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A continuum mixture théory approéch to sediment transport
with application to turbulent oscillatory boundary layers.
John Nigel Aldridge

Two aspects of the modelling of suspended sediment transport are ihvestigated. One
is the development of a theoretical base for sediment transport models starting from
the continuum theory of immiscible mixtures {also know as two-phase flow theories).
The other is a comparison with experimental data of numerical predictions from a
number of turbulence models for oscillatory, turbulent boundary layer flow containing
suspended sediment.

A review is given of previous work that has applied continuum mixture theories-
to the field of sediment transport. Turbulent averaged forms of the mixture equa-
tions are presented and, in the dilute particle concentration limit and neglecting the
effects of particle inertia, the equations are shown to reduce to those encountered in
traditional approaches to modelling suspended sediment concentrations. Likewise,
the equations governing the motion of the fluid phase reduce to standard forms,
with the effect of the sediment particles appearing as a buoyancy term in the fluid
momentum equation. Particle inertia is taken into account by expanding in terms
of a non-dimensional parameter, the ratio of the response time of the particle to a
characteristic time of the flow. Terms arising from particle inertia are then reduced
to correlations for which models are AV'ai}able in the literature. T'heia.ssumption of
dilute particle concentrations is made throughout the derivation.

An extensive comparison belween a number of turbulence models is made by com-
paring numerical predictions with experimental data, whilst making the conventional
assumption of zero particle inertia. The £ — ¢ model was found to perfprm well, with
simpler models also givihg reasonable agreement with experiment. Also investigated
is the sensitivity of the solution to a number of factors, including: boundary con-
ditions, empirical turbulence constanis, and the stratifying effect of the suspended
sediment. |

The effect of including terms associated with particle inertia are investigated in
turbulent oscillatory boundary layer lows. This is found to lead to an enhancement
of the vertical particle volume flux. However, given the uncertainties of speciflying
the boundaty condition for the concentration at the bed, the effect is probably not
of significance for small particles (diameter ~ 0.1 mm). Larger particles (diameter
~ 0.25 mm) show more significant effects due to their inertia. The difference in
mean horizontal velocity between the fluid and particle phases which results from the
inclusion of inertia in the particle momentum equations is calculated. This difference

is found to be very small.
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Notation

‘Direct’ rather than component notation is used throughout. Vectors and tensors
appear in bold type (lower case Roman for vectors and upper case Roman, or lower
case Greek, for tensors). l

If @, b are vectors and A, B are (second order) tensors the following operations

are defined:

Inner product
Symbaol ¢

Defined between vectors, vectors and tensors and between tensors:

ab = ab
a.B = aB;
Ab = Ajjb

* A.B = AiBy;

‘Double? inner product
Symbol *’
Defined between tensors:

A: B = Ay By

Tensor product

Symbol ‘'®’ ®

Defined between vectors:

a®b=ab;

Generally the operator @ will be omitted so that

ab=a®b

The identity tensor is denoted by the symbol I,

Also defined are the following differential operators:

-



Grgdient
Symbol ¥

Defined for scalars and vectors:

_ 0¢
_ an
. V'U = FJ-;:

{This expression is ambiguous when we come to consider the inner product of
this quantity with a vector. The inner product, as defined, is not symmetrical
between the tensor subscripts and we have not specified in the gradient defini-
tion which of the subscripts i or j-.comes ‘first’. We therefore make the definition
that the subscript on the variable with respect to which we are differentiating

(# in this case) comes first. Thus:

v Vf = UgZi{_,
- ) ) —(V})i’ulz F,-'-g%’:."k_ i

This ensures that the conventional notation for the convective derivative

Dv _ dv
ﬁ ='—a'—t' +‘U.V'U

is consistent with the definitions introduced above.

Divergence
Symbol V.

Defined for vectors and tensors:

dv;

V.v = 5;]-
_ 04y

VA = azj

‘Double’ divergence
Symbol V.

~ Defined for tensors:

vl

I



0%0;;

6:-:,- 6::.-

V:o

The operator V* operating on a vector is defined such that
VE= (V)

Volume integrals over a set of points D are shown as

/ o dv, i}
,D _

where ® may be scalar, vector or lensor. Surface integrals over the boundary 8D of

f n.$ ds.
ar

a set D are denoted

vii



List of main symbols

Scalars )
a Orbital amplitude just outside the boundary layer (a = Voo /w).
e;,al - (i=1,2,3) Constants in pressure-concentration correlation model (Section 2.3.2).
b Volume of spherical particle (b = %wr3),
b; (i = 1,2) Turbulence model constant (see Section 2.3.2).
¢, cp Particle concentration.
cy Fluid ‘concentration’ (¢; = 1 —¢cp).
co Reference concentration at bed, see (3.41). -
Cop Turbulence model constant.
Che Turbulence model constant.
Cs. Turbulence model constant.
Ca. Turbulence model constant.

Cum Added mass coefficient, see (2.35).
d Particle diameter.
dn For a sample of particles, the diameter such that n% of the sample

has a diameter less than d.

fe “Wall correction function for pressure-concentration correlation model (Section 2.3.2)-
g Acceleration due to gravity (g = 9.8m/s?).

G Buoyancy production term for k, see (2.48).

k Turcbulent kinetic energy.

kyn Nikuradse roughness length.

l Turbulent length scale.

Pp Pressure associaled with particle phase.

Ps Pressure associated with fluid phase.

P(i) Interfacial pressxire.

P Total fluid pressure including hydrostatic component.

P Fluid pressure minus hydrostatic component.

Py Value of pressure just outside boundary layer.

P Shear production term for k, see (2.47).

q Average excess pressure over particle surface, see (1.39).

r Particle radius.

R Constant appeating in turbulence model for concentration variance.
Re Flow Reynolds number.

R, Particle Reynolds number, see (1.35)..
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_Z%o
2z

Z2

vr

Wave Reynolds number (Ru, =aVufv).

Shields num¥er (S = 7o/g9Apd).

Critical Shields number for initial movement {see Section 3.1.1).
‘Saturation’ Shields number (see Section 3.1.1).

Time variable.

Period of oscillatory boundary layer flow.

Horizontal component of particle velocity.

Vertical component of particle velocity.

Horizontal component of fluid velocity.

Vertical component of fluid velocity.

Friction velocity (v. = /Tofp;)-

Maximum friction velacity over wave cycle.

Amblitude of velocity at the edge of the boundary layer.
Volume of 2. ‘

Particle fall velocity, wo = 9(pp, — £7)/7-

Horizontal distance from origin.

- Vertical distance from origin.

Value of z at which fluid velocity is zero in a turbulent boundary layer.
Value of z at which the bottom boundary conditio.ns are applied.
Value of z at which the upper boundary conditions are applied.
Height of the bed-load region (base of region of suspended load}.
Drag coefficient (y = 97/2r? assuming Stokes law).

Boundary layer thickness.

Measure of oscillatory boundary layer thickness (GU = Vo fw).
Measure of oscillatory boundary layer thickness, see (4.4).

Value of z at which turbulent length scale is specified

as becoming constant, see (4.1).

Dénsity difference p, — p;.

Dissipation rate of turbulent kinetic energy, see (2.45).
Transformed vertical distance, see (3.52).

Dynamic viscosity of fluid (n = 1.1 x 10‘3N3/mi).

Weighting factor in implicit numerical scheme, see Section 3.2.
von Karman constant (x = 0.4).

Eddy diffusivity.

Kinematic viscosity of fluid (v = 5/p;).

_Eddy viscosity. ) -

1x



Py Fluid density.

Pp Particle density.

P Ratio p,/p;.

T Turbulent shear stress.

To Bottom stress, see (3.30).

T* " Ratio of particle response time to characteristic flow

frequency (7° = ppw/7).
w Oscillation frequency (w = 2x/T).

Vectors and tensors

g Gravitational acceleration vector (0,0, —g).
k Unit vector in vertical direction.
u Particle velocity.
v Fluid velocity.
wo Particle fall velocity vector (0,0, —wyg).
T Position vector.
I1; Components of pressure-concentration correlation, j = 1,2, 3, see (2.58).
I Identity tensor.
7 oy Fluid st_ress t-ensor.
op Particle stress tensor.
o) Interfacial stress tensos.
Sets |
Q Set of points over which averages are defined.
Cy Set of points occupied by kth mixture constituent.

Cr N Set of points occupied by the kth mixture constituent in .
C; N Set of points occupied by the fluid phase in Q.
Cpo N Set of points occupied by the particle phase in §2:

D Set of points occupied by the entire mixture, D = {J; Cx.
I Interface between mixture constituents within .
I, Interface beiween portion of kth constituent

inside {2 and portion outside Q.

R The real number line.
S Collection of closed surfaces in .
Uu Collection of open surfaces in 2.
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Subscripts, superscripts and modifying symbols

< f> Turbulent average.

f Turbulent averaged quantity.

? Volume average.

f Fluctuating quantil}' such that < f' >=0.

1 Fluctuating quantity such that ﬁ =0.

f Fluctuating quantity such that < c,,f >=0or<c;f >=0.

f Local instantaneous quantity defined only on region occupied
by a given mixture constituent. ' i

f Generally indicates a non-dimensional quantity

&* Indicates the transpose of the tensor &.

fr Indicates a typical value or ‘scale’ for the quantity f.

Fi Finite difference variable at the ith grid point and nth

time step:

;i The sth iterate of f.
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Chapter 1

Introduction .

Two aspects of the modelling of suspended sediment transport are investigated. One
is the development of a theoretical base for sediment transport models starting from
the continuum theory of immiscible mixtures (also known as ‘two-phase flow theo-
ries’). The other is a comparison with experimental data of numerical predictions
from a number of turbulence models for oscillatory, turbulent boundary layer flow
containing suspended sediments.

There have been several papers published which apply continuum mixture theoties
to sediment transport problems. Notable contributions include those by Drew (1975),
De Vantier & Larock (1983) , McTigu.e (1981) and Kobayashi & Seo (1985). How-
ever, a review of this work in Section 2.1 indicates that there is still'ample scope
for further investigation. On the theoretical side several problems need addressing.
There is apparent disagreement about what are the dominant terms in the momen-
tum balance. Work is required to take account of the effect of suspended sediment on
the turbulence and to incorporate this into a turbulence model; although plausible,
the application of models such as k& — ¢ , derived for single-phase fluids, to a fluid-
sediment mixture requires some justification. Also, 'aft.et after taking care to account
for the two-phase nature of the low when formulating the continuity and momentum
equations, it seems logical to do the same for the equaiions comprising the turbu-
lence model. From a practical point of view it must be asked if‘the undoubtedly
more complicated approach of starting from the continuum mixture equations adds
anything new.

A large number of studies have been concerned with the modelling of oscilla-
téry boundary layers due to the importance of these flows in a number of areas. In

particular, knowledge of the turbulent boundary layer generated by a water wave



at the sea bed is an essential pre-requisite to predicting sediment movement, cal-
culating forces on bodies on the bed, and determining wave attenuation due to en-
ergy dissipation at the bed. Turbulence models of varying degrees of sophistication
have been used, ranging from the relatively simple, time independent eddy viscosity
model of Kajiura (1968), through mixing length and turbulent kinetic energy mod-
els e.g. Bakker (1974) , Johns (1977), to k — ¢ models, Hagatun & Eidsvik (1986)
and Justesen (1988), and even second moment closure, Sheng (1982). Although each
author generally compares model results with experiment, there does not seem to have |
been published a detailed inter-comparisioﬁ of a these models against a common set
of experimental measurements. Qnly then can some assessment of the benefits (or
otherwise) of more complicated turbulence modelling be made. This we attempt to
do by a comparison of with experiment of predictions for mean velocity profiles, bed
stress and suspended sediment concentrations using all the models mentioned above,
apart from the second moment closure. )

The remainder of Chapter 1 contains a review of the historical development of
continuum mixture theories', along with a derivation of the fundamental equations
using averaging techniques.‘Constitutivé relations suitable for a mixture consisting of

solid particles suspended in a.-_Newtonian fluid are prescribed. A number of assump-

tions are required to yield a closed set of equations. The most simple assumptions
lead to a system that is ‘ill-posed’ and a discussion is given of attempts that have-
been made by other workers to ‘rectify this deficiency.

Chapter 2 contains a brief introduction to- sediment transport concepts and a re-
view of previous work applying ¢ontinuum mixture theories to the field. Turbulent
averaged forms of the mixture equations are then presented and, in the dilute par-
ticle concentration limit and neglecting the effects of particle inertia, the equations
are shown to reduce to these encountered in traditional approaches to modelling sus-
pended sediment concentrations. Likewise, the equations governing the motion of
the fluid phase reduce to standard forms. The effects of particle inertia are taken
into account by expanding in terms of a non-dimensional parameter, the ratio of the
response time of the particle t6 a characteristic time of the flow. The assumption
of dilute particle concentrations is made throughout the derivation. Tergns arising
from particle inertia are t!’lEI:I reduced to turbulent correlations for which models are
available in the literature. .

In Chapter 3 the full equations, including.terms associated with particle inertia,

' A more detailed review may be found in Bedford & Drumheller (1983).



are simplified to a form suitable for application to turbulent oscillatory boundary
layer flows. A discussion of suitable boundary conditions for modeliing such flows is
given, and a numerical scheme for solving the system of partial differential equations
(without the presence of ‘inertia’ lerms) is described.

The results of a critical evaluation of a number of turbulence models is made
is made in Chapter 4. This takes the form of a comparison of model predictions
with experimental data, whilst making the conventional assumption of zero particle
inertia to yield standard oscillatory boundary layer equations. Also investigated is
the sensitivity of the solution to a number of factors, including bqundary conditions,
empirical turbulence constants, and the stratifying effect of the sus-pended sediment.

Chapter 5 shows the resuits of including particle inertia terms in the equations
governing the particle momentum. The required modifications to the numerical
scheme are described and results are presented for both vertical and horizontal com-
ponents of particle momentum.

Finally, a short chapter giving conclusions and suggestions for further work com-

pletes the investigations presented herein.

1.1- Review of Theories. of Immiscible Mixtures

The central tenet upon which continuum mechanics relies is that material properties

can be represented by continuous functions of space and time. Once this represen-

tation has been shown to be valid, the powerful techniques of mathematical ‘ana.lysis
can be used to formulate problems and obtain solutions.

That this approach has been extraordinarily successful there is no doubt. However
when we examine matter closely enough, we find that instead of being a continuum
with no intrinsic structure, as the success of continuum mechanics might imply, it is
the complete opposite, consisting mostly of empty space with matter concentrated in
kighly complicated entities which we call atoms and molecules. The resolution of this
apparent parladox lies on taking account of the different length scales at which we
are considering a material. It is well known from statistica]_f_nechanics that although
the detailed behaviour of a material is too complex to prédict at the moleculalr or
atomic level, the ‘average’ behaviour is predictable. This average behaviour manifests

itsetf at much larger length scales than the molecular and it is this that continuum

mechanics attempts to describe and which appears to vary continuously with space

and time.

Classical continuum theories generally deal with materials where the microscopic



scales, characterised by inhomogeneities and discontinuities, are well separated from
the macros-copic scales of averaged behaviour. More recently theories have been
proposed where this wide separation of length scales is not present. The state of the
material a.t.- the level of its inhomogeneities has a direct effect on the macroscopic
behaviour. This class of theories are generally known as theories of materials with
microstructure.

Work has also been done on formulating continuum theories for material composed
of a number of distinct constituents i.e. a mixture. Such mixture theories retatn sepa-
rate variables and equations for each constituent and allow each c?nstiluent to affect
others. In common \yith theories of materials with microst.ructu;e, mixture theory
attempts to describe material where the microscopic structure has an important effect
on the macroscopic behaviour.

The sy:s“temsr that we wish Lo describe, particulate suspensions, are included in the
class of mixtures that Bedford & Drumheller {1983) call immiscible and structured.
That is, the ;::onslituents remain physically separate on a scale large in. comparison
with molecular dimensions, and with structure arising from the interface separating
the constituents. Theories describing them are relatéd to, but are not identical with,

the theories of mixtures and of materials with microstructure mentioned above.

“Classical” Mixture theory

The modern theory of mixtures was initiated by Truesdell (1957). The fundamental
concepl considered a mixture as a number of superimposed continua, one for each
of the components of the mixture. Each point of space is thus apparently occupied
by each component simultaneously. Once this qnderiying idea has been accepl-ed,
balance laws based on the principles of mass, momentum and energy conservation can
be postulated. These principles should be valid for each constituent in the mixture,
so each constituent has its own set of equations expressing the balance of mass,
momentum and energy associated with that constituent. In general it is assumed
that either the constituents are mixed at the molecular level or are otherwise so well
mixed that it is not sensible Lo consider the relative amounts of each constituent in a
given volume. Thus no equivalent of the volume fraction, a key feature of the theories

of immiscible mixture theory, emerges in the classical theory.

Theortes of Materials with Microstructure

In these theories the usual kinemiatic variables (i.e. velocities, pressures and densities)

are éug:_nentedby_extra variables, with the aim of being able to describe more complex



materials than classical continuum theories deal with. These additional variables are
interpreted as describing the state of the material at the microscopic length scale (i.e.
the length scale characterising the material inhomogeneities) and give information
about the structure of the material at this level. As in mixture theory and continuum
mechanical theories in general, all equations of motion are based on the fundamental
principles of mass, momentum and energy conservation.

Early work on theories of this type were largely ignored-and it was the deve-lop-
ments by Ericksen & Truesdell (1958) that initiated the modern development of this
area.

i g
The concept of the microelement, which replaces the point particle of classical con-

- tinuum mechanics, was introduced by Eringin (1964), and others. Each microelement

is considered as.being able to undergo deformations independently of the material
as a whole. By allowing the microelements to undergo more or less complicated
deformations, a hierarchy of theories can be built such that the number of extra vari-
ables, and the complexity of the theory, increasés with the complexity of deformations
that microelemenls are allowed. For examble_,.il' the microelements are assumed to be
rigid bodies, their only independent motions are rigid body rotations. Such materials

are termed ‘micropolar’ 'and micropolar theories contain a vector, the microelement

angular momentum, as an extra independent variable (see for ex;.mple Er-ingin 1974).

For our purposes, the theories of most interest are the simplest possible that incor-
porate microstructure ~ namely those where a single scalar is the only extra variable.
Goodman & Cowin (1972), (1976) and Nunziato & Cowin (1979) introduced such a
theory to describe gr'z;nular and porous materials respectively. A single variable, the
volume fraction (the volume of §olid per unit volume), is included as an independent
kinematical variable. Note that these theories are not mixture theories since only a
single material is assumed to be present. The simplest theories of structured immis-
cible mixtures contain the same type of variable representing the ;rolume l:raction of

each constituent.

Immiscible and Structured Mixtures

Since materials belonging to this class. are mixtures and have structure as a conse-
quence of being immiscible, continuum theories describing them have much in com-
mon with the theories of mixt_ﬁres and n"iat.eria]s with microstructure described above.

As with mixture theory, each cont-;tituent has its own set of equations, representing
mass, momentum and energy balance for that constituent. Like mixture theory the

equations contain terms representing the exchange of mass, momentum and energy



with other constituents. Unlike mixture theory, but like the simplest theories of
materials with microstructure, ext.ra scalar variables are introduced, one for each
constituent. These are interpreted as representing the proportion of the total mixture
occupied by each constituent at a given point. Such variables can be regarded as
giving the ‘concentration’ of Lhe constituent. [t is réquired that 37, cx = 1 where ¢
is the concentration of the kth mixture constituent.

Most classical continuum mechanical theories are postulated as continuum the-
ories from the c;utset and differential equations derived by considerations of mass,
momentum and energy balance. Typically this is accomplished via the “control vol-
ume” approach found in almost any textbook of fluid dynamics.- It is possible to
derive some of the simpler theories by considering the microslcopic structure of the
material and applying averaging procedures. For example the Navier-Stokes equa-
tions can be derived on the basis of kinetic theory.

Similarly for immiscible structured mixtures, theories can be postulated with the
material represented as a number of superimposed continua at the outset. Alter-
natively, averaging can be carried out at the microscopic scale, which in the case

of immiscible mixture is at the length scale of the inhomogeneities, which is much

Early work based on the postulational approach was done by a number of workers
in the early 1960’s including Hinze {1962) and Murray (1965). The former proposed
constitutive relations for the flow of a fluid-particle mixture in a tube while the latter
was interested in modelling fluidized beds and postulated equations for a fluid-particle
mixture. He wrote balance equations for the mixture as a whole which were then split
into equations satisfied by each constituent. This introduced interaction terms which
sum to zero when the individual eqﬁations are added - hence recovering the balance
equations for the mixture. The interaction terms are constitutive and represent the
transfer of mass, momentum and e>nergy from one component to another. The work
of Soo (1967) and his co-workers is based on a similar approach.

Much work on the equations of motion for immiscible structured mixtures has
been based on averaging procedures. Many authors have put forward such pro.cedures
and all have arrived at very similar sets of equations. Again eai!y examples of aver-
aging being used to develop equations for immiscible mixtures were connected with
work on fluidized beds: The work of Anderson & Jackson (1967) and Panton (1968)
are examples. Drew & Segal (1971) in presenting their own forms for the equations
made a comparison with a number of previous dernivations (both averaged and postu-

lational) noting differences between them and their own derivations. A large number



of papers have appeared (and continue to appear) in this aspect of immiscible mix-
ture theory. Among these, contributions by Whitaker (1969), Drew & Segal (1971),
Ishii (1975), Delhaye (1977), and Nigmatulin (1979) have been influential and the
resulting theories have achieved a certain degree of maturity and acceptance.

The averaging procedures can be based on time averaging, space (line, area or vol-
ume) averaging, or ensemble averaging. All lead to essentially identical forms for the
equations; the differences arise in the interpretation of the variables. Most start from
a so-called local instantaneous formulation (which also needs to be derfved) where
quantities are exbressed in unaveraged form, and where Lhe boundaries separating
the constituents are explicitly accounted for. Included as part of this formulation are
jump conditions giving the allowed relationships between quantities on either side of
the boundaries. In general the local instantaneous formulation is impossible to solve
directly, even in an approximate form, for anything other than the simplest possi-
ble cases. The averaging procedure, by removing unwanted details, yields equations
which, potentially at least, are much more amenable to solution.

The averaging procedure itself involves applying formal theorems that allow av-
erages of derivatives to be replaced by derivatives of the product of the averaged
quantity with its associated_ concentration — thereby arriving at equations contain-

ing averaged quantities. Also present are:

1. terms representing the trans{er of mass, or momentum or energy between con-

stituents (interfacial terms);
2. terms similar to the Reynolds stress terms arising in the theory of turbulence.

To close the equalions constitutive relations are required.

We briefly mention two other methods that have been used to derive equations for
immiscible mixtures. One is to use a variational principle. Among the first to apply
this approach were Bedford & Drumbheller (1978), while more recently Geurst {1985)
and Capriz & Giovine(1987) have made important contributions using this method.
Another approach, e.g. Travis et al. (1976), uses ideas.derived from the kinetic theory
of gases and is suitable for disperse mixtures where discrete particles of one material
(solid, liquid or gas) are distributed within a fluid medium. The role of atoms and
molecules in kinetic theory is taken over by the particles of the dispersed constituent.

All the approaches are found give rise to essentially the same basic set of equa-
tions, although there may be differences in the exact form of some terms and in the
interpretation of the meaning of some quantities.

Finally, we note-that-in the literature, what we have termed_theories of immisci- _



ble mixtures are more commonly called {wo-phase {or multi-phase) flow theories or
occasionally continuum mizture theories. The first term arose due to the fact that
in the majority of cases immiscibility comes about because the constituents are in
different phas-es, (e.g. solid, liquid or gas). For the remainder of this work the term
‘two phase flow’ or ‘mixture’ theory will be used interchangeably. Some workers pre-
fer to use the latter name for theories that derive equations for the total mixture.
The approach whereby separate equations for each mixture constituent are used is

sometimes known as the ‘two-fluid’ approach.

f -

1.2 Derivation of continuum equations for immis-

cible mixtures

1.2.1 Balance laws

The continuum equations ate to be derived by the use of a volume average. We have
adopted a more direct approach than is usual. Most authors derive, using a control
volume argument, so-called local instantaneous equations which, because they are

too complicated to solve, are transformed to produce more tractable equations in

terms of averaged variables. Since the l:)ro;:esses of t;biaiqtl_ing the local-instantaneous
form and from this the averaged equations are very nearly the reverse of each other,
we have gone directly from the control volume statement of the laws of mass and
momentu—ml conservation in integral form to the equivalent form in terms of volume
averaged quantities. The price of this brevity is that some of the information obtained
from thé local instantaneous formulation is lost, in particular the jump conditions
satisfied by quantities on either side of constituent boundaries. For the relatively
simple case we are interested in, that of solid particles suspended in a liquid, the two
approaches yield identical equations. In more complicated cases, where mass transfer
between counstituents occurs (such as in a boiling water-steam mixtur.e), the more
complete derivation is to be preferred since terms arising from the mass transfer are
automatically accounted for in the momentum equations.

As we are only concerned with mechantical systems no derivation of the energy
balance will be given.

We first suppose the region occupied by the mixture, D C R3, be partitioned

into subsets Cy, each associated with a mixture constituent and satisfying | JCx = D.

Since the mixture, and the individual constituents that comprise it, are assumed to

be in motion Cx = Cx(t). Let Q = Q(=; V), = € D, be a set of fixed shape and fixed
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volume V¥, but with arbitrary position in space (for example a cube of fixed size

centred at some point z).

From now on we assume, for simplicity, that there are only two constituents.

Figure 1.1 shows a typical distribution of mixture constiluent-s_ within 2.

- - - — Figure- 1.1: -+ - T

’

Of crucial importance is the distinction between the boundary I, that separates
the constituents within Q, and the boundaries Z;, that separate the portion of C,
within ) from that lying outside. If the kth constituent has associated with it a field
variable f(z), € Cx, then the volume average of this quantity, denoted by f, is

defined by

fzf=— Cm(z)fdv, (1.1)

where ¢x(z) is the proportion of V occupied by the kth constituent, i.e. the volume

fraction, and is defined as

crlz) = l/ av. (1.2)
- V Jeonnqz)

Since |J,(Cx NQ) = Q, the volume fractions satis{y the constraint

Y a=L (1.3)
k

-

It is important to appreciate that the volume averaged quantities are still functions

of position, since Cx Nf() is a function of position and therelore in general the value



of f within Cx N Qzx) will change as = is varied.

Averaging theorems

Before introducing the main result we quote here the standard divergence theorem

to which the averaging theorem is related.

/ frrds= / V.fdv
a(c.na) cunn

Here ny is the unit vector normal to and pointing away from the surface bounding
~ the kth constituent. From this we can derive the following resulf for the tensor ¢,

which will be used later in the chapter

f nk®}ds=f Vfdv (1.4)
3{Can) cnn

The key relation needed to derive the balance laws relates the integral around Iy

to the volume integral over Cr N as follows,

fn frrds=V. ‘[cmn fav, | (1.5)

which holds even for the disconnected regions illustrated in figure 1.1. In appendix A
we give a proof of this result for the case of a rectangular region in R? — more
general proofs are given in Slattery (1967) and Gray & Lee (1977). In terms of the

volume average defined by (1.1), the result (1.5) can be written

.‘]_./I. frnds = V.(c f) - (1.6)

Analogous results hold for the case ‘'of scalar and tensor integrands:

2 nidds= V.(a®), %))
v 7.
% ¢ny ds = V{crd), (1.8)
I,
% ne ® Fds = V(e f). (1.9)
I, . !

An important special case of (1.8) is that

1 [
v /s, nyds = Ve, (1.10)

10



which, since Zp UZ = 3(Cx N Q) is closed implies that

1
- V[fn,,ds:—Vck. (1.11)

Mass and momentum balances

Let the kth constituent of the mixture have (constant) density p; and assume for
every point in Cx there is defined a velocity ;. Then, with reference to Figure 1.1,

the conservation of mass implies

a

— pedV = —/ Proi.ny ds,
ot Je,nn 1,

assuming no mass transfer occurs across the interface I. Using (1.5) this is

0

- e dV + V./ pruopdV = 0.
at’ Cuanfl

Cynf

Multiplying through by 1/V and using the definition of the volume average (1.1)
and the definition of ¢, (1.2), yields an equation for the mass balance of the kth
constituent

6ck

- - - - - __._—aT + V.o = 0, - - _(1.12)

after dividing through by the density.

When considering the momentum balance it is necessary to introduce stress ten-
sors for each of the constituents. This is a less familiar concept for a solid constituent
t.haﬁ for a fluid, but enters the equations in an analogous way to the fluid stress
tensor in that it represents ;he force'exerted on the solid within the control volume
b}-f the solid outside it. For a particle straddling the control volume boundary (fig-
ure 1.2) such a force will arise from the transmission of the fluid stress acting on the
surface of the particte which is outside the control volume. Particle collisions may
also contribute to the solid stress, although this is likely to be important only at high

concentrations. Again referring to figure 1.1 we see that the momentum balance for

the kth constituent can be written down in integral form as

a

- prordV = —/ Pkﬂkﬁxﬁtd3+/ prgdV
at Je.on e cunn

+/ nyos d§+INg&k ds.
I I

Here 1 is the stress tensor for the kth constituent and g = (0,0, —g) is the gravita-

11



Figure 1.2: Particle stress

tional acceleration vector. Using (1.5) this becomes

a . . .
—_— PrUk dVv +V./ PEVL VL dv = / pkng
Qt Cyn. . Cunfl o C:.ﬂ!l

+V./. &kdv+fﬂk&kd3
CynN ra

which, in terms of averaged variables, is
d == 1 .
EPJ:C&W: + V.prCevatx = cxprg + V.crop + v nyo ds. (1.13)
. b4

This equation is not suitable as a momentum balance because of the occurrence of the

quantity #,vx. The problem is similar to that which arises when the Navier-Stokes
equations are averaged in turbulence theory and occurs because of the non-linear

nature of the laws of motion. A ‘fluctuating’ velocity field v} is defined such that
vi(z,2') = de(z') — vi(z), (1.14)

whete the variable x is associated with the position in space of the averaging volume )
and z’ is the variable with respect to which the averaging integration is carried out.

With this definition

12



so that substituting for Ox in v Oy yields vxog = veve + viv). Thus (1.13) becomes

"l —

d 1 -
-a—kaCk‘uk + V.pkckvkvk + V.pkckvkvk = Ckprg + V.ckcrp + F / nyords
. I
(1.15)

It is usual to neglect the term involving v}, thereby introducing an unknown error
into the momentum balance. Some attempts have been made to account for this
term {see Trapp 1986). -

Finally, note that use of the mass balance equation, (1.12), enables the accelera-

tion terms to be written in an alternative form, as follows

a ' Jduy .
mpkckv;‘ + V.prcrvgvg = pkck[a—: + vk.Vvk] = prck (1.16)

vy
Dt
1.2.2 Constitutive relations

In this section we propose forms for the terms involving the stress tensor o occurring

in (1.15), assuming the mixture consists of solid particles suspended in a Newtonian

- — e -

fluid. The following notation is introduced: fluid and particle velocities will be de-
noted by v and u respectively, other quantities associated with the fluid or particle
phases will be given an appropriate subscript f or'p.

The mass balance equations for the two constituents are

dc,

—atﬂ +V.u = 0, (1.17)
Bc, _

'—at— + V.C]U = 0. (1.18)

On account of (1.3) we have ¢; =1~ ¢p so that the sum of (1.17) and (1.18) yields
V.(cpu +cyv) =0,

which we use in place of (1.18).
Turning to the momentum balance (1.15), it is clear that the integral of the stress
tensor around the interface I gives the force acting between Lhe two phases which,

from Newton’s third law, satisfies

/n,&,ds:—jn,&, =[np&,.
T T T

13



The momentum balances for the two phases can thus be written:

3 1 .
F;Pror + V.prcrun = ¢pppg + Vigpo, + 7 Ln,,a-_, ds, (1.19)

d 1 .
EIPJC]U + V.pJCkU‘U = ¢pyg+ Vgoy — v / n,oy ds. (120)
I

Interfacial terms

To proceed further we consider in detail the bounding surface Z. Figure 1.3 shows
that it can be split into a collection of sutfaces S, associated with particles lying
entirely within the averaging volume, and a collection of open surfaces I{, associated

with particles straddling the boundaty. The reason for making the distinction lies in

Figure 1.3: Open and closed surfaces comprising 7.

the lollowing results. Since S consists of closed surfaces

/ nyds = 0.
&

Now I = SUU, thus we can write (1.11) as

1 1
T/-‘/1‘_1'1,,d$ = -‘I-,ands = —Ve¢;. (1.21)

This result means it is not possible to ighote the contribution from the particles lying
on the boundary on the reasoning that the ratio of the number of these particles to

those within Q is of O(1/L), where L is the length scale associated with the averaging

14



volume. If we estimate the contribution from the integral around U by replacing oy

by its average value o, then

1 1 '
v -/u np.opds = F(L npds).o, = —(Vep).op,

which is of the same form as the mean stress term that appears in thf particle
momentum equation (1.19) and so cannot be discarded.

To proceed from here, a number ofaut}_nors, e.g. Ishii 1975, have proposed defining
an average interfacial stress o(;y (not necessarily equal to the volume averaged stress)

and to write : ’ : -

G¢(z") = o)(x) + o) (=, z'). | 7 (1.22)

where ®, ' have the same interpretation as in (1.14). The point of this is to estimate

the contribution from the integral around U using o'(;) so that only the stress around

complete particles (assbcialed with the closed surfaces S) needs subsequently to be ’

considered. If the following formal definition of o(;) is made

(/ npds).o) = —(VCP).G(,-) = :/ n,oy ds, (1.23)
u u .

where we have used (1.11), then the integral around & is accounted for exactly.

If (1.22) is substituted into the momentum equations (1.19) and (1.20) we obiain .

g 1
Freoeut V.preruu = cpppg +cpV.op + (Vep)[op — o] + 1% _[ nyoy' ds,
I
(1.24)
a 1 n
Epycju +V.pjervv = cpppg+ V.o = (Ve )oy — o) - 7 : nyoy ds.
(1.25)

Note that the concentrations in the second term on the right hand side (RHS) of
both equations now appear outside the divergence operator. A number of eatlier
derivations, e.g. Soo (1978), retain the concentrations inside the operator. However
the analysis above indicates that this is almost certainly incorrect, and arises from not
considering carefully enough the integral around Z. The controversy is now ge:nerally
resolved in favour c_)f the form presented here.

The definition of the interfacial stress via the formal relation (1.23) is criticised

by Prosperetti & Jones (1984)_sin;:e it breaks down if V¢, = 0. After undertaking
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their own analysis, these authors arrive at a different form for the interfacial stress?
terms. However, although avoiding the problem associated with the definition of
the interfacial stress via (1.23), the equalions seem deficient in other respects, as

discussed briefly in Section 1.2.3.

Surface integral forces

The integral of oy around T is comprised of two parts; the part associated with

the collection of open surfaces, U, has been dealt with by intreducing the average

interfacial stress, o(;). This leaves the contribution from the collection of closed

surfaces, S, to consider. For the integral around a closed surfa'ce it is only the

variation of stress around the surface that is important; the removal of the constant

(for each averaging volume) interfacial stress, o(;), has no effect on the result. Thus
"

the result of integrating o' around S is the same as that of integrating oy around

'S. We have also that

I
1 1 1
F/.'J_n;po"j‘ds=V/‘:;npcrrd.ﬁ=v;fqﬂpwds,

where L,__i§ the inéegral around _the jth particle.

If we can carty out the the calculation for some representative particle s; then,

supposing there are N particles in the averaging volume, it is plausible to put

1 f N/
— n,oyds = — nyoyds.
V; .y i) v 1., pY s

The value of N can be determined from the particle concentration cp, via
cpV

N =
b ¥

assuming all the particles have equal volume b. Therefore

%Z[ npa,dsz%”/ npo;ds = m. (1.26)
J' 5 . I

The complicated integral is thus reduced to the consideration of forces acting on
single particles. Well-known solutions derived for simple cases reveal that a number

of forces such as drag, added mass and lift can arise. The dominant force is often the

?The enslysis is complicated and is carried out using the pressure component of the stress only.
Extension of the result to deal with the viscous stress is indicated.
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steady drag force, and if we assume the particles are spheres and small enough for
Stokes’ law 1o be valid, then it is reasonable to put

m = %F[G?rrp(v -u)] = cpg—’%(v —u) = cpro(v — u), (1.27)
where the volume averaged velocity difference is clearly appropriate as a ‘typical’
value of the velocity difference around different particles® It should be botne in
mind that Stokes’ law is derived for the situation of an isolated particle settling
through a quiescent liquid and this is likely to be far from the case in a fluid-particle
mixture undergoing motion. However the analytical difficulties involved in-deriving
results for anything but the most simple cases means that simple forms such as
that presented above are the only practicable choice. As a first appfoximation in
accounting for the effect of the presence of other particles the Einstein correction (see
e.g. Landau & Lifshitz 1987, p 73) to the fluid viscosity u in terms of the particle

volume fraction can be used so that

plep) = p.-(l + gcp).

- For-higher concentrations empirical dependencies of-z on ¢, exist. . _ __.

Attempts to incorporate other forces into the continuum theory have met with
varying degrees of success. The added mass force in particular has received a lot of
attention (Voinov & Petrov 1977, Geurst 1985, Drew & Lahey 1987 and others) but

no generally accepted expression for this term has emerged.

Mean stress terms

For a Newtonian fluid the stress tensor is
gy =—p;I +p{Vo + Vel . (1.28)

where py is the fluid pressure. The volume average of this appears in the fluid
momentum eqﬁa'tion (1.25). Averaging the pressure component yields simply the
volume averaged pressure p;; the viscous stress is less straight forward. Using (1.4)
the volume averaged viscous stress term can be written

1 1

— [Vﬁ + V‘ﬁ]dv = — [n!t‘) + t‘:n,] ds
c,nn V Js(c,nn)

3This is the case because the Stokes' drag is linear in the velocity difference.
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1 . - 1 -, -
—/ [njo+ onglds+ — [ [nyjo+ onglds
Vi, Vi

1
Vego + Viepv + v f[n,f: + vnyjds,
4

where (1.9) has been used to convert the integral over Z; to a term involving volume
averaged quantities. To proceed further we approximate the integral around I as
follows: around the surface of each particle & must be constant and equal to the
particle velocity, assuming the particle to be rigid. Thus approximating the individual

particle velocities with the volume averaged velocity we use (1.11) to obtain

|
v /[n,ﬁ + vnglds = —(Vep)u — uVey.
T
Using (1.3) the averaged stzess tensor can be modelled as
cr_rz—p!.[+a'y, (129)

where

oy = pcy (Vo + Vo) — p[(v — u)Vep — (Vep)(v — u)]. (1.30)

When we comé to consider the case where-the particle concentrations are smalil and
¢ — 0, the exact form of (1.30) is not important as the term reduces to the that for
a single-phase incompressible flow.

For the particle phase we assume the simplest possible constitutive relation, op =
ppI, leading to the volume averaged expression op = ppI. The only alternative that
has appeared in the literature is to assume a Newlonian relation similar to (1.28)
— see for example Anderson & Jackson (1967), Needham & Merkin (1983}, both of
whom considered fluidized beds. However, the physical basis of the the deviatoric
stress and the associated viscosity is unclear and at present it seems preferable to

consider an 1sotropic stress only.

With the constitutive assumptions made so far, the equations describing the fluid- -

solid mixture can be written

dc
35 +V.iu = 0, {1.31)
Vicpu+cpv) = 0, (1.32)
a .
FPeeu + V.ppcpuu = Gpppg + 6 Vpp + (Vep).(ppl — oy) + m, (1.33)
2
3 P1ere+ Vopgeqve = cqprg +epVpy = (Vep)(oy — o) —m

. o . Vo, . (1_34)
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where o is given by (1.29), m by (1.26) and where ¢y =1 —c,. These are four
(vector) equations for six unknowns cp, u, v, py, pp and oy;y. To c_lose the equations
some further relation between these quantities is needed. A discussion of forms
proposed for these relations, and the connection with the nature and stability of the

resulting set of equalions, is the subject of the nexti section.

1.2.3 Stability and well-posedness for two-phase flow equa-

tions

In this section we discuss work that has been done- to obtain a closed set of equations
based on (1.31) to (1.34). Al authors have agreed that it is relations between the
fluid, particle andlinterfacial stress terms that are required. In addition nearly all
have assumed o) = p(i){, both for simplicity and because they have been concerned
with flows where the particle Reynolds number,

_ 2rlv - u

Rep = ———, (1.35)

is high enough for the viscous stiress acting over the surface of a particle to be
negligible®. At this point it is important to distinguish between the particle Reynolds
number, which determines the nature of the interfacial stress, and what might be

termed the ‘bulk’, or low Reynolds number which is the usual quantity scaling the

viscous terms in the non-dimensionalised fluid momentum equation. In general these

two numbers are independent of each other. 'I:hus it is quit:e consistent to use, for ex-
ample, Stokes law to represeni the particle drag, on the assumption that the particles
are small and the stress around the particles is dominated by viscous forces, while
at the same time neglecting the effect of viscosity on the fluid motion as a whole.
Essentially the length scale in the particle Reynolds number is the particle diameter
which is clearly in@ependent of the external dimensions of the flow which is used to
define the low Reynolds number.

For the purpose of the following discussion we assume all stresses, including the
interfacial stress, can be represented by pressures. This simplifies the argument and
is consistent with the presentations of the original authors.

If we assume all stresses can be represented as pressures, the momentum balances

1Much work has been motivated by applications in the nuclear power industry where bubbly
flows consisting of gas or vapour ‘particles’ dispersed within a liquid are of interest.The size of the
particles is then usually great enough for the pressure to be the primary stress acting on the surface.
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become

Du

pPCP'D_t = ¢ppp@ — pVPp — (Pp — P(i))Vep +m, (1.36)
Dv :

P!C!—D—t = c¢ypyg -y Vp; +(ps —p(.-))ch—m, (1.37)

where (1.16) has been used to re-write the left hand side (LHS). Note that it is not
consistent now to use the Stokes law result (1.27) for mn, since we are assuming the
interfacial ;tress arises solely from pressuré forces. For this case, which implies a
large particle Reynolds number, a drag law depending on the square of the velocity

difference would be more appropriate.

The simplest possible assumpt.ion is that
P, = P(i) = Py- ' (1.38)

This leads to a closed set of four equations (assuming m has been specified), with four
depend.:'ml variables c,u,v and py, which are identical to those obtained by many ~
early workersin the field. After attempts to solve them numerically gave rise to highly

unstable éolulions it was discovered Lhat, although having the appearance of a set of

hyperbolic (or parabolic) equations, the non-zero characteristics are complex valued, ™

indicating that the equations are elliptic in nature3>. Ramshaw & Trap (1978) give a
clear dccount of the connection between complex characteristics, unstable solutions
and the ill-posed nature of the equaticns. In summary they show that the occurrence
of complex characteristics not only implies that solutions are unstable, but th-at‘ the
growth rate of the instability tends to infinity as the wavelength of the perturbation

causing the instability tends to zero. Thus starting from some initial condition at

.t = 0, solutions can become arbitrarily large in any given interval of time and the

equations are regarded as being ‘ill-posed’ when solved as an initial value problem. It
needs 10 be emphasized that the occurrence of instability can b.e legitimate since the
equations may possess solutions corresponding to flows that are phs'sically unstable.
It is the potentially unbounded growth rate of the instabilities that results in the
eq‘uatior‘is'":being considered mathematically ill-posed.

Since the instabilities are manifest primarily at short wave lengths, Arai (1980)
investigat'ed the effect of adding second order viscous terms to the momentum equ;-

tions. It is well known that terms of this form have the effect of dampirig high

®This has not dissuaded the development of large computer codes bascd on this sct of equations.
The instabilities can often be controlled using “artificial viscosity” e.g. Travis et al. (1978).
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wavenumber ﬁ'uctuations. Although yielding ‘well-posed equations, the solutions are
still found to be unstable if the constituents are incompressible®. This is a special
case of a result of Prosperetti'& Jones (1985) who look at a very general form of
the momentum equations for multi-phase flow and, assuming incompressible con-
stituents, show that if a set of firsl order equations possesses unstable solutions this
cannot be cured by the addition of higher order terms. Real characteristics and sta-
ble solutions can however be obtained by including terms of the form kV¢, — as
shown in Hill & Bedford (1979). Although the authors include such terms to rep-
resent the diffusive effect of Brownian motion, it is evident frozn an examination

of (1.36) and (1.37) that the terms involving the intetfacial press-ure are of the re-

quired form.

" The first consideration of the interfacial pressure was given in Stuhmiller (1977)
and his assumption is equivalent to putting py = p, and p(i) = py + ¢, where g is the
surface average of the excess fluid pressure over a particle. For an inviscid flow over

an isclated sphere this can be calculated to be

¢ = aps(v - u)?, (1.39)

where a = —1/4. For one-dimensional flows at least, the resulting equation set is.
found to have real characteristics provided the particle concentration is not too large.
Figure 1.4 gives the ‘critical’ value of ¢ required to ensure real charactenistics as a
function of concentration. .

In Givler (1987) the (reasonable) suggestion is made that the pressure appearing
in the solid phase should be the equal to the average pressure around the particle i.e.
pp = py +q. However, the author neglects to consider the average interfacial pressure
and effectively assumes that ﬁ(;) = 1-11. Also, ¢ is determined from a solution valid
for Re, < 1, where a major contribution to the interfacial stress must arise from the
viscous stress. The resulting expression is of the same form as (1.39) (as it must be on
dimensional grounds) except that a = 9/32. As the author points out the résulting
concentration gradient term ts diffusive i.e. it causes a force that tends to move the
particles a.way from regions of high concentration to ones of lower concentration. If a
is determined from an inviscid solution, as is surely more correct if the viscous stress
is to be ignored, then the sign of & is such that the term is anti-diffusive, which is
unphysical. Despite this the resulting set of equations possesses real characteristics.

A more satisfactory formulation would appear to be to assume the particle pres-

¢In the compressible case, stable solutions were found to be possible.
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Figure 1.4:

sure is given by the average interfacial pressure Pp = p(i) and to put piy = py +q,
where ¢ is the surface average of the excess pressure calculated from (1.39). Again
this leads to real characteristics providing the value of a is made large enough for a
given concentration (see figure 1.4)>. This formulation does not appear be mentioned
explicitly in the open literature, but Turner (1987) states that a model which essen-
tially the same was communicated to him by Drew. In addition, the multi-phase
theory of Passman et al. (1984) includes a relation between the pressures which is of
this form.

The equations of Prosperetti & Jones (1983) are derived by pursuing an elaborate
analysis based on similar- ideas to those presented in deriving the form of the inter-
facial terms in Section 1.2.2, but allowing the value of p(;) to be different for each
particle. The momentum equations the authors obtain, although similar to (1.36)
and (1.37) cannot be put .e:xactly into the form of these latter equations. These au-
thors obtain a quantity equivalent to g and they also suggest calculating it from (1.39)'.
An examination of figure i.4 which shows the va.lue& tequired to ensure real char-

act.erisltics, reveals some peculiar behaviour with respect to the Prosperetti model.
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Apart from a decreasing as ¢, increases, in contrast with all the others, we can see
that in the limit ¢ — 0, which corresponds to a single isolated particle, the value
of a required Lo give real characteristics appears unrealistically large. This does not
necessarily invalidate the reasoning behind the derivation but may merely indicate
that other effects also need to be accounted for.

A number of workers have proposed equation sets that include extra equations
rather than postulating explicit relations between p;, p, and p(;). A number of such
equation sets are derived by Stewart & Wendroﬂ'(lQSﬂ and further examples are
reviewed in Turner (1987). Baer et al. (1986) look at the detonation of an explosive
and, although the equations are considerably more complex than the ones we have
considered, they effectively assume p;) = py and derive a further equation relating
py and p, to the particle concentration. Holm & Kupershmidt (1986) use techniques
based on the Hamiltonian theory of dynamical systems to examine the stability of the
multi-phase flow equations with the equal pressure assumption (1.38). They come to
the conclusion that it is the equal pressure assumption that leads to problems. The
equation set is then extended, using the Hamiltonian formalism, to include equations
describing the evolution of interfacial quantities. This extended system is shc;\t'n Lo

possess real characteristics and stable solutions.

Vlt should b;z men;ioned tha-t a nﬁmber of the équz;iiinhs sets described above do not
conserve kinetic energy and can even “create” kinetic energy due to the presence of the
interfacial terms (ironically the otherwise unsatisfactory single pressure model does
conserve kinetic energy). ‘This can be explained by the fact that the approximations
involving relations between the various pressures do not necessarily account correctly
for the energy associated with the interfacial forces.

Finally, the work of Geurst {(1985) employs a derivation based on a variational
principle which includes the added mass effect known from studies of the hydro-
dynamics of single particles. The resulting equations possess real characteristics.
Pressure in the two phases are related by p, = p; + ¢, where ¢ is given by an ex-
pression similar to (1.39). Unlike the theories discussed above, which derive q from a
consideration of average values of pressure around a particle, the pressure difference
in Geurst’s theory arise from added mass forces and a is found to be a function of
cp. Kinetic energy is conserved by the equations and this, together with the math-
ematical elegance of the method by which the equations are derived, indicate that
this work may constitute a promising starting point for further development (see for
example Geurst 1985, 1988).

There seems L6 be no reason in principle why some of the ideas discussed below
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could not be extencied to include a consideration of the total fluid stress, which is more
appropriate for small particles, rather than just the pressure combonent. However,
for the application to turbulent flows presented in Chapter 2 it is not necessary to
consider any of the modificalions suggested above and Lthe simple equal pressure
assumption is made. The process of taking a turbulent average generates additional

terms which, when modelled, circumvent the problem of corﬁplex characteristics.
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Chapter 2

Application of Two-Phase
Flow Theory to Sediment
Transport

In this chapter we first give an overview of the field of sediment transport and re-

~ view work that has been done in applying two-phase flow equations to sediment

transport problems. We then develop the necessary theory, based on the work
of McTigue (1981), to begin our own investigations which attempt to use the equa-
tions two-phase flow theory to account for the effects of particle inertia. This chapter

thus presents the main theoretical results of the thesis.

2.1 Sediment dynamics and a review of the two-

phése flow approach

The literature connected with the problems of sediment dynamics and sediment trans-
port is extensive, significant contributions having come from a range of disciplines
including earth sciences, engineering and physics. A brief overview only will be pte-
sented of the major topics before moving on to the main object of this section, which
is a discussion the work that has been done applying continuum mixture theories to
the field.

The field of sediment transport is concerned with the Iiftin.g up, transport, and
deposition of solid particles (sediment) by a fluid, usually in the context of the natural

environment. From a practical viewpoint the ultimate goal is to be able to predict,
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given a set of parameter;'. describing the fluid Alow and the sediment properties, where
the material is picked up, how much is transported and wherte it re-settles. From
a scientific viewpoint, it is further required that an understanding of the physical
processes that occur during sediment transport is achieved. .

The two fundamental components-of any sediment transport theory are the prop-
erties of the sediment and the natdre of the flow that interacts with it. There are a

number of properties of the sediment are of importance.

Size Sediment is broadly classified into cohesive and non-cohesive types; cohesive
sedimenls are those whose constituent particles are small enough to be affected
by [orces arising from electrical charges on their surface. Typically cohesive
sediment diameters would be less than 0.66mm. Particles with larger diam-
eters are generally non-cohesive and are subject to hydrodynamic and direct

collisional forces only.

Shape Although many attempts have been made, particle shape is difficult to quan-

tify. Naturally occuring sediments are often irregular in shape. For simplicity,
most theoretical work treats sediment particles as spherical since mathematical
- expressions, or well docu mented expenmenlal data, are available for quantities

such as drag and added mass coefficients.

Den.sity Typically sediments have relative densities of between 2.0 and 3.0.

Fall velocity This is likely to be a key parameter in any theory of sediment move-
" ment since it measures how quickly sediment ‘t;ill fall cut of suspension. [t
will in general depend on all three of the factors mentioned above. Experi-
mental work has also indicated a dependence on the concentration of particles
within the fluid, although this is likely Lo be significant only near the bed where

concentrations are high.

When beds of sediment ate considered, aspects that become important are the
nature of the packing of the particles and the distribution of particle size, shape and
density within the bed. Additionally, in a marine environment, the bed is rarely flat
but is oﬂ.ed rippled, and this can have a major effect on the fluid flow and hence on
the transport of sediment.

It is found that the flows associated with sién%ﬁcant amounts of sediment move-
ment are almost invariably turbulerit. The most extensively studied flows are either
steady unidirectional or oscillatory boundary layer lows. The latter are of importance

when_considering marine sediment transport since, in shallow water, such boundary
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layers will be generated by waves.

At the heart of (non-cohesive) sediment transport is the complex interaction be-
tween a turbulent Buid and a collection of solid particles, some of which lie settled in
the bed and some of which are being carried along by the fluid. A number of aspects

of this combined fluid-particle system have been studied.

Threshc;ld con;iitions: The condition required for the motion of sediment was one
of the first aspects of sediment dynamics to be considered (Shields 1924). De-
spite sub-sequent work, the empirical relationship discovered by Shields for the
shear stress at the bed fequired to begin to _m'ové a particle of given weight can
still be recommended (Sleath 1984, pp 260), both for steady and oscillatory

flows.!

Transport: When particles are transported, a distinction is generally made between

two regimes.

1. Moving sediment in the region immediately above the bed is considered to
be in the bedload region where, in addition to hydrodynamic and gravity
forces, direct contact between particles and between particles and the bed

- is-supposed significant. -The classic work for steady_flows was done by
Bagnold in the 1950s and is described by Raudkivi (1967, pp 58-77). The

processes taking place in this region are still poorly understood however.

2. Away from. the bed is the region of suspended load where it is sup-
posed that particle concentrations ate low and particle collisions negli-
gible. Forces acting on the particles are gravitational and hydrodynamic
only. This region is far more amenable to experimental measurement than
the bed load region and consequently the properties, for steady unidirec-

tional flows at least, somewhat better known (Raudkivi 1967).

) Bedforms The formation of bedforms is a dynamic process that requires congidera—
tion of the interaction between a changing bed profile (due to sediment erosion
and deposition) and the fiow above the bed. Again the classic work on this
problem is described in Raudkivi (1967, Chapter 12). The details of the mech-

anisms involved in this interaction are still far from being understood.

1A related, but more difficult, topic is to determine, if possible,-some relstion between the bed
shear stress and the concentration of the sediment immediately above the bed.” This so-called
reference concentration’is nceded as & boundary condition for nearly all theories that have been de-
veloped for predicting sediment concentration profiles and will be discussed further in Sections 3.1.1
and 4.1.2.
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A number of researchers have considered sediment transpott problems starting
from continuum equations such as those presented in Chapter 1. Since there have
been only a few papers it is feasible to review each of them here.

The earliest example of this approach, remarkably, pre-dates all the developments
in theories of continua reviewed in Section 1.1. Barenblatt, whose work is described
in Bogardi (1974, pp 140-144), put forward a’theory, based on a continuum repre-
sentation of particle dynamics, for turbulent flow of a fluid-particle mixture which he
applied to sediment transport in rivers. Unfortunately the complexity of the equa-
tions was such that little practical advance could be made at a time when there was
no ready access to computers. ’

More recently Drew (1975) considered the steady unidirectional flow of sediment
starting {rom the same equations as we do (see Section 2.2.1). His approach thereafter
is different, and o some extent at odds with ours, as he neglects the term- which we,
following McTigue (1981), identify as the dominant flux that balances the downward
gravitational force. In Drews’ theory a different term emerges as the corresponding
balance.

The work of McTigue {(1981) deals with the same situation as Drew but comestoa
different conclusion concerning the dominant terms. We will discuss._i‘.his disagreement
further in Section 2.2.4.

More recently still, De Vantier & Larock (1983) start from a volume averaged
formulation, similar to the one we use. The authors combine the equations for each
constituent Lo obtain equations for the total fluid-particle mixture. This approach is
likely to be valid if the velocity of the mixture constituents are not too dissimilar.
For many types of sediment under field conditions this is reasonable. The standard
assumption is made that the sediment velocity equals the: fluid velocity minus the
fall velocity. The authors also take into account the dependence of the fall velocity
on the local concentration. This leaves three equations representing respectively
the mixture incompressibility, the balance of momentum for the mixture, and the
conservation of particle mass. As noted by the authors, these are very similar to
those attributed to Barrenblatt in Bogardi (1974, pp 140—144j. The flow is then
assumed to be turbulent, the equations averaged, and a & — ¢ turbulence closure is
used to account for the turbulent correlations. The resulting set of equations are
solved numerically for the case of steady uni-directional chanx_tel flow. Comparison
with experiment is generally satisfactory, although discrepancies are apparent close
to the bed. In particular, the horizontal velocity is significantly under-predicted in

this region and the authors speculate that this may be due either to stratification
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or to the neglect of particle collision forces in the model. The former explanation
appears unlikely since the effects of stratification on the turbulence should have been
accounted for in the buoyancy terms of the £ — £ model.

The case of sediment transport in steady uni-directional flow is also considered by

Koba)'asﬁi & Seo (1985). Here a treatment of the bed load as well as the suspended

load region is given. In contrast to De Vantier & Larock (1983), the author retains
momentum equations for each constituent, rather than combining them to obtain

equations for the mixture. Use is made of ‘conventional’ rather than a concentration-

weighted turbulent average (see Section 2.2.1). In the region of suspended load a

relatively simple form of turbulence closure is used with eddy Q{scosily and eddy
diffusivity given explicitly as increasing linearly with the distance from the bed. The
effects of stratification due to suspended sediment are t,-aken. account of b_y incorporat-
ing a Richardson number modification to the mixing length. In the bed load region,
the effect of particle collisions is based on the work of Bagnold (1966). Solutions

for the fluid velocity, particle velocity, and concentration are found numerically once

the boundary conditions at the top of the bed load region are specified. These are

obtained by s_olving the bed load model, from which the authors obtain analytic ex-
pressions. ’Ih;a comparison wit'hf.fgerin.lenl:.a:l data is unfortunately limited to regions
away from the bed, whereas the effects of fluid-sediment interac;ion are p-redicted by-'
the model to be greatest very near the bed.

The paper by Hagatun & Eidsvik (1986) looks at an oscillatory turbulent bound-

ary layer with suspenaed sediment. Although the authors state that their model

derives from two-phase flow equations they give no derivation’in the paper. An -

indication of the simplifying approximations based on sciling arguments is given.
The equations presented for mean horizontal fluid velocity and concentration pro-
files are standard boundary layer equations. Advection terms are omitted in the
momentum equation so that only the depth variation of quantities is accounted for.
As in De Vantier & Larock (1983), a k — £ model is used with the effect of stratifi-
cation due to suspended sediment accounted for by buoyancy terms dependent on
concentration. No model of the bed load region is proposed, so that the effect of
the bottom flow must be accounted for by the lower bour;dary conditions. Given the
lack of knowledge of the flow in this region this is a difficult task and the authors use
well-accepted boundary conditions for velocity and dissipation rate equations while
specifying 8k/dz = 0 for the turbulent kinetic energy equation. The bottom bound-
ary condition for the concentration, which plays a crucial role in determining the

concentration field, assumes the concentration just above the bed to be proportional
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to the instantaneous Shields number. Solutions to the equations are found numer-
ically and model predictions for velocity profiles, turbulent stress, and variation of
sediment concentiration over a wave cycle were found to agree well with experimental

data.

2.2 Equations for flow of turbulent two-phase mix-

tures.

Turbulence averaging of the two-phase flow e-qua.tions is accomplished in an identical
manner to the procedure used in averaging the Navier-Stokes equations of single-
phase flow. The field variables are written as the sum of mean and fluctuating
components, substituted into the equations of motion and an averaging operation
applied. However since the variables appearing in the mixture theory equations
already represent averaged quantities the necessity of further averaging might be

questioned. Justification for the approach adopted here is two-{old.

1. From a conceptual viewpoint we regard the equations derived in Chapter 2 as
being the two-phase equivalent of the continuity and Navier-Stokes equations of
single-phase fluid dynamics, 'ari“d'»t‘hérefoé valid in both both turbulent and non-
turbulent flows. When the flow becomes turbulent, instantaneous values of the
flow variables are not usually of interest, only their time or ensemble averages,
thus the equations are further averaged to oblain the equation governing the

mean flow.

2. The further averaging of the equations along the lines used for turbulent single-
phase flows is particularly revealing, giving rise to terms that can be identified
with a number of physical processes Lhat affect the interaction between the

turbulent fluid and particle phases.

2.2.1 Favré averaging

The approach here will be based on ideas presented by McTigue (1981). The form of
the two-phase flow equations, even for incompressible constituents, has in common
with the equations of compressible single-phase flow, that the velocities always appear
weighted by a density-like vari‘able, namely the partial densities ppc and py(1 - ¢).
As in the case of the turbulent averaging of single-phase compressible flows, we can
define average velocities directly, as in ‘Reynolds’ averaging, or using density weighted

(so-called -Favré) averaging: The- latter approach- has-generally- been-preferred in
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work done on turbulent compressible flow and also in the few papers dealing with
turbulent two-phase flow flow?. An advantage in using the weighted average is that
correlations involving concentration fluctuations are generally avoided, leading to
equations that are closer to the more familiar Reynolds averaged sinéle-phase case.
A further advantage is that a number of properties of the Reynolds average carry over
to the two-phase case ifconcentration-weighted averages are used. This is particularly
important when the turbulent kinetic energy is discussed in Section 2.3.

As the starting point the following equation set will be used:

gl: +Y.(cu) = 0, (2.1).
Vi eu+ (1l -c)v] = 0, (2-2)

ppcg — cVpp + cy(v — u), (2.3)

d
T (ppcus) + V. (ppcuu)

2 (s (1= o)+ Vlps (1~ eou] = oy (1= g = (1 = ) Vpn - er(w —u)

+(1-¢)V.o,. (2.4)

The above are derived from equations (1.31) to (1.34) by the neglect of interfacial
stress terms which multiply the concentration gradient in (1.33) and (1.34). More
that will arise from p,I — a(;) in equation (1.33). The neglect of terms involving
viscosity is justified in the application to high Reynolds number flows, as discussed
when the turbulent averaged equatAions are presented below.

The notation and definition of most quantities are as given in Section 1.2. The
symbol for the pressure is written with the subscript ‘h’ to emphasise that it con-
‘tains the hydrostatic component pygz. Here z measures the distance in the vertical
direction. Also we have written ¢, = ¢ and put ¢; = 1 — c using (1.3). The quantity
7 is initially taken to be the constant, yo, defined in (1.27). A more general form
dependent on the particle Reynolds number, and thus giving rise to a non-linear drag
law, is considered later. The pressure appearing in the equations is the sa‘me for beth
phases. That this leads to the difficulties discussed in Section 1.2.3 need not concern
us. As discussed briefly at the end of Section 1.2.3, the terms introduced to remove
these difficulties are relevant to obtaining'well-posed equattons in non-turbulent flow
only. Although crucial for this case, the terms are in general very small numerically.

Our aim here is to retain only the main terms, and determine the form these take

2An exception is Pourshmeadi et al. {1983).However they ignore correlations involving concen-
tration Auctuations and the equations they eventually obtain are similar to those we obtain using
the Favré average..
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after applying a turbulent average.

The Favré averaged velocities are defined via

cu = <cu>,
(1-¢)p = <(1-cjv>
with
i = <e>, .
P = <p>
We then write
c=¢é+cd |, p=p+p,
u=u+u , v=1v+9v,

where primed quantities refer to fluctuations defined by direct averaging, whilst quan-
tities with a tilde are fluctualions defined by concentration weighted averaging. Note™
that

<cd>=<p >=0
but that

<4 >,<9>#0.

The equivalent property of the concentration-weighted average is that
<ciad>=<CLc(u—i)>=<cu>~<ea>=¢éu—cu=0,

with the fluid phase concentration-weighted average satisfying similacly the relation

< (1 - ¢)u >= 0. We have therefore

<cu>=< (l - C)ﬁ) >=0. | (2.5)

i

Since the averaged momentum densities for the particle and fluid phases are respec-
tively p, < cu > and py < (1 — c)u.>, the property of the standard single-phase
average, that there is no contribution to the average momentum arising from the

fluctuating motion, is preserved. Further, when we come to consider the kinetic en-
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ergy z.xssocia.ted with the ﬂuctuai‘.ing motion in a two-phase flow, the concentration-
weighted average is more satisfactory than the use of direct averaging for the following
reason. Using the concentration-weighted average the mean kinetic energy density
for each phase’is partitioned into a component associated with the mean flow and a

component associated with the fluctuations. Thus

<cul> = &+ <cu? >, (2.6)

<(l-ev?> = (1-&a+<(1-¢c)p®>. (2.7)

where, for clarity, we have divided through by the constant mass ‘densities. The
turbulent kinetic energy densities are therefore naturally given by p, < ciz? > and
ps < (1 = c)d? >. If direct averaging is used instead, the following expressions arise

. for the kinetic energy:

<eul> = P +i<(w) > 2u<du >+ <(u)? >,
<(l-cw?> = (1-&e?+ (1= < (v)>-2n<cv' >
—-< (V) >.

No obvious partition into mean and fluctvating components of kinetic energy is ap-

parent.

Cartying out a concentfation-weighted average of the two-phase flow equations

yields:
Z_‘: +V.(&a) = 0, (2.8)
Vea+(1-8e] = 0, (2.9)
%(ppfﬁ) + V.(ppcud) = ppég —EVPa— < 'Vp' > +&v(% - )
+9<cb>-V.< pyeciin >, (2.10)
%[P/(l o)+ V.o (1-8)88] = py(1-E)g—(1-&)Via+ <c'Vp' >

- V.<ps(l —c)vo >

-&yv-u)-y<ct>. (2.11)

As expected the averaging procedure has given rise to extra terms involving corre- -

lations between fluctuating quantities. We have suppr'.essed the viscous contribution
in (2.11) on the assumption that the (flow) Reynolds number is large. As discussed in

Section 1.2.3 there is no inconsistency between using Stokes law for the particle drag,
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a quantity dependant on the particle Reynolds number, and the neglect of viscosity

in the equations for the motion as a whole.

2.2.2 Particle phase implications

We compare the approach followed above with the conventional one for modelling
the suspended sediment concentrations in turbulent flow (see Wang & Liang 1975 for
example). In the conventional approach direct, rather than concentration-weighted,
averaging is applied to (2.1), yielding

dé T

&+ V.(Ga+ < cu’ >) =0,

at :
The assumption is then made that the particle velocity can be replaced by the fluid
velocity minus the still water settling velocity of the particle, leading to

de

5t V.[Hv + wo)+ < c'v' >]=0 (2.12)

where we = (0,0, —wp). The steady particle fall velocity, wo, is determined by the
balance between, gravity, buoyancy and particle drag forces and in our notation is

given by - - =

we = g(pp - ps )/‘y (2.13)

Using concentration-weighted averaging (2.1) has exactly the same form (2.8) be-
fore and after averaging. The averaged particle momentum equation (2.10) becomes
essentially an equation for the particle volume flux, ¢, that appears in (2.8). We
show that in the Jimit of zero particle inertia and assuming the concentrations are
small that (2.12) can be derived from the two-phase flow equations. It is possible to
start from ecither the averaged equations (2.8) to (2.11), or the pre-averaged set (2.1)
to (2.4). We use the latter, as this gives an add'itiona.l'relation that will be of use
subsequently to relate quantities involving particle velocities to ones involving fluid
velocities.

We first separate out the hydrostatic component of pressure, putting
Vpn =prg+ Vp.

Introducing now velocity and time scales v*, 1/w ( anticipating the application to
oscillatory flows the time scale is defined via a frequency w), and defining length and

pressure scales vt /w and py(vt)? respectively, we find that (2.3) can be written in
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non-dimensional form as

e e D 10
C(IJ —u)+cw0=‘rc(W+;Vp). (214)
Here

. ppw
Tt o= =, 2.15
g | (2.15)

Pp

= £ 2.16
P Py (2.16)
wy = wofvt, (2.17)

Although crude, the scaling analysis is sufficient for the purpose of revealing the key
non-dimensional parameters. The quantity 7 is the ratio of the particle response
time pp /v, to the characteristic time scale of the flow. The terms in (2.14), and in its
turbulent averaged form, that are scaled by 7* we will call the “inertia terms”. Note
that in addition to the particle acceleration terms proper, this definition includes the
pressure term. Neglect of particle inertia is equivalent to setting 7* = 0. If this “zero

particle i_nertia" approximatior is made in (2.14) we obtain

c(v' —u*)+wge =0,

correct o zc.aroth order in 7*. In dimensional form this is
(v —u) + woc=0. (2.18)

Dividing (2.18) through by c gives the standard approximation, that the fluid and
particle velocities differ only by the fall velocity

u = v+ wo. (2.19)

Averaging (2.18) yields
fu =Cwo +Co+ <cv >. (2.20)

The averaged particle volume flux, i, is seen to consist of three components, due
to gravity, the mean fluid velocity, and the fluid velocity Rluctuations. If (2.20) is
substituted into (2.8) we have

ac

o + V&5 + wol+ < cv >] =0, | (2.21)

N 35



which is identical to (2.12), apart from the form of the concentration-velocity correla-

tion. This essentially is the result of McTigue (1981), extended to the case of general

flows.

We now derive a relation between the concentration-velocity correlations that

appear in (2.12) and (2.21), showing that they become equal in the limit of ¢ — 0.

From basic definitions

v = uv— << v >,

- < (1 -

5 = yoSU=dv>
1-¢

so that ] _
 <(-qgv>-(1-§<v>
1-¢ )

v=v

Puiting v =< v > +v' we obtain, since < v’ >= 0, the relation
B

Multiplying through by ¢ and averaging leads to the result

Tl ek >= <c'v' >,

1-¢

(2.22)

(2.23)

_ Another useful result is obtained from (2.22) by taking the tensor product of (2.22)

with 9, then using (2.22) again, to substitute for © on the RHS of the expression,

and ﬁnal.ly averaging to cbtain

<cdv >< v >
(1-¢éy
= <v'v' > +0(c?).

<HB> = <vv >+

Similarly we find that
< cbd >=< cv'v’ > +0(P).

(2.24)

(2.25)

To conclude this-section we list two advantages that we consider the mixture

theory approach has over the conventional one.

1. Although reducing to standard expressions when the particles are taken to be

inertia-less and the concentrations small, mixture theory offers, in principle at

least, a way of accounting for more complex interactions between the particle

and fluid fields by retaining additional terms in the particle momentum balance.
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2. Mixture theory provides a sound theoretical framework in which to investigate
turbulent two-phase flows. It can lead to insight into the dynamics of the flow,
for example the identification of the important term < ¢& > as arising from the

interaction between the fluid velocity fluctuations and the particle drag.

2.2.3 Fluid phase implications

An examination of the implications of the mixture theory equations for the Auid
phase is now made for the case when particle inertia is assumed small (r* <« 1) and
the concentration is low. As in Section 2.2.2 it is possible to use cither the averaged
or pre-averaged sets of equations; and again we use the pre-averaged set. If ¢ € 1
in equations (2'2) and (2.4) then we obtain, after separating out the hydrostatic

component of pressure,

Ve = 0,
ol +9.(w0)] = ~Vp-crfo - u)+ uV. (2.26)

)
[

The drag terms are retained because small particle inertia implies that y will be
_ large, even if formally the term is of O(c). Applying the same scaling analysis as.in

Section 2.2.2 leads to

du* 1,

-3% +V.(v'v'}) = -Vp' - p%(v' —u')+ EV"'v'

where, Re = (vt)?/wr. Note the drag term scales as ¢/7*, the ratio of two small
quantities, justifying its retention in the equation. Substituting for the velocity dif-

fetence in the drag term and using the assumption of zero particle inertia in the

form (2.19) yields

duv* c 1
. oo ) — v . . s
—at.+V(vu)_-— p+p—T_w°+——Rer,

which, in terms of dimensional variables, is

dov Ap 1

— + V.(vv) = —Seg — —Vp+ vV?3y, 2.27

77 + Tov) = SEeg -~ vp (2.27)
where Ap = p,—py. Defining the mixture density pm = ppc + py(1 — ¢) enables (2.27)

to be written in the form

22+V.(vv)=ug-~l—Vp+ vViv. -
: g LT Ty AT R
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This is precisely equivalent to the Boussinesq approximation, except that the density

changes arise from the presence of the sediment. Averaging (2.27) then gives

@ + V.(#8) = 3355 - -}—Vﬁ— vV < v'v >, (2.28)
ot Py Py
where we have again suppressed the viscous term on the assumption that the Reynolds
number is'large. .
The importance of this result is that we can now use standard turbulence models
to close (2.28). The effect of the particles on the fluid motion is, to this level of

approximation, to give rise to buoyancy terms which can be accounted for in the

turbulence closures which are the subject of Section 2.3. -

2.2.4 Comparison between the work of Drew and McTigue

In this section the main concern will be to simplify the full turbulent averaged equa-

tion set and look at sediment transport in a steady uni-directional flow with the aim
of clarifying the difference in the approaches of McTigue (1981) and Drew (1975).

The assumptions made are:
1.-only vertical gradients-are non-zero (i-e. no horizontal and-no time dependence);
2. vertical fluxes are zero (&2 = 82 = 0);
3. the particle concentrations are low (¢ < I).

It is easy to show that for the non-turbulent flow of a mixture, the first two
conditions imply the trivial solution py = p,, ¢ = 1 or ¢ = 0, and a hydrostatic
pressure. The reason for this is the absence any of force supporting the heavier
constituent of the mixture against gravity. If a non-trivial solution is to exist in
the turbulent case, the force acting to support a distributio; of particles must be
associated with terms that arise due to the turbulence. In Section 2.2.2 the term
< ¢b >, resulting from_the drag term in the particle momentum equation, was
identified with the turbulent flux that arises in the conventional sediment transpert
approach, and provides a mechanism for supporting the sedimeat load against gravity.
However Drew (1975), in his analysis of steady unidirectional flow, decides that a
different term, essentially the particle equivalent of the Reynolds stress, provides the

requisite balance.
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For steady uni-directional flow the mass conservation equations are satisfied iden-

tically. The vertical momentum balances are:

d . . _dp . dp
Pe ;. < ci} > = ~pplg — - + ¥ <y > - <c'$ >, (2.29)
d ) NN ) o’
g <(l-qi> = “ps(1-8g - (1-9F ~v<ech >+ < >
(2.30)

The vertical fluid momentum balance for low concentrations becomes, using (2.23)

and (2.24),

dp d ‘
—py9 = o — Py < VB > 4y < vy >=0,

where all O(c) terms, apart from those associated with drag, have been neglected.
Rearranging this to give an expression for the mean pressure gradient and substituting
into (2.29} yields,

d - d d -
Pr < cii > —épy o= < V> —y<dvy >+ < d% >= —&g(pp — py),

(2.31)

after neglecting the O(c?) term, 7¢ < ¢'v) >. Drew retéins only the RHS dnd the
first two terms on the LHS , having eliminated the remaining two terms near the
beginning of his analysis on scaling arguments. In particular < ¢’vj > is neglected
after comparing it with the mean drag &¥; — ;). This cannot be valid; the mean
vertical component of drag is identically zero and so cleatly cannot overwhelm the
corresponding component of the ‘fluctuating’ drag term. The argument used for
eliminating the pressure fluctuation term also seems questionable.

Carrying out cur own scaling analysis, the assumption is made that both Auid
and particle velocity Auctuations can be assigned a typical scale v'* and that this
is suitable for both horizontal and vertical components. Pressure fluctuations are
scaled with ps(v't)? (see for example Hinze 1959, pp 454). If I, is a typical vertical
length over which the quantities vary we can write (2.31) in terms of scaled variables
as

d d - d '
Sle. < cil > —é- < v >+ < c'E >)- < vy >= —Ewp, (2.32)

where p = p,/ps, S = psv't /7l and wy = wo/v't, with wy given by (2.13).
To determine typical values for these quantities the experimental parameters re-
borted by Drew in comparing his theory with experiment will be used. For a run

_using particles of mean diameter 0.25 mm and density 2670 kg/m3, the friction veloc-
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ity, which will be equated with v'*, was determined to be 0.064 m/s. This gives the
following values for the parameters appeating in (2.32): p = 2.67, § = 2.0 x 10-%/I,
and w§ = 0.8. It would therefore seem that terms of order S can only be significant if
[, <1 mm. Thisis not implausible near the bed where concentrations and velocities
change rapidly. Drew in comparing his theoretical curves with experiment apparently
obtains good agreement with quite reasonable values for the two empirical constants
of his theory®. However, our analysis clearly shows that the term < ¢'v} > is of the
same order as the buoyant weight and cannot, on scaling arguments, be excluded from
any consideration of vertical momentum balance. Indeed, apart from regions where
large vertical gradients are present, the analysis suggests that this t;rm, together with
the gravity term, dominate the balance. This is in agreement with McTigue (1981)
who carries out a similar analysis to the one just presented. The importance of the
terms of order S near the bed can only be determined by proposing models for these
terms and comparing the solutions of the resulting equations with experimént. This
will be done for the case of oscillatory flow in Chapter 5.

For completeness, the horizontal momentum balances for the steat.:ly flow consid-

ered in this section are given:

- d‘
po < cibyilz > = —é-d—: + &5 — 81) + 7 < vy >, (2.33)

d . dp . )
Pz <(t-epiv > = _(l—c)d_':_‘)’c(vl—ul)-’7<cv'l >.

(2.34)

Using (2.20) and assuming low sediment concentrations (2.34) becomes -

d dp

pr4; < vy >= 5
the standard result for the fluid phase momentum balance in steady unidirectional
turbulent flow. If the turbulent stress is assumed constant (i.e. the pressure gradient

is zero) dimensional reasoning leads to the prediction of the well-known logarithmic

velocity profile.

2.2.5 Including further fluid-particle interactions

In the interests of simplicity we have so far considered momentum transfer between

the fluid and solid resulting from pressure and linear (Stokes) drag forces only. It is

31t is interesting that the porticle fall velocity does not enter as 8 parameter into his theory at
all. - - - = e e e aea - . - .
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well known that a variety of other forces act on a particle moving through a fluid,
— the added mass force, Basset force, and lift forces for example. In addition the
linear relation between the r‘elative velocity v — u and the drag force will become
increasingly inaccurate as the particle Reynolds number (1.35) becomes of order one,
orgreater. ‘

The correct specification of the added mass force within the ;:ontinuum theory
is at present an open one, although the work of Geurst (1985) appears to go a long
way toward resolving it, and the form we adopt here is one among a number that
have been proposed. Further, no attempt, so far as this author is aware, has been
made to incorporate the Bassett force into a mixture theoryd. Ti;e derivation of an
expression for this force is considered outside the scope of the work presented here
and hence no attempt is made to include it. No attempt is made either to include
lift forces, although the form of added mass force used does contain a term that can

be identified as a lift force.

Inclusion of added mass

We use the form derived by Drew & Lahey (1987) for the added mass terms in a

non-turbulent flow,

A = cpiCom [(% - % +v.Vv - u.Vu) —(v—u). (Vv - V‘v)]

= ¢pyCom [(% - %) —{v-u). (Vv - V'u)] . (2.35)

Here Cymm is taken to be constant. Interestingly, solutions derived for single spheres
in unbounded fluids assuming either potential or Stokes flow both give Cyrm, = % and
this is the value adopted here. In general we might expect Cy;n to be a functior; of Re,
and ¢, however for simplicity we will neglect such considerations. The form of (2.35)
satisfies the principle of ‘material frame indifference’ (see Drew & Lahey 1987) and is
also consistent with the force obtained for a single sphere in an unbounded, inviscid
fluid. It is seen to consist of two parts, a relative acceleration, which is the added
mass force proper, and a ‘lift’ force proportionai to the relative velocity. This lift
force is that experienced by a particle moving relative to a rotating fluid first con-
sidered by Proudman (1916). It might be questioned whether a form derived from
a consideration of inviscid fluids is suitable for the. situation we are interested in,

where viscous forces are predominant around the surface of the particle. In defence,

1Experimental studies, e.g. Carley & Al-Tawecl (1971), heve indicated the.Bassct force to be at
least as significant-as the-added mass force.. - - [
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it can be said that the added mass force, for a single particle at least, is same in both
potential and Stokes flow. .

If we substitute for the convective derivative of the fluid velocity in (2.35) us-
ing (2.27), and add the resulting expression to the RHS of (2.3} we obtain, after

separating out the hydrostatic pressure component,

i) -
(pp + pyCom) [mm + V.cuu] = ¢(l +cCom)Apg — c(1 + Com)Vp ¥ cy(v — u)
+ ComeppV?0 — cpy Comm (v — ©}.(Vv = Viu).
Apart from the viscous term and the lift term, this equation can be averaged in exactly

the same manner as equation (2.3). The averaging of the lift term is considered in

Section 2.3.2, while averaging the term involving viscosity yields
eV + V2 < v > + < (VC).(VV) >.

When scaled, the first two terms can be neglected, assuming the Reynolds number is
large, and the last term is identically zero if the turbulence is assumed to be locally

isotropic (Rodi 1980).

Inclusion of non-linear drag

We include the effect of non-linear drag in the term
D = qe(v — u)

by modifying 7 to be a {unction of the particle Reynolds number Re,. In the linear

regime v = 7o, where vy is given by Stokes law as
8 2
T = 511/1' . _ (2.36)

Empirically derived formula are necessary when Re, becomes large enough for {2.36)

to become inadequate. Clifte et al. (1978) list a number of such formulae and, for .

the approximate range 0 < Re, < 103, these give the Re, dependence of v in the

form

¥ :30(1 +aRef,), (2.37)

where o, B'are chosen to fit experiment.

The Favré averaged particle momentum equation, with allowance made for a non-
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linear drag and with added mass included, is then giver by

d R _
oo (m"“‘ + v_eﬁf.) = [¢+ Com(d+ < 5)) Bpg+ < cr(lv — ul)(w - u) >
— pem(EVP+ < &'VD' >) — pym V. < czia >

— p4Com < c(v —u).(Vv - V'v) >, (2.38)

where pom = (pp + py C,,m). In the next section the closure of the turbulent averaged

equations is considered.

2.3 Turbulence modelling

All practical methods for predicting turbulent flow solve averaged forms of the equa-
tions such as those presented in Section 2.2.1. This is only a preliminary and essen-
tially formal step as the resulting equations contain correlations that arise due to the
non-linear form of the original expressions. It is possible to derive formal equations
for these correlations but these are found themselves to contain further and more
complicated correlations. In fact the sequence of deriving equations for successively
more complicated correlations will never produce a closed system. At_some point we
h;ve to stop_andAmodel l‘he unknown terms us-ing quantities for which we are ;olving.
This closure problem is \at the heart of turbulence theory. A_t the present time, and
despite a research effort that goes back at least 1o G. . Taylor in the 1920s, there
is no consistent , quantitative theory of turbulence, even for the simplest practical
single-phase, incompressible flow. The construction of such a theory is one of the
outstanding unsolved problems of classical physics.

Despite the lack of a satisfactory fundamental theory, the need to predict tur-
bulent flows has been such that a number of methods based on a phenomenological
approach have been developed. That is, no attempt is made to describe the under-
lying mechanisms of turbulence but only its effects. In spite of the difficulties, these
methods have achieved a fair degree of success in predicting the effects of turbulence

in transporting mass,momentum and energy.

2.3.1 Fluid mass and momentum correlations

Central to most phenomenological approaches to turbulence modelling is the sim-
ulation of the effects of turbulence by gradient diffusion. This comes about by an
analogy with the effect of random molecular motions which, among other things, give

rise to viscous effects in_fluids. _
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Gradient diffusion 7
Consider a uniform density shear flow with steady, mean horizontal velocity #,(z)
and zero mean velocities in the other directions. Although there is no mean vertical
velocity component, the velocity will fluctuate about this zero value. Suppose that
a ‘typical’ vertical velocity fluctuation v} brings in material from a ‘typical’ distance
[ and that the mean horizontal velocity per unit volume at a distance [ can be
approximated by

. _ i

vl(zl + l') = ul(zl) +1 (3—; - , (239)

£

The fluid drawn in by the vertical velocity fluctuation therefore gi;'es rise to a corre-

sponding fluctuation in the horizontal velocity

' aﬁl
vy :l(g) .

Since v} and [ were taken to be typical, or average, values we assume that we are

justifiéed in writing
a6,
0z

< vyvy >= g (2.40)

Note that {v} is essentially negative since if v} is positive then the ftuid transported
by the fluctuation comes from below z; so that I < 0 and vice versa. For turbulent
flow the quantity —|lvh{ is called the ‘eddy viscosity’ and given the symbol vr. The
name comes from the conceptual picture of velocity fluctuations being caused by the
movement of eddies or organised packets of fluid that interact with tlhe mean flow.
Unliké the molecular viscosity the eddy viscosity is not a property of the fluid but is
a function of the flow itself.

This is the physical basis of gradient diffusion of momentum. If the fluctuations
are due to turbu‘lence then the length scale { is interpreted as being a representative
size for the eddies that are responsible for the majority of momentum transport. Of-
ten { is of the same order as the distance over which the mean values vary significantly
and the use of (2.39) cannot be justified a-priori. However for many simple types of
flow, including boundary layer flows that we will be concerned with, models based
on gradient diffusion of momentum often produce good agreement with experiment,

thus justifying their use in practice.

The generalisation of gradient diffusion of momentum to three dimensions leads,

by analogy to the equivalent expression for the viscous stress, to

<v'v' >= —vp[Vo + V'v] + Ap]
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. sion laws.are the subject.of the next section.

where I is the unit tensor. If the trace of both sides is taken then, assuming the fluid
is incompressible, for consistency we must have Ar = (1/3) < v >,

Transport of momentum by turbulent velocity fluctuations occurs by the actual
transfer of fluid. Thus a transfer of mass as well as momentum takes place. If the
fluid has suspended within it solid particles (say) whose concentration field is non-
uniform, then a net flux of particle mass may occur. An exactly analogous argument
to that presented above, but in terms of the particle concentration instead of the

horizontal fluid velocity, yields the equivalent of (2.40), that

é
vhe >= vy, —.
< v 23

The generalisation of gradient diffusion to three dimensions is simpler than for the

case of momentum and leads to

—

< '’ >= kpVE (2.42)

where k7 is the ‘eddy diffusivity’. It has dimension length x velocity.

Quantification of the length and velocity scales that appear in the gradient diffu-

Velocity scale determination

The simplest possible case is a velocity scale that is constant, For steady boundary
layer Aows this can be a reasonable approximation. Consider a turbulent shear flow as
envisaged in the previous section and suppose that there is a solid boundary at z = 0.
H 7, the mean turbulent stress, is constant l.hén following Landau & Lifshitz (1987,

pp 173) the mean velocity gradient must on dimensional grounds éatisfy

dl_ll_ 1 T

dz ~ xz\ p;'

where « is a constant of proportionality. Multiplication by v, = /7/p; yields
di, .
= «— 2.43
T = R2v,— , ( )

Since 7 =< v{v} >, comparison of (2.43) with (2.40) shows that the constant v.,
which has the dimensions of velocity, is the required scale (assuming that « is com-
bined with 2 to make the length scale). Relation (2.43) gives the well-known loga-

rithmic velocity profile. This approach, using a constant velocity and linearly varying
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length scale has been extended to oscillatory turbulent boundary layers, and will be
considered further in Chapter 4.

- More sophisticated turbulence modéls.deﬁne the velocity scale via the turbulent

kinetic energy density of the fluctuating velocity field, a quantity for which a transport

equation can be derived starting from the equations of motion. -

With reference to the result (2.7), we define the quantity
By =(1/2) < (1 —c)o? >

to be the turbulent kinetic energy for the fluid phase. ‘This is not strictly correct
since the dimensions of k; are velocity squared and not that of energy, however
it has become standard to refer to the equivalent quantity in single phase flow,
namely & = (1/2) < v'? >, as the ‘turbulent kinetic energy’ and we follow this
convention. The full equation for' the Auid turbulent kinetic energy based on concen-
tration weighted averages will be given, before any approximations, such as dilute
particle concentrations, are made. The mean flow kinetic energy equation is obtained
by taking'the scalar product of (2.11) with the average fluid velocity. The scalar prod-
uct of the pre-averaged momentum equation {2.4) with the exact fluid velocity gives
an equation for the total (mean plus fluctuating) kinetic energy density. Wriling
the velocities that appear in this last equation as mean plus a fluctuation, iaking
the average (concentration weighted), and subtracting the mean flow kinetic energy

equation yields the turbulent energy balance

a . -
glPrks) + V.(pg3ks) = V. <Bogky + (1 - c)p' + o] >
—pr < (1 -¢€)ov >: Vv
+<pPV[s(l - ¢)] > -1 < cv.(b-@) >

- (v —u). < c? > —¢gy. : (2.44)

Here both ¢, and £ are derived from the viscous stress tensor (1.30); their exact
form is complicated and is not given here.

Asc— 0,

v — v

ky — k,
€y — &,

_ <pVs(l-¢)> — <p'Vu' >=0_
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and (2.44) becomes the usual single-phase turbulent kinetic energy equation, apart
from the presence of the terms arising from the fluid drag. Standard modelling
assumptions (Launder & Spalding 1972, p 76) for the fluid turbulent kinetic energy

equation, which we assume to be valid for (2.44) as ¢ — 0-, are:

1. eddies responsible for viscous dissipation are isotropic so that
v} ., :
e=v < (=—) >, 2.45
< () (2.15)

see e.g. Bradshaw et al. (1981}, pp 28;

2. the viscous contribution ¢, in the first term on the right hand side is neglected,

assuming high Reynolds number;

3. the triple correlation < tky > and the pressure correlation < #p' >, appearing
in the first term on the RHS and both unknown, re-distribute turbulent kinetic

energy without producing or dissipating it. This re-distribution is taken to be

'E

diffusive in nature so that

- - 1%
<bkp >+ < Bp >= —G_TVk,,
k

where oy, the turbulent kinetic energy Schmidt number, is supposed constant.

If the zero particle inertia approximation {2.18) is made in the dr&g derived terms,

then the modelled form of (2.44) becomes

-a—‘i + V.(ﬁk) = V(U—T Vk)+-P+ G -k (2.46)
ot Ok

Here

- <v'v' »>: Vo, (2.47)

= Apg.<cv' > [py (2.48)

are production terms for turbulent kinetic energy, and arise from the mean velocity
shear and buoyancy'eﬂ'ects respectively. The same equation can be derived start-
ing from the fluild momentum equation (2.27). Essentially we have made the same
approximations in both cases, the only difference is the stage at which they are made.

if it is assumed that € can be expressed in terms of k, { and p;, then dimensional

considerations imply

(249)



where Cp is an experimentally determined coefficient, constant at high Reynolds

number. The eddy viscosity is given by
vr = CY%1,
where £'/2 is now the turbulent velocity scale®.

Length scale determination

When discussing the turbuleat velocity scale it was found that dimensional reasoning,
in the case of a wall bounded shear flow with constant turbulent skt'ress, led to (2.43).
This expression contains a constant velocity scale (v.) but a turbulent length scale
that increases linearly.with distance from the solid boundary. Such a specification of
length scale, with modifications away from the solid boundary where the assumption
of constant turbulent stress is not valid, has been widely used for both steady and
oscillatory boundary layers. For flows where an empirical specification of [ is difficult,
or where improved agreement with experiment is sought; an attempt to determine {
from some additional relation involving the flow variables can bﬂe made.

Von Karman proposed obtaining a length scale by taking the ratio of first and

/

and this idea can be extended for use with the turbulent kinetic energy equalion by

second derivatives of the vélo—c>it.y pi‘oﬁle )

an,
8z

0%,

L=x 77

putting

ov
I =x¥ 77 (2.50)

where ¥ = kY2l has the dimensions of a velocity gradient. This approach has
been used récently by Soulsby & Eidsvik (1988) for a combined steady/oscillatory
turbulent Boundary layer flow.

A more sophisticated approach is to determine I, like the velocity scale, from a
transport equation. Most workers have chosen to solve an equation for the dissipation
rate £ and derive I, if needed, from (2.49). In Section 2.2.3 it was shown that [or
low particle concentrations, and assuming zero particle inertia, the fluid momentum

equation (2.27) is identical to the Navier-Stokes Stokes equations for single phase

5The way in which Cp enters into the relations for 1»p and ¢ is arranged so that Prandtl's mixing
length formulation is recovered in boundary layer flows when all terms other than P and ¢ are
neglected in (2.46); sec Section 3.1.
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flow, with the addition of terms associated with buoyancy. The transport equation
for € that is derived [rom this equation of motion is of standard form. Quoting here

the equation for £, with buoyancy effects included (see Rodi 1980)

2

% | 5.ve= v.(ELve) + Cie2(P +G)(1 + CacRy) - Czef,;; (2.51)

at

we note that a considerable number of modelling assumptions, many of them unver-

ified by comparison with experiment {(Bradshaw et al. 1981) are required to derive

it from the exact equation. Here P and G are the stress and buoyancy production
terms from the turbulent kinetic energy equation (2.46). R; is tlte flux Richardson

number

Ry = -G/P.

Cic, Ca. and C3, are constants, assumed universal and determined experimentally.

\

2.3.2 Particle equation: closure I

The parsticle momentum equation (2.38) will be considered ‘closed’ if we can relate.

all the correlations which appear in it Lo correlations for which a model has been
proposed in-the literature. This generally éntails expressing terms containing particle
velocity fluctuations in terms of correlations involving-fluid velocity fluctuations.
Since we have shown, to a first approxjmaiion, that the presence of the particles
affects the fluid velocities only via buoyancy aflects, it is valid to use turbulence
models for fluid velocity correlations that have been developed for buoyancy-affected
single-phase flows. In outline, the technique used is to obtain equations correct to
first order in the parameter 7'. Since the problematical terms generally appear in
the equations at first order anyway, it is sufficient to approximate the correlations

themselves to zeroth order in 7°.

Non-linear drag

Averaging (2.38) with the drag coefficient, 7, given by (2.37) leads to correlations of
the form < ¢jv — u|?(v — u) >. Note that the occurrence of the modulus-means that

all components of particle velocity contribute to the drag force for any given compo-

nent. We do.not attempt to model this correlation directly, but approximate |v — u

using (2.19)6. With this approximation 7 is now a constant and hence no complica-

6L is casy Lo see that form of (2.19) is unchanged if the drag law is non-linear. The only difference
is the value of the fall velocity is now determined from the non-lincer dreg law.
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tions arise when averaging the drag term. Unfortunately, the approximation has also
entailed neglecting terms of O(7*) since the drag term appears at zeroth order and
we art; then using a zeroth order approximation for it. This is perhaps mitigated by
the knowledge that we have, for example, already neglected the Bassett term whose
contribution would also be of O(7*). Given the current state of knowledge regarding
the forces acting on particles suspended in a Auid undezgoing complicated motion,
it would perhaps be unrealistic to expect to be able to account for all the possible
forces.

Figure 2.1 gives the fall velocity as a function of the particle diameter for particles
with a relative density p = 2.65 using the drag law {2.37) witha = 0.. 15and B = 0.687.
Also shown is the corresponding result assuming Stokes drag; as can be seen the two

diverge for d > 0.1mm.

Fall velocity as a function of (spherical) particle diameter,
9-201q
Legend
0-154 O Non-linear
< G Stokes -
E | TR .
> L
S 0-104 )
g .
2 -
o
0-0%
0-000 T r Y )
-0 Q- 0-2 Q-3 0-4
Particle dlametar {mm)
Figure 2.1: Particle fall velocity against particle diameter

Lift force

The term representing the lift force in (2.35) appears at first order in 7° and is mod-

elled by first using (2.19) to approximate v — u. Averaging the resulting expression
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(1 +

yields
Pt Comwo.[EVE — EV D+ < 'V’ > — < 'V 3.

The terms involving fluctuating quantities can be re-written as
V< >-V<cv' >+ <o’V > =< o'V >,

so that the only new correlation introduced is < v'V¢''>. Lottey et al. (1983) derive
a model for this correlation in their investigation of the “crossing trajectory effect”
— see Lottey et al. (1983) , Shih & Lumley (1986) and the discussion in Section 5.3.
They put v - ) |

< vV >=< ' > (fiV < ¢? > + frwo)

where

1

h = 5 < c'?>-1,
. (wo. < c'v’ >)?
= Fplb 4=t 2}

2 D[. L s

9¢ / < v’ >?
Fp = —J1- ———

_ B o 4k2 <7 > 2k

b = 0.7778, by = —-0.725.

These complicated expressions simplify considerably for the case we eventually con-
sider. On the basis of an algebraic flux model derived from a transport equation for

< ¢’? >, Rodi (1980) suggests -
12 k (. = .
<d®>= —2RE <cv' >.Vé (2.52)
where R is a constant.

Specification of the triple scalar correlation

The averaged particle momentum equation, with the non-linear drag and lift force

' approximated as described above, can be written in non-dimensional form as

Cvm a = " = eare | —
. )[Wcu + V.éu'u*| =

(E+ Com)(@®+ < 2 >)wj + &(v° —u')+ < v’ >
Cwm
p

-7 [:1,(1 + Cum) (EVP'+ < VP >*) +(1 + )V. < cuu >* —h‘] .

(2.53)
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where

h* = _Com wg.(EVv* — &V + < Vv*' > — < Vo' >T),
P !
vy = 71{lwol).

with non-dimensional quantities as defined in Section 2.2.2. Equation (2.53) contains
the triple correlation < cut >*, which can be regarded as the particle équivalent of
the Reynolds stress. Since it appears in the equation at O(7°) we require it to be

approximated to zeroth order only. Such an approximation can be found by pre-

multiplying (2.18) by 1, averaging to obtain
< cuu >'=< Ct'-l.‘l-) > +0(r"),
then post-mnlliplyil'lg (2.18) by v’ and averaging Lo give
<caw > = <cbb > +(v' - vt +wd) < i > +0(7"),
= <cov>" «%(< co >") +0(r").
Use of (2.23) and (2.24)_yields _

- - I ! l ’ * .
<cuv >=<cv'v’ > _E(< v’ >*) +0(r°, ). (2.54)
The modelling of the particle correlation < ctis >* has thus been reduced to mod-

elling correlations between fAluid velocities and concentration. Since

<ev'v' >=c< v >+ < v >
the only new correlation in fact introduced is < 'v'v’ >. A term of this form arises
in the equation for the scalar flux (see Rodi 1980) and in modelling this equation,
a number of authors have suggestied using a gradient diffusion representation for

< ¢'v'v' >. Gibson & Launder (1978) for example use
ror_t k ' 't t )1 't
< cdv'v >=C,E[<uv >. V<> HV <Y >) < v'v' > (2.55)

whicH in free shear flows gives reasonable agreement with experiment — as shown by
Dekeyser & Launder(1983). However, the recent work of Nagano & Tagawa (1988)

suggests that for wall boundary layers the main contributions to the triple scalar

_ correlation < dv'n’ > arise from turbulent bursting phenomena, for which none of
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the gradient diffusion laws tried gave an adequate representation. Fortunately, it is
possible to derive an alternative formulation of the averaged particle equation which

avoids the occurrence of < ctiz >; this is presented in Section 2.3.3.

Fluctuating pressure-concentration correlation

The correlation < ¢/Vp’' > represents a iransfer of momentum between fluid and
particle phases via pressure fluctuations and appears with opposite signs in the fluid
and particle momentum equations. The same term arises in the transport equations
derived for the scalar flux < ¢'v' > and we model it as described in Rodi (1980).
That is, writing . |

<dVp >=V <dp >-<p'V > (2.56)

the first term is neglected. Because of the result of Section 2.2.3, that the presence
of the particles affects the fluid motion primarily through buoyancy, we can derive
a standard expression for < p'Vc' >. Star;.ing from (2.27) we write all variables as
mean plus a fluctuation and subtract (2.28); the resulting expression car be written
as

0
- Vp' = p(G + ), - (2.57)

where the exact form of b is not important at present. To zeroth order in the particle
concentration we have V.v' = 0 so that taking the divergence of (2.57) we can neglect,

assuming ¢ & 1, the contribution from ¥.v’. This gives a Poisson equation for p'

—lV2 '=V.b=R
Py

where
2 't ) - ., Bp '
R=V%:(<v'p'> —-v'v')-2Vs: Vv +p—g.Vc
i .

Inverting the Laplacian by the use of the Green’s function

1

1

€ TR

yields .
P()pr = [ Gle,v) Ry +S
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where S is the contribution from a surface integral around the boundary of the flow

domain D. Multiplying this expression for p' through by V¢’ and averaging leads to

. .
p—<p'Vc'>=Hl+H7+H3+3,
i)

where
8 = <85V >,
m = —/ < (Vi:v'v')'Vc > Gdy,
T
I, = —2/ < (Vo :Vv')" V' > Gdy,
D
and

;= ﬂ’/ < (9.V<')' V' > Gdy,
Pt Jp

Starred quantities are subject to integration with respect to dy. The following models

have been proposed for these expressions (see Rodi 1980):

e
Im, =- ~arg < cvl->, _ _
II, = a3;<cv >.Vp,

A
I, = —a.;—pg < c? >,

Py

where a;,a; and a3 are experimentally determined coefficients. The correlation < ¢'2 >
is modelled using (2.52). All these models must represent gross simplifications in that
local values are used to approximate the integrals on the LHS of the above expression.

Near the boundary the contribution from the surface integral S cannot be ne-
glected. For the case we are interested in, of a single horizontal boundary in the z —y.
plé’me at z = 0, the effect of the surface integral can be represented by modifications
to the terms IT,,IT; and IT3 (see Gibson & Launder 1978). The z component of
each IT; is multiplied by 1 + f., where fo = f(l/z) is an empirical function of the
turbulent length scale. A simple linear form, f. = a'k3/2/(z¢), where the a! are
a set of experimental constants, has been found by Gibson & Launder {1978) to be
adequate.

The final form for the pressure-concentration correlation, including the wall cor-



rection, can be written

£

<p'Ve >= —py <c'v' > g

+pi(< v’ > . Vo)a, —Ap<c? >g.a; (2.58)

where

o = Cl.l‘I + a:fckk

. The final (‘closed’) form of the particle momentum equation is given by (2.53)
with the triple correlation given by (2.54) and the pressure-concentration correlation

modelled using {2.56) and then (2.58).

2.3.3 Particle equation: closure II

In Section 2.3.2 we have provided models {or the turbulent correlations in the particle
momentum equation correct to Q(7"), apart from the non-linear drag. For the situa-
tion we are interested in, that of wall bounded shear flows, the apparent inadequacy
of current models for the triple scalar correlation < ¢'v'v' > (Nagano & Tagawa,
1988) presents a severe problem. Ve here derive an alternative formulation which
avoids the occurrence of this correlation. Although it is possible to start from (2.10)
‘it is easier to use the pre-averaged-equation (2.3). The procedure followed is similar
to that of Shih & Lumley (1985) except we use as an expansion parameter the non-
dimensional quantily 7* rather than the dimensional parameter y/p,. This leads to
differencesin the zeroth and first order approximations. For example Shih & Lumley
obtain u = v as the zeroth order solution instead of (2.19).

Essentially, the equations are expanded about the zero inertia solution to obtain
a first order correction for the particle inertia. The result (2.19) implies that correct

to O(7*)

Du* _ Dv*

o = e + wg. Vo (2.59)
e Pl ¢ L oap® e
= -Vp +;cw°+_§;vzu + wg.Vo©,

which we then thet use to substitute for the convective derivative in (2.14) leading

to

i
(v —u')+ewy = pwic’ +7° |-(1- ’-’)ch' + cwy.Vv* + %Vzv'] .



Using (2.59) the added mass term (2.35) becomes simply
—€p; Comwo.V'u,

so the pre-averaged particle momentum equation takes the form

(vt —u')+cwy = pwict (2.60)
1 v
+7-(1- ;)ch' + %cvzu' +cwy. (Vv + C—p’"V‘u’) ,
which in terms of dimensional variables is T.
1 ' ,
c(v-u)+cwg = pwoc®+ 5 [=(p = 1)eVp + ppcV?u + cwo.(pp Vv + pyCom V'v)]

Re-arranging and averaging this expression, approximating the non-linear drag law

as described at the beginning of Section 2.3.2, yields

1 .
Fi = &0+ fwet < v > —pwe(+ < >) + 5 [{p = 1)(eVp—~ < P’V >) +q],

(2.61)

—~wq. [E(pp VB + pyCom V'8) + (pp < 'VV' > +p;Com < 'Viv >}

o
Il

”r(lwol)-

<2
]

In (2.61) we have also written < ¢'Vp' >= V < ¢'p' > — < p'V¢ > and then ne-
glected the first term on the RHS. The pressure-concentration corielation is modelled
using (2.58). As usual the viscous terms are neglected by assuming high Reynolds
aumber and local isotropy.

Although the formulation (2.53) presented in Section 2.3.2 has the advantage
of keeping more terms in an exact form, the approach described above is preferred

because:
1. the triple scalar correlation < cuu > and hence < ¢'v'v’ > no longer appears;

2. no derivatives of u appear ia (2.61), thus it is no longer a differential equation

but gives u explicitly in terms of correlations involving ¢ and v.

Apart from making the calculation of inertia effects more straight forward, the second

point has the important consequence that no boundary conditions on u have to be
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specified.




Chapter 3

Numerical Model for
‘Oscillatory, Turbulent

Boundary Layer Flow |

In tll1is chapter simplified forms of the averaged equations derived in Section 2.3 are
presented for the case of the suspended load region of a turbulent oscillatory‘blou ndary
layer. Boundary conditions required for the solution of the equations describing such
. flows are discussed, and a detailed description is given of a numerical model used to

obtain these solutions.

3.1 The oscillatory boundary layer approximation

’

The physical situation corresponds to that sketched in Figure 3.1 and consists of
a solid horizontal boundary over which a flow is imposed such that far from the

boundary the horizontal fluid velocity is given by
V = Vi cos(mz — wt) (3.1)
If we define a ‘wave Reynolds number’ by
Ry = Voa/v

where @ = Vg /w, then for sufficiently large values of R, the flow is turbulent.

Sleath (1984, p 58), summarizes the results of a number of experimental investigations
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of this critical Reynolds number for oscillatory flows. We assume that the value of
Ry is large enough for the assumption ofa fully developed turbulent flow to be valid.
In addition the mean flow is assumed to be purely two dimensional (no variation
normal to the direction of propagation of the wave).

Quantities occuring in equations (2.8), (2.9), (2.28) and (2.61) are scaled to deter-
mine which terms, if any, can be neglected. The scale for a variable will be denoted
by the symbol for that variable with a cross (+) superscript. Thus if the symbol ‘~°
means ‘scales as’ we have

c~ct iy ~ 11?' elc.

Horizontal and vertical ve!ocity.components will be indicated by subscripts 1 and 2
respectively. ‘
At the edge of the boundary layer the horizontal fluid velocity is given by (3.1),

with Vo, m,w given. This leads naturally to the following choices for scales:

tt = 1w,
zt = A=2x/m,
if,uf = V.

The boundary layer is taken to have a typical thickness § which is used to scale z.

For the fluctuating quantities we assume

1] I - = 1]

vy, vh, iy, 8 ~ 't
; 1442
P -~ p](v )1
¢ ~ ¢t

The assumptions, made in Chapter 2 of dilute particle concentrations and short

particle response times, imply:

& & 1, (3-2)

% & L (3.3)

in addition, the application to oscillatory boundary layers enables the following ad-

ditional approximations to be made.

Boundary layer approximation

6
B < L (3.4)



This allows the assumption of a constant horizontal pressure gradient through
the boundary layer and also the neglect of all spatial derivatives other than

those normal to the boundary.

Small oscillatory amplitude approximation

Voo

If the amplitude of the oscillations (a = Voo /w) are small compared to the
wavelength A, it is permissible to neglect the advective acceleration terms in
comparison with the temporal acceleration term in the fluid momentum equa-
tions. This approximation is consistent with the assumption of a linear water

wave (for which the surface slope a/}, is vanishingly small) driving the flow.

Figure 3.1: Definition sketch of oscillatory boundary layer

Fluid phase

The dilute concentration assumption reduces the fluid-phase mass and momentum
equations to the standard Reynolds averaged equations of single-phase turbulent flow

— apart from the addition of the buoyancy term in the momentum equation. S_ca]in_g
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arguments based on (3.4) and (3.5) are then standard; Batchelor (1967, pp 315-318)

for example deals with the laminar case. The turbulent case is almost identical and

most authors simply quote the result. However it is advantageous to go through the’

scaling arguments in preparation for the non-standard, and more involved, particle
mass and momentum .balances.
In the limit of dilute particle concentrations (2.9) reverts to the continuity equa-

tion V.5 = 0, leading to the following relation between scales

>t
en' &

(3.6)

Using this relation between velocities, the scaled horizontal momentum equation for

the fluid can be written

0, Vool @
bt wh |0z

B o5 W [(8) 2 _ .
8z ! dz

a §_1
- —_ = — <v T = v >
prwAV, 0z wéV A > < it
From (3.5}, the advection terms can be neglected in comparison to the time derivative
and from (3 4), the first Reynolds stress term can neglected in comparison to the
second such term. In addmon if the eﬂ'ects of turbulence are to be significant in the
situation considered here, the remaining Reynolds stress term must be of the same
order as the acceleration. The simplified momentum equation in dimensional form
therefore becomes
95, ‘3p g
—_— = —5 - vy >. - 3.7
Pt ot 3z "3 1Y2 (3.7)
In addition the following relationship between mean and fluctuating velocity scales

is assumed to hold
v+

6 ¥

wVy (3.8)

so that the gradient of the Reynolds stress is assumed to be of comparable magnitude
to the acceleration in (37)

Consider now the vertical momentum balance. Arguments used for the horizontal
momentum balance can be applied to the acceletahon and Reynolds stress terms in
the vertical case, leading to the simplified eqlilation

89, . Odp
PIW=—AW9—5£—PI§’<"'22>

By (3.6) and (3.4) the vertical velocity is negligible compared to the horizontal ve-
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locity and so by (3.8) the-acceleration term in the vertical momentum balance can

be discarded to leave simply

. 3p s
0=—Apcg—a—f—p_fz<v-f>. (3.9)

Thus, to maintain a negligible mean vertical fluid velocity the pressure gradient must

balance the mean vertical turbulent stress and the buoyancy force due to the particle

flux. If (3.9) is integrated from some point z in the boundary layer to the top of the

layer at z = z; we obtain, assuming the Reynolds stress vanishes at za,

r

. 2
Bz 20) = Pro(zt) - py <o > +8pg [ cds. (3.10)

Here P is the pressure at the edge of the boundary layer which is determined by
the low outside. Let V; and V; be the horizontal and vertical velocity components
of the flow outside the boundary layer. Assuming this flow to be irrotational we have
that

av, d d 0 Po

Ll vie ViV, =— .
3t+3:l+6212 oz

By (3.5) and (3.6) the advection terms are negligible so

av _aPm
P1 ot 9z
Thetefore - .
dp,,
Iyt oV, A1
(Z2)* ~ ppu (3.11)

If (3.10) is differentiated with respect to z then (3.11), together with.(3.8), show
that the F{eynolds stress term can be neglected compared to the resulting horizontal
pressure gradient. The ratio of the term involving the integral of the concentration

to the pressure gradient is of the order

g
wVq

5
+_Z
<5

The magnitude of this cannot be directly ascertained using the proposed scaling
relations and therefore we aﬁ; forced to substitute in typical values for the quantities
that appear based on tl';e the application we have in mind. With Vo, = 1 m/s,
w=0.5 rad/'s‘.and~c+ == .01, the ratio becomes approximately 6/A which, by (3.4),

[
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is therefore negligible. Thus we can put .

0p 0Py

3 = e (3.12)

and the horizontal momentum balance for the fluid becomes

81, -_16P°°_a<
ot p_;a: 9z

|
Ul!)2 > .

The forms takenvby the turbulent kinetic energy and dissipation rate equations,
(2.46) and (2.51), in the oscillatory boundary layer are likewise determined using the
scaling relations {3.4) and (3.5).

Particle Phase

Following the procedure used in scaling the terms in the Auid-phase equations the

particle mass balance is examined first. The scaled mass balance equation is

% (Ve\ 3 o (HY 20 g "
@ T\ex M T\w)ET T

By (3.5) the z-derivative can be neglected compared to the time derivative so that

'aé_+a
8t 8z

¢y =0,
implying the following relation between scales

w -~ (3.13)

F~ 5 <L (3.14)

The particie momentum equations (2.61) presented in Section 2.3..3 can be simpli-
fied ising similar arguments to those used for the equations of the fluid phase. Effec-
tively these arguments amount to neglecting all terms multiplied either by derivatives
with respect to z or by the vertical fluid velocity, 2. Because of the complexity of the
original equation, only the final result is given. In the following expressions, Il; ; is v
the jth component of the IT; that comprise (2.58) (7 = 1 and Jj = 2 are the horizontal

and vertical components respectively).



The horizontal balance for the oscillatory boundary layer is

6P, _ 0t
+ Cwo—m' -1+ ﬂ-'lf:/ﬂ-l)nz,1] .

o oo 1]
€y =&y + 5 [c(p - 1)72— =

Using the definition of I3, yields
&y = &0y + ; {E(p - l)aaL: + [fwo — (a2 + a5 fc)Ap < v >]%?} . (3.19)

By contrast the assumption of zero particle inertia, (2.20), gives ¢t = &5
The oscillatory boundary layer approximation to the vertical component of (2.61)

can be shown (after much algebra) to be

Eiy = —CGwot < c'vh > +pwo(+ < % >) :
1 ap
+ 2 [-o- 106% - aptattiia + otz e, (310
Y d: Y
where
a
af = 1+ 2f,
a; .
£ ' )
n].g = —,GII‘<C02 >, J—
A
[I;,g = 'a;—Pg < c'? >,
Py ] ‘
a 2 1 a o1
¢ = —(pp+p1Cum) fxg; <c' > - fawe <Cv2>"gz-<‘-'"z> wo,
o= %<c" >t ' - T‘
9¢ C}
= _— (b b - —.
fi = ggli+ha) iR

Note that in (3.16) we have neglected the contribution from &, to the vertical par-
ticle volume flux on account of (3.14). Substituting for the mean pressure gradient

using (3.9) yields . o

&y = =&l —&wo+ < c'vh > 4pwe < €? >

1 _0 . .
it ; [AP (CE < Uzz > +anl,2 + 03“3,2) - Q] -

Finally, substituting for My,2 and I3, we obtain the following e'xpression for the

% a.

vertical particle volume flux

Gip = —&(1 —&wo+ < c'vy > +[p—(p—1)asjwo < c? >
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1 d
+ p [Ap (—63'5 <v?> +ou% < c'vy >) + q] ) (3.17)
where

a;=a; +aif.

By contrast, the assumption (2.20), of zero particle inertia, gives in the boundary
layer v

flig = —Cwop+ < c'vh > . (3.18)

Turbulent correlations are modelled using (2.52), (2.41) and (2.42). For a bound-

ary layer these give:

k d¢
<> = —2R—<c'u'z>—c,
£ dz
<cvy> = ad
2 - Tz
8v
<wn> = -
and
2
<vyl >= k.

3

It is assumed that k7 = vr/o., where o., the turbulent Schmidt number for the
conceniration, is a non-dimensional constant. In general o, may be a function of the

flow parameters (see Rodi 1980) but, for simplicity, we take o, = 1.0.

Oscillatory boundary layer equations

We present now the complete set of equations for the oscillatory turbulent boundary
layer, negleéting for the moment all terms associated with particle inertia. The
modifications necessary to include these terms into the formulation given below are
discussed in Chapter 5 when the significance of the particle inertia terms is examined.
Without particle inertia, a standard set of equations is obtained for the oscillatory

turbulent boundary layer (see for example Hagatun & Eidsvik , 1986).

g = —%Eﬁz, (3.19)
‘;_’: = %(;’:-‘;—f)+a+c-e, (3.21)
% = %(g%‘;)+C;,%(P+G)(1+C:;¢R,)—sz%z, (3.22)
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where

. a"
Gy = ‘“’°E""r'a_z' (3.23)
a_ 2 ) .
P = ur (%) . (3:24)
G = -L\logfcq-g, (3.25)
Py dz
Rl-: —G/P

Here Cy., Cz, and Cs, and the Schmidt numbers oy, o, are experimentally determined
constants. '
If the eddy viscosity velocity scale is derived from the turbulent kinetic energy
then
vr = CJ kM2 (3.26)

The dissipation rate ¢ and length scale [ are assumed to be related by

3/4
CDI L3/

; (3.27)

If the transport and buoyant production terms are neglected in (3.21) leaving

a balance between shear production and dissipation (so-called “local equilibrium”)

then
K= cpt %‘% : (3.28)
Substituting this into (3.26) gives
a5,
=]
T a9z

which is brecisely the form given for vr by Prandtl's mixing length hypothesis.
In Chapter 4 the effect that the form of the turbulent length scale has on the
mean velocities and particle concentrations is investigated: Three approaches are

compared:
1. an empirical specification of ! based on results from steady boundary layers;

2. determining { from the turbulent kinetic energy by re-arranging (2.50) to yield
’ I3 .
= nk!ﬁ[ k-Y1ds 4 1y, (3.29)

where I, is the value of I at the botiom boundar:v z = z (effectively I, is a
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boundary condition for {), and x is the von Karman constant;
3. using the ¥ — € model, and calculating the {.in terms of k and £ via (3.27).

The siress exerted on the bottom boundary by the turbulent transfer of mo-
mentum is denoted by 7. This quantity, which is important in sediment transport
problems, is calculated from the Reynolds stress evaluated at the bbttom boundary
2;. In terms of the gradient diffusion model, 7 is therefore given by the following

evaluated at 2o

o (3.30)

lrol = pyvr

3.1.1 Boundary conditions

Equations (3.19) to (3.22) will be solved on a bounded domain, z; <z < 23, and
boundary conditions near the bed z = z,, and at some point above at the edge of the

boundary layer z = z;, are required.

Bottom boundary

At the bed, the boundary conditions on the veiocity for oscillatory flow are based on
ideas originally developed for_steady flows and involves setti.ng_the velocity to_zero
not at z = 0 !, but at some point zg above this level. This is because the assumptions
used to derive the turbulence model, which neglect viscosity and the nature of the
bed, are no longer valid in the vicinity of the bottom boundary. The determination
of zg is essentially empirical and h;Ls bee_n investigated thoroughly for. the case of
steady shear flows above a solid boundary -where the mean velocity profile takes a
~logarithmic form. In general zo depends on the flow itsell (via the friction velocity
v.), the laminar viscosity v, and the Nikuradse roughness height ky (a measure of
the height of elements making ﬁp the bed). Foré rough turbulent boundary layer
the roughness height is sufficiently large, compared to the viscous boundary layer
thickness, for the viscous sub-layer to have no effect on the turbuleat flow further

from the bed; for this case zg is given by

1
= —kp.
Z0 30 N

For fat beds of sand a number of formulae lgelat.ing the sand diameter d and the

Nikuradse roughness length have been suggested‘. Generally these have taken the

!For Hat uniform sand covered beds, the theoretical level of the bed is usuelly teken id below
the top of the sand grains.
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form

ky = mDa, (3.31)

where D, is defined such that n% by weight of the sample has a diameter less than
D,. Sleath (1984, p. 35) presents a selection of such relationships and suggests using
ky = 2Dgs, as given by Engelund & Hansen (1967). The boundary condition for the

velocity is thus taken as

;=0 atzj=2z = %k,v. (3.32)

" An alternative way of formulating the velocity boundary condition near the bed (e.g.
Johns 1977), is to assume explicitly that a logarithmic velocity profile of the form
v.(t), =
#(z,t) = —=In —, 3.323
1{z,8) = — p” (3.33)
exists below z;, where z; > z9. The instantaneous [riction velocity v, (t) is related to

the bed stress by

v (1) = ] Tol8)
(=[5 (3.34)

Differentiating (3.33) with respect to z and substituting from (3.33) for v. yields the

following (Robins) boundary condition for the velocity at z = z;:
zln (i) @ —-v=0. (335)

The approach has the advantage of saving the computational points that would oth-
erwise have been used below z,, but requires the extra assumption of the logarithmic
velocity profile (3.33). Note thal zg is still required. In Section 4.1.1 numerical
solutions using (3.32) applied at 29 and using (3.35) at z = z; > zg are compared. .

It should be mentioned that some authors, e.g. Smith (1977), have suggested that
in conditions where sediment transport is occuring, Lthe bed load will have an effect
on the value of zo. VanRijn (1981) is reported in Sleath (1984, p. 39) to have [ound
no evide.nce for this aﬂ.(equé%rigwing the _available data. Contrary to this however, the
recent paper by Wilson‘kindicates that zp should be proportional to the thickness of
the bed load layer under sheet flow conditions. Although this is the regime with which
we will be most concerned, we have decided not to introduce the added complexity
of such a dependence of zg.

Two choices have been reported in the literature for the bottom boundary con-’

dition for the .turbulent kinetic. energy equation .in oscillatory boundary_ layer flow.
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Justesen (1988) assumes the local equilibrium form (3.28) to hold at 2, = 2. This
allows k£ to be written in terms of the instantaneous bed stress by substituting for

:the velocity gradient in (3.28) from (3.30) and then using (3.26) to obtain
k=p;'Cp" ol (3.36)

In practice this relation needs to be satisfied using an iterative procedure since g
is itself determined from the solution. Alternatively, Hagatun & Eidsvik (1986) and
King et al. (1985) put

Q:IQ:
o B
I
<

(3.37)

at z; = zo-

If the assumption of a logarithmic velocity profile (3.33) is made, then (3.36) .

represents a reasonable boundary condition for k, providing that 15 is replaced with
the turbulent shear stress at z;. The assumption is that the turbulence is in local
equilibrium at z;. If it is assumed that the region below z, is one of constant turbulent
shear stress then 1o and the shear stress evaluated at z; should be equal anvway. This
leads to an alternative bo.undar_v condition {Johns 1977} in which the assumption of

a constant stress region, together with (3.36); implies
Z-o ‘ (3.38)

at z = z;.

When the turbulent length scale ! is not specified empirically, some boundary
condition at the bed is required. Based on ideas from steady wall-bounded shear
flows, the assumption is made that [ is proportional to the distance from the wall.
Since the constant of proportionality can be chz'mged arbitrarily by the way Cp enters
into the equations, we choose the constant to be von Karman’s constant, as for steady

flows. Thus we have-at the bottom boundary
l=kz

By (3.27) this implies the bottom boundary condition for £ should be

C:,“k:’“

Kz

Even for steady unidirectional flows the bottom boundary condition for the ‘con-

.centration equation (3.19) is problematic.. The quantities required are the level above. _ .
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the bed at which the concentration should be given — the reference level, and the
value of the concentration at that level — the Feference concentration. The two
values are not expected to be independent however, since clearly the value of the
reference concentration will vary depending on the choice of reference level. Two

obvious choices for the reference level are:
I. at the top of the bed load layer;
2. where the velocity boundary condition is applied at zg.

Apart from a dependence on the reference level, the reference concentration will,
more importantly, also depend upon the nature of the flow and the properties of the

sediment. The Shields parameter,

To

S= m, (3.40)

the ratio of the weight per unit area of the sediment and the force per unit area
exerted by the flow, appears in a number of empirical formulae that have been
suggested the bottom boundary concentration. For the calculations presented in
C_hapter 4, we use a relaliveléy simple expression adapted for use in oscillatory flow
by Hagatun & Eidsvik (1986) from an expression derived originally for ;;eady flows
by Engelund & F-redscr:(1976). This is applied at z = z¢ and is given by

0, S < 501
&(20,6:5) = { co(S — S0)/(S1 - So), So< S < Su, (3.41)
Co, S > 85.

Here cg is adjusted to fit experiment while Sp and §, are the critical and what we
term the ‘saturation’ values of the Shields parameter. The critical value is the value
of § below which no sediment movement is supposed to occur. The saturation value
tepresents an upper bound on the sediment concentration in the bed load region,. the
name implying that at this point the bed load cannot take up further quantities of
sediment. .We follow Hagatun & Eidsvik and assign So = 0.05 and 5, = 0.75.

Since zg will be well below the top of the bed load region, we cannot expect the
the concentrations that are predicted near the bed to be correct since the equations
are not valid there. In Chapter 5 we take into account particle inertia and pressure
effects and will wish to avoid the bed load region entirely because spurious effects
predicted in this region, where the model is not valid, will influence the solution in

the suspended load region.above. _The approach_adopted, and_explained in more
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detail in Chapter 5, is to solve the model without inertia terms using (3.41) at zp and
so obtain a value of ¢ at the top of the bed load which is then used as the bottom
boundary condition for the model with inertia terms.

Rather than specify the concentration at the lower boundary, a number of work-
ers (e.g. Nielson 1979) have preferred to specify the lower boundary condition using
a ‘flux’ boundary condition involving the concentration gradient. In general it is

" supposed that this is’ mosi appropriate for flows of a dynamic nature, where the bed
load concentration has no time to reach an equilibrium value. No consex}s‘us appears
to exist concerning the merits if this type of boundaty condition, as pbposed to the
more traditional approach of sup.plying a reference concentration. For our purposes

the latter is assumed to be adequate.

Upper boundary conditions

Fortunately, conditions to be itmposed at the upper boundary, z = 2z, are more
straightforward than those at the bed. For the velocity two reasonable choices are

either to put ©; equal to the free stream velocity
#i(22,t) = Vo sinwt, (3.42)

or to require

9y _ 0. (343

The upper boundary conditions for the turbulent kinetic energy & and turbulent

kinetic energy dissipation rate £ are

D

'
9z ~ 8z

(4]

=0.

For the concentration reasonable boundary conditions might be

é=0, (3.44)
or

dé :

5 =0 (3.45)

Results obtained using all the suggested boundary conditions are compared in Chap-

ter 4.
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3.1.2 Non-dimensional form of equations

By scaling the equations using the dimensional parameters that enter into the prob-
lem, it is possible to identify the non-dimensional groups which characterise the flow,
[t is also often advantageous numerically to solve the equations in non-dimensional

form.

Quantities used to non-dimensionalise the equations are in this instance chosen -

for convenience rather than to obtain realistic magnitudes for all terms. The free
stream velocity V, and the frequency w define obvious velocity and time scales and,
via (3.11), the pressute scale. Introducing these and é (as yet unspecified) to scale the

vertical coordinate z, the following non-dimensional momentum equation is obtained

from (3.20)

3 - 9z T wior

d5; 0Py, 1 8 [vrdujy
Bt & 8z

If the tength scale is now defined as the ratio

+
v

§=—,
w

with vt some velocily scale, we obtain

aa;__ap;,+ a (U,@;_)
ot = 8zr B8z \'Téz )’

where

vy = vrf(vt8). (3;46)

A natural choice for v* is the maximum friction velocity over a wave period T,
em — N ¢ 3.47
v Tz (), (3.47)

because:

1. for oscillatory boundary layers the typical boundary layer thickness is often
taken to be 6, = v, fw (see for example Smith 1977, pp 546-547) and thus §

would be representative of the boundary layer thickness;

2. the velocily scale appearing in the definition of the non-dimensional eddy vis-
cosity (3.46) should be representative of the velocity fluctuations, which v,

is.

Previous workers, (Johns 1977, King et al. 1985) have used V., to define the value

- — of §. Whilst v,,-would have to be.estimated from some additional theory, Vo is.one _ __
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of the given parameters and therefore we follow previous work and put

| L

§==
w

a,

so that § becomes the amplit:ude of the oscillatory m_otion at the edge of the boundary
layer. Adopting this definition of § the boundary conditions are applied at z3 = z2/a
and, assuming a rough boundary layer, at z5 = 3lokN/a. Two non-dimensional pa-
rameters, z; and afky, are seen to characterise the flow 2 Most studies have not
been concerned with z}, specifying it to be large so that effectively the problem being
approximated is the one with z; — oo, Physically, this corresponds to a boundary
layer that is completely contained within the external flow which is the assumption
made in Section 3.1 when the boundary layer equations were derived. We therefore
take zj to be large and concentrate attention on a/ky, the ratio of the amplitude of
oscillation to the roughness height, which is then the single parameter that charac-
terises the hydrodynamic aspects of the flow. _

It should be mentioned that the concept of roughness height is likely to be valid
only for ky <€ a. As the bed features become nearer to the scale of the flow itself,
the shape of the bed must be expected to influence the near bed flow (for example
by the shedding of'ed‘dies from individual surface elements) and these effects cannot
accounted for by the idea of a simple roughness value. Justesen (1988) suggests that
a/k_N > 30. ..

With v+ = V,, we should, for consistency with (3.46) given that vy o k!/2,
use V2 to non-dimensionalise k. This in turn implies, upon rearranging (3.27} and
scaling | with &, that £ is to be non-dimensionalised with the quantity w V2.

For the vertical particle flux @2 there are two velocity scales that could be used to
obtain a ﬁon-dimensional quantity; the free stream velocity V., and the fall velocity
wg. Although wg is characteristic of the magnitude of i3, it is more convenient to
use V, as the terms in the resulting non-dimensional equation are closer to those ap-
pearing in the momentum equation. This makes the implementation of the numerical
scheme slightly easier. The concentration is scaled on the reference concentration cg,
introduced in the boundary condition (3.41). The non-dimensional form of (3.19) is
then found to be I -

E a

ot =0, (3.48)

3The fact that both enter through the boundary conditions is due only to the definition of §. If,
for & rough boundary layer, we had put é§ = kp then the non-dimensional number a/kpn would have”
appeared in the momentum equation rather than in the boundary conditions.
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where

cay = -w;,e'—n:r%f;, | (3.49)
wy = wo/Veo, (3.50)

K = rr/(Veob). L (3sY)

Thus a third non-dimensional parameter wg emerges. It is expected that the quantity
of sediment in suspension will depend inversely on the value of wy. For wg < 1 the
turbulent fluctuations, scaling on V,,, are large relative to the fall velocity tending
to keep sediment in suspension whilst, for wg > 1, the fall vélocity dominates the

velocity fluctuations and the quantity of sediment in suspension wiil decrease.

Coordinate transformation

A characteristic of the turbulent oscillatory boundary layer is the occurrence of large
velocity (and concentration} gradients near the bed. It is usual to introduce a trans-
formation to the vertical coordinate Lo avoid the use of extremely fine grids that
would otherwise be required to resolve the near-bed flow. Therefore we define a new

indei)endt_an_!._va_rialgle_ o . ) o
() =[n 2 + E =2y, (3.52)
25 h .

Since

we can re-write the non-dimensional form of the equations in terms of (.

% = _('a%a'ﬁ;, (3.53)
%':—f = —%Li" +<'é,iC (U%'%%{), (3.59)
AR a_ac' (%Z%_’Z')erwcua', (3.55)
% - 'a_ac ('2" ‘Z_‘C') + C,,Z—:(P’ +G*)(1+ Cs.Ry) - Cae (‘:_)2. (3.56)
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where

= = « = clac-.
c up = wqC —Kfr?c-,
. fan\?
o= i ()
Ap oe*
G' = oy oo_’
OPI 9Ky aC
e - u
Ky = vr.

The local equilibrium expression for k (3.28) becomes

3vl

Ly 12 -114 A

(3.57)

The non-dimensional length scale /6 is calculated either from % and £ using

P o Bl
€* '

or {rom k only via

. TLeyl/? < 129 . T
" (¢) = (k) (k)77 = + 4.
G ¢
Summansing, the boundary conditions are:
Velocity At the lower boundary
1. 8] =0 at z] = zg;

av - . L]
2.zlln( ) 3(1 0] =0 at z; > z3.

At the upper boundary
1. 9] =sin¢;

2. 95 =
3C
Turbulent kinetic energy At the lower boundary

L & = p; 'C2IrI/V2 at 2f 2 25

ak* . .
2. -aT=Oa|,z1 2 %
At the upper boundary
ok _
%



Length scale At the lower boundary
I* = xz*.

Dissipation rate At the lower boundary

~ Cg/‘l(k-):llz

EO

Kz
At the upper boundary

oc®

E-:O.

Concentration At the bottom beundary, 2] = z5

0, S5< S
C-'(ZO,f.; S) = (5 - So)/(51 - So), So < S <S5
1, §> 85

At the upper boundary,

_. — 0; ) b . .
dc
¢ 0. :

1.

[+]

2.

3.2 Finite difference scheme

The equations whose numerical solution is sought can’ all be broadly classified as
being advection-diffusion equations and parabolic in type. Numerical solutions can
be effected relativel;v easily by standard finite difference techniques. We adopt an
implicit';scheme based on the classic Crank-Nicolson method (Smith 1978). This
method is similar to that used by King et al. (1985) for an oscillating boundary
layer. '

In an implicit scheme the solution at the (n + 1)th time step for a spécﬁﬁc finite
. difference node is given in terms of the solution at the surrounding nodes at the
(rn-+1)th time step and the solution at the nth time step. This gives rise to a system
o[ialgebraic equations whose solution yields the values of the dependent variables at
the next step. Typically such methods entail more computation per time step than
an explicit method, which gives the solution at (n + 1) using only the solution at n.
Howe‘ver L_hey enjoy superior stability properties e-nabling"ld'rg-e.r time steps to be used
and hénce an overall saving in computational cost. For a linear diffusion equation
an explicit scheme has a time step that is constrained by the square of the space

step whilst the Crank-Nicolson, and related methods, can be shown to be stable for
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any time step. This property of the Crank-Nicolson scheme ‘does not necessarily
carty over to the complicated, non-linear system given by (3.19) to (3.22); however
in practice the scheme has been found to be stable for all the cases tried.

Each of the equations (3.53) to (3.56) can be cast in the g‘enerai form

¢ _ .90 .09

+ B+ C, (3.58)
where A, B, C and K will generally be functions of ¢ if the system is non-linear. Let
the function ¢? be defined on a discreet set of points {¢;} and at times {t,}, where

1<i< M, 0<n. Let

G = G+(i-1)Ag,

tn, = nit,

(Car = Cu)/ (M = 1).

>
~
|

Atintermediate times define ¢2*%, 0 < 6 < 1 by

i

@rte = 6gr ! 4 (1 - 8)¢?. (3.59)
Let
D¢l = i — 90
Doop? = 1 — Py

The derivatives of ¢ in (3.58) are replaced by finite difference equivalents involving

¢? thus

At AC?
' + ATYDogRtoJ(28¢) + BPFOGRO 1 OO (3.60)

¢?+1 - ¢:‘ ‘ .l' n n n n
= C [K|+-!.|GIZD+¢|' - K. '*-19/'71D+¢5 0

It is easy to show that this finite difference expression is consistent with the original
partial differential equation {3.58). That is, writing the finite dif[e;'ence expression
as F(¢P; AC, At) = 0 and substituting in ¢ satisfying (3.58), then F(¢; A(, At) — 0
as AC, At —0. '

Using (3.59), the finite difference expression (3.60) can be written

_d‘¢n+l + el¢n+l _ f‘ :::ll : r (361)
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di = 6(-X A7 + M K1),

6 = LHODM(KER, + K2) - ABTY,

fi = 8(0aAT + MK, , |

re = ¢F+AICH? :
+(1 - 3)['\1(K?+"L1'J/ZD+¢?+8K‘!‘_+19,21)+¢:.‘_+1"“) + Az AT Dog e 4+ ALBPHIBRHO],

A= ;Ciz, Ap = 2%‘(

If, for the moment, we assurne that (3.58) is linear, i.e. that 4, 8,C and K are
not functions of ¢, then (3.61)is a tri-diagdnal linear algebraic system which can be

written in matrix form as

A"t = b, (3.62)

where

1 — 1 1 1
6" = (e a3t ).

The solution of such systems,_wi}.h the o_nly-r_lon-zero elements ochring along the

-leading diagonal and the two diagonals on either side, can be dbtained efficiently

using Gaussian elimination. The elimination algorithm is stable without requiring

pivoting if the following are satisfied:

di > 0, e,>0, f; >0,

e, > di+ fi

Adding d; to f; shows that the last condition is also satisfied automatically for K > 0.

Bourdary conditions are implemented as follows.

Dirichlet H ¢ = a is specified at ¢, then (3.61) at z = 2 is written
e203t! — 2937 = r; + daa.

The solution is then obtained for ¢ > 2. An exactly analogous procedure is

employed at M — 1if ¢ is specified at M.

Neumann If the derivative 8¢/8¢ =  is specified at {; then an extra variable $3*!
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is introduced and the finite difference equivalent of the boundary condition

¢'21+1 _ ¢3+1
1AY4

=a,
is substituted into (3.61) at i = 1 to yield
el‘ﬂlﬂ ~(di + f1)o3t = + diad(.

The solution is then obtained for ¢ > 1. Again a similar procedure, introducing

an extra variable ¢Rt++ln is applied at i = Af if a derivative is specified at the

top boundary.
Robin If 3¢/3¢ = a¢ is specified at (; then-an extra variable ¢3+' is introduced
and the finite difference equivalent of the boundary condition

+1 n+1l
2. — %o

— n+l
AC = adl

is substituted into (3.61) at i = 1 to yield
_(dlaz).(.ri- €|)¢T+1 - (d1-+ f|)¢g.tl =r;. _ -

The solution is then obtained for i > 1.

When .the dependence of 4, B,C and K on ¢ is taken into account, the finite
difference equations are of the same form as (3.62) except that A and b are now

n+l

functions of ¢" ™. The solution can still be accomplished using the efficient algorithm

for a linear system by using a standard iterative technique. Define, for given n, a

sequence of iterates ¢"*!* by

¢n+1,0 — ¢n‘
A(¢n+l,l)¢n+l,n+l — b(¢n+l'.),

then ¢"***! can be calculated at each iteration using the algorithm for a tri-

diagonal linear system. Assuming the sequence converges then

¢ﬂ+1,a+l _ ¢n+l,| -0

as 3 — oo. If ¢"*! = ¢"+t1 then qSl"“ satisfies the non-linear form of (3.62)

exactly. Of course in practice it is necessary to stop after a finite number of iterations
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so that the resulting value of ¢™*! satisfies the non-linear system only approximately.

The finite difference formulae for equations (3.53) to (3.56) are:

C?+l"+l —ct 1 « n 0+l C- ntd,s n+0,8+1
— = mDo(woc‘- Y+ = Y9 D, [(V YiZ12Decisy ]
(3.63)
ntls+1 n4é
v, ! —v? _ aP. Cl esynn+8,a n+8,s+1
—ar - T (a_) * gy O (D]
(3.64)
k'.‘+]"+l — kn C
i i — T D+ r_l_-{-B,n D+k7‘_+°"+‘ + P_n+9,s+l + Gr:l+0,s+¥
™ T (& =127 i X '
kn+9.: /2
- CJH (l_:l"'e.l ) k?+l'.+l1 (3'65)
5?+l"+1 - e? i se Tl s n 'l
AL - (:_\.CC) Dy [(v )i 23 Daeil
n+8,
+ Cue kiw s+l (Pin+o"+l + G?+e'.+l) (l + C3¢(Rl ):“-H;"H)
€ﬂ+9 s
~Cae { g ) (3.66)
where
2
. D ul_1+h,l+]
n40,54+1 _ X I:l+9,l oYy
Pl' - C‘(UT)I ( QAC 1
Gride+l (<t )n+9"—_D0Cn+e '+l:
i 2AC
(UT)I}-{-D,A = 1/4<| ;n+8 (Ln+9 .)1/2
(UT)::_-I-IOIY; = _2_0..')74 [cil?+9,- (k:_'l+5,l)l,2 1 c'i_ll?+9.l(k?_+le.l)ll2] , (367)
(Rt)l:u+8,a+l — ‘_Gt_:.+8.|+l/P-n+9,l+l.

For any variable, the value at n + 8 is defined via (3.59).
If the mixing length model is being used, then k is given explicitly by the finite

difference expression corresponding to (3.57)

ntl s+l
Dov‘-

k;l+l,l+|. = CEII‘I("_HL-!-I,I ZAC

(3.68)

The discrete length scale is given, dependjng on the turbulence model, by either

3/4(kn+l J+l)3[2

Sttt = (3.69)

L
E:_l-{-l ,5+1
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or

¢i ’ .
l:_'l+l,s+l = K.(k:-l+l"+l)lnj (k?+lh.s+l)—1/2 ii_cc'_ + ll (3‘70)
G _

where [; = &z}. The trapezium rule is used to evaluate the integral for i > 1.

At boundaries, one-sided finite difference formula are used if necessary. For ex-
ample, if a derivative boundary condition on k is specified at the bottom then, as
written, the finite difference form of the k-equation would need v+ *! at i =0
which is not defined. Therefore the central difference is replaced with the second

order accurate finite difference approximation

a'ﬂ n+é,s41 o 0 o
(3_2) = (quptOetl _ gy tOetl 20ty 10AC) + O((AC)?).
1

The same expression is used to calculate the velocity gradient appearing in the bottom

stress, the finite difference form of which is

n+8,5+1
a”) . (3.71)

(T(;)"+9"+l = C;)/‘?C'l(krll+0,1)llzl;l+8,l (_a_z

At the top the equivalent one-sided difference is

T fgp\ntee n+0, P 8,141
(30) 7 = o - /280 +0(A07).
MM

Solution procedure cutline

In outline the soluticn is obtained at a given time step by the following sequence:

Solve for the horizontal fluid momentum using (3.64) with the J

value of the eddy viscosity from the previous time step.
Calculate the bottom stress using (3.71).

Solve for the particle concentration using (3.63) with the

value of the eddy viscosity from the pre-vious time step.
ioop

Calculate the turbulent kinetic energy from (3.65)
or (3.68) depending on the turbulence model.
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Calculate the tutbulent length scale either from (3.66) and (3.69),

ot from (3.70), depending on the tucbulence model.

If converged exit loop.

Re-calculate the eddy viscosity (3.67) using the latest iterates:
s:=s5+1

Solve for the horizontal fluid momentum using (3.64) with the

current value of the eddy viscosity.
Calculate the bottom stress using (3.71).

Solve for the particle concentration using (3.63) with the

new value of the eddy viscosity.

_end loop

It was found necessary Lo switch, at some distance above the Bed, from centred
to “upwind” differences to prevent the occurrence of oscillations when evaluating
the advection term in the concentration equation. Such oscillations are commonly
encountered in the numerical solution of advection-diffusion equations when the ad-
vection term becomes dominant, hence the occurrence of this problem in the upper
part of the boundary layer where turbulent diffusion is decreasing. The use of first
order differences removes the oscillations by introducing numerical diffusion into the
solution, and so must be used with caution. Figure 3.2 illustrates the effect of indis-
criminate use of upwind differencing, with an almost two-foldincrease in the predicted
concentrations compared to the central diﬂ'ereﬁce solution. Fortunately, the oscilla-
tions were foustd to occur above the region of ‘primary interlest_, which was within
4cms of the bed. Therefore we were able to use central diﬂ'er.encing"in this region
before switching to upwind differences al a point further from the bed. The point
was determined by trial and error and was taken as far from the bed as possible while
still preventing wiggles. For the k — & model and with the parameters-used for all the
runs prese.nted, this was found to be at about 4.5 cms. As can be seen from ﬁgure 3.2,

this leads to identical predictions Lo that obtained using central differencing in the
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region shown.

- Effect on concentration profile of finite difference

approximations to the first order term.

4 -
34 - Legend
AR
® st order
E ' O 2nd order
< 27 N e mee T
N ® Hybrid
14
i > SN
T @ T
] T T T T 1
-0-01 0-60 9-01 0-012 o-03 0-04 0-05

c/ca

"~ Figuite 3.2: Efféct of upwind differencing 6n concentration profiles. -

The value of 8 has not as yet been fixed, other than requiring it to be between zero
and one. Putting § = 0 yields an explicit scheme; for 8 > 0 the scher_ne ts implicit.
The choice of § = 1/2 is particularly interesting as the resulting met-hod is second
order in time and space while for other values of # the method is second order in
space but first order in time. Unfortunately it was not possible to run all the models

with this value of 8 for reasons described below.

‘General behaviour of the numerical scheme

In general the model proves ver_\-,' stable, {aking typically 6 to 8 iterations at any given
time step (see table 4.12), and produces smoothly varying soluttons in time and space.
Problems are encountered at the bottomn boundary just befblje the flow reverses when
the bed stress goes through zero. This is particularly severe when the mixing length
expression (3.28) is used to determine k and in fact leads to non-convergence. The
problem is asseciated with the vanishing of the eddy viscosity, leading peasumably to
a singularity in the solution. Adding a small constant viscosity to the eddy viscosity
improves the situation but does not cure the problem entirel)}, even when a very large

value-{of the order of-ten-times the-laminar- viscosity) is used.-In addition, it is found
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that the kinetic energy profiles can be significantly altered by the addition of this
large constant viscosity. Putting § = | to give a fully implicit scheme was found not
to improve the behaviour substantially for the mixing length model. -

By contrast, the use of the full equation turbulent kin.etic energy equation,.either
with an empiricalrlength scale distribution or with ! given by (3.29), proves to be
robust, even with 8 = 1/2. However, problems are again encountered when the
bed stress vanishes il the € equétion, (3.22), is included in the system. For § =
1/2, negative turbulent kinetic energy values are produced Ieadiﬁg to a breakdown
in the solution. The derivative bottom boundary condition (3.37) is found to be
less sensitive, although the solution can still break down depending on the exact
value of the flow parameters. Putting 8§ = | leads to satisfactory behaviour with
both boundary conditions at the expense of first order accurate solutions only in
time. All models, other than the simplest where the length and velocity s'cale are
specified explicitly, are found to require substantially more iterations than normal as
the bottom stress goes through zero.

A problem also arises with the £ — ¢ model far away from the bed. Because
the transformation from z to { concentrates points near the bed the finite difference
points near the top boundary are widely separated and so the solution may not be
so accurate here. It is found that the length scale calculated from the ratio (3.27)
was not smooth in this region and could occasionally become zero leading to obvious
problems when dividing by this quantity. Because the eddy viscosity is small far
away from the boltom it is considered unlikely that the behaviour of the length scale

will have any effect on the solution in the region of interest near the bed.
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Chapter 4

Numerical Calculations

without Particle Inertia

The chapter is divided into two Sections, both of which deal with purely oscillatory

turbulent boundary layer flows. The first deals with the sensitivity of the numerical

solution to variations in model parameters and boundary,conditions. The second

compares the_predictions of a.number.of different_turbulence models with experimen-

tal data. Results are presented in this chapter with the following aims:
1. verification of the numerical model;

2. indicating the sensitivity of the solutions to the constants contained in the

turbulence models, and to the choice of different boundary conditions;

3. determining whether relatively sophisticatéd turbulence modelling is required
to obtain agreement with the experimental results, and to highlight inaccuracies

that may result from using simple models.

Hydrodynamic variables, i.e. mean fluid velocities and quantities associated with
the turbulence, are generally treated separately to the quantities associated with
suspended sediment, and the model was run with’_diﬂ'erent parameter values, corre-
sponding to two different experimental situations, for the two cases.

Turbulence model constants are assigned standard values ( Rodi 1980) as shown
in table 4.1.

In the numerical scheme theé weighting parameter 8 was set equal to one for all

calculations presented in this chapter. At each time step, convergence was deemed

to have occurred when the relative difference between successive iterates of velocity,
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Table 4.1: Values of turbulence constants.

turbulent kinetic energy, turbulent length scale, and concentration were less than
0.5 x 10~%. A maximum of thirty iterations was allowed before moving onto the next

time step.

4.1 Sensitivity calculations

4.1.1 Hydrodynamic results

The following sections present results on the sensitivity of the s.olution to:
1. the numl;er of time steps and the mesh size;
2. the boundary conditions;
3. the turbulence constants;

4. the parameter afky.

Unless stated otherwise, the flow parameters correspond to those quoted in the ex-
perimental work of Sumer et al. — see table 4.3, page 109. The boundary conditions

used at the upper boundary were

3171 _ ak _ de

=25 _ %y,
0z dz 0z
and at the lower boundary
= 90, ,‘
ko= pr'CpVn,
' . Cf)“k:’/"'
= P

The free stream velocity was specified as
V(L) = Vo sinwt.

For brevity, results are usually presented for the mean velocity profiles and friction

velocity only. Mean-velocity profiles are shown-at three points during the portion.of - - -
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the wave cycle when the free-stream velociiy goes from zero to its maximum positive
value. We term this the accelerating phase, and profiles are shown for t* = n= /6,
n = 0...2. The portion during which the the free stream velocity returns to zero
is termed the decelerating phase. After this the flow direction will reverse. Once a
periodic solution has been obtained the reverse flow will be identical, apart from the
sign change, to the flow in the previous half-cycle.

The value of zg is taken from the s-teady shear flow relationship zp = kn /30,
where ky was determined from the experimental points by Sumer et al. assuming a
logarithmic velocity profile. The Nikuradse roughness ky and the actual height d of
the roughness elements were found by Sumer et al. to be related by ky = 2.5d.

Each figure has a legend giving information about the plot and, to keep these

brief, the following abbreviations are used: .
E indicales experimental points,
L indicates the “linear” turbulence model,

ML  indicaies the “mixing length” turbulence model,
k indicates the “&” turbulence model,
kE -1 indicates the “k — {" turbulence model,

k — ¢ ‘indicates the “k—¢” turbulence model.

Section 4.2.1 gives details of each of these models. In general the complexity of the

model increases as we go down the list.

Sensitivity to initial conditions

Since a solution is sought that is periodic in time, it is important that the numerical
calculation is run long enough for the initial conditions to be “lorgotten”; the resulting
solution will then depend only upon the ﬁeriodi‘c forcing in the system. The relative
difference between the value of a quantity at a given mesh point, i, at the nth and
(n— 1)th wave cycle is defined as (¢ — ¢7')/4?. In figures 4.1 and 4.2 this quantity
is plotted fér values of the mean velocity at a specified point, and for the maximum
bed stress.at successive wave cycles for each of the turbulence models. Although
not shown, the turbulent kinetic energy and length scale were also sampled, and
showed similar behaviour to the mean velocity. The paint where the mean velocity is
examined is taken (arbitrarily) at about one centimetre above the bed and sampl.ed
at the end of the cycle. A second point, further from the bed, yielded a slightly
smaller difference at a given cycle than the one shown, for all quantities.

When drawing conclusions from the results, we need to take into account that the
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initial conditions, based on an analytic solution to the linear model for the velocity,
and a local equilibrium assumption for the kinetic energy, would be expected to favour
a more rapid relaxation to an oscillatory state for some models compared to others.
From an examination of the turbulent kinetic energy and length scale results (not

shown), as well as of figures 4.1 and 4.2, we conclude that:

1. all the models show approximately the same rate of decay of transient effects
with time, apart from the linear model which converges very rapidly —probably

due to the initial conditions used;

2. no relation can be discerned between the complexity of the model and the time

required for the effect of the initial conditions to die out;

3. all the models have seltled into a periodic state, reproducing the values of the

previous cycle to within 0.2%, by ten wave cycles;

4. the velocity takes the longest time to become periodic, followed by the turbulent

kinetic energy, the bed stress and then the length scale.

Results in all subsequent sections were obtained by running the model for six wave
cycles.—figures 4.1 and 4.2 indicating that the solution is acceptably periodic after_

this number of cycles.
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Convergence of velocily with number of wave cvcles._’
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Figure 4.1:

Convergence of bed siress with number of waves cycles.
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Sensitivity to time and space step.

In figures 4.3 and 4.4 we plot the velocity profiles and friction velocity obtained from
calculations with a differing number of mesh points (M}, and mimber of time sieps
per wave cycle (N). Comparing the curves obtained with N = 240, M = 48 to those
calculated with .hal[ the number of grid points, or half Fhe number of time si.eps per
cycle, shows only a very small effect. We conclude that, for the purpose of graphical
comparison, the solutions obtained with N = 240, Af = 48 are sufficient to obtain

solutions unaffected by discretisation errors.

Sensitivity to boundary conditions

A compatison is now made between solutions obtained using tine two choices of upper
'boun_dary condition for #; given by (3.42) and (3.43), and the two possible bottom
boundary conditions on k given by (3.36) and (3.37). It is found that, for the value
of z; used in this comparison, both the boundaty conditions for #, gave rise to iden-
tical solutions for all'quantities. The two boundary conditions on k also give rise
to virtually identical solutions, with only the turbulent kinetic energy profiles (fig-
ure 4.5) showing a tiny difference at the bottom boundary. As regards the number
-of iterations required’ at- each"time step to converge ‘the -solution,-it is-found-that
the stress boundary cendition (3.36) is superior to the derivative boundary condi-
tion (3.37) (cf table 4.12} and, unless otherwise stated, this boundary condition is
used in subsequent calculal.iqn‘s.

If the bottorﬁ boundary lS taken’ above zg, then the Robin boundary condition
for the velocity, (3.35), is applied at z;. A logarithmic 'veIOCity profile (3.33) is then
assumed to hold for zg < z < z;. The value of £ at 2z, is determined from (3.39);
an implicit assumption is Itherefore made that | = xz for zo € z < z;. When usiﬁg
the ‘stress’ bour;dary condition for k, (3.36), the velocity gradient in the definition of
the stress at z; is evaluated from the numerical solution and not from the assumed
logarithmic profile via (3.35).

If the numerical model calculations with z; = zp give rise to a constant stress
region near the bed th;n, provided the logal:ithmic velocity law is correct, the'friction
velocity calculated at some point within this region using (3.30) should be the same
as that evaluated at zo. Clearly an exactly constant stress region is unlikely to
exist becau;e the flow is unsteady, but comparing the solutions calculated with with
z; = zg and with z, >z should indicate how good an assumption constant stress is. l

There is no reason to suppose a-priori that exiending the calculation down to zg is
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more correct, although it has the theoretical advantage of not requiring the explicit
assumption of a logarithmic ve-locity profile.

The friction velocity is plotted for iwo values of z; > zg, and for the two possible
choices of ‘boundary condition on k. Figures 4.6 and 4.7 correspond to the use of
the stress boundary condition and the derivative boundary condition respectively.
These show that the friction velocity calculated using the stress boundary.condition
is generally less close to the z; = 2z¢ result than that calculated with the derivative
boundary condition, especially at the beginning of the wave cycle. Interestingly,
the agreement between all the curves improve as the wave cycle proceeds; possibly
indicating that a constant stress region is forming near the bed by the end of the
half-cycle. An examination of the turbulent kinetic energy profiles in figure 4.8a
reveals that, for the accelerating phase, this quantily continues Lo increase below
the level of z;. This will also be true for the stress which, in the local equilibrium
approximation, is proportional to k1/2. This leads to the under-prediction of the
friction velocity when the stress is evaluated at z,. During the decelerating phase
the kinetic energy profiles do become mote nearly constant below z;, as shown in
figure 4.8b. This is consistent with the improved agreement between the predictions

of friction velocity noted above.

Velocity profiles. Accelerating phase.
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Friction velaclty /Va
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Sensitivity to turbulence constants

The standard values of the constants are shown in iable 4.1. The eflects of a 50%
cﬁange in x,Cp,ok,0., and a 20%"' change in Cy., Cz, are briefly summarized in
table 4.2. The amount-by which these parameters are varied does not reflect their
degree of uncertainty, the standard values taken by these constants being generally

well accepted.

Constant | Effect on #; Effect on v,
K Moderate Strong
Cp Moderate Strong
Cie Strong Strong
Cae Strong Strong
ok Weak Weak
o, Strong Strong

Table 4.2: Sensilivity to variations in Lurbulence constants.

From our investigations two conclusions can be drawn.

1. The solution is particularly sensitive to the constants appearing in the equation

for the dissipation rate, ¢; writing the constants in order of decreasing effect

gives Cz: ] Cl:l b’Tl 'E'l CD. ok.

2. Compared to the mean fluid velocity, the friction velocity is considerably more
sensitive to changes in values of the turbulence constants. From an examination
of friction velocity plots {not shown) it appears that it is the magnitude of the

friction velocity that is affected; very little change in phase is apparent.

Dependence on a/ky.

Finally, in this section, the effect on the solution of the key parameter a/ky is inves-
tigated. Fiéures 4.9a to 4.10b show the velocity profiles calculated using the k — ¢
model. The curves are plo.tted with both linear and logarithmic vertical scales to
emphasise tﬁe profiles in the Iupper and near bed regions respectively.
When plotted with a logarithmic scale, a region extending up from the bed is
observed where the profiles are approximately linear. This indicates that the velocity
hete follows some sort of logarithmic law, as found in steady turbulent boundary
layers. It should be noted that, although emphasizéd in tﬁe logarithmic plots, this

region lies very close to the bed and at the beginning of the wave cj'rcle it may be only

1Changing €, and C3, by 50% ceused the calculation to diverge.

95




of the order of the roughness height. The top of the logarithmic region is marked by
an extreme value where the velocity gradienl vanishes, followed as we move further
from the bed by a decrease in velocity until the free stream value is reached. The
point at which the velocity gradient vanishes has been used by a number of authors
as a convenient measure of the boundary layer thickness, and can clearly be seen to
increase as the wave cycle proceeds. By contrast, the region above the maximum,
where the boundary iayer merges into the free stream flow, decreases in extent as the
flow develops.

A notable increase in the boundary layer height relative to ky can also be observed

with increasing a/ky. This is consistent with the non-dimensional friction velocity.

curves shown in figure 4.11, which decrease in magnitude as afky increases and
the velocity gradient at the bed becomes more genile. Also plotted in figure 4.11
is the non-dimensional free-stream velocity. Clearly the maximum f(iction velocity
(and hence bed stress) is closely tied to the maximum free stream velocity. Just
discernible is a decrease in the phase difference between the free stream velocity and

bed stress as a/ky increases.
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4.1.2 Particle concentration results

All the results to be presented were calculated using the & — ¢ model, with the flow
and sediment parameters set to those reported by Staub et al. (i983) and shown in
table 4.3, page 109. These are also the results that Hagatun & Eidsvik (1986) use
to verify their model. We differ from these authors in the value we use for two key
pai'ameters.

The value taken for the sediment diameter by Hagatun & Eidsvik is that quoted
by Staub et al. as being the median diameter in the bed, dsg = 0.19 mm. Howeﬁr
the median diameter of the sand in suspension, as measured at 1.8 cm above the bed,
was dsg = 0.12 mm —— a 40% diflerence. We use the value measured for the sand in
suspension, since we will be presenting comparisons with experimental data in the
height range of about 1.0 to 3.0 cm. Therefore the median value measured near the
centre of this range seems appropriate. It is likely that as the particle diameters ate
measured at successively greater heights above the bed the value of dsg will decreqse.
Thus it is very difficult, if not impossible, to define a single value of d for use in the

numerical calculation when simulating an experiment where a range of particle sizes
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are .present. [t is appropriate to note here ‘that the solution was found to be very
sensitive to the particle size (in the Stokes regime the fall velocity is proportional to
the square of the radius)._\Typically a change of a factor of two in the particle radius
caused the concentrations to change by an order of magnitude at 1.8cm above the
bed. For all calculations the non-linear drag law (2.37) was used with @ = 0.15 and l
B = 0.687 as gi;fen in Clifte et al. (1978) . The water and sand density. was taken as
1000 kg/m® and 2650 kg/m3 respectively. The value of the kinematic viscosity used
was 1.1 x 1075m2?/s. With d = 0.12 mm these parameters yield a value for wq ol:
0.010 m/s.

We differ also from Hagatun & Eidsvik in the value of zgo that we use. This
we calculate from the Nikuradse roughness length curve, with the bed roughness kn, .
given as twice the dgs value for the grain sizes in the bed as discussed in Section 3.1.1.
Since Staub et al. quote only dsg (the median grain size) we used twice this value for
kp yielding a value for zp of 0.9 x 10-5 m2?. To take account that we used dso rather
than dgs the value of zp was increased (arbitrarily) to 1.0 x 107° m. Given the widely
varying relationships between average grain size and the Nikuradse roughness length
shown in expre-ssiori (3.31), this was considered justifiable. What is important is to

then assess the sensitivity of the solution Lo changes in the {essentially uncertain) pa-

rameter zo. This we do lat.ter in this section. Hagatunk& Eidsvik use a value for z¢ of
1.6 x 10~5 m which they obtain from a formula given in Madsen & Grant (1977). We
note that our parameters enable us to obtain satisfactory agreement with experiment.
(see Section 4.2.2) without fntroducing, as do Hagatun & Eidsvik , a non-physical
“laminar” viscosity into the advection-diffusion equation for the concentration to
enhance parti;le diffusivity at the bed.

The numerical predictions of the concentration field are conveniently represented

in terms of the variation of three'quantities with height:

1. the average concentration over a wave cycle
1.7
C=x1] &azt)d
T ‘/0 C(Z ) )

2. the “concentration amplitude” c4(z) = €maz — Cmin, Where cmaz and cpmin are

the determined over a.complete wave cycle for a given height;

3. the “concentration phase” ¢(z), defired at a given height, as the phase at which

?The flow was found to be transitional so that o graphical relationship (c.g. Sleath 1984, figure
1.12 ) relating zp to vemky /v is required.
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the maximum concentration first occurs. The concentration peaks twice during

a complete 27 wave cycle, hence the need to specify the first peak.

Note that if the time series of concentration at a given height were a perfect sinusoid
then
1 .
&z, t) = C(z) + Ecu(z)sm[wt — #(2)],

so ¢, and ¢, together with the average concentration over a cycle, characterise the
concentration field comptetely. In practice this is not the case since the boltom
boundary condition doeslyield a sinusoidal forcing of the system. In addition, any
non-linearity in the turbulence model will tend to preclude the occurrence of a single
sinusoidal component. Nevertheless, the three quantities yield the main character-
_istics of the concentration field. Resuits in this section will generally be normalised
with the relerence concentration co; see (3.41).

The concentration field was started off from an iﬁitial condition of zero at all

heights above the bed. A periodic solution was obtained within six wave cycles.

Sensitivity to boundary conditions

_The top boundary was {ound to be sufficiently far removed at 60 cms, for thé solution

to be independent of the choice of (3.44) or (3.45) in the region of interest close to
the bed.

For the bottom boundary condition we.did not try any alternative to (3.41).
Although this m‘ight s'eemJ to be an interesting comparison to attempt it would be
unlikely, for the flow conditions considered here, to be very illuminating for reasons
that are explained presently. Apart {rom c¢g, two additional parameters, Sp and 5,
occur in the boundary condition. The former is the ctitical Shields number below
which no sediment is lifted from the bed, while the latter gives the value of the
Shields number at which saturation occurs i.e. above this value no more sediment
can enter the bed load region, however high the applied shear steess. This boundary
condition is to account for all the (unknown) mechanics of the bed load region. It
was found that altering Sp from a value of 0.05 to 0.0 or to 0.25 had a negligible effect
on the concentration profiles. The concentration was also remarkably insensitive to
Si, as illustrated by figure 4.12. Putting S; = 0, so that the bottom boundary
condition is fixed at the ‘saturation’ concentration cp throughout the wave cycle,
yields a solution that is almost-identical to the one obtained with the original values
of Sp and S;. Only when 5, is>increa.sed so that saturation occurs over a much smaller

_ portion of the wave cycle does a significant change in the sediment concentiration
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occur. - For the flow pararr;eters used here, 5 reachgd a peak value of about tw;ﬁ‘.
In situations where the bed stress and sediment properties are such that the bed
load region is saturated for most of the wave cycle, it appears that the reference
concentration ¢o only is important. It is interesting Lo note however, that for the
linear model (see Section 4.2.2) the change in bottom concentration over the wave
cycle is crucial because this model has a diffusion coefficient that is a function of z
only. Therefore any time dependence in the concentration field must enter through

the bottom boundary condition.

The discussion above is likely to be relevant only for flat beds and high Shields

rumbers. For flow over sand ripples the bottom boundary condition should mimic the’

injection of sediment into suspension as the flow reverses if realistic time dependant

concentration fields are to be obtained, an idea that is discussed in Nielson (1979,
" Chapter 7).

35§ = 0.83, is the limiting value above which Niclson (1979} suggests bed forms disappear and
the bed becomes Aet. Hence the assumption of a flat bed in this casc appcars well justified.
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Sensitivity to zg

Although we have calculated zg using ideas derived from steady flows with fixed
beds, there is no guarantee that this is the appropriate value for this quantity in
the unsteady flow considered here. In addition, a wide range of relationships have
been proposed relating the grain size to the equivalent Nikuradse roughness length.
Therefore it is important to test Lthe sensitivity of the concentration profiles to this es-
sentially uncertain parameter. Figure 4.13 shows the effect of 20% and 50% va;rialions
in 29 on the concentration as averaged over a wave cycle. A ‘fa.irly large variation in
I..he concentration is seen to result. Also shown are experimental measurements made
by Staub et al. (1983). These indicate that while increasing zo improves the agree-
ment with the experimental data nearer the bed, the agreement higher up becomes

worse.

Sensitivity to turbulence model constants

As for the velocity profiles and [riction velocity, we examine the effect of varying the
constants in the £ — e model equations. In this instance we have altered all quantities

by 10%. The outcome is shown’in in figures 4.14, 4.15. These resulls are consistent
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with those obtained for the mean velocity and friction velocity in that variations 1a

C,. and C,, are particularly important.

Buoyancy effects

The effect of buoyancy will be to decrease the effective eddy viscosity/diffusivity if
the turbulent motion has to do work against a stable stratification. For the case
of sediment in suspension, the flow is stably stratified when the more dense fluid-
particle mixture, containing a greater concentration of sediment, lies below a less
dense mixture. Since the particle concentration is usually found to decrease away
from the bed, sedimeni-laden flows are generally stably stratified.

In the k — ¢ model, terms arising from buoyancy effects enter into both the & and
€ equations. Figure 4.16 shows the effect on ¢, of including all the buoyancy terms,
no buoyancy terms, buoyancy terms in the k& equation only and buoyancy terms in
the £ equation only. From this we see that, for the case of stable stratification, the
buoyancy term in the £ equation acts to increase the sediment concentration and it
is the buoyancy tetrm in the & equation that gives rise to an overall decrease. This
decrease is quite significant for the flow parameters and sediment size used in this
calculation. These results are consistent with an examination of how the terms enter

into the turbulence equations (3.21) and (3.22). The contribution that the buoyant
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production term G makes to the ¢ equation is controlled by the value of Cs.. 1f

C3. = 1, then buoyancy effects only enter int‘o the equations at O(c?) ~—which is
negligible, while Ca, = 0 would give a contribution that was weighted equally with
the shear stress productigr{ P. The effect of the factor involving the flux Richardson
number Ry is thus to decfease the effect of buoyancy in the £ equation. A value
Ca. = 0.8 is used in the calculation, so that the effect of the buoyant-production in
the ¢ equation would be expected to be sma'll,." .

A buoyancy effect on ¢, the concentration phase, is also found to occur, as shown
in.figure 4.17, where the result is to inhibited slightly the rate of change of ¢ with
height. '

Shown in 4.18 is the effect, on c,, of neglecting the buoyancy term in the turbulent
kinetic energy equation for the & model. Slirprisingly this has virtually no effect, even
though exactly the same term was mainly responsible for the much greater buoyancy
effects encountered in the k — € model.

Firally, the effect on the mean velocity profiles of the decrease in eddy viscosity

due to the stable stratification is shown in figures 4.19a and 4.19b. QOaly a minor

$This value of Cy, is standard for horizontal boundary layers, although modifications to the
definition of the Richardson number are necessary for vertical Aows (Rodi 1980).
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difference in the profiles is apparent.
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4.2 Comparison of turbulence models

The numerical predictions for the hydrodynamic variables are now compared with
the experimental data of Sumer et al. (1987), while suspended sediment profiles are
compared to the experimental data of Staub et al. (1983). Table 4.3 summz;.rises the

relevant experimental parameters.

Voo w D kp. a aefky
(m/s) (rad/s) (mm) (mm) m

Sumer et al. 2.1 0.774 1.5 3.7 2.7 723

Staub €t al. 1.2 0.690 0.19 0475 19 3658

Table 4.3: Experimental parameters.

4.2.1 Comparison of hydrodynamic predictions between tur-

- bulence models

In comparing the different turbulence models we will concentrate primarily on pre-
dictions of mean ;el;)ci‘ty proﬁles_a.nd the friction velocity. Mean velocity pr;ﬁl;:s
are shown, together with corresponding experimental data, at six points (¢* = n7/6,
n = 1...6) during a complete half-cycle. Thé half cycle consists of an accelerating
phase, during which the velocity at the edge of the bour-ldary layer increases to a
maximum, and a decelerating phase when it then decreases to zero.. The accele.rating
and decelerating phaﬁes are shown on sep;rate graphs for clarity. QOccasionally we
present profiles of turbulent kinetic energy ard the turbulent length scale.

As well as presenting the results graphically, the root mean square (RMS) error

between the model calculations and the experimental values are calculated for both

mean velocity profiles and the friction velocity. Linear interpolation is used to de-

termine the value of the numerical solution at the experimental points, which do not

»

correspond to points on the finite difference grid.

The linear model.

For steady shear layers near a flat bed, a constant velocity scale, the friction velocity
v,, and a length scale increasing linearly with height often. suffice to reproduce the
velocity profile. It is natural {o attempt to extend this relatively simple approach to
oscillatory flow. For the purposes of_ this document we \_vill_te_tm suEh_mgdels f!iniar’
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since the resulting partial differential equations for the fluid velocity and sediment -

concentration are linear.

The first to develop such a model was Kajiura (1968) who considered the flow
to be composed of three regions. Subsequently Brevik {1981) pres.ented a simplified
form in which the flow is divided into two regions. In the lower region the length scale
is taken to increase linearly with distance from the bed, while in the upper region

the length scale is constant i.e.

=< - (4.1)

KA z> A '
Here A is the height at which the layers join and « is the von Karman constant. In
both regions the velocity scale is put equal to the maximum friction velocity over the

wave cycle v,,,. Two ways of determining A are suggested: Kajiura puts
A =6,/20, ' (4.2)

where 6, = v.m/w, whilst Brevik uses

where &, is the boundary layer thickness defined by Jonsson (1980). Given a/ky and
ky, §, can be determined from the relation

a

308 log(303Ly = 1.2 (4.4)
kn ky

kn'
An inconvenience of solving the linear model numerically is that v, is needed
before the solution can be effected, but is .itself determined by the.solution. An itera-
tive approach is therefore needed in which v, is initially estimated and subsequently
corrected by running the computer code repeatedly until (3.47) is satisfied.
In figure 4.20 the values of A/ky, as given by (4.2.).and (4.3), are plotted against
a/kx. Also plotted are the values of A/ky given by

A =6,/10. - (4.5)

As can be seeri, this last expression leads to values that are very close to those ob-
tained from (4.3). For practical purposes it seems that the values of A calculated

from (4.3) and (4.5) are essentially equivalent. Thus, in using the parameters corre-
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sponding to the experimental work of Sumer et al. (1987), the value of A obtained

from the two expressions differed only by a millimetre, giving rise to velocity profiles-

that are virtually indistingui_sha.ble.

it is possible to solve the momentum equation analytically if the velocity and
length scale are specified as above (see Brevik 1981 or Smith 1977). From the an-
alytic solution v.,, can be determined directly from e/ky as, for example, shown
in Smith(lg'l';-j. For the case A = oo, the analytic solution is somewhat simplified
(although still involving Kelvin functions} and is used to verify our numerical solution
to the momentum equation. With 8 = 1/2, M = 48,and N = 240 the ana.lyl.icv re-
sults were reprodu:ced to four significant figures by the computer code. The analytic
solution was also used as an initial value for the velocity field.

Figures 4.21a and 4.21b show a compatison between the velocity profiles obtained
with the linear model for three choices of A, namely A = co, and the values of &

calculated from (4.2) and (4.3). These three values of A yielded values for v.m-of

0.152, 0.155, and 0.150 respectively. Alsoshown on the same plot are the experimental

velocity measurements obtained by Sumer et al. (1987) The effect of decreasing A&
appears to advance the phase and to emphasize the maxima that occurs where the
velocity gradient vanishes.

Table 4.4 shows the results of calculating _the root mean square error befween
the theoretical curves and the experimental data. The best overall fit is given with
A = &,/20, the curves with & = oo being inferior at all stages of the wave cycle.
Visual inspection of the velocity proﬁle_s indicates that where t.he:-freelstre.am velocity
is not near the peak value A = 6,,/10 gives a good fit.

The predicted friction velocities are plotted, together with experimental values,
for the three choices of A in ﬁguré 4.22. Note the error bars about the experimen-
tal points; these correspond to an estin'latedlexperimental error of about 1 ¢m/sec.
Although the magnitude of the peak value given by the model is in reasonably agree-
ment with the data, the values of v.(t) seem to be poorly predicted for all three
values of A. Table 4.5 indicates that the best fit is given with A = §,/20 and the
worst with & = §,,/10.
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Velocity profiles. Accelerating phase.

Comparison of linear model with experiment.

1003

0-01

-s0-0 00 s0-0 100-0
Valocity (cm/s)

130-0 200-0 230-0

Figure 4.21a:

Velocity profiles. Decelerating phase.

Comparison of linear model with experiment.

1003

T
= Legend
~N .
o | £ :12/24 n
e E :18/24
S 18/24 m
E :21/24 n
0-1 L:A-w
L:a=246,/10
] L i8=84/20
o-a1 T T T T T —
-36G-0 0-0 30-0 1000 1300 200-0 2300

Velocity {cm/s)

Figure 4.21b:

113



RMS error (cm/s) }
A A=oco0 A=6,/10 A=46,/20

0x/8 10.1 45 76
17/8 10.6 44 5.0
27 /8 10.3 8.4 8.0
In/8 12.3 11.4 9.2
Average 109 | 7.8 7.6
47 /6 13.0 12.0 8.1
57/8 10.6 » 8.1 6.2
67/6 8.3 36 6.4
/6 10.1 33 5.9
Average 10.6 7.2 6.7
Combined Average 10.8 7.5 7.2

Table 4.4: Root mean square error for linear model velocity profiles.

RMS error (cms/sec)
A Accelerating  Decelerating Combined average
A= 1.3 1.3 1.3
A=6,/10 1.7 1.3 1.5
A=6,/20 1.5 0.68 1.2

Table 4.5: Root mean square error for linear model friction velocity.
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Mixing.length model. _ . .

Prandil’s mixing length theory can be derived from the turbulent kinetic energy
equation (3.21), by assuming the turbulence is in local equilibrium. ’i‘he length scale
is still specified empirically. So that a direct comparison with the linear' model is
possible, we will use the same length scale distribution, (4.1), and the same values of
A

No value of A emerges as clearly s,uperi;:).r when the velocity profiles are inspected
visually in figures 4.23a, 4.23b. A good fit in one portion of the wave cycle is offset
by a poor one elsewhere. Table 4.6 gives the root mean squaré error between the
theoretical and experimental points and shows overall A = §,/10 being best —
although it gives the best value for neither the accelerating or decelerating phases
individually. Near the begjfa-ning of the cycle, the best fit is found with A = oo, while
toward the end A -= /20 is closer to the experimental points. The intermediate
value, A = §,/10, yields a reasonable fit throughout the half-cycle. .

A comparison between mixing length and linear models —figures 4.24a, 4.24b
4.25a, 4.25b and tables 4.4, 4.6 — leads to the conclusion that neither is clearly
superior over the other. During the accelerating phase the models differ significantly

in their predictions of the mean velacity profiles. For the mixing length model,
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A = oo gives the best agreement with experiment and A = §,/20 the worst, while
for the linear model exactly the opposite is true. During the decelerating phase the
agreement between the two models is much closer with both yielding the least error
- with & = §,/20. Overall the lineer model with A = 6‘_,‘/20 gives the smallest root
mean‘ square error of the two models. -
When the friction velocity is considered in figure 4.26 and in table 4.7, it is found
thet that the A = oo curve gives the smallest root mean square error with respect to
the experimental data. It is also apparent, comparing figure .4.26 with 4.22, that the
mixing length model predictions are somewhat closer to the experimental values than
the linear model predictions and this is confirmed by an examination of tables 4.5
and 4.7. Note also that different values of A for the two models give rise to the best
fit with the data. Visually the agreement with the experimental points seems poor

for both models.

RMS error (cm/s)
. t* A=co A=6,/10 A=6,/20
Orn/8 3.7 8.0 14.4
17/8 4.1 7.2 10.7
27/8 | 75 9.5 4 9.7
3n/8 10.0 10.4 7.8
Average- - | - 69 . 8.9. 10.8-
47 f6 11.3 10.2 6.3
57/8 . 100 74 4.0
6m/6 9.5 4.6 6.5
/6 10.0 3.9 8.7
Average 10.2 7.0 6.6
Combined average 8.7 8.0 8.9

Table 4.6: Root mean square error for mixing length model velocity profiles.
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Velocity profiles. Accelerating phose.
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Velocity profiles. Accelerating phase.
Comparison of linear and mixing lengith models with experiment,
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Friction velocity.

Comparison beiween mixinq length model and experiment.
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RAMIS error (cms/sec)

- Al __:|-Accelerating Decelerating. Combined average .
A =o0 0.86 0.49 0.7
A=6,/10 1.3 0.49 1.0
A =6,/20 1.2 1.1 1.2

Table 4.7: Root mean square error for mixing length model friction velocity.

The k& and k - { models.

The velocity scale in the eddy viscosity is now determined from the turbulent kinetic

energy equation (3.21), whilst still specifying the length scale empirically via (4.1).-

We will refer to this turbulence model as the ‘k’ model. Johns (1977) appears to be

amongst the first workers to use a model of this type for oscillatory boundary layers.

Instead of comparing the effect of changing A we compare, in figures 4.27a and

4.27b, the velocity profiles obtained using the k£ model with those obtained from the

mixing length model, using the same length scale expression (4.1), with A = §,/10,

for both models. The two sets of curves are almost identical, a result that is repeated

if we put A' = oo,.as shown in figures 4.28a and 4.28b.

— = [ —

In the last two figures we have in addition plotted the profiles obtained us.ing (3.29) '
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to determine the iength scale in conjunction with the turbulent kinetic energy equa-
tion. For the purpose of this document, we have termed this the ‘k — [I' model.
From an inspection of the figures, together with a comparison of tables 4.6 and 4.8,

we conclude that:

1. for Lhe velocity profiles, the mixing length and k models give effectively identical

results; \

2. no significant improvement in predicting the velocity profiles is gained by cal-

culating the length scale from (3.29) rather than putting | = xz.

A consideration of the friction velocity will be given later when all the model predic-
tions for this quantity are plotted in figure 4.35.

Shown in figures 4.29a,4.29b are turbulent kinetic energy profiles for the mixing
length and & models. Most noticeable are the points where, for the mixing length
model, the profiles touch zero as the velocity gradient vanishes. This leads to a
general decrease in the turbulent kinetic energy compared to the k model. Note the
profiles are shown at phases that are different to those at which the velocity profiles
are presented. Figures 4.30a and 4.30b show: turbulent kinetic energy pn;ﬁleé. for the

k (with A = o0) and & — [ models- Profiles calculated from the two-models are very

similar.

t* RMS ercor (¢m/s)
k:A=0c0 k:A=46,/10 k:A=6,/20 k-1
0x/8 3.8 7.0 14.1 4.3
17/8 4.2 6.8 ' 10.9 338
27/8 72 9.0 10.0 6.0
37/8 969 10.1 7.9 8.2
Average 6.7 8.4 108 5.9
47 /6 10.9 10.0 6.2 9.5
57/8 9.6 7.4 3.8 8.6
67 /6 9.3 5.2 6.2 . 8.9
7x/6 10.2 4.4 8.1 . 11.0
Average 10.0 7.1 6.3 9.6
Overall Average 8.5 7.8 8.8 8.0

Table 4.83: Root mean square error for k, £ — { model velocity profiles.
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Velocity profiles. Accelerating phase.
Comparison of mixing lenath and k models with experiment.
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Velocity profiles. Accelerating phase.
Comparison of mixing lenath, k and k=1 models
with experiment. ’
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Comparison of turbulent kinetic enerqy profiles
for k (A=) and k-1 models.
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k — £ model.

Figures 4.31a and 4.31b show the predicted velocity profiles calculated using the k—¢
model. The performance of the model is impressive, particularly when it is borne in
mind that the medel constants are standard values derived from independent experi-
ments. The extreme value where the velocity gradient vanishes is well predicted at all
phases of the wave cycle, as is the logarithmic region lower down. Non:é of the previ-
ous models were able to give good predictions for both these features simultaneously.
Note also the prediction of the slightly concave shape in the logarithmic region, seen
also in the experimental data, as the free stream velocity nears its maximum. Again,
none of the previous models wete able to reproduce this behaviour.

Plotted with the k — ¢ values are those obtained from the k model with length
scale given by (4.1) and A = §./10, this model being chosen as it gives reasonable
predictions during both the accelerating and decelerating phases of the wave cycle.
Although the difference between the two curves is not dramatic, at every point where
they do differ it is the £ — € results that lie closer to the experimental points. The

only exceptions are data pc-)ints-near the bed at phase 21/24n, where the k model is

marginally superior. Table 4.9 shows the root mean square error for the k — ¢ model

. and for a-selection-of-other models-that give either good-overall-fit,-or a good fit for

either the accelerating or decelerating phases.

RAMIS error (cm/s)

t L:A=6./10 k:A=6,/10 L:A=6,/20 k-¢
07/8 - 4.5 7.0 7.6 39
17/8 1.4 6.8 5.0 4.9
27 /8 84 9.0 8.0 49
3%/8 11.4 10.1 9.2 4.3

Average 7.8 8.4 7.6 4.5

47 /6 120 - 10.0 8.1 4.5

57/8 8.7 7.4 6.2 3.6

6w /6 3.6 5.2 6.4 3.0

7x/6 3.3 4.4 - 5.9 18
Average 7.2 7.1 6.7 38
Combined Average 7.5 7.8 7.2 4.2

Table 4.9: Root mean square error for £ — ¢ model velocity profiles.

The turbulent kinetic energy profiles for the £ — ¢ model and the k model with
A = 6,/10, are plotted in figures 4.32a and 4.32b. The figures .indic;a.te a large
difference between the models with regard to the predictions for this quantity. For
example, the turbulent kinetic energy near the bed is predict-ed to be larger by the

the £ model than the k — ¢ model during the accelerating phase, and the reverse



toward the end of the decelerating phase. Also, the & — e model predicts larger values
of the turbulent kinetic energy away from the bed during the accelerating phase and
less, in comparison to the k model, during the decelerating phase. The implications
of these differences for the eddy diffusivity and hence for the predictions the two
models make for concentration profiles, are discussed further in Section 4.2. J

Of significance is the comparison between the k — ¢ prediction of the turbulent
kinetic energy and the experimental values of this quantity® shown in figures 4.33a
and 4.33b. The poor fit, especially near the bed, is discussed by Justesen (1988) who
presented essentially the same plots for his k — ¢ model and the experimental data
of Sumer et al. (1987). The poor predictions near the bed during the accelerating
phase are then responsible for the poor predictions away from the bed in the decel-
erating phase. Interestingly, the near bed predictions improve considerably during
the decelerating phase. The turbulent kinetic energy is an important quantity terms
accounting for particle inertia presenied in Section 2.3 so the discrepancy between
the theoretical predictions and experiment has implications for the accuracy of our
calculations. This will be discussed further in Chapter 5.

Finally, the turbulent length scale profiles are considered. In figures 4.34a and 4.34b
werblot this quantity as given by the empirical expression (4.1) with A = §,/10, the
k — | model, and the. k — £ model. The beha.vi:)ur of l.l;;: k—c¢ :urnlves follow rougl;l;
the empirical curve, showing a definite transition from a linearly increasing regime,
to one where the value is more nearly constant with_height. By contrast, the & —{
curves increase in an approximately linear fashion throughout the boundary layer.
Tﬁis explains the similarity of the velocity profiles between the k — [ model and the

k model with A = oo shown in figures 4.28a and 4.28b.

’

5Sumer ct.al (1987) did not. measurc this quantity directly, but presented curves for
< u? >, < v? > from which k can be estimated, assuming a relation for < u? ». The details
arc given in Justesen (1888), and it is the values derived by this author that we compare with the
curves from our-k.— ¢ model. . o - - . JE
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Velocity profiles. Accelerating phase,
Comparison of k and k—¢ models with experiment.
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Comparison of turbulent kinelic energy profiles
for k (A=6.,/10) and k—¢ models,

Accelerating phase.
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Comparison of turbulent kinetic energy profiles
from k—& model with experiment.
Acceteraling phase.
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Comparison of turbulent length scale profiles.
Accelerating phase.
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Summary of results for velocity profiles

In table 4.10 we give the overall root mean square error between the modél pre-
dictions and the experimental points obtained by considering both accelerating and

decelerating phases.

RMS error (cm/s)
Model Az=co A=6,/10 A =56,/20
Linear 10.8 7.5 7.2
Mixing length 8.7 8.0 8.9
k 8.5 7.8 8.8
k-1 8.0
k—¢ 4.1

Table 4.10: Overall rms error between experimental points and model predictions for
mean velocity profiles.

From considetation of this, and the results presented in graphical form, the fol-

lowing conclusions are drawn with respect to the mean velocity profiles.

1. The k& — € model gives significantly better predictions (roughly a factor of two
improvement over the other models) for the velocity profiles and requires no

“tuning” of parameters. — - - -

2. The performance of the more simple turbulence models, as measured by rms

deviations from the experimental values, shows none to be clearly superior.
.

3. No significant difference was found between the predictions of the k£ and mixing
length models. In addition, the k — | model was found to give results very close

to the k model with A = oo.

4. If the length scale is to be specified empirically via (4.1), then for the linear
model choosing A = §,,/20 appears to give the best result, while for the mixing

length and k& models, A = §,/10 seems better.

5. The use of a value of zp appropriate for a steady boundary layer flow appears
to be justified by the generally good agreement between theory and experiment

in the oscillatory case.

Summary of results for friction velocity

We turn now to the model predictions for the friction velocity. Table 4.11 gives the

root mean square error between the calculated values of v, and the experimental
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points of Sumer et al. (1987). The experimental values were determined by fitting
,logarithmic velocity profiles to the experimentally measured velocity curves.

If the length scale is specified empirically, the best result for the mixing length
and &k models is with A = co, and for the linear model it is with A = §,,/20. However,
the linear model result with A = co is only marginally worse than the A = §,/20
result, and we have chosen to use the former value of A for all the curves shown in

figure 4.35 that require an empirical specification of length scale.

RMS error (cms/s)
Model Accelerating Decelerating Total
Linear A =o0 1.3 1.3 1.3
Linear A =6,/10 1.7 1.3 1.5
Linear A= 6,_,/20 1.5 0.7 1.2
Mixing length A = o0 0.9 S 05 0.5
Mixing length & =6,/10 1.3 0.5 1.0
Mixing length -2 =46,/20 1.2 1.1 1.2
k . A = o0 0.66 0.4 0.6
k A =46./10 1.1 0.5 0.9
k A =6,/20 1.1 1.1 1.1
k-1 04 0.4 04
k—c¢ ' 0.6 0.8 0.7

Table 4.11 RMS error betueen etpenmenlal pomts and model predictions for friction
velocity.

The following conclusions can be drawn from an examination of figure 4.35 and

table 4.11.

1. None of the models are able to reproduce the detaited features of the (slightly
odd looking) experimental points with their two maxima. It may be that these
points are peculiar to this set of data and in any future work it would be

valuable to compare the predictions with a second set of data.®

2. The model predictions are in reasonable agreement with each other and with
the experimental points with regard to the phase, but there are large differences

in the magnitude.

3. The linear model gives a good prediction for the magnitude of the maximum
friction velocity, although the phase at which this occurs is wrong. The model

"with the smallest rms error is the k — { model.

6Sumer ct al. use e sccond method, besed on integrating the experimental curves overthe bound-
ary layer, to get the friction velocity. This gives a smooth curve with a single maximum which may
_provide a better comparison for the model results. )
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It is interesting to note that, although the mixing length k and k — ! models give
almost identical predictions for the velo-city profiles (see figures 4.28a and 4.28b),
they give rise to distinct curves for the friction velocity.

Plotted in figure 4.36 is the friction velocity. curve calculated assuming an ex-
plicit logarithmic law, and applying boundary conditions (3.33) and (3.38) above zo.
Clearly, with the current set of turbulence constants and's‘pe_:ciﬁcation of the rough-
ness length, this quantity is severely underpredicted compared to the experimental

measurements at the beginning of the wave cycle.
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4.2.2 Comparison of sediment predictions between turbulence

models

The predictions of the various turbulence models are now compared with each other,
and with the experimental data of Staub et al. (1983). Concentrations are generally
normalised with the réference concentration ¢o, except when compared with exper-
imental data when they take ‘actual’ values which are volume fractions and so also
dimensionless.- The free stream velocity is taken as Vo, coswt. "

Sediment parameters are set to the values described at the beginning of Sec-
tion 4.1.2.

It should be mentioned that the results that Staub et al. present are primarily
an illustration of the use of a device to measure particlé concentrations in sediment
laden oscillatory flow, and do not constitute a rigorous experimental investigation
of such flows. Surprisingly, there appears to be virtually no reported investigations
of suspended sediment profiles: over ﬁat. beds in oscillatory flow (Sleath, personal
communication). In contrast, the case of suspended sediment over rippled beds has
received extensive experi.menlal investigation. For flat beds the only other work
that appears; to consider'suspended sediment is Horikawa et al. (1982). However the

- emphasis here is on the sediment movement in the~bed load region; ‘with-only-a
few suspended sediment profiles presented. A possible explanation for the apparent
neglect, compared to ihe rippled bed case, is that for flat beds the transport is

assumed be dominated by bedload, rather than the suspended load.

Linear model

Figures 4.37a and 4.37b show the effect of A on the concentration phase ¢ and
amplitude ¢,. For each value of A the value of v., was re-calculated as described in
the description of the linear model in Section 4.2.1. For example, with A = 6,/10 a

value of v., = 0.063 was obtained implying a maximum bed stress of approximately

4 N/m?.

k model

The effect on ¢cgmp and ¢ o-f changing A in the k model are shown in figures 4.38a
and 4.38b. Values of A were those calculated for the linear model above. Also shown
are the k — | model results for these quantities.

‘. Conce_nt'ral.ion amplitudes (figure 4.38a) show the expected trend, with higher

sediment concentrations associated with larger values of A, and hence diffusivity,

e J— _ —- - — mm— e e oo . — e ep——— . — e e —
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away from the bed. Note, the k — { profile is close to the k model result for A = oco.

The effect of the change in A on the concentration phase is shown clearly in
figure 4.38b. An increase in tﬁe rate of change of ¢, with height is apparent in the
region where the length scale becomes constant. For this quantity, the curve from

the k — ! model is indistinguishable from that of the k£ model with A = oo.

k — £ model

We first compare the k — ¢ predictions with those obtained from the k model. Fig-
ures 4.39a and 4.39b show that, for the & model, the curve with & = 8,/10 is the
closest to the k — £ result. It is this value of A that will be used in the subsequent
comparisons for the linear and mixing length, as well as k, models. -

Figure 4.40a shows cqmp as calculated by the linear, mixing Iéngth, kand k —¢
models. We note first that the mixing length and & models give almost identical
curves, and that these are broadly in agreement with the k — ¢ result, while the linear
model predicts significantly greater concentrations. This last result can be explaim;d
as being a consequence of the e-cldy diffusivity in the linear model which does not
decay with height-, as with the other models. All the models show an approximately
linear_dependénce_of log camp with z, implying an exponential decay of camp with
height. |

The variation of ¢ with height for the same set of models is shown in figure 4.40b.
For this quantity the curves belonging to the mixing length and & models are not
identical, and diverge as we move away from the bed. This is likely to be a result of
the effect of the transport terms that are neglected in the mixing length formulation.
A comparison of the & and & — € model curves reveals a distinct difference in the rate
of change of ¢ with height in the lower part of the boundary layer. The variation of ¢
given by the linear model is clearly at odds with the other curves. Part of the reason
is apparent from figure 4.42 where the variation in concen.tration over the wave cycle
is plotted at a given height (rote the concentration is not normalised). Where-as
the k and k — ¢ models show a rise to a peak followed by a more gentle decline, the
linear model shows the opposite trend, with a gradual increase followed by a rapid
drop. This behaviouris a consequence of the time independent eddy diffusivity of the
linear model. Once the bed load reaches saturation, the concentration near the bed
will steadily increase toward a steady state value until the bed stress causes a fall in
the value of ¢ specified at the bottom. Thus the peak value of concentration at the
bed occurs near the end of a half-cycle, and as this eflect diffuses upward we would

expect_to obtain the curve shown in the figure 4.42. [n contrast the eddy diffusivity
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in the k£ and k — € models will decrease near the bed once the peak bed stress has
been reached, so that the upward Aux of concentration will decrease even if the bed
concentration remains fixed?. .

Looking in more detail at the differences between the k and k — £ model predic-
tions, it is interesting to examine the eddy diffusivity curves shown in figures 4.41a
a.nd 4.41b. It is apparent that although the pfofiles are broadly similar in shape, the
eddy diffusivity associated with the & — £ model reaches its maximum value [urther
from the bed than that asso_cialed with the k model. In addition, the eddy diffusivity
derived from the k — ¢ model shows a slower decay with height, so that even at 10
cms from the bed it is typically 25% of its peak value. This behaviour is reflected in
the concentrations predicted by the two models in figure 4.40a. Near the bed the &
model concentrations are higher, while higher up the situation reverses.

Even though the curves from the two models show the same general features, it is
surprising, comparing the eddy viscosity profiles for each model at a given time, how
diéparale the two are. The fact that the concentration profiles are comparable indi-
cates that the concentration is determined by general feal.ures"ol' the eddy diffusivity

only.

" TIn fact the results of Section 4.1.2, where the sensitivity of the solution to the bottom boundary
was investigated, shows for all models apart from the linear onc, that the variation over the wave

cycle of the bottom boundary-condition.is.largely_irrelevant for the low parameters used here.
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The experimental data of Staub et al. (1983) is presented by the authors as - ~

1. the average concentration over thé wave cycle, C, measured at different heights

within a range of '1-3 cms above bed, and

2. the variation over a wave cycle of instantaneous concentration measured at a

fixed height of 1.8cm.

- Figure 4.43a shows a comparison of the average conceatration with predictions
for three representative models. The large scatter in the data is due to variations
in the relative orientation of the suction tube with respect to the direction of the
mean flow, and is indicative of the preliminary nature of the experimen.tal results
presented. Taking co = 0.3 (volurﬁe fraction), as used in Hagatun & Eidsvik (1986),
the k — ¢ model appears to be in best agreement with the experimental data, while !
the linear model prediction is clearly not consisle.nl. with the data. Since however the -~ R

reference concentration is to some extent adjustable, it should be valid to change ¢o




to try and obtain a “best fit” {or each modc;la. The logarithmic plot, ﬁgure: 4.43b,
is revealing in this instance as it shows that the lines representing the k and k — ¢
models are roughly parallel so that multiplication by a constant will indeed bring
the curves to approximately coincide. The linear curve, having a markedly different
gradient, cannot be brought into agreement this way. Figure 4.44 shows the expected
result, that the & model can be brought into better agreement with the data and the
& — £ model while the linear model cannot. We mention that it is not valid to simply
rﬁultiply the co = 0.3 solution by an appropriate factor to obtain these last curlves
since, for the k — ¢ and k models, the sediment ha.s an effect on the solution via the
buoyancy terms which depend on the actual value of the concentration.

Predictions by the k —¢ Imodel of the variation of concentration at a fixed height
are shown, along with experimental measurements, in figure 4.46a. We note that
the experimental values in the second half of the wave cycle are not the same as in
the first hall as the assumption of symmetrical oscillatory flow requires. A possible
explanation for the larger peak concentration in the second half-cycle is that the
experimental free stream velocity is greater, for some-reason, in one direction. We-
should therefore take care in comparing in detail the theoretical and experimental

"curves. It is interesting however, that the experimental points show the same rise to

a peak value followed by a more gentle decrease th-al. is apparent in the numerical
prediction. The £ — £ model curve also shows a very reasonable agreement in mag-
nitude and phase with l._he experimental points. A more convincing test would be
simultaneous agreement with concentrations measured at another height. Unfortu-
nately, time varia;ions of concentration at a single height only are presented in the
published results of Staub et al. (1983).

In figure 4.46b we show, in addition to the experimental values and the k - ¢
predictions, the variation given by the linear and k& models (A = §,/10) at 1.8 cms.
A reference concentration of 0.3 was used in all cases. The phase and overall shape
of the k curve is similar to the experimental values and, although not shown, the two
can be brought into good agreemen.t if co is set to 0.2. Clearly the linear model result
is not in accord with the shape of the experimental curve, even if it could be scaled
to roughly the correct magnitude. As mentioned in Section 4.1.2, the time variation
of concentration in the linear model is heavily influenced by the form proposed for

the variation in bottom concentiration with bed stress.

2Although & value of ¢¢ = 0.3 hes some legitimacy, since this was the value deter-
mined experimentally by Engelund & Fredse(1976) when developing the bed load model on
which Hagatun & Eidsvik (1986) and hence our bottom boundary condition is based.
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Finally, the effect on the mean ctlancentra.tion of disregarding the buoyancy terms
in the k& — £ model is shown in conjunction with the experimental resu<lt.‘s for C in
figure 4.45. The inclusion of buoyancy terms appears to improve the fit to exper-
iment. Neglect of the Richardson number (R;) correction in equation (3.22), as

in Hagatun & Eidsvik (1986), leads to a very much smaller buoyancy effects.
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CPU resources

Figure 4.12 shows the number of CPU seconrds per cycle required on a Prime 6350
(peak performance 11 mips) by each turbulence model, with 48 grid points and
240 time steps per cycle. Convergence criteria are as described at the beginning
of Chapter 4. The numerical scheme was fully implicit, with & set equal to one.
Parameter are set to reproduce the experiments of Sumer et al. (1987). No sediment
concentrations were calculated.

The anomalous result for the mixing length model atises from convergence dif-
ficulties encountered as the flow reverses and appears to be a consequence of the
vanishing of the velocity gradient, and hence eddy viscosity, at the bed. The problem
can be ameliorated by adding a small constant to the eddy viscosity. To completely
suppress the oscillations, it is necessary to add a value at least ten times the laminar
viscosity and this was found to affect the solution. With the simple numerical scheme -
employed, this behaviour of the mixing length model is a considerable drawback to
its use. - 7

Notable is the longer run time required by the & — ¢ model; a consequence of
the increased number of iterations required to obtain convergence as well as the

greater computation required to solve the extra equation. Also as.noted before,

‘the denvative boundary condition on the turbulent kinetic energy leads to a greater

number of iterations being required than for the ‘stress’ condition.

Model Additional CPU/cycle CPU/time step Iterations
equations (secs) (secs) (mode)
Linear 0 K] 0.013 0
Mixing length 0 ig 0.163 17
k 1 20 0.083 6
k-1 1 20 " 0.083 6
k-« 2 50 0.208 - 8
k—ct 2 73 0.304 12

Table 4.12: CPU resources and average number of iterations for each model. The
number of iterations is the modal value over the wave cycle.

1%=Oatzl=zo.

9z



4.3 Conclusions

First we attempt to interpret the results concerning differences between the model
predictions during the accelerating and decelerating stage of the wave cycle. The

following observations are of relevance.

1. An examination of the rms error for the mixing length and & models —tables 4.6
and 4.8 —'shows that a different value of A is required to best fit the data during

the accelerating and decelerating phases

2. The explicit assumption of a logarithmic law (3.33) is shown in figure 4.7 to yield
a value for the friction velocity that becomes nearer to that obtained without
this assumption as the wave cycle ‘proce'eds. However we must be careful in that
we are making a comparison between two model predictions and not between

model predictions and experiment.

3. The k — £ turbulent kinetic energy profiles shown in figures 4.33a and 4.33b
give markedly better agreement with experimental values near the bed during

the decelerating phase compared to the accelerating phase.

These points indicate that assumptions based on steady boundary.layers become more
valid as the wave cycle proceeds, a result that intuitively seems reasonable. This im-
plies that it is not whether the flow is accelerating or decelerating, but simply the
dufa‘tion sifice the previous flow reversal ? that is important. Improved predictions
for the turbulent kinetic energy near the beginning of the cycle is clearly a desirable
goal. It seems likely that the poor predictions are due to the flow not being in a fully
developed turbulent state, as assumed by the turbulence models. Although we have
not presented the results here, a preliminary test using a turbulence model with em-
pirical corrections to account for low Reynold:nqmber effects (Jones & Launder 1972)
did not significantly improve the mode) predictions. A more sophisticated approach,
perhaps involving transition between a laminar and turbulent regime, might be nec-
essary.

We also remark upon an impm:tant difference between the two equations which
describe the behaviour of horizonial momentum and concentration. This is tﬁe occur-
rence of an externally imposed pressure gradient in the momentum equation, which
will dominate the balance as the effects of turbulence decrease away from the bed.

This helps to explain the relative insensitivity of the velocity field to turbulence

®More cxactly, the vanishing of the bed stress which occurs just before reversal.
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model and the effects of stratification as compared to the concentration field. As a
consequence, the accurate modelling of turbulence seems to be relatively unimpor-
tant for predicting velocity profiles while for the concentration it plays a significant
role. However, at present the uncertainties associated with the bottom boundary
condition for sediment transport problems (ie specifying co and zp) make the use of
relatively sophisticated turbulence models difficult to justify.

Finally, we summarize the main conclusions of this chapter.

1. The solution isindependent of the choice of the two bottom boundary conditions
tried for k-at z; = z9. However the effect of applying boundary conditions at
21 > 2o and assuming an explicit logarithmic law has a considerable effect on
the solution. A comparison between figures 4.6 and 4.35 indicates that the bed
stress is considerably under-estimated near the beginning of the wave cycle if

an assumed logarithmic law is used.

2. Where the Shields number exceeds the ‘saturation’ value for the majority of the
wave cycle, the exact form of the bottom concentration variation with Shields
number is not important. The specification of the reference concentration,
which eﬂ'ective.ly scales the value of the predicted concentrations throughout

the boundary layer, is however crucial.

3. Buoyancy effects are found to have a significant effect in decreasing the amount
of sediment in suspension, but to have negligible effect on the mean velocity

profiles.

4. If the length scale is to specified explicitly using (4.1), then the best choice for
the value of A to fit the experimental data for all the quantities considered is
not clear. For the linear model, A = 6, /20 gives the best fit for both the mean
velocity profiles and the {friction velqcity. Thus this value, originally proposed
by Kajiura (1968), would appear to be best. For the mixing length and k
models, the value of A required to give the best fit to the mean velocity profile
changes as the wave cycle proceeds. During the accelerating stage A = oo is
superior, while for the decelerating stage A = 6, /20 is best. However the best
overall fit is with A = 6,/10. As this is also the value of A for which the
k model best predicis the concentration data, it seems a good choice for this
particular model. As indicated by ‘ﬁgure 4.20, this value is very close Lo the
value givén'by (4.3) which can b‘e' determined without recourse to calcelating 6.,,‘

from the linear model. On the other hand, bed stresses are better predicted

--— — — - - -with A = oo-(see-table 4.11)-for-the mixing length .and.k models. _
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5. The k - £ model gives clearly superior predictions for the velocity profiles,
although all models are in reasonable agreement with the data. The'conclusions
regarding the prediction of bottom stress, which in practice.is probably of
greater importance are equivocal. Figure 4.35 and table 4.11 show that for

this particular data, the £ — ! model gives the best fit.

6. The sediment concentrations are predicted well by the k —¢ model with a value
of co = 0.3. However equally good predictions can be obtained with the &
model if ¢y is altered and, given the uncerlainties assc;ciated with the values ol:
co and zg, it is not really possible to justify the use of one model above another.
The experimental data does seem to show clear‘ly the inadequacy of the linear
model, with length scale given by (3.29), for suspended sediment predictions
in a wave boundary layer. It is.likely that considerable improvement could be
achieved in predicting the average concentration with this model, if the length
scale value were specified to decrease with height instead of remaining fixed
at a constant value. For predicting variations in concentration within a wave
cycle, the results obtained with the linear model are n_10ré heavily dependant - ;
on the exact form chosen for variation in reference concentration with Shietds

“number than-is the case with-the other models. — - —

7. In terms of CPU resource the k — ¢ model was found to be significantly more
expensive than the simpler models. Even so, because only about six wave cycles
were needed to achieve an oscillatory solution, run times were of the order of

five minutes. ) ‘ ¢
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Chapter 5

Numerical Calculations with

Particle Inertia Effects

~

We'now present the results of taking into account the effects of particle inertia in
the particle momentum equation. Before this, a further discussion of the bottom

boundary condition on the concentration is required.

-~ The results in Chapter 4. for the concentration profiles were obtained applying

the‘ bottom boundary for ¢ at zg, well below the top of the bed load region, and
in fact within the bed itself. However, expressions for the vertical particle flux,
both the the standard one (3.18), and that including particle inertia (3.17), were
derived on the basis of low concentrations and the assumption that only gravitational
and hydrodynamig forces act on the particles. These assumptions are not valid in
the bed load region where particle concentrations are high and where forces arising
from particle collisions will be important. When the standard expression for the
particle fux is used the results from Chapter 4 show that reasonable agreement with
experiment is found, despite the use of (3.18) in the region very near the bed where it
cannot be completely valid. This may come about by the use of a botlom boundary
condition which can be ‘calibrated’ via ¢g to ensure agreement with experiment.

- A problem arises when the vertical volume Aux (3.17) includes the terms associ-
ated with particle inertia. The model for the pressure-concentration correlation (2.58)
contains a term proportional to £/k and this ratio is found to increase rapidly as the
bed is approached. Thus, a substantial effect due to this term is found to result, but
in a region that we cannot expect to model. In the bed load region this is due to
neglect of particle collisions as mentioned. Further, because of the logarithmic com-

_pression.the.first ten or_so_grid_points_are even below the level of the sand grains on
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the bed and clearly variations in model concentration at these length scales have no
physical meaning. To avoid misleading results when the inertia terms are included,
it is clearly important to use the expression for the particle flux (3.17) only where
has some validity, that is, above the bed load region. When calculating the inertia
effects we thére[oré specified the concentration at the top of the bed load region and
solved for the particle flux in the region of suspended load only. An unfortunate
consequénce of this is that t.h:z effect of the inertia terms is sensitive t6 where the
boundary between bed load and suspended load is taken. However there is -no ac-
cepted cril.eriva to decide where the boundary occurs. This emphasises the need for a
consistent theory that can model the complete two-phase boundary layer, including
both bed load and suspended load regions. Although equations (2.8) to (2.10) may
form a basis on which to do this no such theory exists at the moment, although the
paper by Kobayashi & Séo (1985) is an attempt along these lines.

For stea.dy flows at least, a number of workers have suggested formulae giving the
bed load thickness. Einstein (1950) takes the top of the bed load at 2d. Most authors
have taken it to be greater than this; typically two to three roughness heights from
the bed. Kobayashi & Seo (1985) allows the bed load height to vary with Shield
number, although it is not stated where the expression used originates from. In our
calculations the bottom of the suspended load }egio;l i; t_akein a_u. ;,b = 2.5d, close
to the value suggested by Einstein . Clearly this is a somewhat arbitrary choice
but seems reasonable for preliminary calculations given the lack of specific and well
accepted values the literature. An indication of the sensitivity of the concentration
profiles to the value of zp is given later.

Having decided where to specify the concentration when including the particle
inertia, we now have to determine the value of that concentration. This was done
by calculating concentrations without particle inertia, using the bottom boundgry
condition (3.41) applied at zo, and simply using the value predicted by this calculation
at zp. Differences between the concentrations obtained with and without particle
inertia can the be attributed solely to the effect of the inertia terms in the suspended
load region.

A further complication that arises when the inertia terms are included in the

“vertical volume flux is that ¢ occurs to second order. When (3.17) is substituted

into (3.19) a third order differential equation is obtained. This has two consequences:
another boundary condition is required, and modifications to the numerical scheme

need to be made. It possible to assess the contribution of the second order term by

_calculating the particle flux predicted by {3.17) using the concentrations derived from
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the solution without inertia (this assumes implicitly that the inertia terms represent
small corrections to the “inertia less” solution). Comparison of the magnitude of

the second order term with the total flux showed the former to be negligible, and

be incorporated into the numerical scheme already described in Section 3.2. The

advection diffusion equation for the concentration, (3.63), is solved with m;)diﬁed_

advection and diffusion coefficients which, after non-dimensionalising, take the form:

\
|
hence the term is discarded. This then leaves (3.17) in a form that can very easily
|

. _ . 120k
i o= mp Lt |- p ) oe e - —Ao+(»o-l)c’f:»21‘35E %’
] Kt [Tty e \dz* '
(5.2)
| where
| . . -1 a 72 .
‘ . ¢ = -us(l+p Cnm)(flb"z—,<c > —wg f2),
j 2 —_ k. hd 3’5 ?
| <cd*> = 2R€—.n1 67 )
\ o e . _ o; =_a,'_+_0_-'-fc-_ -

‘ The vertical particle volume flux is then

ac

so that )
o¢ _ d (éw}) — i)
gt~ 9zr 1 Bz

. ¢
(kige) =0

We term (5.1) and (5.2) the ‘advective’ and ‘diffusive’ contributions to the vertical

volume flux respectively.
For numerical solution, the transformation from z to { defined by (3.52) is pet-
formed on the above expressions.
~ Values of the tutbulence constants appearing in the equalions are listed in ta-

ble 5.1.

’

Constant | @&; a} a2 a) e a3y R

-

Value |3.0 05 033 00 011 00 08

Table 5.1: Value of turbulence constants occuring in inertia terms.
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5.1 Vertical particle flux

All the calculations presented here use values ofvthe flow paramet:ers corresponding
to the experimental setup of Staub et al. {1983) — see table 4.3. Values o.l' d, zq, co
and wp are as described in Section 4.1.2. For particles of radius O.Qﬁmm, the value
of 7* was determined to be 0.0013.

First we examine the magnitude of the inertia effects by plotting the vertical par-
ticle volume flux, iz, with and without the inertia terms included. Figures 5.1 to 5.6
compare, for the same concentration fields, the fluxes together with the advective and

diffusive contributions that comprise them. We can conclude that:

1. the ineriia terms always lead to an enhancement of the particle volume flux;

this is most apparent as the free-stream velocity nears its maximum;

2. this enhancement appears to be due mainly to an increase in the diffusive

contribution;

3. the effects of the inertia terms are negligible above about 0.5 cm (roughly 25
roughness lengths from the bed).

The effect on the concentration profiles is shown in figures 5.7a-and 5.7b. As we
might e.xpect, the enhanced particle flux gives rise to an increase in the concentration;
this is apparent at all phases of the wave cycle. The effect of the inertia terms appeats
to be quite:small for this particle size. Also shown in the same figures is the sensitivity
to the height above the bed, z, at which the suspended load region is assumed to
begin. It can be seen that the solution is not unduly sensitive to the value of this
parameter.

In figures 5.8 and 5.9, concentration profiles obtained with and without inertia
terms ate compared with the experimental data of Staub et al. (1983). Neither value
of zy shown in figure 5.9 yields a curve which is inconsistent with the experimental
points.

We now examine the effect of increasing the particle radius by a factor of two,
from 0.06mm to 0.12mm. This leads to an increase in 7* from 0.0013 to 0.0053 and
an increase in the fall velocity from q.OIOm/s to 0.029m/s. Other flow parameters are
kept the same, except the roughness length which is modified assuming the bed to
be coﬁ\posed of uniform sand of radius 0.12mm. This is found to lead to a boundary
layer of transitional type, neither hydrodynamically smooth or rough, with 2o equal

to be 2.0 x 10~2 ¢cm. The reference concentration’at zo was taken to be ¢o = 0.3

(volume fraction): Figures-5:10a-and-5.10b-show-that-the concentration amplitude. . . ____ ___ _

)
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for the larger particle size to be significantly greater when particle'inertia is taken into
account, although' little effect is seen on the concentration phase. On the logarithmic
plot of the concentration amplitude, the effect of the inertia terms is to shift the
line upward, indicating that the effect of ir:cluding these terms can be regarded as
being equivalent to scaling the solution by a constant. The inertia effects could thus
be incorporated into the specification of the reference concentration. It is also of
interest to note the dependence of buoyancy effects on the particle size, also shown
in figures 5.10a and 5.10b. Although the these effects are quite significant for the
smaller particle size, they are seen to be negligible for the larger particles. The
explanation for this lies in the value of the concentration predicted [or the larger
particle size. This is seen to be at least an order of magnitude less than for the finer
sediment particles, leading to the buoyant production term being negligible in the

k — £ equations.

Reduced form for the inertia terms

Of the large number of terms inciuded in (3.17), most are found to be negligible.
Figure 5.11 indicates that only two of the terms associated with particle inertia play

any role in modifying the concentration profiles:

1. the gradient of turbulent kinetic energy which models the derivative of < vy> >
arising from vertical component of the mean pressure gradient (3.9); this affects

the advection part of the concentration equation;

© 2. the I, term in the model for the fluctuating pressure correlation < p'Ve' >;

this modifies the diffusion part of the equation.

Although we have not illustrated the result here, it was found that the wall correction
factor also had a relatively minor influence on the solution. An attempt to further
simplify the equations by neglecting the modification to the advective contribution
entirely, as an examination of figures 5.1 to 5.6 suggests might be justified, leads to
figure 5.12. Clearly, the neglect of this term is not valid if we wish to include the
inertia effects. It.is therefore concluded (tentatively) that the complex form of (3.17)
can be-replaced, for boundary layers at least, by the following modifications to the

advection and diffusion coefficients

o, 1. 28k
wy = wo(l—c)+;1_\.p-j§;,

1 i
K1 7 NT_[I + :;GIA},,%]_‘,
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Concentration profiles with and withoui inertia effecis.
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Concentration amplitude.
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Concentration profiles with:and without inertia effects.
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5.2 Horizontal particle velocity

\ For convenience we reproduce here in non-dimensional form, equation (3.15), the
horizontal particle momentum balance derived in Section 3.1:
cay = ¢uy + {é(l - p")% + [Ew{, + (a2 + a'zfc)(l.— p"')rc,}‘-(,jaz—c.] %} .
(5.3)
Recall that %, is the average velocity defined in terms of the horizontal particle .ﬂux,
that is, i, =< cu; > /& This is not the same as the direct average of the velacity
defined as < u, >. Also note that with the formulation of added mass adopted,
no added mass contribution appears in the above expression. The form of (5.3)
is convenient in that it gives iz, explicitly in terms of quantities that are already
available.

In the following figures, all quantities derived from (5.3) are shown for the sup-

| . posed region of suspended load, i.e. for z greater than z,. )

First we show the non-dimensional velocity difference, 5, — i, for two particle

| sizes. Figures 5.13a and 5.13b show profiles at different stages of the wave cycle
for particles with radii of 0.06mm and 0.12mm respectively. The flow parameters
| ‘have ‘been -kept identical-for-both particle-sizes, and -are those-given-in-table 4.3 - -
corresponding to the experiments of Staub et al. (1983). Both sets of curves show
similar behaviour. It is apparent that the predicted velocity difference is always very
‘ ‘small, even for the larger partictes. During the second half of the wave cycle, during
which the flow reverses, the profiles are simply the negative of those shown here. This
can be anticipated from the form of (5.3). Both the pressure and velocity gradieat
satisfy f(t + T/2) = —f(t), where T is the wave period. The coefficient multiplying
the velocity gradient, which depends on the concentration field, will remain the same
from one half-period to the next, once a periodic state has been achieved. )

An examination of the predicted magnitude of the pressure gradient and the
velocity gradient terms indicates that in the region of high shear near the bed the
latter term dominates. Furtheraway, the' velocity gradient diminishes and the velocity
difference is determined by the (depth independent) pressure term. This is clearly
reflected in the form of the profiles for the velocity difference where a region of rapid
change near the bed gives way to a velocity difference that is nearly constant with
depth further away. -

We now attempt to give a physical interpretation of the mechanisms involved

in the behaviour described above. Away from the near-bed region, the horizontal
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pressure gradient term gives rise to the (expected) result, that the heavier sediment
particles lag the fluid. This leads to a positive velocity difference when the flow is
accelerating and a negative one when it is decelerating. This relation is predicted
‘to break down near the bed as a consequence of the term involving the velocity
gradient. Examination of this term shows that the contribulion involving the fall
velocity comes from the systematic difference in acceleration given by (2.59), which
itself is a consequence of (2.19). Physically this represents advection of momentum
downward and so, when the velocity gradient is positive, can lead to an increase in
the value of 7, sufficient to make &; — &, negative. When the -velocity gradient is
negative, the effect is the reverse and can be sufficient to make &, more negative than
7, so that &, — i, becomes positive. This mechanism does not depend directly on the
presence of turbulence and so should occur in suitable non-turbulent flows as well.
Some insight can be obtained by calculating the amplitude and phase of ¥, and

@, as a function of z. We assume that

3, = ap COS(-'.. — @u) + Vres,

iy = aucos(t’ — Py) + Ures,

where v,., and u,,., are res?dual terms accounl-ing- for the ll_llmer}cal ermand- hig-her
harmonics that may be present. Higher order harmonics were found to be present in
the velocity fields generated by the k—¢ model. The 3rd and 5th order harmonics were
approximately 5% and 0.5% respectively of the principal. Amplitudes and phases for

the principal fluid velocity harmonic can be found by evaluating

2 Lo+ T

a(z) = = o1(z,t) costdt,
T J,,
2 to+T

b(z) = —/ #1(z, t) sintdt,
T /.,

where g is some arbitrary start time, and setting
2y = Va? + b2, v = arctan b/a.

If an exactly analogous procedure is carried out for i, then the amplitude ratio
a,fa, — | and the phase difference ¢, — ¢, can be formed. These quantities are
plotted in figures 5.14a and 5.14b for the two different particle sizes. Also shown is
the effect of neglecting the term involving the concentration gradient in (5.3) — this
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is accomplished by setting a; = 0.

As expected, both the amplitude ratio and the phase difference show a greater
effect from the larger particle size. The only noticeable qualitative difference is the
appearance of a maximum in the phase difference for the larger particle size. This
behaviour was in fact present in the curve for the smaller particle size, but appeared
very close to the bed V(below‘zb) and so was not plotted in figure 5.14b.

We now discuss the effect of neglecting the term involving the concentration
gradient. This term comes from the Il component of the model for the pressure-
concentration correlation. Its exact physical interprélation is not immediately appar-
ent. However, the following argument suggests that its effect will be small compared
to the contribution from éwy. In form, the term multiplying the velocity gradient is
the same as the vertical particle flux (3.23), except that the diffusive contribution is
multiplied by az(1 — p~!'). This constant evaluates to about 0.16. An examination of
figures 5.1-to 5.6 shows that at best the diffusive coatribution to the vertical particle
flux balances the advective contribution; otherwise it is smaller. Since in (5.3) the
factor multiplying the concentration gradient is much less than one, we expect overall
the Zw} term will always be larger. This is verified in figures 5.14a and 5.14b where

the broken curves sho“ the result of settlng az = 0. As can be seen, the term affects

the results only sllghtl), tendmg on the whole to decrease the dlﬂ'erence between
the fluid and particle velocities. It is interesting to note that, if the concentration

gradient term is neglected, one obtains

&, = &0, + [(1— -1)6P°° . 9\/,]
DE

This is the relation that would be obtained from (2.60) by dividing through by ¢
and applying the turbulent average to obtain an equation for the ‘true’ (i.e. not
concentration weighted) horizontal particte velocity.

At present no experimental meaguremenls appear to be available to ter validate
the numerical predictions obtained using (5.3). Some measurements of sediment
particle velocities have been made in the bed load region for oscillatory flow by
Horikawa et al. (1982). Unfortunately, these are not relevant to the suspended load

tegion.
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First half of wave cycle.

r = 0.06 mm,

Z (cm)

0-0 T
-20-0 -15%-0 -10-0 =50
(vy = w)/Va

Figure 5.13a:

Difference between horizontdl fluid and particle velocity.
first holf of wave cycle. -t
r=0.12 mm. . |
6-0 -
(1))
4-04
3
L
~N
2-0- -
J ‘
0-0 T T T =5 T \J T -
-0-010 -0-0048 -0-008 -0-004 -0-002 0:000 0-0012 0-004 0-008
(vr - ul)/v- -

Figure 5.13b:

169
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5.3 Discussion and Summary

As regards the effect of pacticle inertia on the vertical diffusivity, it 1s clear that
some uncertainties exist. The important term aﬁpears to to be the IT, part of
the press;lre-concentration correlation, and there is the question of the the suitabil-
ity of the expresston used to model this term. For a (steady) atmospheric bound-
ary layer, where temperature rather than concentration is the scalar, the general
behaviour of the model expression {2.58) agrees with experimental measurements
(Gibson & Launder 1978). The performance of the model in the unsteady flow, very
close to the boundary, where we have applied it is unknown and would probably be
extremely difficult to determine experimentally.

If we accept that the form of the expression for IT, is adequate, a second difficulty
is the poor prediction of k, and therefore probably ¢/k, by the present k - £ model at
the early stages of the wave cycle (c.[. figure 4.33a). It is apparent that we can hope
for qualitative predictions only for the effect of the inertia terms as a colnsequenc.e of
this.

Even if the modelling of the pressure-correlation gives qualitatively correct be-
haviour, then a final -ptqblem is the rapid increase in the magnitude of £/k as the
bed is approached. As discussed at the beginning of the chapter, lhi5. makes the
predictions sensitive to the point at which the inertia terms are “switched on”.

Finally, we note that although we have accounted for the effects of inertia in

- the equations of motion for the particle phase, the inertia also has an effect on the

turbulent particie flux ‘< ¢’v' >. This can be accounted for by including inertia
terms in the equation for the turbulent particle fiux, as in Shih & Lumley (1986).
These anthors carry out a numerical calculation of particle dispersion for a steady,
free-shear mixing layer which highlights the importance of the so-called “cros-sing
lrajectox;y" effect. This arises not from the particle inertia, but from the particle fall
velocity which leads to an additional term in the equation for the turbulent particle
flux. The effect of this term is to decrease the correlation between ¢’ and vy. For
the case considered by Shih & Lumley , the magnitude of the effect was f;)und to be
significant and greater than that of particle inertia.

Because of the difficulties and lim_itat.ilons mentioned above, the resulls of this
chapter need to be regarded as preliminary in nature. However two conclusions seem

justified by. the results presented.

1. The effect of the particle inertia, when included in’ the particle momentum

equation has the effect of enhancing.the vertical particle flux. This can be
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inferred quite generally from equation (5.2), assuming that the £/k term, which

comes from IT,, is the dominant term;

. Two regimes are apparent in the curves for the difference in horiz:)nt.al velocily
between fluid and particles. Away from the bed, the horizontal pressure gradi-
ent term determines this difference, leading to ©; — i; being positive when the
flow is accelerating and negative when it is decelerating. Near the bed the sign
of 5, — @, is determined by the sign of the mean velocity gradient via a term
representing the vertical advection of particle momentum due to the particle

fall velocity.
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Chapter 6

Conclusions

Two aspects of the modelling of sediment transport processes have been considered;
the relative merits and capabilities of various levels of turbulence closure in describing
oscillatory boundary layer flows, and the use of continuum mixture theory to provide
a base for the development of a satisfactory description of suspended sediment trans-
port. We here draw some final conclusions fegarding these two areas in the light of

the results presented in the previous chapters, and then discuss possible extensions

and further work.

The results obtained for mean velocity profiles using the two-equation k& — & model
recommend its use, particularly il good quantitative agreement with experiment is
sought. For the equally important task of predicting bed stress the conclusions are
more equivocal, partly because the experimental data appeared less reliable for this
quantity, although again the k — ¢ model gives good results. When we consider the
modelling of suspended sediment, it is clear that the uncerlair;ties in specifying the
teference concentration and the appropriate roughness length make the use of rel-
atively sophisticated turbulence closures less easy to justify. Simple linear models,
in which the eddy viscosity is prescribed and constant over a wave cycle, are pz;r-
ticularly dependani on the form of the bottom bbundary condition since this is the
only means by which a time variation enters into the solution. This would appear
to make them less suitable, co-mparec.i to other models, for the investigation of time
dependant effects in wave boundary layers.

Stratification due to the presence of suspended sediment is predicted to have some
effect on concentration profiles, although virt_ually none on the mean velocity. An
advantage in using the k —¢ model is that buoyancy effects have been included in the

formulation of the model by workers in other fields and tested against experimental
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measurements. The direct verification of some of these results for the case of an
oscillatory boundary layer would however be desirable. Uncertainties associated with
the reference concentration might be avoided by using experimentally determined
values of concentration taken very near the bed as model boundary conditions.

Turning now Lo a consideration of tlle other main topic presented in this work, we
note that a number of problems exist concerning the foundations of the two-phase flow
equations. Although recent work by Geurst (1986) represents-a significant advance,
the underlying justification of the equations is not perhaps as secure as-one would like.
Despite this, the use of mixture theory as a basis for formulating the fundamental
relations governing sediment transport processes seems to offer considerable promise.
Although appearing to yield complicated expressions, this is mainly true only if the
effects of particle inertia are to be included. For many sediment types the neglect of
inertia appears to be well-justified and, in the limit of dilute particle concentrations,
the equations yield standard expressions for the particle volume flux. In addition,
neglect of particle inertia and the assumption of low concentration, leads to fluid
momentum, turbulent kinetic energy and dissipation rate equations which are again
standard, the effects of suspended sediment giving rise to buoyancy type terms. This
Justifies the use of conventional turbulence cl@tplie_s»_t'oerd_escribing two-phase flows of
the sort encountered in the modelling of suspended sediment. Thus the conventional
approach is seen to emerge as a well-founded approximation to a more complete
theory, as opposed to being derived in a manner that contains within it a number of
implicit assumptions (essentially embodied in the result (2.19)).

Important as this is from a theoretical standpoint, the relative complexity of the
mixture theory formulation is likely to limit its use in practice to situations where
more simple approaches fail. Two situations suggest _themselves as examples of this.
One such situation, and the one we have begun to address in this thesis, is where
the particle inertia begins to have an effect on the diffusivity; indications are that
this may be important for particles of diameter greater than 0.25 mm. The other
situation is where the assumption of dilute concentrations is no longer valid, as for
example in the bed load region. This case will require, in addition, a consideration
of forces due to particle interactions (collisions) and which will have to be modelled.
The equations derived from mixiure theory should provide the correct framework in
which to introduce such models. ‘

Moving on now to a consideration of further work, we discuss first the maodelling
of turbulent boundary layers then work concerned with continuum mixture theory.

In the context of marine hydrodynamics and sediment transport, the use of tur-
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bulence closure schemes needs to be applied to the important area of wave-current

interaction. Even more so than for the wave only case, successful qﬁantilative agree-
ment with experimental measurements is most likely to come from the use of relatively
sophisticated turbulence models. The empirical specification of a turbulent length

scale is not obvious in a situation where two distinct flow regimes are being superim-

posed and turbulence models which have the ability to do without such information

have clear advantages over those that do. Given the well documented success of the
k — € model in other contexts, it is likely to prove a useful tool in the prediction of
wave-current interaction effects.

Several aspects of the work on mixture theory require further investigation and
improvement; in addition a number of extensions can be considered. Incorporation of
further terms into the two-phase flow equations to describe additional forces known
to act on particles is a possibility, although this would further complicate the-equa-
tions. Various lift forces for example are postulated to be important close to the

bed. A better approximation for the turbulent average of the non-linear drag law

_is desirable as the form we use does not account for O(7*) effects. An investigation

of steady, fully developed turbulent flows, rather than the oscillatory flows consid-

_ered here, would be an_obvious_step for considering the effects of particle inertia.

Apart from simplifying the equations, a more important advantage in studying such

flows is the greater confidence that can be placed in the models for turbulent quan-

_ tities. In particular, the pressure-scalar correlation (2.58) and the turbulent kinetic

energy equation. To account properly for inertia it is also necessary to consider the
scalar flux equation for < ¢’v' >, since this too is affected by particle inertia (see
Shih & Lumley 1986). In addition this would allow the importance of the crossing

trajectory effect (Lottey et al. 1983) to be investigated in the context of the transport

of suspended sediment.
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Appendix A

Proof of the Averaging

Theorem for a Simple Case

;

Here we give an informal proof of the result (1.3) for the special case of a rectangle

in R2. Relerring to figure A, the set of points comprising the averaging volume are:
Nz,y) = {(z",¥) 1z - L/2< 2 <z + L/ y—-M/2 <y <y+ M/2}

and this is partitioned into two subsets C; and (3 as in section 1.2. Again we have
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the following relations between the boundaries

I NN,

T

I

(8C, N 8C) N Q.

If f = f1i + f27 is any function defined on C we wish to show

frpds= V.f :de
[alt}

Iy

Let I¢,I%, It and If to be the subsets of Ix along the top, bottom, left and right
sides of § respectively. Along these sides the unit outward normals take the simple

forms j , —3 , —t and i, so that

Frxds= [ fads— | fads+ | frds— [ fids. (A.1)
I 1 I 1 n

‘We define }. as being equal to f on C; and zero elsewhere. Assuming } is

continuous, this implies that f. is piece-wise continuous and therefore integrable.

Thus we can write (A.1) as

}.nk ds
Iy,

z+L/[2 . z+Lf2
B f fi(ey + /2)dz’ - f £y - M[2)dz'
z-L/2 z—-LJ2

y+A[f2 y+M[2 )
+ [ filz + Li2,y)dy - [ fi(z - Lj2,¥) dy .

y-M/2 y-M/j2
z4+L/J2
- / L Uz - £ (z'y — M/2)] dz’
: y+M/2 '
s [ e L2 - fila - LN
y=-A}2
-
Now . "
;] £E+d o .
‘a_E et 9(23£’)d{‘ =g(z,£+b)-g(z,£+a),
so that |

z+Lj2 y+01/2
j L Uiy s M72) = Fi(y = M2+ [ Uiz + Li2y) - fi(z — Li2,)]dy”
:+L/2 y+M/2 y+1l![2 z+L[2
dy'| dz' d
: L/2 [Byj M]2 fi y’] i + ~M}2 [8:/, Lj? 5 z] & ‘
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Appendix B

Equations for a Mixture
Regarded as a Single

Continuum

Here we show that a momentum equation for the fluid, essentially identical to (2.27)
obtained in Section 2.2.3, can be derived from a slightly different viewpeint. This
entails treating the combined fluid particle mixture as a single ‘fluid’, an approach
that has been discussed by Ishii (1975) for example and used in modelling flow con-
taining suspended sediment by De Vantier & Larock (1983). Assuming low particle
concentrations, the effect of the particles ca'm be treated as being a small perturbation
on the state of single-phase fluid flow. The momentum equation that 1s deri;'ed is
analogous to that obtained with the Boussinesq approximation in variable density
flows. In the following we neglect the viscosity.

Equations for the combined fluid particle mixture can be found by adding to-

gether (2.1), (2.2) and (2.3), (2.4) to give, after some manipulation,

9pm N
_af. +v-(vam) - 01 (B'l)
Dv,,
Pm—pg = Pm9 Vpn — d. (B.2)
Here
D 3
- otV _
pm = ppctpr(l —c)=p; + Bpc,




Vm = [ppcu+p;(1—c)v]/pm

and

d = V.[pppe(l —c)(v ~ u) @ (v — u)/pm)-

These equations, together with (2.1) and a constitutive relation for v — u, yield a
complete set of equations which in principal can be solved for pm,c, vm and py.!

Assuming py and pp to be constant, (B.1) can be written
V.vn = 0(c).

For the case ¢ < 1, the mixture density will be effectively gy and so the hydrostatic

pressure gradient is pyg. Putting
Vpn =Vp+psg

(B.2) can be written
Dvn,

Dt

Pm = Apcg - Vp-d.

By analogy with the Boussinesq approximation we neglect all terms of O(c) except
those multiplied by g. Since p;! = p;l + O(c) and v, = v + O(c) this gives
Dv _ pm —py 1 d

e, V- —.
Dt Py Py Py

The following scaling analysis shows that d/p; is negligible if the' particle concen-
tration is small. For the horizontal component of momentum, d/p; is comlpared 10
the advection term vm.Vu,,. The ratio is found to be O(c), assuming that v and u
can be scaled ‘with the same velocity. Thus &/p! caﬁ be neglected in this case.

For the vertical component of momentum, d/py is compared with {pm — ps}9/p; -

In the vertical, the difference vz — ug is of the order of the fall velocity wg The '

H

ratio of d/p; to the cbmparison term is found to be of the order wﬁ/gl,, where
l; is a characteristic length for the vertical gradient of velocity and concentration.
With wo = 5 x 10~2? m/s, this ratio becomes order 10-4/1., requiring [, ~ )} mm for
d/p; to be of any signiﬁcance. As discl_xssed in Section 2.2.4, the only region where
such steep gradients might occur is very ﬁear the bed. Thus we can, with justification,

write the momentum equation for the mixture, in regions away from extreme vertical

VIf the constitutive relation for the velocity difference is diffusive then the so-called ‘d.iﬂ'uslian'
model for two-phase flow {Ishii 1975) is obtained.
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gradients, as

Dv,, Pm — Py 1
= g- —Vp. B.3
Dt Py Py (B-3)

This is exactly the same as (2.27) which was derived from the fluid momentum
equation (2.26) assuming the velocity difference between the fluid phase and particle

phase was equal to wg.
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