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Jonathan Rolison 

Implicit and Explicit Processes in Multiple Cue Judgement 

Abstract 

Making judgements often involves integrating multiple pieces of information, or cues, in 

the environment. While experts, such as physicians, are able to make accurate judgements 

from multiple cues, they often have poor insight into how they make their inferences. This 

provides some indication that judgement is influenced by knowledge that is implicit and 

inaccessible to verbal report. In the present thesis, the cognitive processes involved in 

multiple cue judgement were explored by training participants on a small number of novel 

cues using the multiple cue probability learning (MCPL) paradigm. In a training phase, 

participants predicted a criterion and received outcome feedback in response to each 

judgement. Learning and judgement in these tasks is often assumed to draw on explicit 

hypothesis-testing processes. However, a great deal of research suggests that implicit as 

well as explicit processes can contribute to performance on complex tasks. In eight 

experiments, several methods were used to examine the role of explicit and implicit 

processes in multiple cue judgement. While concurrent working memory loads failed to 

disrupt judgements after learning, we nevertheless found clear evidence that explicit 

processing is involved in the learning of negative, but not positive cues. Performance on 

such tasks was correlated with individual differences in working memory capacity, as well 

as measures of explicit knowledge obtained in the learning process. The results are 

discussed with respect to dual process theories of learning, judgement, and reasoning. The 

findings of the present thesis indicate that multiple cue judgement is best viewed within a 

dual process framework. 
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Chapter 1 

Theoretical Background 

Many of the judgements we make in everyday life are based on multiple cues, or pieces of 

information, in the environment. When putting a car up for sale we may consider factors 

such as its age» the price of similar cars, and the amount of rust it has, when setting its 

price. Judgements from multiple cues are also made by experts, such as physicians, 

stockbrokers, and personnel managers. In these cases the expert must rely on previous 

experience or training to give the correct weighting in judgement to relevant cues. A 

physician for instance, may consider a number of symptoms and results of medical 

examinations when diagnosing a patient. Adding to the difficulty of these kinds of 

inferences is the probabilistic nature of judgement tasks in real-world uncertain 

environments. 

Multiple cue judgement is of much theoretical interest to cognitive psychology. I f 

an expert is not able verbally to report how they make their judgements this would suggest 

that they are influenced by knowledge that is not consciously accessible. It is therefore of 

interest to psychology to understand the cognitive processes that influence judgement from 
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multiple cues. An understanding of the kinds of processes that underlie multiple cue 

judgement can also be used to inform training programs designed to improve expertise. 

A research tradition, known as Social Judgement Theory (SJT), developed as a 

means for revealing the tacit judgement policies of experts. This approach uses multiple 

regression methods to uncover the relative weight that experts give to available cues, as well 

as measuring self-insight into their judgement policies. However, SJT provides a 

descriptive approach to multiple cue judgement outside of mainstream psychology. SJT 

research is more concerned with how accurate experts are and their tacit judgement 

policies than the cognitive processes that underlie their inferences. 

The present thesis uses a related paradigm, known as Multiple Cue Probability 

Learning (MCPL) to explore the cognitive processes involved in multiple cue judgement 

following training. This approach requires that the individual learns a small number of 

unfamiliar cues in a novel task environment in order to simulate expertise. Following a 

training phase, in which outcome feedback is provided in response to each judgement, the 

individuaPs learning is assessed in a test phase. A substantial amount of noise is added to 

the feedback participants receive in MCPL tasks to simulate learning of expertise in real-

world environments. This paradigm allows task factors to be manipulated, such as the 

relation between cues and outcome, in order to explore the cognitive processes involved in 

multiple cue judgement. 

In principle, two types of cognitive processes can contribute to judgement from 

multiple cues. On the one hand, an individual may acquire explicit verbalisable knowledge 

as a result of testing hypotheses against the feedback they receive, and use this knowledge 

in a controlled effortful manner. On the other hand, an individual may acquire implicit 
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knowledge as a result of experiential learning. While they may not be able verbally to 

report how they made their judgements, implicit knowledge can nevertheless influence the 

judgements they make. In cognitive psychology some traditions emphasise the role of 

explicit hypothesis-testing processes, others focus on implicit and associative learning 

processes, while dual-process theorists suggest that both implicit and explicit processes may 

contribute to learning and subsequent judgements. In the experimental studies of the 

present thesis we approach multiple cue judgement from a dual process perspective, and 

apply methods not previous used in the MCPL literature to study the contribution of 

implicit and explicit processes to judgement from multiple cues. 

1.1. S O C I A L J U D G E M E N T T H E O R Y 

Social judgement theory (SJT) is rooted in Egon Brunswiks ecological approach to 

psychology (1944, 1955, 1956, see also Hammond 8c Stewart, 2001). Brunsik's framework, 

known as probabilistic functiomlismy describes the environment as inherently uncertain on 

the one hand (the probabilistic aspect), and cognitive processes as adapted to the structure 

of the environment on the other (the functional aspect). Making reliably accurate 

judgements requires both that individuals make use of relevant information (cues) and that 

the information available reliably predict events in the environment. Brunswik developed 

the lens model, displayed in Figure 1.1. as a means of illustrating these points. In the centre 

of the model are the available cues. The left side of the model describes the structure of the 

environment, illustrated by the links between each cue and the criterion (outcome). The 

right side of the model describes the judgement policy of the individual, shown by the hnks 

bet̂ veen the cues and judgement. 
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Criterion 

Achievement/ performance 

/ 
Cue validity 

Judgement 

Cue weighting 

CUES 

Figure 1.1. The lens model 

To illustrate how the lens model works, imagine a physician wishes to diagnose a 

patient based on the symptoms they display. For the physician to make an accurate 

diagnosis the available symptoms must together be diagnostic of the patient*s condition 

(left side of Figure 1.1). I f the symptoms are not diagnostic, then the physician cannot 

make an accurate diagnosis regardless of their expertise. If the symptoms are reliable 

indicators of the patient's condition, however, then the accuracy of the physician's 

diagnosis depends on their use of the relevant cues (right side of Figure 1.1). The accuracy 

of the physician's diagnosis, therefore, depends on both the multiple correlation between 

the cues and the criterion, and the physician's use of the cues. 

Kenneth Hammond (1955) was first to apply Brunswik's lens model analysis to the 

study of clinical judgement. What developed out of Hammond's early work became a 

methodological approach to judgement analysis, and the beginnings of SJT. Alongside 

developments of the lens model analysis (Hursch, Hammond, & Hursch, 1964; Tucker, 



1964), multiple regression and correlation statistics became popular methods for 

describing experts' judgement policies and measuring achievement (Cooksey, 1996). In SJT 

studies, the participant makes a number of judgements based on a set o f cues. On each trial, 

the values of each cue can be generated randomly, while the correlations between cues and 

the criterion to be judged remain the same throughout the task. Achievement, or 

performancey in judging the criterion can be measured by correlating the judgements with 

the criterion. The cues can then be regressed onto the judgements to provide regression 

coefficients as an indication of the relative weight that the expert gave to each cue. This 

process is referred to as policy capture because it captures something about the expert's 

judgement policy. Once the judgement policy of the expert is knov\Ti, it may also be of 

interest to know how reliable, or consistent, the expert is in their judgement making. This 

measure is often referred to as reliabilityy and can be measured by the multiple correlation 

of the cues with the judgements. Finally, verbal reports provided by the expert about their 

judgement policy can be compared with their tacit judgement policy as a measure of the 

degree of insight they have into how they made their judgements. Measuring these factors 

is referred to as judgement analysis (Wigton, 1996). 

Achievement, policy capture, reliability, and self insight measures describe only the 

individual side of the lens model. Studies of this type are known as single-system designs 

(Stewart, 1988). and are used to study the judgement policies of experts. However, i f 

criterion values are available the structure of the environment, or task characteristics, can 

also be described and compared with the expert's model of the environment. As noted 

earlier, even if an expert has an accurate model of the environment and makes optimal use 

of the available cues, if the cues are not together diagnostic of the criterion then judgement 



will be poor. It is therefore of interest also to model the environment. This measure, known 

as task predictabilityy is the multiple correlation of the cues with the criterion. Finally, in 

studies where the full lens model is assessed, referred to as double-system designs, the model 

of the environment can be compared with the model of the expert judge. The match 

between the individual's model and the environment model can be measured by 

correlating the environment model of the relations between the cues and the criterion with 

the individual model of the relations between the cues and the judgements. This provides a 

measure of task knowledge, or the 'match' between the environment and the judge 

(Cooksey, 1996). Recall that achievement in predicting some criterion depends on both 

sides of the lens model. This can be seen in the equation below (Equation 1.1). 

Appreciating the full lens modeh achievement is a function of reliability, task predictability, 

and task knowledge. If all three factors are high, then achievement will be good. 

Equation 1.1. Achievement = reliability x task predictability x task knowledge. 

SJT has been applied to a wide range of judgement domains, including business 

(Roose & Doherty, 1976; Singh, 1990), medical diagnosis and prognosis (LaDuca, Engel. & 

Chovan. 1988), weather forecasting (Stewart. 1990). education (Athanasou & Cooksey, 

2001), and psychological assessment (Cooper & Werner, 1990). In the vast majority of SJT 

studies only the individual side of the lens model is considered (Wigton. 1996). In these 

studies, the tacit judgement policy of the expert is modelled and compared with the policies 

of other experts to measure variation between experts. Assessing variation between 

judgement policies is important for exploring whether experts agree on which cues are 

most important within their judgement domain. However, measuring achievement and 

task knowledge is also important for assessing expertise. Task characteristics, such as the 



relation that cues have with the criterion and task predictability are important for 

comparing achievement across judgement domains. 

Studies that make use of criterion values often report high levels of achievement by 

experts (Brannen, Godfrey, & Goetter, 1989; Goldman et al. 1988; Stewart, Roebber, Bosart, 

1997), while others have shown achievement to be disappointingly poor (Faust, 1986). 

Achievement levels also vary bet\veen judgement domains (Kaufmann & Athanasou, 2009), 

with medical health professionals outperforming those in education, and experts involved 

in business outperforming both. Differences in reported levels of achievement between 

studies and between judgement domains are most likely due to task characteristics (Stewart 

et al, 1997). One important characteristic that puts an upper limit on judgement accuracy is 

task predictability. When task predictability is low, the cues available to the judge are not 

sufficient to achieve high levels of judgement accuracy. Accordingly, when task 

predictability reduces, achievement worsens (Goldberg, 1965; Harx-'ey, 1995), Another 

important task factor is the number of cues made available to the expert. When the number 

of available cues is increased, judgement achievement along with reliability reduces (Lee & 

Yates, 1992; Payne, Bettman, 8c Johnson, 1993). In sum. achievement in multiple cue 

judgement environments can be quite high, and in some cases compete with regression 

models. However, judgement accuracy depends on the characteristics of the task. When 

task predictability is low or the number of available cues is high, the accuracy and reliability 

of experts* judgements decrease. I f high levels of achievement are possible among experts, 

this raises the question concerning what type of model experts' use in their judgements, 

and how closely their judgement policies match the environment. 



Can experts' judgement policies be described by linear regression models, or are 

they sensitive to cue configurations and nonlinearity? If a linear model accounts for a 

judgement policy then each cue contributes independently to the inferences made. If, 

however, the judge*s use of a cue is dependent on the value of one or more other cues then 

their judgement policy is configural. One way of assessing whether a judgement policy can 

be described as linear is by measuring the amount of variance accounted for by a linear 

model. When specific alternative models are available, these can be pitted against a linear 

model to assess which best fits the judgement policy (Goldberg, 1971). A third approach 

involves introducing nonlinear components to a linear model (MilJimet & Greenberg, 

1973). If significant interactions exist between cues then these can be introduced as 

interaction terms to assess whether they significantly increase the accounted variance. 

Despite attempts to describe expert judgement policies with nonlinear and configural 

models, there is overwhelming support that both judgement tasks and expert judges are 

best described by linear regression models (Brehmer, 1988, 1994; Einhorn, Kleinmuntz, 8c 

Kleinmuntz, 1979; Mear & Firth, 1987; Payne et al, 1993; Ullman & Doherty, 1984). 

However, there is some indication that nonlinear models can be adopted by judges. 

Einhorn (1972) for instance, found that a nonlinear conjunctive model best fitted his 

participants* judgement policies, even though this model did not fit the task structure. SJT 

research clearly indicates that expert judges in various domains can achieve high degrees of 

judgement accuracy, and that their judgement policies, as well as the environment can 

often be described by linear regression models. It is therefore interesting to ask whether 

experts have insight into how they make their judgements. 



If experts make reliably accurate judgements then we may expect them to 

demonstrate high levels of insight into their own judgement policies. Surprisingly however, 

studies comparing judges* verbal reports with the actual weight they gave to cues in their 

judgements provide little evidence that experts have more than a minimal degree of self-

insight (Arkes, 1981; Brehmer, 1984; Hoffman, 1960; Roose & Doherty, 1976; Slovic 8f 

Lichtenstein, 1971). Many of the studies that have compared self-reported policies with 

tacit judgement policies inferred by multiple regression ask the participant to give an 

explicit rating for each cue on a continuous scale. This provides an estimate of participants' 

explicit beliefs about the weight that they gave to the cues in their judgements. Similar 

methods include ranking the cues in order of their importance. Arguably, this approach 

assumes that the tacit judgement policy and the explicit policy that the judge has in mind 

are both linear, so may fail to take account of nonlinearity or configurahty in either policy 

(Brehmer 8c Brehmer, 1988). However, even when participants are asked simply to report 

which cues they used they still fail to show good levels of self-insight, and even choose 

incorrect cues when asked only to report the single most important one (Brehmer 8c 

Brehmer, 1987). Instead, judges appear to overestimate the weight they give to less 

predictive cues and underestimate the weight they give to more predictive ones, providing 

a flatter distribution of cue weights in their verbal reports than their judgement policies 

(Slovic, Fleissner, 8c Bauman, 1972; Slovic 8c Lichenstein, 1971). Judges are also shown to 

report using more cues than they actually gave significant weight to in their judgements 

(Brehmer 8c Brehmer, 1987; Evans, Harries, 8c Dean, 1995). Evans et al. (1995) suggest that 

the physicians in their study may have listed the cues they believed would be predictive 

based on medical training, but were unaware that they did not use all the cues they listed 

when making their judgements. 
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An alternative approach to asking participants explicitly to identify the cues they 

used is to ask them to report how they are making their judgements whilst performing a 

task. Such process-tracing methods involve generating a model from the physician's 

ongoing verbal protocol, which is then formalised as a computer algorithm (Kleinmuntz, 

1963, 1975; Newell & Simon, 1961, 1972). Although such model-building is in danger of 

misinterpretation of protocols by the experimenter, linear regression models appear to be 

better predictors of physicians* judgements than models generated from their own 

protocols (Einhorn et al, 1979). A novel way of measuring self-insight, introduced by Reilly 

and Doherty (1992; Harries, Evans, Dennis, 8c Dean, 1996; Reilly, 1996), requires 

participants to identify their own judgement policy (e.g. as a set of usefulness indices for 

each cue) among the judgement policies of other participants. These studies have shown 

participants correctly to identify their own policies well above chance. Therefore, while 

judges may have very limited ability verbally to report their judgement policies, they do 

appear able to distinguish them from those of others. But how important is this kind of 

self-insight? If an individual makes their judgements in a controlled explicit manner, 

consciously combining cue values with their subjective weight (importance) of the cues, 

then we would expect them to show reasonably good levels of insight on measures of verbal 

report. If an individual is able only to identify their judgement policy then it seems less 

likely that their explicit beliefs substantially influence their judgements. 

Social judgement theory provides a methodological framework for measuring the 

accuracy and reliability of multiple cue judgement, as well as a means for describing the 

structure of the environment on the one hand, and the tacit judgement policy of the 

individual on the other. There is a general consensus across SJT studio that while experts 
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can often achieve good levels of achievement, and can be described well by linear 

regression models, they lack insight into how they make their judgements. This issue is of 

much theoretical interest to psychology. If experts do not have conscious explicit 

knowledge of how they make their judgements, then what kinds of cognitive processes 

guide the inferences they make? In cognitive psychology, dual-process theories posit that 

both conscious explicit and unconscious implicit processes can contribute to behaviour. 

When an individual makes accurate inferences but lacks insight into their judgement 

policies, this provides some indication that implicit knowledge is contributing to the 

judgements they make. The cognitive processes involved in multiple cue judgement may, 

therefore, be explained by dual process theories of thinking. 

1.2. D U A L PROCESS T H E O R I E S O F L E A R N I N G A N D 

T H I N K I N G 

Dual process theories of thinking propose that two types of cognitive processes belonging 

to separate cognitive systems contribute to the inferences, judgements, and decisions we 

make in everyday life (Epstein & Pacini, 1999; Evans, 2008; Evans & Ov^er, 1996; Kahneman 

8c Frederick, 2002; Reber, 1993; Sloman, 1996; Stanovich, 1999). Implicit processes on the 

one hand are described as unconscious and automatic, in contrast ui th explicit processes 

that are conscious and under intentional control. In an unfamiliar city, we may rely on 

intuition or 'gut feeling when deciding which restaurant to eat at or we may carefully 

weigh up the pros and cons of each. In the former case we may not be able to report how 

we made our decision but intuition, or implicit processing, may have nevertheless guided 

our decision making. In principle, both implicit and explicit processes can contribute to 
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our thinking. Accordingly, dual process theories have developed in numerous, and quite 

separate areas of psychology, including implicit learning (Knowlton, Ramus, & Squire. 

1992; Reber, 1993), category learning (Ashby & Maddox. 2005), reasoning (Evans, 2003; 

2008; Evans & Over, 1996; Stanovich. 1999. 2004), judgement and decision making 

(Kahneman & Frederick, 2002; 2005) and social cognition (Bargh, 2006; Chaiken & Trope, 

1999; Smith & DeCoster, 2000). Before considering how dual process theories have 

contributed to our understanding of cognitive processes, I first introduce the dual process 

framework in more detail. This framework will form the theoretical basis of our study of 

multiple cue judgement in the present thesis. 

1.2.1 The dual process framework 

While dual process theories differ in terms of how implicit and explicit processes interact 

to control behaviour, general characteristics of the two modes of thought are shared across 

theories (Evans, 2008). Explicit processes (also referred to as analytic. Evans, 1984; Evans, 

2006. or System 2 processes. Stanovich. 1999) are associated with conscious controlled 

thought. This is a domain-general type of processing, and is involved in hypotheses-testing, 

imagining of counterfactual states of the world, and rule-based thinking. Explicit 

processing and its underlying neurological bases is believed to have developed relatively 

recently in human evolution (Evans & Over, 1996; Stanovich. 2004). Some even regard this 

type of thinking as uniquely human. However, explicit processing is effortful and heavily 

demanding on the individual's limited working memory resources (Barrett. Tugade, & 

Engle, 2004). For this reason, individual differences in cognitive abilit}*^ are often positively 

associated with performance on tasks that draw on explicit modes of thought (Stanovich & 
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West, 1998a,b,c). Indeed, much conscious thinking is likely constrained by the sequential 

and capacity limited nature of explicit processing. For instance, medical diagnosis involves 

adjusting hypotheses about a patients' condition in light of numerous symptoms and 

medical examinations (Wigton, 1996). Multiple cue judgement of this type may be beyond 

the cognitive capacity of the physician's conscious processing, but may be supported by less 

constrained implicit processes. 

In contrast with explicit processing, implicit processing (also referred to as System 1 

processing; Stanovich, 1999) is described as unconscious and automatic (Reber, 1993, Berry 

8c Dienes, 1993). This mode of thought is related to associative learning and heuristic 

processing (Evans, 2003; Kahneman 8c Frederick, 2002; Sloman, 1996). While incremental 

learning may be slow, and require many instances for learning, implicit associative 

processes are believed to be fast at generating responses (Ashby 8c Maddox, 2005). Their 

underlying mechanisms are often described by neural network models, and are believed to 

be massively parallel (Dienes, 1992; Gibson, Fichman, 8c Plaut, 1997; Rumelhart. 

McClelland, 8c the PDP Research Group). This affords imphcit associative processes a high 

capacity for dealing with large amounts of information. In contrast, heuristic processes 

automatically contextualise problems by directing attention to relevant information based 

on prior beliefs (Evans, 2008; Kahneman 8c Frederick, 2005; Tversky 8c Kahneman, 1983). 

Implicit processing is also involved in the automaticity of learned skills. Actions that 

initially require effortful thinking, such as performing mental arithmetic or a complex skill 

can become automated through practice, drawing less of explicit processing (Anderson, 

1983; Anderson et al. 2004; Ashby. Alfonso-Reese, Turken, 8c Waldron. 1998; Logan. 1988). 

A corresponding decrease in response time is observed when skills become automated by 
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implicit processes. Unlike explicit thinking, implicit modes of thought do not load heavily 

on limited working memory resources. Tasks, such as judgement from multiple cues, may 

then be better suited to high capacity implicit learning processes. However, while implicit 

modes of thought do not burden working memory resources (Barrett et al. 2004), attention 

does appear necessary for both implicit and explicit learning in complex environments 

(Cohen, Ivry, & Keele, 1990; Frensch, Buchner, & Lin, 1994). 

The implicit system appears to comprise a number of domain-specific subsystems, or 

modules (Fodor, 1983), including associative and heuristic processes. Although some 

simple explicit strategies can be described as heuristics (e.g. Broder, 2003), much heuristic 

processing appears to be implicit and unconscious (Evans, 2006; Stanovich, 2004; 

Stanovich & West, 1998b). While the implicit subsystems likely developed for different 

purposes, the neurological bases of the implicit system are believed to have originated 

earlier in human evolution than explicit processing and is said to have some commonalities 

with animal cognition (Epstein & Pacini, 1999). Although there appears to be a consensus 

among dual process theorists of the defining characteristics of implicit and explicit modes 

of thought, the attention that theorists give to specific implicit processes, and the 

interaction between implicit and explicit processes in controlling behaviour differs greatly 

between research traditions. 

Research on reasoning and decision making indicates that heuristic processes 

provide automatic representations of task contents. When these representations are in 

conflict with the logic of a task the individual must inhibit a heuristic response in order to 

reason the task logically (Evans, 2006; Kahneman & Tversky, 1972). This requires effortful 

explicit thinking on the part of the individual. In contrast, implicit learning research is 
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concerned primarily with associative learning mechanisms, and often implies that explicit 

processing contributes little to improved performance in complex learning tasks (Cohen et 

al. 1990; Reber. 1993), and can even impede learning (Turner & Fischler, 1993). The 

contribution of implicit and explicit modes of thought to other types of learning such as 

category learning, appear to depend on characteristics of the task. When categories are 

defined by a small number of cues and category rules are easily verbalised, explicit 

knowledge can guide correct categorical decisions that are otherwise driven by implicit 

processes (Maddox & Ashby, 1993; Ashby & Maddox, 2005). Some dual process theorists 

propose that implicit and explicit learning occurs in parallel, and that both types of 

processes compete to control behaviour (Sloman, 1996). This is in contrast with other dual 

process models proposed in reasoning and judgement literatures that describe responses as 

determined by implicit heuristic processes unless overridden by explicit analytic thinking. 

Therefore, while the characteristics of implicit and explicit processes are shared by dual 

process theories across areas of psychology, the contribution of these processes to the 

inferences we make depends on the types of behaviour that are studied. I now turn to a 

discussion of how dual process theories of thinking have contributed to our understanding 

of implicit learning, category learning, reasoning, and judgement and decision making. 

1.2.2. Implicit learning 

Implicit learning is traditionally the study of learning without awareness. In numerous 

tasks, including sequence learning (Nissen & Bullemer, 1987; Reed 8c Johnson, 1994; 

Stadler, 1995), artificial grammar learning (Pothos, 2007; Reber. 1967, 1993), and dynamic 
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systems control tasks (Berry, 1991; Berry 8c Broadbent, 1984; Hayes & Broadbent, 1988), 

improved performance is often not accompanied by explicit knowledge of the task. 

Artificial grammar learning (AGL) provides a classic example of learning without 

awareness. Participants are presented lists of letter-strings as part of a memory task for later 

recall. Unknown to the participant the letter strings are in fact generated by a complex 

grammatical rule. In a test phase, participants are then able to categorise novel letter strings 

as grammatical or non-grammatical well above chance when letter strings are generated by 

the same grammatical rules used to generate the learning set. This is taken as evidence that 

participants have learned something about the grammatical rules that underlined the letter 

strings (Brooks, 1978; Dulany, 1984; Fied 8c Holyoak, 1984; Reber. 1965, 1967, 1993). 

Interestingly, in post-task interviews the same participants are not usually able verbally to 

report any features of the grammar, and are often unaware they have learned anything at 

all. Explicit processing may not only be irrelevant to performance in some tasks, but can 

even impede learning of complex rule structures when participants are encouraged to 

search for the underlying rules of the task (Turner 8c Fischler, 1993). 

Initially, A G L and other types of complex structure learning were taken as evidence 

that people acquire complex implicit knowledge in the form of abstract rules (Lewicki, 

Czysewska, 8c Hoffman, 1987; Reber, 1993). For an A G L task, a rule could take the form "if 

a letter string begins with the letter H followed by L or M, then the string is grammatical" 

when judging the grammaticality of letter strings. A number of alternative approaches 

challenge this assumption and have shown that complex learning can be driven by 

exemplar memory (Brooks 8c Vokey, 1991; Vokey 8c Brooks, 1992) and associative learning 

processes (Cleeremans 8c McClelland, 1991; Dienes, 1992). In the case of A G L . explicit 
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knowledge of list fragments may even account for reliable judgements of grammaticality 

(Perruchet 8c Pacteau, 1990). Complex structure learning likely involves multiple-memorial 

systems including abstract and implicit associative processing, as well as explicit learning 

(Knowlton 8c Squire 1994,1996), an idea that is supported by studies with amnesic patients 

(Knowlton et al, 1992). 

Learning of complex grammatical structures and sequences is often shown to occur 

in the absence of awareness. In these studies, the task is presented as a memory test or a 

reaction time task, and participants are not made aware that the stimuli are structured by 

an underlying rule. However, implicit learning of complex rules is also demonstrated when 

participants are instructed explicitly to discover the rules of a task. In a commonly used 

rule-discovery task, known as Dynamic Systems Control (DSC), participants are instructed 

to learn to control the output of a system by manipulating its inputs, a task they are 

informed can only be achieved by learning the rules that govern the system. These systems 

can take many forms, such as a simulated person, sugar factory, or economy (e.g. Berry. 

1991; Berry 8c Broadbent, 1984; Broadbent 8c Aston, 1978; Hayes 8c Broadbent, 1988). 

What these studies demonstrate is that while participants tend to improve in their ability to 

control a complex system by manipulating its inputs, they are not often able verbally to 

report how they gained control of the system. 

Interestingly, participants do acquire accurate explicit knowledge of D S C tasks 

when given the opportunity to practice with each input variable separately (Broadbent et al, 

1986). Explicit learning also occurs when variables are few in number, and when the 

relations between them are ^salient' (Berry 8c Broadbent. 1988; Dienes 8c Fahey, 1995; 

Geddes 8c Stevenson, 1997). For example, Hayes and Broadbent (1988) instructed 
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participants to learn to improve the mood of a simulated person to 'friendly', then keep it 

there. For one group the rule governing the person^s character was salient (dependent on 

the participant's most recent input), whereas for a second group the rule was non-salient 

(dependent on the participant's previous input). Participants trained on the salient rule 

showed good explicit knowledge and accordingly performed poorly when a working 

memory load was applied during a rule-change block, whereas participants learning the 

non-salient rule demonstrated poor explicit knowledge but were less affected by the 

concurrent load task. 

In sum, learning of complex rule structures often occurs implicitly, even when 

participants are instructed to search for the underlying rules of a task. Explicit learning 

does occur, however, when variables are few in number, underlying rules are salient, or 

when participants are given the opportunity to observe each part of a complex rule. This 

suggests that explicit hypotheses-testing processes may be constrained by limited 

processing capacity, which may in part be due to limited working memory resources 

(Barrett et al, 2004). Multiple learning processes appear to be involved in learning of 

complex rules, including abstract and associative implicit processes, as well as exemplar 

memory and explicit learning processes. However, implicit learning research has received 

strong criticism from sceptics (Redington & Chater, 1996; Perruchet, Gallego, & Savy, 

1990). In a comprehensive review of the literature. Shanks and St. John (1994) argue that 

evidence used to propose separate learning systems is not sufficient, and suggest two 

criteria must be met before such a claim can be made. The Information Criterion urges that 

the experimenter must be sure that any test of explicit knowledge draws on the same 

information that was required to perform the task. This comes from their suggestion that 
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many tests of explicit knowledge ask for information that is not directly relevant for 

performing the task. The Sensitivity Criterion argues that any test of explicit knowledge 

must be as sensitive to information available in consciousness as the measure of 

performance. This is because a test of explicit knowledge may be less sensitive to the same 

explicit knowledge that was used to perform the task, which could lead to the false 

assumption that learning occurred in absence of awareness. While the criteria set by 

Shanks and St. )ohn are endorsed by some researchers (Berry, 1994), others argue the 

criteria are too strict (Dienes & Perner. 1994; Holyoak & Gattis. 1994). I n the experimental 

studies of the present thesis we attempt to comply with the criteria set by Shanks and St. 

John. 

1.2.3 Category learning 

Dual process theories have also become increasingly popular in the category learning 

literature (Ashby et al. 1998; Brooks. 1978; Erickson & Kruschke. 1998; Gluck, Shohamy, & 

Myers, 2002; Smith, Patalono, & Jonides, 1998). These models distinguish between a rule-

based system associated with explicit hypotheses-testing on one hand, and an implicit 

procedural learning system on the other. In category learning tasks participants learn to 

categorise stimuli as belonging to usually one of two categories based on a small number of 

cues. These can be either probabilistically or deterministically related to category 

membership. In most cases cues are represented as visual images, such as a box shape that 

can change in shape and size. A category rule could follow "if the box is tall and thin then 

choose category A, else if the box is short and wide choose category B". In other cases a 

category rule may not be easy to verbalise, such as when the rotation of a bar indicates 

19 



category membership. Other examples of non-verbalisable tasks include complex visual 

images such as dot patterns. 

In dual process theories of category learning, a rule-based system involved in 

conscious effortful thinking is believed to load heavily on limited working memory 

resources (Price, 2006). This is in contrast with an implicit procedural system that learns by 

associative processing, and is less dependent on working memory (Gluck, Oliver, 8c Myers. 

1996). Similar to studies of implicit learning, explicit rule-based processes are limited to 

learning simple verbalisable rules for categorisation (Maddox, Filoteo, Hejl, 8c Ing, 2004). 

When the underlying rules of the task are not easy to verbalise learning appears to depend 

on associative processing of the implicit procedural system. Furthermore, in tasks that are 

best learned implicitly, low levels of self-insight also accompany poor explicit knowledge of 

the task (Gluck. Shohamy, 8c Myers, 2002; Price, 2005). Lending support to the idea that 

distinct cognitive systems are involved in category learning, separate regions of the brain 

have been found to be associated with category learning tasks that are learned by rule-

based and procedural learning processes (Knowlton. Mangels, 8c Squire, 1996; Knowlton, 

et al, 1996). 

A number of methods have become popular in category learning research for 

dissociating rule-based and procedural learning systems, revealing some interesting 

findings. Explicit processing appears capable of learning only a small number of cues when 

category rules are verbahsable (Waldron and Ashby. 2002). In these tasks the addition of a 

concurrent working memory load interferes more with learning of one cue than three cues. 

In an innovative version of the traditional category learning task, Maddox et al (2004) 

required some participants to categorise stimuli into one of four categories. They found 

20 



that increasing the number of categories from two to four in tasks that were verbalisable 

worsened performance. However, increasing category numbers did not affect performance 

when category rules were not easy to verbalise. This indicates that explicit processing may 

have been involved in learning of the verbalisable but not the non-verbalisable task. 

Multiple memory systems, including explicit rule-based, implicit associative, as well 

as exemplar memory processes appear to be involved in inferring category membership 

from multiple cues (Erickson 8c Kruschke, 1998; Nosofsky 8c Johanson, 2000). The task 

characteristics that influence the role of explicit processing are similar in implicit learning 

and category learning literatures. In easier tasks that contain few variables determined by 

salient verbalisable rules explicit processing appears to contribute to accurate performance. 

However, when tasks are made more difficult and contain many variables or underlying 

rules that are difficult to verbalise, explicit processing contributes little to performance. 

1.2.4. Reasoning 

In contrast with the implicit learning and category learning literatures, studies of human 

reasoning focus on default heuristic processing of the implicit system. Heuristic processes 

are believed to control behaviour unless overridden by effortful explicit thinking. A classic 

example of how both implicit and explicit processes can influence reasoning is illustrated 

by the *belief-bias' effect in syllogistic reasoning tasks (Evans, 2003, 2008; Klauer, Musch, 8c 

Naumer, 2000). In these tasks the participant is presented two premises followed by a 

conclusion and asked to rate whether the conclusion necessarily follows from the premises, 

that is, whether they logically imply the conclusion. However, the conclusion can be 
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believable or unbelievable, allowing the participant to judge the task according to whether 

the conclusion logically follows f r o m the premises, or whether it is believable or not. 

Typically participants are influenced by both the logical validity o f the conclusion given the 

premises and the believability o f the conclusion, making judgements more in Hne wi th the 

believability of conclusions, especial when problems are not logically valid (Evans, 2003. 

2007; Evans, Barston, Pollard, 1983). In accordance wi th dual process theories of thinking 

it is argued that participants do reason about the logic o f the arguments in sylJogistic tasks, 

drawing on working memory dependent explicit processing, but are also influenced by 

prior beliefs generated by implici t heuristic processes (Evans, 2003, 2008). Individual 

differences in cognitive ability (Stanovich 8f West, 1997), working memory capacity (De 

Neys, 2006; Feldman, Tugade, & Engle, 2004). and age (Gilinsky, 8f /udd, 1994) are shown 

to account for logical reasoning in syllogistic tasks. Individuals o f higher cognitive ability 

are more likely to inhibit and override prior belief and provide the normatively correct 

response. 

The contribution o f implici t and explicit processes to reasoning is also 

demonstrated in the Wason selection task (Evans, 1998, 2006; Wason & Evans, 1975; 

Wason & Johnson-Laird, 1972). In its abstract fo rm the participant is presented four cards 

face down, with A. D, 3, and 7 printed on each card. The participant is then given the rule 

"// there is an A on one side of the card, then there is a 3 on the other side"y and asked to pick 

only the appropriate cards that need to be turned over in order to test whether the rule is 

true. Although turning over cards A and 7 are the only selections that w i l l falsify the rule, 

that is. prove that there /5 a 3 on the other side o f card A, and not an A o n the other side of 

card 7, only 10-20% of participants choose these cards. Interestingly, the cards that the 
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majority o f participants choose, A and 3, are the same as those stated in the rule. When the 

rule is changed to " / / there is an A on one side of the card, then there is not a 3 on the other 

side" cards A and 3 become the correct choices and are still the selections made by the 

majority o f participants (Evans, 1998. 2003). This effect, known as 'matching bias', of 

selecting the cards stated in the rule indicates that participants are influenced by automatic 

heuristic processes rather than the logic o f the task (Evans, 1998, 2003). In such cases, 

heuristic processing o f the implicit system is believed to influence the inferences made by 

individuals unless they intervene wi th ef for t fu l explicit reasoning (Evans. 2003). 

Belief-bias and matching bias effects demonstrate a competi t ion between implicit 

heuristic and explicit analytic processes (Evans, 2003, 2008). I f participants do not inhibit 

and override intui t ion their inferences can be biased by heuristic processes. However, i f 

participants explicitly inhibit automatic intuitive responses they are at least more likely to 

reason analytically (Evans, 2007). For instance, when instructions strongly encourage 

participants to think about the logic o f syllogistic tasks belief-bias tends to reduce, 

suggesting task instructions elicit explicit analytic thinking (Evans, 2000). Lending support 

to this argument, neuropsychological evidence has shown that distinct brain regions 

become activated when participants reason according to the logic o f syllogistic tasks 

compared with when they are influenced by the believability o f the conclusion (Goel & 

Dolan, 2003). Similarly, matching-bias can be interpreted as a competi t ion between default 

heuristic and ef for t fu l explicit processes. For example, Houde et al. (2000) found that when 

participants are trained to watch out for the *habit we all have of concentrating on the cards 

with the letter or number mentioned in the rule (pp. 726)* when per forming the Wason 

selection task, that is. to avoid matching bias, they are more likely t o reason logically. 
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Houde et al. found this instructional effect was also associated wi th a shif t in neurological 

activity in separate brain regions. 

Whether participants inhibit heuristic processing and reason logically also depends 

on cognitive ability, indicated by SAT scores and working memory capacity measures 

(Stanovich & West. 1998a.b). Those o f higher cognitive ability are more likely to engage in 

analytic thinking and inhibit a heuristic response (Stanovich, 2004). They are also more 

likely to provide normatively correct inferences when they do engage i n explicit reasoning 

(Kokis, Macpherson, Toplak, West, 8f Stanovich, 2002). However, i f an individual does not 

detect that an explicit effort is required of them then regardless o f their cognitive ability, 

they wi l l likely settle for a default heuristic response (Kahneman, 2000; Stanovich 8f West, 

2008). Indeed, a number of thinking dispositions, including *open-mindedness' and *need-

for-cognition' are also shown to predict performance in reasoning tasks even when 

individual differences in cognitive ability are controlled (Stanovich, 1999). Hence, high 

cognitive ability is not always sufficient for logical reasoning, the individual must also be 

inclined to think analytically. 

Dual process theories often describe a two-stage process of reasoning. Intuitive 

responses are generated quickly (stage 1), and these w i l l likely influence the inferences an 

individual makes unless they consciously intervene (stage 2), but this process is often slow 

and ef for t fu l . Alternatively, reasoning could be described as a competit ion between parallel 

implici t and explicit systems. Sloman (1996, 2002) explains that people are sometimes 

aware o f a conflict between belief and logic when reasoning about conditional statements 

and propositions. In this way, conflict ing inferences generated by separate cognitive 

systems can compete to control behaviour. This k ind o f dual process model is popular in 
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the social cognitive literature (Epstein, 1994; Epstein & Pacini, 1999; Smith & DeCoster, 

2000). For instance, prejudice and stereotyping can be thought o f as a competi t ion between 

implicit attitudes and explicit beliefs (Epstein & Pacini, 1999; Kawakarai, Dion, & Dovidio, 

1999). 

1.2.5. Judgement and decision making 

Kahneman and Tversky (1972, 1973; see also Gilovich, Gr i f fen . 8f Kahneman, 2002) in 

their "heuristics and biases" program of the early 1970s outlined a number o f specific 

heuristics that appeared to describe peoples* judgements of probability and likelihood. 

Their discovery of such heuristics as availability, representativeness, and anchoring and 

adjustment, revealed that when making judgements f rom probabilistic information 

participants' decision-making is not simply less sophisticated than normative models, but 

qualitatively different. Of interest here is how these heuristics in recent years have been 

attributed to implici t processing, generating fast intuitive inferences unless overridden by 

effortful explicit processing (Kahneman & Frederick, 2002, 2005). 

One such heuristic, the representativeness heuristic, influences the way judgements 

are inferred f rom diagnostic information. Imagine for example, you are presented a 

personality description which is highly diagnostic o f an engineer, and asked whether the 

description most likely describes an engineer or a lawyer. You may judge the description as 

most likely belonging to the former. However, when told that the base-rate proportion o f 

engineers in the population f rom which the description was taken is very low compared to 

the proportion o f lawyers, your initial estimate should reduce. How close your estimate 
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should be to the base-rate proportion o f engineers and lawyers depends on how diagnostic 

your information is o f an engineer than a lawyer, and the proport ion of engineers and 

lawyers in the population. Kahneman and Tversky (1973; see also Koehler, 1996) found 

surprisingly that participants' judgements took little account o f base-rate information, 

indicating that participants were heavily influenced by the personality descriptions. Thus, 

participants* judgements were overly sensitive to how ^representative* the description was 

of the individual. 

In the example above, heuristic processing led to bias in judgement by neglect o f 

base-rate information. The same heuristic can also lead to conjunction errors however, in 

which the probability of the conjunction o f two events is rated as higher than the 

probability o f either o f the two events alone. Another famous example, known as the Linda 

problem, illustrates this point. Participants are provided a compelling description of Linda, 

containing attributes representative of both a bank teller and a feminist. When participants 

are asked to rate the likelihood that Linda is a *bank teller*, a ^feminist', and a 'bank teller 

who is active in the feminist movement*, the major majority of participants rank the 

conjunction o f the two events as higher than either event. This is because although the 

conjunction o f two events (i.e. bank teller and feminist) is equally or less likely than either 

of the two events occurring alone, based on Linda's description she appears most 

representative of a feminist bank-teller (Tversky & Kahneman, 1983). 

From a dual process perspective, this failure to conform to normative rules and rely 

on intuitive judgements of representativeness is attributed to implici t heuristic processing. 

In such cases explicit processes may simply fai l to inhibi t or replace automatic inferences 

(Kahneman & Frederick, 2002, 2005). Indeed, while participants wi th statistical knowledge 
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are generally less likely to fall prey to the conjunction fallacy, participants less educated in 

statistics are also shown to be aware o f the nested set relations between single events and 

their conjunctions in post-task interviews (Tversky & Kahneman, 1983). Tversky and 

Kahneman (1983) suggest that while both groups o f participants may be aware of the 

conjunction rule, only participants with statistical knowledge are able to see the 

significance o f the rule and override their intuitive judgements of representativeness. 

Similarly, participants who do not commit the conjunction fallacy tend be of higher 

cognitive ability, measured by SAT scores and working memory capacity, indicating that 

such participants may be more likely, or more able, to inhibi t intuit ive responding and 

apply the conjunction rule (Stanovich 8c West, 1998b). This suggests explicit processes may 

indeed be capable of overriding heuristic inferences o f the implic i t system, but often fail to 

do so. 

In recent years, inhibit ion mechanisms of working memory have received attention 

in explaining why participants often shown in post-task interviews to be aware o f 

normative rules nevertheless fail to reason logically (Houde 8: Moutier , 1996). Similar to 

reasoning tasks, when participants are trained to avoid making common errors caused by 

attending to the representativeness o f evidence in the Linda problem, participants' 

judgements tend to conform more with the conjunction rule (Mout ier 8: Houd^, 2003). 

This indicates that bias is not due solely to an inability to reason wi th normative rules, but 

to a failure to inhibit and override intuitive responding. 

Participants also underestimate base-rate informat ion in learning tasks that provide 

outcome feedback in response to trial-by-trial judgements (Edwards, 1968; Kruschke, 1996; 

Slovic & Lichtenstein, 1971). However, it is unlikely that the same failure to incorporate 
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base-rate information is due to similar cognitive processes. The representativeness 

heuristic may be well suited to making intuitive one-off judgements, whereas implicit 

associative processing may explain base-rate neglect in learning tasks. Gluck and Bower 

(1988) found that an associative learning model accounted for base-rate neglect in 

experiential learning tasks, suggesting that participants learned direct associations between 

diagnostic cues and outcomes, which did not take into account the base-rate probabilities 

of outcomes. Similarly, when making judgements about the probability o f outcomes given 

the presence of cues in experiential learning tasks, participants are shown to commit the 

conjunction fallacy by assuming the probability o f the conjunction of two outcomes to be 

greater than the probability of each outcome given the cues (Cobos, Almaraz, & Garcia-

Madruga, 2003). This appears to be due to learning o f direct cue-outcome associations. 

When the conjunction o f two events given the presence o f the cues is considered 

participants sum the associative strength between the cues and each outcome, making 

inferences more in line wi th the conjunction fallacy. 

When making judgements o f probability, the implici t system can generate 

automatic intuitive inferences unless overridden by ef for t fu l explicit processing. However, 

it is important to note that biases in judgement occur when heuristics are adhered to that 

do not cohere with normatively prescribed rules. This is not to say that such heuristics do 

not correspond with the environment, and in indeed may serve as useful rules-of-thumb 

(Tversky & Kahneman, 1973; Kahneman, 2000). Recent theorists more concerned with the 

ecological validity o f heuristics than their logical coherence suggest that heuristic 

processing can be highly accurate (Czerlinski, Gigerenzer, & Goldstein, 1999; Gigerenzer, 
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Todd, & the ABC Research Group, 1999). These theorists however, make no claims about 

whether applying heuristics is driven by implicit or explicit processes. 

When participants make one-off judgements f rom verbal descriptions or numeric 

information in reasoning and judgement and decision making tasks heuristics such as 

matching-bias, belief-bias, and the representativeness heuristic appear suited to generating 

fast intuitive responses. In the case of experiential learning however, in which participants 

make trial-by-trial judgements and receive outcome feedback, associative learning 

processes may provide a better account o f human judgement. 

1.3. C O N C L U S I O N S 

Social Judgement Theory (SJT) provides a methodological f ramework for measuring 

experts' judgement policies. As well as describing which cues influence judgement when 

multiple cues are available, SJT provides a means for modelling the environment and 

comparing the individual's judgement policy wi th the structure o f the environment. SJT 

studies have shown that despite the probabilistic nature o f judgement tasks, such as 

medical diagnosis and weather forecasting, experts often attain good levels o f achievement. 

However, this is in contrast with the finding that experts often have poor levels o f self-

insight, which casts doubt on the extent to which conscious explicit th ink ing contributes to 

expertise. Dual process theories in psychology have shown that both controlled explicit and 

automatic implicit processes can influence our judgements, decisions, and reasoning about 

information in the environment. When reasoning about the logic of a task, or making a 

decision based on diagnostic information implici t heuristic processes direct (or even bias) 
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our attention towards relevant information. In contrast, when learning f rom experience, 

implicit associative processes acquire complex knowledge incrementally. In both cases, 

controlled explicit processing can compete to control the inferences we make. Whether 

explicit processing is successful depends in part on our l imited working memory resources. 

For this reason, logical reasoning is often poor, and knowledge o f complex environments 

that require us to attend to multiple pieces of information is often not acquired explicidy. 

The Mult iple Cue Probability Learning (MCPL) paradigm provides a controlled 

environment for studying the cognitive processes involved in judgement f rom multiple 

cues. In these tasks, expertise is simulated by training participants on a novel task 

environment. There is a large body of work dedicated to the study of learning f rom 

feedback using the MCPL paradigm, which is reviewed in the next chapter. In the present 

thesis we apply methods not previously used in the MCPL literature as a means for 

measuring the contribution of implici t and explicit processes to mult iple cue judgement. 
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Chapter 2 

Multiple Cue Probability Learning and the 
Present Research 

Social judgement theory (SJT) demonstrates how lens model analysis can be used to 

measure the judgement policies o f experts. However, in SJT studies, judgement policies are 

studied only after expertise is acquired. Expertise is likely influenced by the amount o f 

experience an expert has or the types o f training they received, in addi t ion to task factors. It 

is therefore diff icul t to study the kinds o f cognitive processes involved in multiple cue 

judgement when expertise has already been acquired. In an almost entirely separate field of 

research, more akin wi th cognitive psychology, lens model analysis has been used to study 

learning f rom multiple cues in novel environments. The multiple cue probabili ty learning 

(MCPL) paradigm provides an ideal methodology for studying expertise fol lowing training 

in controlled environments. MCPL research is also rooted in Egon Brunswik*s ecological 

approach to psychology, and uses many o f the same methods o f analysis as SJT for 

measuring expertise fol lowing training (Holzworth , 2001). 
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In a seminal paper by Smedslund (1955) the application o f lens model analysis to 

learning had begun. In the following years MCPL contributed greatly to the study o f 

complex learning, and is discussed in some detail in the present chapter. In the 

experimental studies o f the present thesis the MCPL paradigm is used t o train expertise in 

order to explore the cognitive processes involved in multiple cue judgement. The rationale 

of the experimental studies is introduced wi th in the dual process framework, and details 

are given concerning the experimental methodology. 

2.1. M U L T I P L E C U E P R O B A B I L I T Y L E A R N I N G 

In MCPL tasks participants are trained on a small number o f cues. Their task is to learn to 

predict criterion values on each trial. Cues and criterion can take continuous or ordinal 

values and can be presented as visual cues such as the length of a line, o r verbal labels. In a 

learning phase participants are provided outcome feedback (actual outcome) in response to 

each judgement. This provides participants the opportunity to learn the weight to give to 

each cue in judgement and the relation between cues and the criterion. I n order to simulate 

learning o f expertise in the types o f uncertain environments that people usually learn, a 

noise element is usually included wi th the outcome feedback participants receive in the 

learning phase. This provides a probabilistic element to multiple cue tasks. Following 

training, participants are provided a number o f test trials designed to measure their 

learning. In these trials feedback is not provided in response to judgement. While 

performance scores are usually measured along wi th participants' judgement policies, few 

MCPL studies have considered the degree to which participants have insight into their 

judgement policies, and whether they acquire accurate explicit knowledge o f the task. This 
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may in part be due to an assumption in M C P L studies that learning is conscious and 

explicit. According to Juslin, Jones, Olsson, and Winman (2003) a common view in the 

MCPL literature is that people "abstract exphcit representations o f the cue-criterion 

relations". This may explain why explicit knowledge and self-insight is rarely assessed, 

since people should have good insight i f judgment is explicit and explicit knowledge should 

correspond with performance. 

2.1.1. Background 

One of the main findings to come out o f early M C P L research was participants' diff icul ty in 

learning certain types of cue-criterion relations. I t became evident that although 

participants were often able to learn non-linear U-shaped and inverted U-shaped relations 

(see Figure 2.1), their performance in tasks that contained these types of cues was far 

poorer than for linear cue tasks (Deane et al, 1972; Hammond 8f Sunnmers, 1965, 1972; 

Sheets 8f Mil ler , 1974; Summers & Hammond, 1966). Furthermore, participants also 

appeared to perform less well with negative linear than positive linear cues (Evans, 

Clibbens. Cattani, Harries, Dennis. 2003; Evans, Clibbens, & Harris, 20O5; Naylor & Clark, 

1968). 
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Figure 2.1: The four main cue-criterion relations used in MCPL tasks. Top panel: 
positive linear and negative linear relations. Bottom panel: Inverted U-shaped and U -

shaped non-linear relations. 

As evidence o f participants* diff icul ty wi th learning negative linear and non-linear 

cues mounted, many theorists began to conclude that people are simply unable to learn 

f rom outcome feedback in MCPL tasks (Brehmer, 1980). For some authors learning 

appeared to be a "very slow and peculiarly ineffective process" (Smedslund, 1955), while 

others concluded that "subjects are not bad intuit ive statisticians, they are not statisticians 

at air (Brehmer & Kuylenstierna, 1978). I t appeared that participants persistently tested 

hypotheses that were not supported by outcome feedback (Einhorn & Hogarth, 1978), 

often retested hypotheses they had previously rejected (Brehmer, 1979), and only 

performed well when told which cues to use and how to use them (Deane, Hammond, 8c 

Summers, 1972; Hammond. 1971). This led some authors to argue that outcome feedback 
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is simply not sufficient for learning in complex MCPL tasks (Hammond , 1971; Hammond 

& Summer, 1972; Hof fman , Earle, & Slovic, 1981). 

A number of alternatives to outcome feedback were developed in an attempt to 

improve performance in diff icul t versions o f MCPL tasks, namely U-shaped and inverted 

U-shaped tasks. This involved either providing participants feedback about the 

environment structure (task information), their own judgement policy (cognitive 

information), or the match between their judgement policy and the environment model 

(functional validity information). These can be provided to the participant either verbally, 

graphically, or as statistical information. Task informat ion ( T l ) appears to improve 

learning in complex MCPL tasks containing negative linear, U-shaped, and inverted-U 

shaped relations, while cognitive information (CI) and functional val idi ty information 

(FVI) general have little effect on performance (Balzer, Doherty, & O'Conner, 1989; 

Hoffman et al, 1981; Lindell, 1976; Newton, 1965). This is likely because T I is the only type 

of feedback that informs the participant explicitly about the relations between cues and the 

criterion and the relative importance o f each cue. There is also some suggestion that a 

combination o f both T I and CI provides the best feedback for learning (Hammond & 

Boyle, 1971; Schmitt, Coyle, 8c King, 1976). Indeed, providing informat ion about the 

environment and the individual's judgement policy allows the participant to compare their 

judgement policy wi th the model of the environment. Whi le alternatives to outcome 

feedback are useful for improving the judgement policies o f experts, graphical aids and 

statistical information about the environment structure and one's judgement policy are 

arguably rarely available in natural environments. 
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The above review paints a gr im picture o f people's ability to learn in MCPL tasks. 

However, i t is important to note that participants are often able to learn nonlinear U -

shaped and inverted U-shaped relations, even when combined wi th linear cues in mixed-

cue tasks, albeit less well than linear cues (Hammond & Summers, 1965). It is also 

consistently shown that participants can achieve very good performance when all relevant 

cues have a positive linear relation to criterion (Brehmer & Kuylenstierna, 1978; Naylor & 

Domine, 1981), and are able to distinguish relevant f r o m irrelevant cues (Evans et al, 2003). 

Although participants perform less well when cues have a negative linear relation to 

criterion (De Klerk, De Leeuw, 8c Oppe, 1966; Naylor & Clark, 1968), they nevertheless 

perform better than chance even when up to 25% of noise is added to outcome feedback in 

a learning phase of only 80 trials (Evans et al, 2003; 2005). It has also been argued that in 

real world environments much o f the process o f learning f r o m multiple cues involves 

discovering which ones are important, that is, which cues should be added to one's 

cognitive model of the environment, and which should be removed (KJayman, 1984). 

Klayman (1984, 1988) suggests that by presenting participants w i th an explicit list o f cues, 

as is usually the case, this downplays their ability to discover cues in the environment. He 

found participants are able to discover, after extensive training, which visual cues in a 

complex visual display are relevant for predicting a criterion. 

In sum, learning in MCPL tasks is heavily affected by the types o f relation cues have 

with the criterion. Early research using cues wi th nonlinear cue-criterion relations 

suggested participants simply do not learn f r o m outcome feedback. However, this finding 

stands in contrast wi th research using linear cues, which often report very good 
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performance. Participants are shown to perform well when cues have a linear relation to 

criterion, and better still when the relation is positive. 

2.1.2. The cognitive processes involved in MCPL 

MCPL theorists appear to assume that people learn by consciously testing hypotheses 

against the feedback they receive. One possibility is that fo l lowing training, what 

knowledge people have acquired o f the task is explicit and available for verbal report. The 

general consensus among MCPL researchers appear to be that participants test the 

hypotheses that most easily come to mind unti l the outcome feedback they receive 

confirms an hypothesis, they then begin to abstract rule-based explicit knowledge o f each 

cues' importance (Einhorn, Kleinmuntz, 8f Kleinmuntz, 1979; Kleinmuntz, 1963, 1975; 

Newell 8c Simon, 1961, 1972; Brehmer, 1973, 1974, 1980; Juslin. Olsson, & Olsson, 2008). 

While many of these theorists do not describe an ^explicit* theory o f judgement, people*s 

hypothesis testing strategies are usually assessed using methods of verbal report and 

questionnaires. For instance, people tend to rate explicitly that positive linear relations are 

more prevalent in their environment than negative linear ones in post-task interviews 

(Brehmer, 1974). Hence, it is likely that hypothesis testing in M C P L is conscious and 

driven by controlled explicit processes. Accordingly, a participant may discover that a 

positive linear hypothesis accounts for the cue-outcome associations they are observing 

and begin to formalise explicit rules such as "high values on Cue A go with high outcome 

values, and low values on Cue A go with low outcome values" (Juslin, Jones, Olsson, & 

Winman, 2003). However, there is some dispute that theorists impl ic i t ly equate the 

multiple linear regression analyses used to reveal participants* judgement policies with the 
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actual cognitive processes involved in performing the task (Dawes, 1975). This may occur 

if we assume that participants have a linear additive model in mind, leading to the 

assumption that participants explicitly combine cue values with their subjective beliefs 

about each cue in a controlled and conscious manner (Simon, 1976) 

Brehmer (1974, 1979, 1980) suggests that participants approach MCPL by testing 

hypotheses about cue-criterion relations one-by-one in order that hypotheses most easily 

come to mind, first testing a positive then a negative linear hypothesis, followed by 

nonlinear hypotheses. The order that participants test hypotheses against feedback is also 

influenced by their beliefs about which types of cue-criterion relations are most common in 

the environment. Participants tend to list more examples of positive cues than negative 

cues, and more examples of linear relations than nonlinear relations (Brehmer, 1974). 

Participants also tend to rate positive cues as more prevalent in the environment than 

negative cues, and test hypotheses in an order consistent with this account (Brehmer, 1974; 

1976; 1978; Brehmer & Kuylenstierna, 1978). Similarly^ Naylor and Clark (1968) suggest 

that participants appear to be biased towards looking for a "positive relatedness" between 

cues and criterion, explaining why they find negative cues harder to learn. Interestingly, 

learning of negative cues is poorer when added noise is increased or cue vaUdities are 

decreased, whereas the same factors do not affect learning of positive cues, suggesting that 

negative cue learning is difficult in part due to participants* inability to reject an initial 

expectation of positive cues (Brehmer, 1973). 

MCPL studies indicate that participants* learning from multiple cues is not only 

biased towards positive and linear cue-criterion relations but is also surprisingly inefficient. 

MCPL tasks are arguably very complex when approached by explicit hypothesis testing. As 
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Hammond (1971) notes, cues may differ in their relation to the criterion, similar outcomes 

can be generated by different patterns of cue values, and due to the noise element added to 

outcome feedback similar patterns of cue values can produce different outcomes. However, 

when participants are given the opportunity to select their own cue values in order to 

encourage explicit hypothesis testing of each cue-criterion relation, participants often fail 

to manipulate cue values in an efficient and informative way. They often choose not to 

change any cue values on many trials, generating similar outcomes, or opt to change all 

cues on a single trial as would happen i f cue values were randomly generated (Hoffman et 

al, 1981). In tasks containing only linear cues, however, participants do appear to benefit 

from the opportunity to test hypotheses when selecting cue values to correspond with 

outcome values (Enkvist et al, 2006). Similarly, when cue-criterion relations are made more 

salient to facilitate hypothesis testing by holding some cue values or the criterion value 

constant over a number of trials, learning is facilitated in tasks containing linear relations 

with deterministic outcome feedback (Uhl, 1960). However, the same manipulations do 

not appear to aid learning in more complex tasks containing inverted U-shaped cues 

(Hoffman et al, 1981). 

It appears that methods aimed on enhancing participants* explicit hypothesis-

testing do not facilitate learning in highly complex tasks, but instead help to make salient 

the cue-criterion relations that participants f ind easier to learn (i.e. linear cues). 

Participants also appear insensitive to the probabilistic nature of MCPL tasks, and are often 

too quick to abandon hypotheses. When told explicidy that similar cue values can lead to 

different outcomes due to an added noise element, learning does not improve even in 

simpler positive linear tasks (Brehmer, 1980; Brehmer & Kuylesntierna, 1978). 
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In sum, the MCPL literature appears to suggest that learning in muhiple cue 

environments involves consciously testing hypotheses against outcome feedback in a 

controlled effortful manner. While MCPL theorists do not rule out the possibility that 

judgement can be more intuitive (See Hammond, 1996), the assumption appears to be that 

analysis of self-reports and verbal protocols is sufficient to capture the process of 

judgement. For instance, Hammond and Summers (1972) propose that performance on 

more difficult versions of MCPL tasks that contain nonlinear cues is poor in part due to 

people*s difficulty in applying rule-based knowledge. For Hammond and Summers 

judgement can be taxing on cognitive resources even when one knows how the cues are 

related to the criterion and how to use them. The assumption here appears to be that 

judgement is constrained by limited cognitive resources, which are usually associated with 

conscious reasoning. Again, however, the possibility that judgement can be intuitive is also 

entertained (Hammond & Stewart. 2001). Nevertheless, hypothesis testing in these tasks 

appears to be heavily biased and deterministic, leading to especially poor performance in 

probabilistic tasks that contain nonlinear cues. As with studies of expertise, participants are 

often unable verbally to report their judgement policies (Balke. Hammond. & Meyer. 1973; 

Hammond, 1971). I f judgement in MCPL tasks is influenced only by conscious processing, 

however inaccurate their explicit knowledge, we would expect participants to be able 

verbally to report how they made their judgements. Poor levels of self-insight appear to 

confirm MCPL theorists* suspicions that judgement under some conditions is guided more 

by intuition than explicit reasoning (Evans et al., 2003; Hammond, 1996). 

The implicit learning literature suggests that unconscious implicit processing 

controls behaviour in complex learning environments. Indeed, similar neural network 
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models used to describe associative processing in implicit learning tasks could be applied to 

learning of multiple cues (Cleeremans. Destrebecqz, & Boyer, 1998; Dienes» 1992; Ganis 8f 

Schendan, 1992). This would involve training a neural network model on the cue-criterion 

relations via outcome feedback. However, proposing that judgement is instead influenced 

exclusively by associative processes fails to explain why certain cue-criterion relations are 

harder to learn. Positive cue learning should have no advantage over negative cue learning 

for an untrained neural network. Dual-process theories instead propose that both implicit 

associative and controlled hypothesis-testing processes can contribute to the inferences and 

judgements we make> and perhaps provide a better account of the cognitive processes 

involved in multiple cue judgement following training. 

2.1.3. Dual process theories of MCPL 

Egon Brunswik (1956) was first to become aware that inferences based on multiple cues 

may be approached cognitively in different ways. He suggested that some kinds of multiple 

cue judgements may draw on intuitive types of thought, whereas others may be approached 

more analytically, Brunswik seemed to be making a distinction between perceptual 

inferences on the one hand, and more effortful judgements on the other (Hammond, 

2001). Brunswik's distinction between intuitive and analytic thinking was further 

developed by Kenneth Hammond as part of his Cognitive Continuum Theory (CCT). 

Hammond (1990; 1996; Hammond & Stewart, 2001) proposed that multiple cue judgement 

most likely draws on a blend of intuitive and analytic thinking. The extent to which 

judgement is intuitive or analytic depends primarily on a number of task characteristics, 

and to some extent on the cognitive characteristics of the individual. Tasks that are 
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unfamiliar and highly complex are expected to draw heavily on analytic thinking and less 

on intuition. Such tasks can be placed at an analytic end of a continuum. Judgements that 

are made more intuitively would instead be placed at the opposite, intuitive*, end of the 

continuum. However, CCT theory proposes that most tasks would be placed somewhere 

between the two poles, drawing on a mixture of both analytic and intuitive thinking. 

CCT makes an interesting distinction between multiple cue judgement involving 

linear and nonhnear cues. It is proposed that while judgement in tasks containing 

nonlinear cues likely draws on analytic thinking, judgements based on linear cues are made 

more intuitively. That is, difficult nonlinear judgement tasks may require analytic thinking, 

whereas judgement in easier linear cue tasks can be guided more by intuition. While few 

studies have empirically tested CCT (Dunwoody. Haarbauer. Mahan. Marino, 8f Tang. 

2000; Hammond, Hamm, Grassia. & Pearson, 1987), the theory makes an interesting 

distinction between intuitive and analytic thinking. However. Hammond made sure that 

although CCT distinguishes different kinds of thinking, he was not endorsing the idea that 

distinct and separate cognitive processes were intuitive or analytic, and criticised theories 

that propose separate cognitive processes (i.e. implicit and explicit) can compete to control 

behaviour (Hammond, 1966; 1996). CCT instead appears to distinguish between types of 

thinking styles, and makes no distinction between unconscious automatic and conscious 

controlled processing. For this reason CCT fails to take account of a large body of research 

(reviewed in Chapter I) indicating that separate implicit and explicit processes can 

contribute to the inferences we make in a wide range of task environments. 

Recent work by Jonathan Evans and his colleagues (Evans et al, 2003, 2005), 

indicates that both implicit and explicit processes may contribute to judgement in MCPL 
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tasks. Following training, they measured performance on 40 test trials where no outcome 

feedback was presented, by correlating judgements with criterion values for each trial. They 

found that performance scores were poorer (but still above chance) following training in 

which cues were negatively related to the criterion, compared with positive cue tasks. They 

also asked participants, after completion of each task, to rate the relevance of each cue. The 

results showed clear dissociation between explicit knowledge and actual performance. On 

more difficult tasks, explicit knowledge was very poor even though performance was well 

above chance. Evans et al. concluded that explicit learning contributes to performance on 

easy but not difficult versions of the MCPL task, but that implicit learning is present on 

both. 

2.2. RATIONALE OF T H E THESIS 

MCPL is traditionally viewed as a hypothesis testing task (Brehmer, 1974; 1980). This is 

despite the possibility that learning may instead be driven by implicit associative processes, 

similar to those shown to account for other types of skill learning (e.g. Cleeremans 8f 

McClelland. 1991). The MCPL paradigm has explored multiple cue judgement following 

training in controlled environments and suggests that participants' inferences are guided 

by knowledge acquired via hypotheses-testing. However, this is in contrast with studies of 

implicit learning that indicate automatic implicit processes can guide accurate inferences in 

complex environments. Dual-process theorists instead propose that both unconscious 

implicit and conscious explicit processes can compete to control behaviour. 
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Recently, Evans et al. (2003, 2005) have shown how judgements from multiple cues 

following training may indeed be influenced by both implicit and explicit processing. 

However, their findings rested solely on the relation between performance and 

participants* explicit beliefs about each cues* relevance. In the experimental studies of the 

present thesis we use dual-process methods not previously applied to MCPL tasks to 

explore the contribution of implicit and explicit processes to multiple cue judgement in 

controlled learning environments. Figure 2.2 provides an illustration of how implicit and 

explicit processes can compete to control judgements in MCPL tasks. Learning can, in 

principle, lead to both implicit and explicit knowledge. Outcome feedback provided in 

response to participants' judgements in a learning phase can foster both incremental 

learning through implicit associative processes and explicit hypothesis-testing. Implicit 

knowledge and explicit knowledge can then compete to control judgement following 

training (see Figure 2,2). Acquisition of expertise in a controlled environment using the 

MCPL paradigm allows the contribution of implicit and explicit processes to multiple cue 

judgement to be measured. 

IMPLICIT KNOWLEDGE 

LEARNING JUDGMENT 

EXPLICIT KNOWLEDGE 

Figure 2.2: MCPL leads to the acquisition of both implicit and explicit knowledge. Both 
types of knowledge can compete to control judgement. 
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In the experimental studies of the present thesis we introduce dual process 

manipulations as well as measure individual differences to study implicit and explicit 

processes in multiple cue judgement. In Chapter 3, a concurrent working memory load is 

introduced to the test phase of the MCPL task after training to disrupt the contribution of 

explicit knowledge to judgement. While we expect a working memory load to inhibit 

explicit processing due to its dependence on limited working memory resources, the 

contribution of implicit knowledge to judgement should remain intact. We also introduce 

instructional manipulations. In Chapter 4, measures of individual differences in working 

memory capacity are correlated with performance and explicit knowledge scores. While 

attention is required for both implicit and explicit learning of complex tasks, explicit 

processing but not implicit processing is believed to load heavily on limited working 

memory resources. For this reason, correlations between working memory capacity and 

measures of performance and explicit knowledge can be diagnostic of explicit processing. 

The experimental studies of Chapter 5 introduce task manipulations designed to improve 

explicit learning, as well as monitor the contribution of implicit and explicit processes to 

learning and judgement using novel methods. 

2.3. METHODOLOGY: T H E MCPL JUDGEMENT TASK 

The MCPL task used to train participants in the present thesis was based on Evans et al. 

(2003, 2005), and is similar to previous studies of MCPL. Participants were trained on three 

task types, each containing two relevant cues that were linearly related to the criterion, and 

two irrelevant cues. Positive-cue tasks contained two positive cues and two irrelevant cues 

(++00), negative-cue tasks contained two negative cues and two irrelevant cues (—00), and 
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mixed cue tasks contained one positive, one negative, and two irrelevant cues (+-00), 

Relevant cues were maximally predictive of the criterion (before addition of noise), 

whereas irrelevant cues were entirely non-predictive. Criterion values were calculated using 

a linear model by entering cue weights as either 1 for positive cues, -1 for negative cues, or 

0 for irrelevant cues. We followed the same procedure used by Evans et al. to calculate 

outcome feedback values. These were generated by adding a random variable from a 

Gaussian distribution to criterion values. This was done in order to add 25% noise to the 

outcome feedback participants received to simulate learning of expertise in uncertain 

environments. After adding the noise component task predictability was reduced to .87 {R^ 

- .75). Criterion and feedback values were normalised to accommodate the ordinal scale 

used to display feedback to participants. On each trial, cue values for each cue were 

independendy randomly generated, and so were theoretically uncorrected. 

Participants completed the MCPL task on a single computer, with up to five 

participants performing the task at one time. The task was divided into two sections. 

Participants first completed a learning phase designed to train them on the cue-criterion 

relations. In the learning phase outcome feedback was provided immediately in response to 

participants* judgements on each trial. Participants completed 80 learning trials in total. 

Our primary interest was to study expertise acquired in the learning phase. For this reason, 

participants completed a further 40 test trials immediately following completion of the 

learning phase. In the test phase outcome feedback was not provided in response to 

judgement. We used performance correlations as our measure of learning. These were 

calculated by correlating criterion values with the judgements individually for each 

participant. 
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We were also interested in measuring explicit knowledge levels. This provides a 

measure of how much knowledge participants had acquired explicitly about the task, as 

well as an indication of the extent to which participants were explicitly engaged in the task. 

Participants' explicit beliefs used to calculate explicit knowledge scores were measured 

using a cue rating task presented immediately following completion of the test phase. In 

the cue rating task participants were again presented with the four cues and asked to rate 

the relevance of each. In Experiments 1 and 2, they were asked to rate whether each was 

positively, negatively, or unrelated to the criterion, with a confidence rating for each. To 

the right of the tests were the three labels po5/7/ve, irrelevant, and negativey which could be 

selected by moving the curser over a label and clicking the mouse. To the right of these 

labels the confidence levels were presented, ranging from i to 5, with J labeled as not very 

confident and 5 labeled as very confident. In Experiments 3-8, participants instead rated 

each cue on a continuous scale. They did this by moving a slider presented on the screen 

either towards a positive label or a negative label. The slider appeared initially in the middle, 

below an irrelevant label, for each cue. Participants did not give a confidence rating for 

each cue. We calculated explicit knowledge scores by modelling how participants would 

have performed based on their explicit beliefs alone. This was achieved by using 

participants' explicit beliefs about each cue s relevance as cue weights to make predictions 

on each trial using the linear additive rule: 

J = X f C i + X2C2 + X3C3 + X4C4 

where predicted judgement, ] , for each participant on each trial is the product of the 

sum of each cue value, C , on each trial multiplied by the participant's explicit rating of each 

cue. jc (Einhorn et al, 1979; Juslin et al, 2003). In Experiments 1 and 2 we entered 
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participants post-task cue ratings (0 for irrelevant, 1 for positive, - I for negative) and 

confidence in each rating, ranging from 1 (not very confident) to 5 (very confident). For 

example, i f a participant rated a cue as positive with a confidence level o f 4, a rating of +4 

was used, whereas if a participant rated a cue as negative with the same confidence, a rating 

of -4 was used. In Experiments 3-8. we used participants' explicit ratings of each cue on a 

continuous scale ranging from 1 to - I . The predicted judgements based on the participant's 

explicit beliefs about each cue were then correlated with criterion values to give the 

approximate performance score they could have achieved, had they used only their explicit 

beliefs about each cue. 

In all experimental studies except Experiment 3, participants were first provided 

instructions explaining that it was their task to rate the suitability o f a sample of job 

applicants one at a time, using four personality tests (the cues), which could predict 

applicant suitability positively, negatively, or not at all. In Experiment 3, participants 

instead learned to predict house prices based on four attributes of houses. Participants were 

provided with definitions of positive, negative, and irrelevant relations, with an example of 

each. The instructions were provided on paper, allowing participants to refer back to the 

instructions at any time during the task. The procedure for each trial consisted of 

presenting the four tests on screen in list form, as shown below, with the current 

applicant's results to the right-hand side of the corresponding tests. The results ranged 

from very low, low, average, high, to very high. 
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Test A: High 

TestB: Very Low 

TestC: Average 

TestD: Low 

How suitable is the job applicant? 

Very Poor Poor Average Good Very Good 

Below the tests, five corresponding levels of suitability, from very poor, poor, average, good, 

to very good, were presented. These could be selected via a mouse click. In the learning 

phase, following a selection the selected label remained highlighted and below appeared the 

feedback, referred to as the actual suitability of the applicant. The test phase followed the 

same procedure, except participants moved immediately on to the next trial after making 

each judgement without receiving feedback. Following completion o f the test phase, 

participants completed the cue rating task. They were then debriefed and thanked for their 

participation. 

2.4. GENERAL HYPOTHESES AND RESEARCH QUESTIONS 

In Chapter 1 (see section 1.2.), 1 discussed a wealth of research indicating that much of 

human learning, judgement, and reasoning is influenced by knowledge that is implicit and 

inaccessible to verbal report. A puzzling finding in the judgement hterature is that experts 
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who take account of multiple cues often are not able verbally to describe how they make 

their judgements. One possibility is that experts are, in part, influenced by knowledge that 

is implicit. However, this possibility has received little attention in the multiple cue 

judgement literature. The experimental studies of the present thesis are designed to 

examine the role of implicit and explicit processes in judgement. 

In Chapter 3, the contribution of explicit knowledge to judgement is disrupted by 

the addition of a concurrent working memory load to test trials after training. If 

performance on judgement tasks is unaffected under these conditions then this would 

suggest that judgement is intuitive and guided by knowledge that is implicit. However, this 

does not rule out the possibility that people engage in deliberative hypothesis-testing 

during learning. By measuring individual differences in working memory capacity in 

Chapter 4, we explore whether explicit processing is involved at any stage of training. 

Hence, there are two key questions of the present thesis. Our first question concerns 

whether multiple cue judgement should be viewed as an entirely explicit process, or 

whether both implicit and explicit knowledge is involved. Our second question concerns 

the role of these processes during the acquisition of expertise. These questions are explored 

further in Chapter 5. 
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Chapter 3 

The effects of concurrent working memory load 
and instructional manipulation on multiple cue 
judgement 

In the present chapter I report three experiments designed to explore the role of implicit 

and explicit processes in judgement from multiple cues. In Experiments 1 and 2 we take a 

direct approach by introducing a concurrent working memory load during the test trials, 

when judgements are tested after learning from outcome feedback. We did not load 

working memory in the learning phase, as a great deal of research suggests working 

memory (or attention) is required for implicit (as well as explicit) learning of complex tasks 

(e.g. Nissen & Bullemer. 1987; Hayes & Broadbent, 1988). However, we can expect diat use 

of a working memory load in the test phase will selectively interfere with judgements that 

are mediated by explicit rule-based processes whilst leaving implicit judgemental processes 

relatively unimpaired (Curren & Keele, 1993; De Neys, 2006; Hayes & Broadbent, 1988). 

This method should enable us to tell whether such processes are engaged i n the MCPL task. 
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In tasks that draw on effortful explicit processing, we expect performance to be 

poorer with the addition of a concurrent working memory load to trials in a test phase. An 

assumption made by some MCPL theorists appears to be that participants combine cue 

values on each trial with their explicit beliefs of each cues' relevance when making 

judgements (Brehmer, 1980; Einhorn, Kleinmuntz, 8c Kleinmuntz, 1979; Juslin, Olsson, 8c 

Olsson, 2003; See also Lagnado, Newell, Kahan, & Shanks, 2006 for a theory of MCPL using 

a different version of the task). For instance, Einhorn et al. (1979) showed how judgement 

in the MCPL task can be modelled by computer algorithms based on participants' ongoing 

verbal protocols. Participants verbalised their reasoning at every stage of judgement, 

allowing their dynamic judgement policy to be formalised. However, such approaches 

would not pick up on implicit processing, which may also contribute to judgement. 

Without seriously considering the role of implicit knowledge the assumption among some 

MCPL theorists appears to be that people's inferences are made entirely (or mostly) 

explicitly. In this way, judgement is effortful and demanding on the individual's limited 

working memory resources, even after learning. We expect, therefore, that this process 

should be disrupted by loading participants' working memory resources with a secondary 

task. In other tasks. learning of complex rules is often shown to occur implicitly, without 

any evidence that explicit processing contributes to participants' improved performance 

(Berry & Broadbent, 1984; Cluck, Shohamy, 8f Myers, 2002; Price, 2005; Reber, 1993). 

When performance on a task is driven by implicit processing, the addition of concurrent 

load tasks designed to disrupt explicit processing have no effects on performance (Hayes 8c 

Broadbent, 1988; Waldron 8c Ashby, 2001). For this reason, we expect that the addition of a 

working memory load to MCPL tasks will have no effect on performance after learning if 

judgements are made implicitly. 
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In Experiment 3 we use an alternative method to measure implicit and explicit 

processes in multiple cue judgement. We examine whether task instructions have any effect 

on performance and explicit knowledge following training. I f people use effortful explicit 

processing to make judgements, then these should be influenced by task instructions. In 

contrast, instructions should have no influence if the inferences participants make are 

guided solely by implicit processes. 

3.1. EXPERIMENT 1 

I f performance in MCPL tasks relies predominantly on explicit knowledge, as some 

theorists claim, then the ability to make judgements under working memory load should be 

severely impaired. I f both implicit and explicit processes contribute to judgements, as 

claimed by Evans, Clibbens, Cattani, Harris, and Dennis (2003), then the implicit 

component of performance should be preserved. As a second check on the role of explicit 

knowledge in this task, we also model the performance that participants would achieve 

given their post-learning explicit beliefs and compare that with actual performance. 

3.1.1. Method 

Participants 

Eighty undergraduate students at the University of Plymouth participated for course 

credits. 
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Design 

Participants were divided into two groups according to whether they received two positive 

and two irrelevant cues (++00; positive cue task) or one positive, one negative, and two 

irrelevant cues (+-00; mixed cue task). Each group was further divided into two groups 

according to whether they received a working memory load task (or not) on the test trials, 

generating four independent groups in total. Details of the task methodology and 

procedure are provided in section 2.3. The only exception to the task methodology in 

Experiment 1 is the addition of the concurrent working memory load task to the test phase. 

Procedure 

Each participant completed the judgement task in one of the four conditions lasting up to 

30 minutes. Instructions for participants are provided in section 7.3. 

Working memory load task. Participants in the load condition performed a 

simultaneous visual memory load task during test trials. Once the participant had 

completed the learning trials they were presented with instructions on screen explaining on 

each trial they would need to hold in mind the location of four dots i n a 3x3 grid. The 

location of each dot was randomly generated. A grid then appeared on screen for 500 ms, 

after which they were required to judge an applicant's suitability, without receiving 

feedback. Immediately after making their selection, an empty grid appeared with which 

they were required to select the appropriate cells of the grid via a mouse click 

corresponding to the locations of the dots for each trial. They received a new grid pattern 

for each of the forty test trials. 
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3.1.2. Results and Discussion 

Working Memory Load 

Participants achieved an overall average of 3.51 (SD = 0.41) correct dot placements out of a 

possible 4 across participants. Load task performance (number of correctly recalled dot 

placements) did not correlate significantly with judgement task performance (r = .002, n = 

40,p=.992). 

Performance in the test phase 

Performance correlations in the test phase were calculated by correlating participants* 

judgements with criterion values across the 40 test trials. We also calculated performance 

scores in the P' 40 and 2"** 40 learning trials in the same way. Analyses of performance 

scores in learning phases of the experiments in the present chapter are reported in section 

7.1. Performance scores in the test phase for each group are presented in Table 3.1. All 

group performance scores were significantly above zero, except for those performing the +-

00 task in the no load condition. 
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Table 3.1 
Mean group performance scores 

++00 +-00 --00 
M t M t M t 

Experiment 1 
Load .66* 18.076 .24* 3.063 
No load .60* 18.267 .10 1.318 

Experiment 2 
Load .52* 8.538 .17* 2.372 .44* 5.687 
No load .51* 9.568 .10 1.776 .29* 2.871 

Experiment 3 
'High' instructions .61* 14.268 .30* 3.694 .44* 6.061 
'Low* instructions .62* 12.072 .22* 3.512 .38* 4.708 

*/?<.05 

In order to examine the effects of the concurrent memory load task on 

performance, a two-way independent analysis of variance (ANOVA) was performed using 

load-type (no load or load) and task-type (++00 or +-00) as independent factors, and 

performance as the dependent variable. A Fisher z transformation was applied to 

performance scores to improve sample distributions in this analysis and all further analysis 

involving performance scores. In contrast with our predictions, judgement was unaffected 

by the addition of the concurrent load task in the test phase (F(i.76)= 3.143, MSE = .448, p = 

.080, partial = .04). We expected that loading participants* working memory resources 

would worsen their performance on judgement tasks that require effortful explicit 

processing. However, in both task types judgement appeared unaffected. This suggests that 

judgement is guided solely by implicit processing, at least when performance is measured 

after learning. Consistent with previous research (Evans et al, 2003; 2005), there was, 

however, an effect of task-type (F(,.76)= 45.917, MSE = 6.549,p <.001, partial = .38). as the 
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positive cue set (mean score = .63) was learned much better than the mixed cue set (.17), 

which included a negative predictor. There were no significant interactions. 

Explicit knowledge 

We measured explicit knowledge scores by modelHng how participants would perform in 

the test trials based on their expHcit behefs alone. Details of how explicit knowledge scores 

were calculated are provided in section 2,3. All group explicit knowledge scores were 

significantly above zero. Mean group explicit knowledge scores are displayed in Table 3.2. 

Table 3.2 
Mean group explicit knowledge scores 

++00 +-00 GO 

M t M t M t 
Experiment 1 

Load .33* 2.278 .28* 2.558 
No load .47* 5.392 .33* 3.040 

Experiment 2 
Load .42* 3.682 .29* 2.319 .19 1.919 
No load .18 1.607 .35'̂  3.357 .21 1.703 

Experiment 3 
'High' instructions .41* 3.534 .25 1.709 .24 1.831 
'Low* instructions .31* 2.480 .19 1.434 .27* 2.214 

*p<.05 

A two-way independent ANOVA was performed on explicit knowledge scores, 

using task-type (++00 or +-00) and load-type (no load or load) as independent factors, and 

explicit knowledge scores as the dependent variable. A Fisher z transformation was applied 
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to explicit knowledge scores in this analysis and all following analysis involving explicit 

knowledge scores. There was no effect of task-type (F(i.76) = .752, MSE = .499, p = .389, 

partial = .01), and although participants appeared generally to acquire less explicit 

knowledge in load conditions (.31) than no load conditions (.40), this difference was not 

significant (F(,.76) = .304, MSE = .202, p = .583, partial rf < .01). There were also no 

significant interactions. Hence, in contrast with performance scores, participants acquired 

roughly the same amount of explicit knowledge in the two task types. Furthermore, 

participants' explicit knowledge of the ++00 tasks appeared below their actual 

performance, whereas the converse was true for the +-00 task (see Panel A: Figure 3.1). 

Thus we performed a further ANOVA, in which we entered explicit knowledge and 

performance scores for each participant on each task as an additional factor, which we call 

^measure*. There was no main effect of measure (Fd.ys) = .236, MSE= .060, p = .628, partial 

< .01). However, there was an effect of task-type (F(,.78) = 11.371, MSE= 5.825, p = .001, 

partial = .13), and a cross-over interaction between measure and task-type (F(i.78) = 7.822, 

MSE= 2.002, p = .006, partial r|̂  = .09). Pairwise comparisons confirmed that participants 

performing the ++00 task achieved a significantly higher performance score than that 

predicted by explicit knowledge (t = 2.885, df = 39, p = .006). Although participants 

performing the +-00 task appeared to show the reverse effect, this difference did not reach 

significance (t = -1.884, df = 39.p = .067). 

In sum, while performance was poorer when tasks contained a negative cue than 

when both relevant cues were positive, similar levels of explicit knowledge were acquired of 

both task types. The lack of any effects of working memory load on performance indicates 

that judgement may be guided solely by implicit learning processes. I f judgement in the test 
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phase was guided by working memory dependent explicit processing then we would have 

expected the concurrent load task to disrupt performance. However, this conclusion is at 

odds with our analysis comparing performance and explicit knowledge levels. Following 

positive cue training participants performed far better than expected based on their explicit 

beliefs alone, suggesting that a substantial implicit component is involved in learning tasks 

that contain only positive relevant cues. The extent to which implicit processes are involved 

in learning tasks containing a negative cue is less clear, however. In mixed cue tasks 

performance appeared slightly lower than explicit knowledge levels. If these tasks are also 

learned implicitly we would have expected performance levels to again exceed explicit 

knowledge scores. 
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Figure 3.1: Comparison between mean group performance and explicit knowledge scores in 
Experiments 1, 2, and 3. 
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3.2. E X P E R I M E N T 2 

In Experiment 1, there was no evidence that working memory load interfered with 

judgements made after the learning phase. This finding suggests that multiple cue 

judgement may not depend upon explicit processing, and is in contrast with the proposal 

of Evans et al. (2003) that both implicit and explicit processes contribute to the inferences 

that people make. In addition, post-task ratings revealed that while participants had 

acquired explicit knowledge of positive and mixed cue sets more or less equally, their 

performance on the two tasks was very different. The working memory load task was, 

however, of a visual nature. Although this kind of task has been shown to interfere with 

deductive reasoning (De Neys, 2006) it is arguable that a verbal working memory load task 

would be more disruptive. This is because the MCPL task presents the participant with 

verbal cues and cue values, and requires a verbal judgement of applicant suitability to be 

made on each trial For this reason, in Experiment 2 we instead used a verbal load task. We 

also took the opportunity to apply our methods to a third task, in which two negative cues 

are combined with two that are irrelevant. I f explicit processing contributes to judgement 

in tasks containing negative cues, we should find that loading working memory disrupts 

performance on these tasks. 

3.2.1. Method 

Participants 

One hundred and twenty undergraduate students at the University of Plymouth 

participated for course credits. 
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Design 

We used the same general method for the judgement task, except for the addition of a task 

containing two negative and two irrelevant cues (—00; negative cue task), and the use of a 

verbal working memory load on test trials instead of the visual load used in Experiment 1. 

This generated six independent groups. 

Procedure 

The same general procedure was used (see section 7.3. for task instructions), with the 

exception that participants in the verbal load condition were required to memorize a list of 

six digits and letters on each of the test trials rather than the location of dots in a grid. The 

digits used were integers from 1 to 9, and the letters were B, C, D, F, G, H , J, K, and L. All 

digits and letters were spoken and recorded on computer and then joined according to 

their randomly generated ordering, generating forty individual memory lists of six 

elements. Participants were informed they would be required to repeat each list in order in 

their head, whilst making their judgement. After making their judgement an empty box 

appeared on screen into which they were required to type the list. 
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3.2.2. Results and Discussion 

Working memory load 

Overall, participants correctly recalled an average of 3.90 (SD = 0.94) digits out of a 

possible 6. Load task performance (number of correctly recalled digits) did not correlate 

significantly with judgement task performance (r = .225, n = 60, p = .084). 

Performance in the test phase 

Mean group performance correlations in the test phase are displayed in Table 3.1. All 

group performance scores were significantly above zero, except for those learning the +-00 

task in the no load condition. A two-way independent ANOVA was performed using 

working memory load (no load or load) and task-type (++00, +-00, or --00) as independent 

factors, and performance scores as the dependent variable. As in Experiment 1, there was 

no effect of working memory load on performance (F(I.IN) = 2.760, MSE = .502, p = ,099, 

partial vf = ,03), but there was a highly significant effect of task-type (F{2.IN) = 12.621, MSE 

= 2.295, p < .001, partial = .18). Participants performed best on the positive (++00) task, 

worst on the mixed cue (+-00) task, with the negative cues set (--OO) intermediate. 

Independent t-tests confirmed significant differences between the ++00 (.52) task and --00 

task (.36; t = 2.049, df = 78, p = .044), and between the -00 task and +-00 task (.14; t = 

2.894, df = 78, p = .005). There were no significant interactions. These results support our 

conclusions of Experiment 1 that working memory dependent explicit processing 

contributes little to judgement following training, regardless of the types of cues on which 

participants are trained. However, the type of task participants perform does influence 
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their learning. Performance appears poorest in mixed cue tasks containing both positive 

and negative relevant cues, and best when both relevant cues are positiv^e. Performance is 

intermediate when both relevant cues are negative. Analyses of performance scores in 

learning phases are reported in section 7.1. 

Explicit knowledge 

Explicit knowledge scores were calculated in the same way as in Experiment 1, and are 

displayed in Table 3.2. Three of the six groups acquired explicit knowledge that was 

significantly above zero. Participants performing the ++00 task in the no load condition, 

along with both groups performing the -00 task, failed to achieve significant explicit 

knowledge. 

A two-way independent ANOVA was performed, using task-type (++00, +-00. or -

00) and load (no load or load) as independent factors, and explicit knowledge scores as the 

dependent variable. There was no effect of task-type (F(2.n4) = .993, MSE = .544. p = .374, 

partial = -02), or load (Fd.iu) = .355, MSE = .195, p = .552, partial < .01), and no 

significant interactions. Hence, explicit knowledge acquisition was broadly independent of 

the type of cue set on which people were trained, even with the addition o f the negative cue 

task (-00). 

As in Experiment 1, a three-way mixed ANOVA was also performed, using task-

type (++00, +-00, or -00) and load-type (load or no load) as independent factors, measure 

(performance vs explicit knowledge) as the within-subjects factor, and correlations as the 

dependent variable. There was no significant effect of task-type (F(i.ii7» = 2.596, MSE = 
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1.212, p = .079, partial r|̂  < .04), or measure (F(,.ii7) = .349, MSE = .092, p = .556, partial r|̂  < 

.01). However, there was a cross-over interaction between measure and task-type (F(2,ii7) = 

6.180, MSE = 1.627, p = .003, partial t]^ < .10), illustrated in Panel B o f Figure 3.1. As in 

Experiment 1, participants performed better than the level predicted by explicit knowledge 

for the positive cue set and worse for the mixed set. On the newly added negative cue sets, 

performance again exceeded that predicted by explicit knowledge. Pairwise comparisons 

confirmed the reliability of the three trends. Whereas participants performed significantly 

better compared with their explicit knowledge in the ++00 task (t = 2.480, df = 39, p = 

.018), and -00 task (t = 2.039, df = 39, p = .048), they performed significantly worse in the 

+-00 task than their explicit knowledge (t = -2.555, df = 39, p = .015). 

In sum. Experiment 2 confirmed the findings of Experiment 1 that working 

memory load has no effect on performance after learning, using a verbal rather than visual 

load task. Interestingly, Experiment 2 also supports our finding that participants perform 

better than predicted based on explicit knowledge alone in positive cue tasks, but perform 

worse compared with their explicit knowledge in mixed cue tasks. With the addition of the 

—00 task in Experiment 2 it was also shown that participants outperformed their explicit 

knowledge scores in tasks containing only negative relevant cues. The lack of an effect of a 

concurrent load task on performance in the test phase suggests that explicit knowledge 

contributes little to judgement once expertise has been acquired. One possibility is that 

explicit hypothesis-testing contributes to learning only in early stages of the training phase 

and that explicit knowledge becomes automated through practice. I f this is the case, then 

judgement should draw less on working memory resources once explicit knowledge has 

become automated, and would be less affected by the addition of a working memory load 
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to the test phase. However, i f explicit processing is involved in the learning of expertise 

then instructional manipulations should influence performance. In Experiment 3, we 

attempt to direct participants' attention to negative cues as a means of testing for the role of 

explicit processing in learning. 

3.3. E X P E R I M E N T 3 

In Experiment 3 we explored the effects of instructions on participants* judgements. We 

used a scenario in which participants must learn which cues predict house price values. It 

was predicted that participants may be more Ukely to consider negative cues when they are 

asked to look for low criterion values, rather than high criterion values. This would 

therefore affect participants* explicit hypothesis testing without affecting implicit processes 

that respond to cue-feedback associations alone. In a post-task questionnaire, participants 

were also asked to list as many examples of positive and negative cues in their environment 

as they could, in order to examine the effects of instructions on the relative number of cues 

they consciously bring to mind. Previous research (Brehmer, 1974, 1980) suggests 

participants perform better with positive cues than negative cues because examples of 

positive cues come to mind more easily, and are perceived as occurring with a higher 

frequency in the environment. Therefore, we were interested in whether the relative 

number of examples of positive and negative cues listed by participants would relate to 

their performance. It may be that when participants are required to predict low criterion 

values they instead think of more negative than positive cues, and accordingly show 

improved performance on tasks containing negative cues. However, in line with the 
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findings of Experiments 1 and 2. this may have no effect on performance if learning is 

largely implicit. 

3.3.1. Method 

Participants 

One hundred and twenty undergraduate students at the University of Plymouth 

participated for course credits. 

Design 

The same general method was used, except in contrast with Experiments 1 and 2 no groups 

completed a concurrent working memory load task. Instead, an instructional manipulation 

was added prior to participants beginning the judgement task. In Experiment 3, the cue-

rating task used to measure participants' explicit beliefs about each cue was different to 

Experiments 1 and 2. Details of how explicit beliefs were measured using the cue-rating 

task are provided in section 2.3. Each of the three task groups (++00 task, +-00 task, and 

00 task) were either asked to look for high criterion values or low criterion values, 

generating a total of six independent groups. All participants then completed a post-task 

questionnaire. 
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Procedure 

The general task and instructions were used, except that instead of rating the suitability of 

job applicants participants rated the price level of a sample of houses from very low to very 

high, based on four features, labelled Feature A, Feature B, Feature C , and Feature D, 

which could vary in cue value on a 5 point scale from very low to very high (see section 7.3. 

for task instructions). Task instructions explained that each feature could represent some 

attribute about houses or their local area, and similarly to Experiments 1 and 2, could be 

positively, negatively, or not at all predictive (irrelevant). One group was told to imagine 

they worked for an executive estate agent that only sold expensive houses, and so their job 

was to predict 'high* house prices. A second group was told to imagine they were buying a 

house and could only afford a cheap house, so their job was to predict 'low' house prices. 

Once participants had completed the judgement task, those told to look for *high* house 

prices were asked to list as many attributes related to houses and their local area as they 

could, that may positively predict high house prices, and those that may negatively predict 

high house prices. Those participants told to look for 'low* house prices were instead asked 

to list as many attributes as they could that may positively predict *low' prices, and those 

that may negatively predict 'low* house prices. 

3.3.2. Results and Discussion 

Performance in the test phase 

Mean group performance scores are displayed in Table 3.1. Al l group performance scores 

were above zero and significant. We performed a two-way independent ANOVA on 
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performance scores in test trials, using task-type (++00, +-00, and --00) and instruction-

type (*high' or 'low*) as independent factors. There was a significant effect of task-type 

(f(2.u4) = 14.845, MSE = 2.432, p <.001. partial = .207). with participants performing 

significantly better in the ++00 (.62) than -00 task (.41; F(i.76) = 10.913, MSE = 1.885, p 

=.001. partial = .126), and marginally significantly better in the -00 than the +-00 task 

(.26; F(,.76) = 3.810. MSE = .653, p =.055, partial q̂  = .048). However, there was no effect of 

the instructional manipulation (F(I.IN)= .531, MSE = .087, p = .468. partial q̂  = .005), nor 

any significant interactions. Our finding that the instructional manipulation had no effect 

of performance following training suggests that either our manipulation was not sufficient 

to direct participants* attention to the negative cues, or that explicit hypotheses-testing 

processes contribute little to judgement even during the acquisition of expertise. While 

performance is strongly aff^ected by the presence of one or more negative cues, attempting 

to direct participants* attention to the presence of these cue types does not appear to 

influence explicit hypotheses testing. 

Explicit knowledge 

Mean group explicit knowledge scores are displayed in Table 3.2. Only three of the six 

groups acquired explicit knowledge of the task that was significantly above zero. Both 

groups that were trained on the +-00 task, along with participants performing the —00 task 

under *high* instructions failed to achieve significant levels of explicit knowledge. 

A two-way independent ANOVA using task-type (++00, +-00, or --00) and 

instruction-type ('high* or *low*) as independent factors, was performed on explicit 
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knowledge scores. This yielded no significant effects of task-type (F(2.ii4) = 1.729. MSE = 

1.717, p = .182. partial = .029), instruction-type (Fd.iu) = .238, MSE = .236. p = .627, 

partial = .002), or any significant interactions. Therefore, participants' explicit 

knowledge of the multiple cue tasks was not affected by the types of cues they learned, or 

by an instructional manipulation designed to improve their explicit learning of negative 

cues. This indicates that our instructional manipulation did not influence explicit learning 

of the tasks. 

In order to compare performance and explicit knowledge scores across the different 

task types, we performed a three-way mixed ANOVA using task-type and instruction-type 

as independent factors, and measure (performance in the test trials and explicit knowledge) 

as a within-subjects factor. There was no significant effect of instruction-type (F{ i . iu )= .446, 

MSE = .305. p = .505, partial ^^ = .004), or measure (Fd.iM) = 2.986, MSE = 1.414. p = .087, 

partial = .026), but a significant effect of task-type (F(2.ii4) = 5.840, MSE = 3.992, p = .004, 

partial rf = .093). Surprisingly there was no significant interaction between task-type and 

measure (F(2.iu) = .332, MSE = .157, p = .718, partial if = .006). Consistent with 

Experiments 1 and 2, however, in the ++00 task performance scores (.62) did appear 

substantially higher than explicit knowledge scores (.36). and similarly in the —00 task, 

performance (.41) also appeared higher than levels of explicit knowledge (.25). In contrast, 

in the +-00 task performance (.26) and explicit knowledge (.22) scores appeared similar 

(see Panel C: Figure 3.1), There were no other significant interactions. These trends are 

consistent with our findings across Experiments 1 and 2, that performance levels exceed 

what is expected based on explicit knowledge alone in positive cue and negative cue tasks. 
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Performance scores were again similar to explicit knowledge scores in mixed cue tasks, 

suggesting that implicit processing is not contributing to learning on these tasks. 

Post-task questionnaire 

The mean number of positive and negative cue examples listed by participants in the post-

task questionnaire for each group is presented in Table 3.3. We performed a two-way 

independent ANOVA to explore the effects of task instructions on the number of positive 

and negative cue examples listed by participants. For this, we used task-type (+-I-00, +-00, 

or -00) and instruction-type {'high' or Mow') as independent factors, and mean difference 

in number of positive and negative cue examples listed as the dependent variable. There 

was a significant main effect of instruction type (F ( i .n4 )= 22.580, MSe= 243.675, p <.001, 

partial = .165), with participants under *high* instructions listing more examples of 

positive cues than negative cues (mean difference = 2.9), compared with participants under 

*low* instructions (.02). There was no effect of task type (F(2.n4)= 2.855, MS<:= 30.808, p 

=.062, partial = .048), or any significant interactions. Hence, instructions affected the 

number of examples listed by participants without appearing to affect their performance on 

the judgement task. This suggests that asking participants which cues in the environment 

predict low house prices eliminates their conscious bias towards positive cues, whereas 

asking them to predict low house prices in the judgement task has no effect on their 

performance with negative cues. When participants were asked to hst examples of cues in 

the environment that predicted low criterion (house price) values, they listed similar 

numbers of positive and negative cues in the post-task questionnaire, suggesting that their 

conscious bias towards expecting negative cues was eUminated. In contrast, learning still 
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appeared biased towards positive cues when participants were asked to predict low 

criterion values, with higher performance scores in positive cue tasks than tasks containing 

one or more negative cues. This suggests that the conscious explicit processing used by 

participants to list examples of cues in the environment may not have been involved in 

learning in the judgement tasks. 

Table 3.3 
Experiment 3: Mean number of examples of positive and negative cues listed in post-task questionna 

++00 +-00 --00 
M t M t M t _ 

*High* instructions 
Positive cues 8.4 9.505 11.1 12.672 11.8 11.101 
Negative cues 6.3 6.232 87 9.032 7.6 7.612 

'Low* instructions 
Positive cues 9.0 7.738 7.2 7.834 6.8 10.780 
Negative cues 9.0 7.522 7.9 7.907 6A 8.767 

3.4. GENERAL DISCUSSION 

The experimental studies of the present chapter were designed to investigate the role of 

implicit and explicit processes in learning of multiple cues and subsequent judgements. 

The introduction of concurrent working memory load tasks in Experiments 1 and 2 was 

expected to disrupt performance either drastically (on the typical view that MCPL requires 

explicit hypothesis testing) or partially and selectively, according to the proposal of Evans 

et al. (2003) that both implicit and explicit learning contributes to performance on the task. 

In fact, there was no evidence in either experiment that working memory load interfered 

with performance at all. However, our second method of investigating the question also 
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produced an intriguing result. In both experiments, participants acquired sufficient explicit 

knowledge to have performed most of the tasks above chance, but with no evidence that 

the level of explicit knowledge depended on the cue set learned. This shows a very strong 

dissociation between explicit knowledge and performance, in that the task type 

substantially and significantly affected performance levels but not explicit knowledge. 

However, our evidence that participants acquire similar levels of explicit knowledge in each 

task type is inconsistent with those reported by Evans et al. (2003). They found that 

participants did not acquire significant levels of explicit knowledge when a negative cue 

was introduced to judgement tasks. 

The current findings seem consistent with two possible conclusions. First, it may be 

that the explicit knowledge acquired did contribute to performance, in spite of the lack of 

disruption by concurrent working memory load. That is, our load task may not have 

sufficiently loaded participants working memory resources to disrupt explicit judgement. 

This is a possibility; especially in Experiment 1 where performance on the load task was 

close to ceiling (3.51 dot locations were recalled on average out of a possible 4). I f the load 

task imposed in Experiment 1 was simply too easy then participants may have had enough 

working memory resources left over to perform the judgement task explicitly. However, 

this is less likely to be the case in Experiment 2 where the verbal load imposed on 

participants was clearly demanding (3.90 digits were recalled on average out of a possible 

6). Despite this, we can not rule out the possibility that participants were allocating explicit 

effort to both the load task and judgement task. 

Recall that if multiple cue judgement is explicit then this should load heavily on 

working memory resources. Participants must combine the values of four ordinal cues with 
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their subjective beliefs about their importance for exphcit judgment. Hence, we should 

have expected working memory load to disrupt performance drastically. A second 

possibility is that although participants acquired exphcit knowledge during learning, this 

knowledge was not used to generate judgements in the test trials. A popular view in the 

learning literature is that working memory dependent explicit processes may be involved 

initially to acquire task knowledge which, as skills are rehearsed, becomes automated, 

drawing less on explicit processes (Anderson et al, 2004; Logan, 1988). Since the tasks in 

the present research presented participants with 80 trials from which to learn, it is likely 

that learning in multiple cue tasks is initially assisted by explicit processing, but becomes 

automated prior to the test trials. This would account for the lack of effect of working 

memory load on those trials. However, as a cautionary note, these conclusions are based on 

a null effect of load in Experiments 1 and 2 and are only speculative. We cannot rule out 

the possibility that our load tasks did not disrupt explicit judgement. 

We found that participants performed better than expected in positive cue tasks 

based on their explicit knowledge levels, suggesting that a substantial implicit component is 

involved in learning tasks that contain only positive relevant cues. While the findings of 

Experiment 3 are less clear, the reverse effect was shown in mixed cue tasks containing a 

negative cue. Implicit learning processes do not appear to boost performance levels above 

what is attainable by explicit knowledge in these tasks. Hence, it seems that implicit 

processing may contribute less to learning of tasks that contain a negative cue. We can 

explain this in a dual-process learning model where the former can be learned impUcitly, 

but the latter requires explicit intervention to learn the negative cue. However, the picture 

is complicated by the further observation that when both relevant cues are negative. 
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performance once again exceeds explicit knowledge. When both cues are negative 

participants may learn quickly to simply reverse the feedback given, which becomes quickly 

automated. The idea that explicit processing is required to learn negative, but not positive, 

cues is consistent with studies showing that explicit processes are required for negating the 

values of stimuli (Deustch, Gawronski, 8c Strack, 2006), and providing verbally 

incongruent responses to stimuli (Kornblum, Hasbroucq, & Osman, 1990). 

Our conclusions that explicit processing may contribute to MCPL early in 

training are inconsistent, however, with the findings of Experiment 3. In Experiment 3 

participants were instead instructed to predict either *high' criterion values or 'low* 

criterion values. Our rationale for this manipulation was that by asking participants to 

predict low criterion values their attention would be directed towards the presence of 

negative cues. Previous research has shown participants to list more examples of positive 

than negative cues in post-task questionnaires, and accordingly perform better in positive 

than negative cue tasks (Brehmer, 1974. 1980; Brehmer 8c Kuylenstierna, 1978). This 

indicates that participants may be biased in their explicit hypothesis-testing towards 

expecting positive cues. While instructing participants to predict low criterion values 

eliminated their conscious bias towards positive cues in a post-task questionnaire, we 

found that their performance in the MCPL task was unaffected. I f learning from multiple 

cues draws on explicit processing in tasks containing negative cues we would have expected 

some effect of task instructions on performance. Therefore, learning and judgement may in 

all task types be guided solely by implicit processing. An alternative explanation is that 

participants* attention was indeed directed towards thinking of negative cues, but that this 
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effect was not sufficient to influence their explicit learning of negative cues in the 

judgement tasks. 

A number of factors may contribute to participants* difficulty in learning negative 

cues. Participants tend to assume that cues are deterministically related to the criterion, 

and continue to perform poorly in some tasks even when told that the same cue values can 

lead to different outcomes due to the probabilistic nature of the task (Brehmer & 

Kuylesntierna, 1978). Methods designed to make each cue-criterion relation more salient, 

such as varying the values of one cue at a time, are also shown to have little effect of 

learning in MCPL tasks (Hoffman, Earle, 8f Slovic, 1981). Hence, even i f participants 

approach learning by consciously testing hypotheses against the feedback they receive, 

directing their attention to specific cue-criterion relations can have little effect on learning 

of probabilistic multiple cue tasks. Our failure in the present chapter to improve explicit 

learning by directing participants* attention to the presence of negative cues may be due to 

participants* difficult in testing hypotheses against feedback in probabilistic tasks. In this 

way, explicit processes may be involved in initial learning of MCPL tasks, despite the lack 

of effect of task instructions. 

The present chapter provides some indication that both implicit and explicit 

processes do indeed contribute to learning in multiple cue environments. While it appears 

that implicit processes contribute heavily to learning of positive cue tasks, it is less clear the 

extent to which explicit processes are involved in learning tasks that contain negative cues. 

Our failure to find any effect of concurrent working memory load on judgement does allow 

us to speculate, however, that explicit processing may not be involved in multiple cue 

judgement following sufficient practice. The findings of the present chapter stand in 
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contrast with previous research on MCPL. It is commonly assumed that judgement in 

multiple cue tasks, even after learning, is driven by deliberative explicit processes (Juslin et 

al, 2003; Lagnado et al. 2006). According to these theorists, participants consciously make 

judgements by combining their explicit beliefs about each cue with the cue values they 

receive on each trial, in a controlled explicit manner. However, i f this were the case, then 

the addition of working memory load tasks to the test phase should have had some effect 

on performance. Instead, performance scores were entirely unaffected by the load tasks, 

suggesting that if explicit processing is involved in judgement then this may occur only in 

earlier stages of learning, and not after sufficient practice with the task. The present 

chapter, therefore, provides some suggestion that if explicit processing contributes to 

learning of tasks containing one or more negative cues, this explicit processing may 

become automated through practice and contribute little to judgement after expertise is 

acquired. Recall, however, that our conclusions based on a null effect of working memory 

load are only speculative as we have no clear evidence that our load tasks were sufficient to 

disrupt explicit judgement. For this reason, in the next chapter we introduce methods 

designed to explore whether explicit processing is involved at any stage of learning in 

MCPL tasks, by introducing measures of working memory capacity. 
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Chapter 4 

The role of working memory capacity in multiple 
cue judgement 

Chapter 3 indicated that while explicit processes may be involved in learning in multiple 

cue environments that contain negative cues, these processes contribute little to judgement 

after sufficient practice with a task. While performance was generally above chance in the 

MCPL tasks, the addition of a concurrent working memory load to a test phase after 

extensive training had no effect on performance. This suggests that i f explicit processes are 

involved in learning from multiple cues, they only contribute to early stages of learning. 

We introduce measures of working memory capacity to explore whether explicit 

processing is involved in judgement at any stage of learning. While attention may be 

necessary for both implicit and explicit learning to occur, explicit processing but not 

implicit processing is believed to be demanding on the individuafs limited working 

memory resources (Barrett, Tugade, & Engle, 2004). We measure individual differences in 
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working memory capacity (WMC) and correlate these scores with performance and 

explicit knowledge in the MCPL task. According to dual process theory, explicit rule-based 

processing selectively loads working memory so a correlation is expected when such 

processing is important on the task (Evans, 2008). Research on deductive reasoning and 

decision making has already shown that aspects of performance attributed to the explicit 

system typically correlate with measures of working memory capacity, or high correlates of 

it such as general intelligence or SAT scores (see De Neys, 2006; Evans, 2008, Stanovich & 

West, 2000). Similarly, performance on rule-based versions of category learning tasks that 

are purported to draw on explicit processes are both affected by the addition of a secondary 

task (Waldron & Ashby, 2001) and correlated with individual differences in WMC 

(DeCaro. Thomas, & Beilock, 2008). Since explicit learning in a MCPL task requires the 

testing of hypotheses against feedback, it is also important to note that participants of 

higher WMC are shown to generate more alternative hypotheses in probability judgement 

tasks than participants of lower W M C (Dougherty & Hunter, 2003a). 

In Chapter 3, performance scores were well in excess of explicit knowledge levels in 

tasks containing only positive relevant cues, indicating that a substantial implicit 

component contributes to learning of positive cue tasks. Hence, we expect that individual 

differences in WMC will not predict performance levels in task types containing only 

positive relevant cues. Our predictions are less clear for tasks containing negative cues. In 

Chapter 3, participants performed slighdy worse than expected based on their explicit 

knowledge of mixed cue tasks, containing both positive and negative cues. I f implicit 

processes also contribute to learning in these tasks then we would have expected 

performance to again exceed explicit knowledge levels. This provides some indication that 
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implicit processing is less involved in learning tasks that contain a negative cue. For this 

reason we suspect that learning in mixed cue tasks depends on explicit processing, and 

expect that learning will be associated with individual differences in WMC. For tasks 

containing only negative relevant cues however, performance again exceeded explicit 

knowledge of the task. It is therefore less clear whether explicit processing is involved in 

learning negative cue tasks. I f explicit processes do contribute to learning, however, this 

must occur early in training. 

4.1. EXPERIMENT 4 

The findings of Chapter 3 suggest that explicit processing may be inv^olved in learning 

multiple cue tasks containing a positive and a negative cue (+-00), in spite of the lack of 

effect of working memory load. However, it is unclear to what extent explicit processing 

may contribute to learning in ++00 and -00 tasks. Given the lack of effect of working 

memory load on the test trials, it seems that any contribution of explicit processing must 

occur early in the learning phase. If, however, the learning depends upon explicit 

processing at any stage, then we should be able to detect this by examining individual 

differences in working memory capacity. Essentially, any task that depends upon explicit 

learning should be performed better by those with higher working memory capacity. In the 

present experiment we hence introduce measures of working memory capacity to examine 

whether explicit processing is involved in judgement at any stage of learning. 

We also examine the possibility of transfer effects in learning. In Chapter 3, we found 

that performance on tasks that contained negative cues was poorer than for positive cue 
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tasks. One possibility is that prior training on negative cues (—00 task) could improve 

learning of difficult mixed cue tasks, because these also contain a negative cue. We test this 

by training one group of participants on a negative cue task immediately before performing 

a mixed cue task. Prior training on positive cues (+-hOO task) may also influence learning of 

a mixed cue transfer task. Based on our findings of Chapter 3, we have good reason to 

believe that learning in these tasks occurs implicitly. Hence, it is interesting to know 

whether implicit learning of positive cues has any transfer effects on learning of mixed 

cues. This is tested by a second group who instead perform a positive cue task immediately 

before a mixed cue transfer task. 

4.1.1. Method 

Participants 

Eighty undergraduate psychology students at the University of Plymouth participated for 

course credits, forty in each of the two groups. 

Design 

All participants first completed a working memory task. Participants were then divided 

into two groups according to whether they first completed a judgement task containing 

two positive and two irrelevant cues (-n-OO; positive cue task), or two negative and two 

irrelevant cues (—00; negative cue task). All participants then completed a second 
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judgement task containing one positive, one negative, and two irrelevant cues (+-00; mixed 

cue task). Details of the MCPL task and procedure are provided in section 2.3. 

Materials and Procedure 

Each participant first completed a working memory task, followed by two judgement tasks 

(see section 7.3. for task instructions). Participants completed a cue-rating task only for the 

second task and were informed on screen that their ratings should be made only for the 

second task. 

Working memory task. All participants first completed a working memory task. This 

was an operation span task, similar to that used by Engle, Cantor, and Carullo (1992; see 

also Unsworth & Engle. 2007) except that participants did not read aloud any features of 

the task. Instead, they were required to work through the task individually and in silence, 

by holding in mind each word that was presented on screen whilst verifying arithmetic 

identities (De Neys, Schaeken, & d*Ydewalle, 2005). Participants were instructed that the 

task was a memory test and would require them to hold in mind sets of words whilst 

verifying arithmetic identities (e.g. (6 X 3) - 5 = 13). On each trial, an identity appeared on 

screen with a word attached to the end of the identity. Participants were instructed to 

decide as quickly as possible whether the identity was correct or incorrect by clicking on 

the corresponding label with a mouse, and then to click on the word attached. It was 

explained that whilst judging the identities, they were to hold in mind each of the previous 

words in order. At the end of each set they were instructed to then write down the set of 

words on a piece of paper provided, ensuring that the set was in the order that the words 
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appeared. Participants completed sets ranging from 3-6 words in length, three times for 

each set length. The length of each set was determined randomly, whilst ensuring that each 

set-length was presented three times. This meant that participants could not anticipate the 

length that each set would be. Working memory capacity scores were calculated by 

summing the number of recalled words for each set recalled completely. I f an entire set was 

not recalled, or one or more words in the set were recalled in an incorrect order, the set was 

not counted. 

4.1.2. Results 

Working memory task performance 

The mean score of the 80 participants on the working memory capacity measure was 28.39 

(SD = 11.50) out of a possible 54. 

Task 1 performance in the test phase 

For the first task, participants performed either a positive cue (++00) or a negative cue (--

00) task. Both mean group performance scores were significantly above zero. These are 

displayed in Table 4.1. We also measured performance scores in the 1 '̂ 40 and 2"*" 40 

learning trials, again by correlating judgements with criterion values for each participant. 

These analyses are reported in section 7.1. 

82 



Table 4.1 
Experiment 4: Mean group performance and explicit knowledge scores 

Performance scores Explicit knowledge scores 
M t M t 

++00 task .56* 13.141 
"00 task .32* 5.222 
+-00 task (++00 transfer) .26* 4.675 .30* 3.267 
+-00 task (-00 transfer) .21* 3.759 .33* 3.738 

*p <.05 

In order to make use of the full range of scores on working memory capacity, we 

performed a moderated regression analysis on performance and explicit knowledge scores. 

Moderated regression is a multiple regression analysis with one or more interaction terms 

(Aiken 8c West, 1991). Following the suggestion of Aiken and West (1991), all continuous 

variables included in an interaction term were mean-centred to reduce collinearity. To 

examine whether the type of task participants were required to perform moderated an 

association between WMC and performance, we performed a moderated regression 

analysis on performance scores in the first task. For this, we used task-type (++00 or --00) 

and WMC as predictors, and performance correlations as the dependent variable. More 

details of how we performed the moderated regression analyses are provided in section 7.2. 

The regression analysis (R^ = .239) revealed a significant main effect of the type of 

task participants performed (P = -.329, /(77) = -3.153, p = .002), with participants 

performing generally better in the ++00 task (.56) than the --00 task (.32). There was also a 

significant main effect of WMC (p = .221, t{77) = 2.123, p = .037), with participants of 

higher WMC performing better than participants of lower WMC. Interestingly, however, 

there was also a significant interaction (see Figure 4.1) between the type o f task participants 
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performed and their WMC (P = .381, ^76) = 2.678, p = .009). Simple slope analysis (Aiken 

8c West, 1991) showed that performance was positively predicted by W M C in the --00 task 

(p = .483. /(38) = 3.397, p = .002) but not in the -1-+00 task (P = -.057, 1(38) = -.353, p = 

.726). This indicates that working memory dependent explicit processing is indeed 

involved in learning tasks containing negative cues, but not when both relevant cues are 

positive. In positive cue tasks explicit processing appears to contribute very little to 

judgement at any stage of learning. While implicit learning processes appear to guide 

judgement at all stages of learning in these tasks, learning of negative cues initially require 

intervention by effortfiji explicit processing. The explicit knowledge used to make 

judgements in learning phases of negative cue tasks likely becomes automated through 

practice, explaining our lack of effects of concurrent load tasks on test trials in Chapter 3. 

Analyses of performance scores in learning phases of this chapter are reported in section 

7.1. 
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Figure 4.1. Experiment 4: Interaction effect between type of task and WMC on 
performance scores. The regression slopes plotting the association between performance 

and WMC for each task type are cut off at 1 SD below the mean W M C score of all 
participants, and 1 SD above the mean. 

Mixed cue transfer task performance in the test phase 

As can be seen in Table 4.1. both groups achieved mean group performance scores that 

were significantly above zero in the +-00 task. Independent t-tests confirmed our earlier 

findings that participants perform significantly better in the ++00 task (.56) than the +-00 

task (.26; t = 4.413, df = 39. p <.001). Although performance appeared lower in the +-00 

task (.21) than the -00 task (.32), this difference did not reach significance (t = 1.889, df = 

39, p = .066). See section 7.1. for analysis of performance scores in learning phases. 

We then conducted a moderated regression analysis on performance scores in the 

transfer task (+-00) to investigate whether the type of task participants had previously 

performed (++00 or —00) had any moderating effects on an association between WMC and 
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performance in this task. The regression analysis (R^ = .162) revealed no significant main 

effect of the type of task participants had previously performed (P = -.061, t(77) = -.553, p = 

.582), but a significant main effect of WMC (P = .270, t(77) = 2.458, p = .016), indicating 

participants of higher WMC generally performed better in the +-00 task than those of 

lower WMC. Interestingly, however, there was also a highly significant interaction (see 

Figure 4.2) between the type of task participants had previously performed and their WMC 

(P = .411, r(76) = 2.750, p = .007). Simple slope analysis confirmed that WMC positively 

predicted performance in the +-00 task for those who had previously completed the —00 

task (P = .610, K38) = 4.748, p <.001), but not for those who had previously completed the 

++00 task (P = -.021, /(38) = -.127, p = .900). 

This analysis suggests that the mode of processing used to learn a task carries over 

when a second task is performed. When participants are required to first perform a positive 

cue task, which can be learned implicitly, this mode of processing is used to learn the 

mixed cue transfer task. In contrast, explicit processing appears involved in learning tasks 

containing negative cues, and this explicit mode of processing transfers to learning of the 

mixed cue task. This is indicated by the positive association between WMC and 

performance in both the negative cue and mixed cue transfer tasks. 
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Figure 4.2 

Experiment 4: Interaction between prior task type and WMC on performance scores in the 

+-00 task 

Explicit knowledge in the mixed cue transfer task 

Explicit knowledge scores were calculated in the same way as in Chapter 3, by correlating 

predicted judgements based on participants* explicit beliefs with criterion values. Further 

details of how explicit knowledge scores were calculated are provided in section 2.3. 

Displayed in Table 4.1 are the mean group explicit knowledge scores in the +-00 task. For 

both groups these are significantly above zero. We found in Chapter 3 that explicit 

knowledge scores often exceed performance on mixed cue tasks. Consistent with those 

findings, comparing participants' performance with their explicit knowledge scores in the 

mixed cue task, the results confirm that participants did not perform better than expected 

based on their explicit knowledge. In fact, explicit knowledge scores (.32) were significantly 

higher than performance scores (.24; t = 2.045, df = 79, p = .044). 
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We performed a final moderated regression analysis (R^ = .072) on explicit 

knowledge scores in the +-00 transfer task, using previous task-type (++00 or —00) and 

WMC as predictors. There was no significant effect of the previous task participants 

performed (p = .020, t{77) = .177, p = .860), or W M C (P = .107, ^77) = .944, p = .348). 

However, there was again a significant interaction between previous task type and WMC (P 

= .348, t{76) = 2.216, p = .030). Simple slope analysis revealed that W M C was significandy 

associated with explicit knowledge in the +-00 task for those who had previously completed 

the "00 task (P = .348, /(38) = 2.291, p = .028). with higher WMC participants performing 

better than those of lower WMC, but not for those who had previously completed the ++00 

task (P = -.140, t(3S) = -.875, p = .387). These results confirm our analysis of performance 

scores. When individual differences in WMC are positively associated with performance in 

this task, higher WMC is also associated with more accurate explicit knowledge of the task. 

This supports our conclusions that exphcit processing is involved in learning of mixed cue 

tasks, but not when preceded by a task that can be learned well implicitly. 

4.1.3. Discussion 

The findings of Experiment 4 indicate that negative cue learning (both in +-00 and -00 

tasks) but not positive cue learning (++00) is associated with individual differences in 

WMC (see Figures 4.1 and 4.2), suggesting that this learning benefits from explicit 

processing. As already stated, we believe this processing must occur in the early phase of 

learning as any use of explicit judgement in the test phase should have been disrupted by 

working memory load in Chapter 3. In Experiment 4, we measured explicit beliefs only for 

the mixed cue (+-00) tasks but again the results are consistent with our hypothesis. Under 
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conditions where those of higher working memory capacity performed better on this task, 

they also showed higher levels of explicit knowledge. 

An interesting novel finding, however, was that under some conditions this explicit 

learning apparently did not occur. Performance (and explicit knowledge) on the mixed cue 

task was only related to working memory capacity when preceded by the negative cue task. 

I f the positive cue task was performed first, working memory capacity became irrelevant. 

We already have reason to believe that the positive cue task benefits little from explicit 

processing. First, in Chapter 3 we showed that performance was comfortably in excess of 

explicit knowledge levels for this task. Second, in Experiment 4 we have shown that 

performance on this task is unrelated to working memory capacity. It now also appears 

that performing this task first induces an implicit mode of processing that transfers to the 

subsequent mixed cue task, even though this results in little drop in performance and 

explicit knowledge levels observed (see Table 4.1). One explanation for why explicit 

knowledge scores did not reduce in the mixed cue task following positive cue training is 

that participants acquired explicit knowledge as a result of observing their own behaviour 

during the test trials. This is likely since explicit knowledge scores are based on 

participants* explicit beliefs only after completing the 40 test trials. Our finding of a 

transfer effect clearly merits further investigation. 

4.2. E X P E R I M E N T 5 

Experiment 4 provides strong evidence that explicit processing is normally involved in 

learning tasks with negative or mixed cues. However, we have also found evidence of 
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transfer effects, such that explicit processing of the mixed cue task is inhibited if preceded 

by training on the positive cue task. One limitation of Experiment 4 was that we only 

studied mixed cue learning after performance of another task. In Experiment 5. we 

therefore presented participants with mixed cue learning as their sole task. The first aim, 

therefore, was to show that performance on this task would still be related to individual 

differences in working memory capacity. The second was to see if we could enhance 

performance by provision of partial task information. We know that performance will be 

very high if participants are told precisely what each cue does in advance (Balzer. Doherty, 

& O^Conner, 1989; Evans, Clibbens, & Harris, 2005), but this is of limited interest. The 

information we supplied (to one group) was that one of the cues was a positive predictor, 

one negative and two irrelevant. They still had to work out which cues were which. If 

participants are engaging in hypothesis testing, as many authors have suggested for MCPL 

in general (e.g. Brehmer. 1974; 1994; Juslin, Karlsson. & Olsson, 2008), then we might well 

expect this to improve their performance. 

4.2.1. Method 

Participants 

Seventy-two undergraduate students at the University of Plymouth participated for course 

credits, 36 in each of the two groups. 
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Design 

The design was similar to Experiment 4, except participants only completed the second 

(transfer) judgement task (+-00; mixed cue task) and instead were divided into two groups 

according to whether they received an instructional manipulation. The instructional 

manipulation involved presenting one group with task information. In this condition they 

were informed explicitly that one of the cues would be positive, one negative, and two 

irrelevant. 

Materials and Procedure 

All participants first completed the same working memory task as used in Experiment 4. 

All participants then completed a single judgement task (see section 7.3. for task 

instructions). The judgement task was the same as the transfer task used in Experiment 4, 

containing one positive, one negative, and two irrelevant cues (+-00). Importantly, one 

group was presented with the additional task information immediately before beginning 

the judgement task. All participants then completed the cue-rating task immediately after 

completing the judgement task. 

4.2.2. Results 

Working memory task performance 

The mean score of the 72 participants on the working memory capacity task was 25.93 (SD 

= 12.28) out of a possible 54. 
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Mixed cue task performance in the test phase 

Both mean group performance scores in the +-00 task were significantly above zero. These 

are displayed in Table 4.2. 

Table 4.2 
Experiment 5: Mean group performance and explicit knowledge scores 

Performance scores Explicit knowledge scores 
M t M t 

+-00 task .33* 5.349 .37* 3.856 
+-00 task (with task information) .46* 6.868 .44" 4.951 

*p <.05 

A moderated regression analysis (R^ = .152) was carried out on performance scores 

in the +-00 judgement task in order to investigate whether there were any moderating 

effects of task information on an association between WMC and performance. There was a 

significant main effect of task information (P = .233, ^69) = 2.103. p = .039), with 

participants performing better in the +-00 task when provided task information (.46) than 

for those who were not provided task information (.33). There was also a significant main 

effect of WMC (P = .314, t{69) = 2.825, p = .006). confirming that participants of higher 

WMC perform better than those of lower W M C in the mixed cue task. There were no 

significant interactions. 

The association between WMC and performance is displayed in Figure 4.3, and 

confirms that higher WMC is ordinarily associated with better performance in mixed cue 

tasks. In addition, we expected that providing task information would improve 

performance only if explicit processing contributes to learning of these tasks. Our finding 
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that performance levels were increased by task information provides further support that 

performance in mixed cue tasks usually depends on explicit processing. These findings 

thus confirm our conclusions of Experiment 4 that prior training on positive cues has a 

negative transfer effect on learning of a second task containing a negative cue. While higher 

WMC affords an advantage in learning these tasks, explicit processing contributes little to 

learning if a prior task can be learned well implicitly. In this way, explicit processing is 

switched off by positive cue training. 

Interestingly, participants of all levels of WMC benefited equally from task 

information. Under these conditions, participants are not required to generate their own 

hypotheses, but must still evaluate hypotheses against the feedback to work out which cues 

are which. Our finding that performance is associated with WMC even with the addition of 

task information indicates that both generating and evaluating hypotheses against feedback 

is demanding on working memory. 

0.7 

no task information 

- - — - with task information 

1 SD 
below mean 

1 SD 
above mean 

WMC 

Figure 4.3 

Experiment 5: Association between WMC and performance scores in the +-00 task 
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Mixed cue task explicit knowledge 

Mean group explicit knowledge scores are displayed in Table 4.2. These were both 

significantly above zero. As in our previous experiments, participants did not perform 

better than expected based on their explicit knowledge. A pairwise comparison confirmed 

that performance scores (.40) were not significantly different from explicit knowledge 

scores (.41; t = .303, df = 71, p = .763). 

We performed a moderated regression analysis (R^ = .111) on explicit knowledge 

scores in the +-00 task. Although participants who were provided task information 

appeared to acquire more accurate explicit knowledge (.44) than those who were not 

provided task information (.37), this effect was not close to being significant (P = -.048, 

t{69) = -.423, p = .674). However, there was a significant main effect of W M C (P = .327, 

/(69) = 2.877, p = .005), with higher WMC participants acquiring more accurate explicit 

knowledge of the task than those of lower WMC. There were no significant interactions. 

The main effect of WMC on explicit knowledge can be seen in Figure 4.4. and confirms our 

analysis of performance scores in the test phase of the mixed cue task. When WMC is 

positively associated with performance, higher WMC is also associated with higher levels of 

explicit knowledge. In addition, explicit processing appears involved in learning mixed cue 

tasks when no prior task is performed, indicating that such tasks are ordinarily learned by 

effortful explicit processing. 
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Experiment 5: Association between WMC and explicit knowledge scores in the +-00 task 

4.2.3. Discussion 

Experiment 5 supports our interpretation of findings to date. That is, it seems that 

performance on the mixed cue task normally benefits from explicit processing. In this 

experiment, both performance and explicit knowledge levels were related to individual 

differences in working memory capacity, just as they were in Experiment 4, when preceded 

by negative cue learning. Hence, we can say with some confidence that it is not the case 

that explicit processing on this task is induced by prior learning of negative cues. Rather it 

is inhibited (in Experiment 4) by prior experience of the positive cue task. Interestingly, 

telling participants that there would be one positive and one negative cue among the four 

presented produced a significant improvement in performance without significantly 

affecting explicit knowledge. It is important to note, however, that explicit knowledge did 
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appear higher with the addition of task information, though the effect did not reach 

significance (see Figure 4.4). The fact that task information improved performance 

suggests again that explicit processes are actively involved in learning the mixed cue task. 

4.3. E X P E R I M E N T 6 

The results of Experiments 4 and 5 combined enable us to infer a negative transfer effect. 

Mixed cue tasks normally benefit from explicit processing unless preceded by learning of a 

positive cue task. Our final experiment was designed both to replicate and further 

Investigate this finding. It seems that participants of higher working memory capacity, who 

would normally use explicit processes on this task, get these 'switched o f f by prior 

performance of a task on which implicit learning is very effective. In this experiment we 

attempt to switch them back on again. 

In Experiment 6, we aimed to replicate our previous findings of the transfer effects 

of positive cue training on mixed cue learning and our earlier evidence of the 

independence of individual differences in WMC in positive cue learning. This was done by 

again requiring participants to first perform a positive cue task containing only positive 

relevant cues before performing a mixed cue task containing one positive, one negative, 

and two irrelevant cues. 

Here we attempted to undo the suppressing effects of positive cue training on 

explicit processing in the mixed cue task by introducing explicit instructions to participants 

before beginning the mixed cue task. I f positive cue training reduces the role of explicit 

processing then providing explicit instruction to expect at least one negative cue in the 
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mixed cue task may encourage participants to approach the task explicitly. I f this is the case 

then we would expect performance in the mixed cue task to be dependent on individual 

differences in WMC following explicit instruction. 

4.3.1. Method 

Participants 

Seventy-two undergraduate students at the University of Plymouth participated for course 

credits. 36 in each of the two groups. 

Design 

The design was similar to Experiment 4, except that all participants first completed the 

same positive cue task, containing two positive and two irrelevant cues (++00). All 

participants then completed the same mixed cue transfer task, containing one positive, one 

negative, and two irrelevant cues (+-00). Importantly, one group of participants were given 

additional task instructions immediately before beginning the transfer task, explaining that 

the task will contain one or more negative cues, whilst the other group was not informed 

that negative cues would be present. 
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Materials and Procedure 

The procedure was similar to Experiment 4, with all participants first completing the 

working memory task, then the two judgement tasks, followed by the cue-rating task (see 

section 7.3. for task instructions). However, immediately before beginning the transfer task 

an additional task instruction appeared on screen for one group of participants, explaining 

that one or more of the cues would be negatively predictive. All participants then 

completed the cue-rating task and were reminded that their ratings should be based only 

on the cues in the second task. 

4.3.2. Results 

Working memory task performance 

The mean score of the 72 participants on the working memory capacity measure was 25.90 

(SD = 13.13) out of a possible 54. 

Task 1 performance in the test phase 

Combining all 72 participants' performance scores in the ++00 task, participants achieved 

a mean score of .61, which was significantly above zero (t = 23.707, d f = 71, p <.001). 

Confirming the results of Experiment 3, there was no significant association between 

performance and WMC (r = .116, p =.333). That is, explicit processing contributes little to 

learning of tasks containing only positive relevant cues. Furthermore, implicit processing 

appears to lead to accurate judgement in positive cue tasks, with participants performing 
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well above chance (see Table 4.3). Performance scores in learning phases are provided in 

section 7.1. 

Table 4.3 
Experiment 6: Mean group performance and explicit knowledge scores 

Performance scores Explicit knowledge scores 
M t M t 

++00 task .61* 23.707 
+-00 task (++00 transfer) .31* 6.928 .33* 3.676 
+-00 task (++00 transfer with explicit .31* 6.172 .40* 4.564 
instruction) 

y <.05 

Mixed cue transfer task performance in the test phase 

Both mean group performance scores in the +-00 task were significantly above zero. These 

are displayed in Table 4.3. An independent t-test confirmed that participants performed 

significantly better in the ++00 task (.61) than the +-00 task (.31; t = 7.817, df = 71, p 

<.001). 

A moderated regression analysis (R^ = .028) was carried out on performance scores 

in the +-00 task using the addition of explicit instruction (no explicit instruction or with 

explicit instruction) and WMC as independent predictors. There was no main effect of 

WMC (p = .162, t{69) = 1.364, p =.177). or explicit instruction (p = -.010. t{69) = -.086, p 

=.932), with higher WMC affording no advantage for learning in the +-O0 task following 

positive cue training and with explicit instruction doing nothing to reduce the transfer 

effects. In addition, there were no significant interactions. Our finding that WMC was not 

associated with performance in the transfer task even when participants were instructed 
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explicitly to expect at least one negative cue, suggests that prior training with positive cues 

has a strong effect on learning in a second task. Explicit instruction simple does not appear 

sufficient to override the effects of positive cue training. 

Mixed cue transfer task explicit knowledge 

Mean group explicit knowledge scores are displayed in Table 4.3. These were above zero 

and significant for both groups. In accordance with our previous experiments, participants 

did not perform better than expected based on their explicit knowledge alone. Whilst 

explicit knowledge scores (.37) appeared slightly higher than performance scores (.31), this 

difference did not reach significance (t = 1.330, df = 71, p = .188). Therefore, in contrast 

with our findings of positive cue tasks, performance levels do not exceed explicit 

knowledge scores when tasks contain both positive and negative relevant cues. 

We performed a moderated regression analysis (R^ = ,004) on explicit knowledge 

scores in the +-00 task, using explicit instruction (no explicit instruction or with explicit 

instruction) and WMC as predictors. Again, there was no significant main effect of explicit 

instruction ((J = .033, t{69) = .276, p =.784), WMC (P = .050, ((69) = .419, p =.677). or any 

significant interactions, confirming that higher WMC capacity does not afford any 

advantage in explicit knowledge acquisition in the +-00 task following positive cue training 

(see Figure 4.5). In addition, explicit instruction did not reduce the negative transfer effect 

of positive cue training on explicit processing. I f explicit processes were involved in 

learning we would have expected a positive association between W M C and explicit 
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knowledge levels. Despite telling participants to expect one or more negative cues in the 

transfer task, explicit processing appeared to contribute little to learning. 
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Figure 4.5 

Experiment 6: Lack of association between WMC and explicit knowledge scores in the +-00 
task following positive-cue training 

4.3.3. Discussion 

Experiment 6 supports our earlier findings that positive cue training reduces the role of 

explicit processing in the mixed cue transfer task, suggesting this is a robust effect. 

Furthermore, telling participants to expect at least one negative cue in the transfer task 

failed to increase explicit processing following positive training. Prior experience with 

positive cues thus has a strong effect on reducing explicit processing in learning of the 

transfer task. Although there was some tendency for higher W M C participants to acquire 

more explicit knowledge than participants of lower WMC following explicit instruction 
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(see Figure 4.5), this manipulation did not appear to have any substantial effect. This 

suggests that explicit instruction is simply not sufficient to elicit explicit processing 

following positive cue training. 

4.4. G E N E R A L D I S C U S S I O N 

The experimental studies o f Chapter 3 indicated that explicit processing may be required 

for learning in multiple cue environments that contain negative cues, but that explicit 

knowledge in any case does not contribute to judgement fol lowing training. In the present 

chapter we introduced measures o f W M C and correlated these with performance and 

explicit knowledge scores to see whether explicit processing is involved at any stage of 

learning in multiple cue tasks. Our rationale for measuring individual differences in W M C 

was that explicit processing but not implici t processing loads heavily on the individual's 

limited working memory resources. For this reason, tasks that draw on explicit processes 

tend to correlate wi th measures of working memory capacity (DeCaro et a l , 2008; De Neys, 

2006; Stanovich & West, 2000). Conf i rming our conclusions o f Chapter 3, individual 

differences in W M C were indeed associated wi th learning in tasks that contained one or 

more negative cues, with higher W M C affording an advantage in learning these tasks, but 

not in tasks that contained only positive relevant cues. Performance in positive cue tasks 

was instead entirely independent of individual differences in W M C . 

A possible interpretation of our findings so far is as follows. Positive cue tasks can 

be performed well on the basis o f implici t learning, which is why they are the easiest and 

above the level expected f rom explicit beliefs acquired. Negative and mixed cue tasks do 
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require explicit processing effort to acquire. However, this benefit likely occurs in the early 

stages of learning and explicit knowledge may become automated by the t ime the test trials 

are administered. This explains the lack o f effect o f working memory load found in 

Chapter 3 at this final stage. In the present chapter we instead measured individual 

differences in W M C , rather than administering working memory load. O u r hypothesis was 

that such individual differences would be predictive of performance in negative and mixed 

cue tasks, but not positive cue tasks. W i t h the exception o f a negative transfer effect 

(discussed below) this prediction was confirmed throughout the experimental studies of 

the present chapter. Moreover, our measures of explicit knowledge were significantly 

related to individual differences in W M C for tasks where those differences predicted 

performance, but independent of W M C for tasks where it d id not. These findings provide 

compelling evidence that working memory dependent explicit processing is necessary for 

learning judgement tasks that contain one or more negative cues, but contributes little to 

learning o f positive cue tasks. While positive cue tasks can be learned implici t ly , learning o f 

negative cues draws heavily on l imited working memory resources associated with the 

explicit system, such that higher W M C affords an advantage in learning such tasks. 

Another novel finding of the present Chapter was a negative transfer effect. 

Performance on mixed cue tasks (which have one positive and one negative cue) was 

associated with W M C and explicit knowledge except when preceded by the learning of a 

positive cue task. In other words, performing a task where one can rely on imphcit 

processing for effective learning (the positive cue task) appears to carry that mode of 

processing over to one where explicit processing is normally involved. This meant that 

implici t processing contributed to learning on a task this is usually dominated by explicit 
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processes, such that higher W M C no longer afforded an advantage in performing the task. 

Instead, when participants had prior experience o f a task that requires effor t ful expHcit 

processes (negative cue task) an explicit mode o f processing continued to contribute to 

participants' learning in the second task. However, we are not aware o f any previous report 

o f a negative transfer effect, in which explicit processing is inhibited by previous experience 

o f the type reported here. 

It has been generally assumed by dual process theorists in the psychology of 

reasoning and decision making (e.g. Evans, 2008) that explicit processing w i l l be responsive 

to experimental instructions. In Experiments 5 and 6 we presented participants wi th partial 

task information. In Experiment 5, we found that telling participants in advance that the 

mixed cue task would contain exactly one positive and one negative cue (but not telling 

them which) produced a significant benefit in performance on the task. This suggests that 

participants were able to use the task information to direct their search f o r relevant cues in 

the task, conf i rming that explicit processes are involved in learning the mixed cue task. 

However, we found in Experiment 6 that telling people that the mixed cue task would 

include at least one negative cue was ineffective in reducing the negative transfer effect. In 

spite o f this instruction, participants failed to provide any evidence o f explicit processing 

on the task, when it was preceded by positive cue learning. This suggests that explicit 

instruction is insufficient to undo the effects o f prior training on explicit processing. It 

appears that explicit processing is switched o f f by prior training on positive cues and is 

insensitive to both the presence of a negative cue in a transfer task and explicit instruction 

about the presence of negative cues. 
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We also found that when participants were provided partial task information, 

performance in mixed cue tasks was still associated wi th individual differences in W M C . 

This suggests that even when participants are told specifically which types o f cues wi l l be 

present, evaluating hypotheses against feedback is heavily demanding on work ing memory. 

Hence, there are two aspects o f explicit learning in multiple cue tasks. First, individuals 

must explicitly generate hypotheses about the cue-criterion relations, and second they must 

evaluate whether the hypotheses are supported by the cue-outcome values they observe. 

The present chapter supports our predictions that learning in naultiple cue tasks 

that contain one or more negative cues requires ef for t fu l explicit processing. However, 

explicit processes only contribute to judgement during early stages of learning in these 

tasks, and any explicit knowledge that guides judgement quickly becomes automated, 

drawing less on limited working memory resources. In contrast, learning environments 

that contain only positive relevant cues can be learned effectively by impl ic i t processes. 

Furthermore, experience with positive cue judgement tasks can induce an implici t mode of 

thinking that transfers to tasks that would ordinarily be learned explicitly. Telling 

participants specifically that a task wi l l contain one positive, one negative, and two 

irrelevant cues before performing the more d i f f icu l t mixed cue task (+-00) improved 

performance in the present chapter. However, participants of lower W M C were stilJ at a 

disadvantage in learning these tasks. This provides some indication that mixed cue tasks 

are particularly di f f icul t because participants must hold in mind their hypotheses about 

each cue during learning. In the fol lowing chapter we attempt to improve peoples learning 

in multiple cue environments by allowing participants to keep a note o f their current 

hypotheses about each cue during the learning phase. As well as introducing other task 
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manipulations, we use participants* trial-by-trial explicit hypothesis-testing to further 

explore the contribution o f implicit and explicit processes to multiple cue judgement. 
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Chapter 5 

The role of explicit hypothesis testing in learning 
from multiple cues 

Our findings so far indicate that while multiple cue judgement draws little on explicit 

processing after sufficient practice, learning in tasks that contain one or more negative cues 

is heavily demanding on working memory. Furthermore, many individuals lack sufficient 

working memory resources to make accurate judgements in tasks that contain negative 

cues. 

The present chapter introduces task manipulations designed to improve peoples* 

learning in di f f icul t multiple cue environments. In Experiments 7 and 8 we provide a 

^hypotheses notepad' on screen for participants dur ing the learning phase of judgement 

tasks. On each trial participants are instructed to note their current hypotheses about each 

cue (as positive, negative, or irrelevant). They are encouraged to use the outcome feedback 

they receive to guide their hypotheses selections, and to use their selections to help them 
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make their judgements. Our rationale is that by displaying participants' hypotheses on 

screen and allowing them to change their selections in response to feedback, this should 

reduce the demands o f explicit hypothesis-testing on working memor)^ This is because 

when participants are provided the hypotheses notepad they do not need to hold in mind 

their current hypotheses about the cues when making judgements. They can also update 

their hypotheses in response to feedback by changing their selections on screen, rather than 

test hypotheses in mind . In Experiment 8, we go one stage further and provide one group 

of participants the output o f their hypotheses selections when feedback is provided on 

learning trials. I n this way, participants are able to compare their actual judgements with 

the judgements they could have made had they used their explicit beliefs of each cue's 

relevance. We expect that by providing participants the output of their hypotheses 

selections they can use the feedback they receive to improve their selections, and in turn 

use their selections to guide their judgements. 

A secondary aim of the present chapter is to measure explicit knowledge levels 

during learning phases o f multiple cue tasks. In previous experiments we asked participants 

to provide a single rating o f each cue's relevance fol lowing completion o f the judgement 

task, and used their ratings to predict the judgements they would have made in a test phase 

had they used only their explicit beliefs about each cue. Introducing the 'hypotheses 

notepad' to learning phases allows us to use participants* explicit hypothesis-testing on 

each trial to measure explicit knowledge during training. 
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5.1. E X P E R I M E N T 7 

I n Experiment 7 we attempt to improve explicit learning in d i f f icul t versions o f multiple 

cue judgement tasks, containing both positive and negative relevant cues. Participants are 

provided a ^hypotheses notepad' on learning trials to note on screen their explicit beliefs 

about each cue. This way they do not need to hold in mind their hypotheses about the cues 

when making judgements and assessing the feedback. We expect that performance in 

diff icul t mixed cue tasks wi l l be less associated wi th individual differences in working 

memory capacity when the hypotheses notepad is provided. We also expect the hypotheses 

notepad to facilitate explicit hypothesis-testing and improve explicit knowledge o f the task. 

In Experiment 7 we also apply our methods to a judgement task containing only 

positive relevant cues. We know f rom our previous studies that this type o f task can be 

learned well implicit ly, and does not load on working memory dependent explicit 

processing. It is o f interest to know whether explicit processing can be increased on tasks 

that are ordinarily learned implicitly, or whether implici t knowledge wi l l continue to 

dominate judgement. 

5.1.1. Method 

Participants 

Seventy six undergraduate psychology students at the University o f Plymouth participated 

for course credits, with 38 participants in each o f the two groups. 
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Design 

Al l participants first completed a working memory task. Participants were then divided 

into two groups depending on whether they performed two judgement tasks each 

containing two positive and two irrelevant cues (-I-+00; positive cue task) or one positive, 

one negative, and two irrelevant cues (+-00; mixed cue task). I t was ensured that the order 

that cues were presented on screen differed between the two judgement tasks participants 

performed. In one o f the judgement tasks participants were provided an additional 

^hypotheses notepad*. We refer to this task as the 'hypotheses notepad* task, in contrast 

with the 'standard' task that does not contain the hypotheses notepad (see section 2.3.). The 

order that participants completed the two judgement tasks was randomly determined. 

Following completion of each judgement task participants completed the cue-rating task, 

and were reminded that their ratings should be made only for the task that they had just 

completed. 

Materials and procedure 

Each participant completed a working memory task, followed by two judgement tasks. 

Working memory task. In Experiment 7 we introduced an automated version o f the 

operation span task used to measure working memory capacity in Chapter 4. The 

automated version was based on Unsworth, Heitz, Schrock, & Engle (2005). As wi th the 

operation span task, participants were told that the task was a memory test and that they 

would be required to hold in mind lists o f words whilst verifying arithmetic identities. 

Participants first completed ten practice trials. On each trial they were presented wi th an 
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arithmetic identity (e.g. (2 X 1) + 1 = ?) and were required to click on an icon once they had 

solved the identity. They were then shown a number in the centre o f the computer screen 

and asked to verify whether the number was the correct solution o f the identity by clicking 

on either a *correct' or 'incorrect* label with a mouse. Participants were instructed to work 

through the task as quickly and as accurately as possible. Following completion of the 

practice phase, participants were again required to verify arithmetic identities, except this 

time a word was displayed for 800 mscs immediately after participants verified each 

identity. Participants were instructed to hold in mind each word whilst performing the 

task. At the end of each set o f words participants were asked to write the list down on a 

piece of paper in order that the words were presented. They then began the next list. Lists 

ranged f rom 4-7 words in length and each list length was used twice, in random order. I f 

participants took longer than their average time taken to solve arithmetic identities in the 

practice phase plus 2.5 standard deviations, the next word in the set was displayed 

immediately and the procedure continued. Thus the task imposes a strict time l imit on 

verifying each identity, designed to prevent participants f r o m rehearsing w o r d lists. Using 

an automated version o f the working memory task allows us to validate ou r earlier findings 

using a slightly different method of measuring individual differences in work ing memory 

capacity. As in Chapter 4, working memory scores for each participant were calculated by 

summing the number o f correctly recalled words only for lists that were recalled 

completely. 

Hypotheses notepad task. A l l participants completed two judgement tasks. We 

followed the same task methodology used in our previous experiments (see section 2.3) 

wi th two exceptions. First, participants were given five practice trials before beginning each 

111 



judgement task. On these trials all four cues were irrelevant. Following completion of the 

practice trials participants were informed that the cues were entirely non-predictive o f the 

criterion and that in the fol lowing task one or more o f the cues may be predictive. The 

practice trials were introduced in Experiment 7 to familiarise participants wi th the 

judgement task and the hypotheses notepad. Second, a ^hypotheses notepad* was added to 

the learning phase of one o f the judgement tasks. Figure 5.1 provides a screen shot of one 

of the learning trials in the hypotheses notepad task. On the first learning trial the 

hypotheses selections were set to irrelevant for each cue, and participants were informed 

that they could not change the selections at this point. Af ter making their first judgement, 

outcome feedback was displayed on screen and participants were explained that they could 

change the hypotheses selections i f they wished. When participants clicked on an icon to 

move to the next trial they were instructed to use their hypotheses selections to help them 

make their judgement (see Figure 5.1). This procedure continued for the 80 learning trials. 

On each trial participants were able to change their hypotheses selections only after making 

a judgement, and were instructed on each trial to use their hypotheses selections when 

making their judgements (see section 7.3. for task instructions). 
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Figure 5.1. Screen shot of a learning trial in the ^hypotheses notepad' condition 

5.1.2. Results 

Performance in the test phase 

Performance scores in the test phase were calculated by correlating judgements with 

criterion values in the 40 test trials for each participant, as in previous chapters. Mean 

group performance scores are displayed in Table 5.1, and were all above zero and 

significant. 
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Table 5.1 

Experiment 7: Mean group performance scores 

P' 40 learning trials 2"^ 40 learning trials Test Trials 

M t M t M t 

++00 

Standard task .54* 14.860 .56* 17.759 .61* 17.840 

Hypotheses notepad task .48* 14.108 .50* 13.165 .59* 20.268 

+-00 

Standard task .21* 4.838 .21* 4.284 .16* 3.668 

Hypotheses notepad task .21* 4.395 .25* 4.655 .19* 3.588 

*p = .05 

In our analyses o f performance scores Chapter 4 we entered our main effects as 

predictors into a moderated regression model. This allowed us to examine whether the type 

o f task participants performed moderated an association between W M C , as a continuous 

variable, and performance. However, multiple regression treats predictor variables as 

independent factors, so is not suitable for experimental designs that contain both wi th in-

subjects factors and continuous predictor variables (Hof fman & Rovine, 2007), In our 

analysis of performance scores in test phases of the present experiment we were interested 

in whether an association between W M C and performance was moderated by condition 

(standard task and hypotheses notepad task) as a within-subjects factor, and task-type 

(++00 or +-00) as an independent factor. For this reason, in the present chapter we entered 

our main effects as predictors into a multilevel model, using the SPSS M I X E D procedure. 

Multilevel analysis allowed us to explore variation wi th in participants (within-subjects 

factors) on a first level, and variation between participants (between-subjects factors) on a 

second level. More details about the multilevel procedure used in the present chapter are 

provided in section 7.2. 
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In our multilevel analysis o f performance scores in test phases we entered task-type 

(++00 or +-00), condition (standard task and hypotheses notepad task), and W M C as 

predictors, and a random intercept (x^ difference ( I ) = 13, p < .0 I ; see section 7.2. for more 

details). Adding random slopes did not improve the model. There was a significant effect of 

task-type ((3 = -.550, SE = .073. t{76) = -7.563, p <.001)> indicating that participants 

performed better in ++00 (.60) than +-00 (.18) tasks, but no effect of W M C (P = .003. SE = 

.004, /(76) = .708, p = .481). We expected that providing the hypotheses notepad to 

participants during learning phases would improve their performance on test trials. 

However, participants performed similarly in hypotheses notepad (.39) and standard (.39) 

tasks (P = -.015, SE = .048, t(76) = -.319, p = .750). Hence, providing a notepad on screen to 

allow participants to keep track of their explicit hypothesis-testing does not appear to 

improve performance. As in Chapter 4, there was however, a significant interaction 

between task-type and W M C (P = .016, SE = .007. /(76) = 2.145, p = .035). The simple slope 

for the +-00 task was positive and significant (p = .010, SE = .005. r(38) = 2.192, p = .035), 

conf i rming that higher W M C was associated wi th better performance on mixed cue tasks, 

but not in ++00 cue tasks (P = -.006. S £ = .006. t{3S) = -.978, p = .334). There were no other 

significant interactions. The interaction effect between task-type and W M C can be seen in 

Figure 5.2, and replicates our findings of Chapter 4 that working memory dependent 

explicit processing is associated wi th performance in mixed cue but not positive cue tasks. 

Mixed cue learning is clearly demanding on the individual's l imited work ing memory 

resources. However, contrary to our expectations, performance in these tasks does not 

appear to benefit f r om displaying participants' hypotheses about each cue on screen during 

learning phases. We expected that the hypotheses notepad would reduce the burden o f 

explicit hypothesis-testing on working memory. 
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Figure 5.2. 

Experiment 7: Interaction effect between task type and WMC on performance scores in the 
test phase 

Performance in the learning phase 

The hypotheses notepad task was provided to participants only during learning phases, and 

may have improved performance on learning trials without affecting performance scores in 

the test phase. For this reason, we also present analyses o f performance scores in the 1'* 40 

and 2"'' 40 learning trials. As with performance in the test phase, performance scores in 

learning phases were calculated by correlating judgements with cri terion values for each 

participant. Mean group performance scores are displayed in Table 5.1, and were all 

significant and above zero. 

We followed the same multilevel procedure used to analyse performance in the test 

phase, this time entering task-type (++00 or +-00), condition (standard task and 
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hypotheses notepad task), W M C , and block (P' 40 and 2"^ 40 learning trials) as predictors, 

and a random intercept (x^ difference (1) = 82, p <.01) and a random slope for condition 

(X^ difference ( I ) = 6, p = .01). There was a significant effect o f task-type (p = -.401, SE = 

.066, /(72) = -6.084, p <.001), with participants performing better in the ++00 task (.52) 

than the +-00 task (.22). Again, there was no effect o f the hypotheses notepad on 

performance (P = -.022, SE = .031, /(193) = -.704, p = .482), conf i rming that the hypotheses 

notepad has no effects on performance at any stages o f the tasks. There was also no effect of 

W M C (p = .002, SE = .003, f(72) = .492, p = .624), nor block (p = .035, SE = .029, t{\94) = 

1.217, p = .225), indicating that learning largely occurred within the 1^ 40 learning trials. 

Consistent wi th our previous findings there was, however, a significant interaction between 

task-type and W M C (P = .015, SE = .007, /(72) = 2.178. p = .033). Simple slope analyses 

confirmed that higher W M C was associated wi th better performance in learning phases for 

participants performing the +-00 task (p = .009, SE = .003, f(38) = 2.814, p = .006), but not 

the ++00 task (P = -.006, SE = .005, t{3S) = -1.289, p = .205). While slopes for condition 

varied across participants there were no significant interactions involving condition. 

Hence, the slopes did not vary according to W M C , block, or the type o f task participants 

performed. 

We concluded in Chapter 4 that while positive cue tasks can be learned well 

implicit ly, learning in tasks containing one or more negative cues requires explicit 

processing effort. We found that individual differences in W M C were positively associated 

wi th performance in mixed cue but not positive cue tasks, suggesting that negative cue 

learning benefits f r om working memory dependent explicit processing. The present 

analysis confirms these findings, this time measuring performance scores in learning 
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phases o f the tasks. However, displaying participants hypotheses selections on screen d id 

not appear to improve performance, even dur ing learning phases. 

Explicit knowledge in the test phase 

Explicit knowledge scores in the test phase were calculated the same way as in previous 

chapters, by correlating predicted judgements based on participants* explicit beliefs 

reported in the cue-rating task with criterion values. By viewing Table 5.2 it can be seen 

that all groups achieved significant levels of explicit knowledge. 

Table 5.2 
Experiment 7: Mean group explicit knowledge scores 

1=̂  40 learning trials 2"^ 40 learning trial Test Trials 

M M M t 

++00 

Standard task 

Hypotheses notepad task 

+-00 

Standard task 

Hypotheses notepad task 

.36* 

.25* 

7.663 

4.810 

.35^ 

.29' 

5.505 

5.325 

.38* 

.34* 

.28* 

.19* 

5.286 

4.003 

3.283 

2.178 

*p < .05 

We followed the same multilevel procedure used to analyse performance scores in 

our analyses o f explicit knowledge, entering task-type (++00 or +-00), condit ion (standard 

task and hypotheses notepad task), and W M C as predictors, and a random intercept (x̂  

difference (1) = 7, p = .01). There were no significant main effects. Participants appeared to 

acquire more accurate explicit knowledge in ++00 (.36) than +-00 (.24) tasks. However, 
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this difference did not reach significance (P = -.213, SE = .148, t{76) = -1.440. p = .154), and 

is consistent wi th the findings of our previous studies. While performance levels appear 

substantially higher in positive than mixed cue tasks, explicit knowledge scores are 

statistically similar. We found previously that the hypotheses notepad d i d not appear to 

improve performance. We also expected that explicit knowledge levels w o u l d improve in 

hypotheses notepad conditions by allowing participants to test their hypotheses on screen 

against the feedback. However, again there was no effect o f the hypotheses notepad (P = -

.134, SE = .108, /(76) = -1.236, p = .220). There was also no association w i t h W M C (P = 

.010, SE = .008, t{76) = 1.284, p = .203). 

As wi th our analysis o f performance scores, there was however, a significant 

interaction between task-type and W M C (P = .043, SE = .015, f(76) = 2.931, p = .004). 

Simple slope analyses confirmed that higher W M C was associated w i t h more accurate 

explicit knowledge in the test phase for participants performing the -i-OO task (P = ,031, SE 

= .010, r(38) = 3.060, p = .004), but not for those performing the ++00 task (P = -.013, SE = 

.011, t(38) = -1.173, p = .248). The present analysis confirms our earlier findings that higher 

W M C is associated wi th more accurate expHcit knowledge only when W M C is positively 

associated with performance, indicating that explicit processing is actively involved in 

learning tasks that contain a negative cue. As wi th our analyses o f performance scores, 

explicit knowledge levels after training were not affected by the addition o f the hypotheses 

notepad. I f the hypotheses notepad facilitates explicit learning then we would have 

expected this manipulation to have some effect on participants' explicit knowledge of the 

tasks. 
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We also wanted to know how performance scores in the test phase compared with 

levels o f explicit knowledge of the tasks. In our previous experiments participants have 

been shown to perform better than expected based on their explicit beliefs alone in ++00 

tasks, but the reverse effect in +-00 tasks. We thus performed a three-way mixed A N O V A 

on correlations, using task-type (++00 or +-00) as an independent factor, and condition 

(standard task and hypotheses notepad task) and measure (performance and explicit 

knowledge) as within-subjects factors. There was a significant effect of task-type (F(i74) = 

20.335, MSE = 5.755, p <.001, partial xf = .216), and a marginally significant effect o f 

measure (FiUA) = 3.838, MSE = .545, p = .054. partial = -049), but no effect o f the 

hypotheses notepad (F^UJA) = .558, MSE = .074, p = .457, partial = .007). However, as in 

our previous experiments there was also a significant interaction between task-type and 

measure (F(,.74) = 1 1.195, MSE = 1.590, p = .001, partial = .131). Two-way mixed 

A N O V A s . using measure and condition as within-subjects factors, revealed that in ++00 

groups participants* performance levels (.59) were significantly higher than their explicit 

knowledge scores (.37; f(i.37) = 12.131, MSE = 1.998, p = .001, partial r|̂  = .247). The reverse 

was shown for the +-00 task, wi th explicit knowledge scores (.24) instead exceeding 

performance levels (.17). However, this effect d id not reach significance (Fai.37)= 1.145, MSE 

= .137, p = .292, partial rf = .030). 

Our analysis comparing performance and explicit knowledge levels in positive and 

mixed cue tasks confirms that performance levels are reliably in excess o f explicit 

knowledge scores in positive cue tasks. I n contrast, participants do not per form better than 

expected in mixed cue tasks based on their explicit beliefs alone. These results conf i rm that 
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there is a substantial implici t component involved in learning positive cue tasks, raising 

performance scores above what is expected based on participants' explicit beliefs alone. 

Explicit knowledge in the learning phase 

In our previous experiments we measured participants' explicit knowledge of the 

judgement tasks by correlating predicted judgement based on their explicit beliefs about 

each cues' relevance, wi th criterion values in the test phase. Participants provided their 

explicit beliefs in a cue-rating task fol lowing completion of the test phase. Hence, explicit 

knowledge scores were based on a single rating for each cue after training. In the present 

experiment we were able to measure explicit knowledge levels dur ing learning, using 

participants' explicit beliefs about the cues on each trial in the learning phase. For this, we 

entered participants' selections for each cue into a linear model to make predicted 

judgements on each of the learning trials. These estimate the judgements that participants 

would have made had they used only their explicit beliefs about each cue. For each trial, we 

entered 1 i f a cue was selected as positive, -1 i f selected as negative, and 0 i f selected as 

irrelevant, for each cue. We then correlated predicted judgements with cri terion values in 

the 1" 40 and 2"** 40 learning trials as a measure o f explicit knowledge dur ing learning. This 

provides a measure o f how participants would have performed during the learning phase 

had they used only their explicit hypothesis-testing. Mean group explicit knowledge scores 

are displayed in Table 5.2, and were all above zero and significant. 

Following the multilevel procedure we developed a model that contained task-type 

(++00 or +-00), W M C . and block ( 1 " 40 and 2°** 40 learning trials) as predictors, and a 
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random intercept (x̂  difference (1) = 41, p <.01), and random slope for block (x̂  difference 

(1) = 11, p <.01). There was no effect of task-type (p = -.107, SE = .082, /{76) = -1.314, p = 

.193), or block (P = .036, SE = .041, t{76) = .889, p = .377), indicating that explicit 

knowledge levels were statistically similar in positive (.36) and mixed cue (.27) groups, and 

did not improve f rom the V 40 (.31) to the 2"̂  40 (.32) learning trials. However, the 

significant random slope for block indicates that there was individual variation in change 

f rom the 1̂ ' 40 to 2"** 40 learning trials. 

Our findings to date indicate that individual differences in W M C are unrelated to 

explicit knowledge levels in positive cue tasks. However, in the present analysis there was a 

significant positive association between W M C and explicit knowledge i n learning phases 

across task types (P = .013. S£ = .004. t{76) = 2.999, p = .004). Furthermore, there were no 

significant interactions, indicating that higher W M C was associated w i t h more accurate 

explicit knowledge in both positive and mixed cue tasks when the hypotheses notepad was 

provided (see Figure 5.3). This provides our first evidence of explicit processing in positive 

cue tasks. However, we found no evidence that performance was associated with individual 

differences in W M C in these tasks. In addition, our previous experiments suggest that 

learning of positive cues occurs almost entirely implicidy. One possibility is that the 

hypotheses notepad encouraged participants to think explicitly about their hypotheses 

selections in positive cue tasks, without influencing their judgements in the task. A n 

alternative possibility is that participants ordinarily th ink explicitly about positive cue tasks 

early in training, even though this explicit processing does not influence the judgements 

they make. 

122 



0.7 T 

0.6 

O.S 

0.4 

0.3 ^ 

•00 task (with hypotheses notepad) 

- * •M)0 task (with hypotheses notepad) 

0.2 f 
( 

0.1 

ISO 
below nrtean 

ISO 
above mean 

WMC 

Figure 5.3 

Experiment 7: Main effect of WMC on explicit knowledge scores in the learning phase of 
hypotheses notepad tasks 

Explicit knowledge scores derived f rom participants' hypotheses selections also 

allows us to compare explicit knowledge levels wi th performance scores in the learning 

phase. For this analysis we conducted a three-way mixed A N O V A on correlations, using 

task-type (++00 or +-00) as an independent factor, and measure (performance and explicit 

knowledge) and block ( 1 " 40 and 2°** 40 learning trials) as within-subjects factors. There 

was a significant effect o f task-type (F(i,74) = 10.458. M S £ = 2.293, p = .002, partial n ' = .124), 

but no effects of block (Fdj^) = .834, MSE = .003, p = .364, partial = .011) or measure 

(F(,,74) = 2.004, MSE = .178, p = .161, partial = 026). Again, there was a significant 

interaction between task-type and measure (F(i.74)= 7.121, MSE = .634,/? = .009, partial = 

.088). Two-way mixed A N O V A s , using measure and block as within-subjects factors, 

confirmed that in the ++00 task performance scores (.49) exceeded explicit knowledge 
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scores (.35; f ( u 7 ) = 6.224, MSE = .742, p = .017, partial = .144). In contrast, in the +-00 

task we again found that performance scores (.23) did not exceed explicit knowledge scores 

(.27; E(i.37)= 1.189, MSE = .070. p = .283, partial r f = .031). We found previously that higher 

W M C was associated wi th better explicit knowledge in both positive and mixed cue tasks 

during training, but was only associated with better performance in mixed cue tasks. It now 

also seems that performance levels in positive cue tasks are substantially higher than what 

participants could have achieved based on their hypotheses selections alone. This indicates 

that implici t processes dominate learning in these tasks. One reason why explicit 

processing did not influence performance in positive cue tasks is that participants could 

make more accurate judgements i f they did not use their explicit hypothesis-testing. 

5.1.3. Discussion 

Experiment 7 supports our findings o f Chapters 3 and 4 and our conclusions so far. While 

tasks containing only positive relevant cues can be learned well implicidy, ef for t ful explicit 

processing is required for learning in tasks that contain at least one negative cue. In 

Experiment 7 we also had the opportunity to measure explicit knowledge levels during 

learning phases. Our analyses confirmed that higher W M C is associated with better 

performance in mixed cue but not positive cue tasks, even in learning phases. In positive 

cue tasks we found that performance scores were well in excess o f explicit knowledge levels 

during training, conf i rming that implici t learning processes outperform explicit 

hypothesis-testing during training. The reverse effect was shown in mixed cue tasks 

containing both a positive and a negative cue. A n interesting novel f ind ing o f Experiment 7 

was that higher W M C was associated with more accurate explicit knowledge during 
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learning phases of both positive and mixed cue tasks when participants were provided the 

hypotheses notepad. This provides some suggestion that the hypotheses notepad 

encouraged participants to think explicitly about their selections in positive cue tasks, 

without affecting their performance. However, the hypotheses notepad d id not improve 

mixed cue learning. We have substantial evidence to suggest that these tasks are learned 

explicidy. but found no evidence that allowing participants to note their hypotheses on 

screen had any effect on explicit knowledge or performance levels. 

5.2. EXPERIMENT 8 

Experiment 7 provided some indication that asking people to note their hypotheses during 

training encourages explicit hypothesis-testing in positive cue tasks. We found that higher 

W M C was associated with more accurate explicit knowledge dur ing learning phases of 

both positive and mixed cue tasks when the hypotheses notepad was provided. However, 

W M C was only associated with performance in mixed cue tasks, suggesting that 

participants* explicit hypothesis-testing in positive cue tasks d id not influence their 

performance. 

Whi le mixed cue learning appears to benefit f r o m explicit processing and load 

heavily on working memory, performance was not improved by the hypotheses notepad. 

One possibility is that participants used the hypotheses notepad only to register their 

beliefs about each cue, but did not use their selections to help them make their judgements. 

In Experiment 8, we again provide participants the hypotheses notepad, but this time we 

present participants the output o f their selections on each of the learning trials. In this way. 
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participants view the judgements they could have made had they used their explicit 

hypothesis-testing. This allows participants to compare the output of their hypotheses 

selections with outcome feedback on each trial, and how their actual judgements compare 

with these values. 

5.2.1. Method 

Participants 

Seventy eight undergraduate psychology students at the University of Plymouth 

participated for course credits, with 39 in each of the two groups. 

Design 

A l l participants first completed the same working memory task used i n Experiment 7, 

followed by two judgement tasks. For one group the two judgement tasks each contained 

two positive and two irrelevant cues (++00; positive cue task), and fo r a second group 

contained one positive, one negative, and two irrelevant cues (+-00; mixed cue task). As in 

Experiment 7, we ensured that the order that cues were presented differed between the two 

judgement tasks that participants performed. A l l participants completed both the 

'hypotheses notepad* task used in Experiment 7, and a 'hypotheses notepad output* task 

which provided them the output o f their hypotheses selections on each of the learning 

trials. The order that participants performed the two tasks was randomly determined. A l l 

126 



participants completed the cue-rating task following completion o f each task (see section 

2.3). 

Materials and Procedure 

A l l participants first completed the working memory task, followed by two judgement 

tasks. In both judgement tasks participants were provided the same hypotheses notepad in 

the learning phase used in Experiment 7, but in one of the tasks they were also provided the 

output o f their hypotheses selections on each trial (see section 7.3. for task instructions). 

The output of their selections was displayed directly below the hypotheses notepad and to 

the right of their actual judgement. Output was calculated on each t r ia l by entering 

participants' hypotheses selections as either I for positive, -1 for negative, or 0 for 

irrelevant as cue weights into a linear model. Output values were then normalised on the 

same 5 point scale used to present outcome feedback, and were displayed in the same way 

as participants* actual judgements. The output was provided immediately following 

participants' judgement on each trial , at the same time as outcome feedback was displayed. 

A l l participants completed the cue-rating task fol lowing completion o f each judgement 

task. 
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5.2.2. Results 

Performance in the test phase 

Mean group performance scores in the test phase are displayed in Table 5.3. A l l group 

performance scores were significantly above zero. 

Table 5.3 
Experiment 8: Mean group performance scores 

P' 40 learning trials 2"^ 40 learning trials Test Trials 

M M M 

++00 

Hypotheses notepad 

Hypotheses notepad output 

+-00 

Hypotheses notepad 

Hypotheses notepad output 

.46' 

.45-

.25' 

.20' 

11.739 

11.676 

7.060 

4.837 

.51' 

.50-

.34' 

.31' 

12.791 

12.404 

7.576 

6.269 

.49* 

.52* 

.26* 

.30* 

12.004 

11.341 

4.473 

4.973 

*p = .05 

Following the same multilevel procedure used in Experiment 7, we analysed 

performance scores in test phases by entering task-type (++00 or +-00), condition 

(hypotheses notepad and hypotheses notepad output), and W M C as predictors, and a 

random intercept (x^ difference (1) = 37, p <.01). Consistent wi th our previous studies, 

there was a significant effect o f task-type (P = -.285, SE = .093, /(78) = -3.055, p = .003), 

with participants performing better in ++00 (.51) than +-00 (.28) tasks. In the present 

experiment we provided participants the output o f their hypotheses selections on learning 

trials in addition to hypotheses notepad used in Experiment 7. We expected that this would 

improve performance by encouraging participants to compare the output of their 

hypotheses selections with the feedback. However, performance levels in test phases were 
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similar (P = .068, SE = .046. t(7S) = 1.482. p = .142). regardless o f whether participants were 

provided the output o f their hypotheses selections (.41) or not (.38). There was also no 

association wi th W M C (p = .008. SE = .005, t{7S) = 1.714. p = .091). There was, however, a 

significant interaction between task-type and W M C (P = .024, SE = .009, t{7S) = 2.608. p = 

.011). Simple slope analyses confirmed that higher W M C was associated with better 

performance in the +-00 task (P = .021, SE = .007, /(39) = 3.045. p = .004). bu t not the ++00 

task (P = -.003. SE= .006. t{39) = -.518. p = .608). 

The interaction effect between task-type and W M C can be seen i n Figure 5.4. and 

confirms that individual differences in W M C are positively associated w i t h performance 

only when tasks contain at least one negative cue. Surprisingly, however, there was no 

effect o f providing participants the output o f their hypotheses selections on performance. 

We expected that by displaying participants the judgements they could have made had they 

used their hypotheses selections, this would encourage participants to use the hypotheses 

notepad to improve their learning. Whi le there was some suggestion that higher W M C 

participants performed better in the mixed cue task (+-00) when provided the output o f 

their selections (see Figure 5,4). the present analysis provides no evidence that this 

manipulation had any substantial effects. 

129 



KM) task (with hypotheses notepad) 

^0 task (with hypotheses notepad output) 

- - +-00 task (with hypotheses notepad) 

•^-+-00 task (with hypotheses notepad output) 

ISO 
below mean 

ISD 
above mean 

WMC 

Figure 5.4 

Experiment 8: Interaction effect between task type and WMC on performance scores in the 
test phase 

Performance in the learning phase 

As in Experiment 7, we also present analyses o f performance scores in learning phases o f 

the tasks. This is because the hypotheses notepad and output was provided only on 

learning trials. Mean group performance scores in the 1^ 40 and 2"'' 40 learning trials are 

displayed in Table 5.3, and were all above zero and significant. 

Following the multilevel procedure we entered task-type (++00 or +-00), condition 

(hypotheses notepad and hypotheses notepad output), W M C . and block ( 1 " 40 and 2"^ 40 

learning trials) as predictors, and a random intercept (x̂  difference (1) = 67, p <.01). There 

was a significant main effect o f task-type (P = -.268, SE = .061. t(7S) = -4.366, p <.001). 

conf i rming that participants performed better in ++00 (.48) than +-00 (.28) tasks. There 

was also a significant effect of block (P = .126, SE = .031, r(234) = 4.139. p <.001), indicating 
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that performance generally improved f rom the 1*' 40 (.34) to the 2"'̂  40 (.42) learning trials. 

However, as in our analysis of performance scores in test phases, providing participants the 

output o f their hypotheses selections in addition to the hypotheses notepad did not 

improve performance on learning trials (P = -.026, SE = .031, f(234) = -.857. p = .392). 

There was also no association with W M C (p = .005, SE = .003, t(7S) = 1.701, p = .093). 

Replicating our previous findings, there was an interaction between task-type and W M C (P 

= .014. S£ = .006, f(78) = 2.225, p = .029). This interaction was conf i rmed by simple slope 

analyses, which indicated that higher W M C was associated wi th better performance in +-

00 (P = .012, SE = .004. r(39) = 3.126. p = .003), but not in ++00 (P = - .001, SE = .005. /(39) 

=- .242,p = .810) tasks. 

There was also an interaction between W M C and condition (P = .009. S£ = .003, 

/(234) = 2.865, p = .005). Simple slope analysis indicated that higher W M C was associated 

wi th better performance across task types when participants were provided the output of 

their hypotheses selections (P = .009, S£ = .004. K78) = 2.172. p = .033) but not when 

provided only the hypotheses notepad task (P <.001, SE = .004. t{7S) = -.041. p = .967). 

However, by viewing Figure 5.5 it can be seen that the association between W M C and 

performance in hypotheses notepad output conditions was substantially higher for the +-

00 (P = .015. SE = .004, f(37) = 4.028, p <.001) than the ++00 (P = .002) task, which was far 

f r om significant {SE = .004, /(37) = .444, p = .659). Whi le there may have been some 

tendency for individuals of higher W M C to perform better in ++00 tasks when provided 

the output o f their hypotheses selections, this effect appears to be relatively small. 
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Experiment 8: Interaction effect between condit ion and W M C on performance scores in 
the learning phase 

Providing participants the output o f their hypotheses selections was designed to 

improve learning at least in mixed cue tasks that is shown to load heavily on working 

memory. We expected that performance would improve in hypotheses notepad output 

tasks, and to especially benefit individuals o f lower W M C . In contrast, performance 

appears generally unaffected even in mixed cue tasks. However, there was some suggestion 

that the relationship between W M C and performance was affected by the addition of 

output in mixed cue tasks (see Figure 5.5). 

Explicit knowledge in the test phase 

Mean group explicit knowledge scores in the test phase are displayed i n Table 5.4. A l l 

group scores were significantly above zero. 
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We followed the same multilevel procedure used in our previous analyses, this time 

entering task-type (++00 or +-00), condition (hypotheses notepad and hypotheses notepad 

output), and W M C as predictors, and a random intercept (x̂  difference (1) = 15, p < .01) 

and random slope for condition (x̂  difference (1) = 7, p = .01). The random slope for 

condition indicates that the effects o f condition varied between individuals. There was a 

marginally significant positive effect o f W M C (P = .020. SE = .011, t(78) = 1.909, p = .060), 

but no effect o f the type of task participants performed (P = .332, SE = .206, f(78) = 1.610, p 

= .111). As in our analyses of performance scores, providing participants the output o f 

their hypotheses selections in addition to the hypothesis notepad had no main effect on 

explicit knowledge (p = -.011, SE = .139, t{7S) = -.082, p = .935). However, consistent with 

our earlier findings, there was a significant interaction between task-type and W M C (P = 

.058, SE = .020, r(124) = 2.859, p = .005). Simple slope analysis conf i rmed that this was 

because higher W M C was associated wi th more accurate explicit knowledge in the +-00 

task (P = .049, SE = .016, t{39) = 2.989, p = .005), but not in the ++00 task (P = -.003, SE = 

.014, /(39) = -.237, p = .814), Hence, explicit learning in tasks that contain a mixture o f 

positive and negative cues is heavily demanding on W M . such that lower W M C individuals 

acquire less accurate explicit knowledge. However, providing participants the output o f 

their hypotheses selections does not appear to reduce the demands o f explicit learning on 

working memory in these tasks. 

As in our previous experiments, we also compared explicit knowledge and 

performance levels in the test phase. For this analysis we performed a three-way mixed 

A N O V A on correlations, using task-type (++00 or +-00) as an independent factor, and 

condition (hypothesis notepad and hypothesis notepad output) and measure (performance 
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and explicit knowledge) as within-subjects factors. There was no significant effect of task-

type (F(,.76)= -571, MSE = .267,p = .452, partial = .007), or condition {Faj6)= .008> MSE = 

.001, p = .930, partial <.001), but a significant effect o f measure (Fd jo = 6.103, MSE = 

.594, p = .016, partial = .074). As expected, there was also a significant interaction 

between task-type and measure (F(i.76) = 21.765, MSE = 2.119, p <.001, partial = .223). 

Two-way mixed ANOVAs , using condition and measure as within-subjects factors, 

confirmed that in the ++00 task performance scores (.51) were significantly higher than 

explicit knowledge scores (.26; FUM) = 22.638, MSE = 2.479, p <.001, partial rf = .373). In 

the +-00 task, performance (.28) did not exceed explicit knowledge scores (.36; Fd.js) = 

2.752, MSE = .235, p = ,105, partial = .068). There were no other significant interactions. 

These findings again support our conclusions that a substantial impl ic i t component is 

involved in learning positive cue tasks. In these tasks, implici t learning processes appear to 

boost performance above what is attainable based on participants' explicit beliefs alone. In 

contrast, implicit processing appears to contribute little to learning o f mixed cue tasks, with 

performance scores not exceeding explicit knowledge levels. 

Table 5.4 

Experiment 8: Mean group explicit knowledge scores 

P' 40 learning trials 2"'' 40 learning trials Test Trials 

M t M t M t 

++00 

Hypotheses notepad .25* 4.313 .38* 6.237 .22* 2.744 

Hypotheses notepad output .26* 4.688 .38* 5.281 .28* 3.092 

+-00 

Hypotheses notepad .27* 5.312 .43* 7.509 .44* 5.079 

Hypotheses notepad output .32* 6.900 ^ 5 * 7.760 ^8;;^ 2.848 
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Explicit knowledge in the learning phase 

We measured explicit knowledge levels in the P' 40 and 2"*̂  40 learning trials in the same 

way as in Experiment 7 for hypotheses notepad groups. This was done by correlating 

predicted judgements based on participants' hypotheses selections wi th cr i ter ion values. In 

tasks where participants were provided the output o f their selections this meant correlating 

the output they received wi th criterion values. Mean group scores are displayed in Table 

5.4, and were all significantly above zero. 

In our analyses of explicit knowledge scores in learning phases we followed the 

multilevel procedure, entering task-type (++00 or +-00), condition (hypotheses notepad 

and hypotheses notepad output), W M C , and block (!'• 40 and 2"̂ * 40 learning trials) as 

predictors, and a random intercept (x̂  difference (1) = 36, p <.01). There was no effect of 

task-type (p = .083, SE = .112, t(7S) = .741, p = .461), but a significant eflfect of block (p = 

.339, SE = .067, f(233) = 5.089, p <.00l) , indicating that explicit knowledge levels increased 

f rom the 1" 40 (.28) to the 2"*̂  40 (.41) learning trials. A significant positive effect of W M C 

(P = .014, SE = .006, f(78) = 2.418, p = .018) demonstrated that higher W M C was associated 

with more accurate explicit knowledge in the learning phase. As in our previous analysis, 

there was no effect o f providing participants the output of their hypotheses selections on 

explicit knowledge levels in learning phases (P = -.015, SE = .067, K233) = -.222. p = .825). 

In Experiment 7 we found that higher W M C was associated w i t h more accurate 

explicit knowledge across task types when participants were provided the hypotheses 

notepad. The present analysis instead yielded a significant interaction between task-type, 

W M C , and condition (P = .012, SJE = .004, K311) = 3.238, p = .001). Simple slope analyses 

indicated that W M C was significantly positively associated wi th explicit knowledge only in 
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the hypotheses notepad output task for those performing the +-00 task (P = .038. S£ = .009, 

r(37) = 4.096, p <.001). W M C was not significantly associated wi th explicit knowledge in 

the hypotheses notepad condition for participants performing the +-00 task (P = .009, SE = 

.010, r(37) = .899, p = .374), nor in the hypotheses notepad (P = .004, SE = .011, ^37) = 

.341, p = .735) and hypotheses notepad output conditions (P = .005, SE = .008, K36) = .608, 

p = .547) for participants performing the ++00 task. Hence, we did not replicate our 

findings of Experiment 7 that higher W M C is associated wi th more accurate explicit 

knowledge in positive cue tasks when participants are provided the hypotheses notepad. 

The present analysis suggests that higher W M C is only associated better explicit knowledge 

for participants performing the mixed cue task, and only when provided the output of their 

selections. 

In both the judgement tasks that participants performed they provided trial-by-trial 

explicit ratings of each cue's relevance in the learning phase. Hence we also compared 

performance and explicit knowledge levels in learning phases. This was done by 

performing a four-way mixed A N O V A on correlations, using task-type (++00 or +-00) as 

an independent factor, and condition (hypothesis notepad and hypothesis notepad output), 

measure (performance and explicit knowledge), and block (1̂ ' 40 and 2"̂* 40 learning trials) 

as within-subjects factors. There was no effect o f task-type (F(i.76) = 2.335, MSE = .914, p = 

.131, partial = .030), or condition ( f ( i . 76 )= -002. MSE <.001,p = .961, partial <.001), but 

a significant effect of block (F(,.76) = 33.272, MSE = 1.697, p <.001, partial rf = .304), and an 

interaction between block and measure (F(i.76) = 6.837, MSE = .141, p = .011, partial = 

.083). There was also a significant interaction between task-type and measure (F(i.76) = 

30.956, MSE = 2.516, p <.001, partial = .289). Three-way mixed A N O V A s , using 
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condition, measure, and block as within-subjects factors confirmed that i n the ++00 task 

performance scores (.48) were significantly higher than explicit knowledge scores (.32; 

F(ua)= 16.826, MSE = 2.005, p <.001, partial = .307). In contrast, performance in the +-00 

task (.28) was significantly lower than explicit knowledge levels (.37; F(i.38)= 15.769, MSE = 

.684, p <.001, partial = .293). There were no other significant interactions. 

The present analysis confirms that participants perform far better in positive cue 

tasks than expected based on their hypotheses selections alone. This suggests that a 

substantial implici t component contributes to judgement in positive cue tasks even when 

participants are provided the output of their selections. This meant that o n learning trials 

participants* judgements were substantially more accurate in predicting the criterion than 

those based on their hypotheses selections, even when they were displayed wi th both their 

judgements and the output of their selections. 

5.2.3. Discussion 

In Experiment 7 we found that individual differences in W M C positively predicted explicit 

knowledge levels in learning phases o f both positive and mixed cue tasks when participants 

were provided with the hypotheses notepad. This provided some indication that the 

hypotheses notepad may have elicited explicit th inking in positive cue tasks, without 

affecting participants* performance on the task. However, we d id not replicate this effect in 

Experiment 8. Furthermore, we found that providing the output o f participants* 

hypotheses selections in addition to the hypotheses notepad had no substantial effects on 

explicit learning in either positive or mixed cue tasks. 
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We did f ind that W M C is unrelated to performance in positive cue tasks, and that 

performance levels are far in excess o f explicit knowledge levels in these tasks even during 

learning phases. This was not the case for tasks that contained a mixture of positive and 

negative cues. Instead, performance scores did not exceed levels of explicit knowledge in 

mixed cue tasks, and learning is heavily demanding on W M C . Hence, the findings of 

Experiment 8 conf i rm our conclusions to date. Learning in positive cue tasks occurs largely 

implicitly, and is unrelated to individual differences in W M C . This explains why 

performance levels are higher than what participants can achieve based on their explicit 

beliefs alone. Learning in tasks that contain one or more negative cues, in contrast, benefits 

f rom explicit processing effort. For this reason, performance is often poorer than explicit 

knowledge, and both measures are associated with individual differences i n W M C . 

5.3. G E N E R A L D I S C U S S I O N 

The experimental studies of the present chapter were designed pr imari ly to explore 

whether judgement in di f f icul t mixed cue tasks could be improved. Our secondary aims 

were to measure explicit knowledge levels during learning phases and compare these with 

measures o f performance and individual differences in working memory capacity ( W M C ) . 

Using a slightly different measure o f W M C in Experiments 7 and 8 we confirmed our 

earlier findings that explicit processing ordinarily contributes to learning in mixed cue (+-

00) but not positive cue (++00) tasks. This was indicated by a significant positive 

association between W M C and performance only in mixed cue tasks. We also found that in 

both learning and test phases o f positive cue tasks performance scores were well in excess 

o f explicit knowledge levels, even when participants were shown the output o f their explicit 
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hypothesis-testing on learning trials. This provides strong evidence that impl ic i t knowledge 

guides judgement during learning in tasks that contain only positive relevant cues. In tasks 

where participants were provided the output o f their hypotheses selections this meant that 

participants performing positive cue tasks could see that their judgements more accurately 

predicted the criterion than their explicit hypothesis-testing. The reverse effect was shown 

in mixed cue tasks, with explicit knowledge levels consistently in excess (though not always 

significantly) o f performance scores. The findings o f Experiments 7 and 8 thus conf i rm our 

conclusions of earlier experiments that while judgement tasks containing only positive 

relevant cues can be learned well implicit ly, learning in tasks containing one or more 

negative cues benefits f rom explicit processing. 

When tasks contain a mixture o f positive and negative cues, explicit learning is 

heavily demanding on working memory, such that individuals o f lower W M C perform 

poorly. In the present experiments we attempted to improve explicit learning in mixed cue 

tasks by providing participants a hypotheses notepad on screen for them to note their 

hypotheses about each cue during learning phases. Whi le performance d i d not improve in 

positive or mixed cue tasks wi th the addition o f the hypotheses notepad, Experiment 7 

provided some suggestion that explicit processing was elicited in positive cue tasks. This 

was indicated by a positive association between W M C and explicit knowledge o f both 

positive and mixed cue tasks. However, we d id not replicate this effect i n Experiment 8. 

Furthermore, W M C was only associated wi th performance levels in mixed cue tasks, 

suggesting that even when participants are encouraged to th ink explicitly during positive 

cue tasks implici t processing continues to dominate performance. 
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By displaying participants hypotheses on screen it was expected that they would use 

their selections to help them make their judgements. In this way, participants would not 

need to hold in mind their explicit beliefs about each cue, reducing the demands o f explicit 

judgement on working memory. Hence, we expected that participants o f lower W M C 

would benefit most f rom this manipulation, reducing the association between W M C and 

performance in mixed cue tasks. We found no such effect. Second, the hypotheses notepad 

was designed to improve explicit hypothesis-testing by allowing participants to test their 

hypotheses against feedback without having to hold their hypotheses in m i n d . We expected 

the association between W M C and explicit knowledge to be reduced in mixed cue tasks by 

this manipulation, and for explicit knowledge to improve. Again, our f indings suggest that 

this was not the case. One possible explanation is that participants used the hypotheses 

notepad task to register their beliefs about the cues, but did not use the notepad to test 

hypotheses or help them make their judgements. In Experiment 8, we provided 

participants the output of their hypotheses selections on learning trials to encourage 

participants to use the notepad during learning. Again, performance was not improved in 

mixed cue tasks. Whi le displaying participants the output o f their hypotheses selections 

was designed to encourage participants to use their selections, this task may have been too 

demanding on participants* working memory resources. Making hypotheses selections as 

well as judgements on each trial, and assessing how their judgements related to outcome 

feedback and the output o f their hypotheses selections, is likely to be very taxing on the 

individual's working memory resources. We know already that learning i n mixed cue tasks 

loads heavily on working memory. For this reason, it is likely that even individuals o f 

higher W M C were unable use the hypotheses notepad task effectively in their explicit 

learning of the task. In line with this view, there was some suggestion that individuals of 
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lower W M C performed more poorly in mixed cue tasks when provided the output of their 

hypotheses selections (see Figure 5.5). 

In sum, the present chapter confirms our conclusion o f Chapters 3 and 4. While 

positive cue learning occurs implicidy, learning in tasks that contain one or more negative 

cues benefits f rom explicit processing effort. This was indicated by a positive association 

betAveen W M C and measures of performance and explicit knowledge in mixed cue but not 

positive cue tasks. One exception was that providing the hypotheses notepad appeared to 

influence explicit knowledge o f positive cue tasks dur ing training without affecting 

performance. However, we did not replicate this effect. It therefore appears that learning in 

positive cue tasks ordinarily occurs implici t ly, and even when participants are encouraged 

to think explicidy about the task. 
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C h a p t e r 6 

General Discussion 

A common view in research on multiple cue judgement is that judgements are made in a 

conscious and explicit manner. According to this account, when provided outcome 

feedback in response to judgement, people test hypotheses against the feedback unt i l a 

hypothesis is confirmed by the cue-outcome values they observe. Once a hypothesis is 

confirmed, people begin to abstract explicit beliefs about the importance of each cue in 

predicting the criterion, and use their beliefs to i n fo rm their judgements. In this way, 

learning and judgement is deliberative and cognitively demanding. 

On the view that judgement is explicit, performance in judgement tasks should be 

ful ly explained by people's explicit beUefs about the importance o f each cue. However, a 

number of findings cause problems for this account. High levels o f performance in 

judgement tasks are often observed without the individual acquiring significant levels o f 

explicit knowledge. Furthermore, people are repeatedly shown to demonstrate poor levels 
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of insight into their judgement policies. In such cases, judgement appears to be influenced 

in part by knowledge that is implici t and not available for verbal report. Dual process 

theories o f thinking posit that both automatic implicit and controlled explicit processes can 

contribute to learning and judgement in a range of cognitive tasks. Whereas explicit 

processing is ef for t ful and generates knowledge that is consciously accessible, implicit 

knowledge is not available for verbal report, but may nevertheless influence performance 

on a task. The dual process framework allows us to assess the influence of both implicit and 

explicit knowledge on judgement f rom multiple cues. 

In the present thesis, we introduced dual process methods not previously used in 

the judgement literature to measure the contribution o f implic i t and explicit processes to 

multiple cue judgement. Our studies provide substantial evidence that both kinds of 

processes are involved in learning in multiple cue environments. Whether learning is 

implicit or explicit depends on the types o f cues on which participants are trained. 

However, our findings indicate that when explicit processing is involved i n learning, it may 

not guide judgement after extensive practice wi th a task. I thus concluded that in some 

types of multiple cue environments explicit processing is required for learning, but that 

these processes only contribute to early stages of learning. 

6.1. C O G N I T I V E P R O C E S S E S I N L E A R N I N G A N D 

J U D G E M E N T 

One possibility is that the cognitive processes that underlie judgement f r o m multiple cues 

are explicit and under conscious control. This appears to be the assumption made by some 
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MCPL theorists (Brehmer. 1974, 1980; Einhorn, Kleinmuntz, 8c Kleinmuntz, 1979; 

Lagnado, Newell, Kahan, 8( Shanks, 2006). For example, Juslin, Olsson, and Olsson (2003) 

explain that "people are assumed to abstract explicit representations of the cue-criterion 

relations, which signify the importance of each cue by a cue weight." Cues that are 

considered more important are given a higher weighting and accordingly impact more on 

judgement than cues that receive a lower weighting. The weighted cue values are then 

summed in a conscious manner to produce a weighted average for judgement (Brehmer, 

1994; Cooksey, 1996). Similarly, Brehmer (e.g. 1980) assumes that people*s hypothesis 

testing strategies can be retrieved by asking them to report their strategies verbally, and 

Einhorn et al. (1980) use similar methods of verbal report. While an argument that these 

theorists assume all judgement is explicit can not be made, the possibility that judgement is 

guided also by implicit learning does not appear to have been taken seriously. 

It is important to note that when judgement is explicit, cues are most likely 

attended to sequentially rather than holistically, which would involve integrating all cue 

values wi th explicit beliefs simultaneously. Analyses o f verbal protocols suggests that 

people consider each cue one at a time, and adjust their estimate according to their explicit 

beliefs about the importance o f each one (Einhorn 8c Hogarth, 1981; Einhorn et al, 1979; 

Kleinmuntz, 1975). Juslin, Karlsson. and Olsson (2008) recently formalised a model of 

explicit judgement that describes this serial process. They suggest that people rank the cues 

according to their explicit beliefs about each one's relevance. They then consider the cues 

one at a time in order of their importance, by which a running estimate is adjusted in light 

o f the value o f each cue unti l all are considered. At which point, a final judgement is made. 

Hence, while linear regression models that combine cue weights w i t h cue values 
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independently for each cue are shown to capture people's judgement policies (Brehmer, 

1994; Cooksey, 1996; Ullman & Doherty, 1984), explicit judgement is l ikely to be slow, 

ef for t fu l , and sequential. 

In contrast with explicit theories o f judgement, people are often shown to have little 

insight into their own judgement policies (Arkes, 1981; Brehmer, 1984; Harries, Evans, 

Dennis, & Dean, 1996; Roose & Doherty, 1976). Poor levels o f self-insight are found even 

when people are asked only to report the cue they believe is most important (Brehmer & 

Brehmer, 1987). Similarly, when learning f r o m outcome feedback in novel environments 

participants are shown to perform well, even when they have insufficient explicit 

knowledge o f a task to have performed significantly above chance (Evans, Clibbens, 

Cattani, Harries, & Dennis, 2003). Hence, people may also be influenced b y knowledge that 

is unconscious and inaccessible to verbal report. 

In many of the studies that have demonstrated poor levels o f self-insight or explicit 

knowledge, participants provide a single rating o f each cue*s relevance following 

completion o f a task. There are a number o f potential problems wi th this methodology. 

Firstly, when explicit cue ratings made on a single occasion are compared with subjective 

cue weights derived f rom multiple trials, participants cue ratings may be more susceptible 

to error (e.g. Harries & Harvey, 2000). This is because whereas explicit beliefs are derived 

f rom a single rating of each cue, cue weights are averaged across many trials. Secondly, 

when the relevance o f cues are rated sometime after learning has occurred, the conscious 

knowledge that guided learning may have been forgotten (Ericsson & SLmon, 1980). This 

issue relates to the proceduralisation of explicit skills (Anderson, 1993). Through practice, 

conscious knowledge can be converted into implici t procedures, after which, skilled 
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performance no longer depends on explicit beliefs (Brown & Carr, 1989). Hence, some 

conscious knowledge may be forgotten by the time verbal report measures are 

administered. Consistent wi th this view, when ratings are made at regular intervals during 

learning in multiple cue tasks, explicit beliefs are shown to correspond better with the 

actual cue validities (Lagnado et al, 2006). Explicit knowledge is better st i l l when cues are 

rated on every trial (Harries 8c Harvey, 2000), indicating that these knowledge levels can be 

underestimated by single session post-task measures. 

6.1.1. The dissociation between performance and explicit knowledge 

Explicit theories of multiple cue judgement fall more generally w i t h i n single process 

models o f cognition. These models assume that there is a single learning process that is 

explicit and under conscious control (Lovibond & Shanks, 2002; MitcheU, De Houwer, & 

Lovibond, 2009; Shanks & St. John, 1994). According to these accounts, learning leads to 

knowledge that is conscious and available for verbal report. In Chapter 1 (see section 1.2.), 

I discussed a number of findings that cause problems for single process models of thinking, 

namely that people often demonstrate good performance o f complex cognitive tasks 

despite being unable verbally to describe what they have learned (Gomez & Schvaneveldt, 

1994; Mathews et al, 1989). Learning is also shown to occur in the absence of explicit 

awareness that anything was learned at all (Brooks. 1978; Dulany, Carlson, & Dewey, 1984; 

Reber, 1967, 1993). What these studies show is a dissociation between performance and 

explicit knowledge in cognitive tasks. Consistent with dual process theories o f thinking, I 

concluded that both an implici t and an explicit component are likely to be involved in 

learning. 
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In our studies, we measured explicit knowledge o f multiple cue tasks and compared 

this with performance levels. In each experiment we estimated how participants would 

have performed in a test phase had they used only their explicit beliefs about each cue's 

relevance. We called this measure explicit knowledge. It follows that i f multiple cue 

judgement can be accounted for by a single process model, performance should be 

explained entirely by people's explicit beliefs. That is, performance levels should not exceed 

explicit knowledge o f a task. Across all our experiments we instead found that in some task 

types, performance scores were substantially higher than expected based on participants' 

explicit knowledge alone. This was the case when tasks contained only positive or negative 

relevant cues (++00 and --00 tasks). Even i f participants had consistently used their explicit 

beliefs when making judgements, they could not have reached the performance scores they 

achieved. This provides a striking dissociation between performance and explicit 

awareness, such that judgement in some types of multiple cue tasks appears to be guided by 

knowledge that is implici t and inaccessible to consciousness. 

On the view that learning can be explained entirely by a single learning system, 

some theorists would likely dispute the validity of our explicit knowledge measures. A 

common argument against evidence o f dissociation is that measures based on verbal report 

can be insensitive to the fu l l extent o f explicit learning (Harries 8c Harvey. 2000; Shanks 8c 

St. John, 1994). Hence, evidence of implic i t learning could be falsely claimed. However, we 

found that in some types of tasks explicit knowledge levels instead exceeded performance. 

In Experiments 1, 2, and 3, the type o f task participants performed interacted wi th our 

measures o f performance and explicit knowledge. In mixed cue tasks (+-00) that contained 

both a positive and a negative cue, performance d id not exceed what was expected based on 
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participants' explicit beliefs. I f our verbal report measures simply failed to tap into the fu l l 

extent o f participants' conscious knowledge, then we should have found performance levels 

to exceed our estimates of explicit knowledge in all task types. 

Recall that a single cue rating task administered retrospectively may underestimate 

explicit knowledge levels. In Experiments 7 and 8 our measures were also derived f rom 

participants' trial-by-trial cue ratings during learning phases. This way, participants' 

explicit beliefs were recorded on the same trials used to derive their subjective cue weights. 

We again replicated our findings of dissociation. When participants were trained on cues 

that were positively related to the criterion, performance was well in excess o f explicit 

knowledge even during training. Our findings indicate that both implic i t and explicit 

processes can contribute to complex skill learning, but depend on the types of tasks on 

which participants are trained. 

Dissociation between measures of performance and explicit knowledge are diff icul t 

to reconcile with models that describe a single learning process. Our findings are also in 

contrast wi th other studies o f multiple cue judgement. For instance, Lagnado et al. (2008) 

found that participants' use o f multiple cues and their explicit beliefs about each one's 

relevance both increasingly approximated the actual cue validities dur ing training. They 

concluded f rom these findings that judgement is explicit. Experiments 7 and 8 of the 

present thesis generally confirmed their findings, by showing that performance and explicit 

knowledge often did improve during learning phases. However, in our experiments we also 

compared these measures by estimating how participants could have performed based on 

their explicit beliefs alone. 
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Our findings o f dissociation are more consistent wi th models that describe separate 

learning systems. Similarly, studies o f category learning demonstrate that some but not all 

types o f tasks are learned explicitly. When simple rules determine category membership, 

learning appears to be explicit (Price, 2005; Ashby & Maddox, 2005). For example, a 

participant may learn to attend to the size and width o f a square shape when deciding 

whether a probe belongs to category A or B. For tasks of this type, people are shown to 

report accurately how they made their decisions (Ashby & O'Brien, 2005). Rules that 

describe the rotation o f a line wi th in a circle that varies in size, on the other hand, are 

perhaps less easily verbalised. Accordingly, learning often occurs in absence of explicit 

knowledge o f the category rule (Waldron & Ashby, 2002). In these studies, performance 

and explicit knowledge is dissociated by the type o f task on which people are trained, 

indicating in accordance with our findings that separate cognitive systems (implicit and 

explicit) are involved in learning complex structures in the environment. Recently, these 

processes have also been mapped onto distinct neurological areas in the brain (Kolb 8c 

Wishaw, 1990; Smith & Grossman, 2008). 

6.1.2. Self-insight 

M y discussion to this point has concerned the correspondence between performance and 

explicit knowledge measures in learning environments. Verbal reports measures have a 

long history in psychology, and are widely used wi th in the social cognitive literature (e.g. 

Hofman, Gschwendner, 8c Schmitt, 2005). A consistent finding is that impl ic i t tests (such 

as of attitudes and personality self-concept) often do not correspond well wi th verbal 

report (Blair, 2001; Dovidio, Kawakami, 8c Beach, 2001; H o f m a n , Gawronski, 
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Geschwender, Le, & Schmitt, 2005). For some theorists this is evidence that an automatic 

implicit component o f social cognition exists, that is inaccessible to consciousness (Nisbett 

& Wilson, 1977; Smith & DeCoster, 2000; Wegner & Bargh, 1998; Wi lson , 2002). 

Unaware of the true causes of their behaviour, people are likely to confabulate 

explanations for their responses in cognitive tasks (Evans & Over, 1996; Stanovich, 2004; 

Wilson & Dunn, 2004). A good example of this is provided by Nisbett and Schachter 

(1966). Before exposing participants to a series o f electric shocks o f increasing intensity, in 

one o f their studies they gave a group of participants a placebo pi l l believed to elicit 

symptoms similar to those o f the shocks (e.g. hand tremor). Whi le those participants who 

were given the pill were able to withstand electric shocks o f far greater intensity, they 

appeared completely unaware that the pill influenced their behaviour. Even when 

participants were asked i f the pi l l could have had any effects on their improved 

performance, only a small minori ty attributed their behaviour to the true cause. 

Interestingly, however, participants were quite confident o f the possibUity that entirely 

unrelated factors may have led to their endurance during shock treatment. When the true 

causes o f behaviour are inaccessible to consciousness, people appear to rationalise their 

behaviour. The ^selection task*, used to study conditional reasoning (discussed in more 

detail in section 1.2.4.), provides further evidence of confabulation in verbal report. In 

these tasks, participants are required to choose from a set o f cards (wi th numbers or letters 

printed on each) those that logically falsify a conditional rule. Rather than reason the task 

logically, people appear overly biased towards selecting the cards that are mentioned in the 

rule (Evans, 1998, 2003). Furthermore, when asked how they made their card choices 

150 



participants report attempting to falsify the rule, and show no awareness o f how the cards 

stated in the rule influenced their decisions (Evans & Wason, 1976; Wason & Evans, 1975). 

Confabulation may, in part, account for experts* reports about their own judgement 

policies. Recall that experts are often shown to demonstrate poor levels o f self-insight (e.g. 

Wigton, 1996), suggesting that some of expertise is not consciously accessible. 

Interestingly, experts often report using a large number o f cues when making judgements, 

but actually use only a small subset of the reported cues (Evans, Harries. & Dean. 1995). 

Evans et al. (1995) suggest that their physicians listed the cues they believed were important 

based on medical training, but were unaware that they did not use all the cues they listed. 

Hence, experts may rationalise to some extent about their own judgement policies by 

drawing on general knowledge that is irrelevant to their behaviour (Harries, Evans, Dennis, 

& Dean, 1996). Confabulation may also account partly for participants explicit ratings in 

our studies. However, we did find that explicit knowledge levels were consistently above 

zero and significant, across task types. This was the case even in positive cue tasks that 

appeared to be learned implicit ly. Hence, participants in our studies had acquired some 

explicit knowledge, even i f this did not contribute to performance. One possibility is that 

people do engage explicitly during training, but acquire only l imi ted conscious knowledge 

when a task can be learned implicit ly. A n alternative explanation is that explicit knowledge 

is "extracted" f rom implicit knowledge during training (Sun, Mer r i l l , & Peterson, 1998). 

Sun, Merr i l l , and Peterson (2001) provide a computational model that describes how this 

process may occur. Accordingly, explicit learning often tends to lag behind implici t 

learning (Bowers, Regehr. Balthazard. & Parker, 1990; Reber & lewis, 1977). For instance, 

Stanley, Mathews, Buss, and Koder-Cope (1989) monitored participants* verbal reports 
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whilst performing dynamic control tasks (see section 1.2.2. for more details) and found that 

while good performance was achieved early in training, participants explicit knowledge of 

the tasks only improved towards the end o f training. As in our studies, some explicit 

learning does appear to occur in these tasks, but does not always contribute to 

performance. 

6.1.3. The role of working memory 

Individual differences in working memory capacity ( W M C ) , or high correlates o f it such as 

general intelligence, are related to performance in a range o f cognitive tasks, including 

logical reasoning (Stanovich, 1999), probability judgement (West, Toplak, & Stanovich, 

2008), problem solving (Hambrick & Engle, 2003), and inductive reasoning (Feeney, 2007). 

Across these areas of research, effor t ful thinking is shown to be heavily demanding on 

working memory. 

Studies in the reasoning and judgement literatures often pit impl ic i t heuristic 

responses against analytic reasoning, and emphasise the importance of cognitive capacity 

in inhibit ing and replacing erroneous intuitive judgements (Evans, 2007; Kahneman, 2000; 

Kahneman 8c Frederick, 2002; Stanovich & West, 2008). The belief bias effect in syllogistic 

reasoning illustrates this point (Evans, Barston. & Pollard, 1983). When to ld that *A11 living 

things need water* and that *Roses need water*, one may then be asked whether it 

necessarily follows that 'Roses are l iving things*. The believability o f the conclusion 

activates a heuristic response based on prior belief and knowledge (roses are l iving things) 

which is in conflict wi th the propositions, but is falsely endorsed by the major i ty o f people 
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(Evans, 2003; Markovitz & Nantel, 1989). For the individual to reason logically about the 

propositions an intuitive response must be suppressed, but this process can load heavily on 

working memory (Engle, 2002; Geary. 2005). Hence, overriding heuristic processing 

requires a conscious mental effort and may be beyond the cognitive capacity of some 

individuals, such that some may not have the resources to carry out the override (De Neys, 

2006; Stanovich, 2004). However, even i f an individual detects the need to engage in 

effor t ful thinking, they must also have the working memory resources to sustain the 

inhibitory process whilst reasoning about a task (Kahneman, 2000). This process too, is 

demanding on working memory (Stanovich & West, 2008). I f an individual has the 

cognitive resources to suppress an intuitive judgement, but is unable t o decouple their 

explicit reasoning f rom beliefs they may be unsuccessful in overriding and replacing 

intui t ion (Evans, 2007, 2008). 

In our studies, participants were required to learn how a number of cues were 

related to a criterion, rather than rely on prior belief or knowledge. In Chapters 4 and 5, we 

measured individual differences in W M C , and correlated these with performance and 

explicit knowledge levels in judgement tasks. Our results provided clear evidence that 

explicit processing is involved in learning tasks that contain one or more negative cues, but 

not in tasks containing only positive relevant cues. This was indicated by a positive 

association between our measures o f W M C and performance in negative cue and mixed 

cue tasks, but not positive cue tasks. Moreover, when W M C predicted performance, high 

span individuals also acquired more accurate explicit knowledge (Experiments 4, 5, 7, and 

8), conf i rming that these tasks benefit f r om explicit processing effort. 

153 



When explicit hypothesis-testing is involved in learning i n multiple cue 

environments, this process is clearly demanding on working memory. The individual must 

consciously generate hypotheses about the cue-criterion relations, and evaluate hypotheses 

against the feedback. Both are key components o f hypothesis-testing (Koehler, 1991; 

Sanbonmatsu, Posavac. Kardes, & Mantel, 1998; Windschitle 8c Wells, 1998), and are 

shown to load heavily on working memory (Dougherty & Hunter, 2003a,b). Our studies 

provide some suggestion that generating hypotheses is equally demanding for individuals 

of all levels of working memory capacity. In Experiment 5, we to ld one group of 

participants that a mixed cue task would contain specifically one positive, one negative, and 

two irrelevant cues. Hence, participants were only required to evaluate the hypotheses 

against the feedback, rather than generate their own hypotheses. W e found that all 

participants benefited equally, regardless o f their W M C , but that this measure was still 

associated wi th performance. This provides some suggestion that both generating and 

evaluating hypotheses against feedback in learning environments is demanding on 

cognitive resources. However, it is important to note that even when participants are told 

how each cue is related to the criterion in multiple cue tasks, performance is still poorer for 

tasks that contain negative cues, compared wi th when the relevant cues are positive (Evans, 

Clibbens, 8c Harris, 2005). This indicates that a th i rd factor, learning to apply explicit 

knowledge, may also load heavily on working memory in learning environments. 

Evaluating hypotheses against feedback in multiple cue tasks involves assessing the 

correlation between cues and criterion. When cues are probabilistically related to a 

criterion, or feedback is noisy, this means comparing cue values with outcome values over 

a number o f trials. However, W M C wi l l likely put an upper l imi t on the number o f items 
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that can be considered at one time. Low span individuals tend to consider smaller samples 

o f events when assessing the correlation between variables (Kareev, Lieberman, & Lev, 

1997). In learning environments, this means that these individuals are perhaps less likely to 

detect a correlation in noisy en\'ironments when larger samples o f events must be 

considered (R. B. Anderson, Doherty, Berg, 8f Friedrich, 2005). Furthermore, they may also 

be more likely to falsely believe that a correlation exists by considering small 

unrepresentative samples of events (Gaissmaier, Schooler, & Rieskamp, 2006; Juslin 8c 

Olsson, 2005). 

6.1.4. Working memory capacity and the dissociation between 

performance and explicit knowledge 

I discussed earlier that when performance is in excess o f explicit knowledge of a task, this 

indicates that implici t learning has occurred. However, our studies o f multiple cue 

judgement suggest that such dissociation should not be taken as evidence that explicit 

processing is not involved in learning at any stage. We found that performance on negative 

cue tasks exceeded explicit knowledge levels, suggesting initially that learning occurred 

implicit ly. However, our measures o f W M C indicated that these tasks also benefit f rom 

explicit processing effort. Hence, dissociation between measures of performance and 

explicit knowledge alone could be used to falsely claim that learning is entirely implicit . 

The findings o f our studies indicate that in some environments, learning appears to 

benefit f r om both an implicit and an explicit component. In negative cue tasks, learning 

may initially require conscious hypothesis-testing, but is also boosted by impl ic i t learning 
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processes above what is attainable on explicit knowledge alone. One possibility is that when 

both relevant cues are negative, participants learn quickly to reverse the feedback values 

they receive. After doing so on a number o f trials this process may become automated, 

drawing less on working memory resources. By automating the process o f making 

judgements that are incongruent wi th the cue values, implici t processing may begin to 

contribute to learning. 

Viewed in this way, learning o f negative cues is similar to learning in other types o f 

cognitive tasks that require people to provide incongruent responses to stimuli. When 

instructed to respond to the location of a stimulus, people are shown to respond faster 

when stimulus and response sets are compatible, such as when a stimulus that appears to 

the left corresponds to a left key-press (De Jong, Liang, & Lauber, 1994; Elmer, 1995). This 

effect also occurs when visual locations are replaced wi th verbal labels (Proctor & Wang, 

1997). In these tasks, stimulus-response compatibility appears to pr ime the automatic 

response that corresponds wi th the stimulus. However, when responses are required that 

are incongruent with a stimulus, similar to when a high value on a negative cue predicts a 

low criterion value, controlled effor t ful processing is initially required to inhibit and 

override a congruent response (Kornblum, Hasbroucq, 8c Osman, 1990). Similarly, a 

conscious effort is also required for negating stereotypic beliefs (Kawakami, Dion, 8c 

Dovidio, 1999), but may become automated through practice (GauTonski, Deutsch, 

Mbi rkou , Seibt. 8c Strack, 2008; Kawakami et al, 2000). 

The idea that explicit knowledge becomes automated through practice is popular in 

the learning literature (e.g. Jones 8c Vanlehn, 1994). I discuss this issue in more detail later 

when I consider the effects o f concurrent working memory load on performance (see 
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section 6,1.6.). When performance init ial ly requires the application o f explicit rules (e.g. a 

high cue value predicts a low criterion value), this process can become automated as 

implicit procedures through practice (Logan, 1988; Oueilet, Beauchamp, Owen, & Doyon, 

2004). In this way, explicit knowledge is required less and less through practice, and may 

even be forgotten (Neves 8f Anderson, 1981). Furthermore, impl ic i t processes can begin to 

adjust and refine implicit procedures during training, such that learning continues to occur 

implicit ly (Anderson, 1986, 1993). That is, learning may occur impl ic i t ly once explicit 

knowledge is automated. Our studies suggest that this process may occur early in training. 

6.1.5. Transfer effects in learning 

When performance on a task correlates wi th measures o f W M C this indicates that explicit 

processing is involved. However, two explanations can account for a lack o f association 

between performance and W M C . First, it may be that implic i t learning explains 

performance. Second, the task may be easily performed explicitly by participants of all 

levels o f cognitive capacity. In such cases, an association would not be observed because the 

explicit processing used to perform the task is not sufficiently demanding. Heuristic 

strategies that are explicit for instance, would take account o f only l imi ted amounts of 

information compared with more complex strategies, and are likely to load less on working 

memory resources. For instance, Newell and Shanks (2003) found that participants were 

able to report verbally their use o f a single cue strategy when performing a two alternative 

forced choice task, suggesting that this strategy is applied explicitly. Moreover. Broder 

(2003) found that individuals who apply this simple strategy tend to be o f higher in 

intelligence but not W M C . Hence, people appear to apply simple single cue strategies 
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explicitly without taxing working memory resources. Recall however, that other types o f 

heuristic processing are shown to be implici t (e.g. Stanovich. 2004), 

In our studies, we found no association between individual differences in W M C 

and performance (Experiments 4, 6, 7, and 8) or explicit knowledge (Experiments 7, and 8) 

in positive cue tasks. Furthermore, while these measures were ordinar i ly predicted by 

W M C in mixed cue tasks, they were not i f participants first performed the positive cue task 

(Experiments 4 and 6). In this way, explicit processing that ordinarily contributed to mixed 

cue learning was apparently switched o f f Hence, pr ior training on positive cues appears to 

induce an implici t mode of thinking that transfers to learning o f mixed cue tasks. 

An interesting implication o f our findings is that high cognitive capacity does not 

guarantee better performance on tasks that benefit f r o m explicit reasoning. I f an individual 

does not recognise the need to make a conscious effort then automatic impl ic i t processes 

appear to guide performance. Our transfer effects indicate that one way this can occur is i f 

a prior task is performed implicitly. Consistent wi th this view, a number o f studies have 

shown thinking dispositions (e.g. need for cognition) to predict performance in cognitive 

tasks even when individual differences in cognitive ability are controlled (Kokis, 

Macpherson. Toplak, West, 8c Stanovich, 2002; Stanovich, 1999, 2008). WHiat these studies 

imply is that performance can depend both on the individuaFs tendency to engage in 

effor t ful thinking, and their cognitive ability (Evans, 2007; West et al, 2008; Stanovich, 

2008). Hence, higher W M C may not be sufficient for good performance; the individual 

must also be motivated to engage in explicit thinking. A wealth o f research suggests that 

people are in fact prone to rely too heavily on intui t ion, which has led a number o f 
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theorists to describe people as ^cognitive misers' (Evans, 2006; Hu l l , 2001; Krueger & 

Funder, 2004; Tversky & Kahneman, 1974). 

According to the cognitive miser hypothesis, inferences are of ten made intuitively 

unless the individual believes that ef for t ful th inking is required of them (e.g. Stanovich & 

West, 2008). For this reason, task instructions that emphasis logical th ink ing tend to 

reduce the influence of intui t ion on reasoning by encouraging people to t h ink analytically 

(Evans, 2003; Stevenson & Over, 1995; Vadeboncoeur & Markovits, 1999). A study by 

Tversky & Kahneman (1983) illustrates this point. After reading a personality description 

o f an individual called 'Linda', in their studies the vast major i ty o f people falsely assigned a 

higher probability to the conjunction o f two events "Linda is a bank teller and is active in 

the feminist movement" than to a single event "Linda is a bank teller" (see section 1.2.5. for 

more details). When the two statements were rated one after the other, statisticians were far 

more likely to apply the correct conjunction rule than untrained participants. However, i f 

the two statements were not rated in succession (placed wi th in a longer list of items) or 

participants rated only one of the statements (between-subjects design), the statisticians 

showed no advantage. What this suggests is that even i f an individual has the cognitive 

capacity and statistical knowledge to reason logically, they may not detect the need to apply 

a rule without sufficient cues (Kahneman, 2000). 

A common finding in the problem solving literature is that with experience people 

tend to become fixed in their behaviour, and less sensitive to changes in the environment 

(Reder, 1987, 1988). In problem solving tasks, people show a strong tendency to continue 

to apply previously successful complex rules on transfer problems even when these can be 

solved using a simpler rule (Chen & M o , 2004; Luchins & Luchins, 1959). In this way, 
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previous success appears to induce an inflexible mode of th inking that is insensitive to 

changes in the task. This is the case even when a complex rule leads to errors on transfer 

problems that can only be solved by a simpler rule (Luchins, 1942). En this way, prior 

experience appears to have similar effects on both problem solving and multiple cue 

judgement. We found that participants became fixed in an implici t mode o f thinking when 

a prior task could be performed implicidy. 

In our studies explicit processing was switched o f f by prior training. I t appears that 

participants did not detect that an explicit effort was required to perform a transfer task 

when a previous task could be learned implici t ly. Similarly, in studies o f problem solving 

people appear to be unaware of the errors they make on a task when applying previously 

successful rules (Woltz, Bell, Kyllonen, 8c Gardner, 1996). In this study, participants did 

not detect the errors they made on transfer problems, and did not recognise a need to 

engage in effor t ful thinking about the task. In our studies we attempted to undo the effects 

o f prior experience on learning. In Experiment 6 we provided one group of participants 

explicit instruction, explaining that the mixed cue task would contain at least one negative 

cue. Despite this, learning continued to occur implici t ly fol lowing positive cue training, 

indicating that prior experience can have a strong effect on the cognitive processes 

involved in learning. 

Transfer effects may have important implications for learning in real-life situations. 

Acquisition o f expertise likely involves a process in which additional cues become available 

at different stages o f learning. For example, a student doctor may receive training on 

symptoms associated wi th one type of ailment, before learning a separate set o f cues. I f 
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learning o f the first task can be achieved implicit ly, this may influence the way they learn a 

second set o f cues. 

6.1.6. The effects of working memory load 

On the view that multiple cue judgement is explicit and demanding on cognitive resources, 

loading people's working memory should strongly disrupt their performance on multiple 

cue tasks. In Experiments 1 and 2, we introduced a concurrent load to the test trials of 

judgement tasks. It is important to note that we did not load work ing memory during 

training, as a great deal of research indicates that attention is required for both implicit and 

explicit learning o f complex tasks (Cohen, Ivry, & Keele, 1990; Frensch, Buchner, & Lin, 

1994). However, we expected that a concurrent load would selectively interfere with 

judgement that is mediated by explicit processing (DeCaro, Thomas, & Beilock, 2008; 

Stanovich & West, 1998a,b.c). Instead, we found no evidence that performance was 

affected in any o f our task types by the addition o f a visual load in Experiment 1, nor a 

verbal load in Experiment 2. 

Recall that our measures o f W M C indicate that learning in some types of multiple 

cue tasks is explicit and demanding on working memory (see section 6.1.3.). Hence, we 

should have expected some effect o f load. Studies o f reasoning for instance show that 

logical thinking is both correlated with individual differences in W M C , and disrupted by 

working memory loads designed to interfere wi th explicit reasoning (De Neys, 2006; 

Stanovich, 1999; 2004; Stannovich & West, 2000). Moreover, our load tasks were similar to 

those that have been applied to reasoning tasks, and should have strongly affected 
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performance on tasks that were performed explicitly (De Neys, 2006). The lack o f effect o f 

load on performance in our studies indicates that judgement is not demanding on working 

memory when performance is assessed after training. 

Our findings are not surprising, however, when we consider other types o f complex 

skill learning. It is commonly shown that even when learning is explicit, conscious 

knowledge used to perform a task can become automated through practice (Kramer, 

Strayer, 8c Buckley, 1990; Logan, 1988, 1992; Logan 8c KJapp, 1991; Ouellet et al, 2004). 

When an explicit skill is acquired performance is characterised by slow ef for t fu l application 

of knowledge (Anderson et al. 2004). W i t h practice, this process can become automated as 

implicit procedures, drawing less on working memory dependent explicit processing. 

Accordingly, performance is shown to be unaffected by the addition o f concurrent load 

designed to disrupt explicit processing (Brown 8c Carr, 1989; Logan, 1979). However, for 

this process to occur the individual must have extensive practice w i th a task. In the 

multiple cue tasks used in the present thesis participants completed 80 learning trials 

before a further 40 test trials without outcome feedback. I t is highly likely that these 

conditions provide sufficient practice for explicit knowledge to become proceduralised. 

This explains why performance was not affected by the addition o f concurrent load to the 

test phases of our tasks, even for those that are initially learned explicitly. 

Most theories of automaticity describe the proceduralisation o f explicit knowledge 

as involving a process of knowledge compilation (Anderson, 1982, 1993; Neves 8c 

Anderson, 1981). Dur ing this phase, explicit rules are converted direcdy into procedural 

knowledge. Another way that explicit knowledge may become proceduralised is by 

observing one*s performance on a task. In our experiments, participants may have trained 
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implici t learning processes by observing their own judgements and attending more to the 

cues they believed were important. By doing so, participants may have acquired implicit 

knowledge indirectly f rom their explicit beliefs about the cues, which then begin to guide 

judgements (Will ingham & Goedert-Eschmann, 1999). 

Much expert judgement may involve a similar process o f automation o f skills. A 

stockbroker for instance, wi l l make numerous predictions about share price during a 

financial year. Learning how market indicators are related to share price may initially 

involve a process o f explicit hypothesis-testing, during which, judgements would be guided 

by the stockbroker's explicit beliefs. In an environment where fast judgements must be 

made f rom multiple pieces o f information, the slow and cognitively demanding process of 

explicit judgement likely becomes proceduralised through practice. In the process, fast 

intuitive judgements generated by implici t processes would begin to compete wi th explicit 

reasoning to control behaviour (Neves & Anderson, 1981; Logan, 1988. 1992). 

Theories of automation imply that judgement can become more intuitive with 

experience, and draw less on explicit beliefs. Furthermore, explicit knowledge acquired 

during learning may even be forgotten (Anderson, 1993). This issue has important 

implications for studies of expert judgement. Recall that experienced experts often 

demonstrate only limited insight into how they make their judgements (e.g. Wigton . 1996). 

For these individuals, judgement may be intuitive. Accordingly, we would expect more 

experienced experts to have less insight into their judgement policies. Consistent wi th this 

view, Slovic, Fleissner, 8f Bauman (1972) found that the more experience a stock broker 

had making financial decisions, the less they were able verbally to report how they made 

their judgements. 
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6.2. MULTIPLE C U E JUDGEMENT AND D U A L PROCESS 

THEORIES OF THINKING 

Dual process theories are popular in cognitive psychology (Ashby 8c Maddox, 2005; Evans, 

2008; Evans & Over, 1996; Kahneman 8c Frederick, 2002; Sloman, 1996; Sun. Slusarz, 8c 

Terry, 2005). That both implici t and expUcit processing can contribute to performance on a 

task is widely recognised in cognitive research (Berry 8c Broadbent, 1988; Cleeremans, 

Destrebecqz, & Boyer, 1998; Pothos, 2007; Reber, 1993; Smith 8c Grossman, 2008). Dual 

process theories describe how implicit and explicit processes interact to control behaviour, 

and make predictions about the contribution of each type o f process to performance on 

cognitive tasks. In our studies o f multiple cue judgement we found that both implici t and 

explicit processes are involved in learning. I concluded earlier that explicit processing is 

ordinarily involved in learning multiple cue tasks that contain negative cues (see section 

6.1.3.), but that explicit knowledge becomes automated through practice (see section 

6.1.6.). Positive cue learning on the other hand, appears to occur impl ic i t ly , and induces an 

implicit mode o f thinking. In this section I relate our findings to dual process models of 

other cognitive tasks, and discuss multiple cue judgement in more detail wi th in a dual 

process framework. 

6.2.1. Dual process theories of reasoning and judgement 

Dual process theories in the reasoning and judgement literatures often make a distinction 

between heuristic and analytic processes, which are both believed to influence performance 

on cognitive tasks (De Neys, 2006; Evans, 1989, 2006, 2008; Evans 8c Over, 1996; 
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Kahneman & Frederick, 2005, 2005; Stanovich, 2004). These processes generally map on to 

implicit (heuristic) and explicit (analytic) modes o f thought. I discussed i n Chapter 1 (see 

section 1.2.) how heuristic processes direct attention to relevant in format ion based on prior 

beliefs or knowledge, such as when reasoning about logical statements or making 

judgements of probability (Evans, 1984, 1996; Kahneman, 2003). However, heuristic 

responses can lead to errors on cognitive tasks. This is because heuristic processes can both 

direct attention towards information that is irrelevant and direct attention away f rom 

relevant information (Evans, 2006). Hence, reasoning can be biased by heuristic processing 

when relevant information is neglected and irrelevant information is included (Kahneman 

& Tversky, 1996). In such cases, effor t f t i l analytic processing may be required to inhibit 

and override an intuitive response for logical reasoning. However, analytic processing is 

slow, ef for t fu l , and demanding on working memory. 

Most heuristic-analytic theories describe a sequential process o f reasoning and 

judgement (Evans, 2006; 2008; Kahneman, 2000). Automatic heuristic processes generate 

fast intuitive responses to information provided in cognitive tasks. An analytic mode of 

thinking may then inhibit and override an intuitive response, but this process is slow and 

effor t ful . Hence, heuristic processing is the default in sequential models. Our findings are 

generally consistent with this view. Learning in multiple cue tasks appears to occur 

implicit ly, unless an individual believes an explicit effort is required o f them, such as when 

a task contains negative cues. I discussed earlier how our findings of transfer effects in 

learning provide further support for this class o f models (see section 6.1.5.). Whether an 

individual engages in analytic reasoning depends in part, on whether they detect the need 

for conscious effort (West et al, 2008), and whether they are sufficiently cued to apply rule 
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based knowledge (Tversky & Kahneman, 1983). Similarly, our transfer eflFects indicate that 

implicit processing is not overridden in tasks that ordinarily benefit from explicit reasoning 

if an implicit mode was previous successful. 

Dual process models that describe a competition between intuitive and effortful 

thinking provide a good account of expert judgement. 1 discussed earlier the possibility that 

experienced experts make fast intuitive judgements based on proceduralised knowledge 

(see section 6.1.6.). Judgements are likely to be made intuitively, unless the individual 

engages in slow effortful weighing up of available information. As with expert judgement, 

sequential models are specifically designed to account for reasoning and judgement when 

prior beliefs and knowledge are available. In our studies, we instead trained participants to 

make judgements from multiple pieces of information. While intuitive responses based on 

prior beliefs and knowledge may be generated quickly by implicit processes, implicit 

learning is likely to be slow and gradual. Following experiential learning, implicit processes 

may over take effortful explicit thinking by generating fast intuitive responses. However, 

implicit knowledge must first be acquired through a process of incremental learning. 

Another class of dual process models describes a competition between parallel 

implicit and explicit processing, (e.g. Sloman. 1996, 2002; Smith & DeCoster, 2000). 

Parallel-competitive models propose that conscious and unconscious modes of thinking 

proceed independently, and compete to control behaviour. Cognitive processes of the 

implicit system are described as associative and are responsible for learning statistical 

regularities in the environment such as correlations (Smith 8c DeCoster. 2000). These are 

contrasted with explicit rule based processing that is involved in conscious hypothesis-

testing and formalising verbal rules. Both these processes are believed to be active when 
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performing a task, and can generate conflicting responses. Describing implicit processing 

as associative and explicit processing as rule-based fits well with our studies of multiple cue 

judgement. Implicit learning in multiple cue tasks likely involves a process of trial-by-trial 

learning, in which cue-criterion associations are learned gradually in response to feedback. 

Explicit processing on the other hand appears to involve a process of deliberative 

hypothesis-testing. In this way, the individual consciously tests hypotheses against the 

feedback they receive in a controlled explicit manner. 

While parallel-competitive models do not specify the exact nature of implicit 

associative processes, it is possible to speculate how this kind of learning may occur in 

MCPL. In recent years, learning theorists have begun to formaUse associative learning 

mechanisms in terms of neural network (or connectionist) models (Cleeremans & 

McClelland, 1991; Dienes, 1992; Gibson, Fichman, & Plaut, 1997). In a seminal paper by 

Gluck and Bower (1988; and extended by Cobos, Almaraz, 8c Garcia-Madruga, 2003), the 

authors describe a simple one-layer neural network capable of learning to predict a binary 

outcome from binary cues. The neural network adjusted the weight given to each cue in 

response to outcome feedback and learned successfully to predict an outcome in a learning 

phase. Moreover, the pattern of responses generated by the model was remarkably similar 

to that of people trained on the same task. 

A compelling aspect of this type of model is its simplicity. Each cue is represented 

in the network by an input unit which are connected directly to a single output unit 

corresponding to the predicted outcome (or judgement). During training, the weighted 

node connections are then adjusted in response to feedback by meains of an error 

correcting rule (e.g. least mean squares rule, also known as delta rule). Over a number of 
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trials, error in judgement (the difference between judgment and actual outcome) is reduced 

as the weighted node connections are adjusted. It is easy to imagine how such a simple 

network could form part of the implicit learning system in humans. 

An assumption made by some theorists is that two contradictory' responses can be 

held in mind whilst performing a task (Sloman, 2002), one generated by implicit and 

another by explicit processes. Sloman (1996) illustrates how this can occur by reference to 

the Miiller-Lyer illusion displayed in Figure 6.1. When asked whether the two lines are of 

equal length, knowledge that the two lines are indeed similar does not influence our 

perception that the above line is longer. Hence, two contradictory beliefs generated by 

separate cognitive systems can be held in mind. However, this idea is perhaps less 

consistent with our findings of transfer effects in learning. Recall that when a task could be 

performed implicitly, this mode of thinking transferred to learning of a second task. In this 

way, an explicit component in learning was reduced, indicating that the two modes of 

processing do not occur independently. 

Figure 6.1. Miiller-Lyer illusion 
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Our studies of multiple cue judgement appear most consistent with dual process 

theories of reasoning and judgement that describe a sequential process. Accordingly, 

learning is implicit unless individuals engage in effortful analytic thinking. Models that 

propose a competition between parallel systems, on the hand, do not appear to account for 

multiple cue judgement. This type of model proposes that cognitive systems proceed in 

parallel. However, our findings indicate that explicit processing is reduced when a task can 

be performed implicidy, indicating that these modes of thinking are not independent. 

6.2.2. Dual process theories of learning 

It is commonly assumed that learning of complex cognitive tasks occurs either implicitly or 

explicidy. When tasks are highly complex performance is usually dominated by implicit 

learning processes (Cohen et al, 1990; Hayes & Broadbent, 1988; Nissen & Bullemer, 1987; 

Reber, 1967; Sun et al. 2001). However, when the underlying rules of a task are simple and 

easily verbalised (Ashby & Maddox, 2005), or when few variables must be considered 

(Broadbent, FitzGerald, Broadbent, 1986; Geddes 8c Stevenson, 1997), learning is more 

likely to be explicit. The contribution of an explicit component to learning, therefore, 

appears to depend on whether the information provided in a task can be managed in 

working memory, and whether the structure of a task can be formalised as simple rules 

(Baddeley, 1986; Barrett, Tugade, & Engle. 2004). 

I discussed in the previous section how our studies of multiple cue judgement can 

be understood in terms of a competition between multiple cognitive systems. Dual process 

models have a long history in the learning literature (e.g. Brooks, 1978; Reber, 1967), and 
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theorists have recently begun to propose how cognitive processes may compete during 

learning (Ashby & Maddox, 2005; Price, 2005; Smith & Grossman, 2008; Sun et al, 1998, 

2001). Ashby, Alfonso-Reese, Turken, and Waldron's (1998) C O V I S (competition between 

verbal and implicit systems) model describes this kind of competition (Ashby & Maddox, 

2005; Maddox, Filoteo, Hejl, & Ing, 2004; Waldron 8c Ashby, 2001). They explain that 

implicit and explicit processes initially compete when a new task is learned, both 

generating separate and often conflicting responses. The mode of thinking that generates 

more accurate responses then begins to control the inferences an individual makes and 

dominate learning. 

Consistent with competitive models of learning, when accurate explicit knowledge 

is acquired an explicit mode of processing is shown to control behaviour. For example, 

when a single input must be manipulated to control the output of a system in dynamic 

control tasks, participants acquire accurate conscious knowledge of how to control the 

system (Dienes 8f Fahey, 1995; Geddes & Stevenson, 1997). Confirming that an explicit 

mode dominates learning in these tasks, performance is strongly disrupted by the addition 

of concurrent working memory load during training (Hayes 8c Broadbent, 1988). Similarly, 

when learning to categorise stimuli based on multiple cues, performance is more affected 

by concurrent load tasks when category rules are simple and easily verbalised (Waldron 8c 

Ashby, 2001). Interestingly, when category rules are harder to verbalise performance is 

instead disrupted by delaying the onset of feedback (Maddox, Bohil, 8c Ing, 2003; Maddox 

et al, 2004), indicating that performance in these tasks is dominated by some implicit 

reward system (Maddox 8: Ashby, 2004). 
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Neuropsychological studies of learning suggest that brain areas associated with 

implicit and exphcit learning systems are activated exclusively during learning, rather than 

in parallel (Hazeltine, Grafton, 8c Ivry, 1997; Ivan, Krams, Turner, 8c Passingham, 1998; 

Pascual-Leone, Grafman, 8c Hallett, 1994). Consistent with competitive models, these 

studies indicate that learning occurs via an implicit or an explicit route, in which brain 

activation is associated with one or the other system. Studies of sequence learning have 

shown that when learning occurs in absence of awareness, decreased activation is observed 

in brain areas associated with explicit processing (namely, within the temporal cortex; 

Grafton, Hazeltine, 8c Ivry, 1995; Poldrack et al, 1997). Hence, when one learning system 

dominates performance, activation of the other is reduced. Our findings provide additional 

support for models that describe this kind of competition between cognitive systems. 

When multiple cue learning was implicit, explicit reasoning was reduced when a second 

task was learned. 

The findings of the present thesis, therefore, appear most consistent with dual 

process models that describe a competition between implicit and explicit modes of 

processing early in training. When learning occurs via one route, activation of the other is 

reduced. We found that learning in negative cue tasks appeared to benefit from both an 

implicit and an explicit component. However, this finding does not cause problems for our 

conclusions. When brain activity is studied during sequence learning, increased activation 

is observed in areas associated with explicit reasoning for individuals who are explicidy 

aware of the repeating sequence (e.g. Jenkins, Brooks, Nixon, Frackowiak, 8c Passingham, 

1994). However, activation in these areas soon reduces when performance becomes 
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automated (Ivan et al, 1998). It is likely that implicit processing begins to contribute to 

learning at this stage in negative cue tasks. 

6.2.3. Dual process theories: Quality and quantity 

I discussed earlier how individuals of high cognitive ability are more likely to engage in 

explicit reasoning (see section 6.1.3.). When deciding whether a conclusion necessarily 

follows from a set of propositions, people are heavily influenced by the believability of the 

conclusion, an effect referred to as belief bias (Evans et al, 1983). However, some 

individuals are shown to inhibit and override prior belief and engage in explicit reasoning 

about these tasks. These individuals tend to be of higher cognitive ability (Stanovich, 2004). 

Hence, individual differences in ability (or working memory capacity) appear to predict the 

quantity of explicit reasoning on the part of the individual, such that more able participants 

are expected to engage in more explicit reasoning (Evans, 2007; Stanovich. 1999). This 

conclusion has been made by a number of theorists in the reasoning and judgement field, 

namely Stanovich and his colleagues (Kokis et al, 2002; Stanovich, 2009). 

However, recall that independent of cognitive ability thinking dispositions (e.g. 

open-mindedness) also predict performance in reasoning tasks (Kokis et al, 2002). An 

alternative hypothesis is that of those individuals who engage in explicit reasoning, the 

quality of their reasoning is predicted by cognitive ability (Evans, 2007b)- That is, those of 

higher ability are more likely to reason correctly given that they engage in analytic 

thinking. Evans (2007b) argues that a number of findings are consistent with a quality 

hypothesis. For example, participants of all levels of ability are shown to be equally 
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influenced by the believabihty of conclusions in syllogistic tasks, indicating that individuals 

of higher ability are simply more effective when they reason analytically. This hypothesis is 

also more consistent with our findings of multiple cue judgement. Experiment 5 addresses 

this issue. When individual differences predicted performance in multiple cue tasks, all 

participants benefited equally from task information designed to improve exphcit learning. 

This was demonstrated by a main effect of task information on performance. We 

concluded that task information improved explicit learning by directing participants* 

attention towards relevant cues. A quantity hypothesis would predict that only high span 

individuals would benefit from task information. This is because low span individuals 

would be less likely to engage in explicit reasoning. In line with the predictions of a quality 

hypothesis, we found that participants of all levels of W M C equally benefitted from task 

instructions, indicating that all participants were explicitly engaged in learning. The 

association between W M C and performance in our tasks demonstrates that individuals of 

higher ability are more effective in explicit learning. 

6.3. C O N C L U S I O N S 

In the present thesis we explored the cognitive processes of multiple cue judgement. It is 

commonly argued that this kind of judgement is explicit. These theories fall within single 

process models of thinking that describe a single explicit learning system. Consistent with 

this view, we found that performance in some tasks does benefit from an explicit 

component during learning. However, other tasks were learned well implicitly. 

Furthermore, when learning is explicit, judgement appears to become more intuitive 
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(automated) through practice. Our findings imply that multiple cue judgement is better 

understood within a dual process framework. 

A robust finding in research on multiple cue judgement is that performance is 

poorer on tasks that contain negative cues. This trend makes sense when we think of 

negative cue learning as effortful and demanding on working memory. Whereas positive 

cue tasks are easily learned implicitly, negative cue learning loads heavily on working 

memory dependent explicit processing. 

Our findings appear most consistent with dual process models of thinking that 

describe a competition between implicit and explicit modes of processing early in training. 

According to these models, cognitive processes initially compete to control behaviour. 

During learning one system begins to dominate learning, which reduces activation of the 

other. Our findings provide further support for this class of dual process models. 

A puzzling finding in the judgement literature is that experts are often unable 

verbally to report how they make their judgements. One possibility is that some expertise is 

acquired unconsciously and is not available for verbal report. Our findings suggest that 

while both implicit and explicit processes likely contribute to the acquisition of expertise, 

judgement becomes more intuitive through practice. In the process, explicit knowledge 

becomes automated as implicit procedures, during which, explicit beliefs contribute less 

and less to judgement. This explains, in part, why self-insight is often poor. 
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Appendix 

7.1. Additional Analyses: Performance in 
Learning Phases 

Experiment 1 

Performance scores in the learning phase were calculated by correlating judgments with 

the criterion for each participant separately for the 40 learning trials and 2"̂^ 40 learning 

trials. These are displayed in Table 7.1. All group performance scores were significantly 

above zero. Significant group performance scores in the 1" 40 learning trials indicate that 

learning had occurred even in the early stages of the task. 

Table 7.1 

Experiment 1: Mean group performance scores in learning phases 

1̂  40 learning trials 2"** 40 learning trials 

M t M t 

++00 task .50* 17.329 .56* 21.916 
+-00 task . i r 3.370 .19* 3.806 

*p<.05 

To explore how performance progressed during training a two-way mixed A N O V A 

was conducted on performance scores in the learning trials, using task-type (++00 or +-00) 

as an independent factor, block 40 and 2"** 40 learning trials) as a within-subjects factor, 

and performance correlations as the dependent variable. We collapsed across load and no 

load groups for this analysis, as the load task was not administered until the test phase. 
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There was a significant effect of block (F(,.78) = 8.296, MSE = .481. p = .005, partial if = 

.096), indicating that performance levels improved from the P' 40 (.30) to the 2"** 40 (.38) 

learning trials. There was also a significant effect of task-type ( F ( , j 8 , = 74.440, MSE = 8.283, 

p <.0Ol, partial = .488). with participants performing better in the ++00 task (.53) than 

the +-00 task (.15). There were no significant interactions. These findings confirm that 

performance improved during training, and was generally better in ++00 than +-00 tasks 

even during training. 

Experiment 2 

Mean group performance scores in the 1" 40 and 2"** 40 learning trials are displayed in 

Table 7.2. All group performance scores were significant and above zero, except for those 

performing the --00 task in 1"* 40 learning trials. 

Table 7.2 

Experiment 2: Mean group performance scores in learning phases 

1" 40 learning trials 2"** 40 learnin g trials 

M t M t 

++00 task .47* 16.578 .51* 21.724 

+-00 task .08* 2.598 .11* 2.579 

-00 task .05 1.214 .31* 6.833 

p<.05 

A two-way mixed A N O V A was conducted on performance scores in the learning 

phase, using task-type (++00, +-00, or -00 ) as an independent factor, and block (P* 40 and 
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2"** 40 learning trials) as a within-subjects factor. As in Experiment 1. we collapsed across 

load and no load groups. There was a significant effect of task-type ( F ( 2 . i i 7 ) = 45.622, MSE = 

4.732, p <.001, partial rf = .438). Two-way mixed A N O V A s including block as a within-

subjects factor confirmed that this was because participants trained on the +-I-00 task (.49) 

performed significantly better than those performing the --00 task (.18; F ( i . 7 8 ) = 44.773, MSE 

= 5.166,p <.001, partial = .365), and that participants performed marginally significantly 

better in the -00 task than the +-00 task (.09; F ( i 7 8 ) = 3.720, MSE = .434, p = .057. partial 

= .046). There was a significant effect of block ( F ( , . n 7 ) = 24.234. MSE = 1.030. p <.001. partial 

= .172), and a significant interaction between task-type and block ( F ( 2 . i i 7 ) = 8.895, MSE = 

.378. p <.001, partial rf = .132). Pairwise comparisons confirmed that while performance 

levels improved significantly from the 40 (.05) to the 2"*̂  40 (.31) learning trials in the -

00 task (t = 5.561. df = 39, p <.001), performance levels did not significantly improve in the 

++00 (t = 1.605, df = 39. p = .117) or the +-00 (t = .886. df = 39. p = .381) tasks. This 

indicates that while the majority of learning in the +-00 and ++00 tasks occurred early in 

the training phase, a substantial amount of learning continued between the 40 and 2"'' 40 

learning trials in the —00 task. 

Experiment 3 

Mean group performance scores in the 1" 40 and 2°"* 40 learning trials are displayed in 

Table 7.3. All groups achieved significant performance scores in the learning phase, except 

participants performing the +-00 and —00 tasks in the P 40 learning trials under *low* 

instructions. While our instructional manipulation had no effect on performance in the 

test phase (see section 3.3.2.), directing participants towards the presence of negative cues 

177 



may have given them an initial advantage in early stages of training. A three-way mixed 

A N O V A was conducted on performance scores in the learning trials, using task-type 

(++00, +-00, or "00) and instruction type (*high' or *low') as independent factors, and 

block (P' 40 and 2"** 40 learning trials) as a within-subjects factor. There was a significant 

effect of task-type (F(2,ii4) = 44.666, MSE = 5.520. p <.001, partial = .439). Three-way 

mixed ANOVAs, which included instruction type as an independent factor and block as a 

within-subjects factor, confirmed that performance was significantly better in the ++00 

task (.55) than the -00 task (.23; F(i,76) = 50.265, MSE = 6.724, p <.001, partial = .398). 

Although participants appeared to perform better in the —00 task than the +-00 task (.16), 

this effect did not reach significance (F ( i . 76 )= 2,168, MSE = .253, p = .145, partial = .028). 

There was also a significant effect of block ( F ( , . „ 4 ) = 11.053, MSE = .562, p = .001, partial 

= .088), with performance scores generally improving from the 1" 40 (.33) to the 2"** 40 

(.35) learning trials. There was some suggestion of an effect of instructions, with 

participants performing generally better in the learning phase if provided 'high' 

instructions (.35) than *low* instructions (.28). However, this effect did not reach 

significance (F{i.ii4) = 2.021, iVfS£ = .250, p = .158, partial rf = .017). In contrast with our 

analyses of performance scores in learning phases of Experiment 2, there was no significant 

interaction between task-type and block ( F ( 2 , i i 4 ) = 1.580, MSE = .080, p = .210, partial if = 

.027), indicating that performance levels generally improved from the I** 40 to the 2"** 40 

learning trials regardless of the type of task participants performed. There were no other 

significant interactions. 
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Table 7.3. 

Experiment 3: Mean group performance scores in learning phases 

V 40 learning trial; 2"̂  40 learning trials 

M t M t _ _ 

++00 task 
^High* instructions .53* 22.259 .56* 16.336 
'Low' instructions .52* 8.350 .59* 13.239 

+-00 task 
'High' instructions .21* 4.779 .23* 3.570 
^owMnstructions .08 1.528 .13* 2.148 

"00 task 
'High* instructions .22* 3.616 .33* 6.09O 
'Low* instructions ^9 1315 ,2T 4.772 

*p<.05 

Experiment 4 

Task 1 performance in the learning phase 

Mean group performance scores and significance are displayed in Table 7.4. All group 

performance scores were significant, except for those performing the -OO task in the 1̂  40 

learning trials. 

Table 7.4. 

Experiment 4: Mean group performance scores in learning phases 

40 learning trial; 2"̂  40 learning trial 

M t M t 

++00 task .52* 15.052 .54* 15.851 

--00 task .08 1.584 .31* 6.663 

+-00 task (++00 transfer) .16* 3.794 .23* 5.168 

+-00 task (-00 transfer) .17* 4.428 .22* 5.209 

*p<.05 
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In our analysis of performance scores in learning phases we explored the 

moderating effects of learning block, as a within-subjects factor, on an association between 

working memory capacity (WMC) and performance. For this reason we followed the 

multilevel procedure to analyses our data (see section 7.2. for more details). We entered 

task-type (++00 or --00), block 40 and 2"̂  40 learning trials), and W M C as predictors, 

and a random intercept (x^ difference (1) = 30, p <.01). Consistent with analyses of 

performance in test phases, there was a significant effect of task-type (P = -.400, SE = .066, 

^(80) = -6.097, p <.001), indicating that performance levels were better in the ++00 task 

(.53) than the - 0 0 task (.19). There was also a significant effect of block (P = .161, S£ = 

.035, f(80) = 4.599, p <.001), with performance scores improving from the 1̂  40 (.30) to the 

2"'' 40 (.42) learning trials. There was some suggestion that W M C was positively associated 

with performance, but this effect did not reach significance (P = .005, SE = .003, /(80) = 

1.741, p = .085). There was however, a significant interaction between task-type and W M C 

(P = .012, SE = .006, t{SO) = 2.168, p = .033). Simple slope analyses confirmed that higher 

W M C was significandy associated with better performance in the —00 task (P = ,011, SE = 

.004, /(40) = 2.781, p = .008), but not the ++00 task (P = -.001. SE = .004. t{40) = -.279, p = 

.782). There was also a significant interaction between task-type and block (P = .238, S£ = 

.065, t(SO) = 3.680, p <.001). Simple slope analysis showed that performance scores 

improved significantly in the --00 task from the P 40 (.08) to the 2*̂  40 (.31) learning trials 

(P = .279, SE = .053, ^40) = 5.267, p <.001). but not in the ++00 task (P = .042. SE = .037. 

t(40) = 1.133, p = .264), suggesting that the majority of learning in these tasks occurs early 

in training. There were no other significant interactions. 
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Mixed-cue transfer task performance in the learning phase 

Both groups achieved significant performance scores in the P* 40 and 2°^ 40 learning trials 

(see Table 7.4.), indicating that a significant degree of learning had occurred in the early 

stages of the task. We followed the same multilevel procedure used to analyse performance 

in the learning phase of the first task in our analysis of learning in the mixed cue transfer 

task (see section 7.2. for more details). For this, we entered previous task-type (++00 or — 

00), block (1" 40 and 2"*" 40 learning trials), and W M C as predictors, and a random 

intercept (x^ difference (1) = 36, p <.01). This analysis yielded only one significant main 

effect, which was for block (P = .075, SE = .031, t{80) = 2.421, p = .018), indicating that 

performance scores improved from the I'" 40 (.16) to the 2"*̂  40 (.23) learning trials. There 

were no significant effects of previous task-type (P = .002, SE = .062, t(SO) = .031, p = .975). 

or W M C (P = .004, SE = .003, r(80) = 1.306, p = .195). However, confirming our analyses of 

performance scores in test phases, there was a significant interaction between the type of 

task participants had previously performed and W M C (P = .015, S £ = .005. t(SO) = 2.930, p 

= .004). Simple slope analysis showed that higher W M C was associated with better 

performance for those who had previously completed the —00 task (P = .011, SE = .003, 

/(40) = 3.572, p = .001), but not for those who had previously performed the ++00 task (P = 

-.004, SE = .004. ^(40) = -.984, p = .331). 
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Experiment 5 

Mixed cue task performance in the learning phase 

Performance scores in the 40 and 2"** 40 learning trials are displayed in Table 7.5. These 

were all significant and above zero for both groups. 

Table 7.5. 

Experiment 5: Mean group performance scores in learning phases 
1̂  40 learning trial 2"** 40 learning trial 

M t M t 
+-00 task .21* 5.592 .30* 6.490 
+-00 task (with task information) .22* 5.051 .39* 6.653 
*p<.05 

Following the multilevel analyses procedure (see section 7.2.) we entered task 

information (no task information or with task information). WMC, and block (P' 40 and 

2"̂* 40 learning trials) as predictors, and a random intercept (x^ difference (1) = 17, p <.01). 

Consistent with our analyses of performance scores in test phases (see section 4.2.2.). there 

was a significant effect of WMC (P = .009, SE = .003. t{72) = 3.078, p = .003), with higher 

WMC associated with better performance. There was also a significant effect of block (P = 

.206, SE = .043. t{72) = 4.760, p <.001), indicating that performance scores improved from 

the P' 40 (.21) to the 2"** 40 (.35) learning trials. There was some suggestion that task 

information improved performance in the learning trials, indicated by better performance 

for participants provided task information (.31) than for those who were not provided task 

information (.26). However, this effect did not reach significance (P = .100, SE = .070, t{72) 
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= 1.421, p = .160).There was also a significant interaction between W M C and block (P = 

.007, SE = .003, t{72) = 2.072, p = .042). Simple slope analysis confirmed that WMC was 

more strongly associated with performance in the 2"** 40 (P = .012, SE = .004. f(70) = 2.988. 

p = .004) than the 1̂ ' 40 (p = .005, SE = .003, t{70) = 2.046, p = .045) learning trials. 

Experiment 6 

Task 1 performance in the learning phase 

Mean group performance scores during learning phases are displayed in Table 7.6. These 

were both significant and above zero. 

Table 7.6 
Experiment6: Mean group performance scores in learning phases 

40 learning trials 2"̂  40 learning trials 
M t M t 

++00 task .41* 13.890 .54* 21.609 
+-00 task (++00 transfer) .15* 3.848 .28* 5.515 
+-00 task (++00 transfer with explicit .17* 3.502 .21* 4.075 
instruction) 

'p <.05 

Since the instructional manipulation was not introduced until the mixed cue 

transfer task (see section 4.3.), we collapsed across all 72 participants* performance scores 

in the learning phase for this analysis. Following the multilevel procedure, we entered block 

(1" 40 and 2"'̂  40 learning trials) and WMC as predictors, and a random intercept (x^ 

difference (1) = 9, p <.01). This yielded a significant effect of block (p = .185, SE = .042, 
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t{72) = 4.347, p <.001), indicating that performance levels improved from the 40 (.41) to 

the 2"'* 40 (.54) learning trials. Confirming our analyses of performance scores in test 

phases (see section 4.3.2), there was no association between WMC and performance (P = 

.003. S £ = .002, t{72) = 1.339, p = .185). There were no significant interactions. 

Mixed cue transfer task performance in the learning phase 

Mean group performance scores are displayed in Table 7.6. These were all above zero and 

significant. For this analysis, we entered explicit instruction (no exphcit instruction or with 

explicit instruction), block 40 and 2"*̂  40 learning trials), and WMC as predictors, and a 

random intercept (x^ difference (1) = 43, p <.01), along with a random slope for block (x^ 

difference (1) = 8, p = .01), in to a multilevel model. There was a significant effect of block 

(P = .114, SE = .034, t{72) = 3.364, p = .001), confirming that performance scores improved 

from the 1" 40 (.16) to the 2"̂  40 (.25) learning trials. In our analyses of performance scores 

in the test phases we found that explicit instruction had no effect on performance (see 

section 4.3.2.). Confirming these findings, there was no effect of explicit instruction (P = 

.015. S£ = .073, /(72) = .205, p = .839), or W M C (P = .001, SE = .003, ^72) = .216, p = .830) 

on performance in learning phases. There were no significant interactions. 
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7.2. Details of Analyses 

Moderated Regression 

A moderated regression model is a multiple regression with one or more interaction terms. 

Using moderated regression in the present thesis allowed us to explore the moderating 

effects of one or more independent predictors on an association between a continuous 

predictor and a dependent variable. We prepared our data in SPSS by coding categorical 

variables with zeros and ones. We then followed the two-step process advised by Aiken and 

West (1991) to assess the main effects of our predictors and whether there were any 

significant interactions. In the first block, we entered our predictors into a multiple 

regression model to assess the effects of each predictor on the dependent variable. All 

continuous variables were mean centred to reduce colinearity. This analysis provides 

regression coefficients and significance tests for each predictor. In a second block, we then 

entered all possible interactions. We specified the interaction terms by multiplying each 

predictor by each other predictor. For this, we used the 'compute' function provided in 

SPSS. In this final stage, we reported the value of the regression model, provided in the 

SPSS analyses output. provides a measure of the goodness-of-fit of a regression model. 

Multilevel Analyses 

Moderated regression assumes that all observations are independent, such as when 

participants either perform a positive cue (++00) or mixed cue (+-00) task. In the present 

thesis we also wanted to assess the moderating effects of within-subjects factors, such as 

when participants performed a judgement task under two conditions. Unlike moderated 
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regression, multilevel regression models allowed us to explore the effects of within-subjects 

factors. This was achieved by modelling our data on two levels. The macro (upper) level 

units were participants and the micro (lower) level units were observations within 

participants. Hence, between-subjects effects and WMC act to differentiate macro level 

units and within-subjects factors differentiate micro level units. We followed the procedure 

advised by Hoffman and Rovine (2007) for our multilevel analyses. Their procedure is 

specifically designed for analyses using experimental designs. We performed our analyses 

using the SPSS Mixed Procedure. As well as assessing main effects and interactions, we also 

wanted to improve our model by entering additional parameters. For this reason we opted 

for the maxitnum likehhood statistic. This allowed us to make comparisons between 

successive models to assess whether entering additional parameters improved the 

goodness-of-fit of the model. 

In our first step, we entered our main effects as predictors into a multilevel model. 

At this stage we also noted the -2 log-likelihood value (x^), which provides a measure of the 

goodness-of-fit of the model, A number of adjusted measures of this statistic are provided 

in the SPSS analysis output. We opted for the Akaike's information criterion (AlC), which is 

most commonly used. We then assessed whether a number of additional parameters 

improved the model. This was achieved by adding each parameter one-by-one and 

assessing whether each had a significant effect on the model. For this, we computed the 

chi-square statistic on the difference in -2 log-likelihood value after adding a parameter. 

These analyses had one degree of freedom because only one parameter w^s added at a time. 

I f a parameter did not significantly improve the goodness-of-fit of the model it was 

removed. We first tested whether adding a random intercept significantly improved the 
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model. Adding random intercepts allows the intercepts of the regression lines to vary 

between individuals. We then introduced random slopes for each predictor to assess 

whether each improved the model. This involved adding a random slope for each predictor 

one at a time and testing on each occasion whether the -2 log-likelihood was significantly 

different. Adding random slopes allows the regression slopes to vary across people. We 

then assessed the coefficients and significance tests of each predictor. 

In a final stage, we added all possible interaction terms to the model. In some cases, 

this meant entering a large number of terms. For this reason, in line with the advice of 

Hoffman and Rovine (2007), we removed insignificant interactions one-by-one in 

successive models, starting with those of the highest order. We then assessed the 

coefficients and significance of each remaining interaction. 

7.3. Task Instructions 

Experiments 1, 2, 4, 5, and 6. 

Four personality tests are being investigated by a business for their ability to predict the 

suitability of job applicants. However, these tests could predict suitability both positively 

and negatively. For example, extraversion could predict good applicant suitability for some 

occupations, but introversion could be a good predictor of suitabiUty for others. Others 

tests could be irrelevant and fail to predict applicant suitability either way. 

You will be required to examine how good each test is by rating the suitability of each 

applicant based on their results at the time of applying for the job. You will then be told 

how suitable each apphcant turned out to be six months into the job. Use this information 

to try to improve your prediction of the job success of later applicants. You may find this 

task difficult at first, but as the trials go on you may find your judgments improve. 

Importandy, to represent real-life the feedback about how accurate each applicant turned 

out to be will not always be accurate. Therefore, even if you work out which tests are 
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predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 

When you begin the experiment you will see the four tests labelled from A to D at the top 

of the screen. Along side each test you will see the results of the applicant rated as either; 

Very Low, Low, Average, High, or Very High. 

Below the tests you will need to select the rating that you think best describes the suitability 

of the applicant by clicking on the rating using the mouse. 

Once you have made your selection the actual suitability of the applicant will appear below. 

By then pressing the spacebar you will be presented the next applicant. 

Remember, each test can predict applicant suitability either positive, negatively, or be 

irrelevant: 

Positive: If a high result on a test predicts good applicant suitability, and a low result 

predicts poor suitability. For example, high IQ may predict good applicants and low IQ 

predict poor applicants. 

Irrelevant: If a test is not predictive of applicant suitability. For example, the height of the 

applicant may not predict applicant suitability. 

Negative: If a low result on a test predicts good applicant suitability, and a high result 

predicts poor suitability. For example, low anxiety may predict good applicants and high 

anxiety predict poor applicants. 

Experiment 3. 

Instructions for predicting "high" house prices 

You have recently started working for a luxury estate agent that sells only expensive houses 

so you are interested in finding houses with high house prices. You v\^ould like to know 

which features of houses, such as their size and age. and of the local area, such as crime rate 

and amenities, predict house prices. 

You have chosen four features of houses and the local areas. Feature A, Feature B, Feature 

C, and Feature D. These can vary from Very low. Low, Medium, High, to Very High. For 
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instance, the size of a house could be small so it would be rated as Low, or the amount of 

amenities in the local area could be high. 

Each feature could predict house price positively, negatively, or could be irrelevant to 

house price: 

If a feature is positively predictive of house prices, then i f its value is high the house price 

may be high, and when it is low the house price may be low. For instance, large houses may 

be more expensive than small houses. 

If a feature is negatively predictive of house prices, then i f its value is high the house price 

may be low and when its value is low the house price may be high. For instance, houses 

with local areas that have low crime rates may be more expensive than houses with local 

areas that have high crime rates 

If a feature is irrelevant to house prices, then it is not predictive of house prices. For 

instance, the size of nearby roads may not affect house prices. 

On each trial you will be presented a different house in a different area. Using the levels 

(from very low to very high) you will be required to judge the price of the house by 

selecting a label from very low to very high. Once you have made each judgment you will 

receive feedback as to the actual price level of the house. You may find this task difficult at 

first, but use the feedback to improve your judgments. 

Importantly, to represent real-life the feedback about how accurate each applicant turned 

out to be will not always be accurate. Therefore, even i f you work out which tests are 

predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 

Instructions for predicting "low" house prices 

You have chosen to buy a house, however, you do not have much money so you are only 

interested in finding houses with low house prices. You would like to know which features 

of houses, such as their size and age, and of the local area, such as crime rate and amenities, 

predict house prices. 

You have chosen four features of houses and the local areas, Feature A, Feature B. Feature 

C, and Feature D. These can vary from Very low. Low. Medium, High, to Very High. For 

189 



instance, the size of a house could be small so it would be rated as Low, or the amount of 

amenities in the local area could be high. 

Importandy, to represent real-life the feedback about how accurate each applicant turned 

out to be will not always be accurate. Therefore, even i f you work out which tests are 

predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 

Each feature could predict house price positively, negatively, or could be irrelevant to 

house price: 

If a feature is positively predictive of house prices, then i f its value is high the house price 

may be high, and when it is low the house price may be low. For instance, large houses may 

be more expensive than small houses. 

If a feature is negatively predictive of house prices, then if its value is high the house price 

may be low and when its value is low the house price may be high. For instance, houses 

with local areas that have low crime rates may be more expensive than houses with local 

areas that have high crime rates 

If a feature is irrelevant to house prices, then it is not predictive of house prices. For 

instance, the size of nearby roads may not affect house prices. 

On each trial you will be presented a different house in a different area. Using the levels 

(from very low to very high) you will be required to judge the price of the house by 

selecting a label from very low to very high. Once you have made each judgment you will 

receive feedback as to the actual price level of the house. You may find this task difficult at 

first, but use the feedback to improve your judgments. 

Importandy, to represent real-life the feedback about how accurate each applicant turned 

out to be will not always be accurate. Therefore, even i f you work out which tests are 

predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 
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Experiment 7. 

Instructions for participants performing the "standard' task first 

"JUDGMENT TASK ONE" 

Four personality tests are being investigated by a business for their ability to predict the 

suitability of job applicants. However, these tests could predict suitability both positively 

and negatively. For example, extraversion could predict good applicant suitability for some 

occupations, but introversion could be a good predictor of suitability for others. Other tests 

could be irrelevant and fail to predict applicant suitability either way. 

You will be required to examine how good each test is by rating the suitability of each 

applicant based on their results at the time of applying for the job. You will then be told 

how suitable each applicant turned out to be six months into the job. Use this information 

to try to improve your prediction of the job success of later applicants. You may find this 

task difficult at first, but as the trials go on you may find your judgments improve. 

Importantly, to represent real-life the feedback about how accurate each applicant turned 

out to be will not always be accurate. Therefore, even i f you work out which tests are 

predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 

When you begin the experiment you will see the four tests labelled from A to D at the top 

of the screen (See Figure 1). Along side each test you will see the results of the applicant 

rated as either; Very Low, Low, Average, High, or Very High, 

Below the tests you will need to select the rating that you think best describes the suitability 

of the applicant by clicking on the rating using the mouse. 

Once you have made your selection the actual suitability of the applicant will appear below 

(see Figure 2). By then clicking on "click here to view next applicant" you will be presented 

the next applicant. 

Remember, each test can predict applicant suitability either positive, negatively, or be 

irrelevant: 

Positive: I f a high result on a test predicts good applicant suitability, and a low result 

predicts poor suitabihty. For example, high IQ may predict good applicants and low IQ 

predict poor applicants. 
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Irrelevant: If a test is not predictive of applicant suitability. For example, the height of the 

applicant may not predict applicant suitability. 

Negative: I f a low result on a test predicts good applicant suitability, and a high result 

predicts poor suitability. For example, low anxiety may predict good applicants and high 

anxiety predict poor applicants. 

"JUDGMENT TASK T W O " 

To help you learn whether each test predicts applicant suitability negatively, positively, or 

not at all, in this task you will be able to highlight your hypothesis for each test. As you can 

see in Figure 7.J., when you begin the task the hypotheses for each test will be selected as 

irrelevant. At this point you will not be able to change your hypotheses selections. 

Appl icant 's results o n 

each Tes t 

Average 

How suitable is the applicant? 

Very Poor Averase 

Negative Irrelevant Posillve 
r 

p t o M DO NOT 

hypothoun 

H y p o t h e s e s se lect ions 

for each Test 

Very Good 

r 

Figure 7.1. 

Once you have made your judgment of the applicant's suitability, you will then be 

presented with the actual suitability of the applicant. You will also be able to change your 

hypotheses for each test i f you wish (see Figure 7.2.). Use the feedback about how suitable 

the applicant turned out to be to help you choose your hypotheses selections. 
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V e r y Poor 

T e s t A V e r y High 

T e s t B L o w 

T e s t C A v e r a g e 

T e s t D Average 

H o w su i tab le Is the appl icant? 

Poor AverBge Good V e r y G o o d 

N e e a t i v e I r r e l e v a n t P o s i t i v e 

r f? r 
Please CHANGE 

your hypothsMs 
satictiont for aach 

Test now tf you 
wlthl 

The ac tua l sui tabi l i ty of t h e appl icant Is: 

G o o d 

Gtck h e r e t o v i e w next 

appl icant _ 

Figure 7.2. 

Once you have changed your hypotheses for each test, i f you wished to do so, then click on 

"click here to view next applicant" and the next applicant will appear (see Figure 7.3.). This 

time, use your hypotheses selections for each test to help you make your judgment. You 

will be able to change your hypotheses selections again once you have made your 

judgment. This procedure then continues for each trial in the learning phase. 

Negative 

Very Poor 

r 

T e s t A Very L o w 

T e s t B Very L o w 

T e s t e V c r y H I e h 

T e s t D Very HIeh 

How sui table Is the appl icant? 

Poor A v e r a c e Good 

r " 

Irre lavant P o s i t i v e 

Plus* USE your 
hypothtscs Mlcctloni 

to halp you mak* your 
ludgmwrt 

V e r y Good 

Figure 7.3. 
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Instructions for participants performing the "hypotheses notepad" task first 

"JUDGMENT TASK ONE" 

Four personality tests are being investigated by a business for their ability to predict the 

suitability of job applicants. However, these tests could predict suitability both positively 

and negatively. For example, extraversion could predict good applicant suitability for some 

occupations, but introversion could be a good predictor of suitability for others. Other tests 

could be irrelevant and fail to predict applicant suitability either way. 

You will be required to examine how good each test is by rating the suitability of each 

applicant based on their results at the time of applying for the job. You will then be told 

how suitable each applicant turned out to be six months into the job. Use this information 

to try to improve your prediction of the job success of later applicants. You may find this 

task difficult at first, but as the trials go on you may find your judgments improve. 

Importantly, to represent real-life the feedback about how accurate each applicant turned 

out to be will not always be accurate. Therefore, even if you work out which tests are 

predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 

When you begin the experiment you will see the four tests labelled f rom A to D at the top 

of the screen (See Figure 1). Along side each test you will see the results of the applicant 

rated as either; Very Low, Low, Average, High, or Very High, 

Below the tests you will need to select the rating that you think best describes the suitability 

of the applicant by clicking on the rating using the mouse. 

Once you have made your selection the actual suitability of the applicant will appear below 

(see Figure 2). By then clicking on "click here to view next applicant" you will be presented 

the next applicant. 

Remember, each test can predict applicant suitability either positive, negatively, or be 

irrelevant: 

Positive: I f a high result on a test predicts good applicant suitability, and a low result 

predicts poor suitability. For example, high IQ may predict good applicants and low IQ 

predict poor applicants. 
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Irrelevant: I f a test is not predictive of applicant suitability. For example, the height of the 

applicant may not predict applicant suitability. 

Negative: If a low result on a test predicts good apphcant suitability, and a high result 

predicts poor suitability. For example, low anxiety may predict good applicants and high 

anxiety predict poor applicants. 

To help you learn whether each test predicts applicant suitability negatively, positively, or 

not at all, you will be able to highlight your hypothesis for each test. As you can see in 

Figure 7.4., when you begin the task the hypotheses for each test wi l l be selected as 

irrelevant. At this point you will not be able to change your hypotheses selections. 

Appl icant 's results on 

e a c h Test 

Averezs 
Irrelevant Positive Negative 

p u « M OO NOT 

hypoth 
letectlens yet 

Hypotheses selections 

for each Test 

How suitable Is the applicant? 

Very Poor Poor 
r 

Ave race 
r 

Good Very Good 

r 

Figure 7.4. 

Once you have made your judgment of the applicant's suitability, you will then be 

presented with the actual suitability of the applicant. You will also be able to change your 

hypotheses for each test if you wish (see Figure 7.5.). Use the feedback about how suitable 

the applicant turned out to be to help you choose your hypotheses selections. 
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Negat ive I r r e l e v a n t P o s i t i v e 

V e r y Poor 

Tes t A V e r y H i t h 

Tes t B L o w 

Tes t C A v e r a j e 

T e s t D A v e r a e e 

H o w suitable ts t h e appl icant? 

Poor A v e r a g e G o o d V e r y Good 

Please OiANGE 
your hypothasat 

i*lKtlons for «ach 
Tast ROW H you 

wlthl 

T h e ac tua l suitabi l i ty of the appl icant Is: 

G o o d 

Click h e r e to v i e w n e x t 
appl icant ^ 

Figure 7.5. 

Once you have changed your hypotheses for each test, i f you wished to do so, then click on 

"click here to view next applicant" and the next applicant will appear (see Figure 7.6.). This 

time, use your hypotheses selections for each test to help you make your judgment. You 

will be able to change your hypotheses selections again once you have made your 

judgment. This procedure then continues for each trial in the learning phase. 

Very Poor 

Test A V e r y Low 

Test B V e r y Low 

Test C V e r y High 

Test D V e r y High 

How suitable Is the appl icant? 

Poor Average Good 

r - r 

Negative Irre levant Pos i t ive 

PlaaM USE your 
hypothasn salactlons 

to halp you maka yocr 
;ut!{mcnt 

Very Good 

Figure 7.6. 
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"JUDGMENT TASK T W O " 

In this judgement task you will not be able to highlight your hypotheses about each test. 

Experiment 8. 

Instructions for participants performing the 'hypotheses notepad' task first 

"JUDGMENT TASK ONE" 

Four personality tests are being investigated by a business for their ability to predict the 

suitability of job applicants. However, these tests could predict suitability both positively 

and negatively. For example, extraversion could predict good applicant suitability for some 

occupations, but introversion could be a good predictor of suitability for others. Other tests 

could be irrelevant and fail to predict applicant suitability either way. 

You will be required to examine how good each test is by rating the suitability of each 

apphcant based on their results at the time of applying for the job. You will then be told 

how suitable each applicant turned out to be six months into the job. Use this information 

to try to improve your prediction of the job success of later applicants. You may find this 

task difficult at first, but as the trials go on you may find your judgments improve. 

Importantly, to represent real-life the feedback about how accurate each applicant turned 

out to be will not always be accurate. Therefore, even if you work out which tests are 

predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 

When you begin the experiment you will see the four tests labelled from A to D at the top 

of the screen (See Figure 1). Along side each test you will see the results of the applicant 

rated as either; Very Low, Low, Average, High, or Very High. 

Below the tests you will need to select the rating that you think best describes the suitability 

of the applicant by clicking on the rating using the mouse. 

Once you have made your selection the actual suitability of the applicant will appear below 

(see Figure 2). By then clicking on "click here to view next applicant" you will be presented 

the next applicant. 
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Remember, each test can predict applicant suitability either positive, negatively, or be 

irrelevant: 

Positive: I f a high result on a test predicts good applicant suitabilit>% and a low result 

predicts poor suitability. For example, high IQ may predict good applicants and low IQ 

predict poor applicants. 

Irrelevant: I f a test is not predictive of applicant suitability. For example, the height of the 

applicant may not predict applicant suitabihty. 

Negative: I f a low result on a test predicts good applicant suitability, and a high result 

predicts poor suitabihty. For example, low anxiety may predict good applicants and high 

anxiety predict poor applicants. 

To help you learn whether each test predicts applicant suitability negatively, positively, or 

not at all, you will be able to highlight your hypothesis for each test. As you can see in 

Figure 7.7., when you begin the task the hypotheses for each test wil l be selected as 

irrelevant. At this point you will not be able to change your hypotheses selections. 

Applicant's results on 
each Test 

Very Poor 

Test A Ave race 

Test B Verv Low 
I 

Teste Very Low 

\ ^Tes tO VervHIfh 

How suitable fs the appncant? 

Poor Avcrace Good 

Nrcitive 
f 

rreievant Positiv* 

p I n M 0 0 NOT 

h y p e U i M M 

Mtactieriyct 

HypothDSCS selections 

for each Test 

Verv Good 

Figure 7.7. 
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Once you have made your judgment of the applicant's suitability, you will then be 

presented with the actual suitability of the applicant. You will aJso be able to change your 

hypotheses for each test if you wish (see Figure 7.8.). Use the feedback about how suitable 

the applicant turned out to be to help you choose your hypotheses selections. 

Neeatlve 

Verv Poor 

r 

Test A Very High 

Test B Low 

Test C Averace 

Test O Average 

How suitable Is the applicant? 

Poor Average Good 

Irrelevant Positive 
a r 

PkaseCHANGE 
your hypothoMi 
selections for each 

Test new if you 
Wtshi 

Very Good 

The actual suitability of the applicant Is: 

Good 

Click here to view next 
applicant -

Figure 7.8. 

Once you have changed your hypotheses for each test, i f you wished to do so, then click on 

"click here to view next applicant" and the next applicant will appear (see Figure 7.9.). This 

time, use your hypotheses selections for each test to help you make your judgment. You 

will be able to change your hypotheses selections again once you have made your 

judgment. This procedure then continues for each trial in the learning phase. 
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Test A Very Low 

TestB', .VeryLow • 

Teste Very High 

TestD Very High 

How suitable is the applicant? 

Very Poor 

r. 

Poor 
r . 

Average 

. r 

Good 

r • 

Negative 
r 

VervGtKKi 

r 

Irrelevant Poslthre 

Pleasa USE your 
hypoth«u» uUctlons 

to halp V'BU nuke your 
Judemint 

Figure 7.9. 

"JUDGMENT TASK TWO" 

In this second judgment task you will also be presented the results of your hypotheses 

selections on each of the learning trials. As you can see in Figure 7.10. below, after making 

your judgment on each trial you will be presented the results of your hypotheses selections. 

If you find that the results of your hypotheses selections are incorrect (do not predict 

applicant suitability) then you can change your hypotheses selections to better predict 

applicant suitability. 
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Neeattve Irretevint Positive 

Very Poor 

Teit A Verv Hich 

Test B Low 

Test C Ave race 

Test D Average 

How suitable Is the applicant? 

Poor Average Good Very Good 

PIcxM CHANGE 
your hvpoth«s«s 
td*ctton» far nch 

Test now if you 
with I 

The Judgment based on your hypotheses selections Is: 

Very Poor Poor Average Good Very Good 

The actual suitability of the applicant Is: 

Good 

\ 
Results of your 

hypotheses selections 

aiclTliere to view next 
applicant 

Figure 7.10. 

Instructions for participants performing the "hypotheses notepad output" task first 

"JUDGMENT TASK ONE" 

Four personality tests are being investigated by a business for their ability to predict the 

suitability of job applicants. However, these tests could predict suitability both positively 

and negatively. For example, extraversion could predict good applicant suitability for some 

occupations, but introversion could be a good predictor of suitability for others. Other tests 

could be irrelevant and fail to predict applicant suitability either way. 

You will be required to examine how good each test is by rating the suitability of each 

applicant based on their results at the time of applying for the job. You will then be told 

how suitable each applicant turned out to be six months into the job. Use this information 

to try to improve your prediction of the job success of later applicants. You may find this 

task difficult at first, but as the trials go on you may find your judgments improve. 

Importandy, to represent real-life the feedback about how accurate each appUcant turned 

out to be will not always be accurate. Therefore, even if you work out which tests are 

predictive and in which way, the feedback you receive in response to your judgments may 

be inaccurate on some trials. 
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When you begin the experiment you will see the four tests labelled from A to D at the top 

of the screen (See Figure 1). Along side each test you will see the results of the applicant 

rated as either; Very Low, Low, Average, High, or Very High. 

Below the tests you will need to select the rating that you think best describes the suitability 

of the applicant by clicking on the rating using the mouse. 

Once you have made your selection the actual suitability of the applicant will appear below 

(see Figure 2). By then clicking on "click here to view next applicant" you will be presented 

the next applicant. 

Remember, each test can predict applicant suitability either positive, negatively, or be 

irrelevant: 

Positive: I f a high result on a test predicts good applicant suitability, and a low result 

predicts poor suitability. For example, high IQ may predict good applicants and low IQ 

predict poor applicants. 

Irrelevant: I f a test is not predictive of applicant suitability. For example, the height of the 

applicant may not predict applicant suitability. 

Negative: I f a low result on a test predicts good applicant suitability, and a high result 

predicts poor suitability. For example, low anxiety may predict good applicants and high 

anxiety predict poor applicants. 

To help you learn whether each test predicts applicant suitability negatively, positively, or 

not at all, you will be able to highlight your hypothesis for each test. As you can see in 

Figure 7.11 y when you begin the task the hypotheses for each test wi l l be selected as 

irrelevant. At this point you will not be able to change your hypotheses selections. 
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Applicant's results on 
each Test 

Average 

Very Poor 

How suitable Is the appllom? 
• -

Averese Good 

Negative Irrelevant Positive 
c a r 

p\mnm DO NOT 

hypoth 

Hypotheses selections ^ 

for each Test 

Very Good 

Figure 7.11. 

Once you have made your judgment of the applicant's suitability, you will then be 

presented with the actual suitability of the applicant and the results of your hypotheses 

selections. You will also be able to change your hypotheses for each test if you wish (see 

Figure 7.12). Use the feedback about how suitable the applicant turned out to be to help 

you choose your hypotheses selections. I f you find that the results of your hypotheses 

selections are incorrect (do not predict applicant suitability) then you can change your 

hypotheses selections to better predict applicant suitability. 
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P1«3M CHANGE 
your h y p o t h M C S 

wtoctlons for «ach 
T«st now If you 

wlihl 
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r 
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Good 
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Good Very Good 
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Results of your 
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Click Here to view nert ] | 
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Figure 7.12, 

Once you have changed your hypotheses for each test, i f you wished to do so, then click on 

"click here to view next applicant" and the next applicant will appear (see Figure 7.13.). 

This time, use your hypotheses selections for each test to help you make your judgment. 

You will be able to change your hypotheses selections again once you have made your 

judgment. This procedure then continues for each trial in the learning phase. 

Very Poor 

r 

Negative 
Test A Very Low 

Test B Very Low 

Test C Very High 

Test D Very High 

How suitable is the applicant? 

Good 

Irrelevant 
or 

PositWe 

fUas* USE your 
hypothecs selections 

to help you nuke your 
dement 

Poor 
r 

Average Very Good 

r 

Figure 7.13. 
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"JUDGMENT TASK ONE" 

In this second judgment task you will again be presented your hypotheses selections on 

each of the learning trials. However, this time, your will not be provided the results of your 

hypotheses selections. 
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