
__
i

Copyright statement

This copy of the thesis has been supplied on the condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the
author’s prior consent.

__
ii

__
iii

SERVICE-BASED AUTOMATION OF SOFTWARE
CONSTRUCTION ACTIVITIES

by

Marcus Zinn

A thesis submitted to the School of Computing
and Mathematics in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

In collaboration with

Darmstadt Node of NRG Network

at University of Applied Sciences Darmstadt

September 2013

__
ii

	

Abstract

__
iii

Abstract	
Service-based automation of software construction activities

Marcus Zinn
Master of Science

The reuse of software units, such as classes, components and services require professional
knowledge to be performed. Today a multiplicity of different software unit technologies,
supporting tools, and related activities used in reuse processes exist. Each of these relevant
reuse elements may also include a high number of variations and may differ in the level and
quality of necessary reuse knowledge. In such an environment of increasing variations and,
therefore, an increasing need for knowledge, software engineers must obtain such knowledge
to be able to perform software unit reuse activities. Today many different reuse activities exist
for a software unit. Some typical knowledge intensive activities are: transformation,
integration, and deployment. In addition to the problem of the amount of knowledge required
for such activities, other difficulties also exist. The global industrial environment makes it
challenging to identify sources of, and access to, knowledge. Typically, such sources (e.g.,
repositories) are made to search and retrieve information about software units and not about
the required reuse activity knowledge for a special unit. Additionally, the knowledge has to be
learned by inexperienced software engineers and, therefore, to be interpreted. This
interpretation may lead to variations in the reuse result and can differ from the estimated result
of the knowledge creator. This makes it difficult to exchange knowledge between software
engineers or global teams. Additionally, the reuse results of reuse activities have to be
repeatable and sustainable. In such a scenario, the knowledge about software reuse activities
has to be exchanged without the above mentioned problems by an inexperienced software
engineer. The literature shows a lack of techniques to store and subsequently distribute
relevant reuse activity knowledge among software engineers. The central aim of this thesis is
to enable inexperienced software engineers to use knowledge required to perform reuse
activities without experiencing the aforementioned problems. The reuse activities:
transformation, integration, and deployment, have been selected as the foundation for the
research. Based on the construction level of handling a software unit, these activities are
called Software Construction Activities (SCAcs) throughout the research. To achieve the aim,
specialised software construction activity models have been created and combined with an
abstract software unit model. As a result, different SCAc knowledge is described and
combined with different software unit artefacts needed by the SCAcs. Additionally, the
management (e.g., the execution of an SCAc) will be provided in a service-oriented
environment. Because of the focus on reuse activities, an approach which avoids changing the
knowledge level of software engineers and the abstraction view on software units and
activities, the object of the investigation differs from other approaches which aim to solve the
insufficient reuse activity knowledge problem. The research devised novel abstraction models
to describe SCAcs as knowledge models related to the relevant information of software units.
The models and the focused environment have been created using standard technologies. As a
result, these were realised easily in a real world environment. Software engineers were able to
perform single SCAcs without having previously acquired the necessary knowledge. The risk
of failing reuse decreases because single activities can be performed. The analysis of the
research results is based on a case study. An example of a reuse environment has been created
and tested in a case study to prove the operational capability of the approach. The main result
of the research is a proven concept enabling inexperienced software engineers to reuse
software units by reusing SCAcs. The research shows the reduction in time for reuse and a
decrease of learning effort is significant.

Contents

__
iv

Contents	
Abstract	..	iii	

Contents	..	iv	

List	of	figures	..	viii	

List	of	tables	...	xii	

List	of	abbreviations	and	acronyms	...	xiv	

Acknowledgements	..	xvii	

Author’s	Declaration	...	xviii	

1.	 Introduction	...	1	

1.1.	 Missing	activity	knowledge	in	software	unit	reuse	..	2	

1.2.	 Focus	of	research	...	5	

1.3.	 Aims	and	objectives	..	9	

1.4.	 Method	overview	and	thesis	outline	...	12	

2.	 Problem	of	missing	knowledge	in	software	unit	reuse	..	17	

2.1.	 Secondary	research	methods...	17	

2.2.	 Software	reuse	academic	background	...	20	2.2.1. Term definitions and software reuse aspects ... 20 2.2.2. Discussion of key definitions .. 37 2.2.3. Missing knowledge in software unit reuse .. 47
2.3.	 Conceivable	research	contribution	...	59	

2.4.	 Summary..	60	

3.	 Missing	software	construction	activity	knowledge	–	problem	analysis	63	

3.1.	 Focused	software	construction	activities	..	63	3.1.1. Console-based transformation of software units – transformation activities 64 3.1.2. Transformation activity example ... 65 3.1.3. Integration of software units in development environments – integration activities........ 69 3.1.4. Integration activity example ... 70 3.1.5. Deployment of software units into embedded devices – deployment activities 72 3.1.6. Deployment activity example ... 73
3.2.	 Problem	analysis	..	75	

3.2.1. Explanation of analysis contexts... 76 3.2.2. Knowledge storing problem ... 86 3.2.3. Knowledge learning problem ... 90 3.2.4. Problem of searching and receiving of knowledge ... 93 3.2.5. Knowledge exchange problem ... 97 3.2.6. The problem of knowledge execution ... 100	

Contents

__
v

3.2.6. Problem significance ... 103	
3.3.	 Missing	solution	approaches	...	104	

3.4.	 Summary..	106	

4. A	general	approach	to	realise	knowledge-based	automated	reuse	activities	108
4.1.	 The	basic	idea	..	108	
4.2.	 Focused	user	profiles	and	scenarios	...	113	4.2.1. Knowledge user (KU) – Reuse of software units .. 114 4.2.2. Knowledge creator (KC) – Provision of software units and reuse activities knowledge ... 116
4.3.	 Focused	development	project	scenarios	...	118	4.3.1. Separate user development projects ... 118 4.3.2. Separate team development projects .. 120
4.4.	 The	fundamental	concept	..	123	4.4.1. Software construction as concept bases .. 123 4.4.2. Relevant elements of the concept ... 130 4.4.3. Use cases ... 134
4.5.	 Concept	of	potential	technical	environments	..	136	4.5.1. Communication concept .. 136 4.5.2. Software unit model .. 146 4.5.3. Reuse activity models ... 148 4.5.4. Extensibility .. 149
4.6.	 Summary..	156	

5. Solution	realisation	..	159	

5.1.	 Development	approach	..	159	

5.2.	 Selected	technical	environment	...	159	5.2.1. Distribution model and relevant architecture elements .. 161 5.2.2. Interface definitions .. 161 5.2.3. Used technologies and communication protocols ... 193 5.2.4. Extensibility approaches ... 195
5.3.	 Realised	models	..	196	5.3.1. Software Unit Model instance ... 196 5.3.2. Transformation model instance ... 207 5.3.3. Deployment Model instance .. 210 5.3.4. Integration model instance .. 213
5.4.	 Usage	concepts	..	215	5.4.1. Focused use cases ... 216 5.4.2. Knowledge creator profile use cases ... 217

Contents

__
vi

5.4.3. Knowledge user profile use cases ... 238
5.5.	 Summary..	245	

6. Evaluation	and	research	result	analysis	..	247
6.1.	 Focused	case	study	and	scientific	viewpoint	...	247	6.1.1. General overview about the case study .. 247 6.1.2. Scientific case study theory .. 248 6.1.3. Case study hypothesis .. 249
6.2.	 Research	theory	and	methods	...	249	6.2.1. Relating focused problems and research question ... 250 6.2.2. Selected research type ... 250 6.2.3. Used research theory, methods and application area .. 251 6.2.4. Theoretical viewpoint .. 252 6.2.5. Methods .. 252
6.3.	 Case	study	setup,	procedure	and	measurement	model	...	257	6.3.1. Application domain ... 258 6.3.2. General case study sequence ... 265 6.3.3. Measurement and experiment results overview ... 266
6.4.	 Result	analysis	...	270	6.4.1. Analysis methods definition .. 270 6.4.2. Case study result analysis ... 275
6.5.	 Case	study	hypothesis	review	..	305	

6.5.	 Summary..	306	

7. Conclusion	...	309
7.1.	 Summary	and	achievements	of	the	research	...	309	

7.2.	 Research	contribution	discussion	..	313	7.2.1. Contribution to the problem of different technologies .. 314 7.2.2. Contribution to the problem of different knowledge levels .. 315 7.2.3. Contribution to the problem of knowledge distribution .. 317 7.2.4. Contribution to definition of software reuse knowledge ... 319 7.2.5. Final statement .. 320
7.3.	 Objectives	and	limitations	of	research	...	320	

7.4.	 Future	work	..	322	7.4.1. Neutralisation of the limitations .. 322 7.4.2. Extended research ... 323
7.5.	 Technology	review	and	epilogue	..	325	

8.	 Bibliography	...	xxi	

9.	 Appendix	...	xli	

List of figures

__
vii

9.1.	 Content	of	data	medium	..	xli	

9.2.	 Methodology	of	literature	review	...	xli	9.2.1. Categories ... xli 9.2.2. Stages of a literature review .. xliii 9.2.3. Problem formulation .. xliv 9.2.4. Data collection .. xlvi 9.2.5. Data evaluation .. xlviii 9.2.6. Data analysis and interpretation .. l 9.2.7. Data presentation .. liii
9.3.	 Document	evaluation	protocol	example..	lv	

9.4.	 Additional	research	on	software	unit	base	technologies	...	lvii	9.4.1. Object-oriented software construction... lvii 9.4.2. Component-based software construction ... lxii 9.4.3. Service-based software construction ... lxxii
9.5.	 Schneider	Electric	internal	reuse	study	and	key	notes	...	lxxxii	

9.6.	 Case	study	measurement	value	results	...	lxxxiii	

9.7.	 Additional	identified	problems	and	requirements	for	future	studies	lxxxix	9.7.1. Identified problems for software engineers ... lxxxix 9.7.2. Problem selection for reuse activities ..xcvii 9.7.3. Requirements definition based on focused Problems ... cxiv
9.8.	 Information	demand	model	for	software	unit	reuse	...	cxxxiv	9.8.1. Description of information demand .. cxxxiv 9.8.2. Definition of information demand from the software unit reuse perspective cxxxvi 9.8.3. Use of information demand.. cxxxvii
9.9.	 Published	papers	...cxli	

List of figures

__
viii

List	of	figures	
Figure 1 - Relationship between aim and objectives .. 10
Figure 2 - Used research methods.. 14
Figure 3 - Landscape of reuse (Sommerville, 2011 p.429) ... 26
Figure 4 - Relation between relevant reuse types .. 33
Figure 5 - The knowledge pyramid (Ackoff, 1989, p. 5) ... 44
Figure 6 - Example of the DIKW hierarchy (Rowley, 2007, p. 186)... 45
Figure 7 - Software Reuse Information Demand Model based on Picot (2003, p. 106) 53
Figure 8 - Users experience level (based on Ye, 2001, p.2) .. 54
Figure 9 - Dependency hierarchy of DPWS Java libraries (blue external libraries; red internal libraries) 66
Figure 10 - Example IKVM transformation execution .. 67
Figure 11 - Example IKVM transformation execution with dependency .. 67
Figure 12 - Example IKVM transformation execution of the DPWS4J.JAR file ... 68
Figure 13 - Dependency hierarchy of DPWS .NET libraries (ILSpy View) .. 68
Figure 14 - Dependency hierarchy of DPWS .NET libraries (blue external libraries; red internal libraries) 69
Figure 15 - DPWS integration activity folder and project structure ... 72
Figure 16 - Single problem visualisation (a) and multiple problem visualization (b) 76
Figure 17 - Creation of a multiview SRID model out of single view SRID models ... 77
Figure 18 - Horizontal vs. vertical markets .. 79
Figure 19 - Distribution of reusable software units (Schoop, 2012) ... 81
Figure 20 - Development distribution (a) STwS (b) MTwS; and MTwoS (c) based on Schoop (2012) 82
Figure 21 - Use of relevant software units in different business units ... 84
Figure 22 - Reused units in software development (based on Schneider; (cf. Appendix Section E)) 85
Figure 23 - Future improvements identified by the study of Schneider Electric 2012 (Brick = software
unit) .. 85
Figure 24 - Example SRID model for knowledge storing .. 89
Figure 25 - Example process for knowledge interpretation ... 90
Figure 26 - Creation of the problem of repository localisation .. 96
Figure 27 - SRID model for the problem of search request formulation based on Picot (2003, p. 106) 96
Figure 28 - SRID model for information demand for search and receipt of knowledge 97
Figure 29 - Example of focused reuse steps ... 109
Figure 30 - Basic Idea of this thesis .. 110
Figure 31 - Concepts used for problem solving .. 110
Figure 32 - Single KC and Single KU relation .. 118
Figure 33 - Single KC related to multiple KU .. 119
Figure 34 - Multiple KC related to single KU .. 119
Figure 35 - Single KC related to multiple related KU .. 120
Figure 36 - Single KC related to multiple-non separated teams ... 121
Figure 37 - Single KC related to multiple separated teams .. 121
Figure 38 - Parts of the Service-oriented Software Construction Process .. 123
Figure 39 - Content of a Software Construction Artefact ... 125
Figure 40 - Service interfaces of an SCA ... 127
Figure 41 - Reuse of software construction artefacts .. 127
Figure 42 - Automation concept .. 128
Figure 43 - UI as abstraction layer for the focused environment ... 129
Figure 44 - Data content of the SSCP environment .. 129
Figure 45 - Requesting knowledge inside the SSCP environment (Transformation activity example) 130
Figure 46 - Use of the Software Unit model in the focused environment .. 131
Figure 47 - Communication concept of knowledge in the focused concept ... 132
Figure 48 - Use of active and passive knowledge .. 134
Figure 49 - Overview of the supported use cases ... 135
Figure 50 - Knowledge injection scenario .. 138

List of figures

__
ix

Figure 51 - Knowledge extraction scenario .. 138
Figure 52 - Request for reuse activity execution .. 140
Figure 53 - Monolith scenario .. 142
Figure 54 - Completely distributed scenario .. 142
Figure 55 - Data-driven communication .. 143
Figure 56 - ID-driven communication ... 144
Figure 57 - Example of distribution of business logic for the concept-based environment 145
Figure 58 - Standardisation of the view on services, components, and classes ... 146
Figure 59 - Areas of the Software Unit Model ... 146
Figure 60 - Relevant views of the Software Unit Model ... 147
Figure 61 - Software Unit Model as fundamental information base for reuse activities 148
Figure 62 - Extension concept of reuse activity models ... 151
Figure 63 - Reducing view complexity on different repositories .. 152
Figure 64 - Concept environment as repository ... 154
Figure 65 - Typical development environments ... 155
Figure 66 - Multiple client system using the same service of the focused concept .. 156
Figure 67 - Prometheus architecture overview .. 161
Figure 68 - Overview of Prometheus server architecture ... 164
Figure 69 - Information flow of the Prometheus core .. 165
Figure 70 - Communication behaviour of a search request ... 166
Figure 71 - Distribution possibilities of the used Prometheus architecture ... 167
Figure 72 - Integration plugins for Visual Studio and Eclipse ... 169
Figure 73 - Relevant interfaces in the Prometheus architecture .. 172
Figure 74 - Relevant interfaces of the User Client (UC)-Plugin ... 173
Figure 75 - Advanced interface of the UC-Plugins .. 176
Figure 76 - Additional support Interface of the UC-Plugin ... 185
Figure 77 - C# notation of the integration plugin interface ... 188
Figure 78 - C# notation of the transformation client Interface .. 189
Figure 79 - C# Notation of the deployment web service .. 190
Figure 80 - C# Notation of the Integration client plugin Interface ... 191
Figure 81 - Used technologies .. 193
Figure 82 - Model restrictions .. 197
Figure 83 - Relevant elements of the area 1 - stakeholder view (U-R1) ... 198
Figure 84 - Relevant elements of the area 2 – problem and solution view” (U-R2) 200
Figure 85 - Relevant elements of the area 3 – technical view (U-R3) .. 203
Figure 86 - Relevant elements of the area 4 – content view (U-R4) .. 205
Figure 87 - Relevant relations between the different areas of the U-Model ... 207
Figure 88 - Data model extension for transformation activities maintanance .. 208
Figure 89 - Data model extension for deployment activities Part 1 ... 210
Figure 90 - Data model extension for deployment activities Part 2 ... 211
Figure 91 - Data model extension for Integration activities .. 213
Figure 92 - Focused stakeholder of the Prometheus environment .. 216
Figure 93 - Use Case digramm for the focused Prometheus environment ... 217
Figure 94 - Activity diagram for Use Case ‘UOM Creation’ .. 219
Figure 95 - UOM creation UI .. 220
Figure 96 - File element creation UI ... 220
Figure 97 - Activity diagram of use case ‘UOM SEARCH’ ... 221
Figure 98 - User Interface for UOM search .. 222
Figure 99 - Activity diagram of use case ‘UOM DISCOVERY’ .. 222
Figure 100 - Detailed presentation of a software unit ... 223
Figure 101 - Activity diagram of use case ‘UOM Adaptation’ .. 224
Figure 102 - Wizard to add new UOM file information.. 224
Figure 103 - Activity diagram of use case ‘ACTIVITY CREATION’ ... 225

List of figures

__
x

Figure 104 - Main UI for integration activity creation ... 226
Figure 105 - Integration steps .. 228
Figure 106 - Example of an UI for transformation tool setup .. 229
Figure 107 - Main UI for transfromation activity creation ... 229
Figure 108 - Main User Interface for transformation rule creation ... 230
Figure 109 - Relevant UI areas of the transformation output definition wizard .. 231
Figure 110 - Transformation steps ... 232
Figure 111 - Relevant steps for deployment activity creation .. 234
Figure 112 - Activity diagram of the use case ‘ACTIVITY SEARCH’ ... 235
Figure 113 - User Interface for activity search ... 235
Figure 114 - Activity diagram of the use case ‘ACTIVITY DISCOVERY’ .. 236
Figure 115 - Activity diagram of the use case ‘ACTIVITY Adaptation’ .. 237
Figure 116 - UI Wizard for UOM adaptation .. 238
Figure 117 - UI for downloading UOM information ... 239
Figure 118 - Activity diagram of the use case ‘UOM INFORMATION RETRIVAL’ ... 239
Figure 119 - Activity diagram of the use case ‘ACTIVITY EXECUTION’ ... 240
Figure 120 - UI for activity execution (a) in UOM overview (b) in activity detail ... 240
Figure 121 - Activity diagram of the use case ‘INTEGRATION ACTIVITY EXECUTION’ 241
Figure 122 - UI for integration activity execution .. 242
Figure 123 - Configuration UI for IDE service endpoints .. 242
Figure 124 - Activity diagram of the use case ‘TRANSFORMATION ACTIVITY EXECUTION’ 243
Figure 125 - UI for transformation activity execution .. 244
Figure 126 - Activity diagram of the use case ‘DEVICE DEPLOYMENT ACTIVITY EXECUTION’ 245
Figure 127 - Experimental environment and setup .. 259
Figure 128 - Basic experiment scenario ... 260
Figure 129 - Overview measureable content ... 261
Figure 130 - Estimated results of experienced and inexperienced user ... 271
Figure 131 - Average results for the DPWS Java transformation SCAc .. 278
Figure 132 - Average results for the DPWS Java integration SCAc .. 280
Figure 133 - Average results for the DPWS C stack transformation SCAc .. 282
Figure 134 - Average results for the DPWS C integration SCAc ... 284
Figure 135 - Average results for the Log4J transformation SCAc ... 285
Figure 136 - Average results for the Log4J integration SCAc ... 287
Figure 137 - Average results for the Log4Net transformation SCAc .. 289
Figure 138 -Average results for the Log4Net integration SCAc.. 290
Figure 139 - Average results for the EWSJ transformation SCAc ... 292
Figure 140 - Average results for the EWS J integration SCAc ... 294
Figure 141 - Average results for the EWS .NET integration SCAc ... 295
Figure 142 - Average results for the EWS .NET transformation SCAc .. 296
Figure 143 - Average results all measured transformation SCAc ... 299
Figure 144 - Average results all measured integration SCAc ... 300
Figure 145 - Final comparison of inexperienced software engineers ... 304
Figure 146 - Comparison between supported and unsupported software engineers 312
Figure 147 - Sketched process for document separation .. xlviii
Figure 148 - Example of a cookbook form for data analysis and interpretation ... liii
Figure 149 - Document evaluation protocol example ... lv
Figure 150 - UML like representation of a class .. lviii
Figure 151 - Technical architecture of the .NET Platform ... lx
Figure 152 - NET runtime environment communication (Computerbase 2008, online) lxi
Figure 153 - UML component diagramm example (Ambler, 2008) ... lxvii
Figure 154 - Web Service Choreographie and Orchestrierung (Peltz, 2003, p. 47) lxxiv
Figure 155 – Multi-tier architecture using services (based on Jiang and Willeam 2005) lxxxi
Figure 156 - General structure of activities used for explanation .. xcix

List of figures

__
xi

Figure 157 - Relation between a general transformation activity and focused knowledge based
problems .. xcix
Figure 158 - Relation between a general integration activity and focused knowledge based problems civ
Figure 159 - Relation between a general deployment activity and focused knowledge based problems cx
Figure 160 - Information flow of a activity reuse .. cxv
Figure 161 – Oriiginal information demand model by Picot (2003, p. 106) ...cxxxv
Figure 162 - SRID model related to original information model .. cxxxvii
Figure 163 - Critical success factors (of Frakes and Fox, 1996) in the SRID model cxxxviii

´

 	

List of tables

__
xii

List	of	tables	
Table 1 - Extension mechanism for reusable software units (based on Jansen et al., 2008) 24
Table 2 - Typical software units in different software reuse landscape approaches 29
Table 3 -Types of reuse (based on Prieto-Diaz, 1993) .. 30
Table 4 - Example of base technology/concept in the software reuse landscape approaches 36
Table 5 - Briefly description of the supported use cases .. 135
Table 6 - Used interface groups ... 173
Table 7 - Parameters of the search operation ... 174
Table 8 - Parameters of the GetItems/GetItemsAsZip operation .. 174
Table 9 - Parameters of the PerformTransformation operation .. 175
Table 10 - Parameters of the PerformIntegration operation ... 175
Table 11 - Parameters of the PerformDeployment operation ... 176
Table 12 - Parameters of the CreateArtefact operation .. 177
Table 13 - Parameters of the CreateUOM operation ... 178
Table 14 - Parameters of the AddData operation .. 179
Table 15 - Parameters of the RemoveItem operation .. 179
Table 16 - Parameters of the LoadIntegrationActivity operation .. 180
Table 17 - Parameters of the RemoveIntegration operation ... 180
Table 18 - Parameters of the Create/UpdatesIntegration operation .. 180
Table 19 - Parameters of the GetAvailableTransformationApplication operation .. 181
Table 20 - Parameters of the GetTransformationApplication operation ... 181
Table 21 - Parameters of the RemoveTransformationApplication operation .. 182
Table 22 - Parameters of the Create/TransformationApplication operation ... 182
Table 23 - Parameters of the LoadTransformationActivity operation ... 183
Table 24 - Parameters of the RemoveTransformation operation .. 183
Table 25 - Parameters of the Create/UpdateTransformation operation ... 183
Table 26 - Parameters of the LoadDeploymentActivity operation ... 184
Table 27 - Parameters of the RemoveDeploymentActivity operation .. 184
Table 28 - Parameters of the Create/UpdateDeployment operation .. 185
Table 29 - Parameters of the GetServiceInformation operation .. 185
Table 30 - Parameters of the GetAvailableRepositoryInfomation operation... 186
Table 31 - Parameters of the DoIntegration operation ... 188
Table 32 - Parameters of the DoTransformation operation .. 189
Table 33 - Parameters of the DoDeployment operation .. 190
Table 34 - Parameters of the SetTransferType method ... 191
Table 35 - Parameters of the ReceiveZip method .. 192
Table 36 - Defintion of elements of the stakeholder view (U1) .. 198
Table 37 - Defintion of elements of the problem solution view (U2) ... 199
Table 38 - Defintion of elemens of the technical view (U3) ... 202
Table 39 - Classification of unit types .. 204
Table 40 - Defintion of elements of the content view (U4) .. 205
Table 41 - Case study software units ... 264
Table 42 - Case study scenario summary ... 265
Table 43 - Overview variables of comparison methods used in case study scenarios 267
Table 44 - Case study scenario related to measurement methods .. 268
Table 45 - Summary of measured values of an SCA performed by a participant ... 274
Table 46 - Summary of measured values of a Prometheus preparation .. 274
Table 47 - Average values example of a software construction activity .. 275
Table 48 - Measured values of each participant (DPWS4J transformation SCAc KR - Knowledge
Resource) ... 276
Table 49 - Average values of the DPWS Java transformation SCAc (KR Knowledge Resource) 277
Table 50 - Average values of the DPWS Java integration SCAc (KR Knowledge Resource) 279

List of tables

__
xiii

Table 51 - Average values of the DPWS C transformation SCAc (KR Knowledge Resource) 281
Table 52 - Average values of the DPWS C integration SCAc (KR Knowledge Resource) 283
Table 53 - Average values of the Log4J transformation SCAc (KR Knowledge Resource) 284
Table 54 - Average values of the Log4J integration SCAc (KR Knowledge Resource) 286
Table 55 - Average values of the Log4Net transformation SCAc (KR Knowledge Resource).......................... 288
Table 56 - Average values of the Log4Net integration SCAc (KR Knowledge Resource) 290
Table 57 - Average values of the EWSJ transformation SCAc (KR Knowledge Resource) 291
Table 58 - Average values of the EWSJ integration SCAc (KR Knowledge Resource) 293
Table 59 - Average values of the EWS .NET integration SCAc (KR Knowledge Resource) 295
Table 60 - Average values of the EWS .NET transformation SCAc (KR Knowledge Resource)........................ 298
Table 61 - Setup time for focuses SCAcs... 303
Table 62 - Comparison of component-based procedural models (Stojanović, 2005) lxiv
Table 63 - Measured values for the DPWS Java Stack transformation ... lxxxiii
Table 64 - Measured values for the DPWS Java Stack integration ... lxxxiii
Table 65 - Measured values for the DPWS C Stack transformation .. lxxxiv
Table 66 - Measured values for the DPWS C Stack integration .. lxxxiv
Table 67 - Measured values for the Log4J transformation .. lxxxv
Table 68 - Measured values for the Log4J integration .. lxxxv
Table 69 - Measured values for the EWS .NET transformation .. lxxxvi
Table 70 - Measured values for the EWS .NET integration .. lxxxvi
Table 71 - Measured values for the EWS J transformation ... lxxxvii
Table 72 - Measured values for the EWS J integration ... lxxxvii
Table 73 - Measured values for the Log4.NET integration...lxxxviii
Table 74 - Measured values for the Log4.NET integration...lxxxviii
Table 75 - Single or combined visualisation .. xcvii
Table 76 - Problems in the focused reuse activities ... xcviii
Table 77 - Sub requirement list for the problem of key concepts.. cxvii
Table 78 - Sub requirement list for the problem of different views ... cxviii
Table 79 - Sub requirement list for the problem of multitude ... cxix
Table 80 - Sub requirement list for the problem of different component models and worlds cxx
Table 81 - Sub requirement list for the problem of availability ... cxxi
Table 82 - Sub requirement list for the problem of context dependencies ... cxxii
Table 83 - Sub requirement list for the problem of different perspectives ... cxxii
Table 84 - Sub requirement list for the problem of completeness ... cxxiii
Table 85 - Sub requirement list for the problem of knowledge storing ... cxxiv
Table 86 - Sub requirement list for the problem of knowledge learning .. cxxv
Table 87 - Sub requirement list for the problem of knowledge receiving .. cxxvi
Table 88 - Sub requirement list for the problem of knowledge search .. cxxvi
Table 89 - Sub requirement list for the problem of knowledge using ... cxxvii
Table 90 - Sub requirement list for the problem of knowledge distribution ...cxxviii
Table 91 - Sub requirement list for the problem of localisation (single) .. cxxix
Table 92 - Sub requirement list for the problem of localisation (single) ... cxxx
Table 93 - Sub requirement list for the problem of missing knowledge exchange cxxx
Table 94 - Sub requirement list for the problem of reachable knowledge ... cxxxi
Table 95 - Sub requirement list for the problem of excessive support requirements cxxxii
Table 96 - Requirements relationship ... cxxxiii

List of tables

__
xiv

List	of	abbreviations	and	acronyms	
A
ACM

Association for Computing
Machinery

AIS Actual Information State
API

Application Programming
Interface

B
BCF Business Component Factory
BIN Binary file
BPM Business Process Management
BPML

Business Process Modelling
Language

C
CAD Computer-Aided Design
CCM CORBA Component Model
CLI

Common Language
Infrastructure

CLS

Common Language
Specification

CMI

Collaboration Management
Infrastructure

CMS Content Management System
COM Component Object Model
Corba Common Object Request Broker
COTS Commercial of the shelf
CSC Computer Science Corporations

D
DCOM

Distributed Component Object
Model

DIKW

Data–information–knowledge–
wisdom

DLL Dynamic Linked Library
DPWS Device Profile for Web Service
DSL Domain specific language
DVD Digital Video Disk

E
EJB Enterprise Java Beans
EOF Entity Object Framework
ERD Entity-relationship diagram

EWS Ecostructure Web Service
EXE Executable

F
FTP File transfer protocol

G
GUI Graphical User Interface
GUID Globally Unique Identifier

H
HTML Hypertext Markup Language

I
IBM

International Business
Machines Corporation

ICP Integration Client Plugins
ID Information Demand
ID Identifier
IDE

Integrated Development
Environment

IDL Interface Definition Language
IEEE

Institute of Electrical and
Electronics Engineers

IP

Internet Protocol / Information
Provision

IQ Information Query
IT Information Technology

J
JAR Java Archive
JDBC Java Database Connectivity
JMS Java Message Service
JNDI

Java Naming and Directory
Interface

JTA Java Transaction API
JVM Java Virtual Machine

K
KC Knowledge Creator
KD Knowledge Discovery
KM Knowledge Management

List of tables

__
xv

KMS

Knowledge Management
System

KU Knowledge User
KV Knowledge Vaporization

M
MDSD

Model-driven software
development

MEF

Microsoft Extensible
Framework

MTwoS

Multiple Teams without
Support

MTwS Multiple Teams with Support

O
ODBC Open Database Connectivity
OID Objective Information Demand
OMT Object Modelling Technique
OO Object orientation
OOA object-oriented analysis
OOD object-oriented design
OOP object-oriented programming
OPF OPEN Process Framework
OS Operating System
OSGi

Open Services Gateway
initiative (not used anymore)

OWL Web Ontology Language

R
RAS Reuse Activity System
RCP Repository Client Plugins
RDF

Resource Description
Framework

REST Representational State Transfer
RMI Remote Method Invocation

RNIF
RosettaNet Implementation
Framework

RUP Rational Unified Process

T
TrCP Transformation Client Plugins

S
SC Software Construction

SCA Software Construction Artefact
SCAc Software Construction Activity
SCS Software Construction Service
SDK Software Development Kit
SID Subjective Information Demand
SME

Small and Medium sized
Enterprises

SOA Service-oriented Architecture
SOAP

Simple Object Access Protocol
(not used anymore)

SPI Software Process Improvement
SPL Software Product Line
SQL Structured Query Language
SRE Software Reuse Environment
SRID

Software Reuse Information
Model

SSCP

Service-based Software
Construction

STARS

Software Technology for
Adaptable , Reliable Systems

STwoS Single Team without Support
STwS Single Team with Support
SVG Scalable Vector Graphic

U
UC User Client
UCP User Client Plugin
UDDI

Universal Description, Discovery
and Integration

UI User Interface
UID Unique Identifier
UML Unified Modelling Language
UOM Unit of Modelling
URL Unified Resource Identifier

V
VS Visual Studio

W
WCF

Windows Communication
Foundation

WS Web Service
WS-CDL

Web Service choreography
Description Language

List of tables

__
xvi

WSCI

Web Service Choreography
Interface

WSDL

Web Service description
language

X
XAML

Extensible Application Markup
Language

XML Extensible Markup Language

Acknowledgements

__
xvii

Acknowledgements	

This thesis was produced during my work as a system architect, manager of software engineers
and software architects in industry business, and the work as a scientific researcher at the
University of Plymouth in cooperation with the University of Applied Science Darmstadt
(HDa). It is the result of continuous technical discussion with business partners, colleagues,
students, and the personal experience of industry projects, research projects, and the given
teaching at the university.

This Ph. D. thesis could not have been produced without support from several people.
Therefore, I would like to thank all parties involved. First I want to thank my supervisors.

Dr. Günther Turetschek and Dr. Klaus Peter Fischer-Hellmann, (First supervisors)
Dr. Alois Schütte (Second supervisor)
Dr. Andy D. Phippen (Third supervisor)

At this point it is relevant for me to say something about Mr. Turteschek: Mr. Turetschek died
in December 2009, and unfortunately cannot see the results. I have to thank him for the
scientific support, personal motivation, confidence, opportunities given and the clearance for
this dissertation. Mr. Turteschek believed in the scientific and industrial relevance of this work,
and it is, therefore, an honour for me to fulfil this study.

Thank you Mr. Turetschek for last 13 years. I will miss you.

It is also relevant for me to mention Mr. Klaus-Peter Fischer-Hellmann who takes over the
position of the first supervisor. He gave me the same support that Mr. Günther Turetschek gave.
Hopefully we can work together in the future.

Thank you very much Mr. Fischer-Hellmann.

I also want to thank the Schneider Electric Automation GmbH especially Dr. Ronald Schoop
and Ralf Neubert. Schneider Electric was the business partner for the experimental study of this
work.

I will also think back very positively about the years of studying for the Ph.D. at the University
of Plymouth with my friend Benjamin Heckmann. This dissertation should not be the end of
our teamwork.

A Ph.D. thesis cannot be written without the support of family and friends. Especially, Michael
and Jenna. So finally I would like to thank my family Kerstin, Belana and Daniel for their
motivation, their support and endurance.

Thank you to all my friends for supporting me and my aim.

Author’s Declaration

__
xviii

Author’s	Declaration	

I hereby declare that this submission is my own work and that, to the best of my knowledge and
belief, it contains no material previously published or written by another person nor material
which has been accepted for the award of any other degree or diploma of the university or other
institute of higher learning, except where due acknowledgment has been made in the text.

This study was supported by Schneider Electric GmbH Automation Germany.

The postgraduate research project has been conducted and supervised under the agreement
between the University of Plymouth and the University of Applied Sciences Darmstadt
concerning the establishment of the Darmstadt Node of the NRG Network at the University of
Applied Sciences Darmstadt (HDA).

Relevant publications, seminars and presentations were regularly attended at which work was
often presented, and several papers were prepared for publication.

Presentation on internal conferences

Zinn, M.: Service-based software construction process, Proceedings of the 3th Collaborative Research

Symposium on Security, E-learning, Internet and Networking (SEIN 2007), 2007, Plymouth, UK,
ISBN: 978-1-8410-2173-7, pp. 169-184.

Zinn, M., Turetschek, G. and Phippen, A.D.: Definition of Software Construction Artefacts for Software

Construction, Proceedings of the 4th Collaborative Research Symposium on Security, E-learning,
Internet and Networking (SEIN 2008), 2008, Wrexham, UK, ISBN: 978-1-84102-196-6, pp. 79-
90.

Zinn, M., Fischer-Hellmann, K.P. and Phippen, A.D.: Development of a CASE-tool for the Service-Based

Software Construction, Proceedings of the 5th Collaborative Research Symposium on Security,
E-learning, Internet and Networking (SEIN 2009), 2009, Darmstadt, Germany, ISBN: 978-1-
84102-236-9, pp. 134-144.

Publications and conference presentation

Zinn, M., Fischer-Hellmann, K.P., Phippen, A.D. and Schütte, A.: Finding Reusable Units of Modelling - an

Ontology Approach,
Proceedings of the 8th International Network Conference (INC 2010), 2010, Heidelberg,
Germany, ISBN: 978-1-84102-259-8, pp. 377-386.

Zinn, M., Bepperling, A., Schoop, R., Phippen, A.D. and Fischer-Hellmann, K.P.: Device services as

reusable units of modelling in a service-oriented environment - An analysis case study,
Proceedings of the 2010 IEEE International Symposium on Industrial Electronic (ISIE 2010),
2010, Bari, Italy, ISBN 978-1-4244-6391-6, pp. 1728-1735.

Zinn, M., Fischer-Hellmann, K.P., Schütte A. and Phippen, A.D.: Information Demand Model for Software

Unit Reuse Proceedings of the 20th International Conference on Software Engineering (SEDE
2011), 2011, Las Vegas, USA, ISBN: 978-1-880843-82-6, pp. 32-39.

Author’s Declaration

__
xix

Zinn M., Fischer K.P., Schütte A., Phippen A.D.: Reusable Software Units Integration Knowledge in a
Distributed Development Environment, Proceedings of the 2nd International Workshop on
Software Knowledge (SKY 2011), 2011, Paris, France, ISBN: 978-989-8425-82-9, pp. 24-35.

Zinn M., Fischer K.P., Schoop R.: Reuseable software unit knowledge for device deployment, Proceedings

of the 3th conference of conception of complex automation systems (EKA 2012), 2012,
Magdeburg, Germany, ISBN: 978-3-940961-72-3, pp. 99-110.

Zinn M., Fischer K.P., Schoop R.: Case-based reasoning approach for re-use activities, Proceedings of the

3th International Workshop on Software Knowledge (SKY 2012), 2012, Barcelona, Spain, ISBN:
978-989-8565-32-7, pp. 31-42.

Zinn M., Fischer K.P., Schoop R.: Automated Reuse of Software Reuse Activities in an industrial

environment – Case Study Results, Proceedings of the 6th International Conference on Software
Engineering Advances (ICSEA 2012), 2012, Lisbon, Portugal, ISBN: 978-1-61208-230-1, pp. 331-
340.

Heckmann B., Zinn M., Phippen A. D., Moore D. J., Wentzel C.: Economic Efficiency Control on Data

Centre Resources in Heterogeneous Cost Scenarios, Proceedings of 7th International Conference
for Internet Technology and Secured Transactions (ICITST 2012), 2012, London UK, ISBN: 978-
1-908320-08-7, pp. 675-679.

Other presentations

Zinn M.: Service based Software Construction, CeBIT, 3-8 March, Hannover, Germany, 2009.

Zinn M.: Service based Software Construction, Schneider Electric Global Architecture Meeting, 9
January, Seligenstadt, Germany, 2010.

Zinn M.: 13 presentations of research results in the Ph.D. seminar of the Darmstadt Node of NRG
Network, Darmstadt, Germany, 2006-2013.

Word count of the main body of the thesis is: 76207
(Tables and captions not included)

Date & Signature: _______________________
Marcus Zinn

Author’s Declaration

__
xx

This is for my family.

My deepest gratitude to my wife

Kerstin,

my children

Belana, Daniel, and Lennard.

I love you!

Introduction

__
1

1. 	Introduction	
 “…So spake Zeus in anger, whose wisdom is everlasting; and from that time he was always

mindful of the trick, and would not give the power of unwearying fire to the Melia race of

mortal men who live on the earth. But the noble son of lapetus outwitted him and stole the far-

seen gleam of unwearyting fire in a hollow fennel stalk. And Zeus who thunders in high was

stun in spirit, and his dear heart was angered when he saw amongst men the far-seen ray of

fire” (Hesoid and Evelyn-White, 1914, line 545).

Among other things, this excerpt from the Greek hero mythology ‘Theogony’ describes a

human dilemma. Against the will of Zeus, son of lapetus (so called Prometheus) gave mankind

the knowledge of certain skills, such as cooking or producing tools. To punish mankind, Zeus

took the skill to make fire away from them. This meant that, although Prometheus had given

them the necessary knowledge, mankind was no longer able to carry out relevant tasks like

cooking or producing certain tools.

It seems that this punishment was only possible because mankind was unable to independently

create an relevant detail necessary for these activities. The different activities like cooking food

or producing tools depended on fire and the activities to create it. However, the people did not

know how to generate fire by themselves. They were only able to keep an already existing fire

burning. Prometheus helped the people again so this part of Theogony had a happy ending.

The dilemma came about because humans in this story are only able to conduct processes when

they have the required knowledge for all the necessary sub-activities to manufacture parts, or

they are able to use parts that have been made before. If this knowledge is absent, some

activities of a process cannot be performed. As a result, the dependent processes cannot be

performed at all, only incompletely or not in the calculated time. This dilemma, occupying the

minds of poets and authors 2300 years ago, still exists today and is particularly apparent in

manufacturing of products. Car manufacturers, for example, do not usually create all parts of a

car by themselves and are only able to assemble the parts into a finished product. Zheng (2007)

Introduction

__
2

shows the dilemma which arises if one of the individual parts is not available, the car cannot be

completed.

Regarding the area of software this dilemma seems to be solved. Install tools and package

management systems on different operation systems are able to perform the activities of

installation and configuration of software for a user. The user has not to know these activities

and can continue. But the problem of missing knowledge exists in the area of software

development. Sandhu et al. (2010) and Böckle, Pohl and van der Linden (2005) describe a

special field of software engineering attempting to develop software products (such as software

units, software applications, and software product lines) by utilising those previously

developed. Sommerville (2011) and Sandhu et al. (2010) call this software reuse, which should

help to save resources, (e.g., time and money). In software reuse, existing software products are

integrated into another software product because they solve a particular sub-problem and,

therefore, create added value. Sandhu et al. (2010) and Garlan, Allen and Ockerbloom (2009)

figured out that usually, trying to solve problems that can be solved by reuse existing

functionality by themselves uses more resources than reusing an existing software unit.

However, Jha and O’Brien (2011) discuss the problem of missing reuse knowledge impacting

the whole software development process. Therefore, reuse of existing software products needs

knowledge which has to be available for the human user (e.g., software engineer). Regarding

the Theogony, not knowing the knowledge of a reuse activity seems to be a dilemma.

1.1. 	Missing	activity	knowledge	in	software	unit	reuse		
The mentioned impact of missing knowledge on software reuse is well-known, especially at the

end of the last century, reuse based software development projects were analysed. For example,

Mohagheghi et al. (2004), Edward, Ali, and Sherif (1999), Fichman and Kemerer (2001), and

Schmidt (1999) show in their multi-project analysis that knowledge is one of the critical

success factors of software reuse.

Introduction

__
3

Regarding the analysis results of Ravichandran and Rai (2003) and Ajila (2006), missing

knowledge may also lead to an increase of required resources (i.e., time or costs) or to the

complete failure of a development project. Jansen et al. (2008) also analysed different software

development projects more recently and conclude the same result. Based on such results,

different researchers focus on the exchange and application of knowledge (cf. Qu, Ji and

Nsakanda, 2012; Choi, Lie and Yoo, 2010). Qu, Ji and Nsakanda (2012) stated that software

development teams are knowledge intensive groups and the exchange of knowledge is relevant

for the project success.

Inside this thesis, knowledge describes the information a software engineer has to know to

perform a reuse activity. For example, if a software engineer wants to reuse a software unit

(e.g., a Java component), the engineer has to know how to insert this component into the

Eclipse development environment for further use. Another reuse activity example is the

transformation of a software unit into another technology. The transformation of a Java

component into a .NET component requires specific tools (e.g., IKVM by Frijters, 2011) and a

list of settings with specific values. Such settings are related to the used transformation tool and

the software unit to transform. This is knowledge that a software engineer has to know in order

to perform the transformation activity. Here, missing knowledge can lead to reuse activity

failure.

This thesis focuses on two types of knowledge. The first one is the above mentioned knowledge

needed in order to perform a reuse activity. The second one is the knowledge required to

exchange the other knowledge type between software engineers. This is the knowledge to store,

search, and receipt and perform reuse activity knowledge by using a technical environment.

Also the scenarios which create a lack of knowledge for software engineers are well-known.

Shiva and Shala (2007) discuss a typical scenario of young professionals (e.g., students)

without any experience. Another example is the unsuitable knowledge of senior software

engineers for a new project or task. Based on Boh (2008) this is a typical scenario based on

Introduction

__
4

missing knowledge for experienced software engineers. Ven et al. (2006) use the term

knowledge vaporisation. It describes the scenario that existing knowledge gets lost. Typically,

this happens if a person leaves a project and previous decisions cannot be implemented

anymore. As a result, none of the remaining people has access to knowledge of this person.

Another fact is the multitude of different technologies that require different knowledge for

software unit reuse. If the engineer is not aware of the necessary knowledge for reuse, the

whole reuse process might be at risk. This is a dilemma comparable to the situation implied in

the Greek myth. The knowledge problem is based on two relevant aspects:

1. The knowledge for reuse activities is based on the technology of the software unit it

relates to (McCarey, Ó Cinnéide and Kushmerick, 2008). There are a high number of

different software units and related technologies which require knowledge (Isoda,

1992). As a result, the amount of existing knowledge is huge.

2. In recent years the problem has been aggravated by the dramatic growth of new

technologies, necessary tools, and the opportunities to use new software units. If this

trend continues, an even greater amount of knowledge will be required to employ the

technology for reusing software units successfully in future. Regarding the analysis of

Ajila and Zheng (2004) knowledge is always increasing and, therefore, has to be

maintained.

Garcia et al. (2006), Tsai et al. (2010), Ye and Fischer (2005), Bjørnson and Dingsøyr (2008),

and Boh (2008) show in their discussion that approaches may exist in the area of knowledge

management (i.e., search recognition and storing of knowledge). But this does not include the

handling of reuse activity knowledge. Especially in the area of application and automation of

reuse activity knowledge such approaches are rare (see also Bjørnson and Dingsøyr, 2008).

Next to the point that a suggestion system for reuse activities does not exist, there is another

problem with knowledge received from a knowledge management system. As seen in the

Introduction

__
5

discussion of Bjørnson and Dingsøyr (2008), Ajila and Zheng (2004), and Ajila (2006) about

knowledge interpretations, this may lead to the wrong interpretation of knowledge. This means

the reuse result might be not what the user or system that enters or creates the knowledge

expects. Therefore, this may not result in a successful reuse. Furthermore, long learning

processes may fail or may be useless because this reuse is never repeated by the same person,

or the learning process was not sustainable to perform a reuse activity.

1.2. 	Focus	of	research	
Qu, Ji and Nsakanda (2012) analysed different software development projects and stated that

software engineers and teams are knowledge intensive. Success of a project depends on the

sharing and execution of this knowledge. Choi, Lie and Yoo (2010) identify information

technology (IT) as a relevant factor for the exchange and use of knowledge. McCarey, Ó

Cinnéide and Kushmerick (2008) conclude that a lack of techniques to store and subsequently

distribute reuse activity relevant software unit knowledge among software engineers also exists.

As a result, software engineers are not supported by the techniques focusing on the problems

described in Section 1.1.

In general, this research creates an added value on the aforementioned problem of unsuccessful

reuse caused by missing or misinterpreted reuse activity knowledge in the field of software unit

reuse. A technique will be created to limit the lack McCarey, Ó Cinnéide and Kushmerick

(2008) have identified, but with a focus on a specific type of reuse activity. As a result, of this

added value, software engineers require less knowledge to perform this type of reuse activity.

Thereby, a technique has to handle the following knowledge based problem areas which are the

main focus of this research:

1. Problem of knowledge intensive technology

The first problem is the multitudes of different technologies of software units,

environments, and tools necessary for a reuse activity. McCarey, Ó Cinnéide and

Kushmerick (2008) discuss the relation between reuse activity knowledge and related

Introduction

__
6

software unit technology. Software engineers have to handle the amount of different

technologies (Isoda, 1992) which increases significantly (Ajila and Zheng, 2004). As a

result, the numbers of possible reuse activities and the required knowledge for these

increases, too.

2. Problem of knowledge level of software engineers

Ye and Fischer (2005) state that software engineers may have inadequate knowledge

levels. This means they have no, or less, experience with reuse activities of a specific

software unit (e.g., the transformation of a Java component into a .NET component).

As a result, a software engineer has to gain knowledge to increase their knowledge

level (cf. Qu, Ji and Nsakanda, 2012).

Additionally, the creation of variants by learning and the interpretation of activity

knowledge may be a problem (based on the experience of individuals; cf. Johansson,

Hall and Coquard, 1999). As discussed before, such variants can lead to non-adequate

reuse results. This is combined with the problem that reuse activities (including the

learning of knowledge and the setup of these activities) are time consuming tasks for

each software engineer.

3. Problem of knowledge intensive distribution environment.

Relating to the secondary knowledge, the multitude of different existing repositories

containing primary knowledge and information is the focused problem to search,

receive and perform reuse activity knowledge. A software engineer has to know how

each of these repositories can be used. This is similar to the multitudes of different

technologies. Another related problem is the location. This problem is typical for global

development teams placed on different locations all over the world. Often, team

members have no idea about the repositories of other teams, how to locate them, and

how to access them (cf. Qu, Ji and Nsakanda, 2012, Vlaar et al., 2008).

Introduction

__
7

Global software development projects are used as application areas of these problems in this

thesis. Typically, the knowledge exchange between software development teams is difficult.

Thereby, software engineers have the mentioned problems. (cf. Qu, Ji and Nsakanda, 2012)

The research aims to find a solution that enables inexperienced software engineers to perform

reuse activities and, thereby, handle the aforementioned problems. Choi, Lie and Yoo (2010)

conclude that a technical infrastructure support people to exchange and execute of knowledge.

Qu, Ji and Nsakanda (2012) relate this statement to software engineers. Based on this

statement, the identified problems are addressed by the solution of this thesis through following

points:

1. The problem of different technologies of software units, environments, and tools used

in reuse activities are handled by an abstraction model in relation to a reuse

environment. The creation of models based on abstractions is a widely used

methodological approach. A good example is the topic of model-driven software

development where the core idea is the use of abstraction models for creating software

or new models (cf. Selic, 2003). Abstraction is also an relevant method in software

reuse (Krueger, 1992).

In this thesis, a common model for software units is created. To do so, this research

focuses on classes, components, and services as examples of reusable software units.

As a result, the common Software Unit Model includes these three types of units.

Additionally, reuse activity models are created and related to the common software unit

model. This relation represents the software unit information used by reuse activities.

The reuse activity models represent (as example) integration, transformation, and

deployment activities (i.e., the focused reuse activities in this research) of software

units. To be more precise, the integration of software units into development

environments, the console tool based transformation of software units, and the

deployment of software units into embedded devices are used as examples of activities

Introduction

__
8

in this thesis. Based on the construction behaviour of these three reuse activities, they

are called software construction activities (SCAc) in this thesis. The reuse activity

models also describe how a unit should be integrated, transformed, and deployed. This

includes the description of necessary environments, tools, and the required

configuration. The reuse environment is hosting instances of these models. As a result,

all different software units, environments, tools, and SCAc are described by abstract

models. This generates a single view on the multitudes of technologies and makes it

easier to handle.

2. To avoid a learning process which may end in a misinterpretation or insufficient

knowledge of a reuse activity, an automation environment is created. An experienced

user fills this system with reuse activity knowledge. This information is stored in the

reuse activity models. An inexperienced user can use this system to execute the focused

reuse activity based on the stored information. This means an inexperienced user

selects an SCAc and executes it in the user’s technical environment. As a result, the

inexperienced user is not constrained to learn and interpret the activity knowledge.

Additionally, the reuse activity results do not vary. The automation system performs

the stored SCAc in the same way the experienced user expects and, therefore, produces

invariant results. The related problem of time intensive reuse activities is addressed by

creating an environment which is able to host different setups and configurations

required by different SCAcs. An experienced user creates this SCAc setup and the

inexperienced user is then able to perform the SCAc with less preparation and learning

time for the SCAc. The expected effect is a reduction of time in performing an SCAc.

3. The problem of the knowledge intensive distribution environment (e.g., the use of

different repositories) is also based on abstraction. The focused environment handles

repositories and the reuse automation environment for an experienced and

inexperienced user. To simplify the handling, a service interface is used. By using this

Introduction

__
9

interface an experienced user can store SCAc related information. An inexperienced

user is then able to search and retrieve SCAc information, as well as perform SCAcs in

their environment. Next to the abstraction this service should address the location

problem by a simplification of provided infrastructure.

This also includes the location problems of repositories. Whether a repository is placed

next to the user or in a different location should be not relevant. Even though the

structure of the focused environment is changing (i.e., repositories will be added,

replaced or removed) the user should not be aware of these changes. Using such an

SCAc service limits the knowledge to find and access different repository systems.

This thesis focuses on the problem of software engineers if knowledge that is necessary to

perform reuse activities (i.e., transformation, integration, and deployment) of reusable software

units (i.e., classes, components, and services) is missing. The research question is formulated as

follows:

How does one provide successful reuse of different software units considering the possibilities

of reusing and performing related software construction activities even if software engineers do

not have the required knowledge?

By focusing on the reuse of activities, this research can be classified as a reuse of procedure

using the reuse classification of reuse types by Prieto-Diaz (1993).

This research will identify one possible technique to enable inexperienced users to perform the

focused SCAcs and analyse the effects on software engineers in a case study.

1.3. 	Aims	and	objectives	
The principal aim of this thesis is defined as follows: To define a concept to enable software

engineers to reuse software construction activities of reusable software units even if these

engineers do not have enough knowledge to perform these activities on their own.

Basically, the concept is based on the idea to create different models that are able to store SCAc

related information. Additionally, an environment will be created that is able to perform the

Introduction

__
10

SCAc stored in the SCAc models. This environment is service-oriented which means that the

functionality of the environment is provided by one service to users and the environment itself

uses internal services.

By achieving this aim, one possible approach is identified to limit the lack of techniques to

store and subsequently distribute reuse activity relevant software unit knowledge among

software engineers. As a result, this contributes to McCarey, Ó Cinnéide and Kushmerick

(2008) who identify this lack but with the focus on three software construction activities (i.e.,

integration, transformation, and deployment). This aim will be complemented by a series of

further objectives. These objectives and their relationships are summarised in Figure 1 and will

be defined as follows:

Figure 1 - Relationship between aim and objectives

1. Objective - Problem analysis

This objective includes analysing the problems of missing knowledge in software unit reuse for

SCAc, the potential causes generating this problem, and finally the impact created by this type

of problem. This approach is necessary to achieve the principal aim of this work. The briefly

described problems of missing SCAc knowledge in this chapter will be analysed.

The result of this objective is the analysis of the problems which can be used for the discussion

of the success or failure of the approach.

Introduction

__
11

To achieve this objective, the software reuse information demand model is used to represent the

missing knowledge problems of software engineers and, therefore, the elements of missing

knowledge (see ‘Objective 1’ in Figure 1).

2. Objective - Model creation

The second objective of this thesis is the definition and realisation of two model types which

allows a unified view on software units and related software construction activities. The first

includes a way of describing software units using a unified viewpoint. From the scientific point

of view this new model is not an relevant research result. It is used to underline two aspects.

The first one is the fact that an abstract model is sufficient to support the creation of a solution

to solve the focused problems. The second aspect focuses on the demonstration of the focused

solution. The research will show that little information of this model is necessary for the

research.

The second model type describes the three focused software construction activities (see

‘Objective 2’ in Figure 1). This provides the basis for solving the problem that arises through

missing SCAc knowledge.

3. Objective - Creating a service-oriented environment concept

The principle aim supports software engineers in performing software construction activities.

This thesis tries to achieve this by the specification of a technical service-oriented environment.

This environment is the result of this objective. It includes the definition of how to use the

infrastructure and how the infrastructure itself makes use of the models defined in the second

objective (see ‘Objective 3’ in Figure 1).

Note: Even though this objective includes the creation of a service-oriented environment, it is

not the aim of the research to create yet another reuse environment or repository.

4. Objective - Combining models and environment

In order to achieve this objective it is relevant to combine the results of Objectives 2 and 3.

Based on the problem identified in the first objective, the models for a unified view of software

Introduction

__
12

units, and their related software construction activities (Objective 2) will be combined with the

service-oriented environment (Objective 3). This environment has to manage different

repository systems, user requests for managing SCAc, and software units, as well as the

execution of SCAc in the inexperienced users’ environment. The result of this objective is the

solution (i.e., SCA model and service-based environment for performing SCAc) which this

thesis aims to discover. This result is relevant for the principal aim of the thesis, because from

that point onwards, the solution is defined and can be investigated, validated, and discussed

(see ‘Objective 4’ in Figure 1).

5. Objective – Practicability

The fifth objective of the thesis is verifying the principal aim. By using the result of Objective 4

and including the models defined in Objective 2, together with the environment created in

Objective 3, the evidence resulting from this work’s principal aim is investigated and replicated

in a real environment. This realised environment includes existing software units, software

construction activities, software engineers, and an existing industrial environment. This

environment is used in a case study to measure different values. In the last step of this objective

the values are compared and their impact on the focused problems is discussed (see ‘Objective

5’ in Figure 1).

1.4. 	Method	overview	and	thesis	outline	
The following section describes the outline of the thesis, the chapters’ content and the research

methods briefly.

This introduction has laid the foundations for the thesis by introducing the research problem

and research question.

In Chapter 2, relevant literature is analysed and discussed to demonstrate the scientific gap (i.e.,

missing support of SCAc knowledge execution for software engineers) that this research

focuses on as well as the relevance of the research. The discussion in Chapter 2 also includes a

Introduction

__
13

overview about the research methods used for the literature (secondary) research and the

definition of the focused problem.

Chapter 3 discusses the focused problems of missing SCAc knowledge and shows examples of

SCAcs. The problem discussion uses the perspective of software engineers and examples of the

previously described SCAcs and the industry context as the application area. Additionally, the

software reuse information demand model is used here to demonstrate the missing SCAc

knowledge problem. This model is one result created during the Ph.D. research. At the end of

Chapter 3 a short discussion about existing solution types is included.

Chapter 4 presents this thesis’ advocated solution concept. This includes the description of the

solution’s methodology, the concept of a unified view of software units, and the concept for

models describing software construction activities. From the scientific research perspective this

chapter includes the creation of abstraction models for the focused SCAc types and the

abstraction model for the different types of software units (e.g., classes, components, and

services). This simplifies the view on knowledge and creates a solution based on this

simplification. Additionally, this chapter describes the service-oriented environment used to

focus on the problems based on distribution environment knowledge.

Chapter 5 extends the theoretical discussion of Chapter 4 by describing one possible realisation

of the solution. Furthermore, the concept of a unified view of software units will be achieved by

creating model instances. The same procedure will be performed with the concept for models

describing software construction activities. The realisation is a service-oriented environment

which is used in the case study in Chapter 6.

From the methodical point of view this chapter fulfils the creation of a software reuse

environment which is able to handle user requests and the created models for SCAcs. Such

method is often used to demonstrate the reliability of an approach. (cf. Garcia et al., 2006;

Santana de Almeida et al., 2004).

Introduction

__
14

Based on the examples and the realisation demonstrated in Chapter 5, Chapter 6 describes the

verification of the proposed solution’s concept by means of a case study. This implies the

preparation of a case study including a demonstration of the chosen inputs (i.e., SCAc and

software units) and participants. It is also relevant to show the different ways of measuring

relevant research results. Such a method is often used in approaches for software unit reuse and

has the advantage of demonstrating the real world properties of approaches. (cf. Santana de

Almeida et al., 2004; Edward, Ali, and Sherif, 1999)

The results of the study are collected and discussed objectively. Chapter 7 summarises the

results of the previous chapters, thereby, presenting the research in a compact and well-

structured form. After this, the results will be compared with the results of the previous

chapters especially those of Chapter 2 and Chapter 3. This results in the conclusion which

demonstrates the usability of the proposed solution. The result of this chapter is a discussion

and evaluation of the results of the primary research. The possible future work will also be

discussed for this purpose.

Figure 2 - Used research methods

Figure 2 shows the chosen research methods as a process. The process starts with the analysis

of different SCAcs (1). The result includes necessary knowledge for SCAcs, detailed problem

properties, as well as, a state of the art analysis of existing solutions. This knowledge is used to

create abstraction models (2). These models are used in a new reuse environment (3). This

environment is filled with data (stored in the models) and used with different participants in a

Introduction

__
15

proof of concept case study (4), the result of input analysis (1) and the proof of concept (4) is

used for the results analysis (5).

The next chapter includes the secondary research and, therefore, discusses the basics, relevant

definitions, and problems of software unit and activity reuse from the perspective of the used

literature. 	

Introduction

__
16

 	

Problem of missing knowledge in software unit reuse

__
17

2. Problem	of	missing	knowledge	in	software	unit	reuse		
This chapter discusses the literature focusing on the topic of software unit reuse, the problem of

deficient reuse knowledge, as well as the lack of handling software construction activities

knowledge in the area of software reuse. Thereby, the chapter starts with a short overview

about the secondary research analysis characteristics and methods. It is followed by a general

perspective on software unit reuse knowledge. This includes the definition of relevant terms

and an overview about software unit reuse, as well as reuse areas. After this overview section,

the general problem of missing knowledge in software unit reuse will be discussed. This is

followed by a conclusion that the used literature includes a lack of support of software

construction activities knowledge and, therefore, a need for an adequate solution.

2.1. 	Secondary	research	methods	
This section presents an overview of the secondary research methods to describe the procedure

model the author used to identify literature and relevant statements for the literature review. For

further information, a detailed discussion about these methods and their realisation in this thesis

can be found in Appendix Section B.

In general, the research methods follow the discussion of a literature review published by

Randolph (2009) in the Journal of Practical Assessment, Research & Evaluation. The

discussion shows two types of information in literature: characteristics and used analysis

methods. The used characteristics of the literature review are focus, goal, perspective, coverage,

organisation, and audience. Regarding the focus, the literature review in this thesis is used in

order to:

1. Explain reuse in general.

2. Identify and discuss relevant keywords in the field of reuse.

3. Show different research and problem areas of reuse (including SCAc related topics).

Problem of missing knowledge in software unit reuse

__
18

4. Underline the problem of missing knowledge in reuse (including SCAc related topics).

5. Show the historical view on reuse and the problem focused upon (including SCAc

related topics).

6. Critically discuss problems of existing solution approaches (focusing SCAc related

topics).

7. Discuss the contribution of this thesis to the research area of reuse.

Note: The discussion of the existing solution approaches can be found in Section 3.3.

Using these objectives, the overall goal of the literature review is to: (1) generalise the findings

and outcomes of ‘missing knowledge in reuse research’, (2) identify central issues, and (3)

create a line of argument for an innovative solution of a service-oriented provision of software

construction activities.

The literature review is structured by using the aforementioned objectives. Literature used for

an objective discussion is first discussed in a neutral position. The different literature will be

related also from this neutral position. In some of the cases, the discussions have to be related

to the research of this thesis or require a critical analysis.

The coverage characteristic shown by Randolph (2009) is defined as follows: They range from

a review of all existing literature to a purposive collection of literature. This literature review

focuses on a purposive selection of literature, therefore, only journal papers, conference papers,

and specifications of standards (e.g., processes or technologies) were used. These documents

were searched using scientific digital libraries (e.g., IEEE, Association for Computing

Machinery (ACM), Springer, CiteSeerX, and Thinkmind). Also, documents were selected by

analysing references cited previously in studies, journals or conference papers. The literature

used is deemed adequate to explain the focused problem and the solution.

Problem of missing knowledge in software unit reuse

__
19

For the organisation characteristic, this literature review mainly uses a conceptual format and is

structured using the above mentioned objectives. As a result, the review follows the order of

these objectives. Inside each objective discussion the conceptual format is also used, but the

structure differs. Regarding the audience characteristic, the complete thesis including the

literature review is used to demonstrate the capability of the author to perform a Ph.D. study.

Therefore, the primary audience is the review committee of the University of Plymouth.

Following the characteristics, the analysis methods are relevant. Using the characteristics as the

main information following analysis, methods were used in the literature review, as follows

(see Appendix Section A for more detailed description):

Problem formulation: for each focused aim, an objective is formulated. Additionally, the

inclusion and exclusion criteria for literature are defined.

Data collection: In the next step, a basic questionnaire is formulated. At the same time, a

process to separate irrelevant literature is defined based on the inclusion and exclusion criteria

of the problem formulation step.

Data evaluation: For each objective it will be defined which kind of information is seen as

interesting for the research.

Data analysis and interpretation: Using the data evaluation criteria for interesting information,

each selected literature has to be read and checked to see if specific statements can be used as

evidence or a contrary statement. Therefore, this section defines what is evidentiary or contrary

for each objective. For each of the literatures, all relevant information (e.g., statement and

evidence value) is listed in a personal cookbook. An example of this listing can be found in

Appendix Section C.

Data presentation: This last step defines the structure of the literature discussion. The resulting

structure is presented in Section 2.2. An exception is the discussion about other solution

approaches. This is given in Section 3.3. A detailed description of the used literature review

methods can be found in the Appendix Section A.

Problem of missing knowledge in software unit reuse

__
20

2.2. 	Software	reuse	academic	background	
In this section the necessary background information for software reuse will be discussed. This

includes term definitions, as well as a discussion about the reuse landscape and related research.

The section concludes with a discussion regarding relevant statements showing that a lack of

techniques exists to support software engineers in exchanging software construction activity

knowledge.

2.2.1. 	Term	definitions	and	software	reuse	aspects		
In the following, the terms used in this thesis to explain the research are discussed and defined.

2.2.1.1. 	Software	reuse	term	definition		
Reuse based software engineering, also called ‘Software Reuse’ (see McClure, 2001), is a

development approach that focuses on the reuse of previously developed software parts.

Without regard to different characteristics in the realisation of software reuse, this term is more

or less defined using the same meaning. Amongst others, the following definitions for software

reuse exist:

“Reuse-based software engineering is an approach to development that tries to maximize the

reuse of existing software. The software units that are reused may be of radically different

sizes.” (Sommerville, 2011, p. 426)

“Software reuse is the process of building or assembling software applications and systems

from previously developed software parts designed for reuse. Software reuse is practiced to

save time and money, and to improve quality.” (McClure, 2001, p. 3)

 “Software reuse is the process of creating software systems from existing software rather than

building software systems from scratch.” (Krueger, 1992, p. 131)

From the perspective of this thesis, all definitions are correct and applicable. Especially, in

relation to this work, the definition of McClure (2001) including a process view, is applicable.

From the perspective of this definition, the term ‘Software Reuse’ is defined as a process.

Problem of missing knowledge in software unit reuse

__
21

Another relevant point is mentioned by Krueger (1992, p. 131): “The reuse is more the use of

existing units rather than newly writing software units”. Krueger’s statement also implies the

possibility that in one project, the reuse of existing units as well as the creation of a new unit

may occur.

In the scope of this thesis, the term reuse based software engineering is defined from the

software engineer's point of view. To understand the approach discussed in this thesis, it is

useful to identify ‘Reuse based software engineering’ as a software engineering discipline

which is realised using a development process, including different activities, to create

software systems by using software development methods and reusing existing software

units.

Note: This definition is based on the aforementioned statements and is applicable for this thesis.

For other approaches, this perspective may not be suitable. From this point of view ‘reuse based

software engineering’ is called ‘software reuse’ in the thesis.

2.2.1.2. 	Expected	characteristics	of	software	reuse	
The following is generally expected from software reuse: higher reliability, lower risk of wrong

development, more effective use of specialists, standards compliance, and accelerated

development (cf. Sommerville, 2011).

The reduction of costs and the improvement of product quality are seen as the relevant aims of

software reuse. This is discussed, for example, by Morisio, Ezran and Tully (2002), Ha, Sun

and Xie (2012), and Ajila (2006).

Ha, Sun and Xie (2012), Sandhu et al. (2010), Poulin (1997), and White et al. (2009)

demonstrate different ways to calculate costs of software reuse, but mention that different reuse

approaches are difficult to compare. The measurement of quality seems to be a major problem

in the area of research (see Leite et al., 2005).

The requirements of software reuse are based on the expectation that a previously developed

software unit is tested and, therefore, of high quality and simple to reuse. A software engineer

Problem of missing knowledge in software unit reuse

__
22

has only to select the correct software unit, integrate it into a development project, and use it

because the high quality is known. The surveys of Slyngstad et al. (2006), Isoda (1992), and

Morad and Kuflik (2005) in different countries show that this basic idea is correct. Here,

companies are good examples demonstrating reuse as an approach which is able reach the aim

of higher quality and lower costs. The same studies as well as the studies of Frakes and Kang

(2005) and Rothenberger et al. (2003) also demonstrate that the effort for reuse has also to be

considered. Effort is, for example, the training of people for reuse or the search and validation

of a suitable software unit in an in-house repository. Morisio, Ezran and Tully (2002), Card and

Comer (1994), and Frakes and Kang (2005) stated that software reuse includes a preparation

from the technical as well as from the organisational point of view. As a result, software reuse

is not as simple as expected.

Another expected characteristic on reuse is the handling of reusable software units. The studies

of Frakes and Kang (2005), Morisio, Ezran and Tully (2002), Tomer et al. (2004), and Alferez

and Pelechano (2011) are based on different reuse research areas (reuse knowledge, costs, and

software product lines) and identify together source-code (e.g., object-oriented classes),

components, services, and applications (or application parts) as reusable software units.

The last interesting expected characteristic for this research is the expectation of reuse plans

and organisational support of reuse Jansen et al. (2008), Jha and O’Brien (2011), Jakobson,

Griss, and Jonsson (1997), Frakes and Kang (2005), Morisio, Ezran and Tully (2002), and Ajila

(2006), for example, discuss the need for organisational support. Therefore, software reuse has

to be supported by the management, meaning the management has to allocate a budget for reuse

costs, human resources, processes, and time into their business plans.

2.2.1.3. Units	and	landscape	of	software	reuse	
To create an overview of relevant areas where software reuse is used, it is helpful to identify

reusable software unit types first. In software reuse, units of different sizes are reused in a new

Problem of missing knowledge in software unit reuse

__
23

context or environment. Three typical types of reusable software units are defined by

Sommerville (2011, p. 416):

1. Reuse of software systems: a system as a whole or parts of a software system can be

used either by integrating with other systems and customising it for different customers

or by developing application, having a shared architecture, but with the added features

that a current customer needs.

2. Reuse of components: application components that adjust the size of the subsystems to

one simple class or object can be reused. It is, for example, possible for a pattern

matching system, which was developed as part of a text processing system, to be reused

in a database management system.

3. Reuse of objects and functional software components that implement functions such as

a mathematical function or object classes that can be reused. Indeed, reuse of

components was common for 40 years (Paulisch, 2008). Today a complete market

exists for libraries, different types of function classes, and application development

platforms. They can be easily used by another application code that is linked. This

approach is effective, especially in the areas of mathematical algorithms and graphics,

particularly where domain specific experienced users are needed to develop objects and

functions.

Different scientific studies handle the first and second type of Sommerville’s classification as

typical reusable software unit’s categories. In their analysis, Jansen et al. (2008) use services

and components as reusable software units and focuses on the topic of the reuse of components.

Wang and Fung (2004) also see service and components as relevant units of modelling in

software reuse from an architectural perspective. This is different from the viewpoint of Tomer

et al. (2004) and Böckle, Pohl and van der Linden (2005). Their research focused on software

Problem of missing knowledge in software unit reuse

__
24

parts or whole software products in a software product line (SPL) environment. Bayer et al.

(1999) and Dikel et al. (1997) are examples of research that focused on the third type during the

1990s.

From the perspective of this thesis the second type is the focused category. This research

focuses on classes, components, and services as reusable software units.

Additionally, to the discussion of the reusable software units it is relevant to see how these

units are reused. Next to the typical use of objects and classes Jansen et al. (2008) discussed in

detail the two software unit types (components and services) of reuse inside development

environments (see Table 1).

Note: A detailed discussion about different base technologies of classes, components and

services can be found in the Appendix Section D. This also includes an overview of typical

usage behaviours.

Unit of inclusion Call type Interaction method

Component

Direct
Pipe and filter

Component library reuse

Indirect

Glue code

Shared data object

Component bus

Plug-in architecture

Service
Direct Service framework

Indirect Enterprise service bus

Table 1 - Extension mechanism for reusable software units (based on Jansen et al., 2008)

Table 1 shows that service frameworks and enterprise service busses are used to integrate

services into a development project or application environment. The use of a service framework

is defined as direct method call. This means the software engineer reuses the service by a direct

link between the existing code and the service using the service framework. Windows

Problem of missing knowledge in software unit reuse

__
25

Communication Foundation (WCF), for example, is the service framework of the .NET

architecture. An indirect method is the configuration of an enterprise bus to act as a mediator

between a service and the project or application environment. Here, the software engineer does

not use the service directly. The task is to configure an enterprise bus for forwarding request or

responses of the service.

Table 1 shows direct and indirect methods for integration of components into a development

project or application environment. Pipes and filters, as well as method calls of component

libraries are typical direct methods of a software engineer to reuse a component. Four indirect

methods exist for components.

- Glue Code means to write some extra source-code to integrate the component into the

project.

- Shared data objects are instantiated components used like a service and capsulate the

existing implementation.

- Component bus is equal to the service bus approach.

- Plugin-architecture describes an infrastructure as part of the existing development

project. This infrastructure is able to load/integrate an existing component in the

development project or application environment. These methods are similar to the

component methods of Jansen et al. (2008) and used in the area of SPL.

Also, it is relevant to know if software units are reused for critical or non-critical operations.

Jansen et al. (2008) conclude that software units (in this case services and components) are used

for non-critical and critical operations. Leite et al. (2005) also support this statement and,

therefore, mention that the quality of the software unit is relevant. If a software unit contains

errors or has an unexpected behaviour this may be lead to errors in the system using this unit.

Next to the discussion of the types of units and their usage in development, is the relevant

discussion about the potential content of a reusable unit. The examples used before discuss

software units as reusable units. Ajila (2006), for example, uses the term component or reuse

Problem of missing knowledge in software unit reuse

__
26

component to summarise all reusable software units. Other studies as Lopez and Niu (2011)

and Morisio, Ezran and Tully (2002) use the term artefact or asset and define it as a reusable

unit which includes, e.g., the following information: knowledge, documentation, design, code,

and cost information for assets. This demonstrates that additional information only uses

binaries or source-codes are the focus of software reuse. Rothenberger et al. (2003) discuss

these terms as containers of multiples values. Note: For a more detailed discussion about the

different terms see Section 2.2.2.

The different software units of the three categories mentioned by Sommerville (2011) can be

related to the different approaches in software unit reuse. Sommerville (2011) shows a software

reuse landscape including these approaches.

Figure 3 - Landscape of reuse (Sommerville, 2011 p.429)

Figure 3 shows different reuse approaches from the area of software engineering. These are

described briefly as follows (based on the listing of Sommerville, 2011):

1. Design Patterns: Across applications, abstractions are commonly presented as design

patterns denoting either abstract or concrete objects or interactions. Design patterns are

concepts which can be reused as a concept or implemented in adaptable source-codes

or components (see Gamma, 1995 for example).

Problem of missing knowledge in software unit reuse

__
27

2. Component-based Software Engineering: A software systems will be created by a mix

of components meeting the standards of the component model. Typically, the software

units used here are components (Szyperski, 2002a).

3. Application Frameworks: These consist of concrete and abstract class sets which can be

expanded or adapted to build application systems. In application frameworks usually

application parts can be used. An example for reuse of application parts is the

Microsoft Office application. Often, application parts of Microsoft Word or Microsoft

PowerPoint are reused between these two applications in the same version of Office as

well as between different versions of Office. Therefore, a specific framework is used

that is provided to software engineers using the Microsoft Component Object Model

(COM) technology (Microsoft, 2012a).

4. Legacy System Wrapping: A system that can be included in a wrapper and is defined

by the associated use of an interface over which access takes place. This type of reuse

often uses components, application parts or services. Especially if a wrapper or legacy

system creates a connection to another technology and is used in the system providing

the wrapper. An example is the use of Java byte code in a .NET application using the

IKVM wrapping system (Frijters, 2011).

5. Service-Oriented Systems: These comprise systems developed by linking shared

services that can be supplied by external sources. Typically, services are the used

software units for reuse in this area (Singh and Huhns, 2005; Wang and Fung, 2004).

6. Software Product Lines: A type of application which is generalised by using a common

architecture so that it can be adapted to different customers. Usually, whole

applications are used in such approaches (see Fayad and Johnson, 2000).

Problem of missing knowledge in software unit reuse

__
28

7. Commercial of the shelf (COTS) integration: These systems are developed through the

integration of existing application systems. Typically, the software units used here are

components (Sommerville, 2011) that are provided by COTS selling companies (e.g.,

Componentsource, 2012). An example for COTS is the WebCAD web service provided

by Componentsource (2012) which includes numerical procedures to either construct a

function of one or two variables from a set of points (i.e., interpolate), or solve an

equation of one variable.

8. Configurable Vertical Applications: A generic system designed to make it adaptable to

the specific needs of the customer. Compared to the application product lines, the

software units here are reused by configuration and not by adaptation of the software

units. The typical software units are also whole application systems.

9. Programming Libraries: Consists of class and function libraries that implement

functionality for reuse. Typically, the software units used here as components are used

as libraries today. An example is the topic of Dynamic Linked Libraries (DLL). Often,

these libraries include a set of classes that may be not related to each other or to the

same business domain. This is the difference to components used in component-based

development (see Szyperski, 2002a)

10. Program Generators: A generator system storing knowledge about a particular type of

application purchase system or system fragment created for this application. Czarnecki

and Eisenecker (2000) discuss such programme generator technology called Generative

Programming.

11. Aspect-Oriented Software Development: In this process, shared components are

‘woven’ into the composing program in different places. In this type of reuse

Problem of missing knowledge in software unit reuse

__
29

development, smaller software units (e.g., source-code, classes, components or

services) are usually used (see Rashid and Akşit, 2006).

12. Model-Driven Development (or Model-Driven Software Development; MDSD):

Development discipline using domain models and implementation independent models

to represent software or software units. By transforming models, software units or

systems can be created (see MDSD; Petrasch and Meimberg, 2006).

13. ERP System: System for organisational use. These include business functionality and

rules.

14. Architectural Patterns: Software architecture used to create software. An architectural

example is the use of a plugin infrastructure (e.g., Microsoft Extensible Framework; cf.

Microsoft, 2012b)

Table 2 summarises the relation between reuse approaches shown in the landscape of

Sommerville (2011, p. 430) and the typical software unit types used in the approaches.

Landscape	approach	 Typical	used	software	units	

Design	Patterns	 Components,	Source-Code	
Component-Based	Development	
Systems	 Components	

Application	Frameworks	 Application	parts	
Legacy	System	Wrapping	 Components,	Services,	Application	parts	
Service-Oriented	Systems	 Services,	Interface	descriptions	
Software	Product	Lines	 Applications,	Application	parts	
COTS	integration	 Components	
Configurable	Vertical	Applications	 Applications,	Application	parts	
Programming	Libraries	 Components	
Program	Generators	 Models	(Source-Code)	

Aspect-Oriented	Software	Development	 Components,	Source-Code,	Classes,	Services	

Model-Driven	Development	 (typed)	Models		
Architectural	Patterns	 Components,	Source-Code,	diff.	Models	
ERP	System	 Components,	Source-Code,	Configuration	files	

Table 2 - Typical software units in different software reuse landscape approaches

Problem of missing knowledge in software unit reuse

__
30

2.2.1.4. 	Perspectives	on	software	reuse		
In used literature, different perspectives on software reuse can be identified. For example,

Prieto-Diaz (1993) identified six facets of reuse: by substance, by scope, by mode, by

technique, by intention and by product. Based on these facets the author describes different

types of reuse.

Facets
By substance By scope By mode By technique By intention By product

Re
us

e
ty

pe
s

Idea reuse Vertical reuse
Planned
reuse

Compositional
reuse Black-box reuse Reuse products

Artefact
reuse

Horizontal
reuse Ad-hoc reuse

Generative
reuse White-box reuse

Procedure
reuse

Table 3 -Types of reuse (based on Prieto-Diaz, 1993)

The facet ‘by substance’ describes reuse from the perspective of the reusable content. Ideas,

artefacts, and procedures can be reused. The facet ‘by scope’ focuses on vertical and horizontal

reuse. Therefore, a reusable unit can be used in similar (e.g., vertical areas in industrial

automation) or in different business contexts (e.g., horizontal areas of automation, power, and

building). In the facet ‘by mode’ the focus of reuse is set to an organisational planned (so called

planned or systematic) reuse or not planned (so called ad-hoc) reuse. The facet ‘by technique’ is

not relevant from the literature review point of view, and is similar to the COTS integration and

program generators described by Sommerville (2011). While the facet ‘by substance’ describes

the content to reuse the facet, ‘by intention’ describes how content is used. Two aspects are

given: in the first, (black-box) content is reused as it is which means without changes. In the

second, (white-box) the reuse content will be adapted to fit the requirements for reuse. The last

facet ‘by product’ focuses the use of the whole application or application parts. Also other

classifications exist. Rada (1995), for example, identifies the type of focus (methodology

centric or user centric) as an relevant facet in software reuse. Both types are named;

development-with-reuse and reuse-within-development.

Problem of missing knowledge in software unit reuse

__
31

The research described in this thesis can be classified as reuse ‘by substance’. This is explained

as follows: The facet ‘by substance’ describes reuse from the perspective of the general content.

As described in the previous sections, this research focuses on classes, components, and

services as software units and their SCAcs. The research shown by this thesis focuses on

handling missing SCAc knowledge. Therefore, the primary research of this thesis is a

procedure reuse. As a result, the research can be classified in the facet ‘by substance’. But the

other aspects are also relevant for the research.

In the following, the relevant terms will be explained in more detail, related to each other, and

related to the context of the focused research. The used literature distinguishes planned

(systematic), ad-hoc (opportunistic), white-box, black-box, development with reuse, reuse-

within-development, vertical reuse, and horizontal reuse.

Systematic (Planned) and ad-hoc (opportunistic) reuse: The literature shows two typical

classifications for reuse: systematic and ad-hoc reuse. Morisio, Ezran and Tully (2002), Rada

(1995), Ye and Fischer (2005), and Ha, Sun and Xie (2012) are examples which defines

systematic reuse as a process of previously (long term) planned reuse. This includes

organisational and technical project planning. On the other side they show that the ad-hoc reuse

is also planned (short term) reuse. Usually, ad-hoc reuse is the use of an existing software unit

in different application/development projects sporadically. Therefore, ad-hoc reuse is also

called ‘opportunistic reuse’.

For Morisio, Ezran and Tully (2002) and Ye and Fischer (2005) systematic reuse has to be

established inside an organisation. As a result, management decides and plans how to reuse. To

do systematic as well as ad-hoc reuse different infrastructure is necessary (see Tomer et al.,

2004). Tomer et al. (2004) describes systematic and controlled reuse scenarios. In a controlled

reuse, a repository is prepared with reusable software units ready for reuse in one product line.

In a systematic reuse, all reusable software units are prepared to be reused in multiple product

lines. This view differs from the other views of systematic and ad-hoc reuse. Tomer et al.

Problem of missing knowledge in software unit reuse

__
32

(2004) showed that not only the level of planning is relevant, but also the level of used

infrastructure.

Morisio, Ezran and Tully (2002) use the term systematic practise to describe the term of

systematic reuse but with a focus on organisation-wide reuse behaviour.

White-box and black-box reuse: Ha, Sun and Xie (2012) shows by using the example of

software development for embedded devices the white-box reuse or black-box reuse is relevant.

Szyperski (2002a, pp. 40-42) describes white-box and black-box abstraction related to the reuse

of components which is summarized as follows:

- Black-box: A component is included into the system to be developed, as a complete

unit. This component cannot be altered. Furthermore, no statement can be made about

its internal construction and functionality. The use of the component happens

exclusively on the basis of defined interfaces and specifications of the component.

- White-box: The component is reused as an open or editable unit that can be adapted to

the new requirements. For that purpose, its internal construction is visible and thus

analysable. Hence, the component is considered as a software fragment. The use of the

component does not happen exclusively on the basis of defined interfaces, but also by

analysing the actual implementation of this component.

Additionally, glass-box and grey-box reuse is discussed by Szyperski (2002a, pp. 40-42). These

are not relevant for this research.

Tomer et al. (2004) describe a white-box reuse approach as an adaptable reuse approach for

software development. Software units as well as processes are adaptable. On the other side

Ampatzoglou et al. (2011) describes black-box reuse as a process of reusing software unit or

design patterns and its processes as ‘it is’. This explicitly excludes the adaptability of a software

unit which is equal to the black-box view on components.

Development-with-reuse and reuse-within-development: McCarey, Ó Cinnéide and

Kushmerick (2008) use two different scenarios for reuse: Development-with-reuse and reuse-

Problem of missing knowledge in software unit reuse

__
33

within-development. Development-with-reuse is described by Rada (1995). The main

properties of this methodology centred approach are:

- Reuse of software units is an optional activity in the development process

- Reuse of each software unit has to be planned

- The user has to handle given reuse models

The reuse-within-development scenario is described by McCarey, Ó Cinnéide and Kushmerick

(2008) as a user centred approach. Mili, Mili and Mili (1995) and Ye and Fischer (2005)

describe case tool supported scenarios which fit the reuse-within-development scenario. This

‘user centred’ approach has the following properties:

- Focus on behaviours and actions of software engineers

- Combine different reuse based development activities (McCarey, Ó Cinnéide and

Kushmerick (2008)) focuses on Component-Based Development activities)

- The used tools (e.g., development environments) have to be adapted for supporting the

users and fulfil the user’s requirements.

Figure 4 - Relation between relevant reuse types

While systematic and ad-hoc reuse describes the different levels of long and short term

planning, white-box and black-box defines the level of adaptability of a software unit.

Development-with-reuse and reuse-within-development describes two type of reuse for

Problem of missing knowledge in software unit reuse

__
34

software engineers. In this thesis the relation of the three different perspectives on reuse are

related as shown in Figure 4.

The relation between the different perspectives is defined for this thesis as follows: Black-box

or white-box is in the scope of development-with-reuse and reuse-within-development. These

two perspectives can be used in systematic and ad-hoc reuse. This thesis targets knowledge

based reuse problems generated in both scenarios: white-box and black-box reuse. The solution

approach created in Chapter 5 focuses on reuse of SCAcs of software units without any manual

adaptations by a software engineer. As a result, of hiding the structure and the execution of

reuse activities, this approach is related to the perspective of black-box reuse. Therefore, it can

be used on development-with-reuse and reuse-within-development, and the related systematic

and ad-hoc (or opportunistic) reuse.

2.2.1.5. 	Impact	of	reuse	
The literature shows positive impacts of software reuse on software development projects and

software products. Jansen et al. (2008) mentioned based on McConnell (1996a) that the reuse

effort is between 1% and 19% of effort of reinvention in start-up companies. White et al. (2009)

create a formula based on existing cost metrics to calculate the costs for the development and

the reuse of a domain specific language (DSL). They conclude that reuse does reduce costs.

Ajila (2006) discusses several studies for the topic of costs and productivity that shows the

same conclusion.

Some examples in literature show a reduction of cost (e.g., 43% and 15%) and the increase

(e.g., 10% and 57%) of quality (see discussion of Tomer et al., 2004) by focusing on software

unit reuse.

The different studies focus on different types of companies and different countries (and

different cultures). Therefore, it is difficult to compare these statements. But for this thesis the

fact is relevant that reuse supports software development. The research of this thesis tries to

simplify software reuse in a special topic to generate similar positive impacts.

Problem of missing knowledge in software unit reuse

__
35

As mentioned, the cost of reuse is relevant information for organisations. Usually, it is a

problem to compare different reuse projects because they’re not comparable one by one. This is

particularly a problem between white-box and black-box projects. In the SPL environment,

Tomer et al. (2004) create a cost function to compare these two different reuse approaches and

mention reuse development costs, product construction costs, core asset costs, and

infrastructure costs. Thereby, they mentioned an relevant perspective for this thesis - costs can

be related to activities necessary in a reuse process. As a result, a specific activity can have a

cash value. In a SPL environment these are, for example, transformation costs (e.g., adaptation,

creation, white-box reuse, and new development) and transition costs (e.g., integration of reuse

results into the SPL environment).

An relevant statement here is the use of activities in cost calculations for software reuse (see

Tomer et al., 2004). This indicates that reuse activities are a relevant (cost) factor in software

reuse. Therefore, an approach for optimisation of the reuse activities has impacts on the costs of

software reuse. The research in this thesis focuses the simplification of the execution of reuse

activities. The result of this research may show that this has positive impacts on costs in an

indirect way. If the focused approach is able to show that time for reuse can be reduced, it can

be stated that the labour cost for this reuse is also reduced. This presumption is based on the

relation between time and costs (cf. Ajila, 2006).

2.2.1.6. 	Reuse	technologies	and	environments	
This section describes reuse technologies and a special environment type identified in the

literature. In general, for each element of the software reuse landscape, supporting technology

approaches can be identified. Table 4 shows example technologies and concepts that are related

to the typical software unit of the different software reuse landscape approaches. As a result,

Table 4 links landscape approaches and base technologies and concepts based on the used

software unit type.

Landscape approach Typical used software units Base technology/concept

Problem of missing knowledge in software unit reuse

__
36

examples
Design	Patterns	 Components,	Source-Code	 CB,	OO	
Component-based	
development	
systems	

Components	 CB	

Application	
frameworks	

Application	parts	 SPL,	CB	

Wrapper	and	legacy	
systems	

Components,	Services,	Application	
parts	

SPL,CB,	SB	

Service-Oriented	
Systems	

Services,	Interface	descriptions	 SO	

Application	
(software)	product	
lines	

Applications,	Application	parts	 SPL	

COTS	integration	 Components	 CB	
Configurable	
vertical	applications	

Applications,	Application	parts	 SPL	

Libraries	 Components	 CB	
Program	generators	 Models	(Source-Code)	 UML,	MDSD,	OO	
Aspect-oriented	
software	
development	

Components,	Source-Code,	Classes,	
Services	

SO,	CB,	OO	

Table 4 - Example of base technology/concept in the software reuse landscape approaches (CB = component based
technology ; OO = oject orientet technology; SPL = Software Product Line; SO = service oriented technology; UML =

Unified Modelling Language; MDSD = Model-driven software development)

A base technology concept for components is the component-based technology used in

component-based development. For example, Morisio, Ezran and Tully (2002), Szyperski

(2002a), and Naur and Randell (1968) identify reuse as the composition or generation of

software units. The reuse landscape component-based technology can be used in the area of

design patterns, application framworks, wrappers, COTS integration, libraries, and aspect-

oriented software development.

Service-based technologies use services and interfaces as typical software units. This is stated

for example by Papazoglou et al. (2007), Wang and Fung (2004), and Singh and Huhns (2005).

Regarding the reuse landscape, service-based technologies can be used in the area of wrapper

and aspect-oriented software development.

In the area of advanced software units, software product lines (SPL) are used as the technology

concept. In this area, core asset development (see Tomer et al., 2004) and product development

are seen as different types of software unit creation. The reuse landscape SPL can be used in the

Problem of missing knowledge in software unit reuse

__
37

area of applications frameworks, wrappers, application product lines, and configurable vertical

application.

A source-code is used in object-oriented form, for example as class structure. Morisio, Ezran

and Tully (2002) for example, found examples of object-orientated technologies as a typical

technology that supports reuse. Regarding the reuse landscape, object-oriented technologies can

be used in the area of design patterns, programme generators, and aspect-oriented software

development.

Another landscape approach is the area of programme generators. Here, source-codes, as well

as modelling technologies, for example Unified Modelling Language (UML), may be used to

generate reusable software units. Generating models as reusable software units, for example;

model-driven software development can be used.

Next to the technologies in Table 4, another approach in the reuse of software units is the

Software Process Improvement (SPI). Pino, García and Piattini (2007) review different case

studies for software development improvements and argue that case tools that improve reuse

processes are very relevant.

Garcia et al. (2006) describes an abstract case tool necessary for software reuse called software

reuse environments. Software reuse environments (SRE) support software engineers by

addressing, for example, reuse activities. Garcia et al. (2006) concludes that current integrated

development environments (IDEs) are SRE systems and do not completely fulfil the

requirement for SREs to include all possible reuse functions as, for example, for integration

purposes.

2.2.2. 	Discussion	of	key	definitions	
Next to the term software reuse, the area of software reuse research includes other typical

terms. Often, these terms can be interpreted differently. Following, a short overview is given

discussing and concluding relevant term definitions for this thesis.

Problem of missing knowledge in software unit reuse

__
38

2.2.2.1. 	Software	construction	
The research focuses on three special reuse activities (i.e., integration, transformation, and

deployment) which are not related to the domain specific knowledge of the software unit. To

separate these activities from other activities which are related to software unit domains, the

term software construction is used. In contrast to software engineering, the definition of

software construction differs. Basically the construction of software relates to the development

and integration of bigger components (McConnell, 1996b). These components are linked with

each other in a previously specified manner and result in a finished product or another

component. Therefore, software construction is a part of software engineering. This form of

construction is the result of a long chain of developments and has a large number of aspects.

The term software construction is often applied to the meaning of component-based software

development (Szyperski, 2002b) or component-based software engineering (Sommerville,

2011). On account of the ambiguity arising from this, using the term ‘software construction’ is

not unproblematic.

According to the software engineering glossary (McConnell, 2006) construction in the area of

software engineering is defined as follows:

 “…The activity in software development consisting of detailed design, coding, unit testing, and

debugging. Also called programming or development.” (McConnell, 2006, p. 128)

Taking this definition, software construction includes software unit domain related reuse

activities. Accordingly, software construction is only one synonym for software programming

or development. This is similar to the definition of software construction two years before by

SWEBOK (2004). In the procedure model SWEBOK (2004), software construction is one of

ten knowledge areas which are necessary in a software development procedure model. Software

construction is described as follows: “Software construction refers to the detailed creation of

working, meaningful software through a combination of coding, verification, unit testing,

integration testing, and debugging.” (SWEBOK, 2004, Chapter 4 HTML Version) Here,

Problem of missing knowledge in software unit reuse

__
39

software construction is a description for typical object-oriented software development and

contrary to the other mentioned definitions.

Hunt and Thomas (2004) adopt a pragmatic view. Here, software construction relates, in this

case, to the joining of bigger units. Furthermore, the authors show that construction is also

about architecture and design. Also, the software construction becomes more separated from

the software unit domain.

Another view focuses on processes. Software construction describes a process in which clusters

within a software development process are built and joined (Baudoin and Hollowell, 1996;

Meyer, 1997). Thereby, a cluster is defined as follows:

“The module structure of the object-oriented method is the class. For organisational purposes,

you will usually need to group classes into collections, called clusters […] A cluster is a group

of related classes or, recursively, of related clusters.” (Meyer, 1997, p. 923)

This description corresponds to component-based software development. Due to the many-

sided definitions, the base definition for software construction used within this thesis is the

general definition of component-based software engineering (cf. Sommerville, 2011):

“Component-based software engineering is an approach based on reuse for the definition,

implementation and composition of loosely coupled, independent components to systems.”

(Sommerville, 2011, 775).

Combining this statement with the view of Hunt and Thomas (2004) this view on software

construction can be defined as follows: Instead of focusing on components, as in component-

based software engineering, software construction focusses on different independent software

units. Because software construction is mostly seen as software development in the use of

bigger previously developed software units (e.g., objects, components, and services) which

serve as a base for the creation of software, it is similar to component-based software

development. Additionally, software construction is the reuse of a software unit without, or

with less, relation to its domain.

Problem of missing knowledge in software unit reuse

__
40

Note: This definition is applicable for the research of this thesis. As shown above, other

researchers have other definitions for software construction. For other investigations this might

not be a useful viewpoint.

2.2.2.2. 	Software	artefact		
Morisio, Ezran and Tully (2002) and Lopez and Niu (2011) describe software artefacts as part

of a software unit. Typical content might be: code, design, requirements, test cases, and so on.

For Tomer et al. (2004) artefacts are components, test cases, or documentation.

But also other interpretations exist. Petrasch and Meimberg (2006, p. 12, translated.) define

artefacts as follows: “Artefacts are work results (final results or intermediate data) which are

produced during a project. Artefacts are used to hold or to transmit project specific

information”.

The view of the different authors is based on granularity of reusable software units. In that they

can be classified from single source-code, to libraries, to complete software products (see

Tomer et al., 2004; Morisio, Ezran and Tully, 2002).

In the scope of this thesis a software artefact is defined as a container including different

information. This view is close to the perspective of Rothenberger et al. (2003) who discusses

this term as a container of multiples values. The granularity of a software artefact is not

relevant for this thesis. An interesting point is given by the definition of Petrasch and Meimberg

(2006). In primary research of this thesis knowledge (and all reusable parts of a software unit)

about software construction activities will be stored in software construction artefacts. This

knowledge is the result of the previous work of a software engineer and it can be identified as a

‘work result’. This is similar to the discussion of Petrasch and Meimberg (2006) in which

artefacts store models which are intermediate results in an MDSD based process. As a result,

the research shown in this thesis defines knowledge description as an optional part of an

artefact. This is contrary to the opinion of Morisio, Ezran and Tully (2002) who’s defines

knowledge (i.e., experience) as explicitly excluded in the definition of software artefacts.

Problem of missing knowledge in software unit reuse

__
41

2.2.2.3. 	Reuse	activity	and	software	construction	activity	
Isoda (2001) uses the term software reuse activity to describe all activities related to software

reuse. Basically in this research all activities (e.g., identification, search, test, validation,

integration, etc.) that are used in a reuse process are named reuse activities.

Software construction activities are seen as specialised variants of reuse activities. Based on the

differences between software construction and software development (cf. Section 2.2.2.1) or

engineering, SCAcs include activities focusing on the reuse of bigger software units without

relating to software unit domain reuse. In the scope of this research, only reuse activities are

named as SCAc that focus on activities, as for example, integration, transformation or

deployment of a software unit.

Note: Examples of activities of software construction (i.e., integration, transformation, and

deployment) can be found in Section 3.1.

2.2.2.4. Software	asset	
Basically assets describe software artefacts from the commercial view of business management

(Tomer et al., 2004). Therefore, assets are seen as reusable software units including a cash

value for business calculations. Seedorf (2010) calls this a business object.

Additionally, software assets are described differently in literature based on their usage. Tomer

et al. (2004) for example defines an asset as a software unit which can be used in cost

calculation. Due to the SPL perspective of their research, they separate two different types of

assets: Private Asset, which indicates an asset not available for reuse because it exists only in a

software engineer’s private environment; and Repository Asset, which indicates a software unit

available for reuse in a company repository. In the research the term asset is used to identify a

software artefact which includes cost values.

Problem of missing knowledge in software unit reuse

__
42

2.2.2.5. 	Knowledge	and	knowledge	perspectives	
In this research, knowledge of software construction activities is focused upon. Different

existing definitions are discussed this section. The term knowledge is widely used but with

many different definitions, as for example:

 “Knowledge is the combination of data and information, to which is added experienced

user opinion, skills, and experience, to result in a valuable asset which can be used to

aid decision making.” (Chaffey and Wood, 2005, p. 223, quoting the European

Framework for Knowledge Management)

 “Knowledge is data and/or information that has been organized and processed to

convey understanding, experience, accumulated learning, and experienced userise as

they apply to a current problem or activity.” (Turban, Rainer and Potter, 2001, p. 38)

 “Knowledge builds on information that is extracted from data [...] While data is a

property of things, knowledge is a property of people that predisposes them to act in a

particular way.” (Boddy, Boonstra and Kennedy, 2004, p. 9)

 “Knowledge is the capability of a man (or an intelligent machine) to use information

for problem-solving.” (Bobillo, Delgado and Gómez-Romero, 2008, p. 1903)

 “Knowledge consists of that mix of contextual information, values, experience, and

rules […] Knowledge involves the synthesis of multiple sources of information over

time. The amount of human contribution increases along the continuum from data to

information to knowledge.” (Bellinger, Castro and Mills, 2004, pp. 13-14)

The different definitions of knowledge highlight the relationship with the terms ‘data’ and

‘information’. The data–information–knowledge–wisdom hierarchy (DIKW hierarchy) defines

the terms data, information, knowledge, and wisdom and is defined as follows (Rowley, 2007):

 “Data are defined as symbols that represent properties of objects, events and their

environment. They are the products of observation. But are of no use until they are in a

Problem of missing knowledge in software unit reuse

__
43

useable (i.e., relevant) form. The difference between data and information is functional,

not structural.

 Information is contained in descriptions, answers to questions that begin with such

words as who, what, when and how many. Information systems generate, store, retrieve

and process data. Information is inferred from data.

 Knowledge is know-how, and is what makes possible the transformation of information

into instructions. Knowledge can be obtained either by transmission from another who

has it, by instruction, or by extracting it from experience.

 […]Wisdom is the ability to increase effectiveness. Wisdom adds value, which requires

the mental function that we call judgement. The ethical and aesthetic values that this

implies are inherent to the actor and are unique and personal.” (Rowley, 2007, p. 166)

Regarding the definition of Rowley (2007), knowledge is the combination of information in

order to fulfil a specific purpose. In the focused research of this thesis, this knowledge can both

be part of a person or part of a system (Bobillo, Delgado, and Gómez-Romero, 2008). To be

more specific, this research distinguishes between two types of knowledge that is possessed by

humans or stored in a system (based on Horeis and Sick, 2007): data-driven knowledge and

human-driven knowledge.

“Data-driven knowledge is application-specific knowledge which is extracted from data by

conventional Knowledge Discovery (KD) systems. ...” (Horeis and Sick, 2007)

“Human-driven knowledge is application-specific knowledge, too, but this kind of knowledge

originates from human experienced users. They have a certain experienced userise concerning

an application area. …..“ (Horeis and Sick, 2007, p. 422)

Therefore these two terms can be described by assigning them to existing definitions:

“If we want to describe data-driven and human-driven knowledge by means of some existing

terms, [...] we can state that data-driven knowledge is often provided in an implicit way (it must

be extracted from data). It typically has a quantitative nature and it is less abstract (with

Problem of missing knowledge in software unit reuse

__
44

respect to the application) than human-driven knowledge. Human-driven knowledge is (at least

in an initial phase of knowledge acquisition) explicitly provided by human experienced users.”

(Horeis and Sick, 2007, p. 422)

In this thesis, the term ‘knowledge’ represents both data-driven knowledge and human-driven

knowledge. Both terms are used. In this thesis, this is the knowledge to store, search, if it

necessary to differ the meaning.

After discussing the definition of the term knowledge it is necessary to explain the context of

knowledge, information, and data.

Figure 5 - The knowledge pyramid (Ackoff, 1989, p. 5)

Based on the initial definition of the knowledge pyramid (Ackoff, 1989; see Figure 5), the

data–information–knowledge–wisdom hierarchy (DIKW Hierarchy; see Figure 6) was

developed. Basically, both models explain that wisdom is based on knowledge which is based

on information. Data is the basis for information. Both models are generally accepted for the

definition of knowledge (Jennex, 2009), but treat it differently.

Problem of missing knowledge in software unit reuse

__
45

Figure 6 - Example of the DIKW hierarchy (Rowley, 2007, p. 186)

However, both models see knowledge in a different manner. While the basic knowledge

pyramid indicates a classification of different information types, newer approaches focus on the

transition between the different classification types. Figure 6 shows five different transitions

between the mentioned terms:

1. Researching: Research is necessary to collect basis data, for example, values from

different sensors (Rowley, 2007).

2. Absorbing: When different data (values) are linked in systematic relationships,

information is created. This can be seen as understanding data, (Rowley, 2007;

Bellinger, Castro and Mills, 2004), for example, the relationship between rain and an

increasing water level.

3. Doing: By creating a pattern which indicates what will happen when specific

information is available, knowledge is created. Therefore, knowledge can be seen as a

rule to handle information, (Rowley, 2007; Bellinger, Castro and Mills, 2004), for

example, the water level increases if it rains more than 1 litre per square metre.

4. Interacting: Using knowledge is called interacting. The result of a knowledge process is

relevant for the next transition (Reflecting; Rowley, 2007). Based on the used example,

a reaction to an increasing water level is to install protectors on the river banks.

Problem of missing knowledge in software unit reuse

__
46

5. Reflecting: This interaction results in wisdom whether the applied knowledge is correct

or not. Within this thesis, the base definition of the knowledge pyramid (Figure 5) is

used. In relation to the DIKW hierarchy, the interactions ‘absorbing’, ‘doing’, and

‘interacting’ are relevant for this work.

Regarding the research of this thesis, knowledge is the use (so called ‘Interacting’, Rowley,

2007) of information. Information is the relation of existing data (so called ‘Doing’, Rowley,

2007).

In this thesis, the term knowledge defines data-driven and human-driven knowledge related to

the reuse of SCAcs. Regarding the DIKW hierarchy, this is the interaction with SCAc related

information. The exchange of knowledge is a relevant research area. Theories such as, for

example, the Transactive Memory System focusses on the exchange of knowledge inside and

outside of a team. Choi, Lie and Yoo (2010) show in a field study that the search, exchange and

use of knowledge is relevant for teams to perform projects. The authors conclude the use of IT

as infrastructure is relevant for the exchange of knowledge for software development teams.

Qu, Ji and Nsakanda (2012) relate the topic of knowledge exchange to software development

teams and agree to the importance of an IT infrastructure. An relevant concept which can be

seen as an IT based infrastructure is a knowledge management system (KMS). Such systems

provide functionality to manage different knowledge. In this thesis, knowledge management

(KM) is understood to mean “a method that simplifies the process of sharing, distributing,

creating, capturing and understanding of company’s knowledge.” (Davenport, 2000, p. 4)

In this research the discussion of different viewpoints on knowledge management is not

necessary. What is relevant is the analysis of existing solutions or approaches to handle

knowledge of software construction activities.

Problem of missing knowledge in software unit reuse

__
47

2.2.3. 	Missing	knowledge	in	software	unit	reuse	
This section discusses the problem area of missing knowledge for software unit reuse and

describes the focused problem of the research regarding missing knowledge for software

construction activities. As shown in Chapter 1, typical scenarios including the fact of missing

knowledge are:

- young professionals (e.g., students) without any experience (Shiva and Shala, 2007)

- senior software engineers in new projects (Boh, 2008)

- team members who leave the team (‘knowledge vaporisation’, Ven et al., 2006)

In the following, relevant research statements about missing knowledge for software units will

be discussed.

2.2.3.1. Historical	perspective	on	the	problem	of	missing	knowledge	for			
fffsoftware	unit	reuse	

The problem of missing knowledge in software unit reuse is not a problem created today or in

the last three years. Reuse itself can be seen as a solution for missing knowledge. Naur and

Randell (1968) suggest creating reusable components based on the examples in the area of

hardware to make it easier to develop software. The idea was not to build software functionality

every time it is needed from scratch. The result from knowledge perspective is that it is not

necessary for a software engineer to know how to build the functionality.

In the 1980’s this issue was identified as a problem of ‘experience’ of a software engineer and

management (Deming, 2000). Such examples can be found in the 90’s also (e.g., Johansson,

Hall and Coquard 1999; Isoda 1992).

The discussion about software units and their content differs in the past. Originally a reusable

component consisted only of source-code or binary code (see Naur and Randell, 1968). Later

on with the use of video and audio systems it becomes clear that also other values e.g., audio,

video, or text can be reused. But the focus was still on elements directly used by an application.

Childs and Sametinger (2012) and Blok and Cybulski (1998) are examples who discuss the

Problem of missing knowledge in software unit reuse

__
48

reuse of documentation, specification and models used in the 1990s. The same studies connect

the reusable content with information (may be seen as knowledge from the perspective of the

DIKW hierarchy) needed by a software engineer. Another example is the area of reusing tests.

Bagnasco et al. (2001) discusses the reusing of unit test. In the 1990s reuse knowledge was

combined with existing reuse technologies as object and component orientation (see Szyperski,

2002b). As a result, software engineers have to know such technologies to handle a software

unit or their content. The same requirement was created by the use of SPL. SPL also changes

the view on the content of a reusable software unit. From now on a software unit does not

include only a few functionalities and has only a small size. In the beginning of the 21st century

a change in thought occurs. Ye (2001) and Morisio, Ezran and Tully (2002) for examples uses

the term software artefact that is able to contain different content. This means different software

units (i.e., components, classes, service, etc.) as well as different additional values (e.g., binary

data, documentation, models, tests, etc.). This perspective does not change till today. With the

increase of content types and variations the amount of necessary knowledge grows for software

engineers (Ajila, 2006).

The changes on the view on software units and related knowledge can be identified in the past.

But the view on reuse activities is not so easy to identify. In the used literature, two views on

reuse activities can be identified. Prieto-Diaz (1993) includes in their classification of reuse

types the reuse of procedures. Here, an activity will be reused. On the other side, Isoda (1991)

concluded after a 4 year reuse project, that the main activities are: registration and the reuse of

reusable modules, construction of a reusable module library, compilation of reusability

guidelines and the development of software reuse support tools. In the 1990s different reuse

processes such as, for example, Software Technology for Adaptable, Reliable Systems

(STARS) and ROSE PM were developed (cf. De Almeida, 2005). A clear relation between the

reuse activities and missing knowledge was not identified in the past.

Problem of missing knowledge in software unit reuse

__
49

From the view of this thesis the historical consideration of the different missing knowledge

problem classes concludes in the following statements:

- The problems of missing knowledge is still known, but related to software units and its

technical structure

- Based on technology changes / evolution the complexity of the knowledge increases

- The idea of reuse activity is known

- A clear definition of knowledge for software reuse activities was not identified

2.2.3.2. 	Relevant	research	statements	of	literature		
Literature shows different problems in the area of software reuse regarding missing knowledge.

Tracz (1994) highlights different software reuse myths (i.e., software reuse is a technical

problem, special tools are needed for software reuse, reuse results in huge increases of

productivity, software reuse is equal to hardware reuse, reused software is equal to reusable

software, and software reuse) will just happen. The conclusion of Tracz (1994) is that reuse is

not a problem anymore. It is only a problem to the organisation level.

Analysing other studies shows a different picture: Frakes and Isoda (1994) argues that support

for reuse is difficult to create because of the variants of different technologies and user

domains.

Morisio, Ezran and Tully (2002) conclude in their survey that often the use of a repository and

reuse supporting technologies (e.g., object-oriented technologies) are adequate for performing

reuse. But they also mention the need for reuse processes and the human factor. Repositories

are relevant in the area of software reuse. Ajila (2005) and Cummings and Teng (2003) use the

term ‘intellectual capital’ for information and knowledge stored in repositories. Ajila (2006)

mentions this capital as an relevant success factor in software reuse.

Frakes and Fox (1996) indicate that 24% of software development projects using reuse fail

because not all software engineers try to reuse. The study analysed 29 American organisations

in 1991 and 1992. Based on this statement McCarey, Ó Cinnéide and Kushmerick (2008)

Problem of missing knowledge in software unit reuse

__
50

concludes in another study that the human factor is the relevant factor in reuse of software

units. Ye and Fischer (2005) describe a negative scenario which is based on this human factor

and related to knowledge and concludes:

- Software engineers may not able to perform reuse because of lack of knowledge (e.g.,

for accessing and handling repositories) or cannot anticipate.

- This limits investment in reuse-based development projects

- No investment in reuse projects limits reuse activities for software engineers.

While Ye and Fischer (2005) shows that a lack of knowledge exists, McCarey, Ó Cinnéide and

Kushmerick (2008) identifies the following three problems in software reuse:

- Inability of support tools to automatically identify reuse opportunities

- The separation of reuse from mainstream development

- The lack of techniques to store and subsequently distribute task relevant component

knowledge among software engineers

The last statement of McCarey, Ó Cinnéide and Kushmerick (2008) is relevant for this

discussion and for the research of this thesis. It contains three relevant statements:

1. Task has/needs knowledge to be performed

2. Task relevant knowledge has to be stored

3. A lack of techniques for storing such knowledge

The first statement is also noted by Ajila and Zheng (2004) who claim that knowledge is the

relevant factor in software development. Because of the changes in technologies and the

knowledge of software engineers, this knowledge increases and has to be maintained. The

second statement is also supported by Ajila and Zheng (2004) and Qu, Ji and Nsakanda (2012).

The size of a company is also related to reuse problems regarding missing knowledge. Ha, Sun

and Xie (2012) mentioned based on Mishra and Mishra (2009) that more small and medium

Problem of missing knowledge in software unit reuse

__
51

sized enterprises (SME) exist then large companies. An example is shown by Mishra and

Mishra (2009): in 2009, 77% (Germany) 69% (Brazil) of the software development companies

in Germany and Brazil were SME. Fayad, Laitinen, and Ward (2000) showed that in USA

99,2% of all software development companies were smaller than 250 people. The different

studies used different metrics and characteristics to identify SME. Also they are performed in

different countries and cultures. Among these differences, SMEs typically have the following

problematic attributes (based on Mishra and Mishra, 2009):

- Insufficient development environments

- Low budget

- Customer dependencies

- Development teams usually consist of only one or a few team members.

Thörn (2010) concludes the missing of reuse in SMEs. This statement is complementary to the

conclusion of Jansen et al. (2008) and Ajila (2006). Ajila (2006) especially showed in their

multi company/project analysis the difference between large and medium (small) sized

companies. Large companies are able to store knowledge for reuse but based on organisational

problems the expected reuse is limited. Medium sized companies on the other side are efficient

when using knowledge but usually the processes to store or search knowledge are not available

for cost reasons. Additionally, the exchange of knowledge between software development

teams is seen as difficult (cf. Qu, Ji and Nsakanda, 2012).

The limit of team member size is also discussed by Johansson, Hall and Coquard (1999) and it

appears that not only small software engineer teams have problems performing reuse, but also

multiple teams in global companies and different companies working together have the problem

of exchanging reuse knowledge based on the team member size and the global distribution of

teams (see also O’Sullivan, 2003; Qu, Ji and Nsakanda, 2012).

The size of teams is not the only impact factor. The knowledge of each individual software

engineer is different and is handled differently by each person. Ye (2001) categorises the

Problem of missing knowledge in software unit reuse

__
52

activity of reuse focusing the search of reusable software units into three classes: reuse-by-

memory, reuse-by-recall, and reuse-by-anticipation.

The reuse-by-memory scenario describes a software engineer identifying a software unit that

can be reused and fits with the given requirement. In a reuse-by-recall scenario, a software

engineer knows of one or more existing software units, but is not sure where to find or how to

access it. The last scenario, reuse-by-anticipation, is given if a software engineer has no idea

about useful software units which may be useful.

Based on this classification McCarey, Ó Cinnéide and Kushmerick (2008) argues that the first

two classes (reuse-by-memory and reuse-by-recall) are state of the art in software development.

Therefore, no problem exists. Software engineers may find the correct software unit. But the

third class (reuse-by-anticipation) includes several problems based on missing knowledge:

- “A software engineer may incorrectly anticipate a component that does not exist.

- It is difficult for a software engineer to clearly express their reuse intentions.

- A software engineer cannot easily evaluate retrieved components due to the engineer’s

knowledge limitations.” (McCarey, Ó Cinnéide and Kushmerick, 2008, p. 54)

Picot (2003) shows a demand model for management knowledge which can be used to show

the classification of Ye (2001) and the three problems shown by McCarey, Ó Cinnéide and

Kushmerick (2008). This model was adapted by Zinn et al. (2011a) for software unit

information demand to support the research focused by this thesis.

Figure 7 shows fours relevant areas:

- OID – includes all (theoretical) software units which can solve a specific problem

- SID – includes all software units a software engineer believes can solve a specific

problem

- IP – includes all software units which are provided/accessible at the moment.

- IQ – This area indicates a search request of a single person. It is based on the area SID;

as a result, the IQ area overlaps the SID every time.

Problem of missing knowledge in software unit reuse

__
53

Figure 7 - Software Reuse Information Demand Model based on Picot (2003, p. 106) adapted by Zinn et al. (2011a)

The reuse-by-memory scenario is presented in the Actual Information State (AIS) area that is

overlapping area of OID, SID, ID, and IQ. From the perspective of the information demand

model the software units in this overlapping area are valid, known by the user, accessible, and

describable (in a search request) by a user.

The reuse-by-recall can be represented in this model. Because the user is not sure which unit is

the correct one and how to access it the two overlapping areas between (SID and OID / SID and

IP) can contain the unit a person mentioned. Because this person cannot describe the searched

unit the IQ will be very small. Regarding to Picot (2003) this will limit the useful results.

The reuse-by-anticipation may be presented in an information demand model as the area of

SID. In this case the user has no idea about adequate software units. This reduces the area of

SID and limits the overlapping areas to OID and SID. Because of the mentioned restriction of

creating an IQ the valid results in this approach are very small. Two of the discussed problems

of McCarey, Ó Cinnéide and Kushmerick (2008) can be also shown in this model. The first

problem is that the SID may be containing correct and incorrect solutions. As a result, a person

may think they know the correct solution when it could be wrong. The second problem is

indicated by Picot (2003) as the difficulty of a person in creating the correct search request

based on missing knowledge. In the Software Reuse Information Model (SRID) model a non-

Problem of missing knowledge in software unit reuse

__
54

correct search request may be reduce the area of IQ or change the location of the area to the

field of SID. In both cases the overlapping with the AIS area will be reduced.

Figure 8 - Users experience level (based on Ye, 2001, p.2)

Ye and Fischer (2005) discuss a model (based on Ye, 2001) which demonstrates the view of

reuse repositories on the reuse knowledge of software engineers (cf. Figure 8). This model

shows that the knowledge of software engineers partly consists of information the engineers

knows well (L1), knows vaguely (L2), knows of (L3), and doesn’t know (L4). This is similar to

the above discussed information demand model and the perspective of McCarey, Ó Cinnéide

and Kushmerick (2008). An relevant difference to other knowledge perspectives is the relation

of knowledge and task-relevant information. For Isoda (1992), Budhija and Ahuja (2011), and

the author of this thesis reuse includes a set of specific activities, each of which need different

information. But the necessary information is not only defined by the activities. Visser (1990)

showed in a case study that different software engineers use different ways to do the same

activity, often including different information. The same effect is explained by Sen (1997). This

leads to the discussion of knowledge or information interpretation. Qu, Ji and Nsakanda (2012)

and Choi, Lee and Yoo (2010) argue that the interpretation of knowledge leads to different

results. Such results may be different to the expected results in the knowledge creator. As

shown by Qu, Ji and Nsakanda (2012) this is a typical problem of knowledge transfer between

different teams. Using distributed teams is a typical scenario in software development and

software reuse (see O’Sullivan, 2003; Johansson, Hall and Coquard, 1999). Interpretation may

be one reason why people repeating a task use different ways and/or information or knowledge.

Problem of missing knowledge in software unit reuse

__
55

The same information provided to another person may not be supporting this person. On the

other hand it shows that a solution which supports persons in reuse has to be flexible to handle

different information from different perspectives. (cf. discussion of Johansson, Hall and

Coquard, 1999; Ye and Fischer, 2005)

LaToza, Venolia and DeLine (2006) in a case study, show that a lot of software engineers assist

others by performing development tasks. This implies that lot of software engineers need

support for software reuse. For McCarey, Ó Cinnéide and Kushmerick (2008) this lack is based

on knowledge and will be increased in component-based development because components

may be larger and more difficult to integrate. This statement is also seen by Ajila (2006) which

indicates that the growing number of information a software unit includes has to be maintained

or will result in project problem (e.g., time issues). Therefore, the limited view on components

of McCarey, Ó Cinnéide and Kushmerick (2008) can be enlarged to other software units (e.g.,

service and classes) as well.

To conclude this section is to show relevant research statements of literature that relate

problems of missing knowledge to software development activities. Regarding this relation,

McCarey, Ó Cinnéide and Kushmerick (2008), partly supported by the statements of Frakes

and Kang (2005), Ajila (2006), and Cummings and Teng (2003) come to the following

conclusions:

- Software development requires an amount of experienced user knowledge.

- Often, software engineers do not have the required knowledge for specific development

tasks.

- Knowledge about technology is not transferred between engineers or teams.

Thereby, the fact that knowledge is missing was identified by the literature. Also, the impact is

well known (cf. Section 2.2.1.5):

- Reduced quality (see Morisio, Ezran and Tully, 2002; McCarey, Ó Cinnéide and

Kushmerick, 2008)

Problem of missing knowledge in software unit reuse

__
56

- Longer development times (see Ajila, 2006; McCarey, Ó Cinnéide and Kushmerick,

2008)

- Failure of development (see Morisio, Ezran and Tully, 2002; Ajila, 2006)

- Rise in costs (see Ajila and Zheng, 2004; McCarey, Ó Cinnéide and Kushmerick, 2008)

An interesting point is that missing reuse knowledge may lead to (from the view of the

literature) a contrary result than the estimated results in improvements in quality, shorter

development times, success of development, and reduction of costs (see Section 2.2.1.2).

2.2.3.3. 	A	key	challenge	for	software	unit	reuse		
In the previous section, different relevant research statements from the literature are discussed.

These statements will now be consolidated to identify the key challenge for this research.

One fact the literature shows is that knowledge is relevant for software unit reuse. For example,

Ajila (2006) and Cummings and Teng (2003), identify knowledge as a critical success factor in

software unit reuse. Isoda (1992), Budhija and Ahuja (2011), and McCarey, Ó Cinnéide and

Kushmerick (2008) state that the task of reuse is based on knowledge.

McCarey, Ó Cinnéide and Kushmerick (2008) conclude that a lack of techniques to store and

subsequently distribute task relevant component knowledge among software engineers exists.

Using the other statements identified in the literature by the previous section, this lack is based

on following problems:

Problem 1 – Knowledge required based on variants of different technologies: Frakes and

Isoda (1992) state that reuse is difficult because of different technologies and user domains.

The knowledge of reuse activities, which is called task relevant component knowledge by

McCarey, Ó Cinnéide and Kushmerick (2008), is based on the technology of the related

software unit. Next to the multitude of existing technologies, Ajila and Zheng (2004) state that

the rapid changes in technologies and required knowledge have to be maintained. As a result,

the first challenge to limit the lack, McCarey, Ó Cinnéide and Kushmerick (2008) focuses on, is

Problem of missing knowledge in software unit reuse

__
57

to handle the problem of different technologies and the related software construction activity

knowledge of different software units.

Problem 2 – Different knowledge level of software engineers: Another challenge is to find a

way to distribute reuse activity knowledge at the level of software engineers’ knowledge. Ye

(2001) discusses three types of software engineers’ knowledge related reuse types. The analysis

using the models of Zinn et al. (2011a) and Ye and Fischer (2005) show that software engineers

can have different knowledge levels. As a result, the conclusion of Ye and Fischer (2005) is

that software engineers may be not able to perform reuse because of a lack of knowledge. This

statement is also made by McCarey, Ó Cinnéide and Kushmerick (2008).

On the one side, this knowledge is required to perform a reuse activity. In this case the

previously discussed problem of knowledge interpretation occurs. Qu, Ji and Nsakanda (2012)

and Choi, Lee and Yoo (2010) identifies this, particularly in an environment where multiple

teams exchange knowledge. This may lead to variations in the reuse activity result or to the

failure of the reuse activity. Another point of interpretation is that software engineers use

different ways of working to perform the same activity even if the underlying information is

equal (Visser, 1990; Sen 1997).

On the other side, the software engineers have to know how to use a knowledge resource or

know somebody who is experienced (Qu, Ji and Nsakanda, 2012).

As discussed in the previous section, it is difficult for a software engineer to clearly express

their reuse intentions (McCarey, Ó Cinnéide and Kushmerick, 2008; Picot, 2003). In the case of

a reuse activity a user has to describe what software unit is required and what kind of reuse

activity has to be done.

Problem 3 – Distribution of knowledge: McCarey, Ó Cinnéide and Kushmerick (2008) states

that the distribution of knowledge about technology between engineers or teams is not

adequate. Next to the problem of interpretation and the use of knowledge, an experienced

software engineer has to distribute knowledge in a way that other engineers are able to

Problem of missing knowledge in software unit reuse

__
58

understand (see Taweel et al., 2009; Boden and Avram, 2009). This implicates an infrastructure

which provides the functionality to upload activity information and knowledge. Additionally, it

has to provide the possibility to find and access this infrastructure for searching, receiving,

uploaded, and execution of knowledge (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo,

2010). Frakes and Kang (2005), Ajila (2006), and Slyngstad et al. (2006) discuss the need of

repositories; usually software engineers have repositories, but these are different in type and

distribution. This can range from personal project files to a team or department repository. As a

result, a software engineer has to know where to find a repository, how to access it, and how to

use it. The last point relates to the previously mentioned problem of mind-set and capability of

formulating a request. As a result, an inexperienced user has to know how to find and access

this knowledge source (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). As shown by

Ajila (2006), large companies are able to store knowledge for reuse, but based on organisational

problems the expected reuse is limited. To limit the lack described by McCarey, Ó Cinnéide

and Kushmerick (2008) one challenge is to create such an infrastructure. Following the

discussion of Qu, Ji and Nsakanda (2012) and Choi, Lee and Yoo (2010) such an infrastructure

has to be information technology (IT) based. Visser (1990) and Morad and Kuflik (2005) state

the use of special teams or single experienced users for a single software unit - as support for

other software engineers or development teams in bigger companies. Ha, Sun and Xie (2012)

and Thörn (2010) also mentioned that this is not usually possible in SMEs.

Problem 4 – Definition of software reuse knowledge: The last challenge discussed in this

section is the definition of software reuse activity knowledge. In the focused problem

statement, task relevant component knowledge should be exchanged between software

engineers (see McCarey, Ó Cinnéide and Kushmerick, 2008). But a definition of this

knowledge is not given. Based on the amount of possible knowledge, for example, based on the

technology variations, this is challenging. On the other side, activities are recognised by the

literature as typical activities of reuse. Bosch and Bosch-Sijtsema (2010) and Shiva and Shala

Problem of missing knowledge in software unit reuse

__
59

(2007) for example indicate the need for integrating a reusable software unit into the

development environment. Also, for Vliet (2008) and Mens and Vangorp (2006) it is necessary

to adapt an existing unit before reuse. Especially in the area of embedded devices (see Carlson

et al., 2010; O’Connor et al., 2009), the deployment is an relevant part and often depends on

previous created software units.

Note: Also other problems may exist which can be seen as challenges. The selected problems

are identified by using scientific literature. The research determines if a new approach is able to

limit these four problems. Whether the research is able to do this or not, it creates a small added

value for this research area.

2.3. 	Conceivable	research	contribution	
The discussion in Section 2.2.3.3 supports the statement of McCarey, Ó Cinnéide and

Kushmerick (2008) whereby the lack of techniques to store and subsequently distribute task

relevant component knowledge among software engineers exists. The discussion shows that a

technique has to handle four different problems to successfully handle knowledge based

problems in the exchange of reuse activity knowledge.

The research of this thesis aims to contribute to the field about the lack of techniques to store

and subsequently distribute software construction activity relevant software unit knowledge.

This includes the execution of software construction activity activity knowledge as part of the

distribution. To identify an approach to handle the four problems would create a contribution to

this research area and support software engineers in today’s problem of software unit reuse.

The reuse or use of previously stored SCAc is an procedure reuse type (cf. Petro-Diaz, 1993).

Regarding the knowledge area, the research deals with the knowledge necessary to perform the

SCAc and the knowledge of the distribution environment. The literature discussion about the

type of reuse (black-box, withe-box, reuse-within-development, etc.) is not relevant for the

Problem of missing knowledge in software unit reuse

__
60

problem discussion. This part of the literature review is used to create a solution approach in

Chapter 4. The historical view in the literature does not show these problems.

2.4. 	Summary	
This chapter startes with an overview about the research methods for the literature review. The

main part of this chapter is the literature review itself. First of all, this review defines the view

of this thesis on software reuse as a software development including different software reuse

activities. After this, a definition of typical estimated characteristics of software reuse is

discussed (e.g., a reduction in costs or an increase of product quality). Software reuse is

separated by the literature into 11 areas (e.g., design patterns, component-based software

development, software product lines, and so on). These different areas use different software

unit types which require different software units to handle them. Also, different impacts of

inadequate reuse are discussed (e.g., rising costs and limitations in quality). A relevant result of

this chapter is found by the definition of reuse activities (i.e., all tasks that are necessary for

reuse) and software construction activities which is a subset of reuse activities (e.g., integration

or transformation). After the discussion of relevant definitions, an overview of different

research areas is given including the focused research area of this thesis that handles (missing)

knowledge for software reuse. In the next part of the literature review different examples of

problems of missing knowledge and their relation to human-driven knowledge is discussed.

This discussion also includes the focused problem of missing knowledge for the execution of

software construction activities of this thesis. The literature discussion identifies a lack of

techniques to store and subsequently distribute software reuse activity relevant software unit

knowledge among software engineers. Following problem areas were identified that make the

creation of such a technique challenging:

- Insufficient knowledge level of software engineers

- A high variant of existing technologies and related (activity) knowledge

- The distribution in global company environments

Problem of missing knowledge in software unit reuse

__
61

- Missing definition of reuse knowledge for reuse activities

The chapter concludes with a discussion concerning the targeted contribution which focuses on

the four identified problem areas and the aim to enable the inexperienced user to perform

software unit reuse.

 	

Problem of missing knowledge in software unit reuse

__
62

 	

Missing software construction activity knowledge – problem analysis

__
63

3. Missing	software	construction	activity	knowledge	–	
problem	analysis	

The literature review in Chapter 2 shows that a lack of techniques to store and subsequently

distribute software reuse activity knowledge exists. Also, problems are explained which show

that the creation of adequate techniques is challenging. This research investigates an approach

for a technique to store and subsequently distribute software reuse activity knowledge.

Therefore, this chapter shows additional analysis results focusing on the identified problems of

the creation of an adequate technique. The first step is the definition and explanation of focused

software construction activities: integration, transformation, and deployment. The second one is

the analysis of the different problems based on missing knowledge. Thereby, a low knowledge

level of an inexperienced user is discussed for each problem. The final analysis shows an

overview of existing approaches and concludes with the need of an approach to focus on all

mentioned problems to limit the lack of techniques of handling software reuse activity

knowledge (on the example of software construction activities) and, therefore, enable

inexperienced users to perform software unit reuse.

3.1. 	Focused	software	construction	activities	
This section explains the focused software construction activities that are the research objects

of the research. On the one hand this is necessary to identify necessary reuse activity

knowledge. On the other hand the aim is to give the reader an overview of the focused software

construction activities for the description of the focused problems of these activities (relation

between analysed problems and reuse activities) in Section 3.2. The following reuse activities

are in the scope of this thesis:

a) Integration of software units in integrated development environments

b) Console-based transformation of software units into other technologies

c) Deployment of software units into embedded devices.

Missing software construction activity knowledge – problem analysis

__
64

Note: The topic of integration and deployment activities was published by the author (see Zinn,

Fischer-Hellmann, and Schoop, 2012a; Zinn et al., 2011b). Other reuse activities also exist.

These activities were chosen because they have been identified in literature (cf. Bosch and

Bosch-Sijtsema, 2010; Shiva and Shala, 2007; Vliet, 2008; Mens and Vangorp, 2006; Carlson

et al., 2010; O’Connor et al., 2009). In the following section, these activities and their special

scope will be introduced. These are used as examples to support further discussion of the

identified problem areas (i.e., insufficient knowledge level of software engineers, high variance

of existing technologies and related activity knowledge, and the knowledge distribution in

global company environments).

3.1.1. 	Console-based	transformation	of	software	units	–	
ffftransformation	activities	

Different activities within development projects with software reuse require different kinds of

transformation expertise. For example the modification of a software unit into another form

may be reached by using transformations (Mens and Vangorp, 2006). The results of such

transformation processes are manifold. They range from simple content-adaptation to an

adaptation that changes the basic technology of the software units. An example of a content

adaptation is changing the content (domain) of a method within a class or a component (Seriai,

Bastide and Oussalah, 2006). An example of a technology change is the conversion of a Java-

based component to a .Net-based component (Frijters, 2011). Another frequent form of

transformation is the extension of a software unit with new information and interfaces. This, for

example, allows simple transformation of Java-based components to a web interface (Lee et al.,

2005). Other examples are: compiler or interpreter transformation using source codes and

model-driven software development transformation using different models.

The transformation of a software unit can be defined by using the definition of model

transformation from the area of model-driven software development:

Missing software construction activity knowledge – problem analysis

__
65

“A transformation is the automatic generation of a target model from a source model,

according to a transformation definition. A transformation definition is a set of transformation

rules that together describe how a model in the source language can be transformed into a

model in the target language. A transformation rule is a description of how one or more

constructs in the source language can be transformed into one or more constructs in the target

language.” (Kleppe, 2003, p. 24)

Note: The focused transformation activity is based on console applications. As a result, the

software engineer is using an application to perform the transformations.

3.1.2. Transformation	activity	example	
There is no typical or standardised transformation activity step identified in literature, but the

following example will illustrate a real transformation process of a software unit. To transform

a Java-based byte code into .NET-based byte code the tool IKVM (Frijters, 2011) may be used.

In this example the Device Profile for Web Service (DPWS) is used. The DPWS software unit

enables embedded devices to handle different web service protocols (called WS*) like Web

Service discovery and security (see Jammes, Mensch and Smit, 2007). The DPWS software

unit based on Java should be transformed into a .NET compatible software unit. The IKVM

tool offers two different transformation scenarios. The first one is to run the original Java byte

code in a Java virtual machine inside the .NET application. Therefore, only some interfaces are

required by the software engineer. The second scenario is to make a real transformation. The

last scenario is used to describe a transformation activity.

Aim: The aim of this transformation activity is to transform the DPWS Java-based software

unit into .NET binary libraries.

Precondition: The software engineer has searched and identified the software unit, as well as

identified the IKVM transformation tool. The used operating system (OS) is a Windows OS.

Preparation: The software engineer has to download the IKVM tool and transfer the ZIP

package to a folder. The engineer has to set Java path information in the OS settings because

Missing software construction activity knowledge – problem analysis

__
66

the IKVM is based on the Java runtime. As an additional precondition is that the Java runtime

has to be installed. The tool is installed and can be executed by typing starting the IKVM

executable that is located in the IKVM binary folder in the windows console window.

Figure 9 - Dependency hierarchy of DPWS Java libraries (blue external libraries; red internal libraries)

Additionally, the engineer has to download the DPWS Java stack which includes 23 Java

binary files. These files have to be extracted to a folder.

As additional task in the preparation phase is that the engineer has to identify references

between the DPWS Java libraries or other external libraries. These are necessary to perform the

transformation. Figure 9 shows the dependency hierarchy between DPWS libraries and external

libraries. All libraries here have direct or indirect dependencies and have, therefore, been

transformed. The file DPWS4J.jar contains the relevant DPWS functionality.

Missing software construction activity knowledge – problem analysis

__
67

Execution: The software engineer has to identify all libraries without any other dependencies.

These can be now transformed by using IKVM as shown in the example in Figure 10.

Figure 10 - Example IKVM transformation execution

The engineer has to be experienced enough to set the parameters so that the IKVM tool is able:

- to create a DLL file (‘-target:library’),

- to load an input file (‘C:\PHD\DPWS\Java\xsdlib.jar’), and;

- to identify the location and name of the output file (‘C:\PHD\DPWS\DOTNET

\xsdlib.dll’).

Figure 11 - Example IKVM transformation execution with dependency

This procedure has to be repeated for each Java library at the end of the dependency hierarchy.

For each of the libraries with dependencies the execution of IKVM appears as follows; the call

has a new parameter –r or –reference and a path to the referenced dependency. Figure 11 shows

an example of an IKVM transformation using a dependency (‘-r:c:\PHD\DPWS\DOTNET\jax-

gname.dll’).

Additional to the parameters from the first call, the engineer has to specify the location of the

previously transformed dependencies. To transform the top of the DPWS dependency

hierarchy, multiple dependency parameters have to be used. Figure 12 shows the transformation

call including the dependency parameters which are shown as references in Figure 9. To

complete the transformation, 23 single transformation activities have to be executed.

Missing software construction activity knowledge – problem analysis

__
68

Figure 12 - Example IKVM transformation execution of the DPWS4J.JAR file

Output: The output of this transformation example is a set of .NET libraries including the

functionality of the Java DPWS stack. The engineer has to know that the transformation result

has special dependencies. On the one hand the dependencies between the original DPWS Java

libraries exist. This is shown in the resource view in Figure 13. Also, the dependencies to

external libraries exist. This is shown in the reference view in Figure 13.

Figure 13 - Dependency hierarchy of DPWS .NET libraries (ILSpy View)

To handle these libraries, the transformation output refers to special IKVM libraries. As a

result, these special libraries have to be shipped and deployed together with the transformation

result. Figure 14 shows the dependency hierarchy of the software unit created by the

transformation result, references to external libraries (blue), and internal (red) which are results

of the transformation process.

Missing software construction activity knowledge – problem analysis

__
69

Figure 14 - Dependency hierarchy of DPWS .NET libraries (blue external libraries; red internal libraries)

3.1.3. 	Integration	of	software	units	in	development	environments	–	
ffintegration	activities	

In the scope of software unit reuse it is necessary to integrate these units into development

environments or, more precisely, into a development project. Software reuse environments

(SRE) support software engineers by addressing these activities. The SRE discussion in Section

2.2.1.6) shows that IDEs are such SRE systems.

Note: In this research the integration of software units into an IDE is equal to the integration of

a software unit into a development project. Because the focused problems are distinguishable

from the different knowledge requirements of the different IDEs the first term will be used in

this work. Additionally, it is relevant to know that the focused integration activity does not

include the activity of interface adaptation or mapping. These are examples of transformation

activities.

In the scope of the integration activity four interesting perspectives exist: the first perspective is

concerned with the integration of software units. Software engineers have to be aware of the

technical properties of a software unit. Software units may consist of different parts (e.g., files

or environment variables). Each of these parts may need to be integrated differently into an

IDE. (see discussion of Zinn et al., 2011b).

Missing software construction activity knowledge – problem analysis

__
70

The second perspective is the required file structure of software units. The different parts of a

software unit may require a specific location in the project. Each part of a software unit may

have dependencies themselves. Also, these dependencies may have a required location which

can be specific or relative to the dependent part of the software unit.

The third perspective is the IDE in use. Today different IDEs exists, and some of these are

specialised. The development of software for embedded devices for example, often requires a

special IDE for the targeted device or special libraries in a normal software development

project. Other IDEs, for example, Eclipse and Visual Studio can be extended and used for

different application languages or technologies. For each IDE the provided functionality for

software unit integration is different. As a result, the knowledge to use this functionality differs

too.

The last relevant perspective is concerned with the different scenarios of integration. The

scopes of the previous perspectives can be used in distributed and non-distributed scenarios.

Typically, for an SME scenario, the decision maker, the person who decides to reuse a specific

software unit, is the same as the integrator, implementing the reuse. However, there are

scenarios which include the decision maker and the integrator not being the same person. In the

scope of this thesis this is called a distributed scenario because the individuals can be located in

different locations and differ in their domain of experienced users (see Section 2.2.2.3).

Typically, software architects are this kind of decision makers in software development (see

discussion of Kruchten, Capilla and Dueñas, 2009).

3.1.4. 	Integration	activity	example	
There is no typical or standardised integration activity process identified in the used literature,

but the following example will illustrate a real integration process of a software unit.

Aim: The aim of this integration activity is to integrate the DPWS .NET library of the

transformation example in Section 3.1.1 into the Visual Studio IDE.

Missing software construction activity knowledge – problem analysis

__
71

Precondition: The software engineer has searched and identified the software unit. The used

operating system is a Windows OS and a Visual Studio 2010 with a loaded development

project.

Preparation and Execution: Figure 14 shows all files necessary for a runnable integrated

software unit. Therefore, all files marked blue in the figure (includes all created .NET files and

special files of IKVM for .NET) have to be inserted as references in the Visual Studio project.

Due to special behaviours of IKVM the engineer has to copy all additional IKVM files into the

same folder as the .NET DPWS files. It is also possible to insert a library path in the project

configuration instead of copying all additional IKVM files. Additionally, the Java Virtual

Machine (JVM).dll file has to be copied into the DPWS .NET folder without referencing. The

engineer has to select the 32bit or 64bit version, depending on the development project

configuration. To get the file automatically copied to another build or debug folder of the

project, the engineer can choose between two (automatic) options:

- Create a copy order in the pre-condition or post-condition settings of the project

- Add the file to the project tree and set its reference property to ‘Copy’ or ‘Copy if

newer’

In both cases, Visual Studio will copy the file if the debug or release folder is changed.

Output: The result of this integration activity is a DPWS .NET library integrated into a Visual

Studio project including all dependencies. Figure 15 show the resulting folder structure of the

integration activity and the project structure in a Visual Studio environment.

Missing software construction activity knowledge – problem analysis

__
72

Figure 15 - DPWS integration activity folder and project structure

3.1.5. 	Deployment	of	software	units	into	embedded	devices	–	
ffdeployment	activities	

Deployment of embedded devices is seen as the physical set up of devices in a specific

environment (e.g., wireless sensors; Bohn, Bobek and Golatowski, 2006; and medical devices;

Burg et al., 2009). From a software development perspective, deployment may be seen as the

installation of software on a system (Burg et al., 2009). From here on, the term 'deployment'

will refer to the latter definition. The conception of embedded devices has changed in the past.

Originally, such devices were perceived as follows (based on Gill, 2005):

- Specialised on a specific task by limited functionality.

- Built for an unchanging environment.

- Limited by resources.

Missing software construction activity knowledge – problem analysis

__
73

Nowadays, they are perceived as embedded systems, which are characterised as follows (based

on Gill, 2005):

- (Self-)adaptive, open and more efficient

- Capable of dynamically handling multiple tasks

- 'Plug and Play'-able for integration

The reason for this change of perception can be seen “…as a consequence of the integration of

IT" (Gill, 2005, p. 7) into the field of embedded systems. Gill (2005) perceive this change to be

a result of advancements in hardware and software of embedded systems. Over time, hardware

has become more capable of handling increasingly complex software instructions, more

advanced software technologies, and platforms (see Gilart-Iglesias et al., 2006; Gill, 2005).

This increased flexibility enables the implementation of special software features, namely:

Fault Tolerance (Pinello, Carloni and Sangiovanni-Vincentelli, 2008), Security (Gogniat et al.,

2008), and Dynamic Infrastructure (Karnouskos and Tariq, 2009). The high number of

available embedded devices poses a problem for software reuse. This problem is especially

apparent in the area of automation where many different types of device exist. Usually,

available devices are distinguished by hardware technology, software technology, form factor,

and safety features. This results in the fragmentation of both software platforms and libraries

for embedded devices. Therefore, the task of reusing such software units for embedded devices

is becoming increasingly more complicated and requires special knowledge for regarding

deployment. This is similar to the discussed problem of an increasing number of technologies

for software units.

3.1.6. 	Deployment	activity	example	
There is no typical or standardised deployment activity step, but the following example will

illustrate a real deployment process of a web service to a device.

Aim: The aim of this deployment activity is to deploy a web service written in Java into an

embedded device.

Missing software construction activity knowledge – problem analysis

__
74

Precondition: The software engineer has searched and identified the software unit. The used

operating system is a Windows OS, and an Eclipse IDE is used to build the deployment

packages. For this example a GX300 Gateway with OSGi (earlier called Open Services

Gateway initiative) device platform is used.

The deployment of a web service to an embedded device needs the following information:

1. Interface description file – Extensible Markup Language (XML) (Text)

2. Resource description file – Binary file (BIN) (Binary)

3. Manifest File (Project) - XML (Text)

4. Classes for the web service - Java Class (Java source-code)

Some of this information (1-3) is OSGi specific. By developing the web service, context

dependencies to the OSGi platform has to be created inside the Java classes. The OSGi website

provides different features like sample Java projects and Eclipse plugins for easier handling.

Even by using such a support feature, the software engineer has to do following steps:

The first step is to create the interface description files that are a special text file. This file

describes the interfaces of the new web service. The syntax and format are specified by OSGi.

This is also true for the manifest file. This file describes all project information and file

locations that are necessary to build a deployment package. The last file to create is the

resource file, which is only a pre-formatted list of all files that are a part of the deployment

package at the end. The last file is the service description itself. To create this file, the engineer

has to develop a Java class with special dependencies (i.e., to Java libraries from OSGi) that

have to be included into the project as references or path settings in the Eclipse environment.

Execution: The deployment package is created by compiling the project. To upload the file

into a device, a console tool from OSGi has to be used. This tool needs the information from

the new Java Archive (JAR) file and the IP address of the device. After deployment, the device

has to restart. Depending on the device type, the restart has to be done automatically or

manually by the user.

Missing software construction activity knowledge – problem analysis

__
75

Output: The result of this deployment activity is a SOAP based web service running on a

GX300 device and an OSGi platform. The running web service can be now reused by other

software systems.

The shown procedure model differs depending on other platforms or device types (see Zinn,

Fischer-Hellmann and Schoop, 2012a).

3.2. 	Problem	analysis	
The main problem this research focuses on is that an inexperienced software engineer is not

able to perform SCAcs. McCarey, Ó Cinnéide and Kushmerick (2008) conclude that a lack of

techniques to store and subsequently distribute task relevant component knowledge among

software engineers is responsible for this dilemma. The discussion of this statement in Section

2.2.3.3 identifies four major problem areas:

1. Amount of different knowledge exists based on different technology.

2. The inadequate knowledge level of inexperienced software engineers.

3. The amount knowledge required by distribution environments.

4. Missing reuse activity knowledge specification.

These problems have to be challenged by an approach to handle this lack. In the following

these, problems are related to each other by using the view of typical problems in the area of

knowledge management: knowledge storing (Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo,

2010), knowledge learning (Bjørnson and Dingsøyr, 2008; Ajila and Zheng, 2004), search and

receiving of knowledge (Garcia et al., 2006), knowledge exchange (Qu, Ji and Nsakanda, 2012;

Choi, Lee and Yoo, 2010) and knowledge execution (Qu, Ji and Nsakanda, 2012; Choi, Lee and

Yoo, 2010). To discuss each problem, the software reuse information demand (SRID) model

and the industrial context with the example studies of Schoop (2012) and an internal study of

Schneider Electric (performed 2012; cf. Appendix Section E) is used.

Missing software construction activity knowledge – problem analysis

__
76

3.2.1. 	Explanation	of	analysis	contexts		
In the following, the software reuse information demand model and the industrial working

environment of software engineers are explained. Both topics are used for the problem

discussion in this chapter.

3.2.1.1. Software	reuse	information	demand	model	
For the problem analysis the SRID model introduced in Section 2.2.2.3 is used. In the

following, two visualisation types of knowledge problems for inexperienced user are explained.

Figure 16 - Single problem visualisation (a) and multiple problem visualization (b)

Figure 16 shows both visualisations (a) called single problem visualisation and (b) called

multiple problem visualisation. These types of visualisation are explained using the knowledge

problem of accessible knowledge. Different locations may use different repositories. A user or

a team has to know how to localise and access these repositories in a localisation scenario.

From the perspective of the SRID model, this can be analysed separately or together. Figure 16

shows the two separate SRID models examples. In the first one (a) SID contains all repositories

a user might think is useable. OID contains all repositories that may exist in the environment of

the user. IP represents all existing repositories in the environment of the user. The SRID model

(b) analysis is the same scenario with different perspectives. In (a) an element contains different

problems (i.e., localisation, access, and use of a repository). On the other side (b) shows each

knowledge problem separately.

Missing software construction activity knowledge – problem analysis

__
77

A problem to visualise may contain different sub problems (e.g., knowledge about service,

object, and component technology. Each of these sub problems can be visualised using single

problem visualisation type (Figure 16a). These single problems can be now combined. In a

software development project where a software engineer has to use all three technologies

together a solution has to consist of triple all three technologies types. The amount of

information is higher because OID may contain a lot of different variations of triple, double or

single items based on the three single problem visualisations (see Figure 16b and Figure 17).

Figure 17 - Creation of a multiview SRID model out of single view SRID models

3.2.1.2. Reuse	in	industrial	environment		
In this thesis, the term industrial environment or context describes software reuse in an

industrial environment. In such environments, software engineering is applied to solve

problems, for example, in the areas of automation, building, power, software, and conveyance.

Software development of desktop applications is one of the typical parts of software

engineering in an industrial context. But this also includes software development for smaller

devices or specialised environments (e.g., software for mobiles or out of space projects).

Missing software construction activity knowledge – problem analysis

__
78

An relevant view for the research on software construction activities is the environment

software engineers have to work in. Such an environment may create problems or difficulties.

In the literature review different studies of development projects were discussed. The discussed

problems arise for single persons and for whole working teams (cf. Qu, Ji and Nsakanda, 2012;

Desouza, Awazu and Baloh 2006).

The environments for software engineers are different. As shown in Section 2.2.2.3 the size of

companies differ, ranging from SME to large global companies. In such environments software

engineers also try to perform reuse. Section 2.2.2.3 also shows the problems companies have

with software reuse.

Next to the efforts of companies different European research projects also try to create software

units which are reusable for different platforms (e.g., Bohn, Bobek and Golatowski, 2006;

Jammes, Mensch and Smit, 2007). In this way, standardised software units for different

companies and different industry areas are created.

Reusable software units should not only reuse in one project or one vertical market. It is also

interesting to reuse in horizontal markets (see discussion of Szyperski, 2002b; Wang and Fung,

2004). Figure 18 shows examples for vertical markets as well as horizontal markets for

software development projects. Often, software units are market or domain-specific (Frakes and

Isoada, 1994). As a result, a software unit has not only to be reused in a vertical market. In

horizontal markets the requirements may be different depending on the domain knowledge. In

Figure 18 different industrial domains are shown (i.e., Power, Automation, and Building).

Inside each domain different vertical markets exists. The building domain for example handles

office, university, and hospital buildings. A software unit may used in each of these vertical

markets. Additionally, the same software unit may be used on other horizontal markets, as for

example, in factories of the automation domain. Global companies are involved in more than

one vertical market. This may lead to distributed development team (cf. Qu, Ji and Nsakanda,

2012). In this thesis the terms horizontal projects and vertical projects are used to identify

Missing software construction activity knowledge – problem analysis

__
79

software development projects which are used in one domain (vertical) or different domains

(horizontal).

Figure 18 - Horizontal vs. vertical markets

Next to the development of usual desktop application, also other development specialisations

exist. One specialisation is the development of software for embedded devices reusing reusable

software units. Such devices are typically limited in their physical size and in the amount of

available hardware resources and will be used for specific tasks. These devices are applied in

all previously named industrial areas. In the automation area, for example, they control small

parts of factory lines (cf. Jammes, Mensch and Smit, 2007). In the building industry, embedded

devices are used as sensors for single rooms or whole buildings. Embedded devices are also

used in the area of power to measure energy consumption or to predict bigger control devices.

In conveyance they are mostly used as sensors. A gold mine, for example, may use more than

10,000 of such devices to measure sensor values (e.g., air pressure). Typical software

engineering tasks are the development of software platforms (Firmware) for such devices and

software units based on these platforms, including special functionality (Karnouskos and Tariq,

2009). Also, controller applications (so called Enterprise Systems) have to be created by

software engineers.

Next to the specialised domains another relevant property for software engineers exists. In the

industrial context often teams or people work together but do not share the same location. Large

Missing software construction activity knowledge – problem analysis

__
80

companies, for example, outsource software development to other teams located in foreign

countries to save money (cf. Desouza, Awazu and Baloh, 2006). Also, customers or

development partners may be located in different countries. In this global industrial context

software engineers have to work together and share experiences (see discussion of distributed

software development of Boden and Avram, 2009; Qu, Ji and Nsakanda, 2012; Choi, Lee and

Yoo, 2010; Taweel et al., 2009).

Chapter 2 shows different problems from the perspective of the literature. Two are relevant for

this research: reuse problems based on the size of a company (see Chapter 2, Section 2.2.2.3)

and the work in distributed teams. In this section the missing knowledge problems based on the

distribution aspect are focused upon (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010).

The reuse of software units is an relevant part of software development in industrial areas

(Henry and Faller, 1995). Its aim is to reduce cost and time in development projects (Morisio,

Ezran and Tully, 2002). However, reuse in industrial projects does not guarantee a project’s

success; a fact that has been demonstrated by several project studies (see for example Morisio,

Ezran and Tully, 2002). Next to the discussed organisational reuse problems, based Morisio,

Ezran and Tully (2002) typical problems in industrial software development are:

 Misconceptions: Often, reuse is seen as technology; therefore, the use object-oriented

technology is equal to reuse.

 No non-reuse specific processes are modified: Often, existing development processes

are adapted to handle reuse.

 No reuse specific processes are installed: Reuse needs special processes which have to

be prepared for systematic reuse.

 No training/awareness actions: Software engineers are not prepared or trained to

perform reuse.

 Reusable assets produced but then not used: Often, reusable software artefacts are

created but not reused or provided for reuse.

Missing software construction activity knowledge – problem analysis

__
81

 No production of assets: Often, non-reusable software units which are able to reduce

costs are produced.

Due to the software units having to be developed in order to be reusable (Garlan, Allan, and

Ockerbloom, 2009), the last problem: ‘no production of assets’, has special focus on the

literature from others. Garlan, Allen and Ockerbloom (2009) and Morisio, Ezran and Tully

(2002) argue that that companies often do not produce software units which are reusable. This

requires more resources if these units are to be reused. Usually, the effort (e.g., costs and

development time) to reuse should decrease after the creation of a software unit and should

remain the same value continuously for each reuse. This requires software units prepared for

reuse (Morisio, Ezran and Tully, 2002).

The advantages and disadvantages of reuse now are focused upon by creating artefacts in

industrial contexts which are explained by using a practical example. An internal study

performed by Schneider Electric (cf. Schoop, 2012) Appendix Section E shows an interesting

picture. A set of 50 software units was created by different development groups and widely

reused in different development projects in other development teams (including vertical and

horizontal markets). The average reuse number was between 9 and 10. The reuse distribution of

different software units is shown in Figure 19.

Figure 19 - Distribution of reusable software units (Schoop, 2012)

Missing software construction activity knowledge – problem analysis

__
82

It starts with a minimum of 3 reuses (the point where development costs are typically recovered

compared to a non-reuse scenario) and spans up to 36 reuses. All software units have been

created for the purpose of reuse. This study of Schneider Electric identifies three typically reuse

scenarios:

a. Multiple Teams with Support (MTwS): Multiple teams reuse the same

software units in different product lines, supported by the creation team.

b. Single Team with Support (STwS): A single team reuses a software unit in

different product versions that is not the same as the creation team, but

supported by it.

c. Multiple and Single Team(s) without Support (MTwoS; STwoS): Multiple

teams reuse the same software unit in different product lines without the

support of the creation team.

The corresponding development effort distribution is shown in Figure 20 ((a) STwS, (b)

MTwS, (c) MTwoS) respectively.

Figure 20 - Development distribution (a) STwS (b) MTwS; and MTwoS (c) based on Schoop (2012)

The creation of software units is equal for the STwS and MTwS scenarios regarding the

maintenance, preparation of support and the development of the software unit (cf. Figure 20a

and b). The highest effort is dedicated to designing the core function, to be followed by the

effort to generalise the functionality as a basis for reuse (e.g., extended customisable function,

Missing software construction activity knowledge – problem analysis

__
83

extended documentations, application notes, test case specification, and so on). Furthermore, a

dedicated effort is needed to support the reuse later on and a maintenance effort for bug fixing,

and later small evolutions are needed. In the STwS scenario the single team reusing the

software unit reduced the integration effort in the first 4 reuses significantly. In the MTwS

scenario each team reuses the software unit only once. A learning curve as seen in the STwS

scenario is not created. Therefore, the effort for each team in an MTwS is similar. This is also

true for the MTwoS scenario. The effort for each team is similar, but the general effort for the

integration of the software unit is higher than in the other scenarios. The difference is the

missing support of the creation team.

An internal survey at Schneider Electric from 2012 (see notes in Appendix Section E) aims to

identify the effort involved and need for software unit reuse. It identifies different behaviours of

software unit reuse for software engineers. Thereby, 86 people (engineers and technical

managers working in development projects with reuse units) of different business units were

asked 18 questions.

Figure 21 shows the reuse of different software units by different business units of Schneider

Electric. These units are reused in different software products of these business units or in

different product versions. While the reuse of general software units (e.g., eula information; cf.

Figure 21a) is done by most of the business units, the picture changes to then focus on the

device level (e.g., PC drivers, object Software Development Kit (SDKs), Schneider Electric

specific programming SDKs; Figure 21c). Here, based on the difference on working with

devices (e.g., different technology or platforms) not all business units reusing existing software

units. What is interesting is the reuse of one software unit including a graphical user interface

for device handling. This unit is reused several times (30x) by three business units. Figure 21b

shows the use of platform specific software units (e.g., PC drivers, object SDKs, Schneider

Electric specific programming SDKs). The number of reuses differs. While the signature and

the PC driver units are reused several times, the specific SDK software units are not reused.

Missing software construction activity knowledge – problem analysis

__
84

These results show that software units are reused by different software development teams of

different horizontal (in different business units) and vertical (inside a specific software unit)

projects.

Figure 21 - Use of relevant software units in different business units (Schneider Electric; cf. Appendix Section E)

Additionally, the study shows what kinds of units are reused by the different business units.

The survey concludes that source code, software modules (set of classes), and binary code and

guidelines are the most recent reused units. Figure 22 shows the study results.

Missing software construction activity knowledge – problem analysis

__
85

Figure 22 - Reused units in software development (based on Schneider; (cf. Appendix Section E))

Figure 23 - Future improvements identified by the study of Schneider Electric 2012 (Brick = software unit)

The final interesting result in the survey is the topics of future improvements for software unit

reuse at Schneider Electric. The study identifies this as shown in Figure 23. Most of the

interviewed persons identify the late arrival and unknown storage as a relevant point. The

development teams had no idea where the software units could be found and when they are

released. The next point is the missing knowledge that software units still exist. Both points are

Missing software construction activity knowledge – problem analysis

__
86

described by Qu, Ji and Nsakanda (2012). The next point is the internal effort to integrate a

software unit. This includes the low support during the integration. Figure 20 shows the

difference between supported and unsupported teams. An interesting point in this study is that

the reuse of the domain of a software unit is not seen as critical as the aforementioned points.

The next section discusses the challenges identified in Chapter 2 based on the topic of missing

SCAc knowledge. Therefore, the topic of industrial environments shown in this section is used

to underline the problems.

3.2.2. Knowledge	storing	problem	
For software engineers the problem of knowledge storing occurs if no external storing process

description exists (see Boden and Avram, 2009). The storing of data and information is not a

problem technical in software engineering. Today, knowledge management systems are able to

store knowledge and to put information into a context and constitute knowledge (Bjørnson and

Dingsøyr, 2008). This relationship and the associated information can be stored in systems.

Therefore, different technologies exist. A typical technology is so-called semantic model

(Seedorf, 2010). Such a model is not only able to describe the information itself, but also the

meaning (semantics). This allows the linking of different semantic models representing the

knowledge of different individuals or groups. An example of semantic mark-up language

models are: Speech Framework (W3C, 2000), OWL2 (W3C, 2009), and Resource Description

Framework (RDF) (W3C, 2004). Specialised knowledge is required to store the knowledge in

such systems and their (semantic) models. Content management tools (e.g., GForgeGroup,

2012) support development processes by storing of information. However, a commonly used

tool or process to force the problem of storing of SCAc related knowledge and information is

not identified in the used literature.

If knowledge is not stored it can be get lost. This is called knowledge vaporisation (see Ven et

al., 2006). This is an effect which occurs when people leave a company, for example. Often,

these people are experienced users of technologies, relevant concepts, processes or domains.

Missing software construction activity knowledge – problem analysis

__
87

However, their knowledge is part of their private experienced users and is mostly not

documented. As a result, this knowledge is inaccessible to a company if such a person leaves

(Bosch, 2004). The result of Knowledge Vaporization (KV) is an increase in cost because of

adaptation of processes or people to replace the missing knowledge (see Seedorf, 2010).

To store information or knowledge, a user may access a repository (e.g., knowledge

management system) and use it. Therefore, the user has to know where to find a repository,

how to access it and how to use it. From the SCAc point of view, such a repository system has

to store different information. The problem is that SCAc related information may consist of

different technology forms (e.g., service description or binary files). This is based on the fact

that SCAcs are related to different software units which are based on different technologies and

component worlds. Additionally, within each different software unit, technology forms (e.g.,

object orientation, component orientation, and service orientation), there can exist multiple sub

technology forms or concepts (cf. Appendix Section D).

This is also valid for component models. Special context dependency is where a software unit

belongs to a component model. Beside the exact form and the properties of the components

which correspond to the model, a component model also specifies how components can

communicate with each other (interaction standard) and connect to each other (composition

standard). Moreover, a component model can be constructed by implementations from different

manufacturers using different technologies. Similar to the multitude of object-oriented

languages, a number of component models specify different approaches which may be

incompatible with each other. (Szyperski, 2002b; Gruhn and Thiel, 2000)

The problem of component models is valid for component-based software construction and not

found in this form in other construction forms. Though in the object-oriented software

construction, a strong (economic) relation to the special paradigms is found (e.g., .NET and

JavaEE). This is also found in component-based software development. Typically, component

Missing software construction activity knowledge – problem analysis

__
88

models are related to a component world (e.g., .NET and Java). In service-based software

construction there is currently no such dependency. Information from professional and/or

market-political viewpoints, however, can be relevant for the software engineer (Szyperski,

2002b) and, therfore, part of the SCAc description. Services do show a kind of world

perspective looking on different protocols. Commonly used protocols are, for example, SOAP

and Representational State Transfer (REST) (Singh and Huhns, 2005), and both are

incompatible. Next to the stored software unit information, also additional information, such as

descritpion files or additionally binary files, of an SCAc has to be stored.

Regarding the industrial environment described in Section 3.2.1.2 the problem of knowledge

storing occurs especially for supporting teams. Knowledge has to be stored in a way that other

teams can use it (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010).

Next to the software unit information the SCAc examples in Section 3.1 show additional

information. The shown integration SCAc requires the information which software unit is

needed and how each unit is inserted. Additionally, an integration SCAc includes information

about settings for the IDE, the development project or an integrated software unit. The

transformation and deployment SCAc shown also identifies the need of additional tools. The

parameter and the relation to software unit parts has to be described. The result of

transformation Software Construction Artefact (SCA) is a new software unit. which has to be

described also.

As a result, of this view on the problem of knowledge storing following sub problems based on

knowledge are identified

- Problem of identification of a repository

- Problem of access of a repository

- Problem of use of a repository

Missing software construction activity knowledge – problem analysis

__
89

Regarding the use of the repository it is identified that the content (software unit and SCAc

knowledge) has to be stored. Therefore, the special charactersistics of the related technologies

(software unit and SCAc) has to be known and how it insert in the system.

Using the identified knowledge based sub problems, an inexprerienced user has a similar

Software Reuse Information Demand model with multiple (i.e., three combined) solution

elements as shown in Figure 16. If one of these elements is not known by the user the storing of

knowledge migth be incomplete or take a long time or will not happen. Figure 24 shows an

possible SRID model for an inexperienced user. Here, the solution for problems of

identification of a repository (red), access to a repository (yellow) and the use of a repository

(blue) are shown.

Figure 24 - Example SRID model for knowledge storing

Regarding the problem area of the distribution evironment knowledge, the problem of

knowledge storing can be related as follows. This problem occurs for experienced software

engineers (focused on a software unit and SCAc) who wants to store and, therefore, distribute

an SCAc. Figure 24 shows the problem of the inexperienced knowledge level to store this

knowledge. Additionally, the knowledge to store relates to the problem about distribution

knowledge and the problem of missing technology knowledge. All three problem areas are

related, but the primary research focuses on the inexperienced user who wants to perform

SCAcs. Because storing SCAc knowledge is required for reuse, the problem of knowledge

storing is discussed in this research.

Missing software construction activity knowledge – problem analysis

__
90

3.2.3. Knowledge	learning	problem	
Some research groups (e.g., Human Brain Project, 2011) deal with the acquisition of

knowledge. Their aim is to find out how the human body absorbs knowledge and generates the

corresponding semantic link. The underlying idea in this area of research is to emulate the

human brain to gain positive results to improve systems of knowledge (e.g., for the medical

sector; see Human Brain Project, 2011).

Knowledge management tools provide knowledge to a user. However, the content of such

provisions differs. Typically, a user gets a text which contains the searched knowledge or

describes it (see Horeis and Sick, 2007). It is also possible that knowledge is provided using

graphic or animated processes (see Bjørnson and Dingsøyr, 2008). Users have different ways to

learn knowledge.

The need to learn new knowledge is an relevant activity for software engineers (cf. Qu, Ji and

Nsakanda, 2012). This is based on two facts in the area of software development: the changing

tasks and fast growing nature of technologies and information (see Ajila, 2006). Software

engineers have different ways to learn such new knowledge. Typically, professional or self-

training sessions, magazines, or podcast support are common examples. However, the problem

is the given time, interpretation, and the learning possibilities of a person (see discussion in

Section 2.2.2.3).

Figure 25 - Example process for knowledge interpretation

Missing software construction activity knowledge – problem analysis

__
91

Figure 25 shows the following scenario: (1) The experienced user combines the knowledge

they are aware of with the input user interface. (2) Another user formulates a search request.

The system uses an algorithm the compare stored knowledge with information of the search

request. (3) This user interprets the provided knowledge.

The problem of the process shown in Figure 25 is that the experienced user entering the

knowledge cannot be sure the system interprets their perspective correctly. Also, the

experienced user cannot be sure that the inexperienced user understands the knowledge in the

same way (se Bjørnson and Dingsøyr, 2008; Ajila and Zheng, 2004) or is able to formulate a

search request correctly (Picot, 2003).

From the SCAc point of view, the knowledge to learn depends on the SCAc and the technology

of the related software units. In general, a user has to learn how to prepare and execute an

SCAc. Also, it can be necessary for a user to know how to handle the SCAc result. Especially

in the creation or execution of an SCAc the problem of different technologies and component

models may exists. A user has to learn different SCAcs for different software unit technologies.

Using the SCAc examples in Section 3.1 this is also valid for additional tools used by different

SCAc. A transformation SCAc for example uses transformation tools. These tools have to be

installed and configured for the SCAc. This is also valid for deployment activities. In the

example of an integration SCAc a user has to learn about different IDE tools and its

technologies.

The industrial environment of software engineers shows the problem of missing time and

support. Reuse needs time and has to be planned (see Ajila, 2006; Frakes and Isoda, 1992). The

discussion about industrial environment shows that if a team is not supported by experienced

software engineers the investment in resources (e.g., time) increases. (cf. Section 3.2.1.2).

The reuse of ‘unknown’ software units may speed up with the performing or learning support

of experienced users. If such experienced users are not available, the software engineer or a

development team is under constraint to investigate the possibilities and limitations of a

Missing software construction activity knowledge – problem analysis

__
92

software unit by themselves (see study of Schneider Electric Section 3.2.1.2). To share

knowledge is seen as a relevant success factor (cf. Qu, Ji and Nsakanda, 2012).

Additionally, the learning curve is not shared. If one team discovers a way to simplify a reuse

step, this knowledge may be not shared with other teams. In this team, profitability may be

reached earlier. Therefore, shared knowledge between teams that could enable all teams to

avoid the repetition of mistakes and generally accelerate the learning processes of all teams is

missing; each team has an individual ‘learning curve’ (see study of Schneider Electric Section

3.2.1.2; Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010).

These team-related problems become more pronounced as the number of developed reusable

software units increases. The reuse teams are different for each product line, therefore; sharing

the learning process with other (horizontal or vertical) teams is difficult. Often, the learning

curve of one reusable software unit which was reused by the same team can be re-applied to

later units with additional work (see STwS example in the study of Schneider Electric Section

3.2.1.2).

During the research no special solution or approach was identified supporting software

engineers by learning SCAc related knowledge. To summarise the discussion about the

problem of learning following knowledge based problems are identified:

- Problem of different technologies and component worlds

- Problem multiple variations of SCAc related actions

- Problem multiple existing tools used in SCAcs

- Problem of knowledge interpretation

- Problem of variant results

Using the SRID model to demonstrate the information demand an picture is created which

differs to the example of Figure 16. While the SID and the OID can contain multiple

interpretations of the SCAc knowledge or information the IP area only includes one set of

related solution elements. In the real world this set is represented by the knowledge that is used

Missing software construction activity knowledge – problem analysis

__
93

for learning and the interpretation of this knowledge by the experienced user who creates it. If

the inexperienced user does not have the same interpretation the use of the learned knowledge

might create a not valid SCAc from the perspective of experienced user. A user might use

multiple knowledge resource to learn an SCAc. This can change the number of elements in OID

and especially in the SID, but not the number of elements in the IP area.

Regarding the three problem areas focused by the research. The problem of knowledge learning

can be related to the research as follows. The knowledge required by the technologies (i.e.,

software unit and SCAc technology) and the distribution environment has to be learned by the

inexperienced user.

3.2.4. Problem	of	searching	and	receiving	of	knowledge	
Usually, a user can search for knowledge by using a specialised search engine of such systems.

Simple knowledge management systems provide knowledge as textual information. Another

feature of these systems is the conclusion from existing knowledge to new data-driven

knowledge. This can be reached, for example, by using a case-based reasoning approach

(Allen, 1994). Usually, semantic models are used in such cases. For users, it is difficult to use

these tools because of the diverse knowledge requirements (Seedorf, 2010; Picot, 2003).

For knowledge to be received, first it has to be searched for. The problem is based on the fact

that a search request (description) of the searched object has to be created by a user (see SRID

model discussion in Section 3.2.1.1). Due to differing search algorithms and search

technologies, a user might not be familiar with the use of search technology (Garcia et al.,

2006). Also, describing the information appropriately in a search query may represent a

problem (see Picot, 2003; Garcia et al., 2006).

From the SCAc perspective, a user might describe the SCAc input, result, or its behaviour. As

discussed before, SCAcs differs in their used technology or component model. A user might

have problems to use this information for a search query. The SCAc examples in Section 3.1

show three different types of SCAc with different behaviours. Also, the results (integrated

Missing software construction activity knowledge – problem analysis

__
94

software unit, a new software unit, and a deployed software unit) differ. The inputs are similar

but differ in their use. In a transformation SCAc, for example, the input information is used to

setup a transformation tool. Such actions of an SCAc should to be searchable.

In addition to the experience of SCAc related information, a software engineer has to know

how to reach or access such sources of information (see discussion of knowledge storing in

Section 3.2.2) Each repository system is in place to advance different approaches since, for

example, it may be necessary to authenticate in some repository systems (see Ajila, 2006). A

user requires knowledge about an authentication system (e.g., user name and password).

Some systems offer standardised approaches such as web portals, while others use advanced

specialised applications, in addition, different types or use.

Usually, software engineers are familiar with their own special in-house or free open source

repository where they are able to search for information. The number of internal corporate

repositories increases with the size of the company. A software engineer is not aware of all

existing repositories in their environment (i.e., in a global company). This is particularly true

for private repository of other software engineers.

For software engineers, the problem arises in the functionality of finding information using the

request results. Search engines such as Google allow to search in many different systems for

information. Search results of general search engines such as these provide a variety of results

that do not match the desired result also.

From the SCAc point of view the problem of receiving SCAc knowledge includes another

problem. The requested knowledge has to be complete. As logical result the input,

configuration, needed tools and the output has to be described completely to repeat the SCAc.

An example for this is the knowledge base CodeProject (see Maunder, 2012). Here, software

engineers provide different software unit and description how to use the provided functionality

of these units (domain context). But the SCAc related information is missing in most cases. As

a result, an inexperienced user does not know, for example, how to integrate this unit.

Missing software construction activity knowledge – problem analysis

__
95

The industrial environment of software engineers shows the problem of localisation for

software engineers (see Bosch and Bosch-Sijtsema, 2010). One team member can be located on

a different site than others of the same team. To exchange data is not only a problem of

different time zone or culture but also a question of communication (see Taweel et al., 2009).

The problem of localisation also occurs for a multiple teams of software engineers (see Taweel

et al., 2009; Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). Different teams may be

placed in different locations. Teams, as well as, single software engineers, have to

communicate with each other. To search and receive knowledge (e.g., formulation of a search

request and the download of software units) about a repository in different locations is required.

Additionally, software engineers use different types of repositories. These types of repositories

reach from handmade notes or files on the personal hard disc to a team, department,

companywide or community repository system (see Ajila, 2006; Ha, Sun, and Xie, 2012; Qu, Ji

and Nsakanda, 2012). As discussed before, to know how to connect to these repositories is a

problem. A software engineer (or a team) has to know where these repositories may be found

and how to use them (formulate search requests).

The discussion about different views on the problem of searching and receiving knowledge can

be summarised as follows. Search and receipt requires knowledge about the searching and

receiving infrastructure. Additionally, a software engineer has to formulate a search request

which requires knowledge about software units and SCAcs (e.g., domain or technical

knowledge). A search result has to be learned and interpreted (cf. Problem of learning, Section

3.2.3). As a precondition, knowledge has to be stored beforehand (cf. Section 3.1.4).

From the SRID model view, this problem has to be demonstrated by using multiple SRID

instances. The information demand of each single knowledge problem (i.e., find, access, and

use of a repository) of repository location can be demonstrated by using the SRID model (see

Figure 26).

Missing software construction activity knowledge – problem analysis

__
96

Additionally, the formulation of a search request can be presented by aggregating the problems

of technology software units and SCAcs (see Figure 27). Picot (2003) identifies that

inexperienced user are not able to formulate a correct search request this limits the useful

information. This limitation is shown in Figure 27 by a black circle representing a search

request of an user.

Figure 26 - Creation of the problem of repository localisation

Figure 27 - SRID model for the problem of search request formulation based on Picot (2003, p. 106)

Missing software construction activity knowledge – problem analysis

__
97

In the next step the final SRID model can be summarised by aggregating the SRID model for

the problem of localisation, formulation a search request, and interpretation. Figure 28 shows

the aggregation problem of searching and receiving. This problem is based on knowledge of

repository location, search request formulation, and knowledge interpretation.

Figure 28 - SRID model for information demand for search and receipt of knowledge

The SRID model in Figure 28 demonstrates that the problem of searching and receiving

knowledge is related to the problem area of the inexperienced knowledge level. Also, the

remaining two problem areas are related to this topic. Especially the distribution environment

which requires knowledge of an inexperienced user for searching and receiving SCAc related

knowledge. The received knowledge about software units and SCAcs has to be interpreted.

3.2.5. Knowledge	exchange	problem	
In different projects software engineers have to share their knowledge. Typically, this can be

done by arranging meetings supported by different presentation media (i.e., audio, video, or

pictures) or by using knowledge management tools. Next to the discussed problems of

searching and using of knowledge the problem arises to distribute knowledge in a way that it

can be understand correctly by others. In contrast to the knowledge user, the software engineer

Missing software construction activity knowledge – problem analysis

__
98

who is the knowledge creator has to look for the distribution possibilities (see Taweel et al.,

2009; Boden and Avram, 2009).

Knowledge management systems can store information as knowledge and usually use concepts

like location technology-independent, as for example, web pages or services (see Huang et al.,

2005). As a result, the user no longer has problems accessing such systems because on

technology dependency (e.g., missing runtime for Java-based tools). A web page can be used

independently of special runtimes. Using a web technology makes it possible to build

knowledge systems that can be accessed and used from different locations (i.e., by using a

network connection). However, the problem is more focused on entering the knowledge into a

system and enabling others to find and use it (see discussion in Section 3.2.2). Considering this,

three points are pertinent: insert knowledge in a system, request knowledge from a system, and

receive knowledge (see Figure 25).

The problem of knowledge exchange bases on the problem of storing, learning, searching, and

receiving (cf. Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010). Software engineers have

to store knowledge and other has to find and receipt it. As a result, the problem of knowledge

exchange includes the same problems for software engineers. Additionally, in the multiple team

scenarios, software units are created by a singular team, but multiple reuse teams then use them.

In the study of Schneider Electric shown in Section 3.2.1.2, one team would create a software

unit and related SCAcs and teams from different industry areas would reuse the software unit.

Qu, Ji and Nsakanda (2012) and Choi, Lee and Yoo (2010) also identify this problem, but focus

on knowledge in general instead of SCAc or software unit knowledge.

On the side of the reuse teams, two different effects of the multiple team scenarios are

identifiable. When multiple teams reuse software units, the effort required in all these teams is

nearly the same. Also, the learning curve may be nearly identical. If a single dedicated ‘reuse’

team exists, the effort decreases with each reuse due to the learning process. This decrease is

not linear and stops at a certain minimum (see STwS scenario discussed in Section 3.2.1.2).

Missing software construction activity knowledge – problem analysis

__
99

Even if this minimum seems to be a positive effect, the constraints of organisations (i.e.,

missing management of reuse) prohibit this effect in some cases (see discussion about

organisational problems of software reuse Section 2.2.2.3). This may be leads to the following

scenarios: Single Team without Support (STwoS) and Multiple Teams without Support

(MTwoS; cf. Figure 20c). Here. No knowledge exchange to the supporting team exists. The

study of Schneider Electric shows that such a scenario a significantly higher effort for reusing

software units is required, since there is no support. This also leads to a decrease in profitability

of the reuse approach compared to developing from scratch. While scenarios with support reach

profitability with 3 or 4 reuses, the last scenario only starts to be profitable after five reuses (cf.

study of Schneider Electric in Section 3.2.1.2). Additionally, the learning curve is not shared

between teams (see problem discussion in Section 2.2.2.3).

These team-related problems become more pronounced as the number of developed reusable

software units increases. (see problem discussion in Section 2.2.3.3).

Another typical problem is that teams or team members may be situated in different locations

and have to cooperate over a distance (Qu, Ji and Nsakanda, 2012). Distributed software

development scenarios cause problems in software architecture, engineering processes, and

R&D organisation (Bosch and Bosch-Sijtsema, 2010). Also, the sharing of reusable software

units between teams has a great impact on costs:

“A problem observed […] is that when decoupling between shared software assets is

insufficiently achieved is excessive coordination cost between teams. One might expect that

alignment is needed at the road mapping level and to a certain extent at the planning level.

When teams need to closely cooperate during iteration planning and have a need to exchange

intermediate developer releases between teams during iterations in order to guarantee

interoperability, the coordination cost of shared asset teams is starting to significantly affect

efficiency.” (Bosch and Bosch-Sijtsema, 2010, p. 70)

Missing software construction activity knowledge – problem analysis

__
100

The problem of missing knowledge exchange is identified by the analysis of other real

development projects (see Boden and Avram, 2009). Software engineers may not be able to

work with other solutions than the solutions they already know. In a worst case scenario, people

are not able to fulfil their work or cooperate with teams using different versions of the same

knowledge (based on interpretation issues; see Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo,

2010).

To summarise the discussion of the problem of knowledge exchange, the following statements

can be made. Knowledge exchange consists of knowledge storing by an experienced software

engineer, searching and receiving by an inexperienced software engineer, and the interpretation

of knowledge by these engineers. Therefore, the problem of knowledge exchange includes the

same sub problems (i.e., location, different technologies, learning, interpretation of knowledge,

and the creation of search requests) as the problem areas it consists of. As a result, this problem

is related to the three focused problem areas. Because of this problem is related to the other

mentioned problems the SRID models explained in Sections 3.2.2, 3.2.3, and 3.2.4 explain the

sub these as sub problems.

3.2.6. The	problem	of	knowledge	execution	
To avoid misunderstanding to the term application, which means software program in the scope

of the thesis, the term knowledge execution is used instead of knowledge application.

The difficulty is due to the fact that the definitions of knowledge and information are different

(see knowledge term definition in Section 2.2.2.5).

However, the difficulty is due to the fact that knowledge can be applied in different ways;

based on experiences of a person. (cf. Qu, Ji and Nsakanda, 2012). There is no rule or process

which defines how knowledge can be applied. Usually, knowledge has to be described in a

form whereby other users can use it (cf. discussion of Qu, Ji and Nsakanda, 2012; Choi, Lee

and Yoo, 2010).

Missing software construction activity knowledge – problem analysis

__
101

Humans use knowledge to relate information (‘interacting’; see definition of knowledge in

Section 2.2.2.5). This is a result of one or more learning processes. If knowledge is not

adequate, humans may be able to work around this issue (Human Brain Project, 2011). To

create such behaviour at system level is challenging. The problem is to create a system which is

able to reuse the given knowledge to reach the same aim or intention as the user who creates

this knowledge (cf. Qu, Ji and Nsakanda, 2012).

To execute SCAc related knowledge (i.e., information about software units, tools, and their

usage), it is necessary to handle different problems. The first one is the availability which is of

crucial importance for software engineers. To guarantee the operability, (e.g., the frictionless

execution and operation of software), all units of software have to be available. If a unit is not

available, an application has to be able to react to it. With the handling of objects, in most cases

local resources which can be verified, are meant. Though with the handling of components,

local resources also exist in most cases, during the construction time, however, only the

interfaces are handled. The existence of the resource is not always mandatory. This behaviour is

even more pronounced with service-based construction (Breivold and Larsson, 2007) and leads

to the problem of the availability at runtime (Kumar et al., 2007). The knowledge how to use

information about software unit in an IDE (integration SCAc) or configure special tool

(transformation and deployment SCAc) is necessary for an SCAc (cf. SCAc examples Section

3.1). This kind of information have to be available for a user or a system for knowledge

execution.

Additionally, the SCAc knowledge and information has to be complete in order to perform the

SCAc. Otherwise (i.e., knowledge is missing) problems can be created in a project (cf. Qu, Ji

and Nsakanda, 2012). In the area of components, for example, the software engineer uses

interfaces to execute functions of a service or component. But engineers have to know the

structure of a component (including external dependencies; Sommerville, 2011). On the service

side the internal structure of a service is not so relevant (Breivold and Larsson, 2007). Since the

Missing software construction activity knowledge – problem analysis

__
102

implementation of services is encased, only a low dependency exists (cf. Breivold and Larsson,

2007). Often, services provide all information (e.g., in an interface description). This

description can describe dependencies which a client can try to find or to create an adequate

alternative. In the area of classes (i.e., source code), the software engineer can influence the

context dependency to a certain degree. This is done by adding, removing or changing the

source-code. So, an engineer can manage the use of external dependencies or reduce such

dependencies by independently writing missing functionality. Since these dependencies are

necessary at different levels of the development, the software engineer has to know them

intimately. In the area of components context dependencies (e.g., relation to other components

or the runtime environment) are usual. The integration and transformation SCAc examples

shown in Section 3.1 show this problem. For the transformation of each Java library the

references to previously transformed software units has to be used. In the integration example

the mail library has a lot of dependencies to other transformed libraries as well as to a special

IKVM library. The internal study of Schneider Electric also shows that the topic of

dependencies has to be improved in the future (see Section 3.2.1.2)

Following list summarises the knowledge based sub problem identified in this discussion:

- Problem of completeness (including dependencies)

- Problem of availability

- Problem of interpretation and realisation of existing knowledge

Using the SRID model for the problems based on these three sub problems and, therefore,

similar to the SRID model shown in Figure 26.

To summarise the proof knowledge execution, it can be stated that this is an relevant problem

identified by the literature (cf. discussion of Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo,

2010). The execution of knowledge depends on knowledge about the technology of a software

unit and the technical environment for execution. Therefore, it can be concluded that this

problem also depends on the other discussed problems of knowledge.

Missing software construction activity knowledge – problem analysis

__
103

3.2.7. Problem significance
To highlight the problem significance, the following two questions will be discussed:

- How often is reuse used in industry?

- What happens if problems occur?

The questions are answered using a different discussion to Chapter 2. For the first question

‘How often is reuse used in industry?’ no investigation was identified defining a percentage

number. But different viewpoints indicate a high usage of software unit reuse in industry

projects. Following the discussion of Ajila (2006), the reuse of a software unit is a standard

process used in software development projects. This statement is supported by other reuse

discussions of Morisio, Ezran and Tully (2002) and Ha, Sun and Xie (2012). Thereby, reuse

can appear, for example (see McCarey, Ó Cinnéide and Kushmerick, 2008), as a main focus

(development-with-reuse) or inside a development process (reuse-within-development: see

Chapter 2 Section 2.2.1.4).

Another indicator is the development environments used today. Often IDEs (SREs) with high

reuse support are used (see discussion of Garcia et al., 2006). Typical examples are Visual

Studio and Eclipse and these support developers to perform software unit reuse, sometimes this

occurs automatically, for example the automated creation of a web service client out of a web

service description file.

The IDEs mentioned are related to another indicator. Object-orientation, component-orientation

and service-orientation are relevant models for software development. As shown in Chapter 2

Section 2.2.1.6 these are reuse technologies (or concepts). As a logical result, these concepts

are often used. Another related indicator is the reuse landscape (see Figure 3 and Table 2). The

reuse topics represent relevant fields in software engineering and most of them use the

mentioned reuse models (or concepts; see Table 2)

However, software development can be done without any software unit reuse. As a personal

opinion this particularly occurs in the area of new technology research, and where software

Missing software construction activity knowledge – problem analysis

__
104

developers have no knowledge of reuse in their specific field. Sometimes reuse may be avoided

based on the risk of failure. In such situations, software development has to be done without

reuse support.

3.3. 	Missing	solution	approaches	
In Chapter 2 four problems are identified from the literature. The discussion in Chapter 2

concludes that these problems are challenges for the exchange and execution of SCAc related

knowledge. This chapter discusses the problem areas in more detail. In the literature solution

approaches focusing on the three knowledge problems related to reuse activities could not be

identified.

However, approaches with a specialisation focusing on one problem area, such as technology,

and one single SCAc can be found. In the following, some examples are discussed briefly.

McCarey, Ó Cinnéide and Kushmerick (2008) focus on supporting software engineers by using

agents. In this approach, agents perform, amongst other activities:

learning from a human user and

- sharing knowledge between software engineers.

In this approach an agent is used to study and analyse the activities of a software engineer in an

Eclipse environment focusing on Java source code creation. All relevant information about the

reuse of a software unit (i.e., source code) is stored in an information retrieval model. Together

with a repository this system is able to store knowledge about the use of a software unit. The

system can analyse this knowledge and provide this to other users. The solution described by

McCarey, Ó Cinnéide and Kushmerick (2008) is useful from the perspective of the author of

this thesis and can be seen as a ‘learning by doing’ approach. The advantage of this type of

approach is that the knowledge level of a software engineer is not changed. Regarding the

focused problem areas some disadvantages of such a type of approach can be identified. The

first on is the focus on one technology and one type of software unit. The example of McCarey,

Ó Cinnéide and Kushmerick (2008) focuses on a Java source code in an Eclipse IDE, and the

Missing software construction activity knowledge – problem analysis

__
105

research does not focus and does not show the possibilities of focusing on other software unit

technologies. Ye and Fischer (2005) follow a similar approach to McCarey, Ó Cinnéide and

Kushmerick (2008). Both approaches focus on the integration of a single software unit type

(i.e., source code) with a special technology type (i.e., Java in the case of McCarey, Ó Cinnéide

and Kushmerick, 2008). The problem area of different software unit SCAc knowledge is not

covered by this approach.

Regarding the transformation and deployment, a similar picture is identified. In transformation,

for example, different specialised solutions can be found. For Java and .NET, for example,

compiler and interpreter exists which transform source-codes into component byte codes. Tools

like SVCUtil (cf. Microsoft, 2012d) transform web service information into source codes or

components. Even if such tools provide the possibilities to support two different software unit

types, they focus on a special platform (in this case .NET). The same can be found with Java

side using WsGen (Sun, 2013). Transformation tools like IKVM (Frijters, 2011) are able to

transform one technology into another. In this case Java components are transformed into .NET

components. The problem area of different software units or SCAc technologies is not covered

by such tools. Even if these transformation tools avoid the manual performance handling of the

transformation, these tools require ‘handmade’ knowledge (e.g., configuration parameters). The

required knowledge depends on the different tools. For the problem area of distribution

knowledge no approach was identified.

Next to the idea of using similar firmware (cf. discussion of device deployment of Zinn,

Fischer-Hellmann and Schoop, 2012a) one example was identified that focuses on the problem

of different technologies. Some vendors provide tools to supports a user in creating a

configuration for different devices (e.g. Altera, 2012).

Device and firmware vendors provide their own application for device deployment (cf. Zinn,

Fischer-Hellmann and Schoop, 2012a). Even if these different tools avoid the manual handling

of device deployment knowledge, these tools still require knowledge which has to be handled

Missing software construction activity knowledge – problem analysis

__
106

by users. For the problem area of distribution environment knowledge and the problem of a

user’s knowledge level, no approach was identified.

A solution or discussion about the definition of reuse activity knowledge focusing on one or

more of the three focused SCAcs was not found.

The research presented in this thesis focuses on the support of inexperienced software engineers

to perform a SCAc. Thereby, the research focuses on an approach handling the three focused

SCAcs. While a similar approach (i.e., focusing on the three problem areas) was not found

during the research phase, such an approach may be a contribution to the topic of SCAcs.

3.4. Summary	
This chapter analyses the problems of missing software construction activity knowledge.

Therefore, it starts with an overview of the three focused software construction activity types

chosen for this thesis: integration, transformation, and deployment software construction

activities. For each activity type, three examples are given in the beginning of the chapter. After

this discussion the industrial environment as typical environment of software engineers is

explained. Additionally, the Software Reuse Information Demand Model is presented. This

model is a research result of the Ph.D. study and is used to visualise the knowledge level of a

person.

In the second part of this chapter five knowledge problems are discussed: knowledge storing,

knowledge learning, search and receiving of knowledge, knowledge exchange, and knowledge

execution. These knowledge problems are discussed as problems for three of the focused

problem areas. Additionally, the SRID model and the industrial environment are used to

explaind negative effects of the knowledge problems to the area of software unit reuse and the

use of SCAcs. The result of the discussion is that the three problem areas are challenges to

create an approach for the use of SCAcs which performs single software unit reuse activities.

The analysis shows that the focused problems are based on different knowledge problems. The

last section of this chapter discusses examples of existing approaches and concludes that these

Missing software construction activity knowledge – problem analysis

__
107

are not adequate to solve all problem areas at the same time. The next chapter defines a basic

idea and a concrete concept of a solution focusing the knowledge level of the discussed

problems of this chapter.

 	

A general approach to realise knowledge-based automated reuse activities

__
108

4. A	general	approach	to	realise	knowledge-based	
automated	reuse	activities		

The previous chapter discusses the challenges for creating an adequate technique to handle

software construction activity knowledge. This chapter provides a solution to enable

inexperienced software engineers to perform software construction activities and it also

explains the concept which focuses on these challenges. Therefore, this chapter begins with an

explanation of the basic idea and the solution approaches focusing on the different problems

identified in the literature review. The concrete concept is explained in the second section of the

chapter.

4.1. 	The	basic	idea	
The basic idea is to enable inexperienced software engineers to perform software reuse

activities on special software units that require experienced user knowledge. This support

should be done automatically or partially automatically without a long learning process for

software engineers. As concluded in the study of Qu, Ji and Nsakanda (2012) the use of IT is

relevant for the exchange and execution of knowledge. Therefore, the basic idea is based on a

technical infrastructure. The development of software can be seen as a set of sub-steps, for

example, the reuse of a software unit, integration of a unit, or deployment. The basic idea

focuses on handling such steps, and sketches a solution. This does not mean that a complete

software unit development process or a complete reuse process of a software unit is focused by

this idea. It means only the support of single and specialised sub-steps (i.e., software

construction activities) is focused upon. Figure 29 shows an example process and the focused

sub-step support by the basic idea of the focused approach. The focused approach is useable in

the implementation phase of a development process. Here, different activities (e.g., integration,

transformation or deployment) are performed. The figure uses an example login software unit.

The download, transformation and integration of software units are focused steps in this

research. This figure is only an example. One characteristic of the basic idea is that the focused

A general approach to realise knowledge-based automated reuse activities

__
109

approach is not a development process and does not depend on such a process. From the

viewpoint of the author, software construction activities are typical reuse activities which occur

with and without specific reuse development processes (cf. Perspectives on reuse in Section

2.2.1.4).

Figure 29 - Example of focused reuse steps

From a more technical perspective, the idea focuses a solution to combine a knowledge

database with service provision. Regarding the discussion about inexperienced software

engineers it became clear that, in most cases, knowledge about software unit reuse activities

had to be learned from scratch (cf. Section 3.2.3). Sometimes the knowledge learned may never

be reused by individuals. So the idea is to create a service which provides the capability of:

- searching for reusable software unit activities,

- automating single reuse steps,

- storing reuse activity information permanently,

- being accessible independently of location or technology platforms, and

- extending the knowledge database with new reuse activity information.

 Concept of
operations

 Requirements
and

architecture
 Detailed design

 Implementation

 …

 ….

 Download login
component

 Adept login
component

 Integrate
component

(reuse)
 Create adapter

class

 ….

Exemplary Development Process

Sub process steps

of implementation

Examples of
focused steps

A general approach to realise knowledge-based automated reuse activities

__
110

Figure 30 shows this idea.

Figure 30 - Basic Idea of this thesis

(1) It is relevant for the idea to have an experienced user (2) storing knowledge about software

reuse activities of a specific software unit (3) in an environment. (4) This stored knowledge

may be used by a person who is not an experienced user in this particular software unit and/or

the stored reuse activity. (5) This is done by using a service.

Figure 31 - Concepts used for problem solving

A general approach to realise knowledge-based automated reuse activities

__
111

The focus here is on the different challenges discussed in Section 2.2.3.3 by the combination of

four concepts:

(A) Abstraction of software unit complexity

(B) Automation of reuse activities / Abstraction of distribution environment

(C) Service for management of software units and reuse activities

(D) Knowledge repository for reuse activities

Figure 31 shows where the different concepts can be found in the idea.

The approach uses abstraction to handle software unit complexity (i.e., changing technologies)

to support a user in searching, handling, and reusing a software unit. A user can search for a

software unit and an SCAc. The idea is based on the concept of abstraction which is widely

used in software development (for example, see the use of abstract data types in Ludewig and

Lichter, 2010 or abstract specification in Sommerville, 2011).

The idea to use automation for SCAc is based on the example of industrial manufacturing For

example, in the automobile industry, cars are built using tools and computer-aided design

(CAD) models (cf. Zheng, 2007). Intellectual properties (knowledge parameters) are part of

such models. As a result, different variations of cars can be built using a single model.

Manufacturing machines can be programmed using the model and most of the construction

process steps can be performed automatically. Likewise, it may be possible to automate special

reuse activities (i.e., software construction activities) to support software engineers.

Within this idea, a service is used for handling (storing, removing, editing, and executing) of

software construction activities. Therefore, the concept of service-oriented architectures (Singh

and Huhns, 2005) is used. This allows a distributed environment. This enables people to access

or use these functionalities independently of their location. In terms of automated software

reuse activities; this feature (i.e., service-oriented architecture) reduces complexity. This means

that the user does not have to know how to create a setup or how to perform a reuse activity.

Also a user does not have to think about locations and environments.

A general approach to realise knowledge-based automated reuse activities

__
112

The concept of using a repository is based on the fact that repositories are already widely used

in the area of software engineering to store data and provide management functionality (see the

discussion of Morisio, Ezran and Tully, 2002). The basic idea focuses on two different types of

repositories. The first stores information about software units similar to a Content Management

System (CMS). Here, software unit data and information can be stored using an abstraction

model. This model simplifies the view on software units. The second repository type stores

information and knowledge about software reuse activities which will be relayed to the

software unit information. The second repository behaves more as a Knowledge Management

System.

The four focused concepts are not new in the scope of software engineering or industrial

behaviour. The literature review in Chapter 2 did not identify approaches using these concepts

together to focus on the automation of software unit reuse activities for inexperienced software

engineers. Therefore, the idea and the related concept (see Section 4.4 and the realised solution

in Chapter 5) have to be proofed to be a valid technique to the identified lack.

The expected mode of operation is now summarised and related to the problems discussed in

Section 2.2.3.3. The problem of the knowledge required based on variants of different

technologies is handled for the inexperienced software engineer by storing the information

about software units into a common model which does not focus on the variants (i.e.,

abstraction). Additionally, by use of the described service, the inexperienced software engineer

does not need to handle the differences in the technologies. The service is also relevant for the

problem of different knowledge levels of software engineers. The service will deliver the same

information, use the infrastructure to perform the SCAc in the same way, and deliver the same

results. This is independent of the knowledge level of a user. It is expected that the behaviour of

the service also has a positive effect on the problem of the distribution of knowledge. The

service holds the infrastructure (e.g., repositories and SCAc execution tools). As described, the

user does not need to know this infrastructure and how the information is distributed. The

A general approach to realise knowledge-based automated reuse activities

__
113

problem of a missing definition of software reuse knowledge should be handled by the model

for software construction activity. Here, information is described which is used as knowledge

by the service.

4.2. 	Focused	user	profiles	and	scenarios		
The previous section illustrates that the focused approach is intended to supports software

engineers with insufficient knowledge in performing the specific reuse activities in software

development projects. To define the corresponding user profiles, it is first necessary to classify

the corresponding application scenarios.

The approach focuses on traditional reusable software units (classes, components, and services)

in the field of object-oriented, component-based, and service-bases development (see Appendix

Section D.1). This means using these software units as artefacts in a black-box reuse project.

These units represent a solution, either individually or in context from a domain specific view.

A solution from the perspective of the focused approach is, therefore, is the provision of the

software unit information which may consist of classes, components and services, as well as

any additional information, such as configuration and dependencies. This includes SCAc

information. From a technical point of view, this solves at least the problem for the user. In

addition to the provision of software units, the extra information collected can be deposited.

Reuse activities are represented in this thesis by focusing on transformation, integration, and

the deployment construction activities of software units. In detail of this, thesis this means the

adaptation, integration into IDEs as well as the deployment of software units into embedded

devices.

The following application scenarios are focused:

1) Software engineers want to use these software units to fulfil a requirement that they are

developing or fixing a problem that is encountered in the development of a software

A general approach to realise knowledge-based automated reuse activities

__
114

unit. Therefore, the engineer has to reuse the activities (i.e., reuse of procedures cf.

Section 2.2.1.4.

2) Software engineers want to provide software units and activity information/knowledge

for general reuse.

Generally, these two application scenarios identify two different user profiles: (1) ‘knowledge

user’, and (2) ‘knowledge creator’. These profiles will be discussed in the following sections.

4.2.1. 	Knowledge	user	(KU)	–	Reuse	of	software	units	
The following two hypothetical examples illustrate the focused application scenario for the use

of software unit activity knowledge:

Example 1 "Service Discovery": In automation industry, the use of web services has become

standard (Jammes, Mensch and Smit, 2007). Devices with limited resources (so-called

embedded devices) are equipped with Web Service interfaces. In this example, a software

engineer is given the task of creating web services on such a device ‘discoverable’, (i.e., a

device which is connected to a network can be found automatically by an application or other

device and used). In the field of automation, the Device Profile for Web Service standard is

used for this purpose (Jammes, Mensch and Smit, 2007). This profile defines a protocol

extension for SOAP-based web services that enables web services to provide discovery

functions in their web operations (which may differ from device to device) to be used

dynamically. The SOA4D Group (see Jammes, Mensch and Smit, 2007) provides components

for devices based on conventional technologies (e.g., C++ and Java). Software engineers can

download them and use them in their software development projects to fulfil requirements.

However, an extensive setup of the used development environment is needed. One example is

the DPWS units which have dependencies that need to be configured (cf. DPWS example in

Section 3.1.4).

Example 2 "Corporate Identity": A software engineer has to integrate the company's usual

AboutBox into their latest program based on C#. However, this results in the following problem

A general approach to realise knowledge-based automated reuse activities

__
115

for the software engineer. This AboutBox was developed using the Java technology that is

incompatible with its .NET based program. The engineer now has several options for solving

the problem (e.g., develop their own AboutBox or build an adapter).

Another possibility is using an existing component (e.g., Java-.Net Bridge) which solves the

problem for software engineering, or performing the conversion of AboutBox by using a

transformation application (e.g., IKVM) into a C# AboutBox. The latter provides a problem for

the software engineer; because IKVM applications have to be parameterised extensively. As in

the first example it is necessary to prepare a complex configuration.

In both examples, an existing software unit (i.e., DPWS unit and the AboutBox) may be used to

solve the problems. The units themselves are smaller parts of software and focus on small

functionality, but require the use of additional knowledge (e.g., for configuration). The first

example is the configuration of the dependencies in the development environment. In the

second example, complex transformation parameters are needed for additional applications (cf.

SCAc examples in Section 3.1).

Also, specialised knowledge is necessary in both cases. For people who have this knowledge,

there is no direct need for an environment such as the focused approach that supports the use of

this knowledge. An exception may be the time saved by using an automated reuse activity. For

people who do not know this, the focused approach might be an added value from the

perspective of the author. An interesting aspect in the use of the focused approach is the fact

that users of this platform are not under obligation to acquire the knowledge.

Thus, the focused approach is aimed at a user profile that has the following properties:

1. The people do not have the necessary knowledge to reuse a certain software unit.

2. The people, however, are under constraint to use such an approach generally.

3. The people are not interested in acquiring the knowledge for independent use at a

later time.

Such a user profile is related in this thesis to following groups:

A general approach to realise knowledge-based automated reuse activities

__
116

1. ‘Young Professional’: Young professionals with software development

backgrounds, who do not yet have enough knowledge (Garcia et al., 2006).

2. ‘End User’: Software engineers who do not have a software development

background yet develop personal or professional software. Typically, these people

develop web pages, macros or small applications (Ko et al., 2009).

3. ‘Senior software engineer‘: Experienced software engineers who have no

knowledge of the specific software unit and its activities.

The research of this thesis focuses on young professionals and senior software engineers. The

user profile is called the Knowledge User (KU) profile.

4.2.2. 	Knowledge	creator	(KC)	–	Provision	of	software	units	and	reuse	
ffactivities	knowledge	

The following hypothetical examples are intended to clarify the focused application scenario in

the provision of software units and reuse activity knowledge:

Example 3 "Corporate Web Services": A software engineer has to create a standardised Web

Service that allows information to be queried regarding alarm information (i.e., sensor alarms)

and devices (i.e., embedded devices). This Web Service is to be used to exchange data

uniformly between horizontal and vertical software applications of a company. After

completing the task (the development of such an interoperability Web Service), the software

engineer has to select an appropriate repository to provide the development result to the other

software engineers.

Example 4 "Corporate Web Service Integration": A task is given to a software engineer to

integrate the service developed in Example 3 into an existing software application. The

software engineer has to be aware of the integration of this Web Service and its additional

artefacts in the used development environment. The service requires extensive knowledge of

copying, referencing, and configuring activities. Due to these specific requirements, the

software engineer chooses to automate these activities to perform this integration process more

A general approach to realise knowledge-based automated reuse activities

__
117

easily a second time. In addition, the software engineer also wants to provide this automated

integration to other users.

Example 5 "Corporate Web Service Transformation": By using the other previously

transformed software unit (Corporate Web Service), the engineer of Example 4 recognises that

it is possible to handle the problem of transformation. The unit solves the problem of unified

communications, but in a different technology type. For this reason a transformation tool is

used (e.g., SvcUtil) to change the original software unit into the required technology type. This

automates the transformation step for easier reuse at a later date. In addition, the software

engineer wants to make this automated transformation available to other users.

The software engineer of Example 3 has various problems, all based on knowledge. Firstly, it

has to be ensured that all other teams have access to a repository and are able to use it.

Knowing ‘where’ to find information and ‘how’ somebody gets the information to decide is

part of the process of knowledge acquisition.

If the software engineer of Example 3 only uses this software unit for themself, this will not

raise any problems. When spreading to other software engineers, however, the engineer is

confronted with various issues. First, the knowledge (automated integration) has to be described

in a format that other people are able to use. Second, it has to be found as seen in Example 3,

using a repository to distribute this knowledge. Here, the question of ‘where’ and ‘how’ arises

accordingly (see Example 3), revealing the same knowledge problem as seen in Example 4 and

Example 3.

These examples point to relevant application scenarios for the focused approach. A user will

need to provide knowledge for others to use. In addition, there is a need to automate recurring

activities that are of use. This knowledge can also be maintained by other users as well as the

producer of a software unit. Each of these activities is based on knowledge.

In these examples, the focused approach is directed to a user profile that has the following

properties:

A general approach to realise knowledge-based automated reuse activities

__
118

- Users have the knowledge of a software unit and want to make this available to other

users.

- - Users have knowledge about reuse activities (e.g., integration and transformation) and

want to make these available to other users.

Such a user profile is expected in this research by the following groups: ‘senior software

engineer’: Experienced software engineers of certain software units, applications integration,

and transformation scenarios that have the relevant knowledge.

In the scope of this research, the focus is on such senior software engineers. The user profile is

called the Knowledge Creator (KC) profile.

4.3. 	Focused	development	project	scenarios	
The previous section describes both of the user profiles used in the basic concept. In the

following section, the focused development project scenarios are described using these user

profiles. This mainly based on the statement of Qu, Ji and Nsakanda (2012) that teams and

knowledge are distributed. The result is the description of the application area of software

engineers that is focused by the research of this thesis.

4.3.1. 	Separate	user	development	projects	
The first perspective on development project scenarios is separated into development projects

or sub development projects both of which are only handled by one software engineer.

4.3.1.1. 	Single	KC	–	single	KU	

Figure 32 - Single KC and Single KU relation

A general approach to realise knowledge-based automated reuse activities

__
119

Figure 32 shows a typical scenario in smaller development projects. An inexperienced user (KU

profile) uses the knowledge of reuse activities for a single software unit in this development

project.

4.3.1.2. 	Single	KC	–	multiple	separated	KU		

Figure 33 - Single KC related to multiple KU

Multiple inexperienced users handling the same knowledge of reuse activities for a single

software unit are shown in Figure 33. However, not all users are involved in the same

development project. This scenario is typical for software engineers using repository

communities (e.g., CodeProject; cf. Maunder, 2012).

4.3.1.3. 	Multiple	KC	–	single	KU	

Figure 34 - Multiple KC related to single KU

A general approach to realise knowledge-based automated reuse activities

__
120

The third interesting scenario is the use of multiple software unit reuse activities by a single

user. This is also a special variation of 1 KC – 1 KU and can be handled by looking on each

relationship individually. This is shown in Figure 34.

4.3.1.4. 	Single	KC	–	multiple	related	KU	

Figure 35 - Single KC related to multiple related KU

An interesting scenario is a development project where different team members are working

together. Such scenarios are created multiple consultants or if a number of smaller companies

work together for one customer. Such a scenario may include that different team members are

not located on the same site yet have to reuse the same activities, for example to create their

own working environment (cf. Qu, Ji and Nsakanda, 2012). This is shown in Figure 35.

4.3.2. 	Separate	team	development	projects	
In the previous section, only single software engineers with a KU profile are described. Often,

in global companies, such development projects are done by development teams (cf. Qu, Ji and

Nsakanda, 2012).

A general approach to realise knowledge-based automated reuse activities

__
121

4.3.2.1. 	Single	KC	–	Multiple	non-separated	teams	

Figure 36 - Single KC related to multiple-non separated teams

Figure 36 shows a typical scenario in global development projects (cf. Qu, Ji and Nsakanda,

2012).; multiple KU teams working together on a development project. Often, such teams are

not located on the same site and are mostly divided by culture or time zone differences which

have negative effects on communications (see Taweel et al., 2009). It may be that reuse activity

knowledge has to be used by all teams. The complexity in this scenario can be increased if

teams or single team members use some of the scenarios in Section 4.3.1.

4.3.2.2. 	Single	KC	–	Multiple	separated	teams	

Figure 37 - Single KC related to multiple separated teams

A general approach to realise knowledge-based automated reuse activities

__
122

Multiple, separated teams using the same knowledge of reuse activities for a single software

unit are shown in Figure 37. However, not all teams are related in the same development

project. This scenario describes horizontal development projects. The complexity in this

scenario can be increased if teams or single team members use some of the scenarios in Section

4.3.1. This scenario is similar to the internal case study of Schneider Electric (cf. Section

3.2.1.2).

The research of this thesis focuses on all shown scenarios. Because of limitations of time and

number of participants, this research performs a case study showing the scenario of a single KC

and multiple separated KU (cf. Figure 33). The analysis result of this scenario is also valid for

the other scenarios.

4.3.2.3. 	Decision	maker	
When changing the perspective to the decision maker of used software units, two interesting

scenarios can be identified: distributed and non-distributed decision scenarios. In non-

distributed decision scenarios, the decision maker - the person who decides to reuse a specific

software unit - is the same as the person performing the reuse activity. However, there are

scenarios in which the decision maker and the performer are not the same person. Within the

scope of this thesis, this is called a distributed scenario because the individuals may be located

in different places and may differ in their domain of experienced users (cf. Qu, Ji and

Nsakanda, 2012; Choi, Lee and Yoo, 2010). Software architects are typically these kinds of

decision makers in software development. Section 3.1.3 described these focused scenarios.

A distributed scenario can be explained as follows: Based on the scenario of Schneider Electric

(see Section 3.2.1.1), two teams may be situated in different locations (e.g., France and India)

while working together in a software development project. The French team defines the

architecture and pre-selects existing software units for reuse that are developed by the same

team. The Indian team is responsible for the real implementation and integration. The decision

A general approach to realise knowledge-based automated reuse activities

__
123

about software units is made by the French team. If the Indian team does not have all the

relevant knowledge it cannot start the development process or may do so only partially.

4.3.2.4. 	Focused	development	scenarios	
All the scenarios presented in Section 4.3.1 and Section 4.3.2 are relevant within the scope of

the focused approach, especially the scenarios which involve handling multiple KU profiles in

different locations.

The decision maker, who decides which kind of software unit should be reused, is not as

relevant for the focused approach in this thesis. However, it is relevant to know that this

decision is one way to create the KC and KU profile relationships in the different development

scenarios.

4.4. 	The	fundamental	concept	

4.4.1. 	Software	construction	as	concept	bases		
A relevant part of the fundamental concept is adopting the perspective of software construction

(see Section 2.2.2.1). Therefore, the concept focused approach has to be explained first. Two

elements are relevant within this perspective: Service-based Software Construction Process

(SSCP) and Software Construction Artefact (SCA).

Figure 38 - Parts of the Service-oriented Software Construction Process

A general approach to realise knowledge-based automated reuse activities

__
124

The SSCP describes the method of the focused approach. This has been briefly described by the

basic idea (see Section 4.1); it handles Software Construction Artefacts for the user, these

artefacts contain different information about software units and related reuse activities. Both

perspective elements are described in more detail as follows.

Figure 38 shows the basic design of an SSCP. This contains five elements. In the following, an

overview of each element is shown.

4.4.1.1. Representation	of	the	SSCP-components		
The SSCP uses four different parts: external structure, software construction artefact, software

construction service and an optional process description.

External structure: The external structure represents a target platform (platform specific

implementation) in which software construction artefacts are inserted at a later time. Often,

reuse activities (e.g., the focused SCAcs) have a relationship to a specific external structure.

This depends, in particular, on the respective design phase of a reuse activity or a software unit.

The external structure is part of the user’s environment and not specified by the focused

concept. Therefore, it is not relevant for the SSCP how the software engineer or designer

creates the required external structure.

In the scope of the research, an integration activity uses an IDE, a deployment activity uses an

embedded device or deployment platform, and a transformation activity uses, for example, a

file and folder structure as an external structure.

Software Construction Artefact: “A software construction artefact (SCA) is a typified unit

which is the basis for the construction of software.” (Zinn, 2008, p. 80)

Therefore, an SCA represents a container for software units within the SSCP. The basic idea of

an SSCP is to enable the execution of SCAc, and not to change the software unit content. An

SCA includes the necessary information. Therefore, an SCA consists of (cf. Figure 39):

 the different units of modelling (UOM, software units, i.e., objects, components, and

services),

A general approach to realise knowledge-based automated reuse activities

__
125

 readable data for software engineers and designers (human readable data),

 data for reuse activities (i.e., transformation or integration; mostly non-human readable

data),

 software construction activity information related to the unit of modelling,

 an SCA type which describes the contents of the units of modelling, and

 a service interface.

Figure 39 - Content of a Software Construction Artefact

An SCA contains different implementation solutions (e.g., non-readable data in Figure 39) from

which a software engineer is able to choose. Again, the solutions can be realised in the

technologies of the different software technology approaches or their combinations as objects,

components, and services. Each variant may also have multiple reuse activities (cf. Figure 39).

SCA types: The classification of SCAs corresponds to meta-information and serves to

differentiate the contents. It describes the professional content which is carried by the units of

modelling and, therefore, is relevant for the software engineers to identify a software unit or an

SCA. Note: The SCA type is explained in this section and shown in the realisation in Chapter 5.

A general approach to realise knowledge-based automated reuse activities

__
126

These types are not relevant for this research but are used for further research. The types are

published throughout the Ph.D. research (see Zinn, Turetschek and Phippen, 2008).

Within this thesis, four of the internal content-dependent types are distinguished: data,

functions, structure and (graphic) interface elements. These constitute the basic types of

software unit (Zinn, Turetscheck, and Phippen, 2008). This differentiation serves to display the

software-technical contents of the artefact for the software engineer. The view and expectation

is limited to these four types:

 Data: Data represents all the information that is worked with. A software unit that

belongs to a Data SCA typically provides data or information. In comparison to

Function SCAs, Data SCAs have no or very low costs at the data gathering stage.

 Functions: With the function type, functions, methods or operations are described.

They exist locally and/or externally. The useable content of a software unit that is

related to a Function-SCA are functions, methods or operations.

 Structure: The structure type is a carrier of information in the form of interfaces, class

structures, patterns, and architecture defaults.

 (Graphic) user interfaces: This type of software unit includes (graphic) user

interfaces. Therefore, lightweight (e.g., Extensible Application Markup Language -

XAML or Scalable Vector Graphic-SVG and library-based, as for example, Windows

Forms) technologies are suitable. The useable content of a software unit that is part of a

User Interface (UI)-SCA are user interfaces.

The shown definition of the SCA types is a summary of the definition given by Zinn (2007).

Service Interfaces: For the realisation of the SCA, different interfaces are necessary. Two

interfaces are distinguished: the software construction service interface and the interfaces for

handling individual units of modelling inside the SCA (see Figure 40).

A general approach to realise knowledge-based automated reuse activities

__
127

Figure 40 - Service interfaces of an SCA

Software construction service interface: Each artefact is offered by a software construction

service (SCS). This service provides standardised access methods to the information (the

artefact and the included software units).

Figure 41 - Reuse of software construction artefacts

Interfaces of the units of modelling: The interface for the single units of modelling provides

technical, domain, and additional information which are necessary for the development. Figure

41 shows examples of local (b) and global (a) distribution, as well as showing the reuse of

A general approach to realise knowledge-based automated reuse activities

__
128

software units by repositories providing these services. This service also includes the

management of SCAcs.

Units of modelling: This defines single software including components, objects, and services

including their required descriptions, as well as, the related reuse activities.

The focused approach of this research is to create a service-oriented environment for the

storage and execution of knowledge of software unit construction activities. This thesis does

not refer to all possible aspects of these activities, focusing rather on the aspects of:

1. search of the focused SCAc information (and software units),

2. tool-based transformation,

3. integration within development environments, and

4. embedded device-based deployment of software units.

Figure 42 - Automation concept

The goal of the approach is to support software engineers to reuse specific software units. The

inexperienced software engineers are focused (KU profile), which means they do not have the

necessary knowledge to perform a specific software reuse activity. This goal is reached by

(partial) automation of these specific reuse activities. Figure 42 shows an example. Here, a user

A general approach to realise knowledge-based automated reuse activities

__
129

has to discover the software units manually. The focused reuse activities are performed

automatically for the user by the SSCP.

The input of knowledge information can be performed by use of a graphical user interfaces

(GUI) or other knowledge detection approaches (i.e., McCarey, Ó Cinnéide and Kushmerick,

2008). An UI is a defined interface that communicates with the environment of the focused

approach (see Figure 43).

Note: For the explanation of the concept a UI is used. But the definition of a UI is not part of

the focused concept. Also, how the described service is used or integrated in an existing

environment is not defined. The thesis uses one possible way of usage and service integration.

Figure 43 - UI as abstraction layer for the focused environment

The knowledge given by an experienced user is stored within a semi-semantic model. On a

basic level, this knowledge consists of software units, additional information (such as

documents, video, audio, and so on), knowledge about adaptation of the units, as well as

knowledge about their integration into software development environments. Figure 44

demonstrates this property.

Figure 44 - Data content of the SSCP environment

A general approach to realise knowledge-based automated reuse activities

__
130

A service-oriented architecture is used to enable the integration of service-based extensions

(e.g., plugin) into the focused approach. Thereby, the plugins are able to implement and

perform the stored activity knowledge to the focused reuse activities (transformation,

integration, and deployment) as well as all other management functions (i.e., search or storage

of software unit information). Knowledge is entered into the system by experienced users and

can be reused by inexperienced users. Figure 43 and Figure 45 show these relationships.

Figure 45 - Requesting knowledge inside the SSCP environment (Transformation activity example)

The focused approach behaves as a content management system (CMS) on the one hand and as

an knowledge automation system on the other. In the following sections, the above briefly

described aspects are explained as a concept.

4.4.2. 	Relevant	elements	of	the	concept	
Based on this basic idea, a concept was developed. This concept is comprised of three parts:

(1) The knowledge database called the ‘Software Unit Model’ has the task of storing

knowledge about software units. This knowledge describes software units and their

behaviours for reuse activities like transformation and integration into a common

description. This description includes technical and business information.

(2) The service called ‘Software Construction Service’ provides operations which support the

user in typical software reuse tasks like searching, adapting, integration, and deployment

as well as the execution of such reuse activities. For search functionality, the service uses

the information stored in the Software Unit Model.

A general approach to realise knowledge-based automated reuse activities

__
131

(3) To perform SCAcs the different activities are implemented by special adapters (e.g.,

plugins). These adapters use the common information/knowledge together with specialised

information stored in the adapters to support the user. The Software Unit Model includes

all information about the software units and activities. This is necessary information for

these adapters.

Application example: The user requests a software unit to be transformed from Java-based

into .NET-based technology. The Software Construction Service will then search (1) for an

adapter (e.g., plugin) which is able to execute (2) the transformation and respond to the request

with the transformed software unit. Figure 46 shows the relationship between Software

Construction Service and the Software Unit Model.

Figure 46 - Use of the Software Unit model in the focused environment

The example above shows only a small part of the whole concept. The main concept is an

environment which has to be filled with reuse activity information. This information can be

extended continually and reused by other users. Figure 47 shows the focused life cycle concept

of reusable knowledge.

A general approach to realise knowledge-based automated reuse activities

__
132

Figure 47 - Communication concept of knowledge in the focused concept

The concept procedure can be explained as follows: A reusable software unit may be inserted

into the focused environment. This.This process is called ‘Software Construction Artefact

Injection’, which means to store a software unit (i.e., a class, component or service) in an

existing repository system which is connected to the environment. Usually, storing is done by

an experienced user. In this case the process is called ‘Manual Software Construction Artefact

Injection’. This process is carried out by users of the KC profile, (see User 1 in Figure 47), but

can also be performed by an adapter that reads information from a repository and adds it to the

environment automatically. This process is called ‘Automated Software Construction Artefact

Injection’. The result of the Software Construction Artefact Injection is a software unit which is

described by the Software Unit Model. KC profile users can add additional information, like

specification or documentation (see User 2 in Figure 47). This process is called ‘Additional

Software Construction Content Injection’ and is a functionality typically known in content

A general approach to realise knowledge-based automated reuse activities

__
133

management systems. This process is carried out by users of the KC profile. Users can add

information about reuse activities related to the stored software units. This means that users are

able to add information about the transformation of, or integration into, the software unit, for

example. This process is called ‘Activity Reuse Knowledge Creation’, a process carried out by

the KC profile users. The focused environment is now able to execute these rules which

transform, integrate or deploy the specific software unit (mostly) automatically. For example,

User 3 in Figure 47 injects knowledge about a transformation of the original .NET library into a

Java library. The user also injects another rule which describes how to integrate the transformed

software asset into an Eclipse development environment project. Such knowledge can now be

used by other users by requesting the transformation or integration. The focused environment

will execute the request. As a result, there is no need for the requested user to know all the

information which is necessary for the two processes. In the example of Figure 47, User 4 uses

the stored knowledge about transformation and integration. Using active reuse knowledge is

called ‘Activity Reuse Knowledge Injection’ within the scope of the general concept. Section

4.4.1 demonstrates the fact that reuse knowledge is stored in the Software Unit Model and in

the adapters (plugins) of the Software Construction Service. The difference between the model

and the adapters is the abstraction level of the stored knowledge. Knowledge stored in the

Software Unit Model is described abstractly by the model and is used for different purposes

(for example, in transformation or integration). On the other hand, knowledge stored in the

adapters (plugins) is specialised; not abstracted knowledge. Adapters control other applications

or systems for reuse purposes (for example, in adaptation or integration). The input for these

applications or systems is the knowledge stored in the Software Unit Model. The creation and

integration of an adapter in the focused environment is called ‘Passive Reuse Knowledge

Creation’. During the Active Reuse Knowledge Creation, a user stores the data for executing a

rule on a specific adapter. The user then combines the input for the adapter with data that has

A general approach to realise knowledge-based automated reuse activities

__
134

been saved in the Asset Injection or Additional Content Injection. Figure 48 shows which

knowledge repository is used by the different phases in the focused concept.

Figure 48 - Use of active and passive knowledge

Note: The research focus is via a concept to enable exchange of knowledge between

inexperienced and experienced software engineers. The division of knowledge in active and

passive parts is viewed as an interesting possibility for further research. Passive knowledge, as

for example, the knowledge about the use of a special IDE is part of the plugins. This is created

by the plugin developers and not by the experienced user. In this thesis the difference is know

but not considered. Both knowledge types are necessary for the focused approach.

4.4.3. 	Use	cases	
The fundamental concept supports 12 different use cases. These use cases are required by the

discussed profiles KC and KU; therefore, KC and KU are stakeholders. The use cases are now

described briefly to support the discussion about the concept (see Table 5). A more detailed

description is shown in Section 5.4.1. Figure 49 summarises the supported use cases of the

focused concept.

A general approach to realise knowledge-based automated reuse activities

__
135

Figure 49 - Overview of the supported use cases

No. Title Description Used by
1 UOM Creation This use case describes the creation of a software

unit.
KC

2 UOM Search This use case describes the search of a software unit. KC, KU
3 UOM Discovery This use case describes the selection of a software

unit.
KC, KU

4 UOM Adaptation This use case describes the adaptation of information
of a software unit.

KC

5 UOM Deletion This use case describes the removal of a software
unit.

KC

6 Activity Creation This use case describes the creation of a reuse
activity.

KC

7 Activity Search This use case describes the search of a reuse activity. KC, KU
8 Activity

Discovery
This use case describes the selection of a reuse
activity.

KC, KU

9 Activity
Adaptation

This use case describes the adaptation of information
of a reuse activity.

KC

10 Activity Deletion This use case describes the removal of a reuse
activity.

KC

11 UOM Download This use case describes the retrieval of software unit
information.

KU

12 Activity
Execution

This use case describes the execution of a reuse
activity.

KU

Table 5 - Briefly description of the supported use cases

A general approach to realise knowledge-based automated reuse activities

__
136

The use cases describe the creation, discovery, adaptation and deletion of software units (Use

Case 1-5; 11) and software construction activities (Use Case 6-10; 11). Additionally, the

execution of an SCAc is part of the use cases (Use Case 12). Use Cases 1, 2, 3, 4, 5 and 11 are

necessary to explain the complete concept, but are not focused on by the research.

4.5. 	Concept	of	potential	technical	environments	
In this section, the typical technical environment of the focused concept will be described. For

this reason the communication entities, the scalability of the concept, the amount of

communication data, as well as the distribution of business logic will be explained.

Note: There may be other possible environments for the shown concept. It is also possible to

instantiate the described concept with different technologies and environment setups. A

technical realisation of this concept is described in Chapter 5.

4.5.1. 	Communication	concept	
The communication concept of the focused approach will be explained in this section.

Therefore, communication entities as well as the communication scenarios require explanation.

4.5.1.1. 	Communication	entities	
In essence, three main elements exist in a concept-based environment: a concept-based client, a

concept-based server, and a concept-based repository system.

Concept-based client system: A client supports the users when interacting with the server.

Such a client supports the use cases of a user. In principle, the development project scenarios

presented in Section 4.3 and the user profiles Knowledge Creator and Knowledge Consumer as

described in Section 4.2 are meant. Typically, the following types of application are used as

client systems:

- Desktop applications: A client can be implemented as a typical desktop application.

Such applications usually have the advantages of accessibility to an amount of host

A general approach to realise knowledge-based automated reuse activities

__
137

system resources. Typically, software engineers work with such applications during the

development stages.

- Web applications: A client can be implemented as a web application. Such variants

usually have the advantage of being (mostly) independent of the available computers,

and more so than a desktop application. This distribution architecture allows the

execution of a web application from different systems in various locations. Often, such

applications do not have the full accessibility to host resources as desktop variants. This

is usually for security reasons, for example.

- Application integration: A client can be implemented as an extension of an existing

application. Development environments such as Eclipse or Visual Studio offers the

capability of extending their functionality by using application extensions (so-called

plugins or packages; see Eclipse Foundation, 2012; Microsoft, 2012c). A client can

execute and be displayed inside such a development environment and carry out its task

inside this environment. The advantage of such an application is the capability of

communicating easily with the development environment and the fact that users do not

need to start an additional application.

Concept-based server system: The main component of the concept-based environment is a

server application. The task of the server is to handle user requests (e.g., searching a software

unit or performing a reuse activity). Essentially, such an application needs the ability to handle

multiple requests simultaneously. A connection to multiple repositories is also required in a

scenario where more than one repository exists.

It is also possible to connect multiple servers together. In such a scenario a server is linked as a

repository to another server. This is useful for environments that include more than one server

or server groups.

Repository system: In the concept-based environment access is required to one or more

software unit repositories. This can be realised by adapters. Each adapter handles the

A general approach to realise knowledge-based automated reuse activities

__
138

communication between a repository and the server. Repositories typically provide the

capability of being accessed using database adapters (e.g., Java Database Connectivity JDBC or

Open Database Connectivity ODBC), general services (e.g., Web Services) or by providing

specialised services (e.g., ports of a Microsoft Structured Query Language SQL server). It is

also possible for repositories to only provide an interface for humans to access software unit

information.

Based on these three elements, the following communication scenarios are of interest within the

scope of the focused concept (see Figure 50 and Figure 51):

Figure 50 - Knowledge injection scenario

Figure 51 - Knowledge extraction scenario

Knowledge Injection Scenario: In Figure 50 it is possible for the client to send search and

download requests (A) and (B). The server receives and performs these requests. During the

A general approach to realise knowledge-based automated reuse activities

__
139

execution of these tasks, the server communicates with the different repositories (C) and (D).

The different databases’ responses (E) and (F) are then used to generate responses for the client

by the server. These responses will then be sent to the client system (G) and (H).

Knowledge Extraction Scenario: In Figure 51, an experienced user is able to use the client to

store a software unit or additional information about a software unit. The server receives the

request (b) and performs this by communicating to the different databases (c). It may be

possible to update the client system on the state of the storing request by a response from the

server (e) based on a response of a repository (d). It may be necessary to provide the user with

information about the connected repository system to begin the knowledge injection process

(a). An existing software unit is a necessary requirement for storing or performing reuse

activities. Companies may have special procedures for filling their repositories. As a result, the

first steps (a-e) shown in Figure 51 are optional. The next step is mandatory; a user has to store

their knowledge about a reuse activity so it can be performed by the system. Not all repositories

support the storing of reuse activities because of the given data model of the repositories. For

that reason, a special reuse activity repository may exist in the concept-based environment (see

Figure 51). A user may start a request to store activity information (f), and the server adapts and

forwards the request to the specific repository (g). In the case of this software unit repository

not being able to store this kind of data, the request is forwarded to the special repository (h). It

may also be necessary to provide the user with information about the connected repository

system to begin the knowledge injection process (a). It may be possible to relay to the client

system the state of the storing request by a response from the server (e) based on the response

of a repository (d).

Note: The described scenario does not include restrictions on any of the elements, such as

security or the download restrictions of the database. One download restrictions example is

discussed later on in Section 5.2.4.)

A general approach to realise knowledge-based automated reuse activities

__
140

Figure 50 describes the basic scenario for searching and receiving data. The main focus of the

concept is the execution of reuse activities. Based on this restriction, the following element is

necessary in the communication scenario: a Reuse Activity System (RAS) which handles reuse

activity information. Depending on the activity, such systems carry out different tasks. For

example, in an integration scenario, data may be integrated with a software system. In this case,

the RAS is able to integrate the software unit into this software system, based on the stored

reuse activity knowledge. Another example is the controlling of transformation software. A

transformation activity may include the task of executing a software application, transforming a

software unit into another form or type (e.g., a compiler transforms classes into binary code). In

this case, a Reuse Activity System controls the transformation application. As mentioned in

Chapter 2, the amount of reuse activities and controllable tools is high and differs. Such

systems may be implemented by the use of different programming languages, operating

systems and communication technologies. A typical task of the RAS is to perform reuse

activities. The necessary information is given by the software unit model.

Based on the communication scenario in Figure 50 the following extension may be created (see

Figure 52).

Figure 52 - Request for reuse activity execution

A general approach to realise knowledge-based automated reuse activities

__
141

Knowledge Injection Scenario: Figure 52 shows the changes for the knowledge injection

scenario. A user is able to request an execution of a reuse activity by using the client system (I).

The server is able to perform this request by communicating to the specific RAS (K). It may be

required that the server system needs to load additional information about the software unit or

the stored reuse activity from one or more repositories to perform the activity (J). The activity

result is sent from the RAS to the server (L) which creates a response for the client system (M).

As explained in the description of the RAS, such a system may communicate with other

applications necessary for the reuse activity (N).

Knowledge Extraction Scenario: In the case of the Knowledge Injection Scenario, this

extension changes the idea of the communication context; only the content of a search request

may change. A user is now able to search for a reuse activity or the result of an activity.

4.5.1.2. 	Scalability	scenarios	of	the	focused	approach	
In the previous section, the communication structure was explained. Different scenarios may be

possible based on this communication structure.

Note: The following discussion only includes scenarios which are necessary for the discussion

of the basic idea (see Section 4.1), the focused concept and the approach discussions in the

following chapters. Other possible scenarios may exist but are not discussed here.

For the purpose of this discussion, two border scenarios will be described which differ in the

value of their scalability: monolith and total distribution scenarios. A monolith scenario

describes a complete environment, based on the discussed concept running on one system.

From the system perspective, it is not relevant if this scenario is realised by different

applications or if only one application includes all features of such an environment. Figure 53

illustrates this example.

A general approach to realise knowledge-based automated reuse activities

__
142

Figure 53 - Monolith scenario

Figure 54 - Completely distributed scenario

In Figure 53 each element of a concept-based environment (server, client, RAS, etc.) is part of

the same system. The other scenario describes the high scalability in the described approach. In

this scenario each element is a standalone application and runs on a different system. Figure 54

A general approach to realise knowledge-based automated reuse activities

__
143

demonstrates this scenario by presenting all elements (server, client, RAS, etc.) as part of a

different system. For this thesis, a realistic scenario is between the two scenarios.

A distributed scenario can be found in global working companies (cf. Example of Schneider

Electric in Section 3.2.1.2).

4.5.1.3. 	Amount	of	data	
In the described communication and scalability scenarios, the amount of data may differ.

Indeed, this is an relevant point for the definition of communication interfaces. Additionally,

two scenarios are very useful for the explanation for the main concept: Data-driven or ID-

driven scenarios.

In a data-driven scenario, the communication contains the complete datasets which will be used

by the caller. Data values may be changed by any element in the concept-based environment. In

an ID-driven scenario, only necessary values will be transmitted. The context of these values

which software unit belongs to these values is recognised by a unique identifier. Such an

approach reduces the necessary bandwidth of a single call. One example is the execution of a

transformation software construction activity: where the client asks for software unit

information. After receiving the information about the software unit, the client asks for the

execution of the transformation activity. Figure 55 and Figure 56 show both data scenarios for

this example.

Figure 55 - Data-driven communication

A general approach to realise knowledge-based automated reuse activities

__
144

Figure 56 - ID-driven communication

In Figure 55, the request for a software unit is answered with the full amount of values of the

software unit even though not all information is necessary for the user’s current use case. In

Figure 56, only values which are requested are received. This may increase the amount of

requests but minimises the amount of data in a single request. Based on the received

information, a user may choose a transformation activity and request its execution by the

server. In Figure 55, all information from the software unit and of the transformation activity is

sent to the server, which initiates the execution. In Figure 56, only the ID of the software unit

and the ID of the transformation unit is sent. The server has to load all necessary information.

Note: As with the description of both scalability scenarios, the different variants between both

data scenarios are possible. At this point, no decision has been made as to which approach is

better. The realisation of the approach in Chapter 5 focuses mainly on the ID version.

4.5.1.4. 	Distribution	of	business	logic	
The business logic may be centralised, totally distributed, or partially distributed. In the case of

the concept-based environment, all variants are feasible, but only one direction is focused upon.

The concept describes a service for the automation of software reuse activities. One relevant

element of the concept is that an inexperienced user is able to start a simple request to perform

an activity. Therefore, it is recommended that the logic for handling data and performing reuse

A general approach to realise knowledge-based automated reuse activities

__
145

activities is from the perspective of a client system behind the service. Therefore, the ID-driven

data approach is preferred, in order to keep the communication between the server and the

client system simpler (from the perspective of the communication data model). Behind the

service, the distribution of the business logic is not regulated by the concept described.

Figure 57 - Example of distribution of business logic for the concept-based environment

Figure 57 shows an example for the distribution of business logic. It shows that the concept-

based server handles all requests from a client system. This is the central logic of the complete

environment (A). All other elements in this environment are controlled by the server. The logic

for handling execution of reuse is placed in the RAS (B) and is started by the server. Usually,

an application controlled by a RAS includes the logic for the specific task (C), though it may be

possible for a RAS itself to contain this logic and functionality. The logic to read and write

knowledge within a specific repository is usually included in the repository system (D), but is

initiated by the server.

A general approach to realise knowledge-based automated reuse activities

__
146

4.5.2. 	Software	unit	model	
One relevant element of this concept is the Software Unit Model. The aim of this model is to

describe different concrete software unit types as abstract software units with concrete

information.

Figure 58 shows this in the example of services, components, and classes. All three units of

modelling have concrete properties (shown by using different shapes), but they are stored as a

common software unit abstraction (triangle shape). This abstraction creates a common view on

the different units and makes it easier to handle.

Figure 58 - Standardisation of the view on services, components, and classes

The aim of this model is to describe software units from the perspective of their usage in

software unit reuse. Using this perspective, Figure 59 shows 4 different views.

Figure 59 - Areas of the Software Unit Model

The model consists of four parts. Part 1 shows the ‘problem-solution approach’. Part 2 relates

to ‘general business information’ about the solution (e.g., manufacturer, name, and author). Part

3 describes the solution as a technical unit (e.g., a type of unit, a technology, a file format, or

A general approach to realise knowledge-based automated reuse activities

__
147

files). In Part 4, the technical contents are described, thereby, explaining a (semantic) search

approach that is discussed in a previous publication (See Zinn et al., 2010a). Here, the SCA

types explained in the previous section are used to classify SCAs. If an instance of the model is

generated (e.g., by the registration of a newly developed unit), the user has to specify

information that is stored in the appropriate area of the model. The data may also be entered

automatically into Part 3 of the model. This is possible as the technical data is generally

detectable, such as by file size, file type, file name and technology. Nevertheless, the data from

other sections of the data model is not automatically detectable. The model describes services,

components, and classes in the same way and abstracts them into units (unit view). Based on

this abstraction, the model will be extended by collection requirements of different use cases

(views). Figure 60 demonstrates this relationship.

Figure 60 - Relevant views of the Software Unit Model

Figure 60 shows, for example, integration as a system view extension. Therefore, all reuse

activity describes an extended system view on the model. This describes the relation of the

model for the reuse activity to specific elements of the common view model.

Note: This thesis focuses on Part 3 of the described model. All other parts are also relevant and

were analysed during the research study for this thesis, but for the focused approach, the

technical perspective of this model is relevant. Therefore, only Part 3 and a special property of

Part 4 will be discussed in this thesis. It is relevant to show the relation to the other parts so that

A general approach to realise knowledge-based automated reuse activities

__
148

the picture on software units is more complete. In Chapter 5, a possible realisation of these

parts of the concept is shown.

4.5.3. 	Reuse	activity	models	
In the concept description, the reuse activity models are relevant elements of the focused

approach. These models are included and handled by the RAS. Figure 60 shows this as a

Business View. From the technical perspective these models use information from the

fundamental Software Unit Model and will be used by special plugins to perform a SCAc.

Figure 61 shows the usage with the focus on the technical part of the Software Unit Model.

Figure 61 - Software Unit Model as fundamental information base for reuse activities

This plugin behaviour includes several technical advantages (cf. Figure 61):

- (1) The model technology used in instances of software reuse activity models refers

information from an instance of the fundamental software unit model. This means the

different models and plugin technologies have to be compatible. Typical model

descriptions, as for example, UML may be used, also when focusing on the mapping of

different activity models and the fundamental software unit models. Semantic models

A general approach to realise knowledge-based automated reuse activities

__
149

may be used to extend models with meaning. Such semantic technology has the

advantage that the wording of different domains may be connected to each other.

Additionally, semantic models can be used for knowledge queries (see W3C, 2009).

Also, it may be possible to connect some of the reuse activity models together.

- (2) The different models are used during runtime to perform SCAc. Thereby, the stored

information is managed inside an instance of the focused approach. For that purpose,

different scenarios exist; on the one hand, the information may be loaded in a runtime

representation (e.g., object structure) on the other, it is possible to operate on the data

using a database also in the case of (semantic) model reasoning. These approaches and

the existing variants differ in their features (e.g., McCarey, Ó Cinnéide and

Kushmerick, 2008).

This also leads to the question as to how the models may be stored. Typical examples

are databases, where different database technology is required to exist. It is also

possible to use description language such as XML. For semantic models, description

languages like RDF or Web Ontology Language (OWL) (cf. W3C, 2004; W3C, 2009)

are useful.

- (3) Another relevant point is the use of extensible application parts (e.g., plugins) to

perform software reuse activities. Such parts use the information stored in the different

instances of the activity models and in the related software unit model. The plugins use

this information to perform related reuse activities. Plugins can be adapted or replaced

by other plugins to extend SCAc functionality of a realised environment based on the

concept.

4.5.4. 	Extensibility	
An relevant requirement for the focused concept is extensibility. The growing amount of

knowledge based on new technologies, concepts or processes in the area of software

A general approach to realise knowledge-based automated reuse activities

__
150

development requires flexibility. Systems and humans have to be flexible to learn and be able

to handle such new knowledge.

The focused concept has to be extensible relating several different points:

1. Fundamental Software Unit Model

2. Reuse activities models

3. Support of different existing repositories

4. Support of different development environments and tools

5. Support of different client applications

4.5.4.1. 	Fundamental	software	unit	model	
The Software Unit Model described in Section 4.5.2 aims to describe different software units in

a common model. For the focused concept it is relevant that this model can be extended to

describe other software units.

This may be reached by focusing on two different concepts for the software unit model. The

model describes a software unit from an abstract perspective. This means a concrete software

unit for example, a component or a service, is described as a generic software unit which has

properties and sub parts. Due to each software unit having the same possible content, the mind-

set given by the based software unit type is hidden. The information of the type is stored and

may be used by the experienced user during the knowledge extraction or by the inexperienced

user during the knowledge injection. The personal perspective that everything is a software unit

abstracts and simplifies the handling of software units. Every new unit type, for example, code

snippets, are only software units. All units are used in the same way.

This only works if the chosen model technology supports such common description, as well as

the extension for new information types which were not part of the prior model.

A general approach to realise knowledge-based automated reuse activities

__
151

4.5.4.2. 	Reuse	activities	models	
Another relevant point from the perspective of extensibility is the extensibility of the system for

reuse activities. As described in Section 4.5.3 such models may be built for different reuse

activities. The idea behind this concept is that such models are extensions for the Software Unit

Model (see Section 4.5.2). Figure 62 shows the extension concept.

Figure 62 - Extension concept of reuse activity models

Figure 62 shows that the fundamental Software Unit Model will be extended by software reuse

activity models. Each activity model describes a set of real activity methods, as for example,

the transformation activity model describes several approaches on how to transform a software

unit. From another perspective it is possible to say that the fundamental Software Unit Model

will be used by activity models. The advantage of this methodology is that anybody should be

able to add a new activity model or extend an existing model to handle a special type of

activity.

Also, relevant from the perspective of extensibility is the capability to combine reuse activity

models to reach a special aim. This is demonstrated by following example:

A general approach to realise knowledge-based automated reuse activities

__
152

An experienced user creates a Java-based software unit and stores it by using the focused

approach. This experienced user also adds a transformation activity which transforms this Java-

based unit into a .Net-based unit. Another user of this approach adds an integration activity rule

to this transformed unit. This rule integrates the .NET unit into IDE Visual Studio.

The second user uses the result of a previous reuse activity. This flexibility may be used to

build more complex processes based on combined reuse activities. This is seen as extensibility

of the concept.

Eventually, it may be possible to create complete development processes for a software unit,

but this is not covered by this research.

4.5.4.3. 	Support	of	different	existing	repository	
Typically, software engineers are experienced users that work in their normal business and

development environment. A problem may be occurs if this environment changes or if these

people have to use other unknown environments. The use of new or other repositories is a

particularly relevant part of a work between different teams. For these reasons, an relevant

requirement for extensibility is the support of such a repository. The focused approach has to

enable the integration of the existing repository.

Figure 63 - Reducing view complexity on different repositories

A general approach to realise knowledge-based automated reuse activities

__
153

The user is not aware of the different repositories which are used by the focused approach;

neither is the user is aware of the different usage pattern of theses repositories. The usage

pattern of the focused approach has to remain the same for the user, and the different usage

patterns of the different repositories have to be handled by the approach directly. Plugins take

over the task of handling repositories. The concept-based environment is responsible for

creating a common view for the user on software units in the repositories and the repositories

themselves. Figure 63 shows this relationship.

The problem of different usage patterns does not only come from different technologies used by

these tools. It is also possible that companies require different processes for handling

repositories. A typical example may be the quality check of a software unit before it is

deployed to a repository.

The focused approach has to be able to handle such regulation. This does not mean that the

approach has to take into account all existing business processes around a software unit, but it

is relevant that a user of the focused approach will at least be informed about the possibilities of

software unit management. If a repository does not support the storing of a software unit, or the

technical aspect of the focused approach is not able to handle this, the user needs to be

informed about this situation. Another example may be the security issues. If the focused

approach is not capable of downloading information because special security information is

necessary (e.g., user name and password) the user has to be informed.

Repositories without an interface for automation use, pose a special challenge. In this case

special methodologies have to be developed (see Section 5.2.4) or the focused approach will

not able to handle such repositories. An example of such would be repositories with a user

interface that is only designed to be handled by human users.

Another concept requirement is that the server reacts also as a repository. So an instance of this

approach may be used in another case. Figure 64 shows this concept. Here, the ‘Environment

X’ is another environment based on the concept described in this chapter.

A general approach to realise knowledge-based automated reuse activities

__
154

Figure 64 - Concept environment as repository

4.5.4.4. Support	of	different	development	environments	and	tools	
The focused approach has to be able to work with different development environments and

tools. The kind of work depends on the task described in the reuse activities model, which in

turn depends on the software unit model. As discussed in Section 2.2.2.3, the number of

different tools is growing. Therefore, the support of the tools becomes problematic. The

following discussion describes the challenge of this support for the topic of expandability.

Additionally, if a user also uses Visual Studio and Eclipse, the focused approach has to be able

to handle both of these IDEs. In addition, it is possible that these IDEs provide different ways

to do one task, for example, the integration of a software unit into a development project. The

focused approach has to provide a way or a methodology so that such different IDEs and other

possible variants are manageable.

Next to the IDEs - which are typical tools of a software engineer’s developing software - there

are other tools which exist. Such tools may also be required in a reuse activity and should be

made usable by the focused approach (see transformation and deployment SCAc example in

Section 3.1).

A general approach to realise knowledge-based automated reuse activities

__
155

In a similar way to the support of different existing repositories, this requirement has the

problem of different IDEs having different behaviours and technology restrictions. At the very

least it is relevant that a user of the focused approach is informed about the possibilities of

handling the different tools. Figure 65 demonstrates an environment which would need to be

handled by the focused approach.

Figure 65 - Typical development environments

From the perspective of expandability, the focused approach has to be able to interact with

existing IDEs and other tools used in software reuse activity, as well as being able to interact

with new tool approaches. This expandability is handled by the plugin system (cf. Figure 57).

4.5.4.5. 	Support	of	different	client	application	
The extensibility is not restricted to the direction of tools used by the focused approach, but

also includes the tools using this approach. In basic terms, a user interface should be used to

interact within this approach. The user interface being a standalone application or having been

integrated into a development environment is not relevant for the purpose of this thesis (cf.

Section 4.5.1.1); in general terms, the intent of this thesis is not to create a new tool. From this

point of view an integrated user interface should be more focused. It may also become

A general approach to realise knowledge-based automated reuse activities

__
156

interesting to use the approach automatically by other systems instead of humans, but this is not

covered by this research.

The described concept of a service interface (see Section 4.4.1) is an relevant factor of being

more extensible. Different user interfaces or systems may be built using this interface. So the

interface is independent from technical conditions, as for example runtime environments or

non-technical factors, like corporate identity. As a result, the focused approach is extensible by

the number of client systems using the approach. Figure 66 summarises the potential client

systems as for example integrated, web, desktop, and mobile clients.

Figure 66 - Multiple client system using the same service of the focused concept

4.6. 	Summary	
First of all, this chapter presents the basic idea of the focused approach of this thesis. The idea

of this approach is the storage and reuse of software construction activity knowledge. The aim

is to support users who do not have sufficient knowledge to perform a specific reuse activity of

specific a software unit.

In general, different user types may utilise this idea. In this work, software engineers are

focused on those who want to use smaller software units in their software development

projects. At the very least, experienced software engineering users are focused on in the

approach which assists the inexperienced in handling a specific software unit.

After putting forward the basic idea, the concept is more fully explained in this chapter. The

concepts described follow two elementary parts of the solution approach. The first one is a

A general approach to realise knowledge-based automated reuse activities

__
157

common Software Unit Model describing different existing software unit concepts as a general

software unit. This model is extended by different software construction activity models,

describing the SCAc information required by using the Software Unit Model information in a

specific reuse activity. The second one is a service-oriented environment providing a service for

(re)use functionality (i.e., storing, distributing, and execution) based on the information in the

models.

Using these two parts, the problem area will be handled as follows: The service can be used to

store information as knowledge using the different models. This includes the storage of

different software units and relevant software construction knowledge as information. This

should handle the problem of the variations of technologies.

The service also hides the environment for knowledge distribution. An inexperienced software

engineer has not to know this environment (e.g., server location, etc.) and, therefore, a

limitation of this problem area is expected by the concept.

The last and most relevant solution approach is the service executing software construction

activity. After an experienced software engineer enters the necessary SCAc information into the

service-oriented environment, an inexperienced user is able to perform this without the

knowledge an experienced user would need for the execution of this SCA without this

environment. With this approach, it can be expected that an inexperienced software engineer is

able to perform a software construction activity independently outside of their current

knowledge level.

In Chapter 5 one concrete instance of the concept is explained which is used for the case study

in Chapter 6.

A general approach to realise knowledge-based automated reuse activities

__
158

 	

Solution realisation

__
159

5. 	Solution	realisation		
This section describes an instance of a concept described in the previous chapter. Therefore, the

realisation of the used architecture, technologies, interfaces, and their usages will be described.

A relevant part of this chapter is the description of the used models to store software units and

software construction activity information. This extends the concept description in Chapter 4.

To differ from the concept described in Chapter 4, the realisation is called ‘Prometheus’.

5.1. Development	approach	
The software shown in this chapter is the result of a development lifecycle conducted during

the PhD research. In the following, the scenes are described to outline the development

approach.

The first scene is the development of the proof of the concept application. This was done in the

first year of research. The aim was to create a simple application showing that the basic idea of

the research topic was realisable in a software application. The created application was built in

a rapid development procedure model with no focus on stability, full functionality or error

handling. It supports only the integration of information into a Visual Studio 2008 instance. In

2007 this application was shown at an internal academic conference (SEIN 2007).

In 2008 the creation of a second version of this tool was started. Following a prototype

procedure model, the first prototype was analysed for positive and negative behaviour, but it

was dismissed and the second prototype was built from scratch. Based on the experience

developed in the research, this prototype includes several topics:

- Integration into IDEs

- Transformation

- Deployment

- Service provision

Development approach

__
160

This prototype changed several times, so a waterfall development model was used beginning

with the topic of integrations. This feature was created and then tested. Each time errors or new

research results were identified the prototype was adapted. The same procedure was made for

the other topics (transformation and deployment). Important changes during the development

were the integration of the (SCAc-) service and the integration of SCAc data models. The tests

for the functionality were different, and most tests were done by the author of this thesis.

Additionally field tests were conducted. Thereby, other software engineers used special features

and gave feedback.

This prototype was presented in 2009 at a relevant German fair (Cebit 2009), in several PhD

meetings at the Darmstadt University of Applied Sciences and in meetings with external

companies (i.e. Schneider Electric Automation GmbH and Engineering Methots AG). The

development of this prototype took about 2 years. As the first prototype, it was one piece of

software monolithic architecture).

In 2010 the last version of the prototype was created. The previous version of the second

prototype was analysed for positive and negative effects. Two reasons led to the development

of a third prototype.

The first one was the fact that the service provision concept can be realised independently from

the UI interface. So the decision was made to create plugin architecture to host different service

technologies to connect different UIs. As a result, three different UIs were created: a Desktop

client, a Visual Studio/Eclipse integrated UI and a Webpage based UI. The last was used for the

case study. The second reason is the negative monolithic behaviour of the second prototype.

Changes have side effects on other functionality and the deployment was circular. Hereby, a

plugin and interface architecture were used in the third prototype.

During the test phase of the case study, only error fixes were conducted. The deployment SCAc

functionality was not used in the case study, but in other investigations (see Zinn et al., 2012a).

Therefore it was adapted and errors were fixed.

Selected technical environment

__
161

5.2. Selected	technical	environment	

5.2.1. 	Distribution	model	and	relevant	architecture	elements	
The used Prometheus environment uses a common architecture with three layers: client,

middleware (server), and database (repositories) (see Figure 67). The communication between

the individual layers is realised on the basis of a service-oriented architecture. This architecture

is used to cover four different user scenarios. The individual layers, the technical

implementation, user scenarios, and possible alternative implementation are described as

follows.

Figure 67 - Prometheus architecture overview

5.2.1.1. 	Layer	1	-	Client	
The Prometheus architecture distinguishes between three different types of clients:

User Client: This client type is defined for the two user profiles KU and KC (see Section 4.2).

The user interface described in this chapter corresponds to this client type. The client uses a

special interface to the middleware layer to communicate. The following functionalities of the

middleware can be used:

- Search: search software units / reuse activities

- Update: update software units / reuse activities

- Add / Remove: adding and deleting software units

- Add / Remove transformation rule: add or delete a transformation rule of a software

unit

Selected technical environment

__
162

- Execute transformation rule: performing a transformation rule of a software unit

- Add / Remove integration rule: adding or deleting an integration rule of a software unit

- Execute integration rule: implementation of an integration rule of a software unit

- Add / Remove deployment rule: adding or deleting a deployment rule of a software unit

- Execute deployment rule: implementation of a deployment rule of a software unit

As part of this work, the client was implemented using Silverlight technology from Microsoft

(2012d/e) and uses a SOAP client to communicate with the middleware (Prometheus server) by

using SOAP Web Service.

Note: Because the middleware should be able to offer a variety of communications

technologies (to reach the extensibility requirements of Section 4.5.4), the clients may also be

able to use various communication technologies. As part of the research for this thesis, four

different user clients have been developed: desktop, an add-in for Visual Studio 2008-2010, an

add-in for Eclipse, as well as a Silverlight client. The clients were each produced as a further

development and presented at different events (see Acknowledgements). Each of the clients

uses SOAP-based communication.	
In the realised Prometheus environment, three different clients exist: Integration Client,

Transformation Client, and Deployment Client (based on the focused SCA described in Chapter

4).

Integration Client: This client type describes applications that are able to integrate software

units in development environments. This is only possible for those development environments

that offer other programs appropriate interfaces. In contrast to the User Client, this client type is

not a sender of messages. Rather, they are contacted by the middleware to integrate software

units by performing an integration SCAc. For this application, this client type offers an

interface to provide the following function:

- Integrate: integration of a software unit

Selected technical environment

__
163

The Integration Client has also been developed using soap-based web services, .NET and Java

technologies.

Transformation Client: This client type is capable running batch-based transformation

applications. The middleware sends input parameters to clients for the execution of a

transformation SCAc. The corresponding client performs this transformation by using these

parameters and sends the result (transformed software unit) back to the middleware. The client

offers an interface to provide the following function:

- Transformation: transformation of a software unit

In this work, this client type is realised using a SOAP-based Web Service and .NET

technologies.

Deployment Client: This client type deploys software units into embedded devices. Therefore,

it controls other applications to perform the deployment (cf. SCAc deployment example in

Section 3.1.6). This is similar to the transformation client. The middleware sends deployment

SCAc information to the client. The corresponding client performs this deployment by using

parameters for different deployment applications. Both client types - deployment and

transformation - are able to display manual orders as text to the user. In a case of deployment,

this could be necessary (e.g., to switch a device on/off for manual restart).

As the Transformation Client, the interface has also been developed using a SOAP-based web

service and .NET technologies.

5.2.1.2. 	Layer	2	-	Middleware	
Prometheus server: The core of the Prometheus environment is a communications

infrastructure that enables communication between the various elements of the middleware by

using predefined interfaces. The server includes also the logic for the RAS system. This is

explained in Section 4.5.1. The service is realised as a single application using different plugins

Selected technical environment

__
164

that are part of the application instance. Figure 68 shows an overview of the server

infrastructure.

Note: The complete environment (including plugins) was created by the author of this thesis.

Figure 68 - Overview of Prometheus server architecture

The different plugins as shown in Figure 68 for repository integration, deployment tasks, server

configuration, IDE client integration, user client management, and monitoring tasks have the

basic task of sending information to the core of the Prometheus server or receiving information

from the server and passing it on to external communication partners.

Selected technical environment

__
165

Figure 69 - Information flow of the Prometheus core

Figure 69 indicates this by demonstrating the flow of information described in general terms.

The following example illustrates this relationship.

Example ‘Search Example’: A user enters a query into a user client and sends it to a

Prometheus server. A User Client plugin receives this search request. The plugin converts the

inquiry to ensure that it meets the client user interface requirements of the Prometheus core, and

sends them on to the core. The Prometheus core forwards the request to the connected plugin

(i.e., repository plugins). The repository plugins convert the query of the core and perform a

search in the connected databases. The results of different searches are, by the appropriate

database plugins in the format that the core plugin database interface is defined, transformed,

and transmitted to the core. The core forwards the result back to the calling User Client Plugin

by using the client user interface. The User Client Plugin transforms the result into the format

that is defined by the user client and User Client Plugin. Figure 70 shows the communication

behaviour of this search example including the user.

Selected technical environment

__
166

Figure 70 - Communication behaviour of a search request

The individual plugins, interfaces, and the communication relationship of the Prometheus core

are presented as follows.

Prometheus Plugins: Plugins can, in this approach, be divided into user client, reuse activity

(i.e., transformation, integration, and deployment), and repository. Figure 68 shows additional

monitoring and reporting plugins. However, these are not relevant to the investigation and were

only used in the context of the experiment (see Chapter 6).

Each plugin follows the communication structure shown in Figure 69. This results in the

following distribution scenario for each plugin (cf. Sections 4.5.1.4):

1. Absolute distribution: In this scenario, plugins and their communication partners

(Prometheus core and plugin system), are different instances. This allows distributed

architecture on different physical systems. This is not used in the focused Prometheus

environment.

2. Relative distribution: In this scenario, plugins and their communication partners

(Prometheus core and plugin system) are part of the same application instance. This is

not used in the focused Prometheus environment.

3. Mixed distribution: In this scenario, plugins and their communication partners

(Prometheus core and plugin system) are differently interconnected. This is used in the

Selected technical environment

__
167

focused Prometheus environment for most of the core plugins. Two logical variations

are possible:

1. Prometheus core and plugin form an instance together. In this scenario, the

external tool (e.g., repository) and the Prometheus elements are installed on

different systems or on separate applications (see Scenario 1 Figure 71).

2. External tool (e.g., repository) and a related plugin create an instance together.

In this scenario the Prometheus core and the plugin are installed on different

systems or separate applications (see Scenario 2 in Figure 71).

Figure 71 - Distribution possibilities of the used Prometheus architecture

The different distribution scenarios used are illustrated by concrete examples in the following

plugin descriptions:

User Client Plugins (UCP) – UCPs have one area of responsibility

1. Receive and transmit information from or to user clients.

Basically, the interface and the communication protocol between a user and a UCP client

application are not determined by the SSCP approach. UCPs can use any compatible interface

and any compatible communication protocol. This enables the integration of other protocols or

technologies. As part of this work a SOAP-based Web Service is defined, and includes the

capability of bidirectional (synchronously and asynchronously) information exchange. There

Selected technical environment

__
168

are additional Web Service eventing mechanisms integrated into the Web Service. All

operations can be used as synchronous and asynchronous web services calls.

The used interfaces between Prometheus core and the used User Client Plugin are defined in

Section 5.2.2.3. User client plugins are used for the knowledge injection (i.e., creation/mapping

of software units/SCAcs) into the Prometheus environment. This refers to the following tasks:

Software Construction Artefact Injection, Additional Software Construction Content Injection

and Activity Reuse Knowledge Creation (cf. Section 4.4.2).

Transformation Client Plugins (TrCP) – TrCPs have two areas of responsibility

1. Receiving and transmitting information from or to transformation clients.

The interface and the communication protocol between the Transformation Client Plugins

(TrCPs) and the transformation clients were not determined by the focused approach. This is to

guarantee a higher extensibility by enabling the integration of different protocols and

technologies. Also, the number of different applications is high (see Chapter 1). As a part of

this work, the different transformation applications are executed directly by the transformation

plugins. In contrast to the web service calls of the User Client Plugin, a Transformation Plugin

has to be aware of the existing file structure and correct parameters for the transformation

application (see Section 3.1.1). In addition, there may be a need to clean this file structure after

the transformation is complete.

2. Receiving and transmitting information from or to the Prometheus core

In contrast to the communication with the transformation application, the communication with

the Prometheus core is defined in detail. The TrCP receives transformation reuse activity

information from the Prometheus core. Based on this information it prepares and executes the

transformation. These tasks require the interpretation of the formatted reuse activity

information into the special protocol of the transformation application. The transformation

Selected technical environment

__
169

result is also transformed into the given communication protocol of the Prometheus core and is

sent back to the core.

The used interface definition between the Prometheus core and the used Transformation Client

Plugin is shown in Section 5.2.2.5. This type of plugin is used for the knowledge injection into

the environment of the inexperienced user. This refers to the task of Activity Reuse Knowledge

Injection (cf. Section 4.4.2).

Integration Client Plugins (ICP) – ICPs have two areas of responsibility

1. Receiving and transmitting information from or to integrated clients.

In essence, the Integration Client Plugins (ICPs) follow the same procedure as the

Transformation Client Plugins. They differ by handling different applications and information;

in the Prometheus environment, the focused applications are Visual Studio 2008, Visual Studio

2010, as well as Eclipse (Juno). The protocol and technology used between the ICPs and these

three IDEs are specified by the focused approach; it is based more on the provided

communication possibilities of the IDEs. In the case of both Visual Studio versions, the Visual

studio COM technology was used. In the case of Eclipse, an Eclipse plugin was written

providing a SOAP-based Web Service. This structure is shown in Figure 72.

Figure 72 - Integration plugins for Visual Studio and Eclipse

Selected technical environment

__
170

Figure 72a includes the ICP for Visual Studio which serves a special gate way tool developed

to handle Visual Studio instances. Figure 72a shows a ICP for eclipse serving directly eclipse

instances. For the research an Eclipse plugin was developed for communication with the ICP.

2. Receiving and transmitting information from or to the Prometheus core.

The Prometheus core sends integration reuse activity information as well as related software

unit information to the specific integration plugin, these plugins then forward this information

to the Visual Studio Gateway or to the integrated Eclipse plugin. The result – which in this case

is a more or less empty error list – is forwarded back to the Prometheus core.

The used interface definition between Prometheus core and the used Integration Client Plugin is

shown in Section 5.2.2.5. This type of plugin is used for the knowledge injection into the

environment of the inexperienced user. This refers to the task: Activity Reuse Knowledge

Injection (cf. Section 4.4.2).

Deployment Client Plugins (DeployCP) – DeployCPs have two areas of responsibility:

1. Receiving and transmitting information from or to deploy clients.

Deployment reuse activities have two properties of interest; the first is where more than one

application is used in the deployment process. For this reason, DeployCP uses multiple

deployment applications. The second property is the required manual support by the user during

the deployment process (see Zinn et al., 2012a). Similar to other client plugins, the protocol and

communication technologies are not defined by the focused approach (for extensibility

reasons).

2. Receiving and transmitting information from or to the Prometheus core.

The Prometheus core sends deployment reuse activity information as well as the required

software unit artefacts to the Deployment Client Plugin. This plugin creates and executes the

deployment process. In contrast to other client plugins, this plugin type is able to send user

Selected technical environment

__
171

orders to the Prometheus core. This may be necessary because some embedded devices have to

restart for deployment to proceed, but this might have to be done by turning the power off and

on. The result of the whole deployment process – in this case, a more or less empty error list –

is forwarded to the Prometheus core.

The used interface definition between the Prometheus core and the used Integration Client

Plugin is shown in Section 5.2.2.5. This type of plugin is used for the knowledge injection into

the environment of the inexperienced user. This refers to the task: Activity Reuse Knowledge

Injection (cf. Section 4.4.2).

5.2.1.3. 	Layer	3	–	Database	
Repository Client Plugins (RCP) – RCPs have two areas of responsibility:

1. Receive and transmit information from or to repository clients.

Similar to other plugins, the communication protocol and technology is not regulated by the

focused approach. An RCP has to react to the given communication protocols of the different

repository systems (see Section 5.2.3). The task of this plugin is to read and write information

to the repositories. A special feature in this implementation is that RCPs have to use a special

approach-based repository. This includes RCPs that are used to connect to a special reuse

activity repository (using the special reuse activity models, see Section 5.3). Also, a database is

needed to store software units based on the fundamental software unit model, for example to

store the result of a transformation SCAc. This kind of repository is also connected by using an

RCP.

2. Receiving and transmitting information from or to the Prometheus core.

The RCPs receive read and write requests sent by the Prometheus core. These requests and the

responses are well defined by the Prometheus environment. The RCP uses this information to

read/write data form/to a connected repository. The protocol information is, therefore,

translated into the special database language (e.g., SQL).

Selected technical environment

__
172

Contrary to other client plugins, RCPs use a subscription approach, based on the Web Service

Eventing protocol (W3C. 2006). Using that mechanism as a basis, the plugins are able to send

requests to the Prometheus server (e.g., to require additional information or send information to

other parts of the server).

The used interface definition between Prometheus core and the used Repository Client Plugin is

shown in Section 5.2.2.3.

5.2.2. 	Interface	definitions		
In the previous section, the different elements of the Prometheus architecture were shown. In

the following, the interfaces which are used by this architecture will be defined.

The Prometheus environment uses 11 interfaces (see Figure 73). Three interfaces (I1 – I3 a, b,

c) are the relevant core interfaces, and 8 interfaces are used between the plugins and other

systems. As mentioned in the previous section, these 8 interfaces are not defined by the focused

approach. The interface operations use the ID-driven approach described in Section 4.5.1.3.

Figure 73 - Relevant interfaces in the Prometheus architecture

Selected technical environment

__
173

In the following sections, the different operations of used interfaces will be described.

Therefore, the interfaces are grouped (see Table 6).

Interface Group Contained Interfaces
User Client Plugins interfaces I1 a/b
Reuse Activity Interfaces I1 a/b
Repository Client Plugin Interface I2
Reuse Activity Plugin Interfaces I3 a/b/c
Repository Client Interfaces I6, I4
Integration Client Plugin I8, I9
Non-Interface Types I5, I7, I10, I11

Table 6 - Used interface groups

5.2.2.1. 	Knowledge	user	related	interfaces	(I1a)	

Figure 74 - Relevant interfaces of the User Client (UC)-Plugin

Figure 74 shows the relevant 6 interfaces in the area of user interfaces: Search, GetItems,

GetItemsAsZip, PerformTransformation, PerformIntegration and PerformDeployment. These

interfaces form operations that are necessary for the Knowledge User Profile (see Section 4.2).

There are also other operations to manage (create, update and remove) software construction

artefacts, software units, and reuse activities. These methods are listed in the next section.

The search operation allows the client to provide user search queries. The parameters listed in

Table 7 are required:

Selected technical environment

__
174

Search
Type Name Description
List<Guid>
= Globally Unique
Identifier

guidPath Includes the path (serverID, repositoryID) to be searched
for a Software Construction Artefact, Software Unit, or
SCAc.

Guids[] repositoryIDs Additional IDs of repositories to be searched for by a
Software Construction Artefact, Software Unit, or Reuse
Activity.

String searchword The entered search term. (May contain multiple words
separated by commas)

SearchFieldType[] searchfieldTypes Includes the search fields, (e.g., search in file names,
metadata, description, topics, etc.).

UOMType[] uomTypes The types of UOM (Data, GUI, Function, Structure).
List<String> uomCategories Freely defined categories for software units (need

support by the databases).
List<String> artefactCategories Free defined categories for software construction

artefacts.
SearchOperation[] Searchoperation Type of search types (Free text, Attribute or semantic

search (need support of the repository plugins and/or the
repository itself).

List<Artefacts> - The return value are artefacts including UOMs fitting the
search attributes.

Table 7 - Parameters of the search operation

The call returns a set of artefacts that meet the given requirements. The next operation in this

area is the GetItems/GetItemsAsZip operation. These allow the caller to get complete software

units (including all available information) or parts of it from the UCP. The parameters listed in

Table 8 are required:

GetItemsAsZip/ GetItems
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID, artefactID,

uomID) to identify the correct UOM.
List<Guid> fileIDs The IDs of the files, which should be included in the

operation response.
List<FileInformation> Return value includes one or more file information (e.g.,

name, byte code, creation date.). In the case of
GetItemsAsZip this includes one zip file

Table 8 - Parameters of the GetItems/GetItemsAsZip operation

Both operations return the binary information of a software unit. The operation GetItems

returns this as a list of binary values as well as returning the information of the files; each value

representing a file. The operation GetItemsAsZip also delivers the same information, but packed

in a single ZIP file.

Selected technical environment

__
175

The next relevant operations are the reuse activity operations PerformTransformation,

PerformIntegration and PerformDeployment. All three operations need typical and specialised

information. Typically, the ID of the server (serverID), the repository (repositoryID) and the

artefact (artefactID) - where the software unit is based on – is given. In the case of the

DoTransformation operation the ID of the transformation rule is also given. The parameters

listed in Table 9 are required:

PerformTransformation
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID,

artefactID, uomID) to identify the correct
UOM which includes the transformation
activity.

Guid transformationActivityID The ID of the transformation activity which
should be performed.

List<TransferTypes> - The return value includes a list of UOM
artefacts.

Table 9 - Parameters of the PerformTransformation operation

The result is a set of transfertypes which include the new software unit (see Section 5.3.2). In

the case of PerformIntegration, the three IDs are also given. In addition, the ID of an

integration rule has to be set as well as the information about the service endpoint which

defines the external integration tool (i.e., Visual Studio Gateway or Eclipse Plugin (see ICP in

Section 5.2.2). The parameters listed in Table 10 are required:

PerformIntegration
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID,

artefactID, uomID) to identify the correct UOM
which includes the integration activity.

Guid integrationRuleID The ID of the transformation activity which
should be performed.

InetgrationClient Client Includes service information to connect to the
IDE.

List<Errormessages> - The return value includes a list of error message
for the user.

Table 10 - Parameters of the PerformIntegration operation

Selected technical environment

__
176

The next reuse activity operation contains the two typical IDs: the ID of a deployment rule as

well as the necessary communication address. The method returns a list of errors

(List<ErrorMessages> Errormessages). The parameter and return values are listed in Table 11:

PerformDeployment
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID,

artefactID, uomID) to identify the correct UOM
which includes the deployment activity.

Guid deploymentRuleID The ID of the transformation activity which
should be performed.

String communication The address where the device can be found (e.g.,
a service endpoint address).

List<Errormessages> - The return value includes a list of error message
for the user.

Table 11 - Parameters of the PerformDeployment operation

5.2.2.2. 	Knowledge	creator	related	interfaces	(I1B)	
These interfaces are used by experienced users (Knowledge creator; KC profile, see Section

4.2) who wish to add information or knowledge. Figure 75 shows the interface used in this

work, which includes 14 operations.

Figure 75 - Advanced interface of the UC-Plugins

Selected technical environment

__
177

Therefore, different operations groups are used: the Software Unit Handling Group, the Integration

Activity Group, the Transformation Activity Group, and the Deployment Activity Group. These groups

are discussed in the following sections.

Software unit handling group operations
The first two operations are named CreateArtefact and UpdateArtefact. They enable an

experienced user to create or update a Software Construction Artefact which can contain

different software units. Therefore, alternative information is necessary. First of all, the

information demand (ID) of the Prometheus instance and the repository in which the new SCA

should be saved, have to be set (serverID and repositoryID). The next is the type of artefact

(artefactType) which states if the artefact contains UOM which includes data, structure,

graphical, or function elements (see Section 4.4.1.1). A name (artefactName) and the

description (description) also have to be set. The parameter and return values are listed in Table

12:

Create/UpdateArtefact
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID) were the artefact

should be created.
Int artefactType Type of the artefact. Therefore, the UOM types Data,

Function, GUI, Structure is used.
String artefactName A customised (user friendly) name for the artefact.
String description Description of the professional content of the containing

software unit.
Artefact - The return value is a new SCA.

Table 12 - Parameters of the CreateArtefact operation

The next two operations are called CreateUOM and UpdateUOM. These enable the storing of a

software unit into a selected repository or the updating of an existing one. This operation also

needs special information. First of all, the path of the UOM has to be set. This is done by using

the IDs of the service (serverID), the repository (reposID) as well as the artefact (artefactID).

Additionally, it is necessary to define the UOM type (for uomType, see section 4.4.1.1), a

customised name (uomName), and a small description (uomDescription).

Selected technical environment

__
178

The parameter and return values are listed in Table 13:

Create/UpdateUOM
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID, artefactID)

were the artefact should be created.
Int uomType Type of the UOM. Possible values are Data, Function,

GUI, and Structure.
string uomName A customised (user friendly) name for the uom.
string uomDescription Description of the professional content of the uom.
Bool - The return value indicates if the creation/update task was

successful (true) or unsuccessful (false).

Table 13 - Parameters of the CreateUOM operation

This operation creates an instance of an empty software unit model. To add existing files to this

software unit, the AddData operation has to be used. At the end, the Prometheus server needs

three different types of information:

- The path to the Software Unit Model which is given by the ID of the server (serverID),

repository (reposID), artefact (artefactID), software unit (uomID), and a reference to a

package (packageID) as optional information. A package ID indicates that information

belongs together.

- The file information includes typical information, as for example, Path (directory,

fullname), name (name, fullname), file extension (extension), file length (size), the byte

content (bytecontent), as well as the creation date (datetime).

- Additional information for the focused approach, for example a package ID for

grouping different files in a download package (e.g., the different web pages of a

Hypertext Markup Language (HTML) documentation), the definition of this file as

human or machine readable (humanselector), and based on that, the real content type.

The parameter and return values are listed in Table 14:

AddData
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID, artefactID,

uomID, packageID) to identify the artefact.
string name Name of a single file.
String fullname Name and path of a single file.

Selected technical environment

__
179

AddData
Type Name Description
String extension The file extension of a single file.
String directoryName The directory name of a single file.
Datetime dateTime The creation time of a single file.
Long size The size in kilobyte of single file.
Byte[] byteContent The byte content of a single file.
Int (Human or
machine data)

humanSelector The content type of the file. Possible values are
‘machine’ or ‘human’

Int (Dynamic enum
for human or
machine readable
data)

contentSelector The type content of the file to add. Values depends on
the humanSelector.

FileElement - The return value is an object containing all information
set by this operation.

Table 14 - Parameters of the AddData operation

The last relevant operation is used to delete existing items (e.g., software units, single files or

reuse activities). This operation is called RemoveItem and has a simple structure. First the

server (serverID) and the repository (reposID) have to be set. Then the ID (ID) of the item that

order to be removed. Finally, the type (e.g., UOM, activity, file, etc.) has to be set. The

operation returns a true/false for a successful/unsuccessful execution. The parameter and return

values are listed in Table 15:

RemoveItem
Type Name Description
List<Guid> guidPath Includes the path (serverID, repositoryID) were the

artefact should be created.
Guid id The ID of the element which should be removed.
Bool - The return value indicates if the operation execution was

successful or not.

Table 15 - Parameters of the RemoveItem operation

Integration activity group
The integration part of the instantiated SCS offers one group of operations: Integration Activity

Group. In this group, four operations are defined LoadIntegrationActivity, Remove

IntegrationActivity, CreateIntegrationActivity, and UpdateIntegrationActivity.

The first operation is the LoadIntegrationActivity, which is used to load information about

integration activities from the server into the client. Therefore, a list of IDs

Selected technical environment

__
180

(integrationActivityIDs) has to be set. The operation returns a list of IntegrationActivity objects

(List<IntegrationActivities), which contains all necessary information. The parameter and

return values are listed in Table 16:

LoadIntegrationActivity
Type Name Description

List<Guid> IntegrationActivityIDs The IDs of integration activities which should
be loaded.

List<IntegrationActivity> - The return value includes a list of
IntegrationActivities. Each describes a
complete integration activity.

Table 16 - Parameters of the LoadIntegrationActivity operation

The operation RemoveIntegration removes a single integration activity based on the given ID

(ID). The parameter and return values are listed in Table 30:

RemoveIntegration
Type Name Description

Guid ID The ID of the integration activity.
bool - The return value indicates if the remove task was

successful (true) or unsuccessful (false).

Table 17 - Parameters of the RemoveIntegration operation

The operation CreateIntegration stores a list of new integration activities (List<Integrations>

integrationActivities) to a given software unit, which is indicated by a list of IDs (List <Guid>

guidPath). The UpdateIntegration uses the same structure. The parameter and return values are

listed in Table 18:

CreateIntegration / UpdateIntegration
Type Name Description

List <Guid> GuidPath Includes the path (serverID, repository,
artefactId, UOMId) to select the software
unit (UOM) related to the created/updated
integration activity.

List<IntegrationActivity> integrationactivities A list of complete descriptions of
integration activities.

Bool - The return value indicates if the
creation/update task was successful (true)
or unsuccessful (false).

Table 18 - Parameters of the Create/UpdatesIntegration operation

Selected technical environment

__
181

Transformation activity group
For the creation of a transformation reuse activity, different operations are necessary which can

be divided into two groups: a Transformation Application Group and a Transformation Activity

Group. Both groups are described as follows: the Transformation Application Group contains

an operation for managing transformation applications: GetAvailable-Transformation-

Application, GetTransformationApplication, RemoveTransformationApplication, Create-

TransfromationApplication and UpdateTransfromationApplication.

The operation GetAllAvailableTransformationApplication responds with a list of

transformation application descriptions (List<TransformationApplication>) which can be used

and handled by the Prometheus server. The parameter and return values are listed in Table 19:

GetAvailableTransformationApplication
Type Name Description

Guid ID The ID of the Prometheus server containing
the transformation application.

List<TransformationApplication> - The return value includes a list of
transformation application descriptions
containing all information about the
configuration of transformation applications.

Table 19 - Parameters of the GetAvailableTransformationApplication operation

The operation GetTransformationApplication responds with a single transformation application

(TransformationApplication) description, based on the given ID (id). The parameter and return

values are listed in Table 20:

GetTransformationApplication
Type Name Description

Guid ID The ID of the Prometheus
server containing the
transformation application.

Guid transformationApplicationID The ID of the transformation
application.

List<TransformationApplication> - The return value includes a
transformation application
description containing all
information about the
configuration of a
transformation application.

Table 20 - Parameters of the GetTransformationApplication operation

Selected technical environment

__
182

The operation RemoveTransformationApplication removes a single transformation application,

based on the given ID (id). The parameter and return values are listed in Table 21:

RemoveTransformationApplication
Type Name Description

Guid ID The ID of the Prometheus server containing the
transformation application.

Guid transformationApplicationID

The ID of the searched transformation
application.

bool - The return value indicates if the remove task was
successful (true) or unsuccessful (false).

Table 21 - Parameters of the RemoveTransformationApplication operation

The operation CreateTransformation creates a transformation activity description which may be

used by transformation reuse activities. The description is included in only one parameter

(Tapp) of type TransformationApplication. The UpdateTransformationApplication operation

has the same structure and updates existing transformation applications. The parameter and

return values for both operations are listed in Table 22:

Create / UpdateTransformationApplication
Type Name Description

Guid ID The ID of the focused Prometheus.
TransformationApplication transformationApplication The complete description of a

transformation application.
Bool - The return value indicates if the

remove task was successful (true) or
unsuccessful (false).

Table 22 - Parameters of the Create/TransformationApplication operation

The Transformation Activity Group contains the following operations for handling

transformation activities: LoadTransformationActivity, RemoveTransformationActivity,

CreateTransformationActivity and UpdateTransformationActivity.

The first operation is the LoadTransformationActivity operation. This operation is used to load

information about transformation activities. Therefore, a list of IDs (transformationActivityIDs)

has to be set.

Selected technical environment

__
183

The operation returns a list of TransformationActivity objects (List<TransformationActivities)

which contains all the necessary information. The parameter and return values are listed in

Table 23:

LoadTransformationActivity
Type Name Description

List<Guid> TransformationActivityIDs The IDs of transformation activities
which should be loaded.

List<TransformationActivity> - The return value includes a list of
TransformationActivities. Each
describes a complete transformation
activity.

Table 23 - Parameters of the LoadTransformationActivity operation

The operation RemoveTransformation removes a single transformation activity description,

based on the given ID (id). The parameter and return values are listed Table 24:

RemoveTransformationActivity
Type Name Description

Guid ID The ID of the transformation activity description
bool - The return value indicates if the remove task was

successful (true) or unsuccessful (false)

Table 24 - Parameters of the RemoveTransformation operation

The operation CreateTransformationActivity creates a transformation activity description. The

description is included in only one parameter of type, TransformationApplication, and requires

a second parameter to identify the path to the related software units (List<Guid> id). The

UpdateTransformationApplication operation has the same structure, and updates the existing

transformation activity description. The parameter and return values are listed in Table 25:

CreateTransformationActivity / UpdateTransformationActivity
Type Name Description

List<Guid> GuidPath Includes the path (serverID, repositoryID, artefactID,
uomID) to select the software unit (UOM) related to the
created/updated transformation activity.

Transformation transformation The complete description of a transformation
application.

bool - The return value Indicates if the creation/update task
was successful (true) or unsuccessful (false).

Table 25 - Parameters of the Create/UpdateTransformation operation

Selected technical environment

__
184

Deployment activity group
For the deployment activity the five different operations are defined:

CreateDeploymentActivity, GetAllDeploymentForASingleUOM, GetSingleDeployment,

RemoveDeploymentActivity and UpdateDeploymentActivity

The first operation is the LoadDeploymentActivity operation, which is used to load information

about transformation activities. Therefore, a list of IDs (deploymentActivityIDs) has to be set.

The operation returns a list of DeploymentActivity (List<DeploymentActivities>) objects

which contains all the necessary information. The parameter and return values are listed in

Table 26:

LoadDeploymentActivity
Type Name Description

List<Guid> DeploymentActivityIDs The IDs of deployment activities which
should be loaded.

List<DeploymentActivity> - The return value includes a list of
DeploymentActivities. Each describes a
complete deployment activity.

Table 26 - Parameters of the LoadDeploymentActivity operation

The operation RemoveDeployment removes a single deployment activity description based on

the given ID (ID). The parameter and return values are listed in Table 27:

RemoveDeploymentActivity
Type Name Description

Guid ID The ID of the deployment activity.
Bool - The return value indicates if the remove task was

successful (true) or unsuccessful (false).

Table 27 - Parameters of the RemoveDeploymentActivity operation

This operation CreateDeployment stores a list of new deployment activities (i.e.,

List<DeploymentActivity> deploymentActivities) to a given software unit, which is indicated

by a list of IDs (List<Guid> guidPath). The UpdateDeployment uses the same structure. The

parameter and return values are listed in Table 28:

Selected technical environment

__
185

CreateDeployment / UpdateDeployment
Type Name Description

List<Deployment> Deploymentactivities A list of complete descriptions of deployment
activities.

List <Guid> GuidPath Includes the path (serverID, reposed, artefactId,
UOMId) to select the software unit (UOM) related to
the created/updated deployment activity.

bool - Indicates if the creation/update task was successful
(true) or unsuccessful (false).

Table 28 - Parameters of the Create/UpdateDeployment operation

Support interfaces
These interfaces are required to use KU and KC related operations with the correct information

about the current Prometheus environment.

Figure 76 - Additional support Interface of the UC-Plugin

Figure 76 shows the two operations of the support interfaces, which are necessary for KU and

KC related operations. GetServiceInformation is an operation that returns the information to a

Prometheus server, such as a version number and contained information about repositories.

Because of this, the Prometheus server can be connected in clusters; a Prometheus server ID

will be integrated into the call. Therefore, clients are able to use these IDs from another

Prometheus server or repository in their different requests. The parameter and return values are

listed in Table 29 (cf. 4.5.4.3):

GetServiceInformation
Type Name Description

Service - The return value contains an information object of all

available repositories in a Prometheus server, including
(e.g., name, ID, functional limitations of each repository,
etc.)

Table 29 - Parameters of the GetServiceInformation operation

Selected technical environment

__
186

The second operation in this section is the GetAvailableRepository operation, which gives

information about the active (actually available) repositories of the Prometheus server. Because

of the cascading feature, a Prometheus server ID is also used. This method is intended for

informational purposes and to validate whether communication is necessary or possible with a

desired repository. The parameter and return values are listed in Table 30:

GetAvailableRepositoryInformation
Type Name Description

Guid ID The ID of the Prometheus server containing the software
unit.

Repository[] - The return value includes an information object of a
Prometheus server, including (e.g., name of the
Prometheus server, ID of the different repository, etc.)

Table 30 - Parameters of the GetAvailableRepositoryInfomation operation

5.2.2.3. 	User	Client	Plugins	interfaces	and	reuse	activity	interfaces	(I1	
fffA/B)	

The User Client Plugin Interface is used for the communication between the user client and the

Prometheus server. Therefore, the Prometheus Service implements this interface and the User

Client Plugin uses the interface to communicate to the Prometheus core. The interface is

divided into different areas: Knowledge User and Knowledge Creator related interfaces and

some minor support operations.

5.2.2.4. 	Repository	client	plugin	interface	(I2)	
The Repository Client Plugin interface defines the communication between the Prometheus

core and the different repository plugins. Therefore, different method groups are used: Software

Unit Handling Group, Integration Activity Group, Transformation Activity Group, Deployment

Activity Group and Repository Control Group. From the perspective of software development,

each group is defined in a specific interface and the interface shown in Figure 73 inherits these

interfaces.

Selected technical environment

__
187

For simplification, this interface uses most of the operations already defined in other interfaces.

The purpose of all interface operations will be explained, but only new or adapted operations

will be shown in a table view.

The Software Unit Handling Group contains nine operations that handle software units as

content. CreateArtefact, UpdateArtefact, CreateUOM, UpdateUOM, AddData, Search,

GetItems, GetItemsAsZip and RemoveItems.

The operations GetItems and GetItemsAsZip do not differ from the definition of the user

interface. Both operations are used to get byte data from a repository. Also, the operations:

CreateArtefact, UpdateArtefact, CreateUOM and UpdateUOM do not differ in their purpose or

in terms of the necessary information. The creation methods save data into the repositories. The

update operations update such information inside the repository. The operations AddData,

RemoveItem and Search do not differ in their interface structure, but they are implemented

differently based on the related repository.

The Integration Activity Group contains three interfaces related to manage integration activity

information: LoadIntegrationActivity, CreateIntegration and SetTransferTypes. The operation

RemoveIntegrationis is realised by using the RemoveItem operation of the Repository Control

Group. None of these operations differ in their structure or purpose from the previous

descriptions.

The Transformation Activity Group contains four different operations: LoadTransfor-

mationActivity, CreateTransformation, UpdateTransformation and RemoveTransformation.

Note: The operation RemoveIntegration is realised by using the RemoveItem operation of the

Repository Control Group. None of these operations differ in their structure or purpose.

The Deployment Activity Group contains five different operations: CreateDeploymentActivity,

GetAllDeploymentForASingleUOM, GetSingleDeployment, RemoveDeploymentActivity and

UpdateDeploymentActivity. Note: the operation RemoveIntegrationis is realised by using the

Selected technical environment

__
188

RemoveItem operation of the Repository Control Group. None of these operations differ in

their structure or purpose.

The Repository Control Group contains two relevant operations: RemoveItem and

GetAllRepositories. Neither operation differs in its structure or purpose as defined in the

previous section. The RemoveItems operation deletes data which belongs to an item which

should be removed, (e.g., the files of a UOM). The other operation returns information about

the repository, including repository ID and which operations of the interface are supported.

Note: The repository interfaces include additional operations for handling the repositories, (e.g.,

initialisation of communication). Also, some methods are included for handling the plugin in

the focused Microsoft Extensible Framework (MEF) system.

5.2.2.5. 	Reuse	activity	plugin	interfaces	(I3	a/b/c)	
Integration Plugin Interfaces (I3a): The interface I3a is provided by integration plugins. In

the case of the focused Prometheus environment, two plugins use this interface. The first one is

for Visual Studio integrations. The second one is for Eclipse integrations. Both plugins use the

same interface for communication from the core to the plugins. Figure 77 shows the user

interface including an event and the previously explained DoIntegrationActivity operation.

Figure 77 - C# notation of the integration plugin interface

DoIntegration
Type Name Description
List<Guid> guidPath The IDs of the repository, Software Construction

Artefact, and UOM to be searched for a transformation
activity.

Guid integrationActivity The ID of the integration SCA to be performed.
ReceivClient ide Information about the service endpoint.
List<ErrorMessage> - The return value includes a list of error messages for the

user.

Table 31 - Parameters of the DoIntegration operation

Selected technical environment

__
189

The method DoIntegration includes different parameters. The first one (List<Guid> guidPath)

identifies the Prometheus Service, the repository, the SCA, as well as the UOM that relies to

the integration SCA. The second parameter (Guid integrationActivity) is the ID of the

integration SCA to be performed. The last parameter includes the service information where the

SCA should be performed (ReceiveClient ide). The method is able to respond a list of custom

errormessage.

Transformation Clients Interface: Figure 78 shows the relevant service operations used.

Figure 78 - C# notation of the transformation client Interface

The method DoTransformation requires several pieces of information. The ID for the

corresponding Prometheus Service (Guid serviceID), the ID of the database that contains the

software unit to be transformed (Guid RepositoryID), the ID of the software unit containing the

artefact (Guid artefactID), the ID of the UOM, and the transformation rule have to be executed

(string transformationruleName). The method returns a list of transfer types as the return value.

TransferType consists of a set of file elements and additional descriptions of the result of a

transformation. In the case of the Prometheus environment the result of the transformation is a

new software unit (see Section 5.3.2). The parameter and return values are shown in Table 32.

DoTransformation
Type Name Description
Guid serviced The ID of the Prometheus server.
Guid repositoryID The ID of the repository.
Guid artefactID The ID of the Software Construction Artefact.
Guid uomID The ID of the UOM including the transformation

activity.
string transformationRule

Name
The name of the transformation activity which should
be executed.

List<TransferType> - The return value includes a list of UOM artefacts.

Table 32 - Parameters of the DoTransformation operation

Selected technical environment

__
190

Deployment Clients Interface:

Figure 79 - C# Notation of the deployment web service

Figure 79 shows the relevant service operations used. The DoDeployment operation requires

several pieces of information, as with the other client methods. It is necessary to use different

IDs to select the correct Software unit, for example, the ID for the corresponding Prometheus

server (Guid serviceID), the ID of the repository that contains the software unit to be deployed

(Guid RepositoryID), the ID of the software unit containing the artefact (Guid artefactID), the

ID of the UOM, and the deployment rule to be executed (string deploymentruleName). The

operation returns a list of errors (List<ErrorMessages> Errormessages).

The parameter and return values are listed in Table 33. As discussed in Section 5.3.3, an

operation is also available for the subscription to manual instruction (DoSubscription). This

operation is not discussed further because it is a common subscription operation with eventing

mechanisms.

DoDeployment
Type Name Description
Guid serviceID The ID of the Prometheus server is to be searched.
Guid repositoryID The ID of the repository to be searched for a transformation

activity.
Guid artefactID The ID of the Software Construction Artefact.
Guid uomID The ID of the UOM including the deploymentDeployment

activity.
string deploymentRuleNa

me
The name of the transformation activity which should be
executed.

List<Errorm
essages>

- The return value includes a list of error messages for the user.

Table 33 - Parameters of the DoDeployment operation

5.2.2.6. 	Repository	client	interfaces	
The connection to the different repository systems was handled using the provided interfaces.

In three cases, these interfaces were real system interfaces:

Selected technical environment

__
191

I4: The DeviceXML repository provides a Web Service based on ASP.NET. This service

includes an interface with three operations. The first one is the initial login into the system

(‘authentication’) which requires a username and password. The second one is a search function

which delivers device xml classes. The third operation delivers pictures for a given device xml

class.

I6: The SOA4D repository provides a Web Service interface based on the GSoap library (FSU,

2007). SOA4D provides operations to iterate over the SOA4D project structure to get

information about, for example, stored software units.

I12: The last repository in the used Prometheus environment was a second Prometheus

environment using the described I1 interface (cf. 4.5.4.3).

5.2.2.7. 	Integration	client	plugin		
For the connection to the Visual Studio Gateway and the Eclipse Plugin, a Web Service

interface was used. Even though both systems were developed with different technology, the

SOAP-based Web Service includes the same interface. Figure 80 shows the relevant service

operations used:

Figure 80 - C# Notation of the Integration client plugin Interface

SetTransferType
Type Name Description
List<IntegrationObj
ect>

transferTypes List of integration objects. Each object describes how a
given UOM element has to be integrated in a given
development environment.

void - Return value does not exist.

Table 34 - Parameters of the SetTransferType method

The method SetTransferType receives a list of IntegrationObejcts. These objects contain the

binary data and a description of how these are to be integrated (see Section 4.5.3). An

Selected technical environment

__
192

integration client plugin interprets these data sets and the integration of the specific type of

development environment. The parameter and return values are shown in Table 34.

The method ReceiveZip receives a ZIP package that allows the user to save the zip file. This

file includes all files and folders necessary for an activity.This is needed in the download

scenario (see Section 4.5.1). Also the result of a transformation activity includes one or more

files. To avoid several download operations these are included in one zip file. The parameter

and return values are shown in Table 35:

ReceiveZip
Type Name Description
byte[] Files A list of files which can be stored as zip files.
Void - Return value does not exist for this operation.

Table 35 - Parameters of the ReceiveZip method

5.2.2.8. 	Non-service	interfaces	
Connections to other existing system (e.g., the repositories) are called non-service interfaces in

this realisation. The Prometheus environment uses different repository technologies and

applications without any service interfaces. These are listed as follows:

I5: The Brick Catalogue only provides a web page for humans. As a result, there is no system

interface which can be handled by a repository plugin. The problem was solved by an

automated reading of the web page and by creating an internal database inside the plugin which

was created for this repository.

I7: When connecting to the SQL based repository, the SQL connection technology of Microsoft

.Net combined with the Entity Framework of .NET was used. Therefore, the connection to the

server was handled by the .NET Environment. The special repository plugin for this repository

only handled the objects and sent read/write requests.

I13: For the communication between the Eclipse Integrated Development Environment (IDE)

plugin and Eclipse, the Eclipse IDE Application Programming Interface (API) was used.

Selected technical environment

__
193

I14: For the communication between the Visual Studio Gateway and a Visual Studio Instance

the COM Interface of visual studio was used.

I10: The transformation application calls are realised by using normal process calls.

I11: The transformation application calls are realised by using normal process calls and File

transfer protocol (FTP)-based connections.

5.2.3. 	Used	technologies	and	communication	protocols	
For the realisation of the different architecture elements, different technologies are used. For

the relevant parts of the realisation, the used technologies are now briefly described.

Technologies or architecture parts which are not relevant are not discussed or listed in this

thesis. Figure 81 shows an overview of used technologies in the Prometheus environment.

Figure 81 - Used technologies

The Prometheus core was developed by using Microsoft .NET Version 4.0 (see 1 in Figure 81).

The used programming language is C#. The plugins were also developed using this platform as

well as the used programming language. As a plugin system or architecture, the MEF was used

Selected technical environment

__
194

(see 2 in Figure 81). This enables lazy loading and the rescheduling of plugins into a plugin

host, which is in the current scenario Prometheus core. The plugin differs in its communication

technology. The plugins use normal method calls or .NET eventing mechanisms to

communicate with the core (see 3 in Figure 81). Some plugins use or provide Web Services

based on SOAP 1.2. This interface technology is realised based on Windows Communication

Foundation (WCF), which is an API extension of .NET 4.0, including different technologies for

communication. One relevant feature of WCF used in this implementation is the hosting of

multiple Web Services in one application, without the use of a classical web server (e.g.,

Internet Information Server). This enables the Prometheus core or the plugins to host different

Web Services directly without the need for an external web server. Some of the plugins control

other applications by using process calls (see 5 in Figure 81). Thereby, typical functionality of

the .NET platform was used.

The Eclipse integration plugin is developed using the Java programming language and a special

API of the Eclipse IDE. It also uses a Web Service which is based on a Java SOAP extension.

The Visual Studio Gateway is a standalone application based on C# and .NET 4. It also uses a

WCF-based web service and the Microsoft COM technologies (see 6 and 7 in Figure 81).

Visual Studio provides a COM object to perform IDE activities.

For the connection to the different repositories, the following technologies were used: SQL (see

8 in Figure 81), GSoap based Web Service (FSU, 2007; see 9), the ASP.NET based Web

Service (see 10 in Figure 81), and simple HTML API of .NET 11.

The user interface of the client system used is realised in Microsoft Silverlight technology (see

12 in Figure 81; Microsoft, 2012d). The version 4.0 was used. For communication purposes,

the client system reacts as Web Service consumer using WCF (see 13 in Figure 81).

The datamodels implemented are created by using a code first approach based on the Entity

Object Framework (EOF) which is a Microsoft-supported open source project for object-

oriented data handling of databases (see 14 in Figure 81; Microsoft, 2010).

Selected technical environment

__
195

5.2.4. 	Extensibility	approaches	
Section 4.5.4 discusses the requirement of the focused extensibility (based on variants of

technologies and changes in future) for the following points: Fundamental Software Unit

Model, Software Construction Activities models, support of different existing repositories,

support of different development environments and tools and support of different client

applications.

The support of different client applications as extensibility attributes is realised by using the

plugin concept which enables the integration of clients using different communication concepts

or technologies. In this case, a SOAP based Web Service is used which fits to the W3C web

service standard (W3C, 2007). Also, the used data model in the communication protocol is

fully serialisable and describable by using XML technology. The advantages of this approach

are:

- Different platforms or programming languages support this kind of service technology,

- (Web) Services can be created to enable a distributed environment (e.g., Service-

oriented Architecture; SOA).

The plugin system is also used for extensibility to support of different development

environments. In this scenario, two different IDE types were integrated using different

technologies. One was also integrated using a Web Service approach, which shows the

possibilities for distribution. The integration of the repository also uses the same approach. One

repository (Brick Catalogue), which is only accessible by scanning the provided web pages,

shows the advantages (See 10 in Figure 81). This repository is not able to accept write requests

or provide a system interface. It provides a simple web page (HTML) for human readers. To get

information, the different web pages have to be scanned by a self-written HTML client. The

scan results are stored using a second software unit datamodel instance in the plugin. This

specialised repository connector is part of one repository plugin and shows the flexibility of the

Realised models

__
196

plugin approach. Even if ‘special’ handling or technologies are necessary, this can be handled

by a plugin and does not affect the environment.

The Software Unit Model and the three different reuse activity models were developed as semi

semantic models. One relevant requirement was to create one technical model that can be

referred to by others. Therefore, following characteristic of semantic models is relevant:

semantic models can be extended by relating the different semantic terms of two models This

characteristic is used to combine the three software constructuion activity models with the

software unit model (cf. Parreiras, 2012).

5.3. 	Realised	models	
In this section, the realisation for the different models of software unit and reuse activities (see

Section 4.5.2) is described. Therefore, four different model instances were created:

- Software Unit Model – Realised model of the basic Software Unit Model (see Section

4.5.2)

- Transformation Activity Model – Realised model of an activity model (see Section

4.5.3)

- Integration Activity Model – Realised model of an activity model (see Section 4.5.3)

- Deployment Activity Model – Realised model of an activity model (see Section 4.5.3)

The different models are realised using a single model concept. This concept consists of several

layers which together give the description of the focused software units and activities. In basic

terms, it contains two layers (see Figure 60 in Section 4.5.2):

The ‘Unit’ or U-Layer describes software units with the necessary information for this

approach. The ‘Application’ or A-Layer describes the different reuse activity view.

5.3.1. 	Software	Unit	Model	instance	
In this section, the U-Layer is described. This layer consists of four different areas described in

Section 4.5.2 (cf. Figure 59).

Realised models

__
197

In region 1: the "Stakeholder View", authors and responsible persons are described. Region 2:

the "Problem-Solution View" describes the relationship between the problem and solution.

Region 3: the "Technical View" describes a device from a technical perspective. In region 4:

the "Content View", on the other hand, is a description from the technical point of view for

searching behaviors. The four areas are described in the following sub-sections. There, each

element in the different model region will be described, as well as the relational aspects of each

element.

5.3.1.1. Restriction rules for the datamodel	
Restriction 1: In general, each element of the datamodel has no relation to other elements or

semantics. The exceptions are explained in the next sub sections.

Restriction 2: Each element is a ‘Thing’ and has an ID. This is relevant for the handling of

model instances inside the Prometheus environment (cf. Figure 82).

Restriction 3: Also, relevant is the general view on persons (see Figure 82). A person can be a

natural person or a synthetic person in the scope of the model.

Restriction 4: A system is a computer application.

Figure 82 - Model restrictions

5.3.1.2. 	Region	1	“Stakeholder	View“		
The stakeholder view is relevant for this thesis because information about possible stakeholders

(e.g., project owner or unit creator) may be relevant for users for resue. Therefore, this region is

Realised models

__
198

described briefly. Next to the stakeholders, this area describes a simple feedback and ranking

system used by the Prometheus environment. Each element is described in Table 36.

No. Element Description
U1-3 Author The creator of a software unit and, therefore, a stakeholder. To describe an

author in this Prometheus environment a name and surname is used.
U1-1 Person A common description for any human stakeholders, e.g author and user.
U1-2 System A non human stakeholder. This element is not used in the current Prometheus

environment, but is relevant for future use of the approach by another system.
U1-
11

User The second human stakeholder. An inexperienced user consuming the provided
functionality of a Prometheus environment.

U1-6 Statistic
Data

This element is a list of statistic data. For example, it may be interesting for a
user to know how often a software unit was downloaded or reused.

U1-
12

Comment A comment from a person about the software unit.

U1-7 Reuse
Feedback

A special comment about special reuse characteristics.

U1-4 Contact
Information

Contact information of the responsible person for this software unit.

U1-5 Ranking Ranking information is usually used to identify if a reuser of a software unit
was satisfied or not.

U1-8 Monitor A system which sets the statistic data (given by humans or other systems).
U1-9 Service A special system for handling the monitoring system. It is not relevant for the

datamodel and is only used in the Prometheus server.
U3-1 UOM This is the central element of the model and is a software unit.

Table 36 - Defintion of elements of the stakeholder view (U1)

Figure 83 - Relevant elements of the area 1 - stakeholder view (U-R1)

Realised models

__
199

This region is named U-R1 and is demonstrated in Figure 83.The element relations can be

described as follows: A ‘Person’ is an ‘Author’ (U1(13)) if this person creates the ‘UOM’

(U1 (3U3(1))) or is the current UOM owner. A ‘Person’ is a ‘User’ (U1(111)) if this

person:

- (U1 (115)) makes a ‘Ranking’ that is a sub type of a ‘Comment’ (U1 (5 12)) for a

UOM or an related SCAc (U1 (5U3(1))) or

- Creates a ‘Comment’ (U1 (1112)a) for a UOM or related SCAcs (U1 (712)a) or a

‘Feedback’(U1 (117)) that is also a ‘Comment’ (U1 (12 U3(1))) or a comment of a

comment (U1 (712)b) or

- Comments on an existing comment (U1 (11-12)b) which is equal to (U1 (117)) and

(U1 (1112)a).

Each ‘Person’ has ‘Contact Information’ (U1 (14)). Ranking is a special type of ‘Statistical

Data’ (U1 (56)) and is directly related to the ‘UOM’ U3(1U1(6)). A ‘Monitor’ is a special

‘Service’ (U1 (98)) and sets and reads ‘Statistical Data’ (U1 (68)a and b). Both ‘Monitor’

and ‘Service’ are ‘System’ elements (U1 (92)) (U1 (82).

5.3.1.3. 	Region	2	“Problem-Solution	View“	
The research area of this study does not focus on problem-solutions in terms of software units

and has no contribution to these issues. However, this is an relevant research field, (cf. solution

and relation comparison discussed by Jeong and Kim, 2012). Therefore, the used data model

includes a relation to this topic which may be extended in the future by other semantic models.

But this is not part of the focused research. The problem solution context is related to the

professional content of a UOM and not to the SCAcs.

No. Element Description
U2-1 Problem This element represents a problem that can be solved by a UOM.
U2-2 Solution This element represents a solution included in a UOM for a particular problem.
U2-3 Software

Engineer
This element represents a special user who is a problem owner and is searching
for a solution.

U2-3 MetaData This element represents additional information describing a solution.

Table 37 - Defintion of elements of the problem solution view (U2)

Realised models

__
200

Figure 84 - Relevant elements of the area 2 – problem and solution view” (U-R2)

Figure 84 shows the elements in this area. The main elements are ‘Solution’ and ‘Problem’.

Thereby, a ‘Problem’ is solved by a ‘Solution’ (U2(21)). A ‘Solution’ is realised by a ‘UOM’

(U2(1U3(1))) that is used to solve a ‘Problem’ (U2(2 U3(1))). Additionally, a ‘Solution’

can be described by additional ‘Metadata’ (U2(14)). A ‘Software Engineer’ which is a

‘Person’ (U1(1U2(3))) searches for solutions (U2(31)) because of engineer has one or

more problems (U2(32)). Finally this model shows that a solution is created by an ‘Author’

of an ‘UOM’ (U2(2U1(3))).

5.3.1.4. 	Region	3	“Technical	View“	
The technical view is the relevant view for the primary research of this thesis. It describes

software units (based on different technologies and types) in a common view. This is part of the

concept described in Chapter 4. All SCAc-based models relate to this section. Table 38 shows

the 22 elements that are relevant in this area.

Realised models

__
201

No. Element Description
U3-1 UOM This element is the central definition of a software unit as a reusable

element. It represents the view of this approach in this thesis when it is
"spoken" of as a reusable software unit. Therefore, the element is meant
as an alternate member for the entire data model. All other elements are
descriptive elements for the ‘UOM’ element.

U3-2 Unit This element represents a real software component in the context of this
thesis that is equivalent to a unit of a class, component or service.

U3-3 Human
Readable
Content

This element describes the contents of a 'Unit', a 'Data', as suitable for
human element format.

U3-4 Machine
Readable
Content

This element describes the contents of a 'Unit', a 'Data' element as for
systems suitable format.

U3-5 Service
Information

This element defines a ‘Machine Readable Content’‘Data’ element which
is a service type. Therefore, it is an interface description (e.g., endpoint
and WSDL file). This element behaves disjointly to ‘Class’ and ‘Binary’
elements.

U3-6 BinaryData This element defines a ‘Machine Readable Content’ ‘Data’ element as a
binary type. This is the definition of binary files that do not comply with
the other descriptive elements (‘Class’ and ‘Service’). This element
behaves disjunct from the elements ‘Class’ and ‘Service’.

U3-7 ClassData This element defines a ‘Machine Readable Content’ ‘Data’ element as a
class type. This serves the definition of class files. This element behaves
disjunct from the elements ‘Binary’ and ‘Service’.

U3-8 Data This element is the most common element which is used to describe the
content of an available element.

U3-9 Audio This element is a 'Human Readable defined content' 'Data' element as the
audio type. This is the definition of audible ‘Audio’ data. This element
behaves disjunct from the elements 'Video', 'Document', 'Link' and
'Picture'.

U3-10 Document This element is a 'Human Readable defined content' 'Data' element as the
document type. This is the definition of readable documents. This element
behaves disjunct from the elements 'Video', 'Audio' and 'Picture'.

U3-11 Video This element is a 'Human Readable defined content' 'Data' element video
type. This serves to define foreseeable movie data. This element behaves
disjunct from the elements 'Document', 'Audio', 'Link' and 'Picture'.

U3-12 File-Links This element represents physical data of a file.
U3-13 Technology This element describes the basic technology, which is required by a

‘Technical Environment’.
U3-14 Programming

Language
Charactersitic

This element defines the language that has to be available in the runtime
environment.

Realised models

__
202

No. Element Description
U3-15 Component This element defines a ‘unit’ element as a component software unit.

U3-16 Class This element defines a ‘unit’ element as a class software unit.

U3-17 Service This element defines a ‘unit’ element as a service software unit.

U3-18 Snippet This element is a "unit" and is defined as a textual element software unit.
In this work, this type of software unit is out of focus.

U3-19 File Structure This element describes a file in a folder location
U3-20 Tec

Environment
This element is a descriptive element. It describes the technical
environment, which a "unit" element requires to be able to run.

U3-21 Picture This element is a 'Human Readable defined content' 'Data' element as a
picture type. This is the definition of foreseeable image files. This
element behaves disjunct from the elements 'Video', 'Audio', 'Link' and
'Document'.

U3-22 Folder
Structure

This element describes a folder structure

U3-23 Dependencies This element defines dependencies (e.g., other files, system files, or
settings)

 Link This element defines a ‘Human Readable Content’ ‘Data’ element as a
link type. This is used for the definition of document links to other
documents Note: This element is not used in the realised environment
and, therefore, not part of Figure 106.

Table 38 - Defintion of elemens of the technical view (U3)

Figure 85 shows the elements and their relations. These are defined as follows: the main

element of the technical view is the ‘UOM’ element. The main task is to hold the relations to

the other less technical views (see paragraph ‘Region Relations’ at the end of this chapter). It is

the entry point of the model. A ‘UOM’ represents the ‘Unit’ (U3(12)) in this part of the

model. This separation was made to simplify the model. The ‘Unit’ element represents the

technical viewpoint. It includes a unit type (equal to SCA types in Section 4.4.1.1) that is

represented by the elements ‘Snippet’, ‘Service’, ‘Class’ and ‘Component

(U3(215,16,17,18)). Also, a ‘Unit’ has a description for the runtime ‘Technolgy’

(U3(213)) that includes a description for the programming language ‘Characteristic’

(U3(1314)). The technology description is also used for the description of the ‘Technical

Realised models

__
203

Environment’ (U3(2013)) that is used as a ‘Dependency’ (U3(2313)) of ‘Files’

(U3(1223)). Also other files can be dependencies of existings files (U3(2312)). The file

association to the ‘Unit’ element is described by two different content types. The first one is the

‘Human Readable’ content (U3(23)). This content is represented by ‘Video’, Audio’ and a

‘Document’ element (U3(9,10,1,213)). The second one is the ‘Machine Readable’ content

(U3(24)). This is definied as a ‘Class’, ‘Binary Data’ and ‘Service Information’ element

(U3(5,6,74)). Basically, both content elements ‘Data’ elements (U3(83) and U3(84)) can

be represented by real files (U3(812)) with typical file properties. For the relation of files to

different SCAc models, the typical ‘File Structure’ and ‘Folder Structure’ is used if ‘Files’ has

to be described (U3(1912) and U3(2212)). These two elements are also related because of

the structure of files is part of the folder structure in this model (U3(1922)).

The last relation to be described is that a ‘Unit’ has a content definition described in the content

view region.

Figure 85 - Relevant elements of the area 3 – technical view (U-R3)

Realised models

__
204

To classify the different unit types, special attributes are part of the ‘Unit’ element. A ‘Snippet’

for example is changeable, extendable, under local control and not complete. A ‘Service’ is not

changeable, not extendable, not under local control and complete. A ‘Class’ is changeable,

extendable, under local control and complete. A ‘Component’ is not changeable, not

extendable, under local control and complete. Table 39 summarises theses classifications:

Attributes
 IsChangeable IsExtendable IsUnderLocalControl IsComplete

U
ni

t T
yp

es
 Snippet X X X -

Class X X X X
Service - - - X
Component - - X X

Table 39 - Classification of unit types

5.3.1.5. Region 4 “Content View”
The research area does not focus on a search for UOM. A software conctruction reuse process

requires the search for UOMs or SCAcs. Therefore, the realised model describes the description

of the content from a business and professional view. The description of more technical

perpectives (e.g., interfaces) is not provided by the model. Such information can be added by

using research results of other research (cf. Combination of semantic models in Parreiras,

2012). Table 40 describes the 15 elements that are used in the content view area.

No. Element Description
U4-
5

Content
Definition

This element is the main element of region U4-R4 (content view). It represents
the profeesional content of the ‘Unit’ element.

U4-
11

GUI This element defines a “Contentdefinition” element as a GUI type. The content
of the related unit is a user interface or contains user interface information.

U4-
14

Function This element defines a “Contentdefinition” element as a function type. The
content of the related unit is a set of functions.

U4-
12

Structure This element defines a “Contentdefinition” element as a structure type. The
content of the related unit is structured information, (e.g., an interface).

U4-
15

Data This element defines a “Contentdefinition” element as a data type. The content
of the related unit is data.

U4-
2

Subject This element is a substantive.

U4-
9

Verb This element is a verb.

U4-
3

Optional
Information
(Tags)

This element extends the content element with a set of subjects (Tags) and
provides keywords used for the search of a “Unit” element.

Realised models

__
205

No. Element Description
9 Synonym This element contains synonyms for substantives or verbs.
U4-
4

Subject -
Verb
Combination

This element is a relation between “Subjects” and “Verb” elements. This is
used to search for key substantive and verb pairs related to a specific software
unit.

U4-
7

Synonym
Relation

This is an extension point to other semantic models dealing with subject
synonyms.

U4-
8

Verb
Relation

This is an extension point to other semantic models dealing with verb
synonyms.

U4-
10

Synonym This element is the main element and represents synonyms in this model. All
other synonyms are related to this base class.

U4-
1

Subject
Synonym

This element represents synonyms for subject elements.

U4-
6

Verb
Synonym

This element represents synonyms for verb elements.

Table 40 - Defintion of elements of the content view (U4)

In the following, the relation between these elements will be explained and are shown in Figure

86.

Figure 86 - Relevant elements of the area 4 – content view (U-R4)

Realised models

__
206

The main element in this area is the ‘ContentDefinition’ element. It represents the professional

description of software unit content (U3(2U4(5))). A ‘ContentDefinition’ includes a simple

‘Subject-Verb’ combination (U4(54)) that includes a ‘Subject’ (U4(42)) and a ‘Verb’

(U4(49)). This relation is used to describe the content using two words. The

‘ContentDefinition’ element can be a ‘GUI’, ‘Structure’, ‘Data’, or ‘Function’ element (see

Section 4.4.1; U4(511,12,13,14)). This relation is combined with the ‘Verb’

(U4(11,12,13,14)9) to give a user the possibility to search for the content by using a

‘Substantive-Verb-ContentType’ relation. Also, a ‘Subject’ element can be described more

precisely using ‘Optional Information’ (U4(32)). Such textual information is part of the

‘ContentDefinition’ element (U4(53)). Also, the ‘SubjectSynonym’ and the ‘VerbSynonym’

have a relation to a relation element to other semantic models (‘Synonym-Model Relation’

element, (U4(67) and U4(47)). ‘Subject’ and ‘Verb’ elements can be expressed using

‘Subject synonyms’ elements (U4(21)) or ‘Verb synonyms’ (U4(96)). Both synonym

elements are based on the ‘Synonym Element’ (U4(101) and U4(106)).

This area includes some extension points to relate the model with other semantic models. The

‘Subject-Verb’ relation for example can be expressed by using other word-relations models

(U4(28) and U4(98)).

5.3.1.6. Region relations
The previous descriptions of the different regions of the model also include relations between

these regions. To create a non complex view on these relations, this paragraph shows them

seperatly.

The four areas shown in Figure 87 are related by using the ‘UOM’ and ‘Unit’ element. The

‘UOM’ element represents a non-technical element and, therefore, is connected to Region 1 and

Region 2. An ‘UOM’ has a ‘Problem’ description (U2(2U3(1))) and realises (by using the

‘Unit’ element) a solution for this problem (U2(1U3(1))). The ‘UOM’ element also has two

relations to region 1. An ‘Author’ as the creator of the software unit (‘UOM’,

Realised models

__
207

(U1(3(U3(1)))). The second relation is between the ‘UOM’ and the ‘Comment’ element. A

‘UOM’ can include comments (U1(12U3(1))). The ‘Unit’ element is a more technical

description of an ‘UOM’. It includes a relation to the ‘Content Definition’ element in region 4

(U3(2U4(5))). This extends a unit with the description of the professional content.

Figure 87 - Relevant relations between the different areas of the U-Model

5.3.2. 	Transformation	model	instance	
The concept description in Section 4.5.4.2 shows that SCAc models extend the fundamental U-

Model with SCAc specific information. In this section, the realised Transformation SCAc

model is explained. This includes the explanation of the elements, their relationship, as well as

the relationship to the existing Unit Model. Figure 88 shows these elements and their

conections:

Realised models

__
208

Figure 88 - Data model extension for transformation activities maintanance

In this area, the main link between the transformation model extension (called T-Model) and

Software Unit Model (called U-model) is defined. The central element of the T-model is the

‘Transformation Description (T1)’. It represents a complete transformation. The connection is

that one unit of the U-model has one or more T1 (U3(2T(1))). T1 describes a transformation

which again consists of (T(13)) several ‘Transformation Steps’ (T3). Furthermore, T1 has a

textual ‘Description’ element meant for human readers that describes the overall transformation

process (T2, T(12)). The last link of T1 is an ‘Output’ element of the last transformation step

(T4, T(14)), which is the result of the entire transformation.

T3 provides a transformation description, which means the execution of an application

transformation. T3 is, therefore, associated with the other three areas of the T-models (T(35),

Realised models

__
209

T(34), and T(36)). These represent the input (T5), the transformation application itself

(T6) and the result of T3 (T4).

5.3.2.1. 	Input	of	a	transformation	application	
The ’Input’ (T5) of a transformation application contains (T(57)) all necessary input

parameters (T7) and is used by (T(56)) this application (T6). An instance of T7 is described

by three relevant aspects. The first is the parameter structure (T8), whose (T(89,10)) syntax

name (T9) and syntax structure (T10) are defined by the transformation application (T6)

(T(86)). T8 and T10 are used by T7 (T(97), T(107)). The second relevant area concerns

the values to be entered in the parameters. In the context of this thesis, these are text values,

which are either freely definable values or defined by certain properties of files (U3-12,

U3(12T(11))) or structure information of files and folders (U3-19, U2-22, U3(19(11))),

which come from the software unit to be transformed. In addition, these values come from

properties of the technical environment (U2-20) which are required by the software unit (U3-2)

or the transformation (U3(20T(11)) and U3(223)).

5.3.2.2. 	The	transformation	application	
The actual transformation application (T6) is described by means of three relevant elements.

The first element is comprised of the input parameters (T5, T(56)). The next element is the

result of the performed transformation application (T(64 a and b), T4). The last element is the

application description (T12, T(612)). T12 includes the files and folders (T(12U3(19)),

which the application consists of, the dependencies from runtime environment (U3(1220)),

and the definition of the start file and the execution environment as attributes. This dependency

relation can be expressed by T(12U2(19)) also.

5.3.2.3. 	Transformation	result	
The result of a transformation application is represented by the area T4 in Figure 88. Essential

in context with the U-model is that T4 represents a software unit (U3-21) with missing

Realised models

__
210

additional files in the sense of the U-model (T(4U2(21))). Users can add other artefacts to the

result of a transformation, (e.g., documentation to create a new reusable software unit in the

sense of the U-model). This is done by reference to other software unit artefacts. T4 may have

dependencies, (e.g., files, system variables, etc.), defined by the application.

Each transformation step can have an output (T(34)). This output can used for later executed

transformation steps as input (T(45)).

5.3.3. 	Deployment	Model	instance	
The deployment model was created by analysing three different Web Service deployment

approaches. The study's test subjects consisted of the following three embedded device engines:

Advantys STB using the Sonata engine, Advantys STB using the Dynamic Deployment engine

and GX300 Gateway using OSGI Deployment (see Zinn et al., 2012a). In the following text,

the model shown in Figure 89 and Figure 90 is explained.

Figure 89 - Data model extension for deployment activities Part 1

Realised models

__
211

Figure 90 - Data model extension for deployment activities Part 2

5.3.3.1. 	Maintenance		
In this area, the main link between the model extension (D-model) and the model to extend (the

U-model) is defined. The central element of the D-model is the ‘Device Deployment

Description” (D1). It represents a complete focused device deployment. The connection is that

one unit of the U-model has one or more ‘Device Deployment Description’ elements. The

relation is realised by creating a ‘Device Deployment Externsion’ that is related to all ‘Device

Deployment Description’ elements (U25, U3(25D(1))). This extension is related to the

‘Extension’ element U3(2425) of a unit that relates to all SCAc related extensions (U23,

U3(224). Additionaly, D1 has a simple ‘Description’ element that describes the complete

deployment SCAc for the user search (D14, D(114)).

D1 describes a complete device deployment activity which again consists of several

deployment steps (D2, D(12)). Each of these steps has a ‘Manual Step Description’ meant for

human readers and describes the overall device deployment process (D3, D(23)). A D3 has a

‘Message Type’ (D(34)) that can be an ‘Information’, ‘Warning’ or a ‘Command’ element

(D(45,6,7)). A D3 has the attributes: ‘Order’, ‘Name’, ‘Text’. The order describes the order

of all messages. The name is used as a simple topic of the message and the text attribute

includes the text part of the message.

Realised models

__
212

An experienced user can describe the invocation step for each D2 D(28). This is an order for

the automation software or for the user in the manual step description. An ‘Invocation’ can be a

‘Start’, ‘Reset’ ‘Stop’, ‘Compilation’ or ‘Deployment’ element (D(89,10,11,12,13)).

5.3.3.2. 	Input	of	a	deployment	application		
Like a transformation SCAc, the focused deployment SCAc, also uses console-based

applications to deploy the software units to the devices. As a result, the input part of a

deployment model is similar to the transformation model. The Input (D15) is used by

‘Deployment Application’ (D16, D(1516)) and includes, for this application, several

parameters (D17, D(1517)).The ‘Parameter Values’ needed by the ‘Paramaters’ (D18,

D(1718)) have a ‘Parameter Structure’ (D19, D(1819)). This structure is simply defined as

‘Syntax Name’ (D20, D(19,20)) and (D(D21, D(19, 21))). Multiples of these simple parameter

pairs can be used by the ‘Paramater’ element (D9,10 7).

The input of a deployment step can be external files and deployment information. This

information can be represented by the parameters. External file information is expressed by the

relation (D15U3(19)) and (U3(12D(18))).

5.3.3.3. 	Deployment	application		
The output of a D2 is defined and created by the deployment application (D16, D(1623ab)).

This application depends on a ‘Technical Environment (U2(20), D16U2(20)). An application

has an ‘Application Description’ element (D22, D(1622)) that includes the technical

environment requirement of the application (D(22U2(20))) that can be used by the input of a

(D2 (D15D22)). The application description also defines external files and their file structure

that are necessary for the deployment process or step (D22U3(19)).

5.3.3.4. 	Result	of	a	deployment	SCAc	
The result of a single D2 (D(223)) can be used as input of the next D2 (D(2315)). From the

scope of the research, the deployment SCAcs output is not relevant. For future research in this

Realised models

__
213

area, it may be interesting to see software units executed on embedded devices also as reusable

software units.

5.3.4. 	Integration	model	instance	
The idea of this integration model was published by Zinn et al. (2011b). For the creation of this

model, the integration features of two IDEs (Visual Studio 2010 and Eclipse ‘Juno’) were

analysed. Additionally, it was proven how the result information can be related to the U-Model.

In the following, the realised integration model shown in Figure 91 is described.

Figure 91 - Data model extension for Integration activities

5.3.4.1. 	Maintenance		
In this area, the main link between the model extension (I-model) and the model which the

authors wish to extend (the U-model), is defined. The central element of the I-model is the

‘Integration Description’ (I1) that represents a complete integration. The connection is that one

‘Unit’ of the U-model has one or more I1 (U3(2I(1)). I1 describes an integration which again

Realised models

__
214

consists (I(12)) of several ‘Integration Packages’ (I2). Furthermore, I1 has a textual

description meant for human readers, and describes the overall transformation process (I3,

I(13)). The last link of I1 is the description of the focused IDE (I4, I(14)) into which the

different files have to be integrated.

I2 provides an integration of several files of a software unit. It is, therefore, associated with the

other two relevant elements of the I-model (I(25) and I(26)). These represent the input (I5)

and the integration output description (I6).

5.3.4.2. 	Input	of	an	integration	activity		
The input (I5) of an integration package contains (I(5U3(12)) all necessary files from a

software unit. This also includes the dependencies of these files (I(5U3(23)).

5.3.4.3. 	Result	of	an	integration	
The result (I6) of an integration package includes all files and dependencies defined in the input

(I5, I(5U3(12,23)). In addition this element may contain files and folders (described by U3-

12, I(6U3(12))) which are not part of the focused software unit. Each file will be described

by an integration pattern (I7, I(67)). This pattern includes different values:

- OnlyCopy (I8, I(78)): This copies a file without referencing it in the solution tree of

the project. This is necessary for second level dependencies that are not controlled by

the IDE environment.

- WebReference (I9, I(79)): This marks a file as a web reference. Different IDEs utilise

different methods for managing this information. For example, Visual Studio can use a

WSDL file to create a reference to a web service that is based on the corresponding

WSDL description.

- Reference (I10, I(710)): This copies a file and includes it in the solution tree of the

project. This is a traditional reference that can be included or imported. This is

necessary for managing the dependencies of a unit.

Usage concepts

__
215

- DoNotCopy (I11, I(711)): This prevents a file from being transferred into a project’s

environment. Not all the files that are included in a unit are necessarily required by the

IDE (e.g., documentation).

- InsertAsText (I12, I(712)): This flags the content of a file that is to be treated as text

when loaded into the IDE. This is useful for code references (using or import) and code

snippets.

- CopyAsResource (I13, I(713)): This flags a file to be used as a resource and includes

it in the project. (e.g., configuration files).

5.3.4.4. 	Integrated	development	environments	
The ‘Output’ information of the ‘Integration Package’ is used in an IDE. It is, therefore,

necessary to define the focused IDE. An ‘IDE’ (I4) has a simple ‘Product Name’, an ‘Endpoint

Description’ (I15, I(414)) and a ‘Technical Environment’ (U2-20, I(4U2(20))).

The ‘Endpoint Description’ is all the information needed to connect the Prometheus

environment to a specific IDE. The ‘Technical Environment’ is also used in the description of

files. From a semantic point of view, this node can be used to validate the compatibility

between a software unit and the platform of the IDE. The ‘Technical View’ part of the U-

Model includes the description of technology that can be used to describe the possible

technologies an IDE need to support for the integration (using the ‘Technical Environment’

element). Based on this information, the Prometheus environment may prove if such an IDE is

connected. This is possible by the relations of technology and platform characteristics described

in Figure 88.

5.4. 	Usage	concepts	
In this section, the usage concept of the realised Prometheus environment is shown. The aim is

to describe the different user profiles based on this realisation. This supports the understanding

of the experiment in the next chapter where this realised environment is used. Therefore, the

Usage concepts

__
216

Uses Cases (based on Section 4.4.3) will be discussed in more detail in the different related

sections. The usage concept is based on the information represented by the models described in

Section 5.3.

5.4.1. 	Focused	use	cases		
Figure 92 and Figure 93 extend Figure 49 with a complete Use Case scenario for the

Prometheus environment. This extension is related to the realised Prometheus environment. In

the following section, each Use Case (see Figure 93) and its relation will be explained.

Therefore, each case will be described by an activity diagram and the explanation of the user

interface used (if this was needed for the specific use case). Both (diagram and interface)

describe the behaviour and the UI of the used Prometheus environment. The used graphical

user interface was created in the scope of the research for the company Schneider-Electric. The

internal name for this project was ‘Corporate Repository’. The selected UI parts shown in this

chapter serve to aid the reader to understand technical descriptions and examples in the

following sections.

Note: Note: This graphical user interface is not part of the investigation of this work. The

research focuses on Prometheus as a service platform; therefore, the user interface shown is one

possible representation of the focused interaction.

Figure 92 - Focused stakeholder of the Prometheus environment

Usage concepts

__
217

Figure 93 - Use Case digramm for the focused Prometheus environment

Figure 92 shows the previously mentioned Software Engineer types, Knowledge User and

Knowledge Creator. In the realisation of the concept (cf. Chapter 4) in this chapter, the

Knowledge User is called ‘Reuser’ and the Knowledge Creator is separated into two

stakeholders. The first one is the Activity Experienced user. This stakeholder profile describes

an experienced user for one or more SCAcs. The second one is the UOM Experienced user who

knows one or more software units very well.

5.4.2. 	Knowledge	creator	profile	use	cases	
In Figure 93, the knowledge creator profile is used for two different profile characteristics. The

first is the UOM Expert user who describes a software engineering experienced user for a

Usage concepts

__
218

specific UOM. Such a person wants to provide his experienced user knowledge in the given

scenario. The second characteristic is the Activity Experienced user; such a person is

experienced user in one or more reuse activities (SCAc) and wants to share their experienced

user knowledge in the given scenario.

Note: For each use case, a user interface is required an example of the used user interface is

given. Because of it is a simple remove of data in a database. The use cases for deletion of

UOMs and activities are not described.

5.4.2.1. 	Use	case	1	–	create	UOM	
A software unit is created by a UOM Experienced user. For this, the Prometheus server

searches for connected repositories. The server determines whether the addition of information

into the repository is allowed. In the next step, the user can create a software unit. The system

asks for the following metadata. Note: See Section 5.3 for the underlying data model.

- Authors and responsible persons (e.g., name, surname, date of birth, contact

information): This metadata describes people (stakeholder) related to the software unit

(see Section 5.3.1).

- Name, type, content type and initial descriptions of the software unit.

These data are metadata that describe the component directly: specific descriptions of

the types (GUI, Function, Data and Structure) and the content type (class, component

and service) (see Section 5.3.1). Selecting a type realise Use Case 1.1, 1.2 and 1.3.

These Use Cases are not explaind seperatly in this thesis.

- Artefact affiliation: The artefact affiliation is used to determine which area of

responsibility the real software unit is in (e.g., logging). This is done by a simple

description by the experienced user.

Usage concepts

__
219

Figure 94 - Activity diagram for Use Case ‘UOM Creation’

After this initial creation, the software unit parts (files) can be inserted into the system. This

requires the following information for each UOM to be made (see UI in Figure 95):

- File information, (e.g., file name, file size, file extension (type), creation and

modification date).

- Prometheus metadata, (e.g., content type, packet affiliation; see Section 5.3.1).

- Additional metadata, (e.g., creation time, description; see Section 5.3.1).

This step is repeated for all files of a software unit. If the files already exist in another

repository, these can be linked by entering the download link or file transfer link into the file

element description. The artefact concept explained in Chapter 4 is used to create packages of

UOMs based on business content. Therefore, an artefact includes information that is equal to

the metadata of a UOM. Additionally, UOMs can be added to the artefact. Figure 94 shows the

use case as an activity diagram.

Note: Creating, editing or deleting an artefact is not part of this description. These handlings are

equal to the creation, editing and deletion of UOMS.

Usage concepts

__
220

Figure 95 - UOM creation UI

Figure 95 shows the user interface for generating UOMs.

Note: All UI elements of the wizard are shown in this figure. The wizard guides the user

through the different processes (e.g., UOM creation) and shows only necessary UI elements.

This is done to simplify the UI explanation.

First, the user has to select a repository to store the UOM information (1). In the next step, the

user selects an existing SCA or creates a new one (2). For the creation of a UOM, a user has to

enter the metadata for UOMs (3).

Figure 96 - File element creation UI

Usage concepts

__
221

Figure 96 shows the file element creation UI. This field is accessable (2) after selecting a UOM

in the selction area (1). Then all information shown about file elements in the U-model can be

entered (3).

5.4.2.2. 	Use	case	2	–	UOM	search	
This use case is used by two stakeholders. The UOM-Experienced user and the Reusers are

rarely able to search for a UOM (see Figure 97). Therefore, the user (1) defines keywords and

(2) starts the search by sending a search request:

Figure 97 - Activity diagram of use case ‘UOM SEARCH’

The use case is provided to users through a user interface. This focused interface is a web

application based on Silverlight (See Section 5.2.1.1) and can be accessed with a web browser

using a Unified Ressource Identifier (URL). The user is then able to specify their search terms

in a search box (1). By confirming the search button (2), the query is sent to the Prometheus

server. Figure 98 shows the elements of the search user interface.

Note: The other graphical elements in Figure 98 are typical of a content management system

and not relevant to this thesis. They are not explained.

Usage concepts

__
222

Figure 98 - User Interface for UOM search

5.4.2.3. 	Use	case	3	–	UOM	discovery	
This use case is used by an experienced user. This user has to confirm if the result of a search

contains a UOM which is suitable for his requirements (see Figure 99), Therefore, this use case

includes Use Case 2 “UOM Search” with the condition that the search request result contains at

least one UOM.

Figure 99 - Activity diagram of use case ‘UOM DISCOVERY’

The search results (found software units) are displayed in a compact form and can be shown in

a more detailed presentation as required. Figure 100 shows an example of the more detailed

representation. This includes both metadata about a unit, such as author and description, as well

as information on possible executable activities (e.g., download of software unit information

and SCA information).

Usage concepts

__
223

Figure 100 - Detailed presentation of a software unit

Figure 100 shows a detailed presentation of a software unit, where varied information is

presented. Based on this user interface, a user is able to:

- find out who created it and who is responsible for this software unit (1),

- read additional descriptions (3),

- analyse and download unit artefacts or additional documents (2) (4), and

- explore links to other kinds of content (e.g., web pages).

Based on this information, the user may be able to decide whether this element is useable or

not. The UI shown here is not used for UOMs or activity experienced users. These users use the

UI shown in Use Case 1 for creating and changing information. Therefore, they use the wizard

to select elements such as SCAs and UOMs.

5.4.2.4. 	Use	case	4	–	UOM	adaptation	
This use case is used by the experienced user. After the successful discovery of a UOM (Use

Case 3), a user (2) is able to change the metadata of a UOM or change other values (e.g., files,

Usage concepts

__
224

dependencies, etc.). The user (3) can decide to save these changes or (4) or ro cancel the

operation (see Figure 101).

Note: The selection of a UOM is not defined as a standalone use case.

Figure 101 - Activity diagram of use case ‘UOM Adaptation’

The user interface described in Use Case 2 is also used here (see Figure 100). By adding new

files or dependencies, a wizarad begins and this supports the user in adding information.

Figure 102 - Wizard to add new UOM file information

Usage concepts

__
225

Figure 102 shows the UI for editing a UOM. After selecting the UOM (1), the editing field can

be selected (2). After this, the metadata can be changed and other elements (i.e., file elements,

or SCAcs) can be created, removed or changed.

5.4.2.5. 	Use	case	6	–	activity	creation	
This use case is used by the Activity Experienced user. This user wants to create a reuse

activity.

Figure 103 - Activity diagram of use case ‘ACTIVITY CREATION’

Therefore, the user has to discover a UOM (Use Case 3), (2) create an activity by adding meta

information and additional file information and relating existing information of the UOM to the

new activity. The user (3) can decide at any time to cancel this use case or, (4) to save the new

activity to the UOM (see Figure 103). A wizard is, therefore, used to create an activity. After

the discovery of a UOM (see Figure 100), the user is able to click and add an activity. For each

activity model (see Section 5.3), one use case and a UI wizard is created.

Usage concepts

__
226

5.4.2.6. 	Use	case	6.1	–	integration	activity	creation	
For this use case, a wizard is used to generate an integration reuse activity; therefore, three

different UIs are used. In the first UI, different metadata can be entered by the user. In the

second UI, additional files, which are not part of the UOM, may be added. This UI is also used

to define how single files can be integrated into an IDE. The last UI is used to define the

compatible IDE environment.

Figure 104 - Main UI for integration activity creation

For the creation of an integration rule, a corresponding menu item (2) is provided including a

detailed user interface for software units (4). This is accessable after selecting an UOM (1).

Figure 104 shows the settings page for an integration activity. Besides specifying general

information (3), the user needs to specify the following information:

- The development environment where the data should be integrated (8)

- The UOM files for integration (5)

- The type of integration for each file (i.e., copy and specify reference) (5)

- The environment variables needed for the integration (7)

Usage concepts

__
227

- Optionally, one or more dependencies (e.g., external files) (6)

Note: Figure 104 shows the overview page.

In this study, the development environments Visual Studio and Eclipse were used as

experimental subjects. Therefore, appropriate extensions for the Prometheus environment were

developed. Accordingly, the user can select at this point between Visual Studio 2005, 2008 and

2010 and the Eclipse versions G4 and E5. The Prometheus environment compares the technical

description of the selected development environment with the appropriate requirements of the

selected software unit or integration rule and alerts the user of possible incompatibilities.

Note: The user is able to store integrate rules even if they are incompatible. This may be mainly

used for experimental trials within a project. KU users have to be informed about such

characteristics when they are selecting an integration.

After completion of the specification of integration rule or complete SCAc, it can be stored.

The user has to perform a test. The Prometheus environment does not recognise the error and

the user has to test and comment on the activities as successful or proven; the integration of

user profile for KU is then released.

This use case extends Use Case 6 by adding integration activity-specific steps. First of all, the

user (2a) has to set some metadata about the activity. In the next step (2b), the user can add

some additional files neccessary for the integration. After adding this information, the user (2c)

is able to define the integration types and environment settings for each integrateable file. In the

last two steps, the user (2d) can specify the integration environment that is able to handle the

integration result (2e) and describe the integration result with additional descriptions.

Usage concepts

__
228

Figure 105 - Integration steps

In creating an integration activity, the user may be supported by the Prometheus Predictive

Knowledge System. On the basis of existing knowledge of other integration-scale integrations,

the system is able to create suggestions for the additional integration rules (case bassed

reasoning). This system is not part of the thesis, however, a first publication was made as result

of the research of this Ph.D. thesis (cf. Zinn, Fischer-Hellmann and Schoop, 2012a).

5.4.2.7. 	Use	case	6.2	–	transformation	activity	creation	
This use case is realised by five different user interfaces sections. First of all, a Prometheus

server needs to know information about possible transformation tools. This is a step not

covered by the use cases shown in this thesis. The installation of the transformation tool is done

by a system administrator. Figure 106 shows the UI used for the research. In the first area

general information (e.g., name and platform technology) are entered by the user (1). In the

second area, the parameter value key (definied by the transformation activity model) used to

store all possible parameters and their value types (2). All entered parameters are shown in the

overview section (3),

Usage concepts

__
229

Figure 106 - Example of an UI for transformation tool setup

Figure 107 shows the main UI for the creation of transformation SCAc. Next to the general

information (1), the user can add transformation rules (2). Also, the user can set information

about the output of the transformation (3) which the user can define in an additional wizard (4).

Figure 107 - Main UI for transfromation activity creation

For the creation of transformation rules, the detailed user interface for software units provides a

corresponding menu item. Figure 108 shows the main settings UI for a transformation rule.

Besides specifying the name, the user needs to enter the:

Usage concepts

__
230

- Definition of the target technology, the required runtime environment, and general

metadata (1)

- Selection of appropriate transformation tools (2)

- Parameterisation of the transformation tools (3) based on the selected transformation

tool (2)

- Define the file output of the rule (4). This includes the description if the rule output is

used as input for other rules or as output for the transformation activity.

Figure 108 - Main User Interface for transformation rule creation

In the first step, the user gives it to the target technology and the required runtime environment.

Here, the user can choose from previously created target technologies and runtime

environments, or define the transformation environments by themselves. The system indicates

the potential for incompatibilities.

Usage concepts

__
231

Note: The user is able to store transformation rules even if these are incompatible. This may be

mainly be used for experimental trials within a project. KU users have to be informed about

such characteristics when they selecting an integration.

In the second step, the user selects a transformation application. It is also possible to insert new

transformation application information into the system. Therefore, a user has to specify:

- All the necessary parameters including different values of a single parameter

- The location and application path of a transformation application

- Additional input files (optional)

In the third step, the user sets the connection between the data (files) of the software unit and

the transformation applications. Also, the parameters needed by the tool for this transformation

process were configured.

In the fourth and final step, the user defines the result of the transformation rule which is, in the

case of a new software unit, based on the software unit model.

Figure 109 - Relevant UI areas of the transformation output definition wizard

Usage concepts

__
232

The UI for the definition of the final output of the transformation activity is summarised in

Figure 109. A user can set the metadata of the new UOM (1). This includes the UOM type (2).

Additionally, the user has to specify the files (4) (i.e., normal files or dependencies) (4) and

defines them as human readable or machine readable (3). This is necessary information based

on the U-Model.

Figure 110 shows the creation of a transformation activity as an activity diagram. Therefore, a

user (2a) adds meta imformation about the complete transformation activity. In the next step

(2b), additional files can be added that are neccessary for a transformation rule or the

transformation result. After this a user can create one or more transformation rules that are used

by the transformation activity. For each each rule, (2c1) metadata and (2c2) additional files can

be added. A user then selects the transformation tool (2c3).

Figure 110 - Transformation steps

After this selection, the user can describe the transformation input by linking the paramaters of

the transformation tool with values of UOM, additional files, previously transformation rules or

Usage concepts

__
233

selfdefined (2c4). For each transformation rule, (2c5) the transformation output (a new UOM)

has to be definied. After finishing all transformation rules, the user (2d) also has to define the

transformation activity output which is a new UOM. After completion, a transformation activity

can be saved. The user has to perform a test. As in the scope of integration here, the user has to

tell the system if this test was successful or not. After saving the transformation, it is then

available for KU profile users.

In creating a transformation, the user may be supported by the Prometheus Predictive

Knowledge System. On the basis of existing knowledge of existing transformation, the system

is able to create suggestions for the additional transformation rules. This system is not part of

the thesis, however, it is explained in a first publication (cf. Zinn, Fischer-Hellmann and

Schoop, 2012b).

5.4.2.8. 	Use	case	6.3	–	deployment	activity	creation	
This use case is realised by using two nearly the same interface as seen in Figure 106 and

includes two different steps. The first (1) step includes the input of meta information of a

deployment process (e.g., the name of the process). In the next step (2), all deployment steps

for this process have to be defined. Therefore, each deployment step requires the following

types of information (see also Section 5.3.3):

- Relating the files of the existing software unit to the single process step

- Adding additional files to the current process step

- Defining the deployment command (e.g., start, stop, etc.)

- Relating results of previously deployment process steps to the current process step

(optional)

- Definition of manual steps (optional)

- Defining the communication information for the specific device

Figure 111 shows the relation between the use case and the two sub steps.

Usage concepts

__
234

Figure 111 - Relevant steps for deployment activity creation

Figure 111 shows the creation of a deployment activity as an activity diagram. A user (2a) adds

meta information about the complete deployment activity. In the next step (2b), additional files

can be added that are neccessary for a deployment rule or the deployment result. After this, a

user can create one or more deployment rules that are used by the deployment activity. For each

rule (2c1) metadata and (2c2) additional files can be added. A user then selects the deployment

tool (2c3). After this, selection the user (2c4) can describe the deployment input by linking the

paramaters of the deployment tool with values of an UOM, additional files, previous

deployment rules, or self defined rules. For each deployment rule, the transformation output (a

new UOM) has to be definied which may need some manual orders by (2c5) the user (e.g.,

manual restart of a device).

After finishing all transformation rules, the user (2d) also has to define the deployment activity

output which is a new UOM.

Usage concepts

__
235

5.4.2.9. 	Use	case	7	–	activity	search	
This use case is used by the Activity Experienced user to search for an activity (see Figure

112). Therefore, the user can enter key words for searching (1) and start a search request of the

system (2; cf. Use Case 2). After discovering a UOM, the different activity information relating

to the selected UOM are useable.

Figure 112 - Activity diagram of the use case ‘ACTIVITY SEARCH’

The interface shown in Figure 98 is used for searching UOMs. After discovering a UOM, the

user can analyse the metadata of the existing activities. Figure 113 shows an example of search

key words. A user can enter key words into the search field (1) for search and (optional) enter

keywords for filtering the result. The system uses the search key words and also identifies

matching words in the SCAc. The system uses the information stored in the main U-model and

the related SCAc models as a search area.

Figure 113 - User Interface for activity search

Usage concepts

__
236

Both experienced user types can also use the wizard in the different creation and modification

use cases to ‘search’ for activities. Therefore, a UOM has to be selected and then the related

activities are displayed.

5.4.2.10. 	Use	case	8	–	activity	discovery	
An experienced user has to confirm that a result of a search contains an activity which is

suitable for his requirements. Therefore, this use case includes Use Case 7, Activity Search,

with the condition that the search request responds to at least one activity (see Figure 114).

Figure 114 - Activity diagram of the use case ‘ACTIVITY DISCOVERY’

The search results (found activities (cf. Figure 120)) are presented in a compact form, but can

be shown in more detail if required. This includes both the metadata of reuse activities such as

author and the description of activity results (e.g., the new software unit of a transformation

activity).

Figure 122 and Figure 125 show a detailed example of integration and transformation SCA

type. Based on these user interfaces, a user is able to:

- Find out who created this activity,

- Find out who is responsible for this activity,

- Read additional descriptions,

- Analyse and download unit artefacts or additional documents, and

- Explore links to other content (e.g., web page).

Usage concepts

__
237

Based on this information, the user may be able to decide whether this element is usable or not.

Experienced user who wants to modify data uses the other described UI.

5.4.2.11. 	Use	case	9	–	activity	adaptation	
This use case is used by the activity experienced user. After the successful discovery of an

activity (Use Case 8), a user is able to change the data of a reuse activity (2) or change other

values (i.e., files, dependencies, etc.). The user (3) can decide whether to save these changes or

(4) not to (see Figure 115).

Figure 115 - Activity diagram of the use case ‘ACTIVITY Adaptation’

For modification, the experienced user interface has to be used. By adding new files or

dependencies, a wizard starts and supports the user to add information. Figure 116 shows a

transformation activity. After selecting the repository, artefact and UOM, an existing SCA can

be selected (1). Based on the type of SCA, the relevant UI will be displayed (2). The user can

now change information (3). The UI is also used in Use Case 6.1, 6.2 and 6.3.

Usage concepts

__
238

Figure 116 - UI Wizard for UOM adaptation

5.4.3. 	Knowledge	user	profile	use	cases	
These use cases handle action for the Reuser stakeholder. This inexperienced user aims to gain

information about a UOM or activities. In addition, this user may want to execute a reuse

activity.

5.4.3.1. 	Use	case	11	–	UOM	information	retrival	
After reading the information of the UI, downloading data is the second means of gaining

information. Therefore, the actual software unit data (see Figure 117, left side ‘Implementation

Units‘), is distinguished from the data that describes the software unit (Figure 117, right side

‘Additional Data’). The user is able to download the individual files or is able to file together a

package to download. How a user then uses this downloaded data is not part of the Prometheus

environment. Additonally, the user can read shown information about a software unit.

Usage concepts

__
239

Figure 117 - UI for downloading UOM information

This use case depends on Use Case 3 and includes two sub-steps. The first (2) sub-step is the

‘reading’ of information. If the user (4) decides to download this information, this can be done

by requesting it (see Figure 117 and Figure 118). The selection of a download folder is not part

of this use case view.

Figure 118 - Activity diagram of the use case ‘UOM INFORMATION RETRIVAL’

Usage concepts

__
240

5.4.3.2. 	Use	case	12	–	activity	execution	
The execution of reuse activities is relevant in the scope of this work. This use case requires the

Use Case 8 to have been performed before. The user can execute a reuse activity selecting the

focused activity and pressing the execution button (2; see Figure 119). This sub-step depends

on the type of reuse activity. Therefore, this sub-step is realised by the Use Cases 12.1, 12.2 and

12.3.

Figure 119 - Activity diagram of the use case ‘ACTIVITY EXECUTION’

An activity can be executed by using the UOM overview user interface, including the activity

overview. Figure 120 shows the area where to find the stored SCAc (1). A selected SCAc can

be executed by pressing the execution button (2). It is also possible to execute an activity on the

detailed activity view in the UI (see Use Cases 12.1, 12.2, and 12.3).

Figure 120 - UI for activity execution (a) in UOM overview (b) in activity detail

Usage concepts

__
241

In the following section, the execution processes are explained as use cases, including a brief

discussion of the user interfaces used.

5.4.3.3. 	Use	case	12.1	–integration	activity	execution	
This use case enables a user to execute an integration reuse activity. Therefore, the user (2) has

to specify the service endpoint address. The system asks the user for this information. The user

(3) is also able to change the given configuration of the integration rules, but (4) this step is

optional. The integration will be executed automatically if the user (5) requests it by pressing

the execution button. If the Prometheus environment (6) discovers an inconsistency (e.g., the

given IDs and the specified IDs in the activity are not the same) it displays an alarm to the user.

Figure 121 shows the Activity diagram for this use case. The user interface used is

demonstrated in Figure 122. The result of this use case is an integrated software unit in a

specified IDE.

Figure 121 - Activity diagram of the use case ‘INTEGRATION ACTIVITY EXECUTION’

Usage concepts

__
242

Figure 122 - UI for integration activity execution

Figure 122 shows the information screen about an integration SCAc were it can be executed

(5). A user can find general information about the SCAc (1). The relevant information as for

example the required environment, the files, and the related dependencies can be reviewd (3).

Figure 123 - Configuration UI for IDE service endpoints

Usage concepts

__
243

Figure 122 shows especially the file section (4). The user can see the project and folder

structure for each file in the destination IDE. Additionally, the IDE for integration can be

chosen (2). Figure 123 shows the configuration UI for the IDE service endpoint. A user has to

specify a service endpoint and the IDE type. If the focused IDE is not the specified IDE in this

UI, the system will warn the user.

5.4.3.4. 	Use	case	12.2	–	transformation	activity	execution	
This use case enables an inexperienced user to perform transformation activities. Therefore, the

user has to select a transformation activity (Use Case 8). The user (2) is also able to change the

given configuration, for example, the transformation rules, but (3) this step is based on the

knowledge level of the user. Finally, the user (4) can perform the selected activity (the perform

button).

Figure 124 - Activity diagram of the use case ‘TRANSFORMATION ACTIVITY EXECUTION’

Usage concepts

__
244

The result of the transformation is a new software unit, one based on the software unit model. If

the Prometheus environment (5) detects an inconsistency (e.g., the given IDs and the specified

IDs in the activity are not the same), it displays an alarm to the user. The user (6) can download

the new unit after the transformation activity is completed sucessfully. Figure 124 shows the

Activity diagram for this use case. The user interface is demonstrated in Figure 125.

Figure 125 - UI for transformation activity execution

In the user interface shown in Figure 125, each rule of a transformation activity can be seen

seperately (3). This includes the information for each input file or parameter for each

transformation rule. Also, the result and additional information of the transformation can be

seen (2). The activity can be executed by pressing the ‘Perform’ button (1).

5.4.3.5. 	Use	case	12.3	–	device	deployment	activity	execution	
This use case enables a user to execute a device deployment reuse activity. After identifying the

correct activity, the user (2) has to specify the service endpoint address of a device. The system

asks the user for this information. The user (3) is also able to change the given configuration of

Summary

__
245

the deployment rules, but (4) this step is optional. The activity (5) will be executed

automatically if the user requests it by pressing the execution button. If the Prometheus

environment (6) identifies an inconsistency (e.g., the given IDE and the specified IDE in the

activity are not the same), it displays an alarm to the user. Figure 126 shows the activity

diagram for this use case. The result of this use case is a deployed software unit in a device.

Figure 126 - Activity diagram of the use case ‘DEVICE DEPLOYMENT ACTIVITY EXECUTION’

Note: The deployment plugin explained in this chapter is not used in the experiment described

in Chapter 6. The possible realisation with the presented Prometheus environment is published

by Zinn, Fischer-Hellmann and Schoop (2012a).

5.5. 	Summary	
Chapter 5 discusses a realised Prometheus environment. The environment uses an application

called Prometheus server. This server uses plugins to communicate to different elements of the

environment. Such elements are: a user client system, different repository system, and different

applications used to perform the focused software construction activities.

Summary

__
246

The communication technologies used between these elements are services, methods, and

process calls. This chapter explains the interfaces used. The plugin system is the major part of

the discussion about the extensibility of this system as well as the service communication.

The data types used in the service and other interfaces are related to the realised data models for

software units, transformation software construction activities, integration software

construction activities and device deployment software construction activities. These models

are relevant because the common view creates the focused approach. For the realisation of the

focused approach, typical existing technologies are used. The created environment is used in

Chapter 6 to perform a case study with different software engineers as participants.

 	

Evaluation and research result analysis

__
247

6. 	Evaluation	and	research	result	analysis	
This chapter describes the case study used for the thesis primary research. The aim is to identify

the effect of the realisation of the focused approach which supports software engineers by

performing SCAc. This description includes the research methods used to evaluate the focused

approach (cf. Chapter 4), using the realised Prometheus environment (cf. Chapter 5). The first

section describes the research theory and the related research methods. This includes the

scientific viewpoint and is focused on a practical case study. After the explanation of the case

study setup, including the case studies procedure and measurement model in the second section,

the analysis methods are explained in the third section. This chapter concludes with an

overview of the results of the case study and the consideration of the scientific viewpoint of the

first section.

6.1. 	Focused	case	study	and	scientific	viewpoint	
This chapter focusses on a case study supporting the primary research. To support the

understanding of the structure and methods used for the case study, this study is now briefly

described.

6.1.1. General	overview	about	the	case	study	
In general, the case study observes software engineers performing software construction

activities. Six experienced software engineers are measured by performing 12 SCAcs (2 SCAcs

for each engineer). The measured variables (i.e., time, task and knowledge resources) are

compared to the measured values of a group of 48 inexperienced software engineers (4

participants perform the same SCAc). This comparison shows the difference between

experienced and inexperienced software engineers in a normal working environment.

In the next step, the measured values of an additional group of 48 inexperienced software

engineers (4 participants perform the same SCAc) are compared to the other values measured

previously. In this case, these inexperienced software engineers used the realised approach (cf.

Evaluation and research result analysis

__
248

Chapter 5). Comparing these values to the others shows the differences between engineers

using the realisation of the focused approach and engineers in a normal working environment.

6.1.2. Scientific	case	study	theory	
The case study scientific basis is shown by using the discussion of Baxter and Jack (2008)

regarding qualitative case study methodology. In these discussions two different case study

approaches that guide case study methodology are analysed. The first one is proposed by Stake

(1995) and the second is proposed by Yin (2003 and 2006). Baxter and Jack (2008) use the

following conceptual structure in their analysis: Determining the Case/Unit of Analysis,

Binding the Case, Determining the Type of Case Study, Single or Multiple Case Study Designs,

Proposition, Issues, Conceptual Framework, Datasource and Database.

Note: In the following, the points determining the Case/Unit of Analysis, Binding the Case and

Determining the Type of Case Study will be discussed. The concrete realisation of the case

study including Single or Multiple Case Study Designs, Proposition, Issues, Conceptual

Framework, Datasource and Database is explained in Section 6.3.

Determining the Case/Unit of Analysis: The case study aims to analyse the difference between

supported and unsupported software developers who want to perform software unit reuse. As a

result the cases are scenarios including software developers with different knowledge levels

performing reuse of the same software unit. The unit of analysis is the behaviour of software

engineers in specific reuse scenarios.

Binding the Case: Following the analysis of Baxter and Jack (2008), it is relevant to determine

the boundaries for the case study. In this case, the place (Creswell, 2003), time and activity

(Stake 1995), and the context is relevant. The case study will be performed in normal

environments of software developers (see Section 6.3.1.1). The focus of the case study is set on

the reuse activities which should be done by the developers (see Section 6.3.1.4). The context

of the case study is software reuse of different sized software units of different contents and

types (see Section 6.3.1.4).

Evaluation and research result analysis

__
249

Determining the Type of Case Study: Based on Yin (2003) and Stake (1995), Baxter and Jack

(2008) explain typical types of case studies. Follow this explanation, the case study of this

thesis is a ‘multiple-case study’ (Yin 2003) which is also defined by Stake (1995) as

‘collective’. Such a case study type focuses on multiple case studies with different settings.

Hereby, the differences within and between the cases are relevant. In the focused case study

different scenarios are handled. The knowledge level of the software engineers, the reuse task

to do and the type of software unit will be changed. By comparing the results of the different

cases to the case study hypothesis, this hypothesis can be carefully discussed and proven.

6.1.3. Case	study	hypothesis	
The following theoretical statements are used as a hypothesis for the case study research:

1. SCAc knowledge/information can be stored in an environment and can be reused by

inexperienced users.;

2. Such a reuse produces a comparable (working) result as an experienced user in a

normal application area, but with a reduction in learning the required knowledge for the

specific SCAc or a comparable knowledge transfer task; and,

3. The inexperienced status of the user which relates with the specific SCAc does not

change.

The hypothesis focuses on a positive effect for software unit reuse by software developers if

developers are supported. After the case study result, a discussion of these 3 hypothetical

statements has to be proven.

In the following sections the methods and the structure of the case study is explained in detail.

6.2. 	Research	theory	and	methods		
The primary research focuses on the creation of a concept to enable inexperienced user to

perform knowledge based software construction activities. As primary source for evaluation an

experimental case study is used. In the beginning of this section the research type and theory is

Evaluation and research result analysis

__
250

explained. This includes the definition of context related terms and the definition in relation to

the research question. Tittenfick

6.2.1. 	Relating	focused	problems	and	research	question	
Firstly, a recap of the research question shown in Chapter 1: ‘How does one provide successful

reuse of different software units in the area of software construction considering the

possibilities of reusing and performing related software construction activities even if software

engineers do not have the required knowledge?’ This will be related to the discussed problems

of missing knowledge of software construction activities. Therefore, the relevant terms in this

question are explained in relation to the current context.

The research question aims to deal with the execution of reuse activities of different software

units (‘...successful reuse of different software units...’) by inexperienced software engineers

(‘even if software engineers do not have the required knowledge’). This means that a user has

an inadequate knowledge level in one or more of the focused software construction activity

areas. This research focuses on ‘software units’ (i.e., objects, components and services) which

should be successfully reused by undertaking such activities. In order to successfully reuse

(‘successful reuse’) a software unit, the problem of an inadequate knowledge level of SCAcs

has to be dealt with. As a result, all problem areas (i.e., knowledge required for specific

technologies, inadequate knowledge level of software engineers, and knowledge required by

distribution environment) discussed in Section 2.2.3.3 have to be limited or solved. This

includes the related sub problems discussed in Section 3.2. The focused ‘software construction

activities’ in this research are: integration, transformation, and device deployment of software

units (cf. Section 3.1).

Evaluation and research result analysis

__
251

6.2.2. 	Selected	research	type	
One objective of the research is to demonstrate the practical applicability of the focused

approach. To demonstrate the success or failure of this objective, a case study is used.

Following Creswell's (2009) discussion about qualitative, quantitative and mixed procedure

models, the case study has quantitative and qualitative elements, which will now be explained.

The measuring of data in the case study is quantitative. Thereby, one or more of certain

(predefined and classified) characteristics are measured and the results are combined and

discussed with the research aim. The number of participants and the analysis of the case study

results are quantitative. Based on limitations regarding participants (people with suitable

software engineering backgrounds), the number of measured participants is applicable to

perform the case study and to come to a conclusion. Therefore, the number of participants is

also seen as qualitative. However, this number is not to be considered applicable in general.

These means that the result of the case study cannot be used as a statement for each existing

software engineer or SCAc.

6.2.3. 	Used	research	theory,	methods	and	application	area	
Clarke (2005) states that a research model consists of a theory, related methods, and an

application area. In this thesis, the definitions made by Clarke (2005, Slide 21) are used for

these terms:

- “A theory is a set of interrelated constructs (concepts), definitions and propositions

(statements) that presents a systematic view of phenomena by specifying relations

among variables.”

- “Methods (a.k.a. techniques) are used to reveal the existence of, identify the ‘value’

significance or extent of, or represent semantic relationships between one or more

concepts identified in a model from which statements can be made.”

- “Application domains are defined as those substantive areas, examples, cases, that

theory and methods are applied.”

Evaluation and research result analysis

__
252

In the following, the above defined three elements will be explained focusing on the realisation

this thesis.

6.2.4. 	Theoretical	viewpoint	
The following theoretical statements are used as hypotheses for the case study research:

- SCAc knowledge/information can be stored in an environment and

- can be reused by inexperienced users.

- Such a reuse produces a comparable (working) result as an experienced user in a

normal application area,

- but with reduction of learning the required knowledge for the specific SCAc or a

comparable knowledge transfer tasks.

- The inexperienced status of the user which relates with the specific SCAc does not

change.

6.2.5. 	Methods	
To create a systematic view on the primary research, several methods have to be defined. These

methods are classified by the author as follows:

- Preparation methods: Methods supporting the preparation and setup of the study (e.g.,

identification of an experienced user in the application area).

- Measurement methods: Methods supporting the measurement and storing of values and

results.

- Analysis methods: Methods defining the rules for verification of results in context to

fulfil requirements and theory.

Following, the case study preparation and measurement methods will be defined and explained.

These methods are necessary to understand the complete measurement of values in the primary

research. The definition and explanation of the analysis methods follows in Section 6.4.1

Evaluation and research result analysis

__
253

Note: Only the transformation and integration SCAc are discussed for the methods used in the

case study. Due to limitations of the security the deployment SCAc is not investigated in the

practical part of the case study (cf. Section 6.4.2.3). But it is discussed in the result analysis

using the measured results of transformation and integration SCAcs for comparison. (cf.

6.4.2.3)

6.2.5.1. Preparation	methods	
For the theory and preparation of the case study two relevant preparation questions have to be

answered:

- How to identify a SCAcs and related software units? A method is required to show how

SCAcs and related software units were chosen.

- How to identify inexperienced and experienced users? A method is required to show

the processes and variables to separate users: the inexperienced and experienced user.

Following, the questions will be answered.

Method 1 (M1): The first method to explain is the identification method to identify reusable

software units. Software unit are necessary for the experiment. They have to be reused by the

use of different SCAc. Additionally, the SCAc depends on these units. The application area is

set in the global environment of the company: Schneider Electric. Inside this environment,

special software units exist and have to be reused in several projects and products. A software

unit typically belongs to one business unit area (e.g., power and industry) of Schneider Electric.

In the case study, software construction activities of such software units will be performed.

Two of the three focused SCAcs will be used for the case study. Therefore, software units were

identified by evaluating if the reuse of the provided software units included:

- at least one integration task for Eclipse or Visual Studio, and

- at least one transformation task for console-based transformation tools.

Both activities have to be repeated in the case study.

Additionally, following requirements have to be fulfilled:

Evaluation and research result analysis

__
254

- learning to perform integration or transformation should be made within several hours

(max 4 hours). This is based on time limits of the participants and the observer.

- documentation or examples for the SCAc have to exist inside the Schneider Electric

environment or in other accessible locations. This is necessary to give all participants a

chance to perform the activities.

- the software units have to be used in different vertical or horizontal projects. The

requirement refers to the development project scenarios discussed in Section 4.3.

The procedure to identify software units was to contact different business unit’s product

manager for software units to identify relevant software units and experienced users. The

experienced users were asked to explain different integration and transformation reuse activities

for their software unit. A software unit that fulfilled the selection requirements explained above

was inserted in a list of useable software units for the research.

Additionally, it was relevant to identify an experienced user for each software unit able to

perform the transformation or integration task manually (see next method M2).

Note: Four of the six software units were identified by proving internal repository information

about the software units. The overview information about the units contains the software unit

owner. These were asked to be the experienced users (cf. method M2) or if these people knew

of a potential experienced user. These users were asked for software units which fulfilled the

requirements. The other two software units were identified by asking the different product

owners (managers of software products of Schneider Electric) for software unit experts who

could identify potential software units.

Method 2 (M2): The next methods to explain are the identification methods to identify

inexperienced and experienced users, these methods are described below. Experience user a

necessary to

(1) identify SCAc for a software unit (see method M1),

(2) be measured as comparion to the values of inexperienced engineers

Evaluation and research result analysis

__
255

(3) to insert SCAc information into the Prometheus environment

For each software unit in the Schneider Electric environment, at least one responsible and

experienced software engineer exists. These engineers were asked whether they have already

reused the specific software unit several times, or could identify a potential experienced user.

The required experience has to include the use of a transformation and integration SCAc. If an

engineer answered the questions (for software unit, transformation and integration experience)

with yes this user was selected as an experienced user for one software unit the related SCAc. It

doesn’t matter whether the experienced user is the inventor of the software unit. For the case

study it is relevant to have a trained software engineer as a comparison to untrained engineers.

This can be used to show the difference between experienced and inexperienced software

engineers.

Method 3 (M3): Inexperienced users were identified by searching for software engineers in

actual software development projects inside all business units of Schneider Electric. The

primary research focuses on the support of software engineers with less experience of specific

SCAc reuse. Therefore, it was ascertained that each inexperienced engineer was not an

experienced user for one specific software unit, the related SCAc, the related technology and

related transformation tools or IDEs. For the identified software units, an SCAcs (cf. Section

6.3.1.4). It was relevant to identify engineers without experience or with less experience in Java

or .Net based software development. Depending on their answer it was relevant to identify if

these people also have less experience in Eclipse or Java software development kit for web

services (for inexperience in Java). For participants with less experience in .NET it was relevant

to identify users with less experience in IKVM, Visual Studio or .NET software development

kit for web services.

6.2.5.2. 	Measurement	methods	
The aim is to measure information that can be used to analyse if the realisation of focused

approach have an impact on users to perform SCAcs. To discuss this, it is necessary to measure

Evaluation and research result analysis

__
256

experienced users and inexperienced users performing SCAc reuse with and without (i.e.,

normal way of working) the realisation of the focused approach. The results are values that can

be compared to prove the theoretical statement in Section 6.2.4. Therefore, the measurement

methods will be described. For each identified problem area, the related knowledge problem

view discussion (cf. Section 3.2) is used to define the measurement methods (i.e., focusing

knowledge storing, knowledge learning, searching and receiving knowledge, knowledge

exchange and knowledge execution). The following question must be answered: How can the

impact of the focused approach for the focused problem areas be measured (including the

identified knowledge problems)? In the following the used method will be explained.

Method 4 (M4): The problem of knowledge storing includes the problem of identification,

access, and use of a repository. The previously identified experienced users (see method M2)

are observed in configuring an SCAc (i.e., insert of SCAc related information into the

Prometheus environment). This includes the measurement of identification, access, and use of

the Prometheus environment. This method measures only the time a user needs for this activity.

The information a user inserts in the system and the tasks the user completes are not relevant

for later analysis of the research. The method (M4) is performed by an observer and a system

(cf. the case study setup description in Section 6.3.1.2).

Method 5 (M5): This method is used to measure the effort of knowledge learning. This means

the time spent on knowledge ressources and the number of used knowledge ressources It

focusses the problem of multiple technology variations, multiple existing tools used in SCAcs,

and of knowledge interpretation. To be more precise, the method focuses on knowledge

resources used for learning.

This method is based on a comparison between users using the focused approach and not using

the approach. Both types of user are inexperienced. Therefore, for both user types, the time

spent for learning (i.e., time spent to use a knowledge resource), the success of the task (i.e., the

personal opinion of the participant of their success), and the number of used knowledge

Evaluation and research result analysis

__
257

resources will be measured. These measurements can be used to discuss the effect of the

realised approach on the problem of knowledge interpretation. This method is used while the

participants perform different SCAc with different software units and tool technologies to

measure values.

Method 6 (M6): This method measures the same values than the method M5 but has a different

focus. To measure the problem of searching and receiving knowledge this method focuses on

the related sub problems: the problem of localisation (for identification and access to a

repository) and the problem of the use of a search engine (different technologies and

component worlds, variations of SCAc related actions, existing tools used in SCAcs), and

search result analysis.

This method measures how long a user spent on knowledge resources on repositories. To

search for software units and SCAc related information.

Method 7 (M7): To measure the values focusing the problem of knowledge exchange no

special behaviour is necessary. It has to be measured if the inexperienced software engineer

created a valid value. Therefore, the experienced software engineer is used to determine if the

result created by the inexperienced software engineer is useful. Also it is measured how many

knowledge resources a participant has used.

Method 8 (M8): The problem of knowledge execution is focused on by using this measuring

method. Here, the complete task of the execution of an SCAc is relevant. Therefore, this

method measures the time needed, knowledge resources and tasks used to perform the SCAc.

Additionally the validation of method M7 is used to.

6.3. 	Case	study	setup,	procedure	and	measurement	model		
To explain the analysis methods it is first necessary to explain the case study setup. This

includes the application domain, the used infrastructure and the case study procedure model.

Evaluation and research result analysis

__
258

6.3.1. 	Application	domain	
The application domain is the environment of the company Schneider Electric. Schneider

Electric is a global company with ~160,000 employees and 7 business units (i.e., power,

datacenter, building, industry, life space, infrastructure and water). Actually, ~15,000 software

engineers are working in software development projects. These include device, desktop and

server level development projects. Inside this environment the case study is done. The

participants of the case study are software engineers from different business units. Therefore,

the typical office working environment of software engineers provided by Schneider Electric is

used. It is relevant for the study not to change the normal working environment to have

comparable initial situation.

Often, software development projects consist of different software engineers located on

different sites all over the world (cf. Qu, Ji and Nsakanda, 2012). The method M1 describes one

way to identify software units and experienced users inside this global scenario.

The technical setup of the case study is divided into three distinct areas: description of the

environment, description of the technical structure of the case study and the necessary elements

(i.e., software unit and SCAc) for the case study.

6.3.1.1. 	Description	of	the	environment	
The experiment was conducted at a German location of the company Schneider Electric

Automation GmbH (Address: Steinheimer Strasse 116, 63500 Seligenstadt, Germany) which is

part of the global Schneider Electric network. The company participated by providing

personnel from the site and from other locations, and the company intranet and the software

units/SCAc for the case study. The study itself was conducted in normal offices, which provide

a connection to the intranet sources (e.g., internal repositories) and internet sources (e.g.,

external repositories).

Evaluation and research result analysis

__
259

6.3.1.2. 	Description	of	the	technical	structure	of	the	experiment	
The technical design of the experiment is mainly a hardware and software infrastructure. Figure

127 shows this structure inside the Schneider Electric intranet. Six relevant elements are

involved.

Figure 127 - Experimental environment and setup

The first element is the intranet (1), which is used to connect the various elements of the

technical structure together. Additionally, it enables the communication to the internet (6). The

second element (2) is the connected databases including the software units and complete

information about the reuse activities. For the experiment, three databases are relevant:

- SOA4D - this is an open source repository including software units and further

information about device profiles for web services. This repository is based on Forge

technology and offers a web interface. This repository is not part of the Schneider

Electric intranet; it is placed on the internet.

- Prometheus Database - this is a specially developed repository. It belongs to the SCAc

approach of this thesis and uses a Microsoft SQL database and Microsoft SQL database

interface.

- Brick Cataloque and DDXML- These are Schneider Electric internal repository that

includes different reusable software artefacts.

Evaluation and research result analysis

__
260

The third element (3) in the case study setup is the server inside the Prometheus environment.

The server maintains information about software units and software construction activities in

the connected databases and makes this information available to the user. Finally the server

performs requested activities and presents the available results to users (see Section 5.2.1.2).

The fourth element (4) is a web page including a user interface through which the user can

communicate with the server. This web page is executed on a web server. This web server

contains a web application and provides the user an ability to query information from the server

or to perform SCAcs on the server. The basic technology of the Web application is Microsoft

Silverlight version 5.0. The web page is located and available via the company’s intranet. The

participants use a typical Schneider Electric laptop (5) including different IDEs and runtime

environments (i.e., Java and .NET) for software engineers. In addition to the computer network

environment, there is the possibility to use a telephone, the internet, voice, conversation or

literature. This is also part of the company’s infrastructure.

Figure 128 - Basic experiment scenario

This experimental setup allows for the working scenario shown in Figure 128. The participants

use the element (5) (office laptop) to view the normal working environment. Within this

environment, all necessary software applications are found in order to search for information on

the internet, information, or perform activities on the intranet as well as various communication

technologies (e.g., FTP, Skype, Telnet, etc.). Furthermore, participants can click the element (4)

Evaluation and research result analysis

__
261

(the web page) to access and use the Web application thereon to communicate with the element

(3) (Prometheus server). The Prometheus server performs SCAcs and communicates with the

databases that are marked as element (2).

6.3.1.3. 	Description	of	the	technical	setup	for	the	measurement	and	the	
fffdefinition	of	participant	groups	

Figure 129 - Overview measureable content

Figure 129 shows the interaction of the experimental setup and the ability to measure data. To

do so, there are two different (technical) possibilities. The first is the purely visual recognition

of the actions of the user. This does not require any technical measurement. The second

possibility is to measure the data storage of information. This is done using two elements of the

design of the experiment:

- Created requests: The Prometheus environment attracts all incoming server requests

and all activities undertaken. This information can also be queried after the end of the

experiment used for analysis.

- Database entries: The data and information generated within the databases through the

interaction of the user can be analysed.

In Section 6.3.3 the use of the described measurement techniques in the case study is explained.

Participant groups: There are a total of three participant groups: The first group (Group 1)

consists of so-called experienced users. These people are experienced users for one software

Evaluation and research result analysis

__
262

unit. For the selection of experienced users, method M2 is used. Altogether 6 experienced users

are necessary which are able to do one integration and one transformation activity (per user).

The second experimental group (Group 2) consists of 48 inexperienced software engineers

selected by using the method M2. The third group (Group 3) also includes 48 inexperienced

participants. For this group, the same rules for selection are used as for Group 2 (see

preparation method M1 Section 6.2.5.1).

Note: In the beginning of the case study video recording was planned to be used as support of

the measurement. But this was not permitted by the work council of Schneider Electric.

6.3.1.4. 	Software	units	and	software	construction	activities	
In the case study, six different software units are used. One integration and one transformation

software construction activity for each software unit is used in the case study. In this section the

software unit and the related software construction activities are briefly described:

Software Unit 1 – Device Profile for Web Service (DPWS; Java Stack): DPWS is a protocol

to extend the basic web services definition with the information required by electronic devices

(like footprint, performances, security and event driven messaging). The DPWS Java stack can

be found in the SOA4D repository (cf. SOA4D, 2012) and contains a set of 23 Java

components which are necessary for the different activities. The transformation software

construction activity uses IKVM as a transformation tool. Challenges are apparent when an

inexperienced user has to find the repository, access it, download the correct DPWS Java Stack,

find the IKVM repository, access it and download the IKVM. Next to the fact that an

inexperienced user has to find out the correct parameter for each Java component, this user has

to do this in the correct sequence. The sequence depends on the dependency hierarchy of the

Java components which has to be discovered beforehand. The second software construction

activity is the integration of the transformation result into a Visual Studio IDE. The challenge

for an inexperienced user is the dependencies created by the IKVM transformation. Special

Evaluation and research result analysis

__
263

files have to be copied in the project folder and, next to the transformed components; special

files have to be referenced by the Visual Studio project.

Software Unit 2 – Device Profile For Web Service (C++ Stack): The C stack of the DPWS

software unit contains several classes written in programming language C. It fulfils the same

functionality as the DPWS Java Stack. The challenges for integrating this software unit as a

source-code are the dependencies between the different classes and the setting in the project

environment. Regarding the transformation, the problem is to setup a special compiler with the

correct settings and prepare the correct file and folder structure. Based on the number of classes

and dependencies, these SCAcs are classified as ‘advanced’ compared to the Ecostructure Web

Service (EWS) and Log4Net/J software unit. The integration should be made with the same

source-code into the Visual Studio IDE. This software unit can also be found in the SOA4D

repository.

Software Unit 3 – EcoStrucure Web Service: The EcoStrucure Web Service is a common

data exchange web service enabling enterprise systems of different domains (e.g., industry and

building) to exchange information. The service is used between all business units of Schneider

Electric and external partners or customers. The challenge of this software unit is to create out

of the existing WSDL file and the specification running web service server and clients. Based

on the strict specification, knowledge is required to create a valid and consistent web service

server and client. If these implementations are not consistent, they are not able to communicate

to other EWS implementations. The SCAcs here are the transformation of the WSDL file to a

.NET client using the SVCUtil tool provided by Microsoft. The result of the transformation has

to be integrated regarding the correct dependencies of the .NET framework. As a test, the client

should be able to call one web operation of an existing EWS server. Based on the dependencies

of the WSDL file and the specification, the complexity of the SCAcs are classified as ‘middle’.

The EWS software unit can be found in the Schneider Electric intranet and the Prometheus

SQL repository.

Evaluation and research result analysis

__
264

Software Unit 4 – EcoStrucure We bService:This software unit is the identical EWS web

service. The SCAcs here are to create an EWS client in a Java software development kit

technology (transformation SCAc). The results have to be integrated into an Eclipse Java

project. The SCAc has the same complexity as the realisation in .NET.

Software Unit 5 – Log4Net: Log4Net is an open-source software unit providing logging

functionality. The source-code project contains only a few classes and one configuration file is

necessary. The SCAc for this unit is the integration of the classes into visual studio and the

compilation of the classes using the .NET compiler in a console call (transformation SCAc).

Based on the fewer dependencies of this software unit to other classes, libraries and settings,

these SCAcs are classified as ‘simple’. This unit is available on the Internet and the Schneider

Electric Brick Catalogue repository.

Software Unit 6 – Log4J: The Log4J is a Java based software unit and includes the same

functionality as the .NET variant. The SCAc here is the transformation of the single binary file

using IKVM. The result (including all IKVM dependencies) should be integrated in the Visual

Studio environment.

Table 41 lists all units used in the experiment.

Name /
ID

Description Tec/ Unit Type / Repository Integration effort /
Transformation effort

DPWS
/ SU1

Enable devices for
WS* profiles

Java / Component / SOA4D Advanced Visual Studio
Advanced IKVM

DPWS
/ SU2

Enable devices for
WS* profiles

C++ / Code/ SOA4D Advanced Visual Studio
Advanced C-compiler

EWS /
SU3

Web sService for data
exchange of business
between units

Soap-C# / Web Service /
Prometheus

Middle Visual Studio
Middle SVCUtil

EWS /
SU4

Web sService for data
exchange of business
between units

Java-Android / Web Service /
Prometheus

Middle Eclipse
Middle Java2SOAP

Log4J /
SU5

Logging functionality
for Java

.NET / Code / Brick Catalogue Simple Visual Studio
Simple IKVM

Log4Net /
SU6

Logging functionality
for .NET

Java / Component / Brick
Catalogue

Simple Visual Studio
Simple .NET
 Compiler

Table 41 - Case study software units

Evaluation and research result analysis

__
265

6.3.2. 	General	case	study	sequence	
The case study is used to prove the ability of the focused approach to support the inexperienced

user. Following, the case study procedure model used for the different directions is explained

briefly.

The basis for the case study demonstrated in this chapter is the explanation of the idea and the

concept of the new approach focused by this thesis in Chapter 4. In Chapter 5 one concrete

instance of the concept is explained and used for the case study in this chapter.

In principle, there are three different experimental groups performing seven different scenarios

for each SCAc. Table 42 describes each scenario.

Scenario Description Group
(1) Observation of
the experienced
users

The experienced users from group (1) perform transformation and integration
activities with the software unit and without using the focused approach.

(1)

(2) Collection of
software units and
activities

Each of the experienced users inserts the relevant information in the
Prometheus Environment and performs the SCAc using the focused approach.

(1)

(3) Validation of
Prometheus

The experienced users validate the results of the activities performed by using
the focused approach.

(1)

(4) Reuse activities
with Prometheus

In this scenario the participants of group (2) are asked to perform a
transformation or integration activity. Therefore, they use the focused
approach.

(2)

(5) Reuse activities
without
Prometheus

In this scenario the participants of group (3) are asked to perform a
transformation or integration activity. This group is not supported by the
focused approach.

(3)

(6)/(7) Validation of
the results

The experienced users validate the results of the activities performed by group
(2) and (3).

(1)

Table 42 - Case study scenario summary

In principle, the case study uses the procedure explained in Table 42. After identifying and

selecting an inexperienced user, experienced user, software units and related SCAc (method

MP1, MP2, and MP3), the experienced user is observed by performing a specific

transformation and/or integration activity without support of the Prometheus environment

(Scenario 1). Afters this, the experienced users are asked to enter the information into the

Prometheus environment and perform the same SCAc using the Prometheus environment

(Scenario 2). The experienced user validates the results of the SCAc performed by the

Prometheus environment (Scenario 3). If the result is valid, Group 2 is asked to perform the

Evaluation and research result analysis

__
266

same SCAc as the experienced user (Scenario 5). This is done without the support of the

Prometheus environment. Additionally, Group 3 is asked to perform the same SCAc using the

Prometheus environment (Scenario 4). The experienced user has to validate the results of

Group 2 and Group 4 (Scenario 6 and 7).

After performing all scenarios for all selected SCAcs, the measurement is done and the analysis

of the measured values and hypothetical values can be analysed to formulate a conclusion for

the primary research.

6.3.3. 	Measurement	and	experiment	results	overview	
In this section the measurement procedure of the case study will be explained. This includes the

definition of the measureable variables and the process of measuring.

6.3.3.1. Definition	of	variables	for	comparing	methods	
The results of the case study measurements are stored into variables. In addition, each variable

is assigned to name within the experiment and is used in one or more of the measurement

methods. In this section all variables are named and briefly presented. Table 43 explains the

different measurable variables in the different scenarios. The scenarios and the variables are

numbered. In Section 6.4.1.2, the different variables are used to explain the analysis rules and,

therefore, the relation between the variables.

Scenario
/ variable
Number

Value
type

Name: Description

(1)/(1) Time ActivityDuration: How long does it take an experienced user to perform a complete
activity? This variable contains a value that expresses how long the experienced user
needs for preparation and execution of an SCAc.

(1)/(2) Time TimeForKnowledgeResources: How long does an experienced user spend on
external knowledge resources? This variable describes the time needed to handle
different knowledge resources throughout the activity.

(1)/(3) Boolean ActivityCarriedOutSuccessfully: Has the experienced user completed the activity
successfully? This variable represents whether an activity was successful or not.

(1)/(4) List of
resources

UsedKnowledgeSources: What type of knowledge sources, the experienced user
handles to perform the activity? This variable describes the sources consulted such as
Google, a phone or an experienced user to perform the activity.

(1)/(6) List of
tasks

MadeSubTasks: What sub tasks have the experienced user made to perform an
activity? This variable collects all sub tasks done (e.g., open web page or download
software unit)

(2)/(1)
(input)

Time TotalInputDuration: How long does the experienced user require to enter all the
information into the Prometheus system? This variable contains a value of the

Evaluation and research result analysis

__
267

Scenario
/ variable
Number

Value
type

Name: Description

testimony of an experienced user on how long the whole process of entering all their
data needs.

(2)/(2)
(input)

Boolean SuccessfulEntry: Could the experienced user enter all the relevant information? This
variable tells us whether an experienced user could enter all the information about a
software module and complete activities in the system.

(2)/(3) Time ActivityDuration: How long does it take an experienced user to perform a complete
activity using the Prometheus environment? This variable contains a value that
expresses how long the experienced user needs for preparation and execution of a
SCAc.

(2)/(4) Time TimeForKnowledgeResources: How long an experienced user spent on external
knowledge resources using the Prometheus environment? This variable describes the
time needed to handle different knowledge resources throughout the activity.

(2)/(5) Boolean ActivityCarriedOutSuccessfully: The experienced user has completed the activity
successfully? This variable represents whether an activity was successful or not.

(2)/(6) List of
resources

UsedKnowledgeSources: How many knowledge resource are used to perform the
activity? This variable describes the sources consulted, such as Google, phone or an
experienced user to perform the activity.

(2)/(7) List of
tasks

MadeSubTasks: What sub tasks have the experienced user make to perform an
activity? This variable collects all sub tasks done (e.g., open web page or download
software unit)

(3)/(1) Boolean ResultIsValid: Is the result of an activity conducted by Prometheus equivalent to the
result of the same activity conducted by an experienced user? This variable indicates
whether the experienced identifies the result of his Prometheus activity as valid.

(4)/(1) Time ActivityDuration: How long does it take an experienced user to perform an activity?
This variable contains a value that expresses how long the experienced user needs for
the preservation of the task to perform the activity.

(4)/(2) Time TimeForKnowledgeResources: How long does an inexperienced user spend on
external knowledge resources? This variable describes the time needed to handle
different knowledge resources throughout the activity.

(4)/(3) List of
resources

UsedKnowledgeResources: How many knowledge resource are used to perform the
activity? This variable describes the sources consulted, such as Google, phone or an
experienced user to perform the activity.

(4)/(4) Boolean ActivityCarriedOutSuccessfully: Has the inexperienced user has completed the
activity successfully? This variable represents whether an activity was successful or
not.

(4)/(5) List of
tasks

MadeSubTasks: What sub tasks have the experienced user completed to perform an
activity?

(5)/(1) Time ActivityDuration: How long does it take an experienced user to perform an activity?
This variable contains a value that expresses how long the experienced user needs for
the preservation of the task to perform the activity.

(5)/(2) Time TimeForKnowledgeResources: How long an inexperienced user spent on external
knowledge resources? This variable describes the time needed to handle different
knowledge resources throughout the activity.

(5)/(3) Boolean UsedKnowledgeResources: How many knowledge resource are used to perform the
activity? This variable describes the sources consulted, such as Google, phone or an
experienced user to perform the activity.

(5)/(4) List of
resources

ActivityCarriedOutSuccessfully: Has the inexperienced user completed the activity
successfully? This variable represents whether an activity was successful or not.

(5)/(5) List of
tasks

MadeSubTasks: What sub tasks have the experienced user completed to perform an
activity?

(6)/(1)
(7)/(1)

Boolean ResultIsValid: Was the result created by the participants an valid result? The
experienced software engineer proof the results of Scenario 4 and 5 to be valid.

Table 43 - Overview variables of comparison methods used in case study scenarios

Evaluation and research result analysis

__
268

In general, the variables of Scenario 1 are used for the measuring methods MM5, MM6, MM7

and MM8. Therefore this scenario focuses on the problem of learning, search and receipt, and

execution of SCAc knowledge. Scenario 2 focuses on the problem of SCAc knowledge storing

and, therefore, the measurement method MM4. The second part of Scenario 2 focuses on the

measuring methods MM5, MM6, MM7 and MM8. Scenario 3 is a support scenario for

Scenario 5 and therefore supports the measuring methods MM5, MM6, MM7, and MM8

indirectly by proving the propriety of the Prometheus environment. Scenario 4 and 5 are equal

to Scenario 1 and support the same measuring methods. Scenario 6 and 7 validates the SCAc

results of scenarios 4 and 5. As a result, it supports the measuring methods MM5, MM6, MM7

and MM8 indirectly. Table 44 summarises this relationship between measuring methods and

scenarios.

 MM4 MM5 MM6 MM7 MM8
General
Support

Scenario 1 X X X X
Scenario 2 X X X X X
Scenario 3 X
Scenario 4 X X X X
Scenario 5 X X X X
Scenario 6 X
Scenario 7 X

Table 44 - Case study scenario related to measurement methods

6.3.3.2. Measurement	execution	process	
Section 6.3.1.3 shows different techniques which can be used to measure the previous discussed

variables. In the following description, the relation between variables and the measurement

technique is described.

In Scenario (1) seven variables are measured for each SCAc. The variable ActivityDuration is

measured by the human observer. Here, the observer measures the complete time the

experienced user needs to perform an SCAc manually. The experienced user defines the end

point of the task. The time is recorded in whole seconds. For the variable

Evaluation and research result analysis

__
269

TimeForKnowledgeResource the human observer notes the time a participant spent on

knowledge resources. The time is recorded in seconds. The variable UseKnowledgeSources is

measured by a human observer. The resources used are listed by source name and a type if

possible, e.g., co-worker, telephone and web page, Google (Web browser). The variable

ActivityCarriedOutSuccessfully is measured by the human observer. The participant is asked

after the completion of the activity if the work was finished successfully. The variable can only

be set to yes or no. The variable MadeSubTasks is measured by the human observer. Here, the

observer notes the progress of the entire task. The aim is to recognise different tasks and their

duration, (e.g., “00:10:41h user open web page”).

Note: The same variables are used in Scenario (2), Scenario (4) and Scenario (5).

In Scenario (2) three additional measurements are made: The variable TotalInputDuration is

measured by a human observer and measures the time an experienced user needs to enter all

information into the Prometheus environment. The observer records the start time point at

which they hand over the task to the experienced user. The end time is determined by the

finishing signal of the user. The observer notes this point in time. Time is measured in whole

seconds.

The variable SuccessfullEntry is measured with the human observer and the Prometheus

environment. First, the experienced user has to inform the observer about the successful use of

the environment. Secondly, the server in the Prometheus environment writes log files about

entries. The variable can only be set to yes or no and present the personal opinion of the

experienced user of completing the task.

In Scenario (3), (6) and (7) one measurement is made: The variable ResultIsValid is captured

by the type of measurement (1). The experienced user examines the results of the performed

SCAc from Scenario (3), (6) and (7) with the same activity carried out in scenario (1). It tells

the observer whether the result has the same value and is usable. The variable can only be set to

yes or no.

Evaluation and research result analysis

__
270

Note: The maximum time for a single activity is set to 4 hours. This is based on the fact that all

participants are volunteers and, therefore, perform this case study during their normal working

time.

6.4. 	Result	analysis	 	
This section discusses the results created by the case study and the primary research. The aim is

to measure the impact of the realised approach on the reuse of SCAc. Therefore, the case study

results will be compared using the different defined variables and scenarios.

The basis of these discussions is the results of the case study shown in Section 6.4.2, the related

properties of the fundamental concept discussed in Chapter 4, and the realised environment in

Chapter 5. This section also discusses the possible positive effect of the approach for

deployment software construction activities which are not part of the case study.

6.4.1. 	Analysis	methods	definition	 	
In this section the analysis methods will be discussed. This includes the definition of variables,

values and the statements for each variable measured by the different measuring methods. After

this, the statements for the comparison of different values of the same variable will be

discussed. At the end, the relationship between the variables and the resulting analysis

statements will be defined.

6.4.1.1. 	General	analysis	concept	
The case study creates a special analysis environment. An experienced software engineer and a

group of inexperienced software engineers are asked to perform software reuse in their normal

environment without the support of the Prometheus environment. This is done in the first

scenario (by the experienced user) and in the fourth scenario (by the inexperienced users).

Independent of the different variables and their value types, Figure 130 shows the expected

behaviour of the measured values. It is expected that the experienced user (red line) needs less

time, knowledge sources, and sub tasks to perform a SCAc than an inexperienced user (blue

Evaluation and research result analysis

__
271

line). By performing the same SCAc with the Prometheus environment (Scenario 2 and 5) this

will support experienced as well as inexperienced users and may be create values in the area A,

B and C (grey area).

Figure 130 - Estimated results of experienced and inexperienced user

Using this behaviour, the problem of exchange and users’ knowledge level can be discussed for

each reused SCAc type. Using the Prometheus environment may create better results than an

experienced user (A) or an inexperienced user (A, B). Also it is possible that a worse result than

an inexperienced user (C) or an experienced user (B, C). Using this analysis approach it can be

determined how the focused approach is working for one special SCAc regarding the same

knowledge to perform. This is called single view in the case study analysis.

The different scenarios are performed using different software units and different tools.

Therefore, the required SCAc knowledge differs between each single view. By comparison of

the measured values of scenario 1, 2, 4, and 5 for each single view, it can be estimated whether

the focused approach is feasible for different SCAc knowledge (e.g., information for setup or

parameters). This is called multiple views in the case study analysis.

In general, three results are expected. The first one is that all measured values are placed in the

combined area of A and B in Figure 130. In this case the approach shows that it can support

inexperienced software engineers by performing different SCAcs even if the engineers do not

have the required knowledge. From the perspective of McCarey, Ó Cinnéide and Kushmerick

(2008) a technique is identified to store and subsequently distribute reuse activity relevant

Evaluation and research result analysis

__
272

software unit knowledge among software engineers. The second is opposite to the first one. All

measured values are in the area of C in Figure 130. In this case, the focused approach creates no

added value for inexperienced software engineers. For the research itself, it only creates the

statement that the realised environment is not an adequate technique to limit the lack of

techniques mentioned by McCarey, Ó Cinnéide and Kushmerick (2008). The third result

variant is a mix of the first and second result type. In this case the different results have to be

analysed further. From the single view perspective it is necessary to prove if the focused

approach is supporting only one or some types of values (e.g., time, knowledge resources, or

sub task). Additionally, it has to be checked if the approach is supporting only one or a few

different SCAc knowledge (i.e., only transformation or integration) by analysing the multiple

view results.

6.4.1.2. 	Variable	value	definition	
The first variables to discuss are used in Scenarios 1, 2, 4, and 5. The time measuring variables

ActivityDuration and TimeForKnowledgeResources have no other special information than the

time. Their relationship is that TimeForKnowledgeResources is part of ActivityDuration. The

variable ActivityCarriedOutSuccessfully stated whether a single participant was able to finish

the task. This is not the validation of the task. The UsedKnowledgeSources variable states the

number of external (not the personal memory) knowledge resources. Together with the

variables MadeSubTasks and TimeForKnowledgeResources it can be declared how often and

how long a single knowledge resource was used. Additionally, MadeSubTask also shows how

many sub tasks were done for the whole activity.

In Scenario 3, 6, and 7 the variable Is Valid is used. Looking on this variable for its own

statement is relevant: the participant passed or failed to perform the SCAc.

For the input of values in Scenario 2 the variables TotalInputDuration, SuccessfulEntry and

MadeSubTasks are used. Looking only at one single measurement, the values produce simple

statements: A user needs a specific time to insert all information into the Prometheus

Evaluation and research result analysis

__
273

environment. This includes a number of specific tasks. An experienced user finished or did not

finish the activity, which is expressed by the variable SuccessfulEntry.

6.4.1.3. 	Comparison	of	different	measurements	
The next step in the analysis is the comparison of multiple instances of the same scenarios. In

the first step, the Scenarios 1, 2, 4, and 5 can analysed together. Basically, it can be determined

how long each participant needs to perform a given activity. Also the number of used

knowledge resources, number of performed tasks, and the time spent on knowledge resources

can be measured. Also average values can be calculated for each variable. For each participant,

a statement can be created that identifies the needed time and for tasks to be completed. The

same classification pattern can be used for MadeSubTask and UsedKnowledgeSources. Based

on this, a statement for each participant can be created identifying the needed for sub tasks and

knowledge resources for the given tasks. The content for the ActivityCarriedOutSuccessfully

variable is the number of participants who finished a special SCAc and how many did not finish

it.

Scenario 1 has the problem that only one experienced user for each SCAc performed this

scenario. As a result, there is no comparable participant for measurement. The other

experienced users performed other SCAcs. Scenario 4 and 5 can use this comparison. In

general, results under same conditions can be measured.

The problem of no comparability based on different SCAcs is also true for Scenario 2 (i.e., the

first three variables). All experienced users perform different a SCAc with different conditions

(e.g., the software unit has to enter the system or is already available). The only variable which

is useful in the current perspective is SuccessfulEntry. Thereby, a statement can be made as to

how many experienced users were able to insert the necessary information. This is also valid

for Scenario 3, 6 and 7. The statement here is only concerned about how many participants

created a valid result. This statement can be made from an SCAc independent or focus view for

each SCAc.

Evaluation and research result analysis

__
274

Table 45 shows the measurement results of a single participant performing one software

construction activity. Here, the participant needed 01:28:42h to perform an activity. Exactly

00:39:50h (i.e., 44, 91%) of this time is spent on the task to gain knowledge and information

about it. At least this participant uses 9 different knowledge resources and undertook 35

subtasks. The validation made by the experienced software engineer was made after the

participant successfully finished the activity.

Time needed KR Time KR used Sub Task
done

Success Valid

1:28:42 0:39:50 9 35 1 1

Table 45 - Summary of measured values of an SCA performed by a participant

In Table 46 an example for the preparation of an experienced software engineer in Scenario 2 is

shown. As explained before the time and number of made sub tasks are measured.

Time needed Success
0:40:31 1

Table 46 - Summary of measured values of a Prometheus preparation

Table 4647 shows the average values of one software construction activity performed by the

experienced user and both inexperienced user groups (cf. single view in Section 6.4.2.1). Here,

for each measured variable, the minimum, average and maximum value is calculated. The

maximum and minimum value is only discussed further in the analysis if a special value is

reached compared to other participants.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 1:00:00 0:05:46 0:33:00 0:06:18
Average time 1:27:27 0:06:12 0:33:00 0:06:18
Max time 1:38:17 0:06:18 0:33:00 0:06:18

Min KR 9,00 1 2 1
Average KR 9,80 1 2 1
Max KR 10,00 1 2 1

Evaluation and research result analysis

__
275

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min tasks done 33,00 5,00 33,00 6,00
Average tasks done 33,40 5,80 33,00 6,00
Max tasks done 35,00 6,00 33,00 6,00

Min KR time 0:39:50 0:04:39 0:09:00 0:04:39
Average KR time 0:44:34 0:04:39 0:09:00 0:04:39
Max KR time 0:46:16 0:04:39 0:09:00 0:04:39

Success/Valid 1/1 1/1 1/1 1/1

Table 47 - Average values example of a software construction activity

The multiple views can be created by using the average values of all single view results of the

same software construction activity type (e.g., transformation or integration). For this case

study this results in two different tables (i.e., average results for integration and transformation

software construction activities) which have the same structure as shown in Table 47.

6.4.2. 	Case	study	result	analysis	
In this section, the relevant results of the case study are shown and discussed based on the

analysis methods shown in the previous section. In the first part, the average values for each

software unit and the related SCAcs are explained (single view). After this an average view is

described focusing on integration and transformation SCAcs (multiple views). Finally the

relevant analysis results are discussed.

Note: A complete list of all measured values can be found in Appendix Section F

6.4.2.1. 	Single	view	analysis	
In this section the measured results for each software construction activity are shown and

discussed. The first example is discussed in more detail. For the others only average values are

shown. In the Appendix Section F the all measurements are summarised for each single SCAc

as shown in Table 47 and Table 48.

Evaluation and research result analysis

__
276

The DPWS Java stack was measured with a transformation and integration software

construction activity. For the transformation, the following values are measured.

 Time needed KR
Time

KR
used

Task
done

Success Valid

User M (1) 1:28:42 0:39:50 9 35 1 1
User M (2) 1:32:01 0:44:11 10 33 1 1
User M (3) 2:10:32 0:59:38 19 70 1 1
User M (4) 0:49:02 0:28:22 9 41 1 1

User P (1) 0:03:28 0:02:13 2 8 1 1
User P (2) 0:03:01 0:01:37 2 5 1 1
User P (3) 0:03:05 0:02:21 2 7 1 1
User P (4) 0:02:45 0:02:22 2 5 1 1

Expert M 0:13:21 0:03:43 3 25 1 1
Expert P 0:02:34 0:01:54 2 6 1 1

Table 48 - Measured values of each participant (DPWS4J transformation SCAc KR - Knowledge Resource)

Regarding the values in Table 48, the following statements can be made. For manual steps the

inexperienced software engineers needed between 0:49:02h and 2:10:32h to perform the SCA

while the expert required 0:13:21h. The difference is smaller between the software engineers

using the focused approach. Here, the time is between 0:02:45h and 0:03:28h. The

inexperienced users needed between 0:28:22h and 0:59:38h of the whole time to handle

between 9 and 19 different knowledge resources. Between 33 and 70 tasks were done by each

participant. The expert software engineer spent 0:03:43 minutes using 3 knowledge resources

and performing 25 tasks. Compared to the software engineers who used the focused approach,

the difference is apparent. Between 5 and 8 tasks were done by these participants and only 3

knowledge resource was used for 0:01:37h and 0:02:22h. The experienced software engineers

using the focused approach have comparable values. The values shown in Table 48 are

summarised to average values for further analysis (cf. Section 6.4.1.3) as shown in Table 49.

Evaluation and research result analysis

__
277

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:49:02 0:02:33 0:13:21 0:02:01
average time 1:30:04 0:02:51 0:13:21 0:02:01
max time 2:10:32 0:03:05 0:13:21 0:02:01

min KR 7,00 1 2 1
average KR 11,25 1 2 1
max KR 19,00 1 2 1

Min tasks done 33,00 5,00 25,00 4,00
average tasks done 44,75 5,75 25,00 4,00
max tasks done 70,00 7,00 25,00 4,00

Min KR time 0:29:22 0:01:48 0:03:00 0:01:54
average KR time 0:43:15 0:02:17 0:03:00 0:01:54
max KR time 0:59:38 0:02:37 0:03:00 0:01:54

Success/Valid 1/1 1/1 1/1 1/1

Table 49 - Average values of the DPWS Java transformation SCAc (KR Knowledge Resource)

As explained in Section 6.4.1.1 the expected value is between the experienced user and the

inexperienced user. Based on the average values of Table 49, Figure 131a shows that the values

of the experienced software engineer who performed this task manually as 100% (green line).

The values of the inexperienced software engineers who did the task manually are represented

as the maximum line (blue line). The values measured for the inexperienced engineers (red

line) and the experienced engineers (purple line) in Figure 131(b) (enlarged view of Figure

131a to identify values smaller 100%) show that the focused approach required fewer

knowledge resources, time and tasks to perform this SCAc.

Evaluation and research result analysis

__
278

Figure 131 - Average results for the DPWS Java transformation SCAc

Based on Figure 131, it can be stated that for the measured transformation SCAc of the DPWS

Java software unit unsupported inexperienced software engineers require more time (675%) to

perform the SCAc, spent more time (1157%) to use more knowledge resources (392%), and do

more tasks (179%) than an experienced user. On the other side inexperienced software

engineers supported by the Prometheus environment use less time (23%) to perform the SCAc,

spent less time (58%) to use less knowledge resources (67%), and do less tasks (25%) than an

inexperienced user without such support. A supported experienced software engineer uses the

same number of knowledge resources (2; 67%) but required subtly less time for the SCAc

(19%), time for knowledge resources (51%) and tasks (24%).

The integration of the transformed DPWS Java stack software unit results in the average values

is shown in Table 50.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:18:15 0:02:45 0:07:45 0:02:46
average time 0:28:09 0:02:59 0:07:45 0:02:46
max time 0:45:05 0:03:14 0:07:45 0:02:46

Min KR 6,00 1 4 3
average KR 7,25 2 4 3

Evaluation and research result analysis

__
279

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

max KR 9,00 3 4 3

Min tasks done 46,00 5,00 23,00 6,00
average tasks done 50,75 6,25 23,00 6,00
max tasks done 56,00 7,00 23,00 6,00

Min KR time 0:06:21 0:01:55 0:02:45 0:01:56
average KR time 0:12:30 0:02:23 0:02:45 0:01:56
max KR time 0:20:34 0:02:43 0:02:45 0:01:56

Success/Valid 1/1 1/1 1/1 1/1

Table 50 - Average values of the DPWS Java integration SCAc (KR Knowledge Resource)

The inexperienced software engineers needed on average 0:28:09h (363%) to perform the

activity. The unsupported experienced software engineer required 0:07:45h (100%) for the

same activity, and the engineers using the Prometheus environment needed significantly less

time. Exactly 0:02:59h (39%) was required by the inexperienced software engineer and 0:2:46h

(36%) by the experienced engineer. A similar picture can be identified by the time spent on

knowledge resources. The unsupported experienced software engineers spent 0:12:30h (455%)

on average while the experienced engineer with the same condition spent 0:02:45h (100%).

Compared to this the supported engineers spent less time. The inexperienced engineers took

0:02:23h (87%) and the experienced engineers took 0:1:56h (70%). The number of knowledge

resources used differs significantly between the unsupported engineers. Here, the inexperienced

engineers used 7.25 (181%) and the experienced engineer used 4 (100%). The supported

software engineers used only 2 (50%; inexperienced user) and 3 (75%; experienced user)

knowledge resources. The number of tasks done differs between the supported and unsupported

groups significantly. Inside the groups the differences are not so high. The unsupported

experienced engineer performed 23 (100%) tasks while the inexperienced software engineers,

50.75 (221%) on average. The supported groups use fewer tasks. The inexperienced groups use

6.25 (27%) tasks while the experienced engineer uses only 6 (26%) tasks.

Evaluation and research result analysis

__
280

Figure 132 - Average results for the DPWS Java integration SCAc

Figure 132a focuses on the relation between both unsupported groups. The inexperienced

engineer (blue line) needed more time, resources and tasks than the experienced software

engineer (green line), Figure 132b focuses on the difference between the unsupported

experienced software engineer (green line), the values if this person is supported (purple line),

and the inexperienced software engineers (red line) supported by the focused approach. Here, it

is shown that the focused approach supports all engineers by integrating the transformed DPWS

Java Stack. All participants fulfilled the activity successfully and created a valid result.

From the transformation SCAc point of view Table 51 shows the average values measured for

the DPWS C stack.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:25:36 0:02:26 0:21:34 0:02:01
Average time 0:33:14 0:02:57 0:21:34 0:02:01
Max time 0:41:13 0:03:17 0:21:34 0:02:01

Min KR 5,00 2 5 2
Average KR 12,00 2,5 5 2
Max KR 18,00 3 5 2

Min tasks done 19,00 5,00 10,00 7,00
Average tasks done 22,75 7,25 10,00 7,00
Max tasks done 26,00 8,00 10,00 7,00

Evaluation and research result analysis

__
281

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min KR time 0:16:23 0:02:05 0:07:21 0:01:54
Average KR time 0:23:48 0:02:27 0:07:21 0:01:54
Max KR time 0:29:52 0:02:47 0:07:21 0:01:54

Success/Valid 1/1 1/1 1/1 1/1

Table 51 - Average values of the DPWS C transformation SCAc (KR Knowledge Resource)

For the transformation task of the DPWS C stack, inexperienced software engineers needed

00:33:14h on average to perform the SCAc without the support of the Prometheus environment.

The experienced software engineer under the same conditions required 00:21:34h. Also the

values of the used knowledge resources differ. While the inexperienced software engineers use

12 knowledge resources on average, the experienced uses only 5. While the inexperienced

software engineers spent 00:23:48h of their time to use the knowledge resources, the

experienced user spent only 00:07:21h. The number of tasks done for the SCAc differs (average

view). Inexperienced software engineers needed 22.75 tasks and the experienced software

engineer needed 10 tasks for the SCAc. All participants without the support of the focused

approach were able to fulfil the SCAc and create a valid result. Figure 133a shows the

differences between the inexperienced (blue line) and the experienced (green line; 100%)

software engineers. On average, inexperienced software engineers require more time (154%) to

perform the SCAc, spent more time (324%) to use more knowledge resources (240%) and do

more tasks (228%) compared to the experienced user.

The integration activity of the DPWS C stack shows other values than the transformation

activity.

Evaluation and research result analysis

__
282

Figure 133 - Average results for the DPWS C stack transformation SCAc

By comparing the values of the experienced software engineer without the support of the

Prometheus environment to the inexperienced engineers with support, the following statements

can be made. The inexperienced software engineers require less time (00:02:57h; 14%), spent

less time (00:02:27; 33%) on more number of knowledge resources (2,5; 50%), and did similar

number of tasks (7.25; 73%). Figure 133b shows the experienced software engineer as 100%

line (green line) and the average values of inexperienced engineers with support (red line).

Comparing the values of the experienced software engineer using the Prometheus environment

and the average values of inexperienced engineers with the same support, the following

statements can be made. The experienced software engineer needed less time (00:02:01h; 9%)

for the complete SCAc and the use of knowledge resources (2; 40%). The number of tasks

performed is 7 (70%) than the inexperienced software engineers on average. This engineers

spent less time on knowledge resources (00:01:54h; 26%).

The measurement of integration SCAc for the DPWS C stack delivers the average values

shown in Table 52. These are discussed as follows.

Evaluation and research result analysis

__
283

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 1:10:03 0:02:45 0:37:56 0:02:23
Average time 1:25:39 0:03:07 0:37:56 0:02:23
Max time 1:42:04 0:03:20 0:37:56 0:02:23

Min KR 9,00 2 4 4
Average KR 14,75 2,25 4 4
Max KR 22,00 3 4 4

Min tasks done 15,00 7,00 20,00 7,00
Average tasks done 31,75 7,75 20,00 7,00
Max tasks done 53,00 9,00 20,00 7,00

Min KR time 0:37:17 0:01:30 0:04:24 0:01:16
Average KR time 0:51:01 0:02:06 0:04:24 0:01:16
Max KR time 1:06:10 0:02:22 0:04:24 0:01:16

Success/Valid 1/1 1/1 1/1 1/1

Table 52 - Average values of the DPWS C integration SCAc (KR Knowledge Resource)

The integration of the DPWS C stack shows a similar picture as the other measurements. The

inexperienced software engineers with the same conditions needed 01:25:39h (226%) on

average to fulfil the SCAc. The experienced software engineer needed 0:37:56h (100%). With

support, the experienced software engineer needed 0:02:23h (6%) and the inexperienced

software engineers needed 0:03:07h (8%) of time. The number of knowledge resources is the

same (4; 100%) for the experienced software engineer. The inexperienced software engineers

without support needed 14,75 (369%) knowledge resource on average. The inexperienced

software engineers with support needed 2,25 (56%) knowledge resources. The time spent on

the knowledge resources differs between all participant groups. While the unsupported

experienced software engineers needed 0:04:24h (100%) the inexperienced engineers with the

same conditions spent significantly more time (i.e., 0:51:01; 1160%) on knowledge resources.

The supported engineers require less time. The experienced engineers spent 0:01:16h (29%)

and the inexperienced software engineers spent 0:02:06h (48%) of time. All participants fulfil

their work and differ in the number of tasks. The inexperienced groups required 31.75 (159%;

Evaluation and research result analysis

__
284

without support) and 7.75 (39%; with support). The experienced engineer needed 20 tasks

(100%; without support) and 7 tasks (35%; with support).

Figure 134 - Average results for the DPWS C integration SCAc

The final statement for this integration SCAc is similar to the previously analysed

transformation SCAc. The approach supports inexperienced software engineers especially in

reducing the number of knowledge resources and the time spent on these resources.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:17:45 0:02:45 0:03:43 0:02:45
average time 0:22:02 0:03:12 0:03:43 0:02:45
max time 0:29:18 0:03:45 0:03:43 0:02:45

Min knowledge resource 5,00 2 3 2
average knowledge
resource 7,75 2 3 2
max knowledge resource 9,00 2 3 2

Min tasks done 12,00 5,00 7,00 4,00
average tasks done 22,75 6,50 7,00 4,00
max tasks done 36,00 9,00 7,00 4,00

Min KR time 0:09:31 0:01:48 0:02:07 0:02:03
average KR time 0:13:25 0:02:20 0:02:07 0:02:03
max KR time 0:16:58 0:03:02 0:02:07 0:02:03

Success/Valid 1/1 1/1 1/1 1/1
Table 53 - Average values of the Log4J transformation SCAc (KR Knowledge Resource)

Evaluation and research result analysis

__
285

The measured value of the Log4J software unit for the transformation SCAc values are shown

in Table 53. The unsupported inexperienced software engineers needed 0:22:02h (593%) and

fulfil 22.75 (325%) tasks. This includes 00:13:25h (634%) for 7,75 (258%) knowledge

resources on average. Figure 135b shows this (blue line) compared to the values of the

experienced software engineer (green line). These engineers needed 0:03:43h (100%) to

perform 7 (100%) tasks. 00:02:07h (100%) is used to handle 3 (100%) knowledge resources.

This is shown in Figure 135a. Figure 135b shows the measured values of this engineer and the

engineers supported by the focused approach. Regarding the time used for the activity and the

time spent on knowledge resources the difference between the three groups is not huge. This is

a difference to other transformation SCAcs. Another difference to other measured SCAcs is

that, on average, the inexperienced software engineers with support spent more time (0:02:20h;

110%) on knowledge resources (2; 67%) than the unsupported experienced software engineers.

The supported inexperienced software engineer needed 00:03:12h (86%) to perform 6,50 (93%)

task. The supported experienced software engineer performed 4 (57%) task but required only

0:02:45h (74%). This engineers spent 00:02:03h (97%) on 2 (67%) knowledge resources.

Figure 135 - Average results for the Log4J transformation SCAc

Evaluation and research result analysis

__
286

The results show that the focused approach supports inexperienced software engineers

significantly. In this example the differences between supported engineers and the unsupported

experienced software engineer are minimal.

A similar picture is shown by the integration SCAc of the Log4J software unit. Table 54 shows

the average values.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:12:34 0:02:32 0:03:56 0:02:15
Average time 0:31:22 0:02:47 0:03:56 0:02:15
Max time 0:49:34 0:03:07 0:03:56 0:02:15

Min KR 3,00 2 2 2
Average KR 11,00 2,75 2 2
Max KR 18,00 4 2 2

Min tasks done 7,00 4,00 7,00 5,00
Average tasks done 21,00 4,50 7,00 5,00
Max tasks done 39,00 5,00 7,00 5,00

Min KR time 0:06:44 0:02:11 0:02:15 0:01:45
Average KR time 0:15:49 0:02:34 0:02:15 0:01:45
Max KR time 0:21:03 0:03:02 0:02:15 0:01:45

Success/Valid 1/1 1/1 1/1 1/1

Table 54 - Average values of the Log4J integration SCAc (KR Knowledge Resource)

The differences between the unsupported groups are similar to other measured integration

SCAcs. The inexperienced software engineers required 0:31:22h (797%) to perform 21 (300%)

tasks. They spent 0:15:49h (703%) for 11 (550%) knowledge resources. The unsupported

experienced software engineer required 0:03:56h (100%) including 00:02:15h (100%) used for

2 (100%) knowledge resources. This engineer performed 7 (100%) tasks. The differences of

both unsupported groups are shown in Figure 136a. Here, the experienced engineer (green line)

required less time, knowledge resources, and performed fewer tasks than the inexperienced

engineer group (blue line).

Evaluation and research result analysis

__
287

Figure 136 - Average results for the Log4J integration SCAc

Figure 136b shows the differences between the unsupported experienced software (green line)

engineer and the supported engineers. The experienced software engineer supported by the

focused approach needed 0:02:15h (57%) and the supported inexperienced engineer groups

needed 0:02:47h (71%) on average. The unsupported experienced engineer needed 0:03:56h

(100%) which is more time than the supported engineers. In other measured values this differs.

The number of knowledge resources used is the same for experienced engineers; 2 (100%). The

inexperienced engineers without the support of the focused approach used 2,75 (138%) of

knowledge resources on average. Regarding the time spent on knowledge resources, the picture

also differs. The unsupported inexperienced software engineer spent 0:15:49h (703%). This is

significantly more than the other groups spent on knowledge resources. The unsupported

experienced software engineer spent 0:02:15h (100%). Also, 0:02:34h (114%) was spent on

such resources by the inexperienced software engineers with support by the focused approach.

These engineers needed more time than the experienced engineer. The time spent 0:02:34h

(114%) is more the time spent by the unsupported experienced software engineer. The

supported experienced software engineer needed less time (0:01:45h; 78%). The task done by

the supported experienced user is 5 (71%). For the experienced user without support the

number of tasks done is 7 (100%). Figure 136b shows 4.5 (64%) and 5 (71%) tasks done by

Evaluation and research result analysis

__
288

inexperienced and experienced software engineers with support. This is the first time the

inexperienced engineers used fewer tasks on average than the supported experienced engineer.

Figure 136a show that the unsupported inexperienced software engineers perform 21 tasks in

average. All participants were successful in finishing the activity and created a valid result.

The next SCAc to analyse is the Log4NET transformation SCAc. In Table 55 the average

values measured of this SCAc scenario are listed.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:21:02 0:01:59 0:12:35 0:02:02
Average time 0:25:06 0:02:29 0:12:35 0:02:02
Max time 0:28:31 0:03:05 0:12:35 0:02:02

Min KR 19,00 4 3 3
Average KR 26,25 5 3 3
Max KR 34,00 6 3 3

Min tasks done 34,00 6,00 9,00 4,00
Average tasks done 43,00 7,00 9,00 4,00
Max tasks done 49,00 8,00 9,00 4,00

Min KR time 0:16:36 0:01:34 0:05:56 0:01:50
Average KR time 0:18:56 0:01:54 0:05:56 0:01:50
Max KR time 0:21:02 0:02:21 0:05:56 0:01:50

Success/Valid 1/1 1/1 1/1 1/1

Table 55 - Average values of the Log4Net transformation SCAc (KR Knowledge Resource)

The most interesting values are related to the number of knowledge resources used. While the

unsupported inexperienced software engineers used 26.25 (875%) knowledge resources and

spent 00:18:56h (319%) of time, the unsupported experienced software engineer used only 3

(100%) knowledge resources in 00:05:56h (100%). The supported inexperienced software

engineer required more knowledge resources (5; 167%) but invested only 00:01:54h (32%) of

time. This is close to the experienced user supported by the Prometheus environment. This

person spent 00:01:50h (31%) and used 3 (100%) knowledge resources. The other values (i.e.,

task done and time needed) are similar to other transformation SCAcs. The unsupported

Evaluation and research result analysis

__
289

inexperienced software engineer required the most time (00:25:06h; 199%) and did the most

tasks (43; 478%). The unsupported experienced software engineer performed only 9 (100%)

tasks and required 00:12:35h (100%). The values of the supported engineers are not as high as

the values of the unsupported experienced engineer. For the time required for the whole tasks,

both are similar. The supported inexperienced software engineer required 00:02:29h (20%) to

perform 7 (78%) tasks while the supported experienced user required 00:02:02h (16%) and

performed 4 (44%) tasks. The unsupported engineers are shown in Figure 137 with the blue line

(inexperienced software engineers) and green line (experienced software engineers). The

supported engineers are represented by the purple line (experienced software engineers) and the

red line (inexperienced software engineers).

Figure 137 - Average results for the Log4Net transformation SCAc

The integration of the Log4Net software unit delivers a similar picture for the integration

SCAc. Figure 138 shows the inexperienced software engineers without the support (blue line),

the experienced software engineer with the same conditions (green line), the group of supported

software engineers (red line) and the supported experienced engineer (purple line).

Evaluation and research result analysis

__
290

Figure 138 -Average results for the Log4Net integration SCAc

The figure is based on the values shown in Table 56.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:14:45 0:02:31 0:06:54 0:02:29
Average time 0:19:13 0:02:52 0:06:54 0:02:29
Max time 0:24:09 0:03:05 0:06:54 0:02:29

Min KR 12,00 2 2 2
Average KR 16,25 2,5 2 2
Max KR 21,00 3 2 2

Min tasks done 24,00 6,00 7,00 6,00
Average tasks done 31,75 7,00 7,00 6,00
Max tasks done 39,00 8,00 7,00 6,00

Min KR time 0:12:48 0:02:02 0:05:06 0:01:56
Average KR time 0:15:39 0:02:21 0:05:06 0:01:56
Max KR time 0:17:23 0:02:46 0:05:06 0:01:56

Success/Valid 1/1 1/1 1/1 1/1
Table 56 - Average values of the Log4Net integration SCAc (KR Knowledge Resource)

The unsupported inexperienced software engineers needed on average 0:19:13h (279%) to

perform the activity. The unsupported experienced software engineer required 0:06:54h (100%)

for the same activity, and the engineers using the Prometheus environment needed less time.

Evaluation and research result analysis

__
291

Exactly 0:02:52h (41%) was required by the inexperienced software engineer and 0:02:29h

(36%) by the experienced engineer. A similar picture can be identified by the time spent on

knowledge resources. The unsupported experienced software engineers spent 0:15:39h (307%)

on average while the experienced engineer with the same condition spent 0:05:06h (100%).

Compared to this the supported engineers spent less time. The experienced engineers took

0:01:56h (38%) and the inexperienced engineers took 0:2:21h (46%). The number of

knowledge resources used differs significantly between the unsupported engineers. Here, the

inexperienced engineers used 16.25 (813%) and the experienced engineer used 2 (100%). The

supported software engineers used only 2.5 (125%; inexperienced user) and 2 (100%;

experienced user) knowledge resources. The number of tasks done differs between the

supported and unsupported groups not so much. The unsupported experienced engineer

performed 7 (100%) tasks while the inexperienced software engineers, 31.75 (454%) on

average. The supported groups use similar number of tasks as the unsupported experienced

engineer. The inexperienced groups use 7 (100%) tasks while the experienced engineer uses

only 6 (86%) tasks.

Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:18:09 0:02:10 0:09:08 0:02:46
Average time 0:22:37 0:02:39 0:09:08 0:02:46
Max time 0:26:12 0:03:01 0:09:08 0:02:46

Min KR 12,00 2 2 3
Average KR 14,75 2,5 2 3
Max KR 19,00 3 2 3

Min tasks done 19,00 6,00 7,00 7,00
Average tasks done 23,00 6,75 7,00 7,00
Max tasks done 28,00 7,00 7,00 7,00

Min KR time 0:15:03 0:01:50 0:05:06 0:02:16
Average KR time 0:17:36 0:02:02 0:05:06 0:02:16
Max KR time 0:21:11 0:02:13 0:05:06 0:02:16

Success/Valid 1/1 1/1 1/1 1/1

Table 57 - Average values of the EWSJ transformation SCAc (KR Knowledge Resource)

Evaluation and research result analysis

__
292

In Table 58 the measured values for the transformation SCAc of the EWS J transformation are

shown. An interesting point is that the supported experienced user required more knowledge

resources (3; 150%) than the supported inexperienced software engineer (2.5; 125%). The

unsupported experienced engineer required fewer knowledge resources (2; 100%). Focusing on

the time spent on knowledge resources, the picture changes. While the supported inexperienced

engineers spent only 00:02:02h (40%), the experienced software engineer with the same

constraints spent 00:02:16h (44%). The unsupported experienced engineer spent more time on

knowledge resources (00:05:06h; 100%). The unsupported inexperienced software engineer

spent more time (00:17:36h; 345%) and used more knowledge resources (23; 738%) than the

unsupported software engineer. The number of tasks is in thefollowing order. The unsupported

inexperienced software engineers performed 23 (329%) tasks and performed them in 00:22:37h

(248%). The unsupported software engineer spent 00:09:08h (100%) to perform 7 (100%)

tasks. The supported engineers required less time. The inexperienced group required 00:02:39h

(29%) and performed 6.75 (96%) tasks. The experienced software engineer spent 00:02:46h

(30%) (which is more than the average of the supported inexperienced software engineer) to

perform the same number of tasks as the unsupported experienced engineer (7; 100%).

Figure 139 - Average results for the EWSJ transformation SCAc

Evaluation and research result analysis

__
293

Figure 139 shows the blue line (inexperienced software engineers) and the green line

(experienced software engineers). The supported engineers are represented by the purple line

(experienced software engineers) and the red line (inexperienced software engineers).

Table 58 shows the results measured for the integration of the EWS software unit (Java

technology).

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:26:54 0:02:10 0:15:03 0:02:51
Average time 0:39:36 0:02:31 0:15:03 0:02:51
Max time 0:53:23 0:02:54 0:15:03 0:02:51

Min KR 9,00 2 4 4
Average KR 14,25 2,5 4 4
Max KR 23,00 3 4 4

Min tasks done 7,00 6,00 7,00 5,00
Average tasks done 34,00 6,50 7,00 5,00
Max tasks done 52,00 7,00 7,00 5,00

Min KR time 0:18:03 0:01:45 0:05:06 0:01:54
Average KR time 0:24:05 0:02:08 0:05:06 0:01:54
Max KR time 0:29:05 0:02:31 0:05:06 0:01:54

Success/Valid 1/1 1/1 1/1 1/1

Table 58 - Average values of the EWSJ integration SCAc (KR Knowledge Resource)

The group of inexperienced software engineers required 00:39:36h (263%) on average. When

compared to the unsupported experienced software engineer, they needed more time and

required 00:15:03h (100%). The supported experienced engineer spent 00:02:51h (19%) and

the supported inexperienced software engineer spent 00:02:31h (17%). Compared to the

unsupported experienced software engineer, this is significantly less time.

The unsupported inexperienced software engineer performed 34 (486%) tasks and the

experienced software engineer with the same conditions performed 7 (100%) tasks. Compared

to this time required, the supported software engineer performed fewer tasks to perform the

SCAc. The inexperienced engineers also performed 6.5 (93%) tasks while the experienced

Evaluation and research result analysis

__
294

engineer performed 5 (71%). The same order, but with fewer intervals, can be identified for

time spent on knowledge resources. The inexperienced software engineer without support spent

00:24:05h (472%) on 14.25 (356%) knowledge resources (on average). The unsupported

experienced software engineer spent only 00:05:06h (100%) on 4 (100%) knowledge resources.

The supported inexperienced software engineer uses the same number of knowledge resources

(4; 100%) but spent only 00:01:54h (37%). The supported inexperienced software engineer

used only 2.5 (63%) of knowledge resources and spent 00:02:08h (42%) in total. Figure 140

shows the described values in graphical form. The unsupported engineers are shown with the

blue line, the inexperienced software engineers and the green line for experienced software

engineers. The supported engineers are represented by the purple line, the experienced software

engineers, and red line for inexperienced software engineers.

Figure 140 - Average results for the EWS J integration SCAc

The final software unit is EWS (.NET). In the following, the integration and transformation

SCAc of this unit will be described. Table 59 shows the average values for the integration

SCAc.

Evaluation and research result analysis

__
295

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:26:54 0:02:10 0:09:08 0:02:01
Average time 0:33:21 0:02:32 0:09:08 0:02:01
Max time 0:41:56 0:02:54 0:09:08 0:02:01

Min KR 4,00 2 4 2
Average KR 5,00 2,5 4 2
Max KR 6,00 3 4 2

Min tasks done 7,00 5,00 7,00 4,00
Average tasks done 19,50 5,75 7,00 4,00
Max tasks done 52,00 7,00 7,00 4,00

Min KR time 0:04:08 0:01:45 0:05:06 0:01:54
Average KR time 0:14:47 0:02:08 0:05:06 0:01:54
Max KR time 0:29:01 0:02:31 0:05:06 0:01:54

Success/Valid 1/1 1/1 1/1 1/1

Table 59 - Average values of the EWS .NET integration SCAc (KR Knowledge Resource)

The differences between the unsupported groups are similar to other measured integration

SCAcs. The inexperienced software engineers required 00:33:21h (365%) to perform 19.5

(279%) tasks. They spent 00:14:47h (290%) for 5 (125%) knowledge resources. The

unsupported experienced software engineer required 00:09:08h (100%) including 00:05:06h

(100%) used for 4 (100%) knowledge resources. This engineer performed 7 (100%) tasks.

Figure 141 - Average results for the EWS .NET integration SCAc

Evaluation and research result analysis

__
296

The differences of both unsupported groups are shown in Figure 141a. Here, the experienced

engineer (green line) required less time, knowledge resources and performed fewer tasks than

the inexperienced engineer group (blue line).Figure 141b shows the differences between the

unsupported experienced software engineer (green line) and the supported engineers. The

experienced software engineer (purple line) supported by the focused approach needed

00:02:01h (22%) and the supported inexperienced engineer groups (red line) needed 00:02:32h

(28%) on average. The unsupported engineer needed 00:09:08h (100%) which is more time

than the supported engineers. In other measured values this differs.

The number of knowledge resources used, is for experienced engineers 2 (50%). The

inexperienced engineers without the support of the focused approach used 2.5 (63%) of

knowledge resources on average. Regarding the time spent on knowledge resources, the picture

is similar. The unsupported experienced software engineer spent 00:14:47h (290%). This is

significantly more than the other groups spent on knowledge resources. The unsupported

experienced software engineer spent 00:01:54h (100%). A total of 00:02:08h (42%) was spent

on such resources by the inexperienced software engineers with the support of the focused

approach. These engineers needed more time than the experienced engineer. The supported

experienced software engineer needed less time (0:01:54h; 37%).

Figure 142 - Average results for the EWS .NET transformation SCAc

Evaluation and research result analysis

__
297

The completed tasks done by the experienced user with support was 4 (57%) and 5.75 (82%)

for the inexperiened engineers).

The last SCAc is the transformation of the EWS (.NET). Figure 142 shows the measured

values.The most interesting point is that the unsupported experienced software engineer spent

less time 00:01:10h (100%) on knowledge resources and used fewer knowledge resources (2;

100%) as the supported inexperienced engineer. This person used 2.25 (113%) knowledge

resources and spent 00:02:29h (213%). The supported experienced software engineer spent

00:02:45h (236%) and used 2 knowledge resources (100%). Regarding the total time spent and

the taskperformed, the picture changes. Here, the supported engineers required less time and

did fewer tasks. While the unsupported experienced software engineer (100% line) needed

00:05:13h to performed 9 (100%) tasks the same person with support required only 00:03:04h

(59%) to perform 7 (78%) tasks. The supported inexperienced software engineer required (on

average) the minimum time (00:02:52h; 55%) to perform 5.5 (61%) tasks. As in the other

SCAcs the inexperienced software engineer without support needed the most time (00:21:07h;

405%) and performed 31.75 (353%) tasks. This includes 00:17:34h (1505%) of time spent on

knowledge resources and 31.75 (950%) on tasks. Table 60 includes these average values.

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min time 0:16:00 0:02:43 0:05:13 0:03:04
Average time 0:21:07 0:02:52 0:05:13 0:03:04
Max time 0:26:45 0:03:05 0:05:13 0:03:04

Min KR 15,00 2 2 2
Average KR 19,00 2,25 2 2
Max KR 22,00 3 2 2

Min tasks done 25,00 2,00 9,00 7,00
Average tasks done 31,75 5,50 9,00 7,00
Max tasks done 42,00 8,00 9,00 7,00

Evaluation and research result analysis

__
298

 Inexperienced
User
Manual

Inexperienced
User
Prometheus

Experienced
User
Manual

Experienced
User
Prometheus

Min KR time 0:14:23 0:02:17 0:01:10 0:02:45
Average KR time 0:17:34 0:02:29 0:01:10 0:02:45
Max KR time 0:21:34 0:02:45 0:01:10 0:02:45

Success/Valid 1/1 1/1 1/1 1/1

Table 60 - Average values of the EWS .NET transformation SCAc (KR Knowledge Resource)

6.4.2.2. Multiple	view	analysis	
In the multiple view analyses, all complete software construction activities for transformation

and integration are compared. As a result, statements for the two types of SCAcs can be made.

Additionally, both SCAc types can be compared based on analysis.

The measured values of the six software units and their transformation SCAc can be

summarised as follows (cf. Figure 143a). From the average point of view in transformation

software construction activities, inexperienced software engineers without support needed

379% of time compared to an experienced software engineer (100%). An inexperienced

software engineer using the Prometheus environment needed 38% of the time.

The time spent on knowledge resources by supported inexperienced software engineers is 81%

of the time that the experienced software engineer without support spent. The inexperienced

software engineers spent 714% of time compared to the supported experienced engineer. Also

the number of used knowledge resources is different. While supported engineers used fewer

knowledge resources (98%), the experienced software engineer without support used

significantly more knowledge resources (575%). Figure 143a shows this with the blue line (not

supported inexperienced software engineers), red line (supported in inexperienced software

engineer), green line (supported experienced software engineers), and the purple line

(supported experienced software engineer).

Even though it is not in the scope of the research, results shows that an experienced software

engineer can also be supported by the focused approach in performing transformation activities.

Evaluation and research result analysis

__
299

However, these differences are not as significant as the difference between inexperienced

software engineers with and without support. Regarding the tasks done the differences are not

so high. Inexperienced software engineers without support perform 173% of tasks. Here, the

unsupported experienced engineer is at the 100% mark. The supported inexperienced engineers

perform 76% of tasks in comparison to the 100%.

Based on the results, the inexperienced software engineers are supported by the focused

approach significantly. These engineers were able to reuse a transformation activity in less time

and with less knowledge resource than the inexperienced control group. Figure 143b shows this

with the red line (supported inexperienced software engineer), green line (supported

experienced software engineers), and the purple line (supported experienced software

engineer).

Figure 143 - Average results all measured transformation SCAc

The integration SCAc shows a similar picture to the transformation SCAc. The inexperienced

software engineers without support needed more time (382%) to perform 316% of tasks

compared to the unsupported experienced software engineers (100%). By using the focused

approach, inexperienced software engineers were able to perform the integration activities by

using less time (34%) and performing fewer tasks (68%). The time spent on knowledge

resources by unsupported inexperienced software engineers (564%) shows the highest

difference compared to the inexperienced software engineer (100%) regarding all measured

Evaluation and research result analysis

__
300

values for this SCAc. The supported engineers without experience spent less time (63%) on

such resources. This is related to the fact that these engineers also used only less knowledge

resource (82%). But the unsupported engineers with the support needed significantly more of

such resources (399%). Figure 144a shows the difference between the four different scenarios

measured including the unsupported inexperienced engineer (blue line). Figure 144b focuses on

the explained differences between supported engineers (green and purple line) and the

unsupported experienced software engineer (red line).

Figure 144 - Average results all measured integration SCAc

Figure 144b also shows the difference between the experienced and the inexperienced software

engineer using the focused approach. The differences are minimal. The experienced software

engineer required less time (29%), performed fewer tasks (58%), and spent less time (64%).

with knowledge resources (48%) The number of resources is is about 88% for the experienced

software engineer and 82% for the group of inexperienced engineers.

Based on the results the final statements can be made in that inexperienced software engineers

are significantly supported by performing integration SCAc using the focused approach. These

engineers were able to perform integration activities in less time and with less knowledge

resource than the inexperienced control group.

By comparison, the measured transformation and integration SCAcs can be reasoned as

follows:

Evaluation and research result analysis

__
301

In both SCAcs the added value of the focused approach is clearly recognisable. The realised

environment supports inexperienced software engineers. It performed both SCAc types with

different sub activities. For both types it is shown that time, the number of used knowledge

resources and the number of tasks performed can be reduced. Particularly for the complete

activity time, the number of knowledge resources used, and the time spent on these resources,

this statement is valid. The measured values also show differences. In general, the described

reduction of effort is more distinctive in transformation activities. Integration activities are

performed faster with fewer knowledge resources. A possible reason for this could be that

integration activities are easier to understand and to perform. The IDEs used could be another

factor in this comparison. Visual Studio and Eclipse both use intuitive and similar ways for

integration. Such behaviour makes it easier to identify a way for integration. On the other side,

for transformations a lot of different and specialised tools exist. These may be have different

behaviours and require domain-specific knowledge for use. This makes it difficult to use. In the

case study all participant were able to perform the SCAc successfully.

6.4.2.3. Reflecting	case	study	results	on	device	deployment	software	
fffconstruction	activity	

The deployment software construction activity was explained in the concept (cf. Section 4.5)

and the realisation of the related software construction model was shown (cf. Section 5.3.1).

The device deployment activity was not part of the case study because of security issues. The

work on device deployment required (in the application area of Schneider Electric) special

training and also, to be trained in first aid. Therefore, the analysis of the deployment SCAc is of

a theoretical nature. The published deployment SCAc experiment (cf. Zinn, Fischer-Hellmann

and Schoop, 2012a) was done with trained staff.

Based on the described software construction activity models a comparison analysis can be

made to reason how the focused approach takes effect on the focused deployment.

Evaluation and research result analysis

__
302

It may be supposed that the focused approach is able to facilitate the performance of

deployment software construction activities. This is based on two facts.

The first one is the typical procedure used for device deployment. As described in the example

in Section 3.1.6 a lot of vendor or device specific tools are used. Often, these tools are console-

based tools performing some transformation or deployment activities. Regarding the three

problem areas such tools represent technology which required knowledge for use (cf. example

in Section 3.1.6). A software engineer should know or be prepared to learn this knowledge to

use such tools. The third problem area describes this problem because of missing knowledge in

the environment in which SCAc knowledge should be performed. Based on the fact that a lot of

console-based tools are necessary for deployment, this scenario is similar to a transformation

activity. Additionally, the deployment into a device has similarities to the integration of a

software unit into an IDE. These analogies are an indication that the focused approach can

support this type of activity.

The second fact is the similarity of the software construction models. . Based on the fact that

console-based tools are used for deployment which is, in the scope of the research, equal to the

start (device vendor specific) console application, the first part of the deployment activity

model (cf. Figure 89) has a similar structure to the transformation SCAcs model. It describes all

necessary information and relates to a console application. The inexperienced software

engineers do not know this model.

Working with devices shows another problem. The example in Section 3.1.6 shows that manual

sub tasks (e.g., to switch a device on or off) have to be made. Until this point, the focused

approach is able to support an inexperienced user. At this point the support by the focused

approach is limited. The approach is able to show a textual description of sub steps (created by

the experienced user), but this depends on the experienced user creating such information and

how an inexperienced user understand such descriptions.

Evaluation and research result analysis

__
303

6.4.2.4. Other	results	of	the	case	study	
Next to the focused case study results, three outside results are acknowledged. The first one is

the aforementioned result where experienced users are also supported by the focused approach.

Often a supported experienced user needed less time than the inexperienced user without this

support. Because of the saved time for the setup of an SCAc, this is not a surprising result.

More surprising were the differences between both supported user types (i.e., inexperienced

and experienced). The experienced user needed less time and in some cases fewer knowledge

resources. As a possible reason for this effect, it can be considered that these users performed

the storing of SCAc related knowledge into the Prometheus Environment. Based on this task,

these users know the system better than the inexperienced users.

The last acknowledged unforeseen result of the case study is the time experienced users

required to insert information into the Prometheus system. Table 61 shows this setup time for

each SCAc.

Software unit SCA type Setup
time

Avergare time
with/without support

Breakeven
point

SU1 DPWS C Integration 00:17:04 00:33:14/00:02:45 0,56
SU1 DPWS C Transformation 00:46:32 01:25:39/00:02:57 0,56
SU2 DPWS J Integration 00:25:12 00:28:09/00:02:59 1,00
SU2 DPWS J Transformation 00:51:01 01:30:04/00:03:05 0,59
SU3 EWS .NET Integration 00:34:23 00:33:21/00:02:32 1,12
SU3 EWS .NET Transformation 00:23:44 00:21:07/00:02:32 1,28
SU4 EWS J Integration 00:12:03 00:39:36/00:02:31 0,32
SU4 EWS J Transformation 00:09:44 00:22:37/00:02:39 0,49
SU5 Log4Net Integration 00:09:23 00:19:13/00:02:52 0,57
SU5 Log4Net Transformation 00:05:34 00:25:06/00:02:29 0,25
SU6 Log4J Integration 00:11:24 00:31:22/00:02:47 0,40
SU6 Log4J Transformation 00:13:54 00:22:02/00:03:12 0,74

Table 61 - Setup time for focuses SCAcs

Taking the average time saved by inexperienced users (i.e., difference of time needed for the

inexperienced users with and without support) and compare it to the setup time of the

Evaluation and research result analysis

__
304

experienced user, it shows that a breakeven point (regarding the time) is reached after 1 or 2

reuses (depending on the SCAc).

6.4.2.5. Final	result	of	the	case	study	
The previous section compared unsupported inexperienced software engineers with supported

inexperienced software engineers by using the unsupported experienced engineer as a 100%

comparison line. The aim of the case study was to identify the impact of the focused approach

on inexperienced software engineers. Therefore, a direct comparison of the inexperienced

software engineer performing the SCAcs with and without the focused approach was necessary.

Figure 145 - Final comparison of inexperienced software engineers

Figure 145 shows a comparison between the inexperienced software engineers measured in the

case study using the average values (in %) of the case study. The engineers not using the

focused approach of the both SCAc types are represented by the blue line (100%). Compared to

these engineers the supported engineers performing transformation SCAcs required only 10%

of the time. For the integration SCAc, the value is about 9%. The reduction of time for SCAc is

between 90%-91% on average. A similar picture can be found for the number of knowledge

resources here; the supported engineers performed 17% (transformation SCAc) to 21%

Time
needed KR Time KR used Task

done
Inexperienced User 100% 100% 100% 100%
Inexperienced User
(Integration SCAc) 9% 11% 21% 21%

Inexperienced User
(Transformation SCAc) 10% 11% 17% 23%

0%

20%

40%

60%

80%

100%

120%

%
 o

f u
se

d
re

so
ur

ce
s

Evaluation and research result analysis

__
305

(integration SCAc) of the tasks of an unsupported engineer. This results in a reduction of time

to about 79-83%. Both reductions may be explained by the reduction of effort for setup (e.g.,

installation, configuration, and so on) of the SCAc and related tools. The other relevant point of

this thesis is the impact of the use of knowledge. Here, Figure 145 shows interesting results.

Compared to the unsupported inexperienced software engineer, supported engineers spent only

11% (for transformation SCAc) and 11% (for integration SCAc) of the time on knowledge

resources. This reduction (about 89%) is based on the fact that the number of knowledge

resources is reduced from about 79% to 83%. For the transformation SCAc, the supported

engineers required only 21% of the tasks the unsupported engineers required. For the

integration SCAc this values is about 23%.

Finally, the case study shows that the focused approach is able to support inexperienced

software engineers to perform two types of software construction activities. The supported

engineers performed these activities faster and produced the same result as expected by the

experienced engineer. The engineers used fewer knowledge resources than the engineers

without support. The conclusion out of this fact is that the focused approach is one way to

enable inexperienced software engineers to perform the software construction activities

researched.

6.5. Case	study	hypothesis	review	
The case study hypothesis in Section 6.1.3 and the related theoretical viewpoints discussed in

Section 6.2.4 focus on following points:

4. SCAc knowledge/information can be stored in an environment and can be reused by

inexperienced users.

5. Such reuse produces a comparable (working) result to an experienced user in a normal

application area, but without the need of learning the required knowledge for the

specific SCAc or a comparable knowledge transfer.

Evaluation and research result analysis

__
306

6. The inexperienced status of the user, which relates with the specific SCAc, does not

change.

Relating these three points, the case study shows that SCAc related knowledge can be stored in

such an environment. The experienced software engineer validates and approves that the

created results are comparable working results. The supported inexperienced software

engineers used fewer knowledge resources and spent less time on these resources (compared to

the unsupported inexperienced software engineers) to produce valid results. The can be

interpreted as follows. The results show that the need of learning (i.e., use of knowledge

resources and spent time on these resources) or handling the required knowledge for the

specific SCAc or a comparable knowledge transfer is lower compared to supported

inexperienced software engineers. However, both groups created working results. Even if the

inexperienced status of the user can be changed (e.g., the person now knows that reuse of a

software unit is possible, which is relevant for reuse) (Garcia, 2006) it can be stated that the

user did not use the same resources and spent less time on knowledge resources. Therefore, it is

probable that the inexperienced status did not change in the same way and to the same level.

The focused approach does not describe how an SCAc is performed or how it is prepared,

although different technologies of software units and SCAcs have been used in six parallel

experimental settings. The measured values (i.e., time and knowledge resources) are similar and

result in a positive effect (i.e., reduction of time and knowledge resources used).

6.6. 	Summary		
This chapter describes the specific research methods to perform a case study and analyses the

case study results. Thereby, the setup of the case study is shown. This includes a description of

the environment, participants, variables, and methods for analysing and measuring of values.

The aim of the case study is to measure the impact of the focused approach on inexperienced

software engineers.

Evaluation and research result analysis

__
307

The case study is performed in cooperation with different software unit experts (experienced

software engineers) and two groups of inexperienced software engineers. The experienced as

well as the inexperienced software engineers perform two different software construction

activities (i.e., different integration and transformation activities) for each of six different

software units. Each activity was performed with and without the use of the Prometheus

environment based on the focused approach of this research. The number of used knowledge

resources, the time spent on these resources, the time needed for performing the activity, the

success, and the number of tasks done was measured for each software construction activity

performed.

The chapter analyses the results from two perspectives. The first one is the comparison of the

different values. The second one is the discussion of the measured values regarding the aim of

the thesis. The comparison of the values results in the following statement.

Regarding the time, knowledge resources and tasks, the experienced software engineers needed

less time, knowledge resources and accomplished fewer tasks than the inexperienced software

engineers. Using the Prometheus environment, inexperienced engineers needed less time,

knowledge resources and did fewer tasks than inexperienced software engineers without this

environment. Often, a Prometheus environment user needed less time, knowledge resources and

did fewer tasks than experienced software engineers performing software constructions

manually. This was an unexpected result of the case study.

The aim of the research is to enable inexperienced software engineers to perform software reuse

activities with a reduced need of handling the necessary knowledge. The measured results show

that a reduction of used knowledge resource and time spent on these resources is possible.

Therefore, the results of the case study support the research aim. In general, the three

knowledge problem areas were handled by the approach as expected by the concept of the

approach. Different technology information and the related software construction activity

knowledge were stored in the environment. Additionally, the environment reduces the task to

Evaluation and research result analysis

__
308

be completed (i.e., time, number of knowledge resources and setup task). The inexperienced

software engineers perform software construction activities without the full activity knowledge

required. Therefore, this chapter concludes that the aim of the research was fulfilled. The next

chapter concludes the primary research regarding the research contribution and summarises the

research. This includes also the discussion of the limitations of research. 	

Conclusion

__
309

7. Conclusion	
To conclude the thesis, this chapter discusses the contribution made by the research. Therefore,

it starts with a summary of the research and its achievements. After the discussion of the

contribution it also considers the limitations and possible directions of further research based on

the results of this study.

7.1. 	Summary	and	achievements	of	the	research	
In Chapter 2, the literature was discussed showing the following picture in software unit reuse:

The increasing need of knowledge for software unit reuse is a challenge for software engineers.

The manifold environments where software development projects are used are a typical reason

for different and specialised knowledge. Typically, this knowledge relates to a software unit

itself and the activities a software engineer wants to perform a reuse process. Often, problems

occur because of missing or inadequate knowledge level of software engineers. The impact

created by missing or insufficient knowledge differs. With a simple increase of time or cost, a

project may fail.

To mitigate or even eliminate these problems, the research project of the thesis aimed to

develop a concept focusing on the execution of software construction activities (i.e.,

transformation, integration, and deployment) without a sufficient amount of knowledge. Being

able to perform such activities without the specialised knowledge enables software engineers to

fulfil tasks (i.e., reuse activities) that, usually, require an investment of time in learning.

In order to identify the aforementioned challenges, the literature was used to demonstrate the

problem of missing knowledge in Chapter 2. In the literature, a lack of techniques to store and

distribute reuse activities and relevant knowledge among software engineers was identified. A

more detailed analysis shows four related problem areas (cf. Section 2.2.3):

1) Insufficient knowledge level of software engineers.

2) A variant of existing technologies and its related reuse activity knowledge.

3) Knowledge required for the distribution environments.

Conclusion

__
310

4) Missing definition of reuse activity knowledge

These problem areas are based on knowledge problems. They include challenges for creating an

adequate technique to handle the identified lack in supporting inexperienced users in

performing software unit reuse activities.

Chapter 3 analyses the focused software construction activities (i.e., integration, transformation,

and deployment) and the knowledge problem identified by the literature review in more detail.

Thereby, knowledge problem areas (knowledge storing, searching/retrieving, learning,

distribution, and execution) of software construction activities are discussed and related to the

three problem areas. Chapter 3 discusses that theses knowledge problems occur in the three

different problem areas. Additionally, existing approaches are discussed. Chapter 3 concludes

that these do not solve the identified problem areas and, therefore, support the statement about a

missing adequate technique to store and subsequently distribute software construction activity

relevant knowledge among software engineers as identified in the literature review.

The approach this thesis is focusing on is introduced in Chapter 4. The idea of this approach is

the storage and execution of software construction activity knowledge. The aim is to support

users who do not have enough knowledge to perform a specific reuse activity on a specific

software unit.

The approach describes two elementary parts of the focused solution. The first one is a common

Software Unit Model describing different existing software unit concepts (i.e., classes,

components, and services) as a general software unit. This model is extended by different

software construction activity models, describing the information required by using the

information from the Software Unit Model in a specific software construction activity. The

second one is a service-oriented environment providing a service for reuse functionality (i.e.,

storing, distribution and execution of software construction activity knowledge) based on the

information in the given models.

Conclusion

__
311

The service provides functionality to users for storing software construction activity

information which can be used as knowledge. Thereby, different models are used. This includes

the storage of different software units and relevant software construction activity knowledge.

The abstract models used for software units and software construction activities should handle

the problem of variations in technologies (solution approach for problem area 1: Insufficient

knowledge level of software engineers). The service hides the environment for knowledge

distribution. An inexperienced software engineer does not need to know this environment.

Therefore, a limitation of necessary knowledge is expected by the use of the concept (solution

approach for problem area 3: Knowledge required for the distribution environments).

The last solution approach is the service executing software construction activity. After an

experienced software engineer entered the necessary information about software construction

(e.g., a software unit and the necessary information about its integration into an IDE) into the

service-oriented environment, an inexperienced user was able to perform it with less the

necessary knowledge for execution. Using this approach the concept expects that inexperienced

software engineers are able to perform a software construction activity independently of their

current knowledge level (solution approach for problem area 2: A variant of existing

technologies and its related reuse activity knowledge).

The three different software construction activity models (i.e., transformation, integration, and

deployment SCAc models) constitutes a kind of reuse activity knowledge and, therefore, a

solution approach for the problem area 4 (i.e., Missing definition of reuse activity knowledge).

To analyse the focused approach, the models and the service-oriented environment has been

implemented as the essential elements of the approach and integrated into the working area of a

global company producing software in different businesses. One possible realisation of the

approach was described in Chapter 5. This realisation of the focused approach was used in

Chapter 6 in a case study. Two of the three focused software construction activity types (i.e.,

transformation and integration) are tested in several reuse scenarios in this working area. A

Conclusion

__
312

total of 102 participants performed 120 software construction activities to reuse 6 different

software units (i.e., classes, components and services) with two software construction activities

for each software unit. Thereby, the activities were performed with and without the focused

approach. The relevant values measured are: number of used knowledge resources, number of

tasks done, time spent on knowledge resources and the time needed to perform the software

construction activities.

Chapter 6 also analysed the results of the case study. The main result is that the focused

approach enables inexperienced software engineers to perform software construction activities

with a reduction in spent time and knowledge resources (compared to inexperienced software

engineers not using the approach). Using the focused approach, inexperienced software

engineers were able to perform unknown knowledge intensive software reuse activities to reuse

different software unit technologies and its related knowledge. Combining the measured values

of the transformation and integration software construction activities and using the experienced

software enginner (i.e., an expert for a specific SCAc of a specific software unit) line for

comparison led to following conclusions. Figure 146 shows the inexperienced users not using

the focused approach as 100% (blue line).

Figure 146 - Comparison between supported and unsupported software engineers

Time
needed KR Time KR used Task

done
Inexperienced User

(unsupported) 100% 100% 100% 100%

Inexperienced User
(supported) 9% 11% 19% 22%

0%

20%

40%

60%

80%

100%

120%

%
 o

f u
se

d
re

so
ur

ce
s

Conclusion

__
313

Comparing the the inexperienced engineers using the focused approach (red line) following

statement can be made. The reduction of time, knowledge resources, and tasks for

inexperienced software engineer are 91% of the activity time, 89% of time spent on knowledge

resource, 81% of knowledge resources and 78% of tasks could be reduced (cf. Figure 146).

The case study also shows positive effects for experienced software engineer. But this effect is

not as significant as it is for inexperienced engineers. The effects for experienced software

engineers are identifiable but lower that the effects for inexperienced software engineers: On

average 70% of time, 36% of time spent on knowledge resources, 17% of knowledge resources,

and 66% task done are saved (cf. Figure 146).

The third focused software construction activity (i.e., deployment software construction

activity) is discussed theoretically based on the measured values of the other types. Based on

the similar model and behaviour of deployment and the other software construction activities, It

is showed that a similar positive effect can be expected. Chapter 6 discussed that deployment

software construction activities require manual steps performed by the user (in some cases; e.g.,

restart a device using the power switch). For such cases the focused approach has no positive

effects.

Based on this case study result, Chapter 6 concluded that the principle aim of enabling

inexperienced software engineers to perform software construction activities even if these

people do not have the required knowledge is demonstrated by the case study.

7.2. 	Research	contribution	discussion	
The literature shows that knowledge is relevant for software unit reuse. For example, Ajila

(2005) and Cummings and Teng (2003) identify knowledge as a critical success factor in

software unit reuse. Isoda (1992), Bughija (2001), and McCarey, Ó Cinnéide and Kushmerick

(2008) state that tasks of reuse are based on knowledge.

From a scientific point of view the research result will contribute to the area of software unit

reuse. This contribution will be discussed using the relevant statements identified in Section

Conclusion

__
314

2.2.2.3. McCarey, Ó Cinnéide and Kushmerick (2008) conclude that a lack of techniques to

store and subsequently distribute relevant software construction activity software unit

knowledge among software engineers exists. This research identifies four problem areas in the

literature which make the creation of adequate techniques challenging (cf. Section 2.2.3.3). In

the following section, the contribution created by this research for the four problem areas is

discussed.

7.2.1. 	Contribution	to	the	problem	of	different	technologies	
Frakes and Isoada (1994) state that reuse is difficult because of different technologies. The

knowledge of reuse activities, which McCarey, Ó Cinnéide and Kushmerick (2008) call task

relevant component knowledge is based on the technology of the software unit it is related to.

Next to the multitude of existing technologies, Ajila and Zeng (2004) state that the rapid

changes of technologies and required knowledge have to be maintained. As a result, the first

challenge to limit the impact of the lack McCarey, Ó Cinnéide and Kushmerick (2008) focuses

on, is to handle the problem of different technologies and the related knowledge.

Regarding Frakes and Isoada (1994) the difficulty of technologies can be reduced using an

abstract way of storing and representing. This idea was used in the research by creating a set of

models which were able to store different software unit technology information (i.e., object-

oriented, component-based and service-oriented technology information) and software

construction information (i.e., transformation, integration, and deployment activities). The

models simplify the view on the different software unit technologies by using abstraction (e.g.,

classes, components and services presented as a simple set of files). This creates a common

view on software units. The activity models describe the information of the activities and relate

them to the simple software unit model (e.g., the file name as a parameter of a transformation

activity). In the case study, different software units of different component worlds were also

used (e.g., .NET and Java-based software units). Additionally, the models were able to store

information which describes the use and configuration of other technologies. These

Conclusion

__
315

technologies are necessary to perform software construction activities. The created service-

oriented environment was able to maintain this information and the related knowledge. By

simplifying the view on different technologies (which changes rapidly; cf. Ajila and Zheng,

2004) one possibility of simplifying the maintenance of such technology was created. In the

case study, the participant used different software unit technologies and technologies necessary

for different software construction activities. The case study shows that independent of these

different technologies, the inexperienced software engineers required less knowledge and spent

less time on knowledge resources to perform each of the software construction activities. This

research contributes to the field by providing a solution in reducing the use of different

technology knowledge of software units and software construction activities by using

abstraction models to unify the view on these technologies. Additionally, the research shows

that an automation environment based on such models was able to maintain the variations of

technologies.

7.2.2. 	Contribution	to	the	problem	of	different	knowledge	levels		
Among others, the literature review identifies the challenge in finding a way to distribute reuse

activity knowledge based on the software engineers’ knowledge level. Ye (2001) discusses the

software engineers’ knowledge related reuse types (i.e., well known, vaguely known, beliefs

and unknown component). The analysis using the knowledge analysis of Zinn et al. (2011a) and

Ye and Fischer (2005) show that software engineers can have different knowledge levels. The

conclusion of Ye and Fischer (2005) that software engineers may be not able to perform reuse

because of a lack of knowledge seems to be valid. Also, McCarey, Ó Cinnéide and Kushmerick

(2008) state this.

On the one side, this knowledge is required to perform a software construction activity. The

case study shows that inexperienced users spent the most time in consuming external

knowledge resources (e.g., reading web pages or talking to experts). From the viewpoint of the

research, this is a task of learning the required information (i.e., creating knowledge) for a

Conclusion

__
316

software construction activity. In this case the previously discussed problem of knowledge

interpretation occurs. Qu, Ji and Nsakanda (2012) and Choi, Lee and Yoo (2010) identifies this

especially in an environment where multiple teams are exchanging knowledge. This may lead

to variations in the reuse activity result or to the failure of the reuse activity. Another point of

interpretation is that software engineers use different ways of working to perform the same

activity even if the underlying information is equal (Visser 1990; Sen 1997). In the case study,

this is implied by the number of tasks the user performed. These numbers differ for each

software engineer. This may be explained based on the different ways of working. Also it may

be based on the knowledge software engineers already have to know to use a knowledge

resource repository. (cf. discussion about knowledge distribution in distributed teams of Qu, Ji

and Nsakanda 2012;Choi, Lee and Yoo 2010)

The research of this thesis identifies a concept that enables inexperienced software engineers to

perform software construction activities even if the engineers do not have the required

knowledge. The approach used in this research shows that an inexperienced software engineer

(L4-unknown component; cf. Ye and Fischer, 2005) as well as an experienced software

engineer (L1-well known component; cf. Ye and Fischer, 2005) can be supported in performing

a software construction approach with reduced knowledge and reuse effort. As a result, the

research shows that an inexperienced user’s knowledge level using the focused approach is not

a reason why reuse should fail. The automation approach shown in this thesis is one possible

way to challenge the problem area. This is demonstrated by the case study.

The case study shows that inexperienced software engineers were able to produce invariant

results by using the focused approach. Comparing this to the group of inexperienced software

engineers, without the support of the focused approach, comparable learning activities are not

identified in this group. This means, the inexperienced users spent significantly less time on

knowledge resources. Additionally, they used fewer knowledge resources than the unsupported

inexperienced software engineers. As a result, the research identifies a way to handle the

Conclusion

__
317

knowledge level problems. As discussed, the time spent by inexperienced software engineers to

gain (i.e., learn and interpretation) required knowledge was decreased. It may be possible that

the focused approach supports users in learning. But this was not the focus of the approach and

is in fact improbable. The focused approach does not show explanatory information to users.

Additionally, the time supported engineers require does not underline this statement. Figure 146

shows that the time and knowledge ressources producing an similar and valid result is about 10

to 20% of the values of an unsupported software engineer. All supported software engineers

produced the same valid results. This leads to the conclusion that the focused approach avoids

the problem of knowledge learning and interpretation. Additionally, the produced results avoid

lengthy learning processes and possible invariants. Regarding the problem of different

knowledge levels, this approach identifies that an insufficient knowledge level does not

produce invalid software construction activity results. Inexperienced software engineers are

able to perform SCAcs with and without the focused approach. But by using the approach long

learning processes and possible invariants are avoidable.

7.2.3. 	Contribution	to	the	problem	of	knowledge	distribution		
McCarey, Ó Cinnéide and Kushmerick (2008) state that the distribution of knowledge about

technology between engineers and teams is inadequate. Next to the problem of interpretation

and use of knowledge, an experienced software engineer has to distribute knowledge in a way

that other engineers are able to understand (see Taweel et al., 2009; Boden and Avram 2009).

This implicates an infrastructure which provides the functionality to upload activity information

and knowledge. Additionally, it has to provide the possibility to find and access this

infrastructure for searching and receiving uploaded knowledge. Frakes and Kang (2005), Ajila

(2006), and Slyngstad et al. (2006) discuss the need of repositories, Usually, software engineers

have repositories, but these are different in type and distribution. This can range from personal

project files to a team or department repository. As a result, a software engineer has to know

where to find a repository, how to access it and how to use it. The last point relates to the

Conclusion

__
318

previously mentioned problem of mind-set and capability of formulating a request. As a result,

an inexperienced user has to know how to find and access this knowledge source or to know

someone who can support him (Qu, Ji, and Nsakanda 2012). As shown by Ajila (2006), large

companies are able to store knowledge for reuse but based on organisational problems the

expected reuse is limited. To limit the lack described by McCarey, Ó Cinnéide and Kushmerick

(2008) one challenge is to create such an infrastructure. Visser (1990) and Morad and Kuflik

(2005) stated the use of special teams or single experienced users for a single software unit as

support for other software engineers or development teams in bigger companies. Ha, Sun and

Xie (2012) and Thörn (2010) also mentioned that this is not usually possible in SMEs.

The research used a service-oriented environment as infrastructure to integrate existing

repositories and execute software construction activities. The inexperienced software engineer

may be aware about this infrastructure but does not use the different repositories and relevant

activity tools directly. The service provided by this environment creates an abstraction layer to

the technical environment and possible SCAc applications. The inexperienced user does not

need to know the structure of the environment (e.g., installation folder) or special behaviours

(e.g., for security or special configurations) of elements in this environment. An inexperienced

user does not need to learn such knowledge. This simplifies the knowledge for distribution. The

realised environment extends the distribution of knowledge by the feature of knowledge

execution. Chapter 3 discusses the knowledge problems related to the problem of knowledge

distribution. Identified problems are the search, access and use of knowledge. This research

contributes to the field by creating a solution for the discussed problems. The case study shows

that inexperienced software engineers are able to perform software construction activities. This

includes the search of software unit information, SCAc information, access of the different

repositories, download of all information, preparation of the SCAc and performing the SCAc.

In the case study the participants were informed that inexperienced users have less knowledge

on technology, software units and SCAcs. They performed the knowledge intensive SCAcs by

Conclusion

__
319

activating the button. The inexperienced software engineers did not recognise all sub tasks and

had no idea where all the necessary information was stored or where the SCAc was actually

performed. However, the inexperienced engineer was able to execute the SCAc knowledge

which was stored by experienced engineers within the environment. A result of the study was

that supported engineers perform fewer tasks than the unsupported engineers when performing

an SCAc. This leads to the conclusion that knowledge can be shared and executed between

software engineers without the specific knowledge that is necessary for the distribution, the

setup and execution of an SCAc. In short, this knowledge can be used without an adequate

knowledge level.

7.2.4. 	Contribution	to	definition	of	software	reuse	knowledge		
The last challenge discussed in this section is the definition of software reuse activity

knowledge. In the focused problem statement, task relevant component knowledge should be

exchanged between software engineers (see McCarey, Ó Cinnéide and Kushmerick, 2008).

However, a definition of this knowledge was not identified in the used literature. Based on the

amount of possible knowledge, for an example, based on the technology variations this seems

to be challenging. On the other side, activities are recognised by the literature as typical

activities of reuse. Bosch and Bosch-Sijtsema (2010) and Shiva and Shala (2007), for example,

indicate the need for integrating a reusable software unit into the development environment.

Also, for Vliet (2008) and Mens and Vangorp (2006) it is necessary to adapt an existing unit

before reuse. Especially in the area of embedded devices (see Carlson et al., 2010; O’Connor et

al., 2009) the deployment is an relevant part and often depends on previous created software

units.

This research does not contribute to a reuse knowledge definition with a new type of reuse

definition. It only demonstrates that a more abstract view is sufficient to enable an environment

to store different software construction activity information which can be used as knowledge to

Conclusion

__
320

perform software construction activities. This supports inexperienced software engineers in

their work. A concrete knowledge definition is not created by the research. A concrete

definition might be contrary if it limits the number of storable software construction activities.

7.2.5. 	Final	statement	
As a contribution this research describes a concept including different models and a service

environment which enables the execution of software construction activities by inexperienced

software engineers. Thereby, the contribution to the area of software unit reuse is the

identification of a realisable concept to store and subsequently distribute reuse activities (i.e.,

software construction activities) relevant knowledge among software engineers. The principle

aim means to enable inexperienced software engineers to perform software construction

activities with less effort of learning (i.e., handling knowledge resources) has been reached.

As a result, this research underline that the low knowledge level of a software engineer, the

changing field of required knowledge for technologies and the knowledge required for

distribution do represent challenges in creating a technique to support software engineers in

software unit reuse. However, the research also shows that in the focused on software

construction activities these challenges are manageable.

7.3. 	Objectives	and	limitations	of	research		
The objectives of the research have been reached. The first objective was the analysis of

existing problems. Here, the lack of techniques and problem areas representing challenges to

create such techniques was identified (cf. Section 2.2.3.3). The second and third objective was

fulfilled by describing the necessary software unit models and the software construction

activity models (cf. Section 4.5). In Chapter 5 the realisation of the concept was done. By

realising and combining the different models described in Chapter 4, the fourth objective was

fulfilled. As discussed, the case study shows that the concept can be used and supports

inexperienced software engineers. Therefore, the fifth objective is fulfilled.

Conclusion

__
321

Despite having met the objectives of the research project, some decisions had to be taken which

resulted in imposed limitations. The decisions were caused by practical reasons, or to limit the

effort spent in areas where no new insights could be expected. These limitations are

summarised as follows.

The first limitation is the focus on only three types of software construction activities with a

special sub focus for each type. The aim of the research was to demonstrate that inexperienced

software engineers could be enabled to perform software construction activities related to

software unit reuse. To reach this aim the chosen types and foci were capable to the Ph.D.

research. Additionally, with this restriction the effort of software development area was limited

to only these three types of SCAc. The focus of the research was not the development of a new

software system to prove any existing reuse activity. This limits the research for general

statements about all possible software construction activities including all sub foci.

The focus on three different types of software units is a limitation of the research. Also, other

software units and related technologies exist. As a result, a general statement that the approach

of this thesis focuses on all existing types of software units or its technologies cannot be made.

The next limitation to discuss is the number of participants (102). The software engineers

participated as volunteers during normal working hours. Even the time for one measurement

task was limited by using smaller software units and the participants had to look at how they

make up the missing hours for their normal work. In some cases the related team or project

leader accepted this. But sometimes this was not supported by the management. Such reasons

limit the number of volunteers. A higher number of participants would lead to a result that can

be used to make more general statements about the software construction activities focused by

the research.

The research about deployment software construction activities is limited to a discussion even

though a small case study was shown by Zinn, Fischer-Hellmann and Schoop (2012a). This

limitation is mainly related to the fact that the working rules of Schneider Electric allow the

Conclusion

__
322

work on low, medium or high voltage devices only with special training. This is also valid for

the first aid personnel. Additionally, experiments with such devices are only allowed in special

laboratories that have the access restriction to trained personnel. The author of this thesis is not

an electronic engineer or a first aid supporter for this specialised field. This research’s previous

study about device deployment of (Zinn, Fischer-Hellmann, and Schoop 2012a) was done with

trained personal and first aid support who was specialised on accidents in electronic

environments. This precludes the result of the primary research focusing on deployment from

being proven as whole. Only two of three software construction activities are proven by a case

study. The deployment SCAc was discussed using the results of the other SCAcs.

Chapter 3 discusses different problems of software unit reuse. Here, only problems are chosen

which are seen as relevant from the literature point of view. Also the capability of the author of

this thesis to create an added value for the chosen problems was a relevant requirement. Also

other problems may exist. In the scope of the research, the significance of the chosen problems

was demonstrated. Appendix Section G shows a discussion including additional problems

identified by the author. This discussion was created as part of the Ph.D. research.

Despite these limitations, the research project has led to valid contributions to knowledge and

provided sufficient proof of the concept for the approach proposed.

7.4. 	Future	work	
This section defines possible future work and research based on this thesis. In general, two

basic directions are interesting from the perspective of the author. The first one is the

neutralisation of the limitations of this research. The second direction is further research based

on the achieved results.

7.4.1. 	Neutralisation	of	the	limitations	
The limitations should be removed by further research. The first one is the limitation created by

the number of participants of the case study. To demonstrate the mode of operation of the

Conclusion

__
323

focused approach, the used number of participants and software construction activities was

useful. By increasing the numbers, the statement of this thesis can be used as a more general

statement. This may lead to new findings for the topic.

The next limitation is the theoretical evaluation of the deployment software construction

activities. This thesis discusses the possibility of performing such software construction

activities. The experiment shown by Zinn, Fischer-Hellmann and Schoop (2012a) also

demonstrates the feasibility. Further research could focus on case studies for deployment

SCAcs to identify practical measured results. In particular, the fact that manual steps may be

necessary in some SCAcs. Here, an automation concept may create an added value.

The last limitation seen as relevant is the number of different software construction activity

types and the focus of each type. The research used integration, transformation, and deployment

of software construction activities. As discussed in the previous section these activities are

focused on special fields (i.e., console-based transformation activities, IDE integration activities

and device deployment). Further research may focus on other special or more general fields

inside these types (e.g., UI based transformation, other IDEs for integration and deployment not

only focused on devices). Additionally, further research may include more than the three

focused SCAcs (i.e., transformation, integration, and deployment) and cover other reuse areas

(e.g., validation or testing). This may lead to new findings for the topic.

7.4.2. 	Extended	research	
The first example of possible extended research is the use of stored software construction

activities in case-based reasoning. Case-based reasoning is using existing information about

cases to identify new information and circumstances in other cases. In the case of software

construction activities, stored information can be (re)used to identify new relations between

information. An example is the settings of software construction activities based on existing

software units which are adapted automatically to other software units, even though this unit is

Conclusion

__
324

not stored in an environment. Zinn, Fischer-Hellmann and Schopp (2012b) discuss some case-

based reasoning scenarios based on the focused approach.

The thesis shows the impact of reuse related to cost in Section 2.2.1.5. A discussion about the

advantages or disadvantages of SCAcs for software unit reuse relating to costs is not part of this

thesis. The result of the case study shows that time and use of necessary knowledge is saved by

using the focused approach. Even if some studies (cf. Section 2.2.1.5) identify a saving of costs

as a result of reuse, this does not automatically demonstrate that costs are saved by the

approach of this research. Further research in this area may focus on the cost behaviour of the

(re)use of software construction activities and the approach demonstrated in this thesis.

Another extension may improve the research on software construction activities. The focused

approach used plugins to perform a software construction activity. These plugins contain

knowledge (i.e., coded rules) used for interpretation of the models used in the approach. An aim

should be to add this knowledge to the software construction activity models and remove it

from the plugins. This may result in more knowledge sensitive models and generalised plugin

syntax (i.e., more relation between information stored in the knowledge model as in the source

code of the plugins). This could also impact the case-based reasoning (more knowledge can be

used for reasoning).

Another part in future research which was not discussed in the thesis was software construction

activities and the combination of such activities. A method to combine instances of different

software construction activity models may reduce the effort for performing reuse. Related to the

research of this thesis, the combination of existing software construction activity models may

create an added value. A transformation activity, for example, could be followed by an

integration activity. A single ‘transform and integrate’ activity would reduce the number of

interactions with such a system. The abstraction of different software unit types simplifies the

reuse of these software units (as shown in the research by the use of services, components and

classes). Maybe an abstraction of different software construction activity models which show a

Conclusion

__
325

similarity would also result in a simplification of reuse. The deployment activity model, for

example, has a common structure to the transformation activity model. Perhaps it is possible to

create a common model for transformation and deployment by the use of meta models. Also it

could be interesting to create a common model with special transformation and deployment

extensions which may reduce redundancy.

In a previous publication, the concept of software construction artefacts and their types is

described (cf. Section 4.4.2). The idea was to find a classification for the content of a software

unit and, therefore, relate it to SCAc. As a result, it may be possible to develop search

behaviour for software construction activities.

The last extension of the research seen as an interesting research topic is the use of semantic

models. It was shown that semantics can be used to extend description. For example, Seedorf,

(2010) uses such models to describe software assets from business perspective for search

behaviours. In the future, semantic models may support the search of software construction

activities and the creation of such activities.

7.5. 	Technology	review	and	epilogue	
The personal opinion of the author is that reuse of software units is still, and will be for a longer

time, a relevant topic for software development; but the meaning could change. Today,

technology dependencies are relevant by reuse of software units. This work also focuses on this

and shows that this is a potential problem, but a trend is noticeable. Regarding the mobile

device platforms Android and Internet Operation System, developing reusable software units

requires specialist knowledge about the different platforms (i.e., technology and IDEs). New

technologies allow for creating a software unit and deploying it to the different platforms. The

same behaviour can be found in the game industry. Tools like Unity3D allows one to write

software units and deploy them to different gaming platforms and the research shown in this

thesis follows this trend. A result is that a software unit will be created which solves a problem

(domain view). But different deployment activities are necessary (software construction activity

Conclusion

__
326

view) to deploy it to different platforms. The author’s opinion is that software construction

activity will become more relevant in the future and the need for automation concepts for such

activities will grow. However, this may be could have a shady side. While the need of domain

experts (i.e., software engineers producing the domain related content) may be decreasing, the

need for software unit construction activities experts (i.e., for transformation or deployment)

may increase rapidly.

As final consideration a loop back is made to the greek mythodology this thesis starts with.

“But the noble son of lapetus outwitted him and stole the far-seen gleam of unwearyting fire in

a hollow fennel stalk. And Zeus who thunders in high was stun in spirit, and his dear heart was

angered when he saw amongst men the far-ssen ray of fire.” (Hesoid and Evelyn-White, 1914

p. 545)

Regarding this part of the theogony another future dilemma can be identified. Prometheus

handed over the fire again and, as a result, mankind was able to perform the relevant activities

again. In Greek mythology the sustainability is given by Prometheus. As long as Prometheus

can bring back the fire every time it gets lost, mankind can continue. Regarding the focused

approach this is similar. As long as such automation approaches are available, software

engineers can reuse software units with less experience every time they need it. If such

approaches are not available, the problems focused by this thesis are not handled. The Chinese

philosopher Confucius supposedly said “Give a man a fish, feed him for a day. Teach a man to

fish, feed for a lifetime.” Regarding the research of this thesis, software engineers have to

decide whether they should use such an approach or instead learn specific knowledge to have it

more or less sustainable. This research shows a way to enable short-term reuse of specific

software construction activities with less investment in learning and with less the risk of failing

an activity. In future, knowledge for reuse activities has to be sustainable (long-term view) for

each software engineer.

References

xxi

8. References	Ackoff, R. L. (1989) 'From Data to Wisdom'. Journal	of	Applied	Systems	Analysis, 16, pp. 3-9. Ajila, S. A. (2006) 'The Impact of Firm Size on Knowledge Reuse and Exploration During Software Product Development: An Empirical Study', Information	 Reuse	 and	
Integration,	 2006	 IEEE	 International	 Conference	 on,	Waikoloa, Hawaii, 16-18. Sept. 2006. Institute of Electrical and Electronics Engineers (IEEE), pp.:160–165. DOI:10.1109/IRI.2006.252406. Ajila, S. A. (2005) 'Reusing Base-product Features to Develop Product Line Architecture',
Information	Reuse	and	Integration,	2005	IEEE	International	Conference	on,	Las	Vegas,	
USA,	15-17 Aug. 2005. Institute of Electrical and Electronics Engineers (IEEE), pp. 288–293. DOI:10.1109/IRI-05.2005.1506488. Ajila, S. A. and Zheng, S. (2004) 'Knowledge Management: Impact of Knowledge Delivery Factors on Software Product Development Efficiency', Information	 Reuse	 and	
Integration,	2004	IEEE	International	Conference	on, Las Vegas, USA, 8-10 Nov. 2004. Institute of Electrical and Electronics Engineers (IEEE), pp. 320–325. DOI:10.1109/IRI.2004.1431481. Alferez, G. H. and Pelechano, V. (2011) 'Systematic Reuse of Web Services Through Software Product Line Engineering', Lugano, Switzerland, 14-16 Sept. 2011. Institute of Electrical and Electronics Engineers (IEEE), pp. 192–199. DOI:10.1109/ECOWS.2011.13. Allen, B. P. (1994) 'Case-based Reasoning: Business Applications'. Communications	 of	 the	
ACM, 37 (3; March 1), pp. 40–42. DOI:10.1145/175247.175250. Allen, P. and Frost, S. (1998) Component-Based	Development	for	Enterprise	Systems	Applying	
the	Select	Perspective. Cambridge, UK: Cambridge University Press. Almeida, E. S. de, Alvaro, A., Lucredio, D., Garcia, V. C., Lemos Meira, S. R. de (2005) 'A survey on software reuse processes', Information	 Reuse	 and	 Integration,	 2005	 IEEE	
International	Conference	on, Las Vegas, USA, 15-17 Aug. 2005. Institute of Electrical and Electronics Engineers (IEEE), pp. 66-71. DOI: 10.1109/IRI-05.2005.1506451 Altera (2012) Altera. Available at: http://www.altera.com/products/devices/dev-index.jsp. (Accessed Oct. 2012). Ambler, S. W. (2003) UML 2 Component Diagrams. Available at: http://www.agilemodeling.com/artifacts/componentDiagram.htm (Accessed 2008). Ampatzoglou, A., Kritikos, A., Kakarontzas, G. and Stamelos, I. (2011) 'An Empirical Investigation on the Reusability of Design Patterns and Software Packages'. Journal	of	

References

xxii

Systems	 and	 Software, 84 (12; December), pp. 2265–2283. DOI:10.1016/j.jss.2011.06.047. Apperly, H. (2003) Service-	and	Component-based	Development	Using	Select	Perspective	and	
UML. 1st edition. London, UK: Addison-Wesley. ISBN: 0321159853 Arkin, A. et al. (2007) Web Services Business Process Execution Web Services Business Process Execution Language Version 2.0. Available at: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (Accessed 12 Jan. 2008) Atkinson, C. and Muthig, D. (2002) 'Component-Based Product-Line Engineering with the UML', Proceedings of the 7th International Conference on Software Reuse (ICSR): Methods, Techniques, and Tools. Austin, USA, 15-19 April 2002. London, UK: Springer Verlag, pp. 343-344. Bagnasco, A., Chirico, M., Scapolla, A. M. and Amodei, E. (2001) 'Improving Automation and Reuse in TLC Testing Through COTS-based Architecture'. Aerospace	 and	Electronic	
Systems	Magazine,	17	(3), pp. 17-21. DOI:10.1109/AUTEST.2001.948968. Baudoin, C. and Hollowell, G. (1996) Realizing	the	object-oriented	lifecycle. 1st edition. Upper Saddle River, USA: Prentice Hall PTR. ISBN:013124454X Bauer, B. and Huget, M.-P. (2005) 'Modelling web service composition with UML 2.0'.
International	 Journal	of	Web	Engineering	and	Technology, 1 (4; February.): pp. 484-501. DOI: 10.1504/IJWET.2004.006272 Baxter, P. and Jack, S. (2008), Qualitative case study methodology: Study design and implementation for novice researchers. The	Qualitative	Report, 13(4), 544-559 Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T. and DeBaud, J.-M. (1999) 'PuLSE', SSR	 '99	Proceedings	 of	 the	 1999	 symposium	 on	 Software	 reusability, Los Angeles, USA, 21-23 May 1999. New York, USA: ACM Press., pp. 122–131. DOI:10.1145/303008.303063. Bellinger, G., Castro, D. and Mills, A. (2004) Data, Information, Knowledge, and Wisdom. Available at: http://www.systems-thinking.org/dikw/dikw.htm (Accessed June 2007). Benatallah, B., R. M. Dijkman, M. Dumas, and Z. Maamar. (2004) 'Service Composition: Concepts, Techniques,Tools and Trends'. In Stojanovic, Z. and Dahanayake, A eds.	
Service	oriented	Software	System	Engineering:	Challanges	and	Practises. London, GB: Idea Group Puplishing, pp. 48-67. ISBN 1591404266 Bieber, G. and Carpenter, J. (2001) Introduction to Service-Oriented Programming (Rev 2.1). Available at: http://www.openwings.org/download/specs/ServiceOrientedIntroduction.pdf (Accessed 18 Feb. 2007).

References

xxiii

Breivold, H. P. and Larsson, M. (2007) 'Component-Based and Service-Oriented Software Engineering: Key Concepts and Principles', Software	 Engineering	 and	 Advanced	
Applications,	 2007.	 33rd	 EUROMICRO	 Conference	 on.	 Lübeck, Germany, 28-31 Aug. 2007. Sankt Augustin, Germany: Institute of Electrical and Electronics Engineers (IEEE), pp. 13-20. DOI:10.1109/EUROMICRO.2007.25 Bjørnson, F. O. and Dingsøyr, T. (2008) 'Knowledge Management in Software Engineering: A Systematic Review of Studied Concepts, Findings and Research Methods Used'.
Information	 and	 Software	 Technology, 50 (11; October), pp. 1055–1068. DOI:10.1016/j.infsof.2008.03.006. Blok, M.C. and Cybulski, J. L. (1998) 'Reusing UML Specifications in a Constrained Application Domain', Software	Engineering	Conference,	1998.	Proceedings.	Taipei, Taiwan, 2-4 Dec. 1998. Washington, USA: Institute of Electrical and Electronics Engineers (IEEE), pp. 196–202. DOI:10.1109/APSEC.1998.733719. Bobillo, F., Delgado, M. and Gómez-Romero, J. (2008) 'Representation of Context-dependant Knowledge in Ontologies: A Model and an Application'. Expert	 Systems	 with	
Applications,	35 (4; November), pp. 1899–1908. DOI:10.1016/j.eswa.2007.08.090. Böckle, G., Pohl, K. and Van der Linden, F. (2005) Software	 product	 line	 engineering:	
foundations,	 principles,	 and	 techniques. Berlin [u.a.], Germany: Springer. ISBN: 3540243720 Boddy, D., Boonstra, A. and Kennedy, G. (2004) Managing	 information	 systems:	 an	
organisational	 perspective. 2nd edition. Harlow, UK and New York, USA: Financial Times and Prentice Hall. ISBN: 0273686356 Boden, A. and Avram, G. (2009) 'Bridging Knowledge Distribution - The Role of Knowledge Brokers in Distributed Software Development Teams' Cooperative	and	Human	Aspects	
on	Software	Engineering,	2009.	CHASE	'09.	ICSE	Workshop	on, Vancouver, Canada, 17 May 2009. Washington, USA: IEEE Computer Society, pp. 8–11. DOI:10.1109/CHASE.2009.5071402. Boh, W. F. (2008) 'Reuse of Knowledge Assets from Repositories: A Mixed Methods Study'.
Information	 &	 Management, 45 (6; September), pp. 365–375. DOI:10.1016/j.im.2008.06.001. Bohn, H., Bobek, A. and Golatowski, F. (2006) 'SIRENA - Service Infrastructure for Real-time Embedded Networked Devices: A Service Oriented Framework for Different Domains', International	 Conference	 on	 Networking,	 International	 Conference	 on	
Systems	 and	 International	 Conference	 on	 Mobile	 Communications	 and	 Learning	
Technologies.	 Morne, Mauritius, 23-29 Apr. 2006. Institute of Electrical and Electronics Engineers (IEEE), pp. 43–43. DOI:10.1109/ICNICONSMCL.2006.196. Bosch, J. (2004) Software Architecture: The Next Step .3047. Lecture Notes in Computer Science. Available at:

References

xxiv

http://www.cs.rug.nl/search/uploads/Publications/bosch2004san.pdf (Accessed Dez. 2007) Bosch, J. and Bosch-Sijtsema, P. (2010) 'From Integration to Composition: On the Impact of Software Product Lines, Global Development and Ecosystems'. Journal	of	Systems	and	
Software, 83 (1; January), pp. 67–76. DOI:10.1016/j.jss.2009.06.051. Breivold, H. P. and Larsson, M. (2007) 'Component-Based and Service-Oriented Software Engineering: Key Concepts and Principles', Software	 Engineering	 and	 Advanced	
Applications,	 2007.	 33rd	 EUROMICRO	 Conference	 on.	 Lübeck, Germany, 28-31 Aug. 2007. Sankt Augustin, Germany: Institute of Electrical and Electronics Engineers (IEEE), pp. 13–20. DOI:10.1109/EUROMICRO.2007.25. Budhija N. and Ahuja S. P. (2011) 'Review of Software Reusability' Computer Science and Information Technology (ICCSIT) International Conference on. Pattaya, Thailand, Dec. 2011, Planetary Scientific Research Center (PSRC) Bunse, C. and Knethen, A. v. (2008) Vorgehensmodelle	 kompakt. 2nd Edition. Heidelberg, Germany: Spektrum. ISBN: 3827419506 Burg, S. Van der, de Jonge, M., Dolstra, E. and Visser, E. (2009) 'Software Deployment in a Dynamic Cloud: From Device to Service Orientation in a Hospital Environment',
Software	Engineering	Challenges	 of	Cloud	Computing	 (ICSE):	Proceedings	of	 the	2009	
ICSE	Workshop	 on. Vancouver, Canada, 23 May 2009. Washington, DC, USA: IEEE Computer Society, pp. 61–66. DOI:10.1109/CLOUD.2009.5071534. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R. and Zavattaro, G. (2005) 'Towards a formal framework for Choreography',	Enabling	Technologies:	Infrastructure	for	Collaborative	
Enterprise,	2005.	14th	IEEE	International	Workshops	on	(WETICE). Linköping, Sweden, 13-15 June 2005. Washington, DC: Institute of Electrical and Electronics Engineers (IEEE), pp. 107-112. DOI: 10.1109/WETICE.2005.57 Card, D. and Comer, E. (1994) 'Why Do so Many Reuse Programs Fail?'. IEEE	Software, 11 (5; September), pp. 114–115. DOI:10.1109/52.311078. Carlson, J., Feljan, J., Maki-Turja, J. and Sjodin, M. (2010) 'Deployment Modelling and Synthesis in a Component Model for Distributed Embedded Systems', Software	Engineering	and	
Advanced	Applications	(SEAA),		36th	EUROMICRO	Conference	on.	Lille, France, 1-3 Sept. 2010. IEEE Conference Publications, pp. 74–82. Doi:10.1109/SEAA.2010.43. Casati, F. and Shan, M. C. (2001)'Dynamic and adaptive composition of e-services', Advanced	
information	 systems	 engineering	 The	 12th	 international	 conference	 on. Stockholm, Sweden, May 2001. Oxford UK: Elsevier Science Ltd., pp. 143-163. DOI:10.1016/S0306-4379(01)00014-X.

References

xxv

Chaffey, D. and Wood, S. (2005) Business	 information	management:	 improving	performance	
using	information	systems. 2nd edition. Harlow, UK and New York, USA: Prentice Hall and Financial Times. ISBN: 0273711792 Cheesman, J. and Daniels,I. (2000) UML	 Components:A	 Simple	 Process	 for	 Specifying	
Component-Software.Boston. 1st edition. Amsterdam, Netherlands: Addison-Wesley, ISBN: 0201708515. Childs, B. and Sametinger, J. (2012) 'Literate Programming and Documentation Reuse',
Software	 Reuse,	 1996.,	 Proceedings	 Fourth	 International	 Conference	 on.	 Orlando, Florida: IEEE Comput. Soc. Press., pp. 205–214. DOI:10.1109/ICSR.1996.496128. Choi, S. Y., Lee, H. and Yoo, Y. (2010) 'The Impact of Information Technology and Transactive Memory Systems on Knowledge Sharing, Application, and Team Performance: A Field Study'. Management	Information	Systems	Quarterly,	34 (4), pp. 855-870. Clark, J., et al. (2001) ebXML Business Process Specification Schema Version 1.01. Specification, OASIS. Available at: www.ebxml.org/specs/ebBPSS.pdf (Accessed Dez. 2008) Clarke, R. J. (2005) Research	 Models	 and	 Methodologies	 Presentation. Available at: http://www.uow.edu.au/content/groups/public/@web/@commerce/documents/doc/uow012042.pdf. (Accessed Feb 2010) Componentsource. (2012) Component Source Web page. Available at: http://www.componentsource.com/features/index-de.html (Accessed Oct. 2010) Computerbase (2008) .NET. Available at: http://www.computerbase.de/lexikon/.NET (Accessed Oct. 2008) Cooper, H.M. (1988) 'Organizing Knowledge Syntheses: a Taxonomy of Literature Reviews'.
Knowledge	in	Society, 1, pp. 104-126. DOI: 10.1007/BF03177550 Cooper, H. M. (1982) 'Scientific Guidelines for Conducting Integrative Research Reviews'.
Review	 of	 Educational	 Research, 52 (2), pp. 291-302. DOI:10.3102/00346543052002291 Creswell, J. W. (2009) Research	 Design:	 Qualitative,	 Quantitative,	 and	 Mixed	 Methods	
Approaches. 3rd edition. Thousand Oaks, USA: Sage Publications. ISBN:	1412965578 Cummings, J. L. and Teng, B. S. (2003) 'Transferring R&D Knowledge: The Key Factors Affecting Knowledge Transfer Success'. Journal	 of	 Engineering	 and	 Technology	
Management, 20 (1-2; June), pp. 39–68. DOI:10.1016/S0923-4748(03)00004-3. Czarnecki, K. and Eisenecker, U. (2000) Generative	 Programming:	 Methods,	 Tools,	 and	
Applications. 6th edition. Indianapolis, USA: Addison Wesley. ISBN: 0-201-30977-7

References

xxvi

Dahanayake, A., Sol, H. and Stojanović, Z. (2003) 'Framework for Component-Based System Development Methodology Evaluation', Journal	of	Database	Management	(JDM),	14 (1; March): pp. 1-26. Davenport, T. (2000) Working	Knowledge:	How	Organizations	Manage	What	They	Know. 2nd edition. Boston, USA: Harvard Business School Press. ISBN: 1578513014 Deming, W. E. (2000) Out	of	the	crisis. Cambridge, USA: MIT Press. ISBN: 0262541157 Desouza, K., Awazu, Y. and Baloh, P. (2006) 'Managing Knowledge in Global Software Development Efforts: Issues and Practices'. Software,	IEEE, 23 (5; Sept.-Oct.), pp. 30-37, Doi:10.1109/MS.2006.135 Dikel, D., Kane, D., Ornburn, S., Loftus, W. and Wilson, J. (1997) 'Applying Software Product-line Architecture'. Computer, 30 (8; August), pp. 49–55. DOI:10.1109/2.607064. D'Souza, D. F. and Wills, A. C. (1998) Objects,	 Components	 and	Frameworks	with	UML:	The	
Catalys	Approach. Reading, USA: Addison-Wesley. ISBN: 0201310120 Eclipse Foundation. (2012) Eclipse Resources. Available at: http://www.eclipse.org/resources/?category=Extension%20points (Accessed Jan 2010). Edward, A., Ali, M. and Sherif, Y. (1999) 'A Case Study in Software Reuse'. Software	Quality	
Journal, 8 (3; November), pp. 169-195. DOI:10.1023/A:1008963424886 Fayad, M. E. and Johnson, R. E. (2000) Domain-specific	application	frameworks:	frameworks	
experience	by	industry. New York, USA: John Wiley & Sons. ISBN:0-471-33280-1 Fayad, M. E., Laitinen, M. and Ward, R. P. (2000) 'Thinking Objectively: Software Engineering in the Small'. Communications	 of	 the	 ACM, 43 (3; March 1), pp. 115–118. DOI:10.1145/330534.330555. Fettke, P., Intorsureanu, I. and Loos, P. (2002) 'Komponentenorientierte Vorgehensmodelle im Vergleich',	 4	 Workshop	 komponentenorientierte	 betriebliche	 Anwendungssysteme	
(WKBA). Augsburg, Germany 11. Juni 2002. Augsburg, Germany: TU Chemnitz, pp. 19-43. Fichman, R. G. and Kemerer, C. F. (2001) 'Incentive Compatibility and Systematic Software Reuse'. Journal	of	Systems	and	Software, 57 (1; April), pp. 45–60. DOI:10.1016/S0164-1212(00)00116-3. Fitzgerald, B., et al. (2006) 'The Software and Services Challenge' Contribution	 to	 the	
preparation	of	 the	Technology	Pillar	on	Software,	Grids,	Security	and	Dependability	of	
the	 7th	 Framework	 Programme.	 Available at: ftp://ftp.cordis.europa.eu/pub/ist/docs/directorate_d/st-ds/fp7-report_en.pdf, (Accessed Aug. 2007)

References

xxvii

Frakes, W. B. and Fox, C. J. (1996) 'Quality Improvement Using a Software Reuse Failure Modes Model'. IEEE	Transactions	on	Software	Engineering, 22 (4; April), pp. 274–279. DOI:10.1109/32.491652. Frakes, W. B. and Isoda, S. (1994) 'Success Factors of Systematic Reuse'. IEEE	Software, 11 (5; September), pp. 14–19. DOI:10.1109/52.311045. Frakes, W. B. and Kang, K. (2005) 'Software Reuse Research: Status and Future'. IEEE	
Transactions	 on	 Software	 Engineering,	 31 (7; July), pp. 529–536. DOI:10.1109/TSE.2005.85. Frijters, J. (2011) IKVM.NET Home Page. Available at: http://www.ikvm.net/ (Accessed Oct. 2009) FSU. (2007) gSOAP: SOAP C++ Web Services. Available at: http://www.cs.fsu.edu/~engelen/soap.html (Accessed Oct. 2009). Gamma, E. (1995) Design	patterns:	elements	of	reusable	object-oriented	software. 1st edition. Reading, USA: Addison-Wesley. ISBN: 0201633612 Garcia, V. C., de Almeida, E. S., Lisboa, L. B., Martins, A. C., Meira, S. R. L., Lucredio, D. and de M. Fortes, R. P. (2006) 'Toward a Code Search Engine Based on the State-of-Art and Practice', Software	Engineering	Conference	13th	Asia	Pacific	(APSEC).	Kanpur, India, 6-8 Dec. 2006. IEEE Conference Publications, pp. 61–70. DOI:10.1109/APSEC.2006.57. Garlan, D., Allen, R. and Ockerbloom, J. (2009) 'Architectural Mismatch: Why Reuse Is Still So Hard'. IEEE	Software, 26 (4; July), pp. 66–69. DOI:10.1109/MS.2009.86. GForgeGroup. (2012) GForge Group Collaborative Development Environment. Available at: http://gforgegroup.com/ (Accessed Jan 2010). Ghezzi, C. (2005) 'Service based Computing: Where does it come from? A software engineering perspective' Keynote	 address	 at	 the	 International	 Conference	 on	 Service	
based	Computing	(ICSOC). Amsterdam, Netherlands, 12-14 Dec. 2005 Springer Giambiagi, P., Owe, O., Ravn, A. P. and Schneider, G. (2006) 'Language-Based Support for Service based Architectures: Future Directions', 1st	 International	 Conference	 on	
Software	and	Data	Technologies	(ICSOFT	2006). Setúbal, Portugal, 11-16 Sept. 2006. Portugal: Springer, pp. 339-344. Gilart-Iglesias, V., Macia-Perez, F., Capella-D’alton, A. and Gil-marti’nez-abarca, J. (2006) 'Industrial Machines as a Service: A Model Based on Embedded Devices and Web Services', Industrial	Informatics,	2006	IEEE	International	Conference	on. Singapore, 16-18 Aug. 2006. Institute of Electrical and Electronics Engineers (IEEE), pp. 630–635. DOI:10.1109/INDIN.2006.275634.

References

xxviii

Gill, H. (2005) 'Challenges for Critical Embedded Systems', Object-Oriented	 Real-Time	
Dependable	Systems	(WORDS)	10th	IEEE	International	Workshop	on. Sedona, USA, 2-4 Feb. 2005. IEEE Conference Publications, pp. 7–12. DOI:10.1109/WORDS.2005.21. Gogniat, G., Wolf, T., Burleson, W., Diguet, J.-P., Bossuet, L. and Vaslin, R. (2008) 'Reconfigurable Hardware for High-Security/ High-Performance Embedded Systems: The SAFES Perspective'. IEEE	 Transactions	 on	 Very	 Large	 Scale	 Integration	 (VLSI)	
Systems, 16 (2; February), pp. 144–155. DOI:10.1109/TVLSI.2007.912030. Grefen, P.,Hoffner, Y., Ludwig, H., and Aberer, K. (2000) 'CrossFlow: Integrating Workflow Management and Electronic Commerce'. ACM	SIGecom	Exchanges, 2 (1), pp. 1-10. Gruhn, V. and Thiel, A. (2000) Komponentenmodellen:	 DCOM,	 JavaBeaans	 [sic],	
EnterpriseJavaBeans,	 CORBA. München, Germany and Harlow, UK: Addison-Wesley. ISBN: 3-8273-1724-X / 382731724X Ha, W., Sun, H. and Xie, M. (2012) 'Reuse of Embedded Software in Small and Medium Enterprises', Management	 of	 Innovation	 and	 Technology	 (ICMIT),	 2012	 IEEE	
International	 Conference	 on. Bali, Indonesia, 11-13 June 2012. IEEE Conference Publications, pp. 394–399. DOI:10.1109/ICMIT.2012.6225838. Heckmann, B. (2007) 'Service provisioning in a utility computing enviroment', Research	
Symposium	on	Security,	E-learning,	Internet	and	Networking. Plymouth, UK, 14-15 June 2007. Plymouth, UK: Information Security and Network Research Group, pp. 185-198. Heineman, G. T. and Councill, W. T. (2001) Component-Based	Software	Engineering:	Putting	
the	Pieces	Together. 1st edition. NHJ, USA: Addison-Wesley. ISBN: 076868207X Henry, E. and Faller, B. (1995) 'Large-scale Industrial Reuse to Reduce Cost and Cycle Time'.
IEEE	Software, 12 (5; September), pp. 47–53. DOI:10.1109/52.406756. Herzum, P. and Sims, O. (2000) Business	 Component	 Factory:	 A	Comprehensive	Overview	of	
Component-Based	Development	for	 the	Enterprise. 1st. edition. New York, USA: John Wiley & Sons. ISBN: 0471327603 Hesoid and Evelyn-White, H. G. (1914) The	 Theogony	 of	 Hesoid. Kindle Edition. Focus Publishing Horeis, T. and Sick, B. (2007) 'Collaborative Knowledge Discovery & Data Mining: From Knowledge to Experience', Computational	Intelligence	and	Data	Mining	(CIDM)	 IEEE	
Symposium	on. Honolulu, Hawaii, USA, 1-5 April 2007. IEEE Conference Publications, pp. 421–428. DOI:10.1109/CIDM.2007.368905. Huang, H., Shi, Z.-z., Cheng, Y. and Qiu, L. (2005) 'Service-oriented Knowledge Management on Virtual Organizations', Computer	 and	 Information	 Technology	 (CIT),	 The	 Fifth	
International	 Conference	 on. Shanghai, China , 21-23 Sept. 2005. IEEE Conference Publications , pp. 1050–1054. DOI:10.1109/CIT.2005.167.

References

xxix

Human Brain Project. (2011) Human Brain Project - Home. Available at: http://www.humanbrainproject.eu/ (Accessed Jun. 2011). Hunt, A. and Thomas, D. (2004) 'Imaginate software construction'. Software	IEEE, 21 (5; Sept.- Oct.), pp. 96-97. DOI: 10.1109/MS.2004.1331311 Isoda, S. (1992) 'Experience Report on Software Reuse Project: Its Structure, Activities, and Statistical Results' Proceedings	of	Software	 engineering	 (ICSE)	 the	14th	 international	
conference	on. Melbourne, Australia, 11-15 May 1992. New York, USA: ACM, pp. 320–326. DOI:10.1109/ICSE.1992.753509. Isoda, S. (1991) 'An experience of software reuse activities', Computer	 Software	 and	
Applications	Conference	(COMPSAC),	Proceedings	of	the	Fifteenth	Annual	International. Tokyo, Japan, 11-13 Sep 1991. IEEE Conference Publications, pp.8-9. DOI:10.1109/CMPSAC.1991.170144. Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The	 Unified	 Software	 Development	
Process.Sebastopol. Addison-Wesley. ISBN: 0201571692 Jacobson, I., Chrsiterson, M., Jonsson, P. and Overgaard, G. (1992) Object-Oriented	Software	
Engineering	 -A	 Use	 Case-driven	 Approach. 4th edition. Addison-Wesley. ISBN: 0201544350. Jacobson, I., Griss, M. and Jonsson, P. (1997) Software	 reuse:	 architecture	 process	 and	
organization	for	business	success. 1st edition. New York, USA, Harlow,UK and Madrid, Spain: ACM Press and Addison-Wesley Longman. ISBN: 0201924765 Jammes, F., Mensch, A. and Smit, H. (2007) 'Service-Oriented Device Communications Using the Devices Profile for Web Services', Advanced	 Information	 Networking	 and	
Applications	 Workshops,	 International	 Conference	 On, Ontario,Canada, 21-23 May 2007. Los Alamitos, USA: IEEE Computer Society, pp. 947–955. DOI:http://doi.ieeecomputersociety.org/10.1109/AINAW.2007.331. Jansen, S., Brinkkemper, S., Hunink, I. and Demir, C. (2008) 'Pragmatic and Opportunistic Reuse in Innovative Start-up Companies' IEEE	Software, 25 (6; November), pp. 42–49. DOI:10.1109/MS.2008.155. Jennex, M. E. (2009) 'Re-Visiting the Knowledge Pyramid', System	 Sciences	 (HICSS),	 42nd	
Hawaii	 International	 Conference	 on. Hawaii, USA, pp. 1–7. DOI:10.1109/HICSS.2009.361. Jeong, C. and Kim, K. (2012) 'Technology Relationship Analysis Using Problem and Solution Similarities', Management	 of	 Innovation	 and	 Technology	 (ICMIT),	 2012	 IEEE	
International	 Conference	 on.	 Bali, Indonesia, 11-13 June 2012. IEEE Conference Publications, pp. 516–521. DOI:10.1109/ICMIT.2012.6225859.

References

xxx

Jha, M. and O’Brien, L. (2011) 'A Comparison of Software Reuse in Software Development Communities' Software	 Engineering	 (MySEC)	 5th	 Malaysian	 Conference	 in. Johor Bahru, Malaysia, 13-14 Dec. 2011.	 IEEE Conference Publications, pp. 313–318. DOI:10.1109/MySEC.2011.6140690. Jiang, M. and Willey, A. (2005) 'Architecting Systems with Components and Services'
Information	 Reuse	 and	 Integration,	 Conf,	 2005.	 (IRI)	 IEEE	 International	 Conference on. Las Vegas, USA, 15-17 Aug. 2005. Las Vegas, USA: Institute of Electrical and Electronics Engineers (IEEE), pp. 259-264. DOI: 10.1109/IRI-05.2005.1506483 Johansson, C., Hall, P. and Coquard, M. (1999) '"Talk to Paula and peter—They Are Experienced" the Experience Engine in a Nutshell'. In: Ruhe, G. and Bomarius, F. eds.

Learning	Software	Organizations. Berlin and Heidelberg, Germany: Springer. pp. 171-185. ISBN 978-3-540-41430-8. Kaabi, R. S., Souveyet, C. and Rolland, C. (2004) 'Eliciting service composition in a goal driven manner', 2nd	 international	 conference	 on	 Service	 oriented	 computing	 Proceedings	 of (ICSOC). New York, USA, 15-18 Nov. 2004. ACM, pp. 308-315. Karnouskos, S. and Tariq, M. M. J. (2009) 'Using Multi-agent Systems to Simulate Dynamic Infrastructures Populated with Large Numbers of Web Service Enabled Devices',
Autonomous	 Decentralized	 Systems,	 2009.	 ISADS	 '09.	 International	 Symposium	 on.	Athen, Greece, 23-25 Mar. 2009. Institute of Electrical and Electronics Engineers (IEEE), pp. 1–7. DOI:10.1109/ISADS.2009.5207354. Kleppe, A. (2003) MDA	Explained:	 the	Model	Driven	Architecture:	 Practice	and	 Promise. 1st edition. Boston, USA: Addison-Wesley. ISBN: 032119442X Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnet, M., Erwig, M., Lawrence, J. et al. (2009) 'The State of the Art in End-User Software Engineering' ACM	 Computing	
Surveys	 (CSUR), 43 (3; April), pp. 1-44. http://citeseerx.ist.psu.edu. DOI: 10.1145/1922649.1922658 Kotonya, G., Hutchinson, J. and Bloin, B. (2004) 'A Method for Formulating and Architecting Component and Service oriented Systems' In	 Stojanovic,	 Z.	 and	Dahanayake	and,	A.	
Hrsg.)	Service	oriented	Software	Engineering:	Challanges	and	Practises,	IGP,	Hershey,	et	
al. London, UK: Idea Group Inc., pp. 155-182. Kreuzer, K. (2005) Web Service Choreography. Available at: http://www.st.informatik.tu-darmstadt.de/database/seminars/data/seminar-wscdl.pdf?id=198 (Accessed Oct. 2007). Kruchten, P., Capilla, R. and Dueñas, J. C. (2009) 'The Decision View’s Role in Software Architecture Practice'. IEEE	 Software, 26 (2; March), pp. 36–42. DOI:10.1109/MS.2009.52.

References

xxxi

Krueger, C. W. (1992) 'Software Reuse'. ACM	Computing	Surveys, 24 (2; June 1), pp. 131–183. DOI:10.1145/130844.130856. Kumar, A., Neogi, A., Pragallapati, S. and Ram, D. J. (2007) 'Raising Programming Abstraction from Objects to Services', Web	Services	(ICWS)	IEEE	International	Conference	on. Salt Lake City, USA, 9-13 July 2007. Lake City, USA: Institute of Electrical and Electronics Engineers (IEEE), pp. 864–872. DOI:10.1109/ICWS.2007.149. Lamsweerde, A. van (2000) 'Requirements Engineering in the Year 2000: A Research Perspective', 22nd	 International	 Conference	 on	 Software	 Engineering.	 Limerick, Ireland: ACM Press, pp. 5-19. LaToza, T. D., Venolia, G. and DeLine, R. (2006) 'Maintaining Mental Models', Software	
engineering	 (ICSE)	 Proceedings	 of	 the	 28th	 international	 conference	 on. Shanghai, China, 20-28 May 2006. ACM Press., p. 492. DOI:10.1145/1134285.1134355. Lee, R., Harikumar, A., Chiang, C.-C., Yang, H.-S., Kim, H.-K. and Kang, B. (2005) 'A Framework for Dynamically Converting Components to Web Services', Software	 Engineering	
Research,	Management	and	Applications,	2005.	Third	ACIS	International	Conference	on. Mischigan, USA, 11-13 Aug. 2005. Institute of Electrical and Electronics Engineers (IEEE), pp. 431–437. DOI:10.1109/SERA.2005.8. Leite, J. C. S. do P., Yu, Y., Liu, L., Yu, E. S. K. and Mylopoulos, J. (2005) 'Quality-Based Software Reuse', Advanced	 Information	 Systems	 Engineering	 (CAiSE)	 Proceedings	 of	 the	 17th	
international	conference	on.	Porto, Portugal, 13-17 June 2005. Berlin and Heidelberg, Germany: Springer, pp. 535–550. DOI:10.1007/11431855_37 Lopez, A. Y. and Niu, N. (2011) 'Multiple Criteria Decision Support for Software Reuse: A Case Study', Information	Reuse	and	Integration	(IRI)	IEEE	International	Conference	on.	Las Vegas, USA, 3-5 Aug. 2011. IEEE Conference Publications, pp. 200–205. DOI:10.1109/IRI.2011.6009546. Ludewig, J. and Lichter, H. (2010) Software	 Engineering	 Grundlagen,	 Menschen,	 Prozesse,	
Techniken. 2nd edition. Heidelberg, Germany: dpunkt-Verlag. ISBN: 3898646629 Maamar, Z., Sheng, Q. Z. and Benatallah, B. (2004), 'Towards a conversation driven composition of web services'. Web	Intelligence	and	Agent	Systems, 2 (2; April 2004): pp. 1263-1570. Maunder, C. (2012) CodeProject - For Those Who Code. Available at: http://www.codeproject.com/. (Accessed Jan. 2012). McCarey, F., Cinnéide, M. Ó. and Kushmerick, N. (2008) 'Knowledge Reuse for Software Reuse'.	 Web	 Intelligence	 and	 Agent	 Systems, 6 (1; January), pp. 59-81. DOI:10.3233/WIA-2008-0130

References

xxxii

McClure, C. L. (2001) Software	reuse:	a	standards-based	guide. 1st edition. Los Alamitos, USA: IEEE Computer Society. ISBN: 076950874X McConnell, S. (1996a) Rapid	 development:	 taming	 wild	 software	 schedules. 1st edition. Redmond, Wash.: Microsoft Press. ISBN: 1556159005 McConnell, S. (1996b) 'Who Cares About Software Construction?'.	 IEEE	 Software, 13 (1; January), pp. 127–128. DOI:10.1109/52.476305. McConnell, S. (2006) 'Software Construction, Part 1'. IEEE	Software, 23 (1; January), pp. 99–99. DOI:10.1109/MS.2006.29. Mens, T. and Vangorp, P. (2006) 'A Taxonomy of Model Transformation'. Electronic	Notes	in	
Theoretical	 Computer	 Science, 152 (March 27), pp. 125–142. DOI:10.1016/j.entcs.2005.10.021. Meyer, B. (1997) Object-oriented	software	construction. 1st edition. Upper Saddle River, USA: Prentice Hall. ISBN:0136291554 Microsoft (2010) Inserting, Updating and Deleting Entities in Entity Framework (EOF). Available at: http://msdn.microsoft.com/en-us/data/ff629457.aspx (Accessed Aug. 2009). Microsoft. (2012a) COM Microsoft. Available at: http://www.microsoft.com/com/default.mspx (Accessed Oct. 2008). Microsoft. (2012b) Managed Extensibility Framework. Available at: http://mef.codeplex.com (Accessed Oct. 2010). Microsoft (2012c) Developing Visual Studio Extensions. Available at: http://msdn.microsoft.com/en-us/library/dd885119.aspx (Accessed Oct. 2008) Microsoft. (2012d) Silverlight - Microsoft Web Platform. Available at: http://www.microsoft.com/web/page.aspx?templang=de-de&chunkfile=special%5Csilverlight.html (Accessed Jan. 2011). Microsoft. (2012e) Windows Communication Foundation. Available at: http://msdn.microsoft.com/en-us/netframework/aa663324.aspx (Accessed Jan. 2011). Mili, H., Mili, F. and Mili, A. (1995) 'Reusing Software: Issues and Research Directions'. IEEE	
Transactions	 on	 Software	 Engineering, 21 (6; June), pp. 528–562. DOI:10.1109/32.391379. Mishra, D. and Mishra, A. (2009) 'Software Process Improvement in SMEs: A Comparative View'. Computer	 Science	 and	 Information	 Systems, 6 (1), pp. 111–140. DOI:10.2298/CSIS0901111M.

References

xxxiii

Mohagheghi, P., Conradi, R., Killi, O. M. and Schwarz, H. (2004) 'An Empirical Study of Software Reuse Vs. Defect-Density and Stability', Proceedings	of	the	26th	International	
Conference	on	Software	Engineering, Edinburgh, UK, 23-28 May 2004. Washington, DC, USA: IEEE Computer Society, pp. 282-292. Morad, S. and Kuflik, T. (2005) 'Conventional and Open Source Software Reuse at Orbotech - An Industrial Experience', Software	 -	 Science,	 Technology	 and	 Engineering,	 2005.	
Proceedings.	 IEEE	 International	 Conference	 On, Herzelia, Israel, 22-23 Feb.2005Institute of Electrical and Electronics Engineers (IEEE), pp. 110–117. DOI:10.1109/SWSTE.2005.11. Morisio, M., Ezran, M. and Tully, C. (2002) 'Success and Failure Factors in Software Reuse'.
IEEE	 Transactions	 on	 Software	 Engineering, 28 (4; April), pp. 340–357. DOI:10.1109/TSE.2002.995420. Naur, P. and Randell, B. (1968) 'Software Engineering: Report of a Conference Sponsored by the NATO Science Committee', 7-11 Oct. 1968. Garmisch, Germany: Scientific Affairs Division, NATO, p. 231. O’Connor, M. J., Nyulas, C., Tu, S., Buckeridge, D. L., Okhmatovskaia, A. and Musen, M. A. (2009) 'Software-engineering Challenges of Building and Deploying Reusable Problem Solvers'. Artificial	Intelligence	for	Engineering	Design,	Analysis	and	Manufacturing, 23 (04; October), p. 339. DOI:10.1017/S0890060409990047. O’Sullivan, A. (2003) 'Dispersed Collaboration in a Multi-firm, Multi-team Product-development Project'. Journal	 of	Engineering	and	Technology	Management, 20 (1-2; June), pp. 93–116. DOI:10.1016/S0923-4748(03)00006-7. OMG-CORBA. (1999) Object Management Group: CORBA Components. Available at: http://www.omg.org/corba (accessed Jul 2007).

Oracle (2012) Java SDK, Available at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html. (Accassed
Jan.2012) Papazoglou, M. P., Traverso, P., Dustdar, S. and Leymann, F. (2007) 'Service-Oriented Computing: State of the Art and Research Challenges'. Computer, 40 (11; November), pp. 38–45. DOI:10.1109/MC.2007.400. Parreiras, F. S. (2012) Semantic	Web	and	Model-driven	Engineering. Hoboken, USA: John Wiley & Sons. ISBN:978-1-1180-0417-3 Paulisch, F. (2008) '40 Jahre Softwareentwicklung: Von Den Anfängen Bis Heute'.	
Objektspektrum,	8 (2008), pp. 10-11. Peltz, C. (2003) 'Web Services Orchestration and Choreography'. Computer, 36 (10; October), pp. 46–52. DOI:10.1109/MC.2003.1236471.

References

xxxiv

Penserini, L., Perini, L., Susi, A. and Mylopoulos, J. (2006) 'From Stakeholder Needs to Service Requirements' Service-Oriented	 Computing:	 Consequences	 for	 Engineering	
Requirements, Minneapolis , USA, 12. Sept. 2006. Institute of Electrical and Electronics Engineers (IEEE) Petrasch, R. and Meimberg, O. (2006) Model	 Driven	 Architecture:	 Eine	 Praxisorientierte	
Einführung	 in	 die	 MDA. 1st. edition. Heidelberg, Germany: dpunkt Verlag. ISBN:3-89864-343-3 Piccinelli, G., Finkelstein, A. and Williams, S. L. (2003) 'Service-Oriented Workflows: The DySCo Framework', Euromicro	Conference,	Proceedings.	29th. Stockholm, Sweden, 1-6 Sept. 2003. IEEE Conference Publications, pp. 291-297. DOI: 10.1109/EURMIC.2003.1231552 Picot, A. (2003) Die	Grenzenlose	Unternehmung:	Information,	Organisation	Und	Management			
Lehrbuch	Zur	Unternehmensführung	Im	Informationszeitalter. Neuauflage. Wiesbaden, Germany: Gabler. ISBN: 3834921629 Pinello, C., Carloni, L. P. and Sangiovanni-Vincentelli, A. L. (2008) 'Fault-Tolerant Distributed Deployment of Embedded Control Software'. IEEE	 Transactions	 on	 Computer-Aided	
Design	 of	 Integrated	 Circuits	 and	 Systems, 27 (5; May), pp. 906–919. DOI:10.1109/TCAD.2008.917971. Pino, F. J., García, F. and Piattini, M. (2007) 'Software Process Improvement in Small and Medium Software Enterprises: a Systematic Review'. Software	Quality	Journal, 16 (2; November 21), pp. 237–261. DOI:10.1007/s11219-007-9038-z. Poulin, J. S. (1997) Measuring	software	reuse:	principles,	practices,	and	economic	models. 1st edition.. Reading, USA: Addison-Wesley. ISBN: 0201634139 Prieto-Diaz, R. (1993) 'Status Report: Software Reusability'. IEEE	Software, 10 (3; May), pp. 61–66. DOI:10.1109/52.210605. Qu, G., Ji, S. and Nsakanda, A. (2012) 'Project Complexity and Knowledge Transfer in Global Software Outsourcing Project Teams: A Transactive Memory Systems Perspective',
System	 Science	 (HICSS)	 45th	 Hawaii	 International	Conference. Hawaii, 4-7 Jan. 2012. Institute of Electrical and Electronics Engineers (IEEE), pp. 3776–3785. DOI:10.1109/HICSS.2012.488. Rada, R. (1995) Software	reuse. Oxford,UK: Intellect. ISBN: 1871516536 Randolph, J. J. (2009) 'A Guide to Writing the Discussion Literature Review'. Practical	
Assessment,	Research	&	Evaluation,	14 (13), pp. 1-13 Ravichandran, T. and Rai, A. (2003) 'Structural Analysis of the Impact of Knowledge Creation and Knowledge Embedding on Software Process Capability'. IEEE	 Transactions	 on	

References

xxxv

Engineering	 Management, 50 (3; August), pp. 270–284. DOI:10.1109/TEM.2003.817278. Rockart, J. F. (1979) 'Chief Executives Define Their Own Data Needs'. Harvard	 Business	
Review, 57 (2; April), pp. 81–93. RosettaNet. (2004) RosettaNet. Available at: http://www.rosettanet.org/cms/sites/RosettaNet/ (accessed Oct. 2008) Rothenberger, M. A., Dooley, K. J., Kulkarni, U. R. and Nada, N. (2003) 'Strategies for Software Reuse: a Principal Component Analysis of Reuse Practices'. IEEE	 Transactions	 on	
Software	 Engineering, 29 (9; September), pp. 825–837. DOI:10.1109/TSE.2003.1232287. Rowley, J. (2007) 'The Wisdom Hierarchy: Representations of the DIKW Hierarchy'. Journal	of	
Information	 Science, 33 (2; February 15), pp. 163–180. DOI:10.1177/0165551506070706. Rücker, B. and Backschat, M. (2007) Enterprise Java Beans 3.0. 2nd Edition. München, Germany: Elsevier Verlag, 2nd Edition. ISBN: 978-3-8274-1510-3 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991) Object-Oriented	
Modelling	and	Design.	Englewood Cliffs: Prentice Hall, ISBN: 8120310462 Sandhu, P. S., Aashima, P. K. and Sharma, S. (2010) 'A Survey on Software Reusability',
Mechanical	 and	 Electrical	 Technology	 (ICMET)	 2nd	 International	 Conference	 on. Singapore, 10-12 Sept. 2010. IEEE Conference Publications, pp. 769–773. DOI:10.1109/ICMET.2010.5598467. Santana de Almeida, E., Alvaro, A., Lucredio, D., Cardoso Garcia, V. and Romero de Lemos Meira, S. (2004) 'RiSe Project: Towards a Robust Framework for Software Reuse',
Information	 Reuse	 and	 Integration	 (IRI):	 Proceedings	 of	 the	 2004	 IEEE	 International	
Conference	 on. Las Vegas, 8-10 Nov. 2004. Las Vegas, USA: IEEE Conference Publications, pp. 48–53 DOI:10.1109/IRI.2004.1431435. Schmidt, D. C. (1999) Why Software Reuse Has Failed and How to Make It Work for You. C++ Report magazine (January). Available at: http://www.cs.wustl.edu/~schmidt/reuse-lessons.html (Accessed Aug. 2009). Schoop, R. (2012), 'Key note presentation', Emerging	 Technologies	 &	 Factory	 Automation:	
17th	IEEE	International	Conference	on, Krakow, Poland, 17-21 Sept. 2012. Schuster, H., Baker, D., Cichocki, A., Georgakopoulos, D. and Rusinkiewicz, M. (2000) 'The collaboration management infrastructure', Dataengineering	 16th	 International	
Conference	on	(ICDE). San Diego, USA, 28 Feb.-3 March 2000. IEEE Computer Society, pp. 677-678.

References

xxxvi

Seedorf, S. (2010) Ontologie-gestützte	 Entwicklung	 komponentenbasierter	
Anwendungssysteme	 ein	 wissensbasiertes	 Informationssystem	 zur	 Unterstützung	 der	
Entwicklung	und	Wartung	 von	Geschäftskomponenten	 (KompIS). Frankfurt am Main, Germany: Peter Lang. ISBN 978-3-631-60535-6. Selic, B. (2003) 'The Pragmatics of Model-driven Development'. IEEE	 Software, 20 (5; September), pp. 19–25. DOI:10.1109/MS.2003.1231146. Sen, A. (1997) 'The Role of Opportunism in the Software Design Reuse Process'. IEEE	
Transactions	 on	 Software	 Engineering, 23 (7; July), pp. 418–436. DOI:10.1109/32.605760. Seriai, A., Bastide, G. and Oussalah, M. (2006) 'How To Generate Distributed Software Components From Centralized Ones?'. Journal	of	Computers, 1 (5; August), pp. 40–52. DOI:10.4304. Sessions (1998b) COM and DCOM: Microsoft's vision for distributed objects. New York, USA: John Wiley & Sons. Sessions (1998a) Component Oriented Middleware. Component Strategies. ISBN:047119381X Sheng, Q. Z., Benatallh, B., Dumas, M. and Mak, E. O. (2002) 'SELF-SERV: A Platform for Rapid Composition of Web Services in a Peer-to-Peer Environment' Demonstration	Session	of	
the	 28th	 International	 Conference	 on	 (VLDB). Hong Kong, China, September 2002. VLDB Endowment, pp. 1-4. Shiva, S. G. and Shala, L. A. (2007) 'Software Reuse: Research and Practice', Fourth	
International	 Conference	on	 Information	 Technology	 (ITNG’07). Las Vegas, 2.-4. Apr. 2007. Las Vegas, NV, USA: Institute of Electrical and Electronics Engineers (IEEE), pp. 603–609. DOI:10.1109/ITNG.2007.182. Siedersleben, J. (2006) Moderne	 Softwarearchitektur:	 Umsichtig	 Planen,	 Robust	 Bauen	 Mit	
Quasar. 1. Auflage. Heidelberg, Germany: dpunkt-Verlag. ISBN: 3898642925 Siegel, J. (2000) CORBA	3:	Fundamentals	and	Programming. 2nd edition. New York, USA: OMG Press. ISBN: 0471295183 Singh, M. P. and Huhns, M. N. (2005) Service-oriented	computing	semantics,	processes,	agents. 1st edition. Chichester, UK: John Wiley & Sons. ISBN: 0470091487 Skogan, D., Grønmo, R. and Solheim,I. (2004) 'Web service composition in UML',	Enterprise	
Distributed	Object	Computing	Conference	(EDOC)	Proceedings.	8th	IEEE	International. California, USA, 20-24 Sept. 2004. Institute of Electrical and Electronics Engineers (IEEE), pp. 47-57. DOI:10.1109/EDOC.2004.1342504

References

xxxvii

Slyngstad, O. P. N., Gupta, A., Conradi, R., Mohagheghi, P., Rønneberg, H. and Landre, E. (2006) 'An Empirical Study of Developers Views on Software Reuse in Statoil ASA', Empirical	
software	 engineering	 (ISESE):	 Proceedings	 of	 the	 2006	 ACM/IEEE	 international	
symposium	on.	Rio de Janeiro, Brazil, 2006. New York, NY, USA: ACM Press.,	p.	242.	
DOI:10.1145/1159733.1159770. SOA4D (2012) SOA4D Forge: Willkommen. Available at: https://forge.soa4d.org/ (Accessed June 22). Software Engineering Institute .(2004) Enterprise Security Management. Available at: http://www.sei.cmu.edu/library/abstracts/reports/04tn046.cfm: (Accessed Dec. 2007) Sommerville, I. (2011) Software	 engineering. 9th edition. Boston, USA: Pearson. ISBN:0137053460 SparxSystem (2012) Enterprise Architect. Available at: http://www.sparxsystems.com.au/ (Accessed Nov. 2012). Stake, R. E. (1995), The	art	of	case	study	research, Thousand Oaks, CA: Sage Stojanović, Z. (2005) A	Method	 for	Component-Based	and	Service-Oriented	Software	Systems	
Engineering. Ph. D.. Technical UniversityDelft. SUN. Enterprise JavaBeans. (2008) Oracle8i Enterprise JavaBeans and CORBA Developer's Guide. Available at: http://java.sun.com/products/ejb/docs.html (accessed Oct. 2008). SUN Microsystems. (2006) JDKTM 5.0 Documentation. Available at: http://java.sun.com/javaee/5/docs/tutorial/doc/JavaEETutorial.pdf (accessed Oct. 2007) SWEBOK. (2004) Guide to the Software Engineering Body of Knowledge (swebok). Available at: http://www.swebok.org (Accessed May 2008). Szyperski, C. (2002) Component	Software:	Beyond	Object-oriented	Programming. 2nd edition. New York, USA and London, UK: ACM Press and Addison-Wesley. ISBN:0-201-74572-0 Taweel, A., Delaney, B., Arvanitis, T. N. and Zhao, L. (2009) 'Communication, Knowledge and Co-ordination Management in Globally Distributed Software Development: Informed by a Scientific Software Engineering Case Study', Global	Software	Engineering,	2009	
(ICGSE):	 Fourth	 IEEE	 International	 Conference. Limerick, Ireland, 13-16 July 2009. Institute of Electrical and Electronics Engineers (IEEE), pp. 370–375. DOI:10.1109/ICGSE.2009.58.

References

xxxviii

Thörn, C. (2010) 'Current State and Potential of Variability Management Practices in Software-intensive SMEs: Results from a Regional Industrial Survey'. Information	and	
Software	Technology, 52 (4; April), pp. 411–421. DOI:10.1016/j.infsof.2009.10.009. Tomer, A., Goldin, L., Kuflik, T., Kimchi, E. and Schach, S. R. (2004) 'Evaluating Software Reuse Alternatives: a Model and Its Application to an Industrial Case Study'. IEEE	
Transactions	 on	 Software	 Engineering, 30 (9; September), pp. 601–612. DOI:10.1109/TSE.2004.50. Tracz, W. (1994) 'Software Reuse Myths Revisited', Software	Engineering,	1994,	Proceedings	
(ICSE):	 16th	 International	 Conference	 on. Sorrento, Italy, 16-21 May 1994. IEEE Comput. Soc. Press., pp. 271-272. DOI:10.1109/ICSE.1994.296788. Rashid, A. and Aksit, M. (2006) 'Transactions on Aspect-oriented Software Development'. Lecture Notes in Computer Science, New York: Springer. Tsai, C.-H., Zhu, D.-S., Chien-Ta Ho, B. and Dash Wu, D. (2010) 'The Effect of Reducing Risk and Improving Personal Motivation on the Adoption of Knowledge Repository System'.
Technological	 Forecasting	 and	 Social	 Change, 77 (6; July), pp. 840–856. DOI:10.1016/j.techfore.2010.01.011. Tsai, W., Malek, M., Chen, Y. and Bastani, F. (2006) 'Perspectives on Service-Oriented Computing and Service-Oriented System Engineering',	 Service-Oriented	 System	
Engineering,	2006	(SOSE):	Second	IEEE	International	Workshop. Shanghai, China, Oct. 2006. Institute of Electrical and Electronics Engineers (IEEE), pp. 3–10. DOI:10.1109/SOSE.2006.24. Turban, E., Kelly, R. and Potter, R. E. (2001) Introduction	 to	 information	 technology. 3rd edition. New York, USA: John Wiley. ISBN: 0471347809 Ven, J. S., Jansen, A. G. J., Nijhuis, J. A. G. and Bosch, J. (2006) 'Design Decisions: The Bridge Between Rationale and Architecture'. In: Dutoit, A. H., McCall, R., Mistrík, I. and Paech, B. eds. Rationale	 Management	 in	 Software	 Engineering. Berlin and Heidelberg, Germany: Springer. pp. 329-348. ISBN: 3540309977. Visser, W. (1990) 'More or Less Following a Plan During Design: Opportunistic Deviations in Specification'. International	 Journal	 of	Man-Machine	 Studies, 33 (3; September), pp. 247–278. DOI:10.1016/S0020-7373(05)80119-1. Vlaar, P. W. L., van Fenema, P. C. and Tiwari, V. (2008) 'Cocreating Understanding and Value in Distributed Work: How Members of Onsite and Offshore Vendor Teams Give, Make, Demand, and Break Sense'.	MIS	Quarterly,32 (2), pp. 227-255. Vliet, H. van (2008) Software	engineering:	principles	and	practice. 3rd edition. Chichester, UK and Hoboken, USA: John Wiley & Sons. ISBN: 0470031468

References

xxxix

W3C. (2000) Natural Language Semantics Markup Language: W3C Working Draft. Available at: http://www.w3.org/TR/nl-spec/ (Accessed Feb. 2009). W3C. (2004) RDF - Semantic Web Standards. Available at: http://www.w3.org/RDF/ (Accessed Feb. 2009). W3C. (2007) SOAP Specifications. Available at: http://www.w3.org/TR/soap/ (Accessed June 2010). W3C (2006) Web Services Eventing Available at: http://www.w3.org/Submission/WS-Eventing/ (Accessed Feb. 2008). W3C. (2009) OWL 2 Web Ontology Language Document Overview. Available at: http://www.w3.org/TR/owl2-overview/ (Accessed Feb. 2009). Wang, G. and Fung, C. K. (2004) 'Architecture Paradigms and Their Influences and Impacts on Component-based Software Systems', System	Sciences:	Proceedings	of	The	37th	Annual	
Hawaii	 International	 Conference	 on. Big Island, Hawaii, 5-8 Jan.2004. Institute of Electrical and Electronics Engineers (IEEE), pp. 272–281. DOI:10.1109/HICSS.2004.1265643. Welke, R. J. (1994) 'The Shifting Software Development Paradigm'. ACM	SIGMIS	Database, 25 (4; November): pp. 9-16. White, J., Hill, J. H., Gray, J., Tambe, S., Gokhale, A. S. and Schmidt, D. C. (2009) 'Improving Domain-Specific Language Reuse with Software Product Line Techniques'. IEEE	
Software, 26 (4; July), pp. 47–53. DOI:10.1109/MS.2009.95. Williams, S. and Kindel, C. (1994) The Component Object Model: A Technical Overview -White Paper. Available at: http://msdn.microsoft.com/en-us/library/ms877981.aspx (accessed Oct. 2007). Xu, Y., Tang, S., Xu, Y. and Tang, Z. (2007) 'Towards Aspect Oriented Web Service Composition with UML', Computer	 and	 Information	 Science	 (ICIS): 6th	 IEEE/ACIS	 International	
Conference	 on,Melbourne, Australia, 11-13 July 2007. Institute of Electrical and Electronics Engineers (IEEE), pp. 279–284. DOI:10.1109/ICIS.2007.185. Yin, R. K. (2003), Case	study	research:	Design	and	methods	(3rd ed.), Thousand Oaks CA: Sage. Ye, Y. (2001) 'An Active and Adaptive Reuse Repository System' System	Sciences: Proceedings	
of	 the	34th	Annual	Hawaii	 International	Conference	on. Maui, Hawaii, 3-6 Jan. 2001. Maui, Hawaii: IEEE Computer Society Press, DOI: 10.1.1.95.9799 Ye, Y. and Fischer, G. (2005) 'Reuse-Conducive Development Environments'. Automated	
Software	Engineering, 12 (2; April), pp. 199–235. DOI:10.1007/s10515-005-6206-x.

References

xl

Zheng, Y. (2007) 'A Knowledge Based Production Line Development Management System',
Wireless	 Communications,	 Networking	 and	 Mobile	 Computing,	 2007	 (WiCom):	
International	 Conference	 on. Shanghai, China, 21-25 Sept. 2007. Washington, USA: Institute of Electrical and Electronics Engineers (IEEE), pp. 5834–5837. DOI:10.1109/WICOM.2007.1432. Zinn M., Fischer-Hellmann, K. P., Phippen A. D. and Schütte, A. (2010)	‘Finding Reusable Units of Modelling - an Ontology Approach’,	Proceedings	of	the	8th	International	Network	
Conference	(INC	2010), Heidelberg, Germany, July 2010. Network Research Group, pp. 377-386. Zinn, M., Fischer-Hellmann, K. P., Phippen, A. D. and Schütte, A. (2011a) 'Information Demand Model for Software Unit Reuse', Software	Engineering	and	Data	Engineering	(SEDE):	
ISCA	20th	International	Conference	on. Las Vegas, USA, 20-22 June 2011. International Society for Computers and their Applications (ISCA), pp. 32-39. Zinn, M., Fischer-Hellmann, K. P., Phippen, A. D. and Schütte, A. (2011b) 'Reusable Software Units Integration Knowledge in a Distributed Development Environment',	Software	
Knowledge	(SKY):	International	Workshop	on. Paris, France, 26 Oct. 2011. SciTePress, pp. 24–35. DOI:http://dx.doi.org/10.5220/0003699000240035 Zinn, M., Fischer-Hellmann, K. P. and Schopp, R. (2012a) 'Reuseable Software Unit Knowledge for Device Deployment', Conception	 of	 Complex	 Automation	 Systems	 (Entwurf	
Komplexer	 Automatisierungssysteme,	 EKA). Magdeburg, Germany, May 2012. Magdeburg, Germany: IFAK, pp. 99-110. Zinn M., Fischer-Hellmann, K. P. and Schoop, R. (2012b) ‘Case-based reasoning approach for re-use activities’, Proceedings	of	the	3th	International	Workshop	on	Software	
Knowledge	(SKY	2012), Barcelona, Spain, Insticc, pp. 31-42.

Internal	conference	references	Zinn, M. (2007) 'Service Based Software Construction Process', Proceedings	 of	 the	 Third	
Collaborative. Plymouth, UK, 14-15 June 2007. Plymouth, UK: Information Security and Network Research Group, pp. 169–184. Zinn, M., Turetschek, G. and Phippen, A. D. (2008) 'Definition of Software Construction Artefacts for Software Construction', Proceedings	of	the	Forth	Collaborative	Research	
Symposium	 on	 Security,	 E-Learning,	 Internet	 and	 Networking. Wrexham, 6-7 Nov. 2008. Plymouth, UK: Centre for Information Security and Network Research, pp. 79-91.

 	

Appendix

xli

	Appendix	

A. 	Content	of	data	medium		
The printed version of this thesis contains a Digital Video Disk (DVD). This data medium contains

a digital copy of this thesis and published papers (file name includes year, conference name.

Additionally, the digital copies of the 11 publications produced during the Ph.D. research are

available on the data medium (the file names start with the abbreviation of the conferences and are

followed by the year of publication).

B. Methodology	of	literature	review	

b.1	Categories	

Basically, the literature review of this thesis follows the discussion of writing literature review

published by Randolph (2009) in the Journal of Practical Assessment, Research & Evaluation in

2009.

By using the taxonomy for literature review of Cooper (1988) five relevant characteristics exist:

focus, goal, perspective, coverage, organisation, and audience. The use of these characteristics in

this thesis is shown as follows:

Focus: This characteristic includes four categories: research outcomes; research methods; theories;

and practise or application. The literature review in this thesis is used to:

1. explain reuse in general

2. identify and discuss relevant keywords in the field of reuse

3. show the different research and problem areas of reuse (including SCAc related topics)

4. underline the problem of missing knowledge in reuse (including SCAc related topics)

Appendix

xlii

5. show the historical view on reuse and the focused problem (including SCAc related topics)

6. critically discuss problems of existing solution approaches (focusing SCAc related topics)

7. discuss the contribution of this thesis to the research area of reuse

For these objectives different perspectives were used. For objectives 1, 2, 3, 4, 5 and 7 the category

‘Theorie’ with focus on state of the art discussion is used. For the objectives 3, 4, and 7 the

categories ‘Theorie’ and ‘Practise or applications’ were used mainly. ‘Research Outcomes’ also

support the discussion of objectives 3, 4, 5, and 6. The objective 7 were achieved by reviewing

literature based on the ‘Research methods’.

Goal: In order to fulfil the mentioned objectives, the goals of this literature review are:

- the generalisation of findings and outcomes of ‘missing knowledge in reuse research’ to

- identify central issues to

- create a line of argument for the innovative solution of a service-oriented provisioning of

reuse activities (focus on software construction activities).

Perspective: The literature review is structured by using the mentioned objectives. Literature used

for an objective discussion is first discussed in a neutral position of the author of this thesis. The

different literature will be related to each other also using this neutral position. In most of the cases

(objectives 2, 3, 4, 6, and 9) the discussions have to be related to the research of this thesis or need

a critical analysis. Hereby, the perspective of the author is not neutral.

Coverage: Randolph (2009) shows four different coverage scenarios for conducting a review. This

ranges from a review of all existing literature to a purposive collection of literature. This literature

review focuses on a purposive selection of literature, therefore, only journal papers, conference

papers, and specifications of standards (e.g., processes or technologies) were used. These

Appendix

xliii

documents were searched by using digital libraries of IEEE, ACM, Springer, CiteSeerX, and

Thinkmind. Also, documents were selected by analysing references cited previously in studies,

journals or conference papers.

Note: Following the literature review in Chapter 2, Chapter 3 focuses on the relation between the

identified problems and existing industrial environments. Therefore, references are used which are

not part of the scientific resources (i.e., internal studies of companies and web pages).

Organisation: Typical forms of organisation of a literature review are historical format, conceptual

format, and methodological format. This literature review mainly uses a conceptual format and is

structured using the above mentioned objectives. As a result, the review follows the order of these

objectives. Inside each objective discussion the conceptual format is also used, but the structure

differs for the different. An exception is objective 5. This historical discussion about reuse and the

historical view on the missing knowledge problem is organised chronologically by decade.

Audience: The complete thesis including the literature review is used to demonstrate the capability

of the author to perform research at Ph.D. level. Therefore, the audience is the review committee

for this Ph.D. thesis.

b.2	Stages	of	a	literature	review		
Regarding the discussed and suggested structure of a literature review by Randolph (2009) the

stages may be:

- A rationale for conducting the review

- A research question that guides the review (Problem formulation)

- A plan for collecting data (including selection process) (Data collection)

- A plan for data evaluation and analysis (Data evaluation, analysis, and interpretation)

Appendix

xliv

- A plan for presenting the data (Data presentation)

Randolph (2009) shows based on Cooper (1982) that each stage has four characteristics: Research

question asked, primary function in research, procedural differences that create variation in review

conclusion, and sources of potential invalidity in review conclusion.

In this review the mentioned objectives use these stages. In the following sections, the stages were

discussed related to each objective. As a logical result each objective follows the same structure.

b.3.	Problem	formulation	
For an exact formulation of the problem, it is relevant to define a literature review question (also

called secondary research). In the literature review of this thesis each objective uses its own

secondary research question:

1. Objective: ‘From the previous literature, what is known about software unit reuse?’

2. Objective: ‘From the previous literature, what are relevant keywords known regarding

software unit reuse and the problem of missing knowledge in reuse?’

3. Objective: ‘From the previous literature, what are relevant researches or problem areas

known in the area of reuse?’

4. Objective: ‘From the previous literature, what is known about the problem of missing

knowledge in the area of reuse?’

5. Objective: ‘From the previous literature, what is known about the problem of missing

knowledge in the area of reuse?’

6. Objective: ‘What is known about approaches to solve the problem of missing knowledge in

the area of reuse?’

Appendix

xlv

7. Objective: ‘From the previous literature, what is known about different perspectives on the

problem of missing knowledge in the area of reuse and software construction activities?’

Note: Objective 4 and 5 uses the same question to lead the literature review. But these objectives

differ in their goals and data analysis.

Randolph (2009) mentioned that the other relevant part of the ‘Problem formulation’ is the

determination of inclusion or exclusion. This literature reviews two inclusion/exclusion principles:

1. Every existing document is excluded from the review.

2. From the list of excluded documents, studies can be included if they meet all of the following

criteria (except optional critierias):

a. The study is in English OR in German languge (German is only allowed if (1) the

publisher is a scientific institution (e.g., University) or (2) written by an relevant author in

the field or (3) no English reference can be found of the studies or an relevant statement

of it).

b. The study is a journal or conference paper or included as scientific work in one of the

following digital libraries: IEEE, ACM, Springer, CiteSeerX, journals or conferences.

c. (Optional) The study was mentioned as reference for a statement about reuse by other

previously selected studies.

d. (Optional) The study was mentioned by other researches or relevant people in the area of

reuse during personal contact with the author of this thesis.

e. The study identifies itself or is identified by other studies as a state of the art paper for the

topic of reuse or some subtopic of them.

Appendix

xlvi

f. The title or abstract contains one or more of the following primary keywords (or

synonyms): reuse, software unit reuse, reusability, knowledge, software reuse, software

product line, software construction, missing knowledge, reuse activities, and software

construction process.

g. The conclusion of the study includes new or existing statements of the focused topic of

software reuse.

h. The study focuses the discussion of the novel contribution of this research to the research

area of software unit reuse.

Each objective follows these principles.

b.4.	Data	collection	
Initially the data were searched in the digital libraries (mentioned in inclusion/exclusion principle

2.b) using the primary keywords (mentioned in inclusion/exclusion principle 2.f).

The different objectives, thereby, have different aims:

1. Objective: The goal is to identify a pivotal set of articles together presenting the area of

software unit reuse in general.

2. Objective: The goal is to identify relevant term definitions or discussions in software unit

reuse.

3. Objective: The goal is to identify a pivotal set of articles together presenting research and

problem areas of reuse in general.

4. Objective: The goal is to identify a pivotal set of articles explaining the problem of missing

knowledge in the area of reuse.

Appendix

xlvii

5. Objective: The goal is to identify a pivotal set of articles explaining the problem of missing

knowledge in the area of reuse in the history.

6. Objective: The goal is to identify a pivotal set of articles explaining solution approaches for

the problem of missing knowledge. Especially the problem of missing knowledge of reuse

activities (focusing software construction activities).

7. Objective: The goal is to identify a pivotal set of articles including details to the gap of

research for reuse of software construction activities and the related problem of missing

knowledge.

The separation between relevant and non-relevant documents is a process including two different

steps. Figure 147 shows this process that is described in relation to the figure as follows. After a

search for documents in the mentioned libraries the first step (Step 1) is to separate documents

based on their content shown in the abstract, conclusion, and the state of the art section (if

provided). The papers can now be separated into three different types (Step 2). The first type

includes all papers without any useful content (Type 1). The second type of document are

documents only providing interesting references which have to be checked for relevance (using this

process; Type 2). The third type of documents includes content describing different specific

properties/parts of reuse or that make common statements about it. These documents may include

interesting references also. These references have to be proofed for relevance (using this process

description).

Appendix

xlviii

Figure 147 - Sketched process for document separation

In general, each objective uses this data collection procedure. They only differ in the relevance

checking part. The author (reader of the documents) has to look into the abstract, conclusion, and

the state of the art section and proof which objective goals this document may contribute to.

b.5.	Data	evaluation	
In the data evaluation phase of this stage the following procedure model was used: The selected

documents were read completely. Parallel to this task interesting statements regarding the area of

software unit reuse were written down on a note paper or dashboard with each document being

ascribed a unique number. The same number is written down on the note paper or dashboard. After

collecting these notes the note paper or dashboard were scanned / photographed and collected in a

‘cookbook’. Each objective followed this data evaluating process, but they differes in the

identification characteristics for the interesting information. Appendix Section C shows and

explains an example regarding information collected from a study relating to the different methods

Appendix

xlix

described in this section. In the following, the basic rules for identifying interesting information for

each objective are shown:

Information is seen as interesting for objective 1 if

- it contains one or more general statements about reuse,

- it contains a specific statement about reuse or different parts of reuse,

- it contains a discussion or opinion statement or

- it contains a statement of other studies (reference).

Information is seen as interesting for objective 2 if

- it contains or creates special words and related them to the topic of reuse or missing

knowledge in reuse,

- it explains existing words of the reuse or missing knowledge area or

- it discusses existing words of the reuse or missing knowledge area.

Information is seen as interesting for objective 3 if

- it contains a problem or research area discussion which is related to reuse or

- it discusses practice or theoretical problems.

Information is seen as interesting for objective 4 and 5 if

- it contains a description of the focused problem ,

- it discusses the scenarios leading to this problem ,

- it discusses the impacts of this problem (i.e., for software engineers) or

- it discusses solutions for this problems.

Information is seen as interesting for objective 6 if

- it discusses solutions for the problem of missing knowledge.

Appendix

l

Information is seen as interesting for objective 9 if

- it discusses the view on the problem of missing SCAc knowledge in common or critically.

b.6.	Data	analysis	and	interpretation	
Based on the previous steps the data analysis is processed in three steps focusing on a quantitative

research.

1. The first step is identifying the evidence an objective wants to prove positively as an

outcome of the literature review.

2. The next step is to create a hypothesized causal link between the collected data and the

evidence.

3. The last step is to identify and relate contrary findings and rival interpretations.

The objectives differ in their related evidence. In the following, the objectives goals and the

necessary evidences are described. Also, a description of contrary findings or rival interpretations

is given. Based on Randolph (2009) this is an relevant information in the description of a

qualitative data analyses of a dissertation.

The first objectives want to explain software unit reuse in general. The statement of this objective

is that reuse is a wide field. Also, it is relevant to mention the concrete fields of software unit reuse.

Both facts are used to demonstrate the authors’ knowledge about the field of software unit reuse.

Contrary findings and rival interpretations are declarations which see reuse as a small or not

relevant field of software engineering. An outcome of objective 1 is a list of relevant fields of

reuse. It contributes to the primary research background information and identification of research

direction.

Appendix

li

The second objectives’ goal is to identify relevant keywords. Thereby, it is necessary to

demonstrate that these keywords exist and have the same meaning. Both facts are used to

demonstrate the knowledge of the author about the field of software unit reuse. Contrary findings

and rival interpretations that differ to the most common definition are collected for each keyword.

An outcome of this objective is a list of keyword definitions which contribute to the primary

research by providing a basic definition of relevant terms used.

The third objective proves the field of possible research areas and problem areas. Only studies are

used which discuss topics of one of the focused research areas. Contrary findings and rival

interpretations are statements that declare a specific topic not to be in a specific research or

problem area. The outcome of this objective is a literature based overview of research and problem

areas of reuse in software engineering. The contribution to the primary research is the

demonstration that the primary research is in a valid research field of reuse and it handles an

existing problem identified by other studies.

The fourth objective identifies the problem of missing knowledge in reuse in detail (including

SCAc related knowledge). Studies supporting this objective show that this problem exists.

Statements are seen as evidence if they demonstrating or discussing the problem, scenarios leading

to the problem, and impacts the problem creates. All three statement types are used to identify the

problem. Contrary findings and rival interpretations and declarations do not identify the problem as

a problem or explicitly disagree with other studies on one of the three statement types. The

outcome of this objective is a problem definition based on the three statement types. The resulting

contribution to the primary research is a clear definition of the focused problem based on the

second research.

Appendix

lii

The fifth objective is a variation of objective 4. Here, the historical organisation is relevant. The

evidence of this objective is that the problem still exists in the past and is not a result of activities or

technologies of the present. Contrary statements are research results of studies which declare the

problem of missing knowledge (especially SCAc related knowledge) as not existing or incorrect.

The outcome of this objective is a chronological timetable of studies related to the problem of

missing knowledge in the field of reuse. It contributes to the primary research as an evidence for an

older not fully solved problem.

The sixth objective discusses existing solution approaches solving the focused problem. The

focused evidence is to demonstrate that existing solutions do not solve the problem completely.

Thereby, a solution has to be sustainable, correct, and do not include a learning or interpretation

process. Contrary findings and rival interpretations differ from that perspective by demonstrating

that a specific solution has one or more of the relevant characteristics. The outcome of this is the

identification of a missing solution in the research field for the problem of missing knowledge in

reuse. The contribution to the primary research is the identification of a gap in the span of existing

solution area.

The ninth objective is a variation of objective 8. Here, the novelty of the research is focused. A

statement which identifies the research gap, the given solution or parts of it as invalid or wrong or

identifies the used research methods as invalid or wrong are contrary findings or rival

interpretations. The contribution to the primary research is the evidence of a novel solution in the

scope of the used literature. This is also a contribution to the research field.

From the following three steps shown at the beginning of this section, the second step is to generate

a link between the evidence and the found statements. Each piece of evidence is represented by an

Appendix

liii

ID. Therefore, the different objectives are classified by their main topic relation. Objective 1, 2, and

3 focuses on reuse (general perpective; class REUSE (R)). Objective 4 and 5 focusses on the topic

of problems of reuse (class PROBLEM (P)). Objective 6 and 7 are linked to the topic of solutions

(class solution (S)). The final two objectives, 8 and 9, relate to the topic of the contribution of this

research (class CONTRIBUTION (C)). Each statement identified as relevant for this literature

review is written down in the cookbook (see Appendix Section C) and related to one of the

classifications.

To fulfil the last step, the statement has to be identified as supportive or contrary to the evidence

used for the related objective. Therefore, it is marked as evidence (E) or contrary (C).

Figure 148 shows an example of a statement analysis and interpretation used in this literature

review. Each statement gets an ID (1) and a statement summary. Then it is related to an objective

(3). The last step is to decide if this statement is evidence or contrary to the evidence of the

objective.

Figure 148 - Example of a cookbook form for data analysis and interpretation

Note: A complete example of a protocol sheet is shown in Section C.

b.7.		Data	presentation	
The last relevant information in a literature review methodology is the data presentation stage. As

mentioned before a conceptual organisation of the literature is used. The discussion of each

objective is structured in the thesis as follows:

Appendix

liv

Objective 1 is discussed first in Section 2.2.1. It is followed by the discussion and definition of

relevant keywords in Section 2.2.2. This fulfils objective 2. In Section 2.2.1, based on objective 3, a

big picture about the research areas is created.

After this introductory part, objective 4 analyses the problem of missing knowledge in Section

2.2.3. This includes the fulfilment of objective 5 by discussing an historical perspective in Section

2.2.3.1. For objective 7, Section 2.2.3.2 and Section 2.2.3.3 to demonstrate the contribution of the

primary research from the perspective of the literature and fulfils the last objective.

Note: To fulfil objective 3, Chapter 3 discusses solution approaches.

Appendix

lv

C. 	Document	evaluation	protocol	example		
The literature references were summarised in an evaluation protocol based on the methodology of

the literature review shown in Section B. Figure 149 shows an example of a protocol sheet and is

explained as follows. The sheet has 4 areas. The first area (1) includes the title of the related

document (i.e., a journal paper) and the number of the protocol sheet in the protocol book.

Figure 149 - Document evaluation protocol example	

The second area (2) includes additional data, as for example, a unique identifier (UID), the

inclusion and exclusion rules (c.f. Section B), the listing of supported objectives, the identification

whether the paper is relevant for the thesis, type of quality (represents the personal opinion of the

author), date of publication, the publication type (e.g., journal paper), the reader, main author, the

publisher, and a note to state whether the paper is used inside the thesis.

Appendix

lvi

In the third area (3) each piece of evidence is represented by an ID. Therefore, the different

objectives are classified by their main topic relation. Objective 1, 2, and 3 focuses on reuse in

(general perpective; class REUSE (R)). Objective 4 and 5 focusses on the topic of problems of

reuse (class PROBLEM (P)). Objective 6 is linked to the topic of solutions (class solution (S)). The

final objective, 7, relates to the topic of the contribution of this research (class CONTRIBUTION

(C)). Each statement identified as relevant for this literature review is written down in the protocol

by summarising the statement and related to one of the classifications.

To fulfil the last step, the statement has to be identified as supportive or contrary to the evidence

used for the related objective. Therefore, it is marked as evidence (E) or contrary (C).

In the last area other possible (relevant) references cited by the focused publication can be listed.

 	

Appendix

lvii

D. 	Additional	research	on	software	unit	base	technologies	
The research uses classes, components, and services as research objects for software construction

activities. The following overview of the base technology concepts (object, component, and service

orientation) of these software units can be used for the discussion about the research topic. In the

following, procedure models and software construction properties of these concepts are shown.

d.1.		Object-oriented	software	construction		
The purpose of object-oriented software construction is the development of applications by the

means of object instances and their interaction models.To reach this purpose, two different

elementary concepts are used: Object orientation and objects as units of modelling.

Nowadays three approaches are used within the object-oriented construction: object-oriented

analysis (OOA), object-oriented design (OOD) and object-oriented programming (OOP). In the

OOA the requirements are determined and transferred into a document. The result is a technical

description with object-oriented drafts (OOA model). In the OOD the requirements are transferred

into a specification. Various diagrams are created here, to transfer the requirements into the object-

oriented world. Since UML is considered the standard, UML diagrams are usually used. The

specification, obtained from this, is the basis for the OOP. The obtained specification is the basis

for the OOP. As a result, of OOP a software or a part of software is created.

Through this kind of object-oriented thinking it becomes possible to illustrate the real world

viewpoint inside a technology concept.

Here, the units of modelling are objects. Objects have properties and methods. Modelling and

programming occurs through the instancing of different objects and the mutual call of methods.

Hereby, objects display the attempt to illustrate real world or virtual objects. The interfaces are

Appendix

lviii

especially relevant here (Siedersleben, 2006). Figure 150 shows the typical representation of a class

with properties (fields) and methods in UML notation. Sommerville (2011) shows that objects can

be used in a local and in a distributed scenario.

Figure 150 - UML like representation of a class

Modern development environments show a multitude of possibilities for software engineers.

Eclipse and Visual studio (.NET) are particularly well-known. These developing environments

support the software engineer in object-oriented thinking and programming. This happens, among

other things, by the application of syntax highlighting, intelisense, graphic possibilities of

modelling, and automatic code production, as for example, generic programming (Czarnecki and

Eisenecker, 2000) or snippet technology (Micosoft, 2008). All together it has tried relieve the user

of "writing work". In addition, the user is offered the possibility, also to access other technologies

(as far as the base architecture admits this). For example, it is possible to integrate Web Services

into Visual Studio.NET. The representation corresponds to a class. The methods of the Web

Service are methods of this class. The software engineer can handle the Web Service in the usual

Appendix

lix

object-oriented manner (Microsoft, 2012e). To achieve this, the development environment has to

be tuned to the programming language and the according underlying architectures.

In addition, development environments, exhibit the possibility of extension by (e.g., addons or

plugins). This leads, for example with Eclipse and Visual studio.NET, to the fact that other

programming languages are also supported. The aim here is to make the advantages in the user

guidance, offered by these IDEs, also available to be used in other programming languages. New

technologies or procedure models can be simply integrated as an extension into development

environments. Eclipse Foundation (2008), for example, shows a multitude of extensions for the

development environment Eclipse.

The general procedures conform to the order of the approaches OOA, OOD, and OOP. According

to Siedersleben (2006) most procedure models are based on one of the following models:

Workflow model, data flow-/ activity model, roll-/ action model. Typical models of object-oriented

development built on the above mentioned models are, (e.g., waterfall model, iterative model,

prototyping, extreme Programming, and Scrum).

Note: The mentioned models are assumed as known. For further information see Bunse and

Knethen (2008).

With the technical conditions, particularly languages, architecture, and runtime environments are

interesting. In the course of time a multitude of object-oriented programming languages were

developed.

The languages Java, C ++, VisualBasic, PHP5, and .NET based languages like C# and

VisualBasic.NET show a high distribution. A special interest is centred on platform independent

programming languages. Its advantage is the possibility to execute binary code, generated by

Appendix

lx

means of these languages, on different operating systems. This however requires a corresponding

runtime environment within the operating systems. Figure 151 shows the platform construction of

the .NET architecture. Here, it can be seen that .NET programming languages are based on a

common language specification (CLS). Furthermore, the diagram shows that .NET offers a

common language infrastructure (CLI) for .NET programs, which allows platform independence.

Figure 151 - Technical architecture of the .NET Platform

Other platforms, as for example Java, show a different architecture. The aim, however, as with the

.NET platform is to offer a row of possibilities.

The platforms shown offer a runtime environment to the user, meaning a possibility to execute an

application which is based on this platform and which also uses its possibilities. Basically, the

runtime environment constitutes an interface which translates the commands from the application

to the processor. The other way around, the resources of an operating system are offered as a

uniform interface within the runtime environment. In contrast to the executed applications, the

runtime environment itself is operating system-dependent. Figure 152 shows an example of the

Appendix

lxi

runtime communication of .NET for object-oriented languages. The Java runtime communication is

similar.

Figure 152 - NET runtime environment communication (Computerbase 2008, online)

Modern software architectures for object orientation differ from former ones in their varied

possibilities and the more efficient memory management. .Net and JavaEE display well-known

architectures (Siedersleben, 2006). In both architecture sceneries, attention was paid to the fact that

there is a multitude of interfaces to other technologies and systems.

With the investigation of the actual research areas, particularly the area of the retroactive object

orientation stands out. Approaches as for example Visual Basic display that it is interesting to

enhance systems / approaches that are already in existence with object orientation, to use them in

an object-oriented environment or behaviour.

Appendix

lxii

d.2.	Component-based	software	construction	
Component-based construction has the purpose to develop software by the composition of ready

components. The suitable components were developed by a previous step or were bought.

The key concepts of component-based software construction are component models. These indicate

the framework for the software to be developed. During the development, the designer works

within this framework. The components which should be used has to fit in such a component

model. Accordingly, during the development of components, the interfaces, as well as the

adaptation to the runtime environment which is mostly given by a container, have to be looked

after. Thereby, it is resorted to an interface description language which is suitable to the component

model.

Another key concept is that components usually constitute independent assemblies. These

assemblies are processed and integrated with the help of prescribed rules (depending on the

component model).

In component-based construction, components are the units of the modelling that means

components are the essential units in planning, draft, and construction. If the software engineer is at

the level of the construction, only finished components can be joined to form an application.

 Welke (1994) and Dahanayake, Sol and Stojanović (2003) indicate that the technology only

accounts for one part of the component-based solution. The other parts are the procedure models.

For software engineers there are a multitude of models for the component-based software

development. Table 62 lists the best known methods and approaches as well as their differentiation

signs according to Stojanović (2005). Dahanayake, Sol and Stojanović (2003) indicate with their

investigations that the manner in which models handle components depends on the underlying

object-oriented methodology. They point out that most units of modelling are built in a

Appendix

lxiii

conventional manner, for example with object-oriented languages. Thereby, these units contain the

peculiarities of the underlying approaches and technologies.

 RUP Select Perspective Catalysis KobrA UML Comp. BCF
Availability Book, web

page,
consultancy,
training

Book, web page,
consultancy,
training

Book, web
page,
consultancy,
training

Book, papers Book, papers,
consultancy

Book, papers,
consultancy

Background Industry Industry Academic &
Industry

Academic &
Industry

Academic &
Industry

Academic &
Industry

Maturity Widely used
inpractice

Used in Practice Used in
Practice

Not fully
applied in
practice

Not fully
applied in
practice

Not fully
applied in
practice

Method
concerns

Development,
management

Development,man
agement

Developme
nt

Development,
management

Development Development

Use of a
method

Regularly
used in
industry

Regularly used in
industry

Catalysis
based
methods
used

Used by
KobrA
consortium

Potentially
used in
industry

Potentially
used in
industry

Elements of a
development
process

Workflows,
guidelines,
templates

Phases, guidelines Rough
guidelines,
patterns

Phases,
activities,
guidelines

Workflows,
activities

Phases,
guidelines,
patterns

Method input Requirements,
use cases

Business
processes, use
cases

Use cases,
domain
model

Requirements
specification

Use cases,
domain model

User’s
requirements,
domain model

Method
output

Application
models and
software

Application
models and
software

Application
specificatio
n

Application
specification

Application
specification
and models

Application
specification
and models

Tool support Rational
product
family
(Rational
Rose, etc.)

Select Component
Factory

COOL tool
family, now
Advantage
tool family

Enabler
Workbench
andRepository

No specific
tool; UML-
based tools
used

No specific
tool; UML-
based tools
used

Modelling
techniques

UML Business Process
Management
Catalyst,UML,
ERD

UML UML-based UML (with
extensions)

UML-based

View on
components

Implementatio
n

Design &
Implementation

Design &
Implementat
ion

Design &
implementatio
n

Design &
implementatio
n

Design &
implementatio
n

Component
design

Not applicable Service package,
UML subsystem

Stereotype

Stereotype of
he UML class

Stereotype of
the UML class

Not specific

Component
implementati
on

Component
diagram

Component
package,

Package,
Software
components

Realization
components

Not specific Software
components

Defined
design
patterns

No Yes Yes No No Yes

Component
repository

No Yes No Yes No No

Reusability Software
components

Components,
patterns

Components
, patterns,

Design-level
and software

Design-level
and software

Design and
software

Appendix

lxiv

 RUP Select Perspective Catalysis KobrA UML Comp. BCF
frameworks components components components,

patterns
Incremental
& Iterative

Yes Yes Yes Yes Yes Yes

Table 62 - Comparison of component-based procedural models (Stojanović, 2005)

Table 62 is based on the analysis from Stojanović (2005) the procedure models: Rationally Unified

process, Select Perspective, Catalysis, cobra, UML Components, and business Component Factory

are briefly displayed and the relations to the component-oriented construction are explained.

The Rationally Unified Process (RUP) constitutes a procedure model, which was developed by the

company Rational software in 1995 (cf. Jacobson, Booch and Rumbaugh, 1999). RUP is based on

the combination of the rationality approach and the Object Process (cf. Jacobson, Chrsiterson et al.,

1992). Concerning the contents, a complete software life cycle can be illustrated with RUP. Single

steps, as for example requirement analysis, testing, etc., are defined as workflows. RUP is based on

the use of UML. The notation for components, used by the UML, is also used by the RUP

approach. Through this, a basic support for components is given. RUP, however, is no component-

based procedure model. Only a general modelling framework on basis of object orientation can be

used. RUP defines a component as follows:

„A non-trivial, nearly independent, and replaceable part of a system that fulfils a clear function in

the context of a well-defined architecture. A component conforms to, and provides the physical

realization of a set of interfaces.” (Kruchten, Capilla and Dueñas, 2009, p. 284)

Another procedure model is Select Perspectives (Allen and Frost, 1998, pp. 251; Apperly, 2003,

pp. 13),, which was created through the combination of the Object Modelling Technique (OMT;

Rumbaugh et al., 1991) and the Use Case controlled Objectory method from (Jacobson, Chrsiterson

et al., 1992). Like RUP, Selected Perspective was no procedure model for the construction of

Appendix

lxv

components at its beginning. (Apperly, 2003) nevertheless, indicate that services can be used as an

extension for the handling of components. Basically, there are three notation forms which are used

by Selected Perspective (based on Apperly, 2003): Business process modelling with computer

science corporations (CSC), Catalyst methodology (CSC, 1995), UML notation for class- and

component concepts and data modelling with Entity-relationship diagram (ERD). In Select

Perspective, a component is a compiled object which displays a certain service through defined

interfaces. Within the Select Perspective approach, components are stored in a component

repository.

Catalysis (D'Souza and Wills, 1998) is a component-based approach which is based on the use of

UML. In contrast to other approaches (as for example RUP) there are no activities like for example

project management, quality management, and configuration management. During the use of

Catalysis, so-called process patterns are created. These fit in a certain problem and certain basic

condition.

Catalsysis indicates according to (Fettke, Intorsureanu and Loos, 2002, p. 8 translated) the

following properties:

- ”The model supports exclusively a component-oriented development. To achieve

this, a so-called product family approach is selected. The authors understand

several software systems which are based on an amount of the same components

under the term of product family.”

- ”The model is based on a very iterative and incremental procedure which leads to

very short development times.”

Appendix

lxvi

- ”Even if the approach requires no continuous formal specification of software

systems, value is nevertheless placed on a high quality of the specification of a

system.”

Stojanović (2005) shows that Catalysis uses some object-oriented methods and displays a process

of development which constructs software by means of high level demands.

Kobra displays a procedure model for software development which is based on the software life

cycle definition from the Product Line Strategy. The purpose is to use the component or the

concept standing behind it during the whole life cycle. Hereby, an underlying framework will be

defined from which components and applications can be built (Framework Engineering). For the

conversion, different UML charts are used in the Kobra approach. Kobra constitutes a result of an

investigation of the companies Softlab GmbH, Psipenta GmbH, GMD ridge, and Fraunhofer IESE

which was ordered by the German government. Kobra is based on preceding methods (Cleanroom-,

Fusion- and Catalyst methods) and is compatible with other approaches like the RUP and OPEN

Process Framework (OPF). Within the Kobra approach, component repositories are defined. (cf.

Atkinson and Muthig, 2002)

Through the use of UML-Components, another possibility to describe components arises

(Cheesman and Daniels, 2000). The basis forms the architecture consideration of the desired

combination of components and the representation of single components for itself. Figure 8 shows

an example of a component chart with UML 2.0 specification.

Appendix

lxvii

Figure 153 - UML component diagramm example (Ambler, 2008)

Basis of this representation is the possible interfaces of a component and the relations with other

components. UML components, in contrast to other component models, do not provide the

conversion into a component. Additionally, there are different applications (e.g., Enterprise

Architect; SparxSystem, 2012) which allow an automatically conversion of UML Components into

components.

The next example is the approach of the Business Component Factory (BCF). Herzum and Sims

(2000) show in their approach that applications can be built with components. Thereby, they use an

own classification of components (language class, distributed components, business components,

business component systems, and system components) and a three-part sequence of their action

model:

 A framework that contains the properties of different component-based approaches

Appendix

lxviii

 A component Factory environment

 Applications which guarantee an automatic generation of components.

During the development with BCF, an application is defined by means of the used frameworks.

The component-factory generates the components required. This approach, however, assumes that

all information exists in the framework as well as in the generators of the factory.

The technical conditions for component-based software construction depend on the choice of the

component model. Heineman and Councill (2001) and Szyperski (2002) indicate that a component

model defines the following standards:

Component implementation, -naming, -interoperability, -adaptation, -composition, -evolution and -

development. Hereby, a component model also determines the elements that are relevant for

software engineers: Implementation language, architecture, platform, and runtime environment. A

software engineer has to be aware of these properties and elements of the used component model

during the complete software life cycle.

In the following, the three component models are examined more exactly concerning the properties

relevant for software engineers.

Component Object Model (COM): COM shows a language-independent component standard and

was introduced in 1993 by the company Microsoft (see Williams and Kindel, 1994).

The technical properties of a COM component identify themselves as follows: A COM component

owns a unique ID (global unique identifier; GUID) through which the component can be identified.

This GUID is loaded into one COM component server. Thereby, the component is available and

can be used or be administered.

Appendix

lxix

Another property is the construction of the interfaces of COM components. The COM technology

groups functions in interfaces. Three kinds of interfaces are distinguished: The first interface is the

observance of binary standards to enable calls between components (or component parts). This

corresponds to the rules for dynamic method calls in Dynamic Link Libraries (DLL). The second

interface is also a standard interface for the administration of the COM component through a direct

application and the COM-server. The third kind of interface is software engineer-dependent. The

methods offered here depend on the developed contents and show the user's content. With the help

of these three interfaces, a component can be found, administered, and used. According to

Microsoft (2012e), COM components (in addition to the already mentioned properties) are

language-independent, platform-independent, object-oriented, and location-independent.

Since COM components are conventional EXE and DLL files with advanced interface, the methods

can be called directly. The COM server offers this through a standardised method. Thereby, the

language independence is given. It presents itself differently with the platform independence. COM

components are loaded and administrated only on a Windows operating system. In 1996 Microsoft

showed that the offer can also be extended from local to remote calls. This is a Distributed

Component Object Model (DCOM) designated system which allows the use of a COM-Component

from another system (Microsoft, 2012a; Session, 1998). The property object-oriented refers to the

development, as well as to the use of components. This kind of the components is created in an

object-oriented way and owns object-oriented contents. During the usage, a component is

instantiated and the client application can use the methods of the component. The location-

independence is guaranteed through the registration of the component. The offer is managed by the

COM server. For the client applications there is only the COM server and the interfaces of the

Appendix

lxx

component. The physical location of the components files is hidden and is not relevant for client

applications.

Another type of component models is Enterprise Java Beans (EJB). This form introduced by Sun

Microsystems in 1998 is an extension of the client-sided model Java Beans as a part of the Java

Enterprise Edition (Java EE, formerly called J2EE).

Basis for this component model is the programming language Java and Java EE as an extension

platform. EJBs are developed in Java, as object-oriented and are also used object-oriented. There

are two kinds of Beans: session and message driven Beans.

A session Bean constitutes a component which exists only during a client / server connection (cf.

Rücker and Backschat, 2007). These contain the logic of workflows and Use Cases. Basically, they

are distinguished between stateless and statefull session beans. Stateless means that a session Bean

owns no state, regarding the according client application that is represented by it exhibits no status

data at this point (e.g., a normal web page). Statefull, on the other hand, means that a client

application has a state (e.g., a web shop). A message driven Bean is in contrast to the session Bean

permanently available, (e.g., to the persistent saving of data). They serve asynchronous

communication. The Bean instances deployed and offered in a special container (EJB container). It

fulfils the duties of lifecycle management, state management, security, transaction management,

and persistence management. The container, therefore, offers the runtime environment and controls

the life cycle of the instances. Special interfaces (Enterprise of service) offer access to, for

example, data banks, and message services. Among other things, an EJB server offers the

according communication infrastructure for incoming client messages and administers EJB

container.

Appendix

lxxi

For the interaction with the client application, Enterprise Beans possess two kinds of interfaces: the

home and the object interface. These interfaces are generated by the container. The container

monitors these interfaces and can react to information which runs through the interfaces if required.

The home interface offers methods for the lifecycle management of the component. The object

interface offers the software engineer-dependent part (user's content).

 EJB Containers run in a runtime environment of an EJB server. Sun Microsystems provides a

specification for an EJB server which, however, contains only basic information. Subjects like

memory and transaction management of the server are left to different manufacturers.

 Additionally, a remote interface is made available for the use of Beans. This, however, is

development-dependent and programmed with Java Remote Method Invocation (RMI) and

Application Programming interface (API). With the usage of Java Interface Definition Language

(IDL) and/or Common Object Request Broker (Corba) the Beans can also be used by not Java

applications. Sun Microsystems assigns the role ‘Bean developer to the software engineer in the

developing scenario. (SUN, 2008; Rücker and Backschat, 2007)

The CORBA Component Model (CCM) was developed in 1999 by the OMG Group. Like EJB, it is

a server-sided component system (cf. OMG-CORBA, 1999). On account of the decreasing

economic interest in regard to Corba, this thesis does not go further into this component model. For

further information see Stojanovic (2005), OMG-CORBA (1999), and Siegel (2000).

Regardless of the choice of component models, components constitute a special case if they have to

be developed first. In this case other construction forms can be used, as for example a component

can be developed with the use of technologies like object-oriented, procedures and tools. This is

why software engineers can also resort to suitable development environments. The basic conditions

Appendix

lxxii

result from technical contents and technical conditions (e.g., component model). In the example of

EJBs the components are also first compiled by the according EJB container and then

implemented. Hence, any development environments can be used, as far as they support the

interfaces and technologies which are required by components or the component model.

Component-based software construction exhibits some possibilities of connection with other types

of construction (see Section D).

d.3.	Service-based	software	construction	
The purpose of service-based construction is to build systems from already existing services. The

development of services itself is separated here from the development of a system. When

considering a service-oriented construction, the fact that it is an interface technology is relevant

(i.e., in contrast to other forms of construction), the implementing and its context dependency is

(almost) irrelevant. There is also a considerable difference with coupling. Often, services are

loosely coupled components. Objects and components, however, have a certain degree of coupling.

 The key concepts are, according to Wang and Fung (2004) and Tsai et al. (2006) the services in

services themselves, service description / registration / discovery and composition / binding. As

already mentioned, the components of modelling within the service-based construction are depicted

by services.

Papazoglou et al. (2007) indicate that there are two different areas in the area of development

activities: Methods for service-based engineering and design time models.

The first area focuses on service-based software construction using orchestration and

choreography. Hereby, business processes are loaded with services and executed. A special aspect

Appendix

lxxiii

of the description within these two approaches is the Behavioural interface. Thereby, time, data

flow and data supervision are described within processes (Ghezzi, 2005; Papazoglou et al., 2007).

Orchestration and choreography show two different, but also complementary approaches to the

composition of commercial processes. On account of the popularity of these approaches, process

orientation is often seen in connection with service-based construction. An orchestration describes

the interaction with internal and external Web Services at the message level from the point of view

of a compiled commercial process (Peltz, 2003). The W3C consortium defines in its Web Service

glossary (W3C, 2004, online):

”An orchestration defines the sequence and conditions in which one Web Service invokes other

Web Services in order to realize some useful function. I.e., an orchestration is the pattern of

interactions that a Web Service agent must follow in order to achieve its goal.“

Regarding Busi et al. (2005) there are three characteristics in which orchestration and choreography

differ: Compiled processes, interaction design and activity state.

Kreuzer (2005, online) shows this differentiation as follows: ”Compiled processes are not specified

in choreography, interactions are described from a global view without a central control unit,

involved web services administer their activity state decentralised. By contrast, orchestration is

based on the existence of a central control unit (orchestrator engine). The orchestrator engine

serves the coordination of the interactions and saves the activity state of the involved processes

centrally. Orchestration describes compiled processes based on the assumption that the processes

are “animated” by engines.”

Figure 154 shows the cooperation of orchestration and choreography (Peltz, 2003, p. 47).

Appendix

lxxiv

Figure 154 - Web Service Choreographie and Orchestrierung (Peltz, 2003, p. 47)

Kreuzer (2005, online) defines Behavioral interface as follows:”At the level of service composition,

behavioral interfaces can be distinguished beside choreography and Orchestration as another

point of view [….]. A behavioral interface grasps the behavioral aspects between interactions and

complements with it the interface description which is delivered for a web service by a WSDL

document. In contrast to choreography the global look at the interactions is cancelled, because the

interactions are looked at only from the pointof view of a process. Like choreography, behavioral

interface describes no internal processes, but only outwardly visible ones. Behavioral interface

describes dependence which can appear: in the data flow, with time dependence, with message

correlation and with transactions. “Kreuzer (2005, online)

Arkin et al. (2007) indicate, that WS-BPEL, (e.g., behavioral interfaces in ebXML, are used as

abstract processes like collaboration protocol profile).

Appendix

lxxv

The second area of the research is directed on methodologies to design or construction time. A

methodology is described by Lamsweerde (2000). Hereby, an exact requirement analysis is carried

out. At the end, this is conveyed into a chart which consists of operations and/or components. The

operation components (which also show the purposes of the stakeholder) are replaced later with

Web Services (Kaabi, Souveyet and Rolland, 2004; Penserini et al., 2006). Kumar et al. (2007)

points further out that nowadays such an estimate falls in the area of the sematic web. Therefore,

Web Services are not necessary for the construction time, but only the demands are relevant for a

Web Service, which is dynamically searched and integrated if necessary based on semantic

describtions.

Nevertheless, in literature another area can be identified: This is the use of services within

development environments or typical programming languages (i.e., C# or Java). Giambiagi et al.

(2006) indicate how programming languages adapt the service-based approach. Hereby, most of the

time, the approach is chosen which integrates services in a way that does not change the

programme behaviour or the programming language is chosen.

Building up on the state of the art approaches different applications were developed to realise this

form of construction. For the development of service implementations, based on orchestration or

choreography, different software producers provide suitable applications. International Business

Machines Corporation (IBM) Websphere and Microsoft Bizztalk Server, for example, serve for the

modelling and execution of processes which were augmented with Web Service.

In the area of the adaptation of services through programming languages the widespread

development environments, as for example Eclipse and Visual Studio are a good examples. Both

development environments deal with object-oriented languages. Web Services can be added and

Appendix

lxxvi

can be used like normal libraries, (i.e., the software engineer uses the Web Service as a class to

generate an object instance). Then the actual methods, offered by the Web Service, are displayed as

methods of the instantiated object. (Microsoft, 2012e; SUN, 2008)

Some technical conditions are necessary to use services. In the area of service-based construction

some description languages were developed in dependency on the approaches. In the area of

orchestration, among other things, BPEL4WS and Business Process Modelling Language (BPML)

are found. These XML based description languages are used to define (commercial) processes. In

addition, both languages command the possibility to integrate Web Services into processes.

(Andrews et al., 2003; Peltz, 2003)

The XML based language WS-CDL is a description language in the area of choreography. With the

help of this language the interaction between processes can be defined exactly.

Another language is ebXML. The description of electronic commercial processes with the help of

XML is the purpose here. Thereby, Costs and expenditure for small business or consortia should be

lowered. EbXML defines some standards, for example (based on Clark et al., 2001):

- ebXML architecture (ebXML Technical Architecture Specification) an XML schema for

commercial processes (business process Specification schema)

- a Registry Service (Registry Service Specification) with a Registry Information Model

- ebRIM a Message Service (Message Service Specification).

RosettaNet constitutes a competing development to ebXML. The purpose of this project is to

automate commercial processes between suppliers. Each process can be described and

implemented on the basis of the RosettaNet Implementation Framework (RNIF). The documents

and transactions between the process steps are created with the help of the message Guideline

Appendix

lxxvii

document (professional level) and the XML-Message-Guideline-Document (technical level;

RosettaNet, 2004).

Beside the description languages of the processes and the operations, the descriptions of services

and their interfaces are also relevant. Siedersleben (2006) shows that the exact description of

interfaces belongs to the most relevant points. Today, description languages like Web Service

Choreography Interface (WSCI) and Web Service description language (WSDL) are used for the

description of services (including the interfaces).

As with components the implementation of services is carried out with conventional technologies

and methods. (Bieber and Carpenter, 2001)

Another basic module is the architecture in which a service is operational. Beside the Universal

Description, Discovery and Integration (UDDI) architecture other platforms exhibit other or rather

similar structures. Benatallah et al. (2005) indicates a line of platforms, as for example:

- CMI (Collaboration Management Infrastructure)

- SELF-SERV

- DySCo Framework

- eFlow and CrossFlow (Casati and Shan, 2001; Grefen et al., 2000)

Collaboration management infrastructure is according to Schuster et al. (2000) an approach in

which services with certain parameters are defined. In addition, an infrastructure is shown by

means of a State-Machine approach. Within this infrastructure services can not only be assembled

to applications, but also be exchanged at the runtime. Certain parameters are here assigned to a

service. The system selects a suitable service to the runtime.

Appendix

lxxviii

Self-Serv is an approach used for a dynamic service architecture on the basis of a Peer2Peer (P2P)

network. Three kinds of architecture units are distinguished here: elementary and composite

services and service communities. Elementary services are single services which do not call other

services. Composite services are a combination of different services. Service communities are

repositories which contain services and distribution logic. Basically, at an inquiry to a community

service, the architecture decides by means of business logic, which way the call has to go. This

means depending on certain parameters (e.g., availability) it is decided which unit of the

community processes this service. With composed services, this is carried out for each service

individually. (cf. Sheng et al., 2002)

Piccinelli, Finkelstein and Williams (2003) show a Framework which carries out the orchestration

at business level. The underlying technical expenditure is carried out by means of the Dysco-

Framework. The aim here is to make the Web Services interchangeable within a workflow without

the expenditure of manual updates.

Some literature shows in the area of service orientation which research areas still have to be

examined. Four big subject areas can be identified (based on Papazoglou et al., 2007): Service

foundation, service composition, service management, and service design / service engineering

Service Foundation (Papazoglou et al., 2007): In the area of service foundation, especially subject

dynamics, quality and infrastructure support are asked for. Papazoglou et al. (2007) notes that in

order to permit dynamic (re)configurable services architectures at the runtime, an improvement to

the service discovery has to be made. This also assumes a research of infrastructure support of data,

process and application integration.

Appendix

lxxix

Service Composition (Papazoglou et al., 2007): Particularly subjects from the area of business are

desirable in the area of service composition. The subjects: comparability, use, and availability

constitute the largest research areas. At this point the following services are listed: semantic, typed,

and plausible services. Since there is no standard for quality characteristics in this area yet,

researches for possibilities of the quality of service are also pending. Accompanying this, the

comparability, which serves as a basis for the research area „autonomous composition of services“,

is also to be examined.

Service Management (Papazoglou et al., 2007): In the area of service management, particularly

the investigation areas are interesting which deal with the independence and the automation of

services. This means services should be self-configuring and, thereby, adapt themselves to their

environment or to the context (self-configuration services). Additional interest is in services which

configure themselves automatically. This means self-analysis and an independent repair of services

(self-healing services). Self-optimising services are based on the same idea. Here, an independent

analysis and criteria are also necessary (see Heckmann, 2007). Self-protecting services are also

interesting, (i.e., an implementation of security aspects within services).

Service Design and Service Engineering (Papazoglou et al., 2007): The suggested research areas

in the area of Service engineering, are directed mainly at the dealings with services in software

development. Thereby, it is pointed out that there is a lack of design principles for the creation of

services. In addition, there is only rudimentary support or methods for the integration of service

development in conventional software development. Xu et al. (2007), Skogan, Grønmo and

Solheim (2004) and Bauer and Huget (2005) show at the example of the UML, that services can be

Appendix

lxxx

displayed with UML. However, there is no notation for services in UML. It is also indicated that

there is a lack of analysis possibilities for services.

In addition, the question of service-based control within the development is pending, concerning

the use of services within development methods.

Furthermore, some trends showup. Connecting possibilities of service with component technology

is a particularly distinctive trend. Breivold and Larsson (2007) point to a comparison framework as

a base to the connection between the service-based and component-based approaches. Hereby, two

scenarios are focused:

1. Service-based architectures within component-based software development.

2. The possibilities of service-based architectures for system development.

Apperly (2003) and Stojanović (2005) indicate, for example, that context-dependent components

can be hidden behind services. The disadvantage of the context dependency is encased. Kotonya,

Hutchinson and Bloin (2004) show a hybrid modelling approach for both technologies. This

approach extends over the formal description of standardised components and the representation of

a procedure model for the development of hybrid systems. Jiang and Willey (2005) show a similar

approach in their article. A multi-tier architecture with a component- and a service-based layer is

displayed as a system-architecture here. Figure 155 shows this system architecture.

Appendix

lxxxi

Figure 155 – Multi-tier architecture using services (based on Jiang and Willeam 2005)

Furthermore some trends appear, which try to extend the use of service-based construction or

service, as for example Conversation-Driven Composition (Maamar, Sheng and Benatallah, 2004).

Appendix

lxxxii

E. Schneider	Electric	internal	reuse	study	and	key	notes	
The thesis refers to two internal studies at Schneider Electric. The first one was conducted in 2009.

The aim was to identify the reuse of hardware and software units. Results of this study were

presented in a key note presentation at the 17th IEEE International Conference on Emerging

Technologies & Factory Automation (ETFA) in September 2012. Dr. Ronald Schoop representing

Schneider Electric was the responsable person for the study and the keynote presentation speaker.

Schneider Electric permits the use of figures and tables of this keynote presentation.

The second study was conducted in 2012. The aim was to identify positive and negative impacts of

reuse in distributed development projects of different business units. The results of this study were

not published at the submission of this thesis (March 2013). Dr. Ronald Schoop representing the

company Schneider Electric is the responsable person for the study. Schneider Electric allows the

use of figures, but with constraints. Names of persons, products or customers have been removed.

Schneider Electric does not permit the inclusion of the reuse study white papers for use in this

thesis. For the review committee of the University of Plymouth, Dr. Ronald Schoop is the contact

person for further information about the study.

Contact information:

Dr. Ronald Schoop | Schneider Electric | Industry Business - STS | VP Technology | Edison Group Master

Expert (L3)

Phone: +49 (0) 9391/606-2390 | Mobile: +49 (0) 172 65 96 423 | Fax: +49 (0) 9391/606-2158 |

Email: ronald.schoop@schneider-electric.com | Site: www.schneider-electric.com |

Address: Schneider Electric Automation GmbH, Schneider Platz 1, 97828 Marktheidenfeld, GERMANY

Appendix

lxxxiii

F. Case	study	measurement	value	results	

This section shows the tables including the measured values for the case study. In Chapter 6 the

tables are shown including the average values. The tables in this section show the measured values

for each user. 12 different SCAcs measured.

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 1:28:42 0:39:50 9 35 1 1
User M (2) 1:32:01 0:44:11 10 33 1 1
User M (3) 2:10:32 0:59:38 19 70 1 1
User M (4) 0:49:02 0:28:22 9 41 1 1
	 User P (1) 0:03:28 0:02:13 2 8 1 1
User P (2) 0:03:01 0:01:37 2 5 1 1
User P (3) 0:03:05 0:02:21 2 7 1 1
User P (4) 0:02:45 0:02:22 2 5 1 1
	 Expert M 0:13:21 0:03:43 3 25 1 1
Expert P 0:02:34 0:01:54 2 6 1 1

 Table 63 - Measured values for the DPWS Java Stack transformation

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:18:32 0:06:21 9 52 1 1
User M (2) 0:45:05 0:20:34 7 49 1 1
User M (3) 0:30:45 0:13:56 7 46 1 1
User M (4) 0:18:15 0:09:10 6 56 1 1
	 User P (1) 0:02:51 0:01:55 2 7 1 1
User P (2) 0:03:14 0:02:34 3 7 1 1
User P (3) 0:03:07 0:02:43 2 6 1 1
User P (4) 0:02:45 0:02:22 1 5 1 1
	 Expert M 0:07:45 0:02:45 4 23 1 1
Expert P 0:02:46 0:01:56 3 6 1 1

Table 64 - Measured values for the DPWS Java Stack integration

Appendix

lxxxiv

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:25:36 0:16:23 5 19 1 1
User M (2) 0:40:13 0:29:52 8 22 1 1
User M (3) 0:31:29 0:18:45 8 24 1 1
User M (4) 0:29:06 0:14:51 8 22 1 1
	 User P (1) 0:03:17 0:02:38 3 8 1 1
User P (2) 0:02:26 0:01:41 3 8 1 1
User P (3) 0:02:49 0:02:00 2 8 1 1
User P (4) 0:03:14 0:02:44 2 5 1 1
	 Expert M 0:09:08 0:07:21 2 7 1 1
Expert P 0:02:01 0:01:54 2 4 1 1

Table 65 - Measured values for the DPWS C Stack transformation

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 1:13:55 0:44:22 16 22 1 1
User M (2) 1:36:35 0:56:16 12 15 1 1
User M (3) 1:42:04 1:06:10 22 37 1 1
User M (4) 1:10:03 0:37:17 9 53 1 1
	 User P (1) 0:03:18 0:01:30 2 8 1 1
User P (2) 0:03:04 0:02:10 3 9 1 1
User P (3) 0:03:20 0:02:22 2 7 1 1
User P (4) 0:02:45 0:02:22 2 7 1 1
	 Expert M 0:37:56 0:04:24 4 20 1 1
Expert P 0:02:23 0:01:16 4 7 1 1

Table 66 - Measured values for the DPWS C Stack integration

Appendix

lxxxv

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:19:14 0:09:31 5 12 1 1
User M (2) 0:21:52 0:13:15 8 26 1 1
User M (3) 0:17:45 0:13:55 9 17 1 1
User M (4) 0:29:18 0:16:58 9 36 1 1
	
User P (1) 0:03:25 0:01:48 2 6 1 1
User P (2) 0:02:54 0:02:19 2 6 1 1
User P (3) 0:03:45 0:03:02 2 9 1 1
User P (4) 0:02:45 0:02:11 2 5 1 1
	 Expert M 0:03:43 0:02:07 3 7 1 1
Expert P 0:02:45 0:02:03 2 4 1 1

Table 67 - Measured values for the Log4J transformation

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:49:34 0:21:03 14 39 1 1
User M (2) 0:45:33 0:21:03 18 21 1 1
User M (3) 0:17:45 0:14:25 9 17 1 1
User M (4) 0:12:34 0:06:44 3 7 1 1
	
User P (1) 0:03:07 0:02:45 3 4 1 1
User P (2) 0:02:46 0:02:19 2 5 1 1
User P (3) 0:02:32 0:03:02 4 5 1 1
User P (4) 0:02:46 0:02:11 2 4 1 1
	

Expert M 0:03:56 0:02:15 2 7 1 1
Expert P 0:02:15 0:01:45 2 5 1 1

Table 68 - Measured values for the Log4J integration

Appendix

lxxxvi

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:22:41 0:19:45 19 31 1 1
User M (2) 0:16:00 0:14:32 22 29 1 1
User M (3) 0:19:06 0:14:23 15 25 1 1
User M (4) 0:26:45 0:21:34 20 42 1 1
	
User P (1) 0:02:45 0:02:17 2 6 1 1
User P (2) 0:02:54 0:02:31 2 2 1 1
User P (3) 0:03:05 0:02:45 3 8 1 1
User P (4) 0:02:43 0:02:23 2 6 1 1
	

Expert M 0:05:13 0:01:10 2 9 1 1
Expert P 0:03:04 0:02:45 2 7 1 1

Table 69 - Measured values for the EWS .NET transformation

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:28:22 0:05:45 20,27% 5 9 1
User M (2) 0:41:56 0:04:08 9,86% 4 52 1
User M (3) 0:36:10 0:29:01 80,23% 6 10 1
User M (4) 0:26:54 0:20:12 75,09% 5 7 1
	 User P (1) 0:02:30 0:01:56 77,33% 3 6 1
User P (2) 0:02:54 0:02:31 86,78% 2 5 1
User P (3) 0:02:10 0:01:45 80,77% 3 7 1
User P (4) 0:02:34 0:02:20 90,91% 2 5 1
	 Expert M 0:09:08 0:05:06 55,84% 4 7 1

Expert P 0:02:01 0:01:54 94,21% 2 4 1
Table 70 - Measured values for the EWS .NET integration

Appendix

lxxxvii

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:19:58 0:15:03 12 21 1 1
User M (2) 0:18:09 0:15:08 14 24 1 1
User M (3) 0:26:10 0:19:01 19 28 1 1
User M (4) 0:26:12 0:21:11 14 19 1 1
	
User P (1) 0:03:01 0:02:13 2 7 1 1
User P (2) 0:02:54 0:01:58 2 6 1 1
User P (3) 0:02:10 0:01:50 3 7 1 1
User P (4) 0:02:30 0:02:05 3 7 1 1
	

Expert M 0:09:08 0:05:06 2 7 1 1
Expert P 0:02:46 0:02:16 3 7 1 1

Table 71 - Measured values for the EWS J transformation

	 Time
needed

KR Time KR
used

Task
done

Success Valid

User M (1) 0:53:23 0:18:03 9 40 1 1
User M (2) 0:41:56 0:29:05 9 52 1 1
User M (3) 0:36:10 0:29:01 16 37 1 1
User M (4) 0:26:54 0:20:12 23 7 1 1
	

User P (1) 0:02:30 0:01:56 3 7 1 1
User P (2) 0:02:54 0:02:31 2 6 1 1
User P (3) 0:02:10 0:01:45 3 7 1 1
User P (4) 0:02:30 0:02:20 2 6 1 1

	
Expert M 0:15:03 0:05:06 4 7 1 1
Expert P 0:02:51 0:01:55 4 5 1 1

 Table 72 - Measured values for the EWS J integration

Appendix

lxxxviii

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:27:50 0:19:05 31 49 1 1
User M (2) 0:28:31 0:21:02 19 47 1 1
User M (3) 0:23:00 0:16:36 21 34 1 1
User M (4) 0:21:02 0:19:02 34 42 1 1
	
User P (1) 0:02:30 0:01:55 6 7 1 1
User P (2) 0:01:59 0:01:34 4 6 1 1
User P (3) 0:02:22 0:01:46 6 7 1 1
User P (4) 0:03:05 0:02:21 4 8 1 1
	

Expert M 0:12:35 0:05:56 3 9 1 1
Expert P 0:02:02 0:01:50 3 4 1 1

Table 73 - Measured values for the Log4.NET integration

	 Time
needed

KR
Time

KR
used

Task
done

Success Valid

User M (1) 0:18:04 0:17:00 15 24 1 1
User M (2) 0:14:45 0:12:48 17 27 1 1
User M (3) 0:24:09 0:17:23 12 37 1 1
User M (4) 0:19:56 0:15:23 21 39 1 1
	
User P (1) 0:02:55 0:02:33 2 6 1 1
User P (2) 0:03:05 0:02:46 2 7 1 1
User P (3) 0:02:31 0:02:03 3 7 1 1
User P (4) 0:02:55 0:02:02 3 8 1 1
	

Expert M 0:06:54 0:05:06 2 7 1 1
Expert P 0:02:29 0:01:56 2 6 1 1

Table 74 - Measured values for the Log4.NET integration

 	

Appendix

lxxxix

G. Additional	identified	problems	and	requirements	for	future	
studies	

The research of the thesis focuses on different knowledge problems and concludes that it is

possible to support an inexperienced user in handling these problems. This is demonstrated in the

example of three software construction activities (i.e., special variants of transformation,

integration, and deployment). During the research, additional requirements were identified. In

different discussions with other researchers (e.g., Ph.D seminars), these requirements were

identified for future research, as extension of the main research of this thesis. The results of this

section are not prublished yet.

In the first part of this section the identified problems are summarised. In the second part the

relation of the problems to the three SCAc focused by primary research is explained. In the last part

of this section further requirements are definied for each problem SCAc relationship.

g.1.		Identified	problems	for	software	engineers	
In the following subsection further problems of software engineers are summarised. These were

identified during the Ph. D. research.

g.1.1.	Software	engineering	problems	for	software	engineers		
For the software engineer, two kinds of problem arise: specialised problems of the single software

construction forms, and problems of the construction forms in comparison. In the following text,

the single specialised problems of the previous paragraphs are confronted and explained from the

point of view of the engineer.

Problems of the different key concepts: Different construction forms are based on different key

concepts. For the developer, in order to be able to make a suitable decision on the application, the

Appendix

xc

problem is to know the properties and peculiarities of these key concept problems as they arise.

This requires suitable knowledge about the key concepts.

Problems of different technologies: Problems for developers are also positioned in the technology

area. As previously shown, the construction forms already differ on account of their purpose

architectures which show considerable technological differences. Nevertheless, it is necessary to

connect single technical problems with each construction form in order to use them in the

development.

Problems of the multitude: The problem of the multitude of programming languages, such as

object orientation, is not found in the same manner with component-based and service-based

construction. Though components and services can be created with conventional methods and

technologies, this, however, is second-rate with the use of these ‘interfaces’ based construction

forms. Particularly with service-based construction it is rather unrelevant how a service is

implemented (Breivold and Larsson 2007). All construction forms have a multitude of concrete

technology variants.

Component models and component worlds: The problem of component models and worlds is

not found in this form in other construction forms. Though in the object-oriented construction, a

strong (economic) relation to the programme paradigms is found, e.g., .NET and JavaEE.

Nevertheless, this shows no oligopoly.

In service-based construction there is currently no such dependence. Such information from

professional and/or market-political viewpoints, however, can be relevant for the developer

(Szyperski 2002b). Service does show a kind of world perspective looking on different protocols.

Appendix

xci

Often, the most commonly used protocls are SOAP and REST (Singh and Huhns, 2005), and both

are not compatible.

Problem of the availability: The problem of availability is of crucial importance for developers.

To guarantee the operability, i.e., the frictionless execution and operation of software, all units of

software have to be available. If a unit is not available, a programme must be able to react to it.

With the handling of objects, in most cases local resources which can be verified, are meant.

Though with the handling of components, local resources also exist in most cases, during the

construction time, however, only the interfaces are handled. The existence of the resource is not

always mandatory. This behaviour is even more pronounced with service-based construction

(Breivold and Larsson 2007) and leads to the problem of the availability at runtime (Kumar et al.

2007).

Problems of the re-use and the design: Another problem for the developer arises from the

enclosure or granularity of the reuse. While with components the granularity varies from very open

(white box) to complete enclosure (black box), there is a pure black box system with services

(Breivold and Larsson 2007). Objects, however, are customisable in terms of reusability, like

components, but the basic principle of object-orientation is even more open (white box).

Nevertheless, it is shown that the reuse in object-orientation is sparse. All three construction forms

focus on the reuse, however, in different ways and with different possibilities. The developer has to

consider these different modelling behaviours.

Problem of the market: The problem of the market, as described for components (Szyperski

2002b) is also true for the other construction forms. Especially in the example of services

Appendix

xcii

(Fitzgerald et al., 2006). The units of modelling, which a developer selects or develops, are to be

arranged in a vertical or horizontal market (Szyperski 2002).

Problems of the completeness: The problem of the completeness does not pose itself in the area of

the components and services. The software engineer normally uses interfaces to execute functions

of a service or component. But engineers have to know the structure of a component (including

external dependencies). On the service side this is not relevant. (Breivold and Larsson 2007)

Problems of the context dependence: Here, similar problems show themselves. Since the

implementation of services is encased, only a low dependence exists (Breivold and Larsson 2007).

Often services provide all information (in an interface description) so a ‘client’ can create all

needed dependencies by themself.

With objects, the developer can influence the context dependence to a certain degree. Since these

dependencies are present at different levels of the development, the developer has to know them

intimately.

Problems of the different views: Within one of the three approaches the advantages and

disadvantages for the developer stay the same. Breivold and Larsson (2007) discuss using different

studies showing that a homogeneous use of the construction forms and the components of the

modelling are rather unusual. In this case the different views mix and the developer has the

problem in deciding which estimate to follow. Hereby the question arises, which methods and

procedure models can be used? In the area of the service-oriented construction, suitable methods,

and procedure models are missing (Fitzgerald et al. 2006).

Appendix

xciii

g.1.2.		Knowledge	Management	problems	for	software	engineers	
The problems in the area of knowledge management are directly connected to the work of software

engineers. In this section the general problems are discussed from the perspective of software

engineers.

Problem of knowledge storing: For software developers the problem of knowledge storing occurs

if no external process is given (Boden and Avram 2009). The storing of data and information is not

a problem in software engineering. Content management tools (e.g., GForgeGroup 2012) support

the development process by storing this type of information. However, a commonly used tool or

process to force the problem of storing knowledge, especially in the area of reuse, is missing. The

result is the knowledge vaporisation effect (see Ven et al. 2006).

Problem of knowledge learning: The need to learn new knowledge is an relevant part of the

vocation of a software engineer. This is based on two facts in the area of software development: the

changing tasks and fast growing nature of technologies and information (Ajila 2006). Software

engineers have different ways to learn such new knowledge. Typically professional or self-training

sessions, magazines, or podcast support are common examples. However, the problem is the given

time, money, and the learning possibilities of a person.

Problem of knowledge receiving: In addition to the experience about sources of information, a

software engineer has to know how to reach or access such sources of information. Each repository

system is in place to advance different approaches, e.g., it may be necessary to authenticate in some

repository systems (Ajila 2006). Some systems offer standardised approaches such as web portals,

while others use advanced specialised applications, in addition, different types or use.

Problem of knowledge search: For software engineers, the problem arises In the functionality of

finding information. Search engines such as Google allow you to search in many different systems

Appendix

xciv

for information. Search results of general search engines such as these provide a variety of results

that do not match the desired result.

Normally, software engineers are familiar with their own special in-house or free open source

repository where they are able to search for information. The number of internal corporate

repositories increases with the size of the company. Normally a software engineer is not aware of

all existing repositories in their environment (i.e., in a global company). This is particularly true for

private repository of other software engineers.

Problem of knowledge using: The problem of the application of knowledge depends on the

different ways a software engineer wants to perform, as well as the objects that are necessary for

implementation. Thereby, the focused problem is to interpret the given information and knowledge

parts correctly for (re)use.

Problem of knowledge distribution: In different projects software engineers have to share their

knowledge. Typically this can be done by arranging meetings supported by different presentation

media (i.e., audio, video, or pictures) or by using knowledge management tools. Next to the

discussed problems of searching and using of knowledge the problem arises to distribute

knowledge in a way that it can be understand correctly by others. In contrast to the problem of

knowledge use, the software engineer who is the knowledge owner has to look for it (see Taweel et

al. 2009; Boden and Avram 2009).

g.1.3.	Industrial	problems	for	software	engineers	
The problems in the area of industrial informatics are more practical and directly connected to the

work of software engineers. In this section the problems shown in Section G.1 are discussed from

the perspective of such engineers.

Appendix

xcv

Problem of localisation (single software engineer): The industrial example in Section 3.2.1.2

creates a problem of localisation for software engineers (Bosch and Bosch-Sijtsema, 2010). One

team member can be located on a different site than others of the same team. To exchange data is

not only a problem of different time zone or culture but also a question of communication (see

Taweel et al., 2009).

Problem of localisation (multiple teams of software engineers): The problem of localisation also

occurs for a multiple teams of software engineers (see Taweel et al., 2009). Different teams are

placed on different locations. Teams, as well as, single software engineers, have to communicate

with each other.

Problem of missing knowledge exchange: The example in Section 3.2.1.2 shows that knowledge

exchange between teams is missing. This can also be found in the analysis of other real

development projects (see Boden and Avram, 2009 and software engineers may not be able to work

with other solutions than the solutions they already know. In a worst case scenario people are not

able to fulfil their work or cooperate with teams using different versions of the same knowledge

(based on interpretation issues; see Qu, Ji and Nsakanda, 2012; Choi, Lee and Yoo, 2010).

Problem of reachable knowledge: The problem of missing knowledge exchange is also based on

the problem that software engineers use different types of repositories. These types of repositories

reach from handmade notes or files on the personal hard disc to a team or department,

companywide or community repository system (see Ajila, 2006; Ha, Sun and Xie, 2012). To know

how to connect to these repositories is a problem. A software engineer (or a team) has to know

where these repositories may found and how to use them. In this case the use of a repository

includes the topic of security.

Appendix

xcvi

Problem of missing time: Reuse needs time and has to be planned (see Ajila, 2006; Frakes and

Isoda, 1994). This is valid from the perspective of the reuse creator (including the role of the

supporter). Next to the ‘normal’ fact that people are overloaded with work, reuse estimates time

especially in following activities:

- Creation

- Reuse (Selection)

- Reuse (Adaption)

- Reuse (Integration)

Software engineers have to handle the time they have and the time they need to reuse a software

unit.

Problem of return of invest: In the example of Schneider Electric the positive effect of reuse was

created after the third or fourth reuse iteration of a software unit. The unknown time and the high

risk of making fundamental failures for future reuse may be reason why companies does not use

‘reuse’ in their development projects in the past.

Problem of missing support: The reuse of ‘unknown’ software units may speed up with the

support of experts. If such experts are not available, the software engineer or a development team is

under constraint to investigate the possibilities and limitations of a software unit. In the example of

Schneider Electric the support was necessary in the most reuse iterations.

The first idea was to use the requirements to analyse existing approaches and their realisation for

the level of handling knowledge of software construction activities. In this section the problems

will be summarised. In the second section requirements will be explained briefly using the example

of the three example SCAcs of the main research. This section can be used for further discussions.

Appendix

xcvii

Table 75 summarises the problems.

 Single Combined

Relation to
other
problems

So
ftw

ar
e

En
gi

ne
er

in
g

Problems of the different key concepts X
 Problems of different technologies X X X

Problems of the multitude X X X
Component models and component worlds X X

 Problem of the availability X X X
Problems of the reuse and the design

X X

Problems of the completeness X X X
Problems of the context dependence X X X
Problems of the different views

X

K
no

w
le

dg
e

Problem of knowledge storing X
 Problem of knowledge learning X
 Problem of knowledge receiving X
 Problem of knowledge search X
 Problem of knowledge using X
 Problem of knowledge distribution X

In
du

st
ri

al

Problem of localization (Single) X X X
Problem of localization (Multi) X X X
Problem of missing knowledge exchange X X X
Problem of reachable knowledge X X X
Problem of missing time X X X
Problem of missing support X X X

Table 75 - Single or combined visualisation

g.1.4.	Problem	selection	for	reuse	activities	
In previous sections different problems of the three perspectives on reuse in software engineering,

handling of knowledge, management and industrial context were shown. Section G.1 demonstrated

how these problems have common effects on software engineers. In the following, the problems of

software engineers will be discussed on the basis of concrete reuse activities of software units. The

focus changes from the general view on problems of software engineers to concrete activities

Appendix

xcviii

which include the possibilities for such problems. Table 76 shows an overview of the discussed

problems and the three focused reuse activities. This mapping will be explained in this section.

Note: This mapping shows typical problems in the three reuse activities and is represents the

perspective of the author of this thesis based on the previous discussions. Specialised SCAcs may

be shown differently to this perspective.

 Transformation Integration Deployment

So
ftw

ar
e

En
gi

ne
er

in
g

Problems of the different key concepts X X X
Problems of different technologies X X X
Problems of the multitude X X X
Component models and component worlds X X X
Problem of the availability X X X
Problems of the reuse and the design

 Problems of the completeness X X X
Problems of the context dependence X X X
Problems of the different views X X X

K
no

w
le

dg
e

Problem of knowledge storing X X X
Problem of knowledge learning X X X
Problem of knowledge receiving X X X
Problem of knowledge search X X X
Problem of knowledge using X X X
Problem of knowledge distribution X X X

In
du

st
ri

al

Problem of localization (Single) X X X
Problem of localization (Multi) X X X
Problem of missing knowledge exchange X X X
Problem of reachable knowledge X X X
Problem of missing time X X X
Problem of missing support X X X

 Table 76 - Problems in the focused reuse activities

Basically Table 76 shows that each of the problems is related to each of the different Software

Construction Activities. But the table shows no differences between the SCAcs. To understand the

different impact of the problems to the SCAcs it is necessary to describe type of impact to the

Appendix

xcix

SCAcs. For that reason a general structure of activities is used to explain the relation between the

focused problems and the different activities. Therefore an activity has a preparation phase for

information received, an input configuration phase, an execution phase, and an output.

Figure 156 - General structure of activities used for explanation

g.1.4.1.	Problems	and	transformation	activities	relationship	
In this area, expertise is demonstrated by knowing exactly how an appropriate transformation

application has to be prepared so that it can be executed. This includes information and parameters

needed for the performed transformation to produce the correct result and the distribution of the

result necessary knowledge for the result creation.

Figure 157 - Relation between a general transformation activity and focused knowledge based problems

Appendix

c

A based on the structure of a general activity, a general transformation activity can be explained as

follows (c.f. Figure 157).

 (1) In the preparation phase a user searches and receives all necessary information for the

preparation and execution of a transformation activity. (2) The configuration phase includes the

installation, configuration, and set of parameters of the transformation tool. (3) The execution

phase includes the start of the transformation application. (4) The result of a transformation is

another software unit.

Figure 157 shows the relation between the focused problems and the 4 different parts of a general

transformation activity. This relationship is now explained in more detail using the transformation

activity example (see Section 3.1.1).

The problem of key concepts and the problem of the view mainly occur for software engineers

during the configuration phase and for the output. In the configuration a key concept may be

expressed by a parameter. The example in Section 3.1.1 does not require such information. As a

result, the engineer has to select a transformation tool handling the key concepts of a unit. The

output of a transformation also includes different key concepts. In the example of IKVM a user has

to decide if a library or an executable has to be the resulting software unit.

The problem of component models/component worlds and the problem of different technologies

occur for the software engineer in the same way as the problem of key concepts. It might be

necessary to set technology or component model information for the input software unit and the

output software unit in the preparation phase. Therefore, the engineer has to receive this

information before in a preparation phase. Also, perhaps the problem occurs for the transformation

tool itself. For transformation tools different technologies may exists. For example, a

Appendix

ci

transformation of the Java based DPWS libraries into .NET libraries may be performed by using

IKVM or an MDD based application. The engineer has to know which transformation technology

creates a useable result. The question of the component world and model is also relevant for the

transformation result. The engineer’s transformation activity might focus a specific technology or

component model result (see example in Section 3.1.1).

The multitude problem occurs in the example of transformation predominantly in the configuration

phase. There perhaps exists a multitude of single software units or software unit types. Based on

the used transformation tool this has to be part of the configuration. Also a multitude of

transformation applications may exist which differ in their feature level. An example is the

SVCUtils which exists in different versions based on the existing versions of Microsoft .NET.

The problem of reuse and design, as well as the problem of the market, are not relevant for

transformation activities.

The problem of context dependencies occurs in the configuration phase. Tools like IKVM or

SVCUtils need information about exiting dependencies and their locations. The use of the

dependencies is necessary to gain a full overview of a software unit. Sometimes the dependencies

will be copied into the transformation result. In the example of IKVM and DPWS the

transformation results have new dependencies which are mainly IKVM files. A software engineer

has to know which dependencies are necessary and how they have to be copied or configured for

the transformation tool.

The problem of available occurs from the perspective of this analysis in the preparation and

execution phase. The parts of the software unit have to available for search an download. During

Appendix

cii

the execution of the transformation these parts have to be available for the transformation tool.

Additionally the transformation tool has to be available also.

The problem of completeness is relevant in the execution phase and the output of a transformation.

In the execution phase information and parts of a software unit have to be completed to perform the

transformation. The transformation result has to be complete also, to be shipped to another reuse

activity or a repository.

The problem of knowledge distribution and knowledge storing occurs for a software engineer in the

output of a transformation activity. If the output is created, an engineer might want to store the

transformation activity knowledge for personal reuse or for others. This leads to the problem of

distribution.

The problem of knowledge learning occurs in each part of an activity. An engineer has to learn how

to find all necessary information, prepare the tool and the software unit, execute it and handle the

transformation result.

In a transformation activity the problem of knowledge receiving and searching occurs in the

preparation phase. A software engineer has to handle these problems before starting the

configuration phase. After receiving the necessary knowledge it can be used. The problem of using

knowledge occurs for an engineer in the preparation phase. The knowledge is the combination of

information with the transformation application that is using the information to create an output. In

the IKVM/DPWS example the user sets all parameters necessary to start an application which

transforms Java byte code to .Net byte code.

Appendix

ciii

The problem of the use of knowledge mainly occurs in the configuration and execution phase. The

user has to know how to configure a transformation tool and how to execute it. The IKVM example

shows that a user has sometime to add information or data to the output manually.

The problem of localisation (single/multi) occurs for the software engineer in all parts of a

transformation activity. First of all the repositories to search and retrieve information might be

localised in different locations.

The same scenario is valid for the problem of reachable knowledge. Also the transformation tool

itself may be localised in other locations. As a result, it is difficult to execute the tool. If this

scenario occurs, the problem extends itself to the preparation phase. The engineer has to know how

to access the environment of the tool to configure it. If an engineer wants to distribute their

transformation result, it is necessary to know how to distribute it to other locations. This is part of

the problem of knowledge exchange in industrial environments. Additionally the engineer has to

know other repositories, their location, and handling to exchange the knowledge of the

transformation activity.

If an engineer want to distribute his transformation result it is necessary to know how to distribute

it to other locations. This is part of the problem of knowledge exchange in industrial environments.

Additionally the engineer have to know other repositories (including their location and handling) to

exchange the knowledge of the transformation activity.

The problem of support occurs in each part of a transformation activity. A software engineer may

need support during the preparation, configuration, and execution phases, and the handling of the

output of a transformation activity.

Appendix

civ

g.1.4.2.	Problems	and	integration	activities	relationship	
In this area, a software engineer’s expertise is demonstrated by knowing exactly how to integrate a

software unit into an IDE. This includes knowledge about different techniques and the

configuration of the IDE and the software unit. The result is a development project extended with a

new software unit.

A based on the structure of a general activity, a general integration activity can be explained as

follows (c.f. Figure 158).

Figure 158 - Relation between a general integration activity and focused knowledge based problems

(1) In the preparation phase, a user searches and receives all necessary information for the

configuration and execution of an integration activity. (2) The configuration phase includes the

configuration of the IDE and the preparation (including the creation of file and folder structure) of

Appendix

cv

the software unit. (3) Also in this phase the software engineer has to decide on the type of

integration (i.e., referencing, only copy, and so on). The execution phase includes the manual

integration of the software unit or parts of it into the IDE by the software engineer. (4) The result of

integration is a software development project including the integrated software unit.

Figure 158 shows the relation between the focused problems and the 4 different parts of a general

integration activity. This relationship is now explained in more detail using the transformation

activity example (see Section 3.1.3).

The problem of key concepts and the problem of the view mainly occur for a software engineers

during the preparation and configuration. In the preparation a key concept may be relevant to

identify the correct software unit (see Section G.1.1). It is expressed by a search request (see Picot,

2003). The software engineer has to know the key concepts of a unit that is used in a special IDE.

The software engineer might use this experience to configure the IDE or to prepare the software

unit in the configuration phase. The example in Section 3.1.3 does not require such information.

But an example can be identified by analysing Visual Studio and Eclipse. Both IDEs are able to

handle libraries, source-code, and service information. For the user it is relevant to know how these

IDEs handle these key concepts or views. Web Services in Visual Studio are handled like

components. As a result, the user does not notice the difference, but have to know it.

The problem of component models/component worlds and the problem of different technologies

occur for the software engineer in the same way as the problem of key concepts. It might be

necessary to set technology or component model information in the preparation phase. Also such

information is relevant to identify a software unit during the software unit search. However, such

information may be used to identify the correct IDE and/or configure the IDE for the software unit.

Appendix

cvi

Therefore, the engineer has to receive this information before via the preparation phase. Perhaps

the problem occurs also for the IDE itself. It might be that there are different technologies or

component worlds for IDEs. Good examples are .Net and Java libraries that are used in Visual

Studio (for .Net libraries) and Eclipse (for Java libraries). This shows that the component world

problems of software units also exist in the area of IDEs. The engineer has do know which

integration technology in an IDE creates a useable result. Also the technology itself can be

different. An example is the .NET technology which now exists in 7 releases (.NET 1.0, 1.1, 2.0,

3.0, 3.5, 4.0, and 4.5).

The multitude problem occurs in the example of integration mainly in the configuration and

execution phase. There may be a multitude (different versions) of single software units or software

unit types. These units can differ in their structure or technology, for example. The software

engineer has to know how to handle such multitudes. Also a multitude of IDEs may exist which

differ in feature level. An example is Visual Studio. The versions Visual Studio (VS) 2008,

VS2010, and VS2012 differ in their integration handling and in the support of technologies that can

be supported.

The availability of a software unit is mainly relevant during the execution of integration. Often, this

is combined with the problem of completeness. While classes and components have to be complete

and available, services can be integrated by using only the interface information (e.g., WSDL file).

Also, the availability of the IDE is necessary to fulfil the integration activity. In general, the

availability of information and activity knowledge is necessary from the beginning of the

preparation phase.

Appendix

cvii

Both the problem of reuse/design is not related by transformation activities from the perspective of

the author.

The problem of context dependencies occurs mainly in the execution phase and for the output.

IDEs, like Visual Studio checks dependencies in some cases, for example for the integration of

service information and in cases of early and late binding. If the dependencies are not available, the

integration will fail. For the integration of libraries as references, dependencies will not be checked.

The error occurs if the software engineer tries to build the development project or at runtime of the

software tool or a unit that is created by the development project. To create a valid integration, a

software engineer needs the experience for such occurrences. Sometimes the IDE has to be

configured in the configuration phase. An example is the path settings for Eclipse for additional

paths where libraries (dependencies) can be searched. Another dependency example is shown in the

integration example in Section 3.1.3. The software unit requires some other software units

integrated in the development projects (IKVM files). Additionally some other files have to be

copied in the same directory. These files are and their location next to the main software unit is

required by the main software unit (dependencies). Like in a transformation activity engineers has

to know such dependencies.

The problem of completeness is relevant in the execution phase and the output of an integration

activity. In the execution phase information and parts of a software unit have to be completed to

perform the integration. The integration result has to be complete also, to be used during the

compilation or the runtime of the development project.

Appendix

cviii

The problem of knowledge distribution and knowledge storing occurs from the output of a

transformation activity. An engineer might want to store the integration activity knowledge for

personal reuse or for others. This leads to the problem of distribution.

The problem of knowledge learning occurs in each part of an activity. An engineer has to learn to

find all necessary information, prepare the IDE and the software unit, integrate it and learn about

the structure of the integration result.

In an integration activity the problem of knowledge receiving and searching occurs in the

preparation phase. A software engineer has to handle these problems before starting the

configuration phase. After receiving the necessary knowledge it can be used. The problem of using

knowledge occurs for an engineer in the configuration and execution phase. The knowledge is the

combination of information with the IDE that is using the information to create an output. Also the

user has to know how to use the IDE to create this output. The example in Section 3.1.3 shows that

a software unit includes different elements that have to be integrated differently using different

techniques of the IDE.

The problem of localisation (single/multi) occurs for the software engineer in three parts of an

integration activity. First of all the repositories to search and retrieve information might be located

in different areas. The same scenario is valid for the problem of reachable knowledge. Also the IDE

itself may be localised on other locations. As a result, it is difficult to execute the integration. If this

scenario occurs the problem extends itself to the preparation phase. The engineer has to know how

to access the environment of the IDE to configure it. Next to the needed time for performing an

integration activity the problem of time and the problem of ROI are not interesting for

transformation activities.

Appendix

cix

The problem of reachable knowledge occurs mainly in the preparation phase. Also the IDE itself

may be located in other areas. As a result, it is difficult to execute the tool. If this scenario occurs

the problem extends itself to the preparation phase. The engineer has to know how to access the

environment of the IDE to configure it.

If an engineer wants to distribute their integration result it is necessary to know how to distribute it

to other locations. This is part of the problem of knowledge exchange in industrial environments.

Additionally the engineer has to know about other repositories and their behaviour to exchange the

knowledge of the integration activity.

Following the time needed for performing an integration activity, the problem of time is not

interesting for integration activities.

The problem of support occurs in each part of an integration activity. A software engineer may

need support during the preparation, configuration and execution phases, and the handling of the

output of an integration activity.

g.1.4.3.		Problems	and	deployment	activities	relationship	
In this area, a software engineer’s expertise is demonstrated by knowing exactly how to deploy a

software unit into a device. This includes knowledge about different software units, deployment

and device techniques, and the configuration of these technologies. The result is a deployed

software unit in an embedded device.

A based on the structure of a general activity, a general deployment activity can be explained as

follows (cf. Figure 159).

Appendix

cx

Figure 159 - Relation between a general deployment activity and focused knowledge based problems

(1) In the preparation phase a user searches and receives all necessary information for the

preparation and execution of a deployment activity. (2) The configuration phase includes the

configuration of the deployment tools and the preparation (including creation of file and folder

structure) of the software unit. (3) Also in this phase the software engineer has to decide which

deployment technology is compatible to the device and software unit. The execution phase includes

the use of different tools preparing the input files and configuration, and finally the upload of the

final package into the device. (4) The result of a deployment activity is the prepared software

package and a deployed software unit.

Appendix

cxi

Figure 159 shows the relation between the focused problems and the 4 different parts of a general

deployment activity. This relationship is now explained in more detail using the transformation

activity example (see Section 3.1.5).

The problem of key concepts and the problem of the view mainly occur for a software engineer

during preparation and configuration. In the preparation phase a key concept may be relevant to

identify the correct software unit. It is expressed by a search request (see Picot, 2003). The

software engineer has to know the key concepts of a unit that is used in a special deployment

environment. Often, the deployment tools are specialised to a specific key concept or technology.

This experience of a software engineer might be useful in configuring the deployment tools or to

prepare the software unit in the configuration phase. The three examples in Section 3.1.5 do require

such specialised information. Each device or platform has different behaviours in handling

software units.

The problem of component models/component worlds and the problem of different technologies

occur for the software engineer in the area of deployment in different parts. It might be necessary to

set technology or component model information in the preparation phase. Also such information is

relevant to identify a software unit during the software unit search. However, such information may

be used to identify the correct deployment platform or technology and/or configure the device or

the platform for the software unit. Therefore, the engineer has to receive this information before in

a preparation phase. Perhaps the problem occurs also for the device or the platform itself. It might

be that there are different technologies or component worlds that exist for different devices. Often,

the programming language C is used. There are compilers available in different IDEs and different

platforms, but mostly the device vendors support specific environments. Also examples exist were

Appendix

cxii

vendor specific component models or technologies have to be used. This is shown in the

deployment example in Section 3.1.5.

The multitude problem occurs in the example of deployment mainly in the execution phase. There

may be a multitude (different versions) of single software units and software unit types. These can

differ, for example, in their structure or technology. The software engineer has to know how to

handle such multitudes. Also a multitude of devices or deployment platforms may exist which

differ in their support and deployment process level. The example discussion of different device

types and deployment platforms is made by Zinn et al. (2012).

The availability of a software unit is particularly relevant during the configuration and execution of

deployment. All information has to be available. Often, this is combined with the problem of

completeness. The configuration phase sometimes required the creation of deployment packages

out of existing data. Next to the deployment tools in the execution phase, this requires additional

tools (e.g., an IDE).

The problem of reuse and design is seen as not relevant for transformation activities.

The problem of context dependencies occurs in the execution phase and for the output. A device or

deployment platform, as shown in the example in Section 3.1.5 often requires the use of external

libraries (dependencies). These support the software engineer so that a software unit is able to run

in the runtime environment (firmware) of the device. If the dependencies are not available, the

deployment might fail or the software unit will not run or react correctly in the runtime

environment. Sometimes the device or the deployment platform has to be configured in the

configuration phase. An example is shown in the example in Section 3.1.5 where special

configuration files have to be set as part of a deployment package.

Appendix

cxiii

Because of the need of the availability of relevant parts during the configuration and the execution

phase it is also necessary to have the software units parts complete.

The problem of knowledge distribution and knowledge storing occurs for a software engineer for

the output of a deployment activity. If the output (a final deployment packages for one deployment

platform or device) was created, an engineer might want to store the deployment activity

knowledge for personal reuse or for others. This leads to the problem of distribution.

The problem of knowledge learning occurs in each part of an activity. An engineer has to learn to

find all necessary information, prepare the deployment tools and the software unit, integrate it and

handle the deployment result.

In a deployment activity the problem of receiving knowledge and searching occurs in the

preparation phase. A software engineer has to handle these problems before starting a configuration

phase. The problem increases based on the specialised knowledge that is necessary to create a

deployment package for a device. After receiving the necessary knowledge it can be used.

The problem of using knowledge occurs for an engineer in the configuration and the execution

phase. The specialised deployment platforms or device types needs specialised configuration. The

knowledge is the combination of information with the deployment tools that use the information to

create an output, as well as, the tools or procedure necessary to configure the deployment activity.

Also the user has to know how to use the different tools to create this output. The example in

Section 3.1.5 shows that a software unit includes different elements that have to be configured and

transformed to get deployed.

The problem of localisation (single/multi) occurs for the software engineer in all parts of a

deployment activity. First of all the repositories to search and retrieve information might be

Appendix

cxiv

localised in different locations. The same scenario is valid for the problem of reachable knowledge.

Also the deployment tool itself may be localised in other locations. As a result, it is difficult to

perform the deployment. If this scenario occurs, the problem extends itself to the preparation phase.

The engineer has to know how to access the environment of the tools to configure them. If an

engineer wants to distribute the deployment result (i.e., the final build software unit to other teams

using the same devices) it is necessary to know how to distribute it to other locations. This is part

of the problem of knowledge exchange in industrial environments. Additionally the engineer has to

know other repositories to exchange the knowledge of the deployment activity. This includes

experience about location and handling of such repositories.

Following the time needed for performing a deployment activity, the problem of time and the

problem of ROI are not pertinent for deployment activities.

The problem of support occurs in each part of a deployment activity. A software engineer may

need support during the preparation, configuration, and execution phase, and the handling of the

output of a deployment activity.

The problem activity relation shown in Table 76 can be described in more detail using the previous

problem analyses.

g.2.	Requirements	definition	based	on	focused	Problems	
Section G.1 introduces the software reuse activities and shows their relation to the discussed

problems of the previous sections. Based on this relationship, a requirement list will be now

created. By using this list, both existing solution approaches and the focused solution approach can

be analysed and evaluated. Each requirement is represented by a question and subdivided into the

three activities and their relation to the problem focused on by the requirement.

Appendix

cxv

Table 76 shows the discussed problem in relation to the introduced activities but to reach the aim of

creating a measurement table based on the following requirements this perspective must change

Figure 160 shows the information flow used to explain the relationship between the focused

problems and the reuse activities. Therefore a reuse of an activity needs information of a software

unit (A) and the specific activity (B). This information will be used create a reuse result (C).

Sometimes the result is usable in an additional reuse (of the result or the same activity) or has to be

published (D). Figure 160 also shows the relation to the general activity defined in Section G.2.

Figure 160 - Information flow of a activity reuse

The following general requirements can be formulated for the section (A), (B), (C), and (D):

Requirement A: The problem of specific knowledge about a software unit can be represented as

follows as a question: ‘Is the system under investigation in a position to provide the user the

knowledge needed for the reuse of a software unit?’ This question refers to whether the system

under investigation to specific properties which allows the user to know or to get information about

a software unit for reuse as needed. The question is answered with YES or NO.

Appendix

cxvi

Requirement B: The problem of concrete knowledge about reuse activities can be summarised as

follows as a question: ‘Is the system under investigation in a position to provide the required

knowledge to perform concrete reuse activities to a user?’ This question refers to whether the

system under test conditions has specific properties that allow the user to know or get information

about reusing activities of a specific software unit to perform this activity. The question is

answered with YES or NO.

Requirement C: The problem of automated application of knowledge reuse activities can be

summarised as follows: ‘Is the system under investigation able to support a user to perform

automatically or partially automatically a software reuse activity?’ This question refers to whether

the system under test conditions has concrete properties, which allows the user to reuse activities

on a specific software unit which is automated or partially automated by the system. The question

is answered with YES or NO.

Requirement D: The problem of the preservation of knowledge can be represented with the

following question: ‘Is the system under investigation in a position to support a user in the

preservation of knowledge and information?’ This question refers to whether the system under

investigation provides specific properties to the user which allows them to obtain information that

usually cannot be received because of missing user knowledge. The question is answered with YES

or NO.

g.2.1.	Requirements	based	on	the	software	engineering	problems	
Following, the requirements based on the discussed problems in Section G.2 will be defined and

related to a general requirement (A-D). Each sub requirement receives an identifier (ID). This ID

consists of the main requirement number (1-23), the first character of the focused activity

Appendix

cxvii

(Integration, Transformation or Deployment), the first character of the related part in the general

activity process (Preparation, Configuration, Execution or Output), and a number (1-N) (if the

problem occurs multiple times in a general activity process part). Therefore, the ID is only a

summary of the analysis in Section G.2 for each problem.

Requirement 1: The problem of the different key concepts is represented by the following

question: ‘Is the system that is to be tested able to simplify the problem of different key concepts

for the user?’ This question seeks to determine whether a system has specific features to software

engineers in the use of decisions to be made on the basis of key concepts to help. The question has

to be answered with YES, PARTIALLY YES or NO depending on the answers of the sub

requirements.

Based on the analysis in Section G.2 of this problem for the three SCAs the following sub

requirements can be defined (see Table 77).

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

1TC1 …supports the user to configure the transformation tool based on the
given information about key concepts?

YES/NO

1TO1 …supports the user to handle the key concepts of the transformation
result in later reuse?

YES/NO

1IC1 … supports the user to configure the integration tool based on the given
information about key concepts?

YES/NO

1DP1 … supports the user to search a deployment tool or software unit based on
the given information about key concepts?

YES/NO

1DC1 …supports the user to configure the deployment tool based on the given
information about key concepts?

YES/NO

Table 77 - Sub requirement list for the problem of key concepts

Requirement 2: The problem of different technologies is represented by the following question:

‘Is the system under investigation in a position to simplify the problem of different technologies or

Appendix

cxviii

types of technology user?’ This question seeks to determine whether a system has specific features

to support software engineers in the use of different technologies. The question has to be answered

with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. The

analysis in Section G.2 for this problem may be expressed by following sub requirement list (See

Table 78)

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

2TP1 …supports a user to identify technologies information on a software unit
for transformation?

YES/NO

2TC1 …supports a user to configure a transformation tool based on the
technical properties of a software unit?

YES/NO

2TE1 …supports a user to execute transformation tool based on different
technical properties for a transformation activity?

YES/NO

2TO1 …supports the user to handle the different technology problem of the
transformation result in later reuse?

YES/NO

2IP1 …supports a user to identify technologies information on a software unit
for integration?

YES/NO

2IC1 …supports a user to configure an integration tool based on the technical
properties of a software unit?

YES/NO

2IE1 …supports a user to identify an integration tool based on different
technical properties for a integration activity?

YES/NO

2DP1 …supports a user to identify technologies information on a software unit
for deployment?

YES/NO

2DC1 …supports a user to configure an deployment tool based on the technical
properties of a software unit?

YES/NO

2DE1 …supports a user to identify an deployment tool based on different
technical properties for a deployment activity?

YES/NO

Table 78 - Sub requirement list for the problem of different views

Requirement 3: The problem of multitude, (i.e., the large number of different programming

languages in the areas, of the identified software construction types) is represented by the following

question: ‘Is the system under investigation in a position to solve or simplify the problems arising

from the multitude (i.e., large number of programming and specification languages) for the user?’

This question seeks to determine whether a system has specific features to support software

Appendix

cxix

engineers, for example, in the use of different programming languages. The question has to be

answered with YES, PARTIALLY YES or NO depending on the answers of the sub requirements.

Table 79 shows the sub requirement list for this requirement.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

3TC1 … supports a user by configure a transformation based on different
multitudes of a software unit?

YES/NO

3TE1 … supports a user by executing a transformation based on different
multitudes of transformation tools?

YES/NO

3IC1 …supports a user to configure an integration tool based on the different
multitudes of a software unit?

YES/NO

3IE1 …supports a user to executing an integration tool based on different
multitudes of a software unit?

YES/NO

3IE2 …supports a user to executing an integration tool based on different
multitudes of transformation tools?

YES/NO

3DC1 …supports a user to configure a deployment tool based on the different
multitudes of a software unit?

YES/NO

3DE1 …supports a user to executing a deployment tool based on different
multitudes of a software unit?

YES/NO

3DE2 …supports a user to executing a deployment tool based on different
multitudes of deployment tools?

YES/NO

Table 79 - Sub requirement list for the problem of multitude

Requirement 4: The problem of different component models and components worlds is

represented by the following question: ‘Is the system being tested able to solve the problem of

software engineers’ lower experience in the use of different component models and worlds, or able

to simplify it?’

This question seeks to determine whether a system has specific features to support software

engineers in the use of different component models and worlds. The question has to be answered

with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. In Table

80 the sub requirement list for this requirement based on the analysis in Section G.2 is shown.

Appendix

cxx

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

4TP1 …supports a user to identify component world or model information on a
software unit for transformation?

YES/NO

4TC1 …supports a user to configure a transformation tool based on the
component world or model properties of a software unit?

YES/NO

4TO1 …supports the user to handle the different technology problem of the
transformation result in later reuse?

YES/NO

4IP1 …supports a user to identify component world or model information on a
software unit for integration?

YES/NO

4IC1 …supports a user to configure an integration tool based on the component
world or model properties of a software unit?

YES/NO

4IE1 …supports a user to identify an integration tool based on different
component world or model for a transformation activity?

4DP1 …supports a user to identify component world or model information on a
software unit for deployment?

YES/NO

4DC1 …supports a user to configure a deployment tool based on the component
world or model of a software unit?

YES/NO

4DE1 …supports a user to identify a deployment tool based on different
component world or model for a deployment activity?

YES/NO

Table 80 - Sub requirement list for the problem of different component models and components worlds

Requirement 5: The availability problem is represented by the following question: ‘Is the system

under investigation in a position to support a user in identifying all the information a particular

activity requires?’ This question refers to whether a system has specific features to software

engineers with all the necessary information (e.g., files and instructions) to make available. The

question has to be answered with YES, PARTIALLY YES or NO depending on the answers of the

sub requirements. In Table 81 the sub requirement list for this requirement based on the analysis in

Section G.2 is shown.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

5TP1 … supports a user to access all parts software unit for a transformation
activity?

YES/NO

5TE1 … supports a user having all necessary parts of a software unit available
to execute a transformation?

YES/NO

5TE2 … supports a user having the IDE available to execute a transformation? YES/NO

Appendix

cxxi

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

5IP1 … supports a user to access all parts software unit for a integration
activity?

YES/NO

5IE1 … supports a user having all necessary parts of a software unit available
to execute an integration?

YES/NO

5IE2 … supports a user having the IDE available to execute an integration? YES/NO
5DC1 … supports a user having all necessary parts of a software unit available

to configure a deployment activity?
YES/NO

5DC2 … supports a user having the additional tool available to configure a
deployment activity?

YES/NO

5DE1 … supports a user having all necessary parts of a software unit available
to execute a deployment activity?

YES/NO

5DE2 … supports a user having the deployment tool available to execute a
deployment activity?

YES/NO

Table 81 - Sub requirement list for the problem of availability

Requirement 6: The problem of context dependencies is represented by the following question: ‘Is

the system under investigation in a position to simplify or to solve the problem of context

dependency, of a software user, for a user?’ This question seeks to determine whether a system has

specific features to the user in the use of a software module and the problems that may arise from

the different context dependencies to simplify or solve. The question has to be answered with YES,

PARTIALLY YES or NO depending on the answers of the sub requirements. Table 82 shows the

sub requirement list for this requirement based on the analysis in Section G.2.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

6TC1 … supports a user to configure a transformation tool based on the context
dependencies of a software unit?

YES/NO

6TO1 … supports the user to handle the (new) context dependencies of the
transformation result in later reuse?

YES/NO

6IC1 … supports a user to configure a integration tool based on the context
dependencies of a software unit?

YES/NO

6IE1 … supports a user to integrate the context dependencies of a software
unit?

YES/NO

6IO1 … supports the user to handle the context dependencies in the integration
result in later reuse?

YES/NO

Appendix

cxxii

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

6DC1 … supports a user to configure a deployment tool based on the context
dependencies of a software unit?

YES/NO

6DE1 … supports a user to deploy the context dependencies of a software unit? YES/NO

Table 82 - Sub requirement list for the problem of context dependencies

Requirement 7: The problem of different perspectives can be expressed as follows: ‘Is the system

under investigation in a position to solve or simplify the problem of different perspectives (object

orientation, component orientation, and service orientation) for users?’ This question refers to

whether a system has specific features to support software engineers in the use of different

perspectives that this study has focused upon. The question has to be answered with YES,

PARTIALLY YES or NO depending on the answers of the sub requirements. The analysis in

Section G.2 for this problem may be expressed by following sub requirement list (See Table 83)

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

7TC1 …supports the user to configure the transformation tool based on the
given information about view on a given software unit?

YES/NO

7TO1 …supports the user to handle the view on the transformation result in
later reuse?

YES/NO

7IC1 … supports the user to configure the integration tool based on the given
information about view on a given software unit?

YES/NO

7DP1 … supports the user to search a deployment tool or software unit based on
the given information about views?

YES/NO

7DC1 … supports the user to configure the deployment tool based on the given
information about view on a given software unit?

YES/NO

Table 83 - Sub requirement list for the problem of different perspectives

Requirement 8: The question of horizontal and vertical markets can be described as follows:

‘Is the system capable to solve or simplify the problem of horizontal and vertical markets for the

user?’ This question refers to whether a system has specific characteristics in order to use a

Appendix

cxxiii

software component in both horizontal as in vertical markets and systems. This focus on the fact

that a software unit may be reused in development projects of other vertical or horizontal markets.

The question has to be answered with YES or NO. This requirement has no identified sub

requirements (see analysis in Section G.2)

Requirement 9: The problem of completeness can be illustrated with the following question: ‘Is

the system capable to solve or simplify the problem of completeness of a software unit for the

user?’ This question refers to whether a system has specific properties to be able to support a

software engineer in a software component to use in full. The question has to be answered with

YES, PARTIALLY YES or NO depending on the answers of the sub requirements. In Table 84 the

sub requirement list for this requirement based on the analysis in Section G.2 is shown.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

9TE1 … supports a user having all necessary parts of a software unit to execute
a transformation?

YES/NO

9TO1 …supports the user to handle completeness of the result in later reuse? YES/NO
9IE1 … supports a user having all necessary parts of a software unit to execute

an integration?
YES/NO

9IO1 …supports the user to handle completeness of the result the development
project?

YES/NO

9DC1 … supports a user having all necessary parts of a software unit to
configure a deployment activity?

YES/NO

9DE1 … supports a user having all necessary parts of a software unit to execute
a deployment activity?

YES/NO

Table 84 - Sub requirement list for the problem of completeness

Requirement 10: The problem of reuse type can be represented with the following question: ‘Is

the system capable to simplify or solve the problem resulting from the number of different types of

reuse, to a user?’ This question refers to whether a system has specific properties that support

software reuse engineers in a software unit with the preferred reuse type. The question has to be

Appendix

cxxiv

answered with YES or NO. This requirement has no identified sub requirements (see analysis in

Section G.2)

g.2.2.	Requirements	based	on	the	Knowledge	management	problems	
Requirement 11: The problem of knowledge storing can be represented with the following

question: ‘Is the system able to store knowledge about software units and software reuse

activities?’ This question will answer whether the system is able to store the knowledge learned by

an expert user about a reuse activity or a related software unit. The question has to be answered

with YES, PARTIALLY YES or NO depending on the answers of the sub requirements. In Table

84 the sub requirement list for this requirement based on the analysis in Section G.2 is shown.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

11TO1 … supports the user to store the transformation activity knowledge for
later reuse?

YES/NO

11IO1 … supports the user to store the integration activity knowledge for later
reuse?

YES/NO

11DO1 … supports the user to store the deployment activity knowledge for later
reuse?

YES/NO

Table 85 - Sub requirement list for the problem of knowledge storing

Requirement 12: The problem of knowledge learning can be represented with the following

question: ‘Is the system able to support a user by learning knowledge about software units and

software reuse activities?’ This question aims to uncover whether the system is able to support the

learning process of a non-experienced user about a software unit and related reuse activities. The

question has to be answered with YES, PARTIALLY YES or NO depending on the answers of the

sub requirements. The analysis in Section G.2 for this problem may be expressed by following sub

requirement list (See Table 86)

Appendix

cxxv

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

12TP1 … supports a user to learn how to search a software unit or a
transformation tool for a transformation?

YES/NO

12TC1 … supports the user to learn knowledge about transformation activity
configuration?

YES/NO

12TE1 … supports the user to learn knowledge about transformation activity
execution?

YES/NO

12TO1 … supports the user to learn knowledge about the transformation result
for later reuse?

YES/NO

12IP1 … supports a user to learn how to search a software unit or a integration
tool for a transformation?

YES/NO

12IC1 … supports the user to learn knowledge about integration activity
configuration?

YES/NO

12IE1 … supports the user to learn knowledge about integration activity
execution?

YES/NO

12IO1 … supports the user to learn knowledge about the integration result for
later reuse?

YES/NO

12DP1 … supports a user to learn how to search a software unit or a deployment
tool for a transformation?

YES/NO

12DC1 … supports the user to learn knowledge about deployment activity
configuration?

YES/NO

12DE1 … supports the user to learn knowledge about deployment activity
execution?

YES/NO

12DO1 … supports the user to learn knowledge about the deployment result for
later reuse?

YES/NO

Table 86 - Sub requirement list for the problem of knowledge learning

Requirement 13: The problem of knowledge receiving can be represented with the following

question: ‘Is the system able to support a user by receiving knowledge about software units and

software reuse activities even if this person is usually not able to receive it?’ This question

examines whether the system is able to support the receiving of knowledge for a non-experienced

user about a software unit and related reuse activities. The question has to be answered with YES,

PARTIALLY YES or NO depending on the answers of the sub requirements. In Table 87 the sub

requirement list for this requirement based on the analysis in Section G.2 is shown.

Appendix

cxxvi

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

13TP1 … supports a user to receive knowledge of a transformation activity? YES/NO
13IP1 … supports a user to receive knowledge of a integration activity? YES/NO
13DP1 … supports a user to receive knowledge of a deployment activity? YES/NO

Table 87 - Sub requirement list for the problem of knowledge receiving

Requirement 14: The problem of knowledge search can be represented with the following

question: ‘Is the system able to support a user by searching knowledge about software units and

software reuse activities even if this person is usually not able to search for it?’ This question

investigates whether the system is able to support the searching of knowledge for a non-

experienced user who is usually not able to create a search request. The question has to be

answered with YES or NO. The question has to be answered with YES, PARTIALLY YES or NO

depending on the answers of the sub requirements. Table 88 shows the sub requirement list for this

requirement based on the analysis in Section G.2.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

14TP1 … supports a user to search for knowledge about transformation activity? YES/NO
14IP1 … supports a user to search for knowledge about integration activity? YES/NO
14DP1 … supports a user to search for knowledge about integration activity? YES/NO

Table 88 - Sub requirement list for the problem of knowledge search

Requirement 15: The problem of knowledge use can be represented with the following question:

‘Is the system able to support a user with (re)use knowledge about software units and software

reuse activities even where they do not have the Professional experience to do this?’ This question

indicates if a system has specific properties to support a non-experienced user to use knowledge

about a software unit to a related reuse activity. The question has to be answered with YES,

Appendix

cxxvii

PARTIALLY YES or NO depending on the answers of the sub requirements. Based on the analysis

in Section G.2 of this problem for the three SCAs the following sub requirements can be defined

(see Table 89).

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

15TC1 … supports the user to use specific knowledge to configure a
transformation tool?

YES/NO

15TE1 … supports the user to use specific knowledge to execute a
transformation tool?

YES/NO

15TO1 … supports the user to use knowledge to create a final transformation
output?

15IC1 … supports the user to use specific knowledge to configure a integration
tool?

YES/NO

15IE1 … supports the user to use specific knowledge to execute a integration
tool?

YES/NO

15DC1 … supports the user to use specific knowledge to configure all necessary
deployment tools?

YES/NO

15DE1 … supports the user to use specific knowledge to execute a the
deployment?

YES/NO

Table 89 - Sub requirement list for the problem of knowledge using

Requirement 16: The problem of knowledge distribution can be represented with the following

question: ‘Is the system under investigation able to support an expert user by distributing

knowledge about software units and software reuse to other users?’ This question examines if a

system has specific properties to support a user and provide knowledge given by this user to other

users. The question has to be answered with YES, PARTIALLY YES or NO depending on the

answers of the sub requirements. In Table 90 the sub requirement list for this requirement based on

the analysis in Section G.2 is shown.

Appendix

cxxviii

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

16TO1 … supports the user to distribute the transformation activity knowledge
for later reuse to other users?

YES/NO

16IO1 … supports the user to store the integration activity knowledge for later
reuse?

YES/NO

16D01 … supports the user to store the integration activity knowledge for later
reuse?

YES/NO

Table 90 - Sub requirement list for the problem of knowledge distribution

g.2.2.	Requirements	based	on	the	industrial	context	problems	
Requirement 17: The problem of supporting multiple reuse of a software unit within a team in

different locations can be expressed with the following question: ‘Is the system to be examined in a

position to improve multiple reuse of the same software unit within software development teams

whereby members are placed in different locations?’ This question refers to whether the system

under investigation has concrete properties, which improves the multiple reuses within a team

which has localisation problems. This time both improvements and simplification in dealing with

the software are meant to block. The question has to be answered with YES, PARTIALLY YES or

NO depending on the answers of the sub requirements. Based on the analysis in Section G.2 of this

problem for the three SCAs the following sub requirements can be defined (see Table 91).

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

17TP1 … supports a single user to search for a transformation or software unit in
a different location?

YES/NO

17TC1 … supports a single user to configure a transformation in a different
location?

YES/NO

17TE1 … supports a single user to execute a transformation in a different
location?

YES/NO

17TO1 … supports a single user to share the transformation result to different
locations?

YES/NO

Appendix

cxxix

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

17IP1 … supports a single user to search for an integration or software unit in a
different location?

YES/NO

17IC1 … supports a single user to configure an integration in a different
location?

YES/NO

17IE1 … supports a single user to execute an integration in a different location? YES/NO
17DP1 … supports a single user to search for a deployment activity or software

unit in a different location?
YES/NO

17DC1 … supports a single user to configure a deployment tool in a different
location?

YES/NO

17DE1 … supports a single user to execute a deployment activity in a different
location?

YES/NO

17DO1 … supports a single user to share / deploy the deployment activity result
to different locations?

YES/NO

Table 91 - Sub requirement list for the problem of localisation (single)

Requirement 18: The problem of multiple reuses within different development teams can be

represented with the following question: ‘Is the system under investigation in a position to assist

different development teams in reusing the same software units even where these teams are in

different locations?’ This question refers to whether the system under investigation has a specific

property for the reuse of a particular software unit for different development teams in the same

way. The question has to be answered with YES, PARTIALLY YES or NO depending on the

answers of the sub requirements. Table 92 shows the sub requirement list for this requirement.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

18TP1 … supports a team to search for a transformation or software unit in a
different location?

YES/NO

18TC1 … supports a team to configure a transformation in a different location? YES/NO
18TE1 … supports a team to execute a transformation in a different location? YES/NO
18TO1 … supports a team to share the transformation result to different

locations?
YES/NO

18IP1 … supports a team to search for an integration or software unit in a
different location?

18IC1 … supports a team to configure an integration in a different location? YES/NO
18IE1 … supports a team to execute an integration in a different location? YES/NO

Appendix

cxxx

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

18DP1 … supports a team to search for a deployment activity or software unit in
a different location?

YES/NO

18DC1 … supports a team to configure a deployment tool in a different location? YES/NO
18DE1 … supports a team to execute a deployment activity in a different

location?
YES/NO

18DO1 … supports a team to share / deploy the deployment activity result to
different locations?

YES/NO

Table 92 - Sub requirement list for the problem of localisation (single)

Requirement 19: The problem of missing knowledge exchange can be represented with the

following question: ‘Is the system which is under investigation able to support teams or persons in

knowledge exchange about software units or reuse activities?’ This question examines if a system

has specific properties to support a user providing knowledge to other users. The question has to be

answered with YES, PARTIALLY YES or NO depending on the answers of the sub requirements.

Based on the analysis in Section G.2 of this problem for the three SCAs the following sub

requirements can be defined (see Table 93).

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

19TO1 … supports a user to share the transformation result knowledge to
different others person for later reuse?

YES/NO

19IO1 … supports a user to share the integration result knowledge to different
others person for later reuse?

YES/NO

19D01 … supports a user to share the deployment result knowledge to different
others person for later reuse?

YES/NO

Table 93 - Sub requirement list for the problem of missing knowledge exchange

Requirement 20: The problem of the reachable knowledge can be illustrated with the following

question: ‘Is the system capable of making knowledge as provided for by a team or a person

reachable to others?’ This question refers to whether a system has specific characteristics to make it

Appendix

cxxxi

easier to reach knowledge about reusing software units in the company environment. The question

has to be answered with YES, PARTIALLY YES or NO depending on the answers of the sub

requirements. In Table 84 the sub requirement list for this requirement based on the analysis in

Section G.2 is shown.

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

20TP1 … supports a team to receive transformation activity knowledge? YES/NO
20IP1 … supports a team to receive integration activity knowledge? YES/NO
20DP1 … supports a team to receive deployment activity knowledge? YES/NO

Table 94 - Sub requirement list for the problem of reachable knowledge

Requirement 21: The problem of the high expenditure of time for reuse can be illustrated with the

following question: ‘Is the system capable in reducing the time needed for the reuse of a software

unit?’ This question refers to whether a system has specific characteristics to reduce the reuse of a

software unit in time. The question has to be answered with YES or NO. The analysis in Section

G.2 shows no sub requirement.

Requirement 23: The problem of excessive support requirements can be illustrated with the

following question: ‘Is the system under investigation able to reduce the support time effort for a

single team reusing a software unit?’ The question aims to examine whether the system has a

specific property, the support costs for the initial creation of a software unit and/or shorten the

reuse of a software unit. The question has to be answered with YES, PARTIALLY YES or NO

depending on the answers of the sub requirements. Based on the analysis in Section G.2 of this

problem for the three SCAs the following sub requirements can be defined (see Table 89).

Appendix

cxxxii

ID Requirement question
‘Is the system under investigation able to…’

Requirement
question
answer

23TP1 … reduces support effort for preparing of a transformation activity? YES/NO
23TC1 … reduces support effort for configuration of a transformation activity? YES/NO
23TE1 … reduces support effort for execution of a transformation activity? YES/NO
23TO1 … reduces support effort for creating a final transformation activity

result?
YES/NO

23IP1 … reduces support effort time during preparing of an integration activity? YES/NO
23IC1 … reduces support effort for configuration of an integration activity? YES/NO
23IE1 … reduces support effort for execution of an integration activity? YES/NO
23IO1 … reduces support effort for creating a final integration activity result? YES/NO
23DP1 … reduces support effort for preparing of a deployment activity? YES/NO
23DC1 … reduces support effort for configuration of a deployment activity? YES/NO
23DE1 … reduces support effort for execution of a deployment activity? YES/NO
23DO1 … reduces support effort for creating a final deployment activity result? YES/NO

Table 95 - Sub requirement list for the problem of excessive support requirements

These relationships are summarised in Table 96 and used in Chapter 6 to compare existing

solutions as well as the focused approach of this thesis with these requirements. Therefore, Table

96 shows explicitly how many sub requirements can be identified for each part of the general

activity structure for each SCAc (T, I, D). As a result Table 96 shows in detail the difference

between the different SCAcs related to the 23 requirements.

 Preparation Configuration Execution Ouput

 Req A / B Req A / B Req C Req D

Req 1 T0, I0, D1 T1, I1, D1 - T1, I0, D0
Req 2 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I0, D0
Req 3 - T1, I1, D1 T1, I2, D2 -
Req 4 T1, I1, D1 T1, I1, D1 T0, I1, D1 T1, I0, D0
Req 5 T1, I1, D0 T0, I0, D2 T2, I2, D2 -
Req 6 - T1, I1, D1 T0, I1, D1 T1, I1, D0
Req 7 T0, I0, D1 T1, I1, D1 - T1, I0, D0

Appendix

cxxxiii

 Preparation Configuration Execution Ouput

 Req A / B Req A / B Req C Req D
Req 8 - - - -
Req 9 - T0, I0, D1 T1, I1, D1 T1, I1, D0
Req 10 - - - -
Req 11 - - - T1, I1, D1
Req 12 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I1, D1
Req 13 T1, I1, D1 - - -
Req 14 T1, I1, D1 - - -
Req 15 - T1, I1, D1 T1, I1, D1 T1, I0, D0
Req 16 - - - T1, I1, D1
Req 17 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I0, D1
Req 18 T1, I1, D1 T1, I1, D1 T1, I1, D1 T1, I0, D1
Req 19 - - - T1, I1, D1
Req 20 T1, I1, D1 - - -
Req 21 - - - -
Req 22 - - - -
Req 23 T1, I1, D1 T1, I1 D1 T1, I1, D1 T1, I1, D1

Table 96 - Requirements relationship

g.2.3.	Additional	requirements	based	on	different	views	
In preparation for this thesis no predefined analysis system or approach was identified fitting the

different discussed problems. Also no classification for solutions for the perspective on software

construction (or reuse) activities and the problem of missing knowledge was identified.

Due to these reasons, a new solution classification for this thesis has to be defined. It uses the

requirement analysis shown in the previous section and is based on different views.

Class I “Activity View”: The different sub requirements shown in the last section are divided into

three focused SCAcs. Therefore, it is relevant to know which SCAc types are supported by a

solution. The requirement can be identified by listing the supported SCAc types.

Appendix

cxxxiv

Class II “Software Unit View”: The different requirements discussed in the last section do not

identify whether a solution only focusses on one type of software unit. Therefore, it is relevant to

know if a solution focuses on multiple technologies, key concepts or views.

H. Information	demand	model	for	software	unit	reuse	
To demonstrate the relationship between the discussed problems and knowledge the Software

Reuse Information Demand (SRID) model is used in the thesis. This model has been created as part

of the research for this thesis and published in 2011 (see Zinn et al., 2011). It extends the problem

explanations for software engineers with visualisations of knowledge problems. The model is based

on the Information Demand model for company managers created by Picot (2003). This section

explains the structure and application of the model and shows how it can be used for further

analytic test.

h.1.	Description	of	information	demand		
Information Demand (ID) is defined as the type, amount and quality of knowledge that a person

needs to fulfil a task within a specific time frame. Measuring ID is difficult, because it is dependent

upon the task definition, the goals, people involved (Picot, 2003), and the knowledge criteria (Boh,

2008). Two categories of ID can be identified: Objective Information Demand (OID) and

Subjective Information Demand (SID). OID describes all information which solves the user’s

problem. This information is the amount of existing information that will theoretically solve a

specific problem. It can be described as a set of solutions. Similar to OID, SID describes all

information that is supposed to solve the problem, from the subjective point of view of a user and

because of that; this information may not be able to provide a real solution. Another relevant factor

in the area of ID is the information provision (IP). This defines information that is provided by a

Appendix

cxxxv

system and can be utilised by formulating an information query (IQ). IQ is most commonly created

by a user who is searching for a solution which is executed by a search system. This query is based

on the SID of the user. The useful result is referred to as an Actual Information State (AIS). Within

the scope of this thesis this is the intersection of the areas of SID, OID, IP, and IQ. Figure 161

illustrates this relationship.

Figure 161 – Oriiginal information demand model by Picot (2003, p. 106)

As a result, of this model, AIS is defined as the area of the information model which includes

information that

(1) achieves the task,

(2) can be understood by the user,

(3) can be enquired after by the user, and

(4) is provided.

Appendix

cxxxvi

h.2.		Definition	of	information	demand	from	the	software	unit	reuse	
fffffffperspective	

The original definition of an information demand model (Picot, 2003) is not related to the area of

software reuse. This relation can be established by adjusting the perspective of software reuse. The

OID can be related to as a container describing all software units that may solve a problem. From

the software reuse perspective, the relevant tasks of reuse are to find and integrate reusable

software units. These units have to fulfil technical, functional, and business requirements (Shiva

and Shala, 2007). As a result, OID describes all software units that can solve the problem. SID is

related to the user’s ability to express technical, functional, and business information about a

required software unit. This also includes units that do not solve the problem, contrary to the user’s

beliefs. Previous studies show that this is an relevant problem of knowledge reuse (Boh, 2008). In

the reuse area, IP can be defined as the real availability of reusable software units and their

descriptive information. Thus, IP is realised by repository systems responsible for providing

software units. Typically, software units are provided by repository systems (Ajila, 2006). The user

creates and accomplishes an IQ by using special tools (e.g., software reuse environments; Garcia et

al., 2006). The AIS in the area of software unit which includes all reusable software units that:

(1) theoretically solve the problem,

(2) are provided by a unit provider or repository system,

(3) are understood by the user,

(4) are described by the user request (part of the users’ query).

The goal is to increase overlapping areas between the different elements of an information demand

model in order to increase the amount of solutions, which is also an relevant aim of the software

Appendix

cxxxvii

unit reuse area. This can be achieved by defining/identifying the critical success factors of software

reuse and relating them to the model (Picot, 2003).

Figure 162 shows the relationship between the underlying information demand and the SRID

model.

Figure 162 - SRID model related to original information model

h.3.	Use	of	information	demand		
The underlying information demand model maps used processes to the different parts of the model.

By doing so, potential problems of a process field can identified (see Picot, 2003). In the following,

this is explained using the SRID model and the Critical Success Factors methodology.

To increase the overlap of OID and SID, the Critical Success Factors methodology (cf. Rockart,

1979) can be used (cf. Picot, 2003). This approach may be used for business success factors, but

can also be adapted for other domains (e.g., Enterprise Security Management; Software

Engineering Institute, 2004). Using this approach, factors that are required to fulfil a task are

Appendix

cxxxviii

identified. In the case of the Critical Success Factors methodology, these factors are: reuse is

focused, the unit exists, the unit is available, the unit was found, and the unit is valid.

These factors will be related to specific elements of the information demand model. Based on this

relationship, custom analyses can be performed to identify possible risks in a project (see Picot,

2003).

Therefore, an analysis process based on this may be structured as follows:

(1) Identify relevant success factors for a project.

(2) Apply the factors to an information demand model.

(3) Identify problems and risks by establishing which information demand elements

are affected by a problem or risk that could affect an applied success factor.

(4) Prepare training sessions to minimise the risks or problems.

Figure 163 - Critical success factors (of Frakes and Fox, 1996) in the SRID model

Appendix

cxxxix

Figure 163 shows an example of this procedure. The success factors of Frakes and Fox (1996) are

mapped to the SRID model. From the perspective of Frakes and Fox (1996) a software unit is

successfully reused if it is focused, a unit exists, the unit is available, the unit was found, the unit is

valid, and it is capable to be integrated. This can combined with the SRID model as follows (cf.

Figure 163).

- Intention for reuse: This is the users aim to reuse a software unit. In the scope of the

SRID model, this is shown by the IQ definition.

- Part exists: A unit exists if it is theoretically possible and is practically able to solve the

problem. In the SRID model, this corresponds to the OID.

- Part available: A unit is available if it is provided for by a unit vendor or a repository

system. This complies with the IP area of the SRID.

- Part found: A unit has the state “found” if it is theoretically possible, understandable by

the user, requested, and found by the user. This is shown in this model with AIS.

- Part understood: A unit is understood if it is theoretically possible and the user is able to

understand it. In the SRID model, it corresponds to the overlapping area between OID and

SID.

- Part valid and part able to be integrated: Both success factors depend on three

properties:

o They have to be part of the theoretical amount of solutions (OID)

o They have to be provided by a vendor or system (IP)

o They have to be part of the users subjective information demand (SID)

Appendix

cxl

Based on such a mapping the critical information demand areas can be identified. This may result

in specialised training sessions or other supporting activities. To reduce the risk for each success

factor (see further discussion, Zinn et al., 2011 or Appendix Section I).

Note: In this thesis, the analysis using the success factors is not used, because people can use

different success factor models. This section will only illustrate how the SRID model can be used.

In the following sections, it is more relevant to use the SRID model as a visualisation tool for

missing knowledge examples.

 	

Appendix

cxli

I. 	Published	papers		
In this section relevant papers are included published by the author. All published papers can be

found on the data medium (cf. Section A).

����������	
��
���
����
��������������� �! " #$%&'���� !�(�)� %�(�*+�',"-�. %�!�/"(� #��-�(0+�*�� 1234556�728294:;<=>?@=AABC55�C5D�E2F28<4GG=5��H=5I>=�JK>�L=;M>4IN6�HKBBM54;CI4K5:�C5D�O=IPK>Q�R=:=C>;<6�S54T=>:4IN�KJ�8ANBKMI<6�8ANBKMI<�S54I=D�745UDKB�=?BC4AV�BC4AWBC>;M:X4552D=6�728294:;<=>?@=AABC55WD4UCBBC2D=6�C5DN2G<4GG=5WGANBKMI<2C;2MQ�$Y-�("+� Z5�IKDCN[:�:KJIPC>=�D=T=AKGB=5I6�CGGA4;CI4K5:�JK>�;KBGMI=>�C4D=D�:KJIPC>=�=5U45==>45U�\HEL]̂�C>=�P4D=:G>=CD�C5D�5=;=::C>N2�1K:I�G>K;=DM>=�BKD=A:�K>�I=;<5KAKU4=:�M:=�HEL]?IKKA:2�_<4:�GM̀A4;CI4K5�:<KP:�I<=�;K5T=>:4K5�KJ�I<=�JM5DCB=5ICA�4D=C�KJ�:=>T4;=?̀C:=D�:KJIPC>=�;K5:I>M;I4K5�45IK�C�:KJIPC>=�:N:I=B2�_<=�JK;M:�4:�:=I�K5�I<=�:N:I=B�C>;<4I=;IM>=6�I<=�JM5DCB=5ICA�45JK>BCI4K5�BKD=A�C5D�I<=�I>C5:JK>BCI4K5�BKD=A�̀C:=D�K5�4I2�E�UKCA�4:�IK�>=G>=:=5I�I<=�5==D=D�45JK>BCI4K5�IK�̀M4AD�MG�C5D�M:=�C�HEL]?IKKA�JK>�:=>T4;=?C̀:=D�:KJIPC>=�;K5:I>M;I4K52�a�b/�(.- HKBGMI=>�C4D=D�:KJIPC>=�=5U45==>45U�\HEL]̂6�:=>T4;=?̀C:=D�:KJIPC>=�;K5:I>M;I4K5�G>K;=::6�:KJIPC>=�;K5:I>M;I4K5�C>I=JC;I6�M54I�KJ�BKD=AA45U6�I>C5:JK>BCI4K56�45I=U>CI4K5�cd e��(�.0+�*�� LKJIPC>=�D=T=AKGB=5I�G>K;=::=:�C:�P=AA�C:�I<=�C;IMCA�:KJIPC>=�D=T=AKGB=5I�C>=�45�BC5N�;C:=:�:MGGK>I=D�̀N�CGGA4;CI4K5:�\HEL]?IKKA:̂2�f=AA?Q5KP5�HEL]?IKKA:�C>=�=2U2�Z55KTCI=>6�RCI4K5CA�RK:=6�]5I=>G>4:=�E>;<4I=;I�M5D�_KU=I<=>2�_NG4;CA�;K5I=5I:�C>=�:MGGK>I�BKD=:�A4Q=�JK>�=gCBGA=�U>CG<4;�M:=>�45I=>JC;=6�45JK>BCI4K5�G>=GC>CI4K56�45GMI�:4BGA4J4;CI4K5�\f4XC>D:̂�C5D�CMIKBCI4K5�KJ�G>K;=::�:I=G:2�\F=5=TC6��hhĥ�LKB=�CGGA4;CI4K5:�C>=�:45UA=�I=;<5KAKUN�CGGA4;CI4K5:2�_<CI�B=C5:�I<=:=�CGGA4;CI4K5:�M:MCAAN�:MGGK>I�K5AN�K5=�ING=�C5DiK>�I=;<5KAKUN�KJ�:KJIPC>=�D=T=AKGB=5I�G>K;=::=:i:KJIPC>=�D=T=AKGB=5I�45�JK>B�KJ�C5�=g=;MIC̀A=�CGGA4;CI4K52�jI<=>�HEL]?IKKA:�KJJ=>�I<=�GK::4̀4A4IN�KJ�=gI=5:4K52�_NG4;CA�=gCBGA=:�KJ�I<4:�Q45D�KJ�CGGA4;CI4K5:�C>=�D=T=AKGB=5I�=5T4>K5B=5I:2�f4I<�I<=�;K5:4D=>CI4K5�KJ�];A4G:=6�JK>�=gCBGA=6�4I�̀=;KB=:�;A=C>�I<CI�TC>4KM:�I=;<5KAKU4;CA�CGG>KC;<=:�;C5�̀=�>=CA4:=D2�_<=:=�45;AMD=�;KBGK5=5I?�C5D�:=>T4;=�I=;<5KAKUN�C:�P=AA�C:�:KJIPC>=�D=T=AKGB=5I�CGG>KC;<�BKD=A:�A4Q=�BKD=A�D>4T=5�D=T=AKGB=5I2�j5=�KJ�I<=�BK:I�4BGK>IC5I�JC;IK>:�4:�I<=�45I=>KG=>C̀4A4IN�̀=IP==5�D4JJ=>=5I�HEL]?IKKA:�C5D�I<=�:MGGK>I45U�CGGA4;CI4K5:�C5D�G>K;=::=:�\Z]]]6�kllm̂�\nC>;4C?1CUC>45K�C5D�nKB=X?LC5X6�kllô2�\F=5=TC6��hhĥ�C5D�\F=5=TC�C5D�_=>X4=TC6��hhp̂�:<KP�I<CI�HEL]?IKKA:�C>=�C5�4BGK>IC5I�JC;IK>�KJ�:M;;=::�JK>�CGG>KC;<�BKD=A:�K>�I=;<5KAKU4=:�

���������	�
��� !��������! �"#"�� �� $�����"��! "���%&�"��!"����"'�"��'��"�� �(�)����*� !�"���$"�� !��"!�+�,�*�'�$��"�� ������"�-'��#.�� ���%'������#!"�� �����"/"�'"%'��� '�� !���/�! �*�����"�-��"�������� ������-�!��"�-��#(�)�����!/���0%"��-�� $�1"!��� ���!���� ���! ��������"��"--0 ��$!��2�����#��! ��-�!��* -�'�(�3������ !�������-�/�' ��!����!�����#�� $�1"!��������4�'"����.���!/�����"�-�� *� �����5�"�-�"''��*� !�"�����$!*"�� ��'�6��- ��*���"�� ��"�-������$��"�� ��1��������!�'"��-�� ������������(�3��"--��� �.�����!������������ !��-�%&�"��!"��$!*"�� ��* -�'.�1������"���!"��$!*�� $�1"!����������� �"� ���!�$!*(�)����!��������"��"--�-�/"'���%��"������� $$�!��* !����$!*"�� ��$! *�"����#'��-"�"(�7�!���!* !�.������!��������%��'-��� ��"���1���$!*"�� ��* -�'(�8��"�� /�'�&������-"�"�*"�"#�*����"�-��!"��$!*"�� ���&���*�����! /�-�-�%&�"����#'����!/���(�8��� ����-� ������"��!�/� �����%'��"�� �.�� $�1"!��-�/�' �*�������� ��"�9����� �� $�����' �"�� �� $�"�-�/�' ��!� !��������-�-�-"�"(�)���9����� ������ 1�����-�/�' ��!��"���"�-'�������-"�"�4:���.�;<<=5(�)���"�*� $��������%'��"�� ������ ��� 1�1�����* -�'��"�-�"!��������!���"��%�����-�� ��!�"���"�>8,?0� '�$!��������� !�� $�������!/���0%"��-�� $�1"!��� ���!���� ���! ����(�)�����! ��������������-�!������#�*��� - ' #&(�)��!�$!�.�������������"!&�� ��2�'"�������%"����� ������(�)�����2������� ���� 1��"�� /�!/��1� $�-�$$�!����* -�'��"�-������ ' #�������-�-�$!�������!/���0%"��-�� $�1"!��� ���!���� �(�)�������'�-��������2�'"�"�� �� $�"!��$"���.������� $�* -�''��#.���!/���0%"��-�� $�1"!��� ���!���� ���! ��-�!��* -�'.���$!*"�� ��* -�'.��!"��$!*"�� ��* -�'�"�-�����#!"�� ��* -�'�"�-�%��'-��"�� ** ����-�!��"�-��#(�7 '' 1��#�����.�"������ ��-�* ���!"����������!����!�� $�����>8,?0� '�%��'���� �������2�'"���-�* -�'��"�-������ ' #���(�@ABCDEFGBHIJGKLMEB@ANBOPMKQDGMEBDJRBSJFMEBIQBTIRKUUFJVB7 !������2�'"�"�� �� $�����"��'��"�� ���� 1������������%'��"�� �.�������������"!&�� �-�$����� *����!*�(�3������"!�"� $�� $�1"!��-�/�' �*���.�1�����-�"'��1����� *� ���#� $�%�##�!�� $�1"!��������4W�> ���''.��XXY5.�������!*�Z����� $�* -�''��#[�������-�4\"�#�"�-�7��#.�;<<]5�"�-�4:���.�;<<̂5(�)�����!/���0%"��-�� $�1"!��� ���!���� �������� *� �����.���!/�����"�-��'"�����4 %_����5�"�������� $�* -�''��#�4̀aW5(�)������ 1�������� ��� $������6��-� $�� $�1"!��-�/�' �*���+��a%_�����4a%_���0 !�����-�� ���!���� �5.�> *� ������4> *� ����0%"��-�� ���!���� �5�"�-�,�!/�����4,�!/���0 !�����-�� ���!���� �5(�,���4, **�!/�''�.�;<<=5.�4,b&��!�6�����"'(.�;<<;5.�4c"�"b #' �����"'(.�;<<=5�"�-�4\�>.�;<<]5�$!��������-�-�$����� ����'"����4 %_����5.���!/�����"�-�� *� �����()�����!/���0%"��-�� $�1"!��� ���!���� ���! ������2���-������/��1� $�̀aW�(�8��"�!���'�.��"�̀aW����� �� �'&������*�'�*���"�� �� $�"�� $�1"!������(�8�̀aW���������"!�"����"�� ��"���!�$!������*�'�*���"�� ��"�-�"''� ���!���$!*"�� ��1�����-����-�� �������*�'�*���"�� ��"�-�1���������*� !�"���$!�����!����(�7 !��2"*�'�.�4c$'��#�!�"�-�8�'��.�;<<X5��� 1���"��- ��*���"�� �.������$��"�� ��"�-��������$!*"�� ��"!��"'� ��*� !�"���$!�!����(�8� ���!�/�!&��*� !�"���!�"� ��$!������� !"#�� $�"''������-"�"����������"!���$!�̀aW�(�d�����#�"�àW�����"���!���"��� �$��-����"#"��(�)���Z� !!���[���"!���$!�-"�"����/�!&�� *�'��"��-�"�-����%"��-� ������*��"-"�"���"���"��%�����-�$!�������"!��(�) -"&���*"�������"!��.�%"��-� ��-�$$�!���� �� ' #���.����/�!&�� ��'"!(�)����*�"���-"�"�"�-�-�$����� ���1�''�

����������	
��
���
����
������������������������������ ���!��"��# ���$� �%����� &�'"� �� �%����� ��������# ������$���������������� �(���()�#�*�� �"%���+�,--./�����(0��12�3+�,--4//&�5%6�3�������$�3%�������$���789�� �:'3�� $�3%�����;&�<�789���� �������2!����������� �3����=���$�3%�����+��#���2 �� #66�3� ������33!���$�3%������>"��"������3�� $�3%�789�����&�<��3�� $�3%������������+�$�3��?�%62�+����3�� $�3%�������$��������"��2�=!����������"�3� #�"�� ��3�� $�3%��=�@�A���!�������������&BC'��!��������(D3�E��3 +�,--4/��3���79F����=3�%������@�A�� �#3�������&�'"# ��"���3�=���2�789��������# ����������"�3�(���"��2�=!/���%���&�'"�� �3A���G�� ��� �$�>�3����� �3#������63��� �$��# � �����"���3�� $�3%�������$��%62�%�������������&�9�3��A�3+��������������� �3!�����3�� $�3%��� �3����=���$�3%�����&�'"�� �3A���G�� ��� �$�>�3����� �3#������63��� ���$��� �:'3�� $�3%�����;�2�*���"����$������� ��$�9����H3�A�����A�2�6%����(9HHI9H)H/�(9��%��3=�����2&�,--�/+�()��"2+�,--J/�����K���3���A��L3�=3�%%��=�(KL/�(M1�3���*�����C� ����*�3+�,---/&�'3�� $�3%������%��� �����"� ��3����"�����$�3%������>�22�����3�� $�3%���������"�� �%���3�����"�3���%���� 6���$���%���2�$�3�2���3�3�# �&�(K�3���G9�=�3���+�,--4/� "�> ���$$�3����%���22��=�2��=#�=� �����$3�%�>�3* �����"���3����$�M<)CG���2�����3�6�3���2��!&�(M1�3���*������0�2 ��+�,--�/� "�>����2� �$���������$���$$�3����%���2��3�� $�3%����������%6� &�N��"����"�� ��6���$��"� �3� ��3�"�9HH�����KL��3��$��# ��&�5���"� �6#�2���������3�� $�3%������� �������!�# ��=��?� ���=��3�� $�3%���������2 &�<���"�3��%6�3�������3%�� �:)�$�>�3��M�� �3#������<3��$����()M</;&�<��)M<�� �����������3�$�3�789 �>"��"���33� 6��� �����"�� �%��63��2�%��3��&�D�3��?�%62�O�<��<3��$����$�3���2�#2����=��"��%��"�%�����2�K<7))�$#���������33�� ���789 &�'"��$�3 ��� ���@�A��M2� +��"�� ��������&BC'���%6�����������"��2� ��������N��� �3A���&�'"� ��?�%62�� "�> ��"����"����%%��� ��6��� ��%6�3��������6#��789 �������"�� �%���3��$�������������"�����"����2�A��>�����"��789 &�PQPRSTUVWXTYZ[\T]R\̂_̀a[UTRX̂b\̀UcX̀ŴbRdÛXT]cUTRê]TfRR'"�� �3A���G�� ��� �$�>�3����� �3#������63��� �� ��"��#���36�����=�%��"���2�=!�$�3��"�� �$�>�3���� �3������!��"� �6�6�3&�5��������� ���%�?�%#%��$�$�#3�6� ��2��6"� � &���&�H�A�2�6%�����$�����#��3� �3#��#3��(L3�����������6"� �/�,&�M"������$��"��#��� ��$�%���22��=������"��3��3�� $�3%������3#2� ��&�M3��������$�%� ��=��3��$��� �I�#��� ��$��"��%���22��=�(�6�����22!/�g&�'3�� $�3%�������$��"��#��� �������"���?��3��2� �3#��#3��'"��$�3 ��6"� ��� �����3���������#��3� �3#��#3�&�'"� �%��� ��"����A�2�6�3�"� �����3����+�$�3��?�%62�+����2� � �3#��#3��>"��"���������?��������!������=�789 &�5���"�� ������6"� ���"��# �3� ��3�"� �$�3��3��$��� �>"��"���33� 6�������"� � ��3�"��3���3��&�'"��2� ���$�6� ��2!� #����2���3��$��� �� ��"����?�%������2� �3����������$!���3�����#��� ��$��"��%���22��=�>"��"��������# ��&�5����������+��"��#��� ��$�%���22��=����������3�� $�3%�����������>"��"��������# �������# ��%� ���"��#���&�5$��"��3� ��3�"�63�A� ��"�����%6����� ��3��%� ��=��3������%6����� ��������$�#�������"���A��2��2��3�6� ���3�� +��"����%6����� �%# ������3����������6������2!&�'"� �%��� ��"��� ��6��"3���� �����6�����2� ��6&�N"����22���%6����� ��3��������$���+��"�!��3���3�� %������������"���3�������?��3��2� �3#��#3��(���$�3 ��6"� �/��!�%��� ��$��"���3�� $�3%����� � �2���������6"� ���>�&�'"���3��������$��"���?��3��2� �3#��#3��� ��� ��6�63������=��"��

���������	�
��������������������������������������� ���!��"� #�$%�����&"��'(���)������������ ���!��"� �*�������)���� ���)��" ���%�������"� �����%���!�������!��!���(!��!����"�������*����)"�"� #�+,�-*.�/�0�)�&�.�*����� ����������������-�..�*��1��-��%"�%�"���(.�������.�!.����2"#�$��)���%"��%�������������������� ��-*�3��.�������!��!���4�!�������!��!��5#�0�������)��%���� �" !���(3������%" 1���678�������.�!.��" 1�2"#�$%�����!.������%�������%�"��� �9:0��%"�%�*��&")���%"-���!��678�/�0���(���&"��;���<�&����-*� � �;���:=�:.�����)������ ����-��"� ��%"�%���� ����-���%��:=�:.����" �����>?��.���#�$%��)�&�.�*�����.������%����(���&"����)��))��"������%���!�������!��!��#�$%��*%�����@;����)�A��.�����*���� ���%��*����)!���-�)�.#�$%��!1%��%���� �")����"� �����%"��*����)!���-�)�.��%��6���:�����(���-��&"�"(.�#�$%"�;�%���&��;�� .3��� ��"�!�����!--��"��)�6���:����/��#�9�.����678;�@#�$�� ����-�����������)��#�:������678#�BCDEFGHIJEIKLMNOGPIMKQEPNGKHLMNOGPIMKEGKREIKPSTNGPIMKEOMRSU�$%���!)�-� ��.�" ���-��"� �-�)�.�)��" ����%���� �� ������������������� ���!��"� ���������#�0������������ ���!��"� ������������ ��" ��)"����� ��"-*.�-� ���"� ������%���%����V")�����! "������-�)�.." 1;�(!���..�"-*.�-� ���"� ������������%����-��*��(.�-�����#�+��%�! "���� ��" ��W.�1"(.�W;�W"..�1"(.�W��)�W������ ��W�" ���-��"� #�X�1"(.��" ���-��"� ����&����%��!����)!�" 1��%��")� �"�"���"� ��)���� ����-��"� �*%���#�$%"���� �(��)��!-� ���"� �" ���-��"� ;������" ���-��"� ;��*��"�"���"� �" ���-��"� ��)�-�)�.." 1�" ���-��"� #�WY..�1"(.�W�)��������" ���-��"� ��%"�%��� �(������"(�)�����%���!��-���)�!���(3��%��-��%" �#�$%���(3;���-*� � �'�*��"�"���)���-*� � �'! �*��"�"��" ���-��"� �����)"��" 1!"�%�)#�9*��"�"��)��������"-*.�-� ���"� �4�"�%��(<����5��)�(" ��3�)����4�"�%���-*� � ��5#�6 �*��"�"��)������ ����!���"�%�-�����%� �� ����-*� � ��V")��!�%���" ��������;�6 "�$�����)���� ����-��"� �)���#�Y ��"1!������%��"..�1"(.��)����"��)����"(�)����Z[\]���$3*�̂��)�.�1"(.��)�������Z\]���$3*�̂#� �_IT̀NSEabEcKLMNOGPIMKEOMRSUEJMNSE$%"���"1!����.����%�������V���%�����%��" ���-��"� �-�)�.�����#�$%��"-*���� �������-� ��"���%����.��"� �%"*�(����� ��%��0���������)��%��678�#�0.����%���� �� ������%��678�"��"-*���� �#�?��")���%��(��"��)����-�)�.;��%����"��� ��-������� ����-��"� ��)�" ��1���"� �-�)�.#�$%����� ����-��"� �-�)�.�)����"(����%��" *!���)��!�*!��)����

����������	
��
���
����
������������������������ !�"��#!���$����! �������� !�"��#!�%�&���#�'$��(�����������'�)#����$*����! �(���� �!"�����#� !�"��#!��"!(�����!���)!�������(�'��(�!���������'�)�#+��$�#��! �"!(���#�,%�-������ !�"��#!���$���#������(��)�#'�#!��!���!���!������ !�"�����#�'$��#��!�����!$�'$�%�.#�)����#������������!��(��'���(� $������#�������)�$���������)��/��0�����''�#)��#!�1�$''!���(������ !�"��#!��#�����#)#'���(�#����#��)���%�&���� !��0�������� !�"��#!�����(��������! �'���"��������(��������'�)�#+�������1$'� #������#)����$�)��������� !�"��#!�%�&���!$�'$�����$���� �!"�����$��(������ !�"��#!���$���!������$��(������ !�"��#!���''�#)��#!�%�&�#���)����#!���2$#������������)�"����! �����*��#)�#� !�"��#!��"!(��%�345��"$���)!���#������� !�"��#!���������(����������������)!"'!��(�! ������ !�"��#!���$���%�6#,$���7���!������������)�"����! �����#� !�"��#!��"!(����#�������� !�"��#!�����#�#��%�.!���345�)�����+������� !�"��#!������0���#)��)!��#���! �(# ����������� !�"��#!���$���%�8�'$����(�����!$�'$��! ��������$�������� #���*���(�(���%� �9:;<=>?@A?B=CDEFG=HCI:GD?>DI:I:>E?:D?IJ>?:DFG=HCI:GD?HGK>L?MG=>?- ������������� !�"��#!��! �(���0�������"$���*��#���,����(�#��!��������'�)�#+��(�+��!'"������+#�!�"���%�&���� !��0���"!(���#����2$#��(���#)����)!,�#��������(���#���#!�����$)�$������(�"!$��������#�'$��(���%�6#,$������N��)�������������#!���#'�*���������������� !�"��#!����(�#���,���#!��"!(��%�&����� ���#(����!������������ !�"��#!��)!�)�'����#)��#���O'��#��(��*!+�%�&����#,����#(��#��$������������#���,���#!��#��!����8PQ0�������������!$�'$�� #����! ���������� !�"��#!����������#�'$�� #����! �����#���,���#!�%�

���������	�
��������������������������������������� �!"#��$�%&'()�!%$�)&�%&*��&$���%$�)&�!)*�#��+�,�'��-�.�/0%'�*�')($1%���.)&'$��.$�)&�2, 3/$))#�4567�89:;�:7<6=>?8:67@�?�8=?7;<6=>?8:67�?7A�?7�:78BC=?8:67�>6ABD@�E9:F9�?=B�;GB8F9BA�:7�89B�D?;8�5?=?C=?59@�?�;B8�6<�HIJKL866D;�EB=B�MN:D8O�P9:;�;BF8:67�;96E;�89B�:>56=8?78�56:78;�=BD?8:7C�86�89B�;B=Q:FBLM?;BA�;6<8E?=B�F67;8=NF8:67�5=6FB;;O��+R� S'$�!�%�.T�$�.$����UN=:7C�89B�ABQBD65>B78�6<�89B�?55D:F?8:67@�89B�<6DD6E:7C�;V;8B>�?=F9:8BF8N=B�E?;�=B?D:;BA�W;BB�<:CN=B�XYZ� ��������[�� S'$�!�,�.T�$�.$����\B=BMV@�89B�;B=QB=�5=6Q:AB;�89B�?A>:7:;8=?8:67�6<�?=8B<?F8;�?7A�89B:=�:7<6=>?8:67@�<6=�B]?>5DB@�;?QB@�ABDB8B�?7A�;B?=F9�6<�?=8B<?F8�:7<6=>?8:67O�\B=B@�?=8B<?F8�:7<6=>?8:67�:;�;?QBA�:7�?�A?8?�M?;BO�̂7�?AA:8:67@�89B�;B=QB=�F678?:7;�89B�8=?7;<6=>?8:67�B7C:7BO�P9B�5?FG?C:7C�?7A�5=6Q:;:67�6<�89:;�B7C:7B@�89B�?=8B<?F8�A?8?M?;B�?7A�89B�;B?=F9�<N7F8:67?D:8V�89=6NC9�89B�;B=QB=�?;�?�;B=Q:FB�MBD67C�86�89B�FB78=?D�F6=B�6<�89B�;B=Q:FBLM?;BA�;6<8E?=B�F67;8=NF8:67�?7A�=B5=B;B78�67B�76QBD8V�6<�89B�;B=Q:FBLM?;BA�;6<8E?=B�F67;8=NF8:67�?55=6?F9O�P9B�>?7?CB>B78�FD:B78�5=6Q:AB;�?�;:>5DB�C=?59:F�N;B=�:78B=<?FB�<6=�89B�;B=QB=�<N7F8:67?D:8VO�_7�67B�9?7A@�89:;�;B=QB;�<6=�89B�>?7?CB>B78�6<�?=8B<?F8�:7<6=>?8:67�?7A@�67�89B�689B=�9?7A@�?;�?7�B?;V�8B;8�B7Q:=67>B78�6<�<N7F8:67;�WAN=:7C�89B�ABQBD65>B78�59?;BYO�P9:;�FD:B78�:;�?Q?:D?MDB�?;�?�;8?7AL?D67B�?55D:F?8:67�?7A�?;�?7�:78BC=?8BA�N;B=�:78B=<?FB�:7�89B�ABQBD65>B78�FD:B78OP9B�ABQBD65>B78�B7Q:=67>B78�FD:B78�;B=QB;�<6=�89B�N;B�6<�89B�;B=QB=�<N7F8:67;�E:89:7�?7�̂UK�?;�?�HIJK�?55D:F?8:67O�P9:;�FD:B78�:;�?MDB�86�̀NB=V�<6=�?=8B<?F8�:7<6=>?8:67O�P9B�=B5=B;B78?8:67�6<�AB8?:DBA�:7<6=>?8:67�6FFN=;�:7�?7�?AA:8:67?D�EBM�M=6E;B=�?;�?�E:7A6E�E:89:7�89B�̂UK�6=�:7�?7�B]8B=7?D�M=6E;B=O�̂7�F678=?;8�86�89B�>?7?CB>B78�FD:B78@�89B�ABQBD65>B78�FD:B78�A6B;�768�:7<DNB7FB�89B�?=8B<?F8;�;NF9�?;�89B�ABDB8:67�6<�?7�?=8B<?F8�67�89B�;B=QB=O�P9B�=B?D�a6M�MB;:AB�89B�;B?=F9�6<�?=8B<?F8;�?7A�N7:8;�6<�

����������	
��
���
����
����������������� !�� "#��$�"�# ����#��� !���� ��"# �����$� "#��$�"�# ����"��%� ����� !��&%""�� ���'���(��� �("�)�& *�+!"�����$$�"�� �$�"���#��#�&���%��&# ���,$�"��#"��(����-���.�/� �"�("�&����&!#�����0/123�04�&"���$ 5�6��735�+"#����������2�� "���("� �&���0+213�04�&"���$ 5�6��83�#���#�9�-���"'�&�*�+!��/12���"'���#��#�"��� ����#����$�&���%��&# ����-� 9����("�&������9� !�����&#���:� ���5�#��$�"��;#�(���&���� �#�����"'�"�#"���;�&% ������ !���#����#&!���*�/��&�� "#� 5�+21���"'���$�"� !��&���%��&# ����-� 9����&���� �#�����"'�"�#��5�#��#�"��%� 5� !��("��"#���&#��-����&# ��������$$�"�� ��:� ���*�< �&����"����(�& ����� �&#��-��"�&�������� !# �/12�#���+21�&��� � % �� !��-#��&�&���%��&# ������ !���*�+!��9�-���"'�&�5��!�9�����$��%"���5���"'��� !��("�'�������$�#�%��$�"���� �"$#&��#���%���� !��-#��&�&���%��&# ������ !����#�#��*�=>?@ABCDEFGHDI@+!���:� ����;!�-� ���� �"$#&������ 9��(��� �.��*�9� !� !��%����$� !��"��� ���-)�& �$�"���"'�&�,-#����&��� "%& ���*�6*�J� !� !��%����$� !��9�-���"'�&��$�"���"'�&�,-#����&��� "%& ���*��+!��$�"� ���&�%����$�# %"����%&!�#��&"�# �5�%(�# ��#���&"�# ��#" �$#& ���"�KL4�*�/��#��� ���5�#�� !�"�"��� ���-)�& �$�"� !��&�� "����$� !����"'�"����#'#��#-��*�+!�������� ��;(�#�����&����"����&��� �&��&�"���� #��#"���� !����$�"� !��&�� "����$�#��#((��&# ����0$�"��;#�(���"�� #" �#���� �(3*�M��%"��8��!�9�� !���� �"$#&����$� !��"��� ���-)�& ��#��� !��9�-���"'�&�*� �NOPQED@R@S@TDUVCD@VWXDHC@GBY@ZDW@IDE[OHD@OBCDEFGHDI@+!��-#��&��� !�����$� !���� �"$#&��\]̂:� ����;!�-� ����$�&"�# ����# #�� "%& %"���0&�#����3�#��(#"#�� �"��9!�&!�#"�� �&!�����:��(�&�$�&�0��� !���&#���*_̀ +� �&!�����:3*�+���%#"#� ��� !��&��(# �-��� :��$� !��̂2<�#���KL4����&"�(����9� !�� !�"� �&!��������5�#������$��#���0���&"�(���3&�#�����9�"���#�����"�#���#-������ !��$�"� �� �(*�<���;#�(���$�"� !������ !# � !���-)�& ���$��%&!�&�#�����&#��-�� "#��$�"������ ��#�$�"���$�a4b*�̂��&��a4b����-#��&#��:�#� �; �-#����$�"�5�� �&#��#����-��&��'�" ����� ��� !�"� �&!��������5�$�"��;#�(��5�-:� !��%����$�9�-���"'�&��*�M%" !�"��"�5�# �� ����9#��(#��� �� !��$#& � !# �#���-#��&� :(���%������� !���#(("�#&!�#"��#������"�#���#-��*�/�� !����&����� �(5��'�"��#������ !����0��&���#":��� !���3�9�"����'���(���9!�&!�&�� #������:���"�#���#-����# #*�+!�����&�%���5�$�"��;#�(��5� !# �(#"#�� �"��#��9����#��"� %"��'#�%���#"�� �; %#����$�"�# ���*�M%" !�"��"�5���"�#���# ���������(�" #� � ���;&!#�������&"�-�����# #*�M��%"��c��!�9��#���;#�(����$�#����(��$������"�#������̂2<����&"�(����9!�&!���&�%����#�KL4�#����� #���$�"�# ���*�

���������	�
�� !"#$��%&�!�'���!$�'�(�'%&)*!���+%,')��+)�%,�!�)�&!+)�-.-�/�!,'&%�"!)�%,��,��,��012�34567894:53;96�26<;62�;7�=543�98�312�42=97;394>�724?24�56@�A56�B2�C72@�B>�5�D2B�724?;A2�A5EEF�G3�34567894:7�;6=C3�;6894:53;96�;639�5693124�894:�B>�2H2AC3;6<�34567894:53;96�4CE27�7237F�01272�4CE2�7237�542�73942@�;6�IJK7F�L5A1�4CE2�723�A967;737�98�34567894:53;96�4CE27F��M�4CE2�;6�3C46�A9635;67�5�=49<45:�823A1�98�5�34567894:53;96�399EN�5�723�98�=545:23247�D1;A1�A94427=96@�39�312�34567894:53;96�399E�56@�;6=C3�8;E27�O722�8;<C42�PQF�01272�;6=C3�8;E27�A56�B2�8;E27�98�312�IJK�94�9C3=C3�8;E27�98�5�=42?;9C7�4CE2�;6�312�75:2�4CE2�723F�LH5:=E2R�09�34567894:�STUV�;6894:53;96�;639�5�WX�AE;263�56@�724?24�73CBN�312�TYWI0GV�399E�98�312�S;6@9D7�TUZ�A56�B2�C72@F�TYWI0GV�622@7�312�=545:2324�[E56<C5<2RWX\F�T9�312�=49<45:�823A1�;7�[�]�̂���_�̀������_a�������b̂�b�	�c\F�012�9C3=C3�98�31;7�A5EE�;7�5�WX�8;E2�O3273FA7Q�D1;A1�;6AEC@27�@;8824263�724?24�56@�AE;263�AE57727�56@�5EE�3>=27�542�622@2@F�012�34567894:53;96�4CE2�723�A9635;67�96E>�962�34567894:53;96�4CE2F�01;7�4CE2�;7�B572@�96�5�34567894:53;96�B572�O7?AC3;EF2H2Q�56@�3D9�A94427=96@;6<�=545:23247�OE56<C5<2RWXQ�56@�312�;6=C3�8;E2�O3273FD7@EQ�D1;A1�;7�=543�98�312�94;<;65E�IJKF�012�@2?2E9=24�69D�72E2A37�31;7�34567894:53;96�56@�312�42=97;394>�724?24�2H2AC327�;3F�012�427CE3�D;EE�B2�3456782442@�39�312�C724F�G8�312�C724�C727�312�GUL�AE;263N�312�427CE3�D;EE�5C39:53;A5EE>�B2�5@@2@�39�1;7�=49d2A3�26?;496:263F�e.�f%,+$�'�%,�!,(�&�)����*%�g�012�724?;A2hB572@�7983D542�A96734CA3;96�=49A277�;7�56�2H3267;96�98�=49A2@C42�:9@2E7�56@�89AC727�96�42C72F�G3�A967;737�98�31422�=5437�56@�A9635;67�32A16;A5E�;669?53;967F��012�8;473�=543�;7�312�;@25�98�5�A9::96�@535B572�894�7983D542�A96734CA3;96�543285A37�OTWMQ�56@�C6;37�98�:9@2EE;6<�OIJKQF�01;7�:2567�5EE�62A27754>�;6894:53;96�98�5�7983D542�C6;3�OAE577N�A9:=96263N�724?;A2QN�7CA1�57�;:=E2:26353;96N�@9AC:26353;96N�7=2A;8;A53;96�56@�3273�;6894:53;96N�D;EE�B2�73942@�;6�5�IJKF�01C7�5�IJK�;6AEC@27�5EE�@535�D1;A1�D57�=49@CA2@�@C4;6<�;37�@2?2E9=:263F�01;7�@535�A56�B2�C72@�B>�@;8824263�49E27�OE;i2�7983D542�54A1;32A3�94�@2?2E9=24Q�56@�;6�@;8824263�@2?2E9=:263�=15727�OE;i2�42jC;42:263�94�@2?2E9=:263�=1572Q�894�42C72F�M6�TWM�;6AEC@27�5EE�IJK7�D1;A1�42824�39�312�75:2�=49BE2:�57�5�79EC3;96F�012428942N�312�@2?2E9=24�A56�257;E>�:565<2�56@�7254A1�894�32A16;A5E�79EC3;967F�01;7�73942@�@535�89AC727�96�42C72F�01;7�:2567�3153�;3�;7�5�7983D542�C6;3�42C72�@535B572�k�A963263�:565<2:263�7>732:F�G3�

����������	
��
���
����
����������������� ����!"�!����#�$!������%&!��'��!���������%!�!�����!����(��#!���)��*&!(%!�*#�+#�+���,!��!"�!(-�.�!��/�&�)!��� �*��!���+#��!+������(!$!&��!��/�"�!�(� !�!���(���������)!�(!+������-�0 ��#���(�����������!(������!��&�+!/�������!���!����� ��(���(�"�!���-��1#!��!+��(��������+&"(!��������� ���������!�%��!�*#�+#�+�������� ����.23�-�1���� ����������!�����#�����.23�+���,!�+��$!��!(����������#!�� ���/���� ���!4���&!���5�$��,����'�+�(!��������-671�,����'�+�(!-�1#����&������&�+��!���#��������,&!������ ����������"&!���*�&&�,!�����!(�����(!��#!�.23-�1#!�!��"&!���#�"&(�,!��,&!��������� �����#!����&!�!��������� ���.23����&!�!�����������������#!���!+#��+�&����(��������!+� �+� ������(�%�$!��((!(�$�&"!� ����#!��!"�!�� ��#!�.23-�1#"���#!��!"�!�(���,��!�,!+��!��!4�!�(!(�*��#������ ����������"&!�-�1�%!�#!��*��#��#�������� ���������!�%��!���(��#!�"�(!�&'��%������ �����������(!&��#!�(���,��!�+#��%!�� ������+���!�������%!�!����'��!��������� �*��!�+�����"+������'��!�-�8���#!����!�������'��!�����!4�����%�*#�+#�����!���&&�.23�(����+��,��!(�*��#������ ���������(������(� "�+�����&��'����%!�!���!�����((!(�$�&"!-�1#!�! ��!/��#!��#�*���'��!������������$�����-�9�����#�!!�������!�$�+!�*#�+#�� !����&&��#!�(���,��!���(������ ��������� "�+�����&��'�����#!�(!$!&��!�-�1#!�����$������� ��#����!�$�+!�����#����#!�+���&!�!� "�+�����&��'�� ��#!�+�����"+������'��!��:����%��%/��!��+#��%���(������ ��������;����+���"&��!(������!����%&!����!� �+!-�<'�"���%����!�$�+!������+���"��+��������(!�����"+#����� �*��!�+�����"+������'��!�/�(� !�!���(!$!&��!���+���"�!���!����%&!��!�������'� ����(� !�!���&�+������-�8������((!(�$�&"!�� ��#��/��#!�+����� ����� �*��!�(!$!&����%�*�&&�,!��!("+!(-�=�*!��&�+!��!� !!�� ���(� !�!���+���!�������%!�!����'��!�����(������ ������������&�������&'���!�!4���&!� ����#����!("+������ �+����-1#!��'��!���#�*������#����",&�+�������#�*���#!������������������ ��#!��!�$�+!>,��!(��� �*��!�+�����"+��������+!���������!+#��+�&����&!�!�������-�0���&����#�*�/��#����#!�"�������*���+!�����!(���(!&��:+���"��+�����/����! �+���� �����������(������ ��������;�+���,!��!�&��!(������?8@7>���&-�1#!��!���������#����#!���+!�����!(�.�!�?��!��*!�!��!�&��!(-�1#����!����+�����"+����/��!��+#/�(!&!�������(� �����%�� ����! �+������"������ ���(!&&��%���!�,���+�&&'������,&!-�0��*����&����#�*���#�������� �����������(�"�!�� ������ ����������������! �+���� �����������������,&!-�@��!�(!���&��� ��#!�����������(������(!&���!������#�*������#����",&�+������� ��#!��"��"��� �������� ����������"&!������$!(����������(>�&��!�"����� ���(!&&��%/��"+#�����#!���&$!(�+������!�+'����,&!�-�<"���#���������+#����&&�#�����!��A"!�����-�2�!�� ��#!�!�A"!�����������#!��!!(� ������!�����+��!��+#-�<'�"���%��&&������,&!��� ��������/���� ���!4���&!�(�+"�!����������(���!+� �+������*��#��� "&&��!4���!��+#/��#!��!��+#��!�"&���*�&&�����,!�$!�'�"�! "&-�1#!��'��!���#�*������#����",&�+������"�!�� "&&��!4���!��+#-�<"���#!�(!$!&��!���!!(�����'��!��*#�+#���&'�� !���#������&�+�,&!��!�"&��� ���#����!��+#�A"!�����-�1#!�! ��!/��!�����+��!��+#������������������!�!��+#���!�� ����#!��!�$�+!>,��!(��� �*��!�+�����"+��������+!��-�8���#!������������A"!����������#!��!�!��+#� �����#!���!�#�(��� ������ ��������-�1#!������ �����������(!&��#�*������#����",&�+��������&'��"����������&>,��!(������ ��������-�0���"���,!����&'�!(�*#!�#!���#!�!���!���#!������� ����������!�#�(��*#�+#��"���,!��((!(�����#�����(!&-��BCDEFGFHFIJFKD?L���!+)/�M-���(�7��!�!+)!�/�.-�:�NNN;/�OP!�!����$!�9��%������%Q/�
0�(������&��/�.@8�8((�����R!�&!'-�0@<6S�TUV>N>�N�>WNTUU>X�

���������	�
�������������������������������������� !���"�#�$%���&!'�()**�+'�,�$�%%�-���.�/��/-�0/"�$�1���%-/�2�.�/��344�/��5�%6'�7789:;<��=��>��������?�������@��A�����BC���������������D���E�F����GH��@�����������C��'�44!��)I�J'�5..4KLLMMM!%/-.2�.�M���!�/2L//4%$�)**�L2"�IM/��%5/4!5.2$�N���O�'�0!���"�1�����O�'�P!�(�JJQ+'�,3%%�%%��R�.5��S/.��.��$%�/-��3&TI1//$%����&/-.M����S�/��%%�U24�/O�2��.�3�V���52����&.W"X6'�8��������Y���E�����Z�C����
�������������9[\����C\���������\�����E�9�E�]����A����'�44!��*�I�*̂_̀1/�/�./'�����"��N���O�'�0!�(�JJJ+'�,3�V�%.�S���.����V�%�"�344�/��5�./��3&TI.//$�&�$��.�/�6'�S�/���"��R%a�Z�C����
bbb�
�������������9[\����C\�����Z��C\����9�E�]����b�Y�������Y�9��������'�44!��**I���'�W��.�c�'�V����$�d��e.��%'�f!�()**̂+'�,U g0!hT1�#/2��S�R�6'�5..4KLLMMM!��O2!��.L'�(����%%�"�*)�)**J+!�i�����I0�R����/'�U!���"�i/2��I&���'�f!f!�()**̂+'�,0/"�$Ic�%�"�0�.5/"/$/R��%�d��2�M/���-/��N�-����R�0/"�$�j��RW�R��0�.�2/"�$%�-/���3&T�1//$%6'�8��������Y���E�����k<<l�m���
�������������=��>��������F����Gn�����F��������Y����E���8��@���@������b\n������9�E�]���ò44!���I)�'�VW"�4�%.'�#W�R��X�#�.�$��'�S!'� �p.�%�5'�0!'�PW"/$45'�&!���"�&W��'�q!�'()**̂+'�,&�2�.���r�cK�i�W�"$�R��6'�&4���R���g��$�R'�#��"�$c��R'�i��2��X�UTTT�()**s+'�,UTTT�P��/22��"�"�S���.����-/���3&T�1//$�U�.���/����.�/��t�5����.�����.�/��/-�U�.���/���.�/�%6'�9�E�]��������9[���\��b�Y�������Y�9�����������\\�����'�5..4KLL����u4$/��!����!/�RL'��U&VhK�*Is�̂�Iv)��I��0�/���$'�&!�(�JJQ+'�,r5/�����%��c/W.�%/-.M�����/�%.�W�.�/�!6'�
bbbw�9�E�]����x��a�y��
��C��y'�*�'�44!��)̂I�)J�0��2c��R'�z!'�S�.��%�5'�P!'�15/2%'� !���"�d��c��'�d!�()**Q+'�,0/"�$�N��O���3��5�.��.W��!6'��#��"�$c��RK�NSW��.'�U&VhK��ÎĴQ�I���I��0���/%/-.� ()**J+'� ,U�.��4�/��%%� �/22W����.�/�%,'� 5..4KLL2%"�!2���/%/-.!�/2L��IW%L$�c���XL���Qvvs�(g&!̂v+!�%4u�(����%%�"�*Q�)**J+!�0���/%/-.� ()**v+'� ,!hT1� P�2/.��R�)!*,'� 5..4KLL2%"�!2���/%/-.!�/2L"�I"�L$�c���XLccJsJv̂Q!�%4u�(����%%�"�*Q�)**J+!̀S�4��/R$/W'�S!'�1��O��%/'�S!'��NW%."��'�&!���"�j�X2���'�d�()**s+'�,&��O���Iz����.�"��/24W.��RK�&.�.��/-�.5��3�.���"�P�%����5�'��O��$�c$���5�$$��R�%6'��5..4KLL����u4$/��!����!/�R�(����%%�"��)�)**s+!�S-$��R��'�&!�j!���"�3.$���f!�0!�()**J+'�,&/-.M����T�R�������R�15�/�X���"�S���.���6'��.5�T"�.�/�'�S���.����#�$$'�{&3'�U&VhK�JŝI*I��IQ*Q�QJI��&.�5$'�1!'�gp$.��'�0!'�T--.��R�'�&!���"�#��%�'�3!�()**s+'�|0/"�$$R�.���c����&/-.M�����.M���$W�RK�1��5�����'�T�R�������R'�0���R�2��.,'�N4W��.�g��$�R'�#��"�$c��R�'�i��2��X'�U&VhK�JŝI�ÎĴQI���̂Î�&.W����%�52�".'�#!�()**J+'�|z�./$/R���,'�&4���R���g��$�R'�#��"�$c��R'�U&VhKJŝI�Iv�*IsJ��*I��&/22��O�$$�'�U!�()**s+'�|&/-.M����T�R�������R,w�g/$!�̂.5'�3""�%/�Ir�%$�X'�0W���'�i��2��X'��U&VhK�JŝI�Î)s�Is)vsI��

����������	
��
���
����
��������������� !��"�#$%���&!�'$(�)#������!�*+,,+-��. /0�/$�$%��/1%2'���3��/$(�456�7%84���$%�(�9�/:�'00�$:;�
</=!�+$(�>(�%�/$����!?@8�A��B((��/$8C��=��!��D�2�E/����F�B��G�3D�,8+,�8H�@H+8,�C? �*+,,�-��.C? �C�5����I�7��"=/��'��;��J%%�KLL222!2?!/�:LMNL2�8:=/��L��*'77����(��+�+,,O-!��C'$:��"!�'$(�P#$:� !�Q!�*+,,�-��.B�7J�%�7%#���9'�'(�:0��'$(�%J�����$1=#�$7��'$(��0�'7%��/$�7/0�/$�$%85'��(��/1%2'������%�0;����!�R,+�H+'�������������	
��
ST�
UVST
W��XYZ
[Y\Y�
��S���YS���YZ
]���������
��
�̂	S�_
���������G�3DK�,8HOR@8+,@O8���̀$$��)!�*+,,H-��.���I�7��5'��(��/1%2'���7/$�%�#7%�/$���/7���!;������������	
��
ST��U��
��ZZYa��YS�b�
��	�Y��T
	̂_c�	�X_
��
���X��Ŝd
eZ�Y�����d
��S����S
Y��
��S\��f���
g���
h�Vid
��!��OR8�A���D�%2/���N���'�7J�"�/#���F$�I����%��/1�9=�0/#%J��9=�0/#%J��"3!�G�3DK�RHA8�8A��,8+�H?8H��̀$$��)!�*+,,A-��.&�1�$�%�/$�/1��/1%2'���7/$�%�#7%�/$�'�%�1'7%��1/���/1%2'���7/$�%�#7%�/$!;������������	
��
ST��jST
��ZZYa��YS�b�
��	�Y��T
	̂_c�	�X_
��
���X��Ŝd
eZ�Y�����d
��S����S
Y��
��S\��f���
g���
h�kid����HR8R���D�%2/���N���'�7J�"�/#���C��lJ'0��"3��G�3DK�RHA8�8A��,8+�H?8O���

377

 Software Development

Finding Reusable Units of Modelling – an Ontology
Approach

1 Marcus Zinn, 2 Klaus P. Fischer-Hellmann, 1 Andy D. Phippen, 2 Alois Schütte
1 Centre for Security, Communications and Network Research

University of Plymouth, United Kingdom
2 h_da – University of Applied Sciences Darmstadt, Germany

mail@marcuszinn.de
Abstract: Today’s software units (classes, components and services) have a huge
number of information that is needed or produced during the development and use
of these units. In fact, a single piece of information can have different values de-
pending on the point of time in the entire lifecycle. The availability of certain in-
formation, as for example documentation, determines among other things the
capabilities of a unit. Again, other information is necessary and critical for the suc-
cess of the entire development process when applying certain procedure models.
Retrieval of these units and their contents is important for re-use. There are no suit-
able models that consider the different units and their contents. Also the current
searching behaviour of software developers and architects has not been covered
yet. Due to this fact, the benefits in performing reusing software units and the de -
velopment of software processes are decreasing.

This paper discusses an ontology approach that can be used as a foundation for
the search of such units. Moreover, this part of the ontology is focused on the actu-
al searching behaviour of software developers and the finding of units.

 1 Introduction
In the object-oriented software development, different units of modelling are used.
Every type of unit provides a different amount of information that can be used differ-
ently [ZFP09]. Typical units are classes, components and services [WF04]. In the scope
of this paper, a component has the meaning of a deployed component. There are two
problems: development issues related to a common view of these different units [WF04]
and the search for these units [WJS09]. The search for units as a research subject has
already been studied for some time. [Pr91] and [MBC91] proposed first approaches.
[Ga06] and [LAP04] show a list of the different attempts that have been developed until
now. Among other problems, the following problem has been identified:
“Efficient search and retrieval is needed, to assure that the developer is capable of find-
ing previously built reusable assets.” [Ga06]

378

INC 2010

For this reason, the question arises what an efficient way for a search could be. The cur-
rent research focuses on the use of semantics in form of ontologies as a foundation of a
search (see [TSB09] and [BSW08]). Some of these new attempts focus on the represent-
ation of the technical circumstances, as described in [HNK09]. Other studies concentrate
on the grammatical structure in such a search [WJS09]. These approaches assume a
complicated predefined input behaviour. [He94] showed already in 1994 that there is a
significant gap between the description of the problem and that of the solution. There-
fore, components are described functionally whereas the searcher actually describes the
problem.
In the following paragraphs, the results of the analysis of the present “searching beha-
viour” of software engineers are presented. Based on these results, an existing ontology
is extended. This work is part of a research on a service-based software construction
process (SSCP) incorporated the field of Software Reuse Environments. The paper con-
tributes to the research area with the enhancement of an ontology for supporting the
search of units of modelling. Aim of this paper is to define the extension of an ontology
in order to reflect today’s searching behaviour of software engineers. This can be used in
a semantic model to find units of modelling. Therefore, the input behaviour must be de-
termined and modelled. Furthermore, an ontology defined by the authors within the
scope of the basic research should be extended. This paper concludes with the fact that
the input behaviour does not have to be changed when searching for reusable units in or-
der to achieve exact results.

 2 Analysis of the searching behaviour for units of modelling
To get a first impression how software developers tend to search for reusable pieces of
software, a questionnaire was given to a group of software development experts. Con-
ducting a representative survey is left as future work in this research. The 15 participants
of this questioning were software developers, software architects, and technical project
managers who had at least a three-year experience in software development. When the
survey was performed, the test persons were active in different software development
projects in one of the following areas: CAD, automation, power, or in general software
development. 93% of the feedback indicated the use of a general search engine (in most
cases www.google.de) in order to search for units. A relationship can be seen in the ex-
amples given by the test persons (i.e., “Class C# Device Discover”) and the given search
criteria (e.g., manufacturer and technology). Therefore, the analysis shows that there is
important and optional information in this relationship (see Layer 1 in Figure 1). The
result of the questioning is presented in the following paragraphs as “actual searching
behaviour”. Besides, it constitutes a hypothesis of the authors. From the examples of the
search enquiries, the analysis of the given search information is displayed in Figure 1.
The important information from Layer 1 refers to the functional application object (or
content purpose) for that the functionality of the unit (Layer 2) is searched. Layer 2 cor-
responds to the following structure:

Searched technical contents (application object) + optional describing information (for
the technical contents and/or the technical unit).

379

 Software Development

Figure 1: Structure of the search input
In addition, the given examples of the search show that the functionality is described in
most cases by an action and an object connected with this action, for instance, “printer”
(object) “search” (operation or action) (Layer 3). This example shows the simple sub-
stantive-verb relationship in the grammatical area (Layer 4). [WJS09] groups such rela-
tionships within the scope of the parsing for search algorithms and refers to it as
“Advanced Similarity Word Pair”. Optional information (Layer 1) is divided into two
areas. On the one hand, the application object (functional content purpose) is further de-
scribed. On the other hand, the technical properties of the unit itself can be described
(Layer 2). In both cases, categories are used, for example, “WebService C# Device Dis-
cover”, and it can be assumed that a web service based on the C# technology is
searched. In the grammar of the search, it only concerns a few substantives. From the
pattern shown above, the following grammatical construction can be derived:

Functional content purpose (Substantive + Verb) + additional functional content (*
Substantive) + technical content (* Substantive).

Beside the grammatical construction and the contents of the search, another important
point reveals itself in the analysis: The “problem-solution” relationship. All test persons
described the solution in their search (e.g., a class carries out a function for the Gaussian
algorithm), but not the problem. Therefore, this factor is interesting because a compon-
ent may solve different problems (perhaps also in a different way). Furthermore, a prob-
lem can refer to several solutions. When questioning the participants why they do not
search for the other position (in this case the problem), the answers were quite different.
Two types of responses were mentioned remarkably frequently:

1) During the search for the problem, solutions can be hardly found.
2) During the search for the problem, the problem must be described precisely

in order to find a precise solution.
This stands in contrast to the statement from [He94] that the searching person describes
the problem, not the solution.

needed information

functional content
purpose

object action

substantive verb

optional
information

additional functional
content purpose

Technical properties
of unit of modelling

category

substantive

category

substantive

Refining
during

analysis
La

ye
r 1

La
ye

r 2
La

ye
r 3

La
ye

r 4

380

INC 2010

 3 Problems of finding units of modelling
Nevertheless, the approach described in Chapter 2 contains some problems:

Full-text search: The use of the search engines making text comparisons can lead to
false or not usable results [TSB09].

Substantive verb description: A simple substantive-verb structure in a relationship-
based search engine faces following problems: On the one hand, the substantive can be
selected unspecific ally (i.e., device), although a printer can be the searched object. This
entails the generation of unsuitable hits during the search. On the other hand, verbs and
substantives can have synonyms (e.g., graphics and display graphics) or they can be
wrongly associated [WJS09]. The last example also shows that in some cases it may be a
matter of interpretation. From the point of view of the automation, “machine is comput-
able” seems illogical because a machine does not change. However, this statement
makes sense from the CAD point of view because a machine must be recalculated by the
change of knowledge-based properties [Cl06]. This includes the reconsideration of en-
gine space due to the update of cubic capacity size. This instance can lead to a change of
the whole vehicle. In addition, a problem arises concerning the existence or non-exist-
ence of a word in another language. Thus, a search launched with the German expres-
sion “Gerät suchen” will not be able to find a component described as “Device
discover”.

Consistency of the statement: The shown example “web service C# Device Discover”
does not state to which “web services” and “C#” they really refer. Hence, a search for-
mulated such can lead to false results:

1) A web service written in C # is searched that performs “Device Discov-
ery”.

2) A component is searched that contains a web service or rather uses one and
performs “Device Discovery”. This component should have been de-
veloped in C#.

For an exact allocation of the given information, other details are missing. In this ex -
ample, the information is clearly allocated to “C#”. The problem in this case is that such
an input does not specify whether the information is optional or mandatory.

Problem-solution relation: A search for the solution as described above presents all the
solutions that fit to given keywords and their relations. By means of ratings (evaluations,
frequency of the choice, etc.), statistical probabilities can be determined for the best res-
ult [Ga06]. It is, however, an open question whether information about the problem is
missing or has already been considered satisfactorily in the solution description. In spite
of these significant problems and open questions involved, the survey shows that this
searching behaviour nevertheless is actually used. Therefore, an attempt was made to
cover the existing searching behaviour in an ontology. On this basis, it can be investig-
ated how to improve the search result while using the same input behaviour.

381

 Software Development

 4 A search ontology for reusable units of modelling
4.1 Structure

In context of the current research, an ontology to the subject “service-based software
construction process” was developed by the authors in order to counteract the problems
explained in Chapter 3. This ontology serves only the search of units of modelling. Here,
certain modelled properties were incorporated by other ontologies (e.g., technical com-
ponent properties from [Ga05]) since these have already been edited. This also includes
the description of technological facts (components, services, etc.). Figure 2 shows the
distribution within this ontology.

Figure 2: Structure of the reuse ontology
Part 1 shows the access to the ontology: “the problem-solution approach”. This is still
the untreated part of the whole research. Part 2 contains general “business information”
about the solution as, for example, manufacturer, name, and author. In Part 3, the solu-
tion is described as a technical unit; that is, type of unit, technology, file format, files,
etc. In the fourth part, the technical contents are described. Possible descriptions are
made, for example, in form of a substantive-verb combination and they also contain
some optional information. This part of the ontology will be described in this publica-
tion.

If an instance of the ontology is generated (e.g., by the registration of a newly developed
unit), the user must specify various information that is stored in the suitable areas of the
ontology. Furthermore, the data can be entered automatically into Part 3 of the ontology,
for instance. This is possible because the technical data is automatically detectable such
as file size, file type, file name, and technology. Nevertheless, the data from the other
sections of the ontology is not automatically detectable.

In the following, the modelling of the searching behaviour displayed in Chapter 2 will
be described in more detail. This corresponds to Part 4 of the ontology. Moreover, it is
focused on the problems indicated in Chapter 3.

Technical

description of

units (files, etc.)

Common data

(Manufacturer,

AuThor, etc.)

Finding and

Searching

behaviour

Problem-Solution

relationship

Solution

Part 1

Common

Part 2

units

Part 3Part 4

382

INC 2010

4.2 Description of the technical and professional contents

Figure 3: Model of the finding based upon substantive-verb relation
A unit has a so-called “content definition” describing the technical contents. It also uses
two different ways of description. These ways are related to each other. The modelling
of the optional information for the technical properties is made in Part 3 of the ontology
and will not be described in this publication.

4.2.1 Way of description 1

The first way of description is the substantive verb combination explained in Chapter 2
and represents a technical and domain specific description of the contents. In detail, each
element (substantive and verb node) of this tuple has a text field and each substantive
and verb can have a translation. Within this ontology, this corresponds to a text. At this
point, however, an ontology shortcut to a language ontology allowing translations is
planned. For this reason, Figure 3 is simplified and as a result the element “word” (+
icon) is displayed as a shortcut to a word ontology. Based on it, cross-language search-
ing and finding elements are possible. Therefore, “device discover” corresponds to
“device search”. Similarly, the translations will also proceed with synonyms. A “printer”
is a special “device”. Thus, the search for a device may deliver “printer” if appropriate.
At this point, an ontology can also be used (“- icon” synonym).

The optional information for the application object is also displayed and modelled as
substantives. In order to create the description of the technical properties, Part 3 of the
ontology is related to the content definitions object.

4.2.2 Way of description 2

The second part of the description of the solution defines the technical contents from the
point of view of its intended purpose. This definition is based on the fact that a unit of
modelling may be seen from three different perspectives: Functional contents, technical
properties, and technical contents. As previously presented [ZTP08], a component car-
ries only one certain technical content type. Therefore, a component offers either func-

Part1 Part2
Part3Part4

Contentdefinition Data

Function

Structure

GUI

SubClassO
f

Verb Text

Synony
m

Substantive

Synonym

Wort

Substantive-Verb
Relationship

<indirect>

Text

Synonym

Optional
Information

hasOptionalInformation

hasTechnicalInfomation

Description way 2

Description way 2

U
nit

383

 Software Development

tions such as simple data, user interfaces or it provides structure information to the solu-
tion of a problem.

4.2.3 Search variations on the basis of the ways of description

Because of the mentioned features, an ontology-based search can be simply expressed:
for instance, “function device discovery”. In this example, “function” represents option-
al information. Hence, an attempt was made to generate an indirect relationship between
the technical and the professional contents. Two variations have evolved that will be ex-
plained in the following.

Variant 1: Verbs as synonyms for technical content types

In this case, four contents types (Data, Function, UI and Structure) are associated with
certain verbs. These verbs fit to the content type (e.g., a function is a content type of
something that executes something; UI is a content type of something that illustrates).
Thus, a function can be “executed” or graphics can be “illustrated”, for instance. Table 1
shows some examples of a possible assignment.

Content type assigned verbs

Function calculate, execute, accomplish, bear, manage

Data offer, suggest

UI show, present, demonstrate

Structure structure, align, regulate, arrange, classify

Table 1: Technical content type-verb relation
For each instance of the ontology, this allocation would be firmly “wired”. Moreover,
only a few verbs are associated to the content types. With the help of this assignment,
the search could be “execute device discover”. In addition, synonyms and translations
are available for this search.

Variant 2: Direct links of the substantive verb tuple with the content types.

In contrast to variant 1, the verbs from the substantive-verb tuple are now connected dir-
ectly with the content types. Although the allocation from Table 1 can be maintained,
every entered verb, however, must receive an allocation. A result would be that the
search enquiry “device discover” will search for units offering a function that searches
for devices. In comparison to the first variant, only two words are required instead of
three.

4.2.4 Realisation of a search

To launch the search, a search query must occur at first such as “device discover C#”.
Part 4 of the ontology can be used for the identification of the substantive-verb tuples.
All the other terms (in this case “C#”) are understood as optional terms and are searched

384

INC 2010

for within the remaining parts of the ontology. C# is a technology whose relationship
with the component is modelled in Part 3 (technical information). From the perspective
of the ontology, the search is called “unit has content definition with tuple (device-dis-
cover) and has a relationship with C#”. Moreover, with the perspective of the search in
Variant 2, it is obvious that the user searches for a function and not for simple data, a
user interface, or structure information.

4.3 Problem solution

In Sections 4.1 and 4.2, the ontology does not solve every problem mentioned in
Chapter 3. The use of ontologies in order to avoid the problems of text-based search is
not new [TSB09]. It is already known that because of their logical structure, ontologies
are suited to perform inheritance hierarchies. An example that could be expressed is
“device is a printer” [St09]. The use of simple substantive-verb tuples describing the
technical contents with fixed verb-content mapping presents a novelty. In comparison to
a 100% semantic search with input methods considered complicated [WJS09]; this ap-
proach can lead to more “wrong” search results. However, a “substantive-verb content
type” triple can arise from a search enquiry. This is the result of the semantic assignment
of substantive-verb-tuple to a unit as well as the allocation of the verb-content type “sub-
stantive verb”. As a result of such a search, only the units owning this triple are per-
formed. In contrast to a text-based search that seeks words in all texts of a data record,
the input words are analysed in their relationship and are only searched if they are re-
lated to that relationship. The optional information is used to improve the search result.
Variants 1 and 2 from Chapter 4.2.3 indicate that there are different possibilities to mod-
el the relations between professional and technical contents. Variant 2 is identical to the
searched input behaviour but provides more exact results. Table 2 shows the search res-
ults of the given input “device discover C#”:

Dataset Text-
based
search

Variant
1

Variant
2

Some component with the description “device Mi-
crosoft discover c#”

hit no hit no hit

Some component with a description triple “device-
discover-function” and optional description “Mi-
crosoft c#”

hit no hit hit

Some component with a description triple “device-
discover-data” and optional description “Microsoft
c#”

hit no hit no hit

Table 2: Example of search results
The text-based search in Table 2 provides a hit for each data record because the searched
data is available. Variant 1 delivers no hit because the search enquiry does not display
the substantive-verb-content type triple. Variant 2, however, delivers exactly one hit. Al-
though only the tuple “device-discover” was entered, the triple “device discover func-
tion” was implicitly also searched. This reduces the number of possible hits in contrast to
the entered tuple.

385

 Software Development

 5 Conclusion and future work
The ontology approach shown in this paper contains a semantic modelling of the follow-
ing (search) input pattern for the search of reusable units:

Functional content purpose (Substantive + Verb) + additional functional content
(* Substantive) + technical content (* Substantive).

This allows the searching behaviour that appears to be broadly applied nowadays to text-
based search engines also to be applied to semantic search engines. Thereby, it is pos-
sible to make use of the usual advantages of an ontology as, for example, using a short-
cut to other ontologies and the advantages of a semantic search (see [St09]). This leads
to a better result in contrast to a text-based search (see [TSB09]) because a text-based
search only compares the searched words with the dataset. In order to have an exact res-
ult, the searched words must be in a certain semantic relationship (Substantive + Verb)
and must be implicitly combined with the technical content type (Structure, UI, Data or
Function) of the searched unit. This simple approach combined with the typical informa-
tion about reusable units of modelling (i.e., manufacturer and technical information) rep-
resents an innovation to the area. This paper shows in an example that this approach
works. The search pattern can be grasped completely in an ontology without changing
the effort or the input for the user. In addition, this publication shows that the input be-
haviour of software engineers identified as typical does not have to be changed and a
better search result can be achieved in comparison to a text-based search.

However, not every problem is solved by the solution presented in this publication. On
the one hand, it is not finally clarified whether it is better to describe the solution only
with a search or whether the problem should be described as well. On the other hand, the
possibility to recognise whether the optional information describes the application ob-
ject, the technical unit, or the technical contents is missing. Within the scope of the fur-
ther research of “service-based software construction”, these two open problem
formulations, in particular, will be analysed in more detail. However, the searching be-
haviour still is supposed not to change.

References
[BSW08] Bast, H.; Suchanek, F.; Weber, I.: Semantic Full-Text Search with ESTER: Scalable,

Easy, Fast. In: International Conference on Data Mining Workshops (ICDMW ’08)-
Proceedings, Pisa Italy, 2008; pp. 959-962

[Cl06] Claassen, E.: Protection of Intellectual Property in the Product Development Process.
In: Proceedings of the 11th Seminário Internacional de Alta Technologia, Universidade
Metodista de Piracicaba, Brasil, 2006

[Ga06] Garcia, V. C.; De Almeida, E. S.; Lisboa, L.B.; Martins, C. A.; Meira, A. R. L.; Lucre-
dio, D.; De M. Fortes, R. P.: Toward a Code Search Engine Based on the State-of-Art
and Practice. In: Asia Pacific Software Engineering Conference-Proceedings, Ban-
galore, India, 2006; pp. 61-70

386

INC 2010

[Ga05] Gangemi, A.; Grimm, S.; Mika, P.; Oberle, D.; Lamparter, S.; Sabou, M.; Staab, S.;
Vrandecic, D.: Core Software Ontology - Core Ontology of Software Components -
Core Ontology of Services, 2005, online available at http://cos.ontoware.org, (Ac-
cessed 14.1.2009)

[He94] Henninger, S.: Using Iterative Refinement to Find Reusable Software. In: IEEE Soft -
ware Journal, Vol. 11(5), 1994; IEEE; pp. 48–59

[HNK09] Hewett, R.; Nguyen, B.; Kijsanayothin, P.; Efficient Optimized Composition of Se-
mantic Web Service. In: IEEE International Conference on Systems, Man, and Cybe-
rnetics (SMC 2009) Proceedings. San Antonio, USA, 2009; IEEE; pp. 4065 - 4066

[LAP04] Lucrédio, D.; Almeida, E. S.; Prado, A. F.: A Survey on Software Components Search
and Retrieval. In: Proceedings of the 30th EUROMICRO Conference, Rennes, France,
2004; IEEE/CS Press; pp. 152–159

[MBC91] Maarek, Y. S.; Berry, D. M.; Kaiser, G. E.: An Information Retrieval Approach for
Automatically Constructing Software Libraries. In: IEEE Transactions on Software En-
gineering Journal, Vol. 17(8), 1991; IEEE; pp. 800-813

[Pr91] Prieto-Díaz, R:, Implementing faceted classification for software reuse. In: Communi-
cations of the ACM, Vol. 34(5), 1991; ACM; pp. 88–97

[St09] Stuckenschmidt, H.: Ontologien – Konzepte, Technologien und Anwendungen, Sprin-
ger Verlag, Heidelberg Germany, 2009, ISBN 978-3-540-79330-4

[TSB09] Tümer, D.; Shah, M. A.; Bitirim, Y.: An Empirical Evaluation on Semantic Search Per-
formance of Keyword-Based and Semantic Search Engines: Google, Yahoo, Msn and
Hakia. In: 4th International Conference on Internet Monitoring and Protection,
Venice/Mestre, Italy, 2009; IEEE, pp. 51-55

[WF04] Wang, G., Fung, C. K.; Architecture Paradigms and Their Influences and Impacts on
Component-Based Software Systems. In: Proceedings of the 37th Hawaii International
Conference on System Sciences (HICSS’04), Big Island, Hawaii, 2004;IEEE ; pp. 1-10

[WJS09] Wang, H., Jing, L., Shao, H.: Research on Method of Sentence Similarity Based on On-
tology. In: Proceedings of the First WRI Global Congress on. Intelligent Systems
(GCIS 2009), Xiamen, China, 2009; IEEE; pp. 465-469

[ZFP09] Zinn, M.; Fischer-Hellmann, K. P.; Phippen, A. D.: Development of a CASE tool for
the service based software construction. In: Proceedings of the 5th Collaborative Re-
search Symposium on Security, E-learning, Internet, and Networking (SEIN’2009),
Darmstadt, Germany, 2009; Centre for Security, Communications and Network Re-
search; pp. 134-144

[ZTP08] Zinn, M.; Turetschek, G.; Phippen, A. D.: Definition of software construction artefacts
for software construction. In: Proceedings of the 4th Collaborative Research Symposi-
um on Security, E-learning, Internet, and Networking (SEIN’2008), Wrexham, UK,
2009; Centre for Security, Communications and Network Research; pp. 79-91

Device services as reusable units of modelling

in a service-oriented environment

- An analysis case study

M. Zinn
1
, A. Bepperling

1
, R. Schoop

1
, A. D. Phippen

2
, K. P. Fischer-Hellmann

2

1
Schneider Electric Automation GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany,

{marcus.zinn, axel.bepperling, ronald.schoop}@de.schneider-electric.com
2
Centre for Information Security and Network Research, University of Plymouth, Plymouth United Kingdom,

andy.phippen@plymouth.ac.uk, K.P.Fischer-Hellmann@digamma.de

 Reusing software components is an important but not

standardised task in software engineering. This will become a
problem if requirements change in the future. By the use of web
services in service-oriented architecture, as a communication

interface for devices, the automation area has to define how to
handle these reusable units. At the moment, no standardised way is
defined. This publication analyses the use of web services in a

service-oriented environment as a communication interface of
physical devices in the area of automation. An analysis matrix will
be built by the use of defined research challenges of web services

and known reuse aspects in the area of software engineering. The
results of a Device Profile for Web service (DPWS) case study will
be compared to this matrix in order to define research steps and

important factors for device services for the future.

Keywords: Device Profile for Web service (DPWS), web
services, reusability, software engineering, service-oriented

architecture (SOA)

I. INTRODUCTION

Service-oriented architecture (SOA) is a conceptual

approach to define a scope of services and an environment

which will be used to communicate with and between these

services [1]. [2] describes three kinds of services: Services of

the first and second generation, as well as future services.

Services of the first generation were distinguished by the fact

that they were independent and not integrated services, as for

example the query of data. The demands on services

management, quality, operational safety, interoperability,

security, and trust were very low. With the growing

propagation and rising requirements, the second generation of

services was created. This generation characterises itself

through the possibility of a bundle of services which are

dependent on each other and which can be offered.

Furthermore, these services are components of bigger systems

which display business processes among other things.

Through this integration the requirements of the first

generation were expanded by the following points: Lifecycle,

Quality of Service (QoS), and service level agreement. This

second generation constitutes the "State of the Art" of

services. In addition, it is indicated that the next generation

must become better at the point of "Easy to use". This refers

particularly to the high dependencies of today's services on

context. Services, however, offer further topics, which are

being examined at the moment. These are, among other

things: service level agreements (SLA), quality of service,

and security (see [2] and [3].

According to [4], the characteristics of a today’s services

are defined as follows: Services are

- equipped with standard interfaces and flexible

collaboration contracts

- able to communicate (”All to all-mode“, at any time)

- platform-independent

In addition, services can be searched, browsed, and joined

dynamically to form new services or applications. A typical

representative of these services is the web service technology.

In this case, the already displayed properties of services are

described by the web services description language (WSDL)

[5].

Beside the use of services in software engineering, different

use cases for services exist in other domains, such as

telecommunication and trade markets.

Another example is the automation area. In this area, it is

important to increase the flexibility, modularity, and

reconfigurability of automation systems by using new

information and communication technologies [6]. In relation

to agent-based systems and SOA, different approaches were

developed in this area [7] and [8]. The usage is demonstrated

by the fact that SOA supports typical automation

requirements like collaborative automation in sense of

autonomous, reusable, and loosely-coupled distributed

components. [9] and [10] constitute web service as a useful

technology approach of SOA in this domain.

One technology approach is the Device Profile for Web

Service (DPWS) standard [11]. It extends the basic web

services definition with the information required by

electronically devices (like footprint, performances, security,

and event driven messaging) [12]. Other technologies still

exits like Jini, OSGi and UPnp. [13] shows an comparison

and a requirements analysis of these four technology.

The aim of this paper is to extend the research map for

DPWS given by [14]. This extension is a list of open research

tasks that appear if DPWS based web services will be used as

reusable units for software engineers in the area of software

engineering. The special focus is set on research challenges

and reusability of web services in this area. To do this it is

necessary to define different criteria for an analysis. The

analysis will be done at the example of a DPWS case study.

DPWS was selected because of it is the new standard and it is

interesting to see if this standard can be used for all important

areas of services.

This paper is structured as follows: After this introduction,

chapter 2 outlines the basics of web services as units of

modelling in software engineering and relationship to the

Device Profile for Web Service standard. Chapter 3 forms an

analysis matrix that will be used in Chapter 4 to analyse a

DPWS case study with the requirements of reuse of

modelling units and the research challenges of web services

and SOA. The paper terminates in chapter 5 with the

conclusion and a roadmap extension for future research

challenges for the DPWS standard.

II. WEB SERVICES AND DPWS: “STATE OF THE ART” IN

THE AREA OF SOFTWARE ENGINEERING

A. WEB SERVICES
Ref. [15] shows a comparison of different service

technologies to CORBA Trader, JavaBeans Context, Jini,

OSGi, and web services. Services, however, are only

components with a special interface. A SOA constitutes an

architecture to implement and execute these components.

Programmes that are based on an architecture like this use the

following criteria of the SOA [4]:

- Loose interconnection/coupling

- Services can have a or no state

- Services constitute the building blocks for modelling and

development

- The core of the architecture constitutes the service

definitions, descriptions, search- and access-protocols and

quality information.

- Services are self-describing

- Search and find-functions

The actual combination of services to a service-based

application is divided into two different approaches:

Orchestration and choreography. Ref. [3] describes how

orchestration services interoperate. This includes business

logic and the order of execution of single services which are

controlled by a single endpoint. This form of construction is

very popular in order to copy model processes. A typical

process-based modelling language is BPEL, for instance [16].

This approach finds its use, for example, in Enterprise Service

Bus (ESB) or Enterprise Services Hub (ESH) that constitute a

middleware for communication [3].

In contrast to the orchestration which serves the execution

of a business process choreography constitutes a semantic

approach [3]. It is defined on how different endpoints can

communicate with each other.

Today's service-based construction is based on services at

runtime (cf. orchestration). Nevertheless, some researches

indicate that in the scope of the software development cycle,

services can also be inserted at other points in time, such as in

design and compilation time [17]. Therefore, the difference to

the component-based construction arises through the fact that

the units of modelling are services, i.e. loosely linked

components. This form of construction only works with

interfaces, instead of typical components which are context

dependent. The implementation and dependencies of the

services are secondary or of no interest. For this reason,

service-based construction approaches do not only support the

development of software, but also the development of

systems [18]. [3] and [2] put up additional research directions

for service-oriented software engineering (SOSE).

In the commercial area, the approaches Windows

Communication foundation WCF [19] and SCA (Service

Component Architecture [20]) have proved to be particularly

useful for developing with services. The companies of

products for software development have already upgraded.

The company Intel even goes one step further and uses

services not only to access software components but also

hardware components. This technology of the service-

oriented Infrastructure (SOI) project is based on the approach

"Hardware as Services (HAS)" [21]. A similar approach is

found in the European FP6 Project SOCRADES [22]. In the

scope of this project, the DPWS standard was used to build

web service interfaces for electronic devices. Another new

approach with the aim to generate a SOA and web service

based middleware for devices, is the Hydra Project of the

European Information society [23].

B. Device Profile for Web Services (DPWS)

DPWS was first used as a unit of modelling to develop a

service infrastructure in the ITEA SIRENA (Service

Infrastructure for Real-time Embedded Network Application)

project.

Fig. 1. Interfaces with higher levels of abstraction and more distribution

of processing

The focus of this infrastructure was the area of embedded

network application [24] Figure 1 pointed out DPWS in the

history interfaces abstraction.

Now DPWS is an OASIS standard. As a web service

extension, DPWS can use all web service features (cf. section

A) and it focuses communication between web services

securing messages, dynamic discovering, describing a DPWS

web service and subscribing for web service events [1]. This

builds upon other web service protocols (cf. figure 2) (for

more details see [12]).

, By the use of these protocols, DPWS shows its own

architecture which is important to know for the use inside

software engineering. By using DPWS, a device has two

different types of services: hosting and hosted services.

Fig. 2. Basis protocol stacks used by DPWS

A hosting service is a service that represents the device

itself. It is used to configure the device, get default data (like

name, ID, etc) from it, and publish the hosting services.

Hosted services represent functionality that is provided by the

device, such as the printing functionality of a printer. Figure 3

shows this relationship.

Fig. 3. Hosted and hosting Service in a DPWS Device [Basis 38]

Ref. [24] shows the advantages and disadvantages of using

DPWS,

TABLE 1
ADVANTAGES AND DISADVANTAGES OF DPWS

H
ig

h

a
c
ce

p
ta

n
c
e

DPWS has a high acceptance in the area of software

development and in the automation market. Ref. [25] This is
based on the fact that DPWS was created by a consortium of

Microsoft and some printer manufacturer. DPWS is a default part

of the operating system Windows Vista and is supported by
Microsoft .NET. Additionally, there are API implementations for

the .NET and the JAVA Framework.

S
O

A
P

li
m

it
a

ti
o

n
s

The possibilities of communications (traffic) are limited by the
used transport protocol. DPWS uses SOAP for messaging at the

application level. On one hand, it is good to have a simple system

on limited hardware devices. On the other hand, the complexity
of the used API will increase.

F
u

n
c
ti

o
n

a
l

si
m

p
li

ci
ty

 The function provided by a DPWS stack is very simple because

embedded devices have limited resources. Moreover, the DPWS
is only an infrastructure for hosting services. Thereby, hosting

services (including their special functionality) must be developed

by protocols the device manufacturer.

W
e
b

 s
er

v
ic

e

c
o
m

p
a

ti
b

il
it

y
 DPWS is compatible to the normal web service standard. So it

has the same advantages as units of modelling in a service-

oriented software development (SOSE) environment.

III. CRITERIA OF AN ANALYSIS MATRIX FOR (DEVICE)

WEB SERVICES

To make a statement about the reusability properties and

the future research challenges of DPWS based web services,

it is important to define the analysis criteria. Thereby, the

analysis matrix consists of two parts: reusability criteria and

future research challenges criteria of web service. Since a web

service is a unit of modelling inside the software engineering,

existing analysis of this area will be used to create a criteria

list. Thus, the analysis matrix focuses on the reuse of web

service and the focus on the future and it will use a simple

illustration of the displayed results: ‚+’ (good support,

existing) and ‚-’ (bad support, not existing).

A. Reusability criteria for web service

The reusability was considered to be a big advantage of

object orientation. However, the reuse is still a considerable

problem in the (object-oriented) world [26].

“Component-based software engineering is an approach

based on reuse for the definition, implementation, and

composition of loosely coupled, independent components to

systems.“ [27]

Components are the units of modelling of component based

software engineering. Because of the fact that web services

are very similar to components [27], the important properties

of components can be used as reusable factors for web

services: Context dependence, component models and

component worlds, vertical and horizontal markets, Reuse at

design level and Quality factors.

Context dependence [27]: Context dependence can be

defined as a dependence on an element which lies beyond the

sphere of influence of a component. An example is the

libraries of a runtime environment which are assumed by a

component. Similar to object orientation, the purpose of a

component is to be reused for a certain target area. With the

rising number of context dependencies which should increase

the reuse in a suitable context, the possibility of use, however,

decreases. Normally, web services are known as components

without direct context dependencies. But the system, which is

hosting the web service, has these dependencies. As a result,

the user has an indirect connection to the problems of context

dependence.

Component models and component worlds [27] and

[28]: Special context dependence is the fact that a component

belongs to a component model. Beside the exact form and the

properties of the components which correspond to the model,

a component model also specifies how components can speak

with each other (interaction standard) and connect to each

other (composition standard). Moreover, a component model

can own implementations of different manufacturers

(component worlds). Similar to the multitude of object-

oriented languages, there are also different approaches of

component models which are mostly incompatible to each

other. Web services normally do not have this kind of

problem.

Reuse at design level: [27] shows four kinds of reuse of

components which are differentiated by visibility and

convertibility of the component implementation. These

constitute a classification. With the help of this classification,

the access possibility of information of the components is

divided. The problem which originates hereby is that

components must account to which reuse class they belong. In

addition to the problem ”How information is carried“, the

question “What is carried?” is still present. The literature

shows the following granularity programming- and script

languages, libraries, interfaces, messages and protocols,

patterns, framework and system architecture [27]. Therefore,

[27] indicates that components are not able to carry several

pieces of design level information at the same time. Web

services have the same problems currently, but they focus

only on one kind of reuse classification. A web service is a

black box, which means the user only knows the interface and

nothing more.

Quality factors: Ref. [27] shows that the question of

quality is very crucial for components. It is, however, not

explained more exactly how quality is defined with

components. Ref. [29] defines the quality of components with

the help of formal correctness and completeness of interfaces.

Measuring quality factors is very difficult. In this paper the

only question on quality is if the used technology supports

quality factors. In the resulting matrix this can be used for a

common decision about the use of the service. If a service

will be used, the user has to look to the own quality

requirements and the given quality factors of the service. This

can not be provided by this paper.

Additional reuse information: Besides the shown factors

other information is also useful for reuse. Ref. [30], [31] and

[32] show that the use of the following information increases

the reuse rate if they exist and they will be used, for example,

for Documentation, Specification and unit test data.

Additionally, this kind of data can also be reused.

Repository & discovery: Another important property of

reuse is the discovery of reusable data. The “correct” search

for data is very complicated and is based on the metadata that

can be used for the search. Today semantic search, based on

different ontologies, is very popular. This means data and

definitions will be connected in one database by the use of

semantics. These semantics can be used to find data entities

[33] and [34]. The analysis matrix will be extended by the

question if a kind of content management system (for

example repository) or a subscription system (like UDDI) can

be used. But UDDI is only a brokering system. The

information about a web service (e.g. documentation, web

service location, etc.) must be saved in a single repository

system in which a discovery system can search for the

information [33].

B. Research challenges of (web) services

As a base for future research, the classification of research

topics for (web) services of [3] will be used: Service

Foundation, Service Composition, Service Management,

Service Monitoring, Service Design and Service Engineering.

Service Foundation [3]: Service Foundation provides an

adaptable middleware infrastructure. In this area, especially

subject dynamics, quality and infrastructure support are

demanded. Ref. [3] notes that in order to permit dynamic

(re)configurable service architectures at the runtime, an

improvement to the service discovery has to be made. This

also assumes a research of infrastructure support of data,

process and application integration. The analysis matrix will

use the following criteria based on [3] of this topic.

TABLE 2
SERVICE FOUNDATION CRITERIA

D
y

n
am

ic
al

ly

re
co

n
fi

g
u

ra
b
l

e
ru

n
ti

m
e

The service runtime infrastructure must automatically

adapt (distributed) service components and resources to

create an optimal architectural configuration. This
configuration has to be optimal for application and user

requirements.

E
n
d

-t
o

-e
n
d

se
cu

ri
ty

so
lu

ti
o
n

s

Services, service-based applications and their

infrastructure should provide end-to-end security solutions

on transport and application level.

In
fr

as
tr

u
ct

u
re

su
p
p
o

rt
 f

o
r

d
at

a

an
d

 p
ro

ce
ss

in
te

g
ra

ti
o

n

There is a need for consistent data access, irrespective of

the data type (including format, source, or location).
Additionally, it should be possible to integrate processes

into existing processes. This includes inserting SOA-

Applications or web service into existing processes.

S
em

an
ti

ca
ll

y

en
h

an
ce

d

se
rv

ic
e

d
is

co
v

er
y

Service discovery have to use semantic expressions. The

discovery itself should work with minimal user interaction.

So requester and provider of a service need a semantic
language that can be used. This language must include

semantic annotations combined with QoS characteristics

and service description (based on WSDL).

Service Composition [3]: In particular, subjects from the

area of business are desirable in the area of service

composition. The subject’s comparability, use and availability

constitute the largest research areas. At this point the

following services are listed: for example semantic, typed and

plausible services. Since there has not been any standard for

quality characteristics in this area yet, researches for

possibilities of the "Quality of service" are also pending.

Accompanying this, the comparability, which serves as a

basis for the research area „autonomous composition of

services“, is also to be examined. For the analysis, the

following points based upon [3] are interesting:

TABLE 3
SERVICE COMPOSITION CRITERIA

C
o

m
p
o

sa
b

il
it

y
 a

n
al

y
si

s

fo
r

re
p
la

ce
ab

il
it

y
,

co
m

p
at

ib
il

it
y
 a

n
d

“Service conformance ensures a composite service’s integrity by

matching its operations with those of its constituent component

services. It imposes semantic constraints on the component
services and guarantees that constraints on data that component

services exchange are satisfied. Service conformance comprises

both behavioural conformance as well as semantic conformance.
The former guarantees that composite operations do not lead to

spurious results, while the latter ensures that they preserve their

meaning when composed and can be formally validated.” [3]

D
y

n
am

ic
 a

n
d

ad
ap

ti
v

e
p

ro
ce

ss
es

 It is necessary that services and processes use adaptive service

capabilities. This assumes a technology-based extension for
services and processes/application using it. With this extension

services and processes can “continually morph themselves to

respond to environmental demands and changes without
compromising operational and financial efficiencies.” [3]. CF.

self-configuring, -optimising, -healing and -adapting services.

Q
o

S
-a

w
ar

e

se
rv

ic
e

co
m

p
o

si
ti

o
n

s Service compositions have to understand QoS information such

as policies, performance levels, security requirements, service-
level agreement (SLA) stipulations from other services or

applications. This assumes that services can interchange these

information and automatically adept to them.

B
u

si
n
es

s-

d
ri

v
en

au
to

m
at

ed

Services and service-oriented applications should provide
themselves as usable business units. This assumes an abstraction

of the technological, application and current business level. This

abstraction should enable the composition of distributed business
processes and transactions.

Service Management & Monitoring [3]: In the area of

service management are interesting, particularly the

investigation areas, which deal with the independence and the

automation of services. This means services should be self-

configuring and thereby adapt themselves to their

environment or to the context ("self-configuration services").

Additional interest is in services which “cure” themselves

automatically. This includes self-analysis and an independent

repair of services ("self-healing services"). Self-optimising

services are based on the same idea. Here an independent

analysis and criteria are also necessary [35]. Self-protecting

services are also interesting, as for example an

implementation of security aspects within the services. For

the analysis the following points based upon [3] are of

interest:

TABLE 4
SERVICE MANAGEMENT & MONITORING CRITERIA

S
el

f-

co
n

fi
g

u
ri

n
g

m
an

ag
em

en
t

se
rv

ic
es

Service has adapted and optimised automatically to a given

environment. So they can be easily installed and used.

S
el

f-
ad

ap
ti

n
g

m
an

ag
em

en
t

se
rv

ic
es

Service must react on changing requirements of the

environment (including market changes). These
requirements can include deploying new instances,

changing instances or changing runtime characteristics.

S
el

f-
h

ea
li

n
g

m
an

ag
em

en
t

se
rv

ic
es

Service has to detect malfunctions. This calls for special
diagnosis, discovery and reaction functionality. These must

discover, diagnose, and react to disruptions. The runtime

environment should not be affected.

S
el

f-

o
p
ti

m
is

in
g

m
an

ag
em

en
t

se
rv

ic
es

Service has to monitor service components and resources

and adapt them to the current end-to-end, process, or

business needs. Self-optimising management services
improve overall utilization or ensure the timely completion

of particular business transactions.

S
el

f-

p
ro

te
ct

in
g

m
an

ag
em

en
t

se
rv

ic
es

Services have to anticipate, detect, identify and protect it

and their resources. This includes detection of hostile
activities, such as unauthorized access and use, virus

infection and proliferation and denial-of-service attacks. If

a threat occurs, the service has to start counteractive
measures.

Service Design and Service Engineering [3]: The

suggested research areas in the area of service engineering are

directed mainly at the dealings with services in software

development. Thereby, it is pointed out that there is a lack of

design principles for the creation of services. In addition,

there is only rudimentary support or methods for the

integration of service development in conventional software

development. Ref. [36] and [37] show at the example of the

UML that those services can be displayed with UML.

However, there is no notation for services in UML. It is also

indicated that there is a lack of analysis possibilities for

services.

TABLE 5

SERVICE DESIGN & SERVICE ENGINEERING CRITERIA

E
n
g

in
ee

ri
n
g

o
f

se
rv

ic
e

ap
p

li
ca

ti
o
n

s

A service-oriented engineering methodology and an adapted
development environment are needed. These have to enable

modelling, development, deployment, test and configuration of

services and an SOA-based application.

F
le

x
ib

le
 g

ap
-

an
al

y
si

s
te

ch
n
iq

u
es

 “Gap analysis purposes a business process and services a

realization strategy by incrementally adding more

implementation details to an abstract service/process interface.
Such a strategy considers several service-realization possibilities

such as green field development, top-down and bottom-up

development, meet-in-the-middle development, and development
based on reference models.” [3]

S

er
v

ic
e

v
er

si
o
n

in
g

an
d

 a
d
ap

ti
v

it
y
 Developers and Development environments should introduce

techniques to discover and select suitable external services, detect
problems in service interactions, search for alternative solutions,

monitor service-execution sequences step by step, and make

appropriate upgrade and version services.

S
er

v
ic

e

g
o
v

er
n

an
ce

Services must meet the functional and QoS objectives within the

context of the business unit and the enterprises within which they
operate. This is important because a service is part of many views

and domains which are cross-organizational. So service- oriented

application will consist of service fragments that different
organizations must maintain separately.

IV. ANALYSIS OF A “DEVICE PROFILE FOR A WEB

SERVICE”-SCENARIO

A. THE DEVICE PROFILE FOR A WEB SERVICE SCENARIO

Fig. 4. System architecture of the DPWS scenario

In the scope of the SOCRADES project an experimental

DPWS scenario was built. The authors were directly and

indirectly participants of this scenario. Figure 4 shows the

system architecture. The basic configuration of the

architecture is shown in figure 4

The web services of each workstation of the production line

(see figure 5) will be “programmed” by the orchestration

engine. Thereby, the devices provide the following hosting

services:
- Managing of the device (lifter or conveyor)

- Subscription and Messaging via WS-Events

In addition to the orchestration engine, three other tools are

using the web services:

- Decision Support System: This system tries to solve

conflicts which occur if the panel can use different

production line ways (see figure 5 current panel

position).

- ERP / MES System: The production orders will be sent

by the ERP/MES system. The production line will

execute the orders.

- Monitoring System: The monitoring system records the

single events coming from different devices and shows

them in a graphical way.

Fig. 5. Configuration of a production line based on [22]

Basically the scenario is based on the following process:

With the help of the orchestration engine and a special

graphical tool the production process will be created and

uploaded into the devices. The Monitoring and the decision

system register for the device events. If the ERP system sends

an order, the production line tries to execute this order. If a

conflict occurs, the decision system tries to help the specific

device by sending special orders. The web services are

developed with a C-based DPWS API.

B. REUSABILITY ANALYSIS IN A SERVICE-ORIENTED

ENVIROMENT/ARCHITECTURE

For the analysis of the shown scenario there are two

different points in time important: development- and runtime.

Reusability comparison

Six criteria of the scope of reusability are used.. Context

dependence is the first criteria. To use a DPWS web service a

special API is necessary. Therefore, DPWS has context

dependencies. In addition, the scenario shows during

development time that the different APIs (C and Java) react

differently to the events. This shows that the context

dependencies are complex. DPWS has an own component

model and has only one dependency on the web service

model. But there is no special relationship between the typical

component worlds like Java or NET. Because the DPWS

service is a web service it is also a black box for a developer.

Only the interface is known. But normally it is better to know

some of the internal processes or structures. Especially the

web service is managing an electronic device and not a piece

of software. Normally a DPWS service is offering some

simple data like name and version which can be used by a

software engineer. But to set this information is not a fix rule.

Thus the point “Reuse at design level” decreases the

reusability in the area of software engineering. DPWS does

not support any extended quality factors for software

engineering yet. Also in the scenario, no quality measurement

was used. In the topic “Additional reuse information”,

different views are important. During the development time,

documentation and specification were developed. These

artefacts can be “reused”. DPWS only provides small text

fields for information during the runtime. Special device

description approaches exist [38] which are used during the

runtime of the scenario to acquire additional information. So

DPWS has approaches to get additional information for reuse.

This is also important for the last point of the reusability

analysis. In order to find and manage this information, special

content management systems are necessary. DPWS itself does

not provide any support for this. During the runtime and the

development time of the scenario, no system was used.

Nevertheless, this is one of the important points for

reusability. But DPWS service can be very easily discovered.

Thus and the self describing possibilities makes DPWS

service extremely useful compared to normal web services

Research challenges comparison

In the area of service foundation, four different factors are

defined. During the developing time the hosted and hosting

services were built and dynamically loaded into the devices.

This shows that DPWS Services can easily adapt to

dynamically reconfigurable runtime architectures. For

example: if a device is “online”, its services can be easily

reconfigured. The second point “End-to-end security

solutions” is handled by the DPWS stack. Since DPWS uses

WS-Protocols it can also use security protocols. In the

experimental scenario a special binding object was built. This

object inherits the basic functionality of a DPWS binding of

the C-Stack. This also includes normal HTTP Binding

Security options. A DPWS based service can also be

programmed in a way that it only accepts security based

binding. Infrastructure support for data and process

integration does exist. In the scenario the work packages are

simulated by the ERP System. This system receives feedback

from the production line and the ERP System or from a user.

It has to acknowledge some states of the production line. By

using events and subscribing, it is very easy to bring a system

or application into a process. Semantically enhanced service

discovery is not supported by the DPWS. It only supports

information fields, as for example name, friendly name and

device scope of a lifter device.

For Service Composition there are four points in the focus

of this research. The point “Composability analysis for

replace ability, compatibility, and process conformance” is

not supported by the DPWS system. DPWS does not have

behavioural or semantic conformance. The only composition

of service was part of the orchestration engine, which did

such conformance by itself. The built services in this scenario

do not support dynamic and adaptive processes. It is possible

to build services which adapt themselves, but this has not

been part of the DPWS API yet. Due to the fact that DPWS

uses web service protocols, QoS-aware service compositions

are possible (see dynamically reconfigurable runtime

architectures), but it is not as highly detailed as it will be

required in the future. Business-driven automated

compositions were made by the orchestration engine. With a

Petrinet based implementation it reacts on events. The same

scenario was made with the Decision system. In the scope of

Service Management & Monitoring, DPWS does not support

any of the criteria. In the scope of Service Design und Service

Engineering, four different criteria exist. The first criterion

“Engineering of service applications” is handled by the

scenario. In the development time services are built with the

help of an integrated development environment (IDE). In this

case the IDE was Visual Studio 2005. During the runtime a

service-based application was built by the orchestration of the

different device services in a specific process model. So the

orchestration engine “built” service-oriented software.

Flexible gap-analysis techniques were not used in the

scenario. However, the fact that the hosting service can be

changed during their runtime is a basic element for future

research in this criterium. Service versioning and adaptability

do not really exist. The scenario shows that it is possible to

receive events from the hosting services, but this depends on

implementation. The DPWS Standard does not define

interfaces or methods to detect problems in service

interactions, to search for alternative solutions or to monitor

service-execution sequences step by step. Some simple

debugger exist at the moment. Inside the shown scenario the

service governance was not shown. The missing functionality

in QoS and the orchestration of an external system makes it

clear that DPWS is not able to meet business QoS objectives.

V. CONCLUSIONS AND FUTURE WORK

This result is a software engineering extension to the

research roadmap of [14] and shows that DPWS based web

services can be used for modelling and as interfaces for

electronic devices. The outcome of this is that SOA can be

used in the area of software engineering and the experience of

the case study shows that DPWS based web services are easy

to create and used by software engineers. However, the

comparison between the important properties of reuse and

research challenges of web service (see. Table 5) shows a gap

for the use of DPWS in the future. In the scope of reusability,

DPWS shows, for example, that topics like context

dependencies, Quality factors and Repository & discovery

have to get more focus in order to increase reuse for DPWS

web services. In the area of research challenges DPWS shows

according to this analysis that it has answers to some of the

famous research questions such as in Service Design &

Engineering and Service Foundation (cf. table 6).

TABLE 5
RESULTS OF THE ANALYSIS OF THE EXPERIMENTAL DPWS SCENARIO

R
eu

sa
b

il
i

ty

Context dependence

-

Component models and component worlds

++

Reuse at design level

-

Quality factors

-

Additional reuse information

+

Repository & discovery

-

R
es

ea
rc

h
 C

h
al

le
n

g
es

 C
ri

te
ri

a

S
er

v
ic

e

F
o

u
n
d

at
io

n

Dynamically reconfigurable runtime

architectures

+

End-to-end security solutions. +

Infrastructure support for data and process

integration

++

Semantically enhanced service discovery -

S
er

v
ic

e

C
o

m
p
o

si
ti

o
n

Composability analysis for replaceability,

compatibility and process conformance

-

Dynamic and adaptive processes

-

QoS-aware service compositions

-

Business-driven automated compositions

+

S
er

v
ic

e

M
an

ag
em

en
t

&

M
o
n
it

o
ri

n
g

Self-configuring management services

-

Self-adapting management services

-

Self-healing management services -

Self-optimizing management services

-

Self-protecting management services -

S
er

v
ic

e

D
es

ig
n

 &

E
n
g

in
ee

ri
n
g
 Engineering of service applications

++

Flexible gap-analysis techniques

+

Service versioning and adaptivity

-

Service governance

-

Some criteria fields, however, are not so good covered by

DPWS from the view of software engineering, as for example

Service Composition and Service Management & Monitoring.

But this does not mean that DPWS is the wrong approach for

device web service. It shows only the open points of research

for the future. By following such guidelines DPWS can be

used more easily in the area of software engineering to

become more accepted as it is.

REFERENCES

[1] E. Zeeb, A. Bobek, H. Bohn and F. Golatowski, “Lessons learned from

implementing the Devices Profile for Web Services”, Proceedings of

the IEEE International Conference on Digital Ecosystems and
Technologies, 2007.

[2] B. Fitzgerald et al., „The Software and Services Challenge.“
Contribution to the preparation of the Technology Pillar on “Software,

Grids, Security and Dependability” of the 7th Framework Programme.

ftp://ftp.cordis.europa.eu/pub/ist/docs/directorate_d/st-ds/fp7-
report_en.pdf, pp. 1-19, 2006.

[3] M.P. Papazoglou, P. Traverso, S. Dustdar, und F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,”

Computer, vol. 40, 2007, pp. 38-45.

[4] G. Wang und C. Fung, “Architecture paradigms and their influences

and impacts on component-based software systems,” 37th Annual

Hawaii International Conference on System Sciences, 2004.
Proceedings of the, Big Island, Hawaii: , pp. 272-281.

[5] W3C, “W3C Web Service Glossary”, 08 2004.
http://www.w3.org/TR/ws-gloss/ (accessed 12 2008).

[6] M. G. Mehrabi, A. G. Ulsoy and Y. Koren, “Reconfigurable
Manufacturing Systems and their Enabling Technologies”,

International Journal of Manufacturing Technology and Management,

Vol. 1, N. 1, pp. 113-130, 2000.

[7] P. Leitao und F. Restivo, “ADACOR: A holonic architecture for agile
and adaptive manufacturing control,” Computers in Industry, vol. 57,

2006, pp. 121-130.

[8] A. Colombo and F. Jammes, “Collaborative automation and service-

oriented architectures in the industry”, Tutorial at the IEEE

IECON´06, Paris, France, 2006.

[9] A. Bepperling, J. Mendes, A. Colombo, R. Schoop, und A.

Aspragathos, “A Framework for Development and Implementation of
Web service-Based Intelligent Autonomous Mechatronics

Components,” 2006 IEEE International Conference on Industrial

Informatics, Singapore: 2006, pp. 341-347.

[10] J. Lastra and A. Colombo, “SoA middleware for Manufacturing.

Section: Applications in manufacturing and industrial monitoring and
industrial surveillance”, European Union Info-day IST Program,

Brussels, Belgium, 2007.

[11] Oasis, The Devices Profile for Web Service specification. See

http://www.oasis-open.org (accessed 12.04.2009)

[12] F. Jammes und H. Smit, “Service-Oriented Paradigms in Industrial

Automation,” IEEE Transactions on Industrial Informatics, vol. 1,

2005, pp. 62-70.

[13] D. Barisic, M. Krogmann, G. Stromberg, and P. Schramm, “Making
Embedded Software Development More Efficient with SOA,” 21st

International Conference on Advanced Information Networking and

Applications Workshops (AINAW), IEEE Computer Society, 2007, pp.
941 - 946.

[14] G. Cândido, J. Barata, A.W. Colombo, und F. Jammes, “SOA in
reconfigurable supply chains: A research roadmap,” Engineering

Applications of Artificial Intelligence, vol. 22, 2009, pp. 939-949.

[15] H. Cervantes, and R. Hall. “Technical Concepts of Service

Orientation.” In Service based Software System engineering Changes

and Practises, by C. Stojanović and A. Dahanayake, 1-26. London,

GB: Idee Group Publishing, 2004.

[16] T. Andrews, et al. “Business Process Execution Language for Web

Service v1.1.” IBM developerWorks. 05 2003.

http://www.ibm.com/developerworks/library/specification/ws-bpel/
(accessed 2006).

[17] H.P. Breivold und M. Larsson, “Component-Based and Service-
Oriented Software Engineering: Key Concepts and Principles,” 33rd

EUROMICRO Conference on Software Engineering and Advanced

Applications (EUROMICRO 2007), Lubeck, Germany: 2007, pp. 13-
20.

[18] I. Sommerville, Software-Engineering, Munchen, Germany, Pearson
Studium, 2007.

[19] Microsoft. Windows Communication Foundation.

http://msdn.microsoft.us/netframework/aa663324.aspx (accessed

2008).

[20] OASA. Service Component Architectur. 2007.

www.osoa.org/display/Main/Service+Component+Architecture+Home

(accessed 2008).

[21] M. Chang, J. He, und E. Castro-Leon, “Service-Orientation in the

Computing Infrastructure,” 2006 Second IEEE International

Symposium on Service-Oriented System Engineering (SOSE'06),

Shanghai, China: 2006, pp. 27-33.
.
[22] Information Society Technologies. SOCRADES. 2008.

http://www.socrades.eu/Home/default.html (accessed 2008).

[23] Hydra Project, 2010, http://www.hydramiddleware.eu (accessed

2010).

[24] J.M. Mendes, A. Rodrigues, P. Leitão, A.W. Colombo, und F. Restivo,

“Distributed Control Patterns using Device Profile for Web Services,”
2008 12th Enterprise Distributed Object Computing Conference

Workshops, Munich, Germany: 2008, pp. 353-360.

[25] H. Bohn, A. Bobek, und F. Golatowski, “SIRENA - Service

Infrastructure for Real-time Embedded Networked Devices: A service

oriented framework for different domains,” International Conference
on Networking, International Conference on Systems and International

Conference on Mobile Communications and Learning Technologies

(ICNICONSMCL'06), Morne, Mauritius: , pp. 43-43.

[26] J. Ludewig, and H. Lichter. Softwareengineering - Grundlagen,

Menschen, Prozesse, Techniken. Heidelberg, Germany: dpunkt Verlag,
2007.

[27] C. Szyperski, Component software : beyond object-oriented
programming, New York ;London ;;Boston: ACM Press ;;Addison-

Wesley, 2002.

[28] V. Gruhn, and A. Thiel. Komponentenmodelle , DCOM, Javabeans,

Enterprise Java Beans, CORBA. Addison-Wesley, 2000.

[29] J. Siedersleben, Moderne Softwarearchitektur : umsichtig planen,

robust bauen mit Quasar, Heidelberg: dpunkt-Verl., 2006.

[30] M. Zinn, “Definition of software construction artefacts for software

construction.”, Proceedings of the 4th collaborative research
symposium on Security, E-learning, Internet and Networking (SEIN

’08), pp 79-91, Network Research Group, Wrexham, GB, 2008

[31] M. Zinn, “Development of a CASE-tool for the service-based software

construction .”, Proceedings of the 5th collaborative research

symposium on Security, E-learning, Internet and Networking (SEIN
’09), Network Research Group, Darmstadt, GB, 2009

[32] S. Pfleeger, Software engineering : theory and practice, Upper Saddle
River [N.J.]: Prentice Hall, 2010.

[33] H. Stuckenschmidt, (2009), „Ontologien“, Springer Verlag,
Heidelberg, Germany

[34] P. Hitzler, et. Al (2008), “Sematic Web: Grundlagen”, Springer
Verlag, Heidelberg, Germany.

[35] B. Heckmann, „Service provisioning in a utility computing
enviroment.“ Research Symposium on Security, E-learning, Internet

and Networking (SEIN 2007). Plymouth, England: Network Research

Group, University of Plymouth, 2007., pp. 185-198.

[36] Y. Xu, S. Tang, Y. Xu, und Z. Tang, “Towards Aspect Oriented Web

Service Composition with UML,” 6th IEEE/ACIS International
Conference on Computer and Information Science (ICIS 2007),

Melbourne, Australia: 2007, pp. 279-284.

[37] D. Skogan, , R. Grønmo, and I. Solheim. “Web service composition in

UML.” 8th IEEE International Enterprise Distributed Object

Computing Conference (EDOC 2004). California, USA: IEEE, 2004.
47-57.

[38] Schneider Electric, “Device Description XML”, www.schneider-

electric.com, (accessed 2009).

Information demand model for software unit reuse

M. Zinn K. P. Fischer-Hellmann

Centre for Information Centre for Information

Security and Network Research Security and Network Research

University of Plymouth University of Applied Science Darmstadt

Plymouth, UK Darmstdt, Germany

A. Schuette A. D. Phippen

Centre for Information Centre for Information

Security and Network Research Security and Network Research

University of Applied Science Darmstadt University of Plymouth

Darmstdt, Germany Plymouth, UK

Abstract

Typically, reusable software units (like classes,
components and services) in object oriented develop-
ment environments have to provide a certain amount
of information. This information is needed during
the development and runtime phase. Typical infor-
mation types are for example documentation, speci-
fication, metrics, technical properties, etc. In differ-
ent usage levels, information may have different values
for software engineers. The availability of information
determines the capabilities of a unit, due to different
users employing different information to decide about
the reuse of a unit. Again, other information is crit-
ical for the success of the entire development process
when applying certain procedure models. Thus, re-
trieval of these units and their contents is important
for reuse. However, this is still a problem since a lot
of expert knowledge is needed to find, adapt, and inte-
grate reusable software units. To solve this problem, it
is necessary to understand information demand in the
area of software unit reuse. This paper discusses an
existing information demand model of the knowledge
science area and applies it to the field of software unit
reuse to support analysis of software reuse problems
To conclude, a model will be defined to visualise the
coherence between information demand and software
unit reuse knowledge.

1 Introduction

The area of object oriented software development
creates many different units of modelling. Frequently
used units are Classes (e.g., Java Class), Components
(e.g., .NET Libraries), and Services (e.g., WebSer-

vices) [18]. In the scope of this paper, a unit is clas-
sified as a deployed and function-complete component
that can be reused. Each of these types of units pro-
vides different information (like machine or human-
readable information) that can be used at different
steps within development processes [20]. Two impor-
tant problems are identified by using these units of
modeling: development issues related to a common
view of these different units [18] and the decision to
reuse a unit upon the available information [16]. Typ-
ically, Software Reuse Environments (SRE) support
software developers by handling these problems. The
main concept is to combine three important usages in
one environment: reuse repositories, automatic inte-
gration of software units, and searching of these units.
Current Integrated Development Environments (IDE)
may be seen as SRE systems [8], but no approach com-
pletely corresponds to all three general ideas about
SRE [8]. It is the authors opinion that the idea of SRE
systems is to support software engineers even if knowl-
edge about “finding” and “integrating” is missing. It is
especially this missing knowledge about reusable units
that avoids or limits the reuse [17]. This poses the
question whether this missing knowledge has an im-
pact on the reuse of software units.

First, the term “missing knowledge” has to be de-
fined. The authors research is focused on three typical
reuse steps that can be defined as finding, adapting,
and integrating. These can be found in the most com-
mon or custom created reuse processes. A software
engineer needs knowledge to find, adapt, and integrate
a unit. If this knowledge is available, the reuse is suc-
cessful (from the knowledge perspective). However, if
the knowledge is not adequate for only one step, the
reuse is not successful. This means if a user does not

know how to search a unit he/she may not found it.
The result will be a unsuccessful reuse of this software
unit. Also if a user found a unit and he is not able to
transform or adapt it for his focused technology, the
unit will not be reused. In the case of a found and
adapted software unit, the user must be able to inte-
grate it into his specific development environment. If
the developer is not able to do this, the unit will not
be (re) used. Therefore, missing knowledge is defined
as non-adequate information for the reuse (focusing:
finding, adapting, and integrating) of a unit.

The authors hypothesised that the problem of
missing knowledge reduces the reuse of software units
and can be visualised on the base of an information
demand model.

The goal of this paper is to visualise the interre-
lation between information demand and software unit
reuse. The result may be used to support or analyse
software unit reuse. In the following paragraphs, an
existing information demand model will be discussed.
Based on these results, the information demand model
is applied to the area of software unit reuse. An ex-
isting critical success factor model for software unit
reuse will be mapped to the new model to show that
it can be used in the field of software unit reuse. Fur-
thermore, the new model will be used to visualise the
problem of missing knowledge. This means to show in
a graphical way which kind of knowledge is needed for
software reuse. The same visualisatzion can be used to
analyse critical success factors. The paper concludes
by discussing whether information demand in the area
of software unit reuse can be visualised.

This work is part of the research on a Service-
based Software Construction Process (SSCP) incor-
porating the field of Software Reuse Environments.
The goal of this research is to find a semantic model
(about finding, adapting, integrating, and deploying
of software units) combined with service technology
that supports software engineers by performing soft-
ware reuse (finding, adapting, integration, and deploy-
ing) without having all needed information. The paper
contributes to the research area by enhancing a basic
model to visualise the coherence of missing knowledge
and software reuse knowledge This new model can be
used in the future to analyse reuse problems based on
missing knowledge.

2 Information demand

2.1 Description of information demand

Information demand (ID) is defined as the type,
amount, and quality of knowledge that a person needs

to fulfil a task within a specific amount of time. Mea-
suring ID is problematic because it depends on the task
definition, the goals, the people who deal with it [14],
and the knowledge criteria [1]. ID can be split into two
sub definitions: objective information demand (OID)
and subjective information demand (SID). OID de-
scribes all information which solves the users problem.
This information is the amount of existing information
that will theoretically solve a specific problem It can
be described as a set of solutions. Similar to OID, SID
describes all information that is supposed to solve the
problem, from the subjective point of view of a user.
Because of that, this information may not be able to
provide a real solution. Another important factor in
the area of ID is the information provision (IP). This
defines information that is actually provided by a sys-
tem and can be utilised by formulating an information
query (IQ). IQ is a query which is normally created by
a user who is searching for a solution which is executed
by a search system. This query is based on the SID of
the user. The useful result referred to as actual infor-
mation state (AIS) in this paper is the intersection of
the areas of SID, OID, IP and IQ. Figure 1 shows the
relation:

Figure 1: Information Demand [14]

As a result of this model, AIS is defined as the
area of the information model which includes informa-
tion that

• achieves the task

• can be understood by the user

• can be enquired after by the user

• and is provided.

2.2 Use of information demand

To increase the overlapping area of OID and SID,
the Critical Success Factors methodology [16] can be
used [14].. This approach may be used for business suc-
cess factors, but can also be adapted to other domains
(e.g., Enterprise Security Management [2]) Thereby,
factors are identified that are required to fulfil a task.
These factors will be related to specific elements of
the information demand model. Based on this rela-
tionship, custom analysis can be performed to identify
possible risks in a project [14]. Therefore, an analysing
process based on this may be structured as follows:

1. Identify important success factors for a project.

2. Apply the factors to an information demand
model.

3. Identify problems and risks by analysing which in-
formation demand element is affected by a prob-
lem or risk that could affect a applied success fac-
tor.

4. Prepare training sessions to minimize the risks or
problems.

The following sections will focus on point 2 and
3 of this process and connect the general idea of infor-
mation demand with the area of software unit reuse.

3 Information demand in the area of

software unit reuse

3.1 Definition of information demand
from the software unit reuse perspec-
tive

The presented definitions in Section 2 are not re-
lated to the area of software reuse. This relation can
be created by redefining the terms of Section 1 from
the perspective of software reuse. This represents the
novel contribution of this publication. The OID can be
related as a container describing all software units that
may solve a problem. From the software reuse per-
spective, the important tasks of reuse is to find and
integrate a reusable software units. This unit fulfils
technical, functional, and business requirements [17].
As a result, OID describes all software units that can
be used as solutions . SID is related to the users abil-
ity to express technical, functional and business in-
formation about a needed software unit. Again, this
also includes units that do not solve the problem, con-
trary to the users beliefs. Previous studies show this as
an important problem of knowledge reuse [1]. In the

reuse area, IP can be defined as the real availability
of reusable software units and their descriptive infor-
mation. Thus, IP is realised by repository systems re-
sponsible for providing software units. Typically soft-
ware units are provided by repository systems [1]. The
user creates and accomplishes an IQ by using special
tools (SRE-Systems)[8]. The AIS in the area of soft-
ware unit includes all reusable software units that:

• theoretically solve the problem,

• are provided by a component provider or reposi-
tory system,

• are understood by the user

• are described by the user request (part of the users
query).

Figure 2 shows the relationship between the nor-
mal information demand and information demand
based on software unit reuse. The model is referred to
as Software Reuse Information Demand (SRID) model
by the authors of this publication.

Figure 2: Software Reuse Information Demand (SRID)
Model

The goal is to increase overlapping areas be-
tween the different elements of an information de-
mand model, in order to increase the mount of so-
lutions, which is also an important aim of the soft-
ware unit reuse area. This can be achieved by defin-
ing/identifying the critical success factors of software
reuse and relating them to the model [14]. (See Section
2.2)

3.2 Analysis of critical success factors in
software unit reuse

As mentioned in Section 2.2, an Information De-
mand Model can be used to identify risks by referring

critical success factors to the model. Usually, this is
done in the business area [16][14]. The idea is to map
a project specific procedure model to an information
demand model. The information demand model iden-
tifies the information demand fields and the procedure
model the typical process steps or aims in a project.
By doing the mapping information demand will be
mapped to project steps or aims. Project leader can
now identify which project step or aim is at risk, be-
cause the related information demand. Before this step
a project leader must be identify which information
demand field is at risk in his project or team. In the
scope of this paper, this methodology will be adapted
to the area of software reuse. First, critical success fac-
tors will be identified. This is necessary because these
success factors will be analysed and assessed in the
new model. In the area of software reuse, critical suc-
cess factors can be identified by analysing the typical
reusability metric methodologies [17]. The following
metric methodologies are taken from the reusability
metric analysis of [17] and described briefiy.

• Cost productivity model (mathematically based
model)

• Return of invest model (mathematically based
model)

• Maturity model (mathematical model / process
based model))

• Failure modes models (process based model)

• Reusability model (property based model)

The Cost Productivity Model is an approach that
aims to calculate the advantages of software develop-
ment based on cost [17][6]. From a development point
of view, the development of a reusable software unit
is more expensive than the development of software
units without reusable properties [17]. However, from
the commercial point of view, software reuse is cheaper
than development of a new unit [17]. The Return On
Invest (ROI) model analyses the ROI of software de-
velopment from the perspective of software reuse This
methodology is related to the Cost Productivity Model
Cost Productivity Model [17][13]. The Maturity As-
sessment Model deals with the measurement of im-
provements in a software unit reuse process. There-
fore, different models exist (see [17],[11], and [4]). The
success factors of the Failure Modes Model describe a
successful reuse process. This is possible if reusability
is focused, a unit exists, the unit is available, the unit
was found and the unit is valid. Validity means it is
able to fullfil the users requirements, and is capable of
integration. A reuse process is not successful if one of
these success factors is not applicable [17][7].

The last measurement of success factors to be
discussed is the Reusability Assessment. The core
methodology is to identify reusability success factors
of a given reusable software unit, for example fewer
parameters [17][6]. In the scope of this analysis, the
Failure Modes Model is a usable example of success
factors that can be used in the SRID model. This
is based on the fact that each success factor of this
model represents a reuse process step. The result of
all steps represent a reusable software unit for a user.
The direct link to software reuse makes it easier to map
these steps to the SRID Model. Other models based on
component properties (like Reusability Assessment) or
mathematical functions (Return On Invest model) are
also feasible, but are based on higher abstraction to
map them to software reuse demands. In the scope of
this paper, it is important to provide a simple exam-
ple. The success factors of the Failure Modes Model
[7] may be mapped to the SRID model in the following
way (see also Figure 3):

• Intention for reuse: This is the users aim to
reuse a software unit. In the scope of the SRID
model, this is shown by the IQ definition.

• Part exists: A unit exists if it is theoretically
possible and able to solve the problem. In the
SRID model, this corresponds to the OID.

• Part available: A unit is available if it is pro-
vided by a unit vendor or a repository system.
This complies with the IP area of the SRID.

• Part found: Part found: A unit has the state
“found” if it is theoretically possible, understand-
able by the user, requested, and found by the user.
This is shown in this model with AIS.

• Part understood: Part understood: A unit is
understood if it is theoretically possible and the
user is able to understand it. In the SRID model,
it corresponds to the overlapping area between
OID and SID.

• Part valid Part integrateable: Both success
factors depend on three properties:

– They must be part of the theoretical amount
of solutions (OID)

– They must be provided by a vendor or sys-
tem (IP)

– They must be part of the users subjective
information demand (SID)

When using the Failure Modes Model, a reuse is
successful if all success factors are successfully fullfiled.
This is demonstrated by the AIS in the SRID Model

Figure 3: Software Reuse Success factors in the SRID
Model

(see Figure 3). Generally, the critical success factors
within the Failure Modes Model can be mapped to
a model based on information demand in a graphical
way. This poses the question how this visualised map-
ping supports the software engineer.

As mentioned in Section 2.2, the reference be-
tween success factors and an information demand
model helps to identify risks in projects. For example,
the success factor “Part understood” is the overlapping
area between SID and OID. If a problem reduces the
area of SID, this overlapping area may also decrease.
As a result, the specific success factor, which must be
fullfiled for successful reuse is vulnerable. This poses
a certain risk to the project.

4 Visualising Information Demand Ex-

amples in the Software Unit Reuse

Area

In Section 3, the SRID model was defined and
explained by visualising an example of a reuse met-
ric model. This is now used to explain the specific
missing knowledge problems that are discussed in this
document. The hypothesis of the authors is that the
problem of missing knowledge reduces reuse of soft-
ware units and can be visualised on the base of an
information demand model. As mentioned before, the
problem of missing knowledge is applied to the three
common reuse steps: Finding, adapting, and integrat-
ing. Table 1 shows typical based on missing knowledge
in the context of these three reuse steps. In the field
of “Finding” users have to know where a repository
can be found. This is a problem especially in global
companies with repository on different locations. Also
the usage knowledge of these systems is important to
know. In the field of “Adaption” it is important to

know how to adapt software units to fit special require-
ments. Typical examples are source code adaption,
configuration management, cross compiling, technol-
ogy transfer (i.e. Java to .Net), and domain transfor-
mation. Doing such kind of adaption without knowing
the procedure needs a lot of time or is not possible. In
the last field (“Integration”) the integration of soft-
ware units into development environments is focused.
Software reuse may at risk if a user dows not know
how to integrate software units in his development en-
vironment. This includes the problem of missing con-
figuration knowledge.

This section aims to visualise two examples of the
problems listed in Table 1. The first example describes
cases in which users do not know how to formulate a
query [17][19] (Refers to problem No. 2). Another ex-
ample is that users with less advanced knowledge are
frequent users of software unit reuse [17][5] (Refers to
all problems of Table 1). These examples can be used
to demonstrate the process steps mention in Section
3.2:
Identifying important success factors for a project:
For the verification, the Failure Modes Model is used.
(see Section 3)
Referring the factors to an information demand model:
For this step, the mapping between the SRID model
and the success factors of the Failure Modes Model is
used. (see Figure 3)
Identify problems and risk by analysing which infor-
mation demand element is affected by the problem or
risk and which success is vulnerable:
In the first example named “QueryProblem” (QP), the
user is not able to formulate a search query. This
may have several reasons: missing knowledge about
the searched unit, missing knowledge about the tool
that is used to formulate the query or the query lan-
guage. This problem is classified as a “Finding Prob-
lem” (see Table 1). Consequently, the size of IQ in the
SRID model is affected. According to the mapped Fail-
ure Modes Model, the usable area of the “Part found”
success factor decreases. This is a logical result be-
cause of “Part found” is the overlapping area of OID,
SID, ID, and IQ. If one of this areas decrease the over-
lapping area may also decrease. Furthermore, the AIS
will be affected. Because of a query is in itself a kind
of validation (from the user’s perspective), it can also
affect the Part valid success factor. Figure 4 visualises
this.

The other example named “YoungUserProblem”
(YUP) is due to the fact that users with less advanced
knowledge for example young professionalsare frequent
users of software unit reuse. This affects the SID,
which is defined as the amount of conceivable software
units providing a solution. People with less advanced
knowledge also have less knowledge about reusable

Reuse Step Problem No. and Name Problem Description Reference

Finding
1 Find repository User has to know where to find a repository [10]
2 Access repository User has to know how to access a repository [17]
3 Use repository User has to know how to use a repository [17][19]

Adaption
4 Unit adaption User has to know how to adept a software unit [1]
5 Transformation (Tec.) User has to know how to transform a software unit into

another technology
(e.g.
[15])

6 Transformation (Domain) User has to know how to transform a software unit into
another domain

(e.g.
[15])

Integration
7 IDE Integration User has to know how to integrate a unit into his IDE
8 Unit Setup User has to know how to setup a unit for his specific project

Table 1: Problem of missing knowledge

Figure 4: Impact of missing formulation knowledge

software units which means finding, adaption, and in-
tegration steps are affected. For example, a software
engineer searching a software unit within the area of
a specific technology (e.g., SOAP-based web services)
could have problems reusing a software unit if he is not
an expert for the technology. This example refers to all
reuse steps of Table 1. As a result, the success factors
“Part understood”, “Part valid”, “Part integratable”,
and “Part found” are affected directly. Figure 5 illus-
trates this.

The result of this analysing step is a list of af-
fected success factors. Figure 6 shows this on the base
of the SRID model. Prepare trainings and sessions to
minimise the risks or problems: Based on the previous
analysis, special tasks may be performed to reduce the
risk for the success factor. In the QP example, a query
tool training for the project team may be a potential
solution to limit the risk. The trained users are able to
create an execute queries more correctly. As an result
the ID area will increase. This may also include an in-
creased overlapping area between SID, OID, and ID.
More correct solutions can be found. This is shown
in 7 in the affected area of IQ. In the YUP example,
individuals can be trained on special software units or

Figure 5: Impact of missing user knowledge

specific technology to increase their knowledge. The
result will be an increased area of SID. This includes
also and increased overlapping area between OID ans
SID. As an logical result the risk factors will decrease.
This may seen as an positive effect for the project.
Figure 7 visualises a decreased SID. If this happens all
overlapping areas of SID also decreases. This is shown
in the affected area of SID.

IQ is affected, which also applies to the success
factor “Intention for reuse”. As a consequence, the
project is directly vulnerable. In the YUP example,
the SID, not defined as a success factor, is affected.
However, the analysis shows that success factors are
also affected (indirectly). Both examples can be vi-
sualised in the SRID model. The authors behold the
hypothesis that the problem of missing knowledge re-
duces reuse of software units and can be visualised
on the base of an information demand model, as ver-
ified in the scope of the given examples. These two
examples demonstrate how to identify the impact of
problems on critical success factors of software unit
reuse by using a model based on information demand.
An important difference between the two examples is
the directly affected element of the SRID model. In

Figure 6: Affected success factors in the SRID model

the QP example, the area of IQ is affected, which also
applies to the success factor “Intention for reuse”. As
a consequence, the project is directly vulnerable. In
the YUP example, the SID, not defined as a success
factor, is affected. However, the analysis shows that
success factors are also affected (indirectly). Both ex-
amples can be visualised in the SRID model. The au-
thors behold the hypothesis that the problem of miss-
ing knowledge reduces reuse of software units and can
be visualised on the base of an information demand
model, as verified in the scope of the given examples.

Figure 7: Trained SID (technology knowledge) and IQ
(Search tool knowledge) decrease negative effects

5 Conclusion and Future work

The paper demonstrates the relationship between
a common information demand model and the soft-
ware reuse area focused on missing knowledge of find-
ing, adapting, and integrating of a reusable software

unit. As demonstrated, it is possible to adapt the com-
mon information model to specific definitions of soft-
ware unit reuse. As a result, a new information model
has been created that is based on software reuse. It
is called Software Reuse Information Demand (SRID)
model. As a second step of this demonstration, the
SRID model was used in a critical success factor anal-
ysis to visualise critical success factors as knowledge
areas. This analysis shows that the SRID model can
demonstrate critical success factors of software reuse.
In the last step, two reuse problems based on missing
knowledge are taken from a list of identified knowl-
edge based problems as examples. These two exam-
ples of software unit reuse problems given by scien-
tific research were mapped to and visualised by the
SRID model. This combination (SRID model, project
relevant success factors, and project relevant reuse
problems based on missing knowledge) may used as
analysing method of software unit reuse inside soft-
ware development projects.

The paper demonstrates which success factors in
the SRID model may be affected by problems based
on missing knowledge. The demonstrated examples
also verified that information demand may help to ex-
plain the impact of problems in software unit reuse
that are based on missing knowledge. In future, the
new model may be used to analyse the problems of
software unit reuse in more detail. This may help to
find solutions to support software developers, software
architects, and individuals managing reuse. An impor-
tant research question for this future analysis method
may be how to reduce the impact of missing knowl-
edge to software unit reuse. This question will be ad-
dressed in the authors future research. Mapping the
SRID model to different reuse metrics or problems can
simplify the analysis of software reuse problems from
an information demand perspective. The employment
of the SRID model as a comparison platform is also to
be explored.

Acknowledgements

The authors would like to thank Schneider Elec-
tric and the partners of the ICT FP7 project “Coop-
erating Objects Network of Excellence” (CONET) for
their support.

References

[1] W. F. Boh, Reuse of knowledge assets from repos-
itories: A mixed methods study, Information and
Management, Vol. 45, No. 6, pp. 365-375, 2008.

[2] R. A. Caralli, J. F. Stevens, B. J. Willke, W.
R. Wilson, The Critical Success Factor Method:

Establishing a Foundation for Enterprise Secu-
rity Management, Software Engineering Institute,
available at http://www.sei.cmu.edu, last access
04.2011, 2004.

[3] C. M. Christensen, The innovator’s dilemma:
when new technologies cause great firms to fail,
Harvard Business School Press, 1997.

[4] T. Davis,The reuse capability model: a basis for
improving an organization’s reuse capability, In
proceedings Advances in Software Reuse, pp. 126-
133, 1993.

[5] K. C. Desouza, Y. Awazu and A. Tiwana, Four
dynamics for bringing use back into software reuse,
Communications of the ACM, Vol. 49, No. 1, pp.
96-100, 2006.

[6] W. Frakes and C. Terry, Software reuse: metrics
and models, ACM Computing Surveys, Vol. 28, pp.
415-435, 1996.

[7] W. B. Frakes and C. J. Fox, Quality improvement
using a software reuse failure modes model, IEEE
Transactions on Software Engineering, Vol. 22,pp.
274-279, 1996.

[8] V. C. Garcia, E. S. de Almeida, L B. Lisboa, A. C.
Martins, S. R. L. Meira, D. Lucredio, R. P. de M.
Fortes, Toward a Code Search Engine Based on the
State-of-Art and Practice. In proceeding of 2006
13th Asia Pacific Software Engineering Conference
(APSEC’06), pp. 61-70, 2006.

[9] S. Jansen, S. Brinkkemper, I. Hunink and C.
Demir, Pragmatic and Opportunistic Reuse in In-
novative Start-up Companies, IEEE Software, Vol.
25, No. 6, pp. 42-49, 2008.

[10] A.J. Ko, R. Abraham, L. Beckwith, A. Black-
well, M. Burnett, M. Erwig, J. Lawrance, H.
Lieberman, B. Myers, M.B. Rosson, G. Rother-
mel, C. Scaffidi, M. Shaw and S. Wiedenbeck,
The State of the Art in End-User Software En-
gineering, ACM Computing Surveys, available at
http://citeseerx.ist.psu.edu, 2009.

[11] W. Lam and M. Loomes, Re-engineering for
reuse: a paradigm for evolving complex reuse arte-
facts, In proceedings of the 20 Annual International
Computer Software and Applications Conference
(Compsac’98), pp. 507-512, 1998.

[12] A. C. Martins, V. C. Garcia, E. S. de Almeida and
S. R de Lemos Meira, Suggesting Software Com-
ponents for Reuse in Search Engines Using Dis-
covered Knowledge Techniques, In proceedings of

the 35th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA’09),
pp. 412-419, 2009.

[13] , J. Poulin, An Agenda for Software Reuse Eco-
nomics, Presentation on the International Confer-
ence on Software Reuse, 2002.

[14] A. Picot, Die grenzenlose Unternehmung: Infor-
mation, Organisation und Management Lehrbuch
zur Unternehmensfuehrung im Informationszeital-
ter, Gabler, 2003.

[15] A. Punder, S. Haeberling and R. Todtenhoefer,
An MDA Approach to Byte Code Level Cross-
Compilation, In proceedings of Software Engineer-
ing, Artificial Intelligence, Networking, and Par-
allel/Distributed Computing (SNPD’08), pp. 251-
256, 2008.

[16] J. F. Rockart, Chief executives define their own
data needs, Harvard Business Review, Vol. 2, pp.
81-93, 1979.

[17] S. G. Shiva and L. A. Shala, Software Reuse: Re-
search and Practice, In Proceedings of Fourth In-
ternational Conference on Information Technology
(ITNG’07), pp. 603-609, 2007.

[18] G. Wang and C.K. Fung, Architecture paradigms
and their influences and impacts on component-
based software systems, In proceedings of the37th
Annual Hawaii International Conference on Sys-
tem Sciences, Centre for Information Security and
Network Research, pp. 272-281, 2004.

[19] Y. Ye, An Active and Adaptive Reuse Repository
System, In proceedings of the 34th Annual Hawaii
International Conference on System Sciences, pp.
10-19, 2001.

[20] M. Zinn, G. Turetschek and A. D. Phippen, Def-
inition of software construction artefacts for soft-
ware construction, In proceedings of the Forth Col-
laborative Research Symposium on Security, E-
Learning, Internet and Networking, pp. 79-91,
2008.

Reusable Software Units Integration Knowledge in a

Distributed Development Environment

M. Zinn1, K. P. Fischer-Hellmann2, A. Schuette2 and A. D. Phippen1

1University of Plymouth, Plymouth, U.K.
2University of Applied Science Darmstadt, Darmstadt, Germany⋆

Abstract. Today’s software units (classes, components and services) require
large amounts of information during their development and use that can be docu-
mented for future reference, like documentation, multimedia files, specification,
and models. The availability of certain information, for example documentation,
is one of the factors that determines the capabilities of a unit, especially by reusing
it. Additional information is necessary and essential for the success of the en-
tire development process when applying certain procedure models, like Rational
Unified Process (RUP). Acquiring these units and their content is important for
reuse. However, this causes a problem in the area of global cooperation. Cur-
rently, approaches are missing that deal with software reuse in distributed soft-
ware reuse scenarios. Especially the problem of missing knowledge about inte-
gration of reusable software units in these scenarios has not yet been addressed.
This knowledge is also an important factor for reuse and reuse decisions. As a re-
sult software development teams locate at different locations my have problem to
integrate exchanged reusable software units. This paper discusses the challenges
of integration in distributed reuse scenarios by focusing on an industrial example
and create a model extension for a existing reuse system. As an result integration
of reusable software units can be done remotely without the necessary integration
knowledge.

1 Introduction

In object-oriented software development, various units of modeling are used. Typical
units are classes, components, and services [11]. Every unit type provides a certain
amount of information that is be used based on their underlying technologies, like ser-
vice description, documentation, or models [14]. In the scope of this paper, a compo-
nent is a deployed component. There are two important problems: development issues
related to a general view of these different units [11] and the decision to reuse a com-
ponent based on the available information [3]. Software Reuse Environments (SRE)
support software developers by addressing these problems. The general idea is to have
three important functions in one combined environment: reuse repositories, automatic
integration of software units, and the searching for these units. Current Integrated De-
velopment Environments (IDEs) are SRE systems. However, none of these approaches
completely fulfill the requirement of SREs to include all functions. [2]. Most of these

⋆ The authors would like to thank the French company Schneider Electric for providing infor-
mation about distributed existing software engineering scenarios.

SRE systems support the integration of information in a specified environment by us-
ing extensions that can directly communicate to a SRE system (e.g. Eclipse and Visual
Studio). These functions can be used in distributed and non-distributed scenarios. Typi-
cally, in such a scenario, the decision maker, the person who decides to reuse a specific
software unit, is the same as the integrator, implementing the reuse. However, there are
scenarios in which the decision maker and the integrator are not the same person. In the
scope of this paper this is called a distributed scenario because the individuals can be
located in different locations and differ in their domain of expertise. Typically, software
architects are this kind of decision makers in software development [4]. Figure 1 shows
these focused scenarios:

Fig. 1. Distributed and Non-Distributed Scenario.

The authors of this paper hypothesize that the reuse of software units in a distributed
scenario has a negative influence on the reuse. These negative impacts can be mitigated
by providing an integration model and a service based communication architecture to
achieve the integration. Challenges of the distributed software reuse scenario will be
discussed in this paper. The aim of this paper is to provide a solution for distributed
software reuse scenarios that can be used to support software development. This is
achieved by extending an existing software reuse architecture to include an integration
model. This solution is the result of research into Service-based Software Construction
Process (SSCP) incorporated into the field of SRE and the software unit reuse with lim-
ited knowledge. This paper’s heuristic value lies within the enhancements to existing
SOA-based (Service Oriented Architecture) architectures (SSCP System) by support-
ing the handling of units of modeling, like classes, components, and services, for use
by decision makers with integration tasks. The paper concludes with the fact that sup-
porting distributed scenarios can be done with an integration extension of the SSCP
system.

2 Two Problems in a Distributed Reuse Scenario

2.1 Problem Identification

Distributed software development scenarios cause special problems in Software Archi-
tecture, Engineering Processes, and R&D Organisation [1]. Especially the sharing of
reusable software units between teams have a deep impact on costs:

25

“A problem observed [...] is that when decoupling between shared software assets is
insufficiently achieved is excessive coordination cost between teams. One might expect
that alignment is needed at the road mapping level and to a certain extent at the planning
level. When teams need to closely cooperate during iteration planning and have a need
to exchange intermediate developer releases between teams during iterations in order
to guarantee interoperability, the coordination cost of shared asset teams is starting to
significantly affect efficiency.” [1]

To get an impression of the problems that may exist in a distributed reuse scenario,
it is helpful to observe an real life industrial scenario. For this, data from the company
Schneider Electric is used [8]. Information about used technology and methodologies is
provided by project leaders of Schneider Electric): Schneider Electric is a French com-
pany that focuses on the automation and energy industries. Employing approximately
130,000 people, divided into over 100 organisations, Schneider Electric is divided into
in 5 different domains: Building, Industry, Power, IT, and Energy. Each domain has
locations all over the world in many different countries. In each of these domains, soft-
ware development is an important part of the work and the provided software solutions.
Typical software development areas are server-, desktop-, web-, and embedded device
applications. Various locations work together to fulfil a task and provide a software
solution. Thereby, typical units of modelling (like classes, components, and services),
implemented in different technologies, are used (like .NET or Java). Schneider Electric
uses the typical component worlds (see [10]). Each location uses its own repository for
these units. However, the repository types and their usage differs. The authors analysed
6 software development projects of Schneider Electric from 2006 to 2010 that uses
a distributed scenario (limited to two locations) evaluating four different aspects: (1)
Which partner is developing the Software?, (2) Which partner is making architectural
decisions?, (3) Which partner is selecting reusable software units?, and Which partner
is integrating the selected reusable software units?

The result of this analysis can be describes as follows: (Answer Q1 and Q2) The
characteristics of the analysed scenario include that the partner who selects the reusable
components is not the partner who is doing software development. Most time Indian
software development teams were responsible and team from other countries are the
software designer making architecture decisions.(Answer Q3) Also selecting of reusable
software units, like corporate identity or login components are selected by the non de-
veloper teams. (Answer Q4) In each analysed project the integrating task was done by
the software development team. The previous analysis shows a distribution pattern. The
development task and the development decisions are done by separated teams located
in different countries. Such patterns include different problems. In the following section
the problem of accessibility and integration will be discussed and analysed.

2.2 Accessibility Problem

The accessibility problem for software unit reuse can be explained using the Software
Reuse Information Demand Model (SRID) [13], that is based the Information Demand
Model [6]. From the SRID point of view of information depends on five factors :

26

– Objective information demand: This is the entire (theoretical) amount of informa-
tion that can solve a problem.

– Subjective information demand: This is all information that the user believes can
solve the problem.

– Information provision: This is all information that is accessible.
– Information request: This is a search request the user formulates to find information

relevant for solving the problem.
– Real level of information: This is all information that is correct, is available to the

user, is accessible, and is requested by the user.

All these 5 factors are part of the Software Reuse Information Demand model (see
Figure 2). The general problem of information demand arises because the real level of
information is a subset that is limited by the user’s ability to formulate the request (Real
level of information). Figure 2 shows the relationship between the five factors.

Fig. 2. SRID model [13] (based on [6]).

In the area of accessibility this problem can be identified when a user has to search
for a reusable software unit in an external environment. Missing knowledge about a
providing system (repository) limits the information request [9]. The user is less able
to formulate a request. The severity of this problem comes from most users being ju-
nior, inexperienced software developers [9]. Another accessibility problem occurs when
the user has no access to the software reuse environment of another location. This is
an information demand problem based on infrastructure requirements. In the case of
Schneider Electric, both accessibility problems occur.

2.3 Integration Problem

A user who wishes to integrate a reusable software unit has to know about the dependen-
cies, structure, configuration and technology of the unit. Especially configuration has
been a problem for some years [7]. This limits the overlapping area between subjective
and objective information demand (See Figure 2). The result is a strong limitation of
the real level of information. This is demonstrated in the following simple example: In
the initial situation the reusable component library for discovery device profile based
web service is a .Net library called ’Discovery.dll’. It uses another reference called
’DPWS.dll’ that is an unmanaged .NET library and includes some specific libraries that
are used by the Discovery.dll file. A configuration file is required (’Config.xml’) that has

27

to be placed in the same directory as the Discovery.dll file. By using Visual Studio, the
user has to perform following integration steps to create this setup:

1. add the Discovery.dll as a reference, because of the user will require functions,
structure, user interfaces or data from this library.

2. write a script to copy DPWS.dll in the release directory after compiling, because
of the unmanaged libraries can not be easily managed by the IDE.

3. add the Config.xml to this project and set the copy attribute to “Copy if newer”,
because of this file contains settings that will be used during runtime.

This example illustrates the complexity of software unit integration for a specific
environment. If the user is unaware of these integration steps, the process is likely to be
time consuming. Therefore, the problem of integration is to know these additional setup
steps. Each reusable unit needs further steps for integration. In a distributed scenario the
individual who is aware of these steps cannot be in a different location. In this case the
integration problem is also a problem of information demand.

3 Solution Approach

Approaching the problems involves two different models. The first is an integration
model and the second an architecture extension to support distributed scenarios. The
model, the architecture, and the combination to support distributed software unit reuse,
constitutes the scientific contribution of this paper.

3.1 An Integration Model as Reuse Model Extension

In the context of the underlying research, the authors developed an ontology to the
subject ’Service-based Software Construction Process’ in order to counteract the prob-
lems experienced in software unit reuse [14]. Also an environment was build using this
ontology and enabling users to do software unit reuse (focusing search, adaption, and
IDE integration of units) without the complete necessary knowledge. The used ontol-
ogy serves only the unified description of units of modelling (classes, components and
services). This includes the description of technological facts (components, services,
etc.).

The ontology consists of 4 parts. Part 1 shows the access to the ontology: The
problem-solution approach’ Part 2 relates to ’general business information’ about the
solution (e.g., manufacturer, name, and author). Part 3 describes the solution as a tech-
nical unit (e.g., a type of unit, a technology, a file format, or files). In Part 4 the technical
contents are described thereby explaining a semantic search approach that is discussed
in a previous publication (See [15]). If an instance of the ontology is generated (e.g.,
by the registration of a newly developed unit), the user has to specify information that
is stored in the appropriate area of the ontology. The data may also be entered auto-
matically into Part 3 of the ontology. This is possible as the technical data is generally
detectable (such as file size, file type, file name, and technology). Nevertheless, the
data from other sections of the ontology is not automatically detectable. The ontology

28

describes services, components, and classes in the same way and abstracts them into
units (unit view). Based on this abstraction, the ontology will be extended by collection
requirements of different use cases (called views). Figure 3 demonstrates this relation-
ship.

Fig. 3. Description layers of the Service based Software Construction Model.

Fig. 4. SSCP Model Section 3 - Technical Descriptions.

The following section displays and further describes modelling of the integration.
This corresponds to Part 3 of the ontology. Moreover, it is focused on the problems
indicated in Section 2. Figure 4 shows Part 3 of the ontology in a simplified way, de-
scribing the technical building of a unit. The ’UOM’ entity is the main part of the on-
tology. This entity is linked with the ’Unit’ entity on equal terms. ’Unit’ is described in
multiple ways, the first being the technical presentation broken down into four smaller
entities (’Snippet’ for code units, ’Service’ for service-based units, ’Class’ for object-
oriented class units, and ’Component’ for deployed software components). The file con-
tent of a unit can be classified as either machine-readable or human-readable content.
The machine-readable content is a set of files (the ’File’ entity) that can be further
classified by their usage content (code fragment, class, binary code, and service infor-
mation). These usage entities are linked to the technical presentation. The other content
of a unit is shown by the human readable content entity. This entity represents files that
are further classified by the presentation mode (document, video, audio, and picture).
The final piece of the unit is the technology description, for which a simple approach
has been selected. The ’Unit’ entity has a relationship to the ’Environment’ entity that
is described through the ’Platform’, ’Technology’ and ’Programming language charac-
teristic’. For example, a component may depend on the .Net framework (based on the
32-bit variety) and the C# programming language.

29

A unit has been represented as a common description of classes, components, and
services and will now be extended with integration information. The ’Real File’ node
in the base semantic model may have instances of integration descriptions. Each node
in the semantic model contains a unique identifier (ID) and a friendly name property.
This is not sketched in Figure 5. Three questions have to be answered in relation to unit
integration (Questions are defined from the result of the component analysis of [5]):
(1) What is the target platform? (2) How should the unit be integrated? (3) What is the
scope of the unit?

The target platform has to be validated before integration can proceed. This is crit-
ical, as the current research of the extension model includes parts that are platform
dependent. A platform is marked by the ’IDE’ node that has a relation to the ’environ-
ment’ mode of the base model. The meaning of this relation is that the ’IDE’ shows
which kind of environment can be used to host, build, and execute a software unit. The
’Real File’ node has an indirect relation (given by the base model) to an ’Environment’
node. This relation describes the appropriate environment to use with this unit. From
the semantic point of view, the ’Environment’ node can be used to validate the compat-
ibility between a software unit and the platform of the IDE. For example, a class file
that requires the .NET framework is generally not compatible with a Java-based envi-
ronment (such as Eclipse). The process of integration can be illustrated by detailing the
various integration patterns of the Visual Studio and Eclipse APIs. The following con-
cepts are necessary from the view of the authors and are provided in both environments
Visual Studio.NET and Eclipse (handling in the two environments differs):

– OnlyCopy: This copies a file without referencing it in the solution tree of the
project. This is necessary for second level dependencies that are not controlled by
the IDE environment.

– WebReference: This marks a file as a web reference. Different IDEs utilize different
methods to manage this information. For example, Visual Studio can use a WSDL
file to create a reference to a web service that is based on the corresponding WSDL
description.

– Reference: This copies a file and includes it in the solution tree of the project. This
is a traditional reference that can be included or imported. This is necessary for
managing the dependencies of a unit.

– DoNotCopy: This prevents a file from being transferred into a project’s environ-
ment. All files a unit includes are not necessarily required by the IDE (e.g., docu-
mentation).

– InsertAsText: This flags the content of a file to be treated as text when loaded into
the IDE. This is useful for code references (using or import) and code snippets.

– CopyAsResource: This flags a file to be used as a resource and includes it in the
project (e.g., configuration files).

The scope of the unit is used to create integration packages. For instance, a library
refers to another library as a dependency, so both libraries have to be delivered. This
relation can be modelled by referring an “Integration package” node to the global “unit”
node. A unit is now part of an integration package. Each of these packages includes files
with integration descriptions that are related to an instance of the integration package.

30

Fig. 5. Integration model extension of Figure 4 (top) and data model variation.

Figure 5 shows a model integration extension in relation with the normal unit descrip-
tion.

3.2 Architecture Extension

In a previous publication, [12] an architecture of a service-based software construction
CASE- tool was sketched. Figure 6 shows an overview of this sketched architecture:

Fig. 6. Communication Architecture extended version of [12].

The architecture is used to implement a distributed system that deals with the un-
derlying topic of missing knowledge in software reuse (see Section 1). It is capable
of integrating existing software unit repositories and handles them within the seman-
tic model. The server side of this architecture provides different functions like search,
management, transformation, and deployment of software units. On the client side a
management client and an integration client are sketched. In contrast to the manage-
ment client, the development client does not influence the artefacts (groups of software
units with the same business context), such as the deletion of an artefact or software

31

unit on the server. Besides searching for artefacts or units of modelling, the develop-
ment client is responsible for the transformation and the integration of transformation
results into the current development project. In this described scenario the integration
client communicates directly to the server. This belongs to a non-distributed scenario.
The user searches, selects, and integrates software units into the project, using the in-
tegration client which is hosted in the IDE (or the host system). This architecture will
be extended by adding an integration plugin next to the Deployment and Transforma-

tion. Analysing the scenarious of Figure 7 two distributed scenarios c are identified by
the authors using the infrastructure given by the architecture of Figure 6: Light-weight

scenario: The integration client receives metadata from the management client about
the unit(s) that are to be integrated. The integration client is able to do a specific search
on the server with a single unit as a search result. Heavy-weight scenario: The man-
agement client sends the integration information directly to the integration client; there
is no need for the integration client to communicate with the server.

The two scenarios differ in the amount of data which has to be exchanged between
the management client and the integration client. In the light-weight scenario, the man-
agement client sends only metadata to the integration client. Therefore, the integration
client can perform the search. In the other scenario, all data required for integration is
sent. Figure 7 illustrates both scenarios:

Fig. 7. Light- and Heavy-weight scenario.

Based on the integration extension for the semantic model (see Section 3.1) a data
model can be created for communications. [12] shows an XML description of data
entities that is used in SOAP based communication between clients and the server.
Figure 5 shows the data model that is used for integration.

Based on the light- and heavy-weight scenarios, a service for the integration client
can easily be defined. The light-weight scenario involves the integration client requir-
ing the meta data and the ID of the integration package of the unit (see Figure 5).
A unit includes all references to file elements, allowing the client to request specific
information about the unit from the server. The heavy-weight scenario requires the
integration client to know a set of integration information. Therefore, all files and
an ID for an integration package is required which describes the integration of the
files (see Figure 5). An web service interface supporting both scenarios (based on the
data model of Figure 4) may described as into two operation: GetIntegrationDataL-

ightWeigth(Guid serverID, Guid artefactID, UOM unit, Guid integrationPackageID)

and GetIntegrationDataHeavyWeigth(FileElement[] setOfIntegrationFiles, Guid inte-

grationPackageID).

32

4 Example Scenario Discussion

As discussed in Section 3, the paper focuses on the problems of accessibility and inte-
gration. Section 4 now addresses a definition of a problem approach. The relationship
between both discussions can be demonstrated with a simple comprehensive example.
Given the scenario of Schneider Electric (see Section 2.1), two teams situated in dif-
ferent locations (French and India) are working together on a software development
project. The French team is defining the architecture and preselecting existing software
units that are developed by the same team. The Indian team is responsible for the real
implementation and integration (see Figure 1). Integration Problem: The team in India
has no information about the structure and the dependencies of the reusable software
units. Learning to integrate these units would take a considerable amount of time. By
using the focused architecture and integration model of Section 3, the team can use the
integration description for automatic or manual integration. As a result, the integration
team needs less knowledge about the integration of a specific reusable unit. However,
this is only possible if integration descriptions are available. So the French team have
to insert the information in the SSCP environment. But only one time. Accessibility

Problem: The architecture extension discussed in Section 3 allows the French team
to send information to the team in India. They may send only unit meta-information
(light-weight scenario) or they may send the complete unit description including all in-
formation for integration (heavy-weight scenario). In the first case, the Indian team has
information about the unit, but they have to connect and use the repository tool of the
French team. This only solves one a part of the accessibility problem, because this team
has to know how to access the repository system. They are however, able to formulate
a query for this system. In the second case, the Indian team can directly integrate the
unit without accessing the repository tool (see Figure 1). This result is very important.
The Indian team does not need to access this repository. The accessibility problem de-
scribed in Section 3 can be described by the questions ’Where is the repository?’, ’How
to access it?’, and ’How to use it’. At this point the Indian team does not need to handle
the repository because of the other team is doing this. As an result the different question
does not occur.

Another interesting result is reuse of this integration knowledge. After the French
team added the knowledge to the SSCP system. it is reusable at any time. Different
teams located around the world can be supported.

The example discussion shows that both scenarios (light and heavy-weight) may be
resolved by the solution described in Section 3. However, this depends on the availabil-
ity of an integration model and the distributed scenario in use.

5 Conclusions

This paper demonstrates the problems of accessibility and integration when using a dis-
tributed industrial scenario. This scenario deals with projects that reuse software units
and is implemented by two teams in different locations. Accessibility is a problem if one
team requires access to the repository system of another team without having knowl-
edge of the tool. Accessibility is also a problem, if there is no access to a repository

33

system. Integration becomes a problem if the integration team has no knowledge about
the structure and dependencies of the reusable software unit. All problems are based on
missing information. The result of these problems is a negative influence on software
unit reuse (as it may increase integration time, etc.). This illustrates the importance of
information in software unit reuse. A described problem approach uses an extended
semantic model that describes different software units (classes, components, and ser-
vices) in a unified way. This extension describes data that is needed to integrate Studio
and Eclipse. Based on this, a distributed architecture of a software reuse environment
was extended to solve the discussed problems (accessibility and integration). The ac-
cessibility problem is solved by using the architecture to get the integration information
without the need of connecting to a repository system. The integration problem is solved
by providing the integration information as part of the description of the reusable soft-
ware unit. The model combined with the architecture is the described novelty of this
paper. This paper arrives at the conclusion, that the discussed accessibility and integra-
tion problems can be solved by providing the correct meta-information and technical
infrastructure to deliver the information. Integration of reusable software units should
not need expert knowledge. However, this paper only discuss a solution. The created
model and architecture extension should be tested in a additional case study by ad-
dressing the advantages for software developers in more complex distributed scenarios.

References

1. Jan Bosch and Petra Bosch-Sijtsema. From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and Soft-
ware, 83(1):67–76, 2010.

2. Vinicius C. Garcia, Eduardo S. de Almeida, Liana B. Lisboa, Alexandre C. Martins, Silvio
R. L. Meira, Daniel Lucredio, and Renata P. de M. Fortes. Toward a code search engine based
on the State-of-Art and practice. In 2006 13th Asia Pacific Software Engineering Conference
(APSEC’06), pages 61–70, Bangalore, India, 2006.

3. Slinger Jansen, Sjaak Brinkkemper, Ivo Hunink, and Cetin Demir. Pragmatic and oppor-
tunistic reuse in innovative start-up companies. IEEE Software, 25(6):42–49, 2008.

4. Philippe Kruchten, Rafael Capilla, and Juan Carlos Dueas. The decision view’s role in soft-
ware architecture practice. IEEE Software, 26(2):36–42, 2009.

5. Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N. Slyngstad, and
Maurizio Morisio. Development with Off-the-Shelf components: 10 facts. IEEE Software,
26(2):80–87, 2009.

6. Arnold Picot. Die grenzenlose Unternehmung: Information, Organisation und Management
Lehrbuch zur Unternehmensfuehrung im Informationszeitalter. Gabler, Wiesbaden, neuaufl.
edition, 2003.

7. Marcello Rosa, Wil M. P. Aalst, Marlon Dumas, and Arthur H. M. ter Hofstede.
Questionnaire-based variability modeling for system configuration. Software & Systems
Modeling, 8(2):251–274, 2008.

8. Schneider-Electric. Schneider-Electric website. http://www.schneider-electric.com, Septem-
ber 2010.

9. Sajjan G. Shiva and Lubna Abou Shala. Software reuse: Research and practice. In Fourth
International Conference on Information Technology (ITNG’07), pages 603–609, Las Vegas,
NV, USA, 2007.

34

10. Clemens Szyperski. Component software: beyond object-oriented programming. ACM Press
Addison-Wesley, New York, London, Boston, 2nd ed., 2002.

11. G. Wang and C. K. Fung. Architecture paradigms and their influences and impacts on
component-based software systems. In 37th Annual Hawaii International Conference on
System Sciences, 2004. Proceedings of the, pages 272–281, Big Island, Hawaii, 2004.

12. M. Zinn, K. P. Fischer-Hellmann, and A. D. Phippen. Development of a CASE tool for the
service based software construction. pages 134–144, Plymouth, 2009. Centre for Information
Security and Network Research.

13. M. Zinn, A. Schuette K. P. Fischer-Hellmann, and A. D. Phippen. Information demand model
for software unit reuse. In The Proceedings of the 20th International Conference on Software
Engineering and Data Engineering, pages 32–39, Las Vegas, June 2011.

14. M. Zinn, G. Turetschek, and A. D. Phippen. Definition of software construction artefacts for
software construction. pages 79–91, Plymouth, 2008. Centre for Information Security and
Network Research.

15. Marcus Zinn, K. P. Fischer-Hellmann, and Alois Schuette. Finding reusable units of mod-
elling - an ontology approach. In Proceedings of the 8th International Network Conference
(INC’2010), pages 377–386, Heidelberg, July 2010.

35

Entwurf komplexer
Automatisierungssysteme

EKA 2012

Beschreibungsmittel, Methoden,
Werkzeuge und Anwendungen

12. Fachtagung
mit Tutorium und Toolausstellung

09. bis 10. Mai 2012
in Magdeburg
Denkfabrik im Wissenschaftshafen

Institut für Automation und
Kommunikation e.V. Magdeburg

Otto-von-Guericke-Universität Magdeburg
Institut für Automatisierungstechnik

Herausgeber:

Prof. Dr. Ulrich Jumar
Institut für Automation und Kommunikation e.V. Magdeburg
an der Otto-von-Guericke-Universität Magdeburg
Werner-Heisenberg-Str. 1, 39106 Magdeburg
Tel.: +49 391 9901410; Fax: +49 391 9901590; E-Mail: ulrich.jumar@ifak.eu

Prof. Dr.-Ing. Dr. h. c. Eckehard Schnieder
Technische Universität Braunschweig
Institut für Verkehrssicherheit und Automatisierungstechnik
Langer Kamp 8, 38106 Magdeburg
Tel.: +49 531 391-3317; Fax: +49 531 391-5197; E-Mail: e.schnieder@tu-bs.de

Prof. Dr. Christian Diedrich
Otto-von-Guericke-Universität Magdeburg
Institut für Automatisierungstechnik
Universitätsplatz 2, 39106 Magdeburg
Tel.: +49 391 6718499; Fax: +49 391 6711186; E-Mail: christian.diedrich@ovgu.de

Veranstalter:

ifak – Institut für Automation und Kommunikation e.V. Magdeburg
in Kooperation mit dem Institut für Automatisierungstechnik der Fakultät für Elektrotechnik und
Informationstechnik der Otto-von-Guericke-Universität Magdeburg

Veranstaltungsort:

Denkfabrik im Wissenschaftshafen Magdeburg
Werner-Heisenberg-Straße 1
39106 Magdeburg

Programmkomitee:

Prof. Dr. U. Jumar (Magdeburg) Prof. Dr. R. Findeisen (Magdeburg)

Prof. Dr. C. Diedrich (Magdeburg) Prof. Dr. G. Frey (Saarbrücken)

Prof. Dr. E. Schnieder (Braunschweig) Prof. Dr. P. Göhner (Stuttgart)

Prof. Dr. D. Abel (Aachen) Prof. Dr. H.-M. Hanisch (Halle-Wittenberg)

Prof. Dr. U. Berger (Cottbus) Prof. Dr. S. Kowalewski (Aachen)

Dr. J. Birk (Ludwigshafen) Dr. B.-M. Pfeiffer (Karlsruhe)

Prof. Dr. S. Engell (Dortmund) Dr. G. Rauprich (Leverkusen)

Prof. Dr. U. Epple (Aachen) Dr. R. Schoop (Seligenstadt)

Prof. Dr. A. Fay (Hamburg) Prof. Dr. B. Vogel-Heuser (Kassel)

Prof. Dr. M. Felleisen (Pforzheim) Prof. Dr. P. Winzer (Wuppertal)

Prof. Dr. W. Fengler (Ilmenau)

© 2012 ifak Institut für Automation und Kommunikation e.V. Magdeburg, 39106 Magdeburg

Alle Rechte, auch das des auszugsweisen Nachdrucks, der auszugsweisen oder vollständigen
Wiedergabe (Fotokopie, Mikroskopie), der Speicherung in Datenverarbeitungsanlagen und das
der Übersetzung, vorbehalten.

ISBN: 978-3-940961-72-3

 III

Vorwort

Die Tagung EKA – Entwurf komplexer Automatisierungssysteme hat über ihre nunmehr bereits
20-jährige Geschichte nichts an Aktualität verloren. Von Prof. Dr.-Ing. Dr. h.c. Eckehard
Schnieder an der TU Braunschweig ins Leben gerufen, wird die EKA seit 2008 im
Zweijahresrhythmus gemeinsam vom Institut für Automation und Kommunikation (ifak) und
dem Institut für Automatisierungstechnik der Otto-von-Guericke-Universität in Magdeburg
durchgeführt.

Schwerpunkte der Fachtagung sind Beschreibungsmittel, Methoden und Werkzeuge für den
Entwurf komplexer Automatisierungssysteme. Ein gelingender Brückenschlag zwischen
theoretischen Erkenntnissen und deren praktischer Nutzung ist ein wichtiges Anliegen der
Tagung. Als deutsch-sprachige Tagung mit wissenschaftlichem Anspruch möchte die EKA den
Entwurf komplexer Automatisierungssysteme in der großen Breite der eingesetzten Methoden
und der Vielfalt der Anwendungsgebiete beleuchten.

Neben dem Brückenschlag zwischen Theorie und Anwendung dokumentiert das
wissenschaftliche Programm der EKA zugleich die Einheit von Regelungs- und
Automatisierungstechnik. Der Tatsache, dass zu der gemeinsamen Fachdisziplin sowohl
mathematisch inspirierte systemtheoretische Arbeiten der Regelungs- und Steuerungstechnik als
auch informatikgetriebene Methoden der Automatisierungstechnik zählen, wird man sich nicht
verschließen können. Überdies ist eine solche Differenzierung zwar innerhalb der Fachdisziplin
in gewisser Weise verständlich, historisch gewachsen und akzeptiert.

Für Vertreter aus Wissenschaft und Anwendung anderer Disziplinen ist eine Trennung in
Regelungs- und Steuerungstechnik auf der einen Seite und Automatisierungstechnik auf der
anderen Seite dagegen wenig plausibel. Eine ganzheitliche Perspektive auf die verschiedenen
Facetten der Automation ist mit Blick auf die effiziente Lösung automatisierungstechnischer
Aufgaben nicht nur hilfreich, sondern vielfach sogar zwingend. In einigen großen Tagungen und
Kongressen wird eine solche Gesamtsicht zwar in einem umfassenden Programm geboten,
durch einen hohen Grad der Parallelität von Sitzungen gehen wünschenswerte Synergien aber
wieder verloren. Bewusst ist die EKA deshalb einsträngig und gut überschaubar gehalten.

Die Komplexität als langjähriger Gegenstand der Fachtagung EKA liefert im Jahr 2012 auch das
Motto des deutschen Automationskongresses. Nicht nur technische Systeme, auch die
verschiedenen Bereiche unseres Alltags scheinen durch eine ständig wachsende Komplexität
gekennzeichnet. Der Kongress AUTOMATION 2012 greift mit dem gewählten Motto
„Komplexität beherrschen – Zukunft sichern“ die hiermit verbundenen Herausforderungen auf.

Ob in der Fertigungs- oder Prozessindustrie, der Energiewirtschaft, im Verkehr oder der
Medizintechnik – überall kommt der Automation eine Schlüsselfunktion beim Beherrschen
komplexer Systeme zu. Getreu ihrem Anspruch steht bei der EKA die Beherrschung des
Entwurfs komplexer Automatisierungssysteme durch Beschreibungsmittel, Methoden und
Werkzeuge im Vordergrund. Damit fokussiert die EKA insbesondere wissenschaftliche und
methodische Aspekte, die bei geeigneter Abstraktion eine Klammer über vielfältige mögliche
Anwendungen bilden.

 IV

Das Programmkomitee hat nach sorgfältiger Begutachtung aus den eingereichten Beiträgen eine
Auswahl für die Tagung EKA 2012 zusammengestellt. Im vorliegenden Tagungsband sind die
Endfassungen der von den Autoren eingereichten ausführlichen Manuskripte zu Vorträgen und
Postern zusammengestellt, wobei sich die Reihenfolge an der zeitlichen Abfolge der Sitzungen
orientiert:

- Beschreibungsmittel
- Posterpräsentation
- Modellierung und Entwurf
- Zuverlässigkeit, Konsistenz
- Werkzeuge
- Anwendungen

Vorgeschaltet ist der Fachtagung EKA 2012 wieder ein Tutorium, dessen Beiträge ebenfalls in
den vorliegenden Tagungsband aufgenommen wurden. Das Systemengineering in der
Automation wird durch die Interaktionen zwischen technischen Systemen, deren Komponenten,
den Bearbeitern verschiedener Professionen und vielfältigen Softwarewerkzeugen bestimmt.
Diese Interaktionen gehen über einen rein technischen Datenaustausch hinaus. Erforderlich ist
ein eindeutiges Verständnis der Sinnhaftigkeit, d. h. der Bedeutung hinter den Daten. Unter der
Überschrift „Semantik in der Automation“ widmet sich das Tutorium der EKA 2012 deshalb
dem Aufgabengebiet der semantischen Beschreibung und daraus ableitbaren
Assistenzfunktionen.

Im Namen der drei Tagungsleiter wünsche ich Ihnen eine interessante Lektüre des
Tagungsbandes der 12. EKA

Prof. Dr.-Ing. Ulrich Jumar
im Namen der Herausgeber

Prof. Dr.-Ing. Eckehard Schnieder
Institut für Verkehrssicherheit und
Automatisierungstechnik
Technische Universität Braunschweig

Prof. Dr.-Ing. Christian Diedrich
Institut für Automatisierungstechnik
Otto-von-Guericke-Universität
Magdeburg

Prof. Dr.-Ing. Ulrich Jumar
ifak – Institut f. Automation
und Kommunikation e.V.
Magdeburg

 V

Inhaltsverzeichnis:

Modellierungsvorschlag zur grafischen Beschreibung alternativer und paralleler Prozessabläufe auf

Basis eines Vergleichs bestehender Beschreibungsmittel – Diskussion zur Erweiterung der VDI/VDE-

Richtlinie 3682 „Formalisierte Prozessbeschreibung“

Lars Christiansen, Tobias Jäger, Frank Schumacher, Alexander Fay (HSU Hamburg) 1

SFC-based Process Description for Complex Automation Functionalities
Liyong Yu, Gustavo Quirós, Sten Grüner, Ulrich Epple (RWTH Aachen) .. 13

Kombinierung constraintbasierter Methoden und Petrinetztechniken zur Modellverifizierung offener,

diskreter und reaktiver Systeme

Jan Krause, Stephan Magnus (ifak Magdeburg) ... 21

Semantische Optimierung im Requirements Engineering durch Terminologiemanagement
Susanne Arndt (TU Braunschweig) .. 35

Beschreibungsmittel für Abhängigkeiten zwischen physikalischen und funktionalen Strukturen

Markus Göring (Vattenfall), Alexander Fay (HSU Hamburg) .. 47

Analyse der praktischen Relevanz verschiedener Beschreibungsmittel im Entwurfsprozess von

Produktionssystemen

Matthias Foehr (Siemens AG), Arndt Lüder, Alexej Steblau, Matthias Lüder (Universität Magdeburg) .. 61

Entwurf eines rigorosen Modells für die Echtzeitsimulation auf Automatisierungssystemen
Kai Krüning, Caspar Kielwein, Ulrich Epple (RWTH Aachen) ... 73

Konzept und Erfahrungen beim Abgleich mehrerer Domain-Ontologien

Thomas Hadlich, Christoph Engel, Christian Diedrich (Universität Magdeburg),
Mathias Mühlhause (Siemens AG) ... 81

Zwei-Ebenen-Modellierung eines automatisierten Straßenverkehrs mit Petrinetzen

Matthias Hübner, Eckehard Schnieder (TU Braunschweig) ... 91

Reuseable Software Unit Knowledge for Device Deployment

Marcus Zinn (University of Plymouth/Schneider Electric), Klaus Peter Fischer-Hellmann (Universität
Darmstadt), Ronald Schoop (Schneider Electric) ... 99

Untersuchung zur FPGA-Implementierung von Mess- und Regelungsalgorithmen

Irina Gushchina, Bernd Däne, Alexey Moskalev, Wolfgang Fengler (TU Ilmenau) 111

Funktionsorientierte Auslegung eines Linearantriebs

Florian Riekhof, Petra Winzer (Bergische Universität Wuppertal),
Linus Wörner, Stefan Kulig TU Dortmund) ... 121

Ressourceneinsatzplanung für „Robot Farming“ Konzepte in der Montage

Volker Zipter, Michael Zürn (Daimler AG), Ulrich Berger (BTU Cottbus) ... 139

Modellierung und Simulation von Cyber-Physical Systems

Liu Liu, Felix Felgner, Georg Frey (Universität des Saarlandes) ... 149

Erweiterung des V-Modells® für den Entwurf von verteilten Automatisierungssystemen

Timo Frank, Birgit Vogel-Heuser (TU München), Thomas Hadlich, Christian Diedrich (Universität
Magdeburg), Karin Eckert (HSU Hamburg) ... 159

“Reuseable Software Unit Knowledge for Device Deployment”

M. Zinn1,3, K. P. Fischer-Hellmann2, R. Schoop3
1University of Plymouth, CSCAN, Drake Circus Devon PL48AA Plymouth, UK, 2University of

Applied Science Darmstadt, Haardtring 100 64295 Darmstadt, Germany, 3Schneider Electric

Automation GmbH, Steinheimer Str. 117, 63500 Seligenstadt, Germany

E-Mail: marcus.zinn@plymouth.ac.uk, k.p.fischer-hellmann@digamma.de,

ronald.schoop@schneider-electric.com

Abstract: Deployment of software units into embedded devices requires dedicated knowledge.

Usually, this is specialist knowledge, covering technology (hardware platform, software

technology) functionality (interfaces, interaction state machines), and processes (deployment

procedures, rules). Gaining and applying this knowledge requires time. This paper presents the

results of a case study identifying relevant knowledge for device deployment. The study analyses

three different embedded device engines supporting service based device deployment. The

identified knowledge, including how to deploy software units into the analysed device platforms,

is used to construct a new model and to extend an existing semantic service based software unit

reuse model. As a result, a usage environment employing this model enables an inexperienced

user to repeat the stored deployment procedures without having all the required knowledge. In

other words, these users will reuse the stored software unit knowledge. This paper addresses the

topic of device deployment and software reuse knowledge.

Keywords: Software Unit Reuse, Deployment, Information, Knowledge

1 Introduction

Deployment of embedded devices is seen as the physical set up of devices in a specific

environment (e.g. medical devices [BuDoVi2009]). From a software development perspective,

deployment may be seen as the installation of software on a system [BuDoVi2009]. From here

on, the term ’deployment’ will refer to the latter definition. The conception of embedded devices

has changed in the past. Originally, such devices were perceived as [Gill2005]: (1) Specialised

on a specific task by limited functionality. (2) Built for an unchanging environment. (3) Limited

by resources. (4). Nowadays, they are perceived as embedded systems, which are characterised as

being [Gill2005]: (1) (Self-)adaptive, open and more efficient. (2) Capable of dynamically

handling multiple tasks. (3) ’Plug and Play’-able for integration. The reason for this change of

perception can be seen “as a consequence of the integration of IT” [Gill2005] into the field of

embedded systems. The authors perceive this change to be a result of advancements in hardware

and software of embedded systems. Over time, hardware became more capable of handling

increasingly complex software instructions, more advanced software technologies, and platforms

EKA 2012 - Entwurf komplexer Automatisierungssysteme 99

__

[GIMaCa2006], [Gill2005]. This increased flexibility enables the implementation of special

software features, namely: Fault Tolerance [PiCaSa2008], Security [GoWoBu2008], and

Dynamic Infrastructure [KarTa2009]. The high number of available embedded devices poses a

problem for software (re)use. This problem is especially apparent in the area of automation

where a lot of different types of devices exist. Usually, available devices are distinguished by

hardware technology, software technology, form factor, performance classes and safety features.

This results in the fragmentation of both software platforms and libraries for embedded devices.

Therefore, the task of (re)using such software units for embedded devices is becoming

increasingly more complicated and requires special knowledge for adaption, integration,

transformation, and deployment. This kind of knowledge is not universally available and might

be difficult to acquire, especially for younger professionals [ShiSha2007]. The solution to these

problems can be identified as the reduction and simplification of required knowledge that enables

the user to deploy (in other words to reuse deployment knowledge of) software units without the

complete knowledge previously required. This paper aims to achieve this by extending an

existing software unit reuse model with its own deployment description model. This work is part

of the research on the Service-based Software Construction Process (SSCP) [ZiFHPh2010]

incorporating the field of Software Reuse Environments. Its goal is to find a semantic model

(about search, adaption, integration, and deployment of software units) combined with service

technology that aids software engineers to perform software reuse (search, adaption, integration,

and deployment) without having all the previously required knowledge.

2 State of the art examples and related work

One way of handling embedded device deployment is to use deployment engines for

communication. Typical examples from the automation area are: Sonata Engine, Dynamic

Deployment with DPWS, and OSGi Deployment. The Sonata Engine was developed by the

companies Inico and Schneider Electric [Sonata2011]. It is a deployment engine for automation

devices with a built-in compiler and deployment system, which can be used on different device

platforms. An important feature is the built in development environment. Code can be directly

entered on a web page running on the device. The compilation and deployment process is

performed by the Sonata Engine on the device itself. This feature makes the engine flexible in

changing the device functionality. Instead of using this “integrated” method, tools can be

developed to control the deployment process externally. Dynamic Deployment is based on Web

Service Management (WS-Man) and the Device Profile for Web Service (DPWS). WS-

Management is a network protocol for XML based web services and is used to exchange SOAP

based messages between systems containing management information. WS-Man is commonly

employed to manage system resources. It is a standard protocol used by the Desktop

Management Task Force (DMTF) and can be combined with different resource description

models like DPWS. DPWS is a profile for embedded devices [NiReDri2009]. It defines web

service profiles like discovery and can also be used for runtime deployment [Gill2005]. In the

SOA4D project WS-Man was combined with DPWS [SOA4D2011] to develop a dynamic

100 EKA 2012 - Entwurf komplexer Automatisierungssysteme

__

Service Oriented Architecture (SOA) infrastructure for devices. To deploy services, the Dynamic

Deployment Engine needs hardware configuration files, WS-Man Resource files (including

DPWS Service information), and specific binary files. In contrast to the Sonata Engine, the files

for the deployment process will not be created on the device, but externally. OSGi (Open Service

Gateway Initiative) is a common way of managing software units for devices, such as automotive

devices (telematics), smart home devices (home appliances, security systems, energy

management systems), and mobile devices (cellular phones, PDAs) [ACE2011]. In the last few

years it was also utilized to handle reusable (Java) components on system level. Software for

OSGi based devices is distributed in form of packages called ’OSGi bundles’. A bundle contains

all interfaces, classes, resource files, and a manifest file in a single JAR file. OSGi can also be

viewed as a configuration system [OSGi2009]. Normally, OSGi uses special plugins for the

Eclipse IDE. These plugins automatically manage the deployment process automatically for the

user. The communication between plugin and device is overseen by a device agent. For this

communication the BaseOMA DM protocol over HTTP or HTTPS is used. The exact

communication specification is available as Open Source. [OSGi2009]. All three engines

simplify the deployment process by providing a standardised way to deploy software on different

devices. This helps to reduce the number of different ’deployment ways’. However, the problem

persists because of two facts. The first fact is that not every device is able to run a device engine.

This is normally limited by the resource requirements of the device engines. The second fact is

that also a limited number of ’deployment ways’ still require the user to know each of the

deployment models. The next section describes an experimental setup which focuses on the

second fact.

In the area of deployment of software units to devices different approaches exists, like Rubus,

COMDES-II, and ProCom Systems [CaFeMT2010]. Rubus [HaHTNo2008] is a component

based model supporting dependency analysis of embedded system that contains multiple

embedded devices. With extension Rubus is able to synchronise and update devices. This is done

by a Rubus specific model and extensions for the devices and the Rubus system for the necessary

communication. Two other approaches, the component based software framework COMDES-II

[XuSieAn] and the ProCom System [CaFeMT2010] are very similar. In both approaches an

embedded system which contains multiple devices can be modelled by using a ’Virtual Node’

concept. Each device in the real system is represented by a virtual node in the used model. For

each node deployment content and the deployment process can be modelled. In the way of

modelling these approaches differ. COMDES-II uses a combination of a special XML based

description language and application extension. ProCom is able to use a combination of existing

description languages like SysML and a Model Driven Development approach. All three

approaches are made especially for the embedded device area. Each approach handles complete

embedded systems. This differs to the approach of this paper. In this paper an existing system

will be extended to handle device deployment. This system is prepared for reuse of software

units and their specific knowledge. Also the aim of this approach is different. In this paper the

EKA 2012 - Entwurf komplexer Automatisierungssysteme 101

__

aim is to support software developers to deploy software units to devices without the specific

knowledge.

3 Device Deployment Case Study

The case study’s aim is to identify and reuse necessary knowledge for embedded device

deployment. The study is divided into five steps: (1) Design the experimental environment. This

includes the description of the different devices, the expected results, and the procedure model

for the experiment. Furthermore, the software units that should be (re)used for the deployment of

the different devices must be specified. (2) Analyse the required knowledge for deployment to

different devices. The analysis scope focuses on applying knowledge of the reused software unit,

the deployment setup, and the communication setup. (3) Define a model based on the collected

data. This model should describe the knowledge required for deployment of software units to

specific device types. (4) Extend an existing software unit reuse model and system for the

possibility of creating and executing deployment rules for different devices. (5) Repeat the

deployment process of Step 1 in an existing software unit reuse environment, using the newly

extended model of Step 4.

3.1 Experimental Setup

Table 1: Object Description for deployment case study

The study’s test subjects consisted of the following three embedded devices engines: Advantys

STB (distributed I/O device) using the Sonata engine, Advantys STB using the Dynamic

Deployment engine, and GX300 Gateway (Ethernet gateway with I/O) using OSGI Deployment.

They have some common properties: (1). They are embedded devices with I/O in the automation

area. (2) They provide a TCP/IP interface and a web service or remote service interface. (3)Their

deployment process may be seen as service based. All chosen devices were prepared for the case

study by being connected to a power supply and, via Ethernet, to a TCP/IP network. Also, a

computer running Microsoft Windows XP operating system was also connected to the network.

This computer contained all required software tools (explained in the following sections) and the

deployment objects. A number of different software units were chosen as deployment objects

102 EKA 2012 - Entwurf komplexer Automatisierungssysteme

__

(required files). The fact that these objects differ in technology and structure is not important for

the study. In all three cases a web service was created. Even though the functional content of

these web services differs, they must be compatible to the software reuse environment mentioned

in Step 5 (see Section 3.5). The results of the study have been proven by an expert of device

deployment regarding the focused device engines. The same expert has been observed in Section

4.2. Table 1 describes the deployment objects and shows their related devices. The case study

requires the following three statements to be true: (1) For the three different deployment

processes a description model can be defined describing all relevant data. (2) The description

model can be used to extend the SSCP model. (3) The deployment processes can be reproduced

by using the SSCP model extension.

3.2 Device Deployment Analysis

In order to collect all necessary information, an expert has been monitored during the process of

deploying the given software units to the different devices. The first investigated test setup was

the Sonata [Sonata2011] engine on an Advantys STB. A previously configured file (’Project.dat

’) was uploaded to the device. Before the upload process, the expert verified the device was

running and sent a ’Stop’ signal to the device. To be able to restore the device, the Project.dat file

currently in use was stored on the computer by sending a ’Save’ signal to the device. The expert

uploaded the new Project.dat file by sending a ’Load’ command. The building and deployment

process was initialised by a ’Build’ command. In order to start the newly configured device, the

Sonata engine requires an additional ’Run’ command. The communication knowledge required

for the Sonata engine is shown in Fig. 1..

Figure 1: Communication sequence for a the focused deployment procedures

The second test setup was an Advantys STB with Dynamic Deployment. Similar to the first test,

the expert verified the power status of the device. As preparation, the hardware configuration file,

the WS-Man resource files and the Zelio Engine binary file were compiled into a new binary file

(’Project.upl’). This file was then uploaded using a web service call. After the upload, the device

operated fully automated. There was no need for manual power switching or additional

commands. The expert was not allowed to shut down the device during deployment because this

EKA 2012 - Entwurf komplexer Automatisierungssysteme 103

__

could damage the electronic device. Fig. 1 summaries the important communication message. An

OSGi based system supports only Java libraries (JAR files). To create these files, a complete

Java project must be created using the Eclipse IDE. Such a project requires specific OSGi engine

libraries to be included. For this to proceed, the required source code must be developed and a

resource file must be created, describing the physical device. This process is similar to the other

test setups. The upload was performed automatically by an Eclipse plug-in, created by the OSGi

community. With the help of the tool WireShark, the messages between the plug-in and the

device were measured. Fig. 1 shows the important messages. The expert had to manually restart

the device (power off and on). This is necessary because the device does not support automatic

restart by the OSGi engine.

3.3 Defining a model

Based on the results of Section 3.1, the deployment model shown in Fig. 2 can be created.

Figure 2: Deployment Model (Case Study Result)

An instance of this model constitutes a complete ’Deployment Process’ (DP). A DP includes all

information and describes all steps that are necessary to successfully complete the deployment.

As a result, a DP consists of one or more deployment process steps ’DPS’. A DPS must describe

the input files (’Files’), the communication information (’Address’), the description for manual

steps (’Manual Step Description’), and the type of deployment call (’Invocation’). Additionally, a

DP has a ’Device Engine Description’, that represents the device engine used for deployment.

The ’Files’ are generic files (byte type). The term ’Address’ refers to an address text (string type).

The ’Manual Step Description’ is a more complex type, describing a set of ’User Messages’ that

can include warnings, information or instructions. A message includes text (string type) and a

’Message type’ which defines the type of message within the enumeration of the following

entities: (1) ’Warning’ - Critical information that must be read by the user. (2) ’Instruction’ -

Order that must be executed by the user to continue. (3) ’Information’ - Information that is

informative but not necessary. The last information of a DPS is the ’Invocation’ that can be one

of the following entities enumerated below. (1)’Start’ - Command to start a device. (2) ’Stop’ -

Command to stop a device. (3) ’Build’ - Command to start the compilation process on a device.

(4) ’Upload’ - Command to upload one or more files to a device. (5) ’Save’ - Command to

104 EKA 2012 - Entwurf komplexer Automatisierungssysteme

__

download one or more files from a device. This gives rise to the question of how this model

relates to the information gathered in Section 3.2. Table 2 shows the instantiated model (without

the three DP instances).

Table 2: Instantiated model (Case Study Input) (OD = Order, Ad = Address, Inv = Invocation)

3.4 Extending an existing Software Reuse Model

This case study extends an existing model that describes reusable software units and information

for their usage. The model to be extended is the Service based Software Construction Process

Model (SSCP Model), which is used in the Service based Software Construction Process (SSCP)

approach [ZiFHPh2010]. The SSCP Model is a semantic data model that aims to aid software

developers, engaged in software unit reuse by enabling them to use one single service to search,

adapt, and integrate software units without possessing the otherwise required knowledge. This is

made possible by the service offering the necessary knowledge for software unit reuse. The SSCP

was chosen because of the following specific attributes required for this study. The SSCP already

includes a semantic description model for software units and additional information. This model

describes units in a generic way, so a reusable software unit can be anything that can be used for

reuse of software units. Based on this description different models about usage (e.g., integration

or adaption) are defined. The complete model is extensible, so new models describing other reuse

usage activities can be added. The final important fact is that an SSCP application environment

continues to exist. This can be used for the study and extended by adapters (plugins) to work

with the knowledge about software units described in the SSCP model. This approach classifies

the necessary knowledge into two different types: ’Shared-Knowledge’ that can be described in a

unified way. This knowledge will be referenced by different software unit reuse activities (e.g.,

Search, Adaption, Integration and Deployment of the service. An example of Shared-Knowledge

is a unified description of classes, components, and services as a software unit. ’Specific-

Knowledge’ which is highly particular, not abstractly expressible and has only one specific

purpose. Usually, this knowledge is represented by an adapter (plugin) of the SSCP approach

handling other applications or systems for software unit reuse activities. An example of Specific-

Knowledge is an adapter which integrates software units into a development environment like

Eclipse. Therefore, the adapter includes all specific knowledge to handle the tool. In the

integration process, the adapter integrates a software unit described by the Shared-Knowledge

EKA 2012 - Entwurf komplexer Automatisierungssysteme 105

__

into the Eclipse environment. Unlike Shared Knowledge, this information is not available in a

unified data model (Shared-Knowledge) and is integrated differently into the SSCP environment

(see Section 3.5). Adapters may be used for different software units and their stored knowledge.

For example, an adapter integrating .NET software units into the .NET IDE Visual Studio can be

used for different .NET software units. General knowledge is described by the SSCP Model and

includes different model layers. These layers are classified in three sections: (1) Unit View -

Description of units for modelling: Classes, Components, and Services. (2) System View -

Description of application activities for software units. (3) Business View - Description of

extended information related to user interaction.

Figure 3: Description layers of the Service based Software Construction Model

These three sections encompass different levels of data (see Fig. 3). The first level ’Unit View’

describes software units (classes, components, and services) in a unified way. The ’System View’

extends this layer, offering a specific description of different applications of software units from

the application or system perspective. It includes information that is required by applications or

the system itself to perform or support software unit reuse, for example the Integration

Description Model (IDM). By using this model, it is possible to describe the process of

integrating a software unit into an integrated development environment (IDE). The IDM is a

unified description of integration processes and their required data. The ’Business View’ extends

the ’Unit View’ by providing information that is important for the user (e.g. search or problem

definition). An example would be the semantic description of a simpleґsearch function (see

[ZiFHPh2010] for more information). This paper aims to extend the ’System View’ with a new

data level called ’Deployment’. The extension undertaken in this paper is a new model describing

extended deployment data for modelling units. In order to extend the model, it is important to

understand the structure of the existing SSCP model and to find similarities linking both

description models. The SSCP Model is divided into four sections. Each section describes one

part of a software unit. Part 1 describes extended data such as it’s author and developer. Part 2

describes the software unit as the solution within the range of the related problem. Part 3

describes a unit as a technical component. The last area describes semantic search information.).

This document emphasises the importance of Part 3, as all data levels of the ’System View’ (see

Fig. 3 will be linked to this section, representing technical solutions. Example: Component is

developed by .Net Technology that uses the .NET Platform and the VisualBasic .NET

programming language. In order to extend the model, A link between the original data model and

the new deployment model must be found for extension. This link can be created by defining a

’Deployment Extension’ Entity. For this to be obtained, this entity is required to separate the

deployment extension from other existing extensions (like transformation). The new model is

106 EKA 2012 - Entwurf komplexer Automatisierungssysteme

__

then attached to the SSCP model at this entity and receives its own entity called ’Device

Deployment’. This entity relates all deployment model extension instances to a specific ’Unit’

entity. For this purpose, the model created in Section 3.3 is used, employing the typical basic

types string, integer, and enumeration (subclasses). Only the ’File’ entity is not created because

of a pre-existing file description already exists in the original model. All input files used in the

test setups were ’Machine Readable Content’ and will therefore only be used by systems and not

by humans (like documentation). Therefore, a direct link was created to the ’Machine Readable

Content’ entity.

Figure 4: SSCP Model Extension - Device Deployment

3.5 Using Reusable Software Unit Knowledge for Device Deployment

In the case study, the ’Prometheus 2011’ Tool which is within an SSCP Environment was

extended to support the deployment extension shown in Section 3.3. Three adapters were created

to support communication between the SSCP Environment and devices using the three platforms

(see Section 3.1). The adapters know how to deploy data into the device (see Section 3.2) and

how to start the deployment process (see Section 3.2 Furthermore, the adapters can be reused for

future needs by means of the data shown in this study or other data which is compatible with the

device. In Test Setup 1 and 3, the adapters themselves implement the protocols. In Test Setup 2,

the upload tool was wrapped by the adapter. All adapters use a default interface for device

deployment. This interface includes only one method for implementation: SetDeploymentProcess

(DeploymentProcess deploymentProcessObject). The classes used in the interface are based on

the model description of the SSCP model (see Fig. 4). This constitutes an important part of the

SSCP approach. Adapters include specific data for handling more general data that is loaded by

the interface call and is used by the adapters to perform the deployment process. Therefore,

general data (software units and their usage information) are separated by specific data. The user

uploading the software units and thereby creating the deployment activities combines the general

data with a specific adapter. Currently, each adapter needs a DP instance for each device or

deployment procedure. The data shown in Table 1 was saved in the SSCP environment in a SQL

database following the SSCP data model as shown in Table 2. This means a ’Unit’ description

was created for each software unit. Additionally a ’Deployment Process’ description was created

and added to each ’Unit’. At the end, each ’Deployment Process’ was linked to an adapter. The

user interface of the Prometheus 2011 Tool was extended to allow for selection and execution of

EKA 2012 - Entwurf komplexer Automatisierungssysteme 107

__

deployment processes. This also includes an input method for addresses that are requested by the

adapters during the deployment process. Table 2 does not show these addresses due to limited

presentation space. Following addresses are used in the three test cases: 192.168.178.26:8089,

.30:8088, and.31:8090. After these changes, the system was able to perform device deployment

of the stored reusable software units. The new device deployment procedure was tested by two

individuals. The first person was the expert of Section 3.2. This was done to test if all device

deployment processes were valid and performed correctly. The second person was not specialised

in device deployment (a non-expert). Both individuals were able to perform the device

deployment successfully. This means that the same necessary knowledge for deployment of

software units to specific devices was reused by different people.

3.6 Result Discussion

The first result of the case study was the three different deployment processes of Section 3.1

could be replicated within the SSCP environment (see Section 3.1). In all cases, this resulted in

working devices with the same software units. The second result is that the same knowledge was

used. The difference between the two experiments is that originally the user (the expert) was

required to already possess all necessary knowledge, whereas, the second scenario, the

knowledge was part of a specific knowledge system (Prometheus 2011). The amount of

deployment knowledge is the same in both scenarios. However, in the second scenario a user

without pre-existing knowledge of device deployment (a non-expert) was able to successfully

perform it in all three cases. This is the most important result of the case study. After the

knowledge was integrated into the environment, it became accessible to users with less pre-

existing knowledge. From this stage onwards, the knowledge can be (re)used by untrained users.

The study shows that device deployment requires pre-existing knowledge, in this case the address

of the different devices. Furthermore, the user has to follow instructions coming from the

deployment process that may require him to have an electrical engineering background. The three

adapters build for the different deployment procedures are separated from the input knowledge.

Therefore, they are accessible for other software units that should be deployed to the same device

or device engine. This is not demonstrated in this paper. However, the case study also shows

other effects of a user’s pre-existing knowledge because knowledge about the SSCP environment

is now part of the requirement for device deployment. Test subjects were trained to use the SSCP

environment before starting the experiment. Whether acquiring knowledge about the SSCP

environment or three unique deployment processes is more difficult for users is to be evaluated.

This, however, was not part of this study’s investigation.

4 Conclusion and Future Work

During the case study, a description model was defined describing all relevant data for three

different deployment processes. This model was used to extend the Software Reuse Information

Demand (SRID) Model with deployment activity descriptions. The study includes the analysis of

an expert who was deploying different software units to three different device platforms that

108 EKA 2012 - Entwurf komplexer Automatisierungssysteme

__

require different levels of usage knowledge from a user. The measured knowledge in this

analysis was saved into a Service Based Software Construction Process (SSCP) environment that

is used to store and execute software reuse knowledge. This stored knowledge was reused by a

inexperienced user who was using the extended SSCP environment. The non-expert user was

able to create the same results than the expert user, but without the same expertise. The paper’s

case study demonstrates that it is possible to integrate the usage knowledge for different device

deployment platforms in the SSCP environment. This stored knowledge can be (re)used by users

that were previously unable to perform device deployment on the different platforms. From the

authors’ perspective, the following aims, suggested in the beginning, were fulfilled: (1) A

description model was defined describing all relevant data for the three different deployment

processes. (2) This description model was used to extend the SSCP model. (3) The deployment

processes was reproduced by using the SSCP model. As demonstrated in the study, some

knowledge is very specific and cannot be generically reused. In future research, this knowledge

may be analysed to find a way to decrease the amount of specialised (not generalisable)

knowledge. This may make the approach shown in this publication more effective. Section 3.5

indicates that the result of this study is a model enabling inexperienced users to deploy software

units to devices. This gives rise to the question whether there is any reduction of time and effort.

The number of different devices or device platforms, expert users, and inexperienced users are

included in this publication to get a comprehensive impression of the model this paper presents.

In future research, this stands to be confirmed by extending the number of participants and

devices of this study. Special focus must be laid on devices as this duplication focuses on device

engines. Another result demonstrated by the study are that adapters for the SSCP environment

can be reused for other software units and should be ’reused’ for the same device or device

engine. This constitutes a further aspect future research might focus on.

References

[ACE2011] Apache ACE Project, available at http://incubator.apache.org/ace/a-brief-
introduction.html, last visted 13 July 2011.

[BuDoVi2009] Burg, S.; Dolstra, E.; and Visser, E.; “Software deployment in a dynamic cloud:
From device to service orientation in a hospital environment”, Proceeding of
First Workshop on Software Engineering Challenges in Cloud Computing (ICSE
2009), IEEE Computer Society, 2009.

[CaFeMT2010] Carlson, J; Feljan, J; Maki-Turja, J; and Sjodin, M; , “Deployment Modelling
and Synthesis in a Component Model for Distributed Embedded Systems”, 36th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), IEEE, 2010.

[EiPfaMu2010] Eichhorn, M.; Pfannenstein, M.; Muhra, D.; and Steinbach, E.; , “A SOA-based
middleware concept for in-vehicle service discovery and device integration,”
Intelligent Vehicles Symposium (IV), 2010 IEEE , pp. 663-669, 2010.

[GIMaCa2006] Gilart-Iglesias, V.; Macia-Perez, F.; Capella-D’alton, A.; Gil-Martinez-Abarca,
J.A.; , “Industrial Machines as a Service: A Model Based on Embedded Devices

EKA 2012 - Entwurf komplexer Automatisierungssysteme 109

__

and Web Services” , International Conference on Industrial Informatics, IEEE ,
pp. 630-635, 2006.

[Gill2005] Gill, H.; , “Challenges for critical embedded systems”, Proceedings of the 10th
IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS 2005), pp. 7- 9, 2005.

[GoWoBu2008] Gogniat, G.; Wolf, T.; Burleson, W.; Diguet, J.-P.; Bossuet, L.; and Vaslin, R.; ,
“Reconfigurable Hardware for High-Security and High-Performance Embedded
Systems: The SAFES Perspective”, IEEE Transactions on Very Large Scale
Integration (VLSI) System , vol.16, no.2, pp. 144-155, 2008.

[HaHTNo2008] Hanninen, K.H; Haki-Turja, J.; Nolin, M.; Lindberg, M.; Lundback, J.;, and
Lundback, K.-L.; , “The Rubus Component Model for Resource Constrained
Real-Time Systems”, In 3rd Int. Symposium on Industrial Embedded Systems,
2008.

[KarTa2009] Karnouskos, S.; and Tariq, M.M.J.; , “Using multi-agent systems to simulate
dynamic infrastructures populated with large numbers of web service enabled
devices”, International Symposium on Autonomous Decentralized Systems
(ISADS ’09), pp. 1-7, 2009.

[NiReDri2009] Nixon, T.; Regnier, A.; Driscoll, D.; and Mensch A.; “Devices Profle for Web
Services (DPWS) Specifcation”, July 2009, available at http://docs.oasis-
open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf, last vistited July 2011.

[OSGi2009] OSGi Alliance, “OSGi Service Platform Core Specifcation and Service
Compendium - Release 4, Version 4.2,”, 2009, available at
http://www.osgi.org/Specifications/HomePage, last visited 13 July 2011.

[PiCaSa2008] Pinello, C.; Carloni, L. P.; and Sangiovanni-Vincentelli A. L.; , “Fault-Tolerant
Distributed Deployment of Embedded Control Software” Transactions on
Computer-Aided Design of Integrated Circuits and Systems, IEEE, vol.27, no.5,
pp. 906-919, 2008.

[ShiSha2007] Shiva, S. G.; and Shala, L. A.; , “Software Reuse: Research and Practice”, In
Fourth International Conference on Information Technology (ITNG’07), pp.
603–609, Las Vegas, NV, USA, 2007.

[SOA4D2011] SOA4D Group, “Service-oriented Architectures for Devices”, available at
http://www.soa4d.org, last visited 13 July 2011.

[Sonata2011] Sonata Engine, Available at http://www.inicotech.com/products_oem.html, last
visited 13 July 2011.

[ZiFHPh2010] Zinn, M.; Fischer-Hellmann, K. P.; and Phippen, A. D.; Schuette, A.; , “Finding
Reusable Units of Modelling - an Ontology Approach”, Proceedings of the
Eighth International Network Conference (INC 2010), Heidelberg, Germany, 8-
10 July, pp. 377-386, 2010.

 [XuSieAn] Xu Ke; Sierszecki, K.; Angelov, C.; , “COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time Control
Systems”, 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA)

110 EKA 2012 - Entwurf komplexer Automatisierungssysteme

__

Autorenverzeichnis:

Adamczyk, Heiko 297

Arndt, Susanne .. 35

Berger, Ulrich ... 139

Christiansen, Lars 1, 239

Däne, Bernd 111, 287

Diedrich, Christian 81, 159, 227, 319

Ding, Yongjian ... 217

Doherr, Falk ... 179

Drumm, Oliver ... 253

Eckert, Karin .. 159

Engel, Christoph .. 81

Epple, Ulrich 13, 73, 277

Evertz, Lars ... 277

Fay, Alexander 1, 47, 239, 319

Feldmann, Stefan 307

Felgner, Felix ... 149

Fengler, Wolfgang 111, 287

Fischer-Hellmann, Klaus Peter 99

Foehr, Matthias .. 61

Frank, Timo ... 159

Frey, Georg ... 149

Fuchs, Julia ... 307

Glimm, Birte ... 319

Göhner, Peter .. 199

Göring, Markus .. 47

Grüner, Sten .. 13

Gu, Chunlei.. 217

Gushchina, Irina 111

Hadlich, Thomas 81, 159

Hauptmanns, Ulrich 217

Hintze, Elke ... 297

Hübner, Matthias 91

Jäger, Tobias 1, 239

Kielwein, Caspar .. 73

Krause, Jan ... 21

Krätzig, Marko ... 297

Krüning, Kai ... 73

Kulig, Stefan .. 121

Liu, Liu ... 149

Liu, Zheng.. 227

Lüder, Arndt ... 61

Lüder, Matthias .. 61

Lunze, Jan ... 189

Maga, Camelia R. 209

Magnus, Stephan 21

Moskalev, Alexey 111

Mühlhause, Mathias 81

Müller, Christian 171, 267

Nke, Yannick.. 189

Obst, Michael ... 179

Pacholik, Alexander 287

Rau, Florian ... 171

Rauscher, Michael 199

Rehkopf, Andreas 171, 267

Riekhof, Florian .. 121

Runde, Stefan .. 253

Quirós, Gustavo ... 13

Schnieder, Eckehard 91

Schoop, Ronald ... 99

Schumacher, Frank 1

Sokolov, Sergiy .. 227

Steblau, Alexej ... 61

Stein, Christian .. 321

Strube, Martin .. 239

Urbas, Leon ... 179

Vogel-Heuser, Birgit 159, 307

Winzer, Petra ... 121

Wörner, Linus .. 121

Yu, Liyong .. 13

Zinn, Marcus .. 99

Zipter, Volker ... 139

Zürn, Michael ... 139

EKA 2012 - Entwurf komplexer Automatisierungssysteme 331

__

ISBN 978-3-940961-72-3

Economic Efficiency Control on Data Centre

Resources in Heterogeneous Cost Scenarios

Benjamin Heckmann, Marcus Zinn,

Ronald C. Moore, and Christoph Wentzel

University of Applied Sciences Darmstadt

Haardtring 100, 64295, Darmstadt, Germany

benjamin.heckmann@gmx.de

Andrew D. Phippen

University of Plymouth

Drake Circus, PL4 8AA, Plymouth, U.K.

Abstract—Optimisation of resource selection in hybrid cloud
data centres depends on the control of resource usage. The
primary criterion for this resource selection is economic effi-
ciency. The presented approach considers operational efficiency
aspects in service providing and therefore focuses on technical
criteria, such as resource load, as well as economic criteria, such
as the costs of resource usage. When services are offered at
different service levels the approach enables revenue optimisation
in cases of excessive load. The concept is prepared to handle
heterogeneous IaaS scenarios.

Keywords—Business, Cloud, Efficiency, Services-oriented Ar-
chitecture, Utility Computing

I. INTRODUCTION

The following concept characterises an approach to optimise

the resource selection in data centres. Both runtime and

deployment time are considered as point of decision about

the usage of resources. Primary criterion for this decision is

economic efficiency.

The project was conducted as an applied research in the field

of business informatics in close cooperation with a business

partner [1]. The developed approach for efficient control on

data centre resources in heterogeneous cost scenarios was

also implemented as a proof-of-concept [2]. The concept is

restricted to the following technical solutions for IT resource

offers specified by our business partner.

IaaS: Offering hardware resources located in data centres

(e.g., servers, storage, network) based on virtualisation tech-

nologies (e.g., VMware, Xen) is defined as Infrastructure as a

Service (IaaS) in this concept. Virtualisation enables the sep-

aration of hardware resources into smaller fractions, whereby

each fraction offers the same virtual hardware interfaces as

an actual hardware. In this context the IaaS focus is on

server virtualisation. These server fractions are called virtual

machines (VM). Hardware resources can be allocated to VMs

as demanded, depending on the features of the virtualisation

technology used. IaaS thereby describes the basic management

layer for data centre operations.

SaaS: Software applications can be deployed based on an

IaaS layer. In this context deploying business software in one

or several VMs to ease deployment and operation of multiple

parallel instances of this software is called Software as a

Service (SaaS). Thereby, SaaS describes the basic layer for

the consumer interaction.

Hybrid Cloud: In this paper the provisioning of resources

or IT services based on the paradigm of IaaS or SaaS is also

called cloud-based provision, conforming to the cloud defi-

nition of the National Institute of Standards and Technology

(NIST) [3]. In this paper hybrid clouds are compositions of

clouds offering the same type of service while their operation

technology may vary. The services analysed in this project

are operated as a hybrid cloud hosted in several data centres

across the world. A data centre may expose its resources as

a single cloud, but more often as the sum of multiple clouds,

each representing an individual technical solution grown over

time.

II. BACKGROUND

A. Cost Domains

Here it is assumed that in most cases the technical boundary

of a cloud also reflects an individual cost domain. This

is true when clouds reside in different data centres, even

more obvious in different countries. Clouds can also differ

in the applied technology for their operations. Distinguishable

cost domains can also originate out of significantly different

hardware performance, as in scenarios where older and newer

hardware are operated simultaneously within the same data

centre.

B. Utility Computing Service Life Cycle

Our concept takes major aspects of Heckmann et al. and

extends them significantly. The works of Heckmann et al.

reflect the characteristics of a service life cycle (business

planning, development and operations) in the context of Utility

Computing (UC). The business model of UC offers scalable

IT-based services metered by usage.

The main contributions aggregated from these results are:

• Technology-independent Provision Model [4]

The developed component architecture describes the min-

imum necessary functionalities and dependencies in an

operations environment for a UC service. This architec-

ture is used when services should be operated as part

of a service-oriented architecture (SOA) and hosted on a

cloud platform and are incorporated in an UC business

plan. Those scenarios (SOA and cloud and UC) are called

UC scenarios herein.

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 675

• Technology-abstracted Resource and Cost Simulation [5]

When services are orchestrated [6] using other services

and used in UC scenarios, complex service cascades

are formed. These cascades can be complex both ar-

chitecturally and economically. Both challenges can be

addressed with a simulation framework to analyse the

interaction between resource allocation and costs, service

orchestration, service purchasing costs, and service pric-

ing. A proof-of-concept implementation of such a simu-

lation framework for multi-tier operations environments

was implemented.

• Specification Paradigm for Service Quality [7]

Within the introduced results a new approach on agreeing

on service level for services in UC scenarios is described.

This approach offers a specification paradigm for service

quality description straight from a usage perspective. In

this case service levels are no more defined by technical

conditions. They are called business service level (BSL)

and are specified by describing the quantity and quality

of the consumers’ behaviour in using a service.

C. Research Objectives

The research objectives are examined from the perspective

of a service provider.

We assume a service provider with multiple data centres

spread worldwide. The data centres are operated as a hybrid

cloud with multiple clouds per data centre hosting SaaS offers

for a multiplicity of varying customers. Each service is offered

with more than one service level. Each cloud is considered to

be its own cost domain. The research objective is to make

potential savings accessible between different cost domains.

We provide an approach for a technical solution, including a

proof-of-concept implementation. This optimisation should be

performed at the initial resource allocation during deployment

of a service as well as continuously during its operations.

III. RELATED WORK

This research offers an approach to technically converge

the quality-related ontologies of service, experience, and busi-

ness as introduced by Moorsel [8] or Dobson and Sanchez-

Macian [9]. In the literature, three focuses on data centre

control related approaches can be found: effective data distri-

bution, quality of service (QoS) in networks [10] and reduction

of power consumption. The focus on effective data distribution

resides in the field of grid computing. Here large amounts

of data have to be distributed over several nodes so that

parallel calculations on the data slices accelerate the overall

processing of the data. In most grid architectures there is

an architectural component called broker [11]. This broker

controls the distribution, processing and result aggregation,

sometimes supplemented by billing or marketplace features,

like auctions and bidding. Different approaches are known to

accelerate processing, for example using resource reservation

or considering the problem as a queueing system [12].

In networks, QoS approaches mainly are focused on the

network layer. MDCSim [13] instead offers an approach for

a multi-tier data centre simulation, but focuses their outcomes

onto a comparison of Infiniband and 10 Gigabit Ethernet

network technologies.

The focus on reduction of power consumption centers

on server consolidation. Approaches for load prediction for

servers in a single data centre are shown by Speitkamp [14]

using historical data analysis, Bi [15] using a non-linear

optimisation model or based on a limited lookahead control

framework by Kusic [16]. Wang introduces an approach to

combine server consolidation and dynamic voltage and fre-

quency scaling [17]. An approach for service level manage-

ment in distributed infrastructures, including QoS translation

and support for self-adaptation, is shown by Freitas [18].

Load balancing on the level of data centres within and

between client devices is addressed by Peoples [19].

None of these approaches sufficiently covers the relation

between resources, services and consumers introduced in

Section 5 of this paper.

IV. RESEARCH APPROACH

The following steps were taken to obtain the research

objectives of making potential savings accessible between

different cost domains for SaaS providers:

1) Analysis of the customer-service-resource relation in

SaaS provision scenarios in the context of our business

partner (see section V).

2) Design of a generalised concept to efficiently control

data centre resources in heterogeneous cost scenarios

based on the previous analysis (see section VI).

3) Implementation of the design as a proof-of-concept (see

section VII).

V. ANALYSIS OF THE BUSINESS PARTNER CONTEXT

A. Model of the Customer-Service-Resource Relations

The relationships between a SaaS provider and its customers

are modelled with a data structure. This data structure is

subsequently used as the basis for the optimisation, and must

be modified only when the relationships between the provider

and the customers change. The provider and the customers are

represented by the nodes in a graph; the edges in the graph

represent the services provided.

Customers can have one or more contracts with the provider.

A contract applies to one or more consumer groups (e.g.,

branches) within the organisation of the customer. Each con-

sumer group relates to one or more services of the provider.

This relation incorporates the link to two service levels and one

usage pattern. A Usage Pattern is a quantitative and qualitative

description of the service usage behaviour of a consumer

group [7].

The price (per unit) and the contract penalty (per unit) are

stored attached to the link between the first service level, a

service and a consumer group. Accordingly, the price (per

unit) is also stored attached to the link affecting the second

service level. A penalty for this relation is not necessary, as it

reflects the service usage over and above the contracted usage

pattern.

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 676

Figure 1. Relations Between Resources, Services and Consumers

Services, one or several, act as connector between provider

and customer, more precisely between resource groups on

the provider side and consumer groups on the customer

side. Also a service relates to a backup specification and a

technical deployment set. Such a set contains necessary files

and configuration properties for deployment.

Resources are managed in groups. The primary grouping

criterion is technical, for example the virtualisation software

used. The secondary criterion is the geographical location, for

example the hosting data centre. The cost of the resource usage

(per unit) is an attribute of a resource. Linked to a resource

is the according technical interface for its administration and

monitoring (e.g., virtualisation management API). Addition-

ally, an availability class is linked to a resource group. The

availability classification enables an abstract categorisation to

distinguish between different level of technical availability

assurance.

Service level serve as abstract categorisation to differentiate

between varying level of service quality. Beside their previ-

ously described relations, a service level links to one or more

locations, one availability class and one backup specification.

The customer-service-resource relation is elaborated in the

data model in Fig. 1.

B. Mediation Conditions

In the research context resource groups are only considered

during resource selection when they conform to the required

quality properties. Resource selection should respect the tech-

nical load of resource groups and customer constraints such

as processing location. Only incoming service requests (e.g.,

from the consumer towards the service) should be considered.

VI. SOLUTION DESIGN

The required functionality for an efficient control on data

centre resources in the analysed context is distributed among

two architectural components, named Service Broker Manager

and Service Broker Gateway.

The Service Broker Manager implements the elaborated

data model described above and offers interfaces for inter-

action (e.g., graphical user interface (GUI), application pro-

gramming interface (API)). Beside the storage of the data

model the broker offers a method to match a service request

from a certain customer with a suitable resource. The broker

continuously analyses the monitoring data from all resource

groups and redirects service requests, including service relo-

cation, accordingly.

The matching between a customer’s service request and a

suitable resource is done in six steps. Preconditions are a given

service request and at least two resource groups:

1) Service type, service consumer and the service level

corresponding to the service request are determined.

Postcondition 1: identifiers for service type, service

consumer, and service level are known.

Precondition 2: service request and service type are

known.

2) Resource demand for the service request is estimated.

Postcondition 2: service request’s resource demand is

known.

Precondition 3: service request’s resource demand, ser-

vice type, and service level are known.

3) Pools of resource groups are selected by available re-

sources and matching service level.

Postcondition 3: two pools of resource groups are

known, where each resource group offers enough re-

sources for request processing and one pool complies

with the demanded service level and the other does not.

Precondition 4: service request’s resource demand, ser-

vice type, and service consumer are known.

4) The estimated revenue per pooled resource group for

request processing is calculated.

Postcondition 4: per given resource group the estimated

revenue is known.

Precondition 5: service request’s resource demand, ser-

vice type, service consumer, and service level are known.

5) Estimated costs for service level violation (latency ex-

ception and request failure) are calculated.

Postcondition 5: estimated costs for latency exception

and request failure are known.

Precondition 6: two pools of resource groups with

sufficient processing resources distinguished by service

level compliance, estimated revenue per pooled resource

group and estimated costs for latency exception and

request failure are known.

6) The most efficient opportunity out of the following

actions is selected:

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 677

Figure 2. Service Broker Component Architecture

• Request is processed by a service level conforming

resource group.

• Request is processed by a non-conforming resource

group.

• Request is not processed.

Postcondition 6: action for further request processing

determined.

The Service Broker Gateway acts as a load balancer on

the network layer. It reroutes service requests to appropriate

service instances, including the capability of dynamically

shaping the traffic up to the blocking of certain requests. This

is especially useful in cases of excessive load. Here requests

can be forwarded (or blocked) based on economic efficiency.

This Service Broker concept enables resource selection and

control on load distribution based on the elaborated relation.

An overview on the component architecture is given in Fig. 2.

VII. INITIAL RESULTS

As proof-of-concept the Service Broker Manager including

a GUI, API and the request-resource matching method has

been implemented. As a scenario for the evaluation of the

request-resource matching method a database with four cus-

tomers, each with two contracts affecting two consumer groups

is defined. Five services are available, whereby each consumer

group uses two services. As hosting environment two resource

groups are provided, hosted in two data centres as varying cost

domains. The self-service cloud portal of the business partner

uses the Service Broker API to retrieve a suitable resource

address during service deployment.

First tests using the self-service portal show the broker’s

ability to pick the most cost effective resource with enough

load reserve. This leads to a significant overall change in

load (and service instance) distribution among the two cost

domains. The load distribution shifts in favour of the more

cost-effective data centre. Without the broker-enriched self-

service portal, the deployment of new service instances took

about three weeks for the whole business process to terminate,

due to internal measurements of the business partner. Using

the broker-enriched portal the deployment time was reduced

to approximately 30 minutes.

These first outcomes demonstrate the proof-of-concept’s

ability to efficiently control data centre resources in hetero-

geneous cost scenarios.

VIII. FURTHER WORK

Feasibility of Business Processes: Our concept creates an

opportunity to also associate business process steps with our

data model. A similar approach was introduced by Heckmann,

but not elaborated to work based on resource load information.

Simulation-based Load Prediction: The Service Broker can

be extended based on the simulation framework for Utility

Computing elaborated by Heckmann [5]. Instead of retrieving

the current load through a service for resource monitoring

(referring to step three in Section 6) the broker can use load

forecasts.

Utilisation of External Services: From a provider’s per-

spective, at the current stage, the concept only addresses

incoming service requests. In addition, the concept could also

be extended to represent outgoing service requests to external

service providers. This could expand the efficiency of the

service provision one step further.

IX. CONCLUSIONS

This paper introduces and evaluates the Service Broker

concept.

The Service Broker is an approach to optimise the resource

selection in data centres. The concept enables the control of

resource usage both at runtime and deployment time. In this

research context, the primary criterion for resource selection

and subsequent request forwarding is economic efficiency.

The broker was evolved and evaluated in close cooperation

with a business partner. The evaluation of the concept was

done through a proof-of-concept implementation presented on

CeBIT 2011 as an applied research in the field of business

informatics.

The elaborated concept considers technical criteria, such as

resource load, as well as economic criteria, such as the costs of

resource usage. When services are offered at different service

levels the broker enables revenue optimisation in cases of

excessive load. Additionally, the concept is independent of the

technical solution for resource management (e.g., virtualisation

framework) and is prepared to also handle heterogeneous

technical scenarios.

REFERENCES

[1] P. Opper, “T-Systems International GmbH,” 2011.
[2] M. Zinn, “Cebit 2011,” 2011.
[3] P. Mell and T. Grance, “The NIST definition of cloud computing,”

Jul. 2010, (Access Date: 04/05/2011). [Online]. Available: http:
//csrc.nist.gov

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 678

[4] B. Heckmann, A. D. Phippen, R. C. Moore, and C. Wentzel,
“Agreeing on and controlling business service levels in Service-
Oriented architectures,” International Transactions on Systems Science

and Applications, vol. Vol. 7, no. No. 3/4, pp. 173–178, Dec. 2011.
[Online]. Available: http://siwn.org.uk/press/sai/itssa0007.htm

[5] B. Heckmann, I. Stengel, A. Phippen, and G. Turetschek, “Utility
computing simulation,” in ESM’2009 The 2009 European Simulation

and Modelling Conference. Leicester, United Kingdom: EUROSIS-ETI,
Oct. 2009, pp. 175–180. [Online]. Available: http://www.eurosis.org

[6] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-

Oriented Computing Series from Thomas Erl). Prentice Hall PTR,
2007.

[7] B. Heckmann and A. Phippen, “Quantitative and qualitative description
of the consumer to provider relation in the context of utility computing,”
in Proceedings of the Eighth International Network Conference (INC

2010), Heidelberg, Germany, Jul. 2010, pp. 335–344.
[8] A. Van Moorsel, “Metrics for the internet age: Quality of experience

and quality of business,” 5TH PERFORMABILITY WORKSHOP, 2001.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.24.3810

[9] G. Dobson and A. Sanchez-Macian, “Towards unified QoS/SLA ontolo-
gies,” in IEEE Services Computing Workshops, 2006. SCW ’06. IEEE,
Sep. 2006, pp. 169–174.

[10] R. Braden, D. Clark, and S. Shenker, “RFC 1633 -
integrated services in the internet architecture: an overview,”
http://www.apps.ietf.org/rfc/rfc1633.html, Jun. 1994. [Online]. Avail-
able: http://www.apps.ietf.org/rfc/rfc1633.html

[11] S. Venugopal, R. Buyya, and L. Winton, “A grid service broker for
scheduling distributed data-oriented applications on global grids,” in
Proceedings of the 2nd workshop on Middleware for grid computing,
ser. MGC ’04, 2004, pp. 75–80, ACM ID: 1028506.

[12] A. Afzal, A. S. McGough, and J. Darlington, “Capacity planning
and scheduling in grid computing environments,” Future Generation

Computer Systems, vol. 24, p. 404414, May 2008, ACM ID: 1350010.
[13] S. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “MDCSim: a

multi-tier data center simulation, platform,” in Cluster Computing and

Workshops, 2009. CLUSTER ’09. IEEE International Conference on,
2009, pp. 1–9.

[14] B. Speitkamp and M. Bichler, “A mathematical programming approach
for server consolidation problems in virtualized data centers,” Services

Computing, IEEE Transactions on, vol. 3, no. 4, pp. 266–278, 2010.
[15] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling

for virtualized multi-tier applications in cloud data center,” in Cloud

Computing (CLOUD), 2010 IEEE 3rd International Conference on,
2010, pp. 370–377.

[16] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments
via lookahead control,” in Autonomic Computing, 2008. ICAC ’08.

International Conference on, 2008, pp. 3–12.
[17] Y. Wang and X. Wang, “Power optimization with performance assurance

for multi-tier applications in virtualized data centers,” in Parallel Pro-

cessing Workshops (ICPPW), 2010 39th International Conference on,
2010, pp. 512–519.

[18] A. L. Freitas, N. Parlavantzas, and J. Pazat, “A QoS assurance framework
for distributed infrastructures,” in Proceedings of the 3rd International

Workshop on Monitoring, Adaptation and Beyond, ser. MONA ’10, 2010,
p. 18, ACM ID: 1929567.

[19] C. Peoples, G. Parr, and S. McClean, “Energy-aware data centre man-
agement,” in Communications (NCC), 2011 National Conference on,
2011, pp. 1–5.

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 679

Automated Reuse of Software Reuse Activities

in an Industrial Environment – Case Study Results

Marcus Zinn

University of Plymouth

Plymouth, UK

marcus.zinn@plymouth.ac.uk

Klaus-Peter Fischer-Hellmann

University of Applied Science

Darmstadt, Darmstadt, Germany

k.p.fischer-hellmann@digamma.de

Ronald Schoop

Schneider Electric Automation

Seligenstadt, Germany

ronald.schoop@schneider-electric.com

Abstract - The reuse of prefabricated software units, such as

classes, components and services is one of the central topics of

software engineering and requires lot of knowledge and

experience. Instead of focusing on the knowledge management

processes and a resulting lifelong learning process of

individuals, this paper shows an experimental study based on

an approach of automation of knowledge based reuse activities.

This is done by employing a unified view of software

construction activities and software units used by these

activities in an industrial environment. It concludes that

software engineers of different industrial business units and

knowledge levels can be supported by performing different

software construction activities with only one approach, the

result of which avoids a long learning process for software

engineers.

Keywords-Automated software unit reuse; software reuse

activities; industrial environment; case study.

I. INTRODUCTION

The reuse of software units (like classes, components, or

services) requires professional knowledge or expertise. A

software unit is a technical unit, and can, therefore, be

defined like a software component in the context of this

paper:

 “A software component is a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be deployed

independently and is subject to composition of third

parties”. [1]

Typically, software engineers have to acquire this

knowledge. In industrial environments, the knowledge

depends not only on the technical properties of a software

unit but also on the technical environment, technical topic

(e.g., embedded devices) and the business topics (e.g.,

Automation, Datacenters, Mines & Minerals). Today

knowledge about software units in a reuse context is a broad

field. As adequate description of knowledge in the context

of this paper following definition is used:

“... the capability of a man (or an intelligent machine) to

use information for problem-solving” [2]

Starting from this point of view a software engineer has

to have different kinds of information to perform software

reuse, as for example: (1) Information about technical

properties such as programming language, necessary

technical environment, and dependencies. A software

engineer has to know this information. [3]

(2) Information about interfaces and business context. A

software unit solves at least one problem. Typically, the

interfaces and provided data types are related to this fact. By

handling such a software unit a software engineer have to be

aware about this information. [3] (3) Information about the

reusable artefact. Today a reusable software unit is more

than a single binary file. Related information like test cases,

documentation, and versioning are also reusable and

sometimes implied. A software engineer has to deal with

this related information. [4] (4) Information about related

reuse concepts and processes. Software unit reuse is not

undertaken if a software engineer decides to perform reuse.

Many activities such as search, validation, integration,

transformation, and testing are part of a reuse process. A

software engineer must be aware of the existence of

different reuse processes and technologies.

As a result of these perspectives, reusing a software unit

may define as the use of different information about a

software unit and a given environment to perform a number

of reuse activities. The result is a reused software unit in a

software development project.

Based on the high number of different technologies,

business context, reuse artefact information and possible

reuse concepts or technologies, the amount of necessary

knowledge is high. This results in a problem for software

engineers. Each time they wish to reuse a software unit they

have to know about the relevant activities, and the related

knowledge and information. If this knowledge is missing

the reuse cannot be carried out successfully.

A solution may be the automation of reuse activities. As

shown in the automation industry, this requires the

development of supporting systems that are able to perform

activities for a user. By automating software reuse activities,

software engineers are able to perform these activities

without having acquired the complete knowledge. Such an

approach would reduce the problem of missing knowledge

and was discussed in the past [5] and [6] under the name of

“Service based Software Construction Process (SSCP)”.

However, the experimental proof of this concept is still

missing.

This paper describes the setup and the results of the first

phase of an experiment validating the concept of SSCP,

which is described by the following hypothesis:

“Automated Software reuse activities will reduce the

problem of missing knowledge in software unit reuse”

This work forms part of the research on a Service-based

Software Construction Process (SSCP) incorporating the

field of Software Unit Reuse. The goal of this research is to

identify a semantic model (about finding, adapting,

integrating, and deploying of software units) combined with

service technology that supports software engineers by

performing software reuse (finding, adapting, integrating,

and deploying) without having all needed information. The

paper contributes to the research area by demonstrating the

positive effect of automated software reuse activities, based

on software reuse knowledge on the problem of missing

knowledge in software unit reuse, in a real world

experiment.

After the problem statement in the next section, the

Section 3 shows the focused solution of this paper. This is

used in Section 4 to describe the experiment setup and

execution. Section 5 discusses the experiment results

followed by the conclusion section (Section 6)

II. THE PROBLEM OF REUSE IN MULTIPLE INDUSTRIAL

SOFTWARE DEVELOPMENT TEAMS

Typical aims of software reuse are to reduce costs and

time in development projects [6]. These are two reasons

why reuse of software units is an important part of software

development in industrial areas [5]. However, the use of

reuse in industrial projects does not guarantee a successful

project, a fact, which has been demonstrated by several

project studies in the past [6]. Typical problems are [6], e.g.

,: Misconceptions (reuse == repository, reuse == OO), No

non-reuse specific processes modified, No reuse specific

processes installed, No training/awareness actions, Reusable

assets produced but then not used, Multi contractor / Multi

company project, and No production of assets.

The last problem ‘No production of assets’ differs from

the others. This problem deals with the fact that a software

unit must be developed in order to be reusable [7]. If this is

not the case, the amount of required resources is decreased

by reuse [6][7]. Based on this statement, the effort to reuse

increases after the creation of a software unit and should

remain at the same value continuously for each reuse.

An internal study conducted by Schneider Electric [8]

indicates a complex but interesting picture. A set of around

50 software units (so-called ‘bricks’ in industry area) has

been created and widely reused. The average reuse number

is between 9 and 10. The distribution of reuse for different

bricks is shown in Figure 1. It starts with a minimum of 3

reuses (the point where typically a cost breakeven would

start compared to a non reuse approach) and spans up to 36

reuses.

Relating to the above mentioned fact ‘No production of

0

5

10

15

20

25

30

35

40

C2 C4 S7 S9 S2 S3 S4 C1 C3 S6 S8 S5 S1

Figure 1. Distribution of reusable bricks [8]

assets’ the study of Schneider Electric shows a dilemma of

reuse in industrial environments. A reusable software unit

creates additional reuse effort during the creation phase and

in reuse phases of each development team which reuses this

unit.

Creation Phase Dilemma (CPD): The creation of

reusable software includes different phases, which focus the

reusability. Typical examples are given by Software Product

Line approaches [7]: (1) Generalisation – The interfaces and

functions of a software unit must be generalised to increase

the reuse probability. (2) Integration – The software unit

must be built in a way that it can be integrate in the

development projects of other teams. (3) Support – The

software unit must be ‘equipped’ with additional reuse

artefacts, which support the reuse, e.g., reuses

documentation. Additionally, such a unit have to be

installed in a system, which provides access to it.

All of these steps require knowledge from an expert user.

Reuse Phase Dilemma (RPD): Each development team

has now different challenges for reusing such a software

unit. Typically, each team has to find and download the

software unit [8]. In the next steps, they have to understand

and integrate the unit into their development projects [7].

Sometimes software units must be adapted (transformed) for

that specific application [9]. Figure 2 shows also the typical

support and maintenance effort, which is created during

these steps. This effort is the results from the problem that

the development teams have not enough knowledge to

perform the described reuse steps.

CPD and RPD are typical theoretical examples discus-

Figure 2. Support and maintenance effort [8]

sions of problems. The reality creates two additional

dilemmas in the context of CPD and RPD. (1) Creator

dilemma (CD): The creation team is not available for

support at the time of reuse (people are loaded with other

projects or change team or organization) (2) Reuser

dilemma (RD): The reuse teams are different for each

development projects, and therefore the exchange of a

‘learning curve’ between the teams is not possible.

Figure 2 shows that each development team has nearly

the same problems and need nearly the same amount of

resources. The challenge of reuse based software

development in industrial areas is to reduce the sketched

dilemmas. The purpose of this study is to show that reuse of

a single software unit in multiple teams does not need this

amount of resource on both sites: creator and reuser.

III. CONTEMPORARY SOLUTIONS

Nowadays, there are different approaches for the above-

mentioned problems. The first approach is so called

information systems, which, in general, enable the storage

of information. This enables a user to search for

information. However, such systems are not designed

specifically to address the issue of transformation, but treat

the subject of information generally [10]. Generally, such

systems can be used to save information about an area of

knowledge in textual form, but without the context of

knowledge (see [10]). Each software construction activity

may be described in this form and may be stored in an

information system. The user is now faced with the problem

of obtaining this information and interpreting it correctly in

order to perform a successful transformation. Usually,

information systems are not intended to apply their stored

information automatically. But they can be extended for this

task [10].

Despite this lack of functionality, information systems

comprise a part of this article’s advocated solution.

Extensions of information systems are so-called Knowledge

Base System (KBS) [10]. Such systems are defined as:

 “… a method that simplifies the process of sharing,

distributing, creating, capturing, and understanding a

company’s knowledge.” [11]

Knowledge systems are not fundamentally designed for

the subject of software construction activities. Furthermore,

the authors of this article believe knowledge systems are

missing a fundamental property: the automated application

of stored knowledge for specific tasks. However, there is a

lack of systems that have asserted themselves and are not

focused on the typical software construction activities of

software units. The latter property 'application of

knowledge', is also a part of the solution discussed in this

article. Basically, the knowledge that is necessary for

perform an reuse activity can be stored in knowledge

systems.

The area of software development has currently seen a

number of interesting approaches dealing with specific

subjects of a software reuse activity. Most of them are

specific for one reuse activity type. For example there are

two existing approaches for the activity of software unit

transformation which are of interest: Model transformation

[12] and generative programming [13]. Both approaches

have existed for some time and form the basis for

approaches that are being used today. Both support software

engineers in generating reusable transformation models or

rules. However, additional knowledge is necessary to make

use of both approaches. This can be found in other activity

areas like deployment [14] and Integration [15]. For the

integration of software units into Integrated Development

Environments (IDE) very specialised solutions exits e.g.,
Packaging for Eclipse or Packaging for Visual Studio. But

these products are too specialised and require different kinds

of specialised knowledge from the user.

The above mentioned solutions have one common

problem. They assume a high learning curve. But learning

how to implement every existing technology or solution for

knowledge based problems cost too much time. It is

necessary to identify a solution, which is able to support

software engineers by performing software reuse activities

without a lifelong learning process.

IV. FOCUSED SCENARIO

The basic idea of the targeted solution is that an expert

applies knowledge (knowledge extraction) about the

software reuse activity of a specific software unit to a

system, which is able to perform the activity automatically

with a minimum of human interaction based on knowledge.

Users who do not have the necessary knowledge are now

able to perform this activity (knowledge injection). A

learning process for this specific activity and the specific

software unit is not necessary. Figure 3 shows this scenario.

The idea was presented in previous [5][6] where its

advantage was demonstrated for two reuse activity

examples: Integration of software units into integrated

development environments (IDEs) [15], and deployment of

software units into embedded devices [14].

Figure 3. Concept of the focused solution

For the experiment demonstrated in this publication the

software construction activities ‘Integration’ and

‘Transformation’ were chosen.

V. THE EXPERIMENTAL SETUP

A. Technical structure and infrastructure

The following section utilises this theoretical description

to create the basis for the activities of integration,

transformation and deployment of real models. The

experiment is performed by software engineers using these

models. Theses engineers try to perform different

transformation and integration software construction

activities with and without the support of the proposed

solution. The second step comprises a description of the

design and implementation of the experiment. These

descriptions are intended for the replication of the

experiment, and to ensure the sustainability of the

experiment for the study’s results. The setup of the

experiment is divided into three distinct areas:

(1) Description of the environment,

(2) Description of the technical structure of the

experiment, the necessary elements, and

(3) Description of the measurement process.

 Description of the environment: The experiment was

conducted at a German location of the company Schneider

Electric (Address Steinheimer Strasse 116, 63500

Seligenstadt, Germany). The company has participated by

means of employees at this site and from other international

locations using the company intranet. The experiment itself

was conducted in normal offices, which provide a

connection to this intranet source.

 Description of the technical structure of the

experiment, the necessary elements: The technical design

of the experiment is mainly a hardware and software

infrastructure. Figure 4 shows this structure in the

environment of the Schneider Electric intranet. Six

important elements are involved. The first element is the

intranet (1), which is used to connect the various other

elements of the technical structure. The second elements (2)

are the connected databases, including the software units

and complete information about the re-use activities. Four

databases are important for the experiment:

1) SOA4D: This is an open source repository software

unit with further information about device profiles,

including four web services. This repository is based

on the Forge technology and offers a web interface.

2) Prometheus SQL: this is a specially developed

Repository. It belongs to the approach and uses a

Microsoft SQL database and Microsoft SQL

database interface.

Figure 4. Experimental environment and setup

3) DDXML repos: This is a Schneider Electric internal

repository that contains XML elements describing

embedded devices. Communication with this

repository will be achieved via a Web service.

4) Brick Catalogue: This is, Schneider Electric internal

repository used by all Schneider Electric business

units containing software unit.

The third element (3) in the experiment’s design is the

Prometheus Server. This comprises the core of the technical

structure. The server maintains information about software

units and software construction activities in the connected

databases and makes this information available to the user.

Finally, the Prometheus Server performs requested activities

and presents the available results to users. The fourth

element (4) is a website through, which the user can

communicate with the Prometheus Server. The website runs

on a further server and contains a web application giving the

user the ability to query information from the server or to

perform reuse activities on the server. This web application

is named ‘Ecostruxure repository’ and for this experiment

the 4.1 version was used. The basic technology of the Web

application is Microsoft Silverlight version 4.0. The website

used the endpoint ‘/RepositorySearch.html’ and was

available within the company’s intranet. The fifth element

(5) of the structure is a VM-Ware server. This server is used

to fulfil the experiment’s required operating system

environment and runs as a virtual machine (VM) to make

this available. For the connection to the server VM-Ware

Workstation software with version 8.0 was installed on a

laptop (6). These elements are common office laptops used

within the company Schneider Electric. The laptops were

used with the VM-Ware Workstation software with version

8.0. In addition to the computer network environment, there

is the possibility to use telephone, internet, voice,

conversation, or literature. This is also reflected in the

working environment within the company’s sites.

Figure 5. - Basic experiment scenario

Figure 4 shows the scenario based on the experimental

setup. Users are able to view the test environment (operating

system, the virtual machine) from element (5) (VM-Ware

server) by using element (6) (office laptop). Within this test

environment, all necessary software applications are found

by means searching for information on the Internet, or

performing activities on the intranet, as well as various

means of communication usually employed by Schneider

Electric (FTP, Skype, TELNET). Furthermore, users can

now click element (4) (the website) to access and use the

Web application, which allows communication with element

(3) (Prometheus server). The Prometheus server

communicates with the databases that are marked as

element (2). Also the Prometheus server interacts with the

elements (5) (VM-Ware server) by using element (6) (office

laptop) (see Section III). Figure 5 shows this interaction

scenario.

Figure 6 shows the different measurement variants in the

experimental setup. This can be accomplished by three

different (technical) variants. The first is the purely visual

recognition of the user’s actions and does not require any

technical measure (called ‘Observer’). The second is to

record the user’s interactions with the virtual machine as

video recording (called ‘Recording’). For this, the installed

VM Ware Workstation software with version 8.0 is used,

which already includes the feature of video recording. The

third variant is to log the information (called ‘Logging’).

This is done in three elements of the experiment’s design:

 Create the user data in virtual machines. These data can

be analysed after the experiment.

 The Prometheus Server attracts all incoming server

requests and performed activities. This information can

Figure 6. Overview measurement utilities

also be queried after the end of the experiment and used

for analysis.

 The data and information are generated and stored in the

databases through the interaction of the user.

Description of the technical setup for the measurement

and the measurement process itself:

(1) Experimental groups and scenarios: There are a total

of three experimental groups: the first group (1) consists of

experts for one particular software unit. These individuals

receive expert status either because they have created this

software unit or are well acquainted with its use. The

selection of experts is performed via the Internet from

public data of Schneider Electric software units. These data

also contain the contact person responsible for this software

unit. These people are also asked directly whether they have

created the software unit and / or have used it frequently.

Altogether the study requires 5 experts. The second

experimental group (2) consists of 10 software engineers

with the following characteristics: first, the people should

actively participate in the software development of a project

at the time the experiment takes place. On the other hand, it

is important that these people do not have the same expert

status as the previously selected 5. The last criterion is that

these people are neither expert in the software unit nor in the

technology standard development platform for this unit.

The third group (3) is similar to the second experimental

group and consist of 10 participants. Therefore, the same

rules used for selection of the second experimental group

apply.

Note: In this the next phase of the experiment, the total

number of participants will be increased up to 30 per group.

Procedure: In principle, there are 3 different experimental

groups required to perform seven scenarios. Table 1 shows

the different scenarios related to the different groups.

TABLE I. SCENARIOS OF THE EXPERIMENT

Scenario Description / (GroupID)

(1)

Observation

of experts

The experts from experimental group (1) performs

transformation and / or integration activities

(manually). / (1)

(2) Collection

of software

units and

activities

Collection of software units and activities: In this

scenario, each of the selected experts from

experimental group (1) insert the knowledge about

the unit and the specific transformation and, or

integration activity into the Prometheus Server./ (1)

(3)

Prometheus

Validation

The experts perform the same activities as in

scenario (1) but now with Prometheus Server

support. The expert validates the results. / (1)

(4) Reuse

activities with

Prometheus

Participants from the group (2) are asked to take

over one transformation and integration task. They

have to use the Prometheus Server for this purpose.

/ (2)

(5) Reuse

activities

without

Prometheus

In this scenario, the people placed in the

experimental group (3) are asked to take over a

transformation or integration task. Activities are

repeated so they correspond to those of the experts

from scenario (1), The Prometheus Server is not

used / (3)

(6)/(7)

Validation of

the results

Validation of the results: This scenario will test the

results of the experimental group (2) and (3) by the

experts for the respective software unit from

experimental group (1) and (2). / (1)

 (2) Measurement

In the following section, the methodology of

measurement of the experiment will be explained. This

includes the definition of the measurable variables and the

process of measuring.

Definition of variables: The results of the measurement

procedures are stored in the form of variables. In addition,

each variable is assigned a unique name within the

experiment. In this section, all variables are named and

briefly presented. Table 2 shows the different measurable

variables in the different scenarios.

TABLE II. OVERVIEW OF VARIABLES

Sc. ID

/ ID

Name: Description

(1,3,4,

5)/

(A)

ActivityDuration: How long does it take an expert/user

to perform an activity? This variable contains a value that

expresses how long the expert takes for the preservation

of the task.

(1,3,4,

5)/(B)

TaskAnalysisActivityDuration: How long did it take the

expert/user to analyse the task initials? This variable

describes the time between being presented with the task

and the start of work on the computer.

(1,3,4,

5)/(C)

TaskActivityDuration: How much time does expert/user

spend working on the computer in order to perform the

activity? This variable describes the time between the start

and completion of work on the computer activity.

(1,3,4,

5)/(D)

ActivityCarriedOutSuccessfully: Has the expert/user

completed the activity successfully? This variable

represents whether an activity was successful or not.

(1,3,4,

5)/(E)

UseKnowledgeSources: What kind of knowledge sources

did the expert/user use to perform the activity? This

variable describes the sources consulted to perform the

activity such as the Google phone or contacting another

expert for information.

(1,3,4,

5)/(F)

MadeSubTasks: What sub tasks did the expert undertake

in order to perform an activity?

(2)/(G) EnterUnitDuration: How long does it take the user to

enter all necessary information about a software unit into

the Prometheus system? This variable contains a value of

the expert testimony of how much time was needed from

commencing work on the computer to enter the

information of its software unit.

(2)/(H) EnterActivityDuration: How long does the expert take

to enter an activity for a software unit in the Prometheus

system? This variable contains a value of the experts’

statement of how long since commencing work on the

computer it took to input the specific activity of entering

the activities information.

(2)/(I) TotalInputDuration: How long does it take the expert to

enter all the information into the Prometheus system? This

variable contains a value of expert testimony on how long

the whole process of entering all their data took.

(2)/(J) SuccessfulEntry: Could the expert enter all the important

information? This variable tells us whether an expert

could enter all the information about a software module

and complete activities in the system.

(2)/(K) MadeSubTasks: What sub tasks did the expert undertake

in order to perform an activity?

(3,6,7)/

(L)

ResultIsValid: Is the result of an activity conducted by

Prometheus or without equivalent to the result of the same

activity conducted by an expert? This variable indicates

whether the expert considers the result of activities

performed by Prometheus or without it as good as the

result, which was achieved through manual execution of

the same activity.

Measurement Execution Process: In Figure 6, three

variants of measurement used to measure the variables were

introduced. The following section shows, which of these

techniques are used for the different variables.

In Scenarios (1), (3), (4), and (5), seven measurements

are raised per cycle: (A) The variable ‘ActivityDuration’ is

measured by the observer (measurement variant 1). Here,

the observer measures from the time, which he assigns the

task to the expert/user up to the time the expert says the task

was completed. The time is recorded in whole minutes. (B)

The variable ‘TaskAnalysisActivityDuration’ is determined

by the interaction of measurement variant (1) and (2). Here,

the observer notes the time at which the task is assigned to

the expert/user (see variable ‘ActivityDuration’). The end of

this phase can be measured at the time when the expert

commences an activity on the virtual machine. The time is

recorded in whole minutes. (C) The variable activity of

’TaskActivityDuration’ determines the interaction of the

measurement variants (2) and (1). The point in time at

which the activity is started on the virtual machine is

measured. The endpoint is the time the expert/user tells the

observer that the task was completed. The time is recorded

in whole minutes. (E) The variable ‘UseKnowledgeSources’

is determined by the measurement variants (1) and (2). The

observer notes all information coming from the expert’s

behaviour that cannot be measured by measurement variant

(2). The type of measurement (2) also used to analyse,

which sources of information accessed through the use of

the virtual machine. Typically such sources can be classified

by using source names and the type of resource, e.g., (1) co-

worker, telephone, and (2) website, Google (Web browser).

(D) The variable ‘ActivityCarriedOutSuccessfully’ is

measured by measurement variant (1). The expert/user is

asked after the completion of the activity if he has done this

successfully. The variable can only be set to yes or no. (F)

The variable ‘MadeSubTasks’ is determined by the

measurement variants (1) and (2). Here, the observer notes

the progress of the entire task. This can be done based on

the recording of the activities in the virtual machine itself,

which is operated by the observer both on the external

(outside the virtual machine) and internal (within the virtual

machine) view. The observer here notes, which activities

were measurable, including their start and end time, e.g.,
starts 10:41 expert uses web browser.

In scenario (2), five measurements are made: (G) The

variable input ‘EnterUnitDuration’ determines the

measurement variants (1) and (3). The website (see Figure

4) logs every activity of the user. Accordingly, the entry of

the website is the start time and represents the initial value

used for the measurement. To avoid error, the observer

compares measured time with the automatically measured

time. The end time is determined by the expert’s signal

indicating that he/she has to finish the task. The observer

notes down this time. Time is measured in whole minutes.

(H) The variable ‘EnterActivityduration' is measured by the

measurement variant (3) on the Prometheus Server (see

Figure 4) and the website (see Figure 4). The server and the

website recognize the time of a user’s request. Each

measurement contains the time and the names of tasks, e.g.,
10:00:00 user creates a new software unit. (I) The variable

‘EnterActivityDuration’ is measured by the measurement

variant (1). The observer records the start time point at

which he/she hands over the task to the experts. The end

time is determined by the expert’s signal that he/she has

finished the task. The observers take note of this point in

time. Time is measured in whole minutes. (J) The variable

‘SuccessfulEntry’ is measured with the measured variants

(1) and (3). Firstly, the expert must inform the observer that

he/she was able to enter all information into the system.

Secondly, the Prometheus server writes all values into the

database. The variable can only be set to yes or no. (K) The

variable ‘MadeSubTasks’ is measured in the same way than

in Scenario (1,3,4,5)/(F).

In scenarios (4), (6), and (7) one measurement is made:

(L) The variable ‘ResultIsValid’ is captured by the

measurement variant (1). The expert examined the results of

the performed activity from the scenarios (3), (4), and (5)

with the same activity carried out in scenario (1). It tells the

observer whether the result has the same value and is usable.

The variable can only be set to ‘yes’ or ‘no’.

Definition of Software units and reuse activities: The

different scenarios 1-7 are performed in this experiment

with the software units shown in Table 3.

TABLE III. USED SOFTWARE UNITS

Name /

ID

Description Tec/ Unit

Type /

Repository

Integration effort /

Transformation

effort

DPWS /

SU1

Enable devices

for WS*

profiles

Java /

Component /

SOA4D

Advanced into

Eclipse/Advanced

using IKVM

DPWS /

SU2

Enable devices

for WS*

profiles

C++ /

Component /

SOA4D

Advanced into

Visual Studio /

None

CWS

/ SU3

Webservice for

data exchange

of business

units

Soap-C# /

Webservice /

Prometheus

Normal into Visual

Studio / Advanced

using SVCUtil

CWS

/ SU4

Webservice for

data exchange

of BUs

Java-Android

/ Class /

Prometheus

Advanced into

Eclipse / Advanced

using Java2SOAP

Code

Signing

/ SU5

Webservice for

Code signing

Soap-C# /

Webservice /

Brick Repos.

Normal into Visual

Studio / Normal

using SVCUtil

Table 3 shows that five integration and four

transformation activities are connected with the five

software units. The integration activities typically focus

integration of software units on the most common IDEs

(Visual Studio and Eclipse). The transformation activities

include the transformation of software units on three

different transformation tools (IKVM [16], SVCUtil [17]

and WSDL2Soap [18]

VI. EXPERIMENT RESULT DISCUSSION

A. Experiment Results

The experiment’s results were collected in the way

described in the previous section. The next step is to discuss

these results. First of all, the result of one software unit with

a transformation activity will be discussed in more detail.

After this analysis, the results of all software units will be

summarised and compared. For this purpose, two

perspectives were used for analysing the summarised

results: Comparing different groups from the perspectives of

(1) activity execution and (2) use of knowledge.

1) Detailed result example

One of the measured software unit is the ‘Device Profile

for WebServices’ Java stack, which enables Java based

embedded devices to handle mutable WS* Protocols like

WebService discovery. The transformation task for this

software unit was to use IKVM transformation tool to

transform the complete DPWS Java Stack into a C# Stack.

This task requires knowledge about the DPWS Java Stack

(especially the references of the 20 different JAR Files), the

.NET Platform and experience in using IKVM. This

scenario was taken from a real development scenario of

Schneider Electric in the European research project for

industrial automation SOCRADES [19].

Expert scenarios (1-3): Scenario 1: In the first scenario,

the Expert was measured by performing this task manually.

The main result is that the experts needs 14:23 min.. In

Scenario 2 it was measured how long the expert needs to

insert the software unit and the transformation activity. The

initial creation of the software unit into Prometheus needs

12:06 min. and the transformation needs 38:03 min.. In

Scenario 3, the expert was observed by using the

Prometheus Server to perform this task. He needs 2:04 min.

to perform the task and received a 2:56 min. training into

the system (this training will only be necessary once per

expert). The expert validated the result as a correct

transformation.

Non-expert scenarios (4-5): In Scenario 4, five non-

experienced software engineers of the industrial areas of

Building, Power and Industry (Automation) did the task

without support of the Prometheus Server.

Figure 7. Results of the different groups for DPWS transformation

ctivities

The different participants need 42 min., 90 min., 77 min., 69

min., and 104 min. (rounded off). Thus, the average time

was 76 min. (rounded off). The expert validates all final

results as valid. In Scenario 5 the participants of group (3)

use Prometheus to perform the task. The measured

introduction task performing times (in minutes) were

(3:03/2:23), (2:56/2:10), (2:33/1:59), (2:45/2:22), and

(2:43/2:23). The average time was (2:48/2:18). The expert

validates the results as correct results. Figure 7 summaries

the results. The validation in Scenario 6 and 7 are not shown

in Figure 7 because of all results were valid. Additionally to

the measured time the kind of used knowledge resources

were measured. Only online websites, downloaded

documentation, and the expert were used as knowledge

resource. The expert in scenario 1 uses only one knowledge

resource (an older development project) 4 times. By adding

the necessary information into the Prometheus system of

Scenario 2 the expert only uses one knowledge resource (the

introduction). In Scenario 3, the experts need only the

introduction to perform the activity. The non-expert group

(2) of scenario 4 needs multiple resources multiple times.

Figure 8 shows the used number of knowledge resources in

each scenario (average values).

Figure 8. Overview of number of used knowledge resources

The non-expert group (3) of scenario 5 needs only one

knowledge resource (the introduction).

2) Comparing of different groups from the perspective

of activity execution

Figure 9 and Figure 10 show the results of the three groups

in transformation and integration activities measured in the

Scenarios 1, 3, 4, and 5. The different results of the software

units are summarised by using this type of view. In the

context of transformation, Figure 9 demonstrates a clear

separation of the different groups. Starting with the Expert

Users without Prometheus support (Expert, Scenario 1) as

the 100% comparison line, the

Figure 9. Results of the different groups for transformation activities (5

software units)

measured values of the second group (User with Prometheus

support – User (P)) are significantly decreased. This fact is

mentioned especially in the variable ‘ActivityDuration’ (1).

On the other hand, the Variable ‘TaskAnalysis-

ActivityDuration’ (2) is much closer to the comparison line.

As a result, Prometheus Users are able to perform a specific

activity much faster than an expert user or a Non-Expert

user. In comparing the two variables of the comparison line

with user (without Prometheus support User) Figure 9

shows a further significant difference. Both variables of the

user are decreased. The normal user needed much more time

to fulfill the given tasks. But this difference changes by

analyzing the results of users (with Prometheus support).

Compared to the expert with Prometheus support this group

has no significant differences, but compared to the expert

group without Prometheus support the measured values

decrease significantly. In Figure 9, the two lines of

Prometheus supported users are more or less congruent.

As a result of this consideration, it is clear that the

Prometheus approach creates a positive effect for Non-

Expert User and even for expert users.

Figure 10 shows the measured values for the integration

activity. The first interesting point is the general comparison

to the results shown in Figure 9. Both pictures show nearly

the same result, but the positive characteristics are not so

distinct. Only the users (without Prometheus support)

performing the integration activity need less time (compared

to the 100% comparison line) then the same group was

performing the transformation activity. That both results a

nearly the same indicates that the used approach supports

software engineers by performing these kinds of activities.

Figure 10. Results of the different groups for integration activities

All users (experts and non-expert user) were able to perform

the given activities correctly and needed less time than the

expert user (without Prometheus support).

3) Comparing of different groups from the perspective

of the use of knowledge

In Figure 9 and Figure 10, it is also mention that most of

the expert users (80%) (without Prometheus support) did not

use a measurable knowledge base. The other 20% used

exactly one knowledge base. All experts or users (with

Prometheus support) only used the knowledge base that was

the documentation of the Prometheus system. The users

(without Prometheus support) performing both the

transformation and the integration activity used much more

knowledge bases. The most used knowledge base was the

internet.

B. Impacts on industrial reuse

In applying the aforementioned approach to industrial

environments faced with both creator and reuse phase

dilemmas, and therefore no knowledge transfer, leads to the

following effect, shown in Figure 11: The effort for the

creation team increases by adding the software unit

information into the Prometheus system. The theoretical

very useful but missing support effort is mostly replaced by

the effort for this ‘knowledge injection’.

Figure 11. Effects on MTwKIE

The major effect is visible at the reuse site. Even without or

just less support, the effort for reuse for single users or team

is significantly reduced. In the case of this experiment the

reduction of the measured variable are ~38,5% in the

transformation activity case compared to the expert user

(perform manually) (see Figure 9), ~ 73,21% in the

transformation activity case compared to the non-expert user

(perform manually) (see Figure 9), ~38,5% in the

integration activity case compared to the expert user

(perform manually) (see Figure 10), and ~ 73,21% in the

integration activity case compared to the non-expert user

(perform manually) (see Figure 10). This is mainly based on

the fact, that expert and non-expert Prometheus users do not

spend much time in searching a software unit and

preparation/execute a specific reuse task. The same positive

effect is expected in the reuse of a software unit multiple

teams of different business units. The approach detailed in

this paper has two positive effects. First of all, the solution

is sustainable for all teams as it is available to all once it has

been stored in the system. This is shown by using different

participants from different business units. As consequents,

all teams will obtain the same result and the same effects

described in Figure 9 and 10. Therefore, the way of reuse

planned in the creation phase is more sufficient. The second

positive effect is the adaptation towards knowledge created

in the “reuse” steps. If a team recognizes an alternative way

to perform the reuse activities it is able to store this

knowledge in the system. This requires training for the use

of the Prometheus system, but other teams are now able to

decide, which kind of transformation rule they want to use.

(Reuser is Creator) Figure 11 shows both positive effects.

VII. CONCLUSION AND FUTURE WORK

The reuse of a software unit consists of different reuse

activities. To perform such activities knowledge is required.

Especially in an industrial environment this constitutes

problem for a single team and in different teams of different

business units. This paper shows the structure and result of

an experiment aiming to demonstrate that it is possible to

automate chosen reuse activities so that less experienced

users are able to perform the activities. By comparing a

group of software unit experts, a group of less experienced

users within a normal development environment, and a

group of less experienced users with the support of the

focused automation approach following results are obtained:

(1) It is possible to automate reuse activities. Expert users

store their knowledge into a system, which is then able to

perform the activity (knowledge extraction). (2) Less

experienced users who are normally unable to perform such

activities are now able to do this. (knowledge injection) (3)

Analysing of the results demonstrated that this approach has

positive effects for reuse of software units in industrial

environments. (4) With automated support, a single team

can decrease their reuse costs from the first time of reuse

and thereby make it sustainable. Users utilizing the new

approach are able to perform an activity faster than the

software unit expert because the system provides the

complete environment for the activity based on the expert

users’ knowledge. (5) By reusing the expert’s knowledge,

the variations are minimized. All teams use the same

activity based on the same knowledge. (6) New automated

activities are sustainable because the activity will be

changed or a new one is stored in the system, therefore it

can be used in each new reuse step of each team. Next to the

positive effects, this paper’s experiment is limited to two

software reuse activities: Transformation and Integration.

These activities were chosen because they require different

amount of knowledge about tools, environment, and

software units. But there also other reuse activities like test,

validation, and deployment. Especially for deployment, for

example on embedded devices, knowledge is required, but

not all activities may be automated completely. The next

step is the phase two of the experiment. The number of

software units is raised to 10 and the number of

inexperienced software engineers in the groups 2 and 3 is

increased up.

Next to the fact that the results have to be confirmed by

repeating the experiment with new software units and other

software engineer the process has to be proofed by other

companies. For that purpose the process of the experiment

has to be formulated in a formal way. Additionally the

following aspects are interesting for the future.

Horizontal extension of the research field: The concept

presented in this work was demonstrated by using the

example of integration and transformation. But, much more

than the activities made use of in this experiment still exist

in the area of software unit reuse. First, standard activities

exist such as testing and validation of interfaces. These

activities usually have a high degree of automation.

However, these approaches are lacking in one approach,

which is used to represent knowledge uniformly and then re-

applied to the different existing automation systems. The

scientific task is thus to consider whether the approach

presented in this work can also be used for other horizontal

activities. On the other hand, technological progress can

ensure new activities in the area of reuse. The scientific

problem in this case is to check whether the approach

presented in this work is can also be used for new activities.

VIII. REFERENCES

[1] I. Sommerville, Software engineering, Pearson, 2011.

[2] F. Bobillo, M. Delgado, and J. Gómez-Romero,
“Representation of context-dependant knowledge in
ontologies: A model and an application,” Expert Systems with
Applications, vol. 35, no. 4, pp. 1899–1908, 2008.

[3] N. Juristo and A. M. Moreno, “Reliable knowledge for
software development,” IEEE Software, vol. 19, no. 5, pp.
98–99, 2002.

[4] R. Oliveto, G. Antoniol, A. Marcus, and J. Hayes, “Software
Artefact Traceability: the Never-Ending Challenge,”, pp.
485–488, 2007.

[5] M. Zinn, “Service based software construction process,” in
Proceedings of the Third Collaborative, Plymouth, UK, pp.
169–184, 2007.

[6] M. Zinn, G. Turetschek, and A. D. Phippen, “Definition of
software construction artefacts for software construction,” in
In proceedings of the, pp. 79–91, 2008.

[7] J. Bosch and P. Bosch-Sijtsema, “From integration to
composition: On the impact of software product lines, global
development and ecosystems,” Journal of Systems and
Software, vol. 83, no. 1, pp. 67–76, 2010.

[8] V. C. Garcia, E. S. de Almeida, L. B. Lisboa, A. C. Martins,
S. R. L. Meira, D. Lucredio, and R. P. de M. Fortes, “Toward
a Code Search Engine Based on the State-of-Art and
Practice,”, 13th Asia Pacific Software Engineering
Conference (APSEC’06), Bangalore, India, pp. 61–70, 2006

[9] T. Mens and P. Vangorp, “A Taxonomy of Model
Transformation,” Electronic Notes in Theoretical Computer
Science, vol. 152, pp. 125–142, 2006.

[10] R. Stair and G. Raynolds, Principles of information systems,
10th ed. Boston Mass.: Course Technology Cengage
Learning, 2011.

[11] T. Davenport, Working knowledge : how organizations
manage what they know, Harvard Business School Press,
2000.

[12] A. Kleppe, MDA explained : the model driven architecture :
practice and promise., Addison-Wesley, 2003.

[13] K. Czarnecki, Generative programming : methods, tools, and
applications., Addison Wesley, 2000.

[14] M. Zinn, K. P. Fischer-Hellmann, and R. Schoop, “Reuseable
Software Unit Knowledge for Device Deployment,” presented
at the Entwurf komplexer Automatisierungssysteme (EKA
2012), 2012.

[15] M. Zinn, K. P. Fischer-Hellmann. “Reusable Software Units
Integration Knowledge in a Distributed Development
Environment,” International Workshop on Software
Knowledge (SKY'11), pp. 24–35, 2011.

[16] J. Frijters, “IKVM,” IKVM.NET Home Page, [Online],
http://www.ikvm.net/. [retrieved: 09,2012].

[17] Microsoft, “ServiceModel Metadata Utility-Tool,”[Online],
http://msdn.microsoft.com, [retrieved: 09,2012].

[18] Apache, “WebServices - Axis.” [Online]. http://ws.apache.org
/axis/java/user-guide.html, [retrieved: 09,2012].

[19] Socrades, “Socrades Website”, [Online], http://www.socr
ades.org [retrieved: 09,2012].

Case based Reasoning Approach for Re-use Activities

M. Zinn1,3, K. P. Fischer-Hellmann2 and Ronald Schoop3

1University of Plymouth, Drake Circus, Devon, PL4 8AA, Plymouth, U.K.
2University of Applied Science Darmstadt, Haardtring 100, D-64295 Darmstadt, Germany

3Schneider Electric Automation GmbH, Steinheimer Str. 112, D-63500 Seligenstadt, Germany
marcus.zinn@plymouth.ac.uk, k.p.fischer-hellmann@digamma.de

{ronald.schoop, marcus.zinn}@schneider-electric.com

Abstract. The development of software applications is partly or entirely based

on the re-use of software units. For software engineers, this leads to the prob-

lem that it is not possible to know all processes, technologies and supporting

applications and the alternatives needed for the re-use of a software unit. As a

result software engineers are not able to employ the most optimal solution

known. Based on case based reasoning this paper outlines a way to use the

stored knowledge of a specific re-use activity in order to give software engi-

neers assistance if they want to perform similar activities. This solution consists

of a proposal system for a re-use activity information system. The publication

concludes with the result that it is possible to re-use, within a given an envi-

ronment, specific knowledge for other integration activities.

1 Introduction

The re-use of software units is one of the major topics of software engineering. At the

same time this topic is also a wide area of scientific research. One of the central ques-

tions of this research field is to find a consistent description of software units. The

answer to this question is e.g. associated with the following objectives [1]: (1) saving

of resources (time and effort), (2) reduction of know-how and greater flexibility when

re-using software units.

Due to this question, in the past decades, many different methods and technolo-

gies have been developed for the re-use of software units. As an example of current

approaches that promote re-use, object orientation, component-orientation and service

orientation are mentioned [2].

One of the problems of re-use is to define what a re-usable software unit is [3].

From the conventional view that only the part of a software unit that is actually used

again (e.g. binary or source code) is such a re-usable software unit, the trend was

created that also additional information (such as documentation, specification, test

information, etc.) can be used again. Because of this diversity of information the

terms ‘assets’ or ‘artifacts’ are used [4]. As a result a re-usable software unit thus

includes many different needs for information within a re-use process.

This diversity poses a problem in answering the scientific question. The complexi-

ty of the problem increases because for each re-use technology additional methods

and applications supporting the re-use technology were developed. This strong ex-

pansion of data or information is called information explosion [5]. Software engineers

have to find their way in this confusing environment.

Potential solutions can be found in the area of knowledge management (KM). KM

and information systems (IS) are able to organise knowledge and information to

structure and deliver it consistently [6]. Technologies such as semantic models allow

the connection of different elements, creating knowledge-based statements about the

knowledge of this relation. A typical example of such knowledge relation is found

today in social networks and advertising. Social networks are capable of grasping

knowledge entered by the user and generating adverts that might interest the user,

based on this knowledge. The selection of advertisements is based on the knowledge

entered by previous users. For the social networks the operator of knowledge genera-

tion is created using an added value. This process is known as ‘Knowledge Harvest-

ing (KH)’ [7].

In principle, the method of KH may also be used in the re-use of software units.

This means that knowledge about an existing software unit or a related re-use activity

can be used to generate statements for other software units or activities. An existing

IS or KM system that is capable of generating software units and their knowledge of

software re-use activities and save it to reproduce (to perform it automatically), will

be extended. This extension allows for generating predictions about alternative meth-

ods and technologies or any other specific application systems that can be used in a

software re-use process. The prediction execution is focused in this publication.

2 Problem Identification

Since the scientific question has been not answered and the objectives are not imple-

mented there is the problem that software engineers may have a comprehensive

knowledge of all existing re-use technologies and the associated methodology and

supporting software applications. In the following the problem of missing knowledge

on the methodology and supporting software applications in the re-use of software

units is focused. Usually this knowledge is specialised with certain (re-use) technolo-

gies or development models. Software engineers typically obtain this knowledge

through a learning process. The experience of a software engineer supports him/her in

making decisions about the re-use of software units. However, a person acquires this

knowledge only when he/she works with such methodologies or applications, or is

informed or somebody shows them it. This process is referred to as learning process.

If a software engineer wants to solve a sub problem of software re-use (partly) auto-

mated, he/she can only do this by knowing about the corresponding application that

solves the problem. Applications that a person does not know about are in this case

not part of the solution approach designed by the person or the amount of knowledge

of the person. This problem can be shown based on the information demand model

for the re-use of software units [8].

Fig. 1 shows the structure of the Information Demand Model for the re-use of

software units. It demonstrates the problem that a person lacks knowledge about a

specific step of the re-use of a software unit. The subjective information demand

Fig. 1. Information Demand Model [8].

(SID) shown in Fig. 1 contains all solutions a person can imagine. The overlap of all

three areas is the solution sets, which recognises a person who is theoretically correct

(OID) and are being offered or for the person actually reached (IP). This solution set

will be formulated by the inability of an individual to search even more restricted (IQ)

[9]. It can be assumed that the amount of actual usable solutions (intersection of all

three areas) is much lower than the approaches located in the overlapping area be-

tween the objective need for information and the offered solution sets. The reasons

for this can be explained as follows:

Younger software engineers do not have much experience and knowledge in

software re-use. Interestingly, these people are very interested in the re-use of soft-

ware units [10]. I.e. The problem of missing knowledge shown in Fig. 1 actually

exists for them. Another reason for this problem is that software engineers often have

tasks that deal with new technologies or new approaches. Knowledge on the new

information is usually limited to those persons concerned [10].

It is assumed that the knowledge of various software engineers is different. For

example, it may be that a person is an expert in a service-oriented technology. Anoth-

er person, however, is rather an expert in the use of object-oriented technologies.

Both persons are experts in their field and have worked in this field with the usual

methods and applications that support them in the re-use of software units. When

swapping these two individuals to each other's technologies it is expected that a cer-

tain learning process is necessary to achieve the same knowledge level of a real ex-

pert in that particular technology area.

The fundamental problem can be formulated as follows: Due to the fact that many

technologies, i.e. methods, processes and software applications for the re-use of soft-

ware units and related activities, exist (information explosion), the problem arises that

a software engineer does not have the complete knowledge to (re)use all this technol-

ogy. It raises the question how the necessary knowledge, to fill in for the missing part

of the activities of re-using software units, can still be made available to a person.

3 Perspective Information and Knowledge

This publication deals with the fundamental question of how to transform data into

information and information into knowledge. In addition this knowledge should be

available to other persons. This refers to the range of knowledge elements of the re-

use of software units. The scientific background of such an investigation can be illus-

trated using the data–information–knowledge–wisdom hierarchy (DIKW) [11]. Based

on DIKW hierarchy the elements ‘Data’, ‘Information’, ‘Knowledge’ and ‘Wisdom’

are defined as follows:

“Data are defined as symbols that represent properties of objects, events and their

environment. They are the products of observation. But are of no use until they are in

a useable (i.e. relevant) form. The difference between data and information is func-

tional, not structural. Information is contained in descriptions, answers to questions

that begin with such words as who, what, when and how many. Information systems

generate, store, retrieve and process data. Information is inferred from data.

Knowledge is know-how, and is what makes possible the transformation of infor-

mation in to instructions. Knowledge can be obtained either by transmission from

another who has it, by instruction, or by extracting it from experience. […] Wisdom

is the ability to increase effectiveness. Wisdom adds value, which requires the mental

function that we call judgement. The ethical and aesthetic values that this implies are

inherent to the actor and are unique and personal.” [11]

Software units within this publication represent ‘Data’. The DIKW hierarchy uses

data to generate information, if a relation of the individual data elements (e.g. parts of

the software units) is made to each other. The range of information on a software unit

includes all possible information about this unit, such as the description of the tech-

nical contents, unit structure, technological information, and information about au-

thors or producers etc. Information turns into knowledge if information is so far con-

nected to each other that it can be used to perform an activity. As part of the re-use of

software units, this means that information about a software unit for a user is brought

into relation to the extent that these users transform the unit, for example, or integrate

it into a development environment (can carry out its activity trap). This last step in the

scope of software unit re-use represents a scientific problem [12] and is focused on in

this paper.

The area of ‘Wisdom’ is the next step in the processing of knowledge. It is about

clearance from the perspective of knowledge to do the right thing. But this step is not

part of this publication and is not discussed further. But it is a long term problem in

the re-use of software units and should be discussed and resolved.

4 Solution Approach Definition

In the following, an approach to solving the problem described above is outlined. It

deals with re-use activities of integration, transformation and deployment of the re-

use of software units. I.e. The outlined approach is able to store information about

software units and bring it into relationships. This constitutes knowledge and can be

used to describe the above-mentioned activities and perform them with technical

support.

An information system that allows saving information and knowledge about soft-

ware units and re-use activities ([13], [14], and [12]) is used as a base system in this

study. Through modeling of re-use activities (e.g., transformation of a software unit

or integration of a software unit in a development environment) within this system, it

is possible to store such activities of a particular software unit within the information

system [12]. By defining and using a service-oriented environment the information

system capable is of automatically performing these activities. This means that a user

who has knowledge of the software unit and specific activities may deposit this

knowledge in the information system. A user, who does not have this knowledge, can

use the information system to access this knowledge and use it, even without learning

the knowledge. The usual scenario using this information system is explained in more

detail in the following example:

Example: A user who is an expert in web technologies has stored a web service

software unit in the information system that is able to sign files. As information about

the web service, he/she defines, among other things, that the software unit consists of

a web service description file (WSDL) and a text document that serves as documenta-

tion on the software unit. In addition, the system needs some meta information (e.g.

author and functional description) for this software unit, which serves, among other

things, to carry out a semantic search for this software unit. After the input of the

actual software unit, the expert user defines a transformation activity. He/She indi-

cates that a particular software application (svcutil.exe) from Microsoft is able to

transform the software unit (WSDL) file into a source code file containing an imple-

mented web service client. For this transformation, he/she must also specify which

information is needed for the transformation. In this case, there are various parame-

ters and the WSDL file of the software unit. The expert also needs to define, that the

result of the transformation is a new software unit. After entering this transformation

and configuration into the information system, the system is able to offer another user

information about a software unit (e.g. download of the software unit and its docu-

mentation) and the execution of the related activity (in this case, the transformation of

the WSDL file into web service client as source code. Another user searches for a

web service that is able to sign files and gets the information from the system includ-

ing the loaded software unit present. The user can now view the stored metadata and

the software unit. In addition, he/she is able to download the data from the software

unit. The user can also view information about the stored transformation. Here it is

shown that the transformation yields results. The transformation can now be per-

formed by ‘pressing on a button’ within the information system and the result is de-

livered to the user to download.

The proposed information system is able to store re-use knowledge about specific

software units and perform it. Basically it can be said that the above described prob-

lem has been solved. Users without knowledge can perform activities (i.e., unknown

applications and methods) with the required knowledge. This statement is only cor-

rect if it is assumed that a person wanted to use an application in order to achieve a

particular result. However, this person has no knowledge of the application used to

get into the activity or methodology. The person now knows that such an activity can

be performed. While this is an important factor of the fundamental information for re-

use, such a user is not able to define the same activity for a similar software unit in

the information system or carry it out.

Considering Fig. 1, it can be stated: A person is only able to enter re-use

knowledge in the information system, if he/she knows (has learned) these activities

(knowledge and knowledge application). Conversely, it can be said that a person who

has no knowledge of this cannot lacks the scenario depicted a way that knowledge on

other similar tasks or activities on be transferred.

4.1 Extension of the Existing Solution Approach

During an experiment [12], of which the goal was to underpin the approach of the

information system shown in Example 1, the authors recognised that the knowledge

of the activities entered by the participants can be used in another context. This

knowledge can be used in a predictive system to support people who create new ac-

tivities. This approach is hereafter called the ‘Predictive Software Re-use Activities

(PreSRA)’ and follows a simple principle. The entered information about an activity,

which is the input, the output and the characteristics, are stored as patterns within the

information system. A user can choose three different ways to work with it. Search

for Activities: The user can explicitly search for an activity within the information

system for a software unit. For this purpose, it determines the type of activity as well

as the familiar input and output information. The information system then analyses

previously entered activities on this model and can give the user a recommendation,

which is already a recorded activity to fit its defined input and output. Automated

Proposal System: When creating an activity for a software unit, the user have to

define an application or select an application known to the system that performs au-

tomated activity, e.g. transformation from the application example 1. In addition, the

user must define the input and the output of an activity. With this definition, the in-

formation system can automatically detect the pattern for this activity based on the

user input and compare them with existing patterns in the system. The result is a list

of alternative applications which are able to process this pattern or alternative config-

urations for the already selected application. Free Use: Based on the second point

‘Automatic proposal system’ can be defined using another variant. Users can use the

information system for activities by entering: (1) Input parameters for an activity and

/ or (2) the desired output and the desired result of the activity and/or (3) specific

information or browse the properties of an activity. The result is an outlined list of

possible activities that a user can use. Unlike the first two variants here it is not the

goal to find an activity in the information system to re-use a software unit, but to

preserve the knowledge of how an activity can be simulated. Such knowledge can be

passed to the user i.e. in textual form.

This PreSRA approach also supports user input activity knowledge or users who

generally want to identify an application that is capable of performing a certain activi-

ty at a certain given pattern. The problem described above will now be solved with

the approach. It is noted that not only the automated execution of an activity without

knowledge is possible, but also the knowledge that is necessary for the performance

users will be provided as a suggestion system. Here are different ways to use this

special knowledge. There are three interesting ‘proposal variants’: Proposal system

for the integration of software units in development environments, proposed trans-

formation system for applications, and proposed system for device-based deployment.

This division into three systems proposal does not represent the full amount of any

possible systems for the re-use of software units, but represents the focus of this pub-

lication. The basic study aimed at finding [15], integration [14], and transformation

and a special case of the deployment of so-called embedded devices [16]. The topic

of integration is focused in this publication.

4.2 Technical Structure of the Approach

The PreSRA approach will be explained using the example of integration of software

units into development environments and the existing previously outlined information

system. This system will be now explained. This is necessary to understand the con-

text of the data used by the proposed systems.

4.2.1 Information System Architecture

The central core of a basic information system is a data model that uses semantic

relationships. This data model is able to store information about software units. Dif-

ferent components of software (plugins) have access this data model to perform dif-

ferent tasks. E.g. repository plugins allow the loading of units from different software

repositories, which have different data models. This creates a unified view on differ-

ent data sets within the information system. Plugins are able to perform re-use activi-

ties e.g. transformation and integration. An extension of the basic semantic data mod-

el is necessary. Communication plugins allow sending knowledge or information to

clients / plugins for further processing (e.g. implementation of activities). It is there-

fore possible to view, download or use information about software units on other

computer systems. At the same time it is possible to perform activities using the in-

formation system and send the result to (remote) clients. The information system

provides its functionality by using the communication plug-ins in the form of various

communication technologies (e.g. SOAP or REST based web service). The basic

scientific investigation, however, focused on web service technology.

4.2.2 Used Data Model

The basic data model consists of four areas [15]. The first section describes metadata

about the software unit, such as authors, support information, creation date, etc. The

second section deals with the representation of the software unit as a solution or prob-

lem. The basic focus of the investigation is not on this scientific problem, but this

area was reserved for further research in the data model. The third section describes

the technical part of the software units. Takes place simultaneously in this area, a

semantic model that the search of a software unit using a noun-verb combination

allows [15]. The fourth section describes a software unit from a technical perspective.

I.e. the contents of a software unit are defined by its physical data. Figure 2 shows

this part of the data model.

Fig. 2. Part 4 of the basic data model [15].

This area consists of five major sub-sectors. The area (1) represents the central el-

ement of the entire data model: a software unit. This item has relations with all other

areas of the data model. The area (2) classifies a software unit for re-use technologies

such as services, object, and components. The area (3) contains important features for

the classification of a software unit from the perspective of the types described in

section two. Thus, for example, a class is a software unit that is variable, accessible,

complete and verifiable. Service, however, is a software unit is not changed, with

privacy, however, is not completely controllable. The area (4) specifies the technical

environment that requires a software unit. Usually at this point the technology plat-

forms and environment can be defined. The field (5) defines a software unit as a

physical file. The files are distinguished by their intended use. There are files that are

readable for humans or are intended for systems.

All data model extensions (i.e. for integration activities) are linked to the part 3 of

the data model, because of software units are the main element of each re-use activity.

Integration. This term describes the insertion of a software unit into a development

environment. Today's development environments can include different options that

can be inserted, such as a software unit. The data model’s task hereby is to generalize

this knowledge and present it in a way that can be processed if required by the infor-

mation system. This approach has been demonstrated in a previous publication [14].

The data model extension shown in Figure 3 was designed to depict this type of inte-

gration.

Therefore, this process requires the integration of different files (File), a descrip-

tion of the development environment (IDE) and a description of the integration pat-

tern. The integration pattern provides a uniform description of the development envi-

ronments’ different integration possibilities (see Figure 3, [14], and [12]).

Fig. 3. Integration activity extension [14].

5 Information System as Integration Activity Proposal System

In the following the data model extension for integration of software units stated in

the previous section is used to explain the concept of a proposal system. This paper

introduces the basic data model and the expansion of the existing data model of in-

formation systems used for the storage of integrating knowledge. This includes the

execution of integration on the basis of this knowledge [12]. For this purpose the data

model shown in Figure 3 was used. The basic principle of the information system is

to generalize knowledge for a particular activity and furthermore, generalize

knowledge about the use of standardized interfaces specifically in software units.

Accordingly, the data model shown in Figure 3 is a generalization of various models

that are required for execution of integration knowledge. The most important infor-

mation for the integration of a software unit is (1) Which files of a software unit can

be used and (2) How these are integrated into a development environment. This not

only directly affects the files of a software unit but also influences their possible de-

pendencies. Figure 3 (1) describes the presented information and specifies the files to

be integrated. These are files belonging to the software unit whose dependencies have

to operate in the development environment. These dependencies can be part of the

information contained in the Information system (for example, additionally stored

files) or files or environment variables that must be part of the development or

runtime environment of the system. In this area, (2) the information shown in Figure

2 comprises the information of the development environment. Among other things,

this describes which type of development and runtime environment and which associ-

ated configurations are needed for the unit. Furthermore, this demonstrates a classifi-

cation set that specifies the fundamentals of the way in which a software unit is inte-

grated. The following content samples can be derived from this information (see

Figure 3):

Table 1. Information of integration activities objects.

Typ Describtion Symbol

File(s) All files participating in the integration process. This includes

all kinds of information available about each file, eg Technol-

ogy, type, name, size, etc.

File

Set<File>

Integration

type(s)

The integration of each file type participating in the integra-

tion process. This includes all information shown Figure 3.

Type

Set<Type>

IDE(s) Any development environment described by means of the data

model. This includes any information, e.g. Name, supported

technology platform, environmental variables, system files,

operating system

IDE

Set<IDE>

Depen-

dency(ies)

Each dependency of a file, e.g. Technical environment, plat-

form, environmental variables, system files, folders and file

structures, relation to other software units, etc.

Dep

Set<Dep>

Due to the pattern shown in Table 1, the following content model relationships

can be derived from the data model shown in Figure 31:

Table 2. Input and output patterns table for integration activities.

 Input pattern

Type,

Set<Type>

File,

Set<File>

IDE,

Set<IDE>

Dep,

Set<Dep>

O
u

tp
u

t

p
a

tt
er

n

Type,

Set<Type> ()

File, Set<File> ()

IDE, Set<IDE> ()

Dep, Set<Dep> ()

By entering one of the input patterns defined in Table 2 can one can specify a corre-

sponding output pattern. This will be illustrated by the following example:

While entering the files a person wants to integrate, i.e. Information, Technology,

type, name, size, etc., the information system is able to compare this with stored

knowledge of previous integrations. This process discovers which of the stored files

contain identical or similar information. An output pattern can be used from the re-

sulting quantities of suitable integrations as this creates information integration type,

used IDE and further necessary dependencies. This includes the information content

of each sample, e.g. IDE platform. This process is called case-based reasoning [17].

This type of search can be used for each of the input pattern’s elements defined in

Table 2. In addition, elements of the input pattern can be logically linked to obtain a

more accurate result. This is illustrated by the following example. The information

system can be asked with which IDE it is possible to integrate necessary files and

how to define the integration type of each file specifying how these should be inte-

grated (see Table 3). All saved integrations will be compared to see whether a similar

1Due to the semantic relationships of the entire data model other input and output patterns can

be identified. The results presented in this work are patterns and therefore represent exam-

ples that serve for direct use. This also applies to the patterns shown for other usages.

process to arrive at the content of these files can be provided to others with the same

type of integration. The resulting set of integrations indicates that such integration is

possible and specifies which IDEs can be performed.

Table 3. Search patterns.

 Input pattern

Type,

Set<Type>

File,

Set<File>

IDE,

Set<IDE>

Dep,

Set<Dep>

In
p

u
t

(&
 r

el
a

ti
o

n
)

Type,

Set<Type> not useful not useful
maybe not

useful

File, Set<File> not useful not useful
maybe not

useful

Result

(& relation)

6 Discussion of the Focused Approach

As part of the solution to the problem of ‘making knowledge available to people’, this

publication presents two problem approaches. The first solution is the basic infor-

mation system that was considered and discussed earlier from the perspectives [13]

and [12]. This system provides access to information and the execution of activities

through the use of stored knowledge, which is also available through remote commu-

nication systems. With this approach, the following objectives in relation to the basic

problem are to be met: (1) Users need no knowledge of the software repository, in-

cluding the repository's location as well as the means to access and operate it. (2)

Users require no knowledge to perform an activity. The information system and the

expansion of automation plug-ins enable the integration, transformation and deploy-

ment of software units. As discussed in the first section, knowledge can be used with

this solution, even if a person is not aware of this. The idea presented in this publica-

tion extends the information system with a proposal system (PreSRA) which is able

to work with the accumulated knowledge about integration. It is also to offer capabil-

ity of such users to further knowledge based added value (i.e. transformation or de-

ployment). There are three considered scenarios: (1) Automatic creation of activities:

Due to the fact that the proposed system is able to compare input patterns with exist-

ing patterns, the system is also capable of generating a re-use activity from a given

input pattern. Thus, for example by entry of file information, a comparison with other

transformations can be performed. If transformations are found, the system can pro-

cess these files and is able to create an automatic transformation from it. This trans-

formation can then be verified by an end user. The system can then use these trans-

formations in its knowledge base. (2) Search by activities: The examples showed in

the previous section show that the PreSRA system can be used i.e. to search. This

applies to any activity that a particular input pattern expenditures by testing the

knowledge base to a greater or lesser amount of expenditure patterns. (3) Transfer of

knowledge: Looking at the data model extensions for the activities of the integration,

transformation and deployment are each composed of individual steps. Figure 3

shows a manual step description. A suggestion system may be adapted so that it not

only stores automatically running activities in the information system, but can also

serve as a step by step description. A user is then able to perform every single step of

an activity manually. This helps the user learn the knowledge that is necessary for a

particular activity. Besides the search for knowledge and execution of activities (i.e.

integration), users are now able to define knowledge activities (i.e. integration) with-

out having the appropriate knowledge. Additionally, they are also capable of using

this knowledge to instruct other users. This solves the problem discussed above, that

people without knowledge are unable to instruct others. This applies only within the

scope of this paper and under the use of its proposed integration activity. In addition,

this system allows the user to generate templates to enable other users to learn

knowledge for re-use activities (i.e. integration).

7 Conclusions

This publication focuses on the problem of users inability to perform re-use integra-

tion activities of software units due to a lack of knowledge. Additionally, these indi-

viduals were not able to use existing knowledge to solve similar problems or to sup-

port other people. At the same time, this publication outlines a solution to these prob-

lems. An existing information system can (automatically) perform such re-use activi-

ties based on expert knowledge it received as input. This information system has been

extended in this paper to analyse the input of knowledge and non-expert users can use

it as a suggestion system. This enables users to ask the system for information, e.g.

Software units in form of activities and/or the system can create such activities from

existing activities or even execute them. In addition, it was shown that the system's

knowledge of the activities can be made available to the user by using a case-based

reasoning approach, which enables them to repeat these activities manually and thus

acquire the knowledge themselves. This represents a solution for people with no

knowledge, defined in the context of re-use activities like integration. This approach

can be used for future research, including other activities, such as automated. Like-

wise, the problem may be the definition of Wisdom 'of knowledge from the perspec-

tive of re-focusing of software units'. It is also necessary to consider whether the

method described before is applicable to other domains.

References

1. E. Henry and B. Faller, “Large-scale industrial reuse to reduce cost and cycle time“, IEEE

Software, Bd. 12, Nr. 5, S. 47–53, Sep. 1995.

2. G. Wang and C. K. Fung, “Architecture paradigms and their influences and impacts on

component-based software systems“, in 37th Annual Hawaii International Conference on

System Sciences, 2004. Proceedings of the, Big Island, Hawaii, pp.. 272–281, 2004.

3. I. Sommerville, Software engineering. Boston: Pearson, 2011.

4. R. Oliveto, G. Antoniol, A. Marcus, and J. Hayes, “Software Artefact Traceability: the

Never-Ending Challenge“, pp. 485–488, 2007.

5. C. Alvarado, J. Teevan, M. S. Ackerman, and D. Karger, “Surviving the Information Ex-

plosion: How People Find Their Electronic Information“, Massachusetts institute of tech-

nology - artificial intelligence laboratory, Apr. 2003.

6. F. O. Bjørnson and T. Dingsøyr, “Knowledge management in software engineering: A

systematic review of studied concepts, findings and research methods used“, Information

and Software Technology, Vol. 50, No. 11, pp. 1055–1068, Oct. 2008.

7. N. Nakashole, M. Theobald, and G. Weikum, “Scalable knowledge harvesting with high

precision and high recall“, pp. 227, 2011.

8. M. Zinn, K. P. Fischer-Hellmann, A. D. Phippen, and A. Schütte, “Information Demand

Model for Software Unit Reuse“, presented at the ISCA 20th International Conference on

Software Engineering and Data Engineering (SEDE-2011), Las Vegas, Nevada USA, S.

32–39, 2011.

9. A. Picot, Die grenzenlose Unternehmung : Information, Organisation und Management

Lehrbuch zur Unternehmensführung im Informationszeitalter, Wiesbaden: Gabler, 2003.

10. S. G. Shiva and L. A. Shala, “Software Reuse: Research and Practice“, in Fourth Interna-

tional Conference on Information Technology (ITNG’07), Las Vegas, NV, USA, pp. 603–

609, 2007.

11. J. Rowley, „The wisdom hierarchy: representations of the DIKW hierarchy“, Journal of

Information Science, Bd. 33, Nr. 2, S. 163–180, Feb. 2007.

12. M. Zinn, K. P. Fischer-Hellmann, and R. Schoop, „Automated Reuse of Software Reuse

Knowledge in an industrial environment – Case Study Results“, presented at the 17th IEEE

Internation Conference on Emerging Technologies & Factory Automation, Krakow, 2012.

13. M. Zinn, K. P. Fischer-Hellmann, and A. D. Phippen, „Development of a CASE tool for

the service based software construction“, presented at the 5th Collaborative Research Sym-

posium on Security, E-learning, Internet, and Networking (SEIN’2009), Plymouth, 2009,

pp. 134–144.

14. M. Zinn, K. P. Fischer-Hellmann, and R. Schoop "Reusable Software Units Integration

Knowledge in a Distributed Development Environment“, Second International Workshop

on Software Knowledge (SKY2011), pp. 24–35, 2011.

15. M. Zinn, K. P. Fischer-Hellmann, and A. Schütte, “Finding Reusable Units of Modelling -

an Ontology Approach“, in Proceedings of the 8th International Network Conference

(INC’2010), Heidelberg, 2010, pp. 377–386.

16. M. Zinn, K. P. Fischer-Hellmann, and R. Schopp, “Reuseable Software Unit Knowledge

for Device Deployment“, in Conception of complex automation systems, Magdeburg,

Germany, 2012.

17. B. P. Allen, “Case-based reasoning: business applications“, Communications of the ACM,

Bd. 37, Nr. 3, pp. 40–42, 1994.

