer tasks (58%), and spent less time (64%). 

with knowledge resources (48%) The number of resources is is about 88% for the experienced 

software engineer and 82% for the group of inexperienced engineers. 

Based on the results the final statements can be made in that inexperienced software engineers 

are significantly supported by performing integration SCAc using the focused approach. These 

engineers were able to perform integration activities in less time and with less knowledge 

resource than the inexperienced control group. 

By comparison, the measured transformation and integration SCAcs can be reasoned as 

follows: 
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In both SCAcs the added value of the focused approach is clearly recognisable. The realised 

environment supports inexperienced software engineers. It performed both SCAc types with 

different sub activities. For both types it is shown that time, the number of used knowledge 

resources and the number of tasks performed can be reduced. Particularly for the complete 

activity time, the number of knowledge resources used, and the time spent on these resources, 

this statement is valid. The measured values also show differences. In general, the described 

reduction of effort is more distinctive in transformation activities. Integration activities are 

performed faster with fewer knowledge resources. A possible reason for this could be that 

integration activities are easier to understand and to perform. The IDEs used could be another 

factor in this comparison. Visual Studio and Eclipse both use intuitive and similar ways for 

integration. Such behaviour makes it easier to identify a way for integration. On the other side, 

for transformations a lot of different and specialised tools exist. These may be have different 

behaviours and require domain-specific knowledge for use. This makes it difficult to use. In the 

case study all participant were able to perform the SCAc successfully. 

6.4.2.3. Reflecting	case	study	results	on	device	deployment	software	
fffconstruction	activity	

The deployment software construction activity was explained in the concept (cf. Section 4.5) 

and the realisation of the related software construction model was shown (cf. Section 5.3.1). 

The device deployment activity was not part of the case study because of security issues. The 

work on device deployment required (in the application area of Schneider Electric) special 

training and also, to be trained in first aid. Therefore, the analysis of the deployment SCAc is of 

a theoretical nature. The published deployment SCAc experiment (cf. Zinn, Fischer-Hellmann 

and Schoop, 2012a) was done with trained staff. 

Based on the described software construction activity models a comparison analysis can be 

made to reason how the focused approach takes effect on the focused deployment. 
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It may be supposed that the focused approach is able to facilitate the performance of 

deployment software construction activities. This is based on two facts.  

The first one is the typical procedure used for device deployment. As described in the example 

in Section 3.1.6 a lot of vendor or device specific tools are used. Often, these tools are console-

based tools performing some transformation or deployment activities. Regarding the three 

problem areas such tools represent technology which required knowledge for use (cf. example 

in Section 3.1.6). A software engineer should know or be prepared to learn this knowledge to 

use such tools. The third problem area describes this problem because of missing knowledge in 

the environment in which SCAc knowledge should be performed. Based on the fact that a lot of 

console-based tools are necessary for deployment, this scenario is similar to a transformation 

activity. Additionally, the deployment into a device has similarities to the integration of a 

software unit into an IDE. These analogies are an indication that the focused approach can 

support this type of activity. 

The second fact is the similarity of the software construction models. . Based on the fact that 

console-based tools are used for deployment which is, in the scope of the research, equal to the 

start (device vendor specific) console application, the first part of the deployment activity 

model (cf. Figure 89) has a similar structure to the transformation SCAcs model. It describes all 

necessary information and relates to a console application. The inexperienced software 

engineers do not know this model.  

Working with devices shows another problem. The example in Section 3.1.6 shows that manual 

sub tasks (e.g., to switch a device on or off) have to be made. Until this point, the focused 

approach is able to support an inexperienced user. At this point the support by the focused 

approach is limited. The approach is able to show a textual description of sub steps (created by 

the experienced user), but this depends on the experienced user creating such information and 

how an inexperienced user understand such descriptions.  
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6.4.2.4. Other	results	of	the	case	study	
Next to the focused case study results, three outside results are acknowledged. The first one is 

the aforementioned result where experienced users are also supported by the focused approach. 

Often a supported experienced user needed less time than the inexperienced user without this 

support. Because of the saved time for the setup of an SCAc, this is not a surprising result. 

More surprising were the differences between both supported user types (i.e., inexperienced 

and experienced). The experienced user needed less time and in some cases fewer knowledge 

resources. As a possible reason for this effect, it can be considered that these users performed 

the storing of SCAc related knowledge into the Prometheus Environment. Based on this task, 

these users know the system better than the inexperienced users. 

The last acknowledged unforeseen result of the case study is the time experienced users 

required to insert information into the Prometheus system. Table 61 shows this setup time for 

each SCAc. 

Software unit SCA type Setup 
time  

Avergare time 
with/without support 

Breakeven 
point 

SU1 DPWS C Integration 00:17:04 00:33:14/00:02:45 0,56 
SU1 DPWS C Transformation 00:46:32 01:25:39/00:02:57 0,56 
SU2 DPWS J Integration 00:25:12 00:28:09/00:02:59 1,00 
SU2 DPWS J Transformation 00:51:01 01:30:04/00:03:05 0,59 
SU3 EWS .NET Integration 00:34:23 00:33:21/00:02:32 1,12 
SU3 EWS .NET Transformation 00:23:44 00:21:07/00:02:32 1,28 
SU4 EWS J Integration 00:12:03 00:39:36/00:02:31 0,32 
SU4 EWS J Transformation 00:09:44 00:22:37/00:02:39 0,49 
SU5 Log4Net Integration 00:09:23 00:19:13/00:02:52 0,57 
SU5 Log4Net Transformation 00:05:34 00:25:06/00:02:29 0,25 
SU6 Log4J Integration 00:11:24 00:31:22/00:02:47 0,40 
SU6 Log4J Transformation 00:13:54 00:22:02/00:03:12 0,74 

Table 61 - Setup time for focuses SCAcs 

Taking the average time saved by inexperienced users (i.e., difference of time needed for the 

inexperienced users with and without support) and compare it to the setup time of the 
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experienced user, it shows that a breakeven point (regarding the time) is reached after 1 or 2 

reuses (depending on the SCAc). 

6.4.2.5. Final	result	of	the	case	study	
The previous section compared unsupported inexperienced software engineers with supported 

inexperienced software engineers by using the unsupported experienced engineer as a 100% 

comparison line. The aim of the case study was to identify the impact of the focused approach 

on inexperienced software engineers. Therefore, a direct comparison of the inexperienced 

software engineer performing the SCAcs with and without the focused approach was necessary. 

 

Figure 145 - Final comparison of inexperienced software engineers 

Figure 145 shows a comparison between the inexperienced software engineers measured in the 

case study using the average values (in %) of the case study. The engineers not using the 

focused approach of the both SCAc types are represented by the blue line (100%). Compared to 

these engineers the supported engineers performing transformation SCAcs required only 10% 

of the time. For the integration SCAc, the value is about 9%. The reduction of time for SCAc is 

between 90%-91% on average. A similar picture can be found for the number of knowledge 

resources here; the supported engineers performed 17% (transformation SCAc) to 21% 

Time
needed KR Time KR used Task

done
Inexperienced User 100% 100% 100% 100%
Inexperienced User
(Integration SCAc) 9% 11% 21% 21%

Inexperienced User
(Transformation SCAc) 10% 11% 17% 23%
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(integration SCAc) of the tasks of an unsupported engineer. This results in a reduction of time 

to about 79-83%. Both reductions may be explained by the reduction of effort for setup (e.g., 

installation, configuration, and so on) of the SCAc and related tools. The other relevant point of 

this thesis is the impact of the use of knowledge. Here, Figure 145 shows interesting results. 

Compared to the unsupported inexperienced software engineer, supported engineers spent only 

11% (for transformation SCAc) and 11% (for integration SCAc) of the time on knowledge 

resources. This reduction (about 89%) is based on the fact that the number of knowledge 

resources is reduced from about 79% to 83%. For the transformation SCAc, the supported 

engineers required only 21% of the tasks the unsupported engineers required. For the 

integration SCAc this values is about 23%. 

Finally, the case study shows that the focused approach is able to support inexperienced 

software engineers to perform two types of software construction activities. The supported 

engineers performed these activities faster and produced the same result as expected by the 

experienced engineer. The engineers used fewer knowledge resources than the engineers 

without support. The conclusion out of this fact is that the focused approach is one way to 

enable inexperienced software engineers to perform the software construction activities 

researched.  

6.5. Case	study	hypothesis	review	
The case study hypothesis in Section 6.1.3 and the related theoretical viewpoints discussed in 

Section 6.2.4 focus on following points: 

4. SCAc knowledge/information can be stored in an environment and can be reused by 

inexperienced users.  

5. Such reuse produces a comparable (working) result to an experienced user in a normal 

application area, but without the need of learning the required knowledge for the 

specific SCAc or a comparable knowledge transfer. 
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6. The inexperienced status of the user, which relates with the specific SCAc, does not 

change. 

Relating these three points, the case study shows that SCAc related knowledge can be stored in 

such an environment. The experienced software engineer validates and approves that the 

created results are comparable working results. The supported inexperienced software 

engineers used fewer knowledge resources and spent less time on these resources (compared to 

the unsupported inexperienced software engineers) to produce valid results. The can be 

interpreted as follows. The results show that the need of learning (i.e., use of knowledge 

resources and spent time on these resources) or handling the required knowledge for the 

specific SCAc or a comparable knowledge transfer is lower compared to supported 

inexperienced software engineers. However, both groups created working results. Even if the 

inexperienced status of the user can be changed (e.g., the person now knows that reuse of a 

software unit is possible, which is relevant for reuse) (Garcia, 2006) it can be stated that the 

user did not use the same resources and spent less time on knowledge resources. Therefore, it is 

probable that the inexperienced status did not change in the same way and to the same level. 

The focused approach does not describe how an SCAc is performed or how it is prepared, 

although different technologies of software units and SCAcs have been used in six parallel 

experimental settings. The measured values (i.e., time and knowledge resources) are similar and 

result in a positive effect (i.e., reduction of time and knowledge resources used). 

6.6. 	Summary		
This chapter describes the specific research methods to perform a case study and analyses the 

case study results. Thereby, the setup of the case study is shown. This includes a description of 

the environment, participants, variables, and methods for analysing and measuring of values. 

The aim of the case study is to measure the impact of the focused approach on inexperienced 

software engineers.  
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The case study is performed in cooperation with different software unit experts (experienced 

software engineers) and two groups of inexperienced software engineers. The experienced as 

well as the inexperienced software engineers perform two different software construction 

activities (i.e., different integration and transformation activities) for each of six different 

software units. Each activity was performed with and without the use of the Prometheus 

environment based on the focused approach of this research. The number of used knowledge 

resources, the time spent on these resources, the time needed for performing the activity, the 

success, and the number of tasks done was measured for each software construction activity 

performed.  

The chapter analyses the results from two perspectives. The first one is the comparison of the 

different values. The second one is the discussion of the measured values regarding the aim of 

the thesis. The comparison of the values results in the following statement.  

Regarding the time, knowledge resources and tasks, the experienced software engineers needed 

less time, knowledge resources and accomplished fewer tasks than the inexperienced software 

engineers. Using the Prometheus environment, inexperienced engineers needed less time, 

knowledge resources and did fewer tasks than inexperienced software engineers without this 

environment. Often, a Prometheus environment user needed less time, knowledge resources and 

did fewer tasks than experienced software engineers performing software constructions 

manually. This was an unexpected result of the case study. 

The aim of the research is to enable inexperienced software engineers to perform software reuse 

activities with a reduced need of handling the necessary knowledge. The measured results show 

that a reduction of used knowledge resource and time spent on these resources is possible. 

Therefore, the results of the case study support the research aim. In general, the three 

knowledge problem areas were handled by the approach as expected by the concept of the 

approach. Different technology information and the related software construction activity 

knowledge were stored in the environment. Additionally, the environment reduces the task to 
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be completed (i.e., time, number of knowledge resources and setup task). The inexperienced 

software engineers perform software construction activities without the full activity knowledge 

required. Therefore, this chapter concludes that the aim of the research was fulfilled. The next 

chapter concludes the primary research regarding the research contribution and summarises the 

research. This includes also the discussion of the limitations of research.  	
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7. Conclusion	
To conclude the thesis, this chapter discusses the contribution made by the research. Therefore, 

it starts with a summary of the research and its achievements. After the discussion of the 

contribution it also considers the limitations and possible directions of further research based on 

the results of this study. 

7.1. 	Summary	and	achievements	of	the	research	
In Chapter 2, the literature was discussed showing the following picture in software unit reuse: 

The increasing need of knowledge for software unit reuse is a challenge for software engineers. 

The manifold environments where software development projects are used are a typical reason 

for different and specialised knowledge. Typically, this knowledge relates to a software unit 

itself and the activities a software engineer wants to perform a reuse process. Often, problems 

occur because of missing or inadequate knowledge level of software engineers. The impact 

created by missing or insufficient knowledge differs. With a simple increase of time or cost, a 

project may fail.  

To mitigate or even eliminate these problems, the research project of the thesis aimed to 

develop a concept focusing on the execution of software construction activities (i.e., 

transformation, integration, and deployment) without a sufficient amount of knowledge. Being 

able to perform such activities without the specialised knowledge enables software engineers to 

fulfil tasks (i.e., reuse activities) that, usually, require an investment of time in learning.  

In order to identify the aforementioned challenges, the literature was used to demonstrate the 

problem of missing knowledge in Chapter 2. In the literature, a lack of techniques to store and 

distribute reuse activities and relevant knowledge among software engineers was identified. A 

more detailed analysis shows four related problem areas (cf. Section 2.2.3): 

1) Insufficient knowledge level of software engineers.  

2) A variant of existing technologies and its related reuse activity knowledge. 

3) Knowledge required for the distribution environments. 
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4) Missing definition of reuse activity knowledge 

These problem areas are based on knowledge problems. They include challenges for creating an 

adequate technique to handle the identified lack in supporting inexperienced users in 

performing software unit reuse activities. 

Chapter 3 analyses the focused software construction activities (i.e., integration, transformation, 

and deployment) and the knowledge problem identified by the literature review in more detail. 

Thereby, knowledge problem areas (knowledge storing, searching/retrieving, learning, 

distribution, and execution) of software construction activities are discussed and related to the 

three problem areas. Chapter 3 discusses that theses knowledge problems occur in the three 

different problem areas. Additionally, existing approaches are discussed. Chapter 3 concludes 

that these do not solve the identified problem areas and, therefore, support the statement about a 

missing adequate technique to store and subsequently distribute software construction activity 

relevant knowledge among software engineers as identified in the literature review. 

The approach this thesis is focusing on is introduced in Chapter 4. The idea of this approach is 

the storage and execution of software construction activity knowledge. The aim is to support 

users who do not have enough knowledge to perform a specific reuse activity on a specific 

software unit.  

The approach describes two elementary parts of the focused solution. The first one is a common 

Software Unit Model describing different existing software unit concepts (i.e., classes, 

components, and services) as a general software unit. This model is extended by different 

software construction activity models, describing the information required by using the 

information from the Software Unit Model in a specific software construction activity. The 

second one is a service-oriented environment providing a service for reuse functionality (i.e., 

storing, distribution and execution of software construction activity knowledge) based on the 

information in the given models. 
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The service provides functionality to users for storing software construction activity 

information which can be used as knowledge. Thereby, different models are used. This includes 

the storage of different software units and relevant software construction activity knowledge. 

The abstract models used for software units and software construction activities should handle 

the problem of variations in technologies (solution approach for problem area 1: Insufficient 

knowledge level of software engineers). The service hides the environment for knowledge 

distribution. An inexperienced software engineer does not need to know this environment. 

Therefore, a limitation of necessary knowledge is expected by the use of the concept (solution 

approach for problem area 3: Knowledge required for the distribution environments). 

The last solution approach is the service executing software construction activity. After an 

experienced software engineer entered the necessary information about software construction 

(e.g., a software unit and the necessary information about its integration into an IDE) into the 

service-oriented environment, an inexperienced user was able to perform it with less the 

necessary knowledge for execution. Using this approach the concept expects that inexperienced 

software engineers are able to perform a software construction activity independently of their 

current knowledge level (solution approach for problem area 2: A variant of existing 

technologies and its related reuse activity knowledge). 

The three different software construction activity models (i.e., transformation, integration, and 

deployment SCAc models) constitutes a kind of reuse activity knowledge and, therefore, a 

solution approach for the problem area 4 (i.e., Missing definition of reuse activity knowledge). 

To analyse the focused approach, the models and the service-oriented environment has been 

implemented as the essential elements of the approach and integrated into the working area of a 

global company producing software in different businesses. One possible realisation of the 

approach was described in Chapter 5. This realisation of the focused approach was used in 

Chapter 6 in a case study. Two of the three focused software construction activity types (i.e., 

transformation and integration) are tested in several reuse scenarios in this working area. A 
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total of 102 participants performed 120 software construction activities to reuse 6 different 

software units (i.e., classes, components and services) with two software construction activities 

for each software unit. Thereby, the activities were performed with and without the focused 

approach. The relevant values measured are: number of used knowledge resources, number of 

tasks done, time spent on knowledge resources and the time needed to perform the software 

construction activities. 

Chapter 6 also analysed the results of the case study. The main result is that the focused 

approach enables inexperienced software engineers to perform software construction activities 

with a reduction in spent time and knowledge resources (compared to inexperienced software 

engineers not using the approach). Using the focused approach, inexperienced software 

engineers were able to perform unknown knowledge intensive software reuse activities to reuse 

different software unit technologies and its related knowledge. Combining the measured values 

of the transformation and integration software construction activities and using the experienced 

software enginner (i.e., an expert for a specific SCAc of a specific software unit) line for 

comparison led to following conclusions. Figure 146 shows the inexperienced users not using 

the focused approach as 100% (blue line).  

 

Figure 146 - Comparison between supported and unsupported software engineers 
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Comparing the the inexperienced engineers using the focused approach (red line) following 

statement can be made. The reduction of time, knowledge resources, and tasks for 

inexperienced software engineer are 91% of the activity time, 89% of time spent on knowledge 

resource, 81% of knowledge resources and 78% of tasks could be reduced (cf. Figure 146). 

The case study also shows positive effects for experienced software engineer. But this effect is 

not as significant as it is for inexperienced engineers. The effects for experienced software 

engineers are identifiable but lower that the effects for inexperienced software engineers: On 

average 70% of time, 36% of time spent on knowledge resources, 17% of knowledge resources, 

and 66% task done are saved (cf. Figure 146). 

The third focused software construction activity (i.e., deployment software construction 

activity) is discussed theoretically based on the measured values of the other types. Based on 

the similar model and behaviour of deployment and the other software construction activities, It 

is showed that a similar positive effect can be expected. Chapter 6 discussed that deployment 

software construction activities require manual steps performed by the user (in some cases; e.g., 

restart a device using the power switch). For such cases the focused approach has no positive 

effects. 

Based on this case study result, Chapter 6 concluded that the principle aim of enabling 

inexperienced software engineers to perform software construction activities even if these 

people do not have the required knowledge is demonstrated by the case study. 

7.2. 	Research	contribution	discussion	
The literature shows that knowledge is relevant for software unit reuse. For example, Ajila 

(2005) and Cummings and Teng (2003) identify knowledge as a critical success factor in 

software unit reuse. Isoda (1992), Bughija (2001), and McCarey, Ó Cinnéide and Kushmerick 

(2008) state that tasks of reuse are based on knowledge.  

From a scientific point of view the research result will contribute to the area of software unit 

reuse. This contribution will be discussed using the relevant statements identified in Section 



Conclusion 
_____________________________________________________________________ 
 

____________________________________________________________________ 
314 

 

2.2.2.3. McCarey, Ó Cinnéide and Kushmerick (2008) conclude that a lack of techniques to 

store and subsequently distribute relevant software construction activity software unit 

knowledge among software engineers exists. This research identifies four problem areas in the 

literature which make the creation of adequate techniques challenging (cf. Section 2.2.3.3). In 

the following section, the contribution created by this research for the four problem areas is 

discussed. 

7.2.1. 	Contribution	to	the	problem	of	different	technologies	
Frakes and Isoada (1994) state that reuse is difficult because of different technologies. The 

knowledge of reuse activities, which McCarey, Ó Cinnéide and Kushmerick (2008) call task 

relevant component knowledge is based on the technology of the software unit it is related to. 

Next to the multitude of existing technologies, Ajila and Zeng (2004) state that the rapid 

changes of technologies and required knowledge have to be maintained. As a result, the first 

challenge to limit the impact of the lack McCarey, Ó Cinnéide and Kushmerick (2008) focuses 

on, is to handle the problem of different technologies and the related knowledge. 

Regarding Frakes and Isoada (1994) the difficulty of technologies can be reduced using an 

abstract way of storing and representing. This idea was used in the research by creating a set of 

models which were able to store different software unit technology information (i.e., object-

oriented, component-based and service-oriented technology information) and software 

construction information (i.e., transformation, integration, and deployment activities). The 

models simplify the view on the different software unit technologies by using abstraction (e.g., 

classes, components and services presented as a simple set of files). This creates a common 

view on software units. The activity models describe the information of the activities and relate 

them to the simple software unit model (e.g., the file name as a parameter of a transformation 

activity). In the case study, different software units of different component worlds were also 

used (e.g., .NET and Java-based software units). Additionally, the models were able to store 

information which describes the use and configuration of other technologies. These 
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technologies are necessary to perform software construction activities. The created service-

oriented environment was able to maintain this information and the related knowledge. By 

simplifying the view on different technologies (which changes rapidly; cf. Ajila and Zheng, 

2004) one possibility of simplifying the maintenance of such technology was created. In the 

case study, the participant used different software unit technologies and technologies necessary 

for different software construction activities. The case study shows that independent of these 

different technologies, the inexperienced software engineers required less knowledge and spent 

less time on knowledge resources to perform each of the software construction activities. This 

research contributes to the field by providing a solution in reducing the use of different 

technology knowledge of software units and software construction activities by using 

abstraction models to unify the view on these technologies. Additionally, the research shows 

that an automation environment based on such models was able to maintain the variations of 

technologies. 

7.2.2. 	Contribution	to	the	problem	of	different	knowledge	levels		
Among others, the literature review identifies the challenge in finding a way to distribute reuse 

activity knowledge based on the software engineers’ knowledge level. Ye (2001) discusses the 

software engineers’ knowledge related reuse types (i.e., well known, vaguely known, beliefs 

and unknown component). The analysis using the knowledge analysis of Zinn et al. (2011a) and 

Ye and Fischer (2005) show that software engineers can have different knowledge levels. The 

conclusion of Ye and Fischer (2005) that software engineers may be not able to perform reuse 

because of a lack of knowledge seems to be valid. Also, McCarey, Ó Cinnéide and Kushmerick 

(2008) state this. 

On the one side, this knowledge is required to perform a software construction activity. The 

case study shows that inexperienced users spent the most time in consuming external 

knowledge resources (e.g., reading web pages or talking to experts). From the viewpoint of the 

research, this is a task of learning the required information (i.e., creating knowledge) for a 
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software construction activity. In this case the previously discussed problem of knowledge 

interpretation occurs. Qu, Ji and Nsakanda (2012) and Choi, Lee and Yoo (2010) identifies this 

especially in an environment where multiple teams are exchanging knowledge. This may lead 

to variations in the reuse activity result or to the failure of the reuse activity. Another point of 

interpretation is that software engineers use different ways of working to perform the same 

activity even if the underlying information is equal (Visser 1990; Sen 1997). In the case study, 

this is implied by the number of tasks the user performed. These numbers differ for each 

software engineer. This may be explained based on the different ways of working. Also it may 

be based on the knowledge software engineers already have to know to use a knowledge 

resource repository. (cf. discussion about knowledge distribution in distributed teams of Qu, Ji 

and Nsakanda 2012;Choi, Lee and Yoo 2010) 

The research of this thesis identifies a concept that enables inexperienced software engineers to 

perform software construction activities even if the engineers do not have the required 

knowledge. The approach used in this research shows that an inexperienced software engineer 

(L4-unknown component; cf. Ye and Fischer, 2005) as well as an experienced software 

engineer (L1-well known component; cf. Ye and Fischer, 2005) can be supported in performing 

a software construction approach with reduced knowledge and reuse effort. As a result, the 

research shows that an inexperienced user’s knowledge level using the focused approach is not 

a reason why reuse should fail. The automation approach shown in this thesis is one possible 

way to challenge the problem area. This is demonstrated by the case study. 

The case study shows that inexperienced software engineers were able to produce invariant 

results by using the focused approach. Comparing this to the group of inexperienced software 

engineers, without the support of the focused approach, comparable learning activities are not 

identified in this group. This means, the inexperienced users spent significantly less time on 

knowledge resources. Additionally, they used fewer knowledge resources than the unsupported 

inexperienced software engineers. As a result, the research identifies a way to handle the 
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knowledge level problems. As discussed, the time spent by inexperienced software engineers to 

gain (i.e., learn and interpretation) required knowledge was decreased. It may be possible that 

the focused approach supports users in learning. But this was not the focus of the approach and 

is in fact improbable. The focused approach does not show explanatory information to users. 

Additionally, the time supported engineers require does not underline this statement. Figure 146 

shows that the time and knowledge ressources producing an similar and valid result is about 10 

to 20% of the values of an unsupported software engineer. All supported software engineers 

produced the same valid results. This leads to the conclusion that the focused approach avoids 

the problem of knowledge learning and interpretation. Additionally, the produced results avoid 

lengthy learning processes and possible invariants. Regarding the problem of different 

knowledge levels, this approach identifies that an insufficient knowledge level does not 

produce invalid software construction activity results. Inexperienced software engineers are 

able to perform SCAcs with and without the focused approach. But by using the approach long 

learning processes and possible invariants are avoidable. 

7.2.3. 	Contribution	to	the	problem	of	knowledge	distribution		
McCarey, Ó Cinnéide and Kushmerick (2008) state that the distribution of knowledge about 

technology between engineers and teams is inadequate. Next to the problem of interpretation 

and use of knowledge, an experienced software engineer has to distribute knowledge in a way 

that other engineers are able to understand (see Taweel et al., 2009; Boden and Avram 2009). 

This implicates an infrastructure which provides the functionality to upload activity information 

and knowledge. Additionally, it has to provide the possibility to find and access this 

infrastructure for searching and receiving uploaded knowledge. Frakes and Kang (2005), Ajila 

(2006), and Slyngstad et al. (2006) discuss the need of repositories, Usually, software engineers 

have repositories, but these are different in type and distribution. This can range from personal 

project files to a team or department repository. As a result, a software engineer has to know 

where to find a repository, how to access it and how to use it. The last point relates to the 



Conclusion 
_____________________________________________________________________ 
 

____________________________________________________________________ 
318 

 

previously mentioned problem of mind-set and capability of formulating a request. As a result, 

an inexperienced user has to know how to find and access this knowledge source or to know 

someone who can support him (Qu, Ji, and Nsakanda 2012). As shown by Ajila (2006), large 

companies are able to store knowledge for reuse but based on organisational problems the 

expected reuse is limited. To limit the lack described by McCarey, Ó Cinnéide and Kushmerick 

(2008) one challenge is to create such an infrastructure. Visser (1990) and Morad and Kuflik 

(2005) stated the use of special teams or single experienced users for a single software unit as 

support for other software engineers or development teams in bigger companies. Ha, Sun and 

Xie (2012) and Thörn (2010) also mentioned that this is not usually possible in SMEs.  

The research used a service-oriented environment as infrastructure to integrate existing 

repositories and execute software construction activities. The inexperienced software engineer 

may be aware about this infrastructure but does not use the different repositories and relevant 

activity tools directly. The service provided by this environment creates an abstraction layer to 

the technical environment and possible SCAc applications. The inexperienced user does not 

need to know the structure of the environment (e.g., installation folder) or special behaviours 

(e.g., for security or special configurations) of elements in this environment. An inexperienced 

user does not need to learn such knowledge. This simplifies the knowledge for distribution. The 

realised environment extends the distribution of knowledge by the feature of knowledge 

execution. Chapter 3 discusses the knowledge problems related to the problem of knowledge 

distribution. Identified problems are the search, access and use of knowledge. This research 

contributes to the field by creating a solution for the discussed problems. The case study shows 

that inexperienced software engineers are able to perform software construction activities. This 

includes the search of software unit information, SCAc information, access of the different 

repositories, download of all information, preparation of the SCAc and performing the SCAc.  

In the case study the participants were informed that inexperienced users have less knowledge 

on technology, software units and SCAcs. They performed the knowledge intensive SCAcs by 
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activating the button. The inexperienced software engineers did not recognise all sub tasks and 

had no idea where all the necessary information was stored or where the SCAc was actually 

performed. However, the inexperienced engineer was able to execute the SCAc knowledge 

which was stored by experienced engineers within the environment. A result of the study was 

that supported engineers perform fewer tasks than the unsupported engineers when performing 

an SCAc. This leads to the conclusion that knowledge can be shared and executed between 

software engineers without the specific knowledge that is necessary for the distribution, the 

setup and execution of an SCAc. In short, this knowledge can be used without an adequate 

knowledge level. 

7.2.4. 	Contribution	to	definition	of	software	reuse	knowledge		
The last challenge discussed in this section is the definition of software reuse activity 

knowledge. In the focused problem statement, task relevant component knowledge should be 

exchanged between software engineers (see McCarey, Ó Cinnéide and Kushmerick, 2008). 

However, a definition of this knowledge was not identified in the used literature. Based on the 

amount of possible knowledge, for an example, based on the technology variations this seems 

to be challenging. On the other side, activities are recognised by the literature as typical 

activities of reuse. Bosch and Bosch-Sijtsema (2010) and Shiva and Shala (2007), for example, 

indicate the need for integrating a reusable software unit into the development environment. 

Also, for Vliet (2008) and Mens and Vangorp (2006) it is necessary to adapt an existing unit 

before reuse. Especially in the area of embedded devices (see Carlson et al., 2010; O’Connor et 

al., 2009) the deployment is an relevant part and often depends on previous created software 

units. 

This research does not contribute to a reuse knowledge definition with a new type of reuse 

definition. It only demonstrates that a more abstract view is sufficient to enable an environment 

to store different software construction activity information which can be used as knowledge to 
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perform software construction activities. This supports inexperienced software engineers in 

their work. A concrete knowledge definition is not created by the research. A concrete 

definition might be contrary if it limits the number of storable software construction activities.  

7.2.5. 	Final	statement	
As a contribution this research describes a concept including different models and a service 

environment which enables the execution of software construction activities by inexperienced 

software engineers. Thereby, the contribution to the area of software unit reuse is the 

identification of a realisable concept to store and subsequently distribute reuse activities (i.e., 

software construction activities) relevant knowledge among software engineers. The principle 

aim means to enable inexperienced software engineers to perform software construction 

activities with less effort of learning (i.e., handling knowledge resources) has been reached. 

As a result, this research underline that the low knowledge level of a software engineer, the 

changing field of required knowledge for technologies and the knowledge required for 

distribution do represent challenges in creating a technique to support software engineers in 

software unit reuse. However, the research also shows that in the focused on software 

construction activities these challenges are manageable.  

7.3. 	Objectives	and	limitations	of	research		
The objectives of the research have been reached. The first objective was the analysis of 

existing problems. Here, the lack of techniques and problem areas representing challenges to 

create such techniques was identified (cf. Section 2.2.3.3). The second and third objective was 

fulfilled by describing the necessary software unit models and the software construction 

activity models (cf. Section 4.5). In Chapter 5 the realisation of the concept was done. By 

realising and combining the different models described in Chapter 4, the fourth objective was 

fulfilled. As discussed, the case study shows that the concept can be used and supports 

inexperienced software engineers. Therefore, the fifth objective is fulfilled. 
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Despite having met the objectives of the research project, some decisions had to be taken which 

resulted in imposed limitations. The decisions were caused by practical reasons, or to limit the 

effort spent in areas where no new insights could be expected. These limitations are 

summarised as follows. 

The first limitation is the focus on only three types of software construction activities with a 

special sub focus for each type. The aim of the research was to demonstrate that inexperienced 

software engineers could be enabled to perform software construction activities related to 

software unit reuse. To reach this aim the chosen types and foci were capable to the Ph.D. 

research. Additionally, with this restriction the effort of software development area was limited 

to only these three types of SCAc. The focus of the research was not the development of a new 

software system to prove any existing reuse activity. This limits the research for general 

statements about all possible software construction activities including all sub foci.  

The focus on three different types of software units is a limitation of the research. Also, other 

software units and related technologies exist. As a result, a general statement that the approach 

of this thesis focuses on all existing types of software units or its technologies cannot be made. 

The next limitation to discuss is the number of participants (102). The software engineers 

participated as volunteers during normal working hours. Even the time for one measurement 

task was limited by using smaller software units and the participants had to look at how they 

make up the missing hours for their normal work. In some cases the related team or project 

leader accepted this. But sometimes this was not supported by the management. Such reasons 

limit the number of volunteers. A higher number of participants would lead to a result that can 

be used to make more general statements about the software construction activities focused by 

the research. 

The research about deployment software construction activities is limited to a discussion even 

though a small case study was shown by Zinn, Fischer-Hellmann and Schoop (2012a). This 

limitation is mainly related to the fact that the working rules of Schneider Electric allow the 
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work on low, medium or high voltage devices only with special training. This is also valid for 

the first aid personnel. Additionally, experiments with such devices are only allowed in special 

laboratories that have the access restriction to trained personnel. The author of this thesis is not 

an electronic engineer or a first aid supporter for this specialised field. This research’s previous 

study about device deployment of (Zinn, Fischer-Hellmann, and Schoop 2012a) was done with 

trained personal and first aid support who was specialised on accidents in electronic 

environments. This precludes the result of the primary research focusing on deployment from 

being proven as whole. Only two of three software construction activities are proven by a case 

study. The deployment SCAc was discussed using the results of the other SCAcs. 

Chapter 3 discusses different problems of software unit reuse. Here, only problems are chosen 

which are seen as relevant from the literature point of view. Also the capability of the author of 

this thesis to create an added value for the chosen problems was a relevant requirement. Also 

other problems may exist. In the scope of the research, the significance of the chosen problems 

was demonstrated. Appendix Section G shows a discussion including additional problems 

identified by the author. This discussion was created as part of the Ph.D. research. 

Despite these limitations, the research project has led to valid contributions to knowledge and 

provided sufficient proof of the concept for the approach proposed. 

7.4. 	Future	work	
This section defines possible future work and research based on this thesis. In general, two 

basic directions are interesting from the perspective of the author. The first one is the 

neutralisation of the limitations of this research. The second direction is further research based 

on the achieved results. 

7.4.1. 	Neutralisation	of	the	limitations	
The limitations should be removed by further research. The first one is the limitation created by 

the number of participants of the case study. To demonstrate the mode of operation of the 
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focused approach, the used number of participants and software construction activities was 

useful. By increasing the numbers, the statement of this thesis can be used as a more general 

statement. This may lead to new findings for the topic. 

The next limitation is the theoretical evaluation of the deployment software construction 

activities. This thesis discusses the possibility of performing such software construction 

activities. The experiment shown by Zinn, Fischer-Hellmann and Schoop (2012a) also 

demonstrates the feasibility. Further research could focus on case studies for deployment 

SCAcs to identify practical measured results. In particular, the fact that manual steps may be 

necessary in some SCAcs. Here, an automation concept may create an added value. 

The last limitation seen as relevant is the number of different software construction activity 

types and the focus of each type. The research used integration, transformation, and deployment 

of software construction activities. As discussed in the previous section these activities are 

focused on special fields (i.e., console-based transformation activities, IDE integration activities 

and device deployment). Further research may focus on other special or more general fields 

inside these types (e.g., UI based transformation, other IDEs for integration and deployment not 

only focused on devices). Additionally, further research may include more than the three 

focused SCAcs (i.e., transformation, integration, and deployment) and cover other reuse areas 

(e.g., validation or testing). This may lead to new findings for the topic. 

7.4.2. 	Extended	research	
The first example of possible extended research is the use of stored software construction 

activities in case-based reasoning. Case-based reasoning is using existing information about 

cases to identify new information and circumstances in other cases. In the case of software 

construction activities, stored information can be (re)used to identify new relations between 

information. An example is the settings of software construction activities based on existing 

software units which are adapted automatically to other software units, even though this unit is 
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not stored in an environment. Zinn, Fischer-Hellmann and Schopp (2012b) discuss some case-

based reasoning scenarios based on the focused approach.  

The thesis shows the impact of reuse related to cost in Section 2.2.1.5. A discussion about the 

advantages or disadvantages of SCAcs for software unit reuse relating to costs is not part of this 

thesis. The result of the case study shows that time and use of necessary knowledge is saved by 

using the focused approach. Even if some studies (cf. Section 2.2.1.5) identify a saving of costs 

as a result of reuse, this does not automatically demonstrate that costs are saved by the 

approach of this research. Further research in this area may focus on the cost behaviour of the 

(re)use of software construction activities and the approach demonstrated in this thesis.  

Another extension may improve the research on software construction activities. The focused 

approach used plugins to perform a software construction activity. These plugins contain 

knowledge (i.e., coded rules) used for interpretation of the models used in the approach. An aim 

should be to add this knowledge to the software construction activity models and remove it 

from the plugins. This may result in more knowledge sensitive models and generalised plugin 

syntax (i.e., more relation between information stored in the knowledge model as in the source 

code of the plugins). This could also impact the case-based reasoning (more knowledge can be 

used for reasoning). 

Another part in future research which was not discussed in the thesis was software construction 

activities and the combination of such activities. A method to combine instances of different 

software construction activity models may reduce the effort for performing reuse. Related to the 

research of this thesis, the combination of existing software construction activity models may 

create an added value. A transformation activity, for example, could be followed by an 

integration activity. A single ‘transform and integrate’ activity would reduce the number of 

interactions with such a system. The abstraction of different software unit types simplifies the 

reuse of these software units (as shown in the research by the use of services, components and 

classes). Maybe an abstraction of different software construction activity models which show a 
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similarity would also result in a simplification of reuse. The deployment activity model, for 

example, has a common structure to the transformation activity model. Perhaps it is possible to 

create a common model for transformation and deployment by the use of meta models. Also it 

could be interesting to create a common model with special transformation and deployment 

extensions which may reduce redundancy. 

In a previous publication, the concept of software construction artefacts and their types is 

described (cf. Section 4.4.2). The idea was to find a classification for the content of a software 

unit and, therefore, relate it to SCAc. As a result, it may be possible to develop search 

behaviour for software construction activities. 

The last extension of the research seen as an interesting research topic is the use of semantic 

models. It was shown that semantics can be used to extend description. For example, Seedorf, 

(2010) uses such models to describe software assets from business perspective for search 

behaviours. In the future, semantic models may support the search of software construction 

activities and the creation of such activities.  

7.5. 	Technology	review	and	epilogue	
The personal opinion of the author is that reuse of software units is still, and will be for a longer 

time, a relevant topic for software development; but the meaning could change. Today, 

technology dependencies are relevant by reuse of software units. This work also focuses on this 

and shows that this is a potential problem, but a trend is noticeable. Regarding the mobile 

device platforms Android and Internet Operation System, developing reusable software units 

requires specialist knowledge about the different platforms (i.e., technology and IDEs). New 

technologies allow for creating a software unit and deploying it to the different platforms. The 

same behaviour can be found in the game industry. Tools like Unity3D allows one to write 

software units and deploy them to different gaming platforms and the research shown in this 

thesis follows this trend. A result is that a software unit will be created which solves a problem 

(domain view). But different deployment activities are necessary (software construction activity 
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view) to deploy it to different platforms. The author’s opinion is that software construction 

activity will become more relevant in the future and the need for automation concepts for such 

activities will grow.  However, this may be could have a shady side. While the need of domain 

experts (i.e., software engineers producing the domain related content) may be decreasing, the 

need for software unit construction activities experts (i.e., for transformation or deployment) 

may increase rapidly. 

As final consideration a loop back is made to the greek mythodology this thesis starts with. 

“But the noble son of lapetus outwitted him and stole the far-seen gleam of unwearyting  fire in 

a hollow fennel stalk. And Zeus who thunders in high was stun in spirit, and his dear heart was 

angered when he saw amongst men the far-ssen ray of fire.” (Hesoid and Evelyn-White, 1914 

p. 545) 

Regarding this part of the theogony another future dilemma can be identified. Prometheus 

handed over the fire again and, as a result, mankind was able to perform the relevant activities 

again. In Greek mythology the sustainability is given by Prometheus. As long as Prometheus 

can bring back the fire every time it gets lost, mankind can continue. Regarding the focused 

approach this is similar. As long as such automation approaches are available, software 

engineers can reuse software units with less experience every time they need it. If such 

approaches are not available, the problems focused by this thesis are not handled. The Chinese 

philosopher Confucius supposedly said “Give a man a fish, feed him for a day. Teach a man to 

fish, feed for a lifetime.” Regarding the research of this thesis, software engineers have to 

decide whether they should use such an approach or instead learn specific knowledge to have it 

more or less sustainable. This research shows a way to enable short-term reuse of specific 

software construction activities with less investment in learning and with less the risk of failing 

an activity. In future, knowledge for reuse activities has to be sustainable (long-term view) for 

each software engineer. 
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	Appendix	

A. 	Content	of	data	medium		
The printed version of this thesis contains a Digital Video Disk (DVD).  This data medium contains 

a digital copy of this thesis and published papers (file name includes year, conference name. 

Additionally, the digital copies of the 11 publications produced during the Ph.D. research are 

available on the data medium (the file names start with the abbreviation of the conferences and are 

followed by the year of publication). 

B. Methodology	of	literature	review	

b.1	Categories	
 
Basically, the literature review of this thesis follows the discussion of writing literature review 

published by Randolph (2009) in the Journal of Practical Assessment, Research & Evaluation in 

2009. 

By using the taxonomy for literature review of Cooper (1988) five relevant characteristics exist: 

focus, goal, perspective, coverage, organisation, and audience. The use of these characteristics in 

this thesis is shown as follows: 

Focus: This characteristic includes four categories: research outcomes; research methods; theories; 

and practise or application. The literature review in this thesis is used to: 

1. explain reuse in general 

2. identify and discuss relevant keywords in the field of reuse 

3. show the different research and problem areas of reuse (including SCAc related topics) 

4. underline the problem of missing knowledge in reuse (including SCAc related topics) 
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5. show the historical view on reuse and the focused problem  (including SCAc related topics) 

6. critically discuss problems of existing solution approaches (focusing SCAc related topics) 

7. discuss the contribution of this thesis to the research area of reuse 

For these objectives different perspectives were used. For objectives 1, 2, 3, 4, 5 and 7 the category 

‘Theorie’ with focus on state of the art discussion is used. For the objectives 3, 4, and 7 the 

categories ‘Theorie’ and ‘Practise or applications’ were used mainly. ‘Research Outcomes’ also 

support the discussion of objectives 3, 4, 5, and 6. The objective 7 were achieved by reviewing 

literature based on the ‘Research methods’. 

Goal: In order to fulfil the mentioned objectives, the goals of this literature review are:  

- the generalisation of findings and outcomes of ‘missing knowledge in reuse research’ to 

- identify central issues to  

- create a line of argument for the innovative solution of a service-oriented provisioning of 

reuse activities (focus on software construction activities). 

Perspective: The literature review is structured by using the mentioned objectives. Literature used 

for an objective discussion is first discussed in a neutral position of the author of this thesis. The 

different literature will be related to each other also using this neutral position. In most of the cases 

(objectives 2, 3, 4, 6, and 9) the discussions have to be related to the research of this thesis or need 

a critical analysis. Hereby, the perspective of the author is not neutral. 

Coverage: Randolph (2009) shows four different coverage scenarios for conducting a review. This 

ranges from a review of all existing literature to a purposive collection of literature. This literature 

review focuses on a purposive selection of literature, therefore, only journal papers, conference 

papers, and specifications of standards (e.g., processes or technologies) were used. These 
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documents were searched by using digital libraries of IEEE, ACM, Springer, CiteSeerX, and 

Thinkmind. Also, documents were selected by analysing references cited previously in studies, 

journals or conference papers. 

Note: Following the literature review in Chapter 2, Chapter 3 focuses on the relation between the 

identified problems and existing industrial environments. Therefore, references are used which are 

not part of the scientific resources (i.e., internal studies of companies and web pages). 

Organisation: Typical forms of organisation of a literature review are historical format, conceptual 

format, and methodological format. This literature review mainly uses a conceptual format and is 

structured using the above mentioned objectives. As a result, the review follows the order of these 

objectives. Inside each objective discussion the conceptual format is also used, but the structure 

differs for the different. An exception is objective 5. This historical discussion about reuse and the 

historical view on the missing knowledge problem is organised chronologically by decade. 

Audience: The complete thesis including the literature review is used to demonstrate the capability 

of the author to perform research at Ph.D. level. Therefore, the audience is the review committee 

for this Ph.D. thesis.  

b.2	Stages	of	a	literature	review		
Regarding the discussed and suggested structure of a literature review by Randolph (2009) the 

stages may be: 

- A rationale for conducting the review 

- A research question that guides the review (Problem formulation) 

- A plan for collecting data (including selection process) (Data collection) 

- A plan for data evaluation and analysis (Data evaluation, analysis, and interpretation) 
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- A plan for presenting the data (Data presentation) 

Randolph (2009) shows based on Cooper (1982) that each stage has four characteristics: Research 

question asked, primary function in research, procedural differences that create variation in review 

conclusion, and sources of potential invalidity in review conclusion.  

In this review the mentioned objectives use these stages. In the following sections, the stages were 

discussed related to each objective. As a logical result each objective follows the same structure.  

b.3.	Problem	formulation	
For an exact formulation of the problem, it is relevant to define a literature review question (also 

called secondary research). In the literature review of this thesis each objective uses its own 

secondary research question: 

1. Objective: ‘From the previous literature, what is known about software unit reuse?’ 

2. Objective: ‘From the previous literature, what are relevant keywords known regarding 

software unit reuse and the problem of missing knowledge in reuse?’ 

3. Objective: ‘From the previous literature, what are relevant researches or problem areas 

known in the area of reuse?’ 

4. Objective: ‘From the previous literature, what is known about the problem of missing 

knowledge in the area of reuse?’ 

5. Objective: ‘From the previous literature, what is known about the problem of missing 

knowledge in the area of reuse?’ 

6. Objective: ‘What is known about approaches to solve the problem of missing knowledge in 

the area of reuse?’ 
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7. Objective: ‘From the previous literature, what is known about different perspectives on the 

problem of missing knowledge in the area of reuse and software construction activities?’ 

Note: Objective 4 and 5 uses the same question to lead the literature review. But these objectives 

differ in their goals and data analysis. 

Randolph (2009) mentioned that the other relevant part of the ‘Problem formulation’ is the 

determination of inclusion or exclusion. This literature reviews two inclusion/exclusion principles: 

1. Every existing document is excluded from the review. 

2. From the list of excluded documents, studies can be included if they meet all of the following 

criteria (except optional critierias): 

a. The study is in English OR in German languge (German is only allowed if (1) the 

publisher is a scientific institution (e.g., University) or (2) written by an relevant author in 

the field or (3) no English reference can be found of the studies or an relevant statement 

of it).  

b. The study is a journal or conference paper or included as scientific work in one of the 

following digital libraries: IEEE, ACM, Springer, CiteSeerX, journals or conferences. 

c. (Optional) The study was mentioned as reference for a statement about reuse by other 

previously selected studies. 

d. (Optional) The study was mentioned by other researches or relevant people in the area of 

reuse during personal contact with the author of this thesis. 

e. The study identifies itself or is identified by other studies as a state of the art paper for the 

topic of reuse or some subtopic of them. 
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f. The title or abstract contains one or more of the following primary keywords (or 

synonyms): reuse, software unit reuse, reusability, knowledge, software reuse, software 

product line, software construction, missing knowledge, reuse activities, and software 

construction process.  

g. The conclusion of the study includes new or existing statements of the focused topic of 

software reuse. 

h. The study focuses the discussion of the novel contribution of this research to the research 

area of software unit reuse. 

Each objective follows these principles.  

b.4.	Data	collection	
Initially the data were searched in the digital libraries (mentioned in inclusion/exclusion principle 

2.b) using the primary keywords (mentioned in inclusion/exclusion principle 2.f). 

The different objectives, thereby, have different aims:  

1. Objective: The goal is to identify a pivotal set of articles together presenting the area of 

software unit reuse in general. 

2. Objective: The goal is to identify relevant term definitions or discussions in software unit 

reuse. 

3. Objective: The goal is to identify a pivotal set of articles together presenting research and 

problem areas of reuse in general. 

4. Objective: The goal is to identify a pivotal set of articles explaining the problem of missing 

knowledge in the area of reuse. 
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5. Objective: The goal is to identify a pivotal set of articles explaining the problem of missing 

knowledge in the area of reuse in the history. 

6. Objective: The goal is to identify a pivotal set of articles explaining solution approaches for 

the problem of missing knowledge. Especially the problem of missing knowledge of reuse 

activities (focusing software construction activities). 

7. Objective: The goal is to identify a pivotal set of articles including details to the gap of 

research for reuse of software construction activities and the related problem of missing 

knowledge. 

The separation between relevant and non-relevant documents is a process including two different 

steps. Figure 147 shows this process that is described in relation to the figure as follows. After a 

search for documents in the mentioned libraries the first step (Step 1) is to separate documents 

based on their content shown in the abstract, conclusion, and the state of the art section (if 

provided). The papers can now be separated into three different types (Step 2). The first type 

includes all papers without any useful content (Type 1). The second type of document are 

documents only providing interesting references which have to be checked for relevance (using this 

process; Type 2). The third type of documents includes content describing different specific 

properties/parts of reuse or that make common statements about it. These documents may include 

interesting references also. These references have to be proofed for relevance (using this process 

description). 
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Figure 147 - Sketched process for document separation 

In general, each objective uses this data collection procedure. They only differ in the relevance 

checking part. The author (reader of the documents) has to look into the abstract, conclusion, and 

the state of the art section and proof which objective goals this document may contribute to. 

b.5.	Data	evaluation	
In the data evaluation phase of this stage the following procedure model was used: The selected 

documents were read completely. Parallel to this task interesting statements regarding the area of 

software unit reuse were written down on a note paper or dashboard with each document being 

ascribed a unique number. The same number is written down on the note paper or dashboard. After 

collecting these notes the note paper or dashboard were scanned / photographed and collected in a 

‘cookbook’. Each objective followed this data evaluating process, but they differes in the 

identification characteristics for the interesting information. Appendix Section C shows and 

explains an example regarding information collected from a study relating to the different methods 
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described in this section. In the following, the basic rules for identifying interesting information for 

each objective are shown: 

Information is seen as interesting for objective 1 if 

- it contains one or more general statements about reuse,  

- it contains a specific statement about reuse or different parts of reuse, 

- it contains a discussion or opinion statement or 

- it contains a statement of other studies (reference). 

Information is seen as interesting for objective 2 if 

- it contains or creates special words and related them to the topic of reuse or missing 

knowledge in reuse, 

- it explains existing words of the reuse or missing knowledge area or 

- it discusses existing words of the reuse or missing knowledge area. 

Information is seen as interesting for objective 3 if 

- it contains a problem or research area discussion which is related to reuse or 

- it discusses practice or theoretical problems. 

Information is seen as interesting for objective 4 and 5 if 

- it contains a description of the focused problem , 

- it discusses the scenarios leading to this problem , 

- it discusses the impacts of this problem (i.e., for software engineers) or 

- it discusses solutions for this problems. 

Information is seen as interesting for objective 6 if 

- it discusses solutions for the problem of missing knowledge. 
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Information is seen as interesting for objective 9 if 

- it discusses the view on the problem of missing SCAc knowledge in common or critically. 

b.6.	Data	analysis	and	interpretation	
Based on the previous steps the data analysis is processed in three steps focusing on a quantitative 

research. 

1. The first step is identifying the evidence an objective wants to prove positively as an 

outcome of the literature review.  

2. The next step is to create a hypothesized causal link between the collected data and the 

evidence.  

3. The last step is to identify and relate contrary findings and rival interpretations. 

The objectives differ in their related evidence. In the following, the objectives goals and the 

necessary evidences are described. Also, a description of contrary findings or rival interpretations 

is given. Based on Randolph (2009) this is an relevant information in the description of a 

qualitative data analyses of a dissertation.  

The first objectives want to explain software unit reuse in general. The statement of this objective 

is that reuse is a wide field. Also, it is relevant to mention the concrete fields of software unit reuse. 

Both facts are used to demonstrate the authors’ knowledge about the field of software unit reuse. 

Contrary findings and rival interpretations are declarations which see reuse as a small or not 

relevant field of software engineering. An outcome of objective 1 is a list of relevant fields of 

reuse. It contributes to the primary research background information and identification of research 

direction. 
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The second objectives’ goal is to identify relevant keywords. Thereby, it is necessary to 

demonstrate that these keywords exist and have the same meaning. Both facts are used to 

demonstrate the knowledge of the author about the field of software unit reuse. Contrary findings 

and rival interpretations that differ to the most common definition are collected for each keyword. 

An outcome of this objective is a list of keyword definitions which contribute to the primary 

research by providing a basic definition of relevant terms used. 

The third objective proves the field of possible research areas and problem areas. Only studies are 

used which discuss topics of one of the focused research areas. Contrary findings and rival 

interpretations are statements that declare a specific topic not to be in a specific research or 

problem area. The outcome of this objective is a literature based overview of research and problem 

areas of reuse in software engineering. The contribution to the primary research is the 

demonstration that the primary research is in a valid research field of reuse and it handles an 

existing problem identified by other studies. 

The fourth objective identifies the problem of missing knowledge in reuse in detail (including 

SCAc related knowledge). Studies supporting this objective show that this problem exists. 

Statements are seen as evidence if they demonstrating or discussing the problem, scenarios leading 

to the problem, and impacts the problem creates. All three statement types are used to identify the 

problem. Contrary findings and rival interpretations and declarations do not identify the problem as 

a problem or explicitly disagree with other studies on one of the three statement types. The 

outcome of this objective is a problem definition based on the three statement types. The resulting 

contribution to the primary research is a clear definition of the focused problem based on the 

second research. 
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The fifth objective is a variation of objective 4. Here, the historical organisation is relevant. The 

evidence of this objective is that the problem still exists in the past and is not a result of activities or 

technologies of the present. Contrary statements are research results of studies which declare the 

problem of missing knowledge (especially SCAc related knowledge) as not existing or incorrect. 

The outcome of this objective is a chronological timetable of studies related to the problem of 

missing knowledge in the field of reuse. It contributes to the primary research as an evidence for an 

older not fully solved problem. 

The sixth objective discusses existing solution approaches solving the focused problem. The 

focused evidence is to demonstrate that existing solutions do not solve the problem completely. 

Thereby, a solution has to be sustainable, correct, and do not include a learning or interpretation 

process. Contrary findings and rival interpretations differ from that perspective by demonstrating 

that a specific solution has one or more of the relevant characteristics. The outcome of this is the 

identification of a missing solution in the research field for the problem of missing knowledge in 

reuse. The contribution to the primary research is the identification of a gap in the span of existing 

solution area.  

The ninth objective is a variation of objective 8. Here, the novelty of the research is focused. A 

statement which identifies the research gap, the given solution or parts of it as invalid or wrong or 

identifies the used research methods as invalid or wrong are contrary findings or rival 

interpretations. The contribution to the primary research is the evidence of a novel solution in the 

scope of the used literature. This is also a contribution to the research field. 

From the following three steps shown at the beginning of this section, the second step is to generate 

a link between the evidence and the found statements. Each piece of evidence is represented by an 
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ID. Therefore, the different objectives are classified by their main topic relation. Objective 1, 2, and 

3 focuses on reuse (general perpective; class REUSE (R)). Objective 4 and 5 focusses on the topic 

of problems of reuse (class PROBLEM (P)). Objective 6 and 7 are linked to the topic of solutions 

(class solution (S)). The final two objectives, 8 and 9, relate to the topic of the contribution of this 

research (class CONTRIBUTION (C)). Each statement identified as relevant for this literature 

review is written down in the cookbook (see Appendix Section C) and related to one of the 

classifications.  

To fulfil the last step, the statement has to be identified as supportive or contrary to the evidence 

used for the related objective. Therefore, it is marked as evidence (E) or contrary (C). 

Figure 148 shows an example of a statement analysis and interpretation used in this literature 

review. Each statement gets an ID (1) and a statement summary. Then it is related to an objective 

(3). The last step is to decide if this statement is evidence or contrary to the evidence of the 

objective. 

 

Figure 148 - Example of a cookbook form for data analysis and interpretation 

Note: A complete example of a protocol sheet is shown in Section C. 

b.7.		Data	presentation	
The last relevant information in a literature review methodology is the data presentation stage. As 

mentioned before a conceptual organisation of the literature is used. The discussion of each 

objective is structured in the thesis as follows: 
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Objective 1 is discussed first in Section 2.2.1. It is followed by the discussion and definition of 

relevant keywords in Section 2.2.2. This fulfils objective 2. In Section 2.2.1, based on objective 3, a 

big picture about the research areas is created. 

After this introductory part, objective 4 analyses the problem of missing knowledge in Section 

2.2.3. This includes the fulfilment of objective 5 by discussing an historical perspective in Section 

2.2.3.1. For objective 7, Section 2.2.3.2 and Section 2.2.3.3 to demonstrate the contribution of the 

primary research from the perspective of the literature and fulfils the last objective. 

Note: To fulfil objective 3, Chapter 3 discusses solution approaches. 
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C. 	Document	evaluation	protocol	example		
The literature references were summarised in an evaluation protocol based on the methodology of 

the literature review shown in Section B. Figure 149  shows an example of a protocol sheet and is 

explained as follows. The sheet has 4 areas. The first area (1) includes the title of the related 

document (i.e., a journal paper) and the number of the protocol sheet in the protocol book.  

 

Figure 149 - Document evaluation protocol example	

The second area (2) includes additional data, as for example, a unique identifier (UID), the 

inclusion and exclusion rules (c.f. Section B), the listing of supported objectives, the identification 

whether the paper is relevant for the thesis, type of quality (represents the personal opinion of the 

author), date of publication, the publication type (e.g., journal paper), the reader, main author, the 

publisher, and a note to state whether the paper is used inside the thesis. 
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In the third area (3) each piece of evidence is represented by an ID. Therefore, the different 

objectives are classified by their main topic relation. Objective 1, 2, and 3 focuses on reuse in 

(general perpective; class REUSE (R)). Objective 4 and 5 focusses on the topic of problems of 

reuse (class PROBLEM (P)). Objective 6 is linked to the topic of solutions (class solution (S)). The 

final objective, 7, relates to the topic of the contribution of this research (class CONTRIBUTION 

(C)). Each statement identified as relevant for this literature review is written down in the protocol 

by summarising the statement and related to one of the classifications.  

To fulfil the last step, the statement has to be identified as supportive or contrary to the evidence 

used for the related objective. Therefore, it is marked as evidence (E) or contrary (C). 

In the last area other possible (relevant) references cited by the focused publication can be listed. 
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D. 	Additional	research	on	software	unit	base	technologies	
The research uses classes, components, and services as research objects for software construction 

activities. The following overview of the base technology concepts (object, component, and service 

orientation) of these software units can be used for the discussion about the research topic. In the 

following, procedure models and software construction properties of these concepts are shown.  

d.1.		Object-oriented	software	construction		
The purpose of object-oriented software construction is the development of applications by the 

means of object instances and their interaction models.To reach this purpose, two different 

elementary concepts are used: Object orientation and objects as units of modelling. 

Nowadays three approaches are used within the object-oriented construction: object-oriented 

analysis (OOA), object-oriented design (OOD) and object-oriented programming (OOP). In the 

OOA the requirements are determined and transferred into a document. The result is a technical 

description with object-oriented drafts (OOA model). In the OOD the requirements are transferred 

into a specification. Various diagrams are created here, to transfer the requirements into the object-

oriented world. Since UML is considered the standard, UML diagrams are usually used. The 

specification, obtained from this, is the basis for the OOP. The obtained specification is the basis 

for the OOP. As a result, of OOP a software or a part of software is created. 

Through this kind of object-oriented thinking it becomes possible to illustrate the real world 

viewpoint inside a technology concept.  

Here, the units of modelling are objects. Objects have properties and methods. Modelling and 

programming occurs through the instancing of different objects and the mutual call of methods. 

Hereby, objects display the attempt to illustrate real world or virtual objects. The interfaces are 
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especially relevant here (Siedersleben, 2006). Figure 150 shows the typical representation of a class 

with properties (fields) and methods in UML notation. Sommerville (2011) shows that objects can 

be used in a local and in a distributed scenario. 

 

Figure 150 - UML like representation of a class 

Modern development environments show a multitude of possibilities for software engineers. 

Eclipse and Visual studio (.NET) are particularly well-known. These developing environments 

support the software engineer in object-oriented thinking and programming. This happens, among 

other things, by the application of syntax highlighting, intelisense, graphic possibilities of 

modelling, and automatic code production, as for example, generic programming (Czarnecki and 

Eisenecker, 2000) or snippet technology (Micosoft, 2008). All together it has tried relieve the user 

of "writing work". In addition, the user is offered the possibility, also to access other technologies 

(as far as the base architecture admits this). For example, it is possible to integrate Web Services 

into Visual Studio.NET. The representation corresponds to a class. The methods of the Web 

Service are methods of this class. The software engineer can handle the Web Service in the usual 
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object-oriented manner (Microsoft, 2012e). To achieve this, the development environment has to 

be tuned to the programming language and the according underlying architectures. 

In addition, development environments, exhibit the possibility of extension by (e.g., addons or 

plugins). This leads, for example with Eclipse and Visual studio.NET, to the fact that other 

programming languages are also supported. The aim here is to make the advantages in the user 

guidance, offered by these IDEs, also available to be used in other programming languages. New 

technologies or procedure models can be simply integrated as an extension into development 

environments. Eclipse Foundation (2008), for example, shows a multitude of extensions for the 

development environment Eclipse. 

The general procedures conform to the order of the approaches OOA, OOD, and OOP. According 

to Siedersleben (2006) most procedure models are based on one of the following models: 

Workflow model, data flow-/ activity model, roll-/ action model. Typical models of object-oriented 

development built on the above mentioned models are, (e.g., waterfall model, iterative model, 

prototyping, extreme Programming, and Scrum).  

Note: The mentioned models are assumed as known. For further information see Bunse and 

Knethen (2008). 

With the technical conditions, particularly languages, architecture, and runtime environments are 

interesting. In the course of time a multitude of object-oriented programming languages were 

developed.  

The languages Java, C ++, VisualBasic, PHP5, and .NET based languages like C# and 

VisualBasic.NET show a high distribution. A special interest is centred on platform independent 

programming languages. Its advantage is the possibility to execute binary code, generated by 
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means of these languages, on different operating systems. This however requires a corresponding 

runtime environment within the operating systems. Figure 151 shows the platform construction of 

the .NET architecture. Here, it can be seen that .NET programming languages are based on a 

common language specification (CLS). Furthermore, the diagram shows that .NET offers a 

common language infrastructure (CLI) for .NET programs, which allows platform independence. 

 

Figure 151 - Technical architecture of the .NET Platform 

Other platforms, as for example Java, show a different architecture. The aim, however, as with the 

.NET platform is to offer a row of possibilities.  

The platforms shown offer a runtime environment to the user, meaning a possibility to execute an 

application which is based on this platform and which also uses its possibilities. Basically, the 

runtime environment constitutes an interface which translates the commands from the application 

to the processor. The other way around, the resources of an operating system are offered as a 

uniform interface within the runtime environment. In contrast to the executed applications, the 

runtime environment itself is operating system-dependent. Figure 152 shows an example of the 
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runtime communication of .NET for object-oriented languages. The Java runtime communication is 

similar. 

 

Figure 152 - NET runtime environment communication (Computerbase 2008, online) 

Modern software architectures for object orientation differ from former ones in their varied 

possibilities and the more efficient memory management. .Net and JavaEE display well-known 

architectures (Siedersleben, 2006). In both architecture sceneries, attention was paid to the fact that 

there is a multitude of interfaces to other technologies and systems. 

With the investigation of the actual research areas, particularly the area of the retroactive object 

orientation stands out. Approaches as for example Visual Basic display that it is interesting to 

enhance systems / approaches that are already in existence with object orientation, to use them in 

an object-oriented environment or behaviour. 
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d.2.	Component-based	software	construction	
Component-based construction has the purpose to develop software by the composition of ready 

components. The suitable components were developed by a previous step or were bought. 

The key concepts of component-based software construction are component models. These indicate 

the framework for the software to be developed. During the development, the designer works 

within this framework. The components which should be used has to fit in such a component 

model. Accordingly, during the development of components, the interfaces, as well as the 

adaptation to the runtime environment which is mostly given by a container, have to be looked 

after. Thereby, it is resorted to an interface description language which is suitable to the component 

model. 

Another key concept is that components usually constitute independent assemblies. These 

assemblies are processed and integrated with the help of prescribed rules (depending on the 

component model). 

In component-based construction, components are the units of the modelling that means 

components are the essential units in planning, draft, and construction. If the software engineer is at 

the level of the construction, only finished components can be joined to form an application. 

 Welke (1994) and Dahanayake, Sol and Stojanović (2003) indicate that the technology only 

accounts for one part of the component-based solution. The other parts are the procedure models. 

For software engineers there are a multitude of models for the component-based software 

development. Table 62 lists the best known methods and approaches as well as their differentiation 

signs according to Stojanović (2005). Dahanayake, Sol and Stojanović (2003) indicate with their 

investigations that the manner in which models handle components depends on the underlying 

object-oriented methodology. They point out that most units of modelling are built in a 
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conventional manner, for example with object-oriented languages. Thereby, these units contain the 

peculiarities of the underlying approaches and technologies.  

 RUP Select Perspective Catalysis KobrA UML Comp. BCF 
Availability Book, web 

page, 
consultancy, 
training 

Book, web page, 
consultancy, 
training 

Book, web 
page, 
consultancy, 
training 

Book, papers Book, papers, 
consultancy 

Book, papers, 
consultancy 

Background Industry Industry Academic & 
Industry 

Academic & 
Industry 

Academic & 
Industry 

Academic & 
Industry 

Maturity Widely used 
inpractice 

Used in Practice Used in 
Practice 

Not fully 
applied in 
practice  

Not fully 
applied in 
practice  

Not fully 
applied in 
practice  

Method  
concerns 

Development,
management 

Development,man
agement 

Developme
nt 

Development,
management 

Development Development 

Use of a 
method 

Regularly 
used in 
industry 

Regularly used in 
industry 

Catalysis 
based 
methods 
used 

Used by 
KobrA 
consortium 

Potentially 
used in 
industry 

Potentially 
used in 
industry 

Elements of a 
development 
process 

Workflows, 
guidelines, 
templates 

Phases, guidelines Rough 
guidelines, 
patterns 

Phases, 
activities, 
guidelines 

Workflows, 
activities 

Phases, 
guidelines, 
patterns 

Method input Requirements,
use cases 

Business 
processes, use 
cases 

Use cases, 
domain 
model 

Requirements 
specification 

Use cases, 
domain model 

User’s 
requirements, 
domain model 

Method 
output 

Application 
models and 
software 

Application 
models and 
software 

Application 
specificatio
n 

Application 
specification 

Application 
specification 
and models 

Application 
specification 
and models 

Tool support Rational 
product 
family 
(Rational 
Rose, etc.) 

Select Component 
Factory  

COOL tool 
family, now 
Advantage 
tool family 

Enabler  
Workbench 
andRepository 

No specific  
tool; UML-
based tools 
used 

No specific 
tool; UML-
based tools 
used 

Modelling 
techniques 

UML Business Process 
Management 
Catalyst,UML, 
ERD 

UML UML-based UML (with 
extensions) 

UML-based 

View on 
components 

Implementatio
n 

Design & 
Implementation 

Design & 
Implementat
ion 

Design & 
implementatio
n 

Design & 
implementatio
n 

Design & 
implementatio
n 

Component 
design 

Not applicable Service package, 
UML subsystem 

Stereotype  
 

Stereotype of  
he UML class 

Stereotype of  
the UML class 

Not specific 

Component 
implementati
on 

Component 
diagram 

Component 
package, 

Package, 
Software 
components 

Realization 
components 

Not specific  Software 
components 

Defined 
design 
patterns 

No Yes Yes No No Yes 

Component 
repository 

No Yes No Yes No No 

Reusability Software 
components 

Components, 
patterns 

Components
, patterns, 

Design-level 
and software 

Design-level 
and software 

Design and 
software 
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 RUP Select Perspective Catalysis KobrA UML Comp. BCF 
frameworks components components components, 

patterns 
Incremental 
& Iterative 

Yes Yes Yes Yes Yes Yes 

Table 62 - Comparison of component-based procedural models (Stojanović, 2005) 

Table 62 is based on the analysis from Stojanović (2005) the procedure models: Rationally Unified 

process, Select Perspective, Catalysis, cobra, UML Components, and business Component Factory 

are briefly displayed and the relations to the component-oriented construction are explained. 

The Rationally Unified Process (RUP) constitutes a procedure model, which was developed by the 

company Rational software in 1995 (cf. Jacobson, Booch and Rumbaugh, 1999). RUP is based on 

the combination of the rationality approach and the Object Process (cf. Jacobson, Chrsiterson et al., 

1992). Concerning the contents, a complete software life cycle can be illustrated with RUP. Single 

steps, as for example requirement analysis, testing, etc., are defined as workflows. RUP is based on 

the use of UML. The notation for components, used by the UML, is also used by the RUP 

approach. Through this, a basic support for components is given. RUP, however, is no component-

based procedure model. Only a general modelling framework on basis of object orientation can be 

used. RUP defines a component as follows: 

„A non-trivial, nearly independent, and replaceable part of a system that fulfils a clear function in 

the context of a well-defined architecture. A component conforms to, and provides the physical 

realization of a set of interfaces.” (Kruchten, Capilla and Dueñas, 2009, p. 284)  

Another procedure model is Select Perspectives (Allen and Frost, 1998, pp. 251; Apperly, 2003, 

pp. 13),, which was created through the combination of the Object Modelling Technique (OMT; 

Rumbaugh et al., 1991) and the Use Case controlled Objectory method from (Jacobson, Chrsiterson 

et al., 1992). Like RUP, Selected Perspective was no procedure model for the construction of 
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components at its beginning. (Apperly, 2003) nevertheless, indicate that services can be used as an 

extension for the handling of components. Basically, there are three notation forms which are used 

by Selected Perspective (based on Apperly, 2003): Business process modelling with computer 

science corporations (CSC), Catalyst methodology (CSC, 1995), UML notation for class- and 

component concepts and data modelling with Entity-relationship diagram (ERD). In Select 

Perspective, a component is a compiled object which displays a certain service through defined 

interfaces. Within the Select Perspective approach, components are stored in a component 

repository. 

Catalysis (D'Souza and Wills, 1998) is a component-based approach which is based on the use of 

UML. In contrast to other approaches (as for example RUP) there are no activities like for example 

project management, quality management, and configuration management. During the use of 

Catalysis, so-called process patterns are created. These fit in a certain problem and certain basic 

condition. 

Catalsysis indicates according to (Fettke, Intorsureanu and Loos, 2002, p. 8 translated) the 

following properties: 

- ”The model supports exclusively a component-oriented development. To achieve 

this, a so-called product family approach is selected. The authors understand 

several software systems which are based on an amount of the same components 

under the term of product family.” 

- ”The model is based on a very iterative and incremental procedure which leads to 

very short development times.” 
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- ”Even if the approach requires no continuous formal specification of software 

systems, value is nevertheless placed on a high quality of the specification of a 

system.” 

Stojanović (2005) shows that Catalysis uses some object-oriented methods and displays a process 

of development which constructs software by means of high level demands. 

Kobra displays a procedure model for software development which is based on the software life 

cycle definition from the Product Line Strategy. The purpose is to use the component or the 

concept standing behind it during the whole life cycle. Hereby, an underlying framework will be 

defined from which components and applications can be built (Framework Engineering). For the 

conversion, different UML charts are used in the Kobra approach. Kobra constitutes a result of an 

investigation of the companies Softlab GmbH, Psipenta GmbH, GMD ridge, and Fraunhofer IESE 

which was ordered by the German government. Kobra is based on preceding methods (Cleanroom-, 

Fusion- and Catalyst methods) and is compatible with other approaches like the RUP and OPEN 

Process Framework (OPF). Within the Kobra approach, component repositories are defined. (cf. 

Atkinson and Muthig, 2002) 

Through the use of UML-Components, another possibility to describe components arises 

(Cheesman and Daniels, 2000). The basis forms the architecture consideration of the desired 

combination of components and the representation of single components for itself. Figure 8 shows 

an example of a component chart with UML 2.0 specification. 
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Figure 153 - UML component diagramm example (Ambler, 2008) 

Basis of this representation is the possible interfaces of a component and the relations with other 

components. UML components, in contrast to other component models, do not provide the 

conversion into a component. Additionally, there are different applications (e.g., Enterprise 

Architect; SparxSystem, 2012) which allow an automatically conversion of UML Components into 

components. 

The next example is the approach of the Business Component Factory (BCF). Herzum and Sims 

(2000) show in their approach that applications can be built with components. Thereby, they use an 

own classification of components (language class, distributed components, business components, 

business component systems, and system components) and a three-part sequence of their action 

model: 

 A framework that contains the properties of different component-based approaches 
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 A component Factory environment 

 Applications which guarantee an automatic generation of components. 

During the development with BCF, an application is defined by means of the used frameworks. 

The component-factory generates the components required. This approach, however, assumes that 

all information exists in the framework as well as in the generators of the factory. 

The technical conditions for component-based software construction depend on the choice of the 

component model. Heineman and Councill (2001) and Szyperski (2002) indicate that a component 

model defines the following standards: 

Component implementation, -naming, -interoperability, -adaptation, -composition, -evolution and -

development. Hereby, a component model also determines the elements that are relevant for 

software engineers: Implementation language, architecture, platform, and runtime environment. A 

software engineer has to be aware of these properties and elements of the used component model 

during the complete software life cycle. 

In the following, the three component models are examined more exactly concerning the properties 

relevant for software engineers. 

Component Object Model (COM): COM shows a language-independent component standard and 

was introduced in 1993 by the company Microsoft (see Williams and Kindel, 1994). 

The technical properties of a COM component identify themselves as follows: A COM component 

owns a unique ID (global unique identifier; GUID) through which the component can be identified. 

This GUID is loaded into one COM component server. Thereby, the component is available and 

can be used or be administered. 
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Another property is the construction of the interfaces of COM components. The COM technology 

groups functions in interfaces. Three kinds of interfaces are distinguished: The first interface is the 

observance of binary standards to enable calls between components (or component parts). This 

corresponds to the rules for dynamic method calls in Dynamic Link Libraries (DLL). The second 

interface is also a standard interface for the administration of the COM component through a direct 

application and the COM-server. The third kind of interface is software engineer-dependent. The 

methods offered here depend on the developed contents and show the user's content. With the help 

of these three interfaces, a component can be found, administered, and used. According to 

Microsoft (2012e), COM components (in addition to the already mentioned properties) are 

language-independent, platform-independent, object-oriented, and location-independent. 

Since COM components are conventional EXE and DLL files with advanced interface, the methods 

can be called directly. The COM server offers this through a standardised method. Thereby, the 

language independence is given. It presents itself differently with the platform independence. COM 

components are loaded and administrated only on a Windows operating system. In 1996 Microsoft 

showed that the offer can also be extended from local to remote calls. This is a Distributed 

Component Object Model (DCOM) designated system which allows the use of a COM-Component 

from another system (Microsoft, 2012a; Session, 1998). The property object-oriented refers to the 

development, as well as to the use of components. This kind of the components is created in an 

object-oriented way and owns object-oriented contents. During the usage, a component is 

instantiated and the client application can use the methods of the component. The location-

independence is guaranteed through the registration of the component. The offer is managed by the 

COM server. For the client applications there is only the COM server and the interfaces of the 
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component. The physical location of the components files is hidden and is not relevant for client 

applications. 

Another type of component models is Enterprise Java Beans (EJB). This form introduced by Sun 

Microsystems in 1998 is an extension of the client-sided model Java Beans as a part of the Java 

Enterprise Edition (Java EE, formerly called J2EE). 

Basis for this component model is the programming language Java and Java EE as an extension 

platform. EJBs are developed in Java, as object-oriented and are also used object-oriented. There 

are two kinds of Beans: session and message driven Beans. 

A session Bean constitutes a component which exists only during a client / server connection (cf. 

Rücker and Backschat, 2007). These contain the logic of workflows and Use Cases. Basically, they 

are distinguished between stateless and statefull session beans. Stateless means that a session Bean 

owns no state, regarding the according client application that is represented by it exhibits no status 

data at this point (e.g., a normal web page). Statefull, on the other hand, means that a client 

application has a state (e.g., a web shop). A message driven Bean is in contrast to the session Bean 

permanently available, (e.g., to the persistent saving of data). They serve asynchronous 

communication. The Bean instances deployed and offered in a special container (EJB container). It 

fulfils the duties of lifecycle management, state management, security, transaction management, 

and persistence management. The container, therefore, offers the runtime environment and controls 

the life cycle of the instances. Special interfaces (Enterprise of service) offer access to, for 

example, data banks, and message services. Among other things, an EJB server offers the 

according communication infrastructure for incoming client messages and administers EJB 

container.  
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For the interaction with the client application, Enterprise Beans possess two kinds of interfaces: the 

home and the object interface. These interfaces are generated by the container. The container 

monitors these interfaces and can react to information which runs through the interfaces if required. 

The home interface offers methods for the lifecycle management of the component. The object 

interface offers the software engineer-dependent part (user's content). 

 EJB Containers run in a runtime environment of an EJB server. Sun Microsystems provides a 

specification for an EJB server which, however, contains only basic information. Subjects like 

memory and transaction management of the server are left to different manufacturers. 

 Additionally, a remote interface is made available for the use of Beans. This, however, is 

development-dependent and programmed with Java Remote Method Invocation (RMI) and 

Application Programming interface (API). With the usage of Java Interface Definition Language 

(IDL) and/or Common Object Request Broker (Corba) the Beans can also be used by not Java 

applications. Sun Microsystems assigns the role ‘Bean developer to the software engineer in the 

developing scenario. (SUN, 2008; Rücker and Backschat, 2007) 

The CORBA Component Model (CCM) was developed in 1999 by the OMG Group. Like EJB, it is 

a server-sided component system (cf. OMG-CORBA, 1999). On account of the decreasing 

economic interest in regard to Corba, this thesis does not go further into this component model. For 

further information see Stojanovic (2005), OMG-CORBA (1999), and Siegel (2000). 

Regardless of the choice of component models, components constitute a special case if they have to 

be developed first. In this case other construction forms can be used, as for example a component 

can be developed with the use of technologies like object-oriented, procedures and tools. This is 

why software engineers can also resort to suitable development environments. The basic conditions 
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result from technical contents and technical conditions (e.g., component model). In the example of 

EJBs the components are also first compiled by the according EJB container and then 

implemented. Hence, any development environments can be used, as far as they support the 

interfaces and technologies which are required by components or the component model. 

Component-based software construction exhibits some possibilities of connection with other types 

of construction (see Section D). 

d.3.	Service-based	software	construction	
The purpose of service-based construction is to build systems from already existing services. The 

development of services itself is separated here from the development of a system. When 

considering a service-oriented construction, the fact that it is an interface technology is relevant 

(i.e., in contrast to other forms of construction), the implementing and its context dependency is 

(almost) irrelevant. There is also a considerable difference with coupling. Often, services are 

loosely coupled components. Objects and components, however, have a certain degree of coupling. 

 The key concepts are, according to Wang and Fung (2004) and Tsai et al. (2006) the services in 

services themselves, service description / registration / discovery and composition / binding. As 

already mentioned, the components of modelling within the service-based construction are depicted 

by services. 

Papazoglou et al. (2007) indicate that there are two different areas in the area of development 

activities: Methods for service-based engineering and design time models. 

The first area focuses on service-based software construction using orchestration and 

choreography. Hereby, business processes are loaded with services and executed. A special aspect 
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of the description within these two approaches is the Behavioural interface. Thereby, time, data 

flow and data supervision are described within processes (Ghezzi, 2005; Papazoglou et al., 2007). 

Orchestration and choreography show two different, but also complementary approaches to the 

composition of commercial processes. On account of the popularity of these approaches, process 

orientation is often seen in connection with service-based construction. An orchestration describes 

the interaction with internal and external Web Services at the message level from the point of view 

of a compiled commercial process (Peltz, 2003). The W3C consortium defines in its Web Service 

glossary (W3C, 2004, online): 

”An orchestration defines the sequence and conditions in which one Web Service invokes other 

Web Services in order to realize some useful function. I.e., an orchestration is the pattern of 

interactions that a Web Service agent must follow in order to achieve its goal.“ 

Regarding Busi et al. (2005) there are three characteristics in which orchestration and choreography 

differ: Compiled processes, interaction design and activity state. 

Kreuzer (2005, online) shows this differentiation as follows: ”Compiled processes are not specified 

in choreography, interactions are described from a global view without a central control unit, 

involved web services administer their activity state decentralised. By contrast, orchestration is 

based on the existence of a central control unit (orchestrator engine). The orchestrator engine 

serves the coordination of the interactions and saves the activity state of the involved processes 

centrally. Orchestration describes compiled processes based on the assumption that the processes 

are “animated” by engines.” 

Figure 154 shows the cooperation of orchestration and choreography (Peltz, 2003, p. 47). 
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Figure 154 - Web Service Choreographie and Orchestrierung (Peltz, 2003, p. 47) 

Kreuzer (2005, online) defines Behavioral interface as follows:”At the level of service composition, 

behavioral interfaces can be distinguished beside choreography and Orchestration as another 

point of view [….]. A behavioral interface grasps the behavioral aspects between interactions and 

complements with it the interface description which is delivered for a web service by a WSDL 

document. In contrast to choreography the global look at the interactions is cancelled, because the 

interactions are looked at only from the pointof view of a process. Like choreography, behavioral 

interface describes no internal processes, but only outwardly visible ones. Behavioral interface 

describes dependence which can appear: in the data flow, with time dependence, with message 

correlation and with transactions. “Kreuzer (2005, online) 

Arkin et al. (2007) indicate, that WS-BPEL, (e.g., behavioral interfaces in ebXML, are used as 

abstract processes like collaboration protocol profile). 
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The second area of the research is directed on methodologies to design or construction time. A 

methodology is described by Lamsweerde (2000). Hereby, an exact requirement analysis is carried 

out. At the end, this is conveyed into a chart which consists of operations and/or components. The 

operation components (which also show the purposes of the stakeholder) are replaced later with 

Web Services (Kaabi, Souveyet and Rolland, 2004; Penserini et al., 2006). Kumar et al. (2007) 

points further out that nowadays such an estimate falls in the area of the sematic web. Therefore, 

Web Services are not necessary for the construction time, but only the demands are relevant for a 

Web Service, which is dynamically searched and integrated if necessary based on semantic 

describtions. 

Nevertheless, in literature another area can be identified: This is the use of services within 

development environments or typical programming languages (i.e., C# or Java). Giambiagi et al. 

(2006) indicate how programming languages adapt the service-based approach. Hereby, most of the 

time, the approach is chosen which integrates services in a way that does not change the 

programme behaviour or the programming language is chosen. 

Building up on the state of the art approaches different applications were developed to realise this 

form of construction. For the development of service implementations, based on orchestration or 

choreography, different software producers provide suitable applications. International Business 

Machines Corporation (IBM) Websphere and Microsoft Bizztalk Server, for example, serve for the 

modelling and execution of processes which were augmented with Web Service. 

In the area of the adaptation of services through programming languages the widespread 

development environments, as for example Eclipse and Visual Studio are a good examples. Both 

development environments deal with object-oriented languages. Web Services can be added and 
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can be used like normal libraries, (i.e., the software engineer uses the Web Service as a class to 

generate an object instance). Then the actual methods, offered by the Web Service, are displayed as 

methods of the instantiated object. (Microsoft, 2012e; SUN, 2008) 

Some technical conditions are necessary to use services. In the area of service-based construction 

some description languages were developed in dependency on the approaches. In the area of 

orchestration, among other things, BPEL4WS and Business Process Modelling Language (BPML) 

are found. These XML based description languages are used to define (commercial) processes. In 

addition, both languages command the possibility to integrate Web Services into processes. 

(Andrews et al., 2003; Peltz, 2003) 

The XML based language WS-CDL is a description language in the area of choreography. With the 

help of this language the interaction between processes can be defined exactly. 

Another language is ebXML. The description of electronic commercial processes with the help of 

XML is the purpose here. Thereby, Costs and expenditure for small business or consortia should be 

lowered. EbXML defines some standards, for example (based on Clark et al., 2001): 

- ebXML architecture (ebXML Technical Architecture Specification) an XML schema for 

commercial processes (business process Specification schema) 

- a Registry Service (Registry Service Specification) with a Registry Information Model 

- ebRIM a Message Service (Message Service Specification). 

RosettaNet constitutes a competing development to ebXML. The purpose of this project is to 

automate commercial processes between suppliers. Each process can be described and 

implemented on the basis of the RosettaNet Implementation Framework (RNIF). The documents 

and transactions between the process steps are created with the help of the message Guideline 
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document (professional level) and the XML-Message-Guideline-Document (technical level; 

RosettaNet, 2004). 

Beside the description languages of the processes and the operations, the descriptions of services 

and their interfaces are also relevant. Siedersleben (2006) shows that the exact description of 

interfaces belongs to the most relevant points. Today, description languages like Web Service 

Choreography Interface (WSCI) and Web Service description language (WSDL) are used for the 

description of services (including the interfaces). 

As with components the implementation of services is carried out with conventional technologies 

and methods. (Bieber and Carpenter, 2001)  

Another basic module is the architecture in which a service is operational. Beside the Universal 

Description, Discovery and Integration (UDDI) architecture other platforms exhibit other or rather 

similar structures. Benatallah et al. (2005) indicates a line of platforms, as for example: 

- CMI (Collaboration Management Infrastructure)  

- SELF-SERV  

- DySCo Framework 

- eFlow and CrossFlow (Casati and Shan, 2001; Grefen et al., 2000) 

Collaboration management infrastructure is according to Schuster et al. (2000) an approach in 

which services with certain parameters are defined. In addition, an infrastructure is shown by 

means of a State-Machine approach. Within this infrastructure services can not only be assembled 

to applications, but also be exchanged at the runtime. Certain parameters are here assigned to a 

service. The system selects a suitable service to the runtime. 
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Self-Serv is an approach used for a dynamic service architecture on the basis of a Peer2Peer (P2P) 

network. Three kinds of architecture units are distinguished here: elementary and composite 

services and service communities. Elementary services are single services which do not call other 

services. Composite services are a combination of different services. Service communities are 

repositories which contain services and distribution logic. Basically, at an inquiry to a community 

service, the architecture decides by means of business logic, which way the call has to go. This 

means depending on certain parameters (e.g., availability) it is decided which unit of the 

community processes this service. With composed services, this is carried out for each service 

individually. (cf. Sheng et al., 2002) 

Piccinelli, Finkelstein and Williams (2003) show a Framework which carries out the orchestration 

at business level. The underlying technical expenditure is carried out by means of the Dysco-

Framework. The aim here is to make the Web Services interchangeable within a workflow without 

the expenditure of manual updates. 

Some literature shows in the area of service orientation which research areas still have to be 

examined. Four big subject areas can be identified (based on Papazoglou et al., 2007): Service 

foundation, service composition, service management, and service design / service engineering 

Service Foundation (Papazoglou et al., 2007): In the area of service foundation, especially subject 

dynamics, quality and infrastructure support are asked for. Papazoglou et al. (2007) notes that in 

order to permit dynamic (re)configurable services architectures at the runtime, an improvement to 

the service discovery has to be made. This also assumes a research of infrastructure support of data, 

process and application integration. 
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Service Composition (Papazoglou et al., 2007): Particularly subjects from the area of business are 

desirable in the area of service composition. The subjects: comparability, use, and availability 

constitute the largest research areas. At this point the following services are listed: semantic, typed, 

and plausible services. Since there is no standard for quality characteristics in this area yet, 

researches for possibilities of the quality of service are also pending. Accompanying this, the 

comparability, which serves as a basis for the research area „autonomous composition of services“, 

is also to be examined. 

Service Management (Papazoglou et al., 2007): In the area of service management, particularly 

the investigation areas are interesting which deal with the independence and the automation of 

services. This means services should be self-configuring and, thereby, adapt themselves to their 

environment or to the context (self-configuration services). Additional interest is in services which 

configure themselves automatically. This means self-analysis and an independent repair of services 

(self-healing services). Self-optimising services are based on the same idea. Here, an independent 

analysis and criteria are also necessary (see Heckmann, 2007). Self-protecting services are also 

interesting, (i.e., an implementation of security aspects within services). 

Service Design and Service Engineering (Papazoglou et al., 2007): The suggested research areas 

in the area of Service engineering, are directed mainly at the dealings with services in software 

development. Thereby, it is pointed out that there is a lack of design principles for the creation of 

services. In addition, there is only rudimentary support or methods for the integration of service 

development in conventional software development. Xu et al. (2007), Skogan, Grønmo and 

Solheim (2004) and Bauer and Huget (2005) show at the example of the UML, that services can be 
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displayed with UML. However, there is no notation for services in UML. It is also indicated that 

there is a lack of analysis possibilities for services. 

In addition, the question of service-based control within the development is pending, concerning 

the use of services within development methods.  

Furthermore, some trends showup. Connecting possibilities of service with component technology 

is a particularly distinctive trend. Breivold and Larsson (2007) point to a comparison framework as 

a base to the connection between the service-based and component-based approaches. Hereby, two 

scenarios are focused: 

1. Service-based architectures within component-based software development. 

2. The possibilities of service-based architectures for system development. 

Apperly (2003) and Stojanović (2005) indicate, for example, that context-dependent components 

can be hidden behind services. The disadvantage of the context dependency is encased. Kotonya, 

Hutchinson and Bloin (2004) show a hybrid modelling approach for both technologies. This 

approach extends over the formal description of standardised components and the representation of 

a procedure model for the development of hybrid systems. Jiang and Willey (2005) show a similar 

approach in their article. A multi-tier architecture with a component- and a service-based layer is 

displayed as a system-architecture here. Figure 155 shows this system architecture. 
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Figure 155 – Multi-tier architecture using services (based on Jiang and Willeam 2005) 

Furthermore some trends appear, which try to extend the use of service-based construction or 

service, as for example Conversation-Driven Composition (Maamar, Sheng and Benatallah, 2004). 
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E. Schneider	Electric	internal	reuse	study	and	key	notes	
The thesis refers to two internal studies at Schneider Electric. The first one was conducted in 2009. 

The aim was to identify the reuse of hardware and software units. Results of this study were 

presented in a key note presentation at the 17th IEEE International Conference on Emerging 

Technologies & Factory Automation (ETFA) in September 2012. Dr. Ronald Schoop representing 

Schneider Electric was the responsable person for the study and the keynote presentation speaker. 

Schneider Electric permits the use of figures and tables of this keynote presentation. 

The second study was conducted in 2012. The aim was to identify positive and negative impacts of 

reuse in distributed development projects of different business units. The results of this study were 

not published at the submission of this thesis (March 2013). Dr. Ronald Schoop representing the 

company Schneider Electric is the responsable person for the study. Schneider Electric allows the 

use of figures, but with constraints. Names of persons, products or customers have been removed. 

 

Schneider Electric does not permit the inclusion of the reuse study white papers for use in this 

thesis.  For the review committee of the University of Plymouth, Dr. Ronald Schoop is the contact 

person for further information about the study. 

Contact information: 

Dr. Ronald Schoop   |   Schneider Electric   |  Industry Business - STS   |   VP Technology   |   Edison Group Master 

Expert (L3)  

Phone: +49 (0) 9391/606-2390   |   Mobile: +49 (0) 172 65 96 423   |   Fax: +49 (0) 9391/606-2158  |    

Email: ronald.schoop@schneider-electric.com  |   Site: www.schneider-electric.com  |    

Address: Schneider Electric Automation GmbH, Schneider Platz 1, 97828 Marktheidenfeld, GERMANY  
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F. Case	study	measurement	value	results	

This section shows the tables including the measured values for the case study. In Chapter 6 the 

tables are shown including the average values. The tables in this section show the measured values 

for each user. 12 different SCAcs measured.  

	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 1:28:42 0:39:50 9 35 1 1 
User M (2) 1:32:01 0:44:11 10 33 1 1 
User M (3) 2:10:32 0:59:38 19 70 1 1 
User M (4) 0:49:02 0:28:22 9 41 1 1 
	       User P (1) 0:03:28 0:02:13 2 8 1 1 
User P (2) 0:03:01 0:01:37 2 5 1 1 
User P (3) 0:03:05 0:02:21 2 7 1 1 
User P (4) 0:02:45 0:02:22 2 5 1 1 
	       Expert M 0:13:21 0:03:43 3 25 1 1 
Expert P 0:02:34 0:01:54 2 6 1 1 

 Table 63 - Measured values for the DPWS Java Stack transformation 

	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:18:32 0:06:21 9 52 1 1 
User M (2) 0:45:05 0:20:34 7 49 1 1 
User M (3) 0:30:45 0:13:56 7 46 1 1 
User M (4) 0:18:15 0:09:10 6 56 1 1 
	       User P (1) 0:02:51 0:01:55 2 7 1 1 
User P (2) 0:03:14 0:02:34 3 7 1 1 
User P (3) 0:03:07 0:02:43 2 6 1 1 
User P (4) 0:02:45 0:02:22 1 5 1 1 
	       Expert M 0:07:45 0:02:45 4 23 1 1 
Expert P 0:02:46 0:01:56 3 6 1 1 

Table 64 - Measured values for the DPWS Java Stack integration 
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	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:25:36 0:16:23 5 19 1 1 
User M (2) 0:40:13 0:29:52 8 22 1 1 
User M (3) 0:31:29 0:18:45 8 24 1 1 
User M (4) 0:29:06 0:14:51 8 22 1 1 
	       User P (1) 0:03:17 0:02:38 3 8 1 1 
User P (2) 0:02:26 0:01:41 3 8 1 1 
User P (3) 0:02:49 0:02:00 2 8 1 1 
User P (4) 0:03:14 0:02:44 2 5 1 1 
	       Expert M 0:09:08 0:07:21 2 7 1 1 
Expert P 0:02:01 0:01:54 2 4 1 1 

Table 65 - Measured values for the DPWS C Stack transformation 

	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 1:13:55 0:44:22 16 22 1 1 
User M (2) 1:36:35 0:56:16 12 15 1 1 
User M (3) 1:42:04 1:06:10 22 37 1 1 
User M (4) 1:10:03 0:37:17 9 53 1 1 
	       User P (1) 0:03:18 0:01:30 2 8 1 1 
User P (2) 0:03:04 0:02:10 3 9 1 1 
User P (3) 0:03:20 0:02:22 2 7 1 1 
User P (4) 0:02:45 0:02:22 2 7 1 1 
	       Expert M 0:37:56 0:04:24 4 20 1 1 
Expert P 0:02:23 0:01:16 4 7 1 1 

Table 66 - Measured values for the DPWS C Stack integration 
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	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:19:14 0:09:31 5 12 1 1 
User M (2) 0:21:52 0:13:15 8 26 1 1 
User M (3) 0:17:45 0:13:55 9 17 1 1 
User M (4) 0:29:18 0:16:58 9 36 1 1 
	       
User P (1) 0:03:25 0:01:48 2 6 1 1 
User P (2) 0:02:54 0:02:19 2 6 1 1 
User P (3) 0:03:45 0:03:02 2 9 1 1 
User P (4) 0:02:45 0:02:11 2 5 1 1 
	       Expert M 0:03:43 0:02:07 3 7 1 1 
Expert P 0:02:45 0:02:03 2 4 1 1 

Table 67 - Measured values for the Log4J transformation 

	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:49:34 0:21:03 14 39 1 1 
User M (2) 0:45:33 0:21:03 18 21 1 1 
User M (3) 0:17:45 0:14:25 9 17 1 1 
User M (4) 0:12:34 0:06:44 3 7 1 1 
	       
User P (1) 0:03:07 0:02:45 3 4 1 1 
User P (2) 0:02:46 0:02:19 2 5 1 1 
User P (3) 0:02:32 0:03:02 4 5 1 1 
User P (4) 0:02:46 0:02:11 2 4 1 1 
	       

Expert M 0:03:56 0:02:15 2 7 1 1 
Expert P 0:02:15 0:01:45 2 5 1 1 

Table 68 - Measured values for the Log4J  integration 
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	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:22:41 0:19:45 19 31 1 1 
User M (2) 0:16:00 0:14:32 22 29 1 1 
User M (3) 0:19:06 0:14:23 15 25 1 1 
User M (4) 0:26:45 0:21:34 20 42 1 1 
	       
User P (1) 0:02:45 0:02:17 2 6 1 1 
User P (2) 0:02:54 0:02:31 2 2 1 1 
User P (3) 0:03:05 0:02:45 3 8 1 1 
User P (4) 0:02:43 0:02:23 2 6 1 1 
	       

Expert M 0:05:13 0:01:10 2 9 1 1 
Expert P 0:03:04 0:02:45 2 7 1 1 

Table 69 - Measured values for the EWS .NET  transformation 

	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:28:22 0:05:45 20,27% 5 9 1 
User M (2) 0:41:56 0:04:08 9,86% 4 52 1 
User M (3) 0:36:10 0:29:01 80,23% 6 10 1 
User M (4) 0:26:54 0:20:12 75,09% 5 7 1 
	       User P (1) 0:02:30 0:01:56 77,33% 3 6 1 
User P (2) 0:02:54 0:02:31 86,78% 2 5 1 
User P (3) 0:02:10 0:01:45 80,77% 3 7 1 
User P (4) 0:02:34 0:02:20 90,91% 2 5 1 
	       Expert M 0:09:08 0:05:06 55,84% 4 7 1 

Expert P 0:02:01 0:01:54 94,21% 2 4 1 
Table 70 - Measured values for the EWS .NET  integration  
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	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:19:58 0:15:03 12 21 1 1 
User M (2) 0:18:09 0:15:08 14 24 1 1 
User M (3) 0:26:10 0:19:01 19 28 1 1 
User M (4) 0:26:12 0:21:11 14 19 1 1 
	       
User P (1) 0:03:01 0:02:13 2 7 1 1 
User P (2) 0:02:54 0:01:58 2 6 1 1 
User P (3) 0:02:10 0:01:50 3 7 1 1 
User P (4) 0:02:30 0:02:05 3 7 1 1 
	       

Expert M 0:09:08 0:05:06 2 7 1 1 
Expert P 0:02:46 0:02:16 3 7 1 1 

Table 71 - Measured values for the EWS J  transformation 

	 Time 
needed 

KR Time KR 
used 

Task 
done 

Success Valid 

User M (1) 0:53:23 0:18:03 9 40 1 1 
User M (2) 0:41:56 0:29:05 9 52 1 1 
User M (3) 0:36:10 0:29:01 16 37 1 1 
User M (4) 0:26:54 0:20:12 23 7 1 1 
	       

User P (1) 0:02:30 0:01:56 3 7 1 1 
User P (2) 0:02:54 0:02:31 2 6 1 1 
User P (3) 0:02:10 0:01:45 3 7 1 1 
User P (4) 0:02:30 0:02:20 2 6 1 1 

	       
Expert M 0:15:03 0:05:06 4 7 1 1 
Expert P 0:02:51 0:01:55 4 5 1 1 

 Table 72 - Measured values for the EWS J  integration 
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	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:27:50 0:19:05 31 49 1 1 
User M (2) 0:28:31 0:21:02 19 47 1 1 
User M (3) 0:23:00 0:16:36 21 34 1 1 
User M (4) 0:21:02 0:19:02 34 42 1 1 
	       
User P (1) 0:02:30 0:01:55 6 7 1 1 
User P (2) 0:01:59 0:01:34 4 6 1 1 
User P (3) 0:02:22 0:01:46 6 7 1 1 
User P (4) 0:03:05 0:02:21 4 8 1 1 
	       

Expert M 0:12:35 0:05:56 3 9 1 1 
Expert P 0:02:02 0:01:50 3 4 1 1 

Table 73 - Measured values for the Log4.NET integration 

	 Time 
needed 

KR 
Time 

KR 
used 

Task 
done 

Success Valid 

User M (1) 0:18:04 0:17:00 15 24 1 1 
User M (2) 0:14:45 0:12:48 17 27 1 1 
User M (3) 0:24:09 0:17:23 12 37 1 1 
User M (4) 0:19:56 0:15:23 21 39 1 1 
	       
User P (1) 0:02:55 0:02:33 2 6 1 1 
User P (2) 0:03:05 0:02:46 2 7 1 1 
User P (3) 0:02:31 0:02:03 3 7 1 1 
User P (4) 0:02:55 0:02:02 3 8 1 1 
	       

Expert M 0:06:54 0:05:06 2 7 1 1 
Expert P 0:02:29 0:01:56 2 6 1 1 

Table 74 - Measured values for the Log4.NET integration 
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G. Additional	identified	problems	and	requirements	for	future	
studies	

The research of the thesis focuses on different knowledge problems and concludes that it is 

possible to support an inexperienced user in handling these problems. This is demonstrated in the 

example of three software construction activities (i.e., special variants of transformation, 

integration, and deployment). During the research, additional requirements were identified. In 

different discussions with other researchers (e.g., Ph.D seminars), these requirements were 

identified for future research, as extension of the main research of this thesis. The results of this 

section are not prublished yet. 

In the first part of this section the identified problems are summarised. In the second part the 

relation of the problems to the three SCAc focused by primary research is explained. In the last part 

of this section further requirements are definied for each problem SCAc relationship.  

g.1.		Identified	problems	for	software	engineers	
In the following subsection further problems of software engineers are summarised. These were 

identified during the Ph. D. research. 

g.1.1.	Software	engineering	problems	for	software	engineers		
For the software engineer, two kinds of problem arise: specialised problems of the single software 

construction forms, and problems of the construction forms in comparison. In the following text, 

the single specialised problems of the previous paragraphs are confronted and explained from the 

point of view of the engineer. 

Problems of the different key concepts: Different construction forms are based on different key 

concepts. For the developer, in order to be able to make a suitable decision on the application, the 
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problem is to know the properties and peculiarities of these key concept problems as they arise.  

This requires suitable knowledge about the key concepts. 

Problems of different technologies: Problems for developers are also positioned in the technology 

area. As previously shown, the construction forms already differ on account of their purpose 

architectures which show considerable technological differences. Nevertheless, it is necessary to 

connect single technical problems with each construction form in order to use them in the 

development.  

Problems of the multitude: The problem of the multitude of programming languages, such as 

object orientation, is not found in the same manner with component-based and service-based 

construction. Though components and services can be created with conventional methods and 

technologies, this, however, is second-rate with the use of these ‘interfaces’ based construction 

forms. Particularly with service-based construction it is rather unrelevant how a service is 

implemented (Breivold and Larsson 2007). All construction forms have a multitude of concrete 

technology variants. 

Component models and component worlds: The problem of component models and worlds is 

not found in this form in other construction forms. Though in the object-oriented construction, a 

strong (economic) relation to the programme paradigms is found, e.g., .NET and JavaEE. 

Nevertheless, this shows no oligopoly. 

In service-based construction there is currently no such dependence. Such information from 

professional and/or market-political viewpoints, however, can be relevant for the developer 

(Szyperski 2002b). Service does show a kind of world perspective looking on different protocols. 
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Often, the most commonly used protocls are SOAP and REST (Singh and Huhns, 2005), and both 

are not compatible. 

Problem of the availability: The problem of availability is of crucial importance for developers. 

To guarantee the operability, i.e., the frictionless execution and operation of software, all units of 

software have to be available. If a unit is not available, a programme must be able to react to it. 

With the handling of objects, in most cases local resources which can be verified, are meant. 

Though with the handling of components, local resources also exist in most cases, during the 

construction time, however, only the interfaces are handled. The existence of the resource is not 

always mandatory. This behaviour is even more pronounced with service-based construction 

(Breivold and Larsson 2007) and leads to the problem of the availability at runtime (Kumar et al. 

2007). 

Problems of the re-use and the design: Another problem for the developer arises from the 

enclosure or granularity of the reuse. While with components the granularity varies from very open 

(white box) to complete enclosure (black box), there is a pure black box system with services 

(Breivold and Larsson 2007). Objects, however, are customisable in terms of reusability, like 

components, but the basic principle of object-orientation is even more open (white box). 

Nevertheless, it is shown that the reuse in object-orientation is sparse. All three construction forms 

focus on the reuse, however, in different ways and with different possibilities. The developer has to 

consider these different modelling behaviours. 

Problem of the market: The problem of the market, as described for components (Szyperski 

2002b) is also true for the other construction forms. Especially in the example of services 
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(Fitzgerald et al., 2006). The units of modelling, which a developer selects or develops, are to be 

arranged in a vertical or horizontal market (Szyperski 2002). 

Problems of the completeness: The problem of the completeness does not pose itself in the area of 

the components and services. The software engineer normally uses interfaces to execute functions 

of a service or component. But engineers have to know the structure of a component (including 

external dependencies). On the service side this is not relevant. (Breivold and Larsson 2007)  

Problems of the context dependence: Here, similar problems show themselves. Since the 

implementation of services is encased, only a low dependence exists (Breivold and Larsson 2007). 

Often services provide all information (in an interface description) so a ‘client’ can create all 

needed dependencies by themself. 

With objects, the developer can influence the context dependence to a certain degree. Since these 

dependencies are present at different levels of the development, the developer has to know them 

intimately. 

Problems of the different views: Within one of the three approaches  the advantages and 

disadvantages for the developer stay the same. Breivold and Larsson (2007) discuss using different 

studies showing that a homogeneous use of the construction forms and the components of the 

modelling are rather unusual. In this case the different views mix and the developer has the 

problem in deciding which estimate to follow. Hereby the question arises, which methods and 

procedure models can be used? In the area of the service-oriented construction, suitable methods, 

and procedure models are missing (Fitzgerald et al. 2006). 
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g.1.2.		Knowledge	Management	problems	for	software	engineers	
The problems in the area of knowledge management are directly connected to the work of software 

engineers. In this section the general problems are discussed from the perspective of software 

engineers.  

Problem of knowledge storing: For software developers the problem of knowledge storing occurs 

if no external process is given (Boden and Avram 2009). The storing of data and information is not 

a problem in software engineering. Content management tools (e.g., GForgeGroup 2012) support 

the development process by storing this type of information. However, a commonly used tool or 

process to force the problem of storing knowledge, especially in the area of reuse, is missing. The 

result is the knowledge vaporisation effect (see Ven et al. 2006). 

Problem of knowledge learning: The need to learn new knowledge is an relevant part of the 

vocation of a software engineer. This is based on two facts in the area of software development: the 

changing tasks and fast growing nature of technologies and information (Ajila 2006). Software 

engineers have different ways to learn such new knowledge. Typically professional or self-training 

sessions, magazines, or podcast support are common examples. However, the problem is the given 

time, money, and the learning possibilities of a person.  

Problem of knowledge receiving: In addition to the experience about sources of information, a 

software engineer has to know how to reach or access such sources of information. Each repository 

system is in place to advance different approaches, e.g., it may be necessary to authenticate in some 

repository systems (Ajila 2006). Some systems offer standardised approaches such as web portals, 

while others use advanced specialised applications, in addition, different types or use. 

Problem of knowledge search: For software engineers, the problem arises In the functionality of 

finding information. Search engines such as Google allow you to search in many different systems 
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for information. Search results of general search engines such as these provide a variety of results 

that do not match the desired result. 

Normally, software engineers are familiar with their own special in-house or free open source 

repository where they are able to search for information. The number of internal corporate 

repositories increases with the size of the company. Normally a software engineer is not aware of 

all existing repositories in their environment (i.e., in a global company). This is particularly true for 

private repository of other software engineers. 

Problem of knowledge using: The problem of the application of knowledge depends on the 

different ways a software engineer wants to perform, as well as the objects that are necessary for 

implementation. Thereby, the focused problem is to interpret the given information and knowledge 

parts correctly for (re)use. 

Problem of knowledge distribution: In different projects software engineers have to share their 

knowledge. Typically this can be done by arranging meetings supported by different presentation 

media (i.e., audio, video, or pictures) or by using knowledge management tools. Next to the 

discussed problems of searching and using of knowledge the problem arises to distribute 

knowledge in a way that it can be understand correctly by others. In contrast to the problem of 

knowledge use, the software engineer who is the knowledge owner has to look for it (see Taweel et 

al. 2009; Boden and Avram 2009). 

g.1.3.	Industrial	problems	for	software	engineers	
The problems in the area of industrial informatics are more practical and directly connected to the 

work of software engineers. In this section the problems shown in Section G.1 are discussed from 

the perspective of such engineers.  
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Problem of localisation (single software engineer): The industrial example in Section 3.2.1.2 

creates a problem of localisation for software engineers (Bosch and Bosch-Sijtsema, 2010). One 

team member can be located on a different site than others of the same team. To exchange data is 

not only a problem of different time zone or culture but also a question of communication (see 

Taweel et al., 2009). 

Problem of localisation (multiple teams of software engineers): The problem of localisation also 

occurs for a multiple teams of software engineers (see Taweel et al., 2009). Different teams are 

placed on different locations. Teams, as well as, single software engineers, have to communicate 

with each other.  

Problem of missing knowledge exchange: The example in Section 3.2.1.2  shows that knowledge 

exchange between teams is missing. This can also be found in the analysis of other real 

development projects (see Boden and Avram, 2009 and software engineers may not be able to work 

with other solutions than the solutions they already know. In a worst case scenario people are not 

able to fulfil their work or cooperate with teams using different versions of the same knowledge 

(based on interpretation issues; see Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). 

Problem of reachable knowledge: The problem of missing knowledge exchange is also based on 

the problem that software engineers use different types of repositories. These types of repositories 

reach from handmade notes or files on the personal hard disc to a team or department, 

companywide or community repository system (see Ajila, 2006; Ha, Sun and Xie, 2012). To know 

how to connect to these repositories is a problem. A software engineer (or a team) has to know 

where these repositories may found and how to use them. In this case the use of a repository 

includes the topic of security. 
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Problem of missing time: Reuse needs time and has to be planned (see Ajila, 2006; Frakes and 

Isoda, 1994). This is valid from the perspective of the reuse creator (including the role of the 

supporter). Next to the ‘normal’ fact that people are overloaded with work, reuse estimates time 

especially in following activities: 

- Creation 

- Reuse (Selection) 

- Reuse (Adaption) 

- Reuse (Integration) 

Software engineers have to handle the time they have and the time they need to reuse a software 

unit. 

Problem of return of invest: In the example of Schneider Electric the positive effect of reuse was 

created after the third or fourth reuse iteration of a software unit. The unknown time and the high 

risk of making fundamental failures for future reuse may be reason why companies does not use 

‘reuse’ in their development projects in the past. 

Problem of missing support: The reuse of ‘unknown’ software units may speed up with the 

support of experts. If such experts are not available, the software engineer or a development team is 

under constraint to investigate the possibilities and limitations of a software unit. In the example of 

Schneider Electric the support was necessary in the most reuse iterations.  

The first idea was to use the requirements to analyse existing approaches and their realisation for 

the level of handling knowledge of software construction activities. In this section the problems 

will be summarised. In the second section requirements will be explained briefly using the example 

of the three example SCAcs of the main research. This section can be used for further discussions. 
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Table 75 summarises the problems.  

    Single Combined 

Relation to 
other 
problems 

So
ftw

ar
e 

En
gi

ne
er

in
g 

Problems of the different key concepts X 
  Problems of different technologies X X X 

Problems of the multitude X X X 
Component models and component worlds X X 

 Problem of the availability X X X 
Problems of the reuse and the design 

 
X X 

Problems of the completeness X X X 
Problems of the context dependence X X X 
Problems of the different views 

 
X 

 

K
no

w
le

dg
e 

Problem of knowledge storing X 
  Problem of knowledge learning  X 
  Problem of knowledge receiving X 
  Problem of knowledge search X 
  Problem of knowledge using X 
  Problem of knowledge distribution X 
  

In
du

st
ri

al
 

Problem of localization (Single) X X X 
Problem of localization (Multi) X X X 
Problem of missing knowledge exchange X X X 
Problem of reachable knowledge X X X 
Problem of missing time X X X 
Problem of missing support X X X 

Table 75 - Single or combined visualisation 

g.1.4.	Problem	selection	for	reuse	activities	
In previous sections different problems of the three perspectives on reuse in software engineering, 

handling of knowledge, management and industrial context were shown. Section G.1 demonstrated 

how these problems have common effects on software engineers. In the following, the problems of 

software engineers will be discussed on the basis of concrete reuse activities of software units. The 

focus changes from the general view on problems of software engineers to concrete activities 
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which include the possibilities for such problems. Table 76 shows an overview of the discussed 

problems and the three focused reuse activities. This mapping will be explained in this section.  

Note: This mapping shows typical problems in the three reuse activities and is represents the 

perspective of the author of this thesis based on the previous discussions. Specialised SCAcs may 

be shown differently to this perspective. 

    Transformation Integration Deployment 

So
ftw

ar
e 

En
gi

ne
er

in
g 

Problems of the different key concepts X X X 
Problems of different technologies X X X 
Problems of the multitude X X X 
Component models and component worlds X X X 
Problem of the availability X X X 
Problems of the reuse and the design 

   Problems of the completeness X X X 
Problems of the context dependence X X X 
Problems of the different views X X X 

K
no

w
le

dg
e 

Problem of knowledge storing X X X 
Problem of knowledge learning  X X X 
Problem of knowledge receiving X X X 
Problem of knowledge search X X X 
Problem of knowledge using X X X 
Problem of knowledge distribution X X X 

In
du

st
ri

al
 

Problem of localization (Single) X X X 
Problem of localization (Multi) X X X 
Problem of missing knowledge exchange X X X 
Problem of reachable knowledge X X X 
Problem of missing time X X X 
Problem of missing support X X X 

 Table 76 - Problems in the focused reuse activities 

Basically Table 76 shows that each of the problems is related to each of the different Software 

Construction Activities. But the table shows no differences between the SCAcs. To understand the 

different impact of the problems to the SCAcs it is necessary to describe type of impact to the 
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SCAcs. For that reason a general structure of activities is used to explain the relation between the 

focused problems and the different activities. Therefore an activity has a preparation phase for 

information received, an input configuration phase, an execution phase, and an output.  

 

Figure 156 - General structure of activities used for explanation 

g.1.4.1.	Problems	and	transformation	activities	relationship	
In this area, expertise is demonstrated by knowing exactly how an appropriate transformation 

application has to be prepared so that it can be executed. This includes information and parameters 

needed for the performed transformation to produce the correct result and the distribution of the 

result necessary knowledge for the result creation.  

 
Figure 157 - Relation between a general transformation activity and focused knowledge based problems 
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A based on the structure of a general activity, a general transformation activity can be explained as 

follows (c.f. Figure 157). 

 (1) In the preparation phase a user searches and receives all necessary information for the 

preparation and execution of a transformation activity. (2) The configuration phase includes the 

installation, configuration, and set of parameters of the transformation tool. (3) The execution 

phase includes the start of the transformation application. (4) The result of a transformation is 

another software unit. 

Figure 157 shows the relation between the focused problems and the 4 different parts of a general 

transformation activity. This relationship is now explained in more detail using the transformation 

activity example (see Section 3.1.1). 

The problem of key concepts and the problem of the view mainly occur for software engineers 

during the configuration phase and for the output. In the configuration a key concept may be 

expressed by a parameter. The example in Section 3.1.1 does not require such information. As a 

result, the engineer has to select a transformation tool handling the key concepts of a unit. The 

output of a transformation also includes different key concepts. In the example of IKVM a user has 

to decide if a library or an executable has to be the resulting software unit. 

The problem of component models/component worlds and the problem of different technologies 

occur for the software engineer in the same way as the problem of key concepts. It might be 

necessary to set technology or component model information for the input software unit and the 

output software unit in the preparation phase. Therefore, the engineer has to receive this 

information before in a preparation phase. Also, perhaps the problem occurs for the transformation 

tool itself. For transformation tools different technologies may exists. For example, a 
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transformation of the Java based DPWS libraries into .NET libraries may be performed by using 

IKVM or an MDD based application. The engineer has to know which transformation technology 

creates a useable result. The question of the component world and model is also relevant for the 

transformation result. The engineer’s transformation activity might focus a specific technology or 

component model result (see example in Section 3.1.1). 

The multitude problem occurs in the example of transformation predominantly in the configuration 

phase. There perhaps exists a multitude of single software units or software unit types. Based on 

the used transformation tool this has to be part of the configuration. Also a multitude of 

transformation applications may exist which differ in their feature level. An example is the 

SVCUtils which exists in different versions based on the existing versions of Microsoft .NET. 

The problem of reuse and design, as well as the problem of the market, are not relevant for 

transformation activities. 

The problem of context dependencies occurs in the configuration phase. Tools like IKVM or 

SVCUtils need information about exiting dependencies and their locations. The use of the 

dependencies is necessary to gain a full overview of a software unit. Sometimes the dependencies 

will be copied into the transformation result. In the example of IKVM and DPWS the 

transformation results have new dependencies which are mainly IKVM files. A software engineer 

has to know which dependencies are necessary and how they have to be copied or configured for 

the transformation tool. 

The problem of available occurs from the perspective of this analysis in the preparation and 

execution phase. The parts of the software unit have to available for search an download. During 
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the execution of the transformation these parts have to be available for the transformation tool. 

Additionally the transformation tool has to be available also. 

The problem of completeness is relevant in the execution phase and the output of a transformation. 

In the execution phase information and parts of a software unit have to be completed to perform the 

transformation. The transformation result has to be complete also, to be shipped to another reuse 

activity or a repository. 

The problem of knowledge distribution and knowledge storing occurs for a software engineer in the 

output of a transformation activity. If the output is created, an engineer might want to store the 

transformation activity knowledge for personal reuse or for others. This leads to the problem of 

distribution. 

The problem of knowledge learning occurs in each part of an activity. An engineer has to learn how 

to find all necessary information, prepare the tool and the software unit, execute it and handle the 

transformation result. 

In a transformation activity the problem of knowledge receiving and searching occurs in the 

preparation phase. A software engineer has to handle these problems before starting the 

configuration phase. After receiving the necessary knowledge it can be used. The problem of using 

knowledge occurs for an engineer in the preparation phase. The knowledge is the combination of 

information with the transformation application that is using the information to create an output. In 

the IKVM/DPWS example the user sets all parameters necessary to start an application which 

transforms Java byte code to .Net byte code. 
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The problem of the use of knowledge mainly occurs in the configuration and execution phase. The 

user has to know how to configure a transformation tool and how to execute it. The IKVM example 

shows that a user has sometime to add information or data to the output manually. 

The problem of localisation (single/multi) occurs for the software engineer in all parts of a 

transformation activity. First of all the repositories to search and retrieve information might be 

localised in different locations.  

The same scenario is valid for the problem of reachable knowledge. Also the transformation tool 

itself may be localised in other locations. As a result, it is difficult to execute the tool. If this 

scenario occurs, the problem extends itself to the preparation phase. The engineer has to know how 

to access the environment of the tool to configure it. If an engineer wants to distribute their 

transformation result, it is necessary to know how to distribute it to other locations. This is part of 

the problem of knowledge exchange in industrial environments. Additionally the engineer has to 

know other repositories, their location, and handling to exchange the knowledge of the 

transformation activity. 

If an engineer want to distribute his transformation result it is necessary to know how to distribute 

it to other locations. This is part of the problem of knowledge exchange in industrial environments. 

Additionally the engineer have to know other repositories (including their location and handling) to 

exchange the knowledge of the transformation activity. 

The problem of support occurs in each part of a transformation activity. A software engineer may 

need support during the preparation, configuration, and execution phases, and the handling of the 

output of a transformation activity.  
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g.1.4.2.	Problems	and	integration	activities	relationship	
In this area, a software engineer’s expertise is demonstrated by knowing exactly how to integrate a 

software unit into an IDE. This includes knowledge about different techniques and the 

configuration of the IDE and the software unit. The result is a development project extended with a 

new software unit. 

A based on the structure of a general activity, a general integration activity can be explained as 

follows (c.f. Figure 158). 

 
Figure 158 - Relation between a general integration activity and focused knowledge based problems 

(1) In the preparation phase, a user searches and receives all necessary information for the 

configuration and execution of an integration activity. (2) The configuration phase includes the 

configuration of the IDE and the preparation (including the creation of file and folder structure) of 
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the software unit. (3) Also in this phase the software engineer has to decide on the type of 

integration (i.e., referencing, only copy, and so on). The execution phase includes the manual 

integration of the software unit or parts of it into the IDE by the software engineer. (4) The result of 

integration is a software development project including the integrated software unit. 

Figure 158 shows the relation between the focused problems and the 4 different parts of a general 

integration activity. This relationship is now explained in more detail using the transformation 

activity example (see Section 3.1.3). 

The problem of key concepts and the problem of the view mainly occur for a software engineers 

during the preparation and configuration. In the preparation a key concept may be relevant to 

identify the correct software unit (see Section G.1.1). It is expressed by a search request (see Picot, 

2003). The software engineer has to know the key concepts of a unit that is used in a special IDE. 

The software engineer might use this experience to configure the IDE or to prepare the software 

unit in the configuration phase. The example in Section 3.1.3 does not require such information. 

But an example can be identified by analysing Visual Studio and Eclipse. Both IDEs are able to 

handle libraries, source-code, and service information. For the user it is relevant to know how these 

IDEs handle these key concepts or views. Web Services in Visual Studio are handled like 

components. As a result, the user does not notice the difference, but have to know it.  

The problem of component models/component worlds and the problem of different technologies 

occur for the software engineer in the same way as the problem of key concepts. It might be 

necessary to set technology or component model information in the preparation phase. Also such 

information is relevant to identify a software unit during the software unit search. However, such 

information may be used to identify the correct IDE and/or configure the IDE for the software unit. 
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Therefore, the engineer has to receive this information before via the preparation phase. Perhaps 

the problem occurs also for the IDE itself. It might be that there are different technologies or 

component worlds for IDEs. Good examples are .Net and Java libraries that are used in Visual 

Studio (for .Net libraries) and Eclipse (for Java libraries). This shows that the component world 

problems of software units also exist in the area of IDEs. The engineer has do know which 

integration technology in an IDE creates a useable result. Also the technology itself can be 

different. An example is the .NET technology which now exists in 7 releases (.NET 1.0, 1.1, 2.0, 

3.0, 3.5, 4.0, and 4.5). 

The multitude problem occurs in the example of integration mainly in the configuration and 

execution phase. There may be a multitude (different versions) of single software units or software 

unit types. These units can differ in their structure or technology, for example. The software 

engineer has to know how to handle such multitudes. Also a multitude of IDEs may exist which 

differ in feature level. An example is Visual Studio. The versions Visual Studio (VS) 2008, 

VS2010, and VS2012 differ in their integration handling and in the support of technologies that can 

be supported.  

The availability of a software unit is mainly relevant during the execution of integration. Often, this 

is combined with the problem of completeness. While classes and components have to be complete 

and available, services can be integrated by using only the interface information (e.g., WSDL file). 

Also, the availability of the IDE is necessary to fulfil the integration activity. In general, the 

availability of information and activity knowledge is necessary from the beginning of the 

preparation phase. 
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Both the problem of reuse/design is not related by transformation activities from the perspective of 

the author. 

The problem of context dependencies occurs mainly in the execution phase and for the output. 

IDEs, like Visual Studio checks dependencies in some cases, for example for the integration of 

service information and in cases of early and late binding. If the dependencies are not available, the 

integration will fail. For the integration of libraries as references, dependencies will not be checked. 

The error occurs if the software engineer tries to build the development project or at runtime of the 

software tool or a unit that is created by the development project. To create a valid integration, a 

software engineer needs the experience for such occurrences. Sometimes the IDE has to be 

configured in the configuration phase. An example is the path settings for Eclipse for additional 

paths where libraries (dependencies) can be searched. Another dependency example is shown in the 

integration example in Section 3.1.3. The software unit requires some other software units 

integrated in the development projects (IKVM files). Additionally some other files have to be 

copied in the same directory. These files are and their location next to the main software unit is 

required by the main software unit (dependencies). Like in a transformation activity engineers has 

to know such dependencies.  

The problem of completeness is relevant in the execution phase and the output of an integration 

activity. In the execution phase information and parts of a software unit have to be completed to 

perform the integration. The integration result has to be complete also, to be used during the 

compilation or the runtime of the development project. 
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The problem of knowledge distribution and knowledge storing occurs from the output of a 

transformation activity. An engineer might want to store the integration activity knowledge for 

personal reuse or for others. This leads to the problem of distribution.  

The problem of knowledge learning occurs in each part of an activity. An engineer has to learn to 

find all necessary information, prepare the IDE and the software unit, integrate it and learn about 

the structure of the integration result. 

In an integration activity the problem of knowledge receiving and searching occurs in the 

preparation phase. A software engineer has to handle these problems before starting the 

configuration phase. After receiving the necessary knowledge it can be used. The problem of using 

knowledge occurs for an engineer in the configuration and execution phase. The knowledge is the 

combination of information with the IDE that is using the information to create an output. Also the 

user has to know how to use the IDE to create this output. The example in Section 3.1.3 shows that 

a software unit includes different elements that have to be integrated differently using different 

techniques of the IDE.  

The problem of localisation (single/multi) occurs for the software engineer in three parts of an 

integration activity. First of all the repositories to search and retrieve information might be located 

in different areas. The same scenario is valid for the problem of reachable knowledge. Also the IDE 

itself may be localised on other locations. As a result, it is difficult to execute the integration. If this 

scenario occurs the problem extends itself to the preparation phase. The engineer has to know how 

to access the environment of the IDE to configure it. Next to the needed time for performing an 

integration activity the problem of time and the problem of ROI are not interesting for 

transformation activities. 



Appendix 
_____________________________________________________________________ 

 

cix 

The problem of reachable knowledge occurs mainly in the preparation phase. Also the IDE itself 

may be located in other areas. As a result, it is difficult to execute the tool. If this scenario occurs 

the problem extends itself to the preparation phase. The engineer has to know how to access the 

environment of the IDE to configure it.  

If an engineer wants to distribute their integration result it is necessary to know how to distribute it 

to other locations. This is part of the problem of knowledge exchange in industrial environments. 

Additionally the engineer has to know about other repositories and their behaviour to exchange the 

knowledge of the integration activity. 

Following the time needed for performing an integration activity, the problem of time is not 

interesting for integration activities. 

The problem of support occurs in each part of an integration activity. A software engineer may 

need support during the preparation, configuration and execution phases, and the handling of the 

output of an integration activity.  

g.1.4.3.		Problems	and	deployment	activities	relationship	
In this area, a software engineer’s expertise is demonstrated by knowing exactly how to deploy a 

software unit into a device. This includes knowledge about different software units, deployment 

and device techniques, and the configuration of these technologies. The result is a deployed 

software unit in an embedded device. 

A based on the structure of a general activity, a general deployment activity can be explained as 

follows (cf. Figure 159). 
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Figure 159 - Relation between a general deployment activity and focused knowledge based problems 

(1) In the preparation phase a user searches and receives all necessary information for the 

preparation and execution of a deployment activity. (2) The configuration phase includes the 

configuration of the deployment tools and the preparation (including creation of file and folder 

structure) of the software unit. (3) Also in this phase the software engineer has to decide which 

deployment technology is compatible to the device and software unit. The execution phase includes 

the use of different tools preparing the input files and configuration, and finally the upload of the 

final package into the device. (4) The result of a deployment activity is the prepared software 

package and a deployed software unit. 
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Figure 159 shows the relation between the focused problems and the 4 different parts of a general 

deployment activity. This relationship is now explained in more detail using the transformation 

activity example (see Section 3.1.5). 

The problem of key concepts and the problem of the view mainly occur for a software engineer 

during preparation and configuration. In the preparation phase a key concept may be relevant to 

identify the correct software unit. It is expressed by a search request (see Picot, 2003). The 

software engineer has to know the key concepts of a unit that is used in a special deployment 

environment. Often, the deployment tools are specialised to a specific key concept or technology. 

This experience of a software engineer might be useful in configuring the deployment tools or to 

prepare the software unit in the configuration phase. The three examples in Section 3.1.5 do require 

such specialised information. Each device or platform has different behaviours in handling 

software units. 

The problem of component models/component worlds and the problem of different technologies 

occur for the software engineer in the area of deployment in different parts. It might be necessary to 

set technology or component model information in the preparation phase. Also such information is 

relevant to identify a software unit during the software unit search. However, such information may 

be used to identify the correct deployment platform or technology and/or configure the device or 

the platform for the software unit. Therefore, the engineer has to receive this information before in 

a preparation phase. Perhaps the problem occurs also for the device or the platform itself. It might 

be that there are different technologies or component worlds that exist for different devices. Often, 

the programming language C is used. There are compilers available in different IDEs and different 

platforms, but mostly the device vendors support specific environments. Also examples exist were 
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vendor specific component models or technologies have to be used. This is shown in the 

deployment example in Section 3.1.5. 

The multitude problem occurs in the example of deployment mainly in the execution phase. There 

may be a multitude (different versions) of single software units and software unit types. These can 

differ, for example, in their structure or technology. The software engineer has to know how to 

handle such multitudes. Also a multitude of devices or deployment platforms may exist which 

differ in their support and deployment process level. The example discussion of different device 

types and deployment platforms is made by Zinn et al. (2012). 

The availability of a software unit is particularly relevant during the configuration and execution of 

deployment. All information has to be available. Often, this is combined with the problem of 

completeness. The configuration phase sometimes required the creation of deployment packages 

out of existing data. Next to the deployment tools in the execution phase, this requires additional 

tools (e.g., an IDE). 

The problem of reuse and design is seen as not relevant for transformation activities. 

The problem of context dependencies occurs in the execution phase and for the output. A device or 

deployment platform, as shown in the example in Section 3.1.5 often requires the use of external 

libraries (dependencies). These support the software engineer so that a software unit is able to run 

in the runtime environment (firmware) of the device. If the dependencies are not available, the 

deployment might fail or the software unit will not run or react correctly in the runtime 

environment. Sometimes the device or the deployment platform has to be configured in the 

configuration phase. An example is shown in the example in Section 3.1.5 where special 

configuration files have to be set as part of a deployment package. 
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Because of the need of the availability of relevant parts during the configuration and the execution 

phase it is also necessary to have the software units parts complete.  

The problem of knowledge distribution and knowledge storing occurs for a software engineer for 

the output of a deployment activity. If the output (a final deployment packages for one deployment 

platform or device) was created, an engineer might want to store the deployment activity 

knowledge for personal reuse or for others. This leads to the problem of distribution.  

The problem of knowledge learning occurs in each part of an activity. An engineer has to learn to 

find all necessary information, prepare the deployment tools and the software unit, integrate it and 

handle the deployment result. 

In a deployment activity the problem of receiving knowledge and searching occurs in the 

preparation phase. A software engineer has to handle these problems before starting a configuration 

phase. The problem increases based on the specialised knowledge that is necessary to create a 

deployment package for a device. After receiving the necessary knowledge it can be used.  

The problem of using knowledge occurs for an engineer in the configuration and the execution 

phase. The specialised deployment platforms or device types needs specialised configuration. The 

knowledge is the combination of information with the deployment tools that use the information to 

create an output, as well as, the tools or procedure necessary to configure the deployment activity. 

Also the user has to know how to use the different tools to create this output. The example in 

Section 3.1.5 shows that a software unit includes different elements that have to be configured and 

transformed to get deployed.  

The problem of localisation (single/multi) occurs for the software engineer in all parts of a 

deployment activity. First of all the repositories to search and retrieve information might be 
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localised in different locations. The same scenario is valid for the problem of reachable knowledge. 

Also the deployment tool itself may be localised in other locations. As a result, it is difficult to 

perform the deployment. If this scenario occurs, the problem extends itself to the preparation phase. 

The engineer has to know how to access the environment of the tools to configure them. If an 

engineer wants to distribute the deployment result (i.e., the final build software unit to other teams 

using the same devices) it is necessary to know how to distribute it to other locations. This is part 

of the problem of knowledge exchange in industrial environments. Additionally the engineer has to 

know other repositories to exchange the knowledge of the deployment activity. This includes 

experience about location and handling of such repositories. 

Following the time needed for performing a deployment activity, the problem of time and the 

problem of ROI are not pertinent for deployment activities. 

The problem of support occurs in each part of a deployment activity. A software engineer may 

need support during the preparation, configuration, and execution phase, and the handling of the 

output of a deployment activity. 

The problem activity relation shown in Table 76 can be described in more detail using the previous 

problem analyses. 

g.2.	Requirements	definition	based	on	focused	Problems	
Section G.1 introduces the software reuse activities and shows their relation to the discussed 

problems of the previous sections. Based on this relationship, a requirement list will be now 

created. By using this list, both existing solution approaches and the focused solution approach can 

be analysed and evaluated. Each requirement is represented by a question and subdivided into the 

three activities and their relation to the problem focused on by the requirement. 
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Table 76 shows the discussed problem in relation to the introduced activities but to reach the aim of 

creating a measurement table based on the following requirements this perspective must change 

Figure 160 shows the information flow used to explain the relationship between the focused 

problems and the reuse activities. Therefore a reuse of an activity needs information of a software 

unit (A) and the specific activity (B). This information will be used create a reuse result (C). 

Sometimes the result is usable in an additional reuse (of the result or the same activity) or has to be 

published (D). Figure 160 also shows the relation to the general activity defined in Section G.2.  

 

Figure 160 - Information flow of a activity reuse 

The following general requirements can be formulated for the section (A), (B), (C), and (D): 

Requirement A: The problem of specific knowledge about a software unit can be represented as 

follows as a question: ‘Is the system under investigation in a position to provide the user the 

knowledge needed for the reuse of a software unit?’ This question refers to whether the system 

under investigation to specific properties which allows the user to know or to get information about 

a software unit for reuse as needed. The question is answered with YES or NO. 
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Requirement B: The problem of concrete knowledge about reuse activities can be summarised as 

follows as a question: ‘Is the system under investigation in a position to provide the required 

knowledge to perform concrete reuse activities to a user?’ This question refers to whether the 

system under test conditions has specific properties that allow the user to know or get information 

about reusing activities of a specific software unit to perform this activity. The question is 

answered with YES or NO. 

Requirement C: The problem of automated application of knowledge reuse activities can be 

summarised as follows: ‘Is the system under investigation able to support a user to perform 

automatically or partially automatically a software reuse activity?’ This question refers to whether 

the system under test conditions has concrete properties, which allows the user to reuse activities 

on a specific software unit which is automated or partially automated by the system. The question 

is answered with YES or NO. 

Requirement D: The problem of the preservation of knowledge can be represented with the 

following question: ‘Is the system under investigation in a position to support a user in the 

preservation of knowledge and information?’ This question refers to whether the system under 

investigation provides specific properties to the user which allows them to obtain information that 

usually cannot be received because of missing user knowledge. The question is answered with YES 

or NO. 

g.2.1.	Requirements	based	on	the	software	engineering	problems	
Following, the requirements based on the discussed problems in Section G.2 will be defined and 

related to a general requirement (A-D). Each sub requirement receives an identifier (ID). This ID 

consists of the main requirement number (1-23), the first character of the focused activity 
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(Integration, Transformation or Deployment), the first character of the related part in the general 

activity process (Preparation, Configuration, Execution or Output), and a number (1-N) (if the 

problem occurs multiple times in a general activity process part). Therefore, the ID is only a 

summary of the analysis in Section G.2 for each problem. 

 
Requirement 1: The problem of the different key concepts is represented by the following 

question: ‘Is the system that is to be tested able to simplify the problem of different key concepts 

for the user?’ This question seeks to determine whether a system has specific features to software 

engineers in the use of decisions to be made on the basis of key concepts to help. The question has 

to be answered with YES, PARTIALLY YES or NO depending on the answers of the sub 

requirements.  

Based on the analysis in Section G.2 of this problem for the three SCAs the following sub 

requirements can be defined (see Table 77). 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

1TC1 …supports the user to configure the transformation tool based on the 
given information about key concepts? 

YES/NO 

1TO1 …supports the user to handle the key concepts of the transformation 
result in later reuse? 

YES/NO 

1IC1 … supports the user to configure the integration tool based on the given 
information about key concepts? 

YES/NO 

1DP1 … supports the user to search a deployment tool or software unit based on 
the given information about key concepts? 

YES/NO 

1DC1 …supports the user to configure the deployment tool based on the given 
information about key concepts? 

YES/NO 

Table 77 - Sub requirement list for the problem of key concepts 

Requirement 2: The problem of different technologies is represented by the following question: 

‘Is the system under investigation in a position to simplify the problem of different technologies or 
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types of technology user?’ This question seeks to determine whether a system has specific features 

to support software engineers in the use of different technologies. The question has to be answered 

with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. The 

analysis in Section G.2 for this problem may be expressed by following sub requirement list (See 

Table 78) 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

2TP1 …supports a user to identify technologies information on a software unit 
for transformation? 

YES/NO 

2TC1 …supports a user to configure a transformation tool based on the 
technical properties of a software unit?  

YES/NO 

2TE1 …supports a user to execute transformation tool based on different 
technical properties for a transformation activity? 

YES/NO 

2TO1 …supports the user to handle the different technology problem of the 
transformation result in later reuse? 

YES/NO 

2IP1 …supports a user to identify technologies information on a software unit 
for integration? 

YES/NO 

2IC1 …supports a user to configure an integration tool based on the technical 
properties of a software unit?  

YES/NO 

2IE1 …supports a user to identify an integration tool based on different 
technical properties for a integration activity? 

YES/NO 

2DP1 …supports a user to identify technologies information on a software unit 
for deployment? 

YES/NO 

2DC1 …supports a user to configure an deployment tool based on the technical 
properties of a software unit?  

YES/NO 

2DE1 …supports a user to identify an deployment tool based on different 
technical properties for a deployment activity? 

YES/NO 

Table 78 - Sub requirement list for the problem of different views 

Requirement 3: The problem of multitude, (i.e., the large number of different programming 

languages in the areas, of the identified software construction types) is represented by the following 

question: ‘Is the system under investigation in a position to solve or simplify the problems arising 

from the multitude (i.e., large number of programming and specification languages) for the user?’ 

This question seeks to determine whether a system has specific features to support software 
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engineers, for example, in the use of different programming languages. The question has to be 

answered with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. 

Table 79 shows the sub requirement list for this requirement. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

3TC1 … supports a user by configure a transformation based on different 
multitudes of a software unit? 

YES/NO 

3TE1 … supports a user by executing a transformation based on different 
multitudes of transformation tools? 

YES/NO 

3IC1 …supports a user to configure an integration tool based on the different 
multitudes of a software unit?  

YES/NO 

3IE1 …supports a user to executing an integration tool based on different 
multitudes of a software unit? 

YES/NO 

3IE2 …supports a user to executing an integration tool based on different 
multitudes of transformation tools? 

YES/NO 

3DC1 …supports a user to configure a deployment tool based on the different 
multitudes of a software unit?  

YES/NO 

3DE1 …supports a user to executing a deployment tool based on different 
multitudes of a software unit? 

YES/NO 

3DE2 …supports a user to executing a deployment tool based on different 
multitudes of deployment tools? 

YES/NO 

Table 79 - Sub requirement list for the problem of multitude 

Requirement 4: The problem of different component models and components worlds is 

represented by the following question: ‘Is the system being tested able to solve the problem of 

software engineers’ lower experience in the use of different component models and worlds, or able 

to simplify it?’ 

This question seeks to determine whether a system has specific features to support software 

engineers in the use of different component models and worlds. The question has to be answered 

with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. In Table 

80 the sub requirement list for this requirement based on the analysis in Section G.2 is shown. 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

4TP1 …supports a user to identify component world or model information on a 
software unit for transformation? 

YES/NO 

4TC1 …supports a user to configure a transformation tool based on the 
component world or model properties of a software unit?  

YES/NO 

4TO1 …supports the user to handle the different technology problem of the 
transformation result in later reuse? 

YES/NO 

4IP1 …supports a user to identify component world or model information on a 
software unit for integration? 

YES/NO 

4IC1 …supports a user to configure an integration tool based on the component 
world or model properties of a software unit?  

YES/NO 

4IE1 …supports a user to identify an integration tool based on different 
component world or model for a transformation activity? 

 

4DP1 …supports a user to identify component world or model information on a 
software unit for deployment? 

YES/NO 

4DC1 …supports a user to configure a deployment tool based on the component 
world or model of a software unit?  

YES/NO 

4DE1 …supports a user to identify a deployment tool based on different 
component world or model for a deployment activity? 

YES/NO 

Table 80 - Sub requirement list for the problem of different component models and components worlds 

Requirement 5: The availability problem is represented by the following question: ‘Is the system 

under investigation in a position to support a user in identifying  all the information a particular 

activity requires?’ This question refers to whether a system has specific features to software 

engineers with all the necessary information (e.g., files and instructions) to make available. The 

question has to be answered with YES, PARTIALLY YES or NO depending on the answers of the 

sub requirements. In Table 81 the sub requirement list for this requirement based on the analysis in 

Section G.2 is shown. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

5TP1 … supports a user to access all parts software unit for a transformation 
activity? 

YES/NO 

5TE1 … supports a user having all necessary parts of a software unit available 
to execute a transformation? 

YES/NO 

5TE2 … supports a user having the IDE available to execute a transformation? YES/NO 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

5IP1 … supports a user to access all parts software unit for a integration 
activity? 

YES/NO 

5IE1 … supports a user having all necessary parts of a software unit available 
to execute an integration? 

YES/NO 

5IE2 … supports a user having the IDE available to execute an integration? YES/NO 
5DC1 … supports a user having all necessary parts of a software unit available 

to configure a deployment activity? 
YES/NO 

5DC2 … supports a user having the additional tool available to configure a 
deployment activity? 

YES/NO 

5DE1 … supports a user having all necessary parts of a software unit available 
to execute a deployment activity? 

YES/NO 

5DE2 … supports a user having the deployment tool available to execute a 
deployment activity? 

YES/NO 

Table 81 - Sub requirement list for the problem of availability 

Requirement 6: The problem of context dependencies is represented by the following question: ‘Is 

the system under investigation in a position to simplify or to solve the problem of context 

dependency, of a software user, for a user?’ This question seeks to determine whether a system has 

specific features to the user in the use of a software module and the problems that may arise from 

the different context dependencies to simplify or solve. The question has to be answered with YES, 

PARTIALLY YES or NO depending on the answers of the sub requirements. Table 82 shows the 

sub requirement list for this requirement based on the analysis in Section G.2. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

6TC1 … supports a user to configure a transformation tool based on the context 
dependencies of a software unit? 

YES/NO 

6TO1 … supports the user to handle the (new) context dependencies of the 
transformation result in later reuse? 

YES/NO 

6IC1 … supports a user to configure a integration tool based on the context 
dependencies of a software unit? 

YES/NO 

6IE1 … supports a user to integrate the context dependencies of a software 
unit? 

YES/NO 

6IO1 … supports the user to handle the context dependencies in the integration 
result in later reuse? 

YES/NO 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

6DC1 … supports a user to configure a deployment tool based on the context 
dependencies of a software unit? 

YES/NO 

6DE1 … supports a user to deploy the context dependencies of a software unit? YES/NO 

Table 82 - Sub requirement list for the problem of context dependencies 

Requirement 7: The problem of different perspectives can be expressed as follows: ‘Is the system 

under investigation in a position to solve or simplify the problem of different perspectives (object 

orientation, component orientation, and service orientation) for users?’ This question refers to 

whether a system has specific features to support software engineers in the use of different 

perspectives that this study has focused upon. The question has to be answered with YES, 

PARTIALLY YES or NO depending on the answers of the sub requirements. The analysis in 

Section G.2 for this problem may be expressed by following sub requirement list (See Table 83) 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

7TC1 …supports the user to configure the transformation tool based on the 
given information about view on a given software unit? 

YES/NO 

7TO1 …supports the user to handle the view on the transformation result in 
later reuse? 

YES/NO 

7IC1 … supports the user to configure the integration tool based on the given 
information about view on a given software unit? 

YES/NO 

7DP1 … supports the user to search a deployment tool or software unit based on 
the given information about views? 

YES/NO 

7DC1 … supports the user to configure the deployment tool based on the given 
information about view on a given software unit? 

YES/NO 

Table 83 - Sub requirement list for the problem of different perspectives 

Requirement 8: The question of horizontal and vertical markets can be described as follows: 

‘Is the system capable to solve or simplify the problem of horizontal and vertical markets for the 

user?’ This question refers to whether a system has specific characteristics in order to use a 
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software component in both horizontal as in vertical markets and systems. This focus on the fact 

that a software unit may be reused in development projects of other vertical or horizontal markets. 

The question has to be answered with YES or NO. This requirement has no identified sub 

requirements (see analysis in Section G.2) 

Requirement 9: The problem of completeness can be illustrated with the following question: ‘Is 

the system capable to solve or simplify the problem of completeness of a software unit for the 

user?’ This question refers to whether a system has specific properties to be able to support a 

software engineer in a software component to use in full. The question has to be answered with 

YES, PARTIALLY YES or NO depending on the answers of the sub requirements. In Table 84 the 

sub requirement list for this requirement based on the analysis in Section G.2 is shown. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

9TE1 … supports a user having all necessary parts of a software unit to execute 
a transformation? 

YES/NO 

9TO1 …supports the user to handle completeness of the result in later reuse? YES/NO 
9IE1 … supports a user having all necessary parts of a software unit to execute 

an integration? 
YES/NO 

9IO1 …supports the user to handle completeness of the result the development 
project? 

YES/NO 

9DC1 … supports a user having all necessary parts of a software unit to 
configure a deployment activity? 

YES/NO 

9DE1 … supports a user having all necessary parts of a software unit to execute 
a deployment activity? 

YES/NO 

Table 84 - Sub requirement list for the problem of completeness 

Requirement 10: The problem of reuse type can be represented with the following question: ‘Is 

the system capable to simplify or solve the problem resulting from the number of different types of 

reuse, to a user?’ This question refers to whether a system has specific properties that support 

software reuse engineers in a software unit with the preferred reuse type. The question has to be 
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answered with YES or NO. This requirement has no identified sub requirements (see analysis in 

Section G.2) 

g.2.2.	Requirements	based	on	the	Knowledge	management	problems	
Requirement 11: The problem of knowledge storing can be represented with the following 

question: ‘Is the system able to store knowledge about software units and software reuse 

activities?’ This question will answer whether the system is able to store the knowledge learned by 

an expert user about a reuse activity or a related software unit. The question has to be answered 

with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. In Table 

84 the sub requirement list for this requirement based on the analysis in Section G.2 is shown. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

11TO1 … supports the user to store the transformation activity knowledge for 
later reuse? 

YES/NO 

11IO1 … supports the user to store the integration activity knowledge for later 
reuse? 

YES/NO 

11DO1 … supports the user to store the deployment activity knowledge for later 
reuse? 

YES/NO 

Table 85 - Sub requirement list for the problem of knowledge storing 

Requirement 12: The problem of knowledge learning can be represented with the following 

question: ‘Is the system able to support a user by learning knowledge about software units and 

software reuse activities?’ This question aims to uncover whether the system is able to support the 

learning process of a non-experienced user about a software unit and related reuse activities. The 

question has to be answered with YES, PARTIALLY YES or NO depending on the answers of the 

sub requirements. The analysis in Section G.2 for this problem may be expressed by following sub 

requirement list (See Table 86) 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

12TP1 … supports a user to learn how to search a software unit or a 
transformation tool for a transformation? 

YES/NO 

12TC1 … supports the user to learn knowledge about transformation activity 
configuration? 

YES/NO 

12TE1 … supports the user to learn knowledge about transformation activity 
execution? 

YES/NO 

12TO1 … supports the user to learn knowledge about the transformation result 
for later reuse? 

YES/NO 

12IP1 … supports a user to learn how to search a software unit or a integration 
tool for a transformation? 

YES/NO 

12IC1 … supports the user to learn knowledge about integration activity 
configuration? 

YES/NO 

12IE1 … supports the user to learn knowledge about integration activity 
execution? 

YES/NO 

12IO1 … supports the user to learn knowledge about the integration result for 
later reuse? 

YES/NO 

12DP1 … supports a user to learn how to search a software unit or a deployment 
tool for a transformation? 

YES/NO 

12DC1 … supports the user to learn knowledge about deployment activity 
configuration? 

YES/NO 

12DE1 … supports the user to learn knowledge about deployment activity 
execution? 

YES/NO 

12DO1 … supports the user to learn knowledge about the deployment result for 
later reuse? 

YES/NO 

Table 86 - Sub requirement list for the problem of knowledge learning 

Requirement 13: The problem of knowledge receiving can be represented with the following 

question: ‘Is the system able to support a user by receiving knowledge about software units and 

software reuse activities even if this person is usually not able to receive it?’ This question 

examines whether the system is able to support the receiving of knowledge for a non-experienced 

user about a software unit and related reuse activities. The question has to be answered with YES, 

PARTIALLY YES or NO depending on the answers of the sub requirements. In Table 87 the sub 

requirement list for this requirement based on the analysis in Section G.2 is shown. 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

13TP1 … supports a user to receive knowledge of a transformation activity? YES/NO 
13IP1 … supports a user to receive knowledge of a integration activity? YES/NO 
13DP1 … supports a user to receive knowledge of a deployment activity? YES/NO 

Table 87 - Sub requirement list for the problem of knowledge receiving 

Requirement 14: The problem of knowledge search can be represented with the following 

question: ‘Is the system able to support a user by searching knowledge about software units and 

software reuse activities even if this person is usually not able to search for it?’ This question 

investigates whether the system is able to support the searching of knowledge for a non-

experienced user who is usually not able to create a search request. The question has to be 

answered with YES or NO. The question has to be answered with YES, PARTIALLY YES or NO 

depending on the answers of the sub requirements. Table 88 shows the sub requirement list for this 

requirement based on the analysis in Section G.2. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

14TP1 … supports a user to search for knowledge about transformation activity? YES/NO 
14IP1 … supports a user to search for knowledge about integration activity? YES/NO 
14DP1 … supports a user to search for knowledge about integration activity? YES/NO 

Table 88 - Sub requirement list for the problem of knowledge search 

Requirement 15: The problem of knowledge use can be represented with the following question: 

‘Is the system able to support a user with (re)use knowledge about software units and software 

reuse activities even where they do not have the Professional experience to do this?’ This question 

indicates if a system has specific properties to support a non-experienced user to use knowledge 

about a software unit to a related reuse activity. The question has to be answered with YES, 
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PARTIALLY YES or NO depending on the answers of the sub requirements. Based on the analysis 

in Section G.2 of this problem for the three SCAs the following sub requirements can be defined 

(see Table 89). 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

15TC1 … supports the user to use specific knowledge to configure a 
transformation tool? 

YES/NO 

15TE1 … supports the user to use specific knowledge to execute a 
transformation tool? 

YES/NO 

15TO1 … supports the user to use knowledge to create a final transformation 
output?  

 

15IC1 … supports the user to use specific knowledge to configure a integration 
tool? 

YES/NO 

15IE1 … supports the user to use specific knowledge to execute a integration 
tool? 

YES/NO 

15DC1 … supports the user to use specific knowledge to configure all necessary 
deployment tools? 

YES/NO 

15DE1 … supports the user to use specific knowledge to execute a the 
deployment? 

YES/NO 

Table 89 - Sub requirement list for the problem of knowledge using 

Requirement 16: The problem of knowledge distribution can be represented with the following 

question: ‘Is the system under investigation able to support an expert user by distributing 

knowledge about software units and software reuse to other users?’ This question examines if a 

system has specific properties to support a user and provide knowledge given by this user to other 

users. The question has to be answered with YES, PARTIALLY YES or NO depending on the 

answers of the sub requirements. In Table 90 the sub requirement list for this requirement based on 

the analysis in Section G.2 is shown. 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

16TO1 … supports the user to distribute the transformation activity knowledge 
for later reuse to other users? 

YES/NO 

16IO1 … supports the user to store the integration activity knowledge for later 
reuse? 

YES/NO 

16D01 … supports the user to store the integration activity knowledge for later 
reuse? 

YES/NO 

Table 90 - Sub requirement list for the problem of knowledge distribution 

g.2.2.	Requirements	based	on	the	industrial	context	problems	
Requirement 17: The problem of supporting multiple reuse of a software unit within a team in 

different locations can be expressed with the following question: ‘Is the system to be examined in a 

position to improve multiple reuse of the same software unit within software development teams 

whereby members are placed in different locations?’ This question refers to whether the system 

under investigation has concrete properties, which improves the multiple reuses within a team 

which has localisation problems. This time both improvements and simplification in dealing with 

the software are meant to block. The question has to be answered with YES, PARTIALLY YES or 

NO depending on the answers of the sub requirements. Based on the analysis in Section G.2 of this 

problem for the three SCAs the following sub requirements can be defined (see Table 91). 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

17TP1 … supports a single user to search for a transformation or software unit in 
a different location? 

YES/NO 

17TC1 … supports a single user to configure a transformation in a different 
location? 

YES/NO 

17TE1 … supports a single user to execute a transformation in a different 
location? 

YES/NO 

17TO1 … supports a single user to share the transformation result to different 
locations? 

YES/NO 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

17IP1 … supports a single user to search for an integration or software unit in a 
different location? 

YES/NO 

17IC1 … supports a single user to configure an integration in a different 
location? 

YES/NO 

17IE1 … supports a single user to execute an integration in a different location? YES/NO 
17DP1 … supports a single user to search for a deployment activity or software 

unit in a different location? 
YES/NO 

17DC1 … supports a single user to configure a deployment tool in a different 
location? 

YES/NO 

17DE1 … supports a single user to execute a deployment activity in a different 
location? 

YES/NO 

17DO1 … supports a single user to share / deploy the deployment activity result 
to different locations? 

YES/NO 

Table 91 - Sub requirement list for the problem of localisation (single) 

Requirement 18: The problem of multiple reuses within different development teams can be 

represented with the following question: ‘Is the system under investigation in a position to assist 

different development teams in reusing the same software units even where these teams are in 

different locations?’ This question refers to whether the system under investigation has a specific 

property for the reuse of a particular software unit for different development teams in the same 

way. The question has to be answered with YES, PARTIALLY YES or NO depending on the 

answers of the sub requirements. Table 92 shows the sub requirement list for this requirement. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

18TP1 … supports a team to search for a transformation or software unit in a 
different location? 

YES/NO 

18TC1 … supports a team to configure a transformation in a different location? YES/NO 
18TE1 … supports a team to execute a transformation in a different location? YES/NO 
18TO1 … supports a team to share the transformation result to different 

locations? 
YES/NO 

18IP1 … supports a team to search for an integration or software unit in a 
different location? 

 

18IC1 … supports a team to configure an integration in a different location? YES/NO 
18IE1 … supports a team to execute an integration in a different location? YES/NO 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

18DP1 … supports a team to search for a deployment activity or software unit in 
a different location? 

YES/NO 

18DC1 … supports a team to configure a deployment tool in a different location? YES/NO 
18DE1 … supports a team to execute a deployment activity in a different 

location? 
YES/NO 

18DO1 … supports a team to share / deploy the deployment activity result to 
different locations? 

YES/NO 

Table 92 - Sub requirement list for the problem of localisation (single) 

Requirement 19: The problem of missing knowledge exchange can be represented with the 

following question: ‘Is the system which is under investigation able to support teams or persons in 

knowledge exchange about software units or reuse activities?’ This question examines if a system 

has specific properties to support a user providing knowledge to other users. The question has to be 

answered with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. 

Based on the analysis in Section G.2 of this problem for the three SCAs the following sub 

requirements can be defined (see Table 93). 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

19TO1 … supports a user to share the transformation result knowledge to 
different others person for later reuse? 

YES/NO 

19IO1 … supports a user to share the integration result knowledge to different 
others person for later reuse? 

YES/NO 

19D01 … supports a user to share the deployment result knowledge to different 
others person for later reuse? 

YES/NO 

Table 93 - Sub requirement list for the problem of missing knowledge exchange 

Requirement 20: The problem of the reachable knowledge can be illustrated with the following 

question: ‘Is the system capable of making knowledge as provided for by a team or a person 

reachable to others?’ This question refers to whether a system has specific characteristics to make it 



Appendix 
_____________________________________________________________________ 

 

cxxxi 

easier to reach knowledge about reusing software units in the company environment. The question 

has to be answered with YES, PARTIALLY YES or NO depending on the answers of the sub 

requirements. In Table 84 the sub requirement list for this requirement based on the analysis in 

Section G.2 is shown. 

ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

20TP1 … supports a team to receive transformation activity knowledge? YES/NO 
20IP1 … supports a team to receive integration activity knowledge? YES/NO 
20DP1 … supports a team to receive deployment activity knowledge? YES/NO 

Table 94 - Sub requirement list for the problem of reachable knowledge 

Requirement 21: The problem of the high expenditure of time for reuse can be illustrated with the 

following question: ‘Is the system capable in reducing the time needed for the reuse of a software 

unit?’ This question refers to whether a system has specific characteristics to reduce the reuse of a 

software unit in time. The question has to be answered with YES or NO. The analysis in Section 

G.2 shows no sub requirement. 

Requirement 23: The problem of excessive support requirements can be illustrated with the 

following question: ‘Is the system under investigation able to reduce the support time effort for a 

single team reusing a software unit?’ The question aims to examine whether the system has a 

specific property, the support costs for the initial creation of a software unit and/or shorten the 

reuse of a software unit. The question has to be answered with YES, PARTIALLY YES or NO 

depending on the answers of the sub requirements. Based on the analysis in Section G.2 of this 

problem for the three SCAs the following sub requirements can be defined (see Table 89). 
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ID Requirement question 
‘Is the system under investigation able to…’ 

Requirement 
question 
answer 

23TP1 … reduces support effort for preparing of a transformation activity? YES/NO 
23TC1 … reduces support effort for configuration of a transformation activity? YES/NO 
23TE1 … reduces support effort for execution of a transformation activity? YES/NO 
23TO1 … reduces support effort for creating a final transformation activity 

result? 
YES/NO 

23IP1 … reduces support effort time during preparing of an integration activity? YES/NO 
23IC1 … reduces support effort for configuration of an integration activity? YES/NO 
23IE1 … reduces support effort for execution of an integration activity? YES/NO 
23IO1 … reduces support effort for creating a final integration activity result? YES/NO 
23DP1 … reduces support effort for preparing of a deployment activity? YES/NO 
23DC1 … reduces support effort for configuration of a deployment activity? YES/NO 
23DE1 … reduces support effort for execution of a deployment activity? YES/NO 
23DO1 … reduces support effort for creating a final deployment activity result? YES/NO 

Table 95 - Sub requirement list for the problem of excessive support requirements 

These relationships are summarised in Table 96 and used in Chapter 6 to compare existing 

solutions as well as the focused approach of this thesis with these requirements. Therefore, Table 

96 shows explicitly how many sub requirements can be identified for each part of the general 

activity structure for each SCAc (T, I, D). As a result Table 96 shows in detail the difference 

between the different SCAcs related to the 23 requirements. 

  Preparation Configuration Execution Ouput 

  Req A / B Req A / B Req C Req D 

Req 1 T0, I0, D1 T1, I1, D1 - T1, I0, D0 
Req 2 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I0, D0 
Req 3 - T1, I1, D1 T1, I2, D2 - 
Req 4 T1, I1, D1 T1, I1, D1 T0, I1, D1 T1, I0, D0 
Req 5 T1, I1, D0 T0, I0, D2 T2, I2, D2 - 
Req 6 - T1, I1, D1 T0, I1, D1 T1, I1, D0 
Req 7 T0, I0, D1 T1, I1, D1 - T1, I0, D0 
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  Preparation Configuration Execution Ouput 

  Req A / B Req A / B Req C Req D 
Req 8 - - - - 
Req 9 - T0, I0, D1 T1, I1, D1 T1, I1, D0 
Req 10 - - - - 
Req 11 - - - T1, I1, D1 
Req 12 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I1, D1 
Req 13 T1, I1, D1 - - - 
Req 14 T1, I1, D1 - - - 
Req 15 - T1, I1, D1 T1, I1, D1 T1, I0, D0 
Req 16 - - - T1, I1, D1 
Req 17 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I0, D1 
Req 18 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I0, D1 
Req 19 - - - T1, I1, D1 
Req 20 T1, I1, D1 - - - 
Req 21 - - - - 
Req 22 - - - - 
Req 23 T1, I1, D1 T1, I1 D1 T1, I1, D1 T1, I1, D1 

Table 96 - Requirements relationship 

g.2.3.	Additional	requirements	based	on	different	views	
In preparation for this thesis no predefined analysis system or approach was identified fitting the 

different discussed problems. Also no classification for solutions for the perspective on software 

construction (or reuse) activities and the problem of missing knowledge was identified.  

Due to these reasons, a new solution classification for this thesis has to be defined. It uses the 

requirement analysis shown in the previous section and is based on different views. 

Class I “Activity View”: The different sub requirements shown in the last section are divided into 

three focused SCAcs. Therefore, it is relevant to know which SCAc types are supported by a 

solution. The requirement can be identified by listing the supported SCAc types. 



Appendix 
_____________________________________________________________________ 

 

cxxxiv 

Class II “Software Unit View”: The different requirements discussed in the last section do not 

identify whether a solution only focusses on one type of software unit. Therefore, it is relevant to 

know if a solution focuses on multiple technologies, key concepts or views.  

H. Information	demand	model	for	software	unit	reuse	
To demonstrate the relationship between the discussed problems and knowledge the Software 

Reuse Information Demand (SRID) model is used in the thesis. This model has been created as part 

of the research for this thesis and published in 2011 (see Zinn et al., 2011). It extends the problem 

explanations for software engineers with visualisations of knowledge problems. The model is based 

on the Information Demand model for company managers created by Picot (2003). This section 

explains the structure and application of the model and shows how it can be used for further 

analytic test. 

h.1.	Description	of	information	demand		
Information Demand (ID) is defined as the type, amount and quality of knowledge that a person 

needs to fulfil a task within a specific time frame. Measuring ID is difficult, because it is dependent 

upon the task definition, the goals, people involved (Picot, 2003), and the knowledge criteria (Boh, 

2008). Two categories of ID can be identified: Objective Information Demand (OID) and 

Subjective Information Demand (SID). OID describes all information which solves the user’s 

problem. This information is the amount of existing information that will theoretically solve a 

specific problem. It can be described as a set of solutions. Similar to OID, SID describes all 

information that is supposed to solve the problem, from the subjective point of view of a user and 

because of that; this information may not be able to provide a real solution. Another relevant factor 

in the area of ID is the information provision (IP). This defines information that is provided by a 
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system and can be utilised by formulating an information query (IQ). IQ is most commonly created 

by a user who is searching for a solution which is executed by a search system. This query is based 

on the SID of the user. The useful result is referred to as an Actual Information State (AIS). Within 

the scope of this thesis this is the intersection of the areas of SID, OID, IP, and IQ. Figure 161 

illustrates this relationship. 

 

Figure 161 – Oriiginal information demand model by Picot (2003, p. 106)  

As a result, of this model, AIS is defined as the area of the information model which includes 

information that  

(1) achieves the task,  

(2) can be understood by the user,  

(3) can be enquired after by the user, and  

(4) is provided. 
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h.2.		Definition	of	information	demand	from	the	software	unit	reuse	
fffffffperspective	

The original definition of an information demand model (Picot, 2003) is not related to the area of 

software reuse. This relation can be established by adjusting the perspective of software reuse. The 

OID can be related to as a container describing all software units that may solve a problem. From 

the software reuse perspective, the relevant tasks of reuse are to find and integrate reusable 

software units. These units have to fulfil technical, functional, and business requirements (Shiva 

and Shala, 2007). As a result, OID describes all software units that can solve the problem. SID is 

related to the user’s ability to express technical, functional, and business information about a 

required software unit. This also includes units that do not solve the problem, contrary to the user’s 

beliefs. Previous studies show that this is an relevant problem of knowledge reuse (Boh, 2008). In 

the reuse area, IP can be defined as the real availability of reusable software units and their 

descriptive information. Thus, IP is realised by repository systems responsible for providing 

software units. Typically, software units are provided by repository systems (Ajila, 2006). The user 

creates and accomplishes an IQ by using special tools (e.g., software reuse environments; Garcia et 

al., 2006). The AIS in the area of software unit which includes all reusable software units that:  

(1) theoretically solve the problem,  

(2) are provided by a unit provider or repository system,  

(3) are understood by the user,  

(4) are described by the user request (part of the users’ query).  

The goal is to increase overlapping areas between the different elements of an information demand 

model in order to increase the amount of solutions, which is also an relevant aim of the software 
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unit reuse area. This can be achieved by defining/identifying the critical success factors of software 

reuse and relating them to the model (Picot, 2003).  

Figure 162 shows the relationship between the underlying information demand and the SRID 

model.  

 

Figure 162 - SRID model related to original information model 

h.3.	Use	of	information	demand		
The underlying information demand model maps used processes to the different parts of the model. 

By doing so, potential problems of a process field can identified (see Picot, 2003). In the following, 

this is explained using the SRID model and the Critical Success Factors methodology. 

To increase the overlap of OID and SID, the Critical Success Factors methodology (cf. Rockart, 

1979) can be used (cf. Picot, 2003). This approach may be used for business success factors, but 

can also be adapted for other domains (e.g., Enterprise Security Management; Software 

Engineering Institute, 2004). Using this approach, factors that are required to fulfil a task are 



Appendix 
_____________________________________________________________________ 

 

cxxxviii 

identified. In the case of the Critical Success Factors methodology, these factors are: reuse is 

focused, the unit exists, the unit is available, the unit was found, and the unit is valid. 

These factors will be related to specific elements of the information demand model. Based on this 

relationship, custom analyses can be performed to identify possible risks in a project (see Picot, 

2003). 

Therefore, an analysis process based on this may be structured as follows: 

(1) Identify relevant success factors for a project.  

(2) Apply the factors to an information demand model.  

(3) Identify problems and risks by establishing which information demand elements 

are affected by a problem or risk that could affect an applied success factor.  

(4) Prepare training sessions to minimise the risks or problems. 

 

Figure 163 - Critical success factors (of Frakes and Fox, 1996) in the SRID model 
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Figure 163 shows an example of this procedure. The success factors of Frakes and Fox (1996) are 

mapped to the SRID model. From the perspective of Frakes and Fox (1996) a software unit is 

successfully reused if it is focused, a unit exists, the unit is available, the unit was found, the unit is 

valid, and it is capable to be integrated. This can combined with the SRID model as follows (cf. 

Figure 163). 

- Intention for reuse: This is the users aim to reuse a software unit. In the scope of the 

SRID model, this is shown by the IQ definition. 

- Part exists: A unit exists if it is theoretically possible and is practically able to solve the 

problem. In the SRID model, this corresponds to the OID. 

- Part available: A unit is available if it is provided for by a unit vendor or a repository 

system. This complies with the IP area of the SRID. 

- Part found: A unit has the state “found” if it is theoretically possible, understandable by 

the user, requested, and found by the user. This is shown in this model with AIS. 

- Part understood: A unit is understood if it is theoretically possible and the user is able to 

understand it. In the SRID model, it corresponds to the overlapping area between OID and 

SID. 

- Part valid and part able to be integrated: Both success factors depend on three 

properties:  

o They have to be part of the theoretical amount of solutions (OID)  

o They have to be provided by a vendor or system (IP)  

o They have to be part of the users subjective information demand (SID) 
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Based on such a mapping the critical information demand areas can be identified. This may result 

in specialised training sessions or other supporting activities. To reduce the risk for each success 

factor (see  further discussion, Zinn et al., 2011 or Appendix Section I). 

Note: In this thesis, the analysis using the success factors is not used, because people can use 

different success factor models. This section will only illustrate how the SRID model can be used. 

In the following sections, it is more relevant to use the SRID model as a visualisation tool for 

missing knowledge examples. 
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I. 	Published	papers		
In this section relevant papers are included published by the author. All published papers can be 

found on the data medium (cf. Section A). 
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����������	
��
���
����
������������������������������ ���!��"��# ���$� �%����� &�'"� �� �%����� ��������# ������$���������������� �( ���()�#�*�� �"%���+�,--./�����(0��12�3+�,--4//&�5%6�3�������$�3%�������$���789�� �:'3�� $�3%�����;&�<�789���� �������2!����������� �3����=���$�3%�����+��#���2 �� #66�3� ������33!���$�3%������>"��"������3�� $�3%�789�����&�<��3�� $�3%������������+�$�3��?�%62�+����3�� $�3%�������$��������"��2�=!����������"�3� #�"�� ��3�� $�3%��=�@�A���!�������������&BC'��!��������(D3�E��3 +�,--4/��3���79F����=3�%������@�A�� �#3�������&�'"# ��"���3�=���2�789��������# ����������"�3�(���"��2�=!/���%���&�'"�� �3A���G�� ��� �$�>�3����� �3#������63���  �$��# � �����"���3�� $�3%�������$��%62�%�������������&�9�3��A�3+���������������  �3!�����3�� $�3%��� �3����=���$�3%�����&�'"�� �3A���G�� ��� �$�>�3����� �3#������63���  ���$��� �:'3�� $�3%�����;�2�*���"����$������� ��$�9����H3�A�����A�2�6%����(9HHI9H)H/�(9��%��3=�����2&�,--�/+�()��"2+�,--J/�����K���3���A��L3�=3�%%��=�(KL/�(M1�3���*�����C� ����*�3+�,---/&�'3�� $�3%������%��� �����"� ��3����"�����$�3%������>�22�����3�� $�3%���������"�� �%���3�����"�3���%���� 6���$���%���2�$�3�2���3�3�# �&�(K�3���G9�=�3���+�,--4/� "�> ���$$�3����%���22��=�2��=#�=� �����$3�%�>�3* �����"���3����$�M<)CG���2�����3�6�3���2��!&�(M1�3���*������0�2 ��+�,--�/� "�>����2�  �$���������$���$$�3����%���2��3�� $�3%����������%6� &�N��"����"�� ��6���$��"� �3� ��3�"�9HH�����KL��3��$��# ��&�5���"� �6#�2���������3�� $�3%������� �������!�# ��=��?� ���=��3�� $�3%���������2 &�<���"�3��%6�3�������3%�� �:)�$�>�3��M�� �3#������<3��$����()M</;&�<��)M<�� �����������3�$�3�789 �>"��"���33� 6��� �����"�� �%��63��2�%��3��&�D�3��?�%62�O�<��<3��$����$�3���2�#2����=��"��%��"�%�����2�K<7))�$#���������33�� ���789 &�'"��$�3 ��� ���@�A��M2�  +��"�� ��������&BC'���%6�����������"��2� ��������N��� �3A���&�'"� ��?�%62�� "�> ��"����"����%%��� ��6��� ��%6�3��������6#��789 �������"�� �%���3��$�������������"�����"����2�A��>�����"��789 &�PQPRSTUVWXTYZ[\T]R\̂_̀a[UTRX̂b\̀UcX̀ŴbRdÛXT]cUTRê ]TfRR'"�� �3A���G�� ��� �$�>�3����� �3#������63���  �� ��"��#���36�����=�%��"���2�=!�$�3��"�� �$�>�3���� �3������!��"� �6�6�3&�5��������� ���%�?�%#%��$�$�#3�6�  ��2��6"� � &���&�H�A�2�6%�����$�����#��3� �3#��#3��(L3�����������6"� �/�,&�M"������$��"��#��� ��$�%���22��=������"��3��3�� $�3%������3#2� ��&�M3��������$�%�  ��=��3��$��� �I�#��� ��$��"��%���22��=�(�6�����22!/�g&�'3�� $�3%�������$��"��#��� �������"���?��3��2� �3#��#3��'"��$�3 ��6"� ��� �����3���������#��3� �3#��#3�&�'"� �%��� ��"����A�2�6�3�"� �����3����+�$�3��?�%62�+����2�  � �3#��#3��>"��"���������?��������!������=�789 &�5���"�� ������6"� ���"��# �3� ��3�"� �$�3��3��$��� �>"��"���33� 6�������"� � ��3�"��3���3��&�'"��2� ���$�6�  ��2!� #����2���3��$��� �� ��"����?�%������2� �3����������$!���3�����#��� ��$��"��%���22��=�>"��"��������# ��&�5����������+��"��#��� ��$�%���22��=����������3�� $�3%�����������>"��"��������# �������# ��%� ���"��#���&�5$��"��3� ��3�"�63�A� ��"�����%6����� ��3��%�  ��=��3������%6����� ��������$�#�������"���A��2��2��3�6� ���3�� +��"����%6����� �%# ������3����������6������2!&�'"� �%��� ��"��� ��6��"3���� �����6�����2� ��6&�N"����22���%6����� ��3��������$���+��"�!��3���3�� %������������"���3�������?��3��2� �3#��#3��( ���$�3 ��6"� �/��!�%��� ��$��"���3�� $�3%����� � �2���������6"� ���>�&�'"���3��������$��"���?��3��2� �3#��#3��� ��� ��6�63������=��"��
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Abstract: Today’s software units (classes, components and services) have a huge 
number of information that is needed or produced during the development and use  
of these units.  In fact, a single piece of information can have different values de-
pending on the point of time in the entire lifecycle. The availability of certain in-
formation,  as  for  example  documentation,  determines  among  other  things  the 
capabilities of a unit. Again, other information is necessary and critical for the suc-
cess of the entire development process when applying certain procedure models. 
Retrieval of these units and their contents is important for re-use. There are no suit-
able models that consider the different units and their contents. Also the current 
searching behaviour of software developers and architects has not been covered 
yet. Due to this fact, the benefits in performing reusing software units and the de -
velopment of software processes are decreasing.                                              

This paper discusses an ontology approach that can be used as a foundation for  
the search of such units. Moreover, this part of the ontology is focused on the actu-
al searching behaviour of software developers and the finding of units.

 1 Introduction
In  the  object-oriented  software  development,  different  units  of  modelling  are  used. 
Every type of unit provides a different amount of information that can be used differ-
ently [ZFP09]. Typical units are classes, components and services [WF04]. In the scope 
of this paper, a component has the meaning of a deployed component. There are two 
problems: development issues related to a common view of these different units [WF04] 
and the search for these units  [WJS09].  The search for units as a research subject has 
already been studied for some time.  [Pr91] and [MBC91]  proposed first  approaches. 
[Ga06] and [LAP04] show a list of the different attempts that have been developed until 
now. Among other problems, the following problem has been identified:
“Efficient search and retrieval is needed, to assure that the developer is capable of find-
ing previously built reusable assets.” [Ga06]



378

INC 2010 

For this reason, the question arises what an efficient way for a search could be.  The cur-
rent research focuses on the use of semantics in form of ontologies as a foundation of a  
search (see [TSB09] and [BSW08]). Some of these new attempts focus on the represent-
ation of the technical circumstances, as described in [HNK09]. Other studies concentrate 
on the grammatical  structure  in such a search  [WJS09].  These approaches assume a 
complicated predefined input behaviour. [He94] showed already in 1994 that there is a 
significant gap between the description of the problem and that of the solution. There-
fore, components are described functionally whereas the searcher actually describes the 
problem.
In the following paragraphs, the results of the analysis of the present “searching beha-
viour” of software engineers are presented. Based on these results, an existing ontology 
is extended. This work is part of a research on a service-based software construction 
process (SSCP) incorporated the field of Software Reuse Environments. The paper con-
tributes to the research area with the enhancement of an ontology for supporting the 
search of units of modelling. Aim of this paper is to define the extension of an ontology  
in order to reflect today’s searching behaviour of software engineers. This can be used in 
a semantic model to find units of modelling. Therefore, the input behaviour must be de-
termined and  modelled.  Furthermore,  an ontology defined by the  authors within the 
scope of the basic research should be extended. This paper concludes with the fact that 
the input behaviour does not have to be changed when searching for reusable units in or-
der to achieve exact results.

 2 Analysis of the searching behaviour for units of modelling
To get a first impression how software developers tend to search for reusable pieces of 
software, a questionnaire was given to a group of software development experts. Con-
ducting a representative survey is left as future work in this research. The 15 participants 
of this questioning were software developers, software architects, and technical project 
managers who had at least a three-year experience in software development. When the 
survey was performed, the test persons were active in different software development 
projects in one of the following areas: CAD, automation, power, or in general software 
development. 93% of the feedback indicated the use of a general search engine (in most  
cases www.google.de) in order to search for units. A relationship can be seen in the ex-
amples given by the test persons (i.e., “Class C# Device Discover”) and the given search 
criteria (e.g., manufacturer and technology). Therefore, the analysis shows that there is 
important and optional information in this relationship (see Layer 1 in Figure 1). The 
result of the questioning is presented in the following paragraphs as  “actual searching 
behaviour”. Besides, it constitutes a hypothesis of the authors. From the examples of the 
search enquiries, the analysis of the given search information is displayed in Figure 1. 
The important information from Layer 1 refers to the functional application object (or 
content purpose) for that the functionality of the unit (Layer 2) is searched. Layer 2 cor-
responds to the following structure:

Searched technical contents (application object) + optional describing information (for  
the technical contents and/or the technical unit).
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Figure 1: Structure of the search input
In addition, the given examples of the search show that the functionality is described in 
most cases by an action and an object connected with this action, for instance, “printer”  
(object) “search” (operation or action) (Layer 3). This example shows the simple sub-
stantive-verb relationship in the grammatical area (Layer 4). [WJS09] groups such rela-
tionships  within  the  scope  of  the  parsing  for  search  algorithms  and  refers  to  it  as  
“Advanced Similarity Word Pair”. Optional information (Layer 1) is divided into two 
areas. On the one hand, the application object (functional content purpose) is further de-
scribed. On the other hand, the technical properties of the unit itself can be described 
(Layer 2). In both cases, categories are used, for example, “WebService C# Device Dis-
cover”,  and  it  can  be  assumed  that  a  web  service  based  on  the  C#  technology  is  
searched. In the grammar of the search, it only concerns a few substantives. From the 
pattern shown above, the following grammatical construction can be derived:

Functional  content purpose (Substantive  + Verb) + additional  functional  content (*  
Substantive) + technical content (* Substantive).

Beside the grammatical construction and the contents of the search, another important 
point reveals itself in the analysis: The “problem-solution” relationship. All test persons 
described the solution in their search (e.g., a class carries out a function for the Gaussian 
algorithm), but not the problem. Therefore, this factor is interesting because a compon-
ent may solve different problems (perhaps also in a different way). Furthermore, a prob-
lem can refer to several solutions. When questioning the participants why they do not 
search for the other position (in this case the problem), the answers were quite different.  
Two types of responses were mentioned remarkably frequently:

1) During the search for the problem, solutions can be hardly found.
2) During the search for the problem, the problem must be described precisely 

in order to find a precise solution.
This stands in contrast to the statement from [He94] that the searching person describes 
the problem, not the solution.
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 3 Problems of finding units of modelling
Nevertheless, the approach described in Chapter 2 contains some problems:

Full-text search: The use of the search engines making text comparisons can lead to 
false or not usable results [TSB09].

Substantive verb description: A simple substantive-verb structure in a relationship-
based search engine faces following problems: On the one hand, the substantive can be 
selected unspecific ally (i.e., device), although a printer can be the searched object. This 
entails the generation of unsuitable hits during the search. On the other hand, verbs and 
substantives can have synonyms (e.g.,  graphics and display graphics)  or they can be 
wrongly associated [WJS09]. The last example also shows that in some cases it may be a 
matter of interpretation. From the point of view of the automation, “machine is comput-
able” seems  illogical  because  a  machine  does  not  change.  However,  this  statement 
makes sense from the CAD point of view because a machine must be recalculated by the 
change of knowledge-based properties  [Cl06]. This includes the reconsideration of en-
gine space due to the update of cubic capacity size. This instance can lead to a change of 
the whole vehicle. In addition, a problem arises concerning the existence or non-exist-
ence of a word in another language. Thus, a search launched with the German expres-
sion  “Gerät  suchen” will  not  be  able  to  find  a  component  described  as  “Device 
discover”.

Consistency of the statement: The shown example “web service C# Device Discover” 
does not state to which “web services” and “C#” they really refer. Hence, a search for-
mulated such can lead to false results:

1) A web service written in C # is searched that performs  “Device Discov-
ery”. 

2) A component is searched that contains a web service or rather uses one and 
performs  “Device  Discovery”.  This  component  should  have  been  de-
veloped in C#.

For an exact allocation of the given information, other details are missing. In this ex -
ample, the information is clearly allocated to “C#”. The problem in this case is that such 
an input does not specify whether the information is optional or mandatory.

Problem-solution relation: A search for the solution as described above presents all the 
solutions that fit to given keywords and their relations. By means of ratings (evaluations, 
frequency of the choice, etc.), statistical probabilities can be determined for the best res-
ult  [Ga06]. It is, however, an open question whether information about the problem is 
missing or has already been considered satisfactorily in the solution description. In spite 
of these significant problems and open questions involved, the survey shows that this 
searching behaviour nevertheless is actually used. Therefore, an attempt was made to 
cover the existing searching behaviour in an ontology. On this basis, it can be investig-
ated how to improve the search result while using the same input behaviour.
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 4 A search ontology for reusable units of modelling
4.1 Structure

In context of the current research, an ontology to the subject  “service-based software 
construction process” was developed by the authors in order to counteract the problems 
explained in Chapter 3. This ontology serves only the search of units of modelling. Here, 
certain modelled properties were incorporated by other ontologies (e.g., technical com-
ponent properties from [Ga05]) since these have already been edited. This also includes 
the description of technological facts (components, services, etc.). Figure 2 shows the 
distribution within this ontology.

Figure 2: Structure of the reuse ontology
Part 1 shows the access to the ontology:  “the problem-solution approach”. This is still 
the untreated part of the whole research. Part 2 contains general “business information” 
about the solution as, for example, manufacturer, name, and author. In Part 3, the solu-
tion is described as a technical unit; that is, type of unit, technology, file format, files,  
etc.  In  the fourth part,  the technical  contents are described.  Possible descriptions are 
made, for example,  in form of a substantive-verb combination and they also contain 
some optional information. This part of the ontology will be described in this publica-
tion.

If an instance of the ontology is generated (e.g., by the registration of a newly developed 
unit), the user must specify various information that is stored in the suitable areas of the  
ontology. Furthermore, the data can be entered automatically into Part 3 of the ontology,  
for instance. This is possible because the technical data is automatically detectable such 
as file size, file type, file name, and technology. Nevertheless, the data from the other 
sections of the ontology is not automatically detectable.

In the following, the modelling of the searching behaviour displayed in Chapter 2 will 
be described in more detail. This corresponds to Part 4 of the ontology. Moreover, it is 
focused on the problems indicated in Chapter 3.
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4.2 Description of the technical and professional contents

Figure 3: Model of the finding based upon substantive-verb relation
A unit has a so-called “content definition” describing the technical contents. It also uses 
two different ways of description. These ways are related to each other. The modelling 
of the optional information for the technical properties is made in Part 3 of the ontology 
and will not be described in this publication.

4.2.1  Way of description 1

The first way of description is the substantive verb combination explained in Chapter 2 
and represents a technical and domain specific description of the contents. In detail, each 
element (substantive and verb node) of this tuple has a text field and each substantive  
and verb can have a translation. Within this ontology, this corresponds to a text. At this  
point,  however,  an ontology shortcut to a language ontology allowing translations is 
planned. For this reason, Figure 3 is simplified and as a result the element  “word” (+ 
icon) is displayed as a shortcut to a word ontology. Based on it, cross-language search-
ing  and  finding  elements  are  possible. Therefore,  “device  discover” corresponds  to 
“device search”. Similarly, the translations will also proceed with synonyms. A “printer” 
is a special “device”. Thus, the search for a device may deliver “printer” if appropriate. 
At this point, an ontology can also be used (“- icon” synonym).

The optional information for the application object is also displayed and modelled as 
substantives. In order to create the description of the technical properties, Part 3 of the 
ontology is related to the content definitions object.

4.2.2  Way of description 2

The second part of the description of the solution defines the technical contents from the 
point of view of its intended purpose. This definition is based on the fact that a unit of 
modelling may be seen from three different perspectives: Functional contents, technical  
properties, and technical contents. As previously presented [ZTP08], a component car-
ries only one certain technical content type. Therefore, a component offers either func-
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tions such as simple data, user interfaces or it provides structure information to the solu-
tion of a problem.

4.2.3  Search variations on the basis of the ways of description

Because of the mentioned features, an ontology-based search can be simply expressed: 
for instance, “function device discovery”. In this example, “function” represents option-
al information. Hence, an attempt was made to generate an indirect relationship between 
the technical and the professional contents. Two variations have evolved that will be ex-
plained in the following.

Variant 1: Verbs as synonyms for technical content types

In this case, four contents types (Data, Function, UI and Structure) are associated with 
certain verbs. These verbs fit to the content type (e.g., a function is a content type of 
something that executes something; UI is a content type of something that illustrates). 
Thus, a function can be “executed” or graphics can be “illustrated”, for instance. Table 1 
shows some examples of a possible assignment.

Content type assigned verbs

Function calculate, execute, accomplish, bear, manage 

Data offer, suggest

UI show, present, demonstrate 

Structure structure, align, regulate, arrange, classify

Table 1: Technical content type-verb relation
For each instance of the ontology, this allocation would be firmly “wired”. Moreover, 
only a few verbs are associated to the content types. With the help of this assignment, 
the search could be  “execute device discover”. In addition, synonyms and translations 
are available for this search.

Variant 2: Direct links of the substantive verb tuple with the content types.

In contrast to variant 1, the verbs from the substantive-verb tuple are now connected dir-
ectly with the content types. Although the allocation from Table 1 can be maintained, 
every entered  verb,  however,  must receive an allocation.  A result  would be that  the 
search enquiry “device discover” will search for units offering a function that searches 
for devices. In comparison to the first variant, only two words are required instead of 
three.

4.2.4  Realisation of a search

To launch the search, a search query must occur at first such as “device discover C#”. 
Part 4 of the ontology can be used for the identification of the substantive-verb tuples. 
All the other terms (in this case “C#”) are understood as optional terms and are searched 
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for within the remaining parts of the ontology. C# is a technology whose relationship 
with the component is modelled in Part 3 (technical information). From the perspective 
of the ontology, the search is called “unit has content definition with tuple (device-dis-
cover) and has a relationship with C#”. Moreover, with the perspective of the search in 
Variant 2, it  is obvious that the user searches for a function and not for simple data, a 
user interface, or structure information.

4.3 Problem solution 

In  Sections  4.1  and  4.2,  the  ontology  does  not  solve  every  problem  mentioned  in 
Chapter 3. The use of ontologies in order to avoid the problems of text-based search is 
not new [TSB09]. It is already known that because of their logical structure, ontologies 
are suited to perform inheritance hierarchies.  An example that  could be expressed is 
“device is a printer”  [St09].  The use of simple substantive-verb tuples describing the 
technical contents with fixed verb-content mapping presents a novelty. In comparison to 
a 100% semantic search with input methods considered complicated [WJS09]; this ap-
proach can lead to more “wrong” search results. However, a “substantive-verb content 
type” triple can arise from a search enquiry. This is the result of the semantic assignment 
of substantive-verb-tuple to a unit as well as the allocation of the verb-content type “sub-
stantive verb”. As a result of such a search, only the units owning this triple are per-
formed. In contrast to a text-based search that seeks words in all texts of a data record, 
the input words are analysed in their relationship and are only searched if they are re-
lated to that relationship. The optional information is used to improve the search result. 
Variants 1 and 2 from Chapter 4.2.3 indicate that there are different possibilities to mod-
el the relations between professional and technical contents. Variant 2 is identical to the 
searched input behaviour but provides more exact results. Table 2 shows the search res-
ults of the given input “device discover C#”:

Dataset Text-
based 
search

Variant 
1

Variant 
2

Some component with the description “device Mi-
crosoft discover c#”

hit no hit no hit

Some component with a description triple “device-
discover-function” and optional description “Mi-
crosoft c#”

hit no hit hit

Some component with a description triple “device-
discover-data” and optional description “Microsoft 
c#”

hit no hit no hit

Table 2: Example of search results
The text-based search in Table 2 provides a hit for each data record because the searched 
data is available.  Variant 1 delivers no hit because the search enquiry does not display 
the substantive-verb-content type triple. Variant 2, however, delivers exactly one hit. Al-
though only the tuple  “device-discover” was entered, the triple  “device discover func-
tion” was implicitly also searched. This reduces the number of possible hits in contrast to 
the entered tuple.
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 5 Conclusion and future work
The ontology approach shown in this paper contains a semantic modelling of the follow-
ing (search) input pattern for the search of reusable units:

Functional  content  purpose  (Substantive  +  Verb)  +  additional  functional  content  
(* Substantive) + technical content (* Substantive).

This allows the searching behaviour that appears to be broadly applied nowadays to text-
based search engines also to be applied to semantic search engines. Thereby, it is pos-
sible to make use of the usual advantages of an ontology as, for example, using a short-
cut to other ontologies and the advantages of a semantic search (see [St09]). This leads 
to a better result in contrast to a text-based search (see  [TSB09]) because a text-based 
search only compares the searched words with the dataset. In order to have an exact res-
ult, the searched words must be in a certain semantic relationship (Substantive + Verb)  
and must be implicitly combined with the technical content type (Structure, UI, Data or 
Function) of the searched unit. This simple approach combined with the typical informa-
tion about reusable units of modelling (i.e., manufacturer and technical information) rep-
resents an innovation to the area.  This paper shows in an example that this approach 
works. The search pattern can be grasped completely in an ontology without changing 
the effort or the input for the user. In addition, this publication shows that the input be-
haviour of software engineers identified as typical does not have to be changed and a 
better search result can be achieved in comparison to a text-based search.

However, not every problem is solved by the solution presented in this publication. On 
the one hand, it is not finally clarified whether it is better to describe the solution only 
with a search or whether the problem should be described as well. On the other hand, the 
possibility to recognise whether the optional information describes the application ob-
ject, the technical unit, or the technical contents is missing. Within the scope of the fur-
ther  research  of  “service-based  software  construction”,  these  two  open  problem 
formulations, in particular, will be analysed in more detail. However, the searching be-
haviour still is supposed not to change.
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   Reusing software components is an important but not 

standardised task in software engineering. This will become a 
problem if requirements change in the future. By the use of web 
services in service-oriented architecture, as a communication 

interface for devices, the automation area has to define how to 
handle these reusable units. At the moment, no standardised way is 
defined. This publication analyses the use of web services in a 

service-oriented environment as a communication interface of 
physical devices in the area of automation. An analysis matrix will 
be built by the use of defined research challenges of web services 

and known reuse aspects in the area of software engineering. The 
results of a Device Profile for Web service (DPWS) case study will 
be compared to this matrix in order to define research steps and 

important factors for device services for the future. 

Keywords: Device Profile for Web service (DPWS), web 
services, reusability, software engineering, service-oriented 

architecture (SOA) 

I. INTRODUCTION 

Service-oriented architecture (SOA) is a conceptual 

approach to define a scope of services and an environment 

which will be used to communicate with and between these 

services [1]. [2] describes three kinds of services: Services of 

the first and second generation, as well as future services. 

Services of the first generation were distinguished by the fact 

that they were independent and not integrated services, as for 

example the query of data. The demands on services 

management, quality, operational safety, interoperability, 

security, and trust were very low. With the growing 

propagation and rising requirements, the second generation of 

services was created. This generation characterises itself 

through the possibility of a bundle of services which are 

dependent on each other and which can be offered. 

Furthermore, these services are components of bigger systems 

which display business processes among other things. 

Through this integration the requirements of the first 

generation were expanded by the following points: Lifecycle, 

Quality of Service (QoS), and service level agreement. This 

second generation constitutes the "State of the Art" of 

services. In addition, it is indicated that the next generation 

must become better at the point of "Easy to use". This refers 

particularly to the high dependencies of today's services on 

context. Services, however, offer further topics, which are 

being examined at the moment. These are, among other 

things: service level agreements (SLA), quality of service, 

and security (see [2] and [3].  

According to [4], the characteristics of a today’s services 

are defined as follows: Services are 

- equipped with standard interfaces and flexible   

collaboration contracts   

- able to communicate (”All to all-mode“, at any time) 

- platform-independent  

In addition, services can be searched, browsed, and joined 

dynamically to form new services or applications. A typical 

representative of these services is the web service technology. 

In this case, the already displayed properties of services are 

described by the web services description language (WSDL) 

[5].  

Beside the use of services in software engineering, different 

use cases for services exist in other domains, such as 

telecommunication and trade markets. 

Another example is the automation area. In this area, it is 

important to increase the flexibility, modularity, and 

reconfigurability of automation systems by using new 

information and communication technologies [6]. In relation 

to agent-based systems and SOA, different approaches were 

developed in this area [7] and [8]. The usage is demonstrated 

by the fact that SOA supports typical automation 

requirements like collaborative automation in sense of 

autonomous, reusable, and loosely-coupled distributed 

components. [9] and [10] constitute web service as a useful 

technology approach of SOA in this domain. 

One technology approach is the Device Profile for Web 

Service (DPWS) standard [11]. It extends the basic web 

services definition with the information required by 

electronically devices (like footprint, performances, security, 

and event driven messaging) [12]. Other technologies still 

exits like Jini, OSGi and UPnp. [13] shows an comparison 

and a requirements analysis of these four technology.  

The aim of this paper is to extend the research map for 

DPWS given by [14]. This extension is a list of open research 

tasks that appear if DPWS based web services will be used as 

reusable units for software engineers in the area of software 

engineering. The special focus is set on research challenges 

and reusability of web services in this area. To do this it is 

necessary to define different criteria for an analysis. The 

analysis will be done at the example of a DPWS case study. 

DPWS was selected because of it is the new standard and it is 



interesting to see if this standard can be used for all important 

areas of services. 

This paper is structured as follows: After this introduction, 

chapter 2 outlines the basics of web services as units of 

modelling in software engineering and relationship to the 

Device Profile for Web Service standard. Chapter 3 forms an 

analysis matrix that will be used in Chapter 4 to analyse a 

DPWS case study with the requirements of reuse of 

modelling units and the research challenges of web services 

and SOA. The paper terminates in chapter 5 with the 

conclusion and a roadmap extension for future research 

challenges for the DPWS standard. 

II.  WEB SERVICES AND DPWS: “STATE OF THE ART” IN 

THE AREA OF SOFTWARE ENGINEERING 

A. WEB SERVICES 
Ref. [15] shows a comparison of different service 

technologies to CORBA Trader, JavaBeans Context, Jini, 

OSGi, and web services. Services, however, are only 

components with a special interface. A SOA constitutes an 

architecture to implement and execute these components. 

Programmes that are based on an architecture like this use the 

following criteria of the SOA [4]:  

- Loose interconnection/coupling  

- Services can have a or no  state  

- Services constitute the building blocks for modelling and 

development  

- The core of the architecture constitutes the service 

definitions, descriptions, search- and access-protocols and 

quality information.  

- Services are self-describing  

- Search and find-functions  

The actual combination of services to a service-based 

application is divided into two different approaches: 

Orchestration and choreography. Ref. [3] describes how 

orchestration services interoperate. This includes business 

logic and the order of execution of single services which are 

controlled by a single endpoint. This form of construction is 

very popular in order to copy model processes. A typical 

process-based modelling language is BPEL, for instance [16]. 

This approach finds its use, for example, in Enterprise Service 

Bus (ESB) or Enterprise Services Hub (ESH) that constitute a 

middleware for communication [3].  

In contrast to the orchestration which serves the execution 

of a business process choreography constitutes a semantic 

approach [3]. It is defined on how different endpoints can 

communicate with each other.  

Today's service-based construction is based on services at 

runtime (cf. orchestration). Nevertheless, some researches 

indicate that in the scope of the software development cycle, 

services can also be inserted at other points in time, such as in 

design and compilation time [17]. Therefore, the difference to 

the component-based construction arises through the fact that 

the units of modelling are services, i.e. loosely linked 

components. This form of construction only works with 

interfaces, instead of typical components which are context 

dependent. The implementation and dependencies of the 

services are secondary or of no interest. For this reason, 

service-based construction approaches do not only support the 

development of software, but also the development of 

systems [18]. [3] and [2] put up additional research directions 

for service-oriented software engineering (SOSE).  

In the commercial area, the approaches Windows 

Communication foundation WCF [19] and SCA (Service 

Component Architecture [20]) have proved to be particularly 

useful for developing with services. The companies of 

products for software development have already upgraded. 

The company Intel even goes one step further and uses 

services not only to access software components but also 

hardware components. This technology of the service-

oriented Infrastructure (SOI) project is based on the approach 

"Hardware as Services (HAS)" [21]. A similar approach is 

found in the European FP6 Project SOCRADES [22]. In the 

scope of this project, the DPWS standard was used to build 

web service interfaces for electronic devices. Another new 

approach with the aim to generate a SOA and web service 

based middleware for devices, is the Hydra Project of the 

European Information society [23]. 

 

B. Device Profile for Web Services (DPWS) 

DPWS was first used as a unit of modelling to develop a 

service infrastructure in the ITEA SIRENA (Service 

Infrastructure for Real-time Embedded Network Application) 

project.  

 

 
Fig. 1.  Interfaces with higher levels of abstraction and more distribution 

of processing 

 

The focus of this infrastructure was the area of embedded 

network application [24] Figure 1 pointed out DPWS in the 

history interfaces abstraction. 

Now DPWS is an OASIS standard. As a web service 

extension, DPWS can use all web service features (cf. section 

A) and it focuses communication between web services 

securing messages, dynamic discovering, describing a DPWS 

web service and subscribing for web service events [1]. This 

builds upon other web service protocols (cf. figure 2) (for 

more details see [12]). 

, By the use of these protocols, DPWS shows its own 

architecture which is important to know for the use inside 

software engineering. By using DPWS, a device has two 

different types of services: hosting and hosted services. 



 
Fig. 2.  Basis protocol stacks used by DPWS  

 

A hosting service is a service that represents the device 

itself. It is used to configure the device, get default data (like 

name, ID, etc) from it, and publish the hosting services. 

Hosted services represent functionality that is provided by the 

device, such as the printing functionality of a printer. Figure 3 

shows this relationship. 

 

 
Fig. 3.  Hosted and hosting Service in a DPWS Device [Basis 38] 

 

Ref. [24] shows the advantages and disadvantages of using 

DPWS, 

TABLE 1 
ADVANTAGES AND DISADVANTAGES OF DPWS 
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DPWS has a high acceptance in the area of software 

development and in the automation market. Ref. [25] This is 
based on the fact that DPWS was created by a consortium of 

Microsoft and some printer manufacturer. DPWS is a default part 

of the operating system Windows Vista and is supported by 
Microsoft .NET. Additionally, there are API implementations for 

the .NET and the JAVA Framework. 
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The possibilities of communications (traffic) are limited by the 
used transport protocol. DPWS uses SOAP for messaging at the 

application level. On one hand, it is good to have a simple system 

on limited hardware devices. On the other hand, the complexity 
of the used API will increase. 
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 The function provided by a DPWS stack is very simple because 

embedded devices have limited resources. Moreover, the DPWS 
is only an infrastructure for hosting services. Thereby, hosting 

services (including their special functionality) must be developed 

by protocols the device manufacturer. 
 

W
e
b

 s
er

v
ic

e
 

c
o
m

p
a

ti
b

il
it

y
 DPWS is compatible to the normal web service standard. So it 

has the same advantages as units of modelling in a service-

oriented software development (SOSE) environment. 

 

III. CRITERIA OF AN ANALYSIS MATRIX FOR (DEVICE) 

WEB SERVICES  

To make a statement about the reusability properties and 

the future research challenges of DPWS based web services, 

it is important to define the analysis criteria. Thereby, the 

analysis matrix consists of two parts: reusability criteria and 

future research challenges criteria of web service. Since a web 

service is a unit of modelling inside the software engineering, 

existing analysis of this area will be used to create a criteria 

list. Thus, the analysis matrix focuses on the reuse of web 

service and the focus on the future and it will use a simple 

illustration of the displayed results: ‚+’ (good support, 

existing) and ‚-’ (bad support, not existing). 

 

A. Reusability criteria for web service 

The reusability was considered to be a big advantage of 

object orientation. However, the reuse is still a considerable 

problem in the (object-oriented) world [26].  

“Component-based software engineering is an approach 

based on reuse for the definition, implementation, and 

composition of loosely coupled, independent components to 

systems.“  [27] 

Components are the units of modelling of component based 

software engineering. Because of the fact that web services 

are very similar to components [27], the important properties 

of components can be used as reusable factors for web 

services: Context dependence, component models and 

component worlds, vertical and horizontal markets, Reuse at 

design level and Quality factors. 

Context dependence [27]: Context dependence can be 

defined as a dependence on an element which lies beyond the 

sphere of influence of a component. An example is the 

libraries of a runtime environment which are assumed by a 

component. Similar to object orientation, the purpose of a 

component is to be reused for a certain target area. With the 

rising number of context dependencies which should increase 

the reuse in a suitable context, the possibility of use, however, 

decreases. Normally, web services are known as components 

without direct context dependencies. But the system, which is 

hosting the web service, has these dependencies. As a result, 

the user has an indirect connection to the problems of context 

dependence. 

Component models and component worlds [27] and 

[28]: Special context dependence is the fact that a component 

belongs to a component model. Beside the exact form and the 

properties of the components which correspond to the model, 

a component model also specifies how components can speak 

with each other (interaction standard) and connect to each 

other (composition standard). Moreover, a component model 

can own implementations of different manufacturers 

(component worlds). Similar to the multitude of object-

oriented languages, there are also different approaches of 

component models which are mostly incompatible to each 

other. Web services normally do not have this kind of 

problem. 

Reuse at design level: [27] shows four kinds of reuse of 

components which are differentiated by visibility and 

convertibility of the component implementation. These 

constitute a classification. With the help of this classification, 

the access possibility of information of the components is 

divided. The problem which originates hereby is that 

components must account to which reuse class they belong. In 



addition to the problem ”How information is carried“, the 

question “What is carried?” is still present. The literature 

shows the following granularity programming- and script 

languages, libraries, interfaces, messages and protocols, 

patterns, framework and system architecture [27]. Therefore, 

[27] indicates that components are not able to carry several 

pieces of design level information at the same time. Web 

services have the same problems currently, but they focus 

only on one kind of reuse classification. A web service is a 

black box, which means the user only knows the interface and 

nothing more.  

Quality factors: Ref. [27] shows that the question of 

quality is very crucial for components. It is, however, not 

explained more exactly how quality is defined with 

components. Ref. [29] defines the quality of components with 

the help of formal correctness and completeness of interfaces. 

Measuring quality factors is very difficult. In this paper the 

only question on quality is if the used technology supports 

quality factors. In the resulting matrix this can be used for a 

common decision about the use of the service. If a service 

will be used, the user has to look to the own quality 

requirements and the given quality factors of the service. This 

can not be provided by this paper. 

Additional reuse information: Besides the shown factors 

other information is also useful for reuse. Ref. [30], [31] and 

[32] show that the use of the following information increases 

the reuse rate if they exist and they will be used,  for example, 

for Documentation, Specification and unit test data. 

Additionally, this kind of data can also be reused.  

Repository & discovery: Another important property of 

reuse is the discovery of reusable data. The “correct” search 

for data is very complicated and is based on the metadata that 

can be used for the search. Today semantic search, based on 

different ontologies, is very popular. This means data and 

definitions will be connected in one database by the use of 

semantics. These semantics can be used to find data entities 

[33] and [34]. The analysis matrix will be extended by the 

question if a kind of content management system (for 

example repository) or a subscription system (like UDDI) can 

be used. But UDDI is only a brokering system. The 

information about a web service (e.g. documentation, web 

service location, etc.) must be saved in a single repository 

system in which a discovery system can search for the 

information [33]. 

 

B. Research challenges of (web) services 

As a base for future research, the classification of research 

topics for (web) services of [3] will be used: Service 

Foundation, Service Composition, Service Management, 

Service Monitoring, Service Design and Service Engineering. 

Service Foundation [3]: Service Foundation provides an 

adaptable middleware infrastructure. In this area, especially 

subject dynamics, quality and infrastructure support are 

demanded. Ref. [3] notes that in order to permit dynamic 

(re)configurable service architectures at the runtime, an 

improvement to the service discovery has to be made. This 

also assumes a research of infrastructure support of data, 

process and application integration. The analysis matrix will 

use the following criteria based on [3] of this topic. 

 

TABLE 2 
SERVICE FOUNDATION CRITERIA 
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The service runtime infrastructure must automatically 

adapt (distributed) service components and resources to 

create an optimal architectural configuration. This 
configuration has to be optimal for application and user 

requirements.  
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Services, service-based applications and their 

infrastructure should provide end-to-end security solutions 

on transport and application level.  
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There is a need for consistent data access, irrespective of 

the data type (including format, source, or location). 
Additionally, it should be possible to integrate processes 

into existing processes. This includes inserting SOA-

Applications or web service into existing processes. 
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Service discovery have to use semantic expressions. The 

discovery itself should work with minimal user interaction. 

So requester and provider of a service need a semantic 
language that can be used. This language must include 

semantic annotations combined with QoS characteristics 

and service description (based on WSDL). 

 

Service Composition [3]: In particular, subjects from the 

area of business are desirable in the area of service 

composition. The subject’s comparability, use and availability 

constitute the largest research areas. At this point the 

following services are listed: for example semantic, typed and 

plausible services. Since there has not been any standard for 

quality characteristics in this area yet, researches for 

possibilities of the "Quality of service" are also pending. 

Accompanying this, the comparability, which serves as a 

basis for the research area „autonomous composition of 

services“, is also to be examined. For the analysis, the 

following points based upon [3] are interesting:  

 

TABLE 3 
SERVICE COMPOSITION CRITERIA 
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“Service conformance ensures a composite service’s integrity by 

matching its operations with those of its constituent component 

services. It imposes semantic constraints on the component 
services and guarantees that constraints on data that component 

services exchange are satisfied. Service conformance comprises 

both behavioural conformance as well as semantic conformance. 
The former guarantees that composite operations do not lead to 

spurious results, while the latter ensures that they preserve their 

meaning when composed and can be formally validated.” [3] 
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 It is necessary that services and processes use adaptive service 

capabilities. This assumes a technology-based extension for 
services and processes/application using it. With this extension 

services and processes can “continually morph themselves to 

respond to environmental demands and changes without 
compromising operational and financial efficiencies.” [3]. CF. 

self-configuring, -optimising, -healing and -adapting services. 
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s Service compositions have to understand QoS information such 

as policies, performance levels, security requirements, service-
level agreement (SLA) stipulations from other services or 

applications. This assumes that services can interchange these 

information and automatically adept to them. 
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Services and service-oriented applications should provide 
themselves as usable business units. This assumes an abstraction 

of the technological, application and current business level. This 

abstraction should enable the composition of distributed business 
processes and transactions. 

 

 

Service Management & Monitoring [3]: In the area of 

service management are interesting, particularly the 

investigation areas, which deal with the independence and the 

automation of services. This means services should be self-

configuring and thereby adapt themselves to their 

environment or to the context ("self-configuration services"). 

Additional interest is in services which “cure” themselves 

automatically. This includes self-analysis and an independent 

repair of services ("self-healing services"). Self-optimising 

services are based on the same idea. Here an independent 

analysis and criteria are also necessary [35]. Self-protecting 

services are also interesting, as for example an 

implementation of security aspects within the services. For 

the analysis the following points based upon [3] are of 

interest:  

TABLE 4 
SERVICE MANAGEMENT & MONITORING CRITERIA  
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Service has adapted and optimised automatically to a given 

environment. So they can be easily installed and used. 
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Service must react on changing requirements of the 

environment (including market changes). These 
requirements can include deploying new instances, 

changing instances or changing runtime characteristics. 
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Service has to detect malfunctions. This calls for special 
diagnosis, discovery and reaction functionality. These must 

discover, diagnose, and react to disruptions. The runtime 

environment should not be affected. 
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Service has to monitor service components and resources 

and adapt them to the current end-to-end, process, or 

business needs. Self-optimising management services 
improve overall utilization or ensure the timely completion 

of particular business transactions. 
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Services have to anticipate, detect, identify and protect it 

and their resources. This includes detection of hostile 
activities, such as unauthorized access and use, virus 

infection and proliferation and denial-of-service attacks. If 

a threat occurs, the service has to start counteractive 
measures. 

 

Service Design and Service Engineering [3]: The 

suggested research areas in the area of service engineering are 

directed mainly at the dealings with services in software 

development. Thereby, it is pointed out that there is a lack of 

design principles for the creation of services. In addition, 

there is only rudimentary support or methods for the 

integration of service development in conventional software 

development. Ref. [36] and [37] show at the example of the 

UML that those services can be displayed with UML. 

However, there is no notation for services in UML. It is also 

indicated that there is a lack of analysis possibilities for 

services.  

TABLE 5 

SERVICE DESIGN & SERVICE ENGINEERING CRITERIA 
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A service-oriented engineering methodology and an adapted 
development environment are needed. These have to enable 

modelling, development, deployment, test and configuration of 

services and an SOA-based application.  
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 “Gap analysis purposes a business process and services a 

realization strategy by incrementally adding more 

implementation details to an abstract service/process interface. 
Such a strategy considers several service-realization possibilities 

such as green field development, top-down and bottom-up 

development, meet-in-the-middle development, and development 
based on reference models.” [3] 
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 Developers and Development environments should introduce 

techniques to discover and select suitable external services, detect 
problems in service interactions, search for alternative solutions, 

monitor service-execution sequences step by step, and make 

appropriate upgrade and version services. 
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Services must meet the functional and QoS objectives within the 

context of the business unit and the enterprises within which they 
operate. This is important because a service is part of many views 

and domains which are cross-organizational. So service- oriented 

application will consist of service fragments that different 
organizations must maintain separately.  

 

IV. ANALYSIS OF A “DEVICE PROFILE FOR A WEB 

SERVICE”-SCENARIO 

A. THE DEVICE PROFILE FOR A WEB SERVICE SCENARIO 

 
Fig. 4.  System architecture of the DPWS scenario 

In the scope of the SOCRADES project an experimental 

DPWS scenario was built. The authors were directly and 

indirectly participants of this scenario. Figure 4 shows the 

system architecture. The basic configuration of the 

architecture is shown in figure 4 
 

The web services of each workstation of the production line 

(see figure 5) will be “programmed” by the orchestration 

engine. Thereby, the devices provide the following hosting 

services:  
- Managing of the device (lifter or conveyor) 

- Subscription and Messaging via WS-Events 



In addition to the orchestration engine, three other tools are 

using the web services: 

- Decision Support System: This system tries to solve 

conflicts which occur if the panel can use different 

production line ways (see figure 5 current panel                          

position). 

- ERP / MES System: The production orders will be sent 

by the ERP/MES system. The production line will 

execute the orders. 

- Monitoring System: The monitoring system records the 

single events coming from different devices and shows 

them in a graphical way. 

 

 
Fig. 5.  Configuration of a production line based on [22] 

 

Basically the scenario is based on the following process: 

With the help of the orchestration engine and a special 

graphical tool the production process will be created and 

uploaded into the devices. The Monitoring and the decision 

system register for the device events. If the ERP system sends 

an order, the production line tries to execute this order. If a 

conflict occurs, the decision system tries to help the specific 

device by sending special orders. The web services are 

developed with a C-based DPWS API. 

B. REUSABILITY ANALYSIS IN A SERVICE-ORIENTED 

ENVIROMENT/ARCHITECTURE 

For the analysis of the shown scenario there are two 

different points in time important: development- and runtime. 

 

Reusability comparison 

Six criteria of the scope of reusability are used.. Context 

dependence is the first criteria. To use a DPWS web service a 

special API is necessary. Therefore, DPWS has context 

dependencies. In addition, the scenario shows during 

development time that the different APIs (C and Java) react 

differently to the events. This shows that the context 

dependencies are complex. DPWS has an own component 

model and has only one dependency on the web service 

model. But there is no special relationship between the typical 

component worlds like Java or NET. Because the DPWS 

service is a web service it is also a black box for a developer. 

Only the interface is known. But normally it is better to know 

some of the internal processes or structures. Especially the 

web service is managing an electronic device and not a piece 

of software. Normally a DPWS service is offering some 

simple data like name and version which can be used by a 

software engineer. But to set this information is not a fix rule.  

Thus the point “Reuse at design level” decreases the 

reusability in the area of software engineering. DPWS does 

not support any extended quality factors for software 

engineering yet. Also in the scenario, no quality measurement 

was used. In the topic “Additional reuse information”, 

different views are important. During the development time, 

documentation and specification were developed. These 

artefacts can be “reused”. DPWS only provides small text 

fields for information during the runtime. Special device 

description approaches exist [38] which are used during the 

runtime of the scenario to acquire additional information. So 

DPWS has approaches to get additional information for reuse. 

This is also important for the last point of the reusability 

analysis. In order to find and manage this information, special 

content management systems are necessary. DPWS itself does 

not provide any support for this. During the runtime and the 

development time of the scenario, no system was used. 

Nevertheless, this is one of the important points for 

reusability. But DPWS service can be very easily discovered. 

Thus and the self describing possibilities makes DPWS 

service extremely useful compared to normal web services 

 

Research challenges comparison 

In the area of service foundation, four different factors are 

defined. During the developing time the hosted and hosting 

services were built and dynamically loaded into the devices. 

This shows that DPWS Services can easily adapt to 

dynamically reconfigurable runtime architectures. For 

example: if a device is “online”, its services can be easily 

reconfigured. The second point “End-to-end security 

solutions” is handled by the DPWS stack. Since DPWS uses 

WS-Protocols it can also use security protocols. In the 

experimental scenario a special binding object was built. This 

object inherits the basic functionality of a DPWS binding of 

the C-Stack. This also includes normal HTTP Binding 

Security options. A DPWS based service can also be 

programmed in a way that it only accepts security based 

binding. Infrastructure support for data and process 

integration does exist. In the scenario the work packages are 

simulated by the ERP System. This system receives feedback 

from the production line and the ERP System or from a user. 

It has to acknowledge some states of the production line. By 

using events and subscribing, it is very easy to bring a system 

or application into a process. Semantically enhanced service 

discovery is not supported by the DPWS. It only supports 

information fields, as for example name, friendly name and 

device scope of a lifter device. 

For Service Composition there are four points in the focus 

of this research. The point “Composability analysis for 

replace ability, compatibility, and process conformance” is 

not supported by the DPWS system. DPWS does not have 

behavioural or semantic conformance. The only composition 

of service was part of the orchestration engine, which did 

such conformance by itself. The built services in this scenario 

do not support dynamic and adaptive processes. It is possible 



to build services which adapt themselves, but this has not 

been part of the DPWS API yet. Due to the fact that DPWS 

uses web service protocols, QoS-aware service compositions 

are possible (see dynamically reconfigurable runtime 

architectures), but it is not as highly detailed as it will be 

required in the future. Business-driven automated 

compositions were made by the orchestration engine. With a 

Petrinet based implementation it reacts on events. The same 

scenario was made with the Decision system. In the scope of 

Service Management & Monitoring, DPWS does not support 

any of the criteria. In the scope of Service Design und Service 

Engineering, four different criteria exist. The first criterion 

“Engineering of service applications” is handled by the 

scenario. In the development time services are built with the 

help of an integrated development environment (IDE). In this 

case the IDE was Visual Studio 2005. During the runtime a 

service-based application was built by the orchestration of the 

different device services in a specific process model. So the 

orchestration engine “built” service-oriented software. 

Flexible gap-analysis techniques were not used in the 

scenario. However, the fact that the hosting service can be 

changed during their runtime is a basic element for future 

research in this criterium. Service versioning and adaptability 

do not really exist. The scenario shows that it is possible to 

receive events from the hosting services, but this depends on 

implementation. The DPWS Standard does not define 

interfaces or methods to detect problems in service 

interactions, to search for alternative solutions or to monitor 

service-execution sequences step by step. Some simple 

debugger exist at the moment. Inside the shown scenario the 

service governance was not shown. The missing functionality 

in QoS and the orchestration of an external system makes it 

clear that DPWS is not able to meet business QoS objectives. 

V. CONCLUSIONS AND FUTURE WORK 

This result is a software engineering extension to the 

research roadmap of [14] and shows that DPWS based web 

services can be used for modelling and as interfaces for 

electronic devices. The outcome of this is that SOA can be 

used in the area of software engineering and the experience of 

the case study shows that DPWS based web services are easy 

to create and used by software engineers. However, the 

comparison between the important properties of reuse and 

research challenges of web service (see. Table 5) shows a gap 

for the use of DPWS in the future. In the scope of reusability, 

DPWS shows, for example, that topics like context 

dependencies, Quality factors and Repository & discovery 

have to get more focus in order to increase reuse for DPWS 

web services. In the area of research challenges DPWS shows 

according to this analysis that it has answers to some of the 

famous research questions such as in Service Design & 

Engineering and Service Foundation (cf. table 6).  

TABLE 5 
RESULTS OF THE ANALYSIS OF THE EXPERIMENTAL DPWS SCENARIO 
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Some criteria fields, however, are not so good covered by 

DPWS from the view of software engineering, as for example 

Service Composition and Service Management & Monitoring. 

But this does not mean that DPWS is the wrong approach for 

device web service. It shows only the open points of research 

for the future. By following such guidelines DPWS can be 

used more easily in the area of software engineering to 

become more accepted as it is. 
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Abstract

Typically, reusable software units (like classes,
components and services) in object oriented develop-
ment environments have to provide a certain amount
of information. This information is needed during
the development and runtime phase. Typical infor-
mation types are for example documentation, speci-
fication, metrics, technical properties, etc. In differ-
ent usage levels, information may have different values
for software engineers. The availability of information
determines the capabilities of a unit, due to different
users employing different information to decide about
the reuse of a unit. Again, other information is crit-
ical for the success of the entire development process
when applying certain procedure models. Thus, re-
trieval of these units and their contents is important
for reuse. However, this is still a problem since a lot
of expert knowledge is needed to find, adapt, and inte-
grate reusable software units. To solve this problem, it
is necessary to understand information demand in the
area of software unit reuse. This paper discusses an
existing information demand model of the knowledge
science area and applies it to the field of software unit
reuse to support analysis of software reuse problems
To conclude, a model will be defined to visualise the
coherence between information demand and software
unit reuse knowledge.

1 Introduction

The area of object oriented software development
creates many different units of modelling. Frequently
used units are Classes (e.g., Java Class), Components
(e.g., .NET Libraries), and Services (e.g., WebSer-

vices) [18]. In the scope of this paper, a unit is clas-
sified as a deployed and function-complete component
that can be reused. Each of these types of units pro-
vides different information (like machine or human-
readable information) that can be used at different
steps within development processes [20]. Two impor-
tant problems are identified by using these units of
modeling: development issues related to a common
view of these different units [18] and the decision to
reuse a unit upon the available information [16]. Typ-
ically, Software Reuse Environments (SRE) support
software developers by handling these problems. The
main concept is to combine three important usages in
one environment: reuse repositories, automatic inte-
gration of software units, and searching of these units.
Current Integrated Development Environments (IDE)
may be seen as SRE systems [8], but no approach com-
pletely corresponds to all three general ideas about
SRE [8]. It is the authors opinion that the idea of SRE
systems is to support software engineers even if knowl-
edge about “finding” and “integrating” is missing. It is
especially this missing knowledge about reusable units
that avoids or limits the reuse [17]. This poses the
question whether this missing knowledge has an im-
pact on the reuse of software units.

First, the term “missing knowledge” has to be de-
fined. The authors research is focused on three typical
reuse steps that can be defined as finding, adapting,
and integrating. These can be found in the most com-
mon or custom created reuse processes. A software
engineer needs knowledge to find, adapt, and integrate
a unit. If this knowledge is available, the reuse is suc-
cessful (from the knowledge perspective). However, if
the knowledge is not adequate for only one step, the
reuse is not successful. This means if a user does not



know how to search a unit he/she may not found it.
The result will be a unsuccessful reuse of this software
unit. Also if a user found a unit and he is not able to
transform or adapt it for his focused technology, the
unit will not be reused. In the case of a found and
adapted software unit, the user must be able to inte-
grate it into his specific development environment. If
the developer is not able to do this, the unit will not
be (re) used. Therefore, missing knowledge is defined
as non-adequate information for the reuse (focusing:
finding, adapting, and integrating) of a unit.

The authors hypothesised that the problem of
missing knowledge reduces the reuse of software units
and can be visualised on the base of an information
demand model.

The goal of this paper is to visualise the interre-
lation between information demand and software unit
reuse. The result may be used to support or analyse
software unit reuse. In the following paragraphs, an
existing information demand model will be discussed.
Based on these results, the information demand model
is applied to the area of software unit reuse. An ex-
isting critical success factor model for software unit
reuse will be mapped to the new model to show that
it can be used in the field of software unit reuse. Fur-
thermore, the new model will be used to visualise the
problem of missing knowledge. This means to show in
a graphical way which kind of knowledge is needed for
software reuse. The same visualisatzion can be used to
analyse critical success factors. The paper concludes
by discussing whether information demand in the area
of software unit reuse can be visualised.

This work is part of the research on a Service-
based Software Construction Process (SSCP) incor-
porating the field of Software Reuse Environments.
The goal of this research is to find a semantic model
(about finding, adapting, integrating, and deploying
of software units) combined with service technology
that supports software engineers by performing soft-
ware reuse (finding, adapting, integration, and deploy-
ing) without having all needed information. The paper
contributes to the research area by enhancing a basic
model to visualise the coherence of missing knowledge
and software reuse knowledge This new model can be
used in the future to analyse reuse problems based on
missing knowledge.

2 Information demand

2.1 Description of information demand

Information demand (ID) is defined as the type,
amount, and quality of knowledge that a person needs

to fulfil a task within a specific amount of time. Mea-
suring ID is problematic because it depends on the task
definition, the goals, the people who deal with it [14],
and the knowledge criteria [1]. ID can be split into two
sub definitions: objective information demand (OID)
and subjective information demand (SID). OID de-
scribes all information which solves the users problem.
This information is the amount of existing information
that will theoretically solve a specific problem It can
be described as a set of solutions. Similar to OID, SID
describes all information that is supposed to solve the
problem, from the subjective point of view of a user.
Because of that, this information may not be able to
provide a real solution. Another important factor in
the area of ID is the information provision (IP). This
defines information that is actually provided by a sys-
tem and can be utilised by formulating an information
query (IQ). IQ is a query which is normally created by
a user who is searching for a solution which is executed
by a search system. This query is based on the SID of
the user. The useful result referred to as actual infor-
mation state (AIS) in this paper is the intersection of
the areas of SID, OID, IP and IQ. Figure 1 shows the
relation:

Figure 1: Information Demand [14]

As a result of this model, AIS is defined as the
area of the information model which includes informa-
tion that

• achieves the task

• can be understood by the user

• can be enquired after by the user

• and is provided.



2.2 Use of information demand

To increase the overlapping area of OID and SID,
the Critical Success Factors methodology [16] can be
used [14].. This approach may be used for business suc-
cess factors, but can also be adapted to other domains
(e.g., Enterprise Security Management [2]) Thereby,
factors are identified that are required to fulfil a task.
These factors will be related to specific elements of
the information demand model. Based on this rela-
tionship, custom analysis can be performed to identify
possible risks in a project [14]. Therefore, an analysing
process based on this may be structured as follows:

1. Identify important success factors for a project.

2. Apply the factors to an information demand
model.

3. Identify problems and risks by analysing which in-
formation demand element is affected by a prob-
lem or risk that could affect a applied success fac-
tor.

4. Prepare training sessions to minimize the risks or
problems.

The following sections will focus on point 2 and
3 of this process and connect the general idea of infor-
mation demand with the area of software unit reuse.

3 Information demand in the area of

software unit reuse

3.1 Definition of information demand
from the software unit reuse perspec-
tive

The presented definitions in Section 2 are not re-
lated to the area of software reuse. This relation can
be created by redefining the terms of Section 1 from
the perspective of software reuse. This represents the
novel contribution of this publication. The OID can be
related as a container describing all software units that
may solve a problem. From the software reuse per-
spective, the important tasks of reuse is to find and
integrate a reusable software units. This unit fulfils
technical, functional, and business requirements [17].
As a result, OID describes all software units that can
be used as solutions . SID is related to the users abil-
ity to express technical, functional and business in-
formation about a needed software unit. Again, this
also includes units that do not solve the problem, con-
trary to the users beliefs. Previous studies show this as
an important problem of knowledge reuse [1]. In the

reuse area, IP can be defined as the real availability
of reusable software units and their descriptive infor-
mation. Thus, IP is realised by repository systems re-
sponsible for providing software units. Typically soft-
ware units are provided by repository systems [1]. The
user creates and accomplishes an IQ by using special
tools (SRE-Systems)[8]. The AIS in the area of soft-
ware unit includes all reusable software units that:

• theoretically solve the problem,

• are provided by a component provider or reposi-
tory system,

• are understood by the user

• are described by the user request (part of the users
query).

Figure 2 shows the relationship between the nor-
mal information demand and information demand
based on software unit reuse. The model is referred to
as Software Reuse Information Demand (SRID) model
by the authors of this publication.

Figure 2: Software Reuse Information Demand (SRID)
Model

The goal is to increase overlapping areas be-
tween the different elements of an information de-
mand model, in order to increase the mount of so-
lutions, which is also an important aim of the soft-
ware unit reuse area. This can be achieved by defin-
ing/identifying the critical success factors of software
reuse and relating them to the model [14]. (See Section
2.2)

3.2 Analysis of critical success factors in
software unit reuse

As mentioned in Section 2.2, an Information De-
mand Model can be used to identify risks by referring



critical success factors to the model. Usually, this is
done in the business area [16][14]. The idea is to map
a project specific procedure model to an information
demand model. The information demand model iden-
tifies the information demand fields and the procedure
model the typical process steps or aims in a project.
By doing the mapping information demand will be
mapped to project steps or aims. Project leader can
now identify which project step or aim is at risk, be-
cause the related information demand. Before this step
a project leader must be identify which information
demand field is at risk in his project or team. In the
scope of this paper, this methodology will be adapted
to the area of software reuse. First, critical success fac-
tors will be identified. This is necessary because these
success factors will be analysed and assessed in the
new model. In the area of software reuse, critical suc-
cess factors can be identified by analysing the typical
reusability metric methodologies [17]. The following
metric methodologies are taken from the reusability
metric analysis of [17] and described briefiy.

• Cost productivity model (mathematically based
model)

• Return of invest model (mathematically based
model)

• Maturity model (mathematical model / process
based model))

• Failure modes models (process based model)

• Reusability model (property based model)

The Cost Productivity Model is an approach that
aims to calculate the advantages of software develop-
ment based on cost [17][6]. From a development point
of view, the development of a reusable software unit
is more expensive than the development of software
units without reusable properties [17]. However, from
the commercial point of view, software reuse is cheaper
than development of a new unit [17]. The Return On
Invest (ROI) model analyses the ROI of software de-
velopment from the perspective of software reuse This
methodology is related to the Cost Productivity Model
Cost Productivity Model [17][13]. The Maturity As-
sessment Model deals with the measurement of im-
provements in a software unit reuse process. There-
fore, different models exist (see [17],[11], and [4]). The
success factors of the Failure Modes Model describe a
successful reuse process. This is possible if reusability
is focused, a unit exists, the unit is available, the unit
was found and the unit is valid. Validity means it is
able to fullfil the users requirements, and is capable of
integration. A reuse process is not successful if one of
these success factors is not applicable [17][7].

The last measurement of success factors to be
discussed is the Reusability Assessment. The core
methodology is to identify reusability success factors
of a given reusable software unit, for example fewer
parameters [17][6]. In the scope of this analysis, the
Failure Modes Model is a usable example of success
factors that can be used in the SRID model. This
is based on the fact that each success factor of this
model represents a reuse process step. The result of
all steps represent a reusable software unit for a user.
The direct link to software reuse makes it easier to map
these steps to the SRID Model. Other models based on
component properties (like Reusability Assessment) or
mathematical functions (Return On Invest model) are
also feasible, but are based on higher abstraction to
map them to software reuse demands. In the scope of
this paper, it is important to provide a simple exam-
ple. The success factors of the Failure Modes Model
[7] may be mapped to the SRID model in the following
way (see also Figure 3):

• Intention for reuse: This is the users aim to
reuse a software unit. In the scope of the SRID
model, this is shown by the IQ definition.

• Part exists: A unit exists if it is theoretically
possible and able to solve the problem. In the
SRID model, this corresponds to the OID.

• Part available: A unit is available if it is pro-
vided by a unit vendor or a repository system.
This complies with the IP area of the SRID.

• Part found: Part found: A unit has the state
“found” if it is theoretically possible, understand-
able by the user, requested, and found by the user.
This is shown in this model with AIS.

• Part understood: Part understood: A unit is
understood if it is theoretically possible and the
user is able to understand it. In the SRID model,
it corresponds to the overlapping area between
OID and SID.

• Part valid Part integrateable: Both success
factors depend on three properties:

– They must be part of the theoretical amount
of solutions (OID)

– They must be provided by a vendor or sys-
tem (IP)

– They must be part of the users subjective
information demand (SID)

When using the Failure Modes Model, a reuse is
successful if all success factors are successfully fullfiled.
This is demonstrated by the AIS in the SRID Model



Figure 3: Software Reuse Success factors in the SRID
Model

(see Figure 3). Generally, the critical success factors
within the Failure Modes Model can be mapped to
a model based on information demand in a graphical
way. This poses the question how this visualised map-
ping supports the software engineer.

As mentioned in Section 2.2, the reference be-
tween success factors and an information demand
model helps to identify risks in projects. For example,
the success factor “Part understood” is the overlapping
area between SID and OID. If a problem reduces the
area of SID, this overlapping area may also decrease.
As a result, the specific success factor, which must be
fullfiled for successful reuse is vulnerable. This poses
a certain risk to the project.

4 Visualising Information Demand Ex-

amples in the Software Unit Reuse

Area

In Section 3, the SRID model was defined and
explained by visualising an example of a reuse met-
ric model. This is now used to explain the specific
missing knowledge problems that are discussed in this
document. The hypothesis of the authors is that the
problem of missing knowledge reduces reuse of soft-
ware units and can be visualised on the base of an
information demand model. As mentioned before, the
problem of missing knowledge is applied to the three
common reuse steps: Finding, adapting, and integrat-
ing. Table 1 shows typical based on missing knowledge
in the context of these three reuse steps. In the field
of “Finding” users have to know where a repository
can be found. This is a problem especially in global
companies with repository on different locations. Also
the usage knowledge of these systems is important to
know. In the field of “Adaption” it is important to

know how to adapt software units to fit special require-
ments. Typical examples are source code adaption,
configuration management, cross compiling, technol-
ogy transfer (i.e. Java to .Net), and domain transfor-
mation. Doing such kind of adaption without knowing
the procedure needs a lot of time or is not possible. In
the last field (“Integration”) the integration of soft-
ware units into development environments is focused.
Software reuse may at risk if a user dows not know
how to integrate software units in his development en-
vironment. This includes the problem of missing con-
figuration knowledge.

This section aims to visualise two examples of the
problems listed in Table 1. The first example describes
cases in which users do not know how to formulate a
query [17][19] (Refers to problem No. 2). Another ex-
ample is that users with less advanced knowledge are
frequent users of software unit reuse [17][5] (Refers to
all problems of Table 1). These examples can be used
to demonstrate the process steps mention in Section
3.2:
Identifying important success factors for a project:
For the verification, the Failure Modes Model is used.
(see Section 3)
Referring the factors to an information demand model:
For this step, the mapping between the SRID model
and the success factors of the Failure Modes Model is
used. (see Figure 3)
Identify problems and risk by analysing which infor-
mation demand element is affected by the problem or
risk and which success is vulnerable:
In the first example named “QueryProblem” (QP), the
user is not able to formulate a search query. This
may have several reasons: missing knowledge about
the searched unit, missing knowledge about the tool
that is used to formulate the query or the query lan-
guage. This problem is classified as a “Finding Prob-
lem” (see Table 1). Consequently, the size of IQ in the
SRID model is affected. According to the mapped Fail-
ure Modes Model, the usable area of the “Part found”
success factor decreases. This is a logical result be-
cause of “Part found” is the overlapping area of OID,
SID, ID, and IQ. If one of this areas decrease the over-
lapping area may also decrease. Furthermore, the AIS
will be affected. Because of a query is in itself a kind
of validation (from the user’s perspective), it can also
affect the Part valid success factor. Figure 4 visualises
this.

The other example named “YoungUserProblem”
(YUP) is due to the fact that users with less advanced
knowledge for example young professionalsare frequent
users of software unit reuse. This affects the SID,
which is defined as the amount of conceivable software
units providing a solution. People with less advanced
knowledge also have less knowledge about reusable



Reuse Step Problem No. and Name Problem Description Reference

Finding
1 Find repository User has to know where to find a repository [10]
2 Access repository User has to know how to access a repository [17]
3 Use repository User has to know how to use a repository [17][19]

Adaption
4 Unit adaption User has to know how to adept a software unit [1]
5 Transformation (Tec.) User has to know how to transform a software unit into

another technology
(e.g.
[15])

6 Transformation (Domain) User has to know how to transform a software unit into
another domain

(e.g.
[15])

Integration
7 IDE Integration User has to know how to integrate a unit into his IDE
8 Unit Setup User has to know how to setup a unit for his specific project

Table 1: Problem of missing knowledge

Figure 4: Impact of missing formulation knowledge

software units which means finding, adaption, and in-
tegration steps are affected. For example, a software
engineer searching a software unit within the area of
a specific technology (e.g., SOAP-based web services)
could have problems reusing a software unit if he is not
an expert for the technology. This example refers to all
reuse steps of Table 1. As a result, the success factors
“Part understood”, “Part valid”, “Part integratable”,
and “Part found” are affected directly. Figure 5 illus-
trates this.

The result of this analysing step is a list of af-
fected success factors. Figure 6 shows this on the base
of the SRID model. Prepare trainings and sessions to
minimise the risks or problems: Based on the previous
analysis, special tasks may be performed to reduce the
risk for the success factor. In the QP example, a query
tool training for the project team may be a potential
solution to limit the risk. The trained users are able to
create an execute queries more correctly. As an result
the ID area will increase. This may also include an in-
creased overlapping area between SID, OID, and ID.
More correct solutions can be found. This is shown
in 7 in the affected area of IQ. In the YUP example,
individuals can be trained on special software units or

Figure 5: Impact of missing user knowledge

specific technology to increase their knowledge. The
result will be an increased area of SID. This includes
also and increased overlapping area between OID ans
SID. As an logical result the risk factors will decrease.
This may seen as an positive effect for the project.
Figure 7 visualises a decreased SID. If this happens all
overlapping areas of SID also decreases. This is shown
in the affected area of SID.

IQ is affected, which also applies to the success
factor “Intention for reuse”. As a consequence, the
project is directly vulnerable. In the YUP example,
the SID, not defined as a success factor, is affected.
However, the analysis shows that success factors are
also affected (indirectly). Both examples can be vi-
sualised in the SRID model. The authors behold the
hypothesis that the problem of missing knowledge re-
duces reuse of software units and can be visualised
on the base of an information demand model, as ver-
ified in the scope of the given examples. These two
examples demonstrate how to identify the impact of
problems on critical success factors of software unit
reuse by using a model based on information demand.
An important difference between the two examples is
the directly affected element of the SRID model. In



Figure 6: Affected success factors in the SRID model

the QP example, the area of IQ is affected, which also
applies to the success factor “Intention for reuse”. As
a consequence, the project is directly vulnerable. In
the YUP example, the SID, not defined as a success
factor, is affected. However, the analysis shows that
success factors are also affected (indirectly). Both ex-
amples can be visualised in the SRID model. The au-
thors behold the hypothesis that the problem of miss-
ing knowledge reduces reuse of software units and can
be visualised on the base of an information demand
model, as verified in the scope of the given examples.

Figure 7: Trained SID (technology knowledge) and IQ
(Search tool knowledge) decrease negative effects

5 Conclusion and Future work

The paper demonstrates the relationship between
a common information demand model and the soft-
ware reuse area focused on missing knowledge of find-
ing, adapting, and integrating of a reusable software

unit. As demonstrated, it is possible to adapt the com-
mon information model to specific definitions of soft-
ware unit reuse. As a result, a new information model
has been created that is based on software reuse. It
is called Software Reuse Information Demand (SRID)
model. As a second step of this demonstration, the
SRID model was used in a critical success factor anal-
ysis to visualise critical success factors as knowledge
areas. This analysis shows that the SRID model can
demonstrate critical success factors of software reuse.
In the last step, two reuse problems based on missing
knowledge are taken from a list of identified knowl-
edge based problems as examples. These two exam-
ples of software unit reuse problems given by scien-
tific research were mapped to and visualised by the
SRID model. This combination (SRID model, project
relevant success factors, and project relevant reuse
problems based on missing knowledge) may used as
analysing method of software unit reuse inside soft-
ware development projects.

The paper demonstrates which success factors in
the SRID model may be affected by problems based
on missing knowledge. The demonstrated examples
also verified that information demand may help to ex-
plain the impact of problems in software unit reuse
that are based on missing knowledge. In future, the
new model may be used to analyse the problems of
software unit reuse in more detail. This may help to
find solutions to support software developers, software
architects, and individuals managing reuse. An impor-
tant research question for this future analysis method
may be how to reduce the impact of missing knowl-
edge to software unit reuse. This question will be ad-
dressed in the authors future research. Mapping the
SRID model to different reuse metrics or problems can
simplify the analysis of software reuse problems from
an information demand perspective. The employment
of the SRID model as a comparison platform is also to
be explored.
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Abstract. Today’s software units (classes, components and services) require
large amounts of information during their development and use that can be docu-
mented for future reference, like documentation, multimedia files, specification,
and models. The availability of certain information, for example documentation,
is one of the factors that determines the capabilities of a unit, especially by reusing
it. Additional information is necessary and essential for the success of the en-
tire development process when applying certain procedure models, like Rational
Unified Process (RUP). Acquiring these units and their content is important for
reuse. However, this causes a problem in the area of global cooperation. Cur-
rently, approaches are missing that deal with software reuse in distributed soft-
ware reuse scenarios. Especially the problem of missing knowledge about inte-
gration of reusable software units in these scenarios has not yet been addressed.
This knowledge is also an important factor for reuse and reuse decisions. As a re-
sult software development teams locate at different locations my have problem to
integrate exchanged reusable software units. This paper discusses the challenges
of integration in distributed reuse scenarios by focusing on an industrial example
and create a model extension for a existing reuse system. As an result integration
of reusable software units can be done remotely without the necessary integration
knowledge.

1 Introduction

In object-oriented software development, various units of modeling are used. Typical
units are classes, components, and services [11]. Every unit type provides a certain
amount of information that is be used based on their underlying technologies, like ser-
vice description, documentation, or models [14]. In the scope of this paper, a compo-
nent is a deployed component. There are two important problems: development issues
related to a general view of these different units [11] and the decision to reuse a com-
ponent based on the available information [3]. Software Reuse Environments (SRE)
support software developers by addressing these problems. The general idea is to have
three important functions in one combined environment: reuse repositories, automatic
integration of software units, and the searching for these units. Current Integrated De-
velopment Environments (IDEs) are SRE systems. However, none of these approaches
completely fulfill the requirement of SREs to include all functions. [2]. Most of these

⋆ The authors would like to thank the French company Schneider Electric for providing infor-
mation about distributed existing software engineering scenarios.



SRE systems support the integration of information in a specified environment by us-
ing extensions that can directly communicate to a SRE system (e.g. Eclipse and Visual
Studio). These functions can be used in distributed and non-distributed scenarios. Typi-
cally, in such a scenario, the decision maker, the person who decides to reuse a specific
software unit, is the same as the integrator, implementing the reuse. However, there are
scenarios in which the decision maker and the integrator are not the same person. In the
scope of this paper this is called a distributed scenario because the individuals can be
located in different locations and differ in their domain of expertise. Typically, software
architects are this kind of decision makers in software development [4]. Figure 1 shows
these focused scenarios:

Fig. 1. Distributed and Non-Distributed Scenario.

The authors of this paper hypothesize that the reuse of software units in a distributed
scenario has a negative influence on the reuse. These negative impacts can be mitigated
by providing an integration model and a service based communication architecture to
achieve the integration. Challenges of the distributed software reuse scenario will be
discussed in this paper. The aim of this paper is to provide a solution for distributed
software reuse scenarios that can be used to support software development. This is
achieved by extending an existing software reuse architecture to include an integration
model. This solution is the result of research into Service-based Software Construction
Process (SSCP) incorporated into the field of SRE and the software unit reuse with lim-
ited knowledge. This paper’s heuristic value lies within the enhancements to existing
SOA-based (Service Oriented Architecture) architectures (SSCP System) by support-
ing the handling of units of modeling, like classes, components, and services, for use
by decision makers with integration tasks. The paper concludes with the fact that sup-
porting distributed scenarios can be done with an integration extension of the SSCP
system.

2 Two Problems in a Distributed Reuse Scenario

2.1 Problem Identification

Distributed software development scenarios cause special problems in Software Archi-
tecture, Engineering Processes, and R&D Organisation [1]. Especially the sharing of
reusable software units between teams have a deep impact on costs:
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“A problem observed [...] is that when decoupling between shared software assets is
insufficiently achieved is excessive coordination cost between teams. One might expect
that alignment is needed at the road mapping level and to a certain extent at the planning
level. When teams need to closely cooperate during iteration planning and have a need
to exchange intermediate developer releases between teams during iterations in order
to guarantee interoperability, the coordination cost of shared asset teams is starting to
significantly affect efficiency.” [1]

To get an impression of the problems that may exist in a distributed reuse scenario,
it is helpful to observe an real life industrial scenario. For this, data from the company
Schneider Electric is used [8]. Information about used technology and methodologies is
provided by project leaders of Schneider Electric): Schneider Electric is a French com-
pany that focuses on the automation and energy industries. Employing approximately
130,000 people, divided into over 100 organisations, Schneider Electric is divided into
in 5 different domains: Building, Industry, Power, IT, and Energy. Each domain has
locations all over the world in many different countries. In each of these domains, soft-
ware development is an important part of the work and the provided software solutions.
Typical software development areas are server-, desktop-, web-, and embedded device
applications. Various locations work together to fulfil a task and provide a software
solution. Thereby, typical units of modelling (like classes, components, and services),
implemented in different technologies, are used (like .NET or Java). Schneider Electric
uses the typical component worlds (see [10]). Each location uses its own repository for
these units. However, the repository types and their usage differs. The authors analysed
6 software development projects of Schneider Electric from 2006 to 2010 that uses
a distributed scenario (limited to two locations) evaluating four different aspects: (1)
Which partner is developing the Software?, (2) Which partner is making architectural
decisions?, (3) Which partner is selecting reusable software units?, and Which partner
is integrating the selected reusable software units?

The result of this analysis can be describes as follows: (Answer Q1 and Q2) The
characteristics of the analysed scenario include that the partner who selects the reusable
components is not the partner who is doing software development. Most time Indian
software development teams were responsible and team from other countries are the
software designer making architecture decisions.(Answer Q3) Also selecting of reusable
software units, like corporate identity or login components are selected by the non de-
veloper teams. (Answer Q4) In each analysed project the integrating task was done by
the software development team. The previous analysis shows a distribution pattern. The
development task and the development decisions are done by separated teams located
in different countries. Such patterns include different problems. In the following section
the problem of accessibility and integration will be discussed and analysed.

2.2 Accessibility Problem

The accessibility problem for software unit reuse can be explained using the Software
Reuse Information Demand Model (SRID) [13], that is based the Information Demand
Model [6]. From the SRID point of view of information depends on five factors :
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– Objective information demand: This is the entire (theoretical) amount of informa-
tion that can solve a problem.

– Subjective information demand: This is all information that the user believes can
solve the problem.

– Information provision: This is all information that is accessible.
– Information request: This is a search request the user formulates to find information

relevant for solving the problem.
– Real level of information: This is all information that is correct, is available to the

user, is accessible, and is requested by the user.

All these 5 factors are part of the Software Reuse Information Demand model (see
Figure 2). The general problem of information demand arises because the real level of
information is a subset that is limited by the user’s ability to formulate the request (Real
level of information). Figure 2 shows the relationship between the five factors.

Fig. 2. SRID model [13] (based on [6]).

In the area of accessibility this problem can be identified when a user has to search
for a reusable software unit in an external environment. Missing knowledge about a
providing system (repository) limits the information request [9]. The user is less able
to formulate a request. The severity of this problem comes from most users being ju-
nior, inexperienced software developers [9]. Another accessibility problem occurs when
the user has no access to the software reuse environment of another location. This is
an information demand problem based on infrastructure requirements. In the case of
Schneider Electric, both accessibility problems occur.

2.3 Integration Problem

A user who wishes to integrate a reusable software unit has to know about the dependen-
cies, structure, configuration and technology of the unit. Especially configuration has
been a problem for some years [7]. This limits the overlapping area between subjective
and objective information demand (See Figure 2). The result is a strong limitation of
the real level of information. This is demonstrated in the following simple example: In
the initial situation the reusable component library for discovery device profile based
web service is a .Net library called ’Discovery.dll’. It uses another reference called
’DPWS.dll’ that is an unmanaged .NET library and includes some specific libraries that
are used by the Discovery.dll file. A configuration file is required (’Config.xml’) that has
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to be placed in the same directory as the Discovery.dll file. By using Visual Studio, the
user has to perform following integration steps to create this setup:

1. add the Discovery.dll as a reference, because of the user will require functions,
structure, user interfaces or data from this library.

2. write a script to copy DPWS.dll in the release directory after compiling, because
of the unmanaged libraries can not be easily managed by the IDE.

3. add the Config.xml to this project and set the copy attribute to “Copy if newer”,
because of this file contains settings that will be used during runtime.

This example illustrates the complexity of software unit integration for a specific
environment. If the user is unaware of these integration steps, the process is likely to be
time consuming. Therefore, the problem of integration is to know these additional setup
steps. Each reusable unit needs further steps for integration. In a distributed scenario the
individual who is aware of these steps cannot be in a different location. In this case the
integration problem is also a problem of information demand.

3 Solution Approach

Approaching the problems involves two different models. The first is an integration
model and the second an architecture extension to support distributed scenarios. The
model, the architecture, and the combination to support distributed software unit reuse,
constitutes the scientific contribution of this paper.

3.1 An Integration Model as Reuse Model Extension

In the context of the underlying research, the authors developed an ontology to the
subject ’Service-based Software Construction Process’ in order to counteract the prob-
lems experienced in software unit reuse [14]. Also an environment was build using this
ontology and enabling users to do software unit reuse (focusing search, adaption, and
IDE integration of units) without the complete necessary knowledge. The used ontol-
ogy serves only the unified description of units of modelling (classes, components and
services). This includes the description of technological facts (components, services,
etc.).

The ontology consists of 4 parts. Part 1 shows the access to the ontology: The
problem-solution approach’ Part 2 relates to ’general business information’ about the
solution (e.g., manufacturer, name, and author). Part 3 describes the solution as a tech-
nical unit (e.g., a type of unit, a technology, a file format, or files). In Part 4 the technical
contents are described thereby explaining a semantic search approach that is discussed
in a previous publication (See [15]). If an instance of the ontology is generated (e.g.,
by the registration of a newly developed unit), the user has to specify information that
is stored in the appropriate area of the ontology. The data may also be entered auto-
matically into Part 3 of the ontology. This is possible as the technical data is generally
detectable (such as file size, file type, file name, and technology). Nevertheless, the
data from other sections of the ontology is not automatically detectable. The ontology
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describes services, components, and classes in the same way and abstracts them into
units (unit view). Based on this abstraction, the ontology will be extended by collection
requirements of different use cases (called views). Figure 3 demonstrates this relation-
ship.

Fig. 3. Description layers of the Service based Software Construction Model.

Fig. 4. SSCP Model Section 3 - Technical Descriptions.

The following section displays and further describes modelling of the integration.
This corresponds to Part 3 of the ontology. Moreover, it is focused on the problems
indicated in Section 2. Figure 4 shows Part 3 of the ontology in a simplified way, de-
scribing the technical building of a unit. The ’UOM’ entity is the main part of the on-
tology. This entity is linked with the ’Unit’ entity on equal terms. ’Unit’ is described in
multiple ways, the first being the technical presentation broken down into four smaller
entities (’Snippet’ for code units, ’Service’ for service-based units, ’Class’ for object-
oriented class units, and ’Component’ for deployed software components). The file con-
tent of a unit can be classified as either machine-readable or human-readable content.
The machine-readable content is a set of files (the ’File’ entity) that can be further
classified by their usage content (code fragment, class, binary code, and service infor-
mation). These usage entities are linked to the technical presentation. The other content
of a unit is shown by the human readable content entity. This entity represents files that
are further classified by the presentation mode (document, video, audio, and picture).
The final piece of the unit is the technology description, for which a simple approach
has been selected. The ’Unit’ entity has a relationship to the ’Environment’ entity that
is described through the ’Platform’, ’Technology’ and ’Programming language charac-
teristic’. For example, a component may depend on the .Net framework (based on the
32-bit variety) and the C# programming language.
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A unit has been represented as a common description of classes, components, and
services and will now be extended with integration information. The ’Real File’ node
in the base semantic model may have instances of integration descriptions. Each node
in the semantic model contains a unique identifier (ID) and a friendly name property.
This is not sketched in Figure 5. Three questions have to be answered in relation to unit
integration (Questions are defined from the result of the component analysis of [5]):
(1) What is the target platform? (2) How should the unit be integrated? (3) What is the
scope of the unit?

The target platform has to be validated before integration can proceed. This is crit-
ical, as the current research of the extension model includes parts that are platform
dependent. A platform is marked by the ’IDE’ node that has a relation to the ’environ-
ment’ mode of the base model. The meaning of this relation is that the ’IDE’ shows
which kind of environment can be used to host, build, and execute a software unit. The
’Real File’ node has an indirect relation (given by the base model) to an ’Environment’
node. This relation describes the appropriate environment to use with this unit. From
the semantic point of view, the ’Environment’ node can be used to validate the compat-
ibility between a software unit and the platform of the IDE. For example, a class file
that requires the .NET framework is generally not compatible with a Java-based envi-
ronment (such as Eclipse). The process of integration can be illustrated by detailing the
various integration patterns of the Visual Studio and Eclipse APIs. The following con-
cepts are necessary from the view of the authors and are provided in both environments
Visual Studio.NET and Eclipse (handling in the two environments differs):

– OnlyCopy: This copies a file without referencing it in the solution tree of the
project. This is necessary for second level dependencies that are not controlled by
the IDE environment.

– WebReference: This marks a file as a web reference. Different IDEs utilize different
methods to manage this information. For example, Visual Studio can use a WSDL
file to create a reference to a web service that is based on the corresponding WSDL
description.

– Reference: This copies a file and includes it in the solution tree of the project. This
is a traditional reference that can be included or imported. This is necessary for
managing the dependencies of a unit.

– DoNotCopy: This prevents a file from being transferred into a project’s environ-
ment. All files a unit includes are not necessarily required by the IDE (e.g., docu-
mentation).

– InsertAsText: This flags the content of a file to be treated as text when loaded into
the IDE. This is useful for code references (using or import) and code snippets.

– CopyAsResource: This flags a file to be used as a resource and includes it in the
project (e.g., configuration files).

The scope of the unit is used to create integration packages. For instance, a library
refers to another library as a dependency, so both libraries have to be delivered. This
relation can be modelled by referring an “Integration package” node to the global “unit”
node. A unit is now part of an integration package. Each of these packages includes files
with integration descriptions that are related to an instance of the integration package.
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Fig. 5. Integration model extension of Figure 4 (top) and data model variation.

Figure 5 shows a model integration extension in relation with the normal unit descrip-
tion.

3.2 Architecture Extension

In a previous publication, [12] an architecture of a service-based software construction
CASE- tool was sketched. Figure 6 shows an overview of this sketched architecture:

Fig. 6. Communication Architecture extended version of [12].

The architecture is used to implement a distributed system that deals with the un-
derlying topic of missing knowledge in software reuse (see Section 1). It is capable
of integrating existing software unit repositories and handles them within the seman-
tic model. The server side of this architecture provides different functions like search,
management, transformation, and deployment of software units. On the client side a
management client and an integration client are sketched. In contrast to the manage-
ment client, the development client does not influence the artefacts (groups of software
units with the same business context), such as the deletion of an artefact or software
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unit on the server. Besides searching for artefacts or units of modelling, the develop-
ment client is responsible for the transformation and the integration of transformation
results into the current development project. In this described scenario the integration
client communicates directly to the server. This belongs to a non-distributed scenario.
The user searches, selects, and integrates software units into the project, using the in-
tegration client which is hosted in the IDE (or the host system). This architecture will
be extended by adding an integration plugin next to the Deployment and Transforma-

tion. Analysing the scenarious of Figure 7 two distributed scenarios c are identified by
the authors using the infrastructure given by the architecture of Figure 6: Light-weight

scenario: The integration client receives metadata from the management client about
the unit(s) that are to be integrated. The integration client is able to do a specific search
on the server with a single unit as a search result. Heavy-weight scenario: The man-
agement client sends the integration information directly to the integration client; there
is no need for the integration client to communicate with the server.

The two scenarios differ in the amount of data which has to be exchanged between
the management client and the integration client. In the light-weight scenario, the man-
agement client sends only metadata to the integration client. Therefore, the integration
client can perform the search. In the other scenario, all data required for integration is
sent. Figure 7 illustrates both scenarios:

Fig. 7. Light- and Heavy-weight scenario.

Based on the integration extension for the semantic model (see Section 3.1) a data
model can be created for communications. [12] shows an XML description of data
entities that is used in SOAP based communication between clients and the server.
Figure 5 shows the data model that is used for integration.

Based on the light- and heavy-weight scenarios, a service for the integration client
can easily be defined. The light-weight scenario involves the integration client requir-
ing the meta data and the ID of the integration package of the unit (see Figure 5).
A unit includes all references to file elements, allowing the client to request specific
information about the unit from the server. The heavy-weight scenario requires the
integration client to know a set of integration information. Therefore, all files and
an ID for an integration package is required which describes the integration of the
files (see Figure 5). An web service interface supporting both scenarios (based on the
data model of Figure 4) may described as into two operation: GetIntegrationDataL-

ightWeigth(Guid serverID, Guid artefactID, UOM unit, Guid integrationPackageID)

and GetIntegrationDataHeavyWeigth(FileElement[] setOfIntegrationFiles, Guid inte-

grationPackageID).
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4 Example Scenario Discussion

As discussed in Section 3, the paper focuses on the problems of accessibility and inte-
gration. Section 4 now addresses a definition of a problem approach. The relationship
between both discussions can be demonstrated with a simple comprehensive example.
Given the scenario of Schneider Electric (see Section 2.1), two teams situated in dif-
ferent locations (French and India) are working together on a software development
project. The French team is defining the architecture and preselecting existing software
units that are developed by the same team. The Indian team is responsible for the real
implementation and integration (see Figure 1). Integration Problem: The team in India
has no information about the structure and the dependencies of the reusable software
units. Learning to integrate these units would take a considerable amount of time. By
using the focused architecture and integration model of Section 3, the team can use the
integration description for automatic or manual integration. As a result, the integration
team needs less knowledge about the integration of a specific reusable unit. However,
this is only possible if integration descriptions are available. So the French team have
to insert the information in the SSCP environment. But only one time. Accessibility

Problem: The architecture extension discussed in Section 3 allows the French team
to send information to the team in India. They may send only unit meta-information
(light-weight scenario) or they may send the complete unit description including all in-
formation for integration (heavy-weight scenario). In the first case, the Indian team has
information about the unit, but they have to connect and use the repository tool of the
French team. This only solves one a part of the accessibility problem, because this team
has to know how to access the repository system. They are however, able to formulate
a query for this system. In the second case, the Indian team can directly integrate the
unit without accessing the repository tool (see Figure 1). This result is very important.
The Indian team does not need to access this repository. The accessibility problem de-
scribed in Section 3 can be described by the questions ’Where is the repository?’, ’How
to access it?’, and ’How to use it’. At this point the Indian team does not need to handle
the repository because of the other team is doing this. As an result the different question
does not occur.

Another interesting result is reuse of this integration knowledge. After the French
team added the knowledge to the SSCP system. it is reusable at any time. Different
teams located around the world can be supported.

The example discussion shows that both scenarios (light and heavy-weight) may be
resolved by the solution described in Section 3. However, this depends on the availabil-
ity of an integration model and the distributed scenario in use.

5 Conclusions

This paper demonstrates the problems of accessibility and integration when using a dis-
tributed industrial scenario. This scenario deals with projects that reuse software units
and is implemented by two teams in different locations. Accessibility is a problem if one
team requires access to the repository system of another team without having knowl-
edge of the tool. Accessibility is also a problem, if there is no access to a repository
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system. Integration becomes a problem if the integration team has no knowledge about
the structure and dependencies of the reusable software unit. All problems are based on
missing information. The result of these problems is a negative influence on software
unit reuse (as it may increase integration time, etc.). This illustrates the importance of
information in software unit reuse. A described problem approach uses an extended
semantic model that describes different software units (classes, components, and ser-
vices) in a unified way. This extension describes data that is needed to integrate Studio
and Eclipse. Based on this, a distributed architecture of a software reuse environment
was extended to solve the discussed problems (accessibility and integration). The ac-
cessibility problem is solved by using the architecture to get the integration information
without the need of connecting to a repository system. The integration problem is solved
by providing the integration information as part of the description of the reusable soft-
ware unit. The model combined with the architecture is the described novelty of this
paper. This paper arrives at the conclusion, that the discussed accessibility and integra-
tion problems can be solved by providing the correct meta-information and technical
infrastructure to deliver the information. Integration of reusable software units should
not need expert knowledge. However, this paper only discuss a solution. The created
model and architecture extension should be tested in a additional case study by ad-
dressing the advantages for software developers in more complex distributed scenarios.
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Vorwort 

 
 
Die Tagung EKA – Entwurf komplexer Automatisierungssysteme hat über ihre nunmehr bereits 
20-jährige Geschichte nichts an Aktualität verloren. Von Prof. Dr.-Ing. Dr. h.c. Eckehard 
Schnieder an der TU Braunschweig ins Leben gerufen, wird die EKA seit 2008 im 
Zweijahresrhythmus gemeinsam vom Institut für Automation und Kommunikation (ifak) und 
dem Institut für Automatisierungstechnik der Otto-von-Guericke-Universität in Magdeburg 
durchgeführt.  
 
Schwerpunkte der Fachtagung sind Beschreibungsmittel, Methoden und Werkzeuge für den 
Entwurf komplexer Automatisierungssysteme. Ein gelingender Brückenschlag zwischen 
theoretischen Erkenntnissen und deren praktischer Nutzung ist ein wichtiges Anliegen der 
Tagung. Als deutsch-sprachige Tagung mit wissenschaftlichem Anspruch möchte die EKA den 
Entwurf komplexer Automatisierungssysteme in der großen Breite der eingesetzten Methoden 
und der Vielfalt der Anwendungsgebiete beleuchten. 
 
Neben dem Brückenschlag zwischen Theorie und Anwendung dokumentiert das 
wissenschaftliche Programm der EKA zugleich die Einheit von Regelungs- und 
Automatisierungstechnik. Der Tatsache, dass zu der gemeinsamen Fachdisziplin sowohl 
mathematisch inspirierte systemtheoretische Arbeiten der Regelungs- und Steuerungstechnik als 
auch informatikgetriebene Methoden der Automatisierungstechnik zählen, wird man sich nicht 
verschließen können. Überdies ist eine solche Differenzierung zwar innerhalb der Fachdisziplin 
in gewisser Weise verständlich, historisch gewachsen und akzeptiert.  
 
Für Vertreter aus Wissenschaft und Anwendung anderer Disziplinen ist eine Trennung in 
Regelungs- und Steuerungstechnik auf der einen Seite und Automatisierungstechnik auf der 
anderen Seite dagegen wenig plausibel. Eine ganzheitliche Perspektive auf die verschiedenen 
Facetten der Automation ist mit Blick auf die effiziente Lösung automatisierungstechnischer 
Aufgaben nicht nur hilfreich, sondern vielfach sogar zwingend. In einigen großen Tagungen und 
Kongressen wird eine solche Gesamtsicht zwar in einem umfassenden Programm geboten, 
durch einen hohen Grad der Parallelität von Sitzungen gehen wünschenswerte Synergien aber 
wieder verloren. Bewusst ist die EKA deshalb einsträngig und gut überschaubar gehalten. 
 
Die Komplexität als langjähriger Gegenstand der Fachtagung EKA liefert im Jahr 2012 auch das 
Motto des deutschen Automationskongresses. Nicht nur technische Systeme, auch die 
verschiedenen Bereiche unseres Alltags scheinen durch eine ständig wachsende Komplexität 
gekennzeichnet. Der Kongress AUTOMATION 2012 greift mit dem gewählten Motto 
„Komplexität beherrschen – Zukunft sichern“ die hiermit verbundenen Herausforderungen auf.  
 
Ob in der Fertigungs- oder Prozessindustrie, der Energiewirtschaft, im Verkehr oder der 
Medizintechnik – überall kommt der Automation eine Schlüsselfunktion beim Beherrschen 
komplexer Systeme zu. Getreu ihrem Anspruch steht bei der EKA die Beherrschung des 
Entwurfs komplexer Automatisierungssysteme durch Beschreibungsmittel, Methoden und 
Werkzeuge im Vordergrund. Damit fokussiert die EKA insbesondere wissenschaftliche und 
methodische Aspekte, die bei geeigneter Abstraktion eine Klammer über vielfältige mögliche 
Anwendungen bilden. 
 
 
 
 
 



 IV

 
Das Programmkomitee hat nach sorgfältiger Begutachtung aus den eingereichten Beiträgen eine 
Auswahl für die Tagung EKA 2012 zusammengestellt. Im vorliegenden Tagungsband sind die 
Endfassungen der von den Autoren eingereichten ausführlichen Manuskripte zu Vorträgen und 
Postern zusammengestellt, wobei sich die Reihenfolge an der zeitlichen Abfolge der Sitzungen 
orientiert: 
 
- Beschreibungsmittel 
- Posterpräsentation 
- Modellierung und Entwurf 
- Zuverlässigkeit, Konsistenz 
- Werkzeuge 
- Anwendungen 
 
Vorgeschaltet ist der Fachtagung EKA 2012 wieder ein Tutorium, dessen Beiträge ebenfalls in 
den vorliegenden Tagungsband aufgenommen wurden. Das Systemengineering in der 
Automation wird durch die Interaktionen zwischen technischen Systemen, deren Komponenten, 
den Bearbeitern verschiedener Professionen und vielfältigen Softwarewerkzeugen bestimmt. 
Diese Interaktionen gehen über einen rein technischen Datenaustausch hinaus. Erforderlich ist 
ein eindeutiges Verständnis der Sinnhaftigkeit, d. h. der Bedeutung hinter den Daten. Unter der 
Überschrift „Semantik in der Automation“ widmet sich das Tutorium der EKA 2012 deshalb 
dem Aufgabengebiet der semantischen Beschreibung und daraus ableitbaren 
Assistenzfunktionen. 
 
Im Namen der drei Tagungsleiter wünsche ich Ihnen eine interessante Lektüre des 
Tagungsbandes der 12. EKA 
 

 
Prof. Dr.-Ing. Ulrich Jumar 
im Namen der Herausgeber 
 
 
 
 

Prof. Dr.-Ing. Eckehard Schnieder 
Institut für Verkehrssicherheit und 
Automatisierungstechnik 
Technische Universität Braunschweig 

Prof. Dr.-Ing. Christian Diedrich 
Institut für Automatisierungstechnik 
Otto-von-Guericke-Universität 
Magdeburg 

Prof. Dr.-Ing. Ulrich Jumar 
ifak – Institut f. Automation  
und Kommunikation e.V. 
Magdeburg 
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Abstract: Deployment of software units into embedded devices requires dedicated knowledge. 

Usually, this is specialist knowledge, covering technology (hardware platform, software 

technology) functionality (interfaces, interaction state machines), and processes (deployment 

procedures, rules). Gaining and applying this knowledge requires time. This paper presents the 

results of a case study identifying relevant knowledge for device deployment. The study analyses 

three different embedded device engines supporting service based device deployment. The 

identified knowledge, including how to deploy software units into the analysed device platforms, 

is used to construct a new model and to extend an existing semantic service based software unit 

reuse model. As a result, a usage environment employing this model enables an inexperienced 

user to repeat the stored deployment procedures without having all the required knowledge. In 

other words, these users will reuse the stored software unit knowledge. This paper addresses the 

topic of device deployment and software reuse knowledge.  

Keywords: Software Unit Reuse, Deployment, Information, Knowledge 

1 Introduction 

Deployment of embedded devices is seen as the physical set up of devices in a specific 

environment (e.g. medical devices [BuDoVi2009]). From a software development perspective, 

deployment may be seen as the installation of software on a system [BuDoVi2009]. From here 

on, the term ’deployment’ will refer to the latter definition. The conception of embedded devices 

has changed in the past. Originally, such devices were perceived as [Gill2005]: (1) Specialised 

on a specific task by limited functionality. (2)  Built for an unchanging environment. (3) Limited 

by resources. (4). Nowadays, they are perceived as embedded systems, which are characterised as 

being [Gill2005]: (1) (Self-)adaptive, open and more efficient. (2) Capable of dynamically 

handling multiple tasks. (3) ’Plug and Play’-able for integration. The reason for this change of 

perception can be seen “as a consequence of the integration of IT” [Gill2005] into the field of 

embedded systems. The authors perceive this change to be a result of advancements in hardware 

and software of embedded systems. Over time, hardware became more capable of handling 

increasingly complex software instructions, more advanced software technologies, and platforms 
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[GIMaCa2006], [Gill2005]. This increased flexibility enables the implementation of special 

software features, namely: Fault Tolerance [PiCaSa2008], Security [GoWoBu2008], and 

Dynamic Infrastructure [KarTa2009]. The high number of available embedded devices poses a 

problem for software (re)use. This problem is especially apparent in the area of automation 

where a lot of different types of devices exist. Usually, available devices are distinguished by 

hardware technology, software technology, form factor, performance classes and safety features. 

This results in the fragmentation of both software platforms and libraries for embedded devices. 

Therefore, the task of (re)using such software units for embedded devices is becoming 

increasingly more complicated and requires special knowledge for adaption, integration, 

transformation, and deployment. This kind of knowledge is not universally available and might 

be difficult to acquire, especially for younger professionals [ShiSha2007]. The solution to these 

problems can be identified as the reduction and simplification of required knowledge that enables 

the user to deploy (in other words to reuse deployment knowledge of) software units without the 

complete knowledge previously required. This paper aims to achieve this by extending an 

existing software unit reuse model with its own deployment description model. This work is part 

of the research on the Service-based Software Construction Process (SSCP) [ZiFHPh2010] 

incorporating the field of Software Reuse Environments. Its goal is to find a semantic model 

(about search, adaption, integration, and deployment of software units) combined with service 

technology that aids software engineers to perform software reuse (search, adaption, integration, 

and deployment) without having all the previously required knowledge. 

2 State of the art examples and related work 

One way of handling embedded device deployment is to use deployment engines for 

communication. Typical examples from the automation area are: Sonata Engine, Dynamic 

Deployment with DPWS, and OSGi Deployment. The Sonata Engine was developed by the 

companies Inico and Schneider Electric [Sonata2011]. It is a deployment engine for automation 

devices with a built-in compiler and deployment system, which can be used on different device 

platforms. An important feature is the built in development environment. Code can be directly 

entered on a web page running on the device. The compilation and deployment process is 

performed by the Sonata Engine on the device itself. This feature makes the engine flexible in 

changing the device functionality. Instead of using this “integrated” method, tools can be 

developed to control the deployment process externally. Dynamic Deployment is based on Web 

Service Management (WS-Man) and the Device Profile for Web Service (DPWS). WS-

Management is a network protocol for XML based web services and is used to exchange SOAP 

based messages between systems containing management information. WS-Man is commonly 

employed to manage system resources. It is a standard protocol used by the Desktop 

Management Task Force (DMTF) and can be combined with different resource description 

models like DPWS. DPWS is a profile for embedded devices [NiReDri2009]. It defines web 

service profiles like discovery and can also be used for runtime deployment [Gill2005]. In the 

SOA4D project WS-Man was combined with DPWS [SOA4D2011] to develop a dynamic 
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Service Oriented Architecture (SOA) infrastructure for devices. To deploy services, the Dynamic 

Deployment Engine needs hardware configuration files, WS-Man Resource files (including 

DPWS Service information), and specific binary files. In contrast to the Sonata Engine, the files 

for the deployment process will not be created on the device, but externally. OSGi (Open Service 

Gateway Initiative) is a common way of managing software units for devices, such as automotive 

devices (telematics), smart home devices (home appliances, security systems, energy 

management systems), and mobile devices (cellular phones, PDAs) [ACE2011]. In the last few 

years it was also utilized to handle reusable (Java) components on system level. Software for 

OSGi based devices is distributed in form of packages called ’OSGi bundles’. A bundle contains 

all interfaces, classes, resource files, and a manifest file in a single JAR file. OSGi can also be 

viewed as a configuration system [OSGi2009]. Normally, OSGi uses special plugins for the 

Eclipse IDE. These plugins automatically manage the deployment process automatically for the 

user. The communication between plugin and device is overseen by a device agent. For this 

communication the BaseOMA DM protocol over HTTP or HTTPS is used. The exact 

communication specification is available as Open Source. [OSGi2009]. All three engines 

simplify the deployment process by providing a standardised way to deploy software on different 

devices. This helps to reduce the number of different ’deployment ways’. However, the problem 

persists because of two facts. The first fact is that not every device is able to run a device engine. 

This is normally limited by the resource requirements of the device engines. The second fact is 

that also a limited number of ’deployment ways’ still require the user to know each of the 

deployment models. The next section describes an experimental setup which focuses on the 

second fact.   

 

In the area of deployment of software units to devices different approaches exists, like Rubus, 

COMDES-II, and ProCom Systems [CaFeMT2010]. Rubus [HaHTNo2008] is a component 

based model supporting dependency analysis of embedded system that contains multiple 

embedded devices. With extension Rubus is able to synchronise and update devices. This is done 

by a Rubus specific model and extensions for the devices and the Rubus system for the necessary 

communication. Two other approaches, the component based software framework COMDES-II 

[XuSieAn] and the ProCom System [CaFeMT2010] are very similar. In both approaches an 

embedded system which contains multiple devices can be modelled by using a ’Virtual Node’ 

concept. Each device in the real system is represented by a virtual node in the used model. For 

each node deployment content and the deployment process can be modelled. In the way of 

modelling these approaches differ. COMDES-II uses a combination of a special XML based 

description language and application extension. ProCom is able to use a combination of existing 

description languages like SysML and a Model Driven Development approach. All three 

approaches are made especially for the embedded device area. Each approach handles complete 

embedded systems. This differs to the approach of this paper. In this paper an existing system 

will be extended to handle device deployment. This system is prepared for reuse of software 

units and their specific knowledge. Also the aim of this approach is different. In this paper the 
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aim is to support software developers to deploy software units to devices without the specific 

knowledge.  

3 Device Deployment Case Study 

The case study’s aim is to identify and reuse necessary knowledge for embedded device 

deployment. The study is divided into five steps: (1) Design the experimental environment. This 

includes the description of the different devices, the expected results, and the procedure model 

for the experiment. Furthermore, the software units that should be (re)used for the deployment of 

the different devices must be specified. (2) Analyse the required knowledge for deployment to 

different devices. The analysis scope focuses on applying knowledge of the reused software unit, 

the deployment setup, and the communication setup. (3) Define a model based on the collected 

data. This model should describe the knowledge required for deployment of software units to 

specific device types. (4) Extend an existing software unit reuse model and system for the 

possibility of creating and executing deployment rules for different devices. (5) Repeat the 

deployment process of Step 1 in an existing software unit reuse environment, using the newly 

extended model of Step 4.  

3.1 Experimental Setup  

 

Table 1: Object Description for deployment case study 

The study’s test subjects consisted of the following three embedded devices engines: Advantys 

STB (distributed I/O device) using the Sonata engine, Advantys STB using the Dynamic 

Deployment engine, and GX300 Gateway (Ethernet gateway with I/O) using OSGI Deployment. 

They have some common properties: (1). They are embedded devices with I/O in the automation 

area. (2) They provide a TCP/IP interface and a web service or remote service interface.  (3)Their 

deployment process may be seen as service based. All chosen devices were prepared for the case 

study by being connected to a power supply and, via Ethernet, to a TCP/IP network. Also, a 

computer running Microsoft Windows XP operating system was also connected to the network. 

This computer contained all required software tools (explained in the following sections) and the 

deployment objects. A number of different software units were chosen as deployment objects 
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(required files). The fact that these objects differ in technology and structure is not important for 

the study. In all three cases a web service was created. Even though the functional content of 

these web services differs, they must be compatible to the software reuse environment mentioned 

in Step 5 (see Section 3.5). The results of the study have been proven by an expert of device 

deployment regarding the focused device engines. The same expert has been observed in Section 

4.2. Table 1 describes the deployment objects and shows their related devices. The case study 

requires the following three statements to be true: (1) For the three different deployment 

processes a description model can be defined describing all relevant data. (2) The description 

model can be used to extend the SSCP model. (3) The deployment processes can be reproduced 

by using the SSCP model extension.  

3.2 Device Deployment Analysis 

In order to collect all necessary information, an expert has been monitored during the process of 

deploying the given software units to the different devices. The first investigated test setup was 

the Sonata [Sonata2011] engine on an Advantys STB. A previously configured file (’Project.dat 

’) was uploaded to the device. Before the upload process, the expert verified the device was 

running and sent a ’Stop’ signal to the device. To be able to restore the device, the Project.dat file 

currently in use was stored on the computer by sending a ’Save’ signal to the device. The expert 

uploaded the new Project.dat file by sending a ’Load’ command. The building and deployment 

process was initialised by a ’Build’ command. In order to start the newly configured device, the 

Sonata engine requires an additional ’Run’ command. The communication knowledge required 

for the Sonata engine is shown in Fig. 1..  

 

 

Figure 1: Communication sequence for a the focused deployment procedures 

The second test setup was an Advantys STB with Dynamic Deployment. Similar to the first test, 

the expert verified the power status of the device. As preparation, the hardware configuration file, 

the WS-Man resource files and the Zelio Engine binary file were compiled into a new binary file 

(’Project.upl’). This file was then uploaded using a web service call. After the upload, the device 

operated fully automated. There was no need for manual power switching or additional 

commands. The expert was not allowed to shut down the device during deployment because this 
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could damage the electronic device. Fig. 1 summaries the important communication message. An 

OSGi based system supports only Java libraries (JAR files). To create these files, a complete 

Java project must be created using the Eclipse IDE. Such a project requires specific OSGi engine 

libraries to be included. For this to proceed, the required source code must be developed and a 

resource file must be created, describing the physical device. This process is similar to the other 

test setups. The upload was performed automatically by an Eclipse plug-in, created by the OSGi 

community. With the help of the tool WireShark, the messages between the plug-in and the 

device were measured. Fig. 1 shows the important messages. The expert had to manually restart 

the device (power off and on). This is necessary because the device does not support automatic 

restart by the OSGi engine. 

 

3.3 Defining a model 

Based on the results of Section 3.1, the deployment model shown in Fig. 2 can be created. 

 
Figure 2: Deployment Model (Case Study Result) 

 

An instance of this model constitutes a complete ’Deployment Process’ (DP). A DP includes all 

information and describes all steps that are necessary to successfully complete the deployment. 

As a result, a DP consists of one or more deployment process steps ’DPS’. A DPS must describe 

the input files (’Files’), the communication information (’Address’), the description for manual 

steps (’Manual Step Description’), and the type of deployment call (’Invocation’). Additionally, a 

DP has a ’Device Engine Description’, that represents the device engine used for deployment. 

The ’Files’ are generic files (byte type). The term ’Address’ refers to an address text (string type). 

The ’Manual Step Description’ is a more complex type, describing a set of ’User Messages’ that 

can include warnings, information or instructions. A message includes text (string type) and a 

’Message type’ which defines the type of message within the enumeration of the following 

entities: (1) ’Warning’ - Critical information that must be read by the user. (2) ’Instruction’ - 

Order that must be executed by the user to continue. (3) ’Information’ - Information that is 

informative but not necessary.  The last information of a DPS is the ’Invocation’ that can be one 

of the following entities enumerated below. (1)’Start’ - Command to start a device. (2) ’Stop’ - 

Command to stop a device. (3) ’Build’ - Command to start the compilation process on a device. 

(4) ’Upload’ - Command to upload one or more files to a device. (5) ’Save’ - Command to 
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download one or more files from a device. This gives rise to the question of how this model 

relates to the information gathered in Section 3.2. Table 2 shows the instantiated model (without 

the three DP instances).  
 

 

Table 2: Instantiated model (Case Study Input) (OD = Order, Ad = Address, Inv = Invocation) 

3.4 Extending an existing Software Reuse Model  

This case study extends an existing model that describes reusable software units and information 

for their usage. The model to be extended is the Service based Software Construction Process 

Model (SSCP Model), which is used in the Service based Software Construction Process (SSCP) 

approach [ZiFHPh2010]. The SSCP Model is a semantic data model that aims to aid software 

developers, engaged in software unit reuse by enabling them to use one single service to search, 

adapt, and integrate software units without possessing the otherwise required knowledge. This is 

made possible by the service offering the necessary knowledge for software unit reuse. The SSCP 

was chosen because of the following specific attributes required for this study. The SSCP already 

includes a semantic description model for software units and additional information. This model 

describes units in a generic way, so a reusable software unit can be anything that can be used for 

reuse of software units. Based on this description different models about usage (e.g., integration 

or adaption) are defined. The complete model is extensible, so new models describing other reuse 

usage activities can be added. The final important fact is that an SSCP application environment 

continues to exist. This can be used for the study and extended by adapters (plugins) to work 

with the knowledge about software units described in the SSCP model. This approach classifies 

the necessary knowledge into two different types: ’Shared-Knowledge’ that can be described in a 

unified way. This knowledge will be referenced by different software unit reuse activities (e.g., 

Search, Adaption, Integration and Deployment of the service. An example of Shared-Knowledge 

is a unified description of classes, components, and services as a software unit. ’Specific-

Knowledge’ which is highly particular, not abstractly expressible and has only one specific 

purpose. Usually, this knowledge is represented by an adapter (plugin) of the SSCP approach 

handling other applications or systems for software unit reuse activities. An example of Specific-

Knowledge is an adapter which integrates software units into a development environment like 

Eclipse. Therefore, the adapter includes all specific knowledge to handle the tool. In the 

integration process, the adapter integrates a software unit described by the Shared-Knowledge 
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into the Eclipse environment. Unlike Shared Knowledge, this information is not available in a 

unified data model (Shared-Knowledge) and is integrated differently into the SSCP environment 

(see Section 3.5). Adapters may be used for different software units and their stored knowledge. 

For example, an adapter integrating .NET software units into the .NET IDE Visual Studio can be 

used for different .NET software units. General knowledge is described by the SSCP Model and 

includes different model layers. These layers are classified in three sections: (1) Unit View - 

Description of units for modelling: Classes, Components, and Services. (2) System View - 

Description of application activities for software units. (3) Business View - Description of 

extended information related to user interaction.  

 

Figure 3: Description layers of the Service based Software Construction Model 

These three sections encompass different levels of data (see Fig. 3). The first level ’Unit View’ 

describes software units (classes, components, and services) in a unified way. The ’System View’ 

extends this layer, offering a specific description of different applications of software units from 

the application or system perspective. It includes information that is required by applications or 

the system itself to perform or support software unit reuse, for example the Integration 

Description Model (IDM). By using this model, it is possible to describe the process of 

integrating a software unit into an integrated development environment (IDE). The IDM is a 

unified description of integration processes and their required data. The ’Business View’ extends 

the ’Unit View’ by providing information that is important for the user (e.g. search or problem 

definition). An example would be the semantic description of a simpleґsearch function (see 

[ZiFHPh2010] for more information). This paper aims to extend the ’System View’ with a new 

data level called ’Deployment’. The extension undertaken in this paper is a new model describing 

extended deployment data for modelling units. In order to extend the model, it is important to 

understand the structure of the existing SSCP model and to find similarities linking both 

description models. The SSCP Model is divided into four sections. Each section describes one 

part of a software unit. Part 1 describes extended data such as it’s author and developer. Part 2 

describes the software unit as the solution within the range of the related problem. Part 3 

describes a unit as a technical component. The last area describes semantic search information.). 

This document emphasises the importance of Part 3, as all data levels of the ’System View’ (see 

Fig. 3 will be linked to this section, representing technical solutions. Example: Component is 

developed by .Net Technology that uses the .NET Platform and the VisualBasic .NET 

programming language. In order to extend the model, A link between the original data model and 

the new deployment model must be found for extension. This link can be created by defining a 

’Deployment Extension’ Entity. For this to be obtained, this entity is required to separate the 

deployment extension from other existing extensions (like transformation). The new model is 
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then attached to the SSCP model at this entity and receives its own entity called ’Device 

Deployment’. This entity relates all deployment model extension instances to a specific ’Unit’ 

entity. For this purpose, the model created in Section 3.3 is used, employing the typical basic 

types string, integer, and enumeration (subclasses). Only the ’File’ entity is not created because 

of a pre-existing file description already exists in the original model. All input files used in the 

test setups were ’Machine Readable Content’ and will therefore only be used by systems and not 

by humans (like documentation). Therefore, a direct link was created to the ’Machine Readable 

Content’ entity. 

 

Figure 4: SSCP Model Extension - Device Deployment 

3.5 Using Reusable Software Unit Knowledge for Device Deployment 

In the case study, the ’Prometheus 2011’ Tool which is within an SSCP Environment was 

extended to support the deployment extension shown in Section 3.3. Three adapters were created 

to support communication between the SSCP Environment and devices using the three platforms 

(see Section 3.1). The adapters know how to deploy data into the device (see Section 3.2) and 

how to start the deployment process (see Section 3.2 Furthermore, the adapters can be reused for 

future needs by means of the data shown in this study or other data which is compatible with the 

device.  In Test Setup 1 and 3, the adapters themselves implement the protocols. In Test Setup 2, 

the upload tool was wrapped by the adapter. All adapters use a default interface for device 

deployment. This interface includes only one method for implementation: SetDeploymentProcess 

(DeploymentProcess deploymentProcessObject). The classes used in the interface are based on 

the model description of the SSCP model (see Fig. 4). This constitutes an important part of the 

SSCP approach. Adapters include specific data for handling more general data that is loaded by 

the interface call and is used by the adapters to perform the deployment process. Therefore, 

general data (software units and their usage information) are separated by specific data. The user 

uploading the software units and thereby creating the deployment activities combines the general 

data with a specific adapter. Currently, each adapter needs a DP instance for each device or 

deployment procedure. The data shown in Table 1 was saved in the SSCP environment in a SQL 

database following the SSCP data model as shown in Table 2. This means a ’Unit’ description 

was created for each software unit. Additionally a ’Deployment Process’ description was created 

and added to each ’Unit’. At the end, each ’Deployment Process’ was linked to an adapter. The 

user interface of the Prometheus 2011 Tool was extended to allow for selection and execution of 
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deployment processes. This also includes an input method for addresses that are requested by the 

adapters during the deployment process. Table 2 does not show these addresses due to limited 

presentation space. Following addresses are used in the three test cases: 192.168.178.26:8089, 

.30:8088, and.31:8090. After these changes, the system was able to perform device deployment 

of the stored reusable software units.  The new device deployment procedure was tested by two 

individuals. The first person was the expert of Section 3.2. This was done to test if all device 

deployment processes were valid and performed correctly. The second person was not specialised 

in device deployment (a non-expert). Both individuals were able to perform the device 

deployment successfully. This means that the same necessary knowledge for deployment of 

software units to specific devices was reused by different people. 

3.6 Result Discussion 

The first result of the case study was the three different deployment processes of Section 3.1 

could be replicated within the SSCP environment (see Section 3.1). In all cases, this resulted in 

working devices with the same software units. The second result is that the same knowledge was 

used. The difference between the two experiments is that originally the user (the expert) was 

required to already possess all necessary knowledge, whereas, the second scenario, the 

knowledge was part of a specific knowledge system (Prometheus 2011). The amount of 

deployment knowledge is the same in both scenarios. However, in the second scenario a user 

without pre-existing knowledge of device deployment (a non-expert) was able to successfully 

perform it in all three cases. This is the most important result of the case study. After the 

knowledge was integrated into the environment, it became accessible to users with less pre-

existing knowledge. From this stage onwards, the knowledge can be (re)used by untrained users. 

The study shows that device deployment requires pre-existing knowledge, in this case the address 

of the different devices. Furthermore, the user has to follow instructions coming from the 

deployment process that may require him to have an electrical engineering background. The three 

adapters build for the different deployment procedures are separated from the input knowledge. 

Therefore, they are accessible for other software units that should be deployed to the same device 

or device engine. This is not demonstrated in this paper. However, the case study also shows 

other effects of a user’s pre-existing knowledge because knowledge about the SSCP environment 

is now part of the requirement for device deployment. Test subjects were trained to use the SSCP 

environment before starting the experiment. Whether acquiring knowledge about the SSCP 

environment or three unique deployment processes is more difficult for users is to be evaluated. 

This, however, was not part of this study’s investigation. 

4 Conclusion and Future Work 

During the case study, a description model was defined describing all relevant data for three 

different deployment processes. This model was used to extend the Software Reuse Information 

Demand (SRID) Model with deployment activity descriptions. The study includes the analysis of 

an expert who was deploying different software units to three different device platforms that 

108 EKA 2012 - Entwurf komplexer Automatisierungssysteme

______________________________________________________________________________________________________________________________________________________



require different levels of usage knowledge from a user. The measured knowledge in this 

analysis was saved into a Service Based Software Construction Process (SSCP) environment that 

is used to store and execute software reuse knowledge. This stored knowledge was reused by a 

inexperienced user who was using the extended SSCP environment. The non-expert user was 

able to create the same results than the expert user, but without the same expertise. The paper’s 

case study demonstrates that it is possible to integrate the usage knowledge for different device 

deployment platforms in the SSCP environment. This stored knowledge can be (re)used by users 

that were previously unable to perform device deployment on the different platforms. From the 

authors’ perspective, the following aims, suggested in the beginning, were fulfilled: (1) A 

description model was defined describing all relevant data for the three different deployment 

processes. (2) This description model was used to extend the SSCP model. (3) The deployment 

processes was reproduced by using the SSCP model. As demonstrated in the study, some 

knowledge is very specific and cannot be generically reused. In future research, this knowledge 

may be analysed to find a way to decrease the amount of specialised (not generalisable) 

knowledge. This may make the approach shown in this publication more effective. Section 3.5 

indicates that the result of this study is a model enabling inexperienced users to deploy software 

units to devices. This gives rise to the question whether there is any reduction of time and effort. 

The number of different devices or device platforms, expert users, and inexperienced users are 

included in this publication to get a comprehensive impression of the model this paper presents. 

In future research, this stands to be confirmed by extending the number of participants and 

devices of this study. Special focus must be laid on devices as this duplication focuses on device 

engines. Another result demonstrated by the study are that adapters for the SSCP environment 

can be reused for other software units and should be ’reused’ for the same device or device 

engine. This constitutes a further aspect future research might focus on.  
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Abstract—Optimisation of resource selection in hybrid cloud
data centres depends on the control of resource usage. The
primary criterion for this resource selection is economic effi-
ciency. The presented approach considers operational efficiency
aspects in service providing and therefore focuses on technical
criteria, such as resource load, as well as economic criteria, such
as the costs of resource usage. When services are offered at
different service levels the approach enables revenue optimisation
in cases of excessive load. The concept is prepared to handle
heterogeneous IaaS scenarios.
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I. INTRODUCTION

The following concept characterises an approach to optimise

the resource selection in data centres. Both runtime and

deployment time are considered as point of decision about

the usage of resources. Primary criterion for this decision is

economic efficiency.

The project was conducted as an applied research in the field

of business informatics in close cooperation with a business

partner [1]. The developed approach for efficient control on

data centre resources in heterogeneous cost scenarios was

also implemented as a proof-of-concept [2]. The concept is

restricted to the following technical solutions for IT resource

offers specified by our business partner.

IaaS: Offering hardware resources located in data centres

(e.g., servers, storage, network) based on virtualisation tech-

nologies (e.g., VMware, Xen) is defined as Infrastructure as a

Service (IaaS) in this concept. Virtualisation enables the sep-

aration of hardware resources into smaller fractions, whereby

each fraction offers the same virtual hardware interfaces as

an actual hardware. In this context the IaaS focus is on

server virtualisation. These server fractions are called virtual

machines (VM). Hardware resources can be allocated to VMs

as demanded, depending on the features of the virtualisation

technology used. IaaS thereby describes the basic management

layer for data centre operations.

SaaS: Software applications can be deployed based on an

IaaS layer. In this context deploying business software in one

or several VMs to ease deployment and operation of multiple

parallel instances of this software is called Software as a

Service (SaaS). Thereby, SaaS describes the basic layer for

the consumer interaction.

Hybrid Cloud: In this paper the provisioning of resources

or IT services based on the paradigm of IaaS or SaaS is also

called cloud-based provision, conforming to the cloud defi-

nition of the National Institute of Standards and Technology

(NIST) [3]. In this paper hybrid clouds are compositions of

clouds offering the same type of service while their operation

technology may vary. The services analysed in this project

are operated as a hybrid cloud hosted in several data centres

across the world. A data centre may expose its resources as

a single cloud, but more often as the sum of multiple clouds,

each representing an individual technical solution grown over

time.

II. BACKGROUND

A. Cost Domains

Here it is assumed that in most cases the technical boundary

of a cloud also reflects an individual cost domain. This

is true when clouds reside in different data centres, even

more obvious in different countries. Clouds can also differ

in the applied technology for their operations. Distinguishable

cost domains can also originate out of significantly different

hardware performance, as in scenarios where older and newer

hardware are operated simultaneously within the same data

centre.

B. Utility Computing Service Life Cycle

Our concept takes major aspects of Heckmann et al. and

extends them significantly. The works of Heckmann et al.

reflect the characteristics of a service life cycle (business

planning, development and operations) in the context of Utility

Computing (UC). The business model of UC offers scalable

IT-based services metered by usage.

The main contributions aggregated from these results are:

• Technology-independent Provision Model [4]

The developed component architecture describes the min-

imum necessary functionalities and dependencies in an

operations environment for a UC service. This architec-

ture is used when services should be operated as part

of a service-oriented architecture (SOA) and hosted on a

cloud platform and are incorporated in an UC business

plan. Those scenarios (SOA and cloud and UC) are called

UC scenarios herein.
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• Technology-abstracted Resource and Cost Simulation [5]

When services are orchestrated [6] using other services

and used in UC scenarios, complex service cascades

are formed. These cascades can be complex both ar-

chitecturally and economically. Both challenges can be

addressed with a simulation framework to analyse the

interaction between resource allocation and costs, service

orchestration, service purchasing costs, and service pric-

ing. A proof-of-concept implementation of such a simu-

lation framework for multi-tier operations environments

was implemented.

• Specification Paradigm for Service Quality [7]

Within the introduced results a new approach on agreeing

on service level for services in UC scenarios is described.

This approach offers a specification paradigm for service

quality description straight from a usage perspective. In

this case service levels are no more defined by technical

conditions. They are called business service level (BSL)

and are specified by describing the quantity and quality

of the consumers’ behaviour in using a service.

C. Research Objectives

The research objectives are examined from the perspective

of a service provider.

We assume a service provider with multiple data centres

spread worldwide. The data centres are operated as a hybrid

cloud with multiple clouds per data centre hosting SaaS offers

for a multiplicity of varying customers. Each service is offered

with more than one service level. Each cloud is considered to

be its own cost domain. The research objective is to make

potential savings accessible between different cost domains.

We provide an approach for a technical solution, including a

proof-of-concept implementation. This optimisation should be

performed at the initial resource allocation during deployment

of a service as well as continuously during its operations.

III. RELATED WORK

This research offers an approach to technically converge

the quality-related ontologies of service, experience, and busi-

ness as introduced by Moorsel [8] or Dobson and Sanchez-

Macian [9]. In the literature, three focuses on data centre

control related approaches can be found: effective data distri-

bution, quality of service (QoS) in networks [10] and reduction

of power consumption. The focus on effective data distribution

resides in the field of grid computing. Here large amounts

of data have to be distributed over several nodes so that

parallel calculations on the data slices accelerate the overall

processing of the data. In most grid architectures there is

an architectural component called broker [11]. This broker

controls the distribution, processing and result aggregation,

sometimes supplemented by billing or marketplace features,

like auctions and bidding. Different approaches are known to

accelerate processing, for example using resource reservation

or considering the problem as a queueing system [12].

In networks, QoS approaches mainly are focused on the

network layer. MDCSim [13] instead offers an approach for

a multi-tier data centre simulation, but focuses their outcomes

onto a comparison of Infiniband and 10 Gigabit Ethernet

network technologies.

The focus on reduction of power consumption centers

on server consolidation. Approaches for load prediction for

servers in a single data centre are shown by Speitkamp [14]

using historical data analysis, Bi [15] using a non-linear

optimisation model or based on a limited lookahead control

framework by Kusic [16]. Wang introduces an approach to

combine server consolidation and dynamic voltage and fre-

quency scaling [17]. An approach for service level manage-

ment in distributed infrastructures, including QoS translation

and support for self-adaptation, is shown by Freitas [18].

Load balancing on the level of data centres within and

between client devices is addressed by Peoples [19].

None of these approaches sufficiently covers the relation

between resources, services and consumers introduced in

Section 5 of this paper.

IV. RESEARCH APPROACH

The following steps were taken to obtain the research

objectives of making potential savings accessible between

different cost domains for SaaS providers:

1) Analysis of the customer-service-resource relation in

SaaS provision scenarios in the context of our business

partner (see section V).

2) Design of a generalised concept to efficiently control

data centre resources in heterogeneous cost scenarios

based on the previous analysis (see section VI).

3) Implementation of the design as a proof-of-concept (see

section VII).

V. ANALYSIS OF THE BUSINESS PARTNER CONTEXT

A. Model of the Customer-Service-Resource Relations

The relationships between a SaaS provider and its customers

are modelled with a data structure. This data structure is

subsequently used as the basis for the optimisation, and must

be modified only when the relationships between the provider

and the customers change. The provider and the customers are

represented by the nodes in a graph; the edges in the graph

represent the services provided.

Customers can have one or more contracts with the provider.

A contract applies to one or more consumer groups (e.g.,

branches) within the organisation of the customer. Each con-

sumer group relates to one or more services of the provider.

This relation incorporates the link to two service levels and one

usage pattern. A Usage Pattern is a quantitative and qualitative

description of the service usage behaviour of a consumer

group [7].

The price (per unit) and the contract penalty (per unit) are

stored attached to the link between the first service level, a

service and a consumer group. Accordingly, the price (per

unit) is also stored attached to the link affecting the second

service level. A penalty for this relation is not necessary, as it

reflects the service usage over and above the contracted usage

pattern.
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Figure 1. Relations Between Resources, Services and Consumers

Services, one or several, act as connector between provider

and customer, more precisely between resource groups on

the provider side and consumer groups on the customer

side. Also a service relates to a backup specification and a

technical deployment set. Such a set contains necessary files

and configuration properties for deployment.

Resources are managed in groups. The primary grouping

criterion is technical, for example the virtualisation software

used. The secondary criterion is the geographical location, for

example the hosting data centre. The cost of the resource usage

(per unit) is an attribute of a resource. Linked to a resource

is the according technical interface for its administration and

monitoring (e.g., virtualisation management API). Addition-

ally, an availability class is linked to a resource group. The

availability classification enables an abstract categorisation to

distinguish between different level of technical availability

assurance.

Service level serve as abstract categorisation to differentiate

between varying level of service quality. Beside their previ-

ously described relations, a service level links to one or more

locations, one availability class and one backup specification.

The customer-service-resource relation is elaborated in the

data model in Fig. 1.

B. Mediation Conditions

In the research context resource groups are only considered

during resource selection when they conform to the required

quality properties. Resource selection should respect the tech-

nical load of resource groups and customer constraints such

as processing location. Only incoming service requests (e.g.,

from the consumer towards the service) should be considered.

VI. SOLUTION DESIGN

The required functionality for an efficient control on data

centre resources in the analysed context is distributed among

two architectural components, named Service Broker Manager

and Service Broker Gateway.

The Service Broker Manager implements the elaborated

data model described above and offers interfaces for inter-

action (e.g., graphical user interface (GUI), application pro-

gramming interface (API)). Beside the storage of the data

model the broker offers a method to match a service request

from a certain customer with a suitable resource. The broker

continuously analyses the monitoring data from all resource

groups and redirects service requests, including service relo-

cation, accordingly.

The matching between a customer’s service request and a

suitable resource is done in six steps. Preconditions are a given

service request and at least two resource groups:

1) Service type, service consumer and the service level

corresponding to the service request are determined.

Postcondition 1: identifiers for service type, service

consumer, and service level are known.

Precondition 2: service request and service type are

known.

2) Resource demand for the service request is estimated.

Postcondition 2: service request’s resource demand is

known.

Precondition 3: service request’s resource demand, ser-

vice type, and service level are known.

3) Pools of resource groups are selected by available re-

sources and matching service level.

Postcondition 3: two pools of resource groups are

known, where each resource group offers enough re-

sources for request processing and one pool complies

with the demanded service level and the other does not.

Precondition 4: service request’s resource demand, ser-

vice type, and service consumer are known.

4) The estimated revenue per pooled resource group for

request processing is calculated.

Postcondition 4: per given resource group the estimated

revenue is known.

Precondition 5: service request’s resource demand, ser-

vice type, service consumer, and service level are known.

5) Estimated costs for service level violation (latency ex-

ception and request failure) are calculated.

Postcondition 5: estimated costs for latency exception

and request failure are known.

Precondition 6: two pools of resource groups with

sufficient processing resources distinguished by service

level compliance, estimated revenue per pooled resource

group and estimated costs for latency exception and

request failure are known.

6) The most efficient opportunity out of the following

actions is selected:
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Figure 2. Service Broker Component Architecture

• Request is processed by a service level conforming

resource group.

• Request is processed by a non-conforming resource

group.

• Request is not processed.

Postcondition 6: action for further request processing

determined.

The Service Broker Gateway acts as a load balancer on

the network layer. It reroutes service requests to appropriate

service instances, including the capability of dynamically

shaping the traffic up to the blocking of certain requests. This

is especially useful in cases of excessive load. Here requests

can be forwarded (or blocked) based on economic efficiency.

This Service Broker concept enables resource selection and

control on load distribution based on the elaborated relation.

An overview on the component architecture is given in Fig. 2.

VII. INITIAL RESULTS

As proof-of-concept the Service Broker Manager including

a GUI, API and the request-resource matching method has

been implemented. As a scenario for the evaluation of the

request-resource matching method a database with four cus-

tomers, each with two contracts affecting two consumer groups

is defined. Five services are available, whereby each consumer

group uses two services. As hosting environment two resource

groups are provided, hosted in two data centres as varying cost

domains. The self-service cloud portal of the business partner

uses the Service Broker API to retrieve a suitable resource

address during service deployment.

First tests using the self-service portal show the broker’s

ability to pick the most cost effective resource with enough

load reserve. This leads to a significant overall change in

load (and service instance) distribution among the two cost

domains. The load distribution shifts in favour of the more

cost-effective data centre. Without the broker-enriched self-

service portal, the deployment of new service instances took

about three weeks for the whole business process to terminate,

due to internal measurements of the business partner. Using

the broker-enriched portal the deployment time was reduced

to approximately 30 minutes.

These first outcomes demonstrate the proof-of-concept’s

ability to efficiently control data centre resources in hetero-

geneous cost scenarios.

VIII. FURTHER WORK

Feasibility of Business Processes: Our concept creates an

opportunity to also associate business process steps with our

data model. A similar approach was introduced by Heckmann,

but not elaborated to work based on resource load information.

Simulation-based Load Prediction: The Service Broker can

be extended based on the simulation framework for Utility

Computing elaborated by Heckmann [5]. Instead of retrieving

the current load through a service for resource monitoring

(referring to step three in Section 6) the broker can use load

forecasts.

Utilisation of External Services: From a provider’s per-

spective, at the current stage, the concept only addresses

incoming service requests. In addition, the concept could also

be extended to represent outgoing service requests to external

service providers. This could expand the efficiency of the

service provision one step further.

IX. CONCLUSIONS

This paper introduces and evaluates the Service Broker

concept.

The Service Broker is an approach to optimise the resource

selection in data centres. The concept enables the control of

resource usage both at runtime and deployment time. In this

research context, the primary criterion for resource selection

and subsequent request forwarding is economic efficiency.

The broker was evolved and evaluated in close cooperation

with a business partner. The evaluation of the concept was

done through a proof-of-concept implementation presented on

CeBIT 2011 as an applied research in the field of business

informatics.

The elaborated concept considers technical criteria, such as

resource load, as well as economic criteria, such as the costs of

resource usage. When services are offered at different service

levels the broker enables revenue optimisation in cases of

excessive load. Additionally, the concept is independent of the

technical solution for resource management (e.g., virtualisation

framework) and is prepared to also handle heterogeneous

technical scenarios.
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Abstract - The reuse of prefabricated software units, such as 

classes, components and services is one of the central topics of 

software engineering and requires lot of knowledge and 

experience. Instead of focusing on the knowledge management 

processes and a resulting lifelong learning process of 

individuals, this paper shows an experimental study based on 

an approach of automation of knowledge based reuse activities. 

This is done by employing a unified view of software 

construction activities and software units used by these 

activities in an industrial environment. It concludes that 

software engineers of different industrial business units and 

knowledge levels can be supported by performing different 

software construction activities with only one approach, the 

result of which avoids a long learning process for software 

engineers. 

Keywords-Automated software unit reuse; software reuse 

activities; industrial environment; case study. 

I.  INTRODUCTION 

The reuse of software units (like classes, components, or 

services) requires professional knowledge or expertise. A 

software unit is a technical unit, and can, therefore, be 

defined like a software component in the context of this 

paper: 

   “A software component is a unit of composition with 

contractually specified interfaces and explicit context 

dependencies only. A software component can be deployed 

independently and is subject to composition of third 

parties”. [1] 

Typically, software engineers have to acquire this 

knowledge. In industrial environments, the knowledge 

depends not only on the technical properties of a software 

unit but also on the technical environment, technical topic 

(e.g., embedded devices) and the business topics (e.g., 

Automation, Datacenters, Mines & Minerals). Today 

knowledge about software units in a reuse context is a broad 

field. As adequate description of knowledge in the context 

of this paper following definition is used:  

“... the capability of a man (or an intelligent machine) to 

use information for problem-solving” [2] 

Starting from this point of view a software engineer has 

to have different kinds of information to perform software 

reuse, as for example: (1) Information about technical 

properties such as programming language, necessary 

technical environment, and dependencies. A software 

engineer has to know this information. [3]  

(2) Information about interfaces and business context. A 

software unit solves at least one problem. Typically, the 

interfaces and provided data types are related to this fact. By 

handling such a software unit a software engineer have to be 

aware about this information. [3] (3) Information about the 

reusable artefact. Today a reusable software unit is more 

than a single binary file. Related information like test cases, 

documentation, and versioning are also reusable and 

sometimes implied. A software engineer has to deal with 

this related information. [4] (4) Information about related 

reuse concepts and processes. Software unit reuse is not 

undertaken if a software engineer decides to perform reuse. 

Many activities such as search, validation, integration, 

transformation, and testing are part of a reuse process. A 

software engineer must be aware of the existence of 

different reuse processes and technologies. 

As a result of these perspectives, reusing a software unit 

may define as the use of different information about a 

software unit and a given environment to perform a number 

of reuse activities. The result is a reused software unit in a 

software development project. 

Based on the high number of different technologies, 

business context, reuse artefact information and possible 

reuse concepts or technologies, the amount of necessary 

knowledge is high. This results in a problem for software 

engineers. Each time they wish to reuse a software unit they 

have to know about the relevant activities, and the related 

knowledge and information. If this knowledge is missing 

the reuse cannot be carried out successfully. 

A solution may be the automation of reuse activities. As 

shown in the automation industry, this requires the 

development of supporting systems that are able to perform 

activities for a user. By automating software reuse activities, 

software engineers are able to perform these activities 

without having acquired the complete knowledge. Such an 

approach would reduce the problem of missing knowledge 

and was discussed in the past [5] and [6] under the name of 

“Service based Software Construction Process (SSCP)”. 

However, the experimental proof of this concept is still 

missing.  

This paper describes the setup and the results of the first 



phase of an experiment validating the concept of SSCP, 

which is described by the following hypothesis:  

“Automated Software reuse activities will reduce the 

problem of missing knowledge in software unit reuse” 

This work forms part of the research on a Service-based 

Software Construction Process (SSCP) incorporating the 

field of Software Unit Reuse. The goal of this research is to 

identify a semantic model (about finding, adapting, 

integrating, and deploying of software units) combined with 

service technology that supports software engineers by 

performing software reuse (finding, adapting, integrating, 

and deploying) without having all needed information. The 

paper contributes to the research area by demonstrating the 

positive effect of automated software reuse activities, based 

on software reuse knowledge on the problem of missing 

knowledge in software unit reuse, in a real world 

experiment. 

After the problem statement in the next section, the 

Section 3 shows the focused solution of this paper. This is 

used in Section 4 to describe the experiment setup and 

execution. Section 5 discusses the experiment results 

followed by the conclusion section (Section 6) 

II. THE PROBLEM OF REUSE IN MULTIPLE INDUSTRIAL 

SOFTWARE DEVELOPMENT TEAMS 

Typical aims of software reuse are to reduce costs and 

time in development projects [6]. These are two reasons 

why reuse of software units is an important part of software 

development in industrial areas [5]. However, the use of 

reuse in industrial projects does not guarantee a successful 

project, a fact, which has been demonstrated by several 

project studies in the past [6]. Typical problems are [6], e.g. 

,: Misconceptions (reuse == repository, reuse  == OO), No 

non-reuse specific processes modified, No reuse specific 

processes installed, No training/awareness actions, Reusable 

assets produced but then not used, Multi contractor / Multi 

company project, and No production of assets. 

The last problem ‘No production of assets’ differs from 

the others. This problem deals with the fact that a software 

unit must be developed in order to be reusable [7]. If this is 

not the case, the amount of required resources is decreased 

by reuse [6][7]. Based on this statement, the effort to reuse 

increases after the creation of a software unit and should 

remain at the same value continuously for each reuse. 

An internal study conducted by Schneider Electric [8] 

indicates a complex but interesting picture. A set of around 

50 software units (so-called ‘bricks’ in industry area) has 

been created and widely reused. The average reuse number 

is between 9 and 10. The distribution of reuse for different 

bricks is shown in Figure 1. It starts with a minimum of 3 

reuses (the point where typically a cost breakeven would 

start compared to a non reuse approach) and spans up to 36 

reuses.  

Relating to the above mentioned fact ‘No production of 
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Figure 1.  Distribution of reusable bricks [8] 

assets’ the study of Schneider Electric shows a dilemma of 

reuse in industrial environments. A reusable software unit 

creates additional reuse effort during the creation phase and 

in reuse phases of each development team which reuses this 

unit. 

Creation Phase Dilemma (CPD): The creation of 

reusable software includes different phases, which focus the 

reusability. Typical examples are given by Software Product 

Line approaches [7]: (1) Generalisation – The interfaces and 

functions of a software unit must be generalised to increase 

the reuse probability. (2) Integration – The software unit 

must be built in a way that it can be integrate in the 

development projects of other teams. (3) Support – The 

software unit must be ‘equipped’ with additional reuse 

artefacts, which support the reuse, e.g., reuses 

documentation. Additionally, such a unit have to be 

installed in a system, which provides access to it.  

All of these steps require knowledge from an expert user. 

Reuse Phase Dilemma (RPD): Each development team 

has now different challenges for reusing such a software 

unit. Typically, each team has to find and download the 

software unit [8]. In the next steps, they have to understand 

and integrate the unit into their development projects [7]. 

Sometimes software units must be adapted (transformed) for 

that specific application [9]. Figure 2 shows also the typical 

support and maintenance effort, which is created during 

these steps. This effort is the results from the problem that 

the development teams have not enough knowledge to 

perform the described reuse steps.  

CPD and RPD are typical theoretical examples discus- 

 

Figure 2.   Support and maintenance effort [8] 



sions of problems. The reality creates two additional 

dilemmas in the context of CPD and RPD. (1) Creator 

dilemma (CD): The creation team is not available for 

support at the time of reuse (people are loaded with other 

projects or change team or organization) (2) Reuser 

dilemma (RD): The reuse teams are different for each 

development projects, and therefore the exchange of a 

‘learning curve’ between the teams is not possible.  

Figure 2 shows that each development team has nearly 

the same problems and need nearly the same amount of 

resources. The challenge of reuse based software 

development in industrial areas is to reduce the sketched 

dilemmas. The purpose of this study is to show that reuse of 

a single software unit in multiple teams does not need this 

amount of resource on both sites: creator and reuser. 

III. CONTEMPORARY SOLUTIONS 

Nowadays, there are different approaches for the above-

mentioned problems. The first approach is so called 

information systems, which, in general, enable the storage 

of information. This enables a user to search for 

information. However, such systems are not designed 

specifically to address the issue of transformation, but treat 

the subject of information generally [10]. Generally, such 

systems can be used to save information about an area of 

knowledge in textual form, but without the context of 

knowledge (see [10]). Each software construction activity 

may be described in this form and may be stored in an 

information system. The user is now faced with the problem 

of obtaining this information and interpreting it correctly in 

order to perform a successful transformation. Usually, 

information systems are not intended to apply their stored 

information automatically. But they can be extended for this 

task [10].  

Despite this lack of functionality, information systems 

comprise a part of this article’s advocated solution. 

Extensions of information systems are so-called Knowledge 

Base System (KBS) [10]. Such systems are defined as: 

 “… a method that simplifies the process of sharing, 

distributing, creating, capturing, and understanding a 

company’s knowledge.” [11] 

Knowledge systems are not fundamentally designed for 

the subject of software construction activities. Furthermore, 

the authors of this article believe knowledge systems are 

missing a fundamental property: the automated application 

of stored knowledge for specific tasks. However, there is a 

lack of systems that have asserted themselves and are not 

focused on the typical software construction activities of 

software units. The latter property 'application of 

knowledge', is also a part of the solution discussed in this 

article. Basically, the knowledge that is necessary for 

perform an reuse activity can be stored in knowledge 

systems. 

The area of software development has currently seen a 

number of interesting approaches dealing with specific 

subjects of a software reuse activity. Most of them are 

specific for one reuse activity type. For example there are 

two existing approaches for the activity of software unit 

transformation which are of interest: Model transformation 

[12] and generative programming [13]. Both approaches 

have existed for some time and form the basis for 

approaches that are being used today. Both support software 

engineers in generating reusable transformation models or 

rules. However, additional knowledge is necessary to make 

use of both approaches. This can be found in other activity 

areas like deployment [14] and Integration [15]. For the 

integration of software units into Integrated Development 

Environments (IDE) very specialised solutions exits e.g., 
Packaging for Eclipse or Packaging for Visual Studio. But 

these products are too specialised and require different kinds 

of specialised knowledge from the user.  

The above mentioned solutions have one common 

problem. They assume a high learning curve.  But learning 

how to implement every existing technology or solution for 

knowledge based problems cost too much time. It is 

necessary to identify a solution, which is able to support 

software engineers by performing software reuse activities 

without a lifelong learning process. 

IV. FOCUSED SCENARIO 

The basic idea of the targeted solution is that an expert 

applies knowledge (knowledge extraction) about the 

software reuse activity of a specific software unit to a 

system, which is able to perform the activity automatically 

with a minimum of human interaction based on knowledge. 

Users who do not have the necessary knowledge are now 

able to perform this activity (knowledge injection). A 

learning process for this specific activity and the specific 

software unit is not necessary. Figure 3 shows this scenario. 

The idea was presented in previous [5][6] where its 

advantage was demonstrated for two reuse activity 

examples: Integration of software units into integrated 

development environments (IDEs) [15], and deployment of 

software units into embedded devices [14].  

 

 

Figure 3.   Concept of the focused solution 



For the experiment demonstrated in this publication the 

software construction activities ‘Integration’ and 

‘Transformation’ were chosen. 

V. THE EXPERIMENTAL SETUP 

A. Technical structure and infrastructure 

The following section utilises this theoretical description 

to create the basis for the activities of integration, 

transformation and deployment of real models. The 

experiment is performed by software engineers using these 

models. Theses engineers try to perform different 

transformation and integration software construction 

activities with and without the support of the proposed 

solution. The second step comprises a description of the 

design and implementation of the experiment. These 

descriptions are intended for the replication of the 

experiment, and to ensure the sustainability of the 

experiment for the study’s results. The setup of the 

experiment is divided into three distinct areas:  

 

(1) Description of the environment,  

(2) Description of the technical structure of the 

experiment, the necessary elements, and  

(3) Description of the measurement process. 

 

    Description of the environment: The experiment was 

conducted at a German location of the company Schneider 

Electric (Address Steinheimer Strasse 116, 63500 

Seligenstadt, Germany). The company has participated by 

means of employees at this site and from other international 

locations using the company intranet. The experiment itself 

was conducted in normal offices, which provide a 

connection to this intranet source. 

    Description of the technical structure of the 

experiment, the necessary elements: The technical design 

of the experiment is mainly a hardware and software 

infrastructure. Figure 4 shows this structure in the 

environment of the Schneider Electric intranet. Six 

important elements are involved. The first element is the 

intranet (1), which is used to connect the various other 

elements of the technical structure. The second elements (2) 

are the connected databases, including the software units 

and complete information about the re-use activities. Four 

databases are important for the experiment: 

 

1) SOA4D: This is an open source repository software 

unit with further information about device profiles, 

including four web services. This repository is based 

on the Forge technology and offers a web interface. 

2) Prometheus SQL: this is a specially developed 

Repository. It belongs to the approach and uses a 

Microsoft SQL database and Microsoft SQL 

database interface.  

 
Figure 4.  Experimental environment and setup 

3) DDXML repos: This is a Schneider Electric internal 

repository that contains XML elements describing 

embedded devices. Communication with this 

repository will be achieved via a Web service. 

4) Brick Catalogue: This is, Schneider Electric internal 

repository used by all Schneider Electric business 

units containing software unit. 

 

The third element (3) in the experiment’s design is the 

Prometheus Server. This comprises the core of the technical 

structure. The server maintains information about software 

units and software construction activities in the connected 

databases and makes this information available to the user. 

Finally, the Prometheus Server performs requested activities 

and presents the available results to users. The fourth 

element (4) is a website through, which the user can 

communicate with the Prometheus Server. The website runs 

on a further server and contains a web application giving the 

user the ability to query information from the server or to 

perform reuse activities on the server. This web application 

is named ‘Ecostruxure repository’ and for this experiment 

the 4.1 version was used. The basic technology of the Web 

application is Microsoft Silverlight version 4.0. The website 

used the endpoint ‘/RepositorySearch.html’ and was 

available within the company’s intranet. The fifth element 

(5) of the structure is a VM-Ware server. This server is used 

to fulfil the experiment’s required operating system 

environment and runs as a virtual machine (VM) to make 

this available. For the connection to the server VM-Ware 

Workstation software with version 8.0 was installed on a 

laptop (6). These elements are common office laptops used 

within the company Schneider Electric. The laptops were 

used with the VM-Ware Workstation software with version 

8.0. In addition to the computer network environment, there 

is the possibility to use telephone, internet, voice, 

conversation, or literature.  This is also reflected in the 

working environment within the company’s sites. 



 

Figure 5.  - Basic experiment scenario 

Figure 4 shows the scenario based on the experimental 

setup. Users are able to view the test environment (operating 

system, the virtual machine) from element (5) (VM-Ware 

server) by using element (6) (office laptop). Within this test 

environment, all necessary software applications are found 

by means searching for information on the Internet, or 

performing activities on the intranet, as well as various 

means of communication usually employed by Schneider 

Electric (FTP, Skype, TELNET). Furthermore, users can 

now click element (4) (the website) to access and use the 

Web application, which allows communication with element 

(3) (Prometheus server). The Prometheus server 

communicates with the databases that are marked as 

element (2). Also the Prometheus server interacts with the 

elements (5) (VM-Ware server) by using element (6) (office 

laptop) (see Section III). Figure 5 shows this interaction 

scenario. 

Figure 6 shows the different measurement variants in the 

experimental setup. This can be accomplished by three 

different (technical) variants. The first is the purely visual 

recognition of the user’s actions and does not require any 

technical measure (called ‘Observer’). The second is to 

record the user’s interactions with the virtual machine as 

video recording (called ‘Recording’). For this, the installed 

VM Ware Workstation software with version 8.0 is used, 

which already includes the feature of video recording. The 

third variant is to log the information (called ‘Logging’). 

This is done in three elements of the experiment’s design: 

 Create the user data in virtual machines. These data can 

be analysed after the experiment.  

 The Prometheus Server attracts all incoming server 

requests and performed activities. This information can 

 

Figure 6.   Overview measurement utilities 

 

also be queried after the end of the experiment and used 

for analysis.  

 The data and information are generated and stored in the 

databases through the interaction of the user. 

 

Description of the technical setup for the measurement 

and the measurement process itself:  

(1) Experimental groups and scenarios: There are a total 

of three experimental groups: the first group (1) consists of 

experts for one particular software unit. These individuals 

receive expert status either because they have created this 

software unit or are well acquainted with its use. The 

selection of experts is performed via the Internet from 

public data of Schneider Electric software units. These data 

also contain the contact person responsible for this software 

unit. These people are also asked directly whether they have 

created the software unit and / or have used it frequently. 

Altogether the study requires 5 experts. The second 

experimental group (2) consists of 10 software engineers 

with the following characteristics: first, the people should 

actively participate in the software development of a project 

at the time the experiment takes place. On the other hand, it 

is important that these people do not have the same expert 

status as the previously selected 5. The last criterion is that 

these people are neither expert in the software unit nor in the 

technology standard development platform for this unit.  

The third group (3) is similar to the second experimental 

group and consist of 10 participants. Therefore, the same 

rules used for selection of the second experimental group 

apply.  

Note: In this the next phase of the experiment, the total 

number of participants will be increased up to 30 per group. 

Procedure: In principle, there are 3 different experimental 

groups required to perform seven scenarios. Table 1 shows 

the different scenarios related to the different groups. 

TABLE I.  SCENARIOS OF THE EXPERIMENT 

Scenario Description / (GroupID) 

(1) 

Observation 

of experts 

The experts from experimental group (1) performs 

transformation and / or integration activities 

(manually). / (1) 

(2) Collection 

of software 

units and 

activities 

Collection of software units and activities: In this 

scenario, each of the selected experts from 

experimental group (1) insert the knowledge about 

the unit and the specific transformation and, or 

integration activity into the Prometheus Server./ (1) 

(3) 

Prometheus 

Validation  

The experts perform the same activities as in 

scenario (1) but now with Prometheus Server 

support. The expert validates the results. / (1) 

(4) Reuse 

activities with 

Prometheus 

Participants from the group (2) are asked to take 

over one transformation and integration task. They 

have to use the Prometheus Server for this purpose. 

/ (2) 

(5) Reuse 

activities 

without 

Prometheus  

In this scenario, the people placed in the 

experimental group (3) are asked to take over a 

transformation or integration task. Activities are 

repeated so they correspond to those of the experts 

from scenario (1), The Prometheus Server is not 



used / (3) 

(6)/(7) 

Validation of 

the results 

Validation of the results: This scenario will test the 

results of the experimental group (2) and (3) by the 

experts for the respective software unit from 

experimental group (1) and (2). / (1) 

 

 (2) Measurement 

In the following section, the methodology of 

measurement of the experiment will be explained. This 

includes the definition of the measurable variables and the 

process of measuring. 

Definition of variables: The results of the measurement 

procedures are stored in the form of variables. In addition, 

each variable is assigned a unique name within the 

experiment. In this section, all variables are named and 

briefly presented. Table 2 shows the different measurable 

variables in the different scenarios. 

TABLE II.  OVERVIEW OF VARIABLES  

Sc. ID 

/ ID 

Name: Description 

(1,3,4,

5)/       

(A) 

ActivityDuration: How long does it take an expert/user 

to perform an activity? This variable contains a value that 

expresses how long the expert takes for the preservation 

of the task. 

(1,3,4, 

5)/(B) 

TaskAnalysisActivityDuration: How long did it take the 

expert/user to analyse the task initials? This variable 

describes the time between being presented with the task 

and the start of work on the computer.  

(1,3,4, 

5)/(C) 

TaskActivityDuration: How much time does expert/user 

spend working on the computer in order  to perform the 

activity? This variable describes the time between the start 

and completion of work on the computer activity.  

(1,3,4,

5)/(D) 

ActivityCarriedOutSuccessfully: Has the expert/user 

completed the activity successfully? This variable 

represents whether an activity was successful or not.  

(1,3,4,

5)/(E) 

UseKnowledgeSources: What kind of knowledge sources 

did the expert/user use to perform the activity? This 

variable describes the sources consulted to perform the 

activity such as the Google phone or contacting another 

expert for information.  

(1,3,4, 

5)/(F) 

MadeSubTasks: What sub tasks did the expert undertake 

in order to perform an activity? 

(2)/(G) EnterUnitDuration: How long does it take the user to 

enter all necessary information about a software unit into 

the Prometheus system? This variable contains a value of 

the expert testimony of how much time was needed from 

commencing work on the computer to enter the 

information of its software unit.  

(2)/(H) EnterActivityDuration: How long does the expert take 

to enter an activity for a software unit in the Prometheus 

system? This variable contains a value of the experts’ 

statement of how long since commencing work on the 

computer it took to input the specific activity of entering 

the activities information.  

(2)/(I) TotalInputDuration: How long does it take the expert to 

enter all the information into the Prometheus system? This 

variable contains a value of expert testimony on how long 

the whole process of entering all their data took.  

(2)/(J) SuccessfulEntry: Could the expert enter all the important 

information? This variable tells us whether an expert 

could enter all the information about a software module 

and complete activities in the system. 

(2)/(K) MadeSubTasks: What sub tasks did the expert undertake 

in order to perform an activity? 

(3,6,7)/

(L) 

ResultIsValid: Is the result of an activity conducted by 

Prometheus or without equivalent to the result of the same 

activity conducted by an expert? This variable indicates 

whether the expert considers the result of activities 

performed by Prometheus or without it as good as the 

result, which was achieved through manual execution of 

the same activity. 

 

Measurement Execution Process: In Figure 6, three 

variants of measurement used to measure the variables were 

introduced. The following section shows, which of these 

techniques are used for the different variables.  

In Scenarios (1), (3), (4), and (5), seven measurements 

are raised per cycle: (A) The variable ‘ActivityDuration’ is 

measured by the observer (measurement variant 1). Here, 

the observer measures from the time, which he assigns the 

task to the expert/user up to the time the expert says the task 

was completed. The time is recorded in whole minutes. (B) 

The variable ‘TaskAnalysisActivityDuration’ is determined 

by the interaction of measurement variant (1) and (2). Here, 

the observer notes the time at which the task is assigned to 

the expert/user (see variable ‘ActivityDuration’). The end of 

this phase can be measured at the time when the expert 

commences an activity on the virtual machine. The time is 

recorded in whole minutes. (C) The variable activity of 

’TaskActivityDuration’ determines the interaction of the 

measurement variants (2) and (1). The point in time at 

which the activity is started on the virtual machine is 

measured. The endpoint is the time the expert/user tells the 

observer that the task was completed. The time is recorded 

in whole minutes. (E) The variable ‘UseKnowledgeSources’ 

is determined by the measurement variants (1) and (2). The 

observer notes all information coming from the expert’s 

behaviour that cannot be measured by measurement variant 

(2). The type of measurement (2) also used to analyse, 

which sources of information accessed through the use of 

the virtual machine. Typically such sources can be classified 

by using source names and the type of resource, e.g., (1) co-

worker, telephone, and (2) website, Google (Web browser). 

(D) The variable ‘ActivityCarriedOutSuccessfully’ is 

measured by measurement variant (1). The expert/user is 

asked after the completion of the activity if he has done this 

successfully. The variable can only be set to yes or no. (F) 

The variable ‘MadeSubTasks’ is determined by the 

measurement variants (1) and (2). Here, the observer notes 

the progress of the entire task. This can be done based on 

the recording of the activities in the virtual machine itself, 

which is operated by the observer both on the external 

(outside the virtual machine) and internal (within the virtual 

machine) view. The observer here notes, which activities 

were measurable, including their start and end time, e.g., 
starts 10:41 expert uses web browser.  

In scenario (2), five measurements are made: (G) The 

variable input ‘EnterUnitDuration’ determines the 

measurement variants (1) and (3). The website (see Figure 



4) logs every activity of the user. Accordingly, the entry of 

the website is the start time and represents the initial value 

used for the measurement. To avoid error, the observer 

compares measured time with the automatically measured 

time. The end time is determined by the expert’s signal 

indicating that he/she has to finish the task. The observer 

notes down this time. Time is measured in whole minutes. 

(H) The variable ‘EnterActivityduration' is measured by the 

measurement variant (3) on the Prometheus Server (see 

Figure 4) and the website (see Figure 4). The server and the 

website recognize the time of a user’s request. Each 

measurement contains the time and the names of tasks, e.g., 
10:00:00 user creates a new software unit. (I) The variable 

‘EnterActivityDuration’ is measured by the measurement 

variant (1). The observer records the start time point at 

which he/she hands over the task to the experts. The end 

time is determined by the expert’s signal that he/she has 

finished the task. The observers take note of this point in 

time. Time is measured in whole minutes. (J) The variable 

‘SuccessfulEntry’ is measured with the measured variants 

(1) and (3). Firstly, the expert must inform the observer that 

he/she was able to enter all information into the system. 

Secondly, the Prometheus server writes all values into the 

database. The variable can only be set to yes or no. (K) The 

variable ‘MadeSubTasks’ is measured in the same way than 

in Scenario (1,3,4,5)/(F). 

In scenarios (4), (6), and (7) one measurement is made: 

(L) The variable ‘ResultIsValid’ is captured by the 

measurement variant (1). The expert examined the results of 

the performed activity from the scenarios (3), (4), and (5) 

with the same activity carried out in scenario (1). It tells the 

observer whether the result has the same value and is usable. 

The variable can only be set to ‘yes’ or ‘no’. 

Definition of Software units and reuse activities: The 

different scenarios 1-7 are performed in this experiment 

with the software units shown in Table 3. 

TABLE III.  USED SOFTWARE UNITS 

Name / 

ID  

Description Tec/ Unit 

Type / 

Repository 

Integration  effort / 

Transformation 

effort 

DPWS / 

SU1 

Enable devices 

for WS* 

profiles 

Java / 

Component / 

SOA4D 

Advanced  into 

Eclipse/Advanced  

using IKVM 

DPWS / 

SU2 

Enable devices 

for WS* 

profiles 

C++ / 

Component / 

SOA4D 

Advanced  into 

Visual Studio /  

None 

CWS     

/ SU3 

Webservice for 

data exchange 

of business 

units 

Soap-C# / 

Webservice / 

Prometheus 

Normal into Visual 

Studio / Advanced  

using SVCUtil  

CWS        

/ SU4 

Webservice for 

data exchange 

of BUs 

Java-Android 

/ Class / 

Prometheus 

Advanced into 

Eclipse / Advanced  

using Java2SOAP 

Code 

Signing 

/ SU5 

Webservice for 

Code signing 

Soap-C# / 

Webservice / 

Brick Repos. 

Normal into Visual 

Studio / Normal  

using SVCUtil  

Table 3 shows that five integration and four 

transformation activities are connected with the five 

software units. The integration activities typically focus 

integration of software units on the most common IDEs 

(Visual Studio and Eclipse). The transformation activities 

include the transformation of software units on three 

different transformation tools (IKVM [16], SVCUtil [17] 

and WSDL2Soap [18] 

VI. EXPERIMENT RESULT DISCUSSION 

A. Experiment Results 

The experiment’s results were collected in the way 

described in the previous section. The next step is to discuss 

these results. First of all, the result of one software unit with 

a transformation activity will be discussed in more detail. 

After this analysis, the results of all software units will be 

summarised and compared. For this purpose, two 

perspectives were used for analysing the summarised 

results: Comparing different groups from the perspectives of 

(1) activity execution and (2) use of knowledge. 

 

1) Detailed result example  

One of the measured software unit is the ‘Device Profile 

for WebServices’ Java stack, which enables Java based 

embedded devices to handle mutable WS* Protocols like 

WebService discovery. The transformation task for this 

software unit was to use IKVM transformation tool to 

transform the complete DPWS Java Stack into a C# Stack. 

This task requires knowledge about the DPWS Java Stack 

(especially the references of the 20 different JAR Files), the 

.NET Platform and experience in using IKVM. This 

scenario was taken from a real development scenario of 

Schneider Electric in the European research project for 

industrial automation SOCRADES [19]. 

Expert scenarios (1-3): Scenario 1: In the first scenario, 

the Expert was measured by performing this task manually. 

The main result is that the experts needs 14:23 min.. In 

Scenario 2 it was measured how long the expert needs to 

insert the software unit and the transformation activity. The 

initial creation of the software unit into Prometheus needs 

12:06 min. and the transformation needs 38:03 min.. In 

Scenario 3, the expert was observed by using the 

Prometheus Server to perform this task. He needs 2:04 min. 

to perform the task and received a 2:56 min. training into 

the system (this training will only be necessary once per 

expert). The expert validated the result as a correct 

transformation.  

Non-expert scenarios (4-5): In Scenario 4, five non-

experienced software engineers of the industrial areas of 

Building, Power and Industry (Automation) did the task 

without support of the Prometheus Server. 



 

Figure 7.     Results of the different groups for DPWS transformation 

ctivities 

The different participants need 42 min., 90 min., 77 min., 69 

min., and 104 min. (rounded off). Thus, the average time 

was 76 min. (rounded off). The expert validates all final 

results as valid. In Scenario 5 the participants of group (3) 

use Prometheus to perform the task. The measured 

introduction task performing times (in minutes) were 

(3:03/2:23), (2:56/2:10), (2:33/1:59), (2:45/2:22), and 

(2:43/2:23). The average time was (2:48/2:18). The expert 

validates the results as correct results. Figure 7 summaries 

the results. The validation in Scenario 6 and 7 are not shown 

in Figure 7 because of all results were valid. Additionally to 

the measured time the kind of used knowledge resources 

were measured. Only online websites, downloaded 

documentation, and the expert were used as knowledge 

resource. The expert in scenario 1 uses only one knowledge 

resource (an older development project) 4 times. By adding 

the necessary information into the Prometheus system of 

Scenario 2 the expert only uses one knowledge resource (the 

introduction). In Scenario 3, the experts need only the 

introduction to perform the activity. The non-expert group 

(2) of scenario 4 needs multiple resources multiple times. 

Figure 8 shows the used number of knowledge resources in 

each scenario (average values).  

Figure 8.  Overview of number of used knowledge resources 

The non-expert group (3) of scenario 5 needs only one 

knowledge resource (the introduction). 

2) Comparing of different groups from the perspective 

of activity execution  

Figure 9 and Figure 10 show the results of the three groups 

in transformation and integration activities measured in the 

Scenarios 1, 3, 4, and 5. The different results of the software 

units are summarised by using this type of view. In the 

context of transformation, Figure 9 demonstrates a clear 

separation of the different groups. Starting with the Expert 

Users without Prometheus support (Expert, Scenario 1) as 

the 100% comparison line, the  

Figure 9.  Results of the different groups for transformation activities (5 

software units) 

measured values of the second group (User with Prometheus 

support – User (P)) are significantly decreased. This fact is 

mentioned especially in the variable ‘ActivityDuration’ (1). 

On the other hand, the Variable ‘TaskAnalysis-

ActivityDuration’ (2) is much closer to the comparison line. 

As a result, Prometheus Users are able to perform a specific 

activity much faster than an expert user or a Non-Expert 

user. In comparing the two variables of the comparison line 

with user (without Prometheus support User) Figure 9 

shows a further significant difference. Both variables of the 

user are decreased. The normal user needed much more time 

to fulfill the given tasks. But this difference changes by 

analyzing the results of users (with Prometheus support). 

Compared to the expert with Prometheus support this group 

has no significant differences, but compared to the expert 

group without Prometheus support the measured values 

decrease significantly. In Figure 9, the two lines of 

Prometheus supported users are more or less congruent. 

As a result of this consideration, it is clear that the 

Prometheus approach creates a positive effect for Non-

Expert User and even for expert users.  

Figure 10 shows the measured values for the integration 

activity. The first interesting point is the general comparison 

to the results shown in Figure 9. Both pictures show nearly 

the same result, but the positive characteristics are not so 

distinct. Only the users (without Prometheus support) 

performing the integration activity need less time (compared 

to the 100% comparison line) then the same group was 



performing the transformation activity. That both results a 

nearly the same indicates that the used approach supports 

software engineers by performing these kinds of activities. 

 

Figure 10.  Results of the different groups for integration activities 

All users (experts and non-expert user) were able to perform 

the given activities correctly and needed less time than the 

expert user (without Prometheus support).  

 

3) Comparing of different groups from the perspective 

of the use of knowledge  

In Figure 9 and Figure 10, it is also mention that most of 

the expert users (80%) (without Prometheus support) did not 

use a measurable knowledge base. The other 20% used 

exactly one knowledge base. All experts or users (with 

Prometheus support) only used the knowledge base that was 

the documentation of the Prometheus system. The users 

(without Prometheus support) performing both the 

transformation and the integration activity used much more 

knowledge bases. The most used knowledge base was the 

internet. 

B. Impacts on industrial reuse 

In applying the aforementioned approach to industrial 

environments faced with both creator and reuse phase 

dilemmas, and therefore no knowledge transfer, leads to the 

following effect, shown in Figure 11: The effort for the 

creation team increases by adding the software unit 

information into the Prometheus system. The theoretical 

very useful but missing support effort is mostly replaced by 

the effort for this ‘knowledge injection’.  

 

Figure 11.   Effects on  MTwKIE 

The major effect is visible at the reuse site. Even without or 

just less support, the effort for reuse for single users or team 

is significantly reduced. In the case of this experiment the 

reduction of the measured variable are ~38,5% in the 

transformation activity case compared to the expert user 

(perform manually) (see Figure 9), ~ 73,21% in the 

transformation activity case compared to the non-expert user 

(perform manually) (see Figure 9),  ~38,5% in the 

integration activity case compared to the expert user 

(perform manually) (see Figure 10), and ~ 73,21% in the 

integration activity case compared to the non-expert user 

(perform manually) (see Figure 10). This is mainly based on 

the fact, that expert and non-expert Prometheus users do not 

spend much time in searching a software unit and 

preparation/execute a specific reuse task. The same positive 

effect is expected in the reuse of a software unit multiple 

teams of different business units.  The approach detailed in 

this paper has two positive effects. First of all, the solution 

is sustainable for all teams as it is available to all once it has 

been stored in the system. This is shown by using different 

participants from different business units. As consequents, 

all teams will obtain the same result and the same effects 

described in Figure 9 and 10. Therefore, the way of reuse 

planned in the creation phase is more sufficient. The second 

positive effect is the adaptation towards knowledge created 

in the “reuse” steps. If a team recognizes an alternative way 

to perform the reuse activities it is able to store this 

knowledge in the system. This requires training for the use 

of the Prometheus system, but other teams are now able to 

decide, which kind of transformation rule they want to use. 

(Reuser is Creator) Figure 11 shows both positive effects.  

VII. CONCLUSION AND FUTURE WORK 

The reuse of a software unit consists of different reuse 

activities. To perform such activities knowledge is required. 

Especially in an industrial environment this constitutes 

problem for a single team and in different teams of different 

business units. This paper shows the structure and result of 

an experiment aiming to demonstrate that it is possible to 

automate chosen reuse activities so that less experienced 

users are able to perform the activities. By comparing a 

group of software unit experts, a group of less experienced 

users within a normal development environment, and a 

group of less experienced users with the support of the 

focused automation approach following results are obtained: 

(1) It is possible to automate reuse activities. Expert users 

store their knowledge into a system, which is then able to 

perform the activity (knowledge extraction). (2) Less 

experienced users who are normally unable to perform such 

activities are now able to do this. (knowledge injection) (3) 

Analysing of the results demonstrated that this approach has 

positive effects for reuse of software units in industrial 



environments. (4) With automated support, a single team 

can decrease their reuse costs from the first time of reuse 

and thereby make it sustainable. Users utilizing the new 

approach are able to perform an activity faster than the 

software unit expert because the system provides the 

complete environment for the activity based on the expert 

users’ knowledge. (5) By reusing the expert’s knowledge, 

the variations are minimized. All teams use the same 

activity based on the same knowledge. (6) New automated 

activities are sustainable because the activity will be 

changed or a new one is stored in the system, therefore it 

can be used in each new reuse step of each team. Next to the 

positive effects, this paper’s experiment is limited to two 

software reuse activities: Transformation and Integration. 

These activities were chosen because they require different 

amount of knowledge about tools, environment, and 

software units. But there also other reuse activities like test, 

validation, and deployment. Especially for deployment, for 

example on embedded devices, knowledge is required, but 

not all activities may be automated completely. The next 

step is the phase two of the experiment. The number of 

software units is raised to 10 and the number of 

inexperienced software engineers in the groups 2 and 3 is 

increased up.  

Next to the fact that the results have to be confirmed by 

repeating the experiment with new software units and other 

software engineer the process has to be proofed by other 

companies. For that purpose the process of the experiment 

has to be formulated in a formal way. Additionally the 

following aspects are interesting for the future.  

Horizontal extension of the research field: The concept 

presented in this work was demonstrated by using the 

example of integration and transformation. But, much more 

than the activities made use of in this experiment still exist 

in the area of software unit reuse. First, standard activities 

exist such as testing and validation of interfaces. These 

activities usually have a high degree of automation. 

However, these approaches are lacking in one approach, 

which is used to represent knowledge uniformly and then re-

applied to the different existing automation systems. The 

scientific task is thus to consider whether the approach 

presented in this work can also be used for other horizontal 

activities. On the other hand, technological progress can 

ensure new activities in the area of reuse. The scientific 

problem in this case is to check whether the approach 

presented in this work is can also be used for new activities. 
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Abstract. The development of software applications is partly or entirely based 

on the re-use of software units. For software engineers, this leads to the prob-

lem that it is not possible to know all processes, technologies and supporting 

applications and the alternatives needed for the re-use of a software unit. As a 

result software engineers are not able to employ the most optimal solution 

known. Based on case based reasoning this paper outlines a way to use the 

stored knowledge of a specific re-use activity in order to give software engi-

neers assistance if they want to perform similar activities. This solution consists 

of a proposal system for a re-use activity information system. The publication 

concludes with the result that it is possible to re-use, within a given an envi-

ronment, specific knowledge for other integration activities. 

1 Introduction 

The re-use of software units is one of the major topics of software engineering. At the 

same time this topic is also a wide area of scientific research. One of the central ques-

tions of this research field is to find a consistent description of software units. The 

answer to this question is e.g. associated with the following objectives [1]: (1) saving 

of resources (time and effort), (2) reduction of know-how and greater flexibility when 

re-using software units.  

Due to this question, in the past decades, many different methods and technolo-

gies have been developed for the re-use of software units. As an example of current 

approaches that promote re-use, object orientation, component-orientation and service 

orientation are mentioned [2]. 

One of the problems of re-use is to define what a re-usable software unit is [3]. 

From the conventional view that only the part of a software unit that is actually used 

again (e.g. binary or source code) is such a re-usable software unit, the trend was 

created that also additional information (such as documentation, specification, test 

information, etc.) can be used again. Because of this diversity of information the 

terms  ‘assets’ or ‘artifacts’ are used [4]. As a result a re-usable software unit thus 

includes many different needs for information within a re-use process. 

This diversity poses a problem in answering the scientific question. The complexi-

ty of the problem increases because for each re-use technology additional methods 



and applications supporting the re-use technology were developed. This strong ex-

pansion of data or information is called information explosion [5]. Software engineers 

have to find their way in this confusing environment. 

Potential solutions can be found in the area of knowledge management (KM). KM 

and information systems (IS) are able to organise knowledge and information to 

structure and deliver it consistently [6]. Technologies such as semantic models allow 

the connection of different elements, creating knowledge-based statements about the 

knowledge of this relation. A typical example of such knowledge relation is found 

today in social networks and advertising. Social networks are capable of grasping 

knowledge entered by the user and generating adverts that might interest the user, 

based on this knowledge. The selection of advertisements is based on the knowledge 

entered by previous users. For the social networks the operator of knowledge genera-

tion is created using an added value. This process is known as ‘Knowledge Harvest-

ing (KH)’ [7]. 

In principle, the method of KH may also be used in the re-use of software units. 

This means that knowledge about an existing software unit or a related re-use activity 

can be used to generate statements for other software units or activities. An existing 

IS or KM system that is capable of generating software units and their knowledge of 

software re-use activities and save it to reproduce (to perform it automatically), will 

be extended. This extension allows for generating predictions about alternative meth-

ods and technologies or any other specific application systems that can be used in a 

software re-use process. The prediction execution is focused in this publication. 

2 Problem Identification 

Since the scientific question has been not answered and the objectives are not imple-

mented there is the problem that software engineers may have a comprehensive 

knowledge of all existing re-use technologies and the associated methodology and 

supporting software applications. In the following the problem of missing knowledge 

on the methodology and supporting software applications in the re-use of software 

units is focused. Usually this knowledge is specialised with certain (re-use) technolo-

gies or development models. Software engineers typically obtain this knowledge 

through a learning process. The experience of a software engineer supports him/her in 

making decisions about the re-use of software units. However, a person acquires this 

knowledge only when he/she works with such methodologies or applications, or is 

informed or somebody shows them it. This process is referred to as learning process. 

If a software engineer wants to solve a sub problem of software re-use (partly) auto-

mated, he/she can only do this by knowing about the corresponding application that 

solves the problem. Applications that a person does not know about are in this case 

not part of the solution approach designed by the person or the amount of knowledge 

of the person. This problem can be shown based on the information demand model 

for the re-use of software units [8]. 

Fig. 1 shows the structure of the Information Demand Model for the re-use of 

software units. It demonstrates the problem that a person lacks knowledge about a 

specific step of the re-use of a software unit. The subjective information demand 



 

Fig. 1. Information Demand Model [8]. 

(SID) shown in Fig. 1 contains all solutions a person can imagine. The overlap of all 

three areas is the solution sets, which recognises a person who is theoretically correct 

(OID) and are being offered or for the person actually reached (IP). This solution set 

will be formulated by the inability of an individual to search even more restricted (IQ) 

[9]. It can be assumed that the amount of actual usable solutions (intersection of all 

three areas) is much lower than the approaches located in the overlapping area be-

tween the objective need for information and the offered solution sets. The reasons 

for this can be explained as follows: 

Younger software engineers do not have much experience and knowledge in 

software re-use. Interestingly, these people are very interested in the re-use of soft-

ware units [10]. I.e. The problem of missing knowledge shown in Fig. 1 actually 

exists for them. Another reason for this problem is that software engineers often have 

tasks that deal with new technologies or new approaches. Knowledge on the new 

information is usually limited to those persons concerned [10]. 

It is assumed that the knowledge of various software engineers is different. For 

example, it may be that a person is an expert in a service-oriented technology. Anoth-

er person, however, is rather an expert in the use of object-oriented technologies. 

Both persons are experts in their field and have worked in this field with the usual 

methods and applications that support them in the re-use of software units. When 

swapping these two individuals to each other's technologies it is expected that a cer-

tain learning process is necessary to achieve the same knowledge level of a real ex-

pert in that particular technology area. 

The fundamental problem can be formulated as follows: Due to the fact that many 

technologies, i.e. methods, processes and software applications for the re-use of soft-

ware units and related activities, exist (information explosion), the problem arises that 

a software engineer does not have the complete knowledge to (re)use all this technol-

ogy. It raises the question how the necessary knowledge, to fill in for the missing part 

of the activities of re-using software units, can still be made available to a person. 



3 Perspective Information and Knowledge  

This publication deals with the fundamental question of how to transform data into 

information and information into knowledge. In addition this knowledge should be 

available to other persons. This refers to the range of knowledge elements of the re-

use of software units. The scientific background of such an investigation can be illus-

trated using the data–information–knowledge–wisdom hierarchy (DIKW) [11]. Based 

on DIKW hierarchy the elements ‘Data’, ‘Information’, ‘Knowledge’ and ‘Wisdom’ 

are defined as follows:  

“Data are defined as symbols that represent properties of objects, events and their 

environment. They are the products of observation. But are of no use until they are in 

a useable (i.e. relevant) form. The difference between data and information is func-

tional, not structural. Information is contained in descriptions, answers to questions 

that begin with such words as who, what, when and how many. Information systems 

generate, store, retrieve and process data. Information is inferred from data. 

Knowledge is know-how, and is what makes possible the transformation of infor-

mation in to instructions. Knowledge can be obtained either by transmission from 

another who has it, by instruction, or by extracting it from experience. […] Wisdom 

is the ability to increase effectiveness. Wisdom adds value, which requires the mental 

function that we call judgement. The ethical and aesthetic values that this implies are 

inherent to the actor and are unique and personal.” [11] 

Software units within this publication represent ‘Data’. The DIKW hierarchy uses 

data to generate information, if a relation of the individual data elements (e.g. parts of 

the software units) is made to each other. The range of information on a software unit 

includes all possible information about this unit, such as the description of the tech-

nical contents, unit structure, technological information, and information about au-

thors or producers etc. Information turns into knowledge if information is so far con-

nected to each other that it can be used to perform an activity. As part of the re-use of 

software units, this means that information about a software unit for a user is brought 

into relation to the extent that these users transform the unit, for example, or integrate 

it into a development environment (can carry out its activity trap). This last step in the 

scope of software unit re-use represents a scientific problem [12] and is focused on in 

this paper. 

The area of ‘Wisdom’ is the next step in the processing of knowledge. It is about 

clearance from the perspective of knowledge to do the right thing. But this step is not 

part of this publication and is not discussed further. But it is a long term problem in 

the re-use of software units and should be discussed and resolved. 

4 Solution Approach Definition 

In the following, an approach to solving the problem described above is outlined. It 

deals with re-use activities of integration, transformation and deployment of the re-

use of software units. I.e. The outlined approach is able to store information about 

software units and bring it into relationships. This constitutes knowledge and can be 



used to describe the above-mentioned activities and perform them with technical 

support. 

An information system that allows saving information and knowledge about soft-

ware units and re-use activities ([13], [14], and [12]) is used as a base system in this 

study. Through modeling of re-use activities (e.g., transformation of a software unit 

or integration of a software unit in a development environment) within this system, it 

is possible to store such activities of a particular software unit within the information 

system [12]. By defining and using a service-oriented environment the information 

system capable is of automatically performing these activities. This means that a user 

who has knowledge of the software unit and specific activities may deposit this 

knowledge in the information system. A user, who does not have this knowledge, can 

use the information system to access this knowledge and use it, even without learning 

the knowledge. The usual scenario using this information system is explained in more 

detail in the following example: 

Example: A user who is an expert in web technologies has stored a web service 

software unit in the information system that is able to sign files. As information about 

the web service, he/she defines, among other things, that the software unit consists of 

a web service description file (WSDL) and a text document that serves as documenta-

tion on the software unit. In addition, the system needs some meta information (e.g. 

author and functional description) for this software unit, which serves, among other 

things, to carry out a semantic search for this software unit. After the input of the 

actual software unit, the expert user defines a transformation activity. He/She indi-

cates that a particular software application (svcutil.exe) from Microsoft is able to 

transform the software unit (WSDL) file into a source code file containing an imple-

mented web service client. For this transformation, he/she must also specify which 

information is needed for the transformation. In this case, there are various parame-

ters and the WSDL file of the software unit. The expert also needs to define, that the 

result of the transformation is a new software unit. After entering this transformation 

and configuration into the information system, the system is able to offer another user 

information about a software unit (e.g. download of the software unit and its docu-

mentation) and the execution of the related activity (in this case, the transformation of 

the WSDL file into web service client as source code. Another user searches for a 

web service that is able to sign files and gets the information from the system includ-

ing the loaded software unit present. The user can now view the stored metadata and 

the software unit. In addition, he/she is able to download the data from the software 

unit. The user can also view information about the stored transformation. Here it is 

shown that the transformation yields results. The transformation can now be per-

formed by ‘pressing on a button’ within the information system and the result is de-

livered to the user to download. 

The proposed information system is able to store re-use knowledge about specific 

software units and perform it. Basically it can be said that the above described prob-

lem has been solved. Users without knowledge can perform activities (i.e., unknown 

applications and methods) with the required knowledge. This statement is only cor-

rect if it is assumed that a person wanted to use an application in order to achieve a 

particular result. However, this person has no knowledge of the application used to 

get into the activity or methodology. The person now knows that such an activity can 

be performed. While this is an important factor of the fundamental information for re-



use, such a user is not able to define the same activity for a similar software unit in 

the information system or carry it out. 

Considering Fig. 1, it can be stated: A person is only able to enter re-use 

knowledge in the information system, if he/she knows (has learned) these activities 

(knowledge and knowledge application). Conversely, it can be said that a person who 

has no knowledge of this cannot lacks the scenario depicted a way that knowledge on 

other similar tasks or activities on be transferred. 

4.1 Extension of the Existing Solution Approach 

During an experiment [12], of which the goal was to underpin the approach of the 

information system shown in Example 1, the authors recognised that the knowledge 

of the activities entered by the participants can be used in another context. This 

knowledge can be used in a predictive system to support people who create new ac-

tivities. This approach is hereafter called the ‘Predictive Software Re-use Activities 

(PreSRA)’ and follows a simple principle. The entered information about an activity, 

which is the input, the output and the characteristics, are stored as patterns within the 

information system. A user can choose three different ways to work with it. Search 

for Activities: The user can explicitly search for an activity within the information 

system for a software unit. For this purpose, it determines the type of activity as well 

as the familiar input and output information. The information system then analyses 

previously entered activities on this model and can give the user a recommendation, 

which is already a recorded activity to fit its defined input and output. Automated 

Proposal System: When creating an activity for a software unit, the user have to 

define an application or select an application known to the system that performs au-

tomated activity, e.g. transformation from the application example 1. In addition, the 

user must define the input and the output of an activity. With this definition, the in-

formation system can automatically detect the pattern for this activity based on the 

user input and compare them with existing patterns in the system. The result is a list 

of alternative applications which are able to process this pattern or alternative config-

urations for the already selected application. Free Use: Based on the second point 

‘Automatic proposal system’ can be defined using another variant. Users can use the 

information system for activities by entering: (1) Input parameters for an activity and 

/ or (2) the desired output and the desired result of the activity and/or (3) specific 

information or browse the properties of an activity. The result is an outlined list of 

possible activities that a user can use. Unlike the first two variants here it is not the 

goal to find an activity in the information system to re-use a software unit, but to 

preserve the knowledge of how an activity can be simulated. Such knowledge can be 

passed to the user i.e. in textual form. 

This PreSRA approach also supports user input activity knowledge or users who 

generally want to identify an application that is capable of performing a certain activi-

ty at a certain given pattern. The problem described above will now be solved with 

the approach. It is noted that not only the automated execution of an activity without 

knowledge is possible, but also the knowledge that is necessary for the performance 

users will be provided as a suggestion system. Here are different ways to use this 

special knowledge. There are three interesting ‘proposal variants’: Proposal system 



for the integration of software units in development environments, proposed trans-

formation system for applications, and proposed system for device-based deployment. 

This division into three systems proposal does not represent the full amount of any 

possible systems for the re-use of software units, but represents the focus of this pub-

lication. The basic study aimed at finding [15], integration [14], and transformation 

and a special case of the deployment of so-called embedded devices [16]. The topic 

of integration is focused in this publication. 

4.2 Technical Structure of the Approach 

The PreSRA approach will be explained using the example of integration of software 

units into development environments and the existing previously outlined information 

system. This system will be now explained. This is necessary to understand the con-

text of the data used by the proposed systems.  

4.2.1 Information System Architecture 

The central core of a basic information system is a data model that uses semantic 

relationships. This data model is able to store information about software units. Dif-

ferent components of software (plugins) have access this data model to perform dif-

ferent tasks. E.g. repository plugins allow the loading of units from different software 

repositories, which have different data models. This creates a unified view on differ-

ent data sets within the information system. Plugins are able to perform re-use activi-

ties e.g. transformation and integration. An extension of the basic semantic data mod-

el is necessary. Communication plugins allow sending knowledge or information to 

clients / plugins for further processing (e.g. implementation of activities). It is there-

fore possible to view, download or use information about software units on other 

computer systems. At the same time it is possible to perform activities using the in-

formation system and send the result to (remote) clients. The information system 

provides its functionality by using the communication plug-ins in the form of various 

communication technologies (e.g. SOAP or REST based web service). The basic 

scientific investigation, however, focused on web service technology.  

4.2.2 Used Data Model 

The basic data model consists of four areas [15]. The first section describes metadata 

about the software unit, such as authors, support information, creation date, etc. The 

second section deals with the representation of the software unit as a solution or prob-

lem. The basic focus of the investigation is not on this scientific problem, but this 

area was reserved for further research in the data model. The third section describes 

the technical part of the software units. Takes place simultaneously in this area, a 

semantic model that the search of a software unit using a noun-verb combination 

allows [15]. The fourth section describes a software unit from a technical perspective. 

I.e. the contents of a software unit are defined by its physical data. Figure 2 shows 

this part of the data model. 



 

Fig. 2. Part 4 of the basic data model [15]. 

This area consists of five major sub-sectors. The area (1) represents the central el-

ement of the entire data model: a software unit. This item has relations with all other 

areas of the data model. The area (2) classifies a software unit for re-use technologies 

such as services, object, and components. The area (3) contains important features for 

the classification of a software unit from the perspective of the types described in 

section two. Thus, for example, a class is a software unit that is variable, accessible, 

complete and verifiable. Service, however, is a software unit is not changed, with 

privacy, however, is not completely controllable. The area (4) specifies the technical 

environment that requires a software unit. Usually at this point the technology plat-

forms and environment can be defined. The field (5) defines a software unit as a 

physical file. The files are distinguished by their intended use. There are files that are 

readable for humans or are intended for systems. 

All data model extensions (i.e. for integration activities) are linked to the part 3 of 

the data model, because of software units are the main element of each re-use activity.  

Integration. This term describes the insertion of a software unit into a development 

environment. Today's development environments can include different options that 

can be inserted, such as a software unit. The data model’s task hereby is to generalize 

this knowledge and present it in a way that can be processed if required by the infor-

mation system. This approach has been demonstrated in a previous publication [14]. 

The data model extension shown in Figure 3 was designed to depict this type of inte-

gration.  

Therefore, this process requires the integration of different files (File), a descrip-

tion of the development environment (IDE) and a description of the integration pat-

tern. The integration pattern provides a uniform description of the development envi-

ronments’ different integration possibilities (see Figure 3, [14], and [12]). 



 

Fig. 3. Integration activity extension [14]. 

5 Information System as Integration Activity Proposal System  

In the following the data model extension for integration of software units stated in 

the previous section is used to explain the concept of a proposal system. This paper 

introduces the basic data model and the expansion of the existing data model of in-

formation systems used for the storage of integrating knowledge. This includes the 

execution of integration on the basis of this knowledge [12]. For this purpose the data 

model shown in Figure 3 was used. The basic principle of the information system is 

to generalize knowledge for a particular activity and furthermore, generalize 

knowledge about the use of standardized interfaces specifically in software units. 

Accordingly, the data model shown in Figure 3 is a generalization of various models 

that are required for execution of integration knowledge. The most important infor-

mation for the integration of a software unit is (1) Which files of a software unit can 

be used and (2) How these are integrated into a development environment. This not 

only directly affects the files of a software unit but also influences their possible de-

pendencies. Figure 3 (1) describes the presented information and specifies the files to 

be integrated. These are files belonging to the software unit whose dependencies have 

to operate in the development environment. These dependencies can be part of the 

information contained in the Information system (for example, additionally stored 

files) or files or environment variables that must be part of the development or 

runtime environment of the system. In this area, (2) the information shown in Figure 

2 comprises the information of the development environment. Among other things, 

this describes which type of development and runtime environment and which associ-

ated configurations are needed for the unit. Furthermore, this demonstrates a classifi-

cation set that specifies the fundamentals of the way in which a software unit is inte-

grated. The following content samples can be derived from this information (see 

Figure 3): 



Table 1. Information of integration activities objects. 

Typ Describtion Symbol 

File(s) All files participating in the integration process. This includes 

all kinds of information available about each file, eg Technol-

ogy, type, name, size, etc. 

File  

Set<File>  

Integration 

type(s) 

The integration of each file type participating in the integra-

tion process. This includes all information shown Figure 3. 

Type 

Set<Type> 

IDE(s) Any development environment described by means of the data 

model. This includes any information, e.g. Name, supported 

technology platform, environmental variables, system files, 

operating system 

IDE 

Set<IDE> 

Depen-

dency(ies) 

Each dependency of a file, e.g. Technical environment, plat-

form, environmental variables, system files, folders and file 

structures, relation to other software units, etc. 

Dep 

Set<Dep> 

Due to the pattern shown in Table 1, the following content model relationships 

can be derived from the data model shown in Figure 31: 

Table 2. Input and output patterns table for integration activities. 

  Input pattern 

  

Type, 

Set<Type> 

File, 

Set<File> 

IDE, 

Set<IDE>

Dep, 

Set<Dep> 

O
u

tp
u

t 
  

  
 

p
a

tt
er

n

Type, 

Set<Type> ( )    

File, Set<File>  ( )   

IDE, Set<IDE>   ( )  

Dep, Set<Dep>    ( ) 

By entering one of the input patterns defined in Table 2 can one can specify a corre-

sponding output pattern. This will be illustrated by the following example: 

While entering the files a person wants to integrate, i.e. Information, Technology, 

type, name, size, etc., the information system is able to compare this with stored 

knowledge of previous integrations. This process discovers which of the stored files 

contain identical or similar information. An output pattern can be used from the re-

sulting quantities of suitable integrations as this creates information integration type, 

used IDE and further necessary dependencies. This includes the information content 

of each sample, e.g. IDE platform. This process is called case-based reasoning [17]. 

This type of search can be used for each of the input pattern’s elements defined in 

Table 2. In addition, elements of the input pattern can be logically linked to obtain a 

more accurate result. This is illustrated by the following example. The information 

system can be asked with which IDE it is possible to integrate necessary files and 

how to define the integration type of each file specifying how these should be inte-

grated (see Table 3). All saved integrations will be compared to see whether a similar 

                                                           
1Due to the semantic relationships of the entire data model other input and output patterns can 

be identified. The results presented in this work are patterns and therefore represent exam-

ples that serve for direct use. This also applies to the patterns shown for other usages. 



process to arrive at the content of these files can be provided to others with the same 

type of integration. The resulting set of integrations indicates that such integration is 

possible and specifies which IDEs can be performed. 

Table 3. Search patterns. 

  Input pattern 

  

Type, 

Set<Type> 

File, 

Set<File> 

IDE, 

Set<IDE>

Dep, 

Set<Dep> 

In
p

u
t 

(&
 r

el
a

ti
o

n
) 

Type, 

Set<Type> not useful not useful  
maybe not 

useful 

File, Set<File> not useful not useful  
maybe not 

useful 

Result 
     

(& relation)

6 Discussion of the Focused Approach  

As part of the solution to the problem of ‘making knowledge available to people’, this 

publication presents two problem approaches. The first solution is the basic infor-

mation system that was considered and discussed earlier from the perspectives [13] 

and [12]. This system provides access to information and the execution of activities 

through the use of stored knowledge, which is also available through remote commu-

nication systems. With this approach, the following objectives in relation to the basic 

problem are to be met: (1) Users need no knowledge of the software repository, in-

cluding the repository's location as well as the means to access and operate it. (2) 

Users require no knowledge to perform an activity. The information system and the 

expansion of automation plug-ins enable the integration, transformation and deploy-

ment of software units. As discussed in the first section, knowledge can be used with 

this solution, even if a person is not aware of this. The idea presented in this publica-

tion extends the information system with a proposal system (PreSRA) which is able 

to work with the accumulated knowledge about integration. It is also to offer capabil-

ity of such users to further knowledge based added value (i.e. transformation or de-

ployment). There are three considered scenarios: (1) Automatic creation of activities: 

Due to the fact that the proposed system is able to compare input patterns with exist-

ing patterns, the system is also capable of generating a re-use activity from a given 

input pattern. Thus, for example by entry of file information, a comparison with other 

transformations can be performed. If transformations are found, the system can pro-

cess these files and is able to create an automatic transformation from it. This trans-

formation can then be verified by an end user. The system can then use these trans-

formations in its knowledge base. (2) Search by activities: The examples showed in 

the previous section show that the PreSRA system can be used i.e. to search. This 

applies to any activity that a particular input pattern expenditures by testing the 

knowledge base to a greater or lesser amount of expenditure patterns. (3) Transfer of 

knowledge: Looking at the data model extensions for the activities of the integration, 



transformation and deployment are each composed of individual steps. Figure 3 

shows a manual step description. A suggestion system may be adapted so that it not 

only stores automatically running activities in the information system, but can also 

serve as a step by step description. A user is then able to perform every single step of 

an activity manually. This helps the user learn the knowledge that is necessary for a 

particular activity. Besides the search for knowledge and execution of activities (i.e. 

integration), users are now able to define knowledge activities (i.e. integration) with-

out having the appropriate knowledge. Additionally, they are also capable of using 

this knowledge to instruct other users. This solves the problem discussed above, that 

people without knowledge are unable to instruct others. This applies only within the 

scope of this paper and under the use of its proposed integration activity. In addition, 

this system allows the user to generate templates to enable other users to learn 

knowledge for re-use activities (i.e. integration). 

7 Conclusions 

This publication focuses on the problem of users inability to perform re-use integra-

tion activities of software units due to a lack of knowledge. Additionally, these indi-

viduals were not able to use existing knowledge to solve similar problems or to sup-

port other people. At the same time, this publication outlines a solution to these prob-

lems. An existing information system can (automatically) perform such re-use activi-

ties based on expert knowledge it received as input. This information system has been 

extended in this paper to analyse the input of knowledge and non-expert users can use 

it as a suggestion system. This enables users to ask the system for information, e.g. 

Software units in form of activities and/or the system can create such activities from 

existing activities or even execute them. In addition, it was shown that the system's 

knowledge of the activities can be made available to the user by using a case-based 

reasoning approach, which enables them to repeat these activities manually and thus 

acquire the knowledge themselves. This represents a solution for people with no 

knowledge, defined in the context of re-use activities like integration. This approach 

can be used for future research, including other activities, such as automated. Like-

wise, the problem may be the definition of Wisdom 'of knowledge from the perspec-

tive of re-focusing of software units'. It is also necessary to consider whether the 

method described before is applicable to other domains. 
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